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Abstract 

Exploiting Deferred Destruction: 

An Analysis of Read-Copy-Update Techniques 

in Operating System Kernels 

Paul E. McKenney 

Supervising Professor: Jonathan Walpole 

The Moore's-Law-driven performance of simple instructions has improved by orders 

of magnitude over the past two decades, but shared-memory multiprocessor (SMMP) 

synchronization operations have not kept pace. SMMP software uses synchronization 

operations heavily, thus suffering degraded performance and scalability. As a result, many 

traditional SMMP algorithms are now obsolete. 

This dissertation presents read-copy update (RCU), a reader-writer synchronization 

mechanism in which read-side critical sections incur virtually zero synchronization over- 

head, thereby achieving near-ideal performance for read-mostly workloads. Write-side crit- 

ical sections incur substantial synchronization overhead, deferring destruction and main- 

taining multiple versions of data structures in order to accommodate the synchronization- 

free read-side critical sections. In addition, writers use some mechanism, such as locking, 

to ensure orderly updates. 

Readers provide a signal enabling writers to determine when it is safe to complete 

destructive operations, but this signal may be deferred, permitting a single signal operation 

to serve multiple read-side RCU critical sections. 



These read-side signals are observed by a specialized garbage collector, which car- 

ries out destructive operations once it is safe to do so. Garbage collectors are typically 

implemented in a manner similar to a barrier computation. Production-quality garbage 

collectors batch destructive operations, amortizing signal-observation overhead over many 

updates. 

Although RCU is not itself new, its use has been quite specialized. This dissertation 

rectifies this situation by showing how RCU can be implemented efficiently in operating 

system kernels, by demonstrating its system-level performance and complexity benefits, 

and by providing a set of design patterns that make RCU more generally applicable. 

This dissertation compares RCU to traditional synchronization mechanisms, including 

locking and non-blocking synchronization, using both analytic and empirical methods. 

The empirical methods include both informal micrebenchrnarks and formal system-level 

benchmarks. These benchmarks show performance benefits ranging from tens of percent 

to an order of magnitude and little or no increase in code complexity. 

Finally, this dissertation demonstrates that RCU has practical value by (1) outlining 

its use in several production systems, two of which have seen extensive datacenter use, 

one of which this author designed and implemented, and (2) documenting its widespread 

use in the Linux 2.6 kernel. 



Chapter 1 

Introduction 

Although computer system performance has increased by several orders of magnitude over 

the past few decades, this Moore's-Law performance increase has not been so beneficial 

to shared-memory multiprocessor (SMMP) software, as shown by Figure 1.1. Each trace 

plots the ratio of the cost of the specified number of instructions to the cost of a spinlock- 

guarded critical section containing that same number of instructions, where contention is 

negligible and where both the lock and the data that it guards are contained in a single 

cache line. The instruction cost is estimated based on the published MIPS ratings for 

the older CPUs, and based on the clock frequency for newer CPUs. The cost of lock 

acquisition and release is estimated based on the cost of moving a line from one CPU7s 

cache to another's. The raw data is displayed in Appendix A.1 on page 321. 

This ratio is a measure of the efficiency of SMMP software for the specified critical- 

section size, measured in number of instructions. As can be seen in the figure, this efficiency 

has decreased precipitously since the early 1 9 8 0 ~ ~  so that SMMP algorithms that both 

performed and scaled extremely well two decades ago perform abysmally today. The 

Moore's-Law-induced changes in computer architecture have rendered such algorithms 

obsolete. 

Since Moore's Law has brought huge benefits to computing and to society in general, 

it is only natural to ask why it has served SMMP software so poorly. 
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Figure 1.1: SMMP Efficiency for Sequent Computers 

1 .  Where Has Moore's Law Gone Wrong? 

The trend displayed in Figure 1.1 is nothing new, nor has it gone unnoticed [6, 17, 32, 38, 

68, 73, 88, 1171. As discussed in these references, this trend has a number of underlying 

causes : 

1. Electrical and speed-of-light effects have confined the sharpest rise in clock fre- 

quency to on-chip components. Connections between chips run at much lower clock 

frequencies, limiting bandwidths and degrading latencies for the chiptechip data 

paths connecting CPUs to each other and to memory. 

2. Increasing memory size increases the depth of the address-decoding logic, thus in- 

creasing memory latency. 

3. Increased memory latency is addressed by use of larger caches and larger numbers 

of levels of cache. Although these caches greatly improve average memory latency, 

they actually degrade worst-case latency, because each level in the hierarchy imposes 

a latency penalty, regardless of whether the access is satisfied from DRAM or from 



another CPU's cache. 

4. Some of the CPU coreclock frequency increase has been enabled by increasing the 

number of stages in CPU pipelines and by heuristic measures such as branch pre- 

diction. Although these longer pipelines increase best-case instruction rate, they 

also increase the penalty for branch mispredictions and other events that stall the 

pipeline. The increased penalty is due to the larger amount of partially executed 

instructions delayed or discarded when the longer pipeline is stalled. 

5. Both increased memory latency and the overhead of pipeline stalls is partially ad- 

dressed via superscalar CPUs, which do out-of-order and speculative execution. 

However, many SMMP algorithms do not tolerate such reordering, and they must 

therefore use special "memory barrier" instructions to enforce the needed ordering. 

Unfortunately, these memory-barrier instructions are quite expensive. 

The result of these effects has been that although the singlethreaded instruction- 

execution performance of CPUs has increased dramatically, the performance of CPU-to- 

CPU, CPU-to-memory, and pipeline-stall operations has not kept pace. However, these 

are extremely low-level micro-architectural issues. Have they really had significant impact 

on the performance of real-world software running on real-world computer systems? 

1.2 SMMP Efficiency: The Effect on Real Code 

The decrease in SMMP efficiency has been dramatic, as can be seen from Figure 1.1. In 

fact, Chapters 2,7, and 8 will show that the performance of the synchronization operations 

traditionally used by SMMP software critically depends on the performance of CPU-to- 

CPU, CPU-to-memory and pipeline-stall operations that have been left in Moore's Law's 

wake. 

In particular, Section 2.2 describes how traditional SMMP synchronization primitives 

rely on atomic instructions to update shared data. Because the data is shared, each such 

update will likely need to communicate with the CPU that performed the previous update, 

unless great care is invested into increasing temporal locality. The performance of such 



CPU-to-CPU communication is quite slow, and is actually degraded by the same caches 

that are used to improve average memory-access latency. In addition, as noted earlier, 

most SMMP algorithms require that operations be ordered,' and the memory-barrier 

instructions used to accomplish this are quite expensive. 

Recent hardware research has uncovered methods of optimizing the execution of crit- 

ical sections, as is discussed in Section 2.2.15 on Page 55. However, all such hardware 

improvements are currently research prototypes, and will require some time to appear in 

commodity products, if in fact they ever do make their way into commodity products. 

Therefore, it makes sense to look for new ways of writing SMMP software so as to avoid 

these expensive operations. 

1.3 What Can Be Done? 

Since the trends outlined in the previous sections are not new, one would expect that 

much work has already been done to address them. For example, one approach sug- 

gested directly by Figure 1.1 is simply to increase the size of critical sections, perhaps by 

merging adjacent sections. This approach has the benefit of decreasing complexity, but 

unfortunately typically aIso decreases scalability [66]. 

The opposite approach of partitioning critical sections across different data elements, or 

"data locking", has met with substantial success, as described in Section 2.2.7 on Page 25. 

However, even though data locking can greatly reduce lock contention, it does nothing to 

reduce the use of expensive atomic instructions and memory barriers. 

In principle, read-mostly data structures can benefit from the greatly decreased levels 

contention provided by reader-writer locks, but, in practice, as will be shown in Sec- 

tion 2.2.6 on Page 23, memory latency often overwhelms the read-side parallelism benefits 

of reader-writer locking. Specialized asymmetric reader-writer locks can be used in some 

cases, but Section 2.2.9 on Page 28 will show how far short of ideal performance they fall, 

and Chapters 7 and 8 will demonstrate their shortcomings in update-intensive situations. 

 o or example, it is not permissible to allow the operations following a lock acquisition to be executed 
before the lock acquisition completes. After all, the whole purpose of acquiring the lock is to protect those 
operations, and it cannot very well do so if they have been reordered to precede the lock acquisition. 



Non-blocking synchronization (NBS) has seen much research activity over the past 

decade, and in fact Section 2.2.13 on Page 41 will show that simple forms of NBS have 

seen widespread use, though only in very specialized situations. Section 2.2.14 on Page 46 

describes the difficulties that NBS has faced in more general situations, namely, that 

although it does eliminate lock contention, it introduces a similar form of contention- 

induced performance degradation due to repeated retries. In addition, NBS does nothing 

to reduce performance degradation due to the pipeline-stall and memory-latency overhead 

incurred by memory barriers and by atomic updates of shared memory. Nonetheless, many 

of the ideas put forth in NBS research are valuable in their own right, as will be shown in 

Chapter 5. 

Section 2.2.16 on Page 56 will describe how the semantics of underlying data and 

operations may be exploited to increase performance and parallelism. In fact, the NBS 

split-counter example to be described in Section 2.2.13 on Page 2.2.13 exploits the com- 

mutative law of addition for exactly this purpose. However, these methods are specialized 

to specific situations, and thus are not generally applicable. 

A number of researchers have noted that read-only accesses to read-mostly data 

structures may entirely dispense with synchronization operations if writers defer destruc- 

tion [I, 30, 39, 53, 54, 56, 61, 62, 81, 86, 87, 91, 931. Dispensing with synchronization 

operations in the read-only case is important: given that the concurrent readers need not 

communicate amongst themselves, the expensive synchronization operations are unneces- 

sary, at least in principle. However, as will be discussed in Section 2.2.20 on Page 62, most 

of these researchers failed to present an efficient and robust mechanism for determining 

how long to defer destruction in SMMP environments lacking a garbage collector, but with 

long-running processes. Even those researchers who provided such a mechanism either: 

1. imposed memory-barriers on readers, with attendant pipeline-stall overhead [86,87]; 

2. implemented a solution that ran only on a single CPU architecture, and that was 

exploited only in an ad-hoc fashion [81, 1081; or 

3. exploited their solution for only one of the many purposes to which it could profitably 

be put [30]. 



The fact that so much work has provided so little benefit for read-mostly SMMP 

situations raises the question of whether we need to return to basic principles in order to 

better understand exactly what benefit can be provided. 

1.4 Returning to Basic Principles 

Section 2.3.2 on Page 65 will abstract three basic principles from the related work surveyed 

in Chapter 2: 

1. Avoid expensive operations, namely those incurring pipelinestall and memory-latency 

overheads. 

2. Architect, design, and implement algorithms that permit fully parallel execution, 

thereby avoiding contention. 

3. Architect, design, and implement algorithms that meet software-engineering needs, 

including simplicity, resilience against denial-of-service attacks, and tolerance for 

incremental adoption. 

This dissertation will apply these principles to read-mostly data structures, such as 

those representing hardware and software configuration in operating-system kernels. Doing 

so results in significant performance improvements ranging from tens of percent to an 

order of magnitude with little or no increase in complexity. These benefits are obtained 

by refining the definition and use of a deferred-destruction technique, namely read-copy 

update,2 which will henceforth be abbreviated as RCU. 

1.5 Description of RCU 

RCU is a reader-writer synchronization mechanism that takes asymmetric distribution 

of synchronization overhead to its logical extreme: read-side critical sections incur zero 

2 ~ h e  name "read-copy updaten originated from its ability to permit readers to run concurrently with 
updates, as long as the updates use copy operations so as to appear atomic to the readers. This idiom (or 
"design patternn) is described in more detail in Section 5.3.3 on Page 163. 



synchronization overhead, containing no locks, no atomic instructions, and, on most archi- 

tectures, no memory-barrier instructions. RCU therefore achieves near-ideal performance 

for read-only workloads on most architectures, and can greatly simplify the structure of 

some algorithms [30]. Write-side critical sections must therefore incur substantial syn- 

chronization overhead, deferring destruction and maintaining multiple versions of data 

structures in order to accommodate the read-side critical sections. In addition, writers 

must use some synchronization mechanism, such as locking, to handle concurrent updates. 

Readers must provide a signal enabling writers to determine when it is safe to complete 

destructive operations, but this signal may be deferred, permitting a single signal operation 

to serve multiple read-side RCU critical sections. RCU typically signals writers by non- 

atomically incrementing a local counter, which is an extremely inexpensive operation. 

These read-side signals are observed by a specialized distributed garbage collector, 

which uses a lazy barrier or a combining tree to sense the reader signals, and carries out 

destructive operations once all readers have signalled that it is safe to do so. Garbage 

collectors are typically implemented in a manner similar to a barrier computation, or, on 

NUMA systems, a combining tree. Production-quality garbage collectors batch destructive 

operations, so as to amortize their overhead over many write-side update operations. 

RCU provides concurrent reads: because readers do not use any synchronization mech- 

anism, there is no way for readers to avoid concurrency. For the same reason, RCU provides 

concurrent reads and writes. RCU does not specify whether writers may run concurrently 

with each other; write-side concurrency depends instead on the chosen write-side synchro- 

nization mechanism. The fact that RCU read-side critical sections use no synchronization 

mechanisms means that there is no overhead due to pipeline stalls, memory latency, con- 

tention, or locking for readers. Write-side overhead depends on the chosen write-side 

synchronization mechanism, but contention is reduced due to the fact that readers do not 

use any synchronization mechanisms. 

In practice, it is also important that the read-side signalling occur reasonably fre- 

quently, since during a time interval in which a given CPU fails to provide such a signal, 

pending destructive operations cannot be carried out. If this condition persists, all avail- 

able memory could be consumed tracking these pending destructive operations. 



RCU is not new. The first mention of a similar mechanism occurred in 1980 [56], an 

early implementation was used in production in the late 1980s [39], and more efficient 

implementations followed in the 1990s 1108, 81, 301. Given RCU's long history, what 

research challenges could possibly remain? 

1.6 RCU Research Challenges 

The first challenge is to identify the deficiencies of traditional synchronization mecha- 

nisms, for if there are no compelling deficiencies, then there is no reason to adopt a new 

synchronization mechanism. Chapter 2 takes up this task. 

The second challenge is to articulate clearly the conceptual basis for RCU, showing 

how it operates and what form of synchronization it provides. This challenge is met by 

Chapter 3. 

The third challenge is to provide an efficient and robust implementation of RCU that 

meets the simplicity and portability needs of general-purpose operating systems. The effi- 

ciency of the RCU implementation is critically important, because the write-side overhead 

of a wasteful implementation could overwhelm the read-side saving. A description of 

six candidate implementations for the Linux kernel, written by various Linux-community 

members, may be found in Chapter 4. One of these candidates was accepted into the 

Linux 2.6 kernel. 

In its raw form, RCU is quite difEcult to use because readers can see stale data as well 

as inconsistent views of non-atomically updated data. The use of RCU in its raw form is 

restricted to very specialized situations. The fourth challenge is therefore to make RCU 

easier to use and more generally applicable, which is a software engineering challenge. 

Chapter 5 attacks this problem by presenting design patterns showing how RCU may be 

used, along with a transformational design pattern language that transforms algorithms 

that are unable to tolerate RCU7s staleness and inconsistency properties into forms that 

are able to tolerate these properties. Chapter 6 presents uses of these patterns taken from 

VM/XA, DYNIX/ptx, Tornado, K42, and the Linux 2.6 kernel. 



The final challenge is evaluating the performance and complexity of RCU. This chal- 

lenge is taken up using analytic techniques in Chapter 7 and using empirical techniques 

with mini-benchmarks in Chapter 8. Chapter 6, along with its presentation of design- 

pattern usage, includes empirical measurements of RCU performance using formal bench- 

marks and simple empirical measurements of RCU code complexity. 

These five challenges by no means exhaust RCU's research possibilities; areas of future 

work are presented in Section 9.2 on Page 9.2. 

1.7 Contributions of this Dissertation 

The contributions of this dissertation include: 

1. A survey of performancerelated changes in computer-system architecture and of 

the consequent challenges to the synchronization mechanisms traditionally used by 

software running on SMMP systems. 

2. The definition of a solution, namely RCU, to a set of concurrency problems stemming 

from these changes and challenges. 

3. A presentation of the relationship between RCU and traditional synchronization 

mechanisms. 

4. A demonstration of the performance benefits, ranging fromtens of percent to an 

order of magnitude, that RCU can provide with little or no increase in complexity. 

This demonstration uses analytic methods, informal micrebenchmarks, and f o m d  

system-level benchmarks. 

5. A set of design patterns that permit RCU to be profitably applied to a wide range 

of synchronization problems, dong with examples where these patterns have been 

used, both by myself and by others. 

6. A demonstration of the practical value of RCU, as evidenced by its use in sev- 

eral production systems, one of whose RCU infrastructure this author designed and 



implemented. This practical value is further evidenced by RCU's acceptance and 

widespread use within the Linux 2.6 kernel. 

Chapter 2 discusses related work, evaluating this work on the basis of an in-depth 

treatment of synchronization's performance and complexity problems. Chapter 3 presents 

an overview of RCU, including a short glossary and description of concepts. Chapter 4 

describes a number of algorithms that have been used to implement deferred destruction, 

one of which has been accepted into the Linux 2.6 kernel. Chapter 5 extends a locking- 

design pattern language [67] to incorporate RCU, and also presents an additional pattern 

language which transforms existing algorithms into a form more compatible with RCU. 

Chapter 6 describes how RCU has been used in various operating-system kernels, evaluates 

its performance, and shows what patterns were used in each case. Chapter 7 analytically 

compares the performance of RCU to that of various locking techniques and Chapter 8 uses 

empirical measurements to compare alternative implementations of RCU infrastructure as 

well as to compare the performance of RCU, both to that of various locking techniques 

and to that predicted by the analysis. Finally, Chapter 9 presents conclusions and areas 

for further study. 



Chapter 2 

Related Work 

A thread may be thought of as part of a running program, but it is useful to define this 

term in a broad sense, so that it includes any executing entity such as a process, task, 

coroutine, interrupt handler, or signal handler. In a group of cooperating threads, the 

results of each individual thread's computation might either affect or be affected by those 

of the other threads. 

One problem arising in concurrent systems of cooperating threads is that of providing 

orderly access and updates to data. This problem, called synchronization, has received 

a great deal of attention over the past several decades. CPU designers provided syn- 

chronization operations at least four decades ago, and researchers have published many 

shelves full of textbooks, journal articles, and conference papers on hardware and software 

synchronization mechanisms. 

This chapter reviews the major areas of synchronization research and identifies some 

key gaps, which this dissertation addresses. This chapter f i s t  focuses on synchronization 

in uniprocessor systems in Section 2.1, and then on synchronization in multiprocessor 

systems in Section 2.2. Section 2.3 provides summary and discussion. 

2.1 Synchronization in Uniprocessor Systems 

Interrupt handlers and preemptive scheduling introduced the need for synchronization, 

even on uniprocessors, many decades ago. 

Consider, for example, a system running a single user thread that repeatedly com- 

putes some values, then writes these values to disk. The simplest implementation would 



compute a given set of values, initiate the 1 /0  that writes these values to disk, wait until 

this I/O completes, then start computing the next set of values. The problem with this 

implementation is that the disk is idle while the CPU computes a given set of values, and 

the CPU is idle while that set of values is written to disk. Because disks are slow devices, 

with response times of milliseconds, literally millions of instructions are wasted by the 

CPU while waiting for disk I/O to complete. 

The standard solution to this problem is overlapped I/O, where the CPU computes one 

set of values while the previous set of values is being written to disk. However, this solution 

requires that there be a way of determining when the previous I/O completes, so that 

the corresponding memory may be reused. This determination is typically made via an 

intempt, which causes a predetermined interrupt handler to be invoked. This interrupt- 

handler invocation may be thought of as an unsolicited function call that preempts the 

currently running thread, resuming it upon return. Such an interrupt handler could free 

the memory upon 1/0  completion, thus permitting its reuse. 

However, this solution immediately presents another problem. What if the running 

thread was itself allocating or freeing memory at the time that the interrupt occurred? 

If the memory allocator's data structures are in an inconsistent state at the time of the 

interrupt, the interrupt handler's attempt to free memory could result in a system crash, 

or worse. 1 

One solution is for the thread to disable interrupts while allocating or freeing mem- 

ory. The interrupt handler will therefore never be invoked while the memory allocator's 

data structures are in an inconsistent state, thereby ensuring the memory allocator's in- 

tegrity. Disabling interrupts has been a standard technique for many decades; The 1965 

CDC 3300 [20, 891 was capable of disabling interrupts, and it was not the first computer 

to do so. However, disabling interrupts introduces yet another problem, namely that it 

can delay invocation of the interrupt handler or result in an interrupt being "lost", so that 

a pair of consecutive interrupts results in the handler being invoked only once. 

One the one hand, if delay is acceptable, then the standard technique is for the interrupt 

'What could possibly be worse than a system crash? Intermittent silent data corruption! Everything 
looks fine, but the answer is wrong. Sometimes. For no apparent reason. 



handler to check the device state before returning, thus handling any number of interrupts 

that might have been lost. On the other hand, if delay is unacceptable, another well- 

known solution is for the thread and the interrupt handler to use atomic instructions to 

manipulate shared data structures. This use of atomic instructions, such as the CDC 

3300's "Replacement Add" or the x86 locked exchange instructions [51], result in all 

manipulations of the memory allocator's data structure being atomic, so that the interrupt 

handler always sees this data structure in a consistent state. However, this approach solves 

the problem efficiently only for data structures amenable to atomic manipulation. 

Operating-system and device-driver writers have used interrupt disabling as a synchro- 

nization mechanism for many years. However, this mechanism must be used carefully to 

avoid interfering with critical system services, such as thread scheduling and network p r e  

tocol handling, that depend on timer interrupts. For this reason, untrusted user threads 

cannot be allowed to disable interrupts. 

Suppressing Preempt ion 

An alternative approach is to provide synchronization primitives to user threads. One way 

to accomplish this is to provide a system call that sets a bit in the kernel that prevents 

the scheduler from preempting the currently running thread. All 1/0 and timer interrupt 

handlers would then run normally, permitting the kernel to properly interact with 1/0 

hardware and networking protocols, while still preventing any other user threads from 

accessing data that the currently running thread has left in an inconsistent state. This 

approach still permits a malicious or buggy user thread to disable preemption for extended 

time periods. However, the operating system can periodically regain control and kill an 

offending thread. 

Given a preemption-suppressing system call, a typical method of safely incrementing 

a variable is as follows: 

1. Suppress preemption. 

2. Load the variable into a register. 

3. Increment the register. 



4. Store the register into the variable. 

5. Enable preemption. 

Once a given thread executes step 1 of this procedure, no other threads may run. 

The three-step increment of the variable thus appears atomic to these other threads, as 

required. Step 5 then re-enables preemption, permitting other threads to run. If all 

threads use the above procedure, the variable will be atomically incremented, so that no 

increments are lost. 

Although unconditional suppression of preemption is very simple, easy to use, and 

efficient, it can also be used in a denial-of-service attack, where a malicious thread disables 

preemption and then enters an infinite loop. As noted earlier, such attacks could be 

addressed by terminating threads that suppress preemption for too long, but repeated 

attacks could still consume much of the system's resources. 

Uniprocessor Semaphores 

One way to prevent such abuse is for the operating system to instead provide locking 

primitives to user threads. The prototypical example of such locking primitives are 

semaphores [25], which are implemented, for example, by the Unix System V semaphore 

primitive [I 393. 

Although System V semaphores are quite flexible and feature-rich, they are frequently 

used as simple locks, for example to guard a Hoare monitor [47]. For sake of simplicity, 

this chapter will consider implementations of this subset of semaphore functionality. 

To use a semaphore, one of the user threads would execute a semget 0 system call 

to allocate a semaphore. This semaphore is owned by the user running the set of coop 

erating threads, who can set permissions to prevent other users from interfering with the 

semaphore, thereby preventing denial-of-semaphore attacks. 

Once a semaphore is created, threads with sufEcient permissions may use the semop0 

system call to acquire and release the semaphore. If one thread holds the semaphore, other 

threads attempting to acquire it will block within the kernel until it has been released. 



The kernel represents the semaphore with a data structure that includes: (1) an in- 

dication of whether the semaphore is available, and (2) a queue of threads waiting for 

the semaphore to become available. The operating-system kernel disables preemption if 

needed (for example, by disabling interrupts) while manipulating this data structure in 

order to maintain its integrity. This disabling of preemption is unconditional, which is ac- 

ceptable because the kernel code base is trusted to restore preemption in a timely manner. 

Furthermore, in-kernel semaphore implementations need to disable preemption only while 

acquiring and releasing the semaphore, rather than for the full duration of the critical 

section. 

The simplified version of the semaphore acquisition code might be implemented as 

follows in the kernel: 

1. Disable interrupts (which has the side effect of disabling preemption). 

2. While the semaphore is held by some other thread, repeat the following steps: 

(a) Add this thread to the tail of the queue of threads waiting for this semaphore. 

(b) Reenable interrupts. 

(c) Switch context to some other thread. 

(d) (Get here when the thread is awakened. I t  is not guaranteed that this thread 

will successfully acquire the semaphore, since some other thread may have 

acquired it between the time that the semaphore was released and the time 

that this thread started running.) 

(e) Disable interrupts. 

3. Mark the semaphore as held by this thread. 

4. Reenable interrupts. 

Note that threads attempting to acquire the semaphore when it is already held will 

block, thereby returning control to the scheduler, which has the advantage of allowing the 

thread holding the semaphore to run, which hopefully allows that thread to release it in 

a timely fashion. 



Releasing the semaphore would be implemented as follows: 

1. Disable interrupts. 

2. Mark the semaphore as released. 

3. If the queue of threads waiting for this semaphore is nonempty: 

(a) Remove the first thread from the queue of threads waiting for this semaphore. 

(b) Awaken the newly removed thread. 

4. Reenable interrupts. 

Thus, the high-level semaphore synchronization mechanism is implemented in a lay- 

ered fashion, in terms of a lower-level preemption-disabling mechanism. This means that 

semaphores may be implemented simply, efficiently, and safely on hardware with minimal 

synchronization features. All that is required is the ability to disable interrupts, which is 

available on all modern microprocessors. 

2.2 Synchronization in SMMP Systems 

The interrupt-disabling technique described in the previous section will fail on SMMP 

systems, since a pair of threads running on different CPUs could simultaneously acquire 

the semaphore. Both threads would believe that they held the semaphore, which could 

result in the application crashing, or, worse yet, silently corrupting the shared data. The 

approach of simply refusing to support SMMP systems is becoming less and less viable, 

given the advent of hardware multithreading in commodity microprocessors. 

SMMP operating-system kernels clearly cannot rely solely on interrupt or preemption 

disabling; implementing the semaphore primitives on SMMP systems also requires some 

way of excluding other CPUs from a given critical section. 

2.2.1 Spinlocks 

One approach is to use spinlock primitives to protect the semaphore. The difference 

between a spinlock and a semaphore is that a thread waiting to acquire a spinlock will 



busy-wait instead of blocking. Because spinlocks do not block, they do not need to interact 

with the scheduler, and can thus be implemented in terms of atomic instructions. 

For example, the Linux kernel bases its spinlocks on the atomic decrement primitive. 

The spinlock is initialized to 1, and spinlock acquisition proceeds roughly as follows (the 

actual implementation is more complex for performance reasons): 

1. Atomically decrement the spinlock value. 

2. If the value was negative, someone else holds the spinlock, so busy-wait (or "spin") 

as follows: 

(a) If the spinlock value is now positive, restart the acquisition procedure from 

step 1. 

(b) Otherwise, restart the spin from step 2a. 

If multiple CPUs simultaneously attempt to acquire the spinlock, the one that decre 

ments the spinlock to zero will hold the spinlock, while the rest will spin in step 2 until 

the spinlock is released. The spinlock is released by setting its value back to 1. 

Spinlocks may also be based on a number of other types of special instructions [26,49], 

or even on normal loads and stores [24, 571, though this latter approach is quite complex 

and slow. 

If a given CPU holds the spinlock for an extended period of time, the rest of the CPUs 

will waste a large amount of time in step 2 spinning for the spinlock. In such cases, it 

would be better to use a semaphore so that waiting threads could block, permitting other 

work to get done. In contrast, spinlocks are best for protecting short critical sections, 

where the duration of the critical section is shorter than twice the time required for the 

scheduler to switch &om one thread to another. 

2.2.2 SMMP Semaphores 

SMMP semaphores may be constructed using spinlocks. In this implementation, the 

semaphore data structure therefore contains a spinlock in addition to the semaphoreheld 



indicator and the thread-waiting queue. SMMP semaphore acquisition is quite similar to 

that of the uniprocessor case, with the interrupt disabling replaced by spinlock acquisition: 

1. Acquire the semaphore's spinlock. 

2. While the semaphore is already held, repeat the following steps: 

(a) Add this thread to the tail of the queue of threads waiting for this semaphore. 

(b) Release the semaphore's spinlock. 

(c) Switch context to some other thread. 

(d) (Get here when the thread is awakened. It is not guaranteed that this thread 

will successfully acquire the semaphore, since some other thread may have 

acquired it between the time that the semaphore was released and the time 

that this thread started running.) 

(e) Acquire the semaphore's spinlock. 

3. Mark the semaphore as held. 

4. Release the semaphore's spinlock. 

Processes waiting on the semaphore block in step 2c, allowing the CPUs to run other 

threads in the meantime. 

Similarly, releasing a semaphore closely resembles the uniprocessor case: 

1. Acquire the semaphore's spinlock. 

2. Mark the semaphore as released. 

3. If the queue of threads waiting for this semaphore is nonempty: 

(a) Remove the f ist  thread from the queue of threads waiting for this semaphore. 

(b) Awaken the newly removed thread. 

4. Release the semaphore's spinlock. 



The spinlock guarantees that only one CPU at a time may manipulate the semaphore 

data structure. This is another example of a layered implementation of a synchroniza- 

tion primitive: the semaphore implementation is layered on top of the simpler spinlock 

implementation. 

Both the spinlock and the semaphore provide the same function: mutual exclusion. 

However, there are performance differences. As noted earlier, spinlocks that are held 

for extended periods can result in the squandering of much CPU time spinning on the 

lock. On the other hand, semaphores inflict their own performance penalties in other 

situations. Because the semaphore acquires and releases a spinlock at least once during 

both semaphore acquisition and release, semaphores will be at least twice as expensive as 

spinlocks when there is no contention. Furthermore, the context-switch operation is itself 

relatively expensive. If only mild contention is expected, and if the critical sections take 

less time to execute than is required to do a context switch, it will be more efficient to 

spin than it will to context switch. 

Because switching context is relatively expensive and critical sections are frequently 

quite short, a large fraction of production-OS critical sections are protected by spinlocks 

rather than by semaphores. The remainder of this chapter will therefore focus on spinlocks. 

2.2.3 Performance of SMMP Locking 

Moore's Law has held for more than 40 years, during which time integrated-circuit tran- 

sistor counts have doubled roughly every 12-18 months [88]. CPU clock rates have also 

increased exponentially over the past few decades. Given this wildly increasing computing 

capability, one might expect that synchronization primitives would be extremely cheap, 

so that any performancerelated discussion of them would be a waste of time. 

However, this is not the case. These primitives are subject to the following four types 
TM 

of overhead, in increasing order of severity on Pentium-I11 CPUs: 

1. Instruction-execution overhead. 

2. Pipeline-stall overhead, resulting from things like branch mispredictions and memory 

barriers. 



-. . 

82 84 86 88 90 92 94 96 98 00 02 
Year 

Figure 2.1: Instructions per Local Memory Reference for Sequent Computers 

3. Memory latency, incurred when data moves among memory and the CPUs' caches. 

Note that from a CPU-architecture viewpoint, the caches are part of memory, be- 

ing simply an optimization for spatial and temporal memory-reference locality. The 

CPU used in this dissertation has about the same DRAM and CPU-to-CPU hten- 

cies, however, future CPUs may require that these two types of memory latency be 

treated separately. 

4. Contention effects, such as spinning and context switching. 

Figure 2.1 plots the ratio of memory latency to instruction-execution overhead for the 

past two decades, showing that improvements in memory latency have not kept up with 

Moore's-law improvements in instruction-execution rate. The downward blip at 1996 was 

due to the introduction of so-called "glueless MP", which greatly decreased the electrical 

distance between CPUs. The trend since 1996 has continued inexorably upwards. 

What are the implications of Figure 2.1 on real program performance? The following 

sections provide application-level data, namely the overhead of searching a hash table in 

parallel on a 4CPU 700MHz Pentium-I11 computer system. 



Array of Headers Elements 

Figure 2.2: Example Hash Table 

2.2.4 Hash-Table Mini-Benchmark 

The preceding section showed that memory-latency overhead has increased dramatically 

over the past two decades. This increase in overhead decreases performance of SMMP 

synchronization primitives, which might well cause SMMP systems to be slower than 

uniprocessor systems. Because the whole point of using multiple CPUs is to increase 

performance, it is necessary to compare synchronization mechanisms to see which are best 

able to overcome SMMP overheads. Because operating-system kernels make extensive use 

of hash tables, a simple chained hash-table mini-benchmark is an appropriate vehicle for 

making these comparisons. 

This hash table consists of a dense array of pointers that reference the hash-chain 

list for the corresponding bucket, as shown in Figure 2.2. Various synchronization and 

mutual-exclusion mechanisms will be compared using mixtures of read-only searches, in- 

sertions, and deletions. In order to simplify analysis, deletions and insertions will always 

be performed in pairs, so that the number of elements in the hash table remains constant. 

However, each such deletion and insertion is performed as a separate operation in order 

to faithfully mimic real applications, which would not normally remove an element and 

then immediately re-insert it as a single combined operation. 

The following sections use a small fixed-size 32-chain hash table (a larger 16,384chain 

hash table is investigated in Appendix D on Page 346). This table is populated with 32 

elements, one per hash chain. Sections 2.2.5 through 2.2.10 use a search-only workload. 
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Updates, as described above, are introduced in Section 2.2.11. In all cases, the experiment

accesses and updates the hash table in a tight loop; there is no "think time" between

accesses.

2.2.5 Code Locking

Perhaps the simplest way to protect the hash table is "code locking", using a global

spinlock to protect the hash-table access functions. To use code locking, one would:

1. Acquire the global lock.

2. Search the hash table.

3. Release the global lock.

This approch has been used by a number of operating systems, for example, by the so-

called "big kernel lock" (BKL) in the Linux kernel. The locking primitive used in this

experiment is a simple test-and-set spinlock, implemented using cmpxchg instructions.

As can be seen in Figure 2.3, global locking scales negatively and does not offer ideal2

performance even on a single CPU. The fact that AIX, DYNIX/ptx, HP-UX, Irix, Solaris,

Tru64 Unix, and Microsoft Windows have provided good performance while scaling to at

least several tens of CPU s provides a wealth of existence proofs that one can do much

better.

Referring to the list of overheads in Section 2.2.3, this negative scaling from single-CPU

to dual-CPU operation can only be due to lock contention or memory latency. Because

the same code was executed in both cases, there should be no difference in instruction

overhead or in pipeline-stall overhead. The next section therefore focuses on eliminating

the lock contention in order to achieve non-negative scaling.

2In absence of hardware bottlenecks, "ideal" performance is computed by measuring the performance
of the benchmark on a uniprocessor, but without use of any sort of synchronization mechanism, then
multiplying by the number of CPUs.
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Figure 2.3: Globally Locked Read-Only Hash Table Performance

2.2.6 Reader- Writer Locking

Because the read-only variant of the hash-table mini-benchmark searches the hash table

but does not update it, it is reasonable to ask whether it is possible to take advantage

of the read-only semantics. A reader-writer lock [22, 85, 99] seems like a perfect fit for

this situation. A reader-writer lock allows multiple readers to proceed in parallel, while

writers must exclude both readers and other writers. Readers are still required to acquire

the lock, but many readers may hold the lock simultaneously.

The use of reader-writer locking is similar to the global spinlock described in the

preceding section:

1. Read-acquire the global lock.

2. Search the hash table.

3. Read-release the global lock.

This experiment uses a simple reader-writer lock that counts the number of readers and

notes the presence of waiting writers, taken from the Linux kernel, but modified to use
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Figure 2.4: Globally Reader-Writer Locked Read-Only Hash Table Performance 

cmpxchg in order to provide fair access to both readers and writers. As can be seen in 

Figure 2.4, although reader-writer locking does offer some improvement over the global 

spinlock, the effect is miniscule and the scaling still negative. 

The cause of negative scaling cannot be lock contention, since this mini-benchmark 

performs only read-acquisitions of the lock. Just as with code locking, this cannot be due 

to instruction overhead or pipeline stalls, since the same sequence of instructions were 

used for both the uniprocessor and multiprocessor test cases. This leaves memory latency 

as the only possible cause of the negative scaling. 

For example, on a four-CPU system, one would expect that 75% of the reader-writer 

lock acquisitions will find the data containing the reader-writer lock to be in some other 

CPU's cache, given this workload and this type of reader-writer lock. Referring again 

to Figure 2.1, it is clear that the read-side critical section must contain hundreds of 

instructions if it is to still be executing by the time the next CPU manages to read- 

acquire the lock. However, since a simple hash-table search can be accomplished in a very 

few instructions, the situation is as illustrated by Figure 2.5. In this figure, the vertical 

arrows represent time passing on two pairs of CPUs, one pair using reader-writer lock, and 



the other using spinlock. The diagonal arrows represent data moving between the CPUs' 

caches. Note that the reader-side critical sections do not overlap at all - the overhead 

of moving the lock from one CPU to the other rivals that of the critical section, and, 

when combined with the memor y-barrier overhead, exceeds that of the critical section. 

Hardware solutions to this problem are discussed in Section 2.2.15, but in the meantime, 

the focus is on currently available commodity hardware. 

This example clearly demonstrates the high overhead of memory latencies in modern 

computer systems. The problem with the global reader-writer lock is that all the CPUs 

must manipulate a single data item, namely, the reader-writer lock itself, so that most 

of the CPUs' time is spent waiting for this single data item to be shuttled among their 

caches. 

2.2.7 Partitioning and Data Locking 

One way of ameliorating this effect would be for the CPUs to wait in parcallel on the 

movement of multiple data items. One way to achieve memory parallelism is to increase the 

number of locks, assigning a separate lock to each hash chain. A CPU doing a search need 

only acquire the lock corresponding to the bucket to which the given search key hashes. 

Because CPUs tend to search different hash chains, they can incur memory latency in 

parallel. In contrast, the global reader-writer lock's memory latency was incurred serially. 

Assigning a separate lock to a given data structure is termed "data locking", and is used 

heavily by highly scalable operating systems [9,13,29,30,31,50,67,90,104,106, 107,1131. 

Partitioning of data structures has also been used and researched heavily [16, 34, 82, 100, 

134, 135, 137, 1381. 

This per-bucket locking approach requires larger changes to the hash-table search 

algorithm: 

1. Hash the key. 

2. Index into the hash array using the hash value to locate the corresponding hash 

bucket. 

3. Acquire the lock associated with the hash bucket. 
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Figure 2.5: Comparing rwlock and spinlock 

4. Search the list associated with the hash bucket. 

5. Release the lock associated with the hash bucket. 

Additional steps would be required to handle hash-table resizing. 

As can be seen in Figure 2.6, this approach does achieve positive scaling, providing 

more than six times the performance of global locking on four CPUs. However, it still falls 

far short of ideal performance and scaling, as one would expect, given the SMMP-efficiency 

data shown in Figure 1.1 on Page 2. 

If partitioning results in greater spatial or temporal locality, then performance and 

scaling may increase due to caching effects. However, in this experiment, the entire hash 
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Figure 2.6: Bucket-Locked bad-Only Hash Table Performance 

table fits in cache, and the access pattern is uniform and random, so no such increases 

ensue. 

One way to reduce the synchronization overhead is simply to increase the size of 

the critical section, perhaps by increasing the length of the hash chains. However, in 

this case, this would simply cause the hash-table search to consume more CPU time, 

further decreasing performance. Increasing the size of the critical section can help in some 

situations [66], however, this is not one of them. 

2.2.8 Combining Data Locking and Reader-Writer Locking 

Taken separately, both global reader-writer locking and data locking performed better than 

did code locking. Perhaps the combination of the two would further improve performance. 

Unfortunately this combination actually makes things worse, as can be seen in Fig- 

ure 2.7. A close look at the single-CPU portion of this graph shows that global reader- 

writer locking is slower than global locking when running on a single CPU, which is to 

be expected given the greater coat of the reader-writer lock primitives, which must refer 

to the old value of the lock, which increases cost on this hardware, as will be seen in 
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Section 2.2.10 on Page 29. When using global reader/writer locking on two CPUs, there 

is a certainty that both CPUs will be attempting to search the hash table concurrently, 

thereby benefitting from the ability of the reader-writer lock to permit multiple read- 

ers to proceed in parallel. In contrast, when there are 32 hash buckets, the probability 

of two CPUs accessing the same bucket at the same time is rather low, preventing the 

reader-writer lock from providing sufEcient parallelism to overcome its higher overhead. 

As is all too often the case, both in parallel programming and in life in general, com- 

bining two good things does not necessarily result in an even better thing. 

2.2.9 Asymmetrical Reader-Writer Locking 

The preceding two sections attempted to improve performance by incurring memory la- 

tency in parallel. It is only natural to ask whether one might be able to eliminate memory 

latency entirely. One possible avenue of attack is the scalable reader-writer lock demon- 

strated by Hsieh and Weihl [48], described by others [8, 1201, analyzed by the author [68], 

and implemented in the Linux 2.4 operating system by Ingo Molnar as "brlock". 

The brlock primitive provides a separate lock for each CPU. A given CPU read-acquires 
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Figure 2.8: brlock Read-Only Hash Table Performance 

the brlock by acquiring only its own lock, and write-acquires the brlock by acquiring all 

CPUs7 locks. Thus, brlock provides excellent cache-locality for read-mostly workloads: in 

a read-only workload, reading CPUs will always find their lock in their own cache. 

Note that brlock is an asymmetric primitive. Overhead is not eliminated; it is instead 

redistributed so that the read-side savings is realized at the expense of a large write- 

side penalty. The overall result may or may not be an improvement, depending on the 

workload. As can be seen in Figure 2.8, brlock does quite well on this read-only mini- 

benchmark, with linear scaling and almost twice the performance of the per-bucket lock 

when running on four CPUs. 

2.2.10 Read-Side Performance Analysis 

The single-CPU performance of brlock is still far from ideal. There has been substantial 

research into improving the performance of locking primitives at high levels of contention 

in SMMP systems [7, 35, 58, 60, 84, 85, 1411, and in NUMA systems [52, 74, 95, 96, 1191, 

but this is a simple SMMP system with low levels of lock contention. It is therefore 

necessary to look more deeply to understand brlock's performance shortfall. 



The brlock primitive's degraded performance cannot be due to either lock contention 

or memory latencies, since brlock eliminates both sources of overhead entirely. This leaves 

instruction overhead and pipeline stalls as possible culprits. Because the number of addi- 

tional instructions required to implement read-side brlock acquisition is quite small, it is 

reasonable to focus on pipeline stalls. 

Indeed, it is reasonable to ask why pipeline stalls are required in the first place. 

Pipeline Flushes Due to Memory Barriers 

Modern CPUs tend to be superscalar, aggressively pipelined, with deep memory hierar- 

chies. These features permit instruction execution and memory accesses to be performed 

out of order, constrained only by the requirement that the resulting execution have the 

same effect as sequential execution of these instructions in the absence of any other changes 

such as those due to some other CPU. Because synchronization primitives inherently in- 

volve multiple CPUs, instruction reordering must be suppressed, or at least constrained, 

in locking primitives. To see why, consider a pair of CPUs each executing the code in 

Figure 2.9. 

1 spin-lock(&mylock); 
2 tmp = a; 
3 tmp = tmp + 1; 
4 a = tmp; 
5 spin-unlock(Bmy1ock); 

Figure 2.9: Locked Increment 

In absence of instruction- and memory-ordering constraints, each CPU would be within 

its rights to execute this code in the order shown in Figure 2.10, which could cause incre- 

ments to be lost. 

2 tmp = a; 
1 spin-lock(kmy1ock); 
3 tmp = tmp + I ;  
4 a = tmp; 
5 spin-unlock(&mylock) ; 

Figure 2.10: Out of Order Locked Increment 



To prevent this from happening, spinlock primitives include memory barriers, as shown 

in Figure 2.11. Note that the exact sequence and type of instructions required to imple- 

ment the memory barriers required by a spinlock varies, even within architectures. Here, 

the two memory-barrier0 primitives prevent the memory references performed in the 

critical section (lines 8-10) from "bleeding out" from under the protection of the spinlock. 

However, most types of CPUs must stall their internal instruction pipelines and write 

buffers when executing a memory barrier, degrading performance. 

1 /* Begin spin-lock(hny1ock); */ 
2 while (test-anCset(hy1ock)) C 
3 while (mylock =r 0) continue; 
4 3 
5 memory-barrier0; 
6 /* End spin-lock(~ylock); */ 
7 
8 tmp = a; 
9 tmp = tmp + 1; 
10 a = tmp; 
11 
12 /* Begin spin,unlock(hylock); */ 
13 memory-barrier 0 ; 
14 mylock = 0; 
15 /* End spin-unlock(hylock); */ 

Figure 2.1 1: Locked Increment With Memory Barriers 

So pipeline stalls are the inevitable price of reliable locking primitives on many current 

pipelined and super-scalar CPUs. Hence, it is reasonable to ask how much these pipeline 

stalls cost. 

Low-Level CPU Operation Costs 

The preceding sections have demonstrated that the performance of SMMP software can 

be degraded by expensive low-level CPU operations such as data movement and pipeline 

stalls. Just how expensive are these operations? 

Table 2.1 shows the measured costs of basic operations on a Sequent/IBM NUMA- 

Q system with four 700MHz P-I11 CPUs, which can retire two integer instructions per 

clock cycle. The atomic operation timings assume that the data already resides in the 

CPU's cache, and, since atomic operations implicitly include memory barriers on x86 



CPUs, the 58.2 nanosecond cost of the atomic-increment operations includes memory- 

barrier overhead. Similarly, the 163.7 nanosecond cost of the CPU-local lock also includes 

memory-barrier overhead. This overhead accounts for much of the brlock single-CPU 

inefficiency seen in Figure 2.8. Note that all of these timings can vary, depending on the 

cache state, bus loading, and the exact sequence of operations. The data in this figure 

was collected using tight loops on a single CPU for all but the last two items, which were 

collected using tight loops on a pair of CPUs. In all cases, a fixed number of loops were 

executed, and the elapsed time measured. The variation among repeated measurements 

was quite low, lying within a few percent in all cases. These measurements are quite 

hardware dependent, however, the experiments described in this paper were run on a 

number of different CPU architectures, obtaining similar results [72]. 

Table 2.1: 700 MHz P-I11 Operation Costs 

I 

CPTJ-Local Lock I 163.7 

Operation 
Instruction 
Clock Cycle 
L2 Cache Hit 
Atomic Increment 
cmpxchg Atomic Increment 
Atomic Incr. Cache Transfer 
Main Memorv 

Cost (ns) 

0.7 
1.4 

12.9 
58.2 

107.3 
113.2 
162.4 

The atomic-increment cache-transfer measurement deserves some explanation, as one 

- -  - - . .- - ~-~ 

cmpxchg Blind Cache Transfer 
cmpxchg Cache Transfer and Invalidate 

might naYvely expect that a cache transfer provoked by an atomic increment would cost 

170.4 
360.9 

roughly the same as one provoked by a compare-and-exchange (cmpxchg) instruction. 

The reason for the shortfall is that a given CPU may be able to execute several atomic 

increments before the other CPU manages to retrieve the cacheline containing the counter. 

Based on these numbers, each CPU is able to increment the counter twice before the other 

CPU retrieves the counter. This behavior will be extremely hardware dependent, and 

workload dependent as well. The experiments that measured the cmpxchg-induced cache 



transfers took care to avoid this effect. 

These overheads have been increasing relative to instruction-execution overhead. For 

example, on a 1.8 GHz P4, atomic increment cmts about 75 nanoseconds, which is slower 

than the 700 MHz P3, despite the P4's having more than twice as fast a clock. Of course, 

projecting current trends is inherently risky, so an ideal synchronization technique would 

work well under all future scenarios. 

It is reasonable to ask whether the performance attained by brlock is the best that 

can be expected, given the operation costs shown in Table 2.1. This question is taken up 

in the next section. 

The Limits of Locking for Read-Only Searches 

Figure 2.8 on Page 29 shows that a single CPU can execute roughly three brlock-guarded 

searches per microsecond, but can execute more than seven searches per microsecond in 

the absence of locking. The raw data shows that a brlock-protected search costs about 

340 nanoseconds, while an unprotected search costs about 137 nanoseconds, a difference of 

203 nanoseconds. From Table 2.1, a CPU-local lock costs about 164 nanoseconds, leaving 

only 39 nanoseconds unaccounted for. 

This lesson is painfully clear. Insisting on the use of locking for read-only accesses 

more than doubles the cost of a simple hash-table search, and only about 10% of the total 

might be saved by clever coding techniques. 

But read-only access is a special case. Although synchronization is not required among 

concurrent readers, it is still necessary among concurrent writers and between readers and 

writers. What happens when updates are performed concurrently with the read-only 

searches? 

2.2.11 Write-Side Performance Experiment 

The performance of a mixed search/update workload running on a 4CPU 700MHz Pentium- 

111 computer system is shown in Figure 2.12. As noted earlier, in order to simplify analysis, 

deletions and insertions are performed in pairs so that the number of elements in the hash 

table remains constant. The "ideal" performance is computed by quadrupling that of a 
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Figure 2.12: Hash Table Performance for Mixed Workload on Four CPUs 

single-CPU implementation, which needs no locks, atomic operations, or synchronization 

of any sort. 

The workload varies from read-only to update-only fiom left to right in this figure. 

Note that the y-axis is in logscale. The brlock primitive, which performs best for read-only 

workloads, quickly loses ground as the update fraction increases, performing worst of all 

for update-only workloads. Per- bucket lock emerges as the winner under these conditions. 

As with the read-only workload, it is natural to ask if this is the best that can be done. 

Write-Side Performance Analysis 

Per-bucket lock achieves about 3.5 updates per microsecond, compared to less than one 

update per microsecond for brlock. However, per-bucket lock's performance is still signif- 

icantly worse than the roughly 10 updates per microsecond that would be achieved by an 

ideal technique that scaled perfectly from uniprocessor performance. 

Because there are four CPUs, each CPU takes roughly 393 nanoseconds to do a per- 

fectly scaling update, such as might be achieved when maintaining per-CPU data. Simi- 

larly, per-bucket lock requires about 1131 nanoseconds per update, for a difference of 783 



nanoseconds, 164 nanoseconds of which are due to the overhead of the lock, including 

pipeline stalls due to memory barriers, leaving 574 nanoseconds. 

Tracking down the source of the remaining 574 nanoseconds requires a more careful 

examination of the deletion and insertion operations. Deletion proceeds as follows, keeping 

in mind that the hash chains in this mini-benchmark each contain a single element: 

1. Acquire the lock. Because some other CPU probably held the lock most recently, 

this CPU will incur a cache miss. 

2. Pick up the pointer to the element from the hash bucket header. This incurs a cache 

miss. 

3. Pick up the key from the eIement, which also incurs a cache miss. Assume that the 

comparison succeeds. 

4. Deleting the element requires fetching its previous and next pointers, which are 

already cached due to the key comparison in the preceding step. Because there is 

but one element in the hash chain, both point to the hash bucket header. 

5. The pointers in the hash bucket header are then updated to point to the header. 

Although the hash bucket header is already in this CPU's cache, it is in "shared" 

state, and so it must be invalidated from the other CPUs' caches. 

6. Release the lock. Because this CPU just acquired the lock, the corresponding cache 

line most likely still resides in this CPU's cache. 

7. Return the deleted element to the freelist. This entails adding the deleted element to 

a linked list, which requires invalidating the cacheline containing the element from 

the other CPUs7 caches. 

Thus, the deletion operation requires three cache misses and two invalidations. The 

insertion proceeds as follows: 

1. Allocate an element &om the freelist and initialize it. Because this CPU just freed 

this same element, the corresponding cache lines most likely still reside in this CPU's 

cache. 



2. Acquire the lock. Because this CPU just acquired the lock, the corresponding cache 

line most likely still resides in this CPU's cache. 

3. Update the new element's previous and next pointer to point to the hash bucket 

header. 

4. Update the hash bucket header's previous and next pointers to point to the new 

element. Again, the cache lines corresponding to the hash bucket header most likely 

still reside in this CPU's cache. 

5. Release the lock. Because this CPU just acquired the lock, the corresponding cache 

line most likely still resides in this CPU's cache. 

The insertion normally does not incur any cache misses, so the pair of operations 

collectively incur the overhead of two lock round trips and three cache misses. Two of the 

three cache misses incur a later invalidation operation. 

Next, the per-cache-line memory latency must be estimated. From Table 2.1 on 

Page 32, this overhead ranges from 170 nanoseconds in case of a blind write to the cache 

line to 361 nanoseonds in case of a read of the cache line followed by a write, which incurs 

the overhead of an invalidation as well as that of a cache miss. The lock acquisition's cache 

miss will be in the former category, but, as noted earlier, the linked-list manipulations fall 

into the latter category. Each deletion/insertion pair will therefore incur two memory la- 

tencies of 361 nanoseconds each and a third of 170 nanoseconds. Crediting each with half 

of the resulting 892 nanoseconds yields 446 nanoseconds per operation, which represents 

all but 128 nanoseconds of the 574 nanoseconds that was previously unaccounted for. 

Because the total cost of each per-bucket-lock update was 1131 nanoseconds, there is 

only about 10% improvement to be had through optimizing at the instruction level. 

However, it is fair to ask what would happen if the lock were placed in the same 

cacheline as the list header, as suggested for lightly contended locks by Gamsa et al. [29]. 
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Figure 2.13: Hash Table Performance for CeLocated Lock 

Experiment: Co-Located Locks for Updates 

For updates, cc~locating the lock in the same cache line as the hash bucket header would 

reduce the number of cache misses, but it would also mean that another CPU attempting 

to acquire this hash bucket's lock would remove the cache lines corresponding to the hash 

bucket header from this CPU's cache. Because there are 32 hash buckets and only four 

CPUs, updates should enjoy an overall performance increase. 

However, since the entire hash table is small enough to fit into a CPU's cache, co- 

locating the lock does not reduce cache misses for searches, since searches would see cache 

misses only on the lock acquisition itself. Searches would therefore gain no benefit from 

the celocation, but would see the penalty due to other CPUs attempting to acquire the 

lock during a search operation. Searches would therefore bear the pain of an overall 

performance penalty. 

Figure 2.13 shows the overall effect of this change. As expected, there is a modest 

improvement for updates and a modest penalty for searches. In either case, a key point is 

that reducing the number of cacheline transfers reduces memory-latency overhead. 



Therefore, insisting on use of locking also sharply limits the update rate, even in 

the absence of significant lock contention. So the best locking primitive for read-mostly 

workloads is brlock, and the best for update-heavy workloads is the celocated per-bucket 

lock. 

But is this the best one can hope for? One possible avenue for improvement can be 

seen in Figure 2.12 on Page 34. Here, the brlock trace decreases sharply with increasing 

update intensity, as expected given that write-acquisition requires acquisition of n locks, 

where n is the number of CPUs. As the number of CPUs increases, brlock's update 

performance will get steadily worse. This situation leads one to ask whether partitioning 

operating systems over groups of CPUs would be of benefit. This possibility is examined 

in the following section. 

2.2.12 Operating-System Part it ioning 

A number of partitioned operating systems have been proposed, constructed, and eval- 

uated, including the Hurricane project at the University of Toronto, the Cellular Disco 

project at Stanford University, and Larry McVoy's SMP Clusters proposal. The basic idea 

is to run multiple instances of the operating-system kernel, with the instance boundaries 

selected based on the underlying hardware. Presumably, these smaller operating-system 

instances would make more efficient use of the hardware than would a single monolithic 

operating-system instance, since they would not need to scale as high as would the mono- 

lithic instance. A software layer runs over the top of these multiple instances, presenting 

user applications with the illusion of a single monolithic operating system. 

These projects and proposals are reviewed in the following sections. 

Hurricane 

The Hurricane operating system is described in a number of publications [134, 135, 137, 

1381. This OS ran on "Hector", which was a 16-CPU NUMA system with 16MHz MC88100 

CPUs. The number of CPUs making up a NUMA node could be configured. Each CPU 

had its own memory, so that the architecture of a single NUMA node in some ways 

resembled that of the more recent AMD opteronTM [2]. 



Hurricane's design took the 'Ldemand-driven" [I381 nature of operating-system kernels 

into account by driving the design with performance metrics that were tied to physical 

machine properties. The resulting analysis indicated that operating-system kernels must: 

1. preserve the parallelism available in the application, for example, by not imposing 

unnecessary bottlenecks. 

2. bound the overhead of servicing a given independent request. 

3. preserve the locality inherent in the application. 

This last item is especially important: the operating system must not act as a bottle- 

neck for any embarrassingly paralIel portions of the application. 

Interestingly enough, the Hurricane researchers argued against page replication [135], 

perhaps because memory was still relatively expensive at that time. They also noted 

greater-than-desired lock complexity in Hurricane, and recommended following a strict 

locking hierarchy in order to simplify the locking and associated deadlock avoidance [134]. 

In this same paper, they introduce Tornado, and call out the fixed cluster size imposed 

by the Hector hardware as a major issue for Hurricane. Thus, Tornado was designed to 

run as a single OS image, but permitting each object or subsystem to cluster at whatever 

granularity is appropriate to its particular situation. 

The Hurricane experience therefore cannot be taken as an unambiguous endorsement 

of the partitioned-operating-system approach. 

Disco and Cellular Disco 

Rosenblum et al. [loo] produced an influential study of the effects of memory latency on 

operating systems and applications. Some time later, this same group produced Disco 1161 

and, later, Cellular Disco [34]. The underlying assumption seems to have been that com- 

modity operating systems would not scale, thus they focus on a layer of software that per- 

mitted multiple copies of such an OS to run on a single large computer system. Although 

the Cellular Disco approach is quite prominent today in products such as  are,^^ 
commodity OSes such as windowsTM have since scaled to world-class levels on 64 CPUs, 

as measured by the TPC/C benchmark on ht  t p  : //m. t pc . org. 



SMP Clusters 

McVoy recently proposed implementing a single-system image operating system composed 

of multiple cooperating operating-system instances running on a single SMMP computer 

system [82]. The idea is that the individual instances (OSlets) would remain relatively 

simple, due to the smaller number of CPUs that each would be responsible for. This 

proposal has some interesting properties, but also some severe drawbacks, particularly 

those relating to races and corner cases involving inter-OSlet communication and 1 /0  

interrupts [76]. If this system is implemented, it will be interesting to compare it to its 

predessors. 

