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Abstract 

A Comparative Analysis of Static Parallel Schedulers 

Where Communication Costs Are Significant 

Douglas M. Pase, Ph.D. 

Oregon Graduate Center, 1989 

Supervising Professor: Robert G. Babb I1 

Efficient multiprocessor scheduling where communication between processors is free has 

been studied for almost three decades. However, modern distributed architectures have 

communication channels for which communication is not free. Such channels have a non- 

zero latency and a finite capacity for communication. Previous work on parallel scheduling 

accounting for communication effects has assumed that  the channels had sufficient capacity 

t o  service all transmissions without significant delay from contention. We show t h a t  the 

average schedule length can be significantly shortened by taking contention into account. 

We define families of static schedulers based on the strategy chosen for various phases, and 

present a performance analysis based on tha t  classification. Because certain static 

schedulers are equivalent t o  dynamic schedulers for which perfect knowledge is available, 

parts of this work also apply t o  dynamic scheduling. 



CHAPTER 1 

Introduction 

1.1. Background 

Since the inception of modern mechanized computing a particular theme has occurred 

many times - how do we solve a given problem faster? This pursuit of greater speed has 

led t o  the development of better algorithms, more effective compiler optimization 

techniques, and faster hardware. Speeding up the hardware could mean improving the 

speed of a single processor, or i t  could mean replicating the processors and dividing the 

problem into smaller units (or tasks) which are then executed in parallel. 

A particularly difficult par t  of executing tasks in parallel is arranging the execution of 

individual tasks so tha t  the maximum benefit is gained from all the effort. I t  is easy t o  see 

tha t  when there is no additional cost for executing tasks in parallel, doing so will never slow 

the computation down. However, when parallel execution incurs an  additional expense, such 

as  from communication, improper scheduling can actually lead t o  slower program execution. 

A number of approaches have been proposed t o  solve the problem of multiprocessor 

scheduling considering communication costs. Among them are processor allocation, dynamic 

load balancing, and static scheduling. Processor allocation problems generally take the 

form of mapping a program graph Gp = (Vp,Ep) t o  a network of processors G, = (V,,,E,) 

such t ha t  some criterion is minimized [BeS87,Bok8la,Bok8lb]. Vp is the set of vertices 

(tasks) in the program, and Ep is the set of edges (communication arcs). Similarly, V, is the 

set of processors in the network, and E, is the set of communication 1inks.which connect the 

processors. It is called the mapping problem if the objective is t o  minimize the number of 



arcs in G, spanned by arcs in G, .  This assumes tha t  all communication is of equal cost, 

and the value t o  be minimized is the distance over which each message must travel. It also 

assumes tha t  only one task may be mapped t o  a processor. 

Another problem related t o  processor assignment is called the quadratic assignment 

problem [Bok8la]. In this case there are n objects and n locations. The affinity between 

objects is recorded in a matrix A ,  and distances are recorded in a matrix D. The element 

aij records the affinity between objects i and j, and element dij records the distance 

between locations i ,  and j. The objective is to find a mapping function p :V,--+Vm such tha t  

the overall cost of communication, ~ a i j d p ( i ) p ( j l l  is minimized. The affinity between two 
i , j  

objects can be thought of as  a volume of communication between two tasks. A distance dij 

can be thought of as the the cost of communicating between processors i and j. 

Dynamic load balancing deals with communication on an  indirect level. As work 

becomes available, i t  is shipped t o  the processor which is best able t o  accept i t  

[Cas87,Ham80,Sta84]. If a task has not received all of its input, i t  is not ready t o  be 

shipped. This is much like the "macro dataflow" model used in [SaH86,Sar87]. Processor 

selection is deferred until the task can be executed, and the best processor is selected a t  

tha t  moment. Processors are not left idle as long as work is available. A particularly 

important advantage t o  this approach is tha t  the schedule adapts itself t o  the execution of 

the program as the execution takes place. Thus even programs whose execution are 

extremely da t a  dependent can use this method of scheduling. 

Dynamic load balancing approaches are generally classified as  centralized or 

decentralized. Centralized load balancing has one processor (the master) which is 

responsible for all scheduling decisions. I t  tracks the work levels of all processors within the 

system, and supplies tasks whenever they are  available t o  processors (workers) tha t  need 



them. As tasks are completed the worker informs the master who collects and records the 

information. When all of a task's inputs are available, the master places the task on a 

ready queue, or assigns it  t o  a worker. Although this approach is simple and effective for 

small numbers of processors, i t  does not scale well. Loading of the master is proportional t o  

the number of the processors in the system, so increasing the network size will eventually 

cause it  t o  be saturated. In addition, as networks get larger there is an  increase in the 

communication delay between the more distant processors and the master, which causes 

additional processors t o  be less effective. 

Distributed load balancing attempts t o  remedy these problems by making decisions 

locally. This means tha t  the ability to make decisions increases with network size. It also 

means tha t  the distance between the unit which makes the decisions and the unit which 

executes those decisions is zero. However, because each processor must make decisions 

about whether t o  accept or forward tasks, and where, each processor must now have some 

idea of the system state.  The system state must itself be communicated through messages 

which are subject t o  communication delay, so they may not reflect t ha t  state accurately 

when they are received or used. 

Both centralized and distributed load balancing suffer somewhat from the fact tha t  

scheduling is done at runtime, and therefore the scheduling overhead is paid for every time 

a program is run. Little pre-execution program analysis is normally done t o  aid the 

scheduler in making its decisions, which prevents processors from planning the execution t o  

minimize the overall processing time. 

Static scheduling attempts t o  solve some of these problems by analyzing the program 

graph and scheduling i t  before execution begins. This is necessarily restricted t o  programs 

or sections of programs which have little varying dynamic behavior. Our approach t o  static 



scheduling further restricts the problem to the scheduling of tasks with acyclic precedence 

constraints and heterogeneous task and communication weights. I t  is a superset of the 

Precedence Constrained Scheduling Problem (PCS) [GaJ79], in tha t  i t  adds t o  PCS the 

additional problem of scheduling communication costs. In both problems the tasks have a 

finite lifetime and are executed once. All incoming communication must be received before 

a task may begin, and all outgoing transmissions are sent after the task has completed. 

Because the problem in its general form is NP-complete [Ul175], solution approaches 

have taken two diverging paths, namely tha t  of restricting the problem until polynomial 

solutions may be found, and of finding heuristic algorithms tha t  may be computed more 

cheaply but still produce schedules tha t  are frequently close t o  optimal. 

Static scheduling may be done as the program is constructed, a s  a preprocessing phase 

prior t o  compilation, automatically or semi-automatically at compiIe time, or a t  the time 

the program is loaded onto the machine for execution. Tasks may represent individual 

instructions in a program, subroutines, program modules, or whole programs which are part  

of a script. Communication between these tasks might be the fetch of a datum from main 

memory, a structured message a few hundred or thousand bytes long, or the transfer of 

complete files between successive filters. We assume here tha t  the only cost associated with 

communication is the message transmission time, which includes both the time required t o  

transmit the message over the communication link, and the queuing delay which occurs 

because of competition from other messages in the system. No setup time in sending or 

receiving messages is included in this analysis, although there is no reason why i t  could not 

have been. 

A scheduler is preemptive if execution of a given task may be interrupted and 

suspended t o  allow another task t o  execute. I t  is nonprcemptive if the reverse is true, tha t  



is, once a given task is started i t  runs t o  completion without interruption. 

Scheduling strategies may be further subdivided into optimal and heuristic 

approaches. Optimal schedulers may use branch-and-bound techniques [KaN84,Koh75] or 

linear, integer, or  dynamic programming [ACD74,LaL78]. These approaches produce 

schedules from the equivalence class of shortest length schedules (there may be more than 

one possible shortest schedule), but the schedulers can require running times which are 

exponential in the number of tasks t o  be scheduled. 

Heuristic schedulers are more difficult t o  classify because of the great diversity in 

approaches. However, a distinction can be made between stubborn and non-stubborn 

schedulers. A stubborn scheduler will not move or attempt t o  reschedule a task once it  has 

been scheduled. Non-stubborn schedulers will generate an  initial task schedule, then 

perturb it  in different ways hoping t o  find a better schedule. List schedulers are a special 

class of stubborn schedulers. In this dissertation, a taxonomy of schedulers is developed and 

the performance of different types is considered. 

1.2. Contributions of This Dissertation 

This dissertation makes the following specific contributions t o  the study of parallel 

scheduling: 

(1) We examine five variables in the program/architecture system for their effect on 

scheduler performance. The program variables are: the distribution of tasks within 

a program, the number of subtasks within a program, and the average parallelism. 

The architecture variables are: the average time (latency) required t o  communicate 

over empty links and the total number of processors available. 

(2) We decompose static parallel scheduler algorithms into three basic parts and 

examine how different designs for the parts affect scheduler performance. The 



subdivisions we consider are: task selection, processor selection, and schedule 

generation. The task selection strategies we consider include those used in critical 

path scheduling and in diffusion dynamic load balancing. Processor selection includes 

strategies where only processor load is considered, where processor load and empty 

channel communication latency are  considered, and where load, latency, and 

contention a re  considered. 

(3) Several of the static schedulers we examine resemble dynamic (diffusion type) load 

balancing schedulers. The static schedulers are similar in all important respects 

except (1) there was no runtime overhead for scheduling, and (2) the static 
s 

scheduler has complete and accurate information about the entire system a t  each 

time a decision about task placement is made. As such the static schedulers 

delineate the best average performance tha t  could be expected from similar dynamic 

schedulers. 

1.3. Dissertation Outline 

The remainder of this dissertation is organized as  follows: 

Chapter 2 summarizes much of the relevant work which has been done in static 

scheduling, and particularly in list scheduling. In Chapter 3 we present a precise definition 

of the multiprocessor scheduling problem. Chapter 4 describes a taxonomy of our 12 

schedulers based on their modular decomposition. The construction of each of the 12 

schedulers used in later chapters is also given, along with a worst case complexity analysis 

for each. 

A complete description of the scheduler experiment setup, inputs, and environment is 

given in Chapter 5. We describe the five variables considered t o  be most relevant t o  

scheduler performance, and the range of values used for each. Chapter 6 analyzes the 



effects of each experimental variable on scheduler performance. Chapter 7 analyzes the 

effects of variables used in scheduler construction on scheduler performance. Our 

conclusions and recommendations are presented in Chapter 8, and Chapter 9 presents some 

ways in which this work might be extended. 

Appendix A contains graphs of the different task distributions. The remaining 

appendixes contain the numerical results of the different experiments. In particular, 

Appendix B presents the experimental results in terms of frequency histograms of schedule 

length, bar charts of average schedule length, and tables of all seven performance measures. 

Results are grouped by problem characteristic t o  show the effect tha t  task distribution, 

average parallelism, program size, etc., have on the different schedulers. Appendix C gives 

the same presentation grouped by scheduler t o  show the effect of different scheduling 

decisions on scheduler quality. Appendix D contains plots of relative parallelism vs. relative 

efficiency. Cumulative histograms of relative scheduler performance are given in Appendix 

E. 



CHAPTER 2 

Related Work 

This chapter summarizes previous work in precedence constrained scheduling (PCS). 

Because of the scheduler strategies considered in this dissertation, we concentrate primarily 

on list and list related scheduling strategies. Ullman [Ul175] proved that  if task execution 

times are not equal, or  there are more than two processors, precedence constrained 

scheduling for arbitrary graphs is NP-complete. This, in turn, implies tha t  our extended 

problem is NP-hard, because i t  is a superset of PCS. 

2.1. PCS Without Communication Costs 

A number of good heuristic solutions t o  PCS have been proposed in the literature. 

Although we are  considering a more general problem, PCS with non-zero communication 

costs, these heuristics provide an  excellent starting point for developing heuristic solutions 

t o  the extended form of PCS. 

Much of the material discussing solutions t o  PCS is collected together into two works. 

The first is a survey article by M. J. Gonzalee [Gon77], the second is a book edited by E. G. 

Coffman [CoflG]. Gonzalez [Gon77] surveys some of the major results in scheduling theory 

known a t  tha t  time. He classifies scheduling problems by number of processors, task 

duration, precedence graph structure, task interruptibility, job persistence or periodicity, 

presence or  absence of deadlines, whether resources are limited, and whether processors are 

homogeneous or heterogeneous. A number of performance measures are  also given, including 

minimum completion time, minimum mean flow time, and maximum processor utilization. 

Minimum completion time is an  appropriate measure for scheduling large single jobs on 



multiprocessor systems. Minimum mean flow time is appropriate for scheduling multiple 

independent jobs in a time sharing environment, where fast turn around time is desirable. 

Appropriate heuristics and measures are also given for hard and soft real-time 

environments. Several scheduling algorithms are described, including those in [ACD74], and 

performance bounds are  given. 

Coffman ct  a1 [Con61 collect into a single work much of what is known about 

scheduling theory. This work is more varied and in some ways more detailed than [Gon77]. 

I t  includes polynomial algorithms for exact solutions t o  specific subclasses of the general 

scheduling problem. Solutions include tree-structured task systems, processors with different 

speeds, and preemptive and nonpreemptive approaches. The problem complexity (its NP- 

completeness) is shown, and bounds are derived on the performance of several scheduling 

problems. Lastly, several exact and near exact algorithms are given which use branch-and- 

bound and dynamic programming (see [HiL74]) techniques. 

The earliest reference t o  PCS and a critical path solution is by Hu. Hu presents the 

original critical path scheduling algorithm and proves i t  is optimal if all tasks have equal 

execution times and the graph is a tree or forest [Hu61]. Coffman and Graham [CoG72] 

later present a level-by-level scheduling algorithm (CG) which has tighter bounds than does 

critical path scheduling. Furthermore, scheduling of arbitrary acyclic graphs is optimal 

using CG if all tasks have equal execution times and there are only two processors. These 

two scheduling algorithms provide the basic platform from which most of the scheduling 

heuristics are  derived. 

In CG as  well as Hu's algorithm, the emphasis is on ordering the selection of tasks 

from which the schedule is generated. A pre-scheduling analysis is done on the program 

graph, and the tasks are ordered into a list. As a task is removed from the list for 



scheduling, each processor schedule is examined and the processor with the earliest finishing 

schedule is selected. The task is placed a t  the end of tha t  processor's schedule. A machine 

schedule contains only the order in which the tasks are executed, the processor on which 

each task is executed, and the finish time of each. 

Many authors explore the advantages and limitations of this approach, among them: 

Kaufman, in [Kau74], discusses a heuristic solution t o  the precedence constrained 

multiprocessor scheduling problem where the ordering relation forms a tree. Communication 

is considered insignificant and tasks are nonpreemptive, but tasks may have non-unit 

weights. Tight bounds are derived which relate his algorithm to  an  optimal preemptive 

schedule and t o  an  optimal nonpreemptive schedule. 

Adam e t  a1 (ACD741 compare the performance of five list scheduling algorithms. The 

schedulers are HLFET (Highest Levels First with Estimated Times), HLFNET (HLFET with 

equal task weights), RANDOM (task priorities are selected randomly), SCFET (Smallest 

Co-levels First with Estimated Times), and SCFNET. A dynamic programming preemptive 

scheduler is also used as  a basis for comparison. There were 22 tests pulled from actual 

programs, mostly written in FORTRAN, and about 900 were generated stochasticaIIy. A 

statistical analysis of variance (AOV) concluded tha t  HLFET performed best. A P=O.Ol 

confidence level was used for the AOV. Tables from the text report tha t  the largest 

variation between schedulers was about 31 percent. The tests considered 2, 3, and 5 

processors. 

Garey and Johnson present a solution t o  the two processor scheduling problem where 

there is arbitrary s ta r t  times and deadlines for each of the tasks [GaJ77]. An O(n3) 

algorithm gives a schedule whenever one exists. This same algorithm can also be coupled 

with a binary search t o  find the shortest such schedule, or  t o  minimize "tardiness". A 



number of variations of this scheduling problem are shown t o  be NP-complete. 

Bashir et a1 report the results of a statistical study in PSV83). In this study all tasks 

have unit weights, and graphs have between 20 and 48 tasks per graph. 700 graphs are 

generated a t  random, and the resulting sample is used t o  determine the probability tha t  the 

critical path scheduling algorithm finds an  optimal schedule. 

Blazewicz et  a1 [BWD84] discuss the variation on the scheduling problem where some 

tasks require two processors simultaneously. They present a general model for this type of 

scheduling, and an  appropriate heuristic. Bounds on the performance of their heuristic are 

also developed. 

Kasahara and Narita describe a fast branch-and-bound approximation scheme in 

[KaN84]. The initial selection for the branch-and-bound algorithm is determined by a 

modified critical path algorithm called CP/MISF (for Critical Pa th ,  Most Immediate 

Successors First). CP/MISF uses the standard critical path algorithm with the exception 

tha t  ties are broken in favor of the task with the greatest number of successor tasks (i.e., 

tasks between it  and the exit node). The approximation/optimization algorithm enumerates 

all possible solutions, pruning as  early as possible any tha t  are clearly inferior. The current 

best solution is replaced whenever a superior solution is found. Because the number of 

possible solutions is so large, a CPU time limit was imposed, which causes the solution t o  be 

only approximate. Tests were done for graphs with 5-200 tasks, and 2-10 processors, with 

no communication costs. Experimentation showed tha t  in most cases this approach found 

a n  optimal solution within a few seconds. Kohler [Koh75] describes a slightly less refined 

version of the branch-and-bound algorithm used by Kasahara and Narita.  His results 

strongly agree with those reported in the later article. 



Ramamoorthy ct a1 [RCG72] develop dynamic programming algorithms tha t  determine 

(1) the minimum number of processors t o  process a graph in the smallest possible time, (2) 

the minimum time required t o  process a graph on k processors, and (3) whether a graph 

can be processed in the minimum time on k processors. Two heuristics are  also presented, 

both of which are  similar t o  load balancing. The heuristics are  compared against an  

optimal algorithm for small graphs and two processors. The major thrust of this paper is 

intended t o  be the dynamic programming algorithms, but the two heuristics provide ideas 

on task selection strategies which we use in this dissertation. Ramamwrthy's task selection 

strategy is different from critical path scheduling in tha t  tasks are scheduled in the order 

tha t  they become available, which can be used both in a static or  dynamic scheduling 

environment. 

Sethi [Set761 discusses some results from [CoG72] which includes an optimal O(n2) 

algorithm for scheduling arbitrary directed acyclic graphs with unit weights on two 

identical processors. He presents a graph labeling function with O(n+e)  steps. He also 

presents a new optimal algorithm for the two processor problem which has complexity 

O(na(n)+c),  where a ( n )  is a n  almost constant function of n .  

Graham [Gra69] and Fernandez and Bussell [FeB73] investigate the worst-case 

performance of a critical path scheduling algorithm. Graham derives bounds for several 

variations of the job-shop scheduling problem (i.e., PCS), including an  upper bound on the 

schedule length given a fixed number of processors. Although Graham's work considers only 

a subset of the problem we consider, i t  does provide some justification for claiming t ha t  the 

distribution of parallelism does not have a major impact on scheduler performance, which 

we investigate empirically for the larger problem. 



More detailed information about the limits of the Coffman-Graham and critical path 

scheduling algorithms are given in [LaS77], [Kun81], and [Llo82]: 

Lam and Sethi [LaS77] discuss the worst case performance of preemptive and 

nonpreemptive versions of the Coffman-Graham (CG) scheduling algorithms. They show 

tha t  both algorithms are bounded by w/w0<2-2/m, where w is the length of the CG 

schedule, w, is the length of an  optimal schedule, and m is the number of processors. Note 

tha t  this accounts for the optimality of the special case where m = 2. 

Kunde derives worst-case asymptotic bounds for the critical path scheduling heuristic 

in [Kun81]. The bounds are derived for the special cases where tasks have unequal weights. 

Three types of dependency structures are considered, namely trees (2-2/(m+l)), anti-trees 

(exact bounds are not given, but they are generally worse than for trees), and chains (513). 

Lloyd [Llo82] investigates the worst-case performance of the critical path scheduling 

algorithm and the Coffman-Graham scheduling algorithm. This analysis presumes t ha t  

there are a fixed number of available processors, and tha t  additional resources exist. An 

upper bound is given which depends on the number of processors and non-processor 

resources in the system. This upper bound is the same for both scheduling algorithms, and 

is asymptotically the best possible worst-case upper bound. 

2.1.1. PCS With Communication Costs 

Several recent studies do consider communication costs in their analysis. However, 

none of the studies are as  extensive as we have undertaken here. Three such studies are 

summarized here. 

Kruatrachue considers the problem of communication for a precedence based scheduler 

in FrL87,Kru87,KrL88a,KrL88b]. He defines the ISH and DSH schedulers; ISH is a 

modified version of Hu's scheduler [Hu61]. DSH is like ISH with an  extra pass tha t  



duplicates tasks whenever it  is beneficial t o  do so. Task duplication can have the beneficial 

effect of using idle CPU time t o  reduce communication. A basic assumption underlying all 

his results is tha t  contention has an insignificant effect on the performance of a scheduler. 

All scheduling decisions are made assuming tha t  the only delay in communication comes 

from channel latency, and tha t  messages rarely interfere with each other. 

Granski ct a1 [GKS87] present a critical path algorithm suitable for scheduling 

dataflow graphs on a dataflow machine. Their algorithm schedules conditional branches by 

transforming the graph into a set of deterministic subgraphs, each element of which 

represents a possible path of execution. A critical path algorithm is then used t o  schedule 

each of the subgraphs independently. Loops are scheduled by first multiplying the weight of 

each node within the loop body by the expected number of iterations. The loop body is then 

scheduled as if i t  were acyclic. Simulated performance of their algorithm shows their 

algorithm compares favorably with a random scheduling algorithm. 

Chester Carroll c t  a1 discuss a solution based on critical path analysis in [CHA88]. 

The solution first schedules critical paths (see Section 3.1 or (HiL74]), then adds non-critical 

tasks later. Task selection for non-critical tasks is done by decreasing distance from the 

terminal node of the graph, and uses distance from the initial node t o  break ties. Only 

"processor rich" systems were used in scheduling, which never blocked task execution 

because of processor unavailability. Their study considers both latency and contention in 

communication. Latency is restricted t o  being no longer than the duration of the average 

task. Other aspects of communication were also modeled - in particular, both completely 

connected and s ta r  networks with a packet switching protocol were used, and 

communication buffer size was included in the feasibility constraints. No performance 

results were reported. 



CHAPTER 3 

Definitions And Terminology 

Briefly stated, the general problem t o  be considered is: what are the characteristics of 

parallel schedulers, programs, and architectures which affect resulting performance? Of 

course this problem is so broad tha t  one can only consider a very small portion of i t  in a 

work such as this. For the sake of simplicity we will restrict the problem t o  static acyclic 

program graphs and an  idealized multiprocessor architecture. In doing so we restrict the 

problem to what we believe are its principal components. As mentioned before, much work 

has been done when the cost of communication between processors is zero [Cof76], and some 

work has been done when communication latency is important but the communication link 

bandwidth is effectively infinite [I<ru87]. We consider architectures tha t  have a finite 

communication capacity across links, so communication latency and contention may both 

affect scheduler performance. In this chapter we give definitions and introduce the 

terminology used in the remainder of the dissertation. 

3.1. Task Graph Characteristics 

DEFINITION: A task graph G = ( A , T )  is a connected, directed, acyclic graph with 

heterogeneous non-negative weights on all nodes and arcs. 

The set T of graph nodes represents tasks t o  be performed; node weights represent the 

computational resources (i.e. CPU time) required by the program to  complete its execution. 

Arcs in A represent communication between tasks; arc  weights represent the volume of 

communication between tasks. It does not represent the communication time of the arc - 

t ha t  is a function of the processor schedule. The direction of the arc indicates which task is 



the sender and which is the receiver. 

Intuitively, a task graph is a way of representing a program. Tasks within a graph 

are  s tr ic t  on all parameters, tha t  is, they must receive all communication before they begin 

execution. Tasks are modeled as  sending messages t o  other tasks only after the sending 

task has completed its execution. I t  is assumed for convenience t ha t  every graph begins 

with a single node and ends with a single node. Graphs which have more than one initial or 

terminal node may be easily modified t o  this form by adding special initial and terminal 

nodes. 

Task graphs have no cycles nor conditional execution such a s  are found in dataflow 

graphs [Ack82,DaK82,Den801Gur84]. The restriction on cycles is particularly severe for the 

representation of programs, as  few useful programs are  written without some form of 

iteration structure such as  loops, recursion, or generators. Compiler technology in recent 

years, however, has progressed t o  the point where loop unrolling may take place a s  par t  of 

the optimizations a compiler is able to  use [NC72]. Loop unrolling partially or  completely 

removes cycles from an  otherwise cyclic graph. The unrolled portion of a loop may be 

represented as  a task graph, or the whole loop may be represented as a single node. 

