
MODEL, LANGUAGE AND IMPLEMENT,kTION ASPECTS
O F A LOGIC-BASED OBJECT-ORIENTED D.4TABASE SYSTEM

Jianhua Zhu
B.Sc., South-China Institute of Technology, P.R. China. 1982

M.Sc., Oregon S ta te University, Corvaliis, Oregon, 198-1

A dissertation submitted to the faculty
of the Oregon Graduate Institute

of Science and Technology
in partial fulfiilment of the
requirements for the degree

Doctor of Philosophy
in

Computer Science and Engineering

July, 1989

The dissertat.ion "hlodei, Language and Implementation Aspects of A Logic-Based

Object-Oriented Da tabase Systen-I" by J i anhus Zhu has been examined and approved

by the following Examination commit tee:

Dr. David hlaier , Advisor
Professor, Oregon G r a d u a t e Inst i tute

Dr. Daniei Hammers t rom
Associate Professor, Oregon G r a d u a t e Inst i tute

~r.%oe<z ~ d e f e J
Assistant Professor. University of Colorado

- I

Dr. Earl F. Eck lund , J r
Principle Scientist., Mentor Graphics Corpora t ion

ACKNOWLEDGEMENT

I a m indebted t o numerous people, without whom this dissertation would not have

been possible. I wish t o express my sincere thanks t o Dr. David Maier, my thesis advi-

sor. He is not only a n excellent teacher and advisor with high standards, but also a

wonderful person and a great. role model in every aspect of life. I a m grateful for his

ifitellectual inspiration, professional guidance, constant encouragement, a s well as the

compliment tha t "I have a facility with the English language t h a t eludes most native

speakers." I wish t o express my sincere thanks to Dr. Earl Ecklund. who taught me the

first Lesson on the subject of database management systems. He has also been a con-

s t an t source of knowledge and encouragement. I wish t o express my sincere thanks to

the other members of my thesis comm~ttee . Dr. Daniel Hammerstrom gave me much

needed help on applying object-oriented d a t a models t o the domain of microarchitec-

ture simulations. Dr. Goetz Graefe provided many suggestions t h a t have improved the

clarity and presentation of the thesis. I also wish t o thank the other faculty members

and fellow graduate st.udents of the Computer Science and Engineering department,

from whom I have been learning the science of computing and the a r t of life.

I thank my parents, Siping Zhu and Yuzhen Zhang, for their enduring love; I thank

my wife, Xing Liu, for her caring and emotional support.

TABLE OF CONTENTS

... Acknowledgement ... 111

Table of Contents ... iv

Abstract ... x

1 INTRODUCTION .. 1

1.1 Background ...

1.2 A Bit of History ..

1.3 Recent Research and Related W'ork ..

1.4 TEDM Overview ..

1.5 Thesis Organization ...

... 2 AN EXAMPLE APPLICATION

.. 2.1 Fundamentals of CAD/CAM

... 2.2 An Example Application

2.3 Schema Design for A CAD Database ...

2.4 Example Objects in the CAD Database ..

2.5 Example Queries on the CAD Database ..

2.6 Chapter Summary ..

... 3 DEFINING OBJECTS

3.1 A Canonical Da ta Description Language ..

.. 3.3 Placeholders and Object Tags

3.3 Semantics ..

3.4 Other Considerations and Chapter Summary ...

4 DEFINING TYPES

4.1 What Is a Type? ...

4.2 Typing in TEDM ..

4.3 Syntax ...

4.4 Semantics ..

4.5 Chapter Summary ..

5 QUERMNG AND hMNIPULATING OBJECTS ...

5.1 Commands and Their Informal Semantics ..

5 .2 Pat terns and Variables ..

5.3 CommandActions ..

5.4 Defining Compound Commands ..

5.5 Command Semantics ...

5.6 Chapter Summary ..

.. 6 MATCHING WITH ABSTRACT OBJECTS

.. 6.1 Pa t t e rn Matching: The Basics

6.2 Matching on Objects ..

6.3 Using Abstract Objects in TDOs ..

.. 6.4 Using Abstract Objects in CDOs

6.5 Chapter Summary ..

7 GROUPING COMMANDS INTO COMPOUND OPER.4TIONS

.. 7.1 Syntax and Semantics of Compound Commands

.. 7.2 Representing Compound Commands

... 7.3 Argument Terms and Parameter Passing

... 7.4 Parameter Objects

7.5 CompoundCommandExecution ..

7.6 Remarks and Chapter Summary ..

8 PROTOTYPING ..

.. 8.1 Architecture

... 8.2 Representing Objects

... 8.3 Translating Objects

.. 8.4 Translating Types

8.5 Processing Commands ...

........................... 8.6 Tailoring for Special Languages and Chapter Summary

9 SUPPORTING COMPUTATION ..

9.1 Reduction in the G-Machine ...

9.2 The Semantics of Computational Objects ...

.. 9.3 Further Extension

9.4 Chapter Summary ..

.. 10 SUPPORTING VIRTUAL DATA

... 10.1 Database Rules

10.2 Translating Simple Rules ..

vi

10.3 Handling Object Rules ...

10.4 Chapter Summary ..

........................... 11 FUTURE DIRECTIONS -4ND CONCLUDING REMARKS

11.1 More Modeling Concepts ...

.. 11.2 Abstract Objects as Value Specifications

... 11.3 Extensions toC!ompoundCornmands

... 11.4 Summary and Concluding Remarks

.. Bibliography

Appendix I: A CAD Database Application ...