Partitioning Discussion 

The partitioning of OS kernels was intended to increase scalability, so that individual 

kernels each scaling to four CPUs could be combined into a larger system that scaled 

to many tens of CPUs. However, AIX, DYNIX/ptx, HP-UX, Irix, Solaris, Tru64 Unix, 

and Windows already scale to at least several tens of CPUs, as evidenced by benchmark 

results on http : //uuv. spec. org and the aforementioned ht  t p  : //uww. tpc . org. In ad- 

dition, existing partitioned OSes did not provide the expected simplification, exemplified 

by the Hurricane researchers taking a different approach with Tornado, partitioning indi- 

vidual OS subsystems as appropriate for the component in question, rather than fitting 

the entire kernel to a hardware-centric Procrustean bed 11341. Further, a number of work- 

ers have demonstrated that several important algorithms can be parallelized, including 

computer-communications protocol processing [31, 90, 1043, general-purpose kernel mem- 

ory allocation [75, 801, allocation of predefined data structures [14, 151, and timed-event 

processing [77]. Finally, there is some reason to believe that at least some of the complexity 

that has been attributed to scalability is due to "work hardening" of code resulting from 

the incremental approach to scalability that has been taken in many operating-systems 

projects [83]. 

In addition, partitioning does not completely solve the scaling problem. There remains 

a need to build a global view of the machine, and this global view requires some form of 



coordination, consensus, and synchronization. 

Because blindly partitioning the entire operating system on hardware boundaries is 

inflexible, further investigation into monolithic implementations is warranted. However, 

experience with locking indicates that it results in excessive complexity, severe performance 

and scaling limitations, or both. Can locking, and thus these disadvantages of locking, be 

eliminated? 

2.2.13 Simple Non-Blocking Synchronization 

Non-blocking synchronization (NBS) is defined to be any linearizable3 synchronization 

mechanism where each thread in the system is guaranteed to complete an operation after 

taking a finite number of steps in the absence of interference by other threads [44]. Mech- 

anisms built on the simple spinlock described in Section 2.2.1 cannot possibly be examples 

of non-blocking synchronization, because in principle, an extremely unlucky thread might 

spin forever if other more fortunate threads were able to monopolize the lock. 

In many cases, it is possible to avoid the use of locks. For example, instead of using 

locks to protect a counter, one could use the lighter-weight atomic increment instruction 

provided by the Pentium CPU, thereby meeting the definition of NBS. However, this 

instruction incurs substantial pipeline-stall overhead as shown in Table 2.1, so that an 

atomic increment, though considerably cheaper than a lock, is two orders of magnitude 

more expensive than a simple increment instruction. The situation only gets worse with 

the addition of more CPUs, since the even larger memory-latency overhead will then be 

incurred. 

The pipeline-stall and memory-latency overheads are required in order to satisfy the 

strict semantics of atomic increment, which dictate that a counter take on a well-defined 

sequence of values that is visible to all CPUs. Although these strict semantics ensure cor- 

rectness in almost all cases, there are situations in which less-strict semantics can provide 

a correct solution at much lower cost. The basic problem is that strict semantics require 

frequent communication among the CPUs, communication that is extremely expensive. 

3A ulinearizable" synchronization mechanism is one in which all CPUs o ~ s € ! N ~  the same sequence of 
values for all corresponding data structures. 



This raises the question of whether relaxed semantics may be used, reducing the required 

amount of communication. 

One possible way to relax the increment operation's semantics is to note that increment 

is commutative, so that the result of a series of increments will be the same regardless 

of the order in which they execute. One way to take advantage of this communitivity is 

for the increment operation is to use a separate cachelin+aligned variable for each CPU. 

CPUs increment this "split" counter by incrementing their own variable, which yields 

perfect cache locality, so that the increment operation never needs to access data in some 

other CPU's cache, thereby greatly reducing the cost of each increment. 

However, to read out the value of the counter, a given CPU must sum all of the CPUs' 

values, so that reducing the cost of the increment operation has increased the cost of the 

read-out operation. This implementation relies on the commutative law of addition: in 

summing up the per-CPU variables, all the increments from the first CPU are performed 

first, followed by those of the second CPU, and so on. Because cachelineahgned loads and 

stores are atomic, there is no possibility of accessing a half-incremented variable, and since 

all operations are unconditional, this procedure qualifies as NBS, but only if all operations 

increment by a fixed valuee4 

As long as the value of the split counter is never read out, the cost of an increment 

decreases by more than an order of magnitude compared to that of an atomic increment 

of a global variable. However, the cost of reading out the value will be quite high, and 

will rise with the number of CPUs. Furthermore, reading out the value on one CPU will 

cause each of the other CPUs to incur a large penalty the next time that they increment 

the split counter, as shown in Figures 2.14 through 2.18. Figure 2.14 shows the initial 

cache configuration. The split counter is made up of the two variables A (for CPU 0) and 

B (for CPU 1). Neither of these variables is present in either of the CPUs' caches. 

When both CPUs increment the split counter, they must load their respective variables 

from memory into their caches, as shown in Figure 2.15. Note that although a copy of each 

*If multiple increment values are permitted, the resulting execution sequence will not be linearizable. For 
example, given a counter initially at zero, if CPU 0 increments by 1 concurrently with CPU 1 incrementing 
by 2, CPU 2 might observe the sequence 0,1,3 while CPU 3 observes the sequence 0,2,3, violating the 
linearizability requirement. 
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Figure 2.14: Split Counter Initial Cache Configuration 

variable still resides in memory, these copies are outdated, as indicated by the shading. The 

up-to-date values of the variables are found only in the CPUs' caches. Note that loading 

the values from memory is quite expensive, costing around two orders of magnitude more 

than loading values from cache. 
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Figure 2.15: Split Counter First Increment 

However, subsequent increments find the variables already in the CPUs' caches, as 

shown in Figure 2.16, and therefore run at full speed. 

Suppose that CPU 0 reads out the counter. It does this by summing variables A and B. 

Variable A already resides in CPU 0's cache, but it must fetch the value of variable B from 
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Figure 2.16: Split Counter Subsequent Increments 
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Figure 2.17: Split Counter Readout 

CPU 1's cache, as shown in Figure 2.17. This operation is less expensive than fetching 

from memory, but still orders of magnitude more expensive than if variable B already 

resided in CPU 0's cache. 

Note that since CPU 0 is only reading variable B, both CPUs now have a copy of it in 

their caches. This means that neither CPU may change variable B, since doing so would 

result in inconsistent values for this variable in the two CPUs' caches. Therefore, the next 

time that CPU 1 wishes to increment the split counter, it must cause CPU 0 to invalidate 

its copy of variable B, as shown in Figure 2.18. After this invalidation operation completes, 

the situation will again be as shown in Figure 2.16, so that increments of the split counter 



may proceed at full speed on both CPUs. By avoiding expensive atomic operations, split 

counters can be incremented extremely efficiently, and read out more slowly. They are 

therefore well-suited to maintaining statistics, such as the TCP/IP packet counts found 

in many operating-system kernels. In this situation, the split counter will be incremented 

frequently, namely, on every packet, but read out infrequently, namely, only when the 

system administrator is investigating some sort of networking problem. 

Memory -1 
Figure 2.18: Split Counter Increment After Readout 

This split-counter approach works well for statistical counters because it is asymmetric, 

favoring the frequent increment operations and imposing more work on the rare read-out 

operations. This asymmetry permits the implementation to bind data to the CPUs that 

are using it more frequently, promoting locality and greatly reducing cache thrashing. In 

addition, this implementation eliminates special atomic instructions and their associated 

pipeline stalls, and is immune to contention. 

Although these statistical counters are very specialized, similarly specialized simple 

non-blocking constructs are used heavily in operating system kernels. This raises the 

question of whether non-blocking synchronization may be generalized so as to eliminate 

pipeline-stall, memory-latency, and contention overheads entirely. 



2.2.14 General Non-Blocking Synchronization 

It makes sense to first focus one's attention on a single source of overhead, and of the 

four sources of overhead called out in Section 2.2.3, contention has received the most at- 

tention. This is quite understandable for work done before 1990, since, as can be seen 

in Figure 2.1, the overhead due to memory latency was then quite manageable. In ad- 

dition, CPU pipelines were quite short, so that pipeline-stall overheads were also quite 

small. Therefore, before the 1990s, it made good sense to focus solely on eliminating lock 

contention. 

One way to eliminate lock contention is to make use of atomic operations, which 

themselves are based on the atomic-instruction facilities that are present in almost all 

modern microprocessors. Workers have made use of such facilities for several decades, as 

witnessed by the CDC 3300's "set destructive load" instruction [20] from the mid-1960s. 

However, work in this area was at best a collection of ad-hoc algorithms specialized to the 

atomic-instruction facilities of a particular platform. 

Herlihy changed this situation by introducing non-blocking synchronization [42], which 

placed the use of such atomic-instruction facilities on a firm theoretical foundation and 

allowed these facilities to be generally applied. NBS is a set of algorithms that use low- 

level atomic instructions, such as compare-and-swap or load-linked and store-conditional, 

to make data-structure updates and traversals appear to be atomic. 

For example, a conceptually simple NBS algorithm might update a dynamically allo- 

cated data structure by making a copy of it, updating the copy, then atomically updating 

the pointer to point to the new copy, but only if the pointer is unchanged. If two threads 

attempted concurrent updates, one would succeed, but the other would fail upon finding 

that the pointer had been changed by the successful thread. The failing thread would then 

discard its copy and retry. This thread is shown in detail in Figure 2.19, where thread 1 

is attempting to add element D to and thread 2 is attempting to delete element B from 

a list initially containing elements A, B, C, and D. In step (2), both threads have created 

copies of the initial list and performed their updates. In step (3), thread 1 wins the race, 

succeeding in atomically updating the pointer so that it points to thread 1's list instead of 



the initial list. Process 2 fails to atomically update the pointer, since it no longer points 

to the intial list. In step (4), thread 2 retries its deletion of element B, copying the new 

list and performing the deletion from the copy. Note that the original l i t  has been freed 

up, as it is no longer used. This operation is glossed over, since safely freeing NBS data 

structures is quite complex, and is beyond the scope of this discussion; interested readers 

are referred to the extensive NBS literature [42, 871. In step (5 ) ,  thread 2 has succeeded 

in atomically updating the pointer from the list that thread 1 created to thread 2's new 

list. 

The atomic nature of NBS entirely eliminates lock contention. Unfortunately, NBS 

typically introduces other forms of contention such as repeated high-overhead retries, as 

seen in this example. Furthermore, NBS uses the same low-level instructions that are used 

to implement locking primitives, and therefore suffers fiom the same high memory-latency 

and pipeline-stall overheads as does locking on modern SMMP systems. It is nevertheless 

worthwhile to review NBS, because many of the ideas developed in the course of refining 

NBS are valuable in their own right. 

Herlihy's work distinguishes among several variants of NBS: 

1. non-blocking synchronization: each thread in the system is guaranteed to complete 

an operation after taking a finite number of steps. 

2. lock-free synchronization: at least one thread in the system is guaranteed to complete 

an operation after the system takes a finite number of steps. 

3. obstruction-free synchronization: each thread in the system is guaranteed to com- 

plete an operation after taking a finite number of steps in the absence of interference 

from other threads [44]. 

All three variants of NBS permit safe operation in the presence of preemption and 

thread death, and have seen much subsequent activity. NBS-based algorithms carefully 

manipulate pointers and corresponding version numbers such that halting any one thread 

at any point would still permit all other threads to proceed. 

For a simple example, consider a non-blocking push onto a stack, as shown in Fig- 

ure 2.20. Here, the new element is linked to the current stack head on line 11, and the 
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Figure 2.19: NBS Update: Conceptual View 



head pointer is atomically updated on line 12. The cmpxchg0 primitive takes a pointer 

to the value to be updated as its first argument, the presumed old value as its second 

argument, and the new value as its third argument. The loop spanning lines 10-12 repeats 

until the update succeeds. 

Interference due to other CPUs manipulating this same stack can cause repeated fail- 

ures and retries, with each such retry requiring another pass through the loop. This 

failure-retry behavior brings out a key point about NBS, namely, that it suffers from con- 

tention effects, but these effects take the form of repeated retries rather than spinning. 

Because each NBS retry is attempting to change the state of the system, high levels of 

contention can exact a severe performance penalty due to the resulting load on the com- 

puter's memory system. That said, in many cases, NBS naturally restricts the scope of 

contention of a pair of concurrent updates to the intersection of the sets of data items 

affected by the updates. In addition, as with locking, backoff techniques may be used to 

reduce the overhead of contention. 

1 struct el { 
2 struct el *next; 
3 int data; 
4 1; 
5 struct el *head; 
6 
7 void 
8 push(struct el **haad, struct el *p) 
9 C 

Figure 2.20: Non-Blocking Push 

Any thread that dies suddenly will do so either before or after the atomic compareand- 

exchange operation on line 12 completes successfully. If it dies before, then the element 

has not been pushed into the stack. On the other hand, if it dies after, the element will 

have been pushed into the stack. In either case, the stack will be correctly formatted, and 

other threads may proceed. 



However, constructing the corresponding pop operation is significantly more challeng- 

ing. It is quite tempting to try the implementation shown in Figure 2.21, but this imple- 

mentation is fatally, though subtly, flawed [133]. 

4 struct el *p; 
5 struct el *q; 
6 
7 do I 
8 p = *head; 
9 q = p->next ; /* BUG ! ! ! */ 
10 3 vhile (cmpxchg(head, p, q) != p) ; 
11 1 

Figure 2.21: Non-Blocking Pop 

To see this, consider a stack containing elements A, B, and C, in that order fiom the 

top of the stack. Suppose that CPU 0 starts a pop operation, completing execution of 

line 9, then being delayed. CPU 0's variable p will then be pointing to element A and 

its q variable will be pointing to element B. Suppose that CPU 1 now executes two pop 

operations, removing elements A and B from the stack, leaving only element C. Suppose 

further that CPU 1 then pushes element A back onto the stack, so that the stack now 

contains elements A and C. 

Then CPU 0 will execute the compare-and-exchange operation on line 10, which will 

find that head is still pointing to element A, and will therefore succeed-but will cause head 

to point to element B, which is no longer on the stack! This ABA problem is due to the 

that compare-and-exchange cannot detect a sequence of changes if that sequence results 

in the same state, in this case, the pointer again pointing to element A. Successful use 

of non-blocking and NBS requires careful consideration of complex scenarios such as the 

one just described. The fact that this complex and subtle example arose in an extremely 

simple data structure should give pause to anyone considering use of these techniques on 

larger and more complex data structures. 

Although use of load-linked/store-conditional in place of compare-and-exchange can 

simplify matters somewhat [42], in general, NBS imposes expensive atomic operations to 



shared memory on readers, requires "fat pointers" augmented with counters to check for 

structure reuse, requires expensive copy operations, requires type-safe memory, and pos- 

sesses efficient implementations for a relatively small number of parallel algorithms. In 

addition, there are no known general techniques to permit a large data structure to be 

incrementally converted from locking to non-blocking synchronization. Any such conver- 

sion may therefore need to be made in a "big bang" fashion, at one go. This last point 

is quite important for software-engineering reasons, since it means that any change from 

locking to NBS will be a relatively large, high-risk change, thus inhibiting NBS adoption. 

Non-Blocking Synchronization Da t a  Element Reuse 

Much of NBS's complexity is due to the fact that threads can be delayed for long time 

periods due to interrupts, preemption, and repair of "soft" hardware errors such as single- 

bit ECC errors in memory transactions. Such potential delays limit NBS's ability to 

reuse memory corresponding to data elements removed from a data structure, since some 

other thread might still be referring to it. As noted earlier, NBS has used "fat pointers" 

that include counters that are incremented on each update, so that readers can determine 

that they are referring to an obsolete data element. However, for the readers to make this 

determination reliably, the data structure's counters must remain at the same offset within 

the structure after reuse. To meet this same-offset requirement reliably, NBS depends on 

"type-safe memory", in which memory, once used for a given type of data structure, may 

never be used for any other data structure type. 

This type-safe-memory constraint leaves systems using NBS vulnerable to denial-of- 

service attacks, where the attacker overloads the system with a specific type of transaction 

that causes most of memory to be dedicated to the corresponding type of data structure. 

The system is then unable to respond to overloads due to other transaction types, since 

it is unable to re-purpose its memory. 

Therefore, Michael [86, 871 has proposed deferred-destruction techniques that elimi- 

nate the requirement for reuse checks and type-safe memory by requiring that each thread 

traversing a NBS-protected data structure keep a separate list of "hazard pointers" record- 

ing which data elements that the thread is still referencing. Any data element removed 



from a list may be repurposed as soon as all of the hazard lists are free of pointers to 

this element. Herlihy et al. [43, 451 propose a similar scheme. However, these techniques 

imposes significant performance penalties [27], as would be expected given the need to 

for read-only accesses to write to shared memory. Nonetheless, deferral of destruction 

is an important concept with a long history [56]; the discussion in Sections 2.2.19 and 

Section 2.2.20 show how it may be exploited. 

Herlihy suggests "freezing" a block while reading it in order to avoid that block being 

freed and reallocated while being read [40], but notes that doing so greatly complicates the 

protocol [42]. Another way to avoid such inopportune recycling is to combine NBS with 

RCU, as was done for the K42 operating system's hash tables, described in Section 6.7 

on Page 221. This combination of RCU with NBS appears to address many of the issues 

noted above. 

Anderson and Moir [5] have proposed techniques for large-structure updates, but these 

techniques still require that readers write to shared storage, with disastrous effects on 

memory locality. 

Obstruction-Free Synchronization 

Herlihy, Luchangco, and Moir [44] recently introduced 'cobstruction-£ree synchronization", 

which only guarantees forward progress in absence of contention. This is a weaker guar- 

antee than lock-free synchronization (which guarantees that some thread will make for- 

ward progress in a finite number of timesteps) and non-blocking synchronization (which 

guarantees that all threads will make forward progress in a finite number of timesteps). 

Obstruction-free synchronization promises simpler and more efficient algorithms than ei- 

ther lock-free or non-blocking synchronization, due to the fact that the NBS code that 

guarantees forward progress may be eliminated. However, it still requires writes to shared 

storage during read-only accesses. 

Software Transactional Memory 

More recently, Keir Fraser [27] extended the notions of software implementation of multiple 

compare-and-swap (MCAS) and software transactional memory (STM). A key concept in 



this work is the maintenance of multiple versions of each data item, so that a given 

CPU can safely carry out its operation on its version of the data structure, even if that 

operation is invalidated by concurrent activity of some other CPU. Fraser was able to 

show performance rivaling that of lock-protected data structures, but only tested data 

structures with natural bottleneck points, namely, skip lists [93, 941 and binary search 

trees. In addition, h e r ' s  algorithms require an additional level of indirection, doubling 

the number of cache lines that must be fetched, and also require expensive writes to shared 

memory, even for read-only accesses. Fksearchers at  Sun [45] have worked along similar 

lines. 

Synthesis 

Massalin and Pu [92,65] describe Synthesis, which is an operating-system kernel using non- 

blocking techniques. Note that Synthesis did not pervasively use non-blocking techniques, 

and that although some non-blocking and lock-free techniques have been introduced into 

mainstream operating systems, as exemplified by the non-blocking hash table described 

in Section 6.7 on Page 221, there has not been widespread use of kernels based entirely 

on these techniques. 

Cache Kernel 

Cheriton implemented a kernel based entirely on non-blocking synchronization [18], and 

later, with Greenwald, published an analysis of this experience [36]. Greenwald and Cheri- 

ton argue that non-blocking synchronization provides the following benefits: 

1. Reduction of self-deadlock concerns. 

2. Avoidance of priority-inversion issues. 

3. Greater insulation from fail-stop failures. 

The first benefit is real, but solutions exist for lock-based operating-system kernels. 

For example, the Linux kernel provides primitives for simultaneously acquiring spinlocks 

and disabling interrupts, such as the spinlockirqsave 0 primitive. 



The second benefit is also real, but greatly ameliorated by the engineering design 

practice of keeping contention low, and through use of "priority inheritance" techniques 

that raise the priority of the holder to at least that of the most important waiting thread. 

Locking primitives that suppress preemption, such as those in the Linux 2.6 kernel, are 

also helpful in this regard. 

The third benefit seems more applicable to user code. Kernel threads can fail in diverse 

ways, many of which are anything but fail-stop. Cheriton does not present any evidence 

indicating that there are sufficient fail-stop bugs in kernel code to warrant the complexity 

of non-blocking synchronization. 

Cheriton's non-blocking primitives require that readers write to shared memory in 

order to verify that the data structure was unchanged during the read. Given the high 

cost of writes to shared memory, one would not expect large performance benefits from 

these primitives under conditions of low contention. And in fact, Cheriton's results show 

that these non-blocking primitives have little or no advantage over spinlocks until the load 

rises to the point that threads holding locks have a high probability of being preempted. 

As noted earlier, locking primitives that suppress preemption are a viable alternative in 

operating-system kernels. 

Cheriton's primitives also require a double-compare-and-swap (DCAS) instruction that 

takes two addresses. This instruction is not available on most popular microprocessors. 

It may be simulated in software, but for this to work, readers must either take locks or be 

coded to tolerate non-atomic simulated DCAS instructions. 

In addition, Cheriton's primitives require use of type-safe memory, which prevents re- 

purposing memory. Such re-purposing is required if a kernel is to support a dynamically 

changing workload. 

It is also quite interesting to note that Cheriton does not claim performance benefits 

or significant complexity benefits. 

Nonetheless, NBS techniques are widely used for specific cases where simple and effi- 

cient implementations exist. However, the general-purpose transformations are not heavily 

used, in part due to lack of an efficient implementation. But the implementations are lim- 

ited in part by the capabilities of the hardware. Could more capable hardware be brought 



to bear on synchronization problems? 

2.2.15 Transactional Hardware 

Various forms of transactional hardware has received much research attention over the 

past few years. Representative examples that are compatible with existing SMMP locking 

software include transactional lock removal (TLR) [98] (which is based on earlier work 

with speculative lock elision (SLE) [97]) and thread-level speculation (TLS) [64] (which is 

based on earlier work with speculative locks [63]). 

TLR hardware recognizes critical sections based on standard locking primitives, thus 

requiring no change in software. The hardware executes the entire critical section as 

one atomic operation, using timestamping and rollback to resolve coac t ing  accesses, and 

varying priorities to avoid livelock. Note that hardware rollback is reasonable, as all CPUs 

that do speculative execution are capable of such rollback. 

However, because TLR uses the CPU cache to record tentative state prior to atomic 

commit, the CPU7s ability to atomically execute a critical section will be limited by its 

cache capacity and geometry. Although there are well-known technologies, such as victim 

caches, that can ameliorate these limitations, there will always be limits. Such limits are 

data-layout-dependent, and can therefore result in unpredictable slowdowns in those cases 

where the CPU caches cannot accommodate the critical section's data. Such slowdowns 

become increasingly unpredictable with the advent of multithreaded CPUs that share 

cache resources. 

TLS also leverages the hardware work on speculative execution to enable atomic execu- 

tion of critical sections. TLS uses a "safe thread" that always executes non-speculatively 

in order to guarantee forward progress. Since the safe thread executes non-speculatively, 

it actually acquires and releases the locks. Note that speculative threads may execute 

critical sections that would normally be excluded as long as there are no data conflicts, 

however, this also means that the speculative threads cannot commit their state until 

after the safe thread releases the lock. Again, this means that the ability to speculatively 

execute critical sections depends on the size and geometry of the CPU cache. 

Such transactional hardware does look promising, but it is still a topic of research, and 



will therefore likely take many years before it is available in commodity CPUs. The fact 

that such hardware does not require any changes to software (not even recompilation) is 

quite positive compared to earlier approaches that did require such changes [46]. However, 

given that speculation increases power consumption, which is becoming a limiting factor 

in many current designs, it is possible that transactional hardware will face significant 

barriers to widespread adoption. 

In the meantime, we must make due with available hardware, and therefore must still 

face the fact that general-purpose NBS algorithms lack efficient implementations. But 

perhaps this very generality is actually part of the problem. Is it possible to improve per- 

formance by relying on the speciiics of the problem at hand? Can semantics be exploited 

to provide fully parallel implementations for more general classes of operations? 

2.2.16 Exploiting Semantics 

Weihl and Liskov [I401 advocate taking advantage of specific properties of the underlying 

data and operations on that data, such as commutivity, in order to increase parallelism. 

This is good advice, and in fact was followed in the construction of the split counter 

described in Section 2.2.13 on Page 41 but helps only in very specific situations. 

However, in many cases, the order of non-commutative operations is left unspecified. 

For example, consider creation and deletion of a preexisting System V IPC object. If the 

creation precedes the deletion, the creation will fail, and the object will be deleted. If, on 

the other hand, deletion precedes creation, both operations will succeed, and a new object 

will be created to replace the old one. But if the creation and deletion operations are 

being carried out by independent user threads, the kernel is permitted to arrive at either 

result. The higher-level semantics of such operations state that when there is no causal 

relationship between two events, they may proceed in either order. 

This System V IPC case permits reads to proceed in parallel, in contrast to the split 

counter, where writes proceed in parallel. It is therefore critically important to select 

the semantics to be exploited carefully so as to give maximum benefit to the common- 

case operations. How can operation reordering be exploited in common operating-system 

algorithms, such as those involving linked lists? 



2.2.17 Read-Mostly Linked-List Insert ion 

To answer this question, first consider inserting an element into a linked list on a computer 

system with a sequentially consistent memory modeL5 If the readers never acquire locks, 

then the insertion must be done atomically, so that a given reader either sees the list 

before the insertion, or sees the list with a fully-fledged new element. Updates must 

still synchronize with each other, but, in order to obtain good performance, readers must 

not be required to use the expensive operations required to synchronize with updaters. 

Figure 2.22 shows a sequence of steps that accomplish this atomic insertion: 

1. The initial list contains elements A and C. 

2. Element B is allocated and initialized, including its pointer to element C. 

3. Element A's successor pointer is updated to point to element B. Note that a reader 

currently accessing element C might or might not have passed through element B, 

depending on the timing, as indicated by the shaded arrows emanating from ele- 

ment A. 

4. Any subsequent traversal of this list is guaranteed to see element B. 

The key point here is that step 3 of this sequence makes a complex series of updates 

visible atomically-no CPU will see element B half-initialized. This example illustrates the 

usefulness of hiding complex operations behind carefully chosen "commit points" in order 

to eliminate the need for the readers to synchronize with updaters. 

2.2.18 Read-Mostly Linked-List Removal 

The insertion algorithm works well, and has been used for decades. However, sooner or 

later it will be necessary to remove an element from this list. Again, if the readers do 

- - 

5Sequential consistency guarantees that all CPUs agree on the order of all writes to memory. Computer 
systems with weaker memory models (almost all of them!) must execute "memory barriern instructions 
to force ordering when necessary. For example, locking primitives contain memory-barrier instructions in 
order to prevent operations making up the critical section from "bleeding outn into the surrounding code, 
as discussed in Section 2.2.10 on Page 30. 



Figure 2.22: Atomic Insertion Into a Linked List 

not use locking, removal must be done atomically. This may be accomplished as shown in 

Figure 2.23: 

1. Initially, the list contains elements A, B, and C in that order. 

2. Element A's successor pointer is updated to point to Element C. At this point, a 

reader referencing element C may or may not have passed through element B, as 

indicated by the shaded arrows emanating fiom element A. 

3. Any new traversal of the list is guaranteed not to see element B. 

This algorithm can produce inaccurate results-readers can see stale data, and the order of 

the readers' list traversals are now unpredictable (as they would also be with reader-writer 

locking). For example, a reader might be examining element B after it has been removed 

from the list. However, it turns out that there are a number of situations where such 

stale data can be tolerated, such as TCP/IP routing tables. Because TCP/IP routing 

protocols have built-in delays to prevent route thrashing, a given computer's routing 

tables may have stale data in any case. The TCP/IP protocol compensates for this by 

retransmitting any packets that are lost due to being sent down the wrong path. Because 

the routing-protocol delays are measured in seconds or even minutes, the additional sub- 

second stale-data delays are insignxcant. 



Figure 2.23: Atomic Removal From a Linked List 

2.2.19 Read-Mostly Linked-List Removal and Reclaiming 

Again, this algorithm works quite well, and is another illustration of the value of hiding 

complex operations behind carefully chosen commit points. However, unless wantonly 

leaking memory is permissible, it begs the question as to when element B may safely be 

reclaimed by returning it to the free pool. Of course, since element B has been unlinked 

from the list, there is no way to acquire a new reference to it. But since the readers 

are in no way making their presence known, and since a given reader with a pre-existing 

reference to element B might be indefinitely delayed by interrupts, correctable ECC errors 

in memory, and so on, how can one guarantee that all such pre-existing references have 

been released? 

Normally, such a guarantee is based on direct observation of state manipulated by the 

readers, reader-writer locks being a typical example. However, in this case, the readers 

manipulate no state, for so doing would require use of expensive synchronization oper- 

ations. Therefore, any such guarantee would have to be based on some more indirect 

means. A key question is whether any such indirect means exists. 

It turns out that in some environments, including operating-system kernels, server 

applications, and event-driven systems, it is in fact possible to determine indirectly when 

all such pre-existing references have been released. For concreteness, consider a non- 

preemptive operating-system kernel. In this environment, it is illegal to block while holding 

a pure spinlock, since doing so can result in a deadlock situation where the thread holding 

the spinlock is blocked, and all CPUs are consumed spinning on that same lock. 



It is reasonable to place this same restriction on the linked list in this example, so 

that, by convention, it is illegal to block while traversing the linked list, just as it would 

be if the list were guarded by a reader-writer spinlock. To avoid blocking in a preemptible 

environment, preemption must be disabled during the traversal. In both preemptible and 

non-preemptible environments, the traversal must not invoke any primitives that block, 

for example, primitives that wait for 1 /0  completion. Note that any blocking operation 

results in a context switch. 

Given this convention, Figure 2.24 illustrates how to determine when it is safe to return 

element B to the freelist. 

1. Initially, the Iist contains elements A, B, and C in that order. 

2. Element A's successor pointer is updated to point to Element C. At this point, a 

reader referencing element C may or may not have passed through element B, as 

indicated by the shaded arrows emanating from element A. 

3. Once every CPU executes a context switch, there can no longer be any references to 

element B. 

4. Element B may now be returned to the freelist. 

Figure 2.24: Atomic Deletion From a Linked List 

The reasoning behind this procedure is as follows: 



1. It is illegal to block while traversing the linked List. 

2. It is illegal to hold a reference to an element of the linked list from one traversal to 

the next. Note that this convention is followed in traditional locking designs as well. 

3. It is impossible to gain a new reference to element B once it has been unlinked from 

the list. 

4. Because, by convention, preemption must be disabled during a traversal, it is not 

possible for a thread to migrate from one CPU to another without blocking. 

5. Blocking on a given CPU forces that CPU to undergo a context switch. 

6 .  Because it is illegal to block while traversing the linked list, if a CPU undergoes a 

context switch, it cannot be traversing the linked list. 

7. Because it is illegal to hold a reference to an element of the linked list from one 

traversal to the next, if a CPU undergoes a context switch, it cannot be holding a 

read-side reference to any element of the list.6 

8. Therefore, if a given CPU undergoes a context switch after element B has been 

unlinked from the list, that CPU cannot possibly be holding a read-side reference to 

element B. 

9. Once all CPUs have undergone context switches, there can be no more read-side 

references to element B . 

So, provided the requisite conventions are followed, once all CPUs have been observed to 

undergo at least one context switch, element B may safely be returned to the free pool. 

Checking for context switches will add overhead to updates, but if updates are rare, this 

overhead will be more than made up for by the fact that readers can omit expensive 

synchronization operations. 

But can deferred destruction be exploited by real algorithms, to say nothing of real 

operating-system kernels? 

'Note that the updater needs to  retain a reference to the element in ordm to free it. 



2.2.20 Deferred Destruction 

Deferred destruction was first described in 1980, when Kung and Lehman [56] recom- 

mended use of a garbage collector to defer destruction of nodes in a parallel binary search 

tree in order to simplify its implementation. This good advice does not help much in 

environments that lack a garbage collector, such as most operating-system kernels. Even 

environments possessing garbage collectors typically impose significant overhead on read- 

ers, for example to maintain reference counts. In addition, it is not clear how great a 

performance increase can be obtained from a binary search tree given the frequent u p  

dates to the root node, in light of the high cost of pipeline stalls and memory latency. 

In 1982, Manber and Ladner [61, 621 recommended deferring destruction until aJl 

threads running at that time have terminated. This recommendation is not helpful in 

operating-system-kernel or server environments, where threads are explicitly designed to 

not terminate. Nonetheless, this approach does eliminate all read-side synchronization 

overhead. However, it again is not clear how great a performance increase can be obtained 

from parallel search trees given the high cost of pipeline stalls and memory latency. 

In 1986, Hennessy, Osisek, and Seigh [39] introduced passive serialization, which is 

a deferred-destruction mechanism that relies on the presence of "quiescent statesn in the 

VM/XA hypervisor that are guaranteed not to be referencing the data structure. However, 

this mechanism was not optimized for the memory latency and pipeline-stall overheads 

found on modern computer systems, which is not surprising given that these overheads 

were not so expensive at that time. A similar mechanism is discussed in Appendix C.2.3 on 

Page 336, and it does in fact suffer from these overheads, which may explain why passive 

serialization was not applied very widely in VM/XA. Nonetheless, passive serialization 

appears to be the first deferred-destruction mechanism to be used in production. 

In 1990, Pugh [93] noted that explicitly tracking which threads were reading a given 

data structure permitted deferred fiee to operate in the presence of non-terminating 

threads. However, this explicit tracking imposes significant read-side overhead, which 

is anything but desirable in read-mostly situations. Although this algorithm takes pains 

to avoid write-side contention and parallelize the other write-side overheads by providing 



a fine-grained locking design, the high costs of pipeline stalls and memory latency make 

it unclear how much of the performance advantage reported in 1990 remains in 2004. 

At about this same time, Adams [I] described "chaotic relaxation", where the normal 

barriers between successive iterations of convergent numerical algorithms are relaxed, so 

that iteration n might use data from iteration n - 1 or even n - 2. This introduces error, 

which typically slows convergence and thus increases the number of iterations required. 

However, this increase is sometimes more than made up for by a reduction in the number 

of expensive barrier operations, which are otherwise required to synchronize the threads 

at the end of each iteration. Unfortunately, chaotic relaxation requires highly structured 

data, such as the matrices used in scientific programs, and is thus inapplicable to most 

data structures in operating-system kernels. 

In 1993, Jacobson 1531 described what is perhaps the simplest deferred-free technique: 

simply waiting a fixed amount of time before freeing blocks awaiting deferred free.' This 

works well if there is a well-defined upper bound on the length of time that reading threads 

can hold references, as there might well be in hard real-time systems. However, if this time 

is exceeded, perhaps due to preemption, excessive interrupts, or larger-than-anticipated 

load, memory corruption can ensue, with no reasonable means of diagnosis. Jacobson's 

technique is therefore inappropriate for use in production operating-system kernek8 

In 1995, Pu et al. [91] applied a technique similar to that of Pugh's read-side-tracking 

to permit replugging of algorithms within a commercial Unix operating system. However, 

this replugging permitted only a single reader at a time. The following year, this same 

group of researchers extended their technique to allow for multiple readers [23]. Their 

approach requires memory barriers (and thus pipeline stalls), but reduces memory latency, 

contention, and locking overheads. 

Finally, in 2002, Michael [86,87] presented techniques that defer the destruction of data 

structures to simplify NBS synchronization. In particular, this technique eliminates lock- 

ing, reduces contention, reduces memory latency for readers, and parallelizes pipeline stalls 

7Jacobson did not describe any write-side changes he might have made in this work using SGI's Irk 
kernel. Aju John published a similar technique in 1995 [54]. 

' ~ x c e ~ t  for kernels that can provide hard real-time response guarantees for all operations. 



and memory latency for writers. However, these techniques still impose significant read- 

side overhead, particularly in the form of memory barriers, as discussed in Section 2.2.14 

on Page 51. Researchers at Sun worked along similar lines concurrently [43, 451. 

These mentions of deferred destruction, though important, did not present an efficient 

mechanism for determining how long to defer destruction in SMMP environments lacking a 

garbage collector but with long-running threads. The lack of such a mechanism prevented 

the benefits of deferred destruction from being realized. 

This gap was filled by this author's work on DYNIX/ptx's RCU [81, 1081 and by the 

Tornado and K42 research operating systems' 'Lgenerations", each of which provides a 

NUMA-optimized specialized garbage collector to implement deferred destruction in an 

easy-tcl-use fashion. In both cases, the key idea is a straightforward API that allows 

data to be queued for later destruction, so that the programmer need not be concerned 

with the details of the actual destruction deferral implementation. The properties of the 

write-side access are dictated by the write-side synchronization mechanism, but typically 

parallelize pipeline stalls, memory latency, and locking while reducing contention. In 

all three operating systems, deferred destruction enables synchronization-free read-only 

access. However, this use was restricted to a few subsystems in the case of DYNIX/ptx 

and to existence locking in the case of K42 [30]. Widespread use was hindered by the lack 

of a robust set of design patterns for the typical practitioner to follow. 

2.3 Discussion 

This chapter has reviewed a number of synchronization mechanisms, each of which has its 

own strengths and weaknesses. This section reviews these strengths and weaknesses with 

an eye to creating a synchronization mechanism that is well-suited to the many read-mostly 

data structures found in operating-system kernels such as Linux. Section 2.3.1 discusses 

relevant hardware costs and trends, and their relationship to synchronization-mechanism 

design. Section 2.3.2 discusses the principles learned from this chapter's review of exist- 

ing synchronization mechanisms. Finally, Section 2.3.3 summarizes the synchronization- 

mechanism attributes desired for guarding read-mostly data structures in operating-system 



kernels. 

2.3.1 Costs 

The preceding sections have shown that effective use of synchronization mechanisms can 

be quite complex. Such use must be cognizent of the four fundamental costs incurred by 

SMMP software: 

1. Instruction execution 

2. Pipeline stalls 

3. Memory latency 

4. Contention 

Of these, the relative costs of pipeline stalls and especially of memory latency have been 

steadily increasing. In contrast, Moore's Law has been sharply and steadily decreasing 

instruction-execution costs. Contention is a function of the design, with the goal being 

unabashed embarrassing parallelism. 

2.3.2 Principles 

The review of related work has brought out the following observations: 

1. Confining control of interrupt and preemption disabling to the operating-system 

kernel helps prevent denial-of-service attacks. 

2. Layered design and implementation simplifies synchronization primitives. 

3. Reader-writer semantics, resulting in read-side and write-side critical sections, per- 

mit read-side critical sections to proceed in parallel. 

4. Incurring memory latency and pipeline stalls in parallel rather than serially can 

improve both performance and scalability. 

5. Asymmetric locking primitives, which favor the performance of the common case at  

the expense of increased performance for less-common cases, can greatly improve 

performance. 



6. Data placement into cachelines can affect performance. 

7. Eliminating locking eliminates lock contention. 

8. Eliminating cache-line transfers reduces memory-latency overhead. 

9. Even in the absence of locks, repeated atomic-operation retries can degrade perfor- 

mance. 

10. Synchronization primitives that permit incremental adoption are more easily incor- 

porated into large production projects. 

11. Exploiting operation semantics can increase scalability and performance. 

12. Maintaining multiple versions of portions of a data structure can simplify the inter- 

action between updates and read-only accesses, permitting greater concurrency as 

well as  lock-free read-side access. 

13. Deferring destructive operations can greatly simplify read-only accesses to data 

structures and enhance read-side performance. 

14. Hiding complex operations behind atomic "commit points" can reduce the need for 

readers to synchronize with updaters. 

15. Use of specialized garbage collectors eases the use of deferred destruction. 

In addition, this review of related work identified the following design patterns, which 

are discussed in more depth in Section 5.2 on Page 138: 

1. Code Locking. 

2. Reader/Writer Locking. 

3. Critical-Section Partitioning. 

4. Data Locking. 

These observations and patterns can be abstracted into three basic (and unsurprising) 

principles: 



1. Avoid expensive operations, namely those incurring pipeline-stall and memory-latency 

overheads. 

2. Architect, design, and implement algorithms that permit fully parallel useful execu- 

tion, thereby avoiding contention. 

3. Architect, design, and implement algorithms that meet software-engineering needs, 

including simplicity, resilience against denial-of-service attacks, and tolerance for 

incremental adoption. 

2.3.3 Attributes 

The attributes desired of a synchronization mechanism depend on the usage and workload. 

In this dissertation, the focus is on read-mostly data structures in operating-system kernels. 

These kernels run on SMMP computer systems, contain an abundance of read-mostly data 

structures, and permit partial ordering of many operations. Taking these considerations 

into account yields the following desirable attributes for synchronization mechanisms: 

1. Partial ordering, allowing additional parallelism. In contrast, total ordering inher- 

ently limits parallelism. 

(a) Concurrent reads, allowing partial ordering specifically among read-only ac- 

cesses. 

(b) Reads concurrent with writes, allowing partial ordering specifically among reads 

and writes. Note that allowing reads and writes to proceed concurrently means 

that readers can see stale data. Although many algorithms tolerate stale data, 

others do not. However, Section 5.3 on Page 159 describes some methods of 

transforming algorithms into a form that tolerates stale data. 

(c) Concurrent writes, allowing partial ordering specifically among updates. 

2. Asymmetric distribution of synchronization overhead, in this case, favoring readers 

over writers. 

3. Reads and writes either avoiding or parallelizing: 



(a) pipeline stalls 

(b) memory latency 

(c) contention 

(d) locking 

Note that the memory latency, pipeline stalls, and contention called out in item 3 are 

exactly the high-cost overheads noted in Section 2.2.3. Locking is called out separately 

because it is a common operation that incurs all three of these types of overhead. 

A summary of the attributes of the synchronization mechanisms presented in this 

chapter is shown in Table 2.2. In this table, an empty cell indicates that the corresponding 

synchronization mechanism either has no effect or degrades the corresponding attribute. 

Different letters indicate different types of support, as follows: 

A Avoids the specified type of overhead. 

P Parallelizes the specified type of overhead. 

Y Supports the specified attribute. 

A lower-case letter indicates partial support. For example, data locking provides concur- 

rent reads to different data items, but only if they hash to different buckets in the hash 

table. In contrast, brlock provides concurrent reads regardless of which elements are being 

accessed. Therefore, brlock gets an uppercase "Y" for partial ordering, while data locking 

gets a lowercase "y". 

Code locking, reader-writer locking, data locking, data and reader-writer locking, and 

brlock all have the advantage of familiarity, and, in particular, that writers block readers. 

This last feature helps neither performance nor parallelism, as we have seen, but can 

reduce code complexity in some cases. The non-blocking-synchronization row reflects the 

attributes of generalized NBS, since although simple NBS can be quite efficient, the wide 

variety and extreme specialization of simple NBS techniques defy reasonable classification. 

The question marks in the "Exploiting Semantics" row indicate that the properties depend 

on the exact semantics being exploited, while those in the "Deferred Destruction" row 

indicate that these attributes depend on the chosen write-side synchronization mechanism. 



Table 2.2: Attributes of Synchronization Mechanism 
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The deferred-destruction class of synchronization mechanisms has many attractive 

properties. The next chapter explores these properties in more depth, in the course of 

presenting an overview of RCU, which is a promising deferred-destruction-based synchre 

nization mechanism that has recently been accepted into the Linux 2.6 kernel. 



Chapter 3 

RCU Overview 

This chapter provides an overview of RCU, which is a promising deferred-destruction-based 

synchronization mechanism that was implemented in the DYNIX/ptx operating-system 

kernel by the author in collaboration with Jack Slingwine [81]. As part of DYNIX/ptx, 

RCU has seen use in mission-critical datacenter environments running large database 

servers.' The author later acted as architect for the implementation of RCU in Linux, 

which led to RCU being accepted into the Linux 2.5.43 kernel [121]. Variants of RCU have 

been independently implemented in the K42 and Tornado research operating systems and 

in IBM's mainframe VM/XA virtual-machine monitor. 

This chapter presents an introduction to RCU in Section 3.1, describes how RCU 

solves concurrency problems in Section 3.2, presents a conceptual overview of RCU in 

Section 3.3, demonstrates example uses of RCU in Section 3.4 and summarizes analogies 

and design patterns in Section 3.5. This chapter is adapted and expanded from material 

that this author previously published [I1 , 71, 73, 781. 

3.1 Introduction to RCU 

RCU is a reader-writer synchronization mechanism that takes asymmetric distribution 

of synchronization overhead to its logical extreme: read-side critical sections incur zero 

synchronization overhead, containing no locks, no atomic instructions, and, on most archi- 

tectures, no memory-barrier instructions. RCU therefore achieves near-ideal performance 

'In 1999, seven of the ten largest Oracle installations used RCU as implemented in the DYNIX/ptx 
kernel. 



for read-only workloads on most architectures. Write-side critical sections must therefore 

incur substantial synchronization overhead, deferring destruction and maintaining multi- 

ple versions of data structures in order to accommodate the read-side critical sections. In 

addition, writers must use some synchronization mechanism, such as locking, to provide 

for orderly updates. 

Readers must provide a signal enabling writers to determine when it is safe to complete 

destructive operations, but this signal may be deferred, permitting a single signal operation 

to serve multiple read-side RCU critical sections. RCU typically signals writers by non- 

atomically incrementing a local counter, which is an extremely inexpensive operation. 

These read-side signals are observed by a specialized garbage collector, which carries 

out destructive operations once all readers have signalled that it is safe to do so. Garbage 

collectors are typically implemented in a manner similar to a barrier computation, or, on 

NUMA systems, a combining tree. Production-quality garbage collectors batch destructive 

operations, so as to amortize their overhead over many write-side update operations. 

RCU has the attributes listed in the "Deferred Destruction" row of Table 2.2 on 

Page 69. These attributes are further expanded on in Table 3.2 on Page 97. 

RCU provides concurrent reads, in fact, since readers do not use any synchronization 

mechanism, there is no way for readers to avoid concurrency. For the same reason, RCU 

provides concurrent reads and writes. RCU does not specify whether writers may run 

concurrently with each other; write-side concurrency depends instead on the chosen write- 

side synchronization mechanism. As noted earlier, RCU is maximally asymmetric, favoring 

readers to the greatest extent possible. The fact that RCU read-side critical sections use 

no synchronization mechanisms means that there is no overhead due to pipeline stalls, 

memory latency, contention, or locking for readers. Write-side overhead depends on the 

chosen write-side synchronization mechanism, but contention is reduced due to the fact 

that readers do not use any synchronization mechanisms. 



3.2 How RCU Solves Concurrency Problems 

This section describes the concurrency problems that RCU must solve, and describes the 

solutions in detail for the concrete case of non-preemptive operating-system kernels. This 

description sets the stage for a more abstract view of RCU given in later sections. This 

abstract view provides the conceptual tools needed to apply RCU to other environments, 

such as preemptive operating-system kernels and user-mode applications. 

RCU is a reader-writer synchronization mechanism: 

Readers need not execute any explicit synchronization instructions, but must also 

avoid executing any context switches while traversing any RCU-protected data struc- 

tures. However, readers must eventually execute a context switch after completing 

a given traversal. 

Writers must maintain multiple versions of data that is being updated so that readers 

can avoid encountering fatal inconsistencies, such as pointers to free memory. 

RCU implementations must solve the following problems: 

1. providing for readers and writers, 

2. handling multiple versions; reclaiming old versions when it is safe to do so, 

3. writer-writer synchronization, 

4. reader-writer synchronization, and 

5. interaction with weak memory-consistency semantics. 

Each of these topics is addressed in the following sections. 

3.2.1 Readers and Writers 

A read-mostly data structure will benefit from a synchronization mechanism that classifies 

each access as either a "reader", which does not perform significant changes to state, or 



a "writer", which performs significant updates. Note that readers might update statisti- 

cal counters or modify per-CPU private state, but would not normally make significant 

changes visible to other participants. 

The key distinction between readers and writers is that readers are permitted to execute 

concurrently, while writers are not. Permitting readers to execute concurrently provides 

good scalability for read-mostly data structures. 

The key difference between RCU and reader-writer locking is that RCU's read-side 

critical sections need not execute any synchronization instructions of any kind: no locks, 

no atomic instructions, no writes to shared memory, and, on almost all CPUs, no pipeline 

stalls. Read-side RCU critical sections therefore do not incur any pipeline-stall, memory- 

latency, or contention overhead. As such, RCU takes reader-writer asymmetry to its 

logical extreme, exacting no overhead from readers, but significant overhead from writers. 

RCU is also the next step in the progression from exclusive locking to reader-writer 

locking to RCU, where exclusive locking enforces the strongest causal ordering and RCU 

the weakest. In exclusive locking, the execution sequence of all critical sections corre- 

sponding to a given lock are totally ordered, as illustrated by Figure 3.1. All operations 

within a given critical section execute after completion of the predecessor critical section 

and before the beginning of the successor critical ~ec t ion .~  

In reader-writer locking, the execution sequence of write-side critical sections corre- 

sponding to a given lock are totally ordered, but the execution sequence of read-side 

critical sections is unordered, in fact, as noted earlier, read-side critical sections may run 

concurrently. However, read-side critical sections may not run concurrently with write-side 

critical sections. Therefore, it is possible to group the read-side critical sections into sets, 

with each set comprising all the read-side critical sections that execute between a pair of 

consecutive write-side critical sections. Then each write-side critical section is followed by 

either another write-side critical section or by a set of read-side critical sections. All sets 

of read-side critical sections are by definition always preceded and followed by write-side 

'The ordering of the operations within a given critical section depends on the system's memory-ordering 
model, and ranges from totally ordered in sequentially consistent systems to unordered in release-consistent 
systems. 
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guarded by a single exclusive lock. The write-side critical sections could instead make use 

of non-blocking synchronization or reader-writer locking. 
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3.2.2 Multiple Versions 

Since RCU readers are not executing any sort of synchronizing instructions within their 

critical sections, writers must typically maintain multiple versions of the data structures 

to avoid inducing read-side failures. A given version may be removed upon completion of 

all read-side RCU critical sections that were in progress at the creation of the replacement 

version. 

Figure 3.4 shows an example of how these multiple versions might be handled, illus- 

trated by a head pointer to a dynamically allocated data item. Step 1 shows the initial 

list, with the head pointer referencing version 1 of the dynamically allocated structure. 

Step 2 shows the list after the first update, which creates version 2 of the structure. The 

light arrows indicate that there might still be readers referencing version 1 of the structure. 

Step 3 shows the list after the second update, which creates version 3 of the structure, 

again, with the Light arrows indicating that there might still be readers referencing the 

first two versions of the structure. Step 4 shows the list after all readers referencing ver- 

sion 1 of the structure have exited their read-side RCU critical sections. A mechanism for 

determining that all readers referencing a given structure have exited their read-side RCU 

critical sections has been introduced in Section 2.2.19 on Page 59, and similar mechanisms 

will be discussed in more detail in Section 3.2.4 later in this chapter and in Chapter 4. 



Step 5 shows the list after version 1 of the structure has been freed. Step 6 shows the 

list after the third update, which creates version 4 of the structure, with the light arrows 

again indicating that there might still be readers referencing version 2 of the structure. 

This step illustrates an important point-readers will not necessarily exit their read-side 

RCU critical sections in order. Step 7 shows the list after all readers referencing versions 2 

and 3 of the structure have exited their read-side RCU critical sections. Step 8 shows the 

list after versions 2 and 3 of the structure have been freed. 

(1) head I Version 1 I (5) head Version 2 

(2) 1 head 9 Version 1 I 

(3) 1 head k-d Version 1 1 
Version 2 \m 

Version 2 "'Y-0 
(7) head iZ 

Version 4 

head Version 4 

Figure 3.4: RCU Multiple Version Handling 

Figure 3.5 shows this same sequence of events on a timeline with time proceeding 

downwards as indicated by the arrow. The dashed vertical arrows show how long an 

obsolete version of the data structure is retained, and the length of time that readers 

are accessing a given obsolete version of the structure is indicated by the arrows around 

the "readers" annotation. Note that it is quite possible that a given version of the data 

structure might not be referenced by a reader at the time of its replacement, as indicated 



by version 3 of the data structure lacking a "readers" indicator. At the end of the timeline, 

only version 4 of the data structure remains. 

ne 

Version 1 

Grace Period End ......................................................... 

Readers I 

1: I I 

I 
Grace Period End ............................... .Yl... ........ .Y.. ....................................... 

Figure 3.5: RCU Multiple Version Timeline 

This maintenance of multiple versions is the fundamental mechanism that allows RCU 

readers to preceeds without synchronization, and each such version corresponds to an 

update. Each update is split into two distinct operations: (1) creation of a new version of 

an element, and (2) deletion of the previous version of that element. The first operation 

can be done atomically, without involving the readers, as will be shown in Section 5.3.3. 

The second operation can be deferred indefinitely without affecting the correctness of the 

readers. However, writers must synchronize with each other, as described in the next 

section. 

3.2.3 Writer-Writer Synchronization 

RCU does not specify what type of writer-writer synchronization should be used. In most 

cases, locking is used to synchronize writers, most frequently code locking or data locking. 



However, any other synchronization mechanism may be used, for example, Section 6.7 on 

Page 221 demonstrates use of non-blocking synchronization for writer-writer synchroniza- 

tion in conjunction with RCU for reader-writer synchronization. 

3.2.4 Reader-Writer Synchronization 

Given that RCU does not require readers to execute any synchronization instructions, 

RCU reader-writer synchronization may seem at first glance to be paradoxical. However, 

synchronization is required in order to prevent writers from prematurely destroying data 

elements that readers are still referencing. This apparent paradox is resolved by the fact 

that the synchronization between RCU readers and writers is indirect, as described below, 

as well as in the example in Section 2.2.19 on Page 59. In addition, read-side signalling 

may be batched, so that one such signal can serve for an arbitrary number of preceding 

read-side RCU critical sections. 

In the Linux kernel, RCU imposes the same rules on RCU read-side critical sections 

that a reader-writer lock imposes on its read-side critical sections: 

1. preemption is disallowed, 

2. blocking is disallowed, 

3. references to protected data structures cannot be held outside of a critical section, 

and 

4. execution must complete in a reasonable length of time, where 'Lreasonable7' is defined 

with respect to the workload and environment. For example, a hard realtime system 

would have a much more restrictive definition of "reasonable" than would a web- 

serving system that is used across a long-latency satellite link. 

The &st two rules mean that context switches cannot occur in an RCU read-side critical 

section, the third means that all references to the protected data structure must be dropped 

upon exit from an RCU read-side critical section, and the last rule means that RCU read- 

side critical sections must complete reasonably quickly. 



Despite the fact that read-side RCU and reader-writer-lock critical sections follow the 

same rules, RCU differs in that while reader-writer lock must directly signal writers at the 

end of each and every read-side critical section, RCU may defer such signals, permitting 

a single signal to notify writers of the completion of an arbitrarily large number of read- 

side RCU critical sections. RCU's batching of read-side notifications greatly reduces the 

synchronization overhead incurred by readers. 

This deferred synchronization between RCU readers and writers then proceeds as fol- 

lows: 

1. Since context switches cannot occur in RCU read-side critical sections in the non- 

preemptive case, any thread3 that has blocked must have completed all preceding 

RCU read-side critical sections. 

2. Since RCU read-side critical sections must drop all references to RCU-protected data 

structures upon exit, any thread not running in an RCU read-side critical section 

cannot hold any references to any RCU-protected data structures. 

3. Since blocked threads cannot be running in an RCU critical section, and since threads 

not running in an RCU critical section cannot hold references to RCU-protected data 

structures, blocked threads cannot hold references to RCU-protected data structures. 

4. If an element has been removed from an RCU-protected data structure, then there 

is no longer a path to that element, and threads cannot .subsequently obtain any 

new reference to it. Once all threads referencing it from a read-side RCU critical 

section drop their references, the element will be "dead" in that its value can no 

longer influence subsequent read-side RCU critical sections. 

5. Since blocked threads cannot hold references to RCU-protected data structures, and 

since threads cannot obtain any new references to any element that has previously 

been removed from an RCU-protected data structure, a thread that is blocked af- 

ter an element has been removed from an RCU-protected data structure cannot 

3Here, "thread" is used in a general sense, including things like processes, tasks, interrupt handlers, 
event handlers, coroutines, and transactions. 



subsequently obtain a reference to that element. 

6. Once all threads have been observed in the blocked state after a given element has 

been removed &om an RCU-protected data structure, no thread in an RCU read-side 

critical section can be holding a reference to that element.4 

One issue with this approach is that a given system might be running literally millions 

of threads. Explicitly checking the state of each thread will incur far too much overhead, 

overwhelming the performance gains due to eliminating all synchronization instructions 

from the read-side RCU critical sections. In a non-preemptive system, one way to address 

this issue is to note that only those threads currently running can possibly be in a read-side 

RCU critical section-dl others must by definition be blocked. Therefore, it is sufEcient 

to check only the threads currently running on a CPU, since any thread not currently 

running on a CPU must be blocked. Since most systems have many more threads than 

CPUs, this greatly reduces the overhead of checking for the completion of all read-side 

RCU critical ~ections.~ 

This mapping, coupled with the deferred synchronization means that an element in an 

RCU-protected data structure may be safely deleted using the following procedure: 

1. Remove an element from the RCU-protected data structure, leaving intact any fields 

referenced by RCU read-side critical sections. 

2. Wait until all CPUs have each executed at least one context switch. 

3. Perform any required destructive operations, such as returning the element to the 

freelist. 

This indirect synchronization between RCU readers and writers ensures that readers 

will no longer be referencing any element by the time that it is destroyed in step 3 of the 

above deletion procedure. 

Operating systems that maintain per-CPU context-switch counters can use a particu- 

larly straightforward implementation of the second step, as follows: 

40f course, the thread removing the element presumably retains a reference in order to free it at the 
end of a grace period. 

5A similar technique may be applied in preemptive systems, as is discussed in Appendix C.3 on Page 343. 



1. Take a snapshot of each CPU's context-switch counter, placing the result in a local 

array of counters. 

2. While at least one of the per-CPU context-switch counters is equal to its counterpart 

in the local array, block for a short time interval. 

Eventually, each CPU will undergo a context switch and increment its per-CPU context- 

switch counter. Once that happens, each CPU's context-switch counter will differ from 

its counterpart in the local array, and the above procedure will terminate. Although 

this procedure is quite straightforward, it is also rather inefficient. A number of higher- 

performance implementations are described in Chapter 4. 

Note that this indirect synchronization mechanism may be used for purposes other 

than deletion. For example, consider a log buffer whose individual elements are allocated 

and filled in by RCU read-side critical sections. Once all elements have been allocated 

and a grace period has elapsed, all of the log buffer's elements are guaranteed to be filled 

in, so it is safe to write the entire log buffer to stable storage. 