DEFINITION: The parent relation of a task graph G = ( A , T )  is the set A of arcs of G ,  

tha t  is, a is a parent of b iff ( a , b ) ~ A .  P a r e n t ( a )  denotes the set- of tasks 

{ p : ( p  , a )  E A ), which are the parent tasks of a .  C h i l d ( a )  is the set.  of tasks 

{ c : ( a  , c )  E A ), which are all children of a .  

Intuitively, a is a parent of b if b receives a message directly from a ;  also, b is a child 

DEFINITION: The ancestor  relation of a task graph G = ( A , T )  is the transitive closure 

of the parent relation. In other words, a is an  ancestor of b iff a is a parent of b, or  



there exists some c such tha t  a is a parent of c and c is a n  ancestor of b. The 

descendant relation is the transitive closure of the child relation. 

The ancestor relation is both irreflexive and antisymmetric. Irreflexive in this case 

means a can never be its own ancestor, and antisymmetric means t ha t  i t  cannot be true 

tha t  both a is b's ancestor, and b is a's ancestor. 

DEFINITION: An initial node of a task graph G is a task a E T which has no parent in 

G ,  t ha t  is, a is an  initial node iff V b E T (b,a)  4 A .  A terminal node of a task 

graph G = ( A , T )  is a task a such tha t  a is not an  ancestor of any node. In other 

words, a is terminal iff V ~ E T  (a , b )gA.  

DEFINITION: The earliest starting lime (EST)' of a task a is max (EST,+w,), 
Z€P.T~D~(.) 

where w, is the weight of task z. 

A task may begin execution only after all its parents have finished, so a task's EST is 

the estimated time of the latest parent's termination. EST ignores arc weights because the 

costs associated with arc weights depend on particulars of the task placement and schedule, 

which have not yet been determined. The EST of the initial node may be any finite value, 

positive, zero, or negative, but is usually chosen t o  be zero for convenience. 

DEFINITION: The latest starting time (LST) of s task a is' ( min LST,)-w.. The 
rEchi[d(a) 

LST of the terminal node is its EST. 

A task's slack is the difference between its LST and EST. Intuitively, slack measures the 

freedom available in scheduling the node. 

' These definitions for EST, LST, and slack are equivalent to the clsssical definitions, such as are found in 
IHiL741. 



DEFINITION: A c r i t i ca l  pa th  of a graph is a connected directed path, including initial 

and terminal nodes, for which the slack of each task is zero. 

A graph may have more than one critical path, but all critical paths will have the 

same length. The EST of a task represents the length of the longest path from the initial 

node t o  the task. The LST is a linear function of the length of the longest path from the 

terminal node t o  the task. Any task scheduled for execution between its EST and LST will 

not adversely affect the execution of the graph. A task can be scheduled before its EST 

when the scheduling progresses from bottom t o  top, in exactly the same way tha t  a task 

may be scheduled after its LST when the scheduling order is from top t o  bottom. The two 
s 

activities are symmetrical2. Any task scheduled before its EST will increase the total 

execution time of the graph by a t  least the difference between the EST and the scheduled 

time. Similar results occur if a task is scheduled after its LST3. 

The definitions for EST, LST, slack, and critical path reflect the most optimistic 

execution possible which will not violate precedence constraints. They are optimistic in tha t  

they assume enough computational resources tha t  no task is delayed due t o  processor 

unavailability, and tha t  there is no penalty for communication. Even though these values 

are optimistic they serve a useful purpose as  indicators for task priority 

T h e  idea  of schedul ing a t a sk  before i t s  E S T  m a y  be confusing t o  some readers .  T o  unde r s t and  how t h i s  
m a y  occur ,  one  m u s t  recognize t h a t  t h e  E S T  is only a n  e s t ima to r  which measures  t h e  ear l ies t  t i m e  at which a 
t a s k  may  be scheduled without increasing the length of the schedule beyond the  length of the  cr i t ica l  path. Some  
scheduler designs (e.g. S C F E T  IACD741) fix t h e  t e rmina t ion  t i m e  of t h e  final t a s k  first, t h e n  schedule  each p a r e n t  
t a s k  in  succession. If t h e  final t a sk  is given a s t a r t  t i m e  which i s  i t s  E S T ,  t h e n  a n y  t a sk  which is scheduled before 
i t s  EST will increase t h e  length  of t h e  schedule. Also, when schedul ing proceeds backwards  like th i s ,  i t  m a y  be 
necessary t o  schedule  a t a s k  before i t s  E S T  in o rde r  t o  avoid  viola t ing precedence const ra ints .  

a l f  more  t h a n  one  t a s k  is scheduled outs ide  i t s  EST-LST range ,  t h e  execution t i m e  of t h e  g r a p h  m a y  o r  m a y  
n o t  be  augmen ted  by t h e  s u m  of t h e  differences. T h i s  i s  because t h e  schedule of o n e  of t h e  t r e k s  m a y  cause  t h e  
cr i t ica l  p a t h  to cbange i n  such a way  t h a t  t h e  o the r  does no t  affect execution. F o r  example ,  suppose t w o  paral le l  
t a s k s  each have L S T  - E S T  - 10. I l  t a s k  a is scheduled a t  t ime  15 a n d  t a s k  b at 20, t h e  execution will be in- 
creased by t h e  max imum of t h e  two ,  o r  by 10 t ime  uni ts .  If on t h e  o t h e r  hand  t h e  t a s k s  a r e  sequent ia l  r a t h e r  
t h a n  paral le l ,  t h e  increase will be t h e  sum,  o r  15 t i m e  units.  



A number of task graph characteristics can affect the length of an optimal schedule. 

Among them are program size, average parallelism, task distribution, and the arity of its 

nodes. Program size affects schedule length by determining the total amount of work t o  be 

done. More work t o  be done generally means longer schedules. 

DEFINITION: The average parallelism of a task graph is the ratio of the total task 

graph weight t o  the length4 of its critical path. 

Average parallelism measures the total amount of work tha t  can be done in parallel 

over the life of the computation. It is also the ideal speedup, given an  infinite number of 

processors with infinitely fast communication between them. Some programs are highly 

parallel, while others exhibit an average parallelism near unity (they are effectively 

sequential). An example of a nearly sequential program fragment would be the algorithm in 

Figure 3.1, which raises a value b t o  an integer power y = b P  using the binary 

decomposition of p . This algorithm is very fast, but i t  has very little parallelism. 

An example of a highly parallel program fragment is in Figure 3.2. Assuming + is an  

associative operation, this fragment may be decomposed into two equally reasonable task 

graphs, as  shown in Figure 3.3 (a) and (b). Different task graphs are possible in this case 

because of the associativity. Both decompositions have the same number of operations - N 

additions in each case. However, because of the greater parallelism available in (b), one 

would expect i t  t o  have a parallel shorter schedule than (a) whenever multiple processors 

were available. The average parallelism of Figure 3.3 (a) is roughly 1; the average 

parallelism of (b) is N/log2N. 

'The length of a critical path is the sum of the weights of the tasks on the critical path. 



b t b a s e  
p t power  
y t unity 
w h i l e  ( p  > 0 )  { 

i f  (p  mod 2 = 1) y c y * b 
b t b * b  
P + L P / ~ J  

3 

Figure 3.1.  - Program Fragment With Limited Parallelism 

DO 10 I = 1, N 
S = S + A(1)  

10 CONTINUE 

Figure 3.2.  - Potentially Parallel Reduction Operation 

answer 

Figure 3.3.  - Reduction Operation Task Graphs 

The distribution of tasks within a task graph (or task distribution) can potentially 

affect the execution in several ways. The first and most obvious way is tha t  i t  determines 



the graph's average parallelism. The second is tha t  i t  determines the amount of slack each 

task will have. Slack is a measure of how tightly constrained a task is in its schedule. A 

large slack means the task may be scheduled within a large range of times without directly 

impacting the overaIl length of the schedule. 

Lastly, the shape of the distribution is capable of affecting the schedules a s  well. For 

exampIe, if 90% of the potential parallelism occurs in the last 10% of the graph (as 

measured along the critical path), the execution will be essentially sequential up t o  the end 

of the program, after which the program will load up the processors until its done. If 90% 

of the' parallelism occurs in the first 10% of the program, it  might be possible t o  spread the 

parallelism across some or all of the execution of the critical path, and thus incur less 

additional expense. Whether this is realizable depends in no small par t  on the available 

slack. 

The fan-in, or arity, of nodes in a task graph may affect parallel schedule length 

because each incoming arc t o  a task places a constraint on the execution of tha t  task. 

Tasks must receive communication from all parents before they may begin execution. If the 

parent resides on the same processor as  the child, the communication is free.. If the parent 

does not, a certain penalty in delay and resource usage must be paid. As the arity 

increases, the likelihood tha t  a parent will be scheduled on another processor, and thus tha t  

communication will be across links increases, forcing a tradeoff between communication 

delay and loss of parallelism. The communication delay can be reduced a t  the expense of 

reducing the exploited parallelism. This becomes very important when i t  forces delays in 

the execution of tasks along a critical path in the graph, since delays along the critical path 

cannot be hidden or masked - except by longer delays in parallel parts of the graph. 



3.2. Architecture Characteristics 

Although graph characteristics are important, they are not the only significant factors 

in scheduling. Various architectural considerations may also influence the length of parallel 

schedules. This study considers three of the most important: processor'count, link latency, 

and link bandwidth. 

There is a large number of multiprocessor architectures, each with characteristics tha t  

a re  unique, and each with characteristics tha t  are  common t o  other systems< A majority of 

the systems can be classified as  distributed memory, shared memory, or shared address 

space. For the purposes of this dissertation, i t  is assumed only tha t  each processor may 

communicate with other processors via message passing over a network of communication 

links. This is quite natural t o  a distributed memory machine. A shared memory machine 

might also be used as  a message passing machine, by using locks or semaphores t o  signal the 

arrival of messages. A shared memory system can be viewed a s  a distributed machine with 

a completely connected network tha t  has near-zero communication latency. 

DEFINITION: A multiprocessor architecture is a graph M = (P ,L) ,  where P is the set of 

processor elements, and L is the set of communication links. 

Communication links are  some combination of uni- and bidirectional arcs, with labels 

on all arcs and nodes. The directionality of the arcs represents the possible flow of 

communication across the system. An arc label represents the bandwidth of the 

communication link which connects processors on both ends of the arc. (There is nothing 

inherent t o  our model which precludes communication s tar tup costs from being used, but we 

6~ large number of texts have appeared on this topic in recent years, and three are mentioned here. For a 
thorough treatment of multiprocessor systems at the architectural level, see IHw884j. Babb IBab87) discusses p r e  
gramming different commercially available parallel processing systems, and Chambers el at ICDJ84j considers 
design ideas behind some of the more exotic experimental systems. 



do not consider them in this study.) Node labels represent the different capabilities a 

processor may have, along with the speed with which it  is able t o  perform the work. 

DEFINITION: Link latency is the time delay per unit message incurred in transmitting a 

message over a single empty communication link. Message latency is the time delay of 

a given message. 

Link latency is also called communication latency, or  just latency. The units of 

latency are  generally seconds per bit or seconds per byte, but here we are interested in the 

time relative t o  the execution of an  average task so i t  is the average tasks executed per 

transmission of an  average message. Message latency is a function of the link latency and 

the size of the message t o  be sent. 

Message delay comes from two main sources: delay due t o  physical properties of the 

communication circuits (i.e. link latency), and queuing delay due t o  multiple messages 

competing for communication links. Queuing delay, or contention, depends on the total 

resources available, the resources used by each message, and the pattern of usage. Network 

resources are  determined by the network size and topology. Message transmission patterns 

can be ceoperative or interfering. If message patterns are (effectively) random, interference 

depends on the average distance a message is sent and the number of messages in transit. 

Contention is dependent in par t  on latency because longer latency means messages take 

longer t o  cross a link, and thus the link usage is higher. This in turn causes other messages 

waiting t o  use the link to be further delayed. 

Not all communications cause an  increase in schedule length. Since communication 

between two tasks on the same processor is "free", delay can sometimes be avoided. 

Communication between processors tha t  occurs along the critical path will always affect the 

schedule length (unless something in parallel affects i t  more). However, if there is sufficient 



slack between communicating tasks off the critical path, communication may have no effect 

at all. But t o  say tha t  the effect of communication is indirect is not t o  say tha t  i t  is 

insignificant. Its significance depends in large measure on the scheduler's ability t o  take 

advantage of opportunities t o  reduce its effects. This dissertation will examine in later 

chapters the effect message delay has on different scheduler strategies. 

3.3. Scheduling Performance Metrics 

DEFINITION: A task asaignment cr:T+P is a mapping of tasks t o  a set P of processors. 

If task duplication is allowed [I<ru87], cr is a relation, not a function, because a task 

&ay be assigned t o  more than one processor. The same is true if certain types of 

preemptive scheduling is used. If task duplication is not allowed and scheduling is 

nonpreemptive, cr also induces a partition, and each task is assigned t o  exactly one 

processor. 

DEFINITION: A schedule a :T+Z  is a function from a set T of tasks t o  Z ,  the set of 

integers6. A multiprocessor schedule is a task assignment of T t o  a set P of processors 

with a schedule for each processor. All tasks must be executed a t  least once, and no 

more than one task may execute a t  a time on a processor. 

Intuitively, T is divided among the available processors, with some tasks possibly 

occurring on more than one processor. Then a is a function which returns the s ta r t  time of 

a task on a processor. Because the schedules are nonpreemptive, the finish time of a task is 

the sum of its s ta r t  time and its weight. A schedule is valid if i t  obeys all of the 

constraints, such as  precedence, which are imposed upon the task graph. Although we only 

' In some formulations of the problem, u is a function t o  Z+ or ZO, and negative integers are not included. 
We include negative integers in our definition in order t o  allow a scheduler t o  Rx tbe termination time of the 
schedule and work backwards t o  the starting time. The usual order is t o  Rx the start time a t  zero or one and 
schedule forward t o  the end. 



consider precedence in our model, other constraints, such as memory usage limits, are  

certainly possible. 

For reasons mentioned earlier, i t  is desirable t o  schedule tasks between their EST and 

LST. In critical path scheduling, tasks are assigned priorities t o  establish the order in 

which tasks will be scheduled. The highest priority goes t o  the task which will be scheduled 

furthest outside of the EST-LST range, in order t o  minimize its impact on the schedule. 

Scheduling lower priority tasks first can never increase the opportunities t o  schedule higher 

priority tasks - i t  can only fill time slots tha t  higher priority tasks might have used. 

On the other hand, always scheduling the highest priority task first will not guarantee 

an  optimal schedule, or even a good one. Suppose there are  two unscheduled tasks a and b, 

and task a has the highest priority of the two. Task a might have several slots which 

would be equally suitable, whereas because of communication constraints task b might have 

only one slot which does not adversely affect the schedule length. If task a is given the slot 

which also happens t o  be the best slot for b (because it  is also the best slot for a by a small 

margin) the schedule suffers because the completion time for b suffers. If a were less 

aggressively scheduled, b could take its best slot, and a would be scheduled in a slot tha t  is 

"almost" as  good. This strategy would ultimately give the best overall schedule, but t o  

implement it  reliably requires a search of nearly all the possible task combinations. 

DEFINITION: The length of a task graph's schedule is the difference between the s tar t  

time of the earliest task, and the finish time of the latest task. 

Task weights affect schedule length in an easily understood manner - tasks tha t  are 

added t o  the beginning or end of a schedule increase the schedule length by the value of the 

task weight. Arc weights (i.e. message weights) do not have a s  direct an  influence on the 

schedule length. If the sending and receiving tasks are both on the same processor, no 



message is scheduled, and the schedule length is unaffected. If the tasks are  on separate 

processors, the message must be scheduled on each communication link in the path which is 

used t o  transmit the message from the sending task's processor t o  the receiving task's 

processor. The amount of time reserved on each link (i.e the message latency) is 

proportional t o  the message weight and the link transmission rate.  Thus the execution of 

the receiving task can be delayed by the latency of the message, and possibly more if other 

messages are competing for the links. Communication delays the execution of individual 

tasks, which in turn increases the schedule length. 

Schedule length measures the total execution time of a given schedule. I t  is interesting 

t o  note tha t  as  a scheduler constructs a schedule, i t  attempts t o  model "reality" with some 

degree of accuracy. There may be some differences, perhaps insignificant, perhaps highly 

significant, between "reality" and a scheduler's perception of reality. Because of those 

differences, a scheduler's perception of a schedule and the actual schedule may be quite 

different. This is also true of the scheduler's perception of the schedule length and the 

actual schedule length. 

A # DEFINITION: The parallel e f i c i e n c y  of a task graph schedule is the value - 
n x T p  ' 

where T, is the length of a sequential execution of the graph (or the sum of the 

weights of the individual tasks), n is the number of processors, and Tp is the length of 

the parallel schedule. 

The parallel efficiency describes how effectively the machine is being utilized. 

Efficiencies near one show tha t  near maximum speedup is being attained, while efficiencies 

near zero indicate tha t  few of the available resources are being used efficiently. If tasks are  

not duplicated t o  increase parallel execution speed, low efficiencies also reflect a high 

processor idle time. If tasks are duplicated, all processors may be kept busy even when 



parallel efficiency is low. 

The processor count and average parallelism of the task graph together place an  

upper bound on the speedup any parallel schedule can display on t ha t  system. The bounds 

are calculated in the following way: 

Speedup < min(Average Parallelism, Processor Count). 

Processor count and parallelism also place a limit on the best possible parallel efficiency 

attainable for a graph. The best parallel efficiency is bounded above by 

Parallel Eficiency < min( 
Average Parallelism 

Processor Count 7 1). 
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CHAPTER 4

Scheduler Components

Stubborn scheduling designs generally consist of three main phases: task selection,

processor selection, and schedule generation. Both the length of schedule computed and the

running time necessary to create the schedule will depend on the algorithms chosen for these

phases. It is interesting that the interaction between components can also have a major

effect on scheduler performance. For example, we discovered that combining a schedule

generator that models communication latency and contention, with a processor selector that

uses only latency can be very detrimental. Schedulers which include this pair can generate

schedules that are more than 40 times as long as a corresponding sequential schedule.

Dividing schedulers into phases gives us a simple taxonomy which will be used to compare

schedulers in later chapters.

4.1. Task Selection

The task selection phases can be subdivided into task priority assignment and task

selection. Priority assignment is an analysis of the (perhaps partially scheduled) task graph

to determine the order in which (remaining) tasks will be scheduled. Tasks are then selected

for scheduling according to the priorities assigned. Task priority may be a function of the

task's distance from the top of the task graph, from the bottom of the graph, or both

[Gon77]. Distance is measured as the sum of the running times of each task along the

longest path from the graph start (finish) to the task. No additional distance is usually

included because of communication.



While unscheduled tasks remain 
Assign task priorities 
Select a task t o  be scheduled 
Select a processor for the task 
Schedule the task on the processor 

End 

Figure 4.1. - Scheduler With Multiple Task Priority Calculation 

The priority assignment may occur as infrequently a s  once or i t  may occur more often. 

A single priority assignment has the advantage of requiring less CPU time t o  generate a 

schedule, whereas multiple priority assignments allow the task priorities t o  adjust t o  the 

changing conditions tha t  will occur during execution. For example, the assignment of a 

particular task t o  a particular processor could change the critical path of the task graph; 

reassigning task priorities would allow priorities t o  reflect such changes. Figure 4.1 shows 

the scheduling algorithm tha t  recomputes the task priorities each time a task is selected. If 

the task priorities are computed only once, the priority computation can be moved out of 

the scheduling loop, as  in Figure 4.2. This algorithm is used in all other schedulers. 

Assign task priorities 
While unscheduled tasks remain 

Select a task t o  be scheduled 
Select a processor for the task 
Schedule the task on the processor 

End 

Figure 4.2. - Scheduler With Single Task Priority Calculation 



4.2. Processor  Selection 

Once a task has been selected for scheduling, a determination must be made as  t o  

which processor the task must be assigned t o  yield the most favorable result. Each 

processor must be examined t o  determine which processor assignment will yield the overall 

shortest schedule. This requires tha t  the "important" aspects of the architecture be 

modeled. Some features worth considering are communication link latency and capacity, 

and processor load. Incorrect modeling of an  architecture can lead to grossly inefficient 

schedules, while complete modeling can be prohibitively expensive. 

This work considers several processor selection functions, namely random processor 

selection, selection based on processor load only, selection based on processor load and 

communication latency, and selection based on load, latency, and communication capacity 

(or contention). For random selection a processor is selected a t  random each time a task is 

t o  be scheduled. Each processor is equally likely t o  be selected, and no consideration is 

given t o  the architecture or  t o  the schedule generated. When selection is based on load, 

each processor schedule is examined. The processor with the shortest schedule, i.e., the 

earliest completion time or lightest processor load, is selected t o  receive the task. When 

selection is based on load and latency, each schedule is examined as  before but the time 

required t o  communicate results t o  other tasks is also included. I t  is assumed tha t  each 

communication link is completely devoid of other traffic, i.e., interference between messages 

is not considered. This is a reasonable approximation if the average link utilization is 

generally quite light. 

The last processor selection strategy considers processor load, link latency, and 

contention. Communication contention is modeled by individually scheduling messages on 

communication links. A separate schedule is maintained for each link in the system. Thus 



if a previous message is scheduled t o  use a link at a given time and a second message would 

use the same link a t  the same time, the second message is delayed or, when possible, 

scheduled earlier than the first. In this way message contention is completely accounted for, 

and simultaneous transmission of multiple messages over a communication link is not 

allowed. 

4.3. Schedule Generation 

Schedule generation deals with the actual construction and recording of the various 

schedules. It is a t  this time tha t  a task is actually assigned t o  the processor which has been 

selected for i t .  This can be done in several ways. For a given task assigned t o  a processor, 

the generator may place the new task a t  the top (or bottom) of the processor's schedule, or 

i t  may search the schedule for a suitable slot which would not increase the schedule length. 

Task insertion in parallel scheduling has been the basis of some study FrL87,Kru87], and 

although it  increases the time required t o  generate a schedule, i t  can shorten the schedule 

length by a modest amount. 

Another degree of freedom in schedule generation is the level of architecture modeling 

undertaken. Just as  processor selection may make certain assumptions about the 

environment in which a program will be executed, the schedule generator must also make 

assumptions about the environment. And although i t  is the same environment, each need 

not necessarily make the same assumptions. For example, i t  might be the case tha t  only 

processor load is considered in selecting a processor, but the schedule generator might build 

schedules which explicitly account for all messages a task will send, and thus model both 

communication latency and contention. I t  is worth noting tha t  the processor selector may 

only use those features modeled by the generator, though i t  may choose t o  use fewer. This 

is because the schedule generator is the mechanism tha t  records the s tate  of the execution 



through each step of the scheduled computation. 

4.4. Descriptions of Schedulers 

Task selection, processor selection, and schedule generation define a taxonomy. Of the 

160 schedulers this taxonomy defines 12 were selected for experimentation, for reasons 

explained below. The specific characteristics of the schedulers used are summarized in 

Table 4.1, and their relationship t o  other schedulers may be found in Figure 4.3. A 

complete description of each scheduler is included in the following sections. The 

designations in the table indicate how the scheduler was constructed. The two fields under 

"Priority Assignment" indicate the behavior of tha t  part of the scheduler. The entry 

"Once" indicates tha t  the scheduler assigns the task priorities once before the first task is 

scheduled, and they do not change after tha t  point. "Many" indicates tha t  the task 

PIocesrof Selechon 

Schedule Centratcon 

Me&awre P ~ I O I I ~  From 
Prrorrt, ~ 8 . n  d e f s m c y  
Tart  Seltcrel From 

Figure 4.3. - Organization of Scheduler Design Space 



s Table 4.1. - Scheduler Design Parameters 

priorities are re-calculated each time a task is scheduled. "Top" ("Bottom") indicates tha t  

the priority is measured as  the distance from the top (bottom) of the task graph. "Top" 

("Bottom") under "Task Selection" indicates tha t  task selection occurs from the top 

(bottom) of the task graph. 

Scheduler 

#1  
#2 
#3 
#4 
#5 
#6 
#7 
#8 
#9 
#10 
#11 
#12 

Under "Processor Selection" there are four choices, namely, "Random", "Load", 

"Latency", and "Contention". These indicate the level of architecture modeling t ha t  occurs 

in the determination of each task's processor assignment. "Random" indicates tha t  the 

processor is selected at random. "Load" indicates tha t  only the processor load, or  schedule 

length, is considered in selecting a processor. "Latency" means t ha t  both processor load 

and communication latency are modeled. An entry of "Contention" indicates t ha t  the task 

is successively scheduled on each processor, complete with task insertion and message 

scheduling, and the processor which gives the best task completion time is selected. 