... Biographical Note

vii

LIST OF FIGURES

2.1 A Design Process ..

2.2 Two Circuit Elements ...

2.3 A Design Object for A CAD Database ..

... 3.1 A Complex Object

3.2 A Directed Graph ..

3.3 A Rooted Tree ...

3.4 A Direct Acyclic Graph ..

3.5 An RS Flip-Flop ...

6.1 Match Functions and Non-match Functions ..

... 6.2 A Decomposition Map

6.3 A Generalized Decomposition Map ..

6.4 T D O for Type T's Definition ..

6.5 T D O for Type S's Definition ...

.. 6.6 T D O for Type Vs Definition

... 6.7 T D O for Type W's Definition

8.1 System Organization ...

... 8.2 Model Manager Organization

9.1 Effects of the First Few Instructions ...

.. 9.2 Configuration after One Recursion

24

25

3 .i

47

48

49

50

53

113

I l l

116

119

120

120

121

138

141

161

162

9.3 A Parallel Reduction Scheme , 174

9.4 An Example Parallel Reduction,.... 175

ABSTRACT

Model, Language and Implementation Aspects
of .4 Logic-based Object-Oriented Database System

Jianhua Zhu, Ph.D.
Oregon Graduate Institute of Science and Technology

Supervising Professor: David Maier

With the goal of a "total objectification", this study investigates issues and exten-

sions t o conceptual d a t a models founded on a logic-based and object-oriented frame-

work. In particular, a distinction was proposed t o separate logic variables into pure

placeholders and object tags. The concept of abstract objects was articulated and was

used t o interpret the class of object tags.

Abstract objects and their pattern-matching semantics make i t possible t o inter-

pret database languages uniformly as database objects. Therefore, the semantics of a

language is directly determined by database objects. The implication is tha t the result-

ing d a t a model can be decoupled from specific database languages. Concrete syntax is

highly adaptable t o individual application domains; and variations on syntax affect nei-

ther the underlying representation nor processing.

A memory-based prototype was implemented. The implementation consisted of a

Smalltalk-based user interaction facility and a Prolog-based model manager, with a

variety of database language interfaces that support object construction, type

definition, command definition and interactive query processing.

CHAPTER 1

INTRODUCTION

This thesis studies several important aspects of a concept*ual dat,a model with

features from the object-oriented programming paradigm combined with ideas from the

logic programming area . The Tektronix Engineering Da ta Model (TEDM), originally

proposed by Maier iMa.ier85], intends to explore alternative ways of support.ing non-

traditional database applications using traditional database technologies. The study

encompasses several issues in database systems including modeling, language, a s we11 a s

implementation. Other equally important issues such a s concurrency control and query

optimization a re beyond the scope of this thesis. I t should be noted tha t we employ

TEDhl a s a vehicle for our study; many of the concepts presented throughout the t.hesis

are generally applicable, and need not be constrained t o any specific d a t a model.

As of today, the predominant technologies for most of the database applications

have been based on the following three d a t a models: the hierarchical model, the network

model and the relational model. (We call them t.raditiona1 d a t a models in this thesis t o

distinguish them from the new generation of database technologies, such a s semantic

models and object-oriented models.) These traditional d a t ~ models, all dating back t o

60's o r early 70's, a re very effective and perform well in many application areas. For

example, the relational model fits very well with business d a t a processing, such as bank

transaction processing, warehouse inventory tracking and personnel information sys-

tems for organizations. These examples all share a common characteristic: The d a t a

2

structure required for representing information is simple enough that most of the time a

single level table is sufficient. However, the effectiveness of the traditional data models

has been strongly challenged by application domains where information structure does

not share this simplicity. An example where support for more complex data structure is

needed is the use of databases to support computer-aided design and manufacturing

(CAD/CAM). A minimum set of requirements on a database system for effective sup-

port of CAD/CAM applications is:

1) A set of formal concepts that allow the design objects to be rigorously described,

in a way that is consistent with or close to the mental model.

2) A flexible storage manager that allows the design objects to be stored economl-

cally, retrieved efficiently and manipulated consistently.

3) An expressive command (query and manipulation) language that allows retrieval

and updates against the database to be formulated easily.

4) A transaction facility that supports access and update to large amount of data,

over a long period of time.

Apparently, the traditional database technology comes up short-handed, being

scrutinized under this set of requirements. In particular, the hierarchical model and the

network model provide insufficient support for high level abstraction. The users of such

systems have to work at the level of the storage structure: physical adjacency in the

hierarchical model and pointers in the network model. The relational data model sup-

plies a high level query and manipulation language (the relational algebra). The user of

such a system is shielded from the physical properties of the the database, a major

improvement over the hierarchical model and the network model. But it provides

simple (first normal form) tables a s its only d a t a structuring facility. which is too res-

trictive and too inefficient for applications where primary d a t a elements a re records

with mutual references. When forced t o use simple tables for their representation, com-

plex objects become highly fragmented, resulting in a Iws of access efficiency. Another

problem with decomposing complex objects into first normal form is t.hat doing so

changes the appearance of the conceptual objects, resulting in obscured semantics.

Despite the negative results of many studies on the effectiveness of the traditional

database technology on application domains other than business applications (see, for

example, [Maier84, Rosenberg80 and Sidle80i), most of the applications are still being

built. using these platforms. Our study investigates new concepts and strategies t o

improve the effectiveness and efficiency of the database technology, and t o make them

applicable to complex applications.

The demand on good database technology is a n ever increasing trend, as more and

more applications find database support a necessity, for improved quality and produc-

tivity. The CADICAXf example a couple of paragraphs back is a, point in case. We

briefly mention a few others. The database is also a n ideal place t o store the out.come

of a design, which is the master plan for building machinery. equipment or circuitry.

(In electronic design, such a master plan would include what components are used and

how the components are interconnected.) But there are o ther advantages more

significant than making available a storage space. Firstly, the database is not limited

t o storing the outcome of a design. I t can store the design process itself a s weH. T h s t

is, all of the important design issues and decisions can be recorded along with the result,

of the design. This information is a valuable source of quality measurement, process

evaluation and product improvement. SecondIy, when the design is stored a s database

objects, the structure or other important details about the design are available t o the

people who have access t o the database. Those who understand the semantics of the

database representation can interpret the design correctly. in this scenario. the data-

base representation is a common language for communication among the design

engineers, or more accurately, among design tools tha t the engineers use. Thirdly, the

access and update protocols of the database can be used a s a coordination mechanism

for team work, such t h a t each member has the freedom t o do things that he or she feels

appropriate. In the meantime, each individual's "independent" work is synchronizeci to

progress towards the team's common goal.