3.2.5 Weak Memory- Consistency Semantics 

Modern CPUs have weak memory-consistency semantics, so that the order of reads and 

writes may be changed by the underlying hardware, and so that different CPUs may dis- 

agree on the order of read and write operations [33]. These weak semantics are motivated 

by hardware performance considerations and by the observation that the individual CPUs 

are normally operating either on private data or on data for which they hold a lock, so 

that the order in which a given CPU's memory operations occur as observed by other 

CPUs is normally irrelevant. CPUs provide memory barrier instructions to permit soft- 

ware to enforce ordering where needed, for example, when acquiring or releasing a lock so 

that the critical section does not "bleed out" into the surrounding code as described in 

Section 2.2.10. 

RCU writers must execute memory barriers as needed to ensure that RCU readers 

always see a consistent view of RCU-protected data structures. For example, an RCU 

writer must use a procedure similar to the following when adding a new element to an 



RCU-protected data structure: 

I. Allocate and initialize the new element, including pointers to its neighbors-to-be. 

2. Execute a memory-barrier instruction. 

3. Update pointers in existing elements in the RCU-protected data structure to point 

to the new element. 

In this procedure, the memory barrier ensures that other CPUs see all of the memory 

writes that initialize the new element in step 1 before any of the pointer updates in step 

3 of this procedure. 

The DEC/Compaq/HP Alpha has especially weak memory-barrier instructions [19]. 

The Alpha therefore requires special handling, which is discussed at length in Appendix B 

on Page 322. 

3.3 Conceptual Overview of RCU 

Section 3.3.1 presents an RCU glossary and Section 3.3.2 gives an overview of the tradeoffs 

encountered in designing RCU infrastructure. 

3.3.1 RCU Glossary 

The following definitions provide a vocabulary for the concepts underlying RCU. Keeping 

these definitions clearly in mind allows one to more easily apply RCU in different envi- 

ronments. Figure 3.6 serves to illustrate these definitions, and is discussed at the end of 

this section. 

Thread: A thread is a locus of execution. "Thread" is used in a general sense that 

includes things like processes, tasks, interrupt handlers, event handlers, coroutines, 

and transactions. 

Live Variable: A variable that might be accessed before it is next modified, so that its 

current value has some possibility of influencing future execution state. 



Dead Variable: A variable that will be modified before it is next accessed, so that its 

current value cannot possibly have any influence over future execution state. 

Critical Section: A region of code whose accesses to shared memory are protected from 

outside interference through use of some synchronization mechanism, such as spin- 

locks or RCU. For example, line 6 of the search0 function in the upper-left-hand 

cell of Table 3.1 on Page 92 is a critical section protected by the listmut ex reader- 

writer lock. 

Read-Side Critical Section: A region of code whose accesses to shared memory are 

protected from outside interference, again through use of some synchronization mech- 

anism, but which permits multiple concurrent readers. Line 6 of the search0 func- 

tion noted above is a read-side critical section; see the delete0 functions in that 

same table for an example of a non-read-side critical section. In the case of RCU, 

data referenced by RCU read-side critical sections is protected from being freed. 

Temporary Variable: A variable that is only live inside a critical section. One example 

of a temporary variable is an auto variable used as a pointer while traversing a linked 

list, such as the variable p in the -search 0 function in Figure 3.8 on Page 91. 

Persistent Variable: A variable that is live outside of critical sections. One example 

would be the header for a linked list, such as the variable head in the -search0 

function noted above. Although it is possible for the same variable to be temporary 

sometimes and persistent at other times, this practice can lead to confusion, so is 

not generally recommended. Relying on the register-allocation capabilities of modern 

optimizing compilers is usually a far better strategy. 

Quiescent State: A thread-execution state during which no references to any RCU- 

protected data structures are held. There are two types of quiescent state, a "candi- 

date quiescent state" and an "observed quiescent state". This dissertation typically 

uses "quiescent state" in the "observed quiescent state" sense. It is used in the 

"candidate quiescent state" sense when designing read-side RCU algorithms. 



Candidate Quiescent State: A point in the code where all of this thread's temporary 

variables that were previously in use in a critical section are dead. Any point that 

lies outside of all RCU read-side critical sections is a candidate quiescent state. 

It is important to note that candidate quiescent states are quiescent with respect 

to a selected set of data structures. It is possible to have multiple sets of candi- 

date quiescent states with respect to multiple sets of data structures in the same 

operating-system kernel. For example, recent patches for the Linux 2.6 kernel have 

created a separate set of quiescent states suitable for use by some critical portions of 

TCP/IP, this new set being better able to withstand some types of denial-of-service 

attacks. 

Observed Quiescent State: Taking each and every candidate quiescent state into ac- 

count would impose severe overhead or would require special hardware support. 

However, some candidate quiescent states may be observed particularly inexpen- 

sively, since they are associated with a persistent operating-system state change. 

These are known as "observed quiescent states". For example, in a non-preemptive 

Linux kernel, context switch is an observed quiescent state since a counter is in- 

cremented on each context switch. In a preemptive Linux kernel, rcuxead-lock0 

and rcuread-unlock0 suppress preemption for short read-side critical sections, so 

that context switch is still an observed quiescent state with respect to these read-side 

critical sections. In either case, a read-side RCU critical section is not permitted to 

contain any operation that serves as an observed quiescent state. 

Although there are implementations of RCU that do not require preemption to 

be suppressed, for example, by considering only voluntary context switches to be 

observed quiescent states [30,78], they can be prone to excessively long grace periods. 

Nevertheless, the K42 and Tornado research operating systems have obtained good 

results with this approach [9]. 

As noted earlier, most of this dissertation uses "quiescent state" in the "observed 

quiescent state" sense. 



Grace Period: A time interval during which all threads pass through at least one qui- 

escent state. The key property of a grace period is that any temporary variables 

used by any RCU read-side critical section at the beginning of that grace period 

are dead at least once during that grace period. These variables therefore cannot 

possibly have any direct effect after the end of the grace period, and, in particular, 

they cannot possibly be referencing any element that was removed from its data 

structure at any time prior to the start of the grace period. Note that any time 

interval containing a grace period is itself a gra.ce period. 

Figure 3.6 illustrates these terms. Threads A-H execute on CPUs 0-3, with time 

progressing from left to right. The boxes denote a read-side RCU critical section, so that 

the box labelled "Al" on CPU 0 is thread A's first read-side RCU critical section, "A2" 

also on CPU 0 is thread A's second, "A3" on CPU 1 is thread A's third, and so on. The line 

segments between the boxes represent continued thread execution. Since this execution 

is outside of any read-side RCU critical section, each point on these lines represents a 

candidate quiescent state. This means that all temporary variables used in any of the 

read-side RCU critical sections must be dead whenever execution is proceeding along one 

of these line segments. In contrast, persistent variables may remain live throughout. The 

black circles denote context switches, and these context switches are the observed quiescent 

states. 

Suppose that CPU 3 is updating an RCU-protected data structure at the time indicated 

by the leftmost dotted line. All read-side RCU critical sections in progress at that time 

have completed by the time indicated by the middle dotted line, so that the time between 

these two lines is the minimum grace period, denoted in the figure by "Min GP7,. However, 

only the context switches are observed, so the grace period is not marked complete until 

all CPUs pass through a context switch. The last CPU to do so is CPU 2, as noted by 

the rightmost dotted line. Although the grace-period latency could be greatly reduced 

by observing all possible quiescent states, doing so would greatly increase grace-period 

detection overhead. For example, observing the end of each read-side RCU critical section 

would incur roughly as much overhead as does a reader-writer lock. This tradeoff between 



overall efficiency and grace-period latency will be revisited in Section 8.3.3 on Page 279. 

'- O b ~ e ~ e d  Grace Period 

: Min GP ; 

CPU 0 B2 A4 

CPU 1 B1 A3 * 

CPU z E3 t 

CPU 3 H 1 H2 

Figure 3.6: RCU Concepts 

3.3.2 RCU Design Tradeoffs 

The vocabulary defined in the previous section permits description of RCU independently 

of a given environment. This in turn permits architecting the RCU infrastructure to a 

particular environment and making the necessary design tradeoffs. 

The first step is to identify an appropriate set of observed quiescent states. These 

observed quiescent states must be used infrequently enough that they can be forbidden 

from read-side RCU critical sections, which means that the programmer must have control 

of them. For example, it does not make sense to use context switch as a quiescent state 

in a preemptive operating system kernel unless there is some way to suppress preemption. 

However, it does make sense to use voluntary context switch as a quiescent state, as in the 

K42 research operating system (see for example Section 4.4.3 on Page 130). However, the 

chosen observed quiescent states should also be states that must be tracked anyway, for 

example, for system-monitoring or debugging purposes. Context switch meets both needs 

admirably in most non-preemptive operating systems. Example observed quiescent states 



for selected applications include transaction boundary for a real-time database, request 

boundary for a web server, event termination for an event-driven system, and so on. If 

there are no such "natural" quiescent states, it is possible to create "artificial7' quiescents 

states. However, this approach has the drawback of adding quiescent-state overhead that 

would not otherwise be present. 

The key to a useful RCU implementation is a CPU-efficient mechanism for determin- 

ing the required duration of the grace period, given the set of observed quiescent states. 

This mechanism is permitted to overestimate the grace-period duration, but the greater 

the overestimation, the greater the amount of memory that will be consumed by waiting 

deferred deletions, henceforth called "callbacks". There are a number of simple and effi- 

cient algorithms to determine grace-period duration, a number of which are reviewed in 

Chapter 4. 

There are a number of design parameters for an RCU implementation: 

1. Batching. Many implementations batch requests, so that a single grace-period iden- 

tification can satisfy multiple requests. Batching is particularly important for im- 

plementations with heavyweight grace- period identification mechanisms. Batching 

can also increase performance due to increased cache locality of the RCU callback 

invocations compared to isolated execution of the corresponding code in non-RCU 

implementations. 

2. Determining the length of the grace period. The simplest mechanisms force a grace 

period by a reschedule on all CPUs in non-preemptive kernels, as described in Sec- 

tion 4.3 on Page 108. However, this approach is relatively expensive, particularly if 

extended to cope with preemptible kernels. More efficient implementations use some- 

thing like per-CPU quiescent-state counters to determine when the natural course 

of events has resulted in the expiration of a grace period. 

3. Polling mechanism. Implementations that determine when a grace period has ended 

must use some mechanism to be informed of this event. Examples include: 

(a) Adding explicit checks to quiescent-state code, for example, rcu-schds hooks 



in the Linux scheduler shown in Figure 4.26 on Page 127. Explicit checks allow 

fast response to quiescent states, but add overhead when no one is waiting for 

a grace period to complete. 

(b) Adding counters to code corresponding to quiescent states, and using kernel 

daemons to check the counters periodically. This approach adds some com- 

plexity, but again greatly reduces the overhead when no one is waiting for a 

grace period to complete. 

(c) As above, but use tasklets6 instead of kernel daemons to do the checking. This 

further reduces the overhead, but uses more exotic features of Linux. 

(d) As (3b) above, but use a per-CPU timer handler instead of tasklets to do the 

checking. 

If the implementation directly executes a set of quiescent states, it must similarly 

use a mechanism for doing so: 

(a) Scheduling a thread on each CPU in turn. This has the advantage of immediacy, 

but gains no performance benefit from batching, and cannot be used in any 

context where blocking is prohibited, such as the "bottom half" (BH) of a 

Linux device driver or from an interrupt-request (IRQ) handler. 

(b) Reserving a kernel daemon that, upon request, schedules itself on each CPU in 

turn. This permits batching and use from BH and IRQ, but is more complex. 

In either case, the end of the grace period is detected implicitly by the fact that the 

required set of quiescent states have been executed. 

4. Request queuing. Requests may be queued globally or on a per-CPU basis. Grace 

periods must, of course, always be detected globally, but per-CPU queuing can 

reduce the CPU overhead incurred when enqueuing and dequeuing graceperiod 

requests. This is a classic performance/complexity tradeoff. The correct choice 

depends on the workload. 

'A 'tasklet" is a Linux kernel mechanism that permits functions to be queued for later invocation in a 
controlled environment. This can be used, among other things, to avoid deadlock situations by deferring 
invocation of a given function to a later time when a conflicting lock as been released. 



5. Quiescent state definition. For non-preemptive kernels, context switch is a popular 

choice. For preemptive Linux kernels (such as Linux 2.6), voluntary context switch 

may instead be used. Other environments might chose a different set of quiescent 

states. 

6. Environments. If enqueuing of grace-period detection requests is prohibited in the 

BH or IRQ contexts, then more kernel functionality may be used to implement the 

enqueuing operation, and less overhead is incurred. 

3.4 Examples 

The following sections present simple examples of how RCU may be used. Section 3.4.1 de- 

scribes how RCU may be used as a replacement for reader-writer locking, and Section 3.4.2 

describes RCU's use of deferred destruction. 

3.4.1 RCU Applied to Reader-Writer Locking 

Splitting updates into two phases, so that destructive operations are deferred until a 

grace period has elapsed, is illustrated by an analogy between reader-writer locking and 

RCU. This analogy is shown in Table 3.1 and expanded on in Section 5.2.5 on Page 153, 

illustrating this common use of RCU. The left-hand column of this table shows a reader- 

writer-locked linked-list search and delete function, while the right-hand column shows the 

RCU equivalents. Figures 3.7 and 3.8 depict common code used by both the reader-writer 

locking and the RCU variants. 

The locking in the left-hand side of Table 3.1 ensures that any deletions are atomic from 

the viewpoint of the searching code. However, if the list is read-intensive, the overhead of 

the locks in the search0 code can be excessive, with the resulting contention restricting 

scaling. 

RCU permits the read-side locking to be eliminated in non-preemptive environments, 

as shown in the upper right portion of the table. Write-side locking can then be con- 

verted to the less-expensive spinlocks, as shown on the lower right portion of the table. 

However, the call to free 0 must be deferred through use of the c a l l r c u  0 primitive. 



1 struct el C 
2 struct el *next; 
3 struct el *prev; 
4 longkey; 
5 spinlock-t mutex; 
6 struct rcu-head *rcu; 
7 int data; 
8 /* Other data fields */ 
9 3; 
10 spinlock-t listmutax; 
11 struct el head; 

Figure 3.7: Search-List Data Structures 

I struct el *-search(1ong key) 
2 C 
3 struct el *p; 
4 
5 p = head.next; 
6 while (p != &head) C 
7 if (p->key = key) i 
8 return (p); 
9 3 
10 p = p->next; 
11 3 
12 return (MULL); 
13 3 

Figure 3.8: Internal Search Algorithm 



Table 3.1: Reader-Writer Locking and RCU 

Reader- Writer Lock RCU 

1 int search(1ong key, int *result) 
2 C 
3 struct el *p; 
4 
5 read-lock(&listmute~) ; 
6 p = -search(key) ; 
7 if (p !=NULL) 
8 *result = p->data; 
g read-unlock(&listmutex) ; 
10 return (p != NULL) ; 
11 3 

I int delete(1ong key) 
2 C 
3 struct el *p; 
4 
5 vrite-lock(&listmutex); 
6 p = -search(key); 
7 if (p NULL) C 
8 write-unlock(%listmute~) ; 
9 3 else I 
10 p->next->prev = p->prev; 
11 p->prev->next = p->next; 
12 spin-unlock(Rp->mutax) ; 
13 vrite~unlock(%listm~te~) ; 

14 free(p) ; 
15 3 
16 return (p != NULL); 
17 3 

1 int search(1ong key, int result) 
2 C 
3 struct el *p; 
4 p = -search(key) ; 
5 if (p != NULL) 
6 *result = p->data; 
7 return (p != NULL) ; 
8 3 

I int delete(1ong key) 
2 I 
3 struct el *p; 
4 
5 spin~lock(%listmutex); 
6 p = -search(key); 
7 if (p -- NULL) 
8 spin~unlock(%listm~tex); 
9 1 else C 
10 p->next->prev = p->prev; 
11 p->prev->next = p->next; 
12 spin-unlock(&p->mutex) ; 
13 spin~unlock(klistm~tex); 
14 call-rcucltp->rcu, free, p) ; 
15 3 
16 return (p != NULL); 
17 3 



The c a l l r c u 0  primitive enqueues a callback that, after a grace period has elapsed, in- 

vokes its second argument, passing this function its third argument. So, in this example, 

ca l lxcu( )  will enqueue a callback that invokes f r e e  (p) after a grace period elapses. The 

c a l l r c u (  function uses its first argument to track this callback through the duration of 

the grace period. 

Because readers run concurrently with writers, updates of multiple fields must be 

handled carefully. A number of approaches are discussed in Section 5.3 on Page 159. 

3.4.2 RCU Use of Deferred Destruction 

A key property of RCU is deferral of destruction until all currently active read-side oper- 

ations complete. 

This deferred destruction process is illustrated by Figure 3.9. Part (1) of this figure 

shows the initial state of the list with each element possibly referenced by concurrent 

invocations of search(). Part (2) of the figure shows the fist after the d e l e t e 0  function 

has removed element B from the list. At this point, searches in the forward direction that 

have arrived at element C may or may not have passed through element B, as indicated by 

the shaded arrows emanating from element A. Similarly, searches in the reverse direction 

that have arrived at element A also may or may not have passed through element B, as 

indicated by the shaded arrows emanating from element C. However, subsequent searches 

cannot obtain a new reference to element B. Part (3) shows the state after a grace period 

has elapsed, by which time there can no longer be any searches referencing element B. 

Part (4) shows the state after c a l l r c u 0  invokes free(p1, sending element B back to 

the freememory pool. 

This process requires a mechanism to compute the duration of a grace period, which 

was supplied by McKenney and Slingwine [81,108], and independently by Gamsa et al. [30] 

and by Hennessy, Osisek, and Seigh [39]. These papers reported on work done much 

earlier, indeed, RCU was running in production in datacenters by 1993 on DYNIX/ptx 

and a similar technique was in use in the mid-80s on IBM's VM/XA [39]. 

RCU is a valuable technique, but it does not provide readers any guarantee of consis- 

tency (beyond that guaranteed by the hardware) or of freshness of data. RCU inherently 



Figure 3.9: RCU Destruction Determination 

cannot provide such guarantees, since readers do not coordinate directly with writers, and 

can therefore see old versions of the data (stale data), and can in fact see different versions 

of the data on consecutive accesses (inconsistent data). However, in a surprising number 

of situations, such guarantees are not needed, and in many other situations, the algorithm 

may be transformed to remove its reliance on consistency and freshness, as is described in 

Section 5.3 on Page 159. 

3.5 RCU Analogies and Design Patterns 

As noted earlier, RCU permits partial ordering of accesses and updates to such an ex- 

tent that RCU readers can see stale and inconsistent data. RCU readers see stale data 

when they race with an update, and continue referencing a now-old version. RCU read- 

ers see inconsistent data in cases where writers perform non-atomic updates, such as 

tree-rebalancing operations. Interestingly enough, it turns out that many algorithms can 

tolerate staleness and inconsistency. 

For example, consider a TCP/IP routing table implemented as a hash table with singly 

linked hash chains. Staleness is not a problem because TCP/IP routing protocols have 

substantial built-in delays, in some cases, measured in minutes, in order to prevent routing 

instabilities from being induced by transient failures. These delays mean that routing data 



can be stale before it even arrives at the TCP/IP host. Therefore, small additional delays 

due to RCU pose no additional problem. In either case, the upper level TCP/IP protocol 

will retransmit any data that continues to be sent down the wrong path. 

Inconsistency is not a problem given that the route-table search procedure traverses 

the list in a single direction. Again, any packets dropped due to a routing entry being 

missed by an RCU reader will be retransmitted by upper-level protocols. 

However, the TCP/IP protocol suite was specifically designed to be robust in a dynamic 

network. Not all algorithms are designed to operate correctly when under active attack, 

and thus not all algorithms gracefully tolerate stale and inconsistent data. Such intolerance 

is one of the basic research challenges presented by RCU. 

Therefore, one of the aims of this dissertation is to identify design patterns that trans- 

form such algorithms into functionally equivalent algorithms that are capable of tolerating 

stale and inconsistent data. Such a set of transformational design patterns is presented 

in Section 5.3 on Page 159. These transformational design patterns move RCU from the 

realm of ad-hoc concurrency hacks to that of generally applicable synchronization mech- 

anisms. 

3.6 Discussion 

RCU makes use of deferred destruction, so the relationship between RCU and prior work 

is as shown in Table 2.2 on Page 69. 

There are some strong relationships between RCU and other synchronization mech- 

anisms. For example, it resembles reader/writer locking and brlock in permitting con- 

current reads and avoiding read-side contention; it resembles brlock and semantic-based 

methods in being an asymmetric mechanism; and it resembles data locking, partition- 

ing, and non-blocking synchronization in reducing write-side contention. It very closely 

resembles mechanisms based on deferred destruction, as is to be expected. 

However, RCU is distinguished from all synchronization mechanism other than those 

involving deferred destruction by 



1. total avoidance of memory latency, pipeline stalls, locking, and contention in read- 

side critical sections, and 

2. permitting concurrent reading and writing in all cases. 

Although data locking, partitioning, non-blocking synchronization, and semantics- 

based methods do permit some reader/writer concurrency, they do so in only a limited 

fashion. Data locking and partitioning permit concurrency only among operations affect- 

ing different objects. Non-blocking synchronization causes codicting reads or writes to 

fail: despite the fact that the operations run in parallel, only one such conflicting operation 

is permitted to succeed. Some semantics-based methods do permit full concurrency, the 

split counter discussed in Section 2.2.13 on Page 41 being one such example. However, 

transaction-based methods must by their nature reduce concurrency in some cases [140]. 

Nevertheless, RCU draws heavily on the concepts embodied by many of these earlier 

synchronization mechanisms. 

Since RCU is closely related to a number of the deferred-destruction mechanisms, it 

is worthwhile to examine them more closely, as shown in Table 3.2. The meanings of the 

entries are similar to those for Table 2.2 on Page 69: 

A Avoids the specified type of overhead. 

P Parallelizes the specified type of overhead. 

Y Supports the specified attribute. 

N Includes special support for NUMA machines. 

S Includes special support for SMMP machines. 

Again, a lower-case character indicates partial support. 

These deferred-destruction mechanisms were covered in Section 2.2.20 on Page 62; this 

table summarizes that discussion. 

The major distinction between the work presented in this dissertation and prior mech- 

anisms based on deferred destruction is the design patterns and transformational design 





patterns introduced by this dissertation. As noted earlier, the design patterns are in t rc~ 

duced into an existing locking design pattern language and the transformational design 

patterns are presented in Chapter 5. Prior to that, Chapter 4 describes a variety of RCU 

implementations in more detail. 



Chapter 4 

Implementing RCU 

RCU has been implemented in DYNIX/ptx [81,108], SuSE 7.3 Update, L i n w  2.6 [ll, 1211, 

K42/Tornado [30], and VM/XA [39]. This chapter describes the K42/Tornado and several 

Linux implementations of the RCU infrastructure; uses of this infrastructure are described 

in Chapter 5. 

This chapter presents the Linux 2.6 kernel's RCU API in Section 4.1. It then presents 

a number of different possible implementations of RCU infrastructure for the Linux 2.6 

kernel and for K42 as well in Section 4.2. Finally, it compares and contrasts these imple 

mentations in Section 4.6. 

This author's role in the work described in this chapter was that of architect, design 

reviewer, and code reviewer for the Linux implementations, and ceinventor and imple- 

mentor for the DYNIX/ptx implementation [81]. This author also did the comparative 

analysis of the algorithms. The people who did the actual design and coding of the various 

Linux algorithms are called out in the individual sections. 

A key innovation required in porting RCU to Linux was enabling many different RCU 

techniques to be used on many different computer architectures. Earlier work had been 

restricted to either using a single RCU technique on a single computer architecture (e-g., 

VM/XA on the IBM 370 architecture), using many different RCU techniques on a single 

computer architecture (e.g., DYNIX/ptx on the x86 architecture), or using a single RCU 

technique on a small number of computer architectures (e.g., Tornado or K42 on PowerPC, 

MIPS, and Opteron). 



void rcu-read-lock(void) ; 
void rcu-read-unlock(void) ; 
void synchronize-kernel(void); 
struct rcu-head C 

struct list-head list; 
void (*func) (void *obj) ; 
void *erg; 

1; 
void call-rcu(struct rcu-head *head, void (*func) (void *arg), void *arg) ; 

Figure 4.1: RCU API 

4.1 RCU API 

The RCU API defines the set of services provided by the RCU infrastructure. Understand- 

ing this set of services, described in this section, is key to understanding RCU. However, 

it is also necessary to understand how best to use these services, which is taken up in 

Chapter 5 on Page 137. 

An explicit RCU API also enables experimentation with different implementations of 

the RCU infrastructure. As long as a given patch faithfully meets the RCU API, it may 

be easily dropped into the Linux kernel for testing. 

The diverse RCU implementations are hidden from the in-kernel RCU user by a well- 

defined API, shown in Figure 4.1. This API makes heavy use of the Linux list-head 

doubly linked list header. Many people were involved in the discussions that defined 

this API, particularly Dipankar Sarma, Rusty Russell, and Andrea Arcangeli. Note that 

although this API is current as of the Linux 2.6.0 kernel, it will likely be subject to change. 

Section 4.1.1 describes the core RCU API used by readers, Section 4.1.2 describes 

the core RCU API used by writers, and Section 4.1.3 describes the RCU extensions to 

Linux7s list-manipulation API. The combined read- and write-side RCU API is shown in 

Figure 4.1, and the list-manipulation RCU API is shown in Figure 4.2. 

4.1.1 Read-Side RCU API 

The read-side RCU API is used by readers to demark the extent of a read-side RCU 

critical section using the rcuxeadlock() and rcuread-unlock0 primitives described 

below. 



list-add-rcu(struct list-head *new, struct list-head *head); 
list-add-tail-rcu(struct list-head *new, struct list-head *head) ; 
list-del-rcucstruct list-head *entry);  
list-for-each-rcu(struct list-head tpos, s t r u c t  list-head *head) 
list-for-each-safe-rcu(struct list-head *pos, s truct  list-head *n, s t r u c t  list-head *head) 
list~for~each~entry~rcu(struct list-head *pos, s truct  list-head *head, s t r u c t  list-head *member) 
list-for-each-continue-rcu(struct list-head *pos, s t r u c t  list-head *head) 
hlist-add-head-rcu(struct hlist-node *n, struct hlist-head *h); 
hlist ,del,rcu(struct hlist-node *n); 

Figure 4.2: RCU List API 

void rcu-read-lock(void) ; 

The r c u r e a d l o c k 0  primitive marks the beginning of a read-side RCU critical section. 

Read-side RCU critical sections may be nested. In preemptive Linux kernels, it suppresses 

preemption, while in non-preemptive Linux kernels, it can be a no-op. It is possible to 

construct RCU mechanisms which do not require preemption suppression, even in non- 

preemptive Linux kernels, as described in Section C.3 on Page 343. This approach was 

pioneered by the K42 research operating system, as described in Section 4.4.3 on Page 130. 

In either case, nothing prevents readers fiom being affected by concurrent updates. 

Although there are some algorithms that tolerate this situation, there are many algorithms 

that do not. See Section 5.3 on Page 159 for a discussion of ways of transforming such 

algorithms into forms that tolerate updaters interfering with readers. 

void rcu-read-unlock (void) ; 

The rcuxead-unlock0 primitive marks the end of a read-side RCU critical section. As 

such, in non-preemptive Linux kernels, it can again be a no-op, while in preemptive Linux 

kernels, it re-enables preemption. Since read-side RCU critical sections may be nested, 

this re-enabling must check for such nesting. 

Note also that the rcuread-unlock() primitive is a good place to put debug checks, 

for example, checks that verify that the read-side RCU critical section did not pass through 

any quiescent states. 

Perhaps the most important function of the r c u ~ e a d l o c k  (1 and rcuread-unlock 0 

primitives is to document the extent of the RCU read-side critical section, thus making 



1 int search(1ong key, int *result) 
2 I 
3 struct el *p; 
4 
5 rcu-read-lock0; 
6 p = head.next ; 
7 while (p != &head) C 
8 if (p->key == key) I 
9 *result = p->data; 

10 rcu-read-unlock(); 
I I return ( I ) ;  
12 3 
13 p = p->next; 
14 1 
15 rcu-read-unlock0 ; 
I 6  return ( 0 ) ;  
17 ) 

Figure 4.3: Example Read-Side RCU Critical Section 

it less likely for a programmer to inadvertently insert an blocking operation, such as a 

semaphore acquisition. 

Example Use and Discussion 

The r c u r e a d l o c k 0  and rcuread-unlock0 primitives are used to bracket a read-side 

RCU critical section, such as the search code shown in Figure 4.3. This code is similar to 

that in Figure 3.8 on Page 91, but with the read-side RCU primitives inserted. 

4.1.2 Write-Side RCU API 

The write-side RCU primitives allow the caller to defer an action until after all preexisting 

read-side RCU critical sections have completed execution. There are two variants, the 

synchronize &ernel() primitive which blocks for a grace period, and the c a l l x c u  (1 

primitive which returns immediately, having arranged for deferred invocation of a specified 

function. These primitives are described in the following sections. 

void synchronize-kernel(void); 

The synchronizebernel0 primitive blocks until the end of a full grace period. This 

is an easy-teuse primitive, since upon its return, all preexisting read-side RCU critical 

sections will have completed execution. It also allows concurrent cdlers to share a grace 



period. However, it incurs expensive context-switch overhead and cannot be called with 

locks held or from interrupt handlers. 

struct rcu-head C 
struct list-head l i s t ;  

void (*func)(void *obj); 

void *arg; 

3 ;  
void call-rcu(struct rcu-head *head, void (*func) (void *arg), void *arg) ; 

In contrast, c a l l r c u 0  schedules invocation of the callback function func(arg) after a 

full grace period, and may thus be thought of as a way to invoke func(arg) once all 

pre-existing read-side RCU critical sections have completed execution. Since c a l l r c u 0  

never sleeps, it may be called with locks held and from interrupt context. The c a l l x c u 0  

function uses its struct rcuhead argument to remember its callback function and ar- 

gument during the grace period. An rcuhead is often placed within the structure being 

protected by RCU, eliminating the need to separately allocate it. 

Note that the synchronizekernel0 primitive is actually implemented in terms of 

c a l l x c u 0 .  

Example Use and Discussion 

Both c a l l r c u 0  and synchronizeAernel0 permit destructive operations to be de- 

ferred until all pre-existing read-side RCU critical sections complete execution. The 

synchronizekernel0 primitive may be used inline by code that can safely block, as 

shown in Figure 4.4. Here, the synchronizekernel0 on line 14 prevents the kfree0  

on line 15 from executing until all pre-existing read-side criticaI sections have completed 

execution. Only such pre-existing critical sections can possibly hold a reference to the 

element being deleted, so once they complete, the element may safely be £reed. 

In contrast, Figure 4.5 shows code that may be called in cases where blocking is not 

permitted, such as from interrupt handlers, spinlock critical sections, and code holding 

references to CPU-specific variables. Here, line 14 invokes c a l l r c u 0 ,  which causes 



1 int delete(1ong key) 
2 C 
3 struct el *p; 
4 
5 spin-lock(Histmutex); 
6 p = search(key1; 
7 if (p == NULL) C 
8 spin-unlock(&listmutax); 
9 1 else C 
10 p->next->prev = p->prev; 
11 p->prev->next = p->next; 
12 spin-unlock(&->mutax) ; 
13 spin-unlock(&listmutex) ; 
14 synchronize-kernel(); 
15 kfreecp); 
16 3 
17 return (p != NULL) ; 
18 3 

Figure 4.4: Example Blocking Write-Side RCU Critical Section 

f r ee  (p) to be invoked after all preexisting read-side RCU critical sections complete 

execution. 

Experience has shown that the synchronizebernel() style is simpler to use, so it 

should be preferred where calling-context and performance considerations permit. How- 

ever, if the deletion must be done from a context such as a spinlock critical section or an 

interrupt handler, or if the deletion operation is performance-critical, then the c a l l r c u ( )  

form must be used instead. 

In the Linux 2.6.6 kernel, there are 32 uses of synchronizekernel 0 (including the 

synonym synchronizenet ( 1) and 12 uses of c a l l r c u  0. 

4.1.3 List-Manipulation RCU API 

Most modern microprocessors feature weak memory-consistency models, which require 

special memory-barrier instructions, which are discussed in Section 2.2.10 on Page 30. 

These memory-barrier instructions must be used when manipulating data structures ac- 

cessed by synchronization-free readers in order to ensure that the readers see a consistent 

view of the data structure. A few CPUs require additional memory-barrier instructions 

for readers, as described in Appendix B on Page 322. Both the read- and write-side 

memory-barrier instructions are difficult to understand and even more difficult to test, 



1 int delete(1ong key) 
2.1 
3 struct el *p; 
4 
5 spin-lock(&listmutex); 
6 p = search(key); 
7 if (p == NULL) I 
8 spin-unlock(%listmutax) ; 
9 3 else C 
10 p->next->prev = p->prev; 
11 p->prev->next = p->next; 
12 spin-ualock(%p->matex) ; 
13 spin~unlock(%listmutex); 
14 call-xu(&->rcu, kfree, p); 
15 ) 
16 return (p != NULL) ; 
17 1 

Figure 4.5: Example Non-Blocking Write-Side RCU Critical Section 

so this author extended the Linux list-manipulation API to include memory barriers, as 

suggested by Manfred Spraul [I141 and as shown in Figure 4.2. Dipankar Sarma took over 

this patch, and it was later accepted into the Linux kernel [122]. 

Doubly Linked List Addition 

void list-add-rcu(struct list-head *neu, struct list-head *head) ; 

void list-add-tail-rcu(struct list-head *new, struct list-head *head); 

The list -addrcu() and list-add3 ail.xcu() primitives insert an element at the head 

and tail, respectively, of a doubly linked list, using whatever memory-barrier instructions 

are necessary to ensure that the pointers within the new object are committed to memory 

before committing the pointers referencing the new object. 

Doubly Linked List Deletion 

void list-del-rcu(struct list-head *entry) ; 

The list-delrcu0 primitive removes the specified element from its linked list. Unlike 

the list-del0 primitive, the pointers in the newly removed entry are not "poisoned", or 

set to an invalid value, since doing so would cause concurrent readers to fail. 



Doubly Linked List Traversal 

void list-for-each-rcu(struct list-head *pos, struct list-head *head); 

void list~for~each~safe~rcu(struct list-head *pos, 

struct list-head *n, 

struct list-head *head) ; 

void list~for~each~entry~rcu(struct list-head *pos, 

struct list-head *head, 

struct list-head *member) ; 

void list,for~each,continue,rcu(struct list-head *pos, 

struct list-head *head) ; 

The listf or-each&() primitive and its variants traverse the specified RCU-protected 

linked list, expanding into the corresponding C "for" loop. The "safe" variant permits 

deletion of the current element, the "entry" variant provides a pointer to the enclosing 

data structure rather than the enclosed struct list head, and the "continue" variant 

permits picking up where a previous listf or-each()-style primitive left off. 

Singly Linked List Manipulation 

The hlist doubly linked list primitives were recently added by Andi Kleen in order to 

reduce memory requirements for large hash tables. Although the hlist is doubly linked, 

the header consists of but a single pointer. This smaller header permits hlist hash table 

arrays to be half the size of those for normal doubly-linked lists. 

void hlist-add-head-rcu (struct hlist-node *n, struct hlist -head *h) ; 

The hlist-addheadrcu() primitive adds the specified entry at the head of the specified 

hlist, executing any memory-barrier instructions needed to ensure that other CPUs see 

the new entry's pointers before any pointers are set to reference the new entry. As with 

hlist -add.headrcu () , these memory barriers are required to permit readers to concur- 

rently search the list without use of synchronization instructions. 

void hlist-del,rcu(struct hlist-node *n); 



1 i n t  search(1ong key, i n t  *result) 
2 c 
3 struct e l  *p; 
4 
5 rcu-read-lock0 ; 
6 p = head.next; 
7 list-f or -ea~h-en t ry - rcu (~ ,  head, list) 
8 if (p->key == key) < 
9 *result = p->data; 
10 rcu-read-unlock0 ; 
li re turn ( 1 ) ;  
12 1 
13 3 
14 rcu-read-unlocko; 
15 return ( 0 ) ;  
16 1 

Figure 4.6: Example Read-Side Use of RCU List-Manipulation Primitives 

The h l i s t  -del rcu () primitive removes an element, but differs from hl is t -del ( )  in 

that it refrains from poisoning the "next" list pointer, thus allowing concurrent readers to 

proceed without failure. 

List-Manipulation RCU API Examples 

Figure 4.6 shows how the l ist f or-each-entry~cu()  primitive may be used. It replaces 

line 7 and deletes line 13 of Figure 4.3, simultaneously simplifying the code and adding 

any required memory-barrier instructions. 

Figure 4.7 shows how the l i s t - d e l r c u 0  primitive may be used. It replaces the two 

pointer-manipulation statements on lines 10 and 11 of Figure 4.4, simplifying the code as 

well as adding any required memory-barrier instructions. 

The other RCU list-manipulation APIs are used in a similar fashion. These APIs 

have proven extremely useful, which is not surprising, given that experience with the 

raw memory-barrier primitives has shown them to be extremely difficult to use, test, and 

debug. 

4.2 Implementing Grace-Period Detection 

The following sections summarize several different types of c a l l r c u 0  implementation. 

The two basic SMMP approaches are (1) inducing quiescent states, which is covered in 



I int delete(1ong key) 
2 I 
3 struct el *p; 
4 
5 spin,lock(&listmutex); 
6 p = search(key1; 
7 if (p =a NULL) C 
8 spin,nnlock(&listmutex) ; 
9 1 else I 
10 list-del-rcu(p) ; 
11 spin-unlock(@->nutex) ; 
12 spin-unlock(&list~tex); 
13 synchronize-kernel() ; 
14 freecp) ; 
1s 3 
16 return (p != NULL) ; 
17 1 

Figure 4.7: Example Write-Side Use of RCU List-Manipulation Primitives 

Section 4.3, and (2) observing naturally occuring quiescent states, which is covered in 

Section 4.4. Section 4.5 discusses special considerations for uniprocessors. 

4.3 Inducing Quiescent States 

The simplest way to detect a grace period is to create one when needed. Figure 4.8 shows 

how such an RCU implementation operates. The boxes represent non-preemptible kernel 

execution, the space between them represents candidate quiescent states (e.g., context 

switch, user mode, idle loop, or user-mode execution), and each numbered arrow represents 

a thread, with time progressing to the right. 

The leftmost dashed line indicates the time of the first phase of the RCU (e.g., removal 

of an element from a list). The second phase of the update (e.g., the actual freeing of the 

element) may proceed as soon as all operations that were in progress during the &st phase 

have completed, namely, operations A, E, and L. The earliest time the second phase can 

safely be initiated is indicated by the rightmost dashed line in Figure 4.8, and the distance 

between the two dashed lines is the minimum allowable duration of the grace period, since 

during this time, there may exist threads that still hold references to the list element. 

As noted in Section 3.2.3 on Page 78, in a non-preemptive kernel, it is sufficient to force 

a context switch on each CPU, since any threads that are not running at the time of the 
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Figure 4.8: RCU Grace Period 

update are by definition in an extended quiescent state. Therefore, a simple procedure to 

determine when the second phase may safely be initiated in a non-preemptive operating- 

system kernel is depicted in Figure 4.9. The updater simply forces itself to execute on 

each CPU in turn. This is safe because the non-preemptive nature of the kernel will delay 

the updater's execution until all operations in progress on each CPU have completed. The 

boxes labeled "u" represent this updater's execution. Once it has run on each CPU, then 

all operations that were in progress during phase one must have completed. Note that 

this procedure is a way to quickly detect the end of a grace period; it in no way causes 

any of the ongoing operations to complete sooner than they would have otherwise.' 

4.3.1 Simple Induced Quiescent States 

Rusty Russell's synchronizekernel 0 primitive shown in Figure 4.10, is a simple exam- 

ple of inducing quiescent states. This primitive was originally called u a i t f  o r r c u 0 .  

Lines 7 through 13 save the current scheduling state, and set up a FIFO scheduling 

policy with sufEcient priority to preempt any tasks that are running in user mode and 

also any tasks running in the kernel with preemption enabled. Lines 15 and 16 create a 

mask that allows the task to run on any CPU. The loop on lines 19 through 22 repeatedly 

eliminates the current CPU from the set allowed to run this task, then yields the CPU. 

'1n fact, the additional scheuduler execution may in fact delay these ongoing operations somewhat. 
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Figure 4.9: Simple Grace-Period Detection 

1 void synchronize-kernel(void) 
2 i 
3 unsigned long cpus-allowed; 

unsigned long policy; 
unsigned long rt-priority; 
/* Save current state */ 
cpus-allowed = current->cpus-allowed; 
policy = current->policy; 
rt-priority = current->rt-priority; 
/* Create an unreal time task. */ 
current->policy = SCHED-FIFO; 
current->rt-priority = 1001 + 

s y s - s c h e d - g e t - p r i o r i t y - ~ M ( S ~ ~ F I F O )  ; 
/* Make us schedulable on all CPUs. */ 

/* Eliminate current cpu, reschedule */ 
while ((current->cpus-alloved &= -(I << 

cpu-numbermap( 
smp-processor-id()))) != 0 )  

schedule0 ; 
/* Back to normal. */ 
current->cpus-alloved = cpus-allowed; 
current->policy = policy; 
current->rt-priority = rt-priority; 

Figure 4.10: Non-Preemptible Grace-Period Detection 



Thus, upon loop completion, the task will have run on each of the CPUs, which means 

that each CPU will have completed whatever it was doing at the time of the call to 

synchronizekernel ( ) . It would therefore now be safe to free up an element that was 

unlinked from its list before the call to synchronizekernel0. Lines 24 through 26 

restore the scheduling state. 

This code is quite straightforward, but this approach does have a few shortcomings: 

1. it would not work in a preemptible kernel unless preemption is suppressed in all 

read-side critical sections, 

2. it cannot be called from an interrupt handler because the schedule0 call blocks, 

however, schedule-task0 can be used to call it indirectly, 

3. it cannot be called while holding a spinlock or with interrupts disabled (again be- 

cause schedule0 blocks), however, again, schedule-task0 can be used to call it 

indirectly, and 

4. schedule 0 ' s  per-CPU context switches incur substantial overhead. 

Section 4.4.3 on Page 130 and Appendix C.3 on Page 343 describe two possible ways 

of addressing item 1. The following section describes the c a l l r c u 0  primitive that ad- 

dresses items 2 and 3. Section 4.4.1 on Page 113 describes a faster grace-period-detection 

algorithm for non-preemptible read-side critical sections that addresses items 2, 3, and 4. 

4.3.2 Induced Quiescent States With Batching (batch) 

Another way of waiting for grace periods while holding spinlocks or from an interrupt 

handler is to define a c a l l x c u 0  function that queues callbacks onto a list. A separate 

f ree-pendingxcus 0 function can then invoke all the pending callbacks after forcing 

a grace period. This can also have the beneficial effect of amortizing the grace-period- 

detection overhead over multiple updates, greatly reducing the per-update overhead. 

Figure 4.11 shows a straightforward implementation of these two functions. Note that 

free-pendingrcuso must be invoked from time to time. Appendix C.l on Page 326 

describes one way of accomplishing this within the Linux kernel. 



I void call-rcu(struct rcu-head *head, 
2 void (*func) (void *head)) 
3 i 
4 unsigned long flags; 
5 
6 head->destructor = func; 
7 spin~lock~irqsave(krcu~lock, flags); 
8 head->next = rcu-list; 
9 rcu-list = head; 

10 spin~unlock~irqrestore(&rcu~lock, flags); 
11 ) 
12 
13 void free-pending-rcus(void) 
14 < 
15 struct rcu-head *list; 
I6 
17 spin~lock~irq~&rcu~lock, flags) ; 
18 list = rcu-list; 
19 rcu-list = NULL; 
20 spin~unlock~irq(&rcu~lock, flags) ; 
21 
22 /* If list nonempty, wait and destroy. */ 
23 if (list) C 
24 synchronize-kernel(; 
25 while (list) i 
26 struct rcu-head *next = list->next; 
27 
28 list->destructor(list); 
29 list = next; 
30 1 
31 1 
32 1 

Figure 4.11: Non-Blocking Grace-Period Detection 



Although batching the RCU callbacks via the rculist reduces overhead, the basic 

grace-period detection overhead is still quite high, and increases with increasing numbers 

of CPUs. The reason for this is that context switches are quite expensive. Given that 

context switches occur quite frequently during normal system operation, it is reasonable 

to ask whether it is possible to do better by observing and leveraging these naturally 

occurring context switches. Of course, waiting for naturally occuring context switches 

could potentially delay the detection of the end of the grace period, but this may not be 

a problem if this delay is sufEciently short. 

4.4 Observing Naturally Occurring Quiescent States 

When observing naturally occuring quiescent states, it is important to avoid significantly 

increasing their overhead. It is also important to determine efficiently, from the observa- 

tions of quiescent states, when a given grace period has ended. The required efficiency is 

typically achieved by instrumenting the observed quiescent states with per-CPU counters, 

and feeding the results into a barrier computation. Once all CPUs have checked into the 

barrier, the grace period has ended. However, the barrier computation and the observa- 

tion can be combined, as they are in the implementations described in Sections 4.4.2 and 

4.4.3. As noted in Section 4.3.2, callbacks are used to permit RCU to be invoked from 

interrupt handlers or with spinlocks held, and also to promote efficiency via batching of 

callbacks, so that a single grace period may serve for a large number of updates. 

4.4.1 Counters and Barrier (rcu-ltimer) 

The mu-ltirner implementation, designed and coded by Dipankar S m a ,  is similar to the 

DYNIX/ptx implementation [108]. It inserts per-CPU-counter increments into the sched- 

uler, and drives the barrier computation from the per-CPU timer interrupt handler. In the 

Linux 2.4 kernel, the per-CPU timer interrupt handler was architecture specific, requir- 

ing separate changes for each and every architecture that Linux supports. Fortunately, 

however, the advent of the scheduler-tick0 function in the 2.6 kernel now permits 

architecture-independent timer processing. This permits counting user-mode execution as 



a quiescent state, in addition to the idle loop and context switch. This section describes 

the 2.6 kernel implementation. 

Overview of Implementation 

The rcu-ltimer implementation uses callbacks and a grace-period barrier computation. 

Callback Handling The callback handling is as shown in Figure 4.12. In accordance 

with the principles identified in Section 2.3.2 on Page 65, this implementation attempts 

to minimize cacheline transfers. One important way of accomplishing this is to allow the 

CPUs to manage their own callbacks, using the concept of data ownership to partition 

callback handling over the CPUs without requiring CPUs to acquire locks to access their 

own callbacks. 

However, such partitioning means that CPUs may learn of the start or end of a grace 

period at different times, so that CPU 0 might start a new grace period before CPU 1 is 

aware that the old grace period has completed. CPU 1 must therefore be able to recognize 

that the old grace period has completed after the new one has started. This is accomplished 

by numbering the grace periods, with each CPU maintaining a private counter named 

RCU-batch(cpu1 which tracks the number of the grace period that it is waiting on. A 

CPU can then compare its RCU-bat ch ( cpu) against the global rcu-ctrlblk . curbat ch 

counter to determine whether if these two counters do not match, the grace period that 

this CPU was waiting on has completed. 

Callbacks waiting for the ~ ~ ~ - b a t c h ( c ~ u )  th grace period are kept in RCU-curlist (cpu). 

These callbacks will be invoked after this grace period elapses. However, new callbacks 

cannot be placed on this list, since the corresponding grace period has already started. 

Because callbacks must wait for a f i l l  grace period, new callbacks are instead placed on the 

R C U n x t l i s t  (cpu) , as indicated by the mow from c a l l r c u  (1 in the figure. When this 

CPU becomes aware that the ~ ~ ~ - b a t c h ( c ~ u ) ~ ~  grace period has ended, it invokes the call- 

backs in its RCU-curlist (cpu) list, then moves any callbacks from its RCUnxt list (cpu) 

to its RCU-curlist (cpu) . 

If there were any callbacks to move, CPU must now update its RCU-batch(cpu1 counter 



call-rcu() Start of New Grace Period End of Grace Period: 

Invoke Callbacks 

I I  

Figure 4.12: RCU Callback Tracking (rcu-ltimer) 

l 1  

Callbacks for Next GP 

r 

to reflect the new grace period that is to be waited on. However, it cannot use the current 

value of the rcu-ctrlblk. curbatch counter, since that value corresponds to a grace period 

that has already started, and therefore might have started before the last callback was 

enqueued. Instead, the RCU-batch(cpu1 counter must be set to one greater than the 

rcu-ctrlblk. curbatch counter, so that the callbacks will be invoked only after a full 

grace period has elapsed. 

- 

I 
l 1  

Callbacks for Current GP 

Grace-Period Barrier Computation This grace-period barrier computation relies 

on instrumenting the task scheduler and the per-CPU timer interrupt handler to detect 

quiescent states. The scheduler detects context switches, and the per-CPU timer interrupt 

handler detects user-mode execution. The per-CPU timer interrupt handler has a hook 

that observes the quiescent-state data and drives the barrier computation forward. As 

shown in Figure 4.13, a bit vector is used to keep track of which CPUs have passed 

through at least one quiescent state in the current grace period. When a grace period 

begins, each CPU's bit is set. 

There are a pair of per-CPU counters that track quiescent states executed by this CPU, 

- 
RCUgxtlist(cpu) - - 

- - - 
- RCU-curlist(cpu) 



Figure 4.13: mu-ltimer Barrier-Computation Variables 

which are also shown in the figure. The RCU-qsctr(cpu1 variable is incremented by the 

scheduler on each context switch, and the RCU-last-qsctr (cpu) variable is used to snap- 

shot the value of RCU-qsctr(cpu1 once the corresponding CPU realizes that a new grace 

period has started, due to its RCU-batch(cpu) differing from rcu-ctrlblk.curbatch. 

Since the next pass through the scheduler will increment the RCU-qsctr (cpu) variable, as 

soon as the CPU notes that the values of its two counters are different, it clears its bit 

in the bitmask, as indicated by the block arrow in the figure. When all CPUs' bits have 

been cleared, the grace period has ended. 

Code Walkthrough 

The implementation contains code to: 

1. register RCU callbacks, 

2. count context switches, and 

3. track and invoke RCU callbacks, and 

4. perform the grace-period barrier computation. 

Register RCU Callbacks To register an RCU callback, the ca l l xcu ( )  function con- 

structs a callback and enqueues it onto a per-CPU RCUnxtlist, as shown in Figure 4.14. 



Note that lines 8 and 11 mask interrupts to prevent interrupt handlers from concurrently 

accessing the list. 

I void call-rcu(struct rcu-head *head, void (*func)(void *arg), void *arg) 
2 C 
3 i n t  cpu; 
4 unsigned long flags; 
5 
6 head->func = func; 
7 head->arg = arg; 
8 local-irq-save (f lags) ; 
9 cpu = smp~processor~ id0  ; 

10 list-add-tailckhead->list, tRCU-nxtlist(cpu)); 
11 local-irq-restore(f lags) ; 
12 3 

Figure 4.14: xu-ltimer callrcu() Implementation 

Count Context Switches The scheduler is instrumented by inserting a simple counter 

increment, as shown on line 4 of Figure 4.15. The task-cpu(prev) returns the CPU that 

was running the task being context-switched away from. 

1 switch-tasks: 
2 prefetch(next) ; 
3 clear-tsk-need-resched(prev) ; 
4 RCU-qsctr(task-cpu(prev))++; 
5 
6 prev->sleep-avg -= run-time; 
7 if ((1ong)prev->sleep-avg <= O)C 
8 prev->sleep-avg = 0; 
9 i f  ( ! ( H I C H - C R E D I T ( ~ ~ ~ V )  I I L O W - C R E D I T ( ~ ~ ~ ~ ) ) )  

10 prev->interactive-credit--; 
11 3 
12 prev->timestamp = now; 

Figure 4.15: rcu-ltimer Scheduler Instrumentation 

Track and Invoke RCU Callbacks Lines 8 and 9 of Figure 4.16 show the RCU hook 

in the per-CPU timer interrupt handler. If there is at least one RCU callback pending 

that needs this CPU's attention, rcu~check~callbacks 0 is invoked to advance the grace- 

period barrier computation, if possible. 

Figure 4.17 shows the code that checks to see if there are any RCU callbacks pend- 

ing that require this CPU's attention, returning 1 if so and 0 otherwise. Lines 3-6 check 



I void scheduler-tick(int user-ticks, i n t  sys-ticks) 
2 C 
3 i n t  cpu = smp-processor-id(); 
4 s truct  cpu-usage-stat *cpustat = kkstat-this-cpu.cpustat; 
5 runqueue-t *rq = this-rq0; 
6 task-t *p = current; 
7 
8 if  (rcu-pending(cpu)) 
9 rcu~check~callbacks(cpu. user-ticks);  

10 
11 /* note: t h i s  timer irq context must be accounted f o r  as w e l l  */ 
12 if  (hardirq-count 0 - HARDIRQ-OFFSET) C 

Figure 4.16: rcu-ltamer Per-CPU Timer Instrumentation 

for callbacks on this CPU needing attention: Lines 3 and 4 check for the expiration of 

the grace period corresponding to the RCU callbacks in this CPU's RCU-curlist (cpu) 

list, and Lines 5 and 6 check for new callbacks having been registered in this CPU7s 

RCUnxtlist (cpu) when there are no callbacks on this CPU waiting for the current grace 

period to expire on RCU-curlist (cpu). Line 7 checks for callbacks on other CPU's need- 

ing attention, which is indicated by the current CPU's bit still being set in the global 

rcu-ctrlblk. rcu-cpuaask. Note that all RCU callbacks need this CPU to pass through 

a quiescent state at least once during each grace period, but RCU callbacks that were reg- 

istered on this CPU also need (1) to be advanced fiom RCUnxt l ist (cpu) to RCU-curlist 

and (2) to be invoked once the corresponding grace period expires. 

1 static in l ine  i n t  rcu-pendingcint cpu) 
2 C 
3 i f  ((!list-arnpty(aRCU-curlist(cpu)) && 
4 rcu-batch-before(RCU-batch(cpu1, rcu-ctrlblk. curbatch)) I I 
5 (list-empty(tRCU-curlist(cpu)) bb 
6 !list-empty(aRCv-nxtlist(cpu1)) I I 
7 cpu-isset(cpu, rcu~ctrlblk.rcu~cpu~mask)) 
8 return 1; 
9 else 

10 return 0; 
11 > 

Figure 4.17: rcu-ltimer RCU-Callback-Pending Check 

If scheduler-tick() in Figure 4.16 finds that some pending RCU callbacks require 

this CPU7s attention, it invokes rcu~check~ca l lbacks0 ,  which is shown in Figure 4.18. 

Lines 3-6 check for this CPU being in an extended quiescent state, in other words, if 



1 void rcu~check~callbacks(int cpu, int user) 
2 .I 
3 if (user l l 
4 (idle-cpu(cpu) k t  !in-softirqo %& 
5 hardirq-count0 <= (I << HARDIRQ-SHIFT))) 
6 RCU-qsctr(cpu)++; 
7 tasklet~schedule(%RCU~tasklet(cpu) ; 
8 )  

Figure 4.18: xu-dtinaer Tasklet Scheduling 

the per-CPU timer interrupted user code, or if it interrupted the idle loop-as opposed 

to interrupting an interrupt that interrupted the idle loop. Regardless of whether this 

CPU is in an extended quiescent state, line 7 schedules rcu~process~callbacks (1 to be 

invoked from a tasklet upon return from interrupt. 

The rcu~process~ca l lbacks~)  function is shown in Figure 4.19, which (1) advances 

callbacks, (2) starts a new grace period, and (3) checks for this CPU having passed through 

a quiescent state. Lines 6-10 check to see if the grace period corresponding to the call- 

backs in RCU-curlist (cpu) has expired, and, if so, puts them in a local list. Line 12 

disables interrupts in order to prevent their handlers from registering callbacks while the 

RCUnxtlist (cpu) is being manipulated. 

Line 13 checks to see if the RCU-curlist (cpu) is empty and the R C U n x t l i s t  (cpu) is 

not, which indicates that newly registered callbacks may be advanced to start waiting for 

a grace period. If so, lines 1416 move the callbacks and re-enable interrupts, and lines 

21-24 associate this batch of callbacks with the grace period immediately following the 

current one. The rcu-ctrlblk.mutex protects against CPUs concurrently starting new 

batches. 

Line 28 invokes rcu-check-quiescentstate 0 in order to determine if this CPU has 

passed through a quiescent state. If there were any callbacks in RCU-curlist (cpu) whose 

grace period has expired, lines 29 and 30 call rcu-do-batch0 in order to invoke them. 

Figure 4.20 shows rcu-do-batch(), which invokes RCU callbacks whose grace period 

has expired. This function simply walks the list, deleting each entry in turn on line 8 and 

invoking the corresponding callback function on line 10. It is important that the deletion 

happen first, since the callback function will almost certainly free up the callback! 



I static void rcu~process~callbacks(unsi~~d long unused) 
2 i 
3 int cpu = smp-processor-id(); 
4 LIST-HEADClist) ; 
5 
6 if ( ! l ist-ampty(M-curl ist(cpu))  && 
7 rcu~batch~after(rcu~ctrlblk. curbatch. RCU-batch(cpu)) ) I 
8 list~splice(&RCU~curlist(cpu), &list) ; 
9 INIT-LIST-HEAD(&RCU-CU~~~~~ (cpu)) ; 
10 3 
11 
12 local-irq-disable0 ; 
13 if (!list-empty(&RCU-nxtlist(cpu)) && 1ist-empty(&R~-curlist(cpu))) 
14 list-splice(&RCU-mtlist(cpu) , &RCU-curlist (cpu)) ; 
15 INIT-LIST-HEAD(&RCU-~~~~S~ (cpu)) ; 
16 local-irq-enable0 ; 
17 
18 /* 
19 * start the next batch of callbacks 
20 */ 
21 spin~lock(lrcu~ctrlblk.mutex); 
22 RCU-batch(cpu) = rcu-ctrlblk.curbatch + 1; 
23 rcu-start-batch(RCU-batch(cpu)) ; 
24 spin~unlock(Brcu~ctrlblk.mutex) ; 
25 3 else C 
26 local-irq-enable0 ; 
27 1 
28 rcu~check~quiescent~state~) ; 
29 if (!list-empty(k1ist)) 
30 rcu-do-batch(k1ist); 
31 3 

Figure 4.19: xu-Winaer Callback Advancement 

I static void rcu-do-batch(struct list-head *list) 
2 i 
3 struct list-head *entry; 
4 struct rcu-head *head; 
5 
6 while (!list-empty(1ist)) 
7 entry = list->next; 
8 list-delcentry); 
9 head = list-entry(entry, struct rcu-head, list) ; 
10 head->func(head->arg); 
11 3 
12 > 

Figure 4.20: rcu-Ztirner Callback Invocation 



Grace-Period Barrier Computation The rcu-st art -bat ch( function shown in Fig- 

ure 4.21 starts a new grace period with the specified batch number. Lines 3-5 update 

rcu-ctrlblk.maxbatch if needed, the purpose of this being to allow RCU to determine 

when it can go idle. Lines 6-8 check to see if the requested grace period has already elapsed 

or if there is an ongoing grace period that precedes the desired one, returning if so, since 

in either case, it is not appropriate to start the desired grace period. Otherwise, line 10 

sets all the bits in the per-CPU bitmap, indicating that each CPU needs to pass through 

a quiescent state to complete the newly started grace period. 