The "Schedule Generation" columns indicate whether task insertion was used in the 

final schedule, and a t  what level the scheduler modeled the architecture. "Full" indicates 

tha t  both tasks and messages were scheduled on the various resources, i.e., tha t  

Priority 
Assi nment 

Task 
Selection 

Top 
TOP 
Bottom 
Bottom 
Top 
TOP 
Top 
Bottom 
TOP 
Top 
TOP 
Top 

Once 
Many 
Once 
Many 
Once 
Many 
Once 
Once 
Once 
Once 
Many 
Once 

Bottom 
Top 
Top 
Top 
Bottom 
Top 
Bottom 
Top 
Top 
Bottom 
Top 
Bottom 

Processor 
Selection 

Contention 
Contention 
Contention 
Contention 
Latency 
Load 
Load 
Load 
Random 
Latency 
Latency 
Latency 

Complexity 

n2p t 
nm+n2pl  

n2p t 
nm+n2p t 

n2P 
nm+np +n2t  

np +n2t 
np +n2t 

m 
np+n2t  

nm +np  +n21 
n p + n t  

Schedule 
Generation 

Insertion 
Insertion 
Insertion 
Insertion 
Insertion 
Insertion 
Insertion 
Insertion 
Insertion 
Insertion 
Insertion 
No Insert. 

Full 
Full 
Full 
Full 
Lat.  
Full 
Full 
Full 
Full 
Full 
Full 
Full 



communication contention was modeled. "Latency" indicates tha t  tasks were scheduled 

with sufficient delay tha t  communication could take place across the appropriate processors, 

but otherwise communication was not considered. 

Figure 4.3 includes the entry "Order", t o  indicate tha t  the order of tasks is 

maintained on the architecture, but no additional information is retained. A scheduler need 

not record task s ta r t  and finish times only if they are not used in either task or processor 

selection. Any scheduler which selects a processor based on processor load, latency, or 

contention must record task s tar t  and finish times in addition t o  the order in which tasks 

are  executed. Scheduler #9 selects processors a t  random, so no s ta r t  or finish times are 

needed. In our experiments a separate task graph execution simulator is used t o  determine 

the actual schedule length, so all schedules are, in effect, "measured by the same yardstick". 

This is needed because, as  discussed in Section 3.2, each scheduler's perception of task s ta r t  

and finish times may not be consistent with "reality". 

This particular selection of schedulers was chosen t o  compare not only the costs and 

benefits of different scheduler phase designs, but also the relative importance of each 

scheduler phase. Several of the most promising phase designs were selected for each 

scheduler phase. A processor selection phase which selected processors at random was also 

used, primarily t o  provide a scheduler which could be used a s  a standard of reference for 

other schedulers. 

The first four schedulers, #I, #2, #3, and #4, were designed t o  test the impact of 

task selection strategies on schedule length and CPU time. Each of these four schedulers 

are  identical in every way, except for task selection strategy. Scheduler #1 uses the same 

task selection strategy used in Hu's scheduler [Hu61], and in critical path scheduling 

[Koh75]. 



Scheduler #2 uses a task selection strategy which is identical t o  t h a t  which is used in 

dynamic load balancing (cf. [ELZ86,LiK87]), namely earliest available task first, or first 

come, first served. Dynamic load balancing selects tasks in order of availability, t h a t  is, 

task priority is measured a s  the distance from the starting point, and the tasks closest t o  i t  

are  selected. In other words, both priority assignment and task selection occur from the top 

of the  task graph. Because load balancing occurs a t  run time, the  priority assignment is 

effectively recomputed each time a task is assigned. 

One important difference between dynamic load balancing and the corresponding 

static approach is t h a t  the dynamic approach suffers from incomplete knowledge of the 

system load when decisions are  made, due t o  the necessity of distributing load messages 

relatively infrequently. For this reason the static approach is a n  idealized version of the 

dynamic approach. It provides a lower bound on the schedule length, both because of the 

availability of complete information a t  the time the schedule is created, and because the 

overhead of generating the schedule does not interfere with the execution of the  task graph. 

In addition t o  the  above approaches, Hu's task selection method was also inverted, 

t h a t  is, priority was measured a s  the distance from the top of the  graph and tasks were 

selected from the bottom. Scheduler #3 measures the task priorities once, scheduler #4 

measures the priorities each time a task is selected for scheduling. Scheduler #4 was chosen 

t o  test the  importance of multiple passes in the  task selection phase. 

T o  understand more fully how the task selection mechanism works, consider the  task 

graph in Figure 4.4. Scheduler #1 uses a task selection phase which measures task priority 

from the bottom of the task graph, so i t  uses the LST of each task t o  determine the task 

selection order. I t  selects tasks from the top, so a task with the smallest LST is selected 

first. Thus scheduler #I would select tasks in the  order a, c, b, e, d ,  j. Ties are  not 
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Figure 4.4. - Example Task Graph 

explicitly resolved, so the order of tasks b and e might be reversed. 

Scheduler #2 measures task priority from the top of the task graph, so i t  uses the 

EST value. I t  selects tasks from the top, so i t  would select them in order of smallest EST to  

largest. The first task t o  be selected is task a. Once scheduled, it would fix a's EST a t  the 

actual time i t  was scheduled, and recompute the EST for all unscheduled tasks. In this way 

the task selection mechanism receives feedback from the actual schedule, a t  least as i t  is 

perceived by the scheduler. The order in which all remaining tasks are scheduled, therefore, 

depends on details of the architecture and other phases of the scheduler. After the EST's 

are recomputed, the next task is selected for scheduling. 

Scheduler #3 measures task priority from the top, and selects tasks from the bottom, 

so i t  too uses the EST to  determine task ordering, but i t  reverses the order used by 

scheduler #2. It first selects the final task and schedules it. It then selects another task 

and schedules it ,  subject t o  the constraint tha t  the execution of the second task must 

complete before the final task, including any time needed for communication. Scheduling 

proceeds in tha t  manner until all tasks are scheduled. The order in which tasks from Figure 



4.4 would be scheduled is f, d, e, 6 ,  c, a. Scheduler #4 works in the same way as  #3, but 

like scheduler #2  it fixes the EST of a task once it  is scheduled, and recomputes all ESTs. 

Schedulers #6, #7, and #8 were designed t o  discern the effect of less expensive 

processor selection strategies. A major portion of the scheduling expense comes from the 

processor selection phase of the scheduler, so a less expensive one - load balancing - was 

substituted. T o  select a processor, each processor schedule is examined, and the processor 

with the earliest completion time is selected. Since it  was not known whether task selection 

would have an  impact on the effectiveness of a processor selection strategy, three different 

task selection strategies were used. Scheduler #6 in particular was selected because its 

design is closest t o  tha t  of dynamic diffusion scheduling. 

Schedulers #10 and #11 were also designed as  an  attempt t o  find effective, but 

inexpensive, approaches t o  scheduling. The idea was t o  use load balancing, but include a 

cost for communication. The main constraint was tha t  the communication cost had t o  be 

inexpensive t o  compute. Message latency was used, since the amount of computation 

required is proportional t o  the task arity, and the arity is usually a very small number. 

To illustrate the different approaches t o  processor selection, consider the partial task 

graph in Figure 4.5 (a). (Only node precedence has been shown - node and arc weights 

have not been marked, for convenience.) If we are scheduling the graph for a two processor 

system, a partial result might be the schedule shown in Figure 4.5 (b). Assume tha t  task c 

is the next task t o  be scheduled. 

If the processor selection phase uses only load t o  select a processor for a task, then c 

will be scheduled on PE 1, because its schedule finishes first. If the communication 

requirements between tasks a and c are small, the result will be a tight schedule, a s  shown 

in Figure 4.6 (a). However, if the message is large, the results could be very poor, as  shown 
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Figure 4.5. - Partially Scheduled Task Graph Fragment 
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Figure 4.6. - Processor Selection Using Processor Load 

in Figure 4.6 (b). I t  might be better t o  schedule e on PE 0, depending on the size of the 

message connecting b and e. The same type of proble'm can occur if load and latency, but 

not contention, are used in processor selection, although i t  would not occur in this example. 
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s Figure 4.7. - Processor Selection Using Contention 

Now consider the situation which occurs if the message from a t o  c is large, and the 

message from b t o  c is small. For concreteness, assume tha t  the messages require empty link 

transmission times (i.e. latencies) of 2 and 1, respectively, and tha t  the execution time of 

task c is also 1. The processor selector would first try c on PE 0, the result of which is 

shown in Figure 4.7 (a). I t  would then try c on P E  1, shown in Figure 4.7 (b). The first 

schedule clearly is the better schedule, so PE 0 would be selected. 

This example also illustrates the concept of task insertion. There are unused spaces in 

PE 0's schedule which can be used by tasks such as  c. When such spaces exist, they can 

often be filled by scheduling suitable tasks in them, as  they were in Figure 4.7 (a). 

Schedules can be made more efficient with task insertion, because i t  uses what  would 

otherwise be processor idle time. 

The remaining schedulers, # 5 ,  #9, and #12, were each selected for different reasons. 

Schedulers #5 and #9 were chosen t o  provide a basis of comparison for the other 

schedulers. Scheduler #5  is Kruatrachue's ISH scheduler, which has been proposed as  a 

solution t o  this problem (Kru871, and scheduler #9 schedules tasks a t  random. Scheduler 



#12 was selected because poor performance was observed in scheduler #lo, and it  was 

thought tha t  task insertion might be causing the problem. Scheduler #12 was designed t o  

test tha t  hypothesis. It differs from #10 in tha t  #10 uses task insertion and #12 does not. 

4.5. Scheduler #1 

Scheduler #1 (Figure 4.8) is one of several variations on Hu's scheduler [Hu61]. 

Assigning task priority, as mentioned before, can be done using a standard PERT analysis 

routine and the tasks put on a heap (also called a priority queue, heaps are discussed in 

[Sed83]). PERT analysis has complexity O(m+n),  where m is the number of precedence 

arcs in the task graph and n is the number of tasks in the task graph, so task priority 

assignment is O(m+nlogn), Checking for unscheduled tasks has complexity O(1). Task 

selection, because of the heap structure, takes O(logn) time. 

Processor selection and task scheduling are a bit more complicated. T o  select the best 

processor for a task t ,  t must be scheduled on each of the p available processors, and the 

best selection recorded. This involves finding the shortest available communication path 

from each parent of t t o  t itself. A standard O(b) shortest-path graph search is used, such 

Assign task priorities a s  distance from the graph bottom 
While unscheduled tasks remain 

Select the task tha t  is closest t o  the top 
Select the processor for which the task will finish 

a t  the earliest time (including communication) 
Schedule the task on the selected processor 

(recording both processor and link schedules) 
End 

Figure 4.8. - Scheduler #1 Algorithm 



a s  is found in [Sed83] - t? is the number of links connecting the p processors. For this 

scheduler, each message must be scheduled on each link over which the message is 

transmitted t o  avoid overloading the link. Overloading the link would cause a delay in the 

actual message transmission which would not be anticipated by the scheduler. T o  further 

shorten communication time, the link schedule is searched for the earliest time slot which 

will accommodate the new message. This allows the message t o  be sent across the link a t  

the earliest possible time after the processor has initiated the transmission. Therefore, 

assuming the number of parents is bounded above by some small constant (i.e. task arity is 

independent of the total number of tasks in the graph), the complexity of finding the fastest 

communication path is O(nt) .  

To  insert t into the destination processor schedule, the schedule is searched for the 

earliest slot which occurs after the message arrives. Because this search is O(n),  i t  is 

overshadowed by the complexity of the communication algorithm, and can be ignored. Now 

because there are p processors on which t o  try each task, processor selection is an  O(p tn )  

operation. Task scheduling involves a t  most the same operation repeated once (rather than 

p times) and does not affect the overall complexity 

Collecting terms together and noting tha t  the loop executes n times, the time 

complexity for scheduler #1 is O(n2pt?). 

4.8. Scheduler #2 

This algorithm (Figure 4.9) is very similar t o  tha t  of scheduler # I ,  with the notable 

exceptions tha t  task priority is measured from the top, and i t  is measured each time a task 

is selected for scheduling. This behavior is very much like tha t  of a dynamic load balancing 

system, in tha t  tasks are selected as soon as  they become available on a first come, first 

served basis. It is also similar in tha t  i t  locally minimizes the system load. 



While unscheduled tasks remain 
Assign task priorities as distance from the graph top 
Select the task tha t  is closest t o  the top 
Select the processor for which the task will finish 

a t  the earliest time (including communication) 
Schedule the task on the selected processor 

(recording both processor and link schedules) 
End 

Figure 4.9. - Scheduler #2 Algorithm 

Differences are tha t  there is no runtime overhead associated with scheduling, and the 

scheduler has complete knowledge of the state of the entire system. Dynamic load 

balancing systems do have a runtime overhead associated with scheduling each task. Also, 

every processor's knowledge about the system is limited by the frequency with which i t  

receives load messages. Because load messages are received relatively infrequently, a 

processor's knowledge is incorrect by the amount the system state has changed since the last 

load message was received. 

Another, perhaps more subtle difference is tha t  because the entire system state  is 

known, the static scheduler can effectively minimize loading for communication links as well 

a s  the processors. I t  also avoids delays which can result because of the asynchronous nature 

of a dynamic load balancing system. For example, if two processors each have work t o  

export and they both choose the same processor t o  receive the work, the receiving processor 

could end up with work t o  export - i t  might have been better if one of the original 

processors had given the work t o  a different processor. 

The time complexity of this algorithm is very similar t o  tha t  of scheduler #l. 

Differences are  tha t  the PERT analysis is done inside the loop, and the heap is no longer 

needed. This means the complexity for scheduler #2 is O(nm+nZpt!). 



Assign task priorities as  distance from the graph top 
While unscheduled tasks remain 

Select the task that  is closest t o  the bottom 
Select the processor for which the task will finish 

a t  the latest time (including communication) 
Schedule the task on the selected processor 

(recording both processor and link schedules) 
End 

Figure 4.10. - Scheduler #3 Algorithm 

4.7. Scheduler  #3 

Scheduler #3 (Figure 4.10) is very similar t o  scheduler #1 in its construction. Task 

priority is assigned once before task selection begins and is not changed. Schedule 

generation records both processor and link schedules, and both are used in processor 

selection - communication link capacity is considered in processor selection. The difference 

is tha t  scheduler #3 measures task priority as  distance from the top of the task graph 

down, and schedules tasks from the bottom up. Its complexity is therefore the same as  

scheduler # I ,  or O(nZpt).  

4.8. Scheduler  #4  . 

Scheduler #4 (Figure 4.11) is much the same as scheduler #3. Priority assignment is 

done from the top down, while task scheduling is done from the bottom up. Again, 

processor selection and schedule generation both consider processor load as  well as  

communication latency and contention. The difference is tha t  scheduler #4 recomputes the 

task priorities each time a task is scheduled. The complexity for scheduler #4 is the same 

a s  tha t  of scheduler #2, namely O(nm +nZp t). 



While unscheduled tasks remain 
Assign task priorities as distance from the graph top 
Select the task tha t  is closest t o  the bottom 
Select the processor for which the task will finish 

a t  the latest time (including communication) 
Schedule the task on the selected processor 

(recording both processor and link schedules) 
End 

Figure 4.11. - Scheduler #4 Algorithm 

4.9. Scheduler #5 

Scheduler #5 (Figure 4.12) is Kruatrachue's ISH scheduler [Kru87]. I t  uses the same 

approach t o  select tasks as  is used by scheduler #l. Task priorities are measured from the 

bottom up, and tasks are selected from the top down. Each task is tried on every available 

processor, and the processor with the best finish time is selected. The difference is tha t  

scheduler #5 does not model the architecture as  completely as  does scheduler #l. Scheduler 

#5 examines the load on each processor, but i t  computes the communication delay as  if the 

link had no competing traffic. It also ignores communication traffic when it  generates the 

Assign task priorities a s  distance from the graph bottom 
While unscheduled tasks remain 

Select the task tha t  is closest t o  the top 
Select the processor for which the task will finish 

a t  the earliest time (considering load and latency) 
Schedule the task on the selected processor 

(recording only processor schedules offset by latency) 
End 

Figure 4.12. - Scheduler #5 Algorithm 



schedule. 

This simplifies some complexity results for the scheduler. Task priority is 

O(m+nlogn) and task selection is O(1ogn) a s  they were for scheduler #I. However, 

processor selection is O(pn), and schedule generation is O(n). Thus scheduler #5 is O(pn2). 

4.10. Scheduler #6 

Scheduler #6 (Figure 4.13) has more in common with dynamic load balancing than 

does scheduler #2. Scheduler #2 uses communication load in its calculations, which load 

balancing cannot usually do because of a lack of dynamic information. Task priorities are 

assigned each time a task is selected for scheduling on a first come, first serve basis, and a 

processor is selected based on its load only. When the schedule is generated, tasks are 

inserted into the earliest slots which will accommodate them. 

In dynamic load balancing systems, this corresponds t o  the following behavior: Tasks 

are selected for possible distribution in the order tha t  they are created, tha t  is, earlier tasks 

are  given higher priority than later ones. Tasks are  selected for execution on a processor 

primarily in the order they are received by the processor, but if a task receives all its inputs 

Whild unscheduled tasks remain 
Assign task priorities as  distance from the graph top 
Select the task tha t  is closest t o  the top 
Select the processor for which the task will finish 

at the earliest time (considering only processor load) 
Schedule the task on the selected processor 

(recording both processor and link schedules) 
End 

Figure 4.13. - Scheduler #6 Algorithm 



and is ready t o  run, i t  will begin execution before the earlier task. The processor will 

execute the later task rather than be idle. 

The complexity of task assignment is O(m), processor selection requires a comparison 

of p load values and thus is O(p).  The schedule generator schedules messages on links as 

well a s  tasks on processors, as  do schedulers #1-#4, so its complexity is O(nt).  Thus the 

overall complexity of scheduler #6 is 0(nm+np+n2!). 

4.11. Scheduler #7 

This scheduler (Figure 4.14) is another variant of Hu's scheduler, as  are  #1 and #5. 

Task priority is measured as  distance from the bottom of the graph t o  the task; task 

selection s tar ts  at the top of the graph and works down. Processor selection considers only 

processor load; schedule generation schedules communication as well as  processor tasks. 

As described in previous sections, task priority assignment is O(m+nlogn). Task 

selection is O(logn), processor selection is O(p),  and schedule generation is O(nC). Overall 

the complexity of scheduler #7 is 0(np+n2t).  

Assign task priorities as  distance from the graph bottom 
While unscheduled tasks remain 

Select the task tha t  is closest t o  the top 
Select the processor for which the task will finish 

a t  the earliest time (considering only processor load) 
Schedule the task on the selected processor 

(recording both processor and link schedules) 
End 

Figure 4.14. - Scheduler #7 Algorithm 



Assign task priorities as  distance from the graph top 
While unscheduled tasks remain 

Select the task tha t  is closest t o  the bottom 
Select the processor for which the task will finish 

a t  the latest time (considering only processor load) 
Schedule the task on the selected processor 

(recording both processor and link schedules) 
End 

Figure 4.15. - Scheduler #8 Algorithm 

4.12. Scheduler  #8 

Scheduler #8 (Figure 4.15) is a variant on scheduler #3 which does not consider 

communication in processor selection - only processor load. Task priorities are measured 

from the top, and tasks are selected from the bottom. Processor selection takes place by 

selecting the processor with the lightest load. Schedule generation explicitly schedules 

communication. The complexity for this algorithm is the same as for scheduler #7, namely 

Assign task priorities as  distance from the graph top 
While unscheduled tasks remain 

Select the task that  is closest t o  the top 
Select the processor a t  random 
Schedule the task on the selected processor 

(recording both processor and link schedules) 
End 

Figure 4.16. - Scheduler #9 Algorithm 



4.13. Scheduler #9 

Scheduler #9 (Figure 4.16) is different from other schedulers in tha t  i t  selects 

processors a t  random. Task selection is the same as  in schedulers #2  and #6, tha t  is, 

priority is measured, and tasks are selected, from the top. This scheduler roughly 

corresponds t o  a dynamic scheduler which selects processors a t  random. The probability 

distribution here is uniform for each processor - every processor is equally likely t o  receive 

each task. Because of this scheduler's extreme simplicity, the only significant phase is task 

priority assignment, which is required t o  maintain the topological ordering of the task 

graph. Task selection, processor selection, and schedule generation are  all O(1) operations, 

so the overall complexity is O(m). 

4.14. Scheduler #10 

Scheduler #lo (Figure 4.17) is another variant of Hu's algorithm. It is similar t o  

schedulers #1 and #7 in all respects but one: processor selection considers processor load 

and communication latency, but not the capacity of the individual communication links. I t  

measures task priority from the top, and selects tasks from the bottom. Its complexity is 

Assign task priorities a s  distance from the graph bottom 
While unscheduled tasks remain 

Select the task tha t  is closest t o  the top 
Select the processor for which the task will finish 

at the earliest time (considering load and latency) 
Schedule the task on the selected processor 

(recording both processor and link schedules) 
End 

Figure 4.17. - Scheduler #I0 Algorithm 



the same as for scheduler #7, tha t  is, O(np+n21). 

4.15. Scheduler #11 

Scheduler #11 (Figure 4.18) is, like #2 and #6, similar t o  dynamic load balancing. In 

this variant, the processor selection mechanism accounts for communication latency a s  well 

as  processor load. As before, this scheduler selects tasks from the top in a first available, 

first served manner. Processors are selected by examining the load of each processor and 

the cost of transmitting messages from all of the task's parents t o  the processor. 

Communication is assumed t o  be over empty channels. The processor which gives the 

earliest completion time is selected. The task is scheduled on the processor, and all 

messages from its parents are scheduled on the appropriate communication links. 

Considering latency does not change the complexity of the processor selection 

mechanism, so the overall complexity of scheduler #9 is O(nm+np+n2C). 

4.16. Scheduler #12 

Scheduler #12 (Figure 4.19) is identical in most respects t o  scheduler #lo. Scheduler 

#lo,  however, had unexpectedly poor performance. Scheduler #12 was created t o  test the 

While unscheduled tasks remain 
Assign task priorities as distance from the graph top 
Select the task tha t  is closest t o  the top 
Select the processor for which the task will finish 

a t  the earliest time (considering load and latency) 
Schedule the task on the selected processor 

(recording both processor and link schedules) 
End 

Figure 4.18. - Scheduler #11 Algorithm 



Assign task priorities as  distance from the graph bottom 
While unscheduled tasks remain 

Select the task tha t  is closest t o  the top 
Select the processor for which the task will finish 

a t  the earliest time (considering load and latency) 
Schedule the task on the selected processor 

(recording both processor and link schedules, 
but tasks are added t o  the ends of schedules, 
rather than inserting them into an  earlier slot) 

End 

Figure 4.19. - Scheduler #12 Algorithm 

hypothesis tha t  the task insertion was hiding some of the communication costs from the 

processor selector. The difference between #10 and #12 is tha t  scheduler #12 does not use 

task insertion in its schedule generation. As each new task is added, i t  is added t o  the end 

of the schedule even when earlier slots are available. The complexity for this algorithm is 

O(np+ne). 



CHAPTER 5 

Experiment Description 

Of all the variables tha t  could have been used t o  generate task graphs and computer 

architectures, five were selected for examination. They were: task distribution, average 

parallelism, program size (task count), processor count, and communication (link) latency. 

Variables which were not examined include the task arity, average task slack, network 

topology, and communication switching technology and overhead. 

Each of the 12 schedulers was tested on 6075 different cases. The cases consist of 63 

different simulated programs with 2048 tasks each, 54 simulated programs with 1024 tasks 

each, 45 programs with 512 tasks, 36 programs with 256 tasks, and 27 programs with 128 

tasks. Each of the groups was subdivided by the amount of parallelism, and by the 

distribution of parallelism within the program. 

The average parallelism available in any program depends on the total task weight 

and the weight of the critical path. For these test cases, the average task weight was fixed 

a t  10, and varied between 6 and 14. The number of tasks in the critical path started a t  8 

and increased by a factor of 2 up t o  one fourth the total task count. However, because all 

task weights were selected a t  random, the average parallelism varied from less than 3 t o  

more than 256. 

Nine distributions of parallelism were used t o  give a wide spread in the arithmetic 

mean and a moderate spread in the distribution variances. The distributions were all 

nonlinearly scaled normal distributions. (Many good statistical texts describe normal 

distributions and their properties, for example, [HoT77].) The nonlinear scaling compressed 



Table 5.1. - Task Distribution Function Characteristics 

the distribution into a finite range without significantly altering its shape. The particulars 

for each distribution along with the task density function are given in Table 5.1. Graphs of 

the distributions may be found in Figure 5.1, and in Appendix A. In the graphs the initial 

node, or starting point of the program is a t  0. The terminal node, or finishing point is a t  1. 