Another example of a new application domain for databases is computer-aided

software engineering (CASE). In this case, again, it is important t o have a database

underneath other devetopment tools. The common repository facitita tes information

exchange among the tools. I t also provides reliable storage for information tha t is t~ i t a l

t o every aspect of CASE: analysis, specification, design, coding, testing, maintenance,

project management and configuration management.

While there is no great difficulty for people t o recognize the fact t ~ h a t there is a

need to extend the database technology and t h a t the need is urgent, i t is ra ther chal-

lenging a task to make such extensions. It is even more difficult for people to agree

upon a common set of extensions tha t will solve the issues and problems satisfactorily.

Our study will not be able t o address all the issues. What we do hope to accomplish is

to help identify critical success factors, improve our understanding of them, suggest our

solutions and move one small s tep closer towards the grand goal - extending the data-

base technology t o support complex applications, efficiently and effectively.

In this thesis, we identify data-structuring techniques suitable t o model complex

d a t a elements. U'e describe a command language for yuerying and updating complex

objects. We explore the technique of deductive query processing in object-oriented

databases. We propose a n extension t o database and query formalisms, t o make i t pos-

sible to store query pat terns a s objects. The theme of the dissertation, t,hus, is an

investigation of the feasibility and t.he advantages of combining features from the

object-oriented programming paradigm and the logic programming languages in d a t a

models.

This current chapter contains five sections. Section 1 is a short account of the

basics, and Section 2 of the history: of the d a t a processing technology. Recent work on

databases and conceptual modeling is surveyed in Section 3. We also relate our study

in t h a t section t o similar projects. Section 4 gives a brief description for some prom-

inent features of our study vehicle, the TEDM d a t a model. Section 5 contains an out-

line of the dissertation.

1.1. Background

T o maintain a consistent terminology used in the thesis, key terms in the database

world are supplied here. A word of caution: although these terms are ubiquitous in

literature, they are nevertheless nonstandard. We also overview the basic characteris-

tics of database systems, and contrast them t o the more conventional file systems.

A data model is a collection of tools made available to the user by a computerized

data-processing facility. typically for the purpose of defining, populating, manipulating

and constraining application data . These tools usually come in some form of data-

processing languages. T h e integrity constraint specification is often considered a part

of the d a t a definition, and the d a t a population is a part of d a t a manipulation. Hence.

a "data model" is a coilective term for a d a t a definition language (DDL) and a da ta

manipulation language (DML).

A database is a collection of application d a t a and related cont,rol information, usu-

ally stored on a non-volatile device, with the condition t h a t the d a t a are structured

according t o a conceptual view, the conceptual s c h e n ~ n of the database. The conceptual

schema is also called the intension of the database; whereas the database Itself is said

t o be an instance (or a n estension) of the conceptual schema. (According t o this

clefinit-ion. database language facilities are not part of the database. .A major contribu-

tion of this dissertat.ion lies in the formalization and mechanisms for making various

database language constructs, such as compound commands and queries, par t of the

database.)

It database management system (D B M S) is the realization of a data model, by a

piece of software, possibly with dedicated hardware support. In addition t o implement-

ing what a d a t a model has to offer t o i ts user, namely a DDL and a DM-,, a database

management system often provides mechanisms for dealing with many other practical

issues in a multi-user, time-sharing service environment, such a s security, concurrency

and recovery.

Database objects have a distinguishing property when compared with prograrn-

ming da ta : they are non-volatile, or persistent. In other words, their lifetime extends

beyond the computing processes t h a t manipulate them. An obvious way t o a t t a in this

extended lifetime is through files. A file very often amounts simply t.o a byte stream

without any at tached semantics. In this scenario, i t is entirely up t o the program tha t

uses and manipulates the file t o interpret the raw d a t a bytes. which typically involves

the tedious task of counting bits and bytes within the file pages.

Databases promote d a t a sharing among different applications. They support per-

sistent objects and associative accessing. Navigational accessing is also possible and is

expressed a t much higher a level than a file can provide. D a t a are accessed by name

ra ther than by explicitly interpreting the low-level representation. Therefore, data-

bases also provide high-level d a t a semantics and hide the representation details from

the user.

1.2. A Bit of History

The hierarchical d a t a model and the network d a t a model were the two major con-

ceptual frameworks for organizing and manipulating databases before the 70's. They

have a common drawback - there is no distinction of the conceptual view of d a t a from

its physical implementation. Records a re used t o model objects in the applications, and

pointers implement relationships among the objects. The user is required t o have

thorough knowIedge of the storage structure in order t o navigate along the pointer

chains t o get to the right place, and t o gain access to the d a t a objects stored there.

In 1970, the relational view for database organization and manipulation was pro-

posed [Codd70]. Major contributions of the relational model include a rather simplified

user view of the databases and a powerful high level query formalism on the simplified

view. The relational model is founded on s n existing body of knowledge in modern

mathematics (mathematical relation and formal logic.) -4 rich theory of the relational

databases, ranging from logical design t o query optimization, has since been developed

(see bfaier83, Ullman83],)

The ANSIJlr'3/SPL4RC [ANSI~SI specification on database management system

structtlres is a significant event. The ANSI/S3/SPL4RC report proposed a three-level

architecture standard. A physical schema specifies st.orage format for physical records

and their inter-references. -4 conceptual schema defines logical structure of databsse

independent of any application programs. And an external schema describes

application-specific d a t a formats. Two mappings are also proposed to achieve a high

degree of d a t a independence. The mapping between a conceptual schema and a physi-

cal schema makes it possible t o change the physical storage format without affecting

services available a t the logical database design level. Similarly, the mapping between

a conceptual schema and external schema permits changing logical databases indepen-

dent of applications. by redefining the mapping.

There have been many successful implementations of the relations1 d a t a model.

Early experimental systems include System R of IBM San Jose [,4strahan76\, XNGRES

of UC Berkeley IStonebraker761, MRDS of Honeywell [Honeywel180j and PRTV of IBM

United Kingdom [Schmidt83, Todd76].