1 static void rcu-start-batch(1ong newbatch) 
2 i 
3 if (rcu~batch~before(rcu~ctrlblk.maxbatch. newbatch)) C 
4 rcu-ctrlblk.maxbatch = nevbatch; 
5 > 
6 if (rcu~batch~bafore(rcu~ctrlblk.maxbatch, rcu-ctrlblk.curbatch) I I 
7 !cpus~empty(rcu~ctrlblk.rcu~cpu~mask)) I 
8 return; 
9 3 
10 rcu~ctrlblk.rcu~cpu~mask = cpu-online-map; 
11 3 

Figure 4.21: mu-ltimer Starting New Grace Period 

The rcu-check-quiescent-state 0 function shown in Figure 4.22 checks to see if this 

CPU has passed through a quiescent state for the first time during the current grace 

period, and, if so, whether this marks the end of the current grace period. It also does 

end-of-grace-period processing and starts up the next grace period if required. 

Lines 5 and 6 check to see if this CPU has already passed through a quiescent state 

during the current grace period, returning if so. Lines 13-16 check to see if this CPU 

is not $et aware of the current grace period, taking a snapshot of RCU-qsctr (cpu) in 

RCUlast -qsctr (cpu) and returning if so. Otherwise, lines 17 and 18 return if this CPU 

still has not passed through a quiescent state during the current grace period. 

Execution reaches line 20 the first time that this CPU is determined to have passed 

through a quiescent state in the current grace period. Line 20 acquires rcu-ctrlblk. mutex 

to prevent concurrent manipulation of rcu-ctrlblk . rcu-cpuxask. Lines 21 and 22 

recheck this CPU's bit under the lock, short-circuiting if it has since cleared. Line 24 



clears this CPU's bit, and line 25 invalidates this CPU's quiescent-state snapshot for the 

benefit of line 13's check for a new grace period on the first invocation of this function 

during the next grace period. Lines 26 and 27 check to see if this CPU's quiescent state 

signals the end of the current grace period, short-circuiting if not. Line 29 increments 

the grace-period counter, signalling other CPUs of the end of the current grace period. 

Line 30 invokes rcu-startbatch0 in order to start up the next grace period, if needed. 

Finally, line 33 releases rcu-ctrlblk .mutex. 

1 static void rcu~check~quiescent~state(void) 
2 i 
3 int cpu = smp-processor-id(); 
4 
5 if (!cpu-isset(cpu, rcu~ctrlblk.rcu~cpu~mask)) 
6 return; 
7 
8 /* 
9 * Races vith local timer interrupt - in the vorst case 
10 * ve may miss one quiescent state of that CPU. That is 
11 * tolerable. So no need to disable interrupts. 
12 */ 
13 if (RCU-last-qsctr(cpu) = RCU-QSCTR-INVALID) i 
14 RCU-last-qsctr(cpu) = RCU-qsctr(cpu) ; 
15 return; 
16 3 
17 if (RCU-qsctr(cpu) -- RCU-last-qsctr(cpu)) 
18 return; 
19 
20 spin-lock(&cu-ctrlblk.mutex); 
21 if (!cpu-isset(cpu, rcu~ctrlblk.rcu~cpu~mask)) 
22 goto out-unlock; 
23 
24 cpu-clear(cpu, rcu-ctr1bllr.r~~-cpu~nask); 
25 RCU-last-qsctr(cpu) = RCU-QSCTR-INVALID; 
26 if (!cpus~empty(rcu~ctrlblk.rcu~cpu~mask)) 
27 goto out-unlock; 
28 
29 rcu-ctrlblk.curbatch++; 
30 rcu~start~batch(rcu~ctrlblk.maxbatch); 
31 
32 out-unlock: 
33 spin~unlock(&rcu~ctrlblk.mutex); 
34 1 

Figure 4.22: rcu-ltirner Check for Quiescent State 

Discussion 

The counter-and-barrier approach works quite well, and in fact this implementation was 

accepted into the Linux 2.6 kernel. There are a number of variations on this theme, for 



example, the barrier computation may be driven by per-CPU kernel daemons as described 

in Appendix C.2.1 on Page 330, by per-CPU timers as described in Appendix C.2.2 on 

Page 332, or by a tasklet as described in Appendix C.2.3 on Page 336. This last implemen- 

tation also sends interrupts to other CPUs in order to induce them to enter the scheduler. 

As such, it combines inducing and observing quiescent states. 

However, the counter-and-barrier approach makes extensive use of expensive synchrc~ 

nization operations in the barrier computation and requires that read-side RCU critical 

sections suppress preemption in preemptive environments. The following sections look at 

some alternative implementations that address these issues. 

4.4.2 Counter Ring (rcu-sched) 

The rcu-sched implementation was designed and implemented by Rusty Russell, with 

a goal of minimizing c a l l ~ c u ( )  overhead. This implementation therefore avoids use 

of any atomic instructions, except as needed to keep a global count of the number of 

RCU callbacks that are waiting for a grace period to complete. Future work includes 

implementing this callback counter without use of atomic instructions. Note that the 

simple split counter described in Section 2.2.13 on Page 41 is not suitable, as it is necessary 

to read out this callback counter quite frequently, namely, on each and every context 

switch. 

This implementation combines the quiescent-state observation and the barrier com- 

putation by using a ring of per-CPU counters, where each CPU sets its counter to one 

greater than that of its neighbor on each pass through the quiescent state in the scheduler, 

but only when RCU callbacks are pending. Thus, when a given CPU sees its neighbor's 

counter change, it is guaranteed that each CPU has passed through the scheduler (a qui- 

escent state) since the given CPU last incremented its own counter, in other words, that 

a grace period has elapsed. 

This implementation has the interesting property that each CPU will be observing a 

distinct set of grace periods that overlap those of the other CPUs, as shown in Figure 4.23. 

Here, the vertical lines indicate time passing for each of four CPUs. The dark circles 

indicate quiescent states, and the numbers denote the value of the per-CPU counter at 



CPU 0 CPU 1 CPU 2 CPU 3 

Figure 4.23: Overlapping Grace Periods for Counter Ring 

that point in time. The dotted lines connect quiescent states where the per-CPU counter 

value changed; note that additional quiescent states have no effect in this implementation. 

Since the definition of a grace period is any time period during which each thread has 

passed through at least one quiescent state, the time between successive changes in counter 

value on each CPU is in fact a grace period, but each CPU sees a different grace period. 

In contrast, in the non-preemptive counter-and-barrier implementations, all CPUs observe 

identical grace periods. 

Note that the ability to insert and remove CPUs, called "CPU hotplug" in Linux, 

requires an additional per-CPU counter, as shown in Figure 4.24 following the slashes. 

When CPU 3 is inserted into the system, it must propagate the counter, which will 
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Figure 4.24: Counter Ring and CPU Hotplug 

cascade through all the CPUs. The extra counter, named f inished-count, enables CPUs 

to determine when a change in counter value does not constitute a grace period. At each 

context switch, the CPU sets the value of finished-count to the current value of the 

ring-count plus the number of active CPUs. On a subsequent context switch, the new 

value of ring-count must exceed that of the old value of f inished-count for the end of 

the grace period to be declared. 

For example, CPU 0's fourth context switch does not mark the end of a grace period, 

because the new value of ring-count (5) does not exceed the old value off inished-count 

(7). This is to be expected, since neither CPU 1 nor CPU 2 have passed through a quiescent 

state. On the other hand, CPU 1's second context switch does mark the end of a grace 

period, because the new value of ring-count exceeds the old value of f inished-count, 



as expected given that all CPUs have context switched since the beginning of the grace 

period. Note that a grace period must elapse between CPU-hotplug events. 

The counter-ring implementation also maintains not just per-CPU callback queues, 

but two sets of per-CPU-per-IRQ callback queues. This allows the queues to be accessed 

without the need for either locks (per-CPU) or for interrupt masking (per-IRQ), though 

this approach has been obsoleted by recent versions of the kernel, which can nest interrupts 

arbitrarily deeply.2 One set of these queues accumulates new callbacks from call.-rcuO, 

while the other set holds callbacks waiting for the end of the current grace period. 

Finally, this implementation places checks in the idle loop in order to ensure that 

idle CPUs do not indefinitely delay the end of the grace period. This has the beneficial 

side effect of causing idleloop execution to be a quiescent state without using the active 

entities (tasklets, timers, kernel daemons) used by the other implementations. 

Figure 4.25 shows the c a l l r c u 0  function. Lines 9-10 initialize the rcuhead call- 

back. Lines 11-14 determine the interrupt state, which is used later as an index to 

the array of lists of callbacks. Lines 17-18 find the right queue for the callback. The 

rcu-batchCcpu1 .queueing field is a bit that contains the index of the half of the array 

that is accumulating new callbacks. The value of this bit is reversed in rcu-batch-done 0 

at the end of each grace period. Line 20 increments the number of pending callbacks, 

which signals the scheduler to start looking for a grace period, and lines 23-24 enqueue 

the callback. 

Figure 4.26 shows the first patch to the scheduler. Lines 12-13 check to see if there are 

RCU callbacks pending, and, if so, branch to the rcu-process label in the second patch 

shown in Figure 4.27 

Lines 8-10 of Figure 4.27 set local variable c to one greater than the previous CPU7s 

ring counter. If c is different than this CPU's ring count, a grace period has ended, 

and is handled by lines 16-23. Line 11 checks for scheduler reentry, and if this has not 

occurred, lines 19-23 invoke rcu-batch-done 0, protecting against scheduler reentry by 

manipulating this CPU's f inished-count. Line 25 updates this CPU7s ring count, which 

2~herefore, any implementation of this approach in the Linux 2.6 kernel would need to disable interrupts 
within c a l l r c u 0 .  



1 void call-rcu(struct rcu-head *head, 
2 void (*func) (void *data), 
3 void *data) 
4 C 
5 unsigned cpu = smp-processor-id(); 
6 unsigned state; 
7 struct rcu-head **headp; 
8 
9 head->func = func; 
10 head->data = data; 
11 if (in-interrupt01 C 
12 if (in-irq0) state = 2; 
13 else state = I; 
14 1 else state = 0; 
15 
16 /* Figure out which queue we're on. */ 
17 headp = Brcu-batchCcpu1 .head[ 
18 rcu-batchCcpu1 . queueingl [state]; 
19 
20 atomic-inc (&rcu-pending) ; 
21 /* Prepend to this CPU's list: 
22 no locks needed. */ 
23 head->next = *headp; 
24 sheadp = head; 
25 1 

Figure 4.25: mu-sched callrcu() Implementation 

1 00 -634.10 +639,16 QQ 
2 prio-array-t *array; 
3 list-t *queue; 
4 int idx; 
5 + int c, this-cpu; 
6 
7 if (unlikely (in-interrupt 0 1) 
8 BUG0 ; 
9 release-kernel-lock(prev, 
10 smp-processor-id()) ; 
11 + 
12 + if (unlikely(is-rcu-pending())) 
13 + goto rcu-process; 
14 + 
15 +rcu-process-back: 
16 spin-lock-irq(&rq->lock) ; 
17 
18 svitch (prev->state) i 

Figure 4.26: rcu-sched Scheduler Instrumentation, Part 1 



will result in the next CPU seeing the end of a grace period. Line 27 returns control to 

the mainline scheduler. 

1 OQ -700.6 +711,23 00 
2 3 
3 spin-unlock-irq(&rq->lock); 
4 
5 +xu-process: 
6 + /* Avoid cache line effects 
7 + if value hasn't changed */ 
8 + this-cpu = smp-processor-id() ; 
9 + c = ring-count((this-cpn + 1) X 
10 + smp-num-cpus) + 1; 
11 + if (C != ring-count(this-CPU)) C 
12 + /* Do subtraction to 
13 + avoid int vrap corner case */ 
14 + if (C - f inished-count (this-cpu) 
15 + >= 0) C 
16 + /* Avoid reentry: temporarily 
17 + set finish-count 
18 + far in the future */ 
19 + finished-count(this-cpu) = 
20 + c + INT-MAX; 
21 + rcu-batch-done0; 
22 + finished-countcthis-cpu) = 
23 + c + smp-nu-cpus; 
24 + 1 
25 + ring-count (this-cpu) = c ; 
26 + 3 
27 + goto rcu-process-back; 
28 + 
29 reacquire~kernel~lock(current) ; 
30 return ; 
31 1 

Figure 4.27: mu-sched Scheduler Instrumentation, Part 2 

Figure 4.28 shows how the idle loop is instrumented to prevent architectures that shut 

down CPUs on idle from indefinitely extending the grace period. The other implementa- 

tions get this effect through use of timer interrupts or forced context switches, either of 

which will force the CPU out of the idle loop. 

Figure 4.29 shows rcu-batch-done 0, which is invoked from the scheduler at the end 

of a grace period. Line 7-8 pick up a pointer to this CPU's set of RCU callback queues. 

Lines 11-22 invoke all the callbacks in each of this CPU's callback queues (one for each 

possible IRQ level) that was waiting for the current grace period to expire (selected by 

!mybatch->queueing), and empty each list. Line 25 swaps the sets of queues, so that 

the callbacks previously waiting for a new grace period to begin are now waiting for the 



-84.7 +85.8 00 
get into the scheduler unnecessarily. */ 
long oldval = xchg( 

&current->vork.need-resched, -1UL); 
if ( ! oldval) 

vhile (current->vork.need-resched < 0 ) ;  
vhile (current->vork.need-resched < 0 

&& ! is-rcu-pending()) ; 
schedule 0 ; 
check-pgt -cache () ; 

Figure 4.28: x u -  sched Idle Loop Instrumentation 

now-current grace period, and the newly emptied queues will now accept new callbacks 

registered by future calls to c a l l ~ c u O  . 

1 void rcu-batch-done(void) 
2 I 
3 struct rcu-head *i. *next; 

struct rcu-batch *mybatch; 
unsigned int q; 

mybatch = 
&rcu~batch[smp~processor~id 0 1  ; 

/* Call callbacks: probably delete 
themselves, may schedule. */ 

for (q = 0; q < 3; q++) C 
for (i = mybatch->head[ 

!mybatch->queueing3 [q] ; 
i; 
i = next) C 

next = i->next; 
i->func(i->data) ; 

18 atomic-dec(&rcu-pending) ; 
19 1 
20 mybatch->head[ 
21 ! mybatch->queueing3 Cql = NULL; 
22 1 
23 
24 /* Start queueing on this batch. */ 
25 mybatch->queueing = !mybatch->queueing; 
26 3 

Figure 4.29: rcu-sched rcu-batch-done() 

This implementation has the potential to be extremely efficient, if the need for the 

global count of RCU callbacks waiting for a grace period can be eliminated. Such elimi- 

nation, along with modifications required for use in the Linux 2.6 kernel, is future work. 



4.4.3 Token Ring with Preemption (K42) 

The K42 and Tornado implementations of RCU [30], designed and implemented by re- 

searchers at the University of Toronto and IBM Research, are such that read-side critical 

sections can block as well as being preempted. This means that context switch cannot be 

used as a quiescent state in these operating-system kernels. Instead, the quiescent states 

are thread termination and an explicit 'Lquiescent state" operation, similar to a volun- 

tary context switch, used by long-running threads. Unlike Linux, K42/Tornado threads 

are short lived, with new threads created to process each "message", such as that result- 

ing from a system call, so, unlike Linux, the thread-termination quiescent state is useful 

within the K42/Tornado kernel. The underlying RCU implementation passes a token 

among CPUs in a manner similar to the counter ring described in Section 4.4.2. When 

the token has passed a given CPU twice, a grace period has elapsed. 

However, the mapping from threads to CPUs described in Section 3.2.3 on Page 78 

does not fully cover this case, since threads may be preempted. This implementation 

therefore cannot assume that all non-running threads are in a quiescent state. It must 

therefore explicitly track preempted threads. 

This tracking of preempted threads must take into account the fact that preempted 

threads can migrate among the CPUs. Since there can be many more threads than CPUs, 

it is again worthwhile to map threads onto CPUs. K42 accomplishes this by having each 

thread keep track of which CPU it ran on immediately upon being created or regaining 

control after a voluntary context switch. One can then maintain a per-CPU counter that 

is atomically incremented each time a thread is created or gains control after a voluntary 

context switch. Upon termination or beginning the next voluntary context switch, the 

thread must atomically decrement the same counter that it incremented. Once all counters 

are zero, no threads are running, indicating the end of a grace period. 

However, it is not necessary that no thread be running to indicate the end of a grace 

period, in fact, taking this extreme position would result in idinite grace periods on busy 

systems. Instead, it is sufficient for all threads that were either running or preempted at the 

beginning of the grace period to have subsequently executed a voluntary context switch. 



K42's implementation of token ring with preemption solves this problem by assigning two 

counters per CPU. One of the counters is the "current" counter, and it is this counter 

that each thread atomically increments upon regaining control after creation or a voluntary 

context switch. Each thread must remember the exact counter it incremented, not just 

the CPU it started executing on, and each thread is required to atomically decrement this 

same counter. 

When it is necessary to determine when all threads that started on this CPU have 

completed, the roles of the counters are switched. The counter that was previously being 

incremented (the "previous" counter) can now only be decremented by threads that had 

previously incremented it, as threads increment the new "current" counter. Once the 

"previous" counter reaches zero, all threads that were started on this CPU at the beginning 

of the grace period have passed through a quiescent state. At this point, the roles of the 

counters are again switched. 

To detect when all CPUs7 "previous" counters have reached zero, the CPUs circulate 

a token. When a CPU receives the token, it forwards the token to the next CPU after 

two consecutive counter role reversals. Two, rather than one, reversals are necessary 

because the CPUs see non-overlapping grace periods, similar to the situation described in 

Section 4.4.2. Therefore, the time between two consecutive possessions of the token by a 

given CPU is a grace period. 

RCU is used pervasively within K42 and Tornado, and is available to user applications 

and libraries as well as within the kernel. However, system calls such as recvmsg(), 

which can block indefinitely, must use the explicit "quiescent state" operation so that this 

long-term blocking is not considered to be part of an operation. 

Note that K42 and Tornado spawn a new kernel thread to handle each "message7', a 

message being somewhat similar to a Linux system call. The K42/Tornado RCU imple- 

mentation therefore uses kernel-thread creation and termination as its observed quiescent 

states, along with a special voluntary-context-switch operation used for long-running mes- 

sage handlers. These quiescent states do not carry over to Linux, which has long-lived 

kernel threads. Therefore, direct performance and complexity comparisons between the 

K42/Tornado and the Linux RCU implementations are not meaningful. That said, the 



rcu-preempt implementation described in Appendix C.3 on Page 343 was based on the 

K42/Tornado implementation. 

4.5 Single-CPU RCU Implementation 

As noted in Chapter 1, single-CPU systems also face synchronization problems. For 

example, suppose an interrupt handler needs to remove an element from a linked list. If 

there is a possibility that the mainline code was accessing that element at the time that 

the interrupt occurred, how does the interrupt handler determine whether it is safe to free 

that element to the free pool? 

One approach is to require that the mainline code disable interrupts around every 

access to any data structure that might be updated by an interrupt handler. This approach 

is heavily used in practice. However, disabling and re-enabling interrupts is not free, so it 

is natural to ask whether it is possible to avoid this cost for read-mostly data structures. 

Another approach is for the interrupt handler to defer freeing the removed element. If 

the element is retained until the mainline code performs a context switch, then there is 

no danger of the element being freed while it is still in use. Since there is only one CPU, 

the element could be efficiently freed directly from the context-switch code, if desired. 

This would be considerably simpler than any of the RCU implementations described in 

the preceding sections. 

However, if an operating system is to run both on SMMP and single-processor systems, 

software-engineering considerations would motivate use of a single implementation that 

handled both SMMP and single-processor systems. Both the K42 and L i n u  systems use 

a common RCU implementation for both single-processor and multiprocessor operation. 

It will be interesting to see if either K42 or Linux find it useful to implement a special-case 

mechanism for single-CPU operation. 

4.6 Discussion 

This chapter has presented the Linux 2.6 kernel RCU API and a number of implementa- 

tions of the RCU infrastructure, which are discussed in the following sections. 



4.6.1 RCU API Discussion 

Although the RCU API has proven quite serviceable in the Linux 2.6 kernel, it is likely 

to change in the 2.7 effort, if not sooner, for the following reasons: 

Certain heavy networking workloads are able to produce an extremely high rate of 

deferred destruction in the Linux 2.6.0-test1 kernel when running on a uniprocessor 

platform. This situation is exacerbated by some issues that permit software-interrupt 

handlers to run for extremely long periods of time, measuring many seconds in du- 

ration. Part of the ongoing fix of course prevents software-interrupt handlers from 

running so long, but some additional RCU APIs are being considered as well. These 

APIs are designed to ensure extremely short grace periods for protecting data that 

are accessed and modified either from interrupt handlers or with interrupts disabled. 

These primitives might have names like cal lxcu-bh0,  r c u ~ e a d l o c k - b h 0 ,  and 

rcuread-unlock-bh0 .3 These APIs would consider any code sequence with in- 

terrupts enabled to be a quiescent state, and would therefore enable faster grace 

periods for interrupt-oriented algorithms in the newtworking stack and in drivers. 

More work is needed to determine whether or not these additional APIs are required. 

Some filesystems may have unmount processing that requires all outstanding RCU 

callbacks for that mount point to complete. A suitable primitive can be easily 

provided. One API under consideration is r cuba r r i e r  0 ,  which waits for all out- 

standing RCU callbacks to be invoked. One way to implement this is to require that 

callbacks registered on a given CPU be invoked in the same order that they were 

registered. There will be interesting interactions with things like CPU hotplug. This 

is an important area of future work. 

Since the major use of the c a l l r c u ( )  primitive is to defer destruction, one might ex- 

pect that statements such as callxcu(p-rhead,kfree ,p) would be quite common. 

This statement frees up the element pointed to by p after a subsequent grace period 

3The "bh" stands for "bottom half", denoting the portion of a driver that does not run in process 
context. The -bh primitives block bottom-half execution. 



completes. However, it turns out that directly passing kfree 0 to c a l l r c u 0  in 

this manner is quite rare. In most cases, a wrapper function of some sort is needed 

in order to prepare the data structure being freed, for example, by freeing up struc- 

tures that it references. Significant memory could be saved by requiring that all 

callbacks be wrapper functions, since such wrapper functions know the location of 

the rcuhead within the structure, eliminating the need for a separate structure 

pointer to c a l l ~ c u 0  and also for the arg field of the rcuhead structure. This 

change would simplify the code somewhat, and also reduce RCU's memory overhead. 

When RCU is applied to data structures other than lists, memory-barrier instruc- 

tions must be explicitly specified. For example, see Mingrning Cao7s RCU-based 

implementation of System V IPC, which is described in Section 6.1 on Page 182. 

Future work includes creating a similar API that encapsulates memory barriers for 

other data structures. 

Evaluation of these changes is ongoing. 

4.6.2 RCU Infrastructure Discussion 

The RCU infrastructure implementations are summarized in Tables 4.1 and 4.2. 

Table 4.1 : RCU Implementations Inducing Quiescent States 

All these implementations except rcu-preempt and K42 assume a nonpreemptible ker- 

nel. Section C.3 on Page 343 describes mu-preempt, which operates efficiently in a pre- 

emptive kernel. 
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Table 4.2: RCU Implementations Observing Quiescent States 

The "Quiescent States" column lists the observed quiescent states that each algorithm 

tracks, "I" for idle-loop execution, "C" for context switch, 'V" for user-mode execution, 

and "T" for kernel-thread creation and destruction. 

The "Interrupt Handler" column indicates whether code in interrupt handlers may 

safely delete elements of an RCU-protected data structure that is accessed by base-level 

code with interrupts enabled. The rcu-poll implementation may be used in the "bottom 

half" of Linux drivers, but is interrupt-handler-unsafe by choice, in order to eliminate the 

overhead of interrupt disabling and enabling that would otherwise be incurred on each 

call to call~cuO. If a strong need arises for use of callrcu0 from interrupt context, 

trivial changes to mu-poll will render it interrupt-handler-safe. 

The RCU implementations discussed in this chapter choose different points in this 

design space. These implementations are freely available from the Linux Scalability Effort 

website (http://prdownloads.sf.net/lse/). The X-rcu, rcu-krcud, and mu-ltimer implemen- 

tations are similar to t he D Y N I X / ~ ~ X * ~  implementation, using per-CPU timers, kernel 

daemons, and architecture-dependent timer support, respectively. The rcu-taskq imple 

mentation is an extremely compact implementation in which a kernel task forces per-CPU 

kernel daemons to run on their respective CPUs. The rcu-sched implementation uses ring 
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counters within the Linux scheduler, and boasts an extremely low overhead c a l l r c u 0  

implementation. It is also the only known RCU implementation that uses absolutely no 

locks, interrupt masking, memory barriers, or atomic instructions. The mu-poll implemen- 

tation is designed for minimal overhead when there are no outstanding RCU callbacks, 

and boasts very low c a l l x c u 0  latencies. The rcu-preempt implementation adapts the 

mu-krcud implementation to work correctly in preemptible kernels. Finally, the K4Z im- 

plementation uses a dual counter-ring approach [30]. 

The mu-taskq implementation was the simplest of the non-trivial Linux RCU imple 

mentations, nu-pull had the best graceperiod latency, and mu-ltirner had the smallest 

system-wide overhead. Since no current RCU use in Linux requires sub-millisecond grace- 

period latencies, and since the size of the mu-ltimer d 8 s  are only a few hundred lines 

larger than the smallest non-trivial patch, the rcu-ltimer implementation was accepted 

into the Linux 2.5.43 kernel [121]. 



Chapter 5 

Design Patterns for RCU 

Since RCU is not intended to replace all existing synchronization mechanisms, it is nec- 

essary to know when and how to use it. From a performance standpoint, it is clear that 

RCU is best suited for read-mostly data structures, and the relevant performance tradeoffs 

are discussed at length in Chapters 7 and 8. However, there are also software-engineering 

implications surrounding the use of RCU, and it is these implications that are addressed 

by this chapter via design patterns. 

Coplien and Schmidt [21j define "design pattern" as follows; similar definitions may 

be found elsewhere [3, 281: 

Design patterns capture the static and dynamic structures of solutions that oc- 

cur repeatedly when producing applications in a particular context. Because 

they address fundamental challenges in software system development, design 

patterns are an important technique for improving the quality of software. 

Key challenges addressed by design patterns include communication of archi- 

tectural knowledge among developers, accommodating a new design paradigm 

or architectural style, and avoiding development traps and pitfalls that are 

usually learned only by (painful) experience. 

RCU certainly qualifies as a new design paxadigm, so it is reasonable to expect RCU- 

related design patterns. Such patterns do in fact exist; ten of them are presented in this 

chapter. 

This chapter presents two types of RCU-related patterns. The first type is the RCU 

design pattern, presented in Section 5.2, which describes situations in which RCU may 



easily be applied. The second type is the RCU transformational pattern, presented in 

Section 5.3, which describes how to transform algorithms not directly amenable to RCU 

into forms to which RCU may easily be applied. Prior to this, Section 5.1 describes an 

example algorithm that is used to demonstrate many of the patterns presented in this 

chapter. 

5.1 Example Algorithm 

A simple hashed lookup table is used to illustrate the patterns in this chapter. This 

example hashes a specified key, then searches the indicated list of elements and performs 

operations on those elements. Both the individual elements and the hash table itself may 

require mutual exclusion. 

The data structure for a uniprocessor implementation is shown in Figure 5.1. The 

I struct looktab C 
2 stmct looktab *next; 
3 int key; 
4 int data; 
5 3; 

Figure 5.1: Lookup-Table Element 

next field links the individual elements together, the key field contains the search key, 

and the data field contains the data corresponding to that key. This structure may be 

embellished as needed for a given synchronization mechanism. 

A search for the element with a given key might be implemented as shown in Figure 5.2. 

5.2 RCU Design Patterns 

This section presents four RCU design patterns, which are part of a larger locking-design 

pattern language. The patterns in this larger language are as follows: 

1. Sequential Program (5.2.2) 

2. Code Locking (5.2.2) 



I /* Header for list of struct looktab's. */ 
2 
3 struct looktab *looktab-headCLOOKTAB-NHASH] = 
4 c m 3 ;  
5 Mefine LOOKTAB-HASH(key1 \ 
6 ((key) X LOOKTAB-NHASH) 
7 
8 /* 
9 * Return a pointer to the element of the 

10 * table vith the specified key, or return 
11 * NULL if no such element exists. 
12 */ 
13 
14 struct looktab * 
15 looktab-search(int key) 
16 C 
17 struct looktab *p; 
18 
19 p = l~oktab,headCLOOKTAB~HASH(key)] ; 
20 while (p != NULL) < 
21 if (p->key = key) 
22 return (p); 
23 1 
24 p = p->next; 
25 > 
26 return (NULL.); 
27 3 

Figure 5.2: Lookup-Table Search 

3. Data Locking (5.2.2) 

4. Data Ownership (5.2.2) 

5. Parallel Fastpath (5.2.2) 

6. Reader/Writer Locking (5.2.2) 

7. RCU, which includes these subpatterns: 

(a) Pure RCU (5.2.3) 

(b) RCU Existence Locks (5.2.4) 

(c) Reader-Writer-Lock/RCU Analogy (5.2.5) 

(d) RCU Readers With NBS Writers (5.2.6) 

8. Hierarchical Locking ([66]) 

9. Allocator Caches ([66, 801) 



10. Critical-Section Fusing (5.2.2) 

11. Critical-Section Partitioning (5.2.2) 

The non-RCU patterns are briefly summarized in this section; more details are available 

elsewhere [66]. This author mined the RCU patterns fiom earlier work on RCU by myself 

and others, and these patterns are presented in full detail in this section. 

Relationships among these patterns are shown in Figure 5.3 and are described in the 

following paragraphs. 

Sequential 

Partition 
Inverse 

Code 

Partition L(5* 
Partitioning 

1 own Disown 1 - 
Ownership Reader~Writer 

Hierarchical 
Locking I 
Allocator 
Caches 

Figure 5.3: Relationship Among Patternssss 

Parallel Fastpath and RCU are meta-patterns, that is, they are patterns that describe 

groups of lower-level patterns. Critical-Section Fusing and Critical-Section Partitioning 



are transformational patterns. For example, partitioning a code-locked program's critical 

sections over instances of an object transforms that program's lock design from code 

locking to data locking, and vice versa. Similarly, fusing all a code-locked program's 

critical sections results in a sequential program, and vice versa. A data-locking design 

may be tranformed into a data-ownership design by specifying owning threads (or CPUs) 

for each data item and coding any needed messaging. 

Reader/Writer Locking, RCU, Hierarchical Locking, and Allocator Caches are in- 

stances of the Parallel Fastpath meta-pattern. ReaderlWriter Locking, RCU, and Hi- 

erarchical Locking are themselves meta-patterns; they can be thought of as modifiers to 

the Code Locking and Data Locking patterns. Parallel Fastpath, Hierarchical Locking, 

and Allocator Caches are ways of combining other patterns and thus are template patterns. 

Critical-Section Partitioning transforms Sequential Program into Code Locking and 

Code Locking into Data Locking. It also transforms conservative Code Locking and Data 

Locking into more aggressively parallel forms. 

Critical-Section Fusing transforms Data Locking into Code Locking and Code Locking 

into Sequential Program. It also transforms aggressive Code Locking and Data Locking 

into more conservative forms. 

Assigning a particular CPU or process to each partition of a data-locked data structure 

results in Data Ownership. A similar assignment of a particular CPU, process, or computer 

system to each critical section of a code-locked program results in Client/Server, which is 

used heavily in distributed systems but not discussed further in this paper. 

The following section describes the forces that act on locking design patterns, and the 

ones after that describe the patterns themselves. 

5.2.1 Forces 

There are a number of forces that act on any programming project, with perhaps the 

most (in)famous including schedule pressure, elegance, performance, and work-life balance. 

Very often, perfectly handling one of the forces acting on the project will sacrifice the 

others, so that the most aggressive possible schedule will likely involve sacrifices in the 

areas of elegance, performance, and work-life balance. 



A given design pattern may be thought of as a particular way of balancing the forces 

acting on the design, with particularly good patterns describing particularly good balances 

among those forces [3]. 

The forces acting on the performance of parallel programs are speedup, contention, 

overhead, read-to-write ratio, and complexity: 

Speedup: Getting a program to run faster is the only reason to go to all of the time 

and trouble required to parallelize it. Speedup is defined to be the ratio of the time 

required to run a sequential version of the program to the time required to run a 

parallel version. 

Contention: If more CPUs are applied to a parallel program than can be kept busy by 

that program, the excess CPUs are prevented from doing useful work by contention. 

Overhead: A uniprocessor, single-threaded, non-preemptible, and non-interruptible1 ver- 

sion of a given parallel program would not need synchronization primitives. There- 

fore, any time consumed by these primitives (including communication cache misses 

as well as locking primitives, atomic instructions, and memory barriers) is overhead 

that does not contribute directly to the useful work that the program is intended 

to accomplish. Note that the important measure is the relationship between the 

synchronization overhead and the overhead of the code in the critical section, with 

larger critical sections able to tolerate greater synchronization overhead. 

Read-to-Write Ratio: A data structure that is rarely updated may often be protected 

with asymmetric synchronization primitives that reduce readers' synchronization 

overhead at the expense of that of writers, thereby reducing overall synchronization 

overhead. Corresponding optimizations are possible for frequently updated data 

structures, as discussed in Section 2.2.13 on Page 41. 

Complexity: A parallel program is more complex than an equivalent sequential program 

because the parallel program has a much larger state space than does the sequential 

 ithe her by masking interrupts or by being oblivious to them. 



program. A parallel programmer must consider synchronization primitives, locking 

design, critical-section identification, and deadlock in the context of this larger state 

space. 

This greater complexity often translates to higher development and maintenance 

costs. Therefore, budgetary constraints can limit the number and types of modifi- 

cations made to an existing program, since a given degree of speedup is worth only 

so much time and trouble. 

These forces will act together to enforce a maximum speedup. The first three forces are 

deeply interrelated, so the remainder of this section analyzes these interrelati~nshi~s.~ 

Note that these forces may also appear as part of the context. For example, speedup 

may act as a force ("faster is better") or as part of the context ("the system must achieve 

a throughput of at  least 1,000 transactions per second"). 

An understanding of the relationships between these forces can be very helpful when 

resolving the forces acting on an existing parallel program. 

1. The less time a program spends in critical sections, the greater the potential speedup. 

2. The fiaction of time that the program spends in a given critical section must be 

much less than the reciprocal of the number of CPUs for the actual speedup to 

approach the number of CPUs. For example, a program running on 10 CPUs must 

spend much less than one tenth of its time in the critical section if it is to scale well. 

3. Contention effects will consume the excess CPU and/or wallclock time should the 

actual speedup be less than the number of available CPUs. The larger the gap 

between the number of CPUs and the actual speedup, the less efficiently the CPUs 

will be used. Similarly, the greater the desired efficiency, the smaller the achievable 

speedup. 

4. If the available synchronization primitives have high overhead compared to the crit- 

ical sections that they guard, the best way to improve speedup is to reduce the 

2A real-world parallel system will have many additional forces acting on it, such as data-structure 
layout, memory size, memory-hierarchy latencies, and bandwidth limitations. 



number of times that the primitives are invoked (perhaps by fusing critical sections, 

using data ownership, using RCU, or by moving toward a more coarse-grained par- 

allelism such as code locking). 

5. If the critical sections have high overhead compared to the primitives guarding them, 

the best way to improve speedup is to increase parallelism by moving to reader/writer 

locking, data locking, RCU, or data ownership. 

6 .  If the critical sections have high overhead compared to the primitives guarding them 

and the data structure being guarded is read much more often than modified, the 

best way to increase parallelism is to move to reader/writer locking or RCU. 

5.2.2 Non-RCU Locking Design Patterns 

The following sections briefly describe the non-RCU locking design patterns. Readers 

wishing more detail may consult this previously published locking design pattern lan- 

guage [661- 

Sequential Program 

If the program runs fast enough on a single processor, and has no interactions with other 

processes, threads, or interrupt handlers, you should remove the synchronization primitives 

and spare yourself their overhead and complexity. Some would argue that Moore's Law 

will eventually force all programs into this category. Others would disagree. 

Code Locking 

Code locking is the simplest locking design, using only global locks. It is especially easy 

to retrofit an existing program to use code locking in order to run it on a multiprocessor. 

If the program has only a single shared resource, code locking will even give optimal 

performance. However, most programs of any size and complexity require much of the 

execution to occur in critical sections, which in turn sharply limits the scaling. 

Therefore, use code locking on programs that spend only a small &action of their run 

time in critical sections or from which only modest scaling is required. In these cases, 



code locking will provide a relatively simple program that is very similar to its sequential 

counterpart. 

Data Locking 

Many algorithms and data structures may be partitioned into independent parts, with each 

part of the data structure having its own lock. Then the critical sections for each part of 

the data structure can execute in parallel, although only one instance of the critical section 

for a given part could be executing at a given time. Use data locking when contention must 

be reduced, and where synchronization overhead is not limiting speedups. Data locking 

reduces this overhead by distributing the instances of the overly-large critical section into 

multiple critical sections. 

Data Ownership 

Data ownership partitions a given data structure over the threads or CPUs, so that each 

thread/CPU accesses its subset of the data structure without any synchronization overhead 

whatsoever. However, if one thread wishes to access some other thread's data, the first 

thread is unable to do so directly. Instead, the first thread must communicate with the 

second thread, so that the second thread performs the operation on behalf of the first, or, 

alternatively, migrates the data to the first thread. 

Data ownership might seem arcane, but it is used very frequently: 

1. Any variables accessible by only one CPU or thread (such as auto variables in C 

and C++) are owned by that CPU or process. 

2. An instance of a user interface owns the corresponding user's context. It is very 

common for applications interacting with parallel database engines to be written as 

if they were entirely sequentid programs. Such applications own the user interface 

and his current action. Explicit parallelism is thus confined to the database engine 

itself. 

3. Parametric simulations are often trivially parallelized by granting each thread own- 

ership of a particular region of the parameter space. 



If there is significant sharing, communication between the threads or CPUs can result in 

significant complexity and overhead. However, in situations where no sharing is required, 

data ownership achieves ideal performance. Such situations are commonly referred to as 

"embarassingly parallel". 

Parallel Fast path 

The idea behind the Parallel Fastpath design pattern is to aggressively parallelize the 

common-case code path without incurring the complexity that would be required to ag- 

gressively parallelize the entire algorithm. You must understand not only the specific 

algorithm you wish to parallelize, but also the workload that the algorithm will be sub- 

jected to. Great creativity and design effort is often required to construct a parallel 

fastpath. 

Parallel fastpath combines different patterns (one for the fastpath, one elsewhere) and 

is therefore a template pattern. The following instances of parallel fastpath occur often 

enough to warrant their own patterns: 

1. Reader/Writer Locking (5.2.2). 

2. Pure RCU (5.2.3). 

3. Reader-Writer-Lock/RCU Analogy (5.2.5). 

4. RCU Existence Locks(5.2.4). 

5. RCU Readers With NBS Writers (5.2.6). 

6. Hierarchical Locking ([66]). 

7. Resource Allocator Caches ([66, 801). 

ReaderIWriter Locking 

If synchronization overhead is negligible (i-e., the program uses coarsegrained parallelism), 

and only a small fraction of the critical sections modify data, then allowing multiple readers 



to proceed in parallel can greatly increase speedup. Writers exclude both readers and each 

other. 

Reader/writer locking is a simple instance of asymmetric locking. Snaman [I121 de- 

scribes a more ornate six-mode asymmetric locking design used in several clustered sys- 

tems. Asymmetric locking primitives can be used to implement a very simple form of the 

Observer Pattern [28]-when a writer releases the lock, all readers are notified of the 

change in state. 

Critical-Section Fusing 

If the overhead of the code between two critical sections is less than the overhead of 

the synchronization primitives, fusing the two critical sections will decrease overhead and 

increase speedups. 

Critical-section fusing is a meta-pattern that transforms Data Locking into Code Lock- 

ing and Code Locking into Sequential Program. In addition, it transforms more-aggressive 

variants of Code Locking and Data Locking into less-aggressive variants. 

Critical-section fusing is the inverse of Critical-Section Partitioning. 

Critical-Section Partitioning 

If the overhead of the non-critical-section code inside a single critical section is greater than 

the overhead of the synchronization primitives, splitting the critical section can decrease 

overhead and increase speedups. 

Critical-section partitioning is a meta-pattern that transforms Sequential Program into 

Code Locking and Code Locking into Data Locking. It also transforms less-aggressive 

variants of Code Locking and Data Locking into more-aggressive variants. 

Critical-section partitioning is the inverse of Critical-Section Fusing. 

5.2.3 Pure RCU 

Pure RCU describes how to apply RCU to speed up read-only accesses in cases where stale 

and inconsistent data may be tolerated. This pattern is especially usefuI in cases where 

all outstanding interrupt handlers must complete before an update may be finalized. 



Problem: How can programs that do not require consistency and freshness guarantees 

improve their performance and/or reduce their complexity? 

Context: An existing program that uses locking or non-blocking synchronization, but 

has the following properties: 

1. Runs in an environment consisting of short, quickly completed units of work, for 

example, an operating system kernel, a server application, or an event-driven real- 

time system. 

2. Can tolerate stale data, perhaps by rejecting it as part of higher-level processing. 

3. Can tolerate inconsistent data, perhaps requiring that readers reference a given data 

item only once and that writers make atomic updates. 

These properties can be tolerated in a surprisingly large number of situations, and many 

less-tolerant algorithms may be easily transformed to permit Pure RCU to be used, as 

described in Section 5.3. Examples of situations that tolerate stale and inconsistent data 

include routing tables, data structures maintaining hardware and software configuration 

information, decision-support heuristics, and mathematical algorithms with convergence 

checks. 

Forces: 

a Read-to-Write Ratio (+ + +): Pure RCU not only permits read-side parallelism, but 

in addition incurs zero read-side synchronization overhead. This permits Pure RCU 

to offer excellent performance in read-mostly situations. 

a Speedup (+ + +): Since readers proceed in parallel, very high speedups are possible. 

a Contention (++): Since readers contend neither with each other nor with writers, 

contention is low. 

a Overhead (++): Read-side code requires no synchronization primitives of any kind, 

though read-side memory barriers are required on DEC Alpha, due to its extremely 

weak memory-consistency model, as described in Appendix B on Page 322. 



Complexity (-?): The Pure RCU approach can add some complexity in many cases, 

but actually simplifies the following aspects due to the fact that readers need acquire 

no locks: 

1. Locking hierarchies. 

2. Handling of deadlock issues. In particular, non-maskable interrupts may use 

Pure RCU in a very natural manner. 

3. Existence locks, which may often be eliminated entirely. 

Solution: Use Pure RCU to improve speedups and, in some cases, reduce complexity 

of programs that rarely modify shared data. Pure RCU is not suEcient for the hashed 

lookup table described in Section 5.1 due to the need to provide memory barriers, instead, 

apply the Reader-Writer-Lock/RCU Analogy pattern from Section 5.2.5. 

Pure RCU can be best illustrated by an interrupt-shutdown problem. Suppose a 

networking device is in operation, and that there are a number of dynamically allocated 

data structures used by that device's interrupt handlers. The device's interrupts are 

turned off as part of the shutdown procedure, but on a multiprocessor, the handlers for 

earlier interrupts from that device may still be executing. How can we know when it is 

safe to free up the interrupt handler's data structures without requiring each interrupt to 

undertake an expensive lock a ~ ~ u i s i t i o n ? ~  

The Pure RCU solution to the interrupt race problem is to: 

1. Turn off the device's interrupts. 

2. If necessary, wait for any interrupts propagating through the device to reach the 

CPU (this is often accomplished either by a read from the device's registers or by a 

device reset). 

3. Use synchronizekernel0 to block for one grace period. At the end of the grace 

period, all earlier interrupts must have completed. 

3Since devices axe shut down infrequently, the shutdown procedure can incur substantial overhead. In 
contrast, interrupts occur quite frequently, and therefore tolerate only minimd synchronization overhead, 
preferably none at all. 



4. Thus, it is now safe to tear down and free up data structures accessed by that device's 

interrupt handlers. 

This same approach may be used to handle rare changes in mode of operation [I l l ] ,  for 

example, changing to recovery mode in a cluster after node failure. 

Without RCU, complex and inefficient locking schemes must be imposed on interrupt 

handlers in order to be able to reliably shut down interrupts and free up the relevant data 

structures [30]. 

Resulting Context: A program that allows interrupt handlers to proceed safely, with- 

out needing to perform high-overhead synchronization operations. Writers will run concur- 

rently with readers, so that readers may see inconsistent intermediate states. In situations 

where this is a problem, it may be resolved using one of the design patterns described in 

Section 5.3 on Page 159. 

Design Rationale: If a program is rarely modifying a data structure, why should the 

readers be required to use expensive synchronization operations to handle the rare case of 

updates? 

Example Uses: Pure RCU is used by 

1. DYNIX/ptx's LAN driver to mediate races between LAN device shutdown and 

packet-reception interrupts from that device [73]. 

2. The Linux 2.6 kernel's IPMI and NMI handlers, the latter of which is described in 

detail in Section 6.3 on Page 211. 

3. Linux's moduIe-unloading code, both in the 2.6 kernel and in the 2.4based SuSE 

7.3 Update and United Linux kernels, as described in Section 6.4 on Page 213. 

4. K42's hot-swapping infrastructure [lo]. 



5.2.4 RCU Existence Locks 

RCU Existence Locks defer fieeing of data-structure elements so that readers may traverse 

pointers from one element to the next without holding explicit "existence locks" that would 

otherwise be required to ensure that the target element was not prematurely freed. RCU 

Existence Locks can greatly simplify locking designs, since explicit existence locks can be 

complex and prone to deadlock situations [30]. 

Problem: How can complex existencelocking or referencecounting designs be simpli- 

fied? 

Context: An existing program that uses locking or reference counts to ensure that data 

structures are not prematurely recycled. 

Forces: 

Read-to-Write Ratio (+ + +): Expensive read-side locking and reference counting is 

eliminated. 

Overhead (++): The overhead of read-side locks and reference counts is reduced. 

Speedup (+): Elimination of read-side locking and reference counting can eliminate 

some scaling bottlenecks. 

Contention (+): Contention of read-side locks is reduced, either by acquiring them 

less often or by no longer performing expensive reference counting in their critical 

sections. 

Complexity (+): The severity of deadlock issues is reduced by having fewer lock 

acquisitions, and complex reference-count interactions are eliminated. 

Solution: Suppose that a deletion primitive is needed for the hash-table solution pre- 

sented in the Reader-Writer-Lock/RCU Analogy pattern in Section 5.2.5 on Page 153. The 

deleted entry must not be freed up until all concurrent readers have finished with that 



entry. The usual way to accomplish this is to require the readers to use explicit existence 

locks or reference counts, both of which impose expensive synchronization operations on 

the readers. 

An alternative is to use the RCU synchronizekernel 0 primitive as  shown in Fig- 

ure 5.4, which prevents the entry from being freed until all racing readers have completed 

their search. 

1 /* 
2 * Delete a looktab element. 
3 * Return TRUE if successful, 
4 * FALSE if not found 
5 */ 
6 
7 int 
8 looktab-deletecint key) 
9 C 
10 struct looktab **p; 
11 struct looktab *q; 
12 
13 spin~lock(&looktab~mutex) ; 
14 p = &looktab-headCL0OKTAB-HASHckey 11 ; 
15 while (*p != NULL) 
16 if ((*PI->key = key) C 
17 q = *p; 
18 *p = (*PI->next; 
19 spin~unlock(klooktab,mutex); 
20 synchronize-kamelo; 
21 kfree(q) ; 
22 return (TRUE); 
23 3 
24 p = &(*PI->next; 
25 3 
26 spin~unlock(&looktab~mutex) ; 
27 return (NULL); 
28 3 

Figure 5.4: RCU Existence Locks 

Resulting Context: A program where readers may proceed without synchronization 

primitives, but elements may be concurrently deleted safely, without need for explicit 

existence locks or reference counts. Readers may see stale data, and the transformational 

design patterns presented in Section 5.3 may be used to address this if required. 

Design Rationale: Deferring destruction of data structures until all readers are known 

to be done with them eliminates any need for complex existence locking or reference 



counting schemes. As the K42 and Tornado experiences have demonstrated, eliminating 

existence locks in turn greatly reduces or even eliminates the need for complex locking 

hierarchies and deadlock avoidance [30], thereby greatly simplifying the operating system's 

implementation. 

Example Uses: RCU Existence Locks is used as follows: 

1. The Linux 2.6 kernel's System V IPC implementation, described in Section 6.1 on 

Page 182. 

2. The Linux 2.6 kernel's directory-entry-cache implementation, as described in Sec- 

tion 6.2 on Page 195. 

3. The Linux 2.6 kernel's IP route cache, described by McKenney et al. [78]. 

4. The Linux tasklist-lock patch, described in Section 6.5 on Page 213. 

5. The Linux FD management patch, described in Section 6.6 on Page 218. 

6. K42's non-blocking hash tables, as described in Section 6.7 on Page 221. 

7. K42's hot-swapping infrastructure [lo]. In addition RCU Existence Locks is used 

pervasively throughout the K42 research operating system. 

5.2.5 Reader- Writer-Lock/RCU Analogy 

Reader-Writer-Lock/RCU Analogy describes how to convert an existing reader-writer- 

lock-based algorithm to use RCU, but only in cases where stale and inconsistent data may 

be tolerated. 

Problem: How can programs that are experiencing excessive read-side contention and 

cache thrashing improve their performance? 

Context: An existing program that uses reader-writer locking, and has the following 

properties: 



1. Runs in an environment consisting of short, quickly completed units of work. 

2. Can tolerate stale data, perhaps by rejecting it as part of higher-level processing. 

3. Can tolerate inconsistent data, perhaps by doing only atomic updates. 

Forces: 

Read-to-Write Ratio (+ + +): Reader-Writer-Lock/RCU Analogy not only permits 

read-side parallelism, but in addition incurs zero read-side synchronization overhead. 

This permits Reader-Writer-Lock/RCU Analogy to offer excellent performance in 

read-mostly situations. 

Speedup (+ + +): Since readers proceed in parallel, very high speedups are possible. 

a Contention (++): Since readers contend neither with each other nor with writers, 

read-side contention is low. 

a Overhead (++): Read-side code requires no synchronization primitives of any kind 

(though read-side memory barriers are required on DEC Alpha, due to its extremely 

weak memory-consistency model). 

a Complexity (0): As is shown below, this pattern does a one-for-one substitution of 

RCU primitives for reader-writer locking primitives, so the structure of the code 

remains the same. However, since readers no longer acquire locks, the potential for 

deadlock decreases. This is balanced by the need to consider races between readers 

and writers. 

Solution: Although RCU has been used in a great many interesting and surprising ways, 

one of the most straightforward is as a replacement for reader-writer locking. This section 

demonstrates this replacement in the Linux 2.6 kernel. Figure 5.5 shows locking for search, 

and Figure 5.6 shows locking for update. 

Note that searches can race with updates, so the update must be carried out in such a 

manner that all intermediate states are safe to search. If necessary, use the transformation 

design patterns in Section 5.3 in order to make update algorithms meet this requirement. 



1 /* 
2 * Look up a looktab element and 
3 * examine it. 
4 */ 
5 
6 rcu-read-lock0 ; 
7 p = looktab-search(mykey) ; 
8 
9 /* 
10 * insert code here to examine 
11 * the element. 
12 */ 
13 
14 rcn-read-unlock0 ; 

Figure 5.5: RCU Read-Side Code 

I /* 
2 * Global lock for struct looktab 
3 * manipulations. 
4 */ 
5 
6 spinlock-t looktab-mutex; 
7 
8 . .  . 
9 
10 /* 
11 * Look up a looktab element and 
12 * examine it. 
13 */ 
14 
15 spin-lock(&looktab-mutex); 
16 p = looktab-search(mykey); 
17 
18 /* 
19 * insert code here to update 
20 * the element. 
21 */ 
22 
23 spin~unlock(&looktab~mutex); 

Figure 5.6: RCU Write-Side Locking 



The Reader- Writer-Lock /RCU Analogy substitutes primitives as shown in Table 5.1. 

The asterisked primitives are no-ops in non-preemptible kernels; in preemptible kernels, 

they suppress preemption, which is normally an extremely cheap operation on the local 

task structure. Note that since neither rcuread-lock0 nor rcuread-unlock block irq or 

softirq contexts, it is necessary to add primitives for this purpose where needed. For exam- 

ple, readlock-irqsave must become rcu.readlock0 followed by loca l irq-save( ) .  

The last entry for k f r e e 0  is strictly speaking from the RCU Existence Locks pattern, 

but is almost always combined with the Reader-Writer-Lock/RCU Analogy. 

Table 5.1: Reader-Writer-Lock/RCU Substitutions 

1 Reader-Writer Lock 1 RCU I 

Although this pattern can be quite compelling and useful, there are some caveats: 

rwlock-t 
readlock () 
read-unlock 0 
writelock() 
write-unlock0 
list-addo 
list-add-tail() 
list-dele 
list2 or-each() 
kf ree () 

1. Read-side critical sections may see "stale data," that has been removed from the 

spinlock-t 
rcuxeadlock () * 
rcuxead-unlock0 * 
spinlock 0 
spin-unlock 0 
l is taddrcu()  
list-add-tail_rcu() 
l ist-delrcu() 
list2 or-each_rcu() 
call_rcu(kf reel 

list but not yet freed. There are some situations (e.g., routing tables for best-effort 

* no-op unless CONFIGPREEMPT, in which case 
preemption is suppressed 

protocols) where this is not a problem. In other situations, the transformational 

design patterns described in Section 5.3 may be used to render the algorithm tolerant 

of stale data. 

2. Read-side critical sections may run concurrently with write-side critical sections, 

and thus see inconsistent data due to an in-progress update. In situations where 

this is a problem, the transformational design patterns described in Section 5.3 may 

be applied to the algorithm to render it tolerant of stale data. 



3. The grace period will delay freeing of memory, which means that both the memory 

and the cache footprint of the code will be somewhat larger when using RCU than 

when using reader-writer locking. 

Note that this pattern may be applied incrementally, so that critical read-side code uses 

RCU, but the remainder of the read-side code still acquires the reader-writer lock. For 

example, Section 6.5 on Page 213 presents incremental application of this pattern to the 

Linux tasklist structure. 

Where it applies, this transformation pattern can deliver full parallelism with almost 

no increase in complexity. For example, Section 6.1 on Page 182 shows how applying this 

transformation pattern to System V IPC yields order-of-magnitude speedups with a very 

small increase in code size and complexity. 

Resulting Context: A program very similar to its reader-writer-locked predecessor, 

but with read-side code free of expensive synchronization operations. 

Design Rationale: Do not incur the expense of excluding writers when it is not neces- 

sary. 

Example Uses: Reader-Writer-LockjRCU Analogy is used heavily in DYNIXjptx. It 

is also used in the Linux 2.6 kernel: 

1. The System V IPC implementation, described in Section 6.1 on Page 182. 

2. The directory-entry cache (dcache), described in Section 6.2 on Page 195. 

3. The IP route cache, described by McKenney et al. [71]. 

4. The tasklist patch described in Section 6.5 on Page 213. 

5. The FD management patch described in Section 6.6 on Page 218. 

In most of these cases, Reader-Writer-LockjRCU Analogy is used in combination with 

RCU transformational design patterns. For example, the xcu  variants of the list macros 

use Ordered Update With Ordered Read by adding internal memory barriers as needed on 



particular CPU architectures. As noted earlier, many uses of Reader-Writer-Lock/RCU 

Analogy change kfreeo calls to use callrcu0 in order to defer the free, in accordance 

with the RCU Existence Locks design pattern. 

5.2.6 RCU Readers With NBS Writers 

RCU Readers With NBS Writers uses non-blocking synchronization rather than locking 

for updates. However, use of RCU simplifies the update code by guaranteeing that deleted 

elements will not be freed while readers hold references to them. 

Problem: How can programs with complex non-blocking synchronization (NBS) be sim- 

plified? 

Context: An existing program that uses NBS on read-mostly data structures. 

Forces: 

Read-to-Write Ratio (+ + +): Expensive read-side synchronization operations are 

eliminated. 

Overhead (++): Eliminating read-side synchronization operations also eliminates 

their overhead. 

Complexity (++): Since the underlying NBS algorithm no longer needs to explicitly 

maintain existence criteria, the algorithm is greatly simplified. 

Speedup (+): Eliminating read-side synchronization operations can eliminate some 

scaling bottlenecks. 

Contention (+): Contention of underlying LL/SC or compare-and-swap operations 

against the cache lines that they operate on is reduced. 

Solution: The read-side NBS code is replaced by code that traverses the relevant data 

structures as if they were statically allocated. NBS code can be quite complex, so the full 

solution for hash tables is described in Section 6.7 on Page 221. 



Resulting Context: A program where readers may proceed without synchronization 

operations, but with writers using NBS algorithms. Readers may see stale data, but the 

transformational design patterns presented in Section 5.3 may be used to address this if 

required. 

Design Rationale: Deferring destruction of data structures until all readers are known 

to be done with them eliminates any need for complex existence-maintenance schemes. 

Example Uses: RCU Readers With NBS Writers is used by K42's non-blocking hash- 

table implementation, which is describe in Section 6.7 on Page 221. Since there is only 

one use, this is a provisional pattern. 

5.3 Patterns for Transforming Algorithms to RCU 

The basic RCU infrastructure has comparatively limited applicability. This chapter presents 

patterns that greatly extend RCU's reach by transforming algorithms to tolerate RCU's 

stale-data and inconsistency properties. These tranformation patterns enable RCU to be 

used on a wide variety of real-world problems, as will be shown in Chapter 6. This author 

mined the following transformational patterns from earlier uses of RCU by myself and 

others: 

1. Mark Obsolete Objects, 

2. Substitute Copy For Original, 

3. Impose Level Of Indirection, 

4. Ordered Update With Ordered F b d ,  

5. Global Version Number, and 

6. Stall Updates. 

Each of these patterns is discussed in a later section. 

This wide variety of transformational patterns will usually require ad hoc examples, 

but, where applicable, the example described in Section 5.1 will be used. 



5.3.1 Forces 

Although the forces described in Section 5.2.1 still apply, the more specific set of forces 

described below is better suited for this lower-level pat tern language. 

The purpose of this pattern language is to transform algorithms into a form more 

amenable to use with RCU, by making them tolerant of stale and inconsistent data, or by 

making them perform atomic updates to prevent inconsistent data from ever appearing. 