- -- 
e [: &J 

tdf ( t )  = 
area 

Each program was scheduled for machines with 4, 8, and 16 processors. In every case 

the processors were connected by a completely connected network - every processor had a 

communication channel t o  every other processor. Communication links between processor 

pairs were bi-directional, and only one message per link could be transmitted a t  a time. 

This network topology was selected, not because it  is more or less realistic than another, but 

because it  offers very low communication contention. If contention is a factor in scheduling 

tasks for this network, i t  will certainly be a factor in scheduling for any other. 

Although this topology is very expensive for real systems of even moderate size, using 

i t  had a number of advantages. One advantage is tha t  different message switching 

technologies such as circuit switching or packet switching do not affect either the latency or 
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Figure 5.1. - Graphs of Task Distributions 

the amount of contention in the network. In sparse networks such as  a hypercube, the 

choice of switching technology and the packet size (when packet switching is used) can 

dramatically affect both message latency and contention tha t  occurs within the network. 

A completely connected network also has the advantage t ha t  i t  has the highest 

performance of any network. This is because every network can be trivially embedded into 



a completely connected network of the same size. Thus negative findings of this study will 

also apply t o  other networks as  well, although positive findings may not apply as  

universally. 

Communication latency is measured here as the average time required t o  send a 

message over an  empty communication link (see Chapter 3). We measure time in terms of 

the the average time required t o  execute a task, rather than in seconds. Latency is a 

function of both the average message size and the link speed. Message size is determined by 

the task graph, and link speed is determined by the machine architecture. The average 

task graph edge weight (message size) was fixed a t  10, and communication latency was set 
s 

by varying the architecture link speed. If the communication latency were set a t  5 and a 

given message had a weight of 12, its transmission time (message latency) would be 

5 ~ 1 2 / 1 0  = 6. In other words i t  would take the same amount of time t o  transmit tha t  

message over a single empty link as  it  would t o  execute 6 tasks. 

Latency was varied in such a way tha t  the communication time of an  average message 

varied from 0 t o  16 times the length of an  average task. Nine tests were run in which the 

ratios of message transmission time t o  task execution time were 0, '1% %, %, 1, 2, 4, 8, and 

16. This range varies the importance tha t  communication plays in the execution of the 

program from insignificant t o  highly significant. A latency of 16 would occur in a system 

when the message size is large and the communication links slow, or when the task size is 

especially small. Such was the case in a distributed Prolog system developed for the Intel 

iPSC [Pas87], although the latency was not as  high a s  16. 

This range of characteristics was selected for the test suite in an  attempt t o  include 

those characteristics which would most likely be encountered in real systems. 

Characteristics which would most adversely affect the schedule length, and therefore 



distinguish most clearly between schedulers, were also selected. Of those -used, latency, 

parallelism, and processor count produced the largest differences, sometimes reaching a 

factor of 15 between the best scheduler and the worst. Varying the task distribution or the 

problem size gave only modest differentiation between schedulers. 

Other variables were not considered for various reasons. The most compelling reason 

was the vast number of cases tha t  would result if they were included. Instead, reasonable 

values were selected where possible and used for all tests. For example, average task arity 

was fixed between two and three for all tasks. The arity for individuaI tasks was allowed to  

vary randomly according t o  the requirements of the graph. 

Slack was not expressly fixed, but i t  was not a controlled variable either. The average 

slack of a task in a task graph varied from 2 t o  14, or '1s t o  a little less than 1% times the 

average task weight. The overall average was 6, or % the weight of an average task. 

Task graphs were generated in a very controlled manner in order t o  guarantee a 

specific set of characteristics. This tight control, however, removes a significant element of 

randomness, which weakens the interpretation of statistical tests. The validity of any 

conclusion rests heavily on the assumption tha t  those variables which were controlled are, in 

fact, the factors which control the performance of the schedulers tested here for "real 

world" programs. 

The task graph generation program created graphs by cutting the task distribution 

into slices - a s  many slices as  there were tasks t o  be assigned t o  the critical path. The 

number of tasks allocated for each slice was proportional t o  the area under the slice, the 

total graph size, and was inversely proportional t o  the length of the critical path. Task 

weights were all generated a t  random using a distribution similar t o  Distribution 4 (see 

Appendix A) Task graph edge weights (message volume) were generated in exactly the same 



way. 

Each slice was "sewn" t o  the previous one, generating the arcs and arc weights a t  

random. T o  do this, each task in the new slice was assigned two numbers, corresponding t o  

two tasks in the previous slice, using a uniform distribution. Those two arcs were then 

established and the arc weights generated, again using Distribution 4. Although this process 

connected a11 tasks in the new slice t o  some task in the previous slice, i t  was not sufficient t o  

guarantee tha t  each task in the previous slice would be connected t o  some task in the new 

slice. A second pass searched the previous slice for unconnected tasks, which were then 

linked into the graph in the same way. 

This approach limits the possible connection patterns between tasks t o  level graphs. 

In general, task graphs will have connections tha t  span multiple levels. I t  is not known if 

more general connection patterns would affect the results uncovered by these experiments. 

It should be noted, however, that  although the the number of tasks in any path t o  a given 

node will be the same, the sums of the task weights will be different because the task 

weights vary randomly. 

Figure 5.2 shows a block diagram of the experimental system used t o  generate task 

graphs, schedules, and verify schedule lengths. Task graphs are generated according t o  the 

supplied parameters. Those graphs are fed into a scheduler, along with a description of the 

architecture for which the graph is t o  be scheduled. The schedule is then fed into a 

simulator which determines the actual schedule length, or how long it  would take t o  execute 

t ha t  schedule on the architecture. 
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Figure 5.2. - Experimental System Setup 



CHAPTER 6 

Problem Characteristics and Scheduler Performance 

The length of a parallel schedule and the CPU time required t o  generate t ha t  schedule 

depend on the specific characteristics of the problem being scheduled. This chapter explores 

the the effects of five problem characteristics on scheduler performance. Those 

characteristics are: task distribution, average parallelism, program size, communication 

latency, and processor count. 

Scheduler performance is measured and compared here in seven different ways, each of 

which is marked with its own symbol. They are: 

%P<_S The percentage of parallel schedules tha t  were shorter than a sequential 

schedule. 

s/p The speedup gained by the parallel schedule as  compared with a sequential 

T, 
schedule, or -. T, is the length of a sequential schedule and Tp is the length 

TP 

of the parallel schedule. 

s / C  The speedup gained by the corrected schedule as  compared with a sequential 

T, 
schedule, or -. T, is the length of the corrected schedule. 

Tc 

p/c The speedup gained by correcting the parallel schedule for schedules which are  

P longer than a sequential schedule, or -. 
Tc 

T, P Eff The parallel eficiency of a schedule as defined in Chapter 3, or - , where n 
n  x T p  



is the number of available processors. 

T, 
C Eff The corrected parallel elqiciency of a schedule, defined a s  - , where n is the 

~ x T ,  

number of available processors. 

am 
CPU Sec The average number of CPU seconds on a Sequent Symmetry used t o  schedule 

the programs. (The theoretical worst case complexity for each scheduler may be 

found in Chapter 4, in Table 4.1.) 

Appendix B gives tables of these seven values for each scheduler, projected over each 

problem characteristic. I t  also has frequency histograms for the schedule lengths, and bar  

charts for the average parallel schedule length and average corrected parallel schedule 

length, compared against a sequential schedule. 

I t  is important t o  note t h a t  in treating each characteristic separately there is a n  

implicit assumption of independence. If, a s  will be assumed, the effect of changing one 

characteristic is qualitatively independent of changes in other characteristics, this analysis 

will hold. T o  take the most general case and assume complete interdependence would 

necessitate the display and analysis of a 6075 point, 5 dimension surface, which is difficult 

for a discrete problem space such as  this. By treating the characteristics a s  independent, 

the  analysis becomes somewhat more tractable. 

6.1. Distribution 

The first problem characteristic t o  be considered is the  distribution of parallelism 

within a task graph. As can be seen Appendix B section 1, each of the  schedulers show very 

little variation in performance between distributions. Because the performance is very 

different between schedulers, a direct comparison is not possible. However, if the 

distribution has a minimal effect on performance, as claimed, then the ra t io  of performance 
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Figure 6.1. - Distribution % P I S  / Mean % P I S  

for each distribution t o  the average performance over all nine distributions will be close t o  

1.00. 

Figure 6.1 plots the variation from the average for "%P<S", the percentage of 

parallel schedules tha t  a re  shorter than sequential schedules. The variation is figured over 

the different task distributions by dividing the value for each distribution by the average 

over all distributions. A large spread between distributions in this ratio would serve as  a 

strong indication tha t  scheduler performance is strongly dependent upon the distribution of 

parallelism within the task graph. Conversely, a small spread would be a strong indication 

of independence between scheduler performance and task distribution. 

Figure 6.1 clearly shows tha t  distribution has very little effect on the number of 

parallel schedules tha t  are shorter than sequential schedules. (The widest range in variation 

is only about 10% of the average.) This holds true for schedulers which generate very short 

schedules, such as  scheduler #1 as  well as  those whose schedules are  almost all longer than 

the sequential, such a s  #12. 
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Figure 6.2. - Distribution S /P  / Mean S/P 

p -  - - - - - .................................... - .-. .. ,. .. .i.. . -. . .-. 
P I -  - - = = - - - P - = -  - - 

0.95 - - 

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2  
Scheduler 

Figure 6.3. - Distribution S/C / Mean S/C 
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Figure 6.4. - Distribution P/C / Mean P/C 



Figure 6.2 shows the ratios for "S/P7', or the average speedup of a parallel schedule 

over a sequential schedule. The differences here are somewhat larger than for the previous 

graph, but they are still relatively small, so average speedup is also independent of task 

distribution. Plots for the other performance indicators are given in Figure 6.3 through 

Figure 6.7. 

From these diagrams it  is evident tha t  all of the performance measures are  

independent of the distribution of parallelism within the graph being scheduled. However, 

some anomalies in the plots are worth pointing out. For instance, schedulers #lo,  #11, and 

#12 have the most variation in the different indicators, with the exception of Figure 6.3. 

This may be explained by referring t o  Appendix B Sections 1.10, 1.11, and 1.12. A large 

number of the parallel schedules are much longer than a corresponding sequential schedule, 

so the corrected schedule will use the sequential schedule a disproportionately high number 

of times. This means the comparison is more of sequential schedules against themselves 

than for other schedulers. To further illustrate this point, if the schedulers had always 

chosen parallel schedules longer than the sequential, then the correction process would 

always select the sequential schedule over the parallel, and the variation would be zero. 

Of the schedulers which do a complete architecture simulation, namely #1, #2, #3, 

and #4, schedulers #3 and #4 have the widest variation in schedule speedup. Of the group 

#5 through #9, scheduler #8 has the widest variation. Schedulers #3, #4, and #8 have 

one thing in common - they measure task priority from the top of the task graph and 

select tasks for scheduling from the bottom. This pattern of task selection causes the 

schedulers t o  be marginally more sensitive t o  the distribution of parallelism than other 

schedulers. 
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Figure 6.5. - Distribution P Eff / Mean P Eff 
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Figure 6.6. - Distribution C Eff / Mean C Eff 
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Figure 6.7. - Distribution CPU Sec / Mean CPU Sec 



It is also interesting t o  note tha t  in each of the previous plots the  scheduler which 

showed the least variation was the random scheduler (scheduler #9). The variance was 

never more than 5% for any of the performance indicators. This shows t h a t  there was 

nothing inherent in the  distributions which would cause the performance t o  be lower or 

higher for a particular distribution. Instead it was the way the scheduler reacted to the 

distribution t h a t  caused one distribution t o  fare better than another, even if only in a minor 

way. 

6.2. Average Parallelism 

The analysis of the  effect of parallelism on scheduler performance is more complex 

than for the distribution of parallelism. This is because the cost of communication has  a 

disproportionate effect on the schedule length, affecting graphs with high parallelism more 

severely than  those with little or no parallelism. 
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Figure 6.8. - Speedup for Scheduler #9 (Latencies 0-16) 



A random scheduler such as  #9  is unbiased in the sense tha t  i t  doesn't use feedback 

from a partial schedule t o  determine where other tasks will be placed. Tasks are scattered 

at random, and performance is determined by the characteristics of the task graph rather 

than feedback within the scheduler. This is in contrast to  schedulers which do use feedback, 

which can have vastly different schedules for task graphs tha t  have only small differences. 

This lack of bias can be used t o  form a baseline for isolating the effects of latency from 

average parallelism. Figure 6.8 shows the speedup (S/P) for scheduler # 9  over different 

values of average parallelism and latency. Each of the tests were scheduled for 4, 8, and 16 

processors. 

The average parallelism of a graph is bounded above by the total number of nodes in 

the graph. This means there is a bias in the average size of each category of parallelism - 

the average size increases as  the parallelism increases. It will be shown later tha t  the 

speedup is relatively unaffected by the size of the task graph, so graph size can be ignored 

here. 

16 
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Figure 6.9. - Speedup of Scheduler #1 over #9 ( T g / T , ,  Latencies 0-16) 



Latency cannot be so easily ignored. T o  remove the effect of latency, the speedup for 

each level of parallelism and latency is divided by the corresponding value for the random 

scheduler. The result is the speedup relative t o  the random scheduler. Figure 6.9 shows the 

relative speedup of scheduler #1  t o  scheduler #9. As i t  turns out,  each scheduler, when 

compared t o  scheduler #9, has the same general pattern, but  perhaps with some vertical 

translation and scaling. Each scheduler does somewhat better with low parallelism, but  

asymptotically approaches a stable linear factor with respect t o  the random scheduler. 

T o  demonstrate this more convincingly, the variance over a weighted average is shown 

in Figure 6.10. The weights were chosen t o  prefer increasing parallelism, and in fact are  
s 

linearly proportional t o  the  parallelism. From Figure 6.10 one sees t h a t  the  largest variance 

from y (the sample mean) is approximately 0.35. Because the parallelism is sampled a t  

exponentially growing intervals, this means approximately YZ the  weight is placed on a 

parallelism of 256. From this one can see t h a t  if the variance were all t o  occur on the task 

graphs with the largest parallelism (which is the most one could violate the  asymptotic 
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Figure 6.10. - Variances Plotted For Values of Parallelism 



1 - 
performance idea), then ,(yu6 - c)2 = 0.35 This immediately reduces t o  lym - y l = 0.84. 

In other words, the distance from the asymptotic mean is bounded above by 0.84 over these 

task graphs. In fact, because the vast majority of the variance in each case occurs in the 

low parallelism range (as illustrated in Figure 6.9), this analysis is exceedingly pessimistic. 

Even so it  demonstrates tha t  the speedup over the random scheduler approaches a constant 

factor as  parallelism increases. , 

The weighted mean ( T j )  for each scheduler and latency are given in Figure 6.11. The 

weighting function used here is linearly proportional t o  the communication latency. To  

reemphasize its significance, Figure 6.11 represents an  approximate factor of improvement 

each scheduler has over randomly scattering tasks across CPUs. Schedulers #1 through #4 

outperform the random scheduler (#9) by as  much as  a factor of 2%; # 5  through #9 

perform about the same, and #lo, #11, and #12 do much worse. 
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Figure 6.11 - Weighted Means For To/Ti  (Latencies C16) 



8.3. Program She 

From Appendix B Section 3 i t  appears t h a t  speedup improves with increasing program 

size. The differences in speedup between task graph sizes are  displayed in Figure 6.12. This 

graph is obtained by plotting the difference in the  average parallel speedup between 

adjacent graph sizes. Thus the y value for the square symbol (i.e. n) is obtained by 

subtracting the average speedup for graphs with 128 tasks from the average speedup for 

graphs with 256 tasks. 

If the speedup were completely independent of program size, all differences would be 

exactly zero or, allowing for random variation, evenly scattered on both sides of the zero 

line. Figure 6.12 shows this is not what  is happening here. Those schedulers which do well 

show an  improvement a s  the size of the task graph increases. Schedulers #lo ,  #11, and 

#12, which do poorly under many circumstances, tend t o  do worse a s  the  size increases. 

Figure 6.12. - Relative Increase in Speed w/ Increasing Size 
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Although qualitatively the trend is upward for most of the schedulers, quantitatively 

the trend is not very significant. For example, increasing the graph size by a factor of 16 

only improves the speedup of scheduler #I by 19 percent. I t  is expected tha t  this trend 

diminishes as  graphs grow larger (otherwise the parallel efficiency would eventually exceed 

I),  so increasing the graph size by another 16X would yield less improvement. 

6.4. Communication Latency 

It is very difficult t o  directly measure the message delay due t o  contention, since the 

delay itself modifies the graph execution. However, one can easily measure the effect of 

accounting for (or not accounting for) latency or contention in a scheduler. Scheduler #5 

(the ISH scheduler) accounts only for the communication delay due t o  latency, while 

scheduler #1  accounts for both latency and contention delays. The schedulers are identical 

but for tha t  detail. Figure 6.13 shows the performance improvement scheduler #1 enjoys 

over scheduler #5  for different latencies. 
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Figure 6.13. -Average Parallel Schedule Length: Scheduler #5 / Scheduler #I  



When the cost of communication rises, whether due t o  latency or contention, the 

speedup will decline because of the higher cost of doing work in parallel. This is true of all 

parallel schedulers. The curves for schedulers #1 through #12 are  given in Figure 6.14. 

The important features of this graph are the backward "S" shape, t h a t  every curve 

dips below 1.00, and t h a t  the schedulers fall naturally into 3 main groups o r  families. The 

( 4  S 9 )  shape indicates t h a t  increasing latency causes decreasing performance. Because 

speedup values can never be below zero, the curve levels out.  It is important t o  note t h a t  in 

every case the curve approaches a value which is below 1.00. This shows t h a t  for high 

latencies, none of the schedulers tested here is able t o  consistently generate parallel 

schedules t h a t  are  better than sequential schedules. 

Although the curves appear t o  be asymptotic, such is not the case. If the  latency were 

greater than  the total  task weight of the program, the processor selection phase would have 

no justification for using any parallelism whatsoever, and SIP would be exactly 1 .  The 

reason each scheduler has a region in which i t  does worse than  sequential is t h a t  every time 
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Figure 6.14. - Parallel Speedup vs. Latency 



a task is scheduled, the processor selection phase looks only a t  the effects of past decisions 

on the execution of the current task. I t  does not look a t  what  efTect the  current processor 

selection will have on future decisions. The schedulers do not consider how much of the 

program remains nor the expense of transmitting results t o  where they will eventually be 

needed. Instead they choose t o  execute a task in parallel whenever its completion time will 

be earlier, even if takes longer t o  get the information where it's needed. 

The fact t h a t  every scheduler has some latency value for which a sequential schedule 

is better is a surprising result. For most of the schedulers used, i t  is a simple mat ter  t o  

compare the parallel schedule against a sequential schedule and select the shorter of the 

two. The two schedulers for which this comparison cannot be easily made are  schedulers # 5  

and #9. Scheduler # 5  is I<ruatrachue's ISH, and #9 is the  random scheduler. Neither of 

these schedulers record communication schedules, so neither has a n  accurate estimation of 

what  the parallel schedule length actually is. I t  is because these two schedulers do not 

record communication tha t  they require less than l/ lOth the CPU time of other schedulers 

t o  generate a schedule. 

From Figure 6.14 i t  is apparent t h a t  the schedulers tested here fall into 3 main groups. 

The group with the  best performance consists of schedulers #1 through #4. This group has 

in common t h a t  schedules for the links are recorded along with the processor schedules, and 

t h a t  the scheduler uses communication schedules in i ts  processor selection. The worst 

performing family (schedulers #lo ,  #11, and #12) recorded communication schedules, but 

used only communication latency in processor selection. The third family contains a variety 

of different approaches, whose overall performance was very similar t o  the  random 

scheduler. 



6.6. Processor Count 

With a good scheduler one would expect tha t  throwing more processors a t  a problem 

would give shorter schedules, and indeed this is the case for the schedulers examined here. 

Ideally, one would hope tha t  the speedup would be linear with respect t o  the increase in 

processors. Unfortunately a number of considerations prevent tha t  from being easily 

achieved, such as  whether there is sufficient parallelism to  keep the processors busy, and 

whether there is sufficient slack in the task graph t o  allow the parallelism t o  be used t o  an  

advantage. 

, Comparing the effects of the number of available processors on performance is most 

T, easily done by examining the parallel efficiency. Parallel efficiency is the value - 
~ x T , ,  ' Or 

the sequential schedule length divided by the number of processors times the parallel 

schedule length. I t  is bounded above by 1 and below by 0. In a sense, i t  represents the 

fraction of the machine in use over the execution of a program. In another sense i t  

represents the speedup normalized by the greatest speedup the machine can offer. 

However, even though a machine offers 16 processors, a 16X speedup is almost never 

possible. A more accurate observation is tha t  the speedup cannot exceed the minimum of 

the average parallelism and the number of available processors [Jor87]. So, if the average 

parallelism is 2, then no matter how many processors are available, the speedup will never 

exceed 2. Note tha t  this says nothing about the number of processors required t o  at ta in 

tha t  speedup, except for the trivial observation tha t  i t  requires a t  least 2 processors. 

This suggests T, as  a measure of schedule effectiveness. This measure 
min(p ,n )X T,, 

gives the fraction of usable machine which is actually put t o  use. It gives the parallel 

efficiency without the inherent penalty for having excess processors. Values close t o  1 mean 



t h a t  the schedule is a s  effective a s  possible, given the problem and the architecture. The 

measure does not account for other variables (such as  latency) which can negatively affect 

the  efficiency. Because of this, values not close t o  1 may mean t h a t  the schedule doesn't use 

the  machine eflectively, or t h a t  i t  is aflected by some unmeasured variable. 

One may go about measuring the effect of processor count on performance in several 

ways. The most common approach is fix the problem t o  be scheduled and vary the number 

of processors directly, reporting any improvement. The disadvantage t o  this approach is 

t h a t  the measurement is relative to  a particular problem, which has its own special set  of 

characteristics. However, performance is dependent on the amount of parallelism relative t o  

the  number of processors, not  the absolute number of processors. By fixing the problem and 

varying the number of processors one is indirectly measuring the effect of relative 

parallelism. 

This gives a second approach, namely compare the relative efficiencies against the 

relative parallelism. This has the advantage t h a t  i t  measures scheduler performance 

against the best t h a t  could be done given the machine and the problem. It  gives tighter 

bounds on what  is optimal than simply measuring speedup against processor count. We also 

prefer this measure because it gives a result which is more generally applicable. In any 

case, we do both. Appendix B Section 5 shows a comparison of speedup and processor 

count. Appendix D compares relative efficiency against relative parallelism. It  can be seen 

from Appendix D t h a t  qualitatively each scheduler performs very nearly the  same - each 

pair of graphs with the  same latency have very similar shapes, regardless of the scheduler 

t h a t  produced it. Quantitatively, of course, performance differs between schedulers in the 

ways described in previous sections. 
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The plots in Appendix D show some fairly complex behavior in the 

scheduler/program/architecture system. For example, based on latency there are  three 

phases tha t  occur, with a gradual transition between them. Using scheduler #1 as the 

example (reproduced in Figure 6.15), the first phase includes latency values from 0 t o  %. 

This phase is characterized by good performance when there is an  excess of either 



parallelism or processors. However, when the parallelism and processor count are very 

nearly the same, the relative efficiency fluctuates between H and 1. 

The second phase includes latencies between 1 and 4. It is characterized by a wide 

variation in relative efficiency when the average parallelism exceeds the number of 

processors, with a relatively small variation when the processor count exceeds the average 

parallelism. The third phase includes latencies greater than 4, and is characterized by 

uniformly low efficiencies regardless of the parallelism or processor count. 



CHAPTER 7 

Comparison of Schedulers 

Considering how the different schedulers were constructed, one might expect some 

similarities as  well as some differences in their performance. This chapter explores some of 

those similarities and differences in terms of parallel schedule length and CPU time required 

t o  generate parallel schedules. In particular we examine how different choices in task 

selection, processor selection, and schedule generation affect scheduler performance. 