1.3. Recent Research and Related Work

As the need for databases started t o extend t o non-business type applications, it

became clear tha t the traditional database technology was neither effective nor flexible.

-4 severe shortcoming of the relational model is tha t i t is incapable of directly capturing

the semantics of the application da ta . Research on semantic d a t a models addressed the

issue. Abrial is one of the early pioneers in semantic models IAbrial741. His work

combines different approaches from the following three research areas: generalized data-

base management systems, the relational d a t a model and artificial intelligence. The

first-order logic was used a s a unified framework. Integrity constraints were expressed

as predicate calculus formulas. An algorithm was also designed to translate general

formulas into computer programs t o evaluate the formulas. Chen proposed the entity-

relationship (ER) d a t a model jChen76', a s an a t tempt a t providing a un~fied view for

different d a t a modeis t o facilitate logical database design. The ER model can be

regarded a s an early effort in searching for more expressive semantic d a t a models

Kent did a thorough analysis on limiiations and drawbacks of the traclitional record-

based d a t a models 'Kent79j. tiis study identified many problems of record-based infor-

mation structures. In particular, he point,ed out tha t the assumption of information

homogeneity was not well founded. There are many instances where information has

neither horizontal homogeneity nor vertical homogeneity. In such cases, record-hased

structures become clumsy and do not lead t o elegant representation schemes at all. He

demonstrated t h a t entities and records did not correspond well, though the former were

often modeled using the la t ter in record-based systems. The representation of relation-

ships in such systems waq also problematic. For example, we can expect such systems

t o answer the question: "in which department does the employee named 'John' workb?"

(e g.. Marketing); but not the question: "how a re the department 'Marketing" and the

employee 'John' related?" (e.g., the la t ter works in the former).

Many other semantic d a t a models also emerged in Iate 70's and early 80's. For

example, the semantic d a t a model, SDM, by Hammer and Mcleod !Hammer81!; func-

tional d a t a models by Buneman and Frankel iBunemani9], and by Shipman 'Ship-

man81j; formal mathematical models by hbiteboul and Hull [Abiteboul8?], by Hull and

Yap [Hui184] and by Brodie [Brodie82]; t,he semantic association model, Sh%l*: by Su

[Su83]; t,he entity-based d a t a model, Taxis, by Mvlopoulos e t a t [Mylopoulos80{; object-

oriented d a t a models by CopeIand and Maier [Copeland841, etc.

There have also been extensions to the relational d a t a model t o overcome its own

deficiencies. Smith and Smith identified two useful abstraction mechanisms for data-

base systems {Smith77], aggregation abstraction and gereerali,-atdon abstraction. They

paint out t h a t the relational d a t a model only provides the aggregation abstraction.

They introduced a generic type into the relational model t o support a generaliz a t ' ion

hierarchy. Codd himself also proposed an extended reht ional d a t a model, RM/T

ICodc179', in which he suggests tha t objects be given surrogates for reference and tha t

an E-relation be defined for grouping objects of a common type. The design of

POSTGRES Stonebraker861, which is the successor of INGRES, also incorporates the

notions of complex objects, user-defined d a t a types and active semantics such a s alerts

and triggers.

As we have mentioned, the demand on databases in areas other than business d a t a

processing has brought new concepts and new requirements t o database systems. giving

new challenges a s well a s new excitement to database researchers. K a t z described a

d a t a management facility for VLSI chip design [Katz83]. The object-oriented approach

t o engineering database management systems also received wide acceptance. since a

central issue in CAD/CAM databases is complex object representation iLorie83;.

Batory and Kim studied modeling concepts for VLSf CAD objects [Batory8.5]. They

suggest using molecular objects jBatory84j enhanced with the versioning concept, t o

model Vt.SI design objects. Kemper e t al. demonstrated that. both behavioral aspects

and structural aspects of complex objects are valuable assets in engineering databases

~Iiemper87). They showed how an behaviorally object-oriented system can be con-

structed on top of a structurally object-oriented system, using a non-first-normal-form

relational d a t a model. Other similar work has also been report.ed in the literature

TBancilhon85: Dittrich86: Ege87, Kim87. Stonebraker861.

More importantly, there have been successful implementations of object-oriented

database management systems. Several representative systems are Gemstone

jhfsier86, 86aj, Ontos :Andrews871. ORION IBanerjee87, 87s;. Encore/Ohserver

iZdonik85? and Iris Derrett85, FishmanSi]. Gemstone uses a general purpose dstaba,se

programming language, OPAL, as its DDL and DML. The syntax of OPAL resembles

t h a t of the Srnalitalk-80. I t supports navigational access as well as associative

retrieval. fndexing and clustering on objects are also supported for performance tuning.

Ontes is an object manager using C++ as its host language. Persistence is supported

through a library of system classes. A generic type is provided t o facilitate the transla-

tion of memory objects and disk objects. Using the type "TRef:', objects are activated

(brought into memory) automatically when needed. However, the support for updates

on persistent objects is minimal: The user has to traverse a complex objects. issuing

update request on each subohject. ORION, Encore/Observer and I r k a re all research

prot.otypes, from kfCC, Brown university and HP Laboratories, respectively.

Extensible d a t a models take a different. approach t o cope with the complexities of

non-traditional appIications [Careytlfi, 86a, Graefe87, IJindsay87, Pau1871. The theme

here is tha t since no single d a t a model can meets all the requirements of the new appli-

cations domains simultaneously, a reasonable compromise is for the system developers

t o provide a small yet powerful set of basic building blocks t h a t can be configured. in a

flexible way and with minimal effort. to meet the needs of different applications.