In some cases, these transformations come at a cost, in the form of (preferably lightweight) 

read-side synchronization or mutual-exclusion techniques or read-side memory barriers. 

The forces, which in this case can also be thought of as attributes, are thus as follows: 

Fresh: Since RCU readers do not exclude writers, readers can find themselves referencing 

old versions of the data, or "stale data". A pattern that addresses this force therefore 

transforms the algorithm into a form that rejects stale data, so that only fresh data 

is actually used. For example, in Mark Obsolete Object, readers reject any object 

that has been marked as obsolete. 

Consistent: Again, RCU readers do not exclude writers, so that readers may see in- 

consistencies if writers make non-atomic changes or if readers access the same data 

multiple times. A pattern that addresses this force transforms the algorithm into 

a form that sees only consistent data, either by making changes atomically (for ex- 

ample, Substitute 'Copy For Original) or by rejecting inconsistencies (for example, 

Global Version Number). 

Atomic: Atomicity prevents some types of inconsistency. A pattern that addresses this 

force transforms the algorithm from a form in which readers can see partially com- 

pleted updates into a form where updates appear atomic to readers. 

Mutex: The presence of this force indicates that readers must perform some sort of 

mutual exclusion, involving something like locking or atomic instructions. This 

mutual exclusion will be reasonably light weight, for example, Mark Obsolete Objects 

requires per-element mutual exclusion but no global locks. Nonetheless, the added 



read-side overhead will cause the resulting program to more poorly resolve the upper- 

level Read-to-Write Ratio, Speedup, and Overhead forces. 

Memory Barrier: The presence of this force indicates that readers must execute a 

memory-barrier instruction on CPUs with weak memory consistency models. For 

example, in the Global Version Number pattern, the readers must use memory bar- 

riers to ensure that the first snapshot of the version number is taken before any other 

accesses, and that the last snapshot is taken after any other accesses. Again, the 

added read-side overhead will cause the resulting program to more poorly resolve 

the upper-level Read-to-Write Ratio, Speedup, and Overhead forces. In addition, 

the memory barriers result in additional Complexity. 

The Fresh and Consistent forces permit operation with RCU, while the Atomic force 

permits additional transformational patterns, such as Global Version Number, to be ap- 

plied. 

5.3.2 Mark Obsolete Objects 

Mark Obsolete Objects transforms an algorithm that cannot tolerate stale data into one 

that is able to do so by marking deleted elements. Readers can then ignore any elements 

that are so marked. 

Problem: How can an algorithm that cannot tolerate stale data be made to work with 

RCU? 

Context: An algorithm that uses a coarsely locked search structure mapping to elements 

that can be protected via Data Locking, where it is desireable to eliminate contention or 

cache thrashing on the lock protecting the search structure. The search structure is thus 

a read-mostly mapping to often-written data elements. 

Forces: 

Fresh, since data elements marked ''obsolete" will be ignored. 



Not Consistent in general. Consistent if data elements are accessed only singly. If 

consistency across multiple data elements is required, use the Substitute Copy For 

Original on the whole group of data elements, or use Stall Updates. 

Not Atomic though atomic update is often provided by the Data Locking pattern. 

Uses Mutex primitives through the Data Locking pattern, in order to reliably sam- 

ple the "obsolete" marking. 

Uses Memory Barrier primitives to reliably sample the "obsoleten marking. 

Solution: Use RCU to replace the lock on the search structure. If a reader finds an 

element marked obsolete, it must act as if the search failed, as shown in Figure 5.7 and 

5.8. The fact that the reader holds the element's mutex ensures that it will not be marked 

obsolete while it is being accessed. 

1 /* Global lock for struct looktab updates. */ 
2 
3 spinlock-t my-looktab-mutex; 
4 struct looktab *my-1ooktabCLOOKTm--HI; 
5 
6 . .  . 
7 
8 /* Look up a looktab element and examine it. */ 
9 
10 p = looktab,search(my~looktab, mykey) ; 
11 if (p - NULL) I 
12 /* insert code here to handle search failure. */ 
13 3 else I 
14 /* insert code here to examine or update the element. */ 
15 3 
16 spin-unlock(&p->mutex); 

Figure 5.7: Mark Obsolete Object Reader 

However, this read-side access algorithm requires that the lookt absearch ( 1 function 

acquire the element's mutex, as shown in Figure 5.8. This increased overhead is usually 

more than made up for by the removal of the lock guarding the search structure. 

Elements must be marked obsolete upon deletion, as shown in Figure 5.9. Note that 

the synchronizehernel0 invocation is required in order to ensure that the deleted 



1 struct looktab * 
2 looktab-search(int key) 
3 C 
4 struct looktab *p; 
5 
6 p = looktab-headCLOOKTAB-HASH(key)] ; 
7 while (p != NULL) .( 
8 if ((p->key = key) &k 
9 !p->obsolete) i 
10 spin-lock(&->mutax) ; 
11 return (p); 
12 3 
13 p = p->next; 
14 3 
15 return (NULL); 
16 3 

Figure 5.8: Mark Obsolete Object Search 

element remains in place until all concurrent readers drop any references to it. Note also 

the use of the global lock to serialize concurrent deletions. 

Resulting Context: A program that rejects stale data, thus allowing use of RCU for 

the search structure. 

Design Rationale: Explicitly marking obsolete data removes the need to lock the search 

structure, thereby improving scalability and performance. 

Example Uses: The Mark Obsolete Objects pattern is used in the: 

1. Linux 2.6 kernel's System V IPC implementation, as described in Section 6.1 on 

Page 182. 

2. K42 hash table implementation, as described in Section 6.7 on Page 221. 

It has also seen much use in non-open environments. 

5.3.3 Substitute Copy For Original 

Substitute Copy For Original transforms an algorithm that cannot tolerate inconsistent 

data into one that can, by hiding non-atomic updates behind an atomic substitution 

operation. 



1 /* 
2 * Delete a looktab element. 
3 * Return TRUE if successful. 
4 * FALSE if not found 
5 */ 
6 
7 int 
8 looktab-delete(int key) 
9 i 
10 struct looktab **p; 
11 struct looktab *q; 
12 
13 spin~lock(&looktab~mtex);  
14 p = klooktab-head[~00KTAB-HASH(key)] ; 
15 vhile (*p != NULL) 
16 if ((*PI->key = key) i 
17 q ' *P; 
18 *p = (*p)->next; 
19 spin-lock(Bp->mutex) ; 
20 q->obsolete = TRUE; 
21 spin-unlock(kp->mutex) ; 
22 spin~unlock(klooktab~mutex) ; 
23 synchronize-kernel(); 
24 kf ree (q) ; 
25 return (TRUE); 
26 1 
27 p = &(*PI->next; 
28 1 
29 spin~unlock(&looktab~mutex) ; 
30 return (NULL); 
31 3 

Figure 5.9: Mark Object Obsolete Upon Deletion 



Problem: How do you make complex updates appear atomic to readers? 

Context: A program that requires complex updates, but also needs lock-fiee searches 

in order to improve performance. 

Forces: 

Not Fresh, since readers might still be accessing the original after the copy has been 

substituted. 

Consistent, since the copy is initialized to be consistent before being substituted, 

but only as long as readers dereference the pointer to the data at  most once per 

read-side critical section. 

Atomic, since writes of aligned pointers are atomic. 

Does not use Mutex since writes of aligned pointers are atomic. 

Does not use Memory Barrier, except on DEC Alpha, since there is a data d e  

pendency between accessing the pointer and dereferencing it. See Appendix B on 

Page 322 for more details. 

Solution: The solution is to allocate a new element, copy the old element to it, perform 

the updates on the new element, execute any needed memory barrier, and substitute the 

new element for the old one, as shown in Figure 5.10. Finally, after a grace period, the old 

element is freed up. Readers will see either the old element, or the new one, but nothing 

in between. Readers need neither mutual exclusion nor memory barriers, except on DEC 

Alpha, where memory barriers are required as discussed in Appendix B on Page 322. 

Figure 5.11 shows the corresponding read-side code. The do-while loop retries the 

access should stale or inconsistent data be detected. The body of the loop first takes a 

snapshot of the foop pointer, then executes an Alpha-only memory barrier. On other 

CPUs, the data dependency dereferencing the foop pointer acts as an implicit memory 

barrier, so that smpxead-barrier-depends 0 is a no-op on these other CPUs. The code 

then does whatever accesses are required, followed by another memory barrier, which 



I /* Global pointer that serves as commit point. */ 
L 

3 struct foo *foop; 
4 . .  . 
5 
6 /* First allocate and copy from old. */ 
7 
8 p = kmalloc(sizeof (*PI); 
9 *p = *foop; 
10 
11 /* Modify any required fields to create new. */ 
12 
13 p->field1 = valuel; 
14 p->field2 = value2; 
15 
16 /* Update: issue memory barrier. */ 
17 
18 smp-mb0; 
19 
20 /* Update: update pointer. */ 
21 
22 spin-lock(klooktab_mutex) ; 
23 q = foop; 
24 foop = p; 
25 spin~unlock(&looktab~mutex) ; 
26 synchronize-kernel0 ; 
27 kfreecq); 

Figure 5.10: Substituting a Copy For Original 

ensures that the do-while's condition will not be evaluated until after the the accesses are 

complete. The do-while condition forces re-execution if the pointer changed during the 

access. 

This technique may be applied to larger multilinked structures, though the cost of the 

updates increases with size. If there are many possible pointers to the structure being 

replaced, then all the pointers must be updated to point to the new copy. If a reader can 

traverse multiple pointers into the structure being substituted, then that reader might 

see different versions on different traversals. This pattern is therefore most applicable to 

algorithms that perform acyclic traversals of linked data structures. 

Resulting Context: A program where updates are atomic, so that RCU may be used 

safely. 

Design Rationale: The key concept is to hide complex updates behind an atomic 

pointer update, transforming an algorithm with non-atomic updates into one with atomic 



1 do C 
2 
3 /* Snapshot pointer. */ 
4 
5 p=foop; 
6 
7 /* 
8 * Memory barrier on Alpha, no-op 
9 * on other CPUs. 
10 */ 
I I 
12 smp-read-barrier-depends 0 ; 
13 
14 /* access fields. */ 
15 
16 /* Memory barrier. */ 
17 
18 smp-mb0; 
19 
20 /* Update: update pointer. */ 
21 
22 ) while (p != foop); 

Figure 5.11: Substituting a Copy For Original R e d  

updates. 

Note that Herlihy [42] suggests a similar pattern to switch between a pair of statically 

allocated structures. This approach presents some challenges when it is necessary to 

update the structure before all readers have dropped references to it, in which case, use 

of dynamic allocation as shown in Figure 5.10 can be helpful. [81, 1101. 

The overall effect is similar to that of the close-consistency found in the Andrew File 

System (AFS) [103], in that the update is invisible until the substitution, just like AFS 

modifications are not guaranteed to be visible until the file closes. 

Example Uses: The Substitute Copy For Original pattern has been used in: 

1. The Linux 2.6 kernel's System V IPC implementation, as described in Section 6.1 

on Page 182. 

2. The FD management patch, as  described in Section 6.6 on Page 218. 

In addition, a similar pattern is used in non-blocking synchronization for the same 

purpose, namely causing a complex update to appear to be atomic [36, 421. 



5.3.4 Impose Level Of Indirection 

Impose Level Of Indirection transforms an algorithm into a form to which the Substitute 

Copy For Original design pattern may be applied by grouping related data into one data 

element which may then be easily substituted. 

Problem: How can an algorithm that makes complex updates to widely scattered data 

be modified so that the updates appear to be atomic to readers? 

Context: Programs that make complex updates to widely scattered data, but where it 

is desired to use RCU to reduce read-side overhead and contention. 

Forces: 

Not Fresh, since readers might still be accessing the original after the copy has been 

substituted. 

Consistent, since the copy is initialized to be consistent before being substituted. 

Atomic, since writes of aligned pointers are atomic. 

Does not use Mutex, since writes of aligned pointers are atomic. 

Does not use Memory Barrier, except on DEC Alpha, since there is a data de- 

pendency between accessing the pointer and dereferencing it. 

Solution: Group the updated fields into a dynamically allocated data structure (or, if 

need be, group of data structures). This then allows the Substitute Copy For Original 

pattern to be applied in order to make the updates appear to be atomic. 

Resulting Context: A program where updates are atomic, so that RCU may be used 

safely. 

Design Rationale: Locality, locality, locality! 



Example Uses: The Impose Level Of Indirection pattern has been considered for use 

in the Linux 2.6 kernel's System V IPC implementation, as discussed in Section 6.1 on 

Page 182. A similar pattern is used in non-blocking synchronization for the same pur- 

pose [36, 421. 

5.3.5 Ordered Update With Ordered Read 

Ordered Update With Ordered Read constrains the ordering of both the update and the 

read operations so that readers always see consistent data. 

Problem: Suppose a program does not have atomic updates, but does have updates 

that can be made in a dependent sequence so that the results of each step of the sequence 

is acceptable to readers. How can this program be made safe for RCU? 

Context: Program as noted above, where it is necessary to use RCU to reduce read- 

side overhead or contention. A dependent sequence is one in which the ordering prevents 

errors. For example, suppose an array and its size are stored separately, and that the 

array is copied to a new location with additional storage. It is an error for a reader to 

see the new size and the old array, because the reader could then index off the end of 

the old array, possibly clobbering unrelated data. All other combinations are permissible, 

however. 

Forces: 

Not Fresh, since readers can see old data-only the ordering is guaranteed. 

Consistent, given the dependent-sequence definition of consistency. 

Not Atomic, since updates are made in sequence. 

Does not use Mutex. 

Uses Memory Barrier to enforce the ordering. 



Solution: Force ordering of both the updates and the reads using memory barriers, as 

shown for the arraylsize example in Figure 5.12. Updaters must use some form of mutual 

exclusion. 

I /* Array update. */ 
2 
3 newarray = kmalloc(sizeof (*newarray) * newsize) ; 
4 spin-lock(&array-lock); 
5 oldarray = array; 
6 for (i = 0; i < size; i++) C 
7 newarray Cil = arrayCi1; 
8 3 
9 for (i = size; i < newsize; i++) 
10 initialize(&newarray Cil) ; 
11 3 
12 smp-vmb0 ; 
13 array = newarray; 
14 smp-vmb0; 
15 size = newsize; 
16 spin-unlock(karray-lock) ; 
1 7 . . .  
18 
19 /* Array lookup. */ 
20 
21 cursize = size; 
22 smb-rmb(); 
23 curarray = array; 
24 if (idx >= cursize) i 
25 /* handle index out of range. */ 
26 3 else C 
27 /* access element. */ 
28 3 

Figure 5.12: Ordered Update With Ordered Read 

Resulting Context: Program where readers see sufficiently consistent data to avoid 

failures. This program may have many memory-barrier instructions, which may hamper 

readability. One way of avoiding this is to use Pure RCU, placing a synchronizekernel 0 

call in place of the smp-mb() primitives on lines 12 and 1 4 , ~  rendering the smpmb0 

unnecessary, but also substantially increasing the cost and latency of updates. Future 

work includes investigating a "memory-barrier shootdown" primitive, which may allow 

the same effect to be obtained in some circumstances at lower cost. 

4 ~ h e  effect of this is to replace the memory-barrier machine instruction provided by smp-wb0 with 
the synchronize_kernelO primitive, which blocks waiting for a full grace period to elapse. This change 
would also require that the spinlocks on line 4 and 16 be replaced by sleeplocks. 



Design Rationale: Memory barriers are cheaper than synchronization primitives. 

Example Uses: Ordered Update With Ordered Read is used by: 

1. the Linux 2.6 kernel's System V IPC implementation, described in Sections 6.1 on 

Page 182, 

2. the Linux 2.6 kernel's directory-entry cache, described in 6.2 on Page 195, and 

3. the FD management patch, described in 6.6 on Page 218. 

5.3.6 Global Version Number 

Global Version Number transforms an algorithm into a form where it can tolerate both 

stale and inconsistent data by maintaining a global version number and also associating 

a version number with each element. Readers can then sample the global version number 

before and after the access, and retry the access if there was an intervening change. 

Problem: How does an algorithm using RCU ensure that a given read-only access to a 

data structure returns data that is both consistent and fresh? 

Context: An algorithm using RCU where all updates are atomic, and where these 

atomic updates dso atomically update a variable that can be used as a version num- 

ber. If there are non-atomic updates visible to the RCU-protected readers, then these 

updates must be rendered atomic, perhaps by using the Substitute Copy For Original or 

Impose Level Of Indirection patterns described in Sections 5.3.3 and 5.3.4, respectively. 

Forces: 

Fresh data ensured by retrying if there have been any updates during the access. 

a Consistent data ensured by retrying if there have been any updates during the 

access. 

Not Atomic. 



Does not use Mutex. 

a Uses Memory Barrier to ensure that the entire access is performed between the 

two checks of the global version number. 

Solution: The solution is to maintain a global version number that is incremented as 

part of each atomic update. Two uses of Global Version Number may be found in the 

Linux 2.6 kernel's directory-entry cache, as discussed in Section 6.2 on Page 195. 

Another approach is the non-blocking linked-list deletion algorithm presented by Cheri- 

ton [36], shown in Figure 5.13, but with memory barriers inserted as needed for machines 

without sequentially consistent memory models, and placed into a C function. 

This function requires a special list header in which to store the version number, shown 

in lines 1-4 of the figure. The do-while loop retries the deletion until successful. The label 

on line 13 retries in case of version-number mismatch. Line 14 provides for backoff in case 

of high contention. Line 15 takes a snapshot of the current version number, and line 16 

ensure that the operations on the following Lines are in fact executed after the version 

number snapshot is taken. Without this memory barrier, both the compiler and the CPU 

would be within their rights to reorder execution. The while-loop from lines 18 to 27 

searches the linked list to find the element e l t  that is to be deleted. The if-statement on 

line 19 would ordinarily be sufficient, but in this case, it could be fooled by concurrent 

list manipulations. Therefore, the version-number check on lines 21-23 is needed, as is the 

memory barrier on line 20, to prevent the check from being reordered. Only if the version 

numbers match will the return-statement on line 24 signaI failure. Otherwise, line 26 

advances to the next element in the list. Once the element is found, lines 28-30 attempt 

to atomically remove the element and increment the version number. If this fails, another 

pass through the loop retries. Otherwise, line 31 signals success by returning a pointer to 

the now-deleted element. 

Resulting Context: A program that rejects stale or inconsistent data, thus being 

amenable to use with RCU. 



I struct lookhead C 
2 struct looktab *lh-head; 
3 int lh-version; 
4 ) lookhead-t; 
5 
6 struct looktab * 
7 delete(1ookhead-t *list, struct looktab welt) 

8 C 
9 strnct looktab *p; 
10 int version; 
11 
12 do C 
13 retry: 
14 backoff IfNeededO ; 
15 version=list->a-version; 
16 smp-mb0; 
17 p = list->lh-head; 
18 while (p->next != elt) i 
19 if (p = NULL) C 
20 smp-mb0 ; 
21 if (version != list->lh-version) C 
22 goto retry; 
23 1 
24 return HULL; 
25 1 
26 p = p->next; 
27 3 
28 1 while ( !~c~s(t(list->lh-version), ~(p->next), 

29 version, elt, 
30 version+l, elt->next) ) ; 
31 return Celt); 
32 3 

Figure 5.13: Non-Blocking Global Version Number Update 



Design Rationale: The access succeeds only if there have been no updates. In the 

absence of updates, the data is guaranteed to be both fresh and consistent. 

Warning: it is all too easy to misapply this pattern. For example, it is not sufficient to 

update the data and version number separately, as  illustrated by the following sequence 

of events: 

1. Updater increments the version number. 

2. Reader accesses the version number. 

3. Reader accesses the data structure. 

4. Updater atomically updates the data structure. 

5. Reader continues accessing the data structure. 

6. Reader checks the value of the version number, finds a match, and erroneously 

believes that it has accessed a consistent copy of the data. 

7. Updater increments the version number. 

There are ways of repairing this bug, but they are beyond the scope of this dissertation. 

Example Uses: Global Version Number is used by the Linux directory entry cache 

(dcache) described in Section 6.2 on Page 195. Here, this pattern is combined with Data 

Locking to mediate access to the version number. However, in this case, "global" is a bit 

misleading, since each dentry structure has its own 'Lglobal" version number. 

Global Version Number is also used in the K42 hash-table implementation described 

in Section 6.7 on Page 221. This is an unusual use in that the "number" is a pointer that 

is updated to point to a new block of memory, rather than being incremented with each 

new version. Nonetheless, this pointer's role is that of a version number. 

Finally, as noted above, Global Version Number is used in Herlihy's non-blocking 

synchronization [42] and Cheriton7s Cache Kernel [36]. This kernel does not feature RCU, 

but its non-blocking synchronization primitives require the same transformation. 



5.3.7 Stall Updates 

Stall Updates prevents excessive update rates from starving readers in the Global Version 

Number pattern by stalling updates when excessive read-side retries have been executed. 

Problem: How do you prevent excessive update rates from starving readers in the Global 

Version Number pattern? 

Context: Program using RCU in conjunction with the Global Version Number pattern. 

Forces: 

Fresh because updates are stalled. 

Consistent because updates are stalled. 

Not Atomic unless other patterns are applied to make this so. 

Does not use Mutex unless acquiring a mutex is needed to stall updates. In most 

cases, setting a flag should su£Ece. 

Uses Memory Barrier in order to enforce ordering of global-sequence-number 

checks. 

Solution: Have readers use a flag to stall updates in case of repeated failure, as shown 

in Figures 5.14 and 5.15. Another way of stalling updates is simply to wait for a grace 

period to expire between any pair of consecutive updates. 

Resulting Context: A program that rejects stale or inconsistent data, thus being 

amenable to RCU, but which provides a high probability of readers' forward progress. 

Certainty of readers' forward progress can also be guaranteed, but this requires a more 

complex and costly solution. 

Design Rationale: If they are getting in your way, make them stop! 



1 /* Global pointer that serves as version number. */ 
2 
3 struct foo *foop; 
4 . . .  
5 
6 /* Update: first allocate and fill in new value. */ 
7 
8 uhile (stall-updates) ; 
9 p = kmalloc(sizeof(*p)); 
10 p->field1 = valuel; 
11 p->field2 = valuel; 
12 
13 /* Update: issue memory barrier. */ 
14 
15 smp-vmbO ; 
16 
17 /* Update: update pointer. */ 
18 
19 q = foop; 
20 foop = p; 
21 synchronize-kernel0 ; 
22 kfree (q) ; 

Figure 5.14: Stallable Update 

1 stalled-by-me = FALSE; 
2 for ( ; ; I  C 
3 
4 /* Snapshot pointer/version number. */ 
5 
6 p-foop; 
7 
8 /* Memory barrier on Alpha. */ 
9 
10 smp-read-barrier-depsnds () ; 
11 
12 /* access fields. */ 
13 
14 /* Memory barrier. */ 
15 
16 smp-rmb0; 
17 
18 /* Update: update pointer. */ 
19 
20 if (p = foop) i 
21 break; 
22 1 
23 if (!stalled-by-me) C 
24 atomic-inc(tstal1-updates); 
25 stalled-by-me = TRUE; 
26 > 
27 ) 
28 if (stalled-by-me) i 
29 stall-updates = FALSE; 
30 atomic-dec(&stall-updates) ; 
31 > 

Figure 5.15: Stalling Updates 



Table 5.2: Locking Design Pattern Force Index 
Speedup Contend Ovhd R/W Complex Pattern 
- - -  +++ +++  - - -  + + + Sequential Program (5.2.2) 

0 -- 0 --- ++ Code Locking (5.2.2) 

+ + 0 + -- Data Locking (5.2.2) 

+++ +++ +? + ? Data ownership (5.2.2) 
++ ++ ++ + - - Parallel Fastpath (5.2.2) 

++ + + +++ - ~ e a d e r / ~ r i t &   kin^ '(5.2.2) 
+++ ++ ++ +++ -? Pure RCU (5.2.3) + + ++ +++ + RCU Existence Locks (5.2.4) 
+++ ++ ++ +++ 0 Reader-Writer-Lock/RCU Analogy (5.2.5) 

+ + ++ +++ ++ RCU Renders With NBS Writers (5.2.6) 
0 - + 0 -- Critical-Section Fusing (5.2.2) 
0 + - 0 + Critical-Section Partitioning (5.2.2) 

ExampIe Uses: None known (but proposed for renames in dcache). 

5.4 Discussion 

The following two sections present an index of the locking design patterns and the RCU 

transformational design patterns. 

5.4.1 Index to Locking Design Patterns 

This section summarizes the locking design patterns with an index that compares and 

contrasts them, showing where each is most appropriate. The pattern listed in italics is a 

provisional pattern, because although it seems likely to be quite important, there is only 

one known use. Three uses are required for it to officially be considered a true pattern. 

Table 5.2 compares how each of the patterns resolves each of the forces. Plus signs 

indicate that a pattern resolves a force well. For example, Sequential Program resolves 

Contention and Overhead perfectly due to lack of synchronization primitives, and Com- 

plexity perfectly because sequential implementations of programs are better understood 

and more readily available than are parallel versions. 

Minus signs indicate that a pattern resolves a force poorly. Again, Sequential Program 

provides extreme examples with Speedup since a sequential program allows no speedup5 

and with Read-to-Write Ratio because multiple readers cannot proceed in parallel in a 

51f you run multiple instances of a sequential program in parallel, you have used Data Locking or Data 
Ownership instead of Sequential Program. 



Table 5.3: RCU Transformational Pattern Index , 

Y N N Y Y Mark Obsolete Objects (5.3.2) 
N Y Y N n Substitute Copy For Original (5.3.3) 
N Y Y N n Impose Level Of Indirection (5.3.4) 
N Y N N Y OrderedUpdateWithOrderedRead (5.3.5) 
Y Y N N Y GlobalVersionNumber(5.3.6) 
Y Y Y Y Y S ta l lU~da tes f5 .3 .7 )  

sequential program. 

Question marks indicate that the quality of resolution is quite variable. Programs 

based on Data Ownership can be extremely complex if CPUs must access each other's 

data. If no such access if needed, the programs can be as trivial as a script running 

multiple instances of a sequential program in parallel. 

See the individual patterns for more information on how they resolve the forces. 

5.4.2 Index to Transformational Patterns 

Table 5.3 shows an index of RCU transformational patterns. The first five columns record 

whether the pattern resolves the corresponding force, and the last column gives the name 

of the pattern. This name is italicized for patterns with fewer than three uses, indicating 

a provisional pattern that has not yet withstood the test of time. 

Entries marked with a lower-case "n" are "no" on all CPU architectures except for 

DEC Alpha. 

These two indices assist in determining when to apply RCU to a given algorithm, and 

which patterns are appropriate to a given situation. 



Chapter 6 

Selected Applications of RCU Design 

Patterns 

This chapter presents a few uses of RCU in the K42 and Linux operating system kernels, 

followed by a summary of uses of RCU in VMIXA, DYNIX/ptx, K42, and Linux. Each 

case identifies the patterns it uses. This author acted as architect and code reviewer for 

the Linux uses, and as reviewer for the K42 uses. In both cases, this author identified the 

patterns used. The designers and implementers are called out in each section. 

RCU has enjoyed greatly increased use over the past decade: 

1. Section 6.1 describes application of RCU to the Linux 2.6 kernel's System V IPC im- 

plementation, resulting in a 5% system-level improvement in a database benchmark 

running on a two-CPU system, and an order-of-magnitude improvement in a System 

V semaphore microbenchmark running on an eight-CPU system. The complexity of 

the modification was quite small, adding only 342 lines of code and deleting 191 for 

a net addition of 151 lines of code to the kernel. 

2. Section 6.2 gives an overview of the use of RCU in the Linux 2.6 kernel's directory- 

entry cache (dcache). This modification resulted in a 26% improvement in through- 

put on a system-level SDET-motivated multiuser benchmark, and illustrates the use 

of the Global Version Number design pattern. 

3. Section 6.3 covers use of RCU to enable dynamic NMI registry and unregistry in the 

Linux 2.6 kernel. This modification was quite simple compared to solutions based 



on traditional locking or non-blocking synchronization, and in addition completely 

eliminated read-side synchronization overhead. 

4. Section 6.4 looks at use of RCU to narrow a module-unloading race. This use 

illustrates the Pure RCU design pattern. 

5. Section 6.5 examines incremental use of RCU to eliminate a starvation condition 

in the Linux 2.6 kernel's g e t p i d - l i s t  0 function, which creates a list of PIDs for 

/proc. This change also resulted in a significant performance increase as measured 

by a SPEC SDET benchmark, and required only 13 lines added and 7 lines deleted 

for a six-line net addition of code to the kernel. This modification affects only this 

one code path; the other code paths continue to use locking. This remains a patch; 

it has not yet been accepted into the Linux kernel. 

6. Section 6.6 describes use of RCU to allow lock-free file-descriptor lookup in the Linux 

2.6 kernel. This change resulted in more than a 25% increase in throughput on the 

system-wide chat benchmark. However, a simpler optimization for single-threaded 

processes yielded even better results for that case. Although addition of RCU sped 

up the multithreaded case, it slowed down the more common single-threaded case 

compared to the simpler optimization. Work continues to construct an algorithm 

that speeds up the multithreaded case without slowing down the singlethreaded 

case. This section demonstrates a case that is particularly challenging to RCU. 

7. Section 6.7 shows how RCU may be combined with non-blocking synchronization 

to eliminate synchronization operations from read-side code and also eliminate the 

need for type-safe memory in a hash-table implementation in the K42 research 0s. 
This change resulted in a significant performance increase compared to the previous 

lock-based implementation. 

8. Section 6.8 summarizes VM/XA, Dynix/PTX, and K42 uses of RCU that were not 

described in the earlier sections, SuSE 7.3 Update (a Linux distribution) uses of 

RCU, and Linux 2.6 uses of RCU that were not described in the earlier sections. 





6.1 System V IPC 

This section describes how RCU was used to break up the global locks used by Linux's 

System V IPC primitives, as described in an earlier publication by myself and others [ll]. 

These locks guard the following: (1) mapping from IPC identifiers to corresponding 

kern-ipc-perm structures, (2) expanding the mapping arrays, and (3) individual IPC oper- 

ations. A straightforward modification would replace these global locks with reader-writer 

locks, using the Reader/Writer Locking pattern described in Section 5.2.2 on Page 146, 

allowing mapping operations to be performed in parallel. 

However, with the assistance of Dipankar Sarma and Maneesh Soni, Mingming Cao 

took the additional step of following the Reader-Writer-Lock/RCU Analogy described in 

Section 5.2.5 on Page 153, replacing the global locks with (1) RCU to guard the m a p  

ping arrays and (2) per-kern-ipc-perm locks to guard the IPC operations using the Data 

Locking pattern described in Section 5.2.2 on Page 145, which resulted in significant 

system-level speedups on database benchmarks. This modification also serves to illustrate 

use of the Ordered Update With Ordered Read (described in Section 5.3.5 on Page 169) 

and the Mark Obsolete Objects pattern (described in Section 5.3.2 on Page 161) to prevent 

access to stale data. 

The remainder of this section focuses on the changes to the System V semaphores; 

analogous changes were made to message queues and shared memory. 

6.1.1 Semaphore Data Structures 

The semaphore data structures are shown in Figure 6.1. The global ipc-ids structure 

tracks the state of all semaphores currently in use. Among other things, it contains a 

global lock ary and a pointer en t r i es  that points to an array of pointers of ipc-id 

structures. Each such entry is either NULL or points to a sem-array structure, which 

represents a set of semaphores that has been created by a single semget 0 system call. 

The array of i p c i d  structures is dynamically expanded as required using the Substitute 

Copy For Original pattern described in Section 5.3.3 on Page 163; see the discussion of the 

grow-ary 0 function in Section 6.1.5 on Page 188. The sem-array structure is allocated by 



a semgeto system call and deleted by a semctl(1PCRMID) system call. The individual 

semaphores in a set are each represented by a sem structure. 

Each semop ( ) system call presents the semid for the semaphore, which must be looked 

up in this data structure to locate the corresponding sem-array. Thus, each and every 

semaphore operation requires that this data structure be traversed. 

The ipc-ids field ary is a spinlock-t that protects the entire data structure. This 

simple locking design prevents System-V semaphore operations from proceeding in parallel. 

In addition, the cacheline containing the ary spinlock is thrashed among all CPUs. 

ipc-ids 

B 
1 entries 

Array of ipc-id 

ipc-id 

ipcjd 

ipc-id 

Figure 6.1: Semaphore Structures with Global Locking 

Use of RCU permits fully parallel operation of different semaphores and fully parallel 

translation of a semaphore ID into the corresponding sem-array pointer. However, a few 

changes to the data structure are required, as shown in Figure 6.2. To begin with, the 

ipc-id array and the sem-array are each prefixed with an i p c ~ c u b m a l l o c  structure 

which contains the rcuhead structure that RCU7s c a l l x c u 0  function needs to track 

these structures during a grace period. In addition, since there is no longer a global ary 

lock, each individual sem-array must have its own individual lock to protect operations 

on the corresponding set of semaphores. 

The final change is motivated by the fact that the translation from semaphore ID to 

kern-ipc-perm cannot tolerate the stale data that could result when an ID translation 

races with an semctl(1PCMID) removing that same ID. The possibility of stale data is 

avoided using the Mark Obsolete Objects pattern described in Section 5.3.2 on Page 161 

via a deleted flag in the kern-ipc-perm structure, guarded by that structure's lock 

field. This deleted flag is set just after removing the corresponding sem-array but before 



starting the grace period. The entire removzsl operation is performed holding the lock 

field in the kern-ipc-perm structure. Any attempt to lock a semaphore structure that has 

the deleted flag set then behaves as if the structure is nonexistent, as will be shown in 

the following sections. 

ipc-ids 

I entries 1 

kern-ipc-perm w 

Figure 6.2: Semaphore Structures with RCU 

6.1.2 Semaphore Removal 

The deletion process is performed by ipclmid, as shown in Figure 6.3. This function 

is called with the lock held, and returns with it held. Lines 4 9  obtain a pointer to the 

sem-array structure. Line 10 NULLS the pointer to sem-array, removing any path from 

a persistent variable to this structure. Lines 11-12 perform a debug check, which could 

be triggered by locking design bugs, among other things. Lines 13-22 adjust the count of 

semaphores in response to the removal of this one, and then, if this semaphore had the 

largest ID, scans down the array of ipc-ids to find the new largest ID. Line 23 sets the 

deleted flag, so that the next acquisition of the lock will fail (see Section 6.1.3 below), 

and Line 24 returns a pointer to the newly removed semaphore. The semaphore's memory 

is freed up by a call to i p c x c u f  ree  0 by f reeary 0 ,  which is i p c m i d 0  's caller and 

which also performs other cleanup actions, including waking up any processes that were 

sleeping on the newly removed semaphore. 



1 struct kern-ipc-perm* 
2 ipc-rmid(struct ipc-ids* ids, int id) 
3 C 
4 struct kern-ipc-perm* p; 
5 int lid = id % SEQ-MULTIPLIER; 
6 if(1id >= ids->size) 
7 B U G 0  ; 
8 
9 p = ids->entries [lid] .p; 
10 ids->entriesClid .p = NULL; 
11 if (p-- NULL) 
12 BUG0 ; 
13 ids->in-use--; 
14 
15 if (lid = ids-lmax-id) I 
16 do C 
17 lid--; 
18 if (lid = -1) 
19 break; 
20 3 uhile (ids->entries[lidl .p -- NULL.) ; 
21 ids->max-id = lid; 
n 3 
23 p->deleted = I; 
24 retarnp; 
25 3 

Figure 6.3: Semaphore Deletion 

The deleted flag, once set, makes the corresponding semaphore set appear to be Geed 

up even though it is still in memory awaiting expiration of its grace period, as will be 

shown in the next section. 

6.1.3 Semaphore Lock Acquisition 

As noted earlier, each semop0 system call presents the semid for the semaphore, which 

must be looked up to locate the corresponding sem-array. In addition, the semaphore 

state must be locked. The semop0 system call invokes the i p c l o c k 0  kernel function to 

do this lookup and locking, and later invokes the ipc-unlock0 kernel function to do the 

corresponding unlocking. Since the i p c l o c k 0  kernel function was responsible for the 

lock contention that motivated use of RCU, we focus on ipc-lock0 and the functions 

that it interacts with. 

Since the read-side code is lock-Gee, nothing will prevent ipc-lock0 from racing with 

i p c m i d 0 ,  thus possibly gaining a reference to the structure after it is marked deleted. 

Figure 6.4 shows how ipc-lock0 handles this race by checking the deleted field. Note 



1 struct kern-ipc-perm* 
2 ipc-lock(struct ipc-ids* ids, int id) 
3 C 
4 struct kern-ipc-perm* out; 
5 int lid = id X SEQ-MULTIPLIER; 
6 struct ipc-id* entries; 
7 
8 rcu-read-lock0 ; 
9 if (lid >= ids->size) i 

10 rcn-read-unlocko; 
1 I return NULL; 
I 2  3 
13 /* barrier syncs vith grow-aryo */ 
14 smp-rmb0; 
15 entries = ids->entries; 
16 read-barrier-depends 0 ; 
17 out = entries Elidl .p; 
18 if (out = NULL) C 
19 rca-read-unlock0 ; 
20 return NULL; 
21 3 
22 spin-lock(&out->lock); 
23 /* in case ipc-mid() just freed ID */ 
24 if (out->deleted) C 
25 spin-unlock(&out->lock) ; 
26 rcu-read-unlock0 ; 
27 return NUU; 
28 3 
29 return out; 
30 3 

Figure 6.4: Detecting Semaphore Deletion 



that the ids  argument is a pointer to the sole persistent variable, while the out pointer 

declared in Line 4 is a temporary variable. Line 5 computes the "hash" used to access the 

array of ipc-ids. Line 8 marks the beginning of the RCU read-side critical section. In 

preemptive kernels, this will disable preemption; in non-preemptive kernels, it does abso- 

lutely nothing other than serve as a documentation aid. Lines 9-12 check for the specified 

ID being out of range, returning NULL for failure if so. Line 14 allows for interactions with 

the grow-ary 0 function using the Ordered Update With Ordered Read pattern described 

in Section 5.3.5 on Page 169. Note that since the semaphore implementation does not use 

linked lists, these memory-barrier primitives must be invoked explicitly-the RCU variants 

of the Linux list-manipulation primitives cannot be used. Lines 15-17 obtain a stable 

pointer to the semaphore structure. The read-barrier-depends 0 allows for interactions 

with the growary () function on multiprocessors with extremely weak memory consis- 

tency models, such as the Alpha, as  described in Appendix B on Page 322. Lines 18-21 

attempt to get a reference to the semaphore structure, returning NULL if there is no such 

structure (perhaps due to the specified ID no longer being valid). 

Line 22 acquires the semaphore structure's lock. Lines 2428 check the deleted flag 

to determine if the semaphore is being removed, and, if so, returns NULL to signal failure. 

Note that because ipc-lock0 does not block, the normal RCU grace period prevents 

the semaphore structure from being freed up before ipc-lock 0 can check the deleted 

flag. Finally, Line 29 returns a pointer to the semaphore structure, having successfully 

translated the specified ID. Note that this function returns with the semaphore's lock held 

inside an RCU read-side critical section. The ipc-unlock0 function therefore releases 

the semaphore's lock and then ends the RCU read-side critical section by executing a 

rcuxead-unlock0. 

6.1.4 Semaphore Deferred Deletion 

Since i p c l o c k 0  can gain a reference to a semaphore as it is being removed, a grace 

period must elapse between the removal and the actual freeing of the corresponding data 

structures, as illustrated by Figure 6.5, which shows a simplified version of i p c x c u f  r e e 0  

function. The actual function is more complex due to the fact that blocks of memory larger 



1 void ipc-rcu-free(void* ptr, int s i ze )  
2 C 
3 struct ipc-rcu-kmalloc *free; 
4 free = ptr - sizeof(*free); 
5 call-rcu(&free->mu, 
6 (void (*)(void *))kfree. 
7 free) ; 
8 1 

Figure 6.5: Freeing a Semaphore 

than a page must be freed with vfree 0 rather than kfree 0. Line 4 computes a pointer 

to the beginning of the structure (see Figure 6.2), which is an i p c ~ c u h a l l o c  0 ,  which 

in turn is just a wrapper around an rcuhead structure (see Figure 4.1). This wrapping 

allows more common code between the kmalloc 0 and vmalloc 0 cases. Lines 5-7 then 

pass to c a l l ~ c u 0  pointers to the rcuhead structure, to the kfree0  function, and to 

the semaphore structure. The c a l l r c u 0  function uses the rcuhead structure to queue 

up the semaphore structure during the grace period. The actual invocation of the kfree 0 

function on the semaphore structure is deferred until after the end of a subsequent grace 

period, as specified by the RCU Existence Locks pattern described in Section 5.2.4 on 

Page 151. 

6.1.5 Semaphore Array Expansion 

If a large number of semaphores are created, the kernel will need.to expand the ipc-id 

array. Use of RCU dictates that this expansion occur in parallel with ongoing searching by 

ipc-lock 0. The function grow-ary 0 ,  shown in Figure 6.6, implements this expansion. 

Lines 8-11 do limit checking. Lines 13-21 allocate the new array, copy the old array 

to the first part of the new array, and initialize the remainder of the new array. Lines 22 

and 23 retain the size of the old array and a pointer to it. Line 25 is a memory barrier 

that prevents the CPU and the compiler from reordering the array initialization with the 

assignment of the pointer, and is a use of the Ordered Update With Ordered Read design 

pattern described in Section 5.3.5 on Page 169. Any such reordering could cause other 

CPUs to see uninitialized segments of the array, possibly crashing (or worse!). Line 26 

switches the pointer over to the new array, thus using the Substitute Copy For Original 



I static int grow-ary(struct ipc-ids* ids, 
2 int newsize) 
3 C 
4 struct ipc-id* new; 
5 struct ipc-id* old; 
6 int i; 
7 
8 if(nevsize > IPCWI) 
9 newsize = IPCMNI; 
10 if (nevsize <= ids->size) 
11 return newsize; 
12 
13 new = ipc~rcu~alloc(sizeof(struct ipc-id) * 
14 newsize) ; 
15 if (new -- NULL) 
16 return ids->size; 
17 memcpy(new, ids->entries. 
18 sizeof(struct ipc-id)*ids->size); 
19 for(i=ids->size;i<nevsize;i++) < 
20 newCi] .p = NULL; 
21 > 
22 old = ids->entries; 
23 i = ids->size; 
24 
25 smp-mb0; 
26 ids->entries = new; 
27 smp-mb0; 
28 ids->size = nevsize; 
29 
30 ipc-rcu-free(old, sizeof(struct ipc-id)*i); 
31 return ids->size; 
32 3 

Figure 6.6: Expanding the Array of Pointers to Semaphores 



pattern described in Section 5.3.3 on Page 163, but any accesses at  this point will recognize 

only the old entries as valid, since the size is still the old size. Line 27 is a memory barrier 

that prevents the CPU and the compiler &om reordering the assignment of the size to 

precede the pointer assignment, again, a use of the Ordered Update With Ordered Read 

pattern. If such a reordering were to occur while a user was attempting to access an 

erroneously larger semid, the kernel would run off the end of the old array, again, possibly 

crashing. Line 28 updates the size, so that new semaphores with larger semids may now 

be accommodated. Line 30 invokes i p c r c u f  ree  0, which frees the old structure after 

a full grace period has elapsed. Note that i p c x c u f  ree0 returns immediately, having 

used c a l l x c u 0  to queue the old array for a later k f r e e 0 .  Finally, Line 31 returns the 

new size of the array. 

Note that no deleted flag is needed here, since the old version of the array is kept 

valid throughout the grace period. Any semaphore in existence at the start of the racing 

access that is still in existence when the racing access completes will still be correctly 

referenced by the old array. Note that the racing access must, by definition, complete 

before the grace period ends-otherwise it is not a grace period. 

This tolerance of stale data is typical of ID-to-address mappings, and of routing tables 

as well. 

Note that it would be possible to store the array's size in a structure that also includes 

the array itself, thus removing the need for so many memory barriers, especially on non- 

Alpha CPUs. This would be a use of the Impose Level Of Indirection pattern described in 

Section 5.3.4 on Page 168. However, this pattern would require every access to the array's 

size be changed, which would produce a rather large patch. Therefore, this alternative 

was rejected in favor of a smaller patch with a larger probability of acceptance into the 

Linux 2.5 kernel. If the memory barriers cause either performance or software-maintenance 

problems, application of the Impose Level Of Indirection pattern should be considered in 

the Linux 2.7 kernel effort. 



6.1.6 Semaphore Operation 

This section presents a graphical demonstration of how grow-ary0, i p c n n i d 0 ,  and 

ipc-lock operate. The figures in this section are abbreviated forms of Figure 6.1 and 

Figure 6.2. Figure 6.7 shows a system with three semaphores allocated out of a maximum 

of eight that could be accommodated. 

The results of a concurrent grow-ary 0, i p c n n i d o  and creation of a new semaphore 

are shown in Figure 6.8, but with the additional ipc-id array elements omitted from the 

figure. At this point, a concurrent ipc-lock() would see semaphore 4 as being deleted 

(note the "Dn in the diagram), and would have no way of reaching the newly created 

semaphore 2. The lack of visibility to semaphore 2 is legal, since this semaphore was cre- 

ated after i p c lock  ( started execution. A subsequent i pc lock  ( ) would see semaphores 

0, 2, and 6, but would not newly deleted semaphore 4. 

Finally, Figure 6.9 shows the state of the system after a grace period. The old ipc-id 

array has been freed, as has semaphore 4. Because the grace period has completed, there 

can no longer be any references either to the old array or to the now-deleted semaphore 4. 

Figure 6.7: Semaphore Initial State 

6.1.7 Semaphore Discussion 

The RCU changes to Linux7s System V IPC implementation resulted in excellent per- 

formance improvements combined with negligible increases in complexity, as is shown in 

the following two sections. The order-of-magnitude performance improvements make this 

subsystem the RCU "poster child" for RCU performance improvement. 



Figure 6.8: Semaphore Structures After Array Replacement 

Figure 6.9: Semaphore Structures After Grace Period 



Semaphore Performance 

Use of RCU improves the performance of System V semaphores as measured by both 

system-level benchmarks and focused microbenchmarks. 

The Open Source DeveIopment Lab (OSDL) used a DBTl benchmark to evaluate 

system-level performance, comparing Andrew Morton's Linux 2.5.42-mm2 both with and 

without ipc-rcu. These tests were run on an ~ n t e l ( ~ )  dual-CPU 9OOMHz PI11 with 256MB 

of memory. 

The raw transaction rate for each of the five runs with each kernel are shown in 

Figure 6.10, which shows better than a 5% improvement due to RCU. The erratic results 

for the stock kernel are not unusual for workloads with lock contention. The reason for 

this is that if the lock contention is not too extreme, relatively deterministic workloads 

can "get lucky" such that multiple CPUs happen to be less likely to be contending for 

the same lock at the same time. As shown in Table 6.2, the difference is statistically 

significant: not only is ipc-rcu7s average three standard deviations above that of the stock 

kernel, but ipc-mu's smallest value of 90.4 TPS exceeds the stock kernel's median of 87.6 

TPS. 

2.5.42-mm2 2.5.42-mm2-ipc-rcu 

Figure 6.10: DBTl Database Benchmark Raw Results 



Table 6.2: DBTl Database Benchmark Results (TPS) 

Kernel 
Deviation 

2.5.42-mm2 
2.5.42-mm2fipc-rcu 

Table 6.3: semopbench Microbenchmark Results (seconds) 

Bill Hartner constructed a System V semaphore microbenchmark named semopbench 

and ran it on an Intel 8-CPU 700 MHz PI11 system. The results in Table 6.3 clearly 

show the order-of-magnitude reduction in runtime obtained by applying the reader-writer- 

locking/RCU analogy to System V IPC mechanisms. 

Semaphore Complexity 

Avg 
515.3 
46.7 

Kernel 
2.5.42-mm2 
2.5.42-mm2+ipc-rcu 

The RCU changes to the System V IPC implementations inflicted less than 5% expansion 

of code size, as shown in Table 6.4. This change increased the overall code size by only 

151 lines. This order-of-magnitude performance benefit is well worth the modest increase 

in complexity. 

Table 6.4: Semaphore Change in Lines of Code 

Run 1 
515.1 
46.7 

Run 2 
515.4 
46.7 

% Delta 
-0.34% 
-0.08% 
4.39% 

39.66% 
-40.19% 

4.37% 

msg.c 
sem.c 
shm.c 
uti1.c 
uti1.h 
Total 

Total Lines 
New 
885 

1289 
785 
581 
64 

3604 

Ins/Del/Delta Old 
888 

1290 
752 
416 
107 

3453 

23 
29 

102 
178 
10 

342 

26 
30 
69 
13 
53 

191 

-3 
-1 
33 

165 
-43 
151 



Of course, the system-level performance increase is a much smaller 5.3%. On the other 

hand, the 151-line increase in code size is an insignificant fraction of the 11.7 million lines 

of code in the full kernel, and even this does not include the size of the database and other 

software involved in the benchmark. 

6.2 Linwc Directory-Entry Cache 

This section describes how RCU was used to improve the scalability and performance of the 

Linux kernel's directory-entry cache (dcache). This use of RCU illustrates the Global Ver- 

sion Number, Reader-Writer-Lock/RCU Analogy, Ordered Update With Ordered Read, 

Data Locking, and RCU Existence Locks patterns. The material in this section is adapted 

from an earlier pubIication by myself and others [79]. 

Linux7s directory-entry cache (dcache) maintains a partial in-memory image of the 

combined filesystem hierarchy. This cache permits pathname lookup to proceed without 

disk transfers for portions of the filesystem hierarchy that have been recently accessed, 

greatly increasing the performance of filesystem 110. In order to handle mount and un- 

mount operations easily, the Linux kernel maintains a parallel image of the mount tree in 

struct vf smount structures. 

Most operating systems use one mechanism or another to cache the filesystem hierar- 

chy. A popular alternative is to maintain a mapping from pathnames to the associated 

struct inode. Linux's dcache approach enables it to gain the full benefit for all pathname 

lookups, regardless of whether the search starts at the root directory, at some process's cur- 

rent working directory, or at a particular per-process root directory (set by the chroot () 

system call). 

6.2.1 Visual Overview of dcache 

This section gives a visual overview of the dcache subsystem. There is not enough room 

to describe every aspect of the dcache subsystem, but this description will have enough 

detail to illuminate the RCU-related changes in the Linux 2.6 kernel. Readers desiring 

more detail are referred to the source code; however, reading this section should provide 



good preparation for diving into the source. 

This section uses the example filesystem tree in Figure 6.11 to illustrate the dcache 

data structures and relationships. This figure shows two filesystems, with roots "rl" and 

"r2", respectively. The second filesystem is mounted on directory "b", as indicated by the 

dashed arrow. The file (or directory) "g" has not been referenced recently, and is therefore 

not present in dcache, as indicated by its dashed grey box. 

Figure 6.11: Example Filesystem 'Tree 

The dcache subsystem maintains several views of the filesystem trees. Figure 6.12 

shows the directory-structure representation. Each dentry representing a directory main- 

tains a doubly-linked circular list headed by the d-subdirs field that runs through the 

child dentries' d-child fields. Each child's d-parent pointer references its parent. Note 

that the mountpoint (dentry "b") has no reference to the mounted filesystem-instead, 

the mountpoint's d~nounted flag is set, as indicated by the "(MP)" in the figure, and the 

mounted filesystem is looked up in the mountAashtable, which will be described later. 

Although one could easily imagine directly searching the filesystem view of dcache, this 

would be very slow for large directories. Instead, the --d-lookup0 function computes a 

hash based on the parent directory's dentry pointer and the child's name, then searches 

the global dentryhashtable for a dentry with the desired name and d-parent. This 

hash table is shown in Figure 6.13, along with the LRU list headed by dentry-unused. 



d-child 

d-subdirs f'--' 

I d-subdirs 1 d s u b d r s  1 I 

d-child d-child 1 1 d-subdirs I 1 d-subdirs 1 

1 d-parent I 
d-subdirs w 

d-parent 

d-child d-child 

I d-subdirs I (d-subdirs I 
Figure 6.12: dcache &presentation of Example Filesystem Tree 



Note any dentry in the LRU list will usually also be in the hash table. Exceptions include 

cases where parent directories can time out, as can occur in distributed filesystems such 

as NFS. 

dentry-hashtable 

dentry-unused 

Figure 6.13: dentry Hash Table 

A major purpose of the dcache subsystem is to map a pathname into an inode pointer. 

Hard links cause multiple pathnames to map to the same inode, and some filesystems 

need to be able to access all dentries referencing a given inode. Therefore, each inode 

maintains a list of all dentries that reference it, as shown in Figure 6.14. In addition, each 

dentry references its inode via the d-inode pointer. This d-imde pointer can be NULL 

for "negative" dentries, which lack an inode. 

Negative dentries can be generated when a filesystem removes the file or directory 

underlying a dentry. They are also generated when someone tries to lock an non-existent 

file. Negative dentries can improve system performance by causing repeated accesses to a 



Figure 6.14: Hard-Link Alias Chains 

given non-existent file to fail without needing to call into the underlying filesystem. 

A high-level dentry state diagram is shown in Figure 6.15. The "normaln path through 

this diagram would be to: 

1. Use d-alloc 0 to allocate a new dentry for a newly-referenced file, leading to state 

"Newn, 

2. Use d-add0 to associate the new dentry with its name and inode, leading to state 

"Hashed", 

3. Use d-put () when done with the file, which adds the dentry to the LRU list and 

sets its DCACHEREFERENCED bit in its d-vf s f  lags field, leading to state "LRU Ref 

(Hashed)", 

4. If the file is again referenced, dget l o c k e d 0  (usually called from d-lookup0 ) will 

remove it from the LRU list, leading again to state "Hashed". 

5. Otherwise, prune-dcache () will eventually remove the DCACHEREFERENCED bit from 

the dentry's d-vf s f  lags field, leading to state "LRU (Hashed)". 

6. As before, if the file is again referenced in the "LRU (Hashed)" state, dget locked0  

(usually called from dlookup0)  will remove it from the LRU list, leading again to 

state "Hashedn. 



7. Otherwise, the second consecutive call to prune-dcache 0 will invoke d f  ree 0 via 

prune-one-dentry (1, resulting in state "Dead". 

Other paths through Figure 6.15 are possible. For example, if a distributed filesystem 

converts a cached filehandle into a new dentry, it will invoke d-alloc-anon0 to allocate 

the dentry when the corresponding object's parent is no longer represented in the dentry 

cache. Similarly, using d-delete 0 to delete the f3e or directory underlying a given dentry 

would move that dentry to the "Negative" state, and on last close, it would advance to 

LLDead". 

Again, Figure 6.15 does not cover every possible dcache eventuality, but it can be very 

helpful when reading the source code. 

Figure 6.16 shows the mount hashtable data structure used to map from the mount- 

point dentry (which has a non-zero dlnounted field) to the struct vfsmount of the 

mounted filesystem. The mountedhashtable hash function combines the mountpoint 

dentry pointer and a pointer to the struct vfsmount for the filesystem containing the 

mount point and maps to a pointer to the mounted struct vf smount . This combination 

of dentry pointer and struct vf smount allows multiple mounts on the same mountpoint 

to be handled gracefully. 

The example filesystem layout shown in Figure 6.11 would result in struct vf smount 

structures as shown in Figure 6.17. The "vfsl" structure references the root dentry "rl" 

both as the mntaountpoint and the mntzoot because this filesystem is the ultimate root 

of the filesystem tree. The "vfs2" structure references dentry "b" as its mnt~ountpoint 

and "r2" as its mnt~oot .  Thus, when the mount-hashtable lookup returns a pointer 

to "vfs2", the mnt~oot  field may be used to quickly locate the root of the mounted 

filesystem. 

The overall shape of the mounted filesystems is reflected in the mntaount/mnt-child 

lists. These are used by functions like copy-tree0 while doing loopback mount, which 

need to traverse all the filesystems that are mounted in a particular subtree of the overall 

pathname namespace. 



a d-alloc 0 
b d-add0 
c dput 0 
d d-lookup ( )  / dget-locked ( 1  
e prune-dcache ( )  

f d-delete ( )  

g d-alloc-anon ( 1  
h d-splice-alias 0 
i d-free() 

Figure 6.15: dentry State Diagram 



mount-hashtable 

. . . 
vfsl 

Figure 6.16: Traversing Mountpoints 

vfsl 

mnt-parent 
4 

mnt-mountpoint 

mnt-root 

mnt-mountpoint 

mnt-child 

Figure 6.17: VFS Mount Tree 



6.2.2 Applying RCU to dcache 

The Linux 2.6 kernel is one step along the road towards RCU, in that lookups for a 

pathname segment within a directory are lock free, but each dentry on the path is locked 

and unlocked in turn. Although this is an improvement over the previous global lock, the 

longer-term goal would be to walk the entire path without acquiring any locks, and to 

perform updates in parallel. 

This section describes the changes made by Dipankar Sarma and Maneesh Soni in 

Linux 2.6. This is not a complete description of the changes, but does provide a good 

view of how the dentry cache uses RCU. It should also provide a good start to people 

wishing to find the full story in the source code. 

Pathname Segment Lookup 

Pathname segment lookup is performed by the --d-lookup0 function shown in Fig- 

ure 6.18. The --d-lookup0 function is invoked with a pointer to the parent directory's 

dentry and the name to be looked up. The name is passed in a s t ruc t  qs t r ,  which 

contains a pointer to the string, its length, a precomputed hash value for the dcache hash 

table, and a place for the name itself, if desired. 

Lines 4 6  unmarshall the s t ruc t  q s t r  into some local variables. Line 7 hashes the 

combination of the name and the parent dentry pointer into the global dcache hash table, 

yielding a pointer to the appropriate hash chain. 

Lines 11 and 48 demark the RCU-protected segment of the code, disabling preemp- 

tion in CONFIGPREEMPT kernels, as specified by the Reader-Writer-Lock/RCU Analogy 

described in Section 5.2.5 on Page 153. Lines 12-47 loop through the elements in the 

selected hash chain, looking for the matching dentry. Line 17 issues a memory barrier, 

but only on DEC Alpha, as required by its extremely weak memory-consistency model. 

On other CPUs, the data dependency implied by the pointer dereference suffices. 

Since this lookup acquired no locks, it is possible that it is racing with a rename 

system call. Such a system call could move one of the dentries to another hash chain, 

taking this lookup with it. Lines 19 and 20 check for this race, but are not sufficient in 



and of themselves. Therefore, line 21 takes a snapshot of the number of times that the 

current dentry has been subjected to a rename (via the dcache dmove0 function), as 

specified by the Global Version Number pattern described in Section 5.3.6 on Page 171. 

Line 22 is a memory barrier to ensure that the snapshot is not reordered by either the 

compiler or the CPU, in accordance with the Ordered Update With Ordered Read pattern 

described in Section 5.3.5 on Page 169. 