7.1. Task Selection 

As discussed in previous chapters, four task selection strategies were used. The 

strategy for schedulers #1 and #7 measured priority once as distance from the terminal 

node of the graph, and selected tasks from the s tar t  node, working towards the terminal 

node. Schedulers #2 and #6 measured priority as  distance from the top each time a task 

was scheduled, and selected tasks from the top. Schedulers #3 and #8 measured priority 

once as distance from the top, but scheduled tasks from the bottom up. Scheduler #4 

measured priority in the same way as  #3 and #8, but the priority was recalculated each 

time a task was scheduled. In this section schedulers which are identical except for task 

selection strategy are compared across different problem space variables (i.e., task 

distribution, parallelism, program size, latency and processor count). This is done t o  

determine 1) if the task selection has an effect on scheduler performance, and 2) how tha t  

effect is influenced by the different variables. 

Schedulers are compared by selecting one scheduler from a group to be used as  a 

reference. Each of the remaining schedulers are  then compared against the reference 



scheduler. A numerical value is obtained by dividing the average schedule length for the 

scheduler by the average schedule length for the reference. In this way, if task selection 

strategy has no effect on schedule length, the numerical values will be close t o  1.00. If task 

selection does influence the schedule length, s o m e  value will be either much greater than or 

much less than 1.00. If the impact is independent of the problem space variable, all values 

will have approximately the same magnitude. On the other hand, if the impact is 

exacerbated by some aspect of the problem space, the numerical values will increase or 

decrease along with the variable tha t  influences i t .  

We used two groups of schedulers for these tests. The first group was schedulers #1, 

#2, #3, and #4; the second was schedulers #6, #7, and #8. The reference schedulers were 

# I  and #7. Results from these tests show tha t  differences in task selection strategy induce 

only minor variations in parallel schedule length. Communication latency and processor 

count emphasize those variations in clearly discernible patterns, but the differences are 

definitely of minor significance. 

The effects caused by task selection may be seen in Figure 7.1 through Figure 7.3. 

Figure 7.1 shows tha t  the performance of each task selection strategy is not completely 

independent of the distribution of tasks within a program. The relative performance of 

each strategy does change somewhat with task distribution, but not in any clear pattern. 

Performance is independent of average parallelism and program size. 

Latency has a very clear effect on the efficacy of task selection strategies. For 

latencies less than 1 there is no appreciable difference between task selection strategies. As 

latency increases beyond 1, however, two different strategies take the lead. Which of the 

two is better depends on other details in scheduler construction. The first strategy is used 

by both critical path scheduling and scheduler #1. I t  shows a clear improvement over the 
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strategies used by schedulers #3 and #4, and a minor but noticeable improvement over the 

strategy used by scheduler #2. This strategy is most successful when a full system 

simulation is used in processor selection. The strategy used by scheduler #2, which is 

similar t o  tha t  of diffusion scheduling, holds a slight advantage when system load is the 

predominant criterion in processor selection. Processor count also has a clear effect on task 

selection performance. Interestingly enough, unlike latency the effect becomes less 

pronounced a s  the number of available processors is increased. 

Although task selection has only a small impact on parallel schedule length, the same 

is not true of its effect on CPU time. The selection of task selection strategy can have a 

significant impact on the CPU time required t o  generate a parallel schedule. This is clearly 

brought out in Figure 7.4, which shows scheduler #4 using 2% times as  much CPU time as  

scheduler #1. It is worth noting tha t  while multiple task priority calculation incurs 

considerable expense in scheduler #4, i t  does not induce the same expense in scheduler #2. 
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So although multiple task priority determination can be an  expensive option, i t  is not 

necessarily so. 

The expense of task selection is most affected by program size, latency, and processor 

count. I t  is largely unaffected by task distribution and parallelism. Figure 7.5 shows tha t  

not only are the reference schedulers faster than the others, but the program size affects 

how much faster they are. It shows tha t  the reference schedulers do better in proportion t o  

the size of the program to  be scheduled. According t o  the complexity analysis from chapter 

4, as  n increases the slope of the ratio should level off because the dominating term for n 

has the same power for each scheduler. We conclude tha t  although the complexity analysis 

provides a prediction for the behavior of each scheduler for very large n ,  the similarity of 

the terms and the behavior of the decision algorithms internal t o  each scheduler preclude 

any accurate analytical comparison for small n .  The best guide is the experimental results 

reported here and in Appendixes B and C. 

Communication also has a significant effect on the relative cost of each scheduler. T o  

understand this aspect of scheduler performance one must understand a little more about 

the decision algorithm, and in particular, how the communication was scheduled. Each 

scheduler attempts t o  minimize total execution time by scheduling each task so tha t  i t  

s tar ts  at the earliest possible time. (Schedulers #3, #4, and #8 do this in a round about 

way, by fixing the termination time and scheduling each task t o  establish the latest possible 

s ta r t  time.) If two tasks must communicate, the cost of the communication will depend on, 

among other things, the relative placement of the two tasks. When both tasks are  on the 

same processor, the communication is free. When the tasks are  separated by heavily used 

communication links, the communication is expensive. 
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Latency affects this by increasing or decreasing the incentive t o  take advantage of 

available parallelism by scheduling communicating tasks on separate processors. Low 

latency encourages lots of parallelism, and lots of communication. This in turn means the 

CPU cost of scheduling communication will be high. On the other hand, large latencies 

discourage the use of parallelism, which causes longer delays from the time a task is 

available for execution t o  the time its execution begins. This in turn, because task insertion 

is used, causes an  increase in the CPU time required t o  schedule a task. It is this combined 

effect which causes the psychiatrist-couch appearance of the CPU curves for latency. 

Processor count has a really dramatic effect on the relative performance of different 

strategies. Figure 7.7 shows that  when there are few processors t o  be scheduled, task 

selection can dominate the cost of scheduling by as  much as  a factor of 18. As the number 

of processors increases, the costs associated with task selection are overshadowed by those of 

processor selection and schedule generation. A t  16 processors it  made little difference in 

terms of cost what form of task selection was used. 

7.2. Processor Selection 

Processor selection strategy, unlike task selection, does have a significant effect on 

parallel schedule length. This effect was most noticeable when the parallelism was low, the 

program size was small, or the latency was high. The effect varied from different strategies 

being on par when communication latency was zero, t o  being faster by a factor of 2.6 when 

latency was 16. 

Several strategies were used t o  select processors for tasks. The most successful, and 

the most costly, was employed by schedulers #I through #4. These schedulers tried each 

task on each processor, fully scheduling the task and all associated communication for each 

trial. A second strategy measured only the load of each processor, by noting the finish time 



of the latest task, and selecting the processor with the lightest load. The task and all 

associated communication were then irrevocably scheduled for the selected processor. This 

strategy was used by schedulers, #6, #7, and #8. 

A third strategy, which is not discussed in this section, selected a processor by 

measuring the processor load and combining it  with the required communication time, 

similar t o  the first strategy. However, t o  reduce the expense, the communication was 

assumed to  be over empty channels. Communication contention, therefore, was not 

considered in processor selection. When a task was added t o  the selected processor's 

schedule, i t  and all its associated communication were properly scheduled a s  with other 

strategies. This approach was used by schedulers #lo, #11, and #12, and its performance 

will be discussed further in section 7.3. 

As mentioned earlier, the efficacy of one processor selection strategy over another was 

most influenced by parallelism, program size, and communication latency. As program size 

or parallelism increase, the advantage of the first processor selection strategy over the 

second decreases. The effect is reversed for latency. The effect is very pronounced with 

parallelism. As even moderate values of parallelism are used, the advantage of the first 

strategy are relatively minor. If the parallelism exceeds 16 the more expensive strategy is 

less than 1.8 times faster than the much cheaper approach. 

The loss of advantage is still apparent, but less pronounced, with increasing program 

size. T o  some extent the two effects must reinforce each other, if only because increasing 

parallelism requires an  increase in program size. However, there are sufficient discrepancies 

in the da t a  t o  preclude either effect being only a reflection of the other. For example, 

programs with parallelism 256 all had 2048 tasks. If the two effects were different 

manifestations of the same effect, the ratib when parallelism reached 256 would be the same 
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as when program size reached 2048, and they are not the same. 

The first strategy's advantage increases as  latency increases. As can be seen from 

Figure 7.10, the advantages are consistent regardless of other details in the scheduler design. 

The graph rises sharply between 0 and 2, then rises more gradually for higher latencies. It 

is interesting t o  note tha t  Figure 7.10 is divided into two sections, both of which are 

straight lines. The first section has a slope of M 0.3, the second, M 0.07. The corner 

separating the two divisions occurs a t  latency 2, which is the point of inflection of the 

derivative, i.e, where the third derivative changes sign. 

The effect of processor selection strategy on CPU time t o  generate a parallel schedule 

is very significant, and mostly independent of variables in the problem space. On the 

average, scheduler #1 requires about 13 times as  much CPU time a s  scheduler #7, scheduler 

#2 requires 6% times as much as  scheduler #6, and #3 needs 8% times as  much as  scheduler 

#8. This variance indicates that  the amount of additional CPU time a strategy will require 

depends in part  on other details of the scheduler design. 

The effect program size has on how much faster the first strategy is than the second is 

shown in Figure 7.12. CPU2/CPUa is strongly affected by program size, in tha t  scheduler #2 

becomes relatively cheaper a s  the size increases. Although the complexity analysis shows 

CPU2/CPUa will eventually stabilize, i t  clearly does not do so in the range covered by these 

experiments. On the other hand, CPUI/CPU-I and CPUs/CPUs appear t o  have stabilized a t  

13 and 8, respectively. 

Increasing processor count emphasizes the differences in speed. As the processor count 

increases, both processor selection strategies require more CPU time. Additionally, the n2p! 

term (processor selection) in the complexity analysis represents a significant portion of the 

CPU time in schedulers #1, #2, and #3, so a small increase in p will be reflected as  a linear 
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increase in CPU time. O n  the other hand, the np (processor selection) term is a very small 

portion of the  total  time in schedulers #6, #7, and #8, so a small increase in p will yield a 

relatively small change in CPU time. The net result is t h a t  a small increase in the  number 

of processors (p) gives an  almost linear increase in the CPU ratios, a s  shown in Figure 7.13. 

7.3. Processor Selection and Schedule Generation 

One processor selection strategy which appeared promising was the  third strategy 

described in the previous section. This strategy combined elements from both of the 

previous strategies, by taking into account the  processor load and the communication time, 

but ignoring delays from contention with competing messages. It was anticipated t h a t  i ts  

CPU requirements would be only slightly higher than  merely accounting for processor load, 

and t h a t  i t  would give some improvement in parallel schedule lengths. W h a t  happened was 

t h a t  because of several minor optimizations within inner loops, the  CPU requirements were 

slightly lower. The minor increase expected was more than offset by improvements in the  

implementation. The parallel schedule lengths, however, were very much worse - not 

better - than the other strategies. It sometimes generated schedules t h a t  were 15 times a s  

long as  other parallel schedules, and nearly 40 times as  long as  the corresponding sequential 

schedules. 

In a n  a t tempt  t o  discover the  precise combination of elements which caused this 

unexpected behavior, several additional schedulers were constructed. Scheduler #10 used 

the critical path  scheduling task selection strategy, so scheduler #11 was designed with the  

diffusion scheduling task selection strategy. The result was not significantly different. 

I t  was also conjectured tha t  task insertion in the schedule generation phase was 

causing the problem, so scheduler #12 was constructed a s  a copy of scheduler #10 with the  

task insertion removed. This means the schedule generator placed each new task a t  the  top 



of the schedule rather than search the schedule for a better slot. Scheduler #12 performed 

about 30% worse than scheduler #lo,  which shows tha t  task insertion was not the reason 

for the poor performance. 

Scheduler #5 is also very similar in design t o  scheduler #lo. Both use task insertion 

in the schedule generation, both use load and latency but not contention t o  select 

processors. The difference is tha t  scheduler #5 records only processor schedules, where 

scheduler #10 records both processor and communication link schedules. Scheduler #10 

records and schedules around contention where scheduler #5 pretends contention does not 

exist. 

Strangely enough, scheduler #5 performed significantly better than scheduler #lo, and 

cost much less because it  did not schedule communication. Since scheduler #5 did not have 

the same performance as  scheduler #lo, the key elements t o  #lo's performance problems 

were the use of latency without contention in processor selection, while using message 

contention in schedule generation. 

7.4. Other Comparisons 

Considering the parallel schedule lengths over all tests, the schedulers naturally 

formed three groups. The first group is schedulers #1, #2, #3, and #4. The second group 

is schedulers #lo,  #11, and #12. The third group is schedulers #5, #6, #7, #8, and #9. 

The division is quite easily seen in Figure 7.14 (cf. Figure 6.14.). Figure 7.14 is a frequency 

histogram of the schedule lengths, with the the horizontal axis representing the fraction of 

schedules tha t  had the given y value. 

The first group of schedulers performed significantly better than the other two, 

generating schedules which were shorter on the average by a factor of 1.8 or  more. The 

principal characteristic tha t  identifies this group is tha t  each scheduler modeled contention 
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in both processor selection and in schedule generation. This group included all schedulers 

which did both of these things. I t  included no scheduler tha t  did not do both. 

The second group consists of schedulers tha t  modeled latency in the processor 

selection, but modeled contention in the schedule generation. One practical example of this 

type of scheduler is a diffusion type load balancing strategy which attempts t o  account for 

communication in its task distribution. Performance of this group was the worst of the 

three because of an  anti-synergistic effect. 

The third group consists of all remaining schedulers. It includes, among others, 

random scheduling (scheduler #9) and load balancing (scheduler #6). It also includes 

Kruatrachue's ISH scheduler (scheduler #5), which forms the platform from which DSH is 

constructed [Kru87]. The schedule lengths of this group are substantially shorter than those 

of the second group, though not as  good as  those of the first. It is noteworthy tha t  this 

group contains schedulers which work much more quickly than group one, sometimes by 

more than two orders of magnitude. Figure 7.15 shows a histogram of the CPU times for 
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each of the 12 schedulers. Scheduler #5 (ISH) and scheduler #9 (random processor 

selection) used the least CPU time of those tested, primarily because neither incurs the 

expense of scheduling program communication. 

Performance was also measured by the frequency with which a scheduler chose the 

best schedule. This was measured in two ways - by comparing all of the schedulers 

together, and by deriving an ordering through comparing each pair of schedulers. Figure 

7.16 shows the results of comparing all schedulers together. It was obtained by pooling all 

of the scheduler results together and counting the number of test cases for which each 

scheduler created the best parallel schedule. 

In addition t o  the group comparison, the schedulers were also compared pairwise. 

Every pair of schedulers was compared, experiment by experiment, for the number of 

shortest parallel schedules. Each scheduler was compared individually against the 11 other 

schedulers. When a scheduler had more shorter schedules than its opponent, i t  was given a 

point. The scheduler which had the largest number of points was given the rank of 1. 
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(Scheduler #1 had the most points a t  11.) The scheduler with the next highest number of 

points was given the rank of 2, and so on. The results are given in Table 7.1. The ranks 

reflect the order in which schedulers found the shortest schedules most frequently, i.e., 

scheduler #1 is ranked number 1 because i t  found the shortest schedule more often than any 

other scheduler. 
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It is interesting t o  note tha t  each scheduler generated the shortest parallel schedule 

for some test case, and tha t  there was only a weak correlation between the average parallel 

schedule length, the average number of shortest schedules, and the pairwise ranking of all 
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Table 7.1. 



schedulers. 

A third comparison was also done. For each experiment the best schedule was found; 

this included the 12 parallel schedules and a sequential schedule. Each schedule was then 

compared against the best schedule, by dividing the length of the schedule by the length of 

the shortest schedule for t h a t  experiment. A cumulative histogram was then constructed for 

each scheduler, which shows the number of schedules t h a t  are  better than  a certain factor 

of performance. The results are  given in Appendix E. The histograms of all experiments 

taken together are  also reproduced in Figure 7.17. 

Figure 7.17 supports a number of claims made elsewhere in this dissertation. From i t  

one may clearly see t h a t  scheduler #l indeed is the better scheduler, and t h a t  #2, #3, and 

#4 have very similar performance. One may also distinguish between the three scheduler 

groups. It  shows not only how the groups are  different, but also how individual schedulers 

within each group differ. 
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CHAPTER 8 

Conclusions 

8.1. Scheduler Phase Effects 

Static scheduling strategies can be divided into three phases - task selection, 

processor selection, and schedule generation. Task selection decides the order in which tasks 

will be scheduled. Processor selection chooses a processor which will yield the best overall 

schedule for the selected task. Schedule generation records the the selections and system 

resource usages such selections require. 

Of the three phases, task selection affects the schedule length the least. Schedulers 

#I ,  #2, #3, and #4 were identical in every way except task selection strategy, as  were 

schedulers #6, #7, and #8. The largest average difference in the first group was between 

schedulers #1 and #4, the difference being tha t  schedules from #4 were 5.2% longer than 

those from #l. The average over each task distribution varied from about 13% in favor of 

scheduler #4, t o  15% in favor of scheduler #l. Average differences over other variables 

(parallelism, size, latency, and processor count) yielded smaller differences. A 4.8% 

difference was measured between schedulers #6 and #8 over all tests; the variation over 

each variable was not much larger. 

Although task selection had the least impact on the schedule length, i t  still had 

substantial impact on the CPU time required t o  generate a schedule. Measuring task 

priority from the top and scheduling from the bottom required more CPU time than 

measuring from the bottom and scheduling from the top. Scheduler #3 used 35% more 

CPU time than scheduler #1, and scheduler #8 used more than twice the CPU time of 



scheduler #7. Re-measuring the priority each time a new'task was selected increased the 

cost of scheduler #4 by 80% over scheduler #3. Each phase's direct contribution t o  the 

total CPU cost was not measured, but schedulers #1, #3, #4, #7, and #8 used nearly 

identical algorithms to  select tasks. The only difference was in the direction of the priority 

measurement and task selection. This indicates tha t  most of the cost was indirect ,  tha t  is, 

tha t  certain task selection strategies caused other phases t o  do more work. 

Processor selection proved t o  be the phase which affected schedule length most 

profoundly. Schedulers #1, #7, and #10 were identical except for their processor selection 

phase. Scheduler #1 modeled processor load, latency, and contention, scheduler #7 

considered only processor load, and #10 considered both load and latency. The difference in 

average schedule length was overwhelmingly in favor of scheduler # l .  Scheduler #10 

produced schedules which were 6.75 times as  long as those produced by scheduler #1. 

Schedules from #7 were about 1.9 times as  long as  those from # l .  

Latency brought out the difference in performance most clearly. When the latency 

was low (less than I),  the performance was nearly identical for the three schedulers. When 

latency was very high (e.g. 16) schedules from #10 were more than 10 times as  long as  those 

from #l. Scheduler #7 behaved similarly, generating schedules about 2.5 times a s  long as 

those from #1 when latency was high. 

While processor selection was the most important phase for generating short schedules, 

i t  also affected the coat of generating schedules the most. Scheduler #1 required more than 

15 times as  much CPU time as  scheduler #7 or #lo.  

The architecture model used by the schedule generator also affected the CPU time. 

Schedulers # 5  and #10 were identical with the exception tha t  the schedule generator in #5  

modeled processor load and message latency, but not message contention. Scheduler #10 



modeled load, latency, and contention. Scheduler #10 required about 6.4 times as much 

CPU time as  scheduler #5. This factor did vary somewhat with communication latency 

because smaller latency encourages heavier usage of the communication system, which in 

turn requires more information t o  be recorded by the schedule generator. (Zero latency is a 

special case - i t  implies any message can get through a t  any time, so there is no need t o  

record message transmissions.) 

As an  aside, schedule generation records information tha t  is used by other phases. 

Information tha t  is not recorded presumably is not available. Thus i t  does not make much 

sense for the other phases (particularly processor selection) t o  attempt t o  model the 

architecture in more detail than what is recorded by the schedule generator. On the other 

hand, information tha t  is not used directly by other phases can still affect their behavior - 

scheduler #10 is an  example of this. This scheduler used only communication latency in its 

processor selection phase, but i t  modeled contention in i ts schedule generator. Scheduler #5 

modeled latency in both processor selection and schedule generation. Scheduler #5's 

schedules were 4.9 times faster than those of #lo. 

This latter case is also an  example of pathological interactions tha t  can occur between 

phases. It is clear from observing the behavior of schedulers #lo,  #11, and #12 tha t  

certain combinations of scheduler phase behaviors can cause unexpected results. In this 

case, #lo,  #11, and #12 all have the common characteristic t ha t  they model latency in 

processor selection, and contention in the schedule generation. As each task was assigned t o  

a processor, only the latency was considered - the fact tha t  the communication system was 

heavily overloaded was ignored. Thus moving one more task t o  another processor only 

served t o  load the communication system further, which in turn caused greater delays due 

t o  contention. I t  is not fully understood why this effect occurs when processor selection 

models latency, but i t  does not occur when only processor load is considered. 



8.2. Scheduler Famil ies  

Because of the characteristics of the phases, as outlined in the previous section, the 

schedulers tested here naturally fall into three families. The first two families have very 

specific phase designs which identify them and are responsible for how they behave. The 

third family is less easily defined, except tha t  each scheduler generates schedules of about 

the same length as  every other scheduler in the family. 

The first family consists of schedulers # I ,  #2, #3, and #4. In this family each 

scheduler modeled processor load, message latency, and contention in both processor 

selection and schedule generation phases. This family consistently generated the shortest 

schedules, especially when the latency was high (e.g., greater than 1). It also required 

significantly greater CPU time to  generate the schedule than any other family. 

The second family of schedulers consists of schedulers #lo, #Ill and #12. Family 2 

schedulers modeled processor load and message latency in the processor selection phase, but 

modeled load, latency, and contention in the schedule generation phase. This family 

required about 1/6th the CPU time of family 1, and generated schedules tha t  were more 

than 6 times as  long. Schedule length worsened as latency increased - for the highest 

latency tested, average schedule length was 10 times tha t  of family 1. The poor 

performance of schedulers in this family is not because task insertion is used. Inserting 

tasks into the middle of a schedule may increase contention by placing tasks where a lot of 

communication is already taking place, but removing the task insertion only degrades 

performance further (compare schedulers #10 and #12). 

Family 3 consists of schedulers # 5 ,  #6, #7, #8, and #9. Scheduler #5  is 

Kruatrachue's ISH scheduler [KrL87,Kru87]. Schedulers #6, #7, and #8 are identical t o  

schedulers #2, # I ,  and #3, respectively, with the exception tha t  the processor selection 



phase only considers the processor load. Scheduler #9 selects the processor a t  random. 

Even though the design of each scheduler varies substantially within this family, their 

overall performance is very similar. This is because there are enough details in the program 

execution tha t  the scheduler does not explicitly account for, tha t  the processor assignment is 

eflectively random. This explains particularly why the performance of each scheduler is so 

similar t o  random processor assignment. 

It is worth noting tha t  every scheduler, regardless of i ts family, generated some 

schedules tha t  were longer than a sequential schedule. This fact offers a possibility for an 

additional performance improvement. Sequential schedule lengths are easily determined (by 

summing the weights of the tasks). If the scheduler models the architecture sufficiently well 

tha t  the length of the parallel schedule accurately represents the program's execution time, 

compare the parallel and sequential schedule lengths, and select whichever is shorter. This 

has the benefit of guaranteeing tha t  no program will take longer than i t  would on a single 

processor machine. This improvement was effective for family 1 schedulers when the latency 

was above 4, and for family 2 schedulers when the latency was above 2. 

This improvement may also add a substantial cost t o  the scheduler CPU time. In 

schedulers #5 and #9, where the architecture is not accurately modeled, the cost of 

scheduling a program may be multiplied many fold. These two schedulers, appropriately 

modified, would require approximately the same CPU time as  scheduler #7. 

8.3. Effects of Problem Characteristics 

In this work we chose t o  consider five variables in the problem space, namely, task 

distribution, average parallelism, program size, communication latency, and processor count. 

Of those, task distribution had almost no eflect on any aspect of the scheduling problem. In 

contrast, average parallelism had a fairly substantial impact on performance, generally 



shortening parallel schedules as  parallelism increased. Schedule length for schedulers # I  

through #9 improved substantially. However, relative t o  the random scheduler all 

scheduler performance declined. So although each scheduler improved, in an  important 

sense i t  was because the problem was easier. 

Program size had a minimal, if consistently positive, effect on scheduler performance. 

Small improvements in schedule speedup were measured for each increase in program size. 

As was expected, increased latency had a universally negative effect on schedule 

lengths. What  was not expected, however, was tha t  none of the schedulers could handle 

high latency very well. Each scheduler had a point above which it  selected parallel 
s 

schedules which were worse than the equivalent sequential schedules. The best schedulers 

were able t o  do better with high latency than were the other schedulers, but even the best 

scheduler had problems with some programs. 

Increasing processor count, like increasing parallelism, improved the average parallel 

schedule length. It would be desirable, but unrealistic, t o  hope for a linear increase in 

speedup. However, a new measure of performance which we call the re la t ive  e f i e i e n c y  shows 

tha t  the best schedulers were doing better than would be indicated by the parallel efficiency 

alone. 