In most general terms. the database technology can be extended t o accommodate

new concepts and new requirements from new applications in three ways. One is to

s t a r t from a programming language and incorporate database notions such a s per-

sistence. concurrency and recovery to suit the needs of database applications Atkin-

son83. 84, 87. Buneman86. Cockshott84, Copeland84:. In this instance, the problem of

a'mpedance mismatch (bulk d a t a types versus individualized type?, hidden iteration

versus explicit loop control, etc. iCnpeland84j) must be addressed. A second approach

is t o s t a r t from a database system and build into i t s rich type system and other useful

programming notions such a s recursion and higher order functions, to make the data-

base system have enough power to cope with complexities inherent in engineering

environments IShoensi9, StonebrakerSf, 86a, 871. A third approach is t o define new

database programming languages from scratch. These database programming

languages typically are rich in d a t a structuring capability, versatile in d a t a persistence

and complete in computing power fAlbano85, CardeiIi84, OhoriSS].

Object-oriented programming languages and logic programming languages are of

particular interests t o us. Object-oriented programming approaches, such as

Smalltalk-80 [Goldberg83] and C++ IStroustrup86], advocate the notion of cooperative

independent computing agents. In this computing paradigm, each object has its own

s t a t e and behavior. The s t a t e of each object is internal t o the object, and is completely

hidden from other objects in the system. Communication. through message sending. is

the only way to make a n object show its behavior or perform computations. Another

distinctive feature of object-oriented systems is their classification mechanism. Objects

with similar structure and behavior are grouped into classes: which are tied together by

a class hierarchy with inheritance of behavior and structure from super-classes t o subc-

lasses Object-oriented programming methodology embeds the folIowing three

approaches t o computstion: computing via s t a t e transition. computing via communica-

tion and computing via classification. I ts modeling paver and encapsulation ability

make it an ideal hasis for the next generation database management systems.

Deductive databases iGaIlaire84, Kowalski78: using the paradigm of logic pro-

gramming iEmden76, Lloyd84, MaierWi, on the other hand, can be s natura l evolution

from relational datsbases. considering tha t in mathematics, reiational systems arp used

as interpretation spaces for first-order logic Founded on first-order predicate logic, this

programming paradigm views computation a s a deduction process. a process in which

proofs are estabiished using axioms and inference rules. The Logic approach t o data-

bases h m a number of advantages. First , it has a sound underlying theory, which is a n

asset t h a t is hard t o get for most software systems. Second, it provides two views on

databases and its supporting language facilities. Sn we can talk about query processing

a s a theorem proving activity a s well as model-constructing (-finding) activity, depend-

ing on which one is more convenient. Third, the language in first-order logic proof

theory is richer than the counterpart of i t s relational semantic space. Deductive data-

bmes have an expressive power exceeding t h a t of relationally complete query languages.

For example. with recursive queries. transitive closures can easily be computed.

TEDM has i t s roots in both object-oriented programming paradigm and Iogic-

programming paradigm. Like many other recent. semantic d a t a models. TEDM is

aimed a t engineering applications tha t need management of complex design objects. It,

a t tempts t o achieve its goal by adapting successful features from both object-oriented

programming and from logic programming, and by adding other extensions geared a t

bridping the impedance mismatch between t be current database technology and appli-

cation demands.

Other related work is briefly described below. In PS-Algol [Atkinson33], per-

sistence is added a s an orthogonal property to d a t a objects in the Algol-68 program-

ming Ianguage. Any d a t a object has the right t o persist. The mechanism t o achieve

object persistence is by designating a distinguished persistent object, the persistent

root. Objects reachable from the persistent root are also persistent. =I persistent

object manager (POhl) is used for automatic translation between virtual memory

sddresses s n d external addresses. TEDM uses a similar idea t o support object access.

A root object is supplied; all objects are place in collections, which are reachable from

the database root.

Galileo fAlbanoSS! is a conceptual language designed from scratch for describing

database applications. Gaiileo is a strongly typed language. Furthermore, i t permits a

type generalization hierarchy, and type checking takes the type hierarchy into con-

sideration. The generalization hierarchy of the type system in TEDM is closely modeled

after t h a t of Galileo. But we use a deciarational type system instead of a structural

one.

OPAL is the database language for the Gemstone database management system

jCopeIand84, hfaier86). Gemstone is based on object-oriented programming paradigm

with many extensions. such as concurrency, security and recovery, t o suit the need of

d a t a intensive applications. I t support.s encsps~ la t~ ion and inheritance, both on struc-

ture and behavior. Furthermore, i t has a rather rich environment for quickly building

database applications.

The E programming language IRichardson87; is the C++ programming language

extended with database classes, file classes, generic access methods. trnlike other

languages we mentioned so far , the intended users of E are database irnplementors.

instead of application buiIders.

TEDM also benefited from the work in deductive database research IGallaire84:.

The logic approach provides a n ultimate unified view on different database concepts. In

psrt.icular: we can view information stored by a database a s axioms of a logic system.

The drawbacks of this approach are the following: X deductive paradigm based on pure

first-order logic lacks a classification mechanism, which is useful both for cc3nceptual

modeling and for efficient organizations. There is also a mismatch between the theorem

proving paradigm and the query answering mechanism, namely, while the former imks

for proofs, the Iat ter looks for answers.

Ait-Kaci's work [Ait-Kaci84l is a s tep forward in bridging the gap between the

logic paradigm and the database paradigm. He integrated the logic programming

framework witch a type hierarchy. But his type system does not distinguish instances

from schemss. Nevert.heless, the *-term in his system has great influence on t.he design

for the object definition language of TEDhf.

The work of putting QUEL commands into the INCRES dat.abase [StonebrakerS4!

hears certain similarities with TEDPVl's view of database commands as objects. But the

similarities hold qniy a t a superficial Level. The two appronches are fundamentaILy

different in the way how the stored commands are treated and what we can do t o them.

In INGRES, a QUEL command is stored as a textual string or its compiled form. In

either case. there is no way t o look a t the subparts of the stored command, which essen-

tially limits the kind of manipulations one can do with the stored commands, such as

sharing of code and dynamic construction of commands.