Lines 23-26 check the name hash and the parent dentry. If either fail to match, this 

dentry cannot possibly be the target of our lookup. Line 27 picks up the pointer to the 

name structure, and line 28 executes a memory barrier, but only on Alpha. Lines 29-31 

check for a non-standard name comparison, such as would be found in case-insensitive 

filesystems. Lines 33-36 do the full name comparison for standard filesystems. for DEC 

Alpha at line 41. 

If execution proceeds to line 38, we have found a child dentry with matching name. 

Following the Data Locking pattern described in Section 5.2.2 on Page 145, that child 

dentry's lock is acquired on line 38. 

Now, it is possible that the child dentry was renamed after the dxnove-count snapshot 

was acquired on line 21. Therefore, line 39 checks the current value of dmove-count 

against the snapshot. If the check passes, the child dentry has not been renamed out from 

under the lookup, and lines 40-43 increment a reference count, but only if the entry is still 

hashed. 

Line 45 releases the child dentry's lock, and line 46 breaks out of the hash-chain search 

loop. Line 49 returns a pointer to the child dentry, if the lookup was successful, or NULL 

otherwise. 

Note that --d-lookup 0 failure does not mean that failure will be returned to the user 

process. It might well be that the file does exist, but simply has not yet been loaded into 

dcache. 

However, this function does not protect against all rename-race hazards. One addi- 

tional race is caused by the fact that dcache uses hlist rather than list for the dcache hash 

chains. It does this in order to save space, since hlist requires only one rather than two 

pointers in the list header. However, this means that hlist, unlike list, is not a circular list. 



1 struct dentry * 
2 --d-lookup(struct dentry * parent, struct qstr * name) 
3 C 
4 unsigned int leu = name->leu; 
5 unsigned int hash = name->hash; 
6 const unsigned char *str = name->name; 
7 struct hlist-head *head = d-hash(parent,hash); 
8 struct dentry *found = NULL; 
9 struct hlist-node *node; 
10 
11 rcu-read-lock0 ; 
12 hlist-for-each (node, head) C 
13 struct dentry *dentry; 
14 unsigned long move-count; 
15 struct qstr * qstr; 
16 
17 smp-read-barrier-depends 0 ; 
18 dentry = hlist-entry(node, struct dentry, d-hash); 
19 if (unlikely(dentry->d-bucket != head)) 
20 break; 
21 move-count = dentry->d-move-count; 
22 smp-rmb0; 
23 if (dentry->d-name.hash != hash) 
24 continue ; 
25 if (dentry->d-parent != parent) 
26 continue; 
27 qstr = dentry->d-qstr; 
28 smp-read-barrier-depends 0 ; 
29 if (parent->d-op && parent->d-op->d-compare) C 
30 if (parent->d-op->d-compare (parent, qstr, name)) 
31 continue ; 
32 3 else .( 
33 if (qstr->leu != leu) 
34 continue; 
35 if (memcmp(qstr->name, str, len)) 
36 continue; 
37 3 
38 spin-lock(&dentry->d-lock); 
39 if (likely(move-count 1 dentry->d-move-count)) i 
40 if ( ! d-unhashed(dentry1 i 
41 atomic-inc(&dentry->d-count) ; 
42 found = dentry ; 
43 3 
44 3 
45 spin-unlock(&dentry->d-lock); 
46 break; 
47 3 
48 rcu-read-unlock0 ; 
49 return found; 
50 3 

Figure 6.18: Lock-% Pathname Segment Lookup 



It is therefore possible that a particular dentry will be renamed such that it will land in a 

previously empty dcache hash chain. If this happened at the right time, the --d-lookup0 

function could incorrectly return search failure. 

This scenario is handled by the upper-level d-lookup0 function, shown in Figure 6.19. 

Any racing renames will be detected by the read-seqretry0 function on line 12, which 

checks another Global Version Number snapshotted on line 8. Since the problematic case 

results in spurious failure, the check is made only on NULL return from --d-lookup O. 

1 struct dentry * 
2 d-lookup(st~ct dentry * parent, stntct qstr * name) 
3 C 
4 struct dentry * dentry = NUU; 
5 unsigned long seq; 
6 
7 do i 
8 seq = read_seqbegin(0rename_lock); 
9 dentry = --d-looknp(parent, name); 
10 if (dentry) 
11 break; 
12 ) while (read-seqretry(&renams_lock, seq)) ; 
13 return dentry; 
14 > 

Figure 6.19: Pathname Segment Lookup Rename Race Resolution 

Deferred Free 

The d f  ree0 function follows the RCU Existence Locks pattern described in Section 5.2.4 

on Page 151 as part of the Reader-Writer-Lock/RCU Analogy pattern in order to ensure 

that searches in --d-lookup0 do not find themselves plowing through the freelist. This 

is accomplished in the d f  ree0 function shown in Figure 6.20, where line 5 uses the 

call-rcuO primitive to defer the destructive actions in the d-callback0 function until 

after a grace period has elapsed. The d-callback 0 function is shown in Figure 6.21; it 

simply frees up large names stored separately (lines 5-7), if appropriate, then frees up the 

dentry itself on line 8. 



1 s t a t i c  void d-freecstmct dentry *dentry) 
2 C 
3 if (dentry->d-op && dentry->d-op->d-release) 
4 dentry->d-op->d-release(dentry) ; 
5 call-rcuckdentry->d-rcu, d-callback, dentry) ; 
6 3 

Figure 6.20: Deferred Free of dentry Structures 

1 s ta t ic  void d-callback(v0id *arg) 
2 c 
3 stmct dentry * dentry = (struct dentry *)arg; 
4 
5 i f  (dname-external(dentry)) I 
6 kfree(dentry->d-qstr) ; 
7 3 
8 hem-cache-free (dentry-cache , dentry) ; 
9 3 

Figure 6.21: RCU Callback Function for dentries 

Rename 

The dxnove () function shown in Figure 6.22 implements the dentry-specific portion of the 

rename system call. Line 4 excludes any other tasks attempting to update dcache, and 

line 5 permits d-lookup() to determine that it has raced with a rename, via the Global 

Version Number pattern. Lines 6-12 acquire the per-dentry lock of the file being renamed 

and its destination, but in memory-address order to avoid deadlock scenarios. Lines 18-22 

remove the entry from its old location in the dcache hash table, if it has not already been 

so removed. 

Line 23 updates the dentry to point to its new hash bucket, line 24 adds the dentry 

to its destination hash bucket, in accordance with the Reader-Writer-Lock/RCU Analogy, 

and line 25 updates the flags to indicate that the dentry is present in the dcache hash 

table. Line 29 removes the target dentry (the one being renamed on top of) from the 

dcache hash table, while lines 30 and 31 divorce the moving and target dentries from their 

old parents. 

Line 34 changes the dentry's name, and line 35 enforces ordering in accordance with 

Ordered Update With Ordered Read. The name change is nontrivial due to the fact that 



short names are stored in the dentry itself, while longer names are stored in separately- 

allocated memory. Lines 36 and 37 update the name length and hash value. Lines 39-50 

connect the dentry to its new parent. 

Line 51 updates the drmove-count so that --d-lookup0 can detect races, in accordance 

with the Global Version Number pattern, and lines 52-55 release the locks. 

Note that, in theory, a sustained succession of rename operations that were carefully 

designed to leave dentries in the same directory and in the same hash chain could indefi- 

nitely stall horribly unlucky lookups. One way that this could happen is if the lookup was 

searching for the last element in the hash chain, and that the second-blast element was 

consistently renamed (thus moved to the head of the list), just as the lookup got to it. In 

practice, dcache hash chains are short and renames are slow. However, if this becomes a 

problem, it is a good candidate for the Stall Updates pattern described in Section 5.3.7 

on Page 175. 

6.2.3 dcache Discussion 

Although this change was relatively small, it had ramifications due to the fact that there 

had not been a well-defined API for filesystems to interact with dcache. This resulted in 

a large number of bugs in the Linux 2.5 kernel due to filesystems maintainers attempting 

to manipulate dcache in the traditional style. Given that there is now a somewhat more 

formal API, it is hoped that future changes will be somewhat less traumatic. 

Figure 6.23 shows the improved performance of up to 26% on an SDET-motivated mul- 

tiuser benchmark running on a Linux 2.5.59 kernel patched to use RCU in the directory- 

entry cache over that on an unpatched 2.5.59 kernel. These benchmarks were run on a 

16-CPU NUMA-Q with 700MHz PI11 Intel Xeon CPUs. 

Adding RCU to dcache also resulted in a 12% improvement in SPECweb99 throughput 

on an &CPU PI11 Xeon server, increasing SPECweb99 throughput from 2258 to 2530 in 

a test that applied the dcache-rcu patch to the Linux 2.4.17 kernel [102]. 

Applying the same change to a Linux 2.5.40-mm2 kernel resulted in more than a 10% 

reduction in system time consumed by a build of the Linux kernel on a NUMA-Q system 

with sixteen 700MHz PI11 CPUs, from 47.548 CPU seconds to 42.498 CPU seconds. A 



1 void 
2 d-move(struct dentry *dentry, struct dentry *target) 

3 I 
4 spin~lock(kdcache~lock); 
5 write~seqlock(&rename_lock) ; 
6 if (target < dentry) C 
7 spin-lock(ktarget->d-lock); 
8 spin-lock(kdentry->d-lock) ; 
9 3 else C 
10 spin-lock(kdentry->d-lock); 
11 spin-lock(&target->d-lock) ; 
12 3 
13 
14 /* 
15 * Move the dentry to the target hash queue. 
16 * if on different bucket 
17 */ 
18 if (dentry->d-vfs-f lags & D C A c H E - m S m )  
19 goto already-unhashed; 
20 if (dentry->d-bucket != target->d-bucket) C 
21 hlist-del-rcuCtdentry->d-hash) ; 
22 already-unhashed: 
23 dentry->d-bucket = target->d-bucket; 
24 hlist-add-head,rcu(&dentry->d-hash, target->d-bucket) ; 
25 dentry->d-vf s-f lags &= -DCACHE-UNHASHED; 
26 3 
27 
28 /* Unhash the target: dputo will then get rid of it */ 
29 --d-drop(target); 
30 
31 list-del(&dentry->d-child) ; 
32 list-del(ktarget->d-child); 
33 
34 switch-names(dentry, target); 
35 smp-umb0; 
36 do-switch(dentry->d-nme.len, target->d-nama.len); 
37 do-switch(dentry->d-name . hash, target->d-name-hash) ; 
38 
39 if (IS-IlOOTCdentry)) I 
40 dentry->d-parent = target->d-parent; 
41 target->d-parent = target; 
42 INIT-~1S~,~~AD(&target->d-child) ; 
43 3 else C 
44 do-switch(dentry->d-parent , target->d-parent) ; 
45 list-add(&target->d-child. 
46 &target->d-parent->d-subdirs) ; 
47 > 
48 
49 list-add(tdentry->d-child. 
50 &dentry->d-parent->d-subdirs); 
51 dentry->d-move-count++; 
52 spin-unlock(&target->d-lock); 
53 spin-unlock(&dentry-,d_lock) ; 
54 vrite-sequnlock(h-ename-lock) ; 
55 spin-unlock(&dcache-lock) ; 
56 3 

Figure 6.22: Renaming dentries 
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Figure 6.23: Multiuser Benchmark Performance 



similar test run on a uniprocessor 700MHz P3 Xeon system, but based on the Linux 2.5.42 

kernel, showed no change. Therefore dcache RCU not only increases scaling for high-end 

machines, it also does no harm to performance on low-end machines [loll, providing a 

statistically insignificant performance increase for 2- and 4CPU machines. 

This is an especially impressive result, given the dcache subsystem's reputation for 

complexity and the large number of filesystems that depend on dcache, and also given 

that the change added only 196 lines and deleted 70, for a net addition of only 126 lines 

of code to the kernel. Future work includes modifying dcache to do lockfree traversal of 

full paths rather than just path segments, and on supporting fully parallel updates. 

6.3 RCU Synchronizing With NMIs 

This section is adapted from one of this author's prior publications [71]. 

Retrofitting existing code with RCU as shown above can produce significant perfor- 

mance gains, but of course the best results are obtained by designing RCU into the algo- 

rithms and code from the start. 

The i386TM oprofile code contains an excellent example of designed-in RCU, using 

the Pure RCU pattern described in Section 5.2.3 on Page 147. This code was written 

by John Levon based on a patch by Zwane Mwaikambo, with guidance by Dipankar 

Sarma. This code can use NMIs (non-maskable interrupts) to do profiling independently 

of the normal clock interrupt, thereby permitting profiling of the clock interrupt handler. 

Synchronizing with NMIs has traditionally been difficult, since there is by definition no 

way to block an NMI. Straightforward locking designs are therefore subject to deadlock, 

where the CPU holding the lock receives an NMI, and the NMI handler spins forever on 

this same lock. Another approach is to effectively mask NMIs in software using things 

like spin-trylock(), but this incurs cache-bouncing and memory-barrier overhead, and 

the NMIs thus masked are lost. 

The solution in mi-timer-int . c is as shown in Figure 6.24. 

The synchronizebernel() ensures that any NMI handlers that were executing the 



static void timer-stop(void) 
C 

enable-timer-mi-vatchdog() ; 
unset-nmi-callbacko; 
synchronize-kernel0 ; 

1 

static struct oprofile-operations nmi-timer-ops = C 
.start = timer-start. 
.stop = timer-stop, 
. CPU-type = "timer" 

3; 

Figure 6.24: NMI Timer Stop Function 

old NMI callback upon entry to t h e r - s t o p 0  have completed before t her-stop 0 re- 

turns. The code for oprof i l e s t o p  0 and oprof i leshutdoun0 shown in Figure 6.25 il- 

lustrates why this is important. Note that oprof ile-ops->stop0 invokes timer-stop0. 

Therefore, if oprof i l e s t o p  0 and oprof ile-shutdovn0 were called in quick succession, 

the newly fieed CPU buffers could be accessed by an ongoing NMI, which could surprise 

any code quickly reallocating this memory. 

void oprofile-stop(void) 
C 

dovn(&start,sem); 
if ( ! oprof ile-started) 

got0 out; 
oprofile-ops->stop(); 
oprofile-started = 0; 
/* vake up the daemon to read what remains */ 
vake-up-buffer-vaitero; 

out : 

void oprofile~shutdovn(void) 
C 

~oM(&s~&-s~~) ; 
sync-stop0 ; 
if (oprofile-ops->shutdovn) 

oprof ile-ops->shutdoid) ; 
is-setup = 0; 
f ree-event-buff e r 0  ; 
f ree-cpu-buff ers 0 ; 
up(&start-sem); 

3 

Figure 6.25: oprofile Shutdown Code 

Use of RCU eliminates this race very naturally, without incurring any locking or 



memory-barrier overhead. This race would be very difficult to resolve using locking, which 

may explain why very few operating systems have dynamically changeable NMI handlers. 

6.4 RCU and Module Race Reduction 

The material in this section is adapted from an earlier publication by myself and others 1781. 

Linux 2.4 is subject to races between module unloading and use of that module, due 

to the fact that a module user must gain a reference to that module before announcing its 

presence, and the module might be unloaded in the meantime. These races can result in 

the racing code that is attempting to use the module holding a reference to newly freed 

memory, most likely resulting in a failure (or "oops", in Linux parlance). 

One way to reduce the likelihood of these races occurring is to wait for a grace pe- 

riod after removing the module structure from the modulelist  before kf ree 0 ing it in 

f r e e a o d u l e o ,  applying the Pure RCU pattern described in Section 5.2.3 on Page 147. 

As long as the module user was not preempted between the time it obtains the reference 

and announces its presence, it is guaranteed to find a valid module data structure. Races 

can still occur,' but the race's window has been decreased substantially. The change is a 

one-liner (not counting comments), as shown in Figure 6.26. 

As noted earlier, this change does not address all the module-unloading problems. 

However, perhaps it can be a basis for a full solution-Rusty Russell rewrote the modules 

subsystem in the Linux 2.6 kernel, but some module-unload issues remain. The approach 

described in this section was based on an earlier suggestion by Rusty Russell, and added 

to SuSE Linux by Andi Kleen. 

6.5 Incremental Use of RCU on tasklist Locking 

This section is adapted from one of this author's prior publications [?I]. 

Use of RCU is not an all-or-nothing affair. RCU may be applied incrementally to 

particular code paths as needed. A good example of this is a patch coded by Dipankar 

 or example, if the module user is preempted, or in cases where the module user avoids announcing 
its presence. 



p->next = mod->next; 
1 
spin~unlock~irqrestore(%modlist~lock, 

flags) ; 

/* Wait for all other cpus to go 
* through a context switch. This 
* doesn't plug all module unload 
* races, but at least some of 
* them and makes the window much 
* smaller. 
*/ 
synchronize-kernel0 ; 

/* And free the memory. */ 

Figure 6.26: Module Unloading 

Sarma that prevents 1 s  /proc from blocking fork (1. 

The problem is that get-pid-l ist  () traverses the entire tasklist in order to build the 

PID list needed by 1 s  /proc. It read-holds t a s k l i s t l o c k  during this traversal, blocking 

updates to the tasklist, such as those performed by fork() .  On machines with large 

numbers of tasks, this can cause severe difficulties, particularly given multiple instances 

of certain performancemonitoring tools. 

Dipankar7s modifications are shown in Tables 6.5 and 6.6, changing only two files, 

adding thirteen lines and deleting seven for a six-line net addition to the kernel, deleting 

a pair of t a s k l i s t l o c k  uses. None of the other 249 uses of t a s k l i s t l o c k  are modified. 

The changes make use of the Reader-Writer-Lock/RCU Analogy and RCU Existence 

Locks patterns described in Sections 5.2.5 on Page 153 and 5.2.4 on Page 151, respectively, 

and are as follows: 

1. The read-lock0 and read-unlock0 of t a s k l i s t l o c k  in g e t p i d - l i s t  () are re- 

placed by rcuxeadlock () and rcuxead-unlock (), respectively. 

2. A struct  rcuhead is added to task-struct in order to track the task structures 

waiting for a grace period to expire. 

3. The put -t ask-struct () macro invokes --put -task-struct () via c a l l ~ c u ( )  rather 

than directly, ensuring that all concurrently executing get - p i d l  ist ( ) invocations 



complete before any task structures that they might have been referencing are freed. 

This is an example of the RCU Existence Locks pattern. 

4. The SETLINKS () and REMOVELINKS 0 macros make use of the r c u 0  forms of the 

list-manipulation primitives. 

5. The f or-each-process () macro gets a read-barrierdepends 0 to make this code 

safe for the DEC Alpha. 

This example demonstrates use of RCU for a late-in-cycle optimization. 

The task-list patch is an 85-line context diff that adds a net six lines to the kernel, 

broken down as shown in Figure 6.27. Despite the small size of this change, it yields 

significant system-level performance benefits, as  shown in Figure 6.28. This data was 

collected on a machine with 16 Pentium I11 Xeon processors running at 700MHz and 32 

GB of memory. 

Figure 6.27: Task-List RCU Patch 

This example demonstrates one of the great strengths of RCU in general and of the 

Reader-Writer-Lock/RCU Analogy pattern in particular, namely, that they can be applied 

incrementally to an existing design. This change prevents the get -p id l i s t  0 code path 

(invoked by "1s /procW commands) from starving other manipulations of the task list, 

such as f ork0  and exec 0. This get -p id l i s t  0 code path becomes lock free, the update 

path uses c a l l x c u 0  to defer destruction, and all other code paths are unaffected. 

Reason 
Include rcupdate.h 
Read-side locking 
Add call..rcuO to defer 
destruction 
Convert to RCU list 
macros 
Add Alpha-only memory 
barrier 
Total 

Lines 
Added 

2 
2 
6 

2 

1 

13 

Deleted 
0 
2 
2 

2 

1 

7 



Table 6.5: Applying RCU to get-pidlist () 

Original Code I RCU Version 

1 static int get-pid-list(int index, 
2 unsigned int *pids) 
3 i 
4 struct task-struct *p; 
5 int nr-pid~ = 0; 
6 
7 index--; 
8 read~lock(&tasklist~lock); 
9 f or-each-process (p) C 
10 int pid = p->pid; 
11 if ( !pid-alive(p)) 
12 continue ; 
13 if (--index >= 0) 
14 continue; 
15 pids[nr-pidsl = pid; 
16 nr-pids++; 
17 if (nr-pids >= FROG-MAXPIDS) 
18 break; 
I9 > 
20 read-udLock(ktask1ist-lock) ; 
21 return nr-pids; 
22 3 

1 static int get-pid-listcint index. 
2 unsigned int *pids) 
3 C 
4 struct task-struct *p; 
5 int m-pid~ = 0; 
6 
7 index--; 
8 rcu-read-lock0 ; 
9 f or-each-process (p) C 
10 int pid = p->pid; 
I1 if ( !pid-alive(p)) 
12 continue; 
13 if (--index >= 0) 
14 continue ; 
15 pids[nr,pidsl = pid; 
16 nr-pids*; 
17 if (nr-pids >= P R O C - W I D S )  
18 break ; 
19 3 
20 rcu-read-unlock0 ; 
21 return nr-pids; 
22 > 



Table 6.6: Applying RCU to get-pid_list() Helper Macros 

Original Code I RCU Version 

1 void put-task-struct(struct task-struct *t) 

2 C 
3 if (atomic-dec-and-test (kt->usage)) 
4 call-rcuctt->mu, 
5 (void (*)(void *))--put-task-struct. 
6 t) ; 
7 3 

1 Mefine REMOVE-LINKS(~) do I \ 
2 if (thread-goup-leader(p)) \ 
3 list-del-init(t(p)->tasks); \ 
4 remove-parent (p) ; \ 
5 3 while (0) 
6 
7 Mefine SET-LINKScp) do C \ 
8 if (thread-goup-leader(p)) \ 
9 list-add-tail(&(p)->tasks, \ 
10 kinit-task.tasks); \ 
11 add-parent (p , (p) ->parent) ; \ 
12 ) vhile (0) 

1 tdefine REKOVF,-LIBKS(p) do \ 
2 if (thread-group-leader(p1) \ 
3 list-del-rcu(&(p)->tasks) ; \ 
4 remove-parent (p) ; \ 
5 3 while (0) 
6 
7 tdefine SET-LINKS(p) do C \ 
8 if (thread-group-leader(p)) \ 
9 list-add-tail-rcu(&(p)->tasks. \ 
10 tinit-task-tasks); \ 
11 add-parent(p, (p)->parent); \ 
12 ) while (0) 

1 tdef ine f or-each-process (p) \ 
2 for (p = kinit-task; \ 
3 (p = next-task(p)) != &init-task; ) 

1 tdef ine f or-each-process(p) \ 
2 for (p = tinit-task; \ 
3 (p = next-task(p) 1, \ 
4 (I read-barrier-dependso ; O;)), \ 
5 p != tinit-task; \ 
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Figure 6.28: SPEC SDET Performance of Task-List RCU 

Since only 20 lines needed to be changed (13 added, 7 deleted), this change is the RCU 

"poster child" for large benefits from tiny changes. 

6.6 Scalable FD Management 

This section is adapted from a prior publication by myself and others [73]. 

The Linux kernel's FD management maintains the data structures that map from a 

file descriptor to the corresponding s t ruc t  f i l e .  This mapping is implemented as a set 

of arrays (pointed to by fd, close-on-exec, and openf ds), which can grow as the process 

opens more files. This section describes how RCU was applied to this subsystem. 

The current FD management code uses a reader-writer lock ( f i l e l o c k )  to guard 

the f i l e s s t r u c t  state, in particular, the f d, close-on-exec, and openf ds pointers. 

Dipankar Sarma and Maneesh Soni replaced the reader-writer f ile-lock with a spin- 

lock, deleted the readlock 0 calls, and replaced wri te lock () calls with spinlock ( ). 

This follows the Reader-Writer-Lock/RCU Analogy pattern discussed in Section 5.2.5 on 

Page 153. 

The expandf d-array0 and expandf dset  0 functions are then cast into RCU form, 



4 memcpy(nev-execset, files->close~on~exec, 
5 i * sizeof(struct f i l e  *)I;  
6 rnemset (knev-openset->fds-bits [i] , 0, count) ; 
7 memset(&new-execset->ids-bits Cil , 0, count) ; 
8 1 
9 nfds = xchg(0iiles->max-fdset, nfds); 

10 nev-openset = xchg(&files->open-fds, 
11 new-openset) ; 
12 new-execset = xchgckfiles->close-on-exec. 
13 new-execset) ; 
14 vrite-unlock(&files->file-lock); 
15 free-fdset (new-openset . nfds) ; 
16 free-fdset(new-execset, nfds); 
17 write-lock(&f iles->f i l e - l ock )  ; 

Figure 6.29: Expanding FD Array 

with the update split into two phases separated by a grace period. 

The original form of the update portion of expandf d-array 0 is shown in Figure 6.29. 

In the RCU version, lines 1 through 13 are executed in the first phase, and lines 15 

and 16 are executed after a grace period, using the synchronizelrernel() function to 

defer execution of the f r e e 2  dset  0 functions. This approach allows any tasks running 

on other CPUs that are still referencing the arrays pointed to by the old values of fd, 

close-on-exec, and open3 ds to continue normally, in accordance with the Substitute 

Copy For Original pattern described in Section 5.3.3 on Page 163. 

A RCU version is shown in Figure 6.30. This code must install the new arrays before 

updating maxf dset, since read-side critical sections are no longer excluded when running 

this code. The smp-umb0 calls are needed to maintain memory ordering on CPUs with 

extremely weak memory consistency. The expandf dset 0 function is modified in a sim- 

ilar fashion. Both these changes follow the Ordered Update With Ordered Read pattern 

described in Section 5.3.5 on Page 169. 

This patch uses a slightly different approach from that shown in Figure 6.30. Rather 

than using synchronizekernel 0 ,  it registers RCU callbacks, which asynchronously in- 

voke auxiliary functions to free the memory after the grace period expires. This more- 

complex approach is necessary for good performance, as the synchronizelrernelo a p  

proach results in extra context switches, whose overhead overwhelms RCU's performance. 



1 if (i) C 
2 memcpy (new-openset , f iles->open-fds . 
3 files->max_fdset/8); 
4 memcpy(nev-execset, files->close~on~exec, 
5 i * sizeof(struct file *)I; 
6 memset (&new-openset->ids-bits [i] , 0, count) ; 
7 memset($nev-execset->fds-bitsCi] . 0, count) ; 

8 1 
9 smp-vmb0 ; 
10 nev-openset = xchg(&files->open-fds. 
11 new-openset) ; 
12 nev-execset = xchg(bfi1es->close-on-exec, 
13 nev-execset) ; 
14 smp-wmb0; 
15 nfds = xchg(&files->max-fdset, nfds); 
16 mite-unlock(&files->file-lock); 
17 synchronize-kernel(); 
18 free-fdset (new-openset , nfds) ; 
19 free-fdset(nev-execset, nfds) ; 
20 wits - lock(&f i l e s ->f i l e - lock) ;  

Figure 6.30: RCU Expanding FD Array 

Both of these variants are examples of the RCU Existence Locks pattern discussed in 

Section 5.2.4 on Page 151. 

Figure 6.31 on Page 221 shows the performance benefits of the RCU version of FD 

management on the chat benchmark with rooms=20 and messages=500 in a 2.4.2 SMP 

kernel. These runs used a l-way, 2-way, 3-way, and a 4way PI11 Xeon 700MHz system with 

1MB L2 cache and 1GB of RAM. The RCU version attains over 30% more throughput 

at four CPUs, which should benefit all multithreaded applications that do heavy disk 

or network 110. In addition, this change does not penalize uniprocessor kernels, instead 

showing a statistically insignificant performance increase (0.65%). In all cases, kernprof 

measurements revealed greatly reduced hits in the fget0 function. Since there was no 

sign of heavy contention on the lock used in this code, it is probable that the increased 

throughput was due to reduced cache thrashing. 

This change has not yet been included in the Linux 2.6 kernel. Instead, a simpler 

modification that greatly reduced the locking overhead of single-threaded processes has 

been adopted. The locking bottleneck still exists, but only for multithreaded processes. 

However, the change described in this section degrades performance for singlethreaded 

processes, given that the aforementioned simple modification has been applied. Future 
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Figure 6.31: FD Management Performance 

work includes investigating the feasibility of an RCU patch that does not degrade single- 

threaded performance. 

6.7 K42 Hash Tables 

Much groundbreaking work has been done in the area of non-blocking synchronization, 

resulting in algorithms that are both scalable and robust against process-death failures. 

Nonetheless, because general non-blocking synchronization algorithms require structure- 

reuse checks, these algorithms have seen no significant practical use. 

However, deferring destruction of data structures removes the requirement both for 

structure-reuse checks and for read-only accesses to perform expensive atomic writes to 

shared storage. This deferred destruction can be accomplished by using RCU to delay 

destruction for one grace period. This section gives an extended description of a plug-in 

hash table that Marc Auslander designed and coded for the K42 operating system. 

Hash tables are a fundamental data structure used to provide fast lookup. Lock con- 

tention on hash tables can severely limit scalability in multiprocessor applications. We 

illustrate how RCU may be used in conjunction with non-blocking synchronization to pro- 

vide highly scalable hash tables, while avoiding the need for the reuse checks traditionally 

required by non-blocking synchronization. 



This discussion assumes the standard chained hash-table implementation in which a 

key is "hashed" to an index. The index selects a hash-chain header or 'Lbucket", which 

contains a linked list of elements representing keys with the same hash value. Each element 

contains a datum that is associated with the key, so that the hash table implements a 

mapping from key to datum. 

One approach to increase scalability is to use separate locks for each bucket. This 

reduces contention if key Iookups are well-distributed across the buckets, but not if there 

are a few hot keys. 

Another approach is to implement a non-blocking hash table. Of course, non-blocking 

techniques reduce contention, but do not address communication cache misses. However, 

combining non-blocking techniques with RCU can reduce communication cache misses by 

eliminating them among read-only accesses. These reductions of contention and commu- 

nication cache misses, when combined with elimination of priority inversions and other 

locking issues, can provide sufficient performance and scalability for many situations. This 

combination of techniques is an example of the RCU Readers With NBS Writers pattern 

&om Section 5.2.6 on Page 158. 

The fundamental operations on a hash table are lookup, insert, and remove. 

The lookup operation takes a key, and either returns the corresponding datum or an 

error if the key is not present. There are many variations on this theme that do not change 

the fundamental algorithm, for example, some implementations return the address of the 

element associated with the key. 

The insert operation inserts an element that maps the specified key to the specified 

datum, or an error if the key is already present. Again, there are many variations on this 

theme, including permitting multiple instances of the same key, or updating an existing 

datum if the specified key is already present. This operation marks each new element with 

a "valid" indication. 

The remove operation deletes an element that maps the specified key to a datum, 

relying on the "valid" indication. 

All of these operations can be viewed in terms of their effect on the single bucket that 

the specified key hashes to. Implementations are normally designed to operate best when 



the average hash-chain length is small, in fact hash tables are frequently tuned to achieve 

an average chain length of one. 

The lookup operation traverses the hash chain, returning the datum found in the first 

element with a matching key that is marked "valid". If no such element is found, the 

lookup operation returns an error. 

The insert operation always inserts new elements at  the head of the hash chain. This 

can be implemented with the well-known non-blocking list-push operation, in which atomic 

instructions such as compare-and-swap are used to push the new element onto the hash 

chain. However, we must correctly handle the case where two concurrent insert operations 

are attempting to insert the same new key. Exactly one of these operations must succeed; 

the other must fail. In addition, if the key is an old key that is already present in the hash 

table, both operations must fail. 

These behavior constraints are met by recording the value of the hash-chain header, 

then searching the list for a matching key. If the key is found in an element marked 

"valid", the insert operation fails and an error is returned. Otherwise, the insert operation 

performs a compare-and-swap push using the recorded value of the hash-chain header. If 

any elements have been inserted during the search, or if the first element has been deleted 

during the search, the compare-and-swap push will fail. This is an example of the Global 

Version Number pattern from Section 5.3.6 on Page 171, where the header pointer acts 

as the global version number that changes only for insertions and removals of the head 

of the list. Failure is guaranteed because deferred destruction prevents a deleted element 

from being re-inserted into the list until after all concurrently executing insertions have 

completed. This guarantee is provided through use of the RCU Existence Locks pattern 

from Section 5.2.4 on Page 151. 

The remove operation relies on the "valid" indication that is associated with each 

element on the hash chain. Remove searches the chain, and, if it finds a matching element 

marked "valid", it uses an atomic operation such as cornparare-and-swap to mark the element 

"invalidn, as denoted by the hollow arrow f?om element A in step (2) of Figure 6.32, 

indicating that element A is now invalid through use of the Mark Obsolete Objects pattern 

from Section 5.3.2 on Page 161. This atomic operation must eventually succeed, since new 



elements are added only to the beginning of the list, and there are only a finite number of 

elements following this one that may be deleted. If the remove operation reaches the end 

of the chain, it returns an error. 

(2) Header A B 

(1) 

Figure 6.32: Lock-Free Hash Remove Operation 

Header A B 

Otherwise, the remove operation must now remove the invalidated element A from the 

hash chain, as shown in step (3) of the figure. Although it is impossible to remove an 

arbitrary element from a list using non-blocking operations in the face of other concurrent 

removal operations, in this case, it is possible to remove the first invalid element, whose 

predecessor must be either a valid element or the hash-chain header [86]. We accomplish 

this by coding the "validn indicator into the low-order bits of the "next" pointer, again, as 

denoted by the hollow arrows in the figures. Since removing an element involves replacing 

its predecessor's "nextn pointer with its own "next" pointer, concurrent removal of the 

predecessor will change the value of the predecessor's "next" pointer, which will in turn 

cause the compare-and-swap operation that updates this pointer to fail. If the compare- 

and-swap operation succeeds, the newly removed element A's destruction (and subsequent 

reuse) must be deferred for a full grace period to allow any concurrent hash-chain traversals 

to give up any references to this element, and to ensure that the insert operation will 

operate correctly when an element that has been removed is reused and reinserted into the 

list, as shown in step (4) of the figure. The combination of the "valid" indication with the 

"next" pointer, the removal only of the first invalid element, and the deferred destruction 

are sufficient to guarantee that the remove operation is correct. An example failure-retry 



scenario due to a race with insertion of a new element C is shown in Figure 6.33. 

(1) Header A B 

(2) 

Figure 6.33: Lock-Free Hash Remove Operation with Race 

Header A B 

(5 )  

Note that this algorithm can in theory result in starvation if new threads continuously 

Header C B 

add, invalidate, and try to remove elements. This starvation can be reduced by requiring 

that the insert operation remove any "invalid" elements from the head of the hash chain 

before inserting the new element. 

In practice, we have instead chosen to avoid the starvation scenario described above 

by only removing singleton elements with compare-and-swap operations, and then using 

a per-bucket lock to serialize all removals from hash chains having more than one ele- 

ment. In a properly-tuned hash table, removals &om long hash chains is so rare that the 

lock overhead is insignificant. We are nonetheless investigating an improved non-blocking 

removal algorithm. 

Michael [87, 861 has recently advanced an alternative approach based solely on non- 

blocking synchronization that does away with the traditional requirement for reuse checks 

and type-safe memory. However, the RCU approach eliminates the need for expensive 

writes to shared memory and associated memory barriers for read-only accesses to the 



hash table, which is especially beneficial to read-mostly hash tables, such as those used to 

implement network routing tables. 

Figure 6.34 on Page 226 shows the performance benefits of the lock-free hash table 

when running the PostMark benchmark on a 24CPU PowerPC system. The offered load 

is increased with increasing numbers of CPUs, so that the 24CPU runs process 24 times 

the work as the single-CPU runs. Beyond 10 CPUs, the overhead of locking becomes quite 

erratic, with the outlier points caused by stable convoys of processes that can form on the 

hash-table lock. In contrast, the runtime required by the lock-free RCU-based hash table 

is quite predictable, and ranges from 2 to 10 times faster than the locked hash table when 

running on 24 CPUs. 
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Figure 6.34: PostMark Performance of Hash Table 

This lock-free hash table is a drop-in replacement for the many hash tables in the K42 

operating system, including the per-file page cache, the PID-to-process mapping table, 

and the table of simulated page descriptors used by the Linux environment. This hash 

table is quite valuable in K42, despite the fact that K42 has no global variables. The 

global hash tables found in many operating systems and applications can be expected to 

derive even more benefit from this algorithm. 

This work demonstrates that NBS may be profitably combined with RCU. Future work 



includes exploring additional NBSjRCU combinations, and also eliminating the small 

amount of locking remaining in this algorithm. 

6.8 Other RCU Usage 

The following sections briefly overview RCU usage in VM/XA, DYNIXjptx, K42/Tornado7 

SuSE Linux, and the Linux 2.6 kernel. 

A mechanism resembling RCU [39] is used for per-user-ID tracing in IBM7s VM/XA 

mainframe product [105]. This is an application of the Pure RCU pattern described in 

Section 5.2.3 on Page 147. 

The DYNIXjptx development methodology was often extremely qualitative, and multiple 

improvements were often made simultaneously, as  required by competitive pressures and 

the relatively sma.11 size of the DYNIX/ptx development team. There are therefore no 

accurate measures of the benefits of the RCU implementation for DYNIX/ptx. That said, 

DYNIX/ptx uses RCU for the following purposes [73]: 

1. Distributed lock manager: recovery, lists of callbacks used to report completions and 

error conditions to user processes, and lists of server and client lock data structures. 

RCU reduced the complexity of the locking hierarchy, thereby greatly simplifying 

the deadlock-avoidance code. This subsystem inspired RCU. 

2. TCPIIP: routing tables, interface tables, and protocol-control-block lists. This 

project was used as a testbed to architect DYNIX/ptx7s RCU API. 

3. Storage-area network (SAN): routing tables and error-injection tables (used for stress 

testing). 

4. Clustered journaling file system: in-core inode lists and distributed-locking data 

structures. 



5. Lock-contention measurement: B* tree used to map from spinlock addresses to the 

corresponding measurement data (since the spinlocks are only one byte in size, it 

is not possible to maintain a pointer within each spinlock to the corresponding 

measurement data). 

6. Application regions manager (which is a workload-management subsystem): main- 

tains lists of regions into which processes may be conbed. 

7. Process management: per-process system-call tables as well as the multi-processor 

trace data structures used to support user-level debugging of multi- threaded pro- 

cesses. 

8. LAN drivers: resolve races between shutting down a LAN device and packets being 

received by that device. This change applied the Pure RCU pattern. 

More information on the implementation and use of RCU in DYNIX/ptx may be found 

elsewhere [81, 108, 109, 110, 1111. 

6.8.3 RCU Use in K42 

The Tornado and K42 [30] research operating systems independently developed a form of 

RCU, which is used as follows: 

1. To provide existence guarantees throughout these operating systems. These exis- 

tence guarantees simplify handling of races between use of a data structure and its 

deletion [lo, 301. The existence guarantees are uses of the RCU Existence Locks 

pattern described in Section 5.2.4 on Page 151. 

2. To identify quiescent states so that implementations of an object can be swapped 

on the fly while the object is in active use [113]. This is also an example of the 

Pure RCU pattern described in Section 5.2.3 on Page 147. Note that hot swapping 

requires that the underlying RCU infrastructure have low grace-period latency. 

3. To support a non-blocking hash-table implementation which is used throughout 

K42, as described in Section 6.7 on Page 221. This implementation uses the RCU 



Readers With NBS Writers, Global Version Number, RCU Existence Locks, and 

Mark Obsolete Objects patterns described in Sections 5.2.6 on Page 158, 5.3.6 on 

Page 171, 5.2.4 on Page 151, and 5.3.2 on Page 161, respectively. 

Use of RCU to provide existence locks is a basic architectural tenet of Tornado and 

K42, where it reduces lock and memory contention and simplifies locking designs. 

6.8.4 RCU Use in Linux 

RCU in the Linux 2.4 Kernel 

Numerous RCU patches were produced for the Linux 2.4 kernel, as described in Section 4.2 

on Page 107. In addition, many of the RCU uses described in Chapter 6 were prototyped 

in 2.4 kernels. 

RCU was also put into production in the 2.4 kernel. SuSE 7.3 Update and later 

includes an implementation of RCU that is in some ways similar to that in VM/XA. This 

was the first shipping version of RCU in Linux, and is used to reduce the probability of 

destructive races that occur in Linux 2.4 kernels during module unloading. This change 

is an example of the Pure RCU pattern described in Section 5.2.3 on Page 147. Similar 

code appears in the Linux 2.6.0-test1 kernel. 

RCU in the Linux 2.6 Kernel 

RCU was introduced incrementally into the Linux 2.5 kernel over some months. This 

section describes the state of the Linux 2.6.0-test1 kernel. 

Linux 2.5.43: Linux 2.5.43 introduced the RCU infrastructure [121], written by Di- 

pankar Sarma. This infrastructure is described in Section 4.4.1 on Page 113. The existing 

module-unloading code, written by Rusty Russell, made use of this infrastructure. This 

code is described in Section 6.4 on Page 213. 

Linux 2.5.44: Linux 2.5.44 introduced both the read-barrier-depends 0 and the rcu 

list macros [122], written by Dipankar Sarma. The x c u  list macros invoke memory barriers 



appropriate for the particular architecture, as suggested by Manfred Spraul. Memory 

barriers are discussed in detail in Appendix B on Page 322. 

Linux 2.5.45: Linux 2.5.45 fixed a bug in RCU's idle-CPU detection [123], written by 

Dipankar Sarma. 

Linux 2.5.46: Linux 2.5.46 introduced an RCU-based implementation of System V 

IPC [124], written by Mingming Cao. This change is described in detail in Section 6.1 on 

Page 182. 

Linux 2.5.53: Linux 2.5.53 introduced an RCU-based implementation of the IPv4 route 

cache [125], written by Dipankar Sarma. 

Linux 2.5.58: Linux 2.5.58 introduced an RCU-based IPMI (Intelligent Platform Man- 

agement Interface) driver [126], written by Corey Minyard. This change is similar to the 

NMI change described in Section 6.3 on Page 211. 

Linux 2.5.62: Linux 2.5.62 introduced an RCU-based dcache (directory-entry cache) 

implementation [127], written by Dipankar Sarma and Maneesh Soni. This change is 

described in Section 6.2 on Page 195. 

Linux 2.5.64: Linux 2.5.64 introduced hlists, including x c u  variants, for use in reducing 

the memory requirements of large hash tables [128], written by Andi Kleen. These hlists 

are described in Section 4.1 on Page 100. 

Linux 2.5.69: Linux 2.5.69 introduced the first installment of RCU as a replacement 

for brlock (big reader lock) [129], written by Stephen Hernminger. 

Linux 2.5.70: Linux 2.5.70 introduced the second installment of RCU as a replace- 

ment for brlock [130], again written by Stephen Hemminger. These two installments each 

contained a large array of changes, which are listed below. 



DECNET routing uses RCU to remove brlock. Its approach is very similar to IP route 

cache, with --dnxoute-output k e y  0 doing the read-side route-cache lookup. 

SNAP protocol registration uses RCU to remove brlock. It applies RCU to a lock- 

free linked-list search in f ind-snap-client (), in accordance with the Reader-Writer- 

Lock/RCU Analogy pattern described in Section 5.2.5 on Page 153, and makes use of 

synchronizenet 0 to defer the kf ree 0 of the datalink-proto 0 structure until all 

searches complete, in accordance with the RCU Existence Locks pattern described in 

Section 5.2.4 on Page 151. The registersnap-client0 function also makes use of 

synchronizenet 0 to ensure that, upon return, all subsequent searches will find the new 

SNAP client. This last example is a use of the Pure RCU pattern described in Section 5.2.3 

on Page 147. 

802.1Q virtual lan (VLAN) module cleanup uses RCU to remove brlock. It maintains 

a per-VLAN-group list of device pointers, held in an array indexed by the VLAN ID, also 

known as the interface index. The array is indexed without locking in accordance with 

the Reader-Writer-Lock/RCU Analogy pattern described in Section 5.2.5 on Page 153. 

Removal of entries from this array are followed by a synchronizenet 0 call, which blocks 

waiting for a grace period to elapse, in accordance with the Pure RCU pattern described 

in Section 5.2.3 on Page 147. All this aside, the use of global locks to look up the VLAN 

group indicates that this module would need some work in order to become the basis of a 

high-performance SMMP VLAN hub. Then again, cost considerations likely force VLAN 

hubs to be singleCPU devices. 

Ethernet bridge uses RCU to remove brlock. It maintains a list of net-bridge-port 

structures, which are subject to lock-free search in br-get-port-if indices 0 ,  b r f  l o o d o  , 
and br-get-port 0 in accordance with the Reader-Writer-Lock/RCU Analogy described 

in Section 5.2.5 on Page 153. The delnbp0  function uses c a l l r c u 0  to free these struc- 

tures, in accordance with the RCU Existence Locks pattern described in Section 5.2.4 on 

Page 151. 

Combined bridging/routing uses RCU to remove brlock. It maintains a function 

pointer in br~shouldxoute_hookO that is NULL if the module is absent. When the 

module is unloaded, the pointer is set to NULL, and the unload uses synchronizenet () 



to block until all tasks that might have seen the non-NULL value have completed their 

current operation, in accordance with the Pure RCU pattern described in Section 5.2.3 

on Page 147. 

The packet-handler infrastructure uses RCU to remove brlock. It maintains lists of 

packet handlers for each packet type, and another list of handlers that is to receive all 

packet types. These lists are searched in a lock-free manner by dev-queuexmitnit 0 and 

net i f  ~ e c e i v e s k b  ( ) , which handle transmitted and received frames, respectively, in ac- 

cordance with the Reader-Writer-Lock/RCU Analogy pattern described in Section 5.2.5 on 

Page 153. The netdev-setaaster 0 ,  unregisternetdevice0, and devxemove-pack0 

functions invoke synchronizenet 0 in accordance with RCU Existence Locks described 

in Section 5.2.4 on Page 151. The packet handlers implement things like Network Interface 

Tap (NIT), which permits Linux systems to be used as protocol analyzers. 

Netfilter uses RCU to remove brlock. There are a number of aspects to netfilter, in- 

cluding netfilter hooks, IP  connection tracking, and IP queueing. The NFHOOKO macro 

and its friends invoke nf i t e r a t e  0 to perform a lock-free traversal of the netfilter hooks, 

which are registered by nfreg i s terhook0  and nf -unregister_hookO in accordance 

with the Reader-Writer-Lock/RCU Analogy described in Section 5.2.5 on Page 153. Both 

of these latter two functions invoke synchronizenet 0 in order to ensure that the new 

hook state is seen upon return in accordance with the Pure RCU pattern described in 

Section 5.2.3 on Page 147. In the case of nf-unregisterhook0, the synchronizenet 0 

also permits the caller to free the hook data structure immediately upon return, in accor- 

dance with the RCU Existence Locks pattern described in Section 5.2.4 on Page 151. 

Netfilter's IP connection tracking also uses RCU to remove brlock, which was being 

used to force racing interrupts to complete. There is an ip-conntracklock that pro- 

tects data structures, so there may be further opportunities to apply RCU here. RCU is 

currently used to protect the helper list, which is searched by i p - c t f  indhelper0 and 

ip-conntrack-alter~eply 0 as per the Reader-Writer-Lock/RCU Analogy described in 

Section 5.2.5 on Page 153. This list is updated by ip-conntrackhelper~egister0 

in accordance with the Pure RCU pattern described in Section 5.2.3 on Page 147 and 



ip-conntrackhelper-unregister (1 in accordance with the RCU Existence Locks pat- 

tern described in Section 5.2.4 on Page 151. A similar situation exists for prot ocol-l is t  0 

and for the helpers list used by the network address translation (NAT) facility. 

Netfilter's IP queueing uses RCU during module initialization and cleanup to ensure 

that any racing uses complete before exiting the initialization/cleanup function. 

The IPv4 and IPv6 protocol switches use RCU in order to eliminate brlock. The 

IPv4 inet  -prot os [I array is protected by RCU. It is searched by icmp-unreach0 and 

ip-local-deliver f in i sh  ( 1 in accordance with the Reader- Writer-Lock/RCU Analogy 

pattern described in Section 5.2.5 on Page 153, and is updated by inet-add-protocol0 

and ine t -del-prot ocol() in accordance with the RCU Existence Locks pattern described 

in Section 5.2.4 on Page 151. The IPv6 inet6-protos [I array is handled in a similar 

manner, as are the inetsw and inet  sv6. 

The IPv4 tunnelling facility uses RCU to remove brlock. The ipiphandler  function 

pointer is protected by RCU, and is updated by the xfrm4-tunneliregister 0 function 

and the xfrm4-tunnel-deregister0 function in accordance with the RCU Existence 

Locks pattern described in Section 5.2.4 on Page 151. The pointer is dereferenced with- 

out locks in ip ipxcv  (), whose caller (e-g., ip-local-deliver1 in ish  0) must invoke 

rcu1eadlock0 in accordance with the Reader-Writer-Lock/RCU Analogy pattern de- 

scribed in Section 5.2.5 on Page 153. 

The raw socket protocol uses synchronizenet (1 in the packet -set l i n g  (1 function 

to force interrupts to complete before doing teardown operations in accordance with the 

RCU Existence Locks pattern described in Section 5.2.4 on Page 151. This use is similar 

to that of Netfilter's IP connection tracking. 

Linux 2.5.71: Linux 2.5.71 introduced some fixes to dcache's daove 0 function and to 

list pointer "poisoning" for RCU-based lists [131], writ ten by Linus Torvalds. 

Linux 2.5.73: Linux 2.5.73 introduced RCU-based NMI handling [132], written by John 

Levon based on a patch by Zwane Mwaikambo. This change is described in more detail 

in Section 6.3 on Page 211. 



6.9 Discussion 

This chapter presented several case studies on the application of RCU to operating-system 

kernels, primarily Linux 2.6.0, and also summarized several tens of uses in VM/XA. 

DYNIX/ptx, K42/Tornado, and the Linux 2.4 and 2.6 kernels. These uses of RCU t y p  

ically produced large performance increases, in one case increasing the performance of 

System V semaphores by more than an order of magnitude, as described in Section 6.1. 

The complexity of the changes was typically quite modest, in one case requiring only a 

six-line net addition of code to the Linux 2.6 kernel (thirteen lines added and seven lines 

deleted), as described in Section 6.5. In some cases, RCU enabled functionality that could 

be accomplished only with great difEculty using traditional locking schemes, as described 

in Sections 6.3 and by Gamsa et al. [30] and Appavoo et al. [lo]. In other cases, use 

of RCU allowed other locking primitives to be done away with, for example, brlock was 

eliminated from the Linux 2.5.69 and 2.5.70 kernels, as discussed in Section 6.8.4. 

Each of the case studies used several of the RCU design patterns and transformational 

patterns described in Chapter 5, validating their use and structure. Future work includes 

analyzing RCU-related code as it is produced to identify additional RCU patterns and to 

refine existing RCU patterns. 



Chapter 7 

Analytical Comparison of RCU and 

Locking 

This chapter presents an analytic comparison of RCU and selected locking primitives. 

Section 7.1 describes the analytic technique used, Section 7.2 presents derivations valid 

for low-contention situations, and Section 7.3 discusses the implications of these results. 

This author adapted the low-contention analysis from earlier publications of his work in 

this area [68, 811. The parametric investigation of the RCU/locking breakeven space and 

the discussion are new work. 

7.1 Low-Cont ention Analytic Methodology 

Maintaining low lock contention is essential to attaining high performance in parallel pro- 

grams. However, as was shown in Section 2.2.7 on Page 25, even programs with negligible 

lock contention can suffer severe performance degradation due to memory latency and 

pipeline stalls. Since memory-latency overhead is considerably larger than that of pipeline 

stalls for many CPUs, as shown in Table 2.1 on Page 32, only memory-latency overhead 

is considered in this chapter. 

The most straightforward way to measure the performance of an algorithm is to simply 

run it, as was done in Chapters 2 and 6, and as will be done in Chapter 8. However, the 

direct measurement approach produces results that are specific to a particular workload 

running on a particular machine. Furthermore, the instrumentation itself may affect the 

timing and performance measurements. 



Alternatively, an algorithm's performance may be evaluated via simulation. The sim- 

ulator may then be tuned to provide results as a function of memory latency or number of 

CPUs, but each run still produces results that are specific to a particular workload run- 

ning on a particular machine, so that exploration of the possible design space is extremely 

time-consuming. 

Traditional design-time methodologies for evaluating the performance of algorithms 

are based on operation counting [55]. This approach has been refined by many researchers 

over the decades. Recent work considers the properties of the underlying hardware, weight- 

ing the operations by their costs [60]. This hardware-centric approach requires detailed 

analysis of assembly code, and produces results that are specific to a particular machine. 

Although the techniques described in this chapter may be applied to both simulation 

and analytic operation-counting methodologies, this chapter focuses on analytic method- 

ologies. The scalability design guidelines presented by Unrau et al. [138], namely, preserv- 

ing parallelism, bounding per-operation overhead, and preserving locality, may profitably 

be applied at design time when using this technique. 

7.1.1 Memory-Latency Model 

The approach put forward in this chapter relies on the fact that memory latency is the 

dominating factor in typical parallel programs. Such programs avoid highly contended 

locks, leaving the memory latency as the dominating execution cost, since memory accesses 

are increasingly expensive compared to instruction execution overhead [17, 38, 1171. 

Since memory latency dominates, we can accurately estimate performance by tracking 

the flow of data among the CPUs, caches, and memory. For SMMP and NUMA [59] 

architectures, this data flow is controlled by the cache-coherence protocol, which moves 

the data in units of cache lines. Figure 7.1 shows a cache line's possible locations relative 

to a given CPU in a NUMA system. As shown in the figure, a NUMA system is composed 

of modules called NUMA nodes, which contain both CPUs and memory. Data residing 

nearer to a given CPU will have shorter access latencies. As the figure shows, data that is 

already in a given CPU's cache may be accessed with latency t f .  Data located elsewhere 

on the NUMA node may be accessed with latency t,, while data located on other NUMA 



nodes may be accessed with latency t,. On large-scale machines where t ,  overwhelms 

t ,  and t j ,  the latter quantities may often be ignored, further simplifying the analysis, 

but decreasing accuracy somewhat. If more accuracy is required, the overheads of the 

individual instructions may be included [60], however, this will usually require that the 

program be coded and compiled to assembly language, and is often infeasible for large 

programs. 

Figure 7.1: NUMA Memory Latency 

Once a given data item has been accessed by a CPU, it is cached in that CPU's cache. 

If the data is located in some other NUMA node's memory, then it will also be cached in 

the accessing CPU's NUMA node's cache. In both cases, the caching allows subsequent 

accesses from the same CPU to proceed with much lower latency. Data that has been 

previously accessed by a given CPU is assumed to reside in that CPU's cache (with access 

latency tf). In other words, at low contention, we assume that there is insufficient cache 

pressure to force data out of a CPU's cache. Most modem CPUs also have a small on-chip 

cache, which can deliver multiple data items in parallel to the CPU in a single clock. This 

on-chip cache is modeled as having zero latency, but is assumed only to hold data across 

a single function. 



7.1.2 Conditions and Assumptions 

A NUMA system contains n NUMA nodes and m CPUs per NUMA node (two and 

four, respectively, in the example shown in the figure). The analysis makes the following 

assumptions: 

1. Each NUMA node contains the same number of CPUs. 

2. Contention is low and lock-hold times are short compared to the interval between lock 

acquisitions. This means that the probability of two CPUs attempting to acquire 

the same lock at the same time is vanishingly small, as is the probability of one CPU 

attempting to acquire a lock held by another CPU. 

3. CPUs acquire locks at random intervals. This means that when a given CPU acquires 

a lock, that lock was last held, with equal probability, by any of the CPUs. Exclusive 

and non-exclusive accesses are assumed to occur randomly with probability f and 

1 - f ,  respectively. 

4. The overhead of instructions executed wholly within the microprocessor core is in- 

significant compared to the overhead of data references that miss the cache. The 

model can be extended to handle programs with a significant number of "heavy- 

weight" instructions (such as atomic read-modify-write instructions and memory 

barriers) by adding an additional t h  for these heavyweight instructions. Such exten- 

sions are future work. 

5. The CPU is assumed to have a singlecycle-access on-chip cache. This cache is 

considered part of the CPU core, and for purposes of these derivations is called the 

"on-chip cache". Instruction fetches and stack references (function calls and returns, 

accesses to auto variables) are assumed to hit this on-chip cache, and are modeled 

as having zero cost. Indeed, modern microprocessors are fr-equently able to perform 

multiple accesses to this on-chip cache in a single clock cycle. 

6. Cache pressure is assumed low (outside of the on-chip cache), so that a variable that 

resides in a given cache remains there until it is invalidated by a write from some 



other CPU. 

7. Memory-access times are assumed to be independent of the number of copies that 

appear in different caches. Although directory-based cache-coherence schemes can 

in theory deviate significantly from this ideal, in practice, this assumption is usually 

sufficiently accurate [59], particularly for design purposes. 

8. Speculative references are ignored. In principle, speculation can result in large quan- 

tities of useless but expensive memory references, but in practice, this is often at 

least partially balanced by the fact that a speculating CPU can fetch multiple data 

items simultaneously. 

7.1.3 Procedural Details 

This section gives a step-by-step method of using the latency model to estimate the over- 

head of an algorithm. It aIso describes some simplifications that may apply in some 

commonly occurring situations. 

Summary of Nomenclature: Table 7.1 shows the symbols used in the derivations. 

Table 7.1: Nomenclature for Lock Cost Derivation 

I I systems. ~ ~ u a t i o i s  that apply to both SMMP and NUMA systems will define m I 
f 
m 

Definition 

Fraction of lock acquisitions that require exclusive access to the critical section. 
Number of CPUs per NUMA node in NUMA systems. Not applicable to SMMP 

n 

I I remote cache in NUMA systems. 1 

to be one unless otherwise stated. 
Number of CPUs (NUMA nodes) in SMMP (NUMA) systems. 

r 
t, 
t, 
t, 

1 t t I Time reauired to complete a "fastn access that hits the CPU's cache. 
I 

Ratio oft,  to tf. 
Time required to access the fine grained hardware clock. 
Time required to complete a "slow" access that misses all local caches. 
Time required to complete a "medium" access that hits memory or a cache shared 
among a subset of the CPUs. This would be the latency of local memory or of the 



Adaptation t o  Large-Scale SMMP Machines: The large caches and large memory 

latencies on large-scale SMMP machines allow them to be modeled in a similar manner. 

In many cases, substituting t, for t,, 1 for n, and n for m reduces a NUMA model to the 

corresponding SMMP model. Equivalently, one can substitute 0 for t,, t, for t,, 1 for n 

and n for m. 

These substitutions may be used except where the algorithm itself changes form in 

moving from a NUMA to an SMMP environment. Software that is to run in both NUMA 

and SMMP environments will generally be coded to operate well in both, often by con- 

sidering the SMMP system to be a NUMA system with a single large NUMA node. 