8.4. Implications For Dynamic Scheduling 

Schedulers #2, #6,  and #11 serve a special purpose in this work - they all emulate 

diffusion scheduling. Each represents an  idealized form of this dynamic load balancing 

strategy. They are ideal in the sense tha t  they do not suffer from two problems inherent t o  

diffusion scheduling, namely, runtime scheduling overhead and incomplete knowledge of the 

system state. 



Scheduler #6 is most similar t o  the common approach t o  diffusion scheduling [LiK87]. 

Scheduler #11 attempts t o  be only slightly more intelligent about its processor selection by 

adding communication latency into its calculation. Scheduler #1 tries t o  be very intelligent 

about processor selection, by considering communication link loading as  well. A dynamic 

implementation of this last algorithm would require special hardware t o  provide accurate 

measures of link loading. Such hardware could not use the standard communication links, 

or reporting the load would alter it, causing the measure t o  be unreliable. 

Because these algorithms closely match dynamic diffusion schedulers without some of 

their problems, i t  is unlikely tha t  diffusion schedulers will perform better than either 

scheduler #6 or #l. 

8.5. Recommendations 

In systems where high performance is most desirable, schedulers must accurately model 

the communication system. A strategy which generates parallel schedules using scheduler 

#1 but selects a sequential schedule when i t  is shorter gives the overall best performance. 

However, this strategy can cost 1 0 0 ~  more than a scheduler such a s  #5 (ISH). If the 

latency is guaranteed t o  be less than 2, scheduler #5 will yield excellent results a t  very low 

cost. If latency may be high, scheduler #7 with a comparison against a sequential schedule 

is a moderately low cost, high performance alternative. 



CHAPTER 9 

Future Work 

9.1. Other Network Topologies 

This dissertation has only considered the effect of a single topology - a completely 

connected network - on scheduler performance. Such networks are ideal in the sense tha t  

the diameter and average diameter are both minimal, namely 1.  The contention value, 

which is the proportion of network resources an  average message will use [Pas88], is also 

minimized, namely l / n  for n processors. Although i t  was appropriate t o  use the topology in 

this simulation study, completely connected networks are  generally too expensive for use in 

real systems. The obvious reason is tha t  the number of connections grows as  the square of 

the number of processors in the network. This implies tha t  even with a small number of 

processors (say, 16) the cost of the whole system is dominated by the cost of the 

interconnection network. 

A number of topology families exist which have low cost and relatively high 

performance. (For a general survey see [Fen811 and Chapter 5 of [HwB84]. Other 

important articles on this topic include [AkK84,Dot84,PrV81,Von83].) Many of these 

topologies grow as  a factor of NlogN or better, where N is the number of processors. Even 

though the number of connections grows slowly - M o g N  is much less than for large N 

- both the diameter and average diameter are logN or better. For example, a binary n- 

cube (hypercube) has n2" connections for 2" nodes. Its diameter is n ,  and its average 

diameter is n/2. 



Figure 9.1. - D/4 Hypercube 
s 

If at any given instant every node is equally likely t o  send a message, the average 

resource usage for the network will be - rDN where r  is the rate  of message transmission, D e 

is the average distance a message must travel, N is the number of nodes, c is the capacity 

of a single network link, and e is the number of links in the network. If the network is 

regular (i.e. the degree is the same for every node), then e = Nd/2 ,  where d is the degree of 

the network. Substituting into the previous expression gives us - 2rD.  If every node is 
c d  

equally likely t o  be the recipient of a message, the average distance a message must travel 

r  is simply the average diameter. For the hypercube this equation reduces t o  -. This may 
e 

2 r  be contrasted against the same value for a completely connected network, -- 
N e '  

As was noted in previous chapters, scheduler performance is driven in some cases by 

the scheduler's ability t o  handle contention. Because different networks offer different 

abilities t o  deal with heavy message traffic, the network topology may affect scheduler 

performance as  well. Message switching technology could also have a n  impact, because i t  

also affects the performance of the network (see [DaS87,HRW85,MTH78]). Much work 



remains t o  be done t o  measure the effect of more "realistic" network designs on scheduler 

performance. It would be especially interesting t o  compare the performance of star-graphs 

[AkK87] against tha t  of hypercubes under automatic scheduling systems. It would also be 

valuable t o  examine the effects of packet and circuit switching on the system as  well, 

particularly because static schedulers seem to  be much more sensitive t o  contention than 

they are t o  latency. 

9.2. Scheduling Loops and Conditionals 

Static scheduling of acyclic task graphs by itself is not as  generally useful as  one 

might hope. Requiring task graphs t o  be acyclic is a fairly severe restriction - the vast 

majority of programs are expressed using some form of loop, and i t  is in those loops where 

most of the parallelism may be found. Special provisions must also be made for conditional 

expressions, which cannot be scheduled directly by these algorithms either. 

Properly structured loops have a single entry and a single exit point. This 

characteristic can be exploited by scheduling the loop body as  if i t  were acyclic (Figure 9.2). 

The loop execution time for this type of scheduling will be the number of loop iterations 

times the loop body schedule length. Thus a short schedule for the loop body will provide a 

short (but not necessarily optimal) execution for the whole loop. 

Further improvements may be realized by unrolling the loop some number of iterations 

and scheduling the combined iterations. The difficulty with this solution is in guaranteeing 

Figure 9.2. - Simple Loop 



( 4  
Figure 9.3. - Unrolled Loops 

each part  of the loop executes the correct number of times. If the number of loop iterations 

(N)  is known when the schedule is generated, tha t  number of iterations may be unrolled, 

giving an  acyclic graph t o  schedule (Figure 9.3a). If the loop is too large t o  unroll 

completely, then some "reasonable" number of iterations ( i )  might be chosen. The schedule 

would then consist of (N mod i)+N unrolled iterations - N iterations inside the loop and 

N mod i iterations either before or after the loop (Figure 9.3b). 

If the number of loop iterations is not known when the schedule is generated but is 

known before the loop begins execution, some loop unrolling can still take place (Figure 

9.3~) .  The idea here is tha t  the initial entry point of the loop causes execution t o  begin in 

such a way tha t  when the final iteration of the unrolled loop is accomplished, the original 

loop has executed the correct number of iterations. 



Further work in this area would allow researchers to use large graphs from real 

programs in comparing alternative systems. Most importantly, it  could ultimately give 

compilers the ability to automatically schedule programs for efficient parallel execution in 

ways that humans are unable to do. 



APPENDIX A 

Task Density Functions 

This appendix contains graphs which represent the density of tasks available for 

execution with respect t o  the critical path of a program. The x-axis represents the 

progression of time, the y-axis represents the the relative number of tasks whose earliest 

schedulable time (EST) corresponds with the x-axis value. The area under each curve has 

been normalized t o  1, i.e., tdf ( t )  d t  = 1. The actual task distribution for a given 

program may be obtained by multiplying the function by the program's average parallelism 

(i.e. laak weight ) Important values for each density function is given in Table A.1. 
critical path weight 

The s ta r t  time is fixed at time 0, finish time is fixed a t  time 1. 

Table A.1. - Task Distribution Function Parameters 

- -+- 

e [; @>J tdf = 
area 

Distribution 
0 
1 
2 
3 
4 
5 
6 
7 
8 

a 

0.10 
0.10 
0.10 
0.50 
0.50 
0.50 
1.00 
1.00 
1.00 

b 

0.10 
0.50 
1.00 
0.10 
0.50 
1.00 
0.10 
0.50 
1.00 

Area 

0.7470 
0.4226 
0.1969 
0.4226 
0.3551 
0.2432 
0.1970 
0.2432 
0.2052 

Mean 

0.5000 
0.3164 
0.1877 
0.6836 
0.5000 
0.3641 
0.8121 
0.6358 
0.4999 

Variance 

0.0509 
0.0259 
0.0114 
0.0260 
0.0155 
0.0086 
0.0116 
0.0086 
0.0060 
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APPENDIX B 

Scheduler Performance Characteristics 

In this appendix the performance characteristics for each scheduler are displayed. The 

problem space is divided by task distribution, average parallelism, program size, 

communication latency, and processor count. It shows how changing a given characteristic, 

such as  program size, can affect the performance of a given scheduler. Each 

scheduler/characteristic pair uses a histogram chart, a bar chart, and a table. The 

histogram chart shows histograms side-by-side, t o  compare the distributions of schedule 

lengths for a given scheduler. The bar chart shows the average sequential schedule length 

(dashed line), the average length of the parallel schedules, and the average length of 

min(sequentia1 schedule, parallel schedule), which is referred t o  as  the corrected schedule 

length. This third item recognizes tha t  the parallel schedules generated by the different 

schedulers are not always shorter than a sequential schedule, and shows the effect of 

selecting the shorter of the two. 

The table gives specific values of interest in a numerical form. The values are: 

% P I S  Percentage of parallel schedules tha t  were shorter than a sequential schedule. 

s/P 
T, 

The speedup gained by the parallel schedule, or -, where T, is the length of a 
TP 

sequential schedule and Tp is the length of the parallel schedule. 

s/c T, 
The speedup gained by the corrected schedule, or -, where T, is the length of 

Te 

the corrected schedule. 



p/c The speedup gained by correcting the parallel schedule for schedules which are 

TP longer than a sequential schedule, or -. 
Tc 

P Eff 1 0  
This entry gives the parallel e f i c i ency  of a schedule, defined as  - , where n 

nXTp 

is the number of available processors. 

T, 
C Eff This entry gives the corrected parallel c f i c i e n c y  of a schedule, defined a s  -, 

n  x Tc 

where n  is the number of available processors. 

m 
CPU Sec This field gives the average number of CPU seconds on a Sequent Symmetry 

used t o  schedule the programs. 



B.1. Scheduler Performance By Task Distribution 

B.1.1. Figure B.1. - Scheduler 1 
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B.1.2. Figure B.2. - Scheduler 2 
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B.1.3. Figure B.3. - Scheduler 3 
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B.1.S. Figure B.5. - Scheduler 5 
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B.1.6. Figure B.6. - Scheduler 6 
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B.1.7. Figure B.7. - Scheduler 7 
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B.1.8. Figure B.8. - Scheduler 8 
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B.l . l l .  Figure B . l l .  - Scheduler 11 
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B.1.12. Figure B.12. - Scheduler 12 
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B.2. Scheduler Performance By Parallelism 

B.2.1. Figure B.13. - Scheduler 1 
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B.2.4. Figure B.16. - Scheduler 4 
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B.2.5. Figure B.17. - Scheduler 5 
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B.2.8. Figure B.18. - Scheduler 8 

Average 
Schedule 10000 - 
Length 

120000 - 
1 OOOOO - 
80000 - Schedule 

Length 60000 - 
40000 - 
20000 - 

0 -  

2 4 8 16 32 64 128 256 
Parallelism 

i 

I 

1 
i i i 

I 
i i j 

I i i I 

! s f  i i j 
5 - a A -  s J -. - i 

2 4 8 16 32 64 128 256 
Parallelism 

-- 

I I I I 1 I I I 

S I C  
P I C  
P ER 
C Eff 
CPUSec  

Average Parallelism 
2 4 8 16 32 64 128 256 

66.67 66.03 74.07 78.52 83.85 84.22 84.57 83.95 
0.76 0.74 1.13 1.48 1.70 1.80 1.79 1.66 
1.58 1.56 1.97 2.33 2.65 2.85 2.89 2.77 
2.09 2.12 1.74 1.58 1.56 1.59 1.61 1.67 
0.27 0.25 0.38 0.49 0.57 0.63 0.65 0.65 
0.30 0.28 0.40 0.51 0.59 0.64 0.67 0.67 

30.87 34.53 39.91 43.70 57.17 76.72 111.04 183.65 



B.2.7. Figure B.19. - Scheduler 7 
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B.2.8. Figu re  B.20. - Scheduler 8 
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B.2.9. Figure B.21. - Scheduler 9 
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B.2.10. Figure B.22. - Scheduler 10 
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B.2.11. Figure B.23. - Scheduler 11 
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B.2.12. Figure B.24. - Scheduler 12 
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B.3. Scheduler Performance By Program Sice 

B.3.1. Figure B.25. - Scheduler 1 
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B.3.2. Figure B.26. - Scheduler 2 

Schedule 
Length 

Average 
Schedule 10000 - 
Length 

128 256 512 1024 2048 
Program Size 

I I I 1 I 

128 256 512 1024 2048 
Program Size 

%P<S 
s /P  
s/c 
p/c 
P Eff 
C Eff 
CPU Sec 

Program Size 
128 256 512 1024 2048 

91.3690.64 89.96 89.71 90.77 
2.09 2.21 2.30 2.36 2.44 
2.25 2.41 2.56 2.67 2.80 
1.07 1.09 1.11 1.13 1.14 
0.44 0.49 0.53 0.56 0.59 
0.44 0.49 0.54 0.57 0.60 

36.64 80.76 173.16 382.43 840.53 



B.3.3. Figure B.27. - Scheduler 3 
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B.3.4. Figure B.28. - Scheduler 4 
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B.3.5. Figure B.29. - Scheduler 5 
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B.3.6. Figure B.30. - Scheduler 6 
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B.3.7. Figure B.31. - Scheduler 7 

Program Size 

120000 - 
100000 - 
80000 - Schedule 

Length 60000 - 
40000 - 

Average 
Schedule 
Length 

! 
I 

i 

f 

I 
i 

128 256 512 1024 2048 
Program Size 

20000 - j 
i i 

i 
- 

% P I S  
s/P 
s/c 
p/c 
P Eff 
C Eff 
CPU Sec 

Program Size 
128 256 512 1024 2048 

72.70 74.38 76.87 78.46 79.54 
0.99 1.10 1.18 1.26 1.33 
1.88 2.01 2.13 2.23 2.34 
1.90 1.84 1.80 1.78 1.76 
0.37 0.42 0.46 0.49 0.53 
0.39 0.44 0.48 0.51 0.54 
2.97 6.31 13.16 27.75 57.75 



B.3.8. Figure B.32. - Scheduler 8 
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B.3.9. Figure B.33. - Scheduler 9 
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B.3.10. Figure B.34. - Scheduler 10 
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B.3.11. Figure B.35. - Scheduler 11 
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B.3.12. Figure B.36. - Scheduler 12 
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B.4. Scheduler Performance By Communication Latency 

B.4.1. Figure B.37. - Scheduler 1 

0 0.125 0.25 0.5 1 2 4 8 16 

Latency 

50000 - 
40000 - 

Schedule 30000 - 
Length 

20000 - 
10000 - 

0 -  

Average 
Schedule 
Length 

1 
! 

1 

i 

- d d i d  

0 0.125 0.25 0.5 1 2 4 8 16 

Latency 

I I I 

% P I S  
s/P 
SIC  
p/c 
P Eff 
C Eff 
CPU Sec 

Latency 
0 0.125 0.25 0.5 1 2 4 8 16 

100.00 100.00 100.00 100.00 100.00 100.00 99.41 65.63 36.59 
5.41 5.39 5.33 5.15 4.63 3.49 2.13 1.26 0.82 
5.41 5.39 5.33 5.15 4.63 3.49 2.13 1.43 1.12 
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.14 1.37 
0.77 0.77 0.76 0.74 0.68 0.53 0.33 0.18 0.12 
0.77 0.77 0.76 0.74 0.68 0.53 0.33 0.20 0.16 

236.01 367.55 377.65 377.22 373.21 364.08 357.92 351.85 331.47 



B.4.2. Figure B.38. - Scheduler 2 
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B.4.3. Figure B.39. - Scheduler 3 

Average 
Schedule 10000 
Length 

70000 - 
60000 - 
50000 - 

Schedule 40000 - 
Length 

30000 - 
20000 - 
loo00 - 

o - 

0 0.125 0.25 0.5 1 2 4 8 16 
Latency 

i , i 
i 

i i 1 

j 4 f J j j j  
~ ; e i  

I I I I I I I I I 
0 0.125 0.25 0.5 1 2 4 8 16 

Latency 

%P<S 
SF' 
S I C  
P I C  
P Eff 
C Eff 
CPU Sec 

Latency 
0 0.125 0.25 0.5 1 2 4 8 16 

100.00 100.00 100.00 '100.00 100.00 100.00 94.67 67.70 36.89 
5.40 5.39 5.32 5.15 4.48 3.28 2.01 1.17 0.78 
5.40 5.39 5.32 5.15 4.48 3.28 2.04 1.47 1.13 
1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.25 1.45 
0.77 0.77 0.76 0.74 0.66 0.51 0.34 0.19 0.12 
0.77 0.77 0.76 0.74 0.66 0.51 0.34 0.22 0.16 

289.44 783.10 688.41 513.20 404.12 379.77 380.50 389.73 399.73 



B.4.4. Figure B.40. - Scheduler 4 
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B.4.6. Figure B.41. - Scheduler 6 
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B.4.6. Figure B.42. - Scheduler 6 

Schedule 8W00 4 

Average 
Schedule 10000 - 
Length 

0 0.125 0.25 0.5 1 2 4 8 16 

Latency 

Latency 

%P<S 
s/P 
s/c 
p/c 
P Efl 
C Eli 
CPU Sec 

Latency 
0 0.125 0.25 0.5 1 2 4 8 16 

100.00 100.00 100.00 100.00 100.00 98.96 53.48 32.59 11.41 
5.40 5.24 5.04 4.63 3.68 2.25 1.23 0.64 0.33 
5.40 5.24 5.04 4.63 3.68 2.25 1.49 1.20 1.05 
1.00 1.00 1.00 1.00 1.00 1.00 1.21 1.86 3.20 
0.77 0.75 0.73 0.69 0.57 0.37 0.20 0.10 0.05 
0.77 0.75 0.73 0.69 0.57 0.37 0.22 0.17 0.15 

48.06 58.07 58.86 58.97 59.53 59.83 60.06 60.02 59.78 



B.4.7. Figure B.43. - Scheduler 7 
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B.4.8. Figure B.44. - Scheduler 8 
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B.4.9. Figure B.46. - Scheduler 9 
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B.4.10. Figure B.48. - Scheduler 10 
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B.4.11. Figure B.47. - Scheduler 11 
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B.4.12. Figure B.48. - Scheduler 12 
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B.6. Scheduler Performance By Processor Count 

B.S.1. Figure B.49. - Scheduler 1 
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B.6.2. Figure B.60. - Scheduler 2 
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B.6.3. Figure B.51. - Scheduler 3 
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B.6.4. Figure B.62. - Scheduler 4 
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B.6.6. Figure B.63. - Scheduler 6 
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B.S.6. Figure B.54. - Scheduler 6 
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B.5.7. Figure B.55. - Scheduler 7 
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B.S.8. Figure B.58. - Scheduler 8 
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B.5.9. Figure B.57. - Scheduler 9 
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B.6.10. Figure B.58. - Scheduler 10 
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B.5.11. Figure B.59. - Scheduler 11 
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B.S.12. Figure B.60. - Scheduler 12 

700000 

600000 

Schedule 400000 
Length 300000 

200000 

1 o m  
n 

Processor Count 

Average 25000 
Schedule 
Length 

15000 

4 8 16 
Processor Count 

%P<S 

s /P  
s/c 
p/c 
P Eff 
C Eff 
CPU Sec 

Processor Count 
4 8 16 

55.70 56.64 57.53 
0.26 0.28 0.28 
1.54 1.67 1.68 
5.91 6.02 6.01 
0.46 0.35 0.24 
0.54 0.38 0.26 
6.32 11.51 30.01 



APPENDM C 

Comparison of Schedulers By Problem Characteristic 

In this appendix the performance of different schedulers is compared for each variable 

in the problem space. The variables are: task distribution, average parallelism, program 

size, communication latency, and processor count. It shows how different schedulers respond 

t o  a given characteristic, such as  program size. Each scheduler/characteristic pair uses a 

histogram chart,  a bar chart, and a table. The histogram chart shows histograms side-by- 

side, t o  compare the distributions of schedule lengths for the different schedulers (1 through 

12). The bar chart shows the average sequential schedule length (dashed line), the average 

length of the parallel schedules, and the average length of min(sequentia1 schedule, parallel 

schedule), which is referred t o  as  the corrected schedule length. This third item recognizes 

tha t  the parallel schedules generated by the different schedulers are not always shorter than 

a sequential schedule, and shows the effect of selecting the shorter of the two. 

The table gives specific values of interest in a numerical form. The values are: 

% P I S  Percentage of parallel schedules tha t  were shorter than a sequential schedule. 

S /P  
T, 

The speedup gained by the parallel schedule, or -, where To is the length of a 
TP 

sequential schedule and Tp is the length of the parallel schedule. 

s/c To 
The speedup gained by the corrected schedule, or -, where Te is the length of 

Te 

the corrected schedule. 

p/c The speedup gained by correcting the parallel schedule for schedules which are 

P longer than a sequential schedule, or -. 
Tc 



T, P Eff This entry gives the parallel e f i c i e n c y  of a schedule, defined a s  - , where n  
n X T ,  

is the number of available processors. 

1 8  C Eff This entry gives the cor rec t ed  parallel e f i c i e n c y  of a schedule, defined as  - 
n X T ,  ' 

where n  is the number of available processors. 

CPU Sec This field gives the average number of CPU seconds on a Sequent symmetrym 

used t o  schedule the programs. 



C.1. A11 Test Cases 

C.1.1. Figure C.1. - All Tests (6075 Cases) 
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89.07 90.40 88.81 89.10 76.84 77.38 77.10 77.76 75.67 61.70 61.00 56.63 
2.41 2.39 2.30 2.29 1.27 1.30 1.28 1.24 1.12 0.36 0.35 0.27 
2.72 2.71 2.69 2.70 2.29 2.27 2.26 2.27 2.09 1.86 1.85 1.63 
1.13 1.13 1.17 1.18 1.81 1.74 1.77 1.84 1.87 5.10 5.27 5.98 
0.54 0.54 0.54 0.54 0.48 0.47 0.47 0.47 0.40 0.42 0.42 0.35 
0.55 0.54 0.55 0.55 0.50 0.49 0.49 0.50 0.42 0.46 0.46 0.39 

348.55 379.08 469.78 867.21 3.72 58.13 26.83 56.98 1.23 23.43 52.72 15.95 



C.2. Comparison By Task Distribution 

C.2.1. Figure C.2. - Distribution = 0 (675 Cases) 
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91.26 93.04 91.11 91.41 76.59 77.93 78.07 78.52 75.11 64.00 63.11 59.26 
2.49 2.43 2.42 2.40 1.26 1.38 1.35 1.31 1.09 0.46 0.41 0.33 
2.71 2.71 2.70 2.70 2.26 2.35 2.34 2.35 2.08 1.85 1.84 1.64 
1.09 1.12 1.12 1.13 1.78 1.70 1.73 1.79 1.91 4.03 4.49 5.01 
0.57 0.57 0.57 0.57 0.51 0.51 0.51 0.51 0.40 0.44 0.45 0.37 
0.58 0.57 0.58 0.58 0.52 0.53 0.53 0.53 0.42 0.48 0.48 0.41 

324.47 352.66 419.27 798.10 2.98 54.50 25.37 50.05 1.19 19.86 46.83 14.30 



C.2.2. Figure C.3. - Distribution = 1 (676 Cases) 
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89.04 90.67 93.19 93.33 78.07 78.07 77.78 79.26 75.26 62.96 62.96 58.07 
2.46 2.40 2.61 2.51 1.29 1.36 1.33 1.32 1.11 0.43 0.40 0.31 
2.72 2.71 2.86 2.85 2.28 2.30 2.30 2.35 2.09 1.87 1.84 1.68 
1.11 1.13 1.09 1.14 1.77 1.70 1.73 1.78 1.88 4.30 4.60 5.41 
0.55 0.55 0.57 0.57 0.49 0.48 0.48 0.50 0.40 0.43 0.43 0.38 
0.56 0.55 0.57 0.57 0.51 0.50 0.50 0.52 0.42 0.47 0.47 0.42 

329.20 358.93 425.95 815.98 3.38 55.39 25.42 52.41 1.21 21.73 49.04 15.60 



C.2.3. Figure C.4. - Distribution = 2 (675 Cases) 
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2.68 2.67 3.01 3.03 2.29 2.23 2.22 2.35 2.07 1.84 1.82 1.69 
1.13 1.13 1.12 1.12 1.74 1.70 1.72 1.76 1.84 4.66 4.64 5.69 
0.53 0.52 0.57 0.57 0.47 0.45 0.45 0.49 0.39 0.41 0.41 0.37 
0.53 0.53 0.57 0.57 0.49 0.47 0.47 0.50 0.42 0.45 0.45 0.42 

336.16 368.04 433.74 824.09 4.18 57.03 25.95 55.03 1.24 24.74 52.50 17.22 



C.2.4. Figure C.6. - Distribution = 3 (676 Cases) 

Schedule 4- 
Length 

300000 

200000 1 
! 