1.4. TEDM Overview

This section is a n overview of TED%I, a data model designed and described in

IMaier85j. Other related documents are 1Anderson86, 89. Ecklundg?, Maier89,

OkkawaSS, Zht186, 88, 89j. Features from both object,-oriented methodology and logic

met.hodology are integrated into the da ta model. Several other extensions are also

made t o enhance the model. In particular: it embeds such notions as object identities,

object classifications and structural inheritance, from object-oriented programming. I t

adapts, from logic programming, such notions as one-way unifications, inference rules

and deductive query processing. Other extensions conrributing t o the power of the

model include a compound-command definition and execution mechanism, a nested

workspace model for variable scoping and a semantic extension t o logic variables.

A "good" d a t a model should he based on a small set of primitive concepts. On one

hand, these primitive concepts should correspond t o their real world counterparts well,

such t h a t databases built with the model display a minimal conceptual distortion of the

application being modeled. On the other hand, provision for conceptual composition

from primitives is needed, since much design activity involves conceptual composition in

typical engineering applications. .4Ithough it is impossible t o formalize what it menns

for a conceptual entity t o model a real world entity without distortion. object-oriented

programming methodology is well received au one of the best paradigms for this kind of

modeling task.

Objects are t.he hasic blocks for building TEDM databases. Conceptually. a data-

base object represents a real world entity of some sort. Structurally, such a n object,

resembles a nested-record structure t h a t bottoms out st the su-ca,lled sirlaple objects.

There are subtle differences. Complex ohjvcts possess unique object identitie8 (OiDs),

Consequently, 0bject.f; a re referenced by identifiers rather than by values. Since the

structure and the identity of an object. a re two orthogonal propert.ies of i t s representa-

tion, the existence of unique object identity makes it is possible to distinguish objects

without referring t o or depending on their structures, w-vhich is important in C,IU)/CXXf

applications. For example, in a typical design of an electronic device, several IC chips

with den tical physical and electrical parameters may be needed. In this case, any such

chips can be interchanged without affecting the behavior the circuit: none is distinguish-

abfe from the others by its own properties. But when the design is stored by a data-

base, it is highly desirable t o be able t o distinguish them for such purposes a s simula-

tion, manufacture. and design change management.

Tppes are cotlec tions of objects. usually with similar or closely related structure.

Several. highlights of the TEDM type system are the foHowing. First, structural inheri-

tance allows subtypes t o acquire st.ructures from their supertypes. Second, prescriptive

typing means a n object conforms t o a type if the object. has all the structure specified

by the type, hut i t may have more. Third, a distinction is made between intentions and

ext'ensions. T h a t is t o say, instances of a single type may participate in multiple collec-

!'ions, a s opposed t o just one relaation a s is the case in the relational d a t a model.

Finally. type memberships are separated from type conformities, which means object

structure alone does not automaticallv assign type memberships t o an object.

Database commaad.s bring dynamics t o databases. All traditional database access

functions a re fully supported by commands. These database commands in many ways

resemble rules of a production system. A pattern and an action make up a command,

with the semantics tha t the operations denoted by the action is performed on all

ohjects t h a t s r e retrieved by successiul pattern matches against the database. This

approach separates d a t a retrieval from d a t a viewing, and h a s the advantage tha t view-

ing operation and other database operations have uniform structure and semantics. It

also separates sequential imperative par t of a command from its non-seqnentia1

declarative par t . In addition, database commands are stored a s objects. They can be

queried and manipulated in the same way as any other ordinary objects.

Rules enhance both the modeling power and the query processing power of the

d a t a model. Essentially, a rule specifies a n assertion t-hat the existence of certain

objects (or internal structures of objects, or memberships of objects) can be deduced

provided certain other objects (or other object structures, o r other object memberships)

exist also. With the presence of database rules, a database not only contains objects

(object st.ructures, object memberships) t h a t have physical representations in the data-

base, but also objects (object structures, object memberships) tha t are derivable with

rules. These derivable d a t a are considered virtual d a t a . Urhen coupled with query p r u

cessing engine, database rules make the computation of transitive closures, and other

recursive queries: possible.

1.5. Thesis Organization

This thesis is organized into 11 chapters. Chapter 2 describes a n example data-

base design using TEDM. The purpose there is t o present most of the features of the

d a t a model informally, using an integrated example. The example application is taken

from the domain of VLSI designs. LVe present a design database to maintain design

information with a varying levels of abstraction. The database will allow design

objects ranging from gate level t o register-transfer level. Therefore, it is mostly suited

for simulation support and similar tasks tha t are important in a n iterative design cycle.

Chapter 3 discusses database objects, object definition languages and related

topics. An object definition language (ODL) is proposed and i ts semantics are studied.

ODL uses a first-order-term-like syntax as object const.ructors and adds t o its interpre-

tation space abs t rac t objects, stored counterparts of pure placeholder variables. ODL

also extends first-order term languages in a number of ways. I t allows a variable

number of arguments and variable ordering of arguments in terms. It splits the notion

of variable into t h a t of pure syntactical placeholders and t h a t of symbols with abstract

objects as interpretations. I t also permits a variable t o appear in internal node of a

term graph to meet the need of specifying patterns sharing in complex structures.

Database types and a type definition language a re discussed in Chapter 4. The

chapter s t a r t s out with some comments on the notion of types in general, and TEDkI's

view of types in particular. A type definition language (TDL) is proposed in this

chapter. The most important aspects of type semantics are characterized using four

relations, We define and discuss each of the four relations in detail. The problem of

representing types internally is also examined.

Chaptgr 5 discusses TEDM commands. command definition languages. command

translation issues and query processing semantics. A command definition language

(CDL) is defined and command definition semantics are explored. Syntactically, corn-

mands are similar to production rules of expert systems, having s condit~onal par t and

an action pa r t . However, the analogy does not carry into semantics. In particular, t h e

conditional pa r t of a command is not just a simple predicate expecting a "true" or

':false1' truth-value a s answer. I t also has the power of pattern matching on databases

and retrieving objects t h a t contributed t o a "true" t ru th value result. -4s such, the

conditional pa r t of a command is called a pattern.