Use and  Simplifications: The model is a four-step process: 

1. Analyze the CPU-to-CPU data flow in your algorithm. 

2. For each point in the algorithm where a CPU must load a possibly-remote data item, 

determine the probabilities of that data item being in each of the possible locations 

relative to the requesting CPU. It is usually best to make a table of the probabilities. 

3. For each location, compute the cost. 

4. Multiply the probabilities by the corresponding costs, and sum them up to obtain 

the expected cost. 

This process is illustrated on locking primitives in the following sections. 

One useful simplification is to set t f ,  and possibly t,, to zero. This greatly simplifies 

the analysis, and provides accuracy sufficient for many uses, particularly when the ratio r 

between t, and tf is large. The importance of this memory-latency ratio r has long been 

recognized [136]. 

A further simplification is to assume that the data is maximally remote each time 

that a CPU requests it. This further reduces accuracy, but provides a very simple and 

conservative back-of-the envelope analysis that can easily be applied to large systems 

during early design. 

Note that because the actual behavior depends critically on cache state, actual results 

can deviate significantly from the analytic results presented in this chapter. For example, 



if the CPU cache was fully utilized, the added cache pressure resulting &om the larger size 

of higher-performance locking primitives might well overwhelm their performance bene- 

fits. Therefore, analytic results should be used only as guidelines or rules of thumb, and 

should be double-checked by measuring the actual performance of the running program. 

Nevertheless, these models have proven quite helpful in practice. 

7.2 Low-Contention Derivations 

This section presents analytic derivations of the overhead incurred by simple spinlock 

(Section 7.2.1), distributed reader-writer lock (Section 7.2.2), and RCU (Section 7.2.3). 

Section 7.2.4 then compares these expressions under various conditions, presenting plots 

of breakeven loci. 

7.2.1 Derivation for Spinlock 

A simple spinlock is acquired with a test-and-set instruction sequence. Under low con- 

tention, there will be almost no spinning, so the acquisition overhead is just the memory 

latency to access the cache line containing the lock. This latency is incurred when acquir- 

ing and when releasing the lock, and will depend on where the cache line is located, with 

the different possible locations, probabilities, latencies, and weighted latencies shown in 

Table 7.2. 

The entries in this table are obtained by considering where the lock could have been 

last held, and, for each possible location, how much it will cost for the current acquisition. 

In a NUMA system, there are nm CPUs distributed over n NUMA nodes, so there is 

probability l l n m  that the CPU currently acquiring the lock was also the last CPU to 

acquire it, as shown in the upper-left entry in the table. In this case, the cost to acquire 

the lock will be just t f ,  as shown in the left-most entry of the second row. The weighted 

latency will be the product of these two quantities, shown in the left-most entry of the 

third row. 

Similarly, there will be probability (m - 1)lnm that one of the m - 1 other CPUs 

on the same NUMA node as the current CPU last acquired the lock, as shown in the 



Table 7.2: Simple Spinlock Access-Type Probabilities and Latencies 

upper-middle entry in the table. In this case, the cost to acquire the lock will be t,, as 

shown in the middle entry of the second row. Again, the weighted latency will be the 

product of these two quantities, as shown in the lower-middle entry of the table. 

Finally, there will be probability (n - l ) /n  that one of the CPUs on the other n - 1 

NUMA nodes last acquired the lock, as shown in the upper right entry in the table. In 

this case, the cost to acquire the lock will be t,, as shown in the right-hand entry of the 

middle row. The weighted latency will once again be the product of these two quantities, 

as shown in the lower right entry of the table. 

Under low contention, the overhead of releasing the lock is just the local latency 

t f ,  since there is vanishingly small probability that some other CPU will attempt to 

acquire the lock while a given CPU holds it. Therefore, the overall NUMA lock-acquisition 

overhead is obtained by summing the entries in the last row of Table 2 and then adding 

t f ,  as shown in Equation 7.1. 

Probability 
Acq. Latency 
Wtd. Latency 

( n -  1)mt, + (m-  l)t,+ (n rn+l ) t f  
nm (7-1) 

An n-CPU SMMP system can be thought of as a single-node NUMA system with n 

CPUs per NUMA node. The SMMP overhead is therefore obtained by setting n to 1, t ,  

to t,, and then m to n, resulting in Equation 7.2. 

Both of these expressions approach t, for large n, validating the common rule of thumb 

that states that, under low contention, the cost of a spinlock is simply the worst-case 

Same 
CPU 
llnm 

t f  
t f  /nm 

memory latency. 

Different CPU, 
Same Quad 
(m - l)/nm 

t rn 
t,(m - l)/nm 

Different 
Quad 

(n - l ) / n  
t  s 

t,(n - l ) / n  



Normalizing using the uniform memory-hierarchy model [4] with t, = rt yields the 

results shown in Equation 7.3 and Equation 7.4. 

7.2.2 Derivation for Distributed Reader-Writer Spinlock 

Distributed reader-writer spinlock is constructed by maintaining a separate simple spinlock 

per CPU, and an additional simple spinlock to serialize write-side accesses [67]. Each of 

these locks is in its own cache line in order to prevent false sharing. However, it is possible 

to interleave multiple distributed reader-writer spinlocks so that the locks for CPU 0 share 

one cache line, those for CPU 1 a second cache line, and so on. Table 7.3 shows an example 

layout for a four-CPU system. 

Each row in the figure represents a cache line, and each cache line is assumed to hold 

eight simple spinlocks. Each cache line holds simple spinlocks for one CPU, with the 

exception of the last cache line, which holds the writer-gate spinlocks. If the entire data 

structure is thought of as a dense array of forty simple spinlocks, then Lock A occupies 

indices 0, 8, 16, 24, and 32, Lock B occupies 1, 9, 17, 25, 33, and so on. 

Table 7.3: Distributed Reader-Writer Spinlock Memory Layout 

CPU 
Lock 

A B C D E F E  
0 1 2 3 4 5 6  

To read-acquire the distributed reader-writer spin-lock, a CPU acquires its lock. If 

the write fraction f is low, the cost of this acquisition will be roughly tf. To release a 



distributed reader-writer spin-lock, a CPU releases its lock. Again, assuming low f ,  the 

cost of the release will be roughly tf. 

To write-acquire the distributed reader-writer spinlock, a CPU fist  acquires the writer 

gate, then each of the CPU's spinlocks in order. If the write fraction f is low, the cost 

of the write-acquisition in this four-CPU example will be roughly 4t, + tf. To release the 

distributed reader-writer spinlock, a CPU releases the per-CPU locks in order, then the 

writer gate. Assuming low f ,  the cost of the release will be roughly 5tf. The remainder 

of this section derives more exact and generally applicable results. 

Table 7.4: Unnormalized Probability Matrix for Distributed Reader-Writer Spinlock 

Computing costs for large f is a bit more involved, since a write-side lock will force all 

CPU's locks into the write-locking CPU's cache, which in turn means that other CPUs' 

next read acquisitions will cost t ,  rather than the usual tf. Assuming independent interar- 

rival distributions, the probability of a CPU's lock being in its cache is the probability that 

this CPU did either a read- or write-side acquisition since the last write-side acquisition by 

any of the other (n - 1) CPUs. Similarly, the probability of some other CPU's lock being 

in a given CPU's cache is the probability that the given CPU did a write-side acquisition 

since both: (1) the last read-side acquisition by the CPU corresponding to the Iock and (2) 

the last write-side acquisition by one of the (n - 1) remaining CPUs. These probabilities 

may be more easily derived by referring to Table 7.4, which shows the relative frequency 

and cost of the read- and write-acquisition operations from the viewpoint of CPU 0. 

It is important to note that the only events that can affect a given per-CPU lock 

are read-acquisitions by that CPU (with weighting 1 - f )  and write-acquisitions by all 

CPUs (with weighting nmf), since each read-acquiring CPU affects only its own lock, 

which each write-acquiring CPU affects all nm CPUs, including itself. Adding the read- 

and write-acquistion weighting yields a total weighting of 1 + (nm - 1) f .  This important 

CPU 
&ad 
Write 
Cost 

NUMA Node n 
n m - 3  

1 - f  
f 
t  s 

... 

... 
- - -  
... 
. - .  

NUMA Node 0 
0 

1 - f  
f  
t f  

n m - 2  
1 - f  

f 
ts 

1 

1 - f  
f 

t ,  

n m - 1  
1 - f  

f 
t ,  

nrn 
1 - f  

f 
ts 

2 

1 - f  
f 

t ,  

3 
1 - f  

f 

tm 



quantity will be found in the denominator of many of the subsequent equations. 

Read Acquisition and Release 

Suppose CPU 0 is read-acquiring the lock. As noted earlier, the only events that can affect 

the cost are CPU 07s past read-acquisitions and all CPUs' write-acquisitions, for a total 

weighting of 1 + (nm - 1) f .  Of this, only read- and write-acquisitions, with combined 

weight of (1  - f + f )  = 1, will leave CPU 07s element of the distributed reader-writer 

spinlock in CPU 0's cache. 

Therefore, the cost of CPU 0's read operation has probability 1 / ( 1  + (nm - 1)  f )  of 

being t f .  

Similarly, there is probability (m - 1)  f / ( 1  + (nm - 1) f )  that the last operation was a 

write-acquisition by another CPU on NUMA Node 0, in which case the cost will be t,. 

Finally, there is probability (nm - m) f / ( 1  + (nm - 1)  f )  that the last operation was a 

write-acquisition by one of the CPUs on the n - 1 other NUMA nodes, in which case the 

cost will be t,. 

Weighting these costs by their probability of occurrence gives the expected cost of a 

read acquisition shown in Equation 7.5. 

(nm-m) f t s+(m-1)  f tm+t f  
l + ( n m - 1 ) f  

Read release will impose an additional cost of t f ,  as shown in Equation 7.6. 

(nm-m) f t ,+(m-1)  f tm+(2+(nm-1)  f ) t j  
l + ( n m - l ) f  

Write Acquisition 

Suppose CPU 0 is write-acquiring the lock. It must first acquire the writer gate, the cost 

of which was derived in Section 7.2.1. It must then acquire each of the per-CPU locks: 

its own, those belonging to the other m - 1 CPUs on the same NUMA node, and those 

belonging to the (n - l ) m  CPUs on other NUMA nodes. The cost to acquire its own lock is 

exactly the same as the read-acquisition case derived previously, resulting in Equation 7.5. 



Expressions for the cost of acquiring the other CPUs' locks are derived in the following 

sections. 

Different CPU, Same NUMA Node: If the write-acquiring CPU last write-acquired 

the lock, the cost will be tf. If some other CPU on the same NUMA node last acquired 

the lock for either read or write, the cost will be t,. Finally, if a CPU on some other 

NUMA node last writeacquired the lock, the cost will be t,. 

Referring again to Table 7.4, the probability that the write-acquiring CPU last write- 

acquired the lock is just f /(1 + (nm - 1) f ). The probability that the CPU corresponding to 

the lock last read- or write-acquired it is l/(l+(nm-1) f ) ,  and the probability that another 

CPU on the same NUMA node last write-acquired the lock is (m - 2) f /(l + (nm - 1) f ) ,  

assuming m 2 2. Finally, the probability that a CPU on some other NUMA node last 

writeacquired the lock is (nm - m) f /(1 + (nm - 1) f).  

Weighting the costs by their respective probabilities of occurrence gives the expected 

cost of acquiring the per-CPU locks for the CPUs on the same NUMA node as the write- 

acquiring CPU, as shown in Equation 7.7. 

Different NUMA Node: If the write-acquiring CPU last write-acquired the lock, the 

cost will be tf. If some other CPU on the same NUMA node last write-acquired the lock, 

the cost will be t,. Finally, if a CPU on some other NUMA node last write-acquired the 

lock, or if the owning CPU last read-acquired the lock, the cost will be t,. 

Referring again to Table 7.4, the probability that the write-acquiring CPU last write- 

acquired the lock is just f /(1 + (nm - 1) f) .  The probability that another CPU on the 

same NUMA node last write-acquired the lock is (m - 1) f /(1 + (nm - 1) f ) ,  assuming 

m 2 2. The probability that the owning CPU last read- or write-acquired the lock is 

1/(1+ (nm - 1) f ) .  Finally, the probability that some other CPU on some other NUMA 

node last write-acquired the lock is (nm - m - 1) f /(1 + (nm - 1) f .  

Weighting the costs by their respective probabilities of occurrence gives the expected 



cost of acquiring the per-CPU locks for the CPUs on different NUMA nodes from the 

write-acquiring CPU, as shown in Equation 7.8. 

Overall Write Acquisition and  Release Overhead: The overall write-acquisition 

and release overhead is the overhead of a simple spinlock (Equations 7.1 and 7.2), plus 

the overhead of acquiring the per-CPU lock owned by this CPU (Equation 7.5), plus the 

overhead of acquiring the per-CPU locks owned by the other CPUs on the same NUMA 

node (m - 1 times Equation 7.7), plus the overhead of acquiring per-CPU locks owned by 

the CPUs on other NUMA nodes (nm - m times Equation 7.8), plus the additional over- 

head of releasing the per-CPU locks (nmtf). Combining these equations and simplifying 

yields Equation 7.9. 

I (n2m2 + (1 - m) nm - m) ts+ 

( (m-  l ) n m + m -  l ) tm+ 1 
Overall Overhead: The overall overhead is 1 - f times the overall read overhead (Equa- 

tion 7.7) plus f times the overall write overhead (Equation 7.9), as shown in Equation 7.10. 

L A 

(nm - 1) nm f + nm 



An n-CPU SMMP system can be thought of as a single-node NUMA system with n 

CPUs per NUMA node. The SMMP overhead is therefore obtained by setting n to 1, t ,  

to zero, and then m to n, resulting in Equation 7.11. The same result may be obtained 

by setting t ,  to t ,  instead of setting t ,  to zero. 

This expression approaches n f t ,  for large n and large memory-latency ratios, validating 

the rule of thumb often used for distributed reader-writer spinlock. 

Normalizing with t ,  = rt f ,  t ,  = f i t f ,  and t f  = 1 yields the results shown in Equa- 

tion 7.12 for NUMA systems and Equation 7.13 for SMP systems. 

(nm - 1) nm f + nm 

Equation 7.13 is compared to the simple spinlock equivalent (Equation 7.4) in Fig- 

ure 7.2. The labels in this plot are defined in Table 7.5. 

More extensive plots of the costs and breakevens for these and other locking primitives 

are available in Section 7.2.4 on Page 254 and elsewhere [81]. 



Update Fraction 

Figure 7.2: Costs of Simple Spinlock and Distributed Reader-Writer Spinlock 

Table 7.5: Trace Labels 

Label 
drw 

sl 

Description 
Distributed (cache-friendly) reader- 
writer spinlock [67] 
Simple spinlock 



7.2.3 Derivation for RCU 

This derivation of RCU overhead was obtained by applying the methodology described in 

Section 7.1 to the DYNIX/ptx version 4.4 implementation of RCU. Since the Linux 2.6 

kernel uses a similar algorithm, one would expect similar results. In either case, there are 

four components to RCU overhead: 

1. per-scheduling-clock costs. These are incurred on every execution of the per-CPU 

scheduling-clock interrupt. 

2. per-grace-period costs. These are incurred during each RCU grace period. 

3. per-batch costs. These are incurred during each RCU "batch7', which is the non- 

zeresized group of RCU callbacks registered on a given CPU while earlier RCU 

callbacks on that same CPU were waiting for a grace period to expire. Per-batch 

costs are incurred only by CPUs that have a batch during a given grace period. 

These costs are amortized over callbacks making up that batch. 

4. per-callback costs. These are incurred for every RCU callback. 

Equation 7.14, Equation 7.15, Equation 7.16, and Equation 7.17 give the RCU over- 

head incurred for each of these four components: per scheduling-clock interrupt, per grace 

period, per batch, and per callback, respectively: 

Ch = nmt, + 3nmtf 



Again, these were derived by applying the methodology described in Section 7.1 to the 

RCU implementation in the DYNIX/ptx 4.4 operating-system kernel. 

The best-case incremental cost of an RCU callback, given that at least one other 

callback is a member of the same batch, is just C,, or 7tf. 

The worst-case cost of an isolated callback is m times the per-scheduling-clock cost 

plus the sum of the rest of the costs, as shown in Equation 7.18: 

Note that this worst case assumes that at most one CPU per NUMA node passes 

through its first quiescent state for the current grace period during a given period between 

scheduling clock invocations. In typical commercial workIoads, CPUs will pass through 

several quiescent states per period. 

Typical costs may be computed assuming a system-wide Poisson-distributed inter- 

arrival rate of X per grace period, as shown in Equation 7.19, where Ck is the cost of 

detecting the grace period given that there are k callbacks that have been registered 

across the system. 

Here ( ~ k e - ~ ) / k !  is the Poisson-distributed probability that k callbacks are registered 

during a given grace period if on average X of them arrive per grace period. Note that the 

(Ith term of the Poisson distribution is omitted, since there is no RCU overhead if there 

are no RCU arrivals. The division by 1 - e-A corrects for this omission. 

Since eVX is independent of k, it may be pulled out from under the summation and 

combined with the denominator, resulting in the following: 



The quantity Ck is defined as shown in Equation 7.21. This definition states that we 

pay the per-scheduling-clock and per-grace-period overhead unconditionally, that we pay 

the per-batch overhead for each of Nb(k) batches, and that we pay per-callback overhead 

for each callback. 

Ck = 
Ch + Cg + Nb ( k )  Cb + kCc 

k 

The expected number of batches Nb(k) is given by the well-known solution to the occu- 

pancy problem shown in Equation 7.22, which assumes that the k callbacks are scattered 

randomly across the nm CPUs: 

This is just the number of CPUs expected to have batches given nm CPUs and k RCU 

callbacks. 

Substituting Equation 7.22 into Equation 7.21 yields: 

Then substituting Equation 7.23 into Equation 7.20 yields: 

Substituting Equation 7.14, Equation 7.15, Equation 7.16, and Equation 7.17 into 

Equation 7.24, and then simplifying yields Equation 7.25, which is the desired expression 

for the typical cost: 



Since Equation 7.25 is an infinite sum, the question of convergence naturally arises. 

To answer this question, first note that the series has the form shown in Equation 7.26: 

Rearranging yields the following: 

If the infinite sum of each addend converges, then the infinite sum of the addends 

taken together must also converge. Therefore, each of the addends may be considered 

separately. 

The constant factor C1 from first addend may be omitted, since constant factors can- 

not afFect convergence. Then both addends have the same form, and a single proof of 

convergence applies to both, so that the remaining task is to show that a series of the 

following form converges: 

For finite C and k, each term of Equation 7.28 will be finite, and therefore the sum 

of any finite number of its leading terms will also be finite. Now, choose k greater than 

max(2C7 2), and note that the ratio of term k to term k + 1 is given by: 

Ck(k + l)!(k + 1) - (k + 1)2 - 
k!kCkS1 LC 

(7.29) 

Because k > 2C, this ratio must be greater than two. Therefore, the tail of this series 

is bounded above by a series of the form: 

for sufficiently large A. 

This is just a geometric series, which converges. Therefore, the series in Equation 7.25 

also converges. 



7.2.4 Comparison 

This section uses the analytic expressions derived for conditions of low contention to 

compare simple spinlock, distributed reader-writer lock, and RCU. The following sections 

show how the comparison is affected by the number of CPUs, by the number of RCU 

updates that occur per grace period A, and by the memory-latency ratio r.  In all sections 

not explicitly varying T ,  the value of r is that for a four-CPU 700MHz Pentium-111. 

Varying Number of CPUs 

This section explores the relative performance of simple spinlock, distributed reader-writer 

lock, and RCU for relatively small numbers of CPUs. The results for larger numbers of 

CPUs may be found elsewhere [Sl]. 

Figure 7.3 shows the regions of optimality for very small A, which is the number of 

RCU updates per grace period. This is the worst case for RCU because each update must 

bear the full cost of identifying the grace period. Figures 7.4, 7.5, and 7.6 show the regions 

of optimality when A is Poisson-distributed and equal to 0.1, 1.0, and 10.0 updates per 

grace period, respectively. Figure 7.7 shows the limiting case for large A. Note that single- 

CPU realtime testing under Linux 2.6.0 has observed more than 1,600 updates per grace 

period, so these values for A are quite conservative. As A rises, RCU's region of optimality 

grows, first at  the expense of distributed reader-writer lock, then at the expense of simple 

spinlock. The effect of the number of CPUs is more complex. For small A (worse for 

RCU), increasing the number of CPUs shrinks RCU's region of optimality, while for large 

A, increasing the number of CPUs actually increases RCU's region of optimality. This 

increase is due to batching. Since all CPUs are running the same workload, adding CPUs 

increases the probability that multiple RCU updates will share a grace period, thereby 

amortizing the overhead of grace-period detection. Since neither reader-writer lock nor 

spinlock can take advantage of any sort of batching, the increased number of CPUs favors 

RCU for sulliciently large values of A. For comparison, please note again that values of A 

exceeding 1,600 have been observed in single-CPU Linux systems under heavy load. We 

can therefore expect that, when running real-world workloads, increasing the number of 



CPUs will favor RCU. 

The sharp corner in the boundary between spinlock's and drw's regions of optimality 

at n = 2 for low X is an artifact of the integral nature of CPUs. If the plots were expanded 

to include fractional numbers of CPUs, the boundary would be smooth. 

Note that RCU has a significant region of optimality even in single-CPU systems. This 

is important for user-level programs, since they are typically unable to disable interrupts 

in order to achieve mutual exclusion. These programs can therefore benefit from RCU 

even on single-CPU systems. 
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Figure 7.3: Breakevens vs. Number of CPUs, X Small 

Varying Updates per Grace Period 

Given the effect that X has on the regions of optimality, it is interesting to plot the 

breakeven update fraction f against A. Figures 7.8, 7.9, and 7.10 present this view for 

two, four, and eight CPUs, respectively. 

Again, as X increases, RCU's region of optimality again grows. Note that increasing the 

number of CPUs results in RCU becoming optimal over drw at  lower values of A. It also 

very slightly decreases RCU's region of optimality for low numbers of CPUs and increases 

it for high numbers of CPUs, as would be expected given the plots in Section 7.2.4. 
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Figure 7.8: Breakevens vs. A, Two CPUs 
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Figure 7.9: Breakevens vs. A, Four CPUs 
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Figure 7.10: Breakevens vs. A, Eight CPUs 

Varying Memory-Latency Ratio 

Over the past two decades, the memory-latency ratio has been steadily increasing. This 

leads one to ask what the effects of continued increase would be. Given the recent a p  

pearance of multithreaded CPUs, it is also worth considering the effect of a decrease in 

the memory-latency ratio. 

This is plotted for a two-CPU system for different values of A in Figures 7.11, 7.12, 

7.13, 7.14, and 7.15. 

The data is plotted for a four-CPU system for different values of A in Figures 7.16, 

7.17, 7.18, 7.19, and 7.20. 

Finally, data is plotted for an eight-CPU system for different values of X in Figures 7.21, 

7.22, 7.23, 7.24, and 7.25. 

The effect of varying the memory-latency ratio r depends on the value of the number 

of updates per grace period A. For small A, decreasing r increases the update fraction f for 

which RCU is optimal. For large A, the opposite is true-RCU's effectiveness increases with 

memory-latency ratio. However, for large A, the breakeven update &action f is quite large 

throughout the full range of A. Therefore, software systems that make heavy use of RCU 
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will gain performance benefit from it in over an extremely large range of memory-latency 

ratios. As noted earlier, the Linux 2.6 kernel running under heavy load experiences values 

of X exceeding 1,600, so Linw already falls into the latter category. 

This analysis indicates that RCU will have an important role to play regardless of the 

direction of future memory-latency-ratio trends. 

Memory-Latency Ratio 

Figure 7.21: Breakevens vs. T ,  X Small, Eight CPUs 

7.3 Discussion 

As shown in the previous sections, the region of optimality for the various locking primi- 

tives depends strongly on: 

1. the workload, especially as it relates to the expected number of updates per grace 

period, and 

2. the technology, particularly the number of CPUs and the memory-latency ratio. 

As can be seen in Figures 7.8 through 7.10, increasing the number of updates per grace 

period (A) increases the region of optimality of RCU. One way to accomplish this is to 

use RCU for algorithms with high update rates, such as the Linw dcache system, which 
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does an update every time a file is deleted. Future work includes looking at approaches 

to batch updates and to extend the grace-period duration artificially, the latter spending 

additional memory to gain CPU efficiency. 

This chapter has demonstrated that RCU provides significant performance benefits 

even on systems with only a single CPU. If the aggregate system update rate X is low, 

then RCU's region of optimality decreases with increasing numbers of CPUs, as can be 

seen in Figures 7.3 and 7.4. In this situation, uses of RCU must then be judged based on 

the maximum number of CPUs expected during the lifetime of the product, which restricts 

use of RCU to heavily read-intensive data structures, such as those tracking hardware or 

software configuration, for example, routing tables. However, increasing X reverses this 

situation, as shown in Figures 7.5, 7.6, and 7.7, so that larger numbers of CPUs increase 

RCU's region of optimality. The Linux 2.6 kernel has been observed running with X in 

excess of 1,600, and therefore falls into the latter category. 



Chapter 8 

Measured Comparison of RCU and 

Locking 

Although the analytic results presented in the previous chapter allow the performance 

of different synchronization primitives to be compared across a wide variety of hardware 

platforms and workloads, such results cannot take the place of actual measurements for 

specific platforms and workloads. To fill this gap, Section 8.1 presents measurements of 

the hash-table workload described in Section 2.2.4 on Page 21, Section 8.2 compares these 

measurements to the analytic results derived in Chapter 7, and Section 8.3 presents mea- 

surements comparing the different implementations of the RCU infrastructure presented 

in Chapter 4 on Page 99. 

8.1 Comparison to Locking 

Given the long history of and deep familiarity with locking, one would expect a new syn- 

chronization mechanism such as RCU to be adopted only if it provides some overwhelming 

advantages over locking. From the discussion in the preceding chapters, one would expect 

RCU to have overwhelming performance advantages on read-mostly workloads, but that 

these advantages would wane rapidly with increasing update intensity. One would also 

expect better RCU update performance with longer grace periods, since the overhead of 

detecting the grace period could then be amortized over a greater number of updates. 

This section tests these expectations, using the same hash-table mini-benchmark that 



was presented in Section 2.2.4 on Page 21, running on a 4-CPU 700MHz P-I11 system.l 

These tests varied the update fiaction f and measured the throughput of hash operations 

(searches and updates) per microsecond for each value of f and for each of the following 

types of synchronization mechanisms: 

ideal: the single-threaded, synchronization-free performance, multiplied by the desired 

number of CPUs (four in this case). 

rcu: the RCU primitive described in this dissertation, using per-hash-chain spinlocks to 

guard updates. 

brlock: the Linux 2.4 kernel's "big reader lockn, which provides a lock per CPU, so that 

reading CPUs acquire only their own lock and writing CPUs acquire all CPUs' locks. 

bkt: a per-bucket spinlock, placed in a ciacheline separate from the hash-chain header 

pointers. 

bktcl: a per-bucket spinlock colocated in the same cacheline with the hash-chain header 

pointers. 

bktrw : a per-bucket reader-writer spinlock. 

globalrw: a global reader-writer spinlock. 

global: a global spinlock. 

This author has previously presented measurements for this same benchmark taken on 

other types of CPUs [72]. 

The results are displayed in Figures 8.1 through 8.4, varying the number of CPUs and 

the number of operations per grace period X as follows: 

Figure 8.1 shows results for two CPUs and X of 10, 

Figure 8.3 shows results for two CPUs and X of 100, 

'A variant of Linux RCU devised by Manfred Spraul [115] has run successfully on SMMP machines 
with as many as 512 CPUs [116], however, detailed performance measurements are not yet available. 



Figure 8.2 shows results for four CPUs and X of 10, and 

Figure 8.4 shows results for four CPUs and X of 100. 

As can be seen from Figure 8.3, RCU achieves ideal performance on a read-only work- 

load, but is also the best synchronization mechanism up to an update fraction of about 

0.4, despite failing to achieve ideal performance. It uniformly beats brlock by more than a 

factor of two, and manages 50% of the performance of the best synchronization mechanism 

on an update-only workload. Note that achieving ideal performance on an update-only 

workload is outside the scope of this dissertation, which focuses on the read-mostly case. 

Note also that there are significant variations in performance of several of the locking 

primitives at high update fractions, as can be seen by the non-smooth traces. 

Since X is a per-CPU measure of the number of operations per grace period, Fig- 

ure 8.1 averages 20 operations per grace period, Figure 8.2 averages 40 operations per 

grace period, Figure 8.3 averages 200 operations per grace period, and Figure 8.4 aver- 

ages 400 operations per grace period. These are conservative by comparison to the more 

than 1,600 updates per grace period observed on singleCPU systems under heavy load 

during realtime performance testing. RCU achieves very close to ideal performance on a 

read-mostly workload for the larger numbers of operations per grace period, as expected. 

The breakeven update fraction is much smaller for the 20-operation-per-grace-period case 

than for the other three cases, but there is less difference between the breakevens for these 

other three cases. This is because there is a point of diminishing returns for any amor- 

tization process. Note that the breakeven update fraction is slightly higher in Figure 8.4 

than in Figure 8.3. This is because the complexity of detecting a grace period increases 

with increasing number of CPUs, and, unlike the short-grace-period case, this increased 

overhead for four CPUs is not offset by the greater amortization, again, due to having 

reached the point of diminishing returns. 

8.2 Comparison to Analytic Results 

Figure 8.5 shows that the analytically predicted breakeven between uncontended locking 

and RCU on two CPUs is at an update fraction of roughly 0.3 for X of 100. This deviates 
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Figure 8.2: Four-CPU Hash Table Performance for Short-Grace-Period Mixed Workload 
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Figure 8.3: Two-CPU Hash Table Performance for Long-Grace-Period Mixed Workload 
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Figure 8.5: RCU Hash Table Breakevens on Two CPUs 

significantly from the measured breakeven of about 0.5 for X of 100 seen in Figure 8.3. 

However, Figure 8.5 also predicts a breakeven of roughly 0.2 for X of 10, which is closer 

to the measured breakeven of about 0.3 for X of 10 seen in Figure 8.1. 

Figure 8.6 shows that the breakeven between uncontended locking and RCU on four 

CPUs is at an update fraction of roughly 0.3 for X of 10, and roughly 0.4 for X of 100. 

This agrees reasonably well with the measured breakeven of a bit less than 0.4 for X of 10 

seen in Figure 8.2, and with the measured breakeven of a bit more than 0.4 for X of 100 

seen in Figure 8.4. 

The author believes that these deviations are due to the following factors: 

1. The analysis includes the effects of memory latency, but not of pipeline stalls. 

2. The traces for RCU and co-located bucket lock ("bktcl" in the figures) cross at an 

acute angle, so that any measurement errors are amplified by a large factor in the 

breakeven. 

3. The analysis includes only the overhead of the locking primitives themselves, while 

the measurements also include the overhead of the hash-table searches and updates. 
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4. The analysis was of the DYNIX/ptx 4.4 implementation of RCU, while the mea- 

surements were taken from a user-level implementation of RCU running on Linux. 

Future work includes more accurately accounting for these factors. 

8.3 Evaluation of Techniques for Identifying Grace Periods 

Section 8.3.1 compares the alternative Linux algorithms in terms of complexity. The 

remaining sections discuss performance, with Section 8.3.2 evaluating RCU overhead when 

there are no RCU-mediated updates in progress, Section 8.3.3 evaluating grace-period 

latency, and Section 8.3.4 evaluating RCU overhead in the presence of RCU-mediated 

updates. 

8.3.1 RCU Complexity 

Table 8.1 shows the number of lines in each algorithm's patch, as was previously reported 

by myself and others [78]. The "All Archs" column gives the size of the patch applied 

to all architectures currently in the kernel, while the "One Archn column gives the size 



of each patch applied to only one architecture, namely i386. Architecture-independent 

patches will have the same number in both columns. The rcu-taskq implementation is the 

simplest, and so might be a good place to start when selecting an RCU implementations. 

The rcu-ltimer patch works only on the i386 architecture, so the italicized number 

for Archs" is an estimate based on the i386-specific portion of the patch, which sim- 

ply invokes RCUYROCESS-CALLBACK () from the smplocal-timer-interrupt 0 function. 

Later versions of the rcu-ltimer patch took advantage of the new architecture-independent 

scheduler-tick0 function that was added to the 2.6 kernel. The rcu-sched patch con- 

tains code to guard against architectures that shut down their CPUs when idle. 

%ble 8.1: RCU Implementation Complexity 

8.3.2 RCU Overhead When Idle 

Table 8.2 shows the amount of overhead incurred by each implementation when there is no 

RCU activity in the system, and was previously published by myself and others [78]. These 

overheads were determined by examining the source code for each implementation. The 

rcu-taskq implementation does best by this measure, with absolutely no overhead. The 

rcu-poll algorithm is next, with but a single local non-atomic increment in the scheduler. 

The rcu-preempt also incurs overhead on each preemption, as would the others if they 

were adapted to run in a preemptive kernel. 

The X-rcu, rcu-krcud, and rcu-Itimer implementations are quite similar to each other, 

as was described in Section 4.2 on Page 107. Of these three, rcu-ltimer has the lowest 

Size of UnSed Diffs 
All Archs I One Arch Page Name Section 



overhead on an idle system. 

Table 8.2: RCU Idle Overhead 

8.3.3 Grace-Period Latency 

Name 

X-rcu 
rcu 

rcu-poll 
rcu-ltimer 

rcu-taskq 
rcu-sched 
rcu-preempt 

An important figure of merit for an RCU implementation is the grace period latency. The 

greater the latency, the more memory is waiting on the internal lists for the current grace 

period to end. On the other hand, longer latency results in higher efficiency, since the 

per-callback-batch processing is done less frequently, spreading the overhead over more 

c a l l ~ c u  0 requests. The best tradeoff depends on the workload: 

a Systems with very infrequent c a l l x c u 0  invocations will never gain any perfor- 

mance benefit &om batching. Such systems would therefore prefer short grace-period 

latencies in order to conserve memory. 

RCU Idle Memory Refs 

Systems with frequent c a l l ~ c u O  invocations would prefer large grace-period la- 

tencies in order to amortize the overhead of detecting a grace period over a greater 

number of c a l l ~ c u ( )  invocations. 

Systems with extremely frequent cal11cuO invocations would again prefer shorter 

large grace-period latencies, since there is a point of diminishing returns beyond 
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which increasing the grace-period latency increases memory consumption with neg- 

ligible reduction in per-callback amortized grace-period-detection overhead. 
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Figure 8.7: callrcu() Latency Under dbench Load 

This latency depends on worst-case kernel codepath length, the workload, and the de- 

tails of the RCU implementation. Figure 8.7 shows the call~cu 0 latency for the different 

RCU algorithms as a function of offered load to the dbench benchmark, which was run 

by Dipankar Sarma on an 8-CPU 700MHz Xeon system with 1MB L2 caches and 6GB of 

memory using the dcache-rcu patch on the Linux 2.5.3 kernel, as was published previously 

by myself and others [78]. The winner by far is rcu-poll, which keeps latencies below 10 

milliseconds (and below 250 microseconds on an idle system) by allowing quiescent states 

to be detected in parallel and by its aggressive forcing of scheduling when a grace period 

is required (see Figure 8.8, which shows the same data on a semilog plot). Therefore, 

rcu-poll is suited for systems that either invoke callxcu0 infrequently, so that rcu-polrs 

added overhead is irrelevant, or invoke callxcu0 extremely frequently so that signif- 

icant grace-period-detection amortization is realized despite the very short graceperiod 

latencies. The X-rcu, rcu-Etimer, and rcu-krcud implementations have larger latencies that 

are well bounded as the number of clients increase. These algorithms are thus suited for 



systems that have moderate-to-high rates of ca l lxcu( )  invocation, because of the perfor- 

mance benefits of batching, amortizing the grace-period detection overhead over greater 

numbers of callbacks. 
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Figure 8.8: callrcu() Latency Under dbench Load (logscale) 

The rcu-sched algorithm exhibited very large latencies (14.5 seconds at 8 clients and 

57.7 seconds at 4 clients), which are due to early versions of the Linux 2.5 kernel avoiding 

all scheduler invocations when the number of runnable tasks is exactly equal to the number 

of CPUs. These extremely large latencies must be greatly reduced before mu-sched may 

be used on production systems. 

The mu-taskq algorithm's latencies increases with increasing numbers of clients, be- 

cause this algorithm requires the CPUs to pass through quiescent states sequentially, and 

because keventd (which runs the taskq's) runs at low priority. 

Of course, a workload that exercises long-running, non-preemptible code paths in the 

kernel could greatly lengthen grace-period latency for all of these RCU implementations. 

However, such long-running code paths have other bad effects, even in absence of RCU, 

such as grossly degraded response times. Such code paths are therefore bugs that should 

be fixed. 



8.3.4 RCU Overhead When In Use 

The performance of RCU-based algorithms critically depends on an efficient implemen- 

tation of the c a l l x c u ( )  primitive and related RCU infrastructure. The more efficient 

the implementation, the greater the number of situations that RCU may profitably be 

applied to. One way to increase the efficiency of the RCU infrastructure is to increase 

the number of callbacks that are serviced by a single grace period, which can easily be 

accomplished by arbitrarily extending the duration of each grace period, since any time 

interval containing a grace period is itself a grace period. However, excessively long grace 

periods can result in excessive numbers of callbacks pending, which in turn can reduce 

the overall performance of the system by consuming excessive amounts of memory. In 

extreme cases, excessive memory consumption can result in system hangs and crashes. 

RCU can therefore pose a tradeoff between latency and overhead. This tradeoff is 

evaluated using two benchmarks, the chat benchmark (a Java-based instant-messaging 

application) and dbench. These two benchmarks were chosen because they exposed scaling 

problems in the Linux 2.4 kernel and during early phases of 2.5 development. 

The Chat Benchmark 

Figure 8.9 compares the performance of the chat benchmark with 20 rooms and 500 mes- 

sages on a CCPU 700MHz Pentium I11 Xeon system with 1MB L2 caches and 1GB mem- 

ory. This benchmark was run by Dipankar Sarma using the RCU-based IP-route-cache 

and FD management patches2 on the Linux 2.5.3 kernel, and the results were previously 

published by myself and others [78]. These results show little sensitivity to the RCU 

algorithm, both compared to base performance and to each other. 

Discussion of the chat-benchmark results and of the RCU implementations themselves 

within the Linux community in mid-2002 resulted in mu-taskq and X-rcu being eliminated 

for performance reasons, rcu-krcud for systems administrations and usabilty reasons, and 

rcu-preempt being eliminated due to lack of any prospective users needing preemptible 

read-side RCU critical sections [ll]. 

2 ~ h e  IP-route-cache patch is described by McKenney et al. [78], and the FD management patch is 
described in Section 6.6 on Page 218. 
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Figure 8.9: RCU Performance on Chat Benchmark 

The rcu-sched algorithm was retained despite its extreme graceperiod latencies be- 

cause of the possibility that it might be able to process callbacks more efficiently than 

the two other remaining implementations (rcu-poll and nu-ltimer), as was discussed in 

Section 4.4.2 on Page 123. 

The mu-ltirner implementation was modified to take advantage of the new architecture- 

independent scheduler-t ick ( ) function, eliminating the architecture-dependent code 

previously in rcu-ltimer. 

The rcu-poll implementation was modified to use per-CPU callback queues, greatly 

reducing that implementation's cache thrashing and improving its performance. 

The dcachebench Benchmark 

The modified rcu-ltimer and rcu-poll algorithms were then subjected to further perfor- 

mance testing. Table 8.3 compares the performance of rcu-ltimer (in the Linux 2.6 ker- 

nel), rcu-sched, and the parallelized version of rcu-poll on the dcachebench directory-cache 

mini-benchmark [37]. This benchmark was run on a 4CPU PI11 Intel Xeon with 1MB L2 

cache and IGB of memory using the Linux 2.5.46 kernel, and was previously published by 

myself and others [I I]. 



Table 8.3: dcachebench Comparison 

These results show that rcu-ltimer completes each iteration slightly (but statistically 

significantly) more quickly than does rcu-poll, and with 8.6% less CPU utilization. They 

also show that rcu-sched completes each iteration as fast as does rcu-ltimer, but with 

5.7% more CPU utilization. Profile results show that rcu-poll is incurring significant 

overhead in the scheduler and in its f orce-cpuxeschedule 0 function, indicating that, 

although its cache-thrashing behavior has been addressed, rcu-poll is buying its excellent 

grace-period latency with significantly increased overhead. The rcu-sched implementation 

is unchanged; future work includes optimizing it to eliminate cache thrashing and atomic 

instructions in order to reduce its overhead. 

Therefore, unless grace-period latency is of paramount concern, the rcu-ltimer imple- 

mentation of RCU should be used, and in fact this is the implementation that was accepted 

into the Linux 2.6 kernel. Should latency become a critical issue in the future, it will be 

useful to investigate modifications to improve the latency of rcu-ltimer. 

An optimized rcu-sched might beat xu-ltimer's overhead. If this is the case, reduction 

of grace-period latency would become a considerably more urgent matter. 

8.4 Discussion and Future Scenarios 

Observing quiescent states proved more efficient than inducing them, as expected. The 

most efficient observed-quiescent-state implementation for Linux thus far proved to be the 

counters-and-barrier (xu-ltimer) implementation described in Section 4.4.1 on Page 113. 

This greater efficiency was due to use of per-CPU callback queues, which reduces cache- 

thrashing, and the driving of the barrier computation from the per-CPU-timer interrupt 

handler, which eliminates context switches from the barrier computation and also reduces 



cache thrashing compared to a global implementation such as that of mu-poll, which is 

described in Section C.2.3 on Page 336. 

The analytic predictions of the RCU/locking breakeven update fraction derived in 

Chapter 7 on Page 235 are reasonably accurate, and show that RCU is optimal for read- 

mostly workloads with update intensities of up to 30% and, in some cases, even greater. 

However, the slopes of the cost lines are nearly parallel, which means that increasing 

RCU grace-period-detection efficiency will allow RCU to be optimal for workloads with 

significantly greater update fractions. Therefore, further increasing the efficiency of RCU 

grace-period detection is important future work, since small decreases in RCU overhead 

will translate into large increases in its region of optimality. 

Given the large changes in relative costs of low-level operations shown in Figure 2.1 

on Page 20, it is reasonable to ask whether RCU will continue to be useful on future 

computer systems. Predicting the future course of computer-system evolution has proven 

to be fraught with peril, so in the following sections The following sections will examine 

four possible scenarios: (1) Uniprocessor ~ b e r  Alles, (2) Multithreaded Mania, (3) More 

of the Same, and (4) Crash Dummies Slamming into the Memory Wall. 

8.4.1 Uniprocessor ~ b e r  Alles 

In this scenario, the combination of Moore's-Law increases in CPU clock rate and con- 

tinued progress in horizontally scaled computing render SMMP systems irrelevant. This 

scenario is therefore dubbed "Uniprocessor ~ b e r  Alles", literally, uniprocessors above a,lI 

else. 

These uniprocessor systems would be subject only to instruction overhead, since mem- 

ory barriers, cache thrashing, and contention do not affect single-CPU systems. In this 

scenario, RCU is useful only for niche applications, such as interacting with NMIs. It is 

not clear that an operating system lacking RCU would see the need to adopt it, although 

operating systems that already implement RCU might continue to do so. 

However, recent progress with multithreaded CPUs seems to indicate that this scenario 

is quite unlikely. 



8.4.2 Multithreaded Mania 

A less-extreme variant of Uniprocessor ~ b e r  Alles features uniprocessors with hardware 

multithreading, and in fact multithreaded CPUs are now standard for many desktop and 

laptop computer systems. The most aggressively multithreaded CPUs share all levels 

of cache hierarchy, thereby eliminating CPU-to-CPU memory latency, in turn greatly 

reducing the performance penalty for traditional synchronization mechanisms. However, 

a multithreaded CPU would still incur overhead due to contention and to pipeline s t a b  

caused by memory barriers. Furthermore, because all hardware threads share all levels of 

cache, the cache available to a given hardware thread is a fraction of what it would be 

on an equivalent single-threaded CPU, which can degrade performance for applications 

with large cache footprints. There is also some possibility that the restricted amount of 

cache available will cause RCU-based algorithms to incur performance penalties due to 

their grace-period-induced additional memory consumption. Investigating this possibility 

is future work. 

However, in order to avoid such performance degradation, a number of multithreaded 

CPUs and multi-CPU chips partition at least some of the levels of cache on a per-hardware- 

thread basis. This increases the amount of cache available to each hardware thread, but 

re-introduces memory latency for cachelines that are passed from one hardware thread to 

anot her. 

In either case, RCU helps to avoid contention and pipeline-stall overhead due to mem- 

ory barriers. 

8.4.3 More of the Same 

The More-of-the-Same scenario assumes that the memory-latency ratios will remain roughly 

where they are today. 

This scenario actually represents a change, since to have more of the same, intercon- 

nect performance must begin keeping up with the Moore's-Law increases in core CPU 

performance. In this scenario, overhead due to pipeline stalls, memory latency, and con- 

tention remains significant, and RCU retains the high level of applicability that it enjoys 



today. 

8.4.4 Crash Dummies Slamming into the Memory Wall 

If the memory-latency trends shown in Figure 2.1 on Page 20 continues, then memory 

latency will continue to grow relative to instruction-execution overhead. Systems such as 

Linux that have significant use of RCU will find additional use of RCU to be profitable, 

as shown in Figure 7.20 on Page 264. As can be seen in this figure, if RCU is heav- 

ily used, increasing memory-latency ratios give RCU an increasing advantage over other 

synchronization mechanisms. In contrast, systems with minor use of RCU will require in- 

creasingly high degrees of read intensity for use of RCU to pay off, as shown in Figure 7.16 

on Page 262. As can be seen in this figure, if RCU is lightly used, increasing memory- 

latency ratios put RCU at an increasing disadvantage compared to other synchronization 

mechanisms. Since Linux has been observed with over 1,600 callbacks per grace period 

under heavy load, it seems safe to say that Linux falls into the former category. 

However, if memory latency increases too much relative to instruction-execution over- 

head, we will likely find ourselves in either the Uniprocessor ~ b e r  Alles or the Multi- 

threaded Mania scenario, due to the fact that a large body of existing SMMP software 

would exhibit increasingly poor scalability, causing SMMP systems to in turn exhibit 

increasingly disadvantageous price-performance measures. 

8.4.5 Discussion of Future Scenarios 

Low-end systems are already moving in the direction of Multithreaded Mania, as hyper- 

threading is available even in low-end x86 CPUs, such as those used in desktops and 

laptops. 

Multi-CPU chips are in the offing, and these chips will boast low memory-latency 

overheads for data fetched out of other CPUs' caches. For these mid-range systems, 

memory latency is likely to improve as rapidly as instruction-execution rates, so that 

these systems will fall into the More of the Same scenario. 

It is more difficult to predict how high-end systems will progress, since such systems 

are manufactured in low volumes for a relatively small number of workloads. Historical 



trends are consistent with Crash Dummies Slamming into the Memory Wall, but it is 

conceivable that improved interconnect technology might bring high-end systems into the 

realm of More of the Same. 

The outlook is therefore good for RCU, since it provides substantial performance ben- 

efits to all scenarios except for Uniprocesttor ~ b e r  Alles, which seems to be ruled out by 

the advent of multithreading in low-end systems. The sole exceptions to this are em- 

bedded systems where cost and power-consumption constraints still favor single-threaded 

uniprocessors, and potentially systems with heavily multithreaded CPUs and fully shared 

cache hierarchies. However, Linux is increasingly the operating system of choice even in 

the embedded space. Therefore, RCU's future seems quite bright. 



Chapter 9 

Conclusions and Future Work 

This chapter presents a summary and conclusions in Section 9.1, describes directions for 

future work in Section 9.2, and ends with a parting shot in Section 9.3. 

9.1 Summary and Conclusions 

This dissertation has: 

1. presented performance-related changes in computer-system architecture and out- 

lined the consequent challenges to synchronization mechanisms traditionally used 

on shared-memory multiprocessor (SMMP) systems; 

2. defined a solution, named read-copy update (RCU), to a set of related concurrency 

problems stemming from these changes and challenges; 

3. delineated the relationship between RCU and traditional synchronization mecha- 

nisms; 

4. using both analytic and empirical means, demonstrated significant performance ben- 

efits from use of RCU, ranging from tens of percent to an order of magnitude, both 

in micro-benchmarks and in system-level formal benchmarks, and with little or no 

increase in complexity; 

5. developed a set of design patterns that permit RCU to be profitably applied to a 

wide range of synchronization problems; and 



6. demonstrated the practical value of RCU by outlining its use in several production 

systems, two of which have seen extensive datacenter use, and by documenting its 

acceptance into the Linux 2.6 kernel. 

These claims are corroborated in the following sections. 

9.1.1 Challenges to Traditional Synchronization Mechanisms 

Chapter 1 discussed the problem of synchronization on uniprocessors and SMMP systems. 

This chapter gave a brief overview of the high costs incurred by traditional synchronization 

operations and of the scalability limitations they impose on SMMP software systems. 

These costs include: 

1. Instruction-execution overhead. 

2. Pipeline-stall overhead. 

3. Memory latency. 

4. Contention. 

Only the first of these overheads has received the full benefit of Moore's-Law increases 

in performance, but SMMP software must also make heavy use of operations that incur 

the last three synchronization-related overheads. As a result, SMMP algorithms often 

perform and scale extremely poorly, as illustrated by a statistical-counter example with 

order-of-magnitude slowdowns. 

The chapter then presented a split-counter algorithm that avoids these costs for incre- 

ments, but which incurs increased costs for readouts. This split-counter algorithm is an 

example of an asymmetric algorithm that favors increments at the expense of readouts. 

This design tradeoff is beneficial when increments are more frequent than are readouts, as 

is the case with many statistical counters. However, the split counter is quite specialized, 

and therefore does not meet the need for generally applicable synchronization mechanisms. 

Since linked data structures are ubiquitous, Chapter 1 then examined the problem of 

insertion into and deletion from a linked list while permitting synchronization-free readers 



to traverse the list. This problem can be solved by using multiple versions of elements and 

deferring reclamation of versions that have been removed &om the list. Versioning with 

deferred reclamation is a key concept underlying RCU. 

9.1.2 Definition of RCU 

Chapter 3 on Page 71 provided an overview of RCU, which is a reader-writer synchro- 

nization mechanism that takes asymmetric distribution of synchronization overhead to its 

logical extreme: read-side critical sections incur virtually zero synchronization overhead, 

containing no locks, no atomic instructions, and, on most architectures, no memory-barrier 

instructions. RCU therefore achieves near-ideal performance for read-only workloads on 

most architectures. Write-side critical sections must incur substantial synchronization 

overhead, deferring destruction and maintaining multiple versions of data structures in 

order to accommodate the synchronization-free read-side critical sections. In addition, 

writers must use some synchronization mechanism, such as locking, to ensure orderly 

updates. 

Readers must provide a signal enabling writers to determine when it is safe to complete 

destructive operations, but this signal may be deferred, permitting a single signal operation 

to serve multiple read-side RCU critical sections. RCU typically signals writers by non- 

atomically incrementing a local counter. 

These read-side signals are observed by a specialized garbage collector, which carries 

out destructive operations once all readers have signalled that it is safe to do so. Garbage 

collectors are typically implemented in a manner similar to a barrier computation, or, on 

NUMA systems, a combining tree. Production-quality garbage collectors batch destructive 

operations, so as to amortize signal-observation overhead over many write-side update 

operations. 

Chapter 4 on Page 99 presented the RCU API, along with several types of implementa- 

tions of the RCU grace-period-detection mechanism. A number of these implementations 

are in production use in data-center environments. 



9.1.3 Relation of RCU to Traditional Synchronization Mechanisms 

Chapter 2 on Page 11 discussed related work, starting with synchronization mechanisms 

used on uniprocessors, then moving to synchronization on SMMP computer systems. The 

SMMP synchronization mechanisms discussed include exclusive spinlocks, reader-writer 

spinlocks, partitioning and data locking, asymmetrical reader-writer locking, non-blocking 

synchronization, transactional memory, exploitation of problem-specific semantics, and 

mechanisms based on deferred destruction. Table 2.2 on Page 69 summarized the strengths 

and weaknesses of each approach for read-mostly data structures in operating-system 

kernels. The deferred-destruction techniques are the most attractive, as they are the only 

techniques that allow readers to dispense with costly synchronization mechanisms, and in 

fact RCU is itself an elaboration of these deferred-destruction techniques. 

9.1.4 Analytic and Empirical Performance Evaluation 

Chapter 6 on Page 179 also presented the performance benefits of RCU, including the 

order-of-magnitude performance increase enjoyed by the Linw 2.6 kernel's RCU-based 

System V IPC implementation. This implementation made a very small change to the 

2.4 kernel's implementation, requiring the addition of 342 lines of code and the deletion 

of 191 lines of code, for an net increase of only 151 lines of code on a base of 3,453 lines 

of code, or less than a 5% increase. This example clearly demonstrates that use of RCU 

can incur little or no added complexity. 

This chapter also described how RCU can be used to provide dynamically changeable 

non-maskable-interrupt (NMI) handlers. The RCU implementation is quite straightfor- 

ward. In contrast, any lock-based implementation would be prone to deadlock, since NMIs 

by definition cannot be masked. 

Chapter 7 on Page 235 used analytic techniques to compare the performance of RCU 

to that of locking, varying memory-latency ratio, number of CPUs, and the read-intensity 

of the workload. This data shows that RCU works best when heavily used, and, when 

heavily used, is favored by increasing numbers of CPUs and increasing memory-latency 

ratios. Chapter 8 on Page 269 then used empirical techniques to compare RCU to locking 



on a mini-benchmark, which validated the analytic results. This chapter then compared 

the performance of a number of grace-period-detection algorithms, finding the rcu-Ztamer 

algorithm to be best. As a result of this performance comparison and of the performance 

work described in Chapter 6, this algorithm was accepted into the Linux 2.6 kernel. This 

chapter also discussed possible future computer-system performance scenarios, and how 

RCU would fare in each such scenario. RCU fares quite well in the high-probability 

scenarios. 

9.1.5 Generality of RCU Via Design Patterns 

In its raw form, RCU is difficult to use and of limited applicability. Therefore, Chapter 5 

on Page 137 presented one set of design patterns that demonstrate how to apply RCU, 

and another set that transform algorithms into forms that can tolerate the stale and 

inconsistent data inherent in RCU7s use of versioning. Chapter 6 on Page 179 then showed 

the results of applying these patterns to VM/XA, DYNIX/ptx, K42, SuSE7s 2.4 Linux 

distribution, and the 2.6 Linux kernel. 

Four of these design patterns describe how RCU may be used in its raw form: 

1. Pure RCU describes how to apply RCU to speed up read-only accesses in cases 

where stale and inconsistent data may be tolerated. This pattern is especially useful 

in cases where all outstanding interrupt handlers must complete before an update 

may be finalized. 

2. RCU Existence Locks defer freeing of data-structure elements so that readers may 

traverse pointers from one element to the next without holding the explicit "existence 

locks" that would otherwise be required to ensure that the target element was not 

prematurely freed. RCU Existence Locks can greatly simplify locking designs, since 

explicit existence locks can be complex and prone to deadlock [30]. 

3. Reader-Writer-Lock/RCU Analogy describes how to convert an existing reader- 

writer-lock-based algorithm to use RCU, but only in cases where stale and inconsis- 

tent data may be tolerated. 



4. RCU Readers With NBS Writers uses non-blocking synchronization rather than 

locking for updates. The use of RCU simplifies the update code by guaranteeing 

that deleted elements will not be freed while readers hold references to them. 

However, the raw form of RCU exposes readers to stale and inconsistent data, which 

a large number of algorithms are unable to tolerate. Therefore, the following design 

patterns may be used to transform such algorithms into forms that are able to tolerate 

RCU's staleness and inconsistency properties. 

1. Mark Obsolete Objects transforms an algorithm that cannot tolerate stale data into 

one that is able to do so by marking deleted elements. Readers can then ignore any 

elements that are so marked. 

2. Substitute Copy For Original transforms an algorithm that cannot tolerate incon- 

sistent data into one that can, by hiding non-atomic updates behind an atomic 

substitution operation. 

3. Impose Level Of Indirection transforms an algorithm into a form to which Substitute 

Copy For Original may be applied by grouping related data into one data element 

which may then be easily substituted. 

4. Ordered Update With Ordered Read constrains the ordering of both the update and 

the read operations so that readers always see consistent data. 

5. Global Version Number transforms an algorithm into a form where it can tolerate 

both stale and inconsistent data by maintaining a global version number and also 

associating a version number with each element. Readers can then sample the global 

version number before and after the access, and retry the access if there was an 

intervening update. 

6. Stall Updates prevents excessive update rates from starving readers in the Global 

Version Number pattern by stalling updates when excessive read-side retries have 

been executed. 



These design patterns have been applied to a wide variety of kernel subsystems ranging 

from routing tables to directory caches to distributed lock managers. This usage has not 

been confined to research environments. In fact, as of 1999, seven of the ten largest Oracle 

database installations ran on the DYNIX/ptx Unix kernel, which made extensive use of 

RCU. 

9.1.6 RCU Has Practical Value 

As noted in Section 6.8 on Page 227, this author architected, designed, and implemented 

the RCU infrastructure used in Sequent's (now IBM's) DYNIX/ptx commercial UNIX 

operating system. Prior to that, Hennessy, Osisek, and Seigh implemented a mechanism 

resembling RCU in IBM's VM/XA product for its mainframe systems. Both of these 

systems have seen heavy use in datacenter environments. 

In addition, as noted in Section 6.8.4 on Page 229, an implementation of the RCU grace- 

period-detection infiastructure, coded by Dipankar Sarma, was accepted into the Linux 

2.5.43 kernel, with myself as RCU architect and evangelist. This infiastructure implements 

the RCU API described in Section 4.1 on Page 100, and has been exploited by the Linux 

2.6 kernel's System V IPC, IPv4 route cache, IPMI (Intelligent Platform Management 

Interface), directory-entry cache, and NMI (non-maskable interrupt) implementations. 

RCU has also replaced all uses of brlock (big-reader lock) in the Linux 2.6 kernel. 

The acceptance of RCU into the Linux kernel has for the first time exposed RCU to 

a large developer community, and we can therefore expect further significant innovation 

and change in RCU. 

9.1.7 Summary 

This dissertation has addressed each of the aims called out at the beginning of this chapter. 

It has demonstrated that RCU addresses the past few decade's Moore's-Law computer- 

architecture changes, provides large performance benefits with little or no added complex- 

ity, has practical value, and, through the use of appropriate design patterns, is generally 

applicable in a wide range of operating-system-kernel environments. 