100000 

--~~ii-iiiii~ 

Average 
Schedule 8000 - 
Length 6000 - 

1 1 1 1 1 1 1 1 1 1 1 1 1  
S e q l  2 3 4 5 6 7 8 9 1 0 1 1 1 2  

Scheduler 

I  I  I  I  I  I  I  I  I  I  I  I  
1 2 3 4 5 6 7 8 9 1 0 1 1 1 2  

Scheduler 

%P<S 

s/c 
p/c 
P Eff 
C Eff 
CPU Sec 

Scheduler 
1 2 3 4 5 6 7 8 9 1 0 1 1 1 2  

90.22 91.56 88.44 88.74 76.74 77.93 77.63 78.37 75.41 61.48 62.07 58.67 
2.38 2.39 2.24 2.25 1.22 1.32 1.29 1.24 1.11 0.33 0.35 0.27 
2.73 2.72 2.61 2.60 2.26 2.30 2.29 2.28 2.10 1.86 1.87 1.61 
1.15 1.14 1.16 1.16 1.84 1.74 1.77 1.84 1.88 5.62 5.33 5.90 
0.55 0.55 0.54 0.54 0.49 0.48 0.48 0.48 0.40 0.43 0.43 0.34 
0.56 0.55 0.55 0.55 0.51 0.50 0.50 0.50 0.42 0.47 0.47 0.38 

345.11 373.73 460.77 853.34 3.32 57.21 26.46 54.65 1.22 20.81 50.58 14.91 



C.2.5. Figure C.6. - Distribution = 4 (675 Cases) . 

Schedule ~OOOOO 

200000 
! 

100000 i ' i i ;  i I =-!iJiii~~1 J 
0 ::: 

Average 
Schedule 8000 - 
Length 6000 - 

1 1 1 1 1 1 1 1 1 1 1 1 1  
S e q l  2 3 4 5 6 7 8 9 1 0 1 1 1 2  

Scheduler 

I I I I I  I  I  I  I  I  I  I  
1 2 3 4 5 6 7 8 9 1 0 1 1 1 2  

Scheduler 

%P<S 
s/P 
s/c 
p/c 
P Eff 
C Eff 
CPU Sec 

Scheduler 
1 2 3 4 5 6 7 8 9 1 0 1 1 1 2  

89.19 89.93 88.00 89.04 76.15 78.22 77.93 77.93 76.15 62.22 61.33 55.85 
2.46 2.39 2.22 2.23 1.27 1.33 1.30 1.22 1.13 0.42 0.35 0.29 
2.75 2.74 2.66 2.66 2.31 2.30 2.30 2.27 2.12 1.88 1.84 1.63 
1.12 1.15 1.19 1.19 1.81 1.74 1.77 1.86 1.87 4.47 5.31 5.70 
0.55 0.55 0.54 0.54 0.49 0.48 0.48 0.47 0.40 0.43 0.43 0.35 
0.56 0.55 0.55 0.55 0.51 0.50 0.50 0.50 0.43 0.47 0.47 0.40 

349.93 380.61 477.16 875.43 3.56 57.89 26.89 57.34 1.23 22.38 52.23 15.82 



C.2.6. Figure C.7. - Distribution = 5 (875 Cases) 

Schedule 400000 
Length 

300000 

200000 

100000 I I 

I I I I I I I I I I I I I  
S e q l  2 3 4 5 6 7 8 9 1 0 1 1 1 2  

Scheduler 

Average 
Schedule 
Length 

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2  

Scheduler 

%P<S 
s/P 
s/c 
p/c 
P Eff 
C Eff 
CF'U Sec 

Scheduler 
1 2 3 4 5 6 7 8 9 1 0 1 1 1 2  

88.30 90.07 87.85 88.44 77.33 77.04 76.89 77.48 76.44 61.63 59.41 56.59 
2.38 2.42 2.28 2.27 1.29 1.28 1.25 1.21 1.14 0.36 0.33 0.27 
2.74 2.73 2.70 2.70 2.34 2.26 2.25 2.26 2.12 1.85 1.84 1.62 
1.15 1.13 1.19 1.19 1.81 1.77 1.80 1.86 1.86 5.19 5.56 5.97 
0.54 0.53 0.53 0.53 0.48 0.46 0.46 0.47 0.40 0.41 0.41 0.35 
0.54 0.54 0.54 0.54 0.50 0.48 0.48 0.49 0.43 0.45 0.45 0.40 

357.54 388.22 486.70 888.79 3.92 59.25 27.42 59.87 1.24 24.88 54.42 16.73 
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C.2.7. Figure C.8. - Distribution = 6 (675 Cases) 

Schedule 400000 
Length 

300000 

S e q l  2 3 4 5 6 7 8 9 1 0 1 1 1 2  

Scheduler 

Average 
Schedule 8000 

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2  
Scheduler 

% P I S  
S F '  
s/c 
p/C 
P Eff 
C Eff 
CPU Sec 

Scheduler 
1 2 3 4 5 6 7 8 9 1 0 1 1 1 2  

87.85 88.44 85.04 84.59 75.85 76.59 76.30 76.30 75.41 60.15 60.44 53.33 
2.35 2.32 2.11 2.13 1.23 1.24 1.21 1.17 1.10 0.33 0.31 0.23 
2.69 2.68 2.54 2.54 2.26 2.22 2.20 2.20 2.07 1.84 1.85 1.57 
1.15 1.15 1.21 1.19 1.84 1.79 1.82 1.88 1.88 5.64 6.02 6.85 
0.52 0.52 0.51 0.51 0.47 0.45 0.45 0.45 0.39 0.41 0.41 0.31 
0.53 0.53 0.52 0.52 0.49 0.48 0.47 0.47 0.41 0.45 0.45 0.36 

363.99 395.58 507.85 914.43 3.93 60.57 27.83 60.13 1.24 24.10 55.65 15.63 



C.2.8. Figure C.9. - Distribution = 7 (676 Cases) 

600000 

500000 

Schedule 400000 
Length 300000 

200000 

Average 
Schedule 8000 - 

S e q l  2 3 4 5 6 7 8 9 1 0 1 1 1 2  

Scheduler 

I I I I I I I I I I I I 

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2  

Scheduler 

% P I S  
s/P 
s/c 
p/c 
P Eff 
C Eff 
CPU Sec 

Scheduler 
1 2 3 4 5 6 7 8 9 1 0 1 1 1 2  

88.59 90.81 85.78 85.93 76.30 77.48 76.89 76.74 76.00 62.81 60.59 55.11 
2.39 2.43 2.15 2.16 1.25 1.27 1.24 1.18 1.13 0.33 0.34 0.25 
2.72 2.72 2.61 2.61 2.31 2.25 2.24 2.22 2.10 1.88 1.88 1.61 
1.14 1.12 1.21 1.21 1.84 1.77 1.80 1.89 1.87 5.67 5.48 6.32 
0.53 0.53 0.52 0.52 0.48 0.46 0.46 0.46 0.40 0.42 0.41 0.33 
0.54 0.54 0.53 0.53 0.50 0.48 0.48 0.48 0.42 0.46 0.46 0.38 

362.50 393.50 503.09 909.83 3.96 60.19 27.71 60.70 1.24 24.16 55.02 16.41 



(2.2.9. Figure C.lO. - Distribution = 8 (675 Cases) 

Average 
Schedule 8000 - 

700000 - 
600000 - 
500000 - 

Schedule 400000 - 
Length 

300000 - 
200000 - 
100000 - 

0 -  

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2  
Scheduler 

I ! I 

! 

i ' J  i 
--iiiiij-ii A i 

I I I I I I I I I I I I I 
S e q l  2 3 4 5 6 7 8 9 1 0 1 1 1 2  

Scheduler 

%P<S 
s/P 
s/c 
p/c 
P EB 
C EB 
CPU Sec 

Scheduler 
1 2 3 4 5 6 7 8 9 1 0 1 1 1 2  

88.59 89.19 86.67 87.26 77.19 76.44 76.15 76.44 76.15 60.00 60.30 55.85 
2.42 2.37 2.12 2.10 1.29 1.25 1.23 1.16 1.14 0.29 0.31 0.23 
2.71 2.71 2.63 2.63 2.33 2.24 2.23 2.20 2.11 1.84 1.83 1.61 
1.12 1.14 1.24 1.25 1.81 1.79 1.82 1.90 1.85 6.33 5.98 6.88 
0.53 0.53 0.52 0.52 0.48 0.45 0.45 0.45 0.40 0.41 0.41 0.34 
0.54 0.53 0.53 0.53 0.50 0.47 0.47 0.47 0.42 0.45 0.45 0.39 

368.47 400.46 513.46 924.85 4.19 61.12 28.38 62.60 1.26 28.19 58.25 16.89 



C.3. Comparison By Parallelism 

C.3.1. Figure C.11. - 1.6 < Parallelism < 3 (135 Cases) 

Average 
Schedule 
Length 

180000 - 
160000 - 
140000 - 
120000 - 

Schedule 100000 - 
Length 80000 - 

60000 - 
40000 - 
20000 - 

0 -  

S e q l  2 3 4 5 6 7 8 9 1 0 1 1 1 2  
Scheduler 

1 

- - j : j j i  i j j j  1 

1 2 3 4 5 6 7  8 9 1 0 1 1 1 2  
Scheduler 

I I I I I I I 1 I I I I 1 

%P<S 
SP- 
s/c 
p/c 
P Eff 
C Eff 
CPU Sec 

Scheduler 
1 2 3 4 5 6 7 8 9 1 0 1 1 1 2  

100.00 100.00 100.00 100.00 77.78 66.67 66.67 66.67 61.48 73.33 77.78 73.33 
1.87 1.89 1.91 1.91 1.44 0.76 0.76 0.77 0.61 1.37 1.43 1.24 
1.87 1.89 1.91 1.91 1.63 1.58 1.58 1.58 1.45 1.57 1.64 1.53 
1.00 1.00 1.00 1.00 1.13 2.09 2.09 2.07 2.39 1.15 1.14 1.23 
0.34 0.34 0.34 0.34 0.31 0.27 0.27 0.27 0.21 0.29 0.30 0.28 
0.34 0.34 0.34 0.34 0.31 0.30 0.30 0.30 0.25 0.30 0.31 0.29 

171.53 183.66 198.23 388.22 1.54 30.87 16.44 25.44 0.79 5.85 19.89 5.49 



C.3.2. Figure C.12. - 3 < Parallelism < 6 (1080 Cases) 

Average 
Schedule 8000 - 

180000 - 
160000 - 
140000 - 
120000 - 

Schedule 100000 - 
Length 80000 

S e q l  2 3 4 5 6 7 8 9 1 0 1 1 1 2  
Scheduler 

i 

i 

1 2 3 4  5 6  7 8 9 1 0 1 1 1 2  
Scheduler 

60000 - 
40000 - 
20000 - 

0 -- 

: 

! i 
I i i i i 

i 
j f i !  : i ! - ' j  ' A J  j j J  

i i 1 - i - 

%P<S 
s/P 
s/c 
p/c  
P Eff 
C Eff 
CPU Sec 

I I I I I I I I I I I I 1 

Scheduler 
1 2 3 4 5 6 7 8 9 1 0 1 1 1 2  

88.52 95.46 88.43 88.52 69.26 66.02 65.19 65.00 63.15 58.70 60.28 58.06 
1.82 1.93 1.78 1.78 0.96 0.74 0.73 0.73 0.64 0.76 0.77 0.59 
1.94 1.96 1.96 1.96 1.68 1.56 1.56 1.56 1.46 1.55 1.58 1.44 
1.07 1.02 1.10 1.10 1.76 2.12 2.13 2.13 2.28 2.04 2.06 2.43 
0.33 0.34 0.33 0.33 0.29 0.25 0.25 0.25 0.21 0.26 0.27 0.23 
0.34 0.34 0.34 0.34 0.31 0.28 0.28 0.28 0.25 0.29 0.30 0.27 

203.84 217.03 234.00 463.48 1.72 34.53 17.23 28.98 0.87 7.94 24.87 6.96 



C.3.3. Figure C.13. - 6 < Parallelism < 12 (1215 Cases) 

Schedule 
Length 300000 

Average 
Schedule 
Length 

S e q l  2 3 4 5 6 7 8 9 1 0 1 1 1 2  

Scheduler 

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2  
Scheduler 

%P<s 
s /P  
s/C 
p/c 
P Eff 
C Eff 
CPU Sec 

Scheduler 
1 2 3 4 5 6 7 8 9 1 0 1 1 1 2  

88.40 89.88 87.65 87.41 72.76 74.07 74.07 74.07 72.76 59.01 59.18 55.72 
2.21 2.21 2.09 2.08 0.94 1.13 1.11 1.09 0.93 0.40 0.42 0.32 
2.49 2.46 2.49 2.48 2.03 1.97 1.96 1.97 1.78 1.73 1.76 1.55 
1.13 1.12 1.19 1.20 2.17 1.74 1.77 1.80 1.91 4.30 4.24 4.84 
0.46 0.46 0.46 0.46 0.40 0.38 0.38 0.38 0.31 0.35 0.36 0.28 
0.47 0.46 0.47 0.47 0.42 0.40 0.40 0.40 0.33 0.39 0.40 0.33 

250.10 269.72 297.69 567.71 1.98 39.91 19.43 36.46 0.95 11.72 31.71 9.55 



C.3.4. Figure C.14. - 12 < Parallelism < 24 (1215 Cases) 

Average 
Schedule 
Length 

600000 - 
500000 - 
400000 - 

Schedule 
Length 300000 - 

200000 - 

1 2 3 4 5 6 7  8 9 1 0 1 1 1 2  
Scheduler 

! j j  

S e q l  2 3 4 5 6 7 8 9 1 0 1 1 1 2  
Scheduler 

%P<S 
s/P 
s/c 
p/c 
P Efr 
C Efr 
CPU Sec 

Scheduler 
1 2 3 4 5 6 7 8 9 1 0 1 1 1 2  

88.89 88.97 88.89 89.38 76.46 78.52 78.11 79.26 77.45 61.48 62.22 55.64 
2.52 2.48 2.41 2.43 1.23 1.48 1.44 1.37 1.22 0.30 0.31 0.25 
2.97 2.93 2.89 2.89 2.32 2.33 2.32 2.33 2.11 1.89 1.92 1.65 
1.18 1.18 1.20 1.19 1.89 1.58 1.62 1.71 1.72 6.22 6.21 6.68 
0.57 0.56 0.56 0.57 0.50 0.49 0.49 0.50 0.40 0.44 0.44 0.36 
0.58 0.57 0.57 0.57 0.52 0.51 0.51 0.52 0.42 0.48 0.48 0.41 

280.26 303.77 338.98 639.18 2.20 43.70 20.86 41.35 1.00 15.25 37.43 11.85 



C.3.6. Figure C.15. - 24 < Parallelism < 48 (972 Cases) 

S e q l  2 3 4 5 6 7 8 9 1 0 1 1 1 2  

Scheduler 

600000 - 

500000 - 

400000 - 
Schedule 
Length 300000 - 

200000 - 
1OOO00 - 

10000 
Average 
Schedule 8000 

Length 6000 

! I 

I I !  

, I  
I '  

1 2  3 4 5 6 7  8 9 1 0 1 1 1 2  

Scheduler 

0 -  =dJi~~--ii , 

%P<S 
s / P  
s/c 
p/c 
P Eff 
C Eff 
CPU Sec 

Scheduler 
1 2 3 4 5 6 7 8 9 1 0 1 1 1 2  

89.51 89.09 89.40 90.33 80.97 83.85 83.85 84.98 80.56 63.99 61.73 56.58 
2.76 2.70 2.61 2.56 1.55 1.70 1.65 1.52 1.45 0.28 0.27 0.23 
3.21 3.20 3.04 3.04 2.58 2.65 2.64 2.64 2.40 2.01 1.98 1.72 
1.16 1.18 1.16 1.19 1.66 1.56 1.60 1.74 1.65 7.11 7.36 7.38 
0.65 0.64 0.64 0.64 0.58 0.57 0.57 0.58 0.48 0.50 0.50 0.41 
0.65 0.65 0.65 0.65 0.60 0.59 0.59 0.60 0.50 0.54 0.54 0.46 

363.91 395.41 475.82 870.06 3.08 57.17 26.86 55.60 1.25 22.59 51.88 16.62 



C.3.6. Figure C.16. - 48 < Parallelism < 96 (729 Cases) 

600000 - 
500000 - 

400000 - 
Schedule 
Length 300000 - 

200000 - I 
100000 - I I 

,, 
S e q l  2 3 4 5 6 7 8 9 1 0 1 1 1 2  

Scheduler 

12000 - 
Average 10000 - 
Schedule 
Length 8000 - 

6000 - 

Schedule Length 

I I I I I I I I I I I I 
1 2 3 4 5 6 7  8 9 1 0 1 1 1 2  

Scheduler 

%P<S 
s/P 
s/c 
P/C 
P Eff 
C Eff 
CPU Sec 

Scheduler 
1 2 3 4 5 6 7 8 9 1 0 1 1 1 2  

89.16 88.34 88.89 89.30 82.72 84.22 84.09 85.05 83.54 65.02 61.18 56.79 
2.82 2.70 2.64 2.63 1.68 1.80 1.75 1.60 1.59 0.35 0.29 0.23 
3.22 3.22 3.09 3.09 2.75 2.85 2.84 2.82 2.65 2.06 1.96 1.73 
1.14 1.19 1.17 1.17 1.64 1.59 1.62 1.77 1.66 5.86 6.65 7.44 
0.68 0.68 0.68 0.68 0.62 0.63 0.62 0.63 0.55 0.54 0.53 0.44 
0.69 0.69 0.69 0.69 0.64 0.64 0.64 0.65 0.57 0.58 0.57 0.49 

473.72 514.76 680.99 1205.80 4.84 76.72 35.26 78.74 1.58 34.76 73.10 23.24 



C.3.7. Figure C.17. - 96 < Parallelism < 192 (488 Cases) 

Schedule qOOOOO 
Length 

S e q l  2 3 4 5 6 7 8 9 1 0 1 1 1 2  
Scheduler 

Average 
Schedule 
Length 

Average Sequential 
Schedule Length 

1 2 3 4 5 6  7 8 9 1 0 1 1 1 2  

Scheduler 

%P<S 
s/P 
s/c 
p/c 
P Eff 
C Eff 
CPU Sec 

Scheduler 
1 2 3 4 5 6 7 8 9 10 11 12 

88.68 88.48 88.68 88.68 84.16 84.57 83.95 85.39 84.57 63.79 59.88 54.73 
2.70 2.62 2.54 2.53 1.66 1.79 1.75 1.65 1.63 0.36 0.34 0.23 
3.10 3.10 3.11 3.12 2.81 2.89 2.88 2.90 2.74 2.03 1.97 1.73 
1.14 1.18 1.23 1.23 1.70 1.61 1.65 1.75 1.69 5.62 5.72 7.48 
0.70 0.69 0.70 0.70 0.65 0.65 0.65 0.66 0.60 0.55 0.54 0.46 
0.70 0.70 0.71 0.71 0.66 0.67 0.67 0.68 0.61 0.59 0.59 0.51 

637.22 697.28 985.83 1750.92 8.92 11 1.04 48.60 119.16 2.06 55.88 111.80 34.02 



C.3.8. Figure C.18. - 192 < Parallelism < 384 (243 Cases) 

20000 - 
Average 
Schedule 15000 - 
Length 

loo00 - 

Schedule 400000 
Length 

300000 - 
200000 - 
100000 - 

0- 

S e q l  2 3 4 5 6 7 8 9 1 0 1 1 1 2  
Scheduler 

L I 

i i 
! i i 

- I I fiiii j; -2 

Schedule Length 

I I I I I I I I I I I I 

I I I I I I I I I I I I 

1 2 3 4 5 6 7  8 9 1 0 1 1 1 2  

Scheduler 

%P<S 
s /P  
s/c 
p/c 
P EfT 
C EfT 
CPU Sec 

Scheduler 
1 2 3 4 5 6 7 8 9 1 0 1 1 1 2  

88.48 87.65 87.24 88.07 83.54 83.95 84.36 85.60 83.95 59.67 56.79 53.91 
2.55 2.42 2.43 2.42 1.54 1.66 1.61 1.67 1.54 0.29 0.29 0.21 
2.86 2.86 3.09 3.10 2.72 2.77 2.76 2.91 2.68 1.92 1.86 1.68 
1.12 1.18 1.27 1.28 1.76 1.67 1.71 1.74 1.74 6.66 6.50 7.97 
0.68 0.68 0.71 0.71 0.64 0.65 0.65 0.67 0.61 0.54 0.53 0.44 
0.69 0.69 0.72 0.72 0.66 0.67 0.67 0.69 0.63 0.58 0.58 0.50 

909.51 1022.49 1493.03 2770.58 18.79 183.65 73.04 195.49 2.82 105.92 200.41 53.51 



C.4. Comparison By Program Sice 

C.4.1. Figure C.19. - Program s i ~ e  = 128 (729 Cases) 

S e q l  2 3 4 5 6 7 8 9 1 0 1 1 1 2  

Scheduler 

25000 - 
20000 - 

Schedule 15000 - 
Length 

10000 - 
5000 - 

o 

Average 
Schedule 
Length 

1 ! 

! 

I 
! 
I 

! : i i  I 

-- J A J J  

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2  

Scheduler 

I 1 I 1 

%P<S 
s /P  
s/c 
p/c 
P Eff 
C Eff 
CPUSec 

Scheduler 
1 2 3 4 5 6 7 8 9 10 11 12 

87.65 91.36 88.07 88.20 73.25 72.70 72.70 73.11 70.92 60.77 61.04 57.48 
2.07 2.09 2.02 2.02 0.95 1.01 0.99 1.02 0.88 0.44 0.46 0.38 
2.24 2.25 2.28 2.28 1.94 1.88 1.88 1.91 1.76 1.72 1.73 1.58 
1.08 1.07 1.13 1.13 2.05 1.87 1.90 1.87 2.00 3.90 3.75 4.13 
0.44 0.44 0.44 0.44 0.39 0.37 0.37 0.38 0.32 0.35 0.35 0.30 
0.44 0.44 0.45 0.45 0.41 0.39 0.39 0.40 0.34 0.38 0.39 0.35 

36.53 36.64 38.91 41.81 0.26 3.20 2.97 4.64 0.11 1.86 2.01 1.58 



C.4.2. Figure C.20. - Program sice = 266 (972 Cases) 

2500 - 
Average 
Schedule 2000 - 
Length 1500 - 

70000 - 
60000 - 
50000 - 

Schedule 40000- 

Length 30000 - 
20000 - 
10000 - 

0 

S e q l  2 3 4 5 6 7 8 9 1 0 1 1 1 2  
Scheduler 

1 i 

I j 
i ! 