Chapter 6 focuses on the abstract object extension to TEDM. We discuss the role

of abst rac t objects as interpretations of variables in the command language. iVe

a t t empt t o make more precise the meaning of structure-matching in the semantical

space. Our approach visualizes semantical objects a s graphs and uses link-preserving

functions t h a t maps nodes of one graph t o nodes of another graph. Two structures

match if such a mapping can be found. Two kinds of pattern-matching, abstract-

concrete and abstract-abstract , are studied. The chapter also describes how abstract

objects a re employed in the representations of type-defining objects and of command-

defining objects.

Chapter 7 discusses the compound-command execution mechanism of TEDM. We

study operational semantics of compound commands and describe implementation. We

examine in detail TEDkf's parameter passing scheme for the execution of compound

commands.

Chapter 8 describes a protot.ype implementation of TEDM. The prototype is a

main-memory based implementation written largely in Prolog. CVe briefly discus.

overall program organization and each major functional component and i t s realization.

Chapter 9 proposes extending the d a t a model with computational objects. We

review basic functional Language implementation cechniques. W e a re particularly

interested in graph reduction techniques and an abst'ract graph-reduction machine, the

G-machine. We point, ou t tha t the it is possible t o incorporate the mechanics of graph

reduction and TEDM's command procesing engine. and investigate the semantics of

mixing eomputations with pattern-matching.

Chapter 10 describes the da ta derivation mechanism in TEDM. Syntactically,

rzdles extend a combination of the object definition language and the command

Ianguage. They are well formed formulas in this extended formalism and form a basis

for deriving logical consequences of the database. From a proof-theore tic viewpoint,

derivable d a t a a re not very different from stored da ta , both of them are theorems in

the syskem. On the other hand, using a model-theoreticai viewpoint, we can think of a

database as a closure of stored models, with respect t o alI well formed query formulas

known t o the system. In terms of operational semantics, rules can be thought of as

deferred database commands.

Chapter 11 contains general discussions on future directions, some concluding

remarks and s stlmmary of the dissertation.

CHAPTER 2

AN EXAMPLE APPLICATION

This chapter introduces the TEDM d a t a model through a series of examples. The

illustrative examples are all based on a schema defined in TEDM for an electronic C2-iD

database, and emphasize the conceptual modeling aspects of the d a t a model. In this

application, electronic design objects and information about their inter-connections are

stored a s a TEDM database. M e n these electronic component objects s re composed

using connection objects, or wires, larger circuits with various frlnctionalities can be

formed. I t should be noted that. this is only a. paper exercise; the result of the design

has not been tested.

This chapter is organized as follows. Section 1 reviews general issues and problems

in the area of C'AD/C,LM research. Section 2 describes an example database intended

for an electronic CAD application. I t explains general idem in the Cd4D database

design and representation of objects in this particular application domain. Section 3

contains a schema design for the CAD database. Each type is explained and is given a

type definition in TEDM's type definition language. Section 4 shows how t o represent

digital designs using the CAD database; we will build a sequential digital circuit, a

four-bit-adder, using components such as logical gates and registers. A fully populated

design instance of the four-bit-adder is included as an appendix. Section 5 introduces

TEDklTs database commands and explains basic ideas behind command processing, with

a number of examples for querying and manipuiating the CAD database.

23

One of the distinguishing features of the TEDM model is that it is not tied to any

single concrete syntax. While there are default languages for objects, types and com-

mands, the system architecture makes it easy to provide alternative syntax to describe

the same thing or a subset of it. We can freely introduce specially tailored syntax

suited for particular application domains. However, the underlying object represent a-

tion will remain the same. This idea will be expounded in future chapters, and in the

appendix for this example application.

2.1. Fundamentals of CAD /CAM.

We review issues and problems in the area of design support for electronic circuit

designs. The goal of such a design effort is to produce circuit schematic that meets

various requirements, such as I/O behavior, timing constraints, power dissipation, etc.,

given by a specification. Of the four alternative ways to verify whether a design

satisfies a specification, hand execution (using paper and pencil), program simulation

(using software and computer), hardware prototyping (actually making a chip) and

automated theorem-proving techniques (using formal specification and verification), pro-

gram simulation has been most widely used. The method of hand execution is perhaps

no longer a valid alternative for human engineers, due to the enormous circuitry com-

plexity of today's VLSI technology. Hardware prototyping, on the other hand, is likely

the least appealing to most people, simply because the cost involved does not measure

up with the value of the prototype products. Hardware prototyping is not conclusive to

mixed-mode text-and-fix development, as are the others. One hardware bug may mask

other bugs, meaning many prototypes. Although the formal approach is appealing, in

that the correctness of designs can be verified mechanically using a theorem prover, the

24

required computation cost prohibits its application to designs of the size of the current

generation of processors. People are still actively seeking efficient formalisms for design

specification and verification.

Thus, a typical VLSI design process consists of an initial design followed by one or

more iterations between design simulation and design change. In this context, a design

is "conveniently" represented as a program in some high-level language (HLL), such as

the C programming language with BitSim, a simulation environment based on C [Ham-

merstrom86]. Given this correspondence, an initial design becomes the initial coding of

a program, design simulation is the execution of the program, while design change

corresponds to program modification, as shown in Figure 2.1.

Uhn"" ".hn m u u .hm um - -- hm u m - Un um - u.. "'hm _"''''''h'''''.''' u ...un - - um u - -- - - mm - h m m u_-

Initial

Design

Simulation Modification

No

l"'U""'''''''''''''''''._''''.''.''h nm ~i~~.~.en~:~...~-~~~~~~..~.~~.~.e~~ u m ':

While language representation for designs is good for simulation, it is hard to

maintain changes, since design objects and connections are captured implicitly in

expressions and shared variables. On the other hand, simulating off of structures is not

efficient. A good middle ground is to use a database to represent designs, and gen-

erated HLL simulators from the database representation for the designs. A good

25

database language would also help considerably the task of generating simulators.

Given a piece of circuit, as shown in Figure 2.2 (a), the following code segment (in

C notation) may be a reasonable program representation (a design program) of it:

D =- A;
if (CLK) Q = D;

Suppose we change the design to Figure 2.2 (b), then the code segment accordingly

becomes

D = - (A & B);
if (CLK) Q = D;

This example illustrates how changes in the design dictate the changes in the

simulation code.