9.2 Future Work 

Use of RCU has proven quite beneficial in a number of environments. However, it was not 

until RCU was exposed to a large number of users as a part of this work in Linux that 

the RCU design patterns were fully refined and codified. This activity has opened up a 

huge number of research directions, especially in the following areas: 

1. RCU infrastructure. 

2. RCU design patterns. 

3. RCU and non-blocking synchronization. 

4. RCU uses in the Linux kernel. 

5. Suitability of RCU to other environments. 

6. RCU performance. 

7. RCU semantics. 

The following sections discuss open questions in each of these areas. 

9.2.1 RCU Infrastructure 

As noted earlier, only with the advent of RCU in Linux has RCU infrastructure been 

visible to and usable by a a significant number of people. Therefore, it is natural to 

expect much progress to be made in this area. A few promising areas of investigation 

follow, but it is expected that additional work will raise additional questions. Specific 

projects in this area include: 

Livelocks and Denial-of-Service Attacks 

Since RCU defers deletion using mechanisms based on context-switch monitoring, it is 

vulnerable to bugs that cause CPUs to loop indefinitely without blocking in the kernel. 

Such livelock situations can result in indefinite-length grace periods. Of course, livelocks 

are problematic for other reasons, but it is nevertheless reasonable to ask how RCU might 

be used to help defend against livelocks and denial-of-service attacks. 



1. Evaluate Dipankar Sarma's new rcuzrace-period0 primitive's ability to aid de- 

bugging of livelock situations. This primitive returns how long it has been since this 

CPU passed through a quiescent state, but only if there is at least one active RCU 

callback. 

2. Create tools that, given a livelocked system, pinpoint the cause of the livelock, 

possibly based on the rcugrace-period0 primitive noted above. 

3. Evaluate "bottom-half7 variant of RCU developed to handle TCP/IP-based denial- 

of-service at tacks. 

Ease of Use 

Although the design patterns presented in this dissertation have proven very helpful, it is 

reasonable to ask what more can be done to make RCU easier to use. 

1. Evaluate Dipankar Sarma's new rcu-barrier0 primitive. This primitive blocks 

until all outstanding RCU callbacks have completed execution, waiting for all entities 

waiting on a grace period. It may be useful to the ReiserFS developers in order 

to better handle unmount of an RCU-exploiting filesystem. The problem here is 

that outstanding RCU callbacks may need to reference the superblock, so unmount 

processing must wait for all outstanding RCU callbacks to complete before freeing 

up the superblock. 

One interesting point: the most obvious implementation of rcu-barrier() also 

waits for all outstanding rcu-barrier 0 invocations. There is therefore no infinite 

hierarchy of waiting for RCU. In addition, the simplest implementation requires that 

a given CPU7s callbacks be invoked in the same order that they were registered, which 

has some interesting interactions with CPU hotplug.' 

2. The explicit read-side memory barriers, such as those required by the DEC Alpha 

CPU or by the Ordered Updates With Ordered Reads design pattern, are quite 

'Removal of a CPU from the system requires that any outstanding RCU callbacks be handed off to 
some other CPU. The most obvious implementation of rcu-barrier 0 requires that the callback lists not 
be shuffled during such handof&. 



difficult to code, test, and debug. It is therefore reasonable to ask how they might 

be done away with. One possible avenue is for updates to replace calls to smp-mb0 

with calls to synchronizekernelo. Since the latter waits for a full grace period, 

any readers that see updates following the synchronizekernel 0 are guaranteed 

to also see the preceding updates. In effect, the synchronizekernel0 acts as a 

"memory-barrier shootdown" that waits until each CPU has executed a memory- 

barrier instruction. It is also possible to implement a non-blocking memory-barrier- 

shootdown primitive, as described in Appendix B on Page 322. 

It is therefore worthwhile to investigate the complexity and performance implications 

of the use of such a memory-barrier-shootdown operation. There are a number of 

ways that such a primitive might be used: 

(a) Use memory-barrier shootdown on DEC Alpha only, so that only the current 

read-side memory barriers can be dispensed with. This would involve replacing 

write-side smp-wmb0 calls with smp-write-barrier-depends 0 ,  which does a 

memory-barrier shootdown on Alpha and a smp-mb0 on other platforms. 

(b) Provide memory-banier shootdown on all architectures so that all read-side 

memory barriers may be dispensed with. Determine when (if ever) this really 

works. 

(c) Provide three variants of write-side memory barrier: 

i. Current Linux semantics, which matches that of the DEC Alpha wmb 

(write memory barrier) instruction. 

ii. Semantics of typical CPU's write-side memory barrier, so that read-side 

memory barriers may be dispensed in situations where there is a data 

dependency. 

iii. Full memory-barrier shootdown, so that all read-side memory barriers may 

be dispensed with. This seems to require that the update side wait for a 

grace period between the phases of the update. 

Open questions include the performance and complexity consequences of each option, 



and which is best in various situations. 

Reduced-Overhead Grace-Period Detection 

As noted in Section 8.2 on Page 271, small decreases in RCU overhead will result in large 

increases in its area of applicability. This situation motivates work aimed at reducing the 

overhead of RCU grace-period-detection overhead. 

1. Evaluate mu-sched-based RCU infrastructure, with modifications to avoid the cur- 

rent global counter. This will also require work to handle CPU hotplug, since addi- 

tion or removal of a CPU must change the token-handoff sequence used by mu-sched. 

2. Evaluate implementing memory-barrier shootdown in hardware. 

3. Investigate ways of increasing the number of updates per grace period A, either 

by batching updates or by artificially extending the grace period. Note that the 

effective value of X for Linux is quite large, at  least when running heavy filesystem 

and networking loads. It is therefore likely that Linux will see little or no benefit 

from this effort. 

Hard Realtime and RCU 

Under heavy update load, current RCU implementations can execute large numbers of 

RCU callbacks at the end of a grace period, which in turn can cause realtime scheduling 

constraints to be missed. This behavior has been observed in the Linux 2.6 kernel. Di- 

pankar Sarma, Andrew Morton, and Robert Love are investigating two approaches to this 

problem: 

1. Enforce a limit on the number of RCU callbacks that can be invoked from the soft- 

ware interrupt (softirq) level. Invoke any excess RCU callbacks from per-CPU kernel 

daemons, which are preemptible, and therefore do not degrade realtime scheduling 

latency. Since handing RCU callbacks off to daemons is relatively expensive, only re- 

altime systems would want to take this approach. Interesting questions include how 

best to identify realtime systems without imposing excess overhead on non-realtime 

servers or additional configuration problems on system administrators. 



2. Where applicable, directly execute the RCU callback from the call1cu0 primitive. 

An interesting open question is whether this can be done automatically, given that 

call-rcuO may be invoked from interrupt handlers or from functions that may be 

holding a read-side reference to the element being deleted. 

9.2.2 RCU Design Patterns 

This is the &st time that RCU-related design patterns have been published. Although 

these design patterns will likely continue to be used and that unexpected new design pat- 

terns will emerge, there are a number of fundamental questions that remain unanswered: 

1. Is there is a complete set of RCU transformational patterns, or, if not, what limita- 

tions exist? Here, "complete" means provably able to transform any algorithm into a 

form that can tolerate both stale and inconsistent data. Given Herlihy7s universality 

results for wait-free synchronization [41], there is reason to hope that there might 

be such a complete set. However, it is likely that performance would be sacrificed 

for this generality, for example, by applying the Substitute Copy For Original design 

pattern to large data structures. 

2. If there is a complete set of RCU transformational patterns, under what circum- 

stances does its application result in improved performance and scalability? 

3. Are the provisional patterns called out in this dissertation eligible to become full- 

fledged patterns? 

4. Can the set of design patterns presented in this dissertation be refactored into a 

better form? 

9.2.3 RCU and Non-Blocking Synchronization 

This is the first time that algorithms combining RCU and non-blocking synchronization 

have been published. Therefore, again, there are a number of fundamental questions that 

remain open. 



1. RCU can be used in combination with non-blocking synchronization and related 

techniques in order to remove their dependence on type-safe memory and to remove 

expensive synchronization operations from the read paths in such techniques. Will 

such combinations make non-blocking synchronization more broadly applicable? 

2. Where does it make sense to combine RCU with non-blocking synchronization and 

related techniques? One approach to finding the answer would be to combine RCU 

with a greater variety of non-blocking synchronization algorithms and evaluating the 

resulting hybrid algorithms. 

3. What are the relative merits of combining RCU with non-blocking synchronization? 

4. What would be the result of measured and analytic comparisons of various combi- 

nations of NBS, RCU, and locking? 

5. If the RCU-mediated NBS hash table described in Section 6.7 were extended to use 

NBS throughout, replacing the use of locking to resolve one of the races, what would 

the performance and complexity of the resulting implementation be? 

9.2.4 RCU Uses in the Linux Kernel 

This dissertation analyzes RCU usage in the Linux 2.6.0-test1 kernel. However, there 

are many more areas within the Linux kernel that are likely to benefit from use of RCU, 

including the following. 

1. Use of RCU in Linux-based filesystems. The ReiserFS developers, particularly Nikita 

Danilov, have begun this work. 

2. Use of RCU in the Linux networking stack. Steve Hemminger has begun this work, 

as described in Section 6.8.4 on Page 229. 

3. Use RCU to replace existing rwlock uses, as appropriate. 

4. Upgrade the use of RCU in the directory-entry cache described in Section 6.2 on 

Page 195 so that pathnarne walks can be fully lock free. 



5. Use of RCU in the Linux virtual memory system. Bill Irwin has begun this work 

with some patches in his -wli patchtree. 

6. Determine whether RCU, or some variant of it, can more completely solve the 

module-unloading races without imposing heavy overhead or ugly code on modules. 

7. Apply the Impose Level Of Indirection (described in Section 5.3.4 on Page 168) to 

the array-size field in the System V IPC implementation. This would allow the array 

and its size to be updated atomically, eliminating the need for the explicit read-side 

memory barriers. 

8. Design and implement an FD management modification that uses RCU, but does 

not degrade the performance of singlethreaded processes. 

9. Come up with other ways of hiding memory-barrier instructions in various data- 

structure manipulation primitives, so that RCU may be more easily applied to things 

other than linked lists. 

10. Expanded use of RCU for t a sk l i s t l ock ,  perhaps as suggested for vf s-shared-cred 

by Luca Barbieri [12]. 

11. K42 uses RCU pervasively as a replacement for existence locks. In contrast, Linux 

has used RCU surgically for specific performance work. It would be interesting to 

apply RCU pervasively within a particular Linux subsystem, measuring the effect 

on complexity. 

12. Develop an efficient and easy-to-use mechanism and API for reliably reference 

counting RCU-protected data structures. Ravikiran Thirumalai is working towards 

this goal. 

13. Most of the uses of RCU in the Linux 2.5 kernel effort were incremental applications 

of RCU on existing data structures, given how late RCU was introduced into the 

kernel. It would be interesting to combine RCU with more pervasive restructuring 

of data and algorithms to obtain greater simplicity and higher performance. 



An interesting open question is the extent to which the common-case code paths 

through Linux can be made lock-free through use of RCU. 

9.2.5 Suitability of RCU to Other Environments 

Thus far, RCU has been used only in operating-system kernel environments. As noted 

some time ago [81], there is reason to believe that RCU is also applicable to many other 

software environments. A short list of possible areas of investigation follows. 

1. Evaluate whether a general-purpose set of RCU APIs can efficiently support all 

environments within the Linux kernel, including different quiescent states. Current 

indications are that specialized APIs for interrupt handlers will be required. 

2. Evaluate use of RCU in various user-level software environments, such as databases, 

embedded applications, general-purpose libraries, Message-Passing Interface (MPI), 

Standard Template Adaptive Parallel Library (STAPL), and Java Virtual Machines 

(JVMs). 

3. Peter Strazdins used RCU on a matrix-manipulation problem, and got 5% perfor- 

mance improvement, but with a large increase in complexity. Therefore, it would be 

interesting to investigate the applicability of RCU to similar user-level applications 

to see if greater performance could be attained with less complexity. 

4. Investigate the possibility of implementing RCU-based library modules for creating, 

accessing, and maintaining RCU-protected data structures such as lists, hash tables, 

and trees. Such modules could greatly ease the use of RCU. 

5. Evaluate use of RCU in conjunction with the work-crew model. 

6. Evaluate using RCU with hardware transactions. Hardware transactions can be 

thought of as multi-location versions of compare-and-swap or of LL/SC [118]. 

9.2.6 RCU Performance 

Although there has been some analysis of RCU performance and complexity [81], there 

are still many fruitful avenues of investigation left unexplored: 



1. Although grace-period duration has been measured, as described in Section 8.3.3, 

such measurements are specific to the particular hardware platform, software stack, 

and workload in use for any given measurement. An analytic evaluation of grace- 

period duration may be useful in order to design RCU infrastructure and systems 

with reduced grace-period latency. 

2. This dissertation compared CPU overhead and runtimes of a number of synchre 

nization mechanisms. However, RCU7s use of deferred deletion causes it to consume 

more memory and possibly more cache than do other synchronization mechanisms. 

It would therefore be extremely useful to evaluate memory usage and cache footprint 

of RCU compared to other synchronization mechanisms, based either on measure 

ments or on the aforementioned analytic evaluation of grace-period duration. The 

cache-footprint effects may be especially important to heavily multithreaded CPUs 

with fully shared cache hierarchies. 

3. Evaluate likely usefulness of RCU on future computer systems. This might build 

on the analysis in Section 7.3, but go into more detail and possibly examine more 

scenarios. 

4. Determine how to evaluate "ideal7' performance on multithreaded CPUs that share 

resources, so that linear scaling is prevented by hardware bottlenecks. One likely 

approach is to simply run an independent copy of the single-threaded benchmark on 

each hardware thread. 

5. Measure performance of RCU on a greater variety of existing CPUs and hardware 

platforms. 

6. Empirical and analytic comparisons of additional RCU-based algorithms to the cor- 

responding locking- and non-blocking-synchronization-based implementations. 

7. The RCU implementation within the Linux kernel exploits the semantics of this envi- 

ronment, namely, the knowledge that tasks will context switch sufficiently frequently. 

Are there other paradigms that permit increased performance and/or decreased com- 

plexity through exploiting semantics of the enclosing software environment? 



8. The analytic derivations of the low-contention overhead of various synchronization 

mechanisms presented in Chapter 7 do not include the overhead of pipeline stalls. 

Although the resulting expressions agreed reasonably well with measurements, it 

would be interesting to add the effects of pipeline stalls to those analytic expressions. 

9. It would be interesting to do an analytic comparison of the various Linux RCU 

infrastructure implementations. 

10. Although the analytic comparisons under low-overhead conditions are informative, 

it would be interesting to analytically compare various synchronization primitives 

under conditions of high contention, particularly under conditions of high read-side 

contention. 

11. The analytic expressions derived in Chapter 7 are strictly for the synchronization 

mechanisms themselves; they do not include the overhead of accessing and updating 

the protected data structure. To fill this gap, analytic expressions for the overhead 

of searching and updating a hash table (and other simple data structures) should be 

created. These expressions should then be combined with the corresponding expres- 

sions for the synchronization primitives, and expressions for the resulting breakevens 

should be derived. 

12. Chapter 8 noted a number of sources of error in the measured breakevens between 

RCU and locking, particularly that the traces for the corresponding overhead curves 

intersect at an acute angle. It would therefore be valuable to formulate an experi- 

mental methodology for more accurately determining the breakevens for RCU and 

per-bucket locking from measured data. The challenge here is that small errors in 

the measured overhead translate into large errors in the corresponding breakevens. 

13. It may be beneficial to allocate memory for new versions in a cache-friendly manner. 

For non-preemptive systems, having all versions of a given data element collide in the 

cache could reduce cache pollution, while for heavily preemptive systems, it might 

be best to avoid such collisions. 



9.2.7 RCU Semantics 

This author knows of no work that analyzes RCU semantics. A few of the topics that 

need investigation are as follows: 

1. Formal expression of RCU semantics, perhaps using state-coloring or reachability 

methods. 

2. RCU correctness proofs, both for the infrastructure and for the design patterns. 

3. the connections between RCU and computer-related formalisms, such as category 

theory, algebraic topology, concurrency theory, process algebra, etc. 

4. Reusability of algorithms based on RCU. Many synchronization mechanisms and 

algorithms seem to have been developed in a bottom-up manner, for example, Edler 

provides implementations for a number of low-level operating-system-kernel opera- 

tions [26]. In contrast, uses of RCU have tended to be tailored to a specifk real-world 

situation. Are there any formalisms that can gain the best of both worlds, the per- 

formance and simplicity benefits delivered by RCU combined with the reusability 

promised by other approaches? 

It is hoped that a more rigorous understanding of RCU's semantics would lead to tools 

that could assist developers with static and dynamic analysis, for example: 

1. Compiler-generated RCU-based algorithms. 

2. Tools to automatically identify RCU-susceptible code 

3. Tools to automatically check RCU correctness. 

The hope is that such tools would permit "ordinary hackers" to successfully produce robust 

code that provides excellent performance and scalability. 

9.3 Concluding Remarks 

Perhaps the most fascinating question is "Why has the uptake of RCU been so slow?" 

The first RCU-related paper that this author is aware of was published in 1980 [56], but 



even as late as 2000, RCU was obscure at best. It is as if RCU were an inviting but well- 

hidden valley nestled deep among the forbidding peaks of SMP scalability. This valley was 

glimpsed a few times by researchers clinging to one crag or another, but actually settled 

by only a very few individuals and teams [30, 39, 811. 

Speaking as someone who has spent a significant fraction of his career working this 

valley, I invite you to join us. There have been a succession of unexpected uses to which 

RCU can profitable be put, an endless supply of questions and topics in need of exploration, 

and a wealth of exciting possibilities. Life here is good! 
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Appendix A 

Historical SMMP CPU Performance 

Table A.1 presents the performance characteristics of Sequent CPUs over time. This data 

is also presented in Figure 1.1 on Page 2 and Figure 2.1 on Page 20. 

Table A. 1: Historical SMMP CPU Performance 

Cascades 700 700.0 0.225 2000 1 NUMA-Q 1 1 1 1 1 2.50 
2001 NUMA-Q Cascades 900 900.0 0.225 2.50 

Year 
1984 
1985 
1986 
1988 
1989 
1990 
1991 
1993 
1994 
1995 
1996 
1998 
1999 

Memory 
Latency (us) 

CPU 
NS32016 
NS32016 
NS32032 

80386 
80386 
80486 
80486 

Pentium 
Pentium 
Pentium 
P-Pro 
Xeon 

Tanner 

System Name 
B8000 
B8000 
B8000 
S2000 
S2000 
S2000 
S2000 
S2000 
S5000 
S5000 

NUMA-Q 
NUMA-Q 
NUMA-Q 

Local 
2.400 
1.500 
1.300 
1.000 
1.000 
1.000 
1.000 
1.000 
1.800 
1.800 
0.450 
0.250 
0.250 

Remote 

5.00 
2.50 
2.50 

MHz 

6 
10 
10 
16 
20 
25 
50 
60 

100 
166 
180 
360 
450 

MIPS 

0.3 
0.5 
0.9 
4.0 
5.0 

20.0 
40.0 
60.0 

100.0 
166.0 
180.0 
360.0 
450.0 



Appendix B 

Memory Ordering Issues 

The discussion in Section 2.2.17 on Page 57 focussed on computer systems with sequen- 

tial consistency. Atomic insertion poses additional problems on systems with very weak 

memory ordering, as noted in discussions on LKML [70]. This appendix focuses on these 

problems and some solutions. 

Some of these problems may be addressed by using the smp-mb0 primitive as shown 

on line 9 of Figure B.1. This smp-umb0 guarantees that the element initialization in lines 

6-8 is not executed before the element is added to the list on line 10. On many CPUs, 

this is sufficient, and the lock-free search on lines 14-26 will then operate correctly. 

However, some CPUs, such as Alpha, have extremely weak memory ordering such that 

the code on line 20 of Figure B.l  could see the old garbage values that were present before 

the initialization on lines 6-8. 

Figure B.2 shows how this can happen on an aggressively parallel machine with par- 

titioned caches, so that alternating caches lines are processed by the different partitions 

of the caches. Assume that the list header head will be processed by cache bank 0 and 

that the new element will be processed by cache bank 1. On Alpha, the smp-mb0 will 

guarantee that the cache invalidates performed by lines 6-8 of Figure B.1 will reach the 

interconnect before that of line 10 does, but makes absolutely no guarantee about the or- 

der in which the new values will reach the reading CPU's core. For example, it is possible 

that the reading CPU's cache bank 1 is very busy, but cache bank 0 is idle. This could 

result in the cache invalidates for the new element being delayed, so that the reading CPU 

gets the new value for the pointer, but sees the old cached values for the new element. 

See HP/Compaq/DEC's Alpha documentation [19] for more information, or if you think 



1 struct el *insert(long key. long data) 
2 C 
3 struct el *p; 
4 p = kmalloc(sizeof (*PI, GPF-ATOMIC) ; 
5 spin-lock(&mutex) ; 
6 p->next = head.next; 
7 p->key = key; 
8 p->data = data; 
9 smp-mb0; 
10 head.next=p; 
11 spin-unlock(&mutex); 
12 1 
13 
14 struct el *search(long key) 
15 C 
16 struct el *p; 

p = head.next; 
while (p != &head) < 

/* BUG ON ALPHA!!! */ 
if (p->key = key) I 

return (p); 
1 
p = p->next; 

1; 
return (NULL) ; 

Figure B.1: Insert and Lock-Free Search 

that I am just making d l  this up. 

In the Linux kernel, this can be fixed in an implementation-independent manner by 

inserting an smp~ead-barrier-depends 0 between the pointer fetch and dereference, as 

shown on line 19 of Figure B.3. However, this imposes unneeded overhead on systems 

(such as i386, IA64, PPC, and SPARC) that respect data dependencies on the read side. 

A read-barrier-depends () primitive has been added to the Linw 2.6 kernel to eliminate 

overhead on these systems [122]. Furthermore, the Linux list-manipulations APIs have 

been augmented by the addition of RCU variants that incorporate whatever memory 

barriers are required on a given CPU architecture, as shown in Figure 4.2 on Page 101. 

It is also possible to implement a software barrier that could be used in place of 

smp-mb0, which would force all reading CPUs to see the writing CPU's writes in or- 

der 1691. However, this approach was deemed by the Linux community to impose excessive 

overhead on extremely weakly ordered CPUs such as Alpha.' This software barrier could 

'CPUS that respect data dependencies would define such a barrier to simply be smp-mb0. 



Interconnect I 

Figure B.2: Why smpread-barrier-depends() is Required 

be implemented by sending inter-processor interrupts (IPIs) to all other CPUs. Upon 

receipt of such an IPI, a CPU would execute a memory-barrier instruction, implementing 

a memory-barrier shootdown. Additional logic is required to avoid deadlocks. 

Note that a memory-barrier shootdown could be used to eliminate the need for read- 

side memory barriers entirely, but at the cost of substantial overhead imposed on updates, 

though only on Alpha. A hardware implementation of memory-barrier shootdown might 

have substantial performance benefits in this case. Alternatively, given that HP has an- 

nounced the Alpha CPU's end of life, perhaps it will soon be possible to ignore this entire 

issue, thereby simplifying RCU read-side code. Should this happen, the afore-mentioned 

RCU list-manipulation API could be adjusted to remove the read-side memory barriers. 

Keir Fraser [27] suggests an alternative approach, where fieed memory is initialized 

with a known pattern, and memory thus freed may not be reallocated until every CPU has 

executed an smp.mb0 instruction. This approach works well when all memory is subject 

to lock-free search, but unnecessarily reduced cache warmth in other cases. 

For more information on memory-consistency models, see Gharachorloo's exhaustive 

technical report [33]. 



1 struct el *insert(long key, long data) 
2 I 
3 struct el *p; 
4 p = kmalloc(sizeof (*PI, GPF-ATOMIC) ; 
5 spin-lock(~utex) ; 
6 p->next = head-next; 
7 p->key = key; 
8 p->data = data; 
9 smp-mb0; 
10 head.next = p; 
11 spin-unlock(hutex) ; 
12 1 
13 
14 struct el *search(long key) 
15 C 
16 struct el *p; 
17 p = head .next ; 
18 while (p != &head) C 
19 smp-read-barrier-depends (1 ; 
20 if (p->key == key) I 
21 return (p); 
22 1 
23 p = p->next; 
24 1; 
25 return (NULL); 
26 1 

Figure B.3: Safe Insert and Lock-Free Search 



Appendix C 

Additional RCU Implementat ions 

Chapter 4 described a number of implementations of RCU infrastructure. This appendix 

describes a number of other implementations. Section C.l elaborates on the induced- 

quiescent-state schemes described in Section 4.3 on Page 108, presenting rcu-taskq, which 

is a full implementation with batching and induced quiescent states that runs in the Linux 

kernel. Section C.2 elaborates on the leveraged-quiescent-state schemes described in Sec- 

tion 4.4 on Page 113, presenting the rcu-krcud, X-rcu, and rcu-poll RCU implementations. 

Finally, Section C.3 describes a Linux RCU infrastructure that permits preemption in the 

read-side critical sections, in a manner similar to K42's RCU infrastructure described in 

Section 4.4.3 on Page 130. 

C .  1 Induced Quiescent States With Batching (rcu-taskq) 

Although simple inducing of quiescent states correctly implements RCU, the overhead of 

the context switches can be burdensome, especially when the update is a single simple 

linked-list modification. One way to reduce this burden on updates is batching, where 

a single set of context switches serves multiple updates, thereby amortizing the context- 

switch overhead. Although the free-pendingxcus0 approach described in Section 4.3.2 

on Page 111 showed how to implement batching, it did not describe when, how, and from 

where the f ree-pendingxcus ( ) function should be invoked. This section presents one 

approach suitable for use within the Linux kernel. 

Dipankar Sarma designed and implemented in the rcu-taskq patch, which uses a single 

task and a global set of callback queues. By coincidence, this implementation is similar to 



one that was considered for DYNIX/ptx, but rejected as  being insufficiently parallel. The 

task forces each of a set of per-CPU kernel daemons to schedule itself; when each done so, 

the grace period has expired. This implementation thus directly forces quiescent states, 

unlike the other implementations, which instead measure naturally occurring quiescent 

states. Its grace-period latency increases with increasing load on the system, as noted 

earlier, but is the only implementation with absolutely zero load on the system when 

there are no RCU callbacks in flight. 

Figure C.1 shows the c a l l x c u 0  implementation. Lines 8-9 initialize the callback, 

lines 11 and 15 handle locking, lines 12-13 record the initial list state, and line 14 adds 

the callback to the rcu-wait l i s t .  Lines 17-18 start the task if lines 12-13 found the list 

initially empty. 

I void call-rcu(struct rcu-head * head, 
2 void (*func)(void * arg), 
3 void * arg) 
4 C 
5 unsigned long flags; 
6 int start = 0; 
7 
8 head->func = func; 
9 head->arg = arg; 
10 
11 spin~lock~irqsave(&rcu_lock, flags) ; 
12 if (list-empty(brcu-wait-list)) 
13 start = 1; 
14 list-add(&head->list , &rcu-wait-list) ; 
15 spin~unlock~irqrestore(&rcu~lock, flags); 
16 
17 if (start) 
18 schedule-task(8rcu-task) ; 
19 1 

Figure C .  1: rcu-taskq callrcu() Implementation 

The task started by ca l lrcu( )  invokes the function process-pending~cus 0 ,  shown 

in Figure C.2. Lines 8-10 snapshot rcu-waitl ist  into a local list. Line 13 then invokes 

wait f  o r z c u 0  to wait for a full grace period to elapse. Finally, lines 15-23 invoke the 

callbacks from the local list. 

Figure C.3 shows waitf  o r r c u 0 .  Lines 6-10 awaken the krcud daemons for the other 

CPUs, and lines 11-13 wait for these daemons to respond. 

Figure C.4 shows the code for the krcud daemons. Lines 6-20 initialize the daemon, 



1 static void process-pending-rcus( 
2 void *arg) 
3 C 
4 LIST-HEAD(rcu-current-list) ; 
5 struct list-head * entry; 
6 
7 spin~lock~irq(&rcu~lock) ; 
8 list~splice(Orcu~wait~list, 
9 rcu-current-list .prev) ; 
10 1~1T-L1S~-~~AD(&rcu-wait-list) ; 
11 spin~unlock~irq(Orcu~lock) ; 
12 
13 wait-for-rcuo; 
14 
15 while ((entry = rcu-current-1ist.prev) 
16 != Orcu-current-list) i 
17 struct rcu-head * head; 
18 
19 list-del(entry) ; 
20 head = list-entrycentry. 
21 struct rcu-head, list); 
22 head->func(head->arg); 
23 3 
24 > 

Figure (2.2: rcu-taskq process-pending~cus() Implementation 

I static void wait-for-rcu(void) 
2 C 
3 int cpu; 
4 int count; 
5 
6 for (cpu = 0; cpu < smp-num-cpus; cpu*) C 
7 if (cpu = smp~processor~id0~ 
8 continue ; 
9 up(&krcud-sema(cpu) ; 
10 ) 
11 count = 0 ;  
12 while (count++ < smp-nu-cpus - 1) 
13 down(&zcu,sema) ; 
14 3 

Figure C.3: rcu-taskq waitforrcu() Implementation 



set its priority high, blocking signals, binding to the corresponding CPU, setting the task 

name, initializing the task name, and informing the spawnbrcudo task that the daemon 

is ready to process requests. Lines 22-26 process each request, alternately sleeping on the 

krcud-sema and waking up the process-pendingxcus ( ) task. 

1 static int krcud(void * --bind-cpu) 
2 i 
3 int bind-cpu = *(int *) -,bind-cpu; 
4 int cpu = cpu~logical,map(bind~cpu) ; 
5 
6 daemonize() ; 
7 current->policy = S O - F I F O ;  
8 current->rt-priority = 1001 + 
9 sys-sched-get-priority-~M(SCHED-FIFO); 
10 
11 sigfillset(&current->blocked); 
12 
13 /* Migrate to the right CPU */ 
14 set~cpus~allowed(current, IUL << cpu); 
15 
16 sprintfccurrent->corn. 
17 "krcud-CPad", bind-cpu) ; 
18 sema-init (&krcud~sema(cpu). 0) ; 
19 
20 krcud-task(cpu) = current; 
21 
22 for (;;) i 
23 while (down-interrupt ible ( 
24 tkrcud-sema(cpuf)) ; 
25 up(Rrcu-sema) ; 
26 1 
27 1 

Figure C.4: mu-taskq krcud() Implementation 

C.2 Further Leveraging of Quiescent States 

The following sections describe the rcu-krcud, X-rcu, and mu-poll RCU implementations. 

These are similar to the implementation in the Linux 2.6 kernel in that they leverage 

naturally occurring quiescent states, use per-CPU counters to record passage through 

these quiescent states, and provide a barrier computation that senses the quiescent-state 

counters to determine when the system has passed through a grace period. They differ 

primarily in how the barrier computation is implemented, rcu-krcud uses kernel daemons, 

X-rcu uses per-CPU timers, and rcu-poll uses tasklets but also interrupts CPUs to expedite 



grace-period detection. 

C.2.1 rcu-krcud 

Dipankar Sarma also designed and coded the rcu patch,1 which is also a counters-and- 

barrier implementation similar to that described in Section 4.4.1. This implementation is 

quite similar to the implementation in the Linux 2.6 kernel, differing only in that it uses 

per-CPU kernel daemons rather than the per-CPU clock interrupt handler to drive the 

RCU barrier computation. It therefore uses per-CPU queues of callbacks and context- 

switch counters instrumenting the quiescent states. However, it uses per-CPU kernel 

daemons to periodically check for the end of grace periods, which means that it cannot 

easily check for the CPU having been idle since running the kernel daemon by definition 

displaces idle-loop execution. In contrast, interrupt-driven barrier schemes can easily check 

to see if they have interrupted the idle loop. The per-CPU kernel daemons therefore require 

special care to ensure that idle-loop execution eventually results in a quiescent state, for 

example, by ensuring that the scheduler is invoked periodically whenever RCU callbacks 

are pending. These daemons are awakened by a timer that is scheduled only when there is 

at least one callback in the system. Dipankar Sarma implemented this variant to evaluate 

use of kernel daemons rather than architecture-dependent timer hooks. 

The c a l l x c u  (1 function simply constructs the callback, enqueues it onto the current 

CPU's RCUnxtlist, then schedules the current CPU's tasklet, as shown in Figure C.5. 

The scheduler is instrumented as shown in Figure C.6. As with X-mu, this is a local 

increment without locking, atomic instructions, or cache thrashing, but, due to the lack 

of a per-CPU data area, array-indexing instructions are required. 

The code that performs periodic RCU processing is shown in Figure C.7. Uniprocessor 

kernels invoke it directly from the timeout handler, while SMP kernels invoke it from the 

krcud daemons that are awakened by the timeout handler. 

'To avoid confusion with the other RCU implementations, this dissertation calls this patch mu-hud.  



1 void call-rcu(struct rcu-head *head, 
2 void (*func) (void *arg), 
3 void *arg) 
4 C 
5 int cpu = cpu-number-map( 
6 smp,processor-id()); 
7 unsigned long flags; 
8 
9 head->func = func; 
10 head->arg = arg; 
11 local-irq-savecf lags) ; 
12 list-add-tail(8head->list. 
13 &RCU-nxtlist (cpu)) ; 
14 local-irq,restore(f lags) ; 
15 tasklet~schedule(bRCU~tasklet(cpu)) ; 
16 ) 

Figure (3.5: mu- krcud callrcu() Implementation 

1 00 -685.6 +686.7 00 
2 suitch-tasks: 
3 prefetch(next1; 
4 prev->work.need-resched = 0 ;  
5 + R~U-qsctrcprev->cpu)++; 
6 
7 if (likely(prev != next)) i 

Figure C.6: rcu-krcud Scheduler Instrumentation 

1 static void rcu~percpu~tick~common(void) 
2 C 
3 rc~~~rocess~callbacks(0); 
4 1 

Figure C.7: rcu-krcud Timer Processing 



Dipankar Sarma designed and coded the X-rcu implementation, which is similar to the 

implementation in the Linux 2.6 kernel described in Section 4.4.1, except that it uses 

per-CPU timers rather than the per-CPU scheduler-tick0 clock interrupt to drive the 

RCU barrier computation. It thus uses a per-CPU context switch counter to instrument 

this quiescent state, uses per-CPU queues to track callbacks, and per-CPU timers to track 

quiescent states as needed to find the end of grace periods. The timers further check for 

running from idle, which is a second quiescent state. The purpose of this variant was 

to evaluate the use of timers rather than the kernel daemons or timer hooks used by 

the rcu- krcud and rcu-ltimer implementations. In the end, the advent of an architecture- 

independent timer hook in the 2.5 kernel made timer-interrupt hooks acceptable. These 

timer-interrupt hooks have the advantage that they are guaranteed to occur on each CPU 

on a regular basis, while the timers could potentially migrate to some other CPU. 

The c a l l x c u 0  function constructs the callback and enqueues it onto the current 

CPU's r cunex t l i s t ,  as shown in Figure C.8. 

1 void call-rcu(struct rcu-head *head. 
2 void (*func) (void *arg), 
3 void *arg) 
4 C 
5 unsigned long flags; 
6 
7 head->f unc = func; 

Figure C.8: X-rcu callrcu() Implementation 

Figure C.9 shows how the scheduler is instrumented. The added line 5 compiles to a 

local increment, with no locking, atomic operations, or cache thrashing. 

Figure C.10 shows the processing done by the per-CPU timer handler, currently set up 

to execute every 5 jiffies on each CPU. This code detects idle-loop execution and counts 

this as a quiescent state. It then invokes rcu~process~cal lbacks  0 to advance callbacks 



1 QQ -685.6 +686.7 00 
2 svitch-tasks: 
3 prefetch(next); 
4 prev->vork.need-resched = 0; 
5 + per-cpu(rcu-qsctr, prev->cpu)++; 
6 
7 if (likely(prev != next)) { 
8 rq->nr-svitches++; 

Figure C -9: X-rcu Scheduler Instrumentation 

1 static void rcu-percpu-tick(void1 
2 c 
3 /* Check for idle loop */ 
4 if (task-idle(current)) 
5 this,cpu(rcu-qsctr)++; 
6 rcu~process~callbacks~) ; 
7 1 

Figure C.10: X-rcu Timer Processing 

as ends of grace periods are detected. 

The X-rcu callback processing proceeds as shown in Figure C.11. 

The rcu~process~callbacks() function shown in Figure C.12 handles the overall 

flow. Lines 3-12 move callbacks from rcu-currlist to rcu-donelist after the end of 

a grace period. Line 14 invokes rcumovenext-batch0 (shown in Figure C.13), which 

moves callbacks from rcunext l i s t  to rcu-currlist, initiating grace-period detection if 

needed. Line 16 calls rcu~check~quiescentstate0, which checks to see if the current 

CPU has passed through a quiescent state since the beginning of the current grace period. 

Lines 18-22 call rcu-invoke-callbacks 0 to invoke any callbacks in rcu-donelist. 

The rcuaovenext-batch0 function shown in Figure C.13 disables local interrupts 

(line 3), and then checks to see if rcu-currlist is empty and rcunext l i s t  is not (lines 

4-7). If so, it moves the contents of rcunext l i s t  to rcu-currlist (lines 8 and 9), then 

re-enables interrupts (line 12). It then obtains a new RCU batch number (lines 18-19) and 

registers it using rcuzeg-bat ch () (line 20, see Figure C.16 for this function's definition) 

under the rcu-lock. 

If lines 4-5 find rcu-currlist to be nonempty, rcuaovenext-batch0 simply r e  

enables interrupts and returns (line 23). 



I call_rcu() Request 
, - _$_ - - _ - - - - - - - - - - - - - - - - - - - - - - -, 

rcunextlist .__,_______________-----------.. 
( rcu-currlist Empty 

I End of Grace Period 

1 Invoke Callbacks 

Figure (3.11: RCU Callback Flow 

1 static void rcu~process~callbacks(void) 
2 i 
3 if (!list-empty( 
4 &this-cpu(rcu-currlist)) %% 
5 RCU-BATCH-CT(rcu-currbatch, 
6 this-cpu(rcu-batch))) i 
7 list-splice( 
8 &his-cpu( rcu-cur r l i s t ) ,  
9 &this-cpu(rcu-donelist)) ; 
10 INIT-LIST-HEALN 
11 &this-cpu(rcu-currlist)) ; 
12 1 
13 
14 rcu-move-next-batch ; 
15 
16 rcu-check-quiescent-state(); 
17 
18 if (!list-empty( 
19 &this-cpu(rcu-donelist) 1) i 
20 rcu-invoke-callbacks( 
21 $this-cpu(rcu-donelist)) ; 

22 1 
23 1 

Figure C. 12: X-rcu rcu~process~callbacks () 



I s ta t ic  void  rcu~move~next~batch(void) 
2 I 
3 local-irq-disable 0 ; 
4 if (!list-empty( 
5 %this-cpu(rcu-nextlist)) %% 
6 list-empty( 
7 &this-cpu(rcu-currlist))) C 
8 list~splice(&this~cpu(rcu~nextlist). 
9 &this-cpu(rcu-currlist)); 

10 INIT-LIST-HEAD( 
11 &this-cpu(rcu-nextlist)); 
12 local-irq-enable0 ; 
13 
14 /* 
15 * start the next batch of callbacks 
16 */ 
17 spin-lock(&rcu-lock); 
18 this,cpu(rcu-batch) = 
19 rcu-currbatch + 1; 
20 rcu~reg~batch(this~cpu(rcu~batch)); 
21 spin~unlock(&rcu~lock)  ; 
22 3 else C 
23 local-irq-enable0 ; 
24 1 
25 1 

Figure C. 13: X-mu rcumovenext-batch() 

The rcu~check~quiescent~state0 function shown in Figure C.14 checks to see if 

the current CPU has gone through a quiescent state, and, if so, advances the barrier 

computation. 

Lines 6-8 check to see if this CPU has already passed through a quiescent state during 

the current grace period, and, if so, line 6 simply returns. Lines 17-22 check to see if this 

is the first that this CPU has heard of the current grace period, and, if so, lines 19-20 take 

a snapshot of this CPU's context-switch counter in rcu-last-qsctr and returns. Lines 

23-26 check to see if this CPU has passed through a quiescent state since the snapshot, 

and, if not, line 25 simply returns. 

Execution reaches line 29 when this CPU first determines that it has passed through a 

quiescent state in the current grace period. Lines 28-44 publish this fact under the global 

rcu-lock, which possibly marks the end of the current grace period. Line 33 clears this 

CPU's bit in rcu-cpumask, which publicizes the fact that this CPU has passed through 

a quiescent state during the current grace period. Lines 34-35 set rcu-last-qsctr to an 

invalid quantity, which will indicate that this CPU is not yet aware of the next grace 



period. If there are other CPUs that have not yet passed through their quiescent states, 

then lines 36-41 release the rcu-lock and return. Execution reaches line 42 if this CPU 

is the last one to detect that it has passed through a quiescent state during the current 

grace period, which marks the end of the grace period. Line 42 increments rcu-currbatch, 

which signals the end of the grace period. Line 43 invokes rcuxeg-batch0 to initiate a 

new grace period if needed, and line 36 releases the rcu-lock. 

Figure C.15 shows rcu~invoke~callbacks 0, which simply loops through the list of 

callbacks, invoking each in turn. 

Figure C.16 shows rcuxeg-batch0, which publicizes the beginning of a new grace 

period, if needed. Lines 4 7  check to see if the batch number of the requested grace period 

is larger than that of the largest-numbered grace period that has been requested thus 

far (the RCUBATCHLTO macro handles wraparound). If so, line 6 publicizes the new 

maximum batch number. If the largest-numbered grace period requested thus far has 

already completed or if a grace period is currently in progress, lines 8-12 simply return. 

Otherwise, line 13 sets rcu-cpumask to indicate that all CPUs need to pass through a 

quiescent state, which publicizes the start of a new grace period. 

C.2.3 rcu-poll 

The rcu-poll algorithm was designed and coded by Andrea Arcangeli and Dipankar Sarma. 

It appears in the "-aa" series of kernels and was the first Linux RCU variant to be used in 

production, appearing in recent SuSE reIeases of the Linux 2.4 kernel, starting with SuSE 

7.3 Update, and is similar to the implementation used in VM/XA in the late 80s [39, 1051. 

Unlike the X-rcu and mu-krcud algorithms, which use per-CPU lists of RCU callbacks, 

rcu-poll uses a single set of RCU-callback lists, which are processed by a single tasklet. 

This single list and tasklet results in rcu-poll being quite a bit simpler than most of the 

other implementations, but also results in higher grace-period-detection overhead, due to 

this single list being thrashed among the CPUs. 

In addition, the CPUs are interrupted in order to induce them to enter the scheduler, so 

that this implementation combines inducing and observing quiescent states. This results 

in less batching than do the other implementations, but also results in extremely short 



1 static void rcu-check-quiescent-state(void) 
2 i 
3 int cpu = cpu-number-map( 
4 smp-processor-id01 ; 
5 
6 if ( !test-bitccpu, brcu-cpurnask)) < 
7 return; 
8 > 
9 
10 /* 
11 * May race vith rcu per-cpu tick - 
12 * in the vorst case 
13 * ve may miss one quiescent state 
14 * of that CPU. That is tolerable. 
15 * So no need to disable interrupts. 
16 */ 
17 if (this~cpu(rcu~1ast~qsctr) == 
18 RCU-QSCTR-INVALID) .I 
19 this~cpu(rcu~1ast~qsctr) = 
20 this-cpu(rcu-qsctr) ; 
21 return; 
22 > 
23 if (this-cpu(rcu-qsctr) == 
24 this-cpu(rcu-last-qsctr)) i 
25 return; 
26 > 
27 
28 spin~lock(&rcu~lock); 
29 if ( ! test-bit(cpu. Ibrcu-cpumask)) C 
30 spin~unlock(&rcu~lock) ; 
31 return; 
32 3 
33 clear-bit (cpu, brcu-cpumask) ; 
34 this-cpu(rcu-last-qsctr) = 
35 RCU-QSCTR-INVALID; 
36 if (rcu-cpumask != 0) i 
37 /* A11 CPUs haven't gone 
38 through a quiescent state */ 
39 spin~uulock(krcu~lock); 
40 return; 
41 > 
42 rcu-currbatch*; 
43 rcu-reg-batch (rcu-maxbatch) ; 
44 spin~unlock(&rcu~lo~k~; 
45 3 

Figure C -14: X-mu rcu-check-quiescent state() 



1 static inline void rcu-invoke,callbacks( 
2 struct list-head *list) 
3 C 
4 struct list-head *entry; 
5 struct rcu-head *head; 
6 
7 while ( ! list-empty(1ist) ) 
8 entry = list->next; 
9 list-del(entry) ; 
10 head = list-entry(entry, 
11 struct rcu-head, list) ; 
12 head->func(head->arg); 
13 3 
14 1 

Figure C. 15: X-rczs rcuinvoke-callbacks() 

1 static inline void rcu-reg-batch( 
2 rcu-batch-t newbatch) 
3 C 
4 if (RCU-BATCH-LT(rcu-maxbatch. 
5 newbatch)) C 
6 rcu-maxbatch = newbatch; 
7 3 
8 if (RCU-BATCH-LT(rcu-maxbatch. 
9 rcu-currbatch) / 1 
10 (rcu-cpumask != 0 ) )  C 
11 return; 
12 3 
13 rcu-cpumask = cpu-online-map; 
14 3 

Figure (2.16: X-rcu rcureg-batch() 



average grace- period latencies. 

The callzrcu() function constructs a callback, enqueues it onto a global r c u n x t l i s t ,  

then schedules the tasklet, as shown in Figure C.17. 

1 void call-rcu(struct rcu-head *head. 
2 void (*tune) (void *arg) , 
3 void *arg) 
4 I 
5 head->func = f unc; 
6 head->arg = arg; 
7 
8 spin~lock~bh(brcu~lock); 
9 list-add(&head->list , kcu-nxtlist) ; 
10 spin~unlock~bh(brcu~lock) ; 
11 
12 tasklet~hi~schedule(&rcu~tasklet) ; 
13 3 

Figure C. 17: rcu-poll calll-cu() Implementation 

The scheduler is instrumented in much the same way as for the previous algorithms, 

as shown in Figure C.18. 

1 QQ -685.6 +686.7 QQ 
2 switch-tasks: 
3 prefetch(next.1; 
4 prev->vork.need-resched = 0; 
5 + RCU-quiescent(prev->cpu)t+; 
6 
7 if (likely(prev != next)) 
8 rq->nr-switches++; 

Figure C. 18: rcu-poll Scheduler Instrumentation 

Periodic RCU processing is handled by a single tasklet, whose body is shown in Fig- 

ure C.19. This tasklet invokes rcu-prepare-polling0 to snapshot each CPU's quiescent 

state counters if polling is not yet in progress and if there are pending callbacks. If polling 

has already been started, it instead invokes rcu-poll ing0 to check to see if the grace 

period has ended. This ensures all CPUs have passed through their quiescent states via 

the context switch. 



I static void rcu~process~callbacks( 
2 unsigned long data) 
3 .I 
4 int stop; 
5 
6 spin~lock(&rcu~lock); 
7 if (!rcu-polling-in-progress) 
8 stop = rcu-prepare-polling0; 
9 else 
10 stop = rcu-polling0 ; 
11 spin-unlock(9rcu-lock) ; 
12 
13 if (!stop) 
14 tasklet~hi~schedule(krcu~tasklet); 
15 3 

Figure C.19: mu-poll Tasklet Body 

The rcu-poll callback processing is initiated by the rcu-prepare-polling0 func- 

tion, shown in Figure C.20. This function relies on rcu-proce ss-callbacks ( ) (see Fig- 

ure C.19) acquiring the rculock. Lines 12-27 check to see if there are callbacks waiting in 

rcunxtlist , and, if so, starts a grace period. Lines 13-14 move the list from rcunxt list 

to rcu-curlist. Line 16 records the fact that a grace period is now in progress. Lines 

18-25 mark each CPU (other than the current one) as needing to go through a quies- 

cent state, take a snapshot of each CPU's context-switch counter, and expedite a context 

switch. Line 26 indicates that grace-period polling needs to continue-if rcunxtlist had 

been empty, polling would cease until the next callrcu0 invocation. 

Figure C.21 shows the rcu-polling0 function. Lines 6-13 check each CPU that has 

not yet been observed passing through a quiescent state (as indicated by the rcu-qsmask 

check at line 9) to see if that CPU's RCU-quiescent counter has advanced since the 

rcu-preparepolling0 started the current grace period. If it has, then that CPU has 

recently passed through a quiescent state, so line 12 clears its bit from rcu-qsmask. Line 

16 then checks to see if all CPUs have now passed through their quiescent states. If so, 

line 17 invokes rcu-completion0 to mark the end of the grace period. If another grace 

period is required, rcu-completion will have started it, and will then return zero to signal 

that grace-period polling should continue. 

Figure C.22 shows the rcu-completion0 function that is invoked at the end of a grace 

period. Line 5 records the fact that a grace period is no longer in progress, line 6 invokes 



I static int rcu-prepare-polling(void) 
2 i 
3 int stop; 
4 int i; 
5 
6 Sifdef DEBUG 
7 if ( !list-mpty(krcu-curlist) ) 
8 BUG0 ; 
9 tendif 
10 
11 stop = I; 
12 if (!list-empty(hcu-nxtlist)) i 
13 list~splice(krcu~nxtlist. krcu-curlist); 
14 INIT-LIST-HEAD(krcu-mtlist); 
15 

18 for (i = 0; i < smp-num-cps; i++) 
19 int cpu = cpu-logical-map(i) ; 
20 
21 rcu-qsmask I= IUL << cpu; 
22 rcu-quiescent-checkpoint [cpul = 
23 RCU-quiescent (cpu) ; 
24 force~cpu~reschedule(cp);  
25 3 
26 stop = 0; 
27 1 
28 
29 return stop; 
30 3 

Figure C.20: mu-poll rcu-prepare-polling() 

1 static int rcu-polling(void) 
2 i 
3 int i;  
4 int stop; 
5 
6 for (i = 0; i < smp-num-cpus; i++) i 
7 int cpu = cpu-logical-map(i) ; 
8 
9 if (rcu-qsmask & (1UL << cpu)) 
10 if (rcu~quiescent~checkpoint Ccpul 
I I != RCU-quiescent (cpu)) 
12 rcu-qsmask k= -(lUt << cpu); 
13 3 
14 
15 stop = 0; 
16 if (!rcu-qsmask) 
17 stop = rcu-completion0 ; 
18 
19 return stop; 
20 3 

Figure C.21: mu-poll rcu-polling() 



rcu-invoke-callbacks () to invoke the callbacks, and line 8 starts a new grace period, if 

required. 

1 static int rcu~completion(void) 
2 I 
3 int stop; 
4 
5 rcu,polling~in~progress = 0; 
6 rcu,invoke~callbacks~); 
7 
8 stop = rcu-prepare-polling() ; 
9 
10 return stop; 
11 1 

Figure C .22: mu-poll rcu-completion() 

Figure C.23 shows the rcu~invoke~cal lbacks()  function. This is similar to that 

shown for X-mu in Figure C.15, but processes a single global list rather than a per-CPU 

list, and removes elements from the list in a slightly different manner. 

1 static void rcu~invoke~callbacks(void) 
2 c 
3 struct list-head *entry; 
4 struct rcu-head *head; 
5 
6 tifdef DEBUG 
7 if (list-empty($rcu-curlist)) 
8 BUG(); 
9 Sendif 
10 
11 entry = rcu-curlist.prev; 
12 do I 
13 head = list-entry(entry, 
14 struct rcu-head, list); 
15 entry = entry->prev; 
16 
17 head->func(head->arg); 
18 > vhile (entry != h-cu-curlist); 
19 
20 INIT~LIST~HEAD(~cu~curlist); 
21 1 

Figure C.23: mu-poll rcuinvoke-callbackso 



C.3 Preemption in Linux RCU (rcu-preempt) 

Preemption was added to Linux in the 2.5.4 kernel. The addition of preemption means 

that read side kernel code is subject to involuntary context switches. If not taken into 

account, this leads to premature flagging of the ends of grace periods. There are two ways 

to handle preemption: (1) explicitly disabling preemption over read side code segments, 

and (2) considering only voluntary context switches to be quiescent states. 

Explicitly disabling preemption over read side code segments adds unwanted overhead 

to reading processes, and removes some of the latency benefits provided by preemption. 

In contrast, considering only voluntary context switches to be quiescent states allows the 

kernel to reap the full benefit of reduced latency. Unfortunately, it also results in the 

possibility of unbounded grace-period durations, which eventually resulted in it not being 

incorporated into the Linux kernel. Nonetheless, in the spirit of full disclosure, this section 

examines the voluntary-context-switch option and its consequences. 

The scheme for tracking only voIuntary context switches is inspired by the K42 imple- 

mentation [30], and was designed and implemented by Dipankar Sarma. K42's extensive 

use of blocking locks and short-lived threads results in use of thread termination rather 

than voIuntary context switch as the K42 quiescent state (and also forestalls the possibility 

of unbounded grace-period lengths in K42). In addition, Linux migrates preempted tasks 

to other CPUs, which requires special tracking of these preempted tasks since their last 

voIuntary context switch. 

Dipankar Sarma created a prototype preemptible algorithm that is similar to rcu- 

kr~ucd,~ but adds per-CPU counts of preempted tasks, which operate in a manner in 

some ways similar to the generation mechanism in K42 [30]. The key concept is that a 

preemptible kernel must track tasks rather than CPUs. However, to avoid potentially 

expensive scans of the task list or the runqueues, the tasks are tracked on a per-CPU 

basis. When a task returns &om a voluntary context switch (or is created), it is implicitly 

associated with the CPU that it starts running on. No matter how many times the task 

2However, as noted earlier, this preemptible version of mu-hud has greatly reduced CPU overhead 
when there are no RCU callbacks in the system. 



is preempted, from an RCU perspective, it remains affiliated with that CPU, even if it 

is migrated to other CPUs. Once it performs a voluntary context switch, it gives up its 

affiliation. 

However, no additional work is done (over that done by a non-preemptible kernel 

running a non-preemptible implementation of RCU) until that task is preempted. The task 

then increments a per-CPU counter, which remains incremented until the task executes 

a voluntary context switch, possibly by exiting. The task then decrements that same 

per-CPU counter, even if the task is running on some other CPU at the time. 

Of course, if there is a lot of preemption, it might be that a particular CPU always 

has at least one preempted task a l i a t e d  with it. However, the end of a grace period is 

marked not by the absence of tasks, but by each of the tasks that was either running or 

preempted at the start of the grace period having either exited or voluntarily switched 

context. 

This distinction is maintained by providing each CPU with a pair of counters, a "next" 

counter that is incremented by tasks returning from their voluntary context switch onto 

the corresponding CPU, and a "current" counter that is only decremented. Note that the 

"next" counter will be also decremented whenever a task resumes execution quickly enough 

after being preempted. The end of the grace period occurs when all CPUs' "current" 

counters reach zero.3 The roles of the counters in each pair are now reversed in order to 

start the next grace period, just after the base rcu-krcud portion of the algorithm moves 

the callbacks in the r c u n e x t l i s t  to rcu-currl is t .  

Each CPU's pair of counters is as shown in Figure C.24, along with the pair of pointers 

that handle the reversing of their roles. The nextpreempt-cntr pointer points to the ele- 

ment of rcu-preempt-cntr [I that is atomically incremented (by a new rcu-preemptget 0 

function) when task affiliated with this CPU is preempted for the first time since its preced- 

ing voluntary context switch. The task records this pointer in a new cpu-preempt-cntr 

"nless one of the CPUs has been running a task continuously since before the start of the grace period, 
but this case is handled by the base mu-kmud portion of the implementation. 



pointer in its task structure, which is initially NULL. After the task resumes and vol- 

untarily relinquishes the CPU4, it atomically decrements the counter pointed to by its 

cpu-preempt-cntr, using a new rcu-preempt-put () function, and then NULLS out its 

cpu-preempt -cnt r pointer. 

1 extern atomic-t 
2 r~u-~reern~t_cntrC2] --per-cpu-data; 
3 extern atomic-t 
4 *curr-preempt-cntr --per-cpu-data; 
5 extern atomic-t 
6 *next-preempt-cntr --per-cpu-data; 

Figure (3.24: rcu-preempt Per-CPU Counters 

The curr-preempt-cntr pointer points to the element of rcu-preempt-cntr [I that 

next-preempt-cntr does not point to. This element of the array contains the number 

of tasks affiliated with this CPU that were first preempted before the beginning of the 

current grace period, and that must resume and voluntarily relinquish a CPU before the 

current grace period can expire. When this CPU becomes aware of the end of the current 

grace period, it exchanges the values of next -preempt -cnt r and curr-preempt -cntr, so 

that the elements of the rcu-preempt-cntr [I array exchange roles. 

The rest of the callback processing is very similar to that of the rcu-krcud algorithm. 

The major difference is that rcu-check-quiescent s t  a t  e () must check that all tasks 

preempted on this CPU prior to the current grace period have voluntarily relinquished 

the CPU. 

This implementation is currently not used in Linux for two reasons: (1) the grace 

periods can be arbitrarily long in a busy system with a low-priority task, and (2) the 

situations where it was thought useful turned out to have better solutions. 

*Possibly after having been preempted several more times along the way. This is why the counter cannot 
be decremented immediately when the task is resumed, but must instead wait for the task to voluntarily 
relinquish the CPU. 



Appendix D 

RCU Performance on Large Hash Tables 

Section 2.2.4 on Page 21 introduced a hash-table mini-benchmark that is used to compare 

the performance of a selected set of locking primitives. In Section 8.1 on Page 269, this 

set was expanded to include RCU. 

However, all of the measurements were taken on a very small 32-bucket hash table, 

which is small enough to fit entirely into CPU cache. This appendix looks at  the perfor- 

mance on larger hash tables that do not fit into CPU cache. Aside from the increased size 

(1 6,384 buckets instead of 32), the experiments are identical. 

Performance on a read-only workload is shown in Figure D.1. Searches of this larger 

hash table incur greater capacity miss rates, increasing the overhead incurred in the critical 

section, thereby increasing scaling for the locked searches. However, this increased scaling 

has not come for free, as the overall performance has decreased by a factor of three. RCU 

still outperforms the next best mechanism by more than 30%. 

Figure D.2 shows the performance of the same hash-table configuration with a mixed 

workload running on 4 CPUs, varying from read-only on the left-hand side to write-only on 

the right-hand side. This workload has short grace periods, so that about ten operations 

are completed per grace period. RCU remains optimal below about 15% writes. 

Figure D.3 is similar to the preceding figure, but with longer grace periods so that 

there are about 100 operations per grace period. Under these conditions, RCU remains 

optimal with over 20% writes. 

This data demonstrates that RCU retains significant performance advantages when 

used on large data structures that do not fit into CPU caches. 



Figure D.1: Large Hash Table Performance for Read-Only Workload 



Figure D.2: Large Hash Table Performance for Mixed Workload and Short Grace Period 
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