! i : 
i : 1 i i i i i 

A J ~ ~ J J J  i 
dj 1 -- 1 

I I I I I I I I I I I I 

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2  
Scheduler 

I I I 1 I I I I I 1 1 I I 

%P<s 
s/P 
s/c 
p/c 
P Eff 
C Eff 
CPUSec 

Scheduler 
1 2 3 4 5 6 7 8 9 10 11 12 

88.89 90.64 88.58 88.58 74.38 74.69 74.38 75.82 72.84 60.49 60.80 56.48 
2.22 2.21 2.17 2.14 1.06 1.12 1.10 1.11 0.92 0.38 0.44 0.32 
2.42 2.41 2.44 2.45 2.06 2.02 2.01 2.05 1.82 1.76 1.77 1.60 
1.09 1.09 1.13 1.14 1.94 1.80 1.84 1.84 1.99 4.66 4.04 4.95 
0.49 0.49 0.49 0.49 0.44 0.42 0.42 0.43 0.33 0.39 0.39 0.33 
0.50 0.49 0.50 0.50 0.46 0.44 0.44 0.45 0.36 0.43 0.42 0.38 

79.69 80.76 86.89 99.53 0.62 7.28 6.31 10.97 0.27 4.38 5.09 3.52 



C.4.3. Figure C.21. - Program size = 512 (1215 Cases) 

100000 I 
Schedule i ! 

Length 75000 ! t 1 
50000 ! i 

i i I i 
25000 i i I i i i 

i i i i 
i j i i i  i i i i i  

j i i i 1 i - i ~  
I 

I 1 I I I I I I I I I I I I  

S e q l  2 3 4 5 6 7 8 9 1 0 1 1 1 2  
Scheduler 

Average 
Schedule 
Length 

1 2 3 4 5 6 7  8 9 1 0 1 1 1 2  
Scheduler 

%P<S 
s/P 
s/c 
p/c 
P Eff 
C Eff 
CPU Sec 

Scheduler 
1 2 3 4 5 6 7 8 9 1 0 1 1 1 2  

88.97 89.96 88.64 88.97 76.63 77.20 76.87 77.70 74.73 60.82 60.16 56.79 
2.33 2.30 2.18 2.19 1.17 1.20 1.18 1.17 1.01 0.37 0.38 0.29 
2.57 2.56 2.58 2.58 2.17 2.13 2.13 2.16 1.95 1.80 1.82 1.62 
1.10 1.11 1.19 1.18 1.86 1.77 1.80 1.84 1.92 4.87 4.77 5.57 
0.54 0.53 0.54 0.54 0.48 0.46 0.46 0.47 0.38 0.42 0.42 0.35 
0.54 0.54 0.54 0.54 0.50 0.48 0.48 0.49 0.40 0.46 0.46 0.40 

170.33 173.16 197.48 255.76 1.43 17.77 13.16 23.79 0.59 9.91 13.82 7.58 



C.4.4. Figure C.22. - Program s i ~ e  = 1024 (1458 Cases) 

Average 
Schedule 
Length 

350000 - 
300000 - 
250000 - 

Schedule 2- - 
Length 

150000 - 
1OOOOO - 
50000 - 

0 

1 2 3 4  5 6  7 8 9 1 0 1 1 1 2  

Scheduler 

1 I 

i 1 I 1 
i !  
I i 

i i i i ~ J ~ j j J j ,  i -- A 

I I I I I I I I I I I I I 
S e q l  2 3 4 5 6 7 8 9 1 0 1 1 1 2  

Scheduler 

%P<s 
SP- 
s/c 
p/c 
P Eff 
C Eff 
CPU Sec 

Scheduler 
1 2 3 4 5 6 7 8 9 1 0 1 1 1 2  

89.44 89.71 88.75 89.09 78.05 79.01 78.46 78.94 77.09 62.41 61.39 56.72 
2.38 2.36 2.27 2.26 1.25 1.28 1.26 1.22 1.09 0.37 0.36 0.28 
2.68 2.67 2.67 2.67 2.26 2.24 2.23 2.25 2.06 1.83 1.84 1.63 
1.13 1.13 1.18 1.18 1.81 1.75 1.78 1.84 1.89 4.95 5.13 5.81 
0.57 0.56 0.56 0.56 0.51 0.50 0.49 0.50 0.42 0.44 0.44 0.36 
0.57 0.57 0.57 0.57 0.53 0.52 0.51 0.52 0.44 0.48 0.48 0.40 

362.19 382.43 458.79 714.34 3.45 47.95 27.75 55.76 1.27 22.77 42.07 16.28 



C.4.5. Figure C.23. - Program siee = 2048 (1701 Cases) 

20000 - 
Average 
Schedule 15000 - 
Length 

10000 - 

700000 - 
600000 - 
500000 - 

Schedule 400000 - 
Length 

300000 - 
200000 - 
100000 - 

0 -  

S e q l  2 3 4 5 6 7 8 9 1 0 1 1 1 2  

Scheduler 

i i 
: I !  

i i i 
i I i i i  I i 

l i l  Ai l~ i j  i t 
d 1 

Schedule Length 

I I I I I I I I I I I I I 

Scheduler 

%P<S 
s /P 
s/c 
p/c 
P Eff 
C Eff 
CPU Sec 

Scheduler 
1 2 3 4 5 6 7 8 9 1 0 1 1 1 2  

89.54 90.77 89.42 89.89 78.89 79.66 79.54 79.89 78.78 62.79 61.38 56.14 
2.47 2.44 2.36 2.34 1.33 1.36 1.33 1.27 1.18 0.36 0.34 0.26 
2.80 2.80 2.76 2.76 2.36 2.34 2.34 2.33 2.17 1.89 1.86 1.63 
1.14 1.14 1.17 1.18 1.77 1.73 1.76 1.84 1.84 5.28 5.55 6.25 
0.60 0.59 0.59 0.59 0.54 0.53 0.53 0.53 0.46 0.46 0.46 0.37 
0.60 0.60 0.60 0.60 0.55 0.55 0.54 0.55 0.48 0.50 0.50 0.41 

751.52 840.53 1077.15 2227.39 8.82 148.28 57.75 130.44 2.68 53.78 138.59 34.89 



C.5. Comparison By Communication Latency 

C.5.1. Figure C.24. - Latency = 0 (675 Cases) 

8000 -PO 

Schedule 
Length 40°0 i i i j i i , j  

- 
2000 - 1 l J 1 1 1 1 J  

0 i i j i i i i i  

S e q l  2 3 4 5 6 7 8 9 1 0 1 1 1 2  
Scheduler 

1 2  3 4  5 6  7 8 9 1 0 1 1 1 2  
Scheduler 

12000 - 

Average 
8000 - Schedule 

Length 6000 - 
4000 - 

Avera e Sequential 
~cheau l e  Length 

lOOOO-,,,,-- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  J 

%P<S 
s /P 
s/c 
p/c 
P Eff 
C Eff 
CPU Sec 

Scheduler 
1 2 3 4 5 6 7 8 9 10 11 12 

100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 
5.41 5.40 5.40 5.40 5.38 5.40 5.40 5.39 4.51 5.34 5.36 4.90 
5.41 5.40 5.40 5.40 5.38 5.40 5.40 5.39 4.51 5.34 5.36 4.90 
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.64 0.77 0.77 0.75 
0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.64 0.77 0.77 0.75 

236.01 269.11 289.44 693.65 3.80 48.06 17.19 33.51 1.23 19.46 49.89 19.63 



C.6.2. Figure C.25. - Latency = 0.125 (676 Cases) 

6000 
Schedule 
Length 

4000 

S e q l  2 3 4 5 6 7 8 9 1 0 1 1 1 2  

Scheduler 

Average Sequential 
Schedule Length 

,-,,- ---------,,--,,---,------------------- 

Average 
8000 

J 
Schedule 
Length 6000 

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2  

Scheduler 

%P<S 
s / P  
s/c 
PIC 
P Eff 
C Eff 
CPU Sec 

Scheduler 
1 2 3 4 5 6 7 8 9 10 11 12 

100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 
5.39 5.36 5.39 5.39 5.34 5.24 5.24 5.29 4.41 5.28 5.26 4.66 
5.39 5.36 5.39 5.39 5.34 5.24 5.24 5.29 4.41 5.28 5.26 4.66 
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
0.77 0.76 0.77 0.77 0.76 0.75 0.75 0.77 0.63 0.76 0.76 0.72 
0.77 0.76 0.77 0.77 0.76 0.75 0.75 0.77 0.63 0.76 0.76 0.72 

367.55 398.91 783.10 1147.67 3.81 58.07 26.89 93.66 1.23 27.48 57.91 24.19 



C.6.3. Figure C.26. - Latency = 0.25 (875 Cases) 

Schedule 
Length 

5000 - 

S e q l  2 3 4 5 6 7 8 9 1 0 1 1 1 2  

Scheduler 

Avera e Sequential 
~ c h e a u l e  Length 

12000 

,,--- ---------,---,---,,------------------- 

Average 
8000 

J 
Schedule 
Length 6000 

1 2 3 4 5 6 7  8 9 1 0 1 1 1 2  

Scheduler 

%P<S 
s /P 
s/c 
p/c 
P Eff 
C Eff 

_CPU Sec 

Scheduler 
1 2 3 4 5 6 7 8 9 10 11 12 

100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 
5.33 5.29 5.32 5.32 5.25 5.04 5.04 5.08 4.28 5.15 5.15 4.28 
5.33 5.29 5.32 5.32 5.25 5.04 5.04 5.08 4.28 5.15 5.15 4.28 
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
0.76 0.76 0.76 0.76 0.75 0.73 0.73 0.74 0.61 0.75 0.74 0.68 
0.76 0.76 0.76 0.76 0.75 0.73 0.73 0.74 0.61 0.75 0.74 0.68 

377.65 408.24 688.41 1065.19 3.80 58.86 27.52 83.21 1.23 27.95 58.45 23.56 



C.6.4. Figure C.27. - Latency = 0.5 (676 Cases) 

Schedule 
Length 

Average 
Schedule 8000 

Length 6000 

Average Sequential 
Schedule Length 

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2  

Scheduler 

%P<S 
s /P  
s/c 
p/c 
P Eff 
C Eff 
CPU Sec 

ScheduIer 
1 2 3 4 5 6 7 8 9 10 11 12 

100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 
5.15 5.11 5.15 5.15 5.01 4.63 4.62 4.64 4.00 4.82 4.89 3.20 
5.15 5.11 5.15 5.15 5.01 4.63 4.62 4.64 4.00 4.82 4.89 3.20 
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
0.74 0.74 0.74 0.74 0.73 0.69 0.69 0.69 0.59 0.71 0.72 0.54 
0.74 0.74 0.74 0.74 0.73 0.69 0.69 0.69 0.59 0.71 0.72 0.54 

377.22 408.83 513.20 908.85 3.78 58.97 27.56 61.73 1.23 27.80 58.33 20.50 



C.6.5. Figure C.28. - Latency = 1 (875 Cases) 

1 2 3 4 5 6 7  8 9 1 0 1 1 1 2  
Scheduler 

50000 - 
40000 - 
30000 - 

Schedule 

Length 20000 - 

10000 - 

0 -  

- 
i 

i - i i 
" I I i  - = , i J ? , j  1 4  

I I I I I I I I I I I I I 
S e q l  2 3 4 5 6 7 8 9 1 0 1 1 1 2  

Scheduler 

%P<s 
SF'  
s/c 
p/c 
P Eff 
C Eff 
CPU Sec 

Scheduler 
1 2 3 4 5 6 7 8 9 10 11 12 

100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 98.52 99.41 95.56 
4.63 4.58 4.48 4.48 4.04 3.68 3.66 3.55 3.25 3.00 3.32 1.62 
4.63 4.58 4.48 4.48 4.04 3.68 3.66 3.55 3.25 3.18 3.37 1.73 
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.06 1.01 1.07 
0.68 0.67 0.66 0.66 0.61 0.57 0.57 0.56 0.50 0.52 0.54 0.26 
0.68 0.67 0.66 0.66 0.61 0.57 0.57 0.56 0.50 0.52 0.54 0.26 

373.21 405.98 404.12 807.54 3.76 59.53 27.91 50.06 1.23 27.87 58.15 16.88 



C.S.8. Figure C.29. - Latency = 2 (875 Cases) 

Average 
Schedule 
Length 

100000 - 
90000 - 
80000 - 
70000 - 

Schedule 60000 - 
Length 50000 - 

40000 - 
30000 - 
20000 - 
10000 - 

0 -  

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2  
Scheduler 

t 

t i : 
: 

! : 
i i i - i - i j i i  - ! ; 4  - A , , , , d  ; 1 1 1 1 1  

I I I I I I I I I 1 1 I I 
S e q l  2 3 4 5 6 7 8 9 1 0 1 1 1 2  

Scheduler 

%P<S 
s/P 
s/c 
p/c  
P Eff 
C Eff 
CPU Sec 

Scheduler 
1 2 3 4 5 6 7 8 9 1 0 1 1 1 2  

100.00 100.00 100.00 100.00 98.67 98.96 97.63 97.33 93.33 43.70 38.96 6.96 
3.49 3.42 3.28 3.28 2.40 2.25 2.22 2.14 1.97 0.93 0.85 0.61 
3.49 3.42 3.28 3.28 2.40 2.25 2.22 2.14 1.99 1.28 1.22 1.01 
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.37 1.43 1.65 
0.53 0.52 0.51 0.51 0.38 0.37 0.36 0.37 0.31 0.16 0.16 0.09 
0.53 0.52 0.51 0.51 0.38 0.37 0.37 0.37 0.31 0.19 0.19 0.15 

364.08 397.70 379.77 786.65 3.72 59.83 28.35 47.28 1.23 25.88 54.14 12.14 



C.6.7. Figure C.30. - Latency = 4 (875 Cases) 

150000 - 
Schedule 
Length 1oooor~ - 

0 - 
1 1 1 1 1 1 1 1 1 1 1 1 1  

S e q l  2 3 4 5 6 7 8 9 1 0 1 1 1 2  

Scheduler 

12500 - 
Average 
Schedule 10000 - 
Length 7500 - 

Schedule Length 

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2  

Scheduler 

%P<s 

s/c 
P I C  
P Eff 
C Eff 
CPU Sec 

Scheduler 
1 2 3 4 5 6 7 8 9 1 0 1 1 1 2  

99.41 98.52 94.67 94.96 51.56 53.48 53.33 54.81 50.96 5.48 1.33 0.00 
2.13 2.11 2.01 2.01 1.25 1.23 1.21 1.16 1.06 0.32 0.290.25 
2.13 2.11 2.04 2.03 1.48 1.49 1.48 1.51 1.40 1.02 1.00 1.00 
1.00 1.00 1.01 1.01 1.18 1.21 1.23 1.30 1.32 3.18 3.47 4.02 
0.33 0.32 0.34 0.34 0.20 0.20 0.20 0.21 0.17 0.06 0.050.04 
0.33 0.32 0.34 0.34 0.22 0.22 0.22 0.24 0.20 0.15 0.15 0.15 

357.92 388.44 380.50 789.18 3.67 60.06 28.65 47.46 1.23 19.92 48.40 9.66 



C.S.8. Figure C.31. - Latency = 8 (675 Cases) 

S e q l  2 3 4 5 6 7 8 9 1 0 1 1 1 2  

Scheduler 

400000 - 

300000 - 
Schedule 

Length 200000 - 

100000 - 

0 -  

Average 
12500 - 

Schedule 10000 - 
Length 

7500 - 

, 

I 

I '  

! 

E i  J 

I I I I I I I I I I I I 
1 2  3 4 5 6 7  8 9 1 0 1 1 1 2  

Scheduler 

%P<S 
SP- 
s/c 
p/c 
P Eff 
C Eff 
CPU Sec 

Scheduler 
1 2 3 4 5 6 7 8 9 1 0 1 1 1 2  

65.63 68.15 67.70 69.33 29.78 32.59 31.70 34.07 28.74 1.78 2.22 1.33 
1.26 1.24 1.17 1.19 0.61 0.64 0.63 0.61 0.55 0.16 0.15 0.12 
1.43 1.43 1.47 1.47 1.16 1.20 1.19 1.21 1.14 1.00 1.00 1.00 
1.14 1.16 1.25 1.24 1.89 1.86 1.90 1.99 2.07 6.42 6.88 8.52 
0.18 0.18 0.19 0.19 0.10 0.10 0.10 0.11 0.09 0.03 0.03 0.02 
0.20 0.20 0.22 0.22 0.16 0.17 0.17 0.17 0.16 0.15 0.15 0.15 

351.85 379.80 389.73 799.60 3.60 60.02 28.67 47.84 1.23 17.75 45.42 8.77 
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C.6.9. Figure C.32. - Latency = 16 (676 Cases) 

Average 
Schedule 
Length 

600000 - 
Schedule 500000 - 
Length 

400000 - 

S e q l  2 3 4 5 6 7 8 9 1 0 1 1 1 2  
Scheduler 

I 
I r i ,  

Average Sequential 
Schedule Length 

300000 - I 

200000 - 
100000 - 

0- - 

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2  
Scheduler 

%P<S 
s /P 
SIC 
p/c 
P Eff 
C Eff 
CPU Sec 

Scheduler 
1 2 3 4 5 6 7 8 9 1 0 1 1 1 2  

36.59 46.96 36.89 37.63 11.56 11.41 11.26 13.63 8.00 5.78 7.11 5.78 
0.82 0.82 0.78 0.76 0.31 0.33 0.32 0.31 0.28 0.08 0.08 0.06 
1.12 1.13 1.13 1.13 1.04 1.05 1.05 1.08 1.04 1.01 1.01 1.01 
1.37 1.38 1.45 1.47 3.35 3.20 3.28 3.48 3.67 13.11 13.23 17.41 
0.12 0.12 0.12 0.12 0.05 0.05 0.05 0.05 0.04 0.03 0.03 0.02 
0.16 0.16 0.16 0.16 0.15 0.15 0.15 0.150.15 0.15 0.15 0.15 

331.47 354.74 399.73 806.52 3.50 59.78 28.69 48.01 1.23 16.75 43.83 8.19 



C.0. Comparison By Processor Count 

C.6.1. Figure C.33. - Processor count = 4 (2026 Cases) 

I i i 
Schedule 400000 ! i n  

I 

I 

200000 

Average 
Schedule 
Length 

Scheduler 

1 2 3 4 5 6 7  8 9 1 0 1 1 1 2  
Scheduler 

%P<S 
s /P  
s/c 
p/c 
P Efl 
C Eff 
CPU Sec 

Scheduler 
1 2 3 4 5 6 7 8 9 10 11 12 

79.90 81.09 78.62 79.36 67.31 66.37 65.88 66.27 64.54 58.96 58.77 55.70 
1.59 1.56 1.45 1.43 0.87 0.81 0.79 0.73 0.70 0.33 0.33 0.26 
1.95 1.95 1.89 1.90 1.76 1.73 1.72 1.70 1.64 1.63 1.63 1.54 
1.23 1.25 1.31 1.32 2.02 2.13 2.19 2.33 2.33 4.90 4.91 5.91 
0.63 0.63 0.61 0.61 0.56 0.54 0.54 0.53 0.48 0.50 0.50 0.46 
0.65 0.64 0.63 0.63 0.60 0.59 0.59 0.58 0.53 0.57 0.57 0.54 

22.33 54.02 26.53 401.09 3.09 37.83 6.58 12.64 1.23 10.21 40.00 6.32 



C.6.2. Figure C.34. - Processor count = 8 (2025 Cases) 

Average 
Schedule 
Length 

700000 - 
600000 - 
500000 - 

Schedule ~OOOOO - 
Length 

300000 - 
200000 - 
1OOOOO - 

0- 

Average Sequential 
Schedule Length 

! i 
i 

1 1 
! 

i I i 
1 
i 

I 
I i i I 

- d A d 2 - J - - A - l - A  J J 

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2  
Scheduler 

I I I I I I I I I I I I I 
S e q l  2 3 4 5 6 7 8 9 1 0 1 1 1 2  

Scheduler 

%P<S 
s /P 
s/c 
p/c 
P Eff 
C Eff 
CPU Sec 

Scheduler 
1 2 3 4 5 6 7 8 9 1 0 1 1 1 2  

90.47 91.75 90.37 90.67 80.00 79.75 79.46 80.44 77.78 62.37 61.83 56.64 
2.75 2.75 2.69 2.70 1.51 1.62 1.60 1.62 1.37 0.37 0.36 0.28 
2.90 2.89 2.90 2.90 2.43 2.38 2.37 2.38 2.17 1.92 1.92 1.67 
1.05 1.05 1.08 1.07 1.61 1.47 1.48 1.47 1.59 5.15 5.39 6.02 
0.55 0.55 0.55 0.55 0.50 0.48 0.48 0.49 0.41 0.43 0.43 0.35 
0.56 0.55 0.56 0.56 0.51 0.50 0.49 0.50 0.42 0.46 0.47 0.38 

110.17 142.68 146.93 520.76 3.55 46.06 14.85 30.62 1.23 16.09 45.74 11.51 , 



C.6.3. Figure C.35. - Processor count = 16 (2025 Csses) 

Average 
Schedule 
Length 

700000 - 
600000 - 
500000 - 

Schedule 400000 - 
Length 

300000 - 
200000 - 
100000 - 

0 -  

Average Sequential 
Schedule Length 

1 
i 

I 
I I I 1 i i : i i  i 

1 .  l j j  --!--2-.l-2-i-.i-i J + A 

I I I I I I I I I I I I I 

a5173.0 m o  348aa7 nnnl 

S e q l  2 3 4 5 6 7 8 9 1 0 1 1 1 2  
Scheduler 

1 2 3 4 5 6  7 8 9 1 0 1 1 1 2  
Scheduler 

% P I S  
s/P 
S I C  
p/c 
P Eff 
C Eff 
CPU Sec 

Scheduler 
1 2 3 4 5 6 7  8 9 10 11 12 

96.84 98.37 97.43 97.28 83.21 86.02 85.98 86.57 84.69 63.75 63.42 57.53 
3.98 3.98 4.13 4.12 1.82 2.19 2.20 2.29 1.88 0.39 0.37 0.28 
4.05 4.01 4.17 4.16 3.04 3.10 3.10 3.24 2.75 2.06 2.04 1.68 
1.02 1.01 1.01 1.01 1.67 1.41 1.41 1.42 1.46 5.31 5.58 6.01 
0.44 0.44 0.45 0.45 0.39 0.39 0.39 0.40 0.31 0.33 0.33 0.24 
0.44 0.44 0.45 0.45 0.40 0.39 0.39 0.41 0.31 0.34 0.34 0.26 

913.15 940.55 1235.87 1679.76 4.50 90.50 59.04 127.67 1.23 43.99 72.43 30.01 



APPENDIX D 

Relative Efficiencies of Schedulers 

This appendix gives plots of the relative efficiencies of different schedules. The relative 

efficiency of a schedule is defined as  
T# . T, is the length of a sequential schedule 

min(p , n ) x  Tp 

for the program, and Tp is the length of the parallel schedule. The values p and n are the 

average parallelism in the program and the number of processors in the machine, 

respectively. 

' 6  
Relative efficiency has the advantage over - in tha t  the relative efficiency does 

n x T P  

not penalize a schedule for having more processors than the problem can actually keep busy. 

For example, if a program has an average parallelism of 2, then no scheduler will ever have 

a parallel speedup tha t  exceeds 2, no matter how many processors are available. 

Conversely, the fact tha t  a particular program has an average parallelism of 2 does 

not imply tha t  there exists a two-processor schedule which gives tha t  parallel parallel 

speedup. There could easily be precedence constraints which make all the parallelism 

available a t  the same instant in time. This would mean tha t  half of the graph has no 

parallelism, and half has lots of parallelism. In order t o  get the speedup of 2, many 

processors would have t o  be available for the short time when the parallelism is available. 

Each page in this appendix contains nine plots, representing the relative efficiencies of 

programs as  the communication latency varies from 0 t o  16. The x-axis represents the 

average parallelism relative t o  the number of processors in the system. The y-axis gives the 

relative efficiency. 
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APPENDIX E 

Cumulative Histograms of Relative Performance 

An important method of displaying scheduler behavior is through the use of 

cumulative histograms. A cumulative histogram is different from other histograms in tha t  

each column is the sum of all sample values tha t  occur t o  its left. I t  is, in effect, the 

integration of the curve described by a common histogram. The main advantage over a 

common histogram is tha t  the shape of a cumulative histogram is insensitive t o  the width of 

its columns. 

This appendix contains cumulative histograms of schedule lengths relative t o  the 

shortest available schedule. Each program/architecture pair was was used by the 12 

schedulers t o  generate a parallel schedule. The 12 parallel schedules and a sequential 

schedule were compared for length, and the shortest was selected. This schedule was used 

a s  a reference for later comparisons as the shortest available schedule for tha t  

program/architecture pair. These histograms were created by dividing each parallel 

schedule length by the shortest available length, and histograming the result. Thus the x- 

axis represents the ratio of a schedule t o  the best schedule, and the y-axis represents the 

number of parallel schedules tha t  did at  least tha t  well. 

For a concrete example, consider the histogram for scheduler #1 in section E.1. One 

point along the curve occurs a t  (1.25, 0.88). This means tha t  overall, 88% of the schedules 

generated by scheduler #1 were no longer than 1.25 times the length of the best known 

schedules for the corresponding program/architecture pairs. 
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Vita 

The author was born, which, all things considered, was a very good s ta r t  indeed. He 

spent the bulk of his youth studying the biological and geological sciences in exotic locations 

such as Eagar Arizona. Eventually tiring of worms and dirt, the author's ever curious mind 

turned t o  the black a r t  of Mathematics. This led him to  tha t  great Citadel of Intellectual 

Prowess, Northern Arizona University, where he became exceedingly proficient a t  holding 

meaningful conversations with inanimate objects. This unusual talent led him t o  obtain a 

Bachelor's Degree in Mathematics, with a dual major in Computer Science. 

Somehow during his stay a t  NAU he managed t o  meet up with the wonderfully 

desirable Anne Cecile Heil. Through what can only be called an  astounding display of 

fabrication, exaggeration, and outlandish promises he convinced her t o  marry him, which 

was certainly the best thing he ever did. 

Through the natural course of events, one beautiful daughter came along, then 

another. Each of these wonderful girls delighted the eye and enchanted the soul of all who 

met them. In the words of one astute observer, "Either those kids aren't his, or Nature's 

playing tricks on us again." 
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