'--"'''''''''''''''''''''--''''''''''''''--h''''' '''''' ''''''--'''''''--'''''--h'''''''m_'''--m--"--h--"""_--"'--mmm--'''m--''''''m''--'mm_m._.m_..'_,

Q

DFF

CLK

.m m m m ~~.~.~~.~..~:~._.~:~_.~.~r_c_~~~-~~~~.~-~~.~ m mm ~

HLLs support abstractions for computation, but not for design simulation or

description. For example, hardware description languages (HDLs) have abstractions

that are more domain specific. Although programs representing simple designs can

easily be constructed with maintainable complexity, it is entirely a different story for

Q
-

DFF

;;l
ICLK

A A

(II.)

complex design tasks. The complexity of a large design can grow quickly: t,o the point

where the HLL is no longer a t m l but a burden to the hardware designer. i n parallel to

using general purpose HLL, many specialized design description languages have been

used. These hardware description languages (IIDLs) are tailored specifically for the

application domain of electronic circuit designs. They typicaHy include linguistic con-

structs meaningful in this domain. For example, instead of saying

D = - A ,

we may use

signal A Inverter t o signal D

Similarly we can use

on signal CLK signal D D-flip-flop t o signal Q

to replace

i f (CLK) Q = D;

Although IIDLs are a n improvement, they still cannot cope with the ever-changing

hardware technology. Also, ccsanections are still via variables; and it is not easy t o find

all uses of "Q" in the program, for example. New alternatives, such a s database sup-

port, are stiI1 needed. The primary goal of CAD/C,U{ databases is tto describe and

represent hardware designs s a d as database objects and t o computerize the design and

manufacturing processes.

CAD/CAV databases emerged t o complement che WDL's t o cope with the com-

plexity in hardware design. As design tasks becomes more and more complex, HDLs

alone as the tools for design description become not only inefficient, they also create

new difficulties. One possible explanation is the following. HOIB are no more than for-

mal languages t h a t can be utilize2 t o describe circuit components and their intercun-

nections. Hardware designs expressed with an HDL are analogous to source programs

written in a n WLL. They are compiled into different representations, depending on

tmfs involved and design aspects studied by the different phases in a design process.

There are also problems in this approach. For exsmp!e, a layout tool understands s

layout description of a chip, but a simulation description of the same chip may totally

be foreign t o the layout tool. I t is also very hard to keep connections between different

abstraction layers.

Recent CAD/C..t\4 research calls for a shared design database t o meet the new

challenges in design and manufacturing a,pplicstions. The premise is t h a t if all design

tools a re built from a common ground and rely on a central s tandard information repo-

sitory, we would have a better chance t o make the t8001s understand each other. As

such they can work in s t ep and cooperate toward solving problems, rather than creat-

ing problems. We would also have a better chance to cut the cost of managing changes

in design processes. Finally, database support can open up new possibilities for design

tool generators, too. For example, a hardware design stored in a database can be the

input t o a simulator generator, tha t produces the code for a functional simuiator of the

design, as opposed t o maintaining the functional design as simulator code.

2.2. An Example Application

The example application we chwse is from the domain of electronic circuit design

in general, and VLSI design in particular, The goal of the database design is a schema

for representing VLSI design objects, mostly at the level of the register-transfer logic.

In this application, a design is a complex object containing component objects and

information about interconnections among components. The database should be able to

store various kinds of design component objects and connection {or conducting wire)

objects, and compositions of these objects that represent, larger circuits with certain

prescribed functionalities.

Even though the primary motivation of t.his example is t o introduce and iliustrate

basic d a t a modeling capabilities of TEDM, our design nevertheless is sufficiently genersl

and can be used a s a basic framework for real CAD/CAh4 applications. For example.

one possible extension is t o include code segments with design component. objects that

simulate their behavior. Then, a code extractor can be constructed a s a database

application, which traverses circuit objects and collects code segments t o produce simu-

lation programs for the circuits. In other words, a simulat.or generat.or can be built on

top of this design database. Another posibility for extension is tha t formal functions

can be incorporated into the schema t h a t describe the formal behavior of the design

components, and a design verifier can then automatically derive or verify the functional

specification of the resulting circuits.

In designing a schema for the example CAD application, we take into considera-

tion support for modularized, hierarchical design methodology, and permit design

objects a t different abstraction levels t o coexist in a single design project. In our view,

electronic design objects are database representations of detailed plans for constructing

VLSI circuits. Such a n object describes the circuit component.^ needed t o manufacture

a chip, a s well a s their interconnection topology. Thus, design objects represent circuit

schematics. A complete design is constructed from smaller building blocks - design

components or cells. Primitive components and pre-existing designs can form design

libraries, and objects in design libraries appear in new designs to avoid repeated efforts

and reduce cornpiesity. Depending on the nature of a design task, libraries of different

abstraction levels can be selected: permitting the same device t o be viewed differently.

Once a design is completed, i t is available for reuse in the form of library objeqts,

Therefore, a design activity can also be viewed as a n effort t o make new library cells.

To support this library paradigm, a design specification must be equipped with two dis-

tinct views, a n external view and an internal view. The external view is the interface

t o the outside world and has ports for connecting t o other circuit components. The

internal view is the implementation. which details internal configuration and reaiizes

the external (interface) behavior of the new cell.

2.3. Schema Design for A CAD Database

The format of the design objects can be understood by looking at the schema of

the CAD database. In general, a schema is a collection of type definitions. Typically, a

TEDM type definition is given as a list of structures, field names and corresponding field

types. Each type defines one kind of object t h a t is permitted in the database. Thus,

the schema for a design is a conceptual abstraction of the design ent.it,ies.

There a re nine types in the schema for the CL4D application. They are "Design",

"Library", "CeIl", "Port", "lmplementedCell", "Schematic", "Component", "Connec-

tion" and "PortRef".

The Type *'Designw

"Design" objects are the top level objects. representing logical plans for realizing

f u n ~ t ~ i o n a l ~ i r c u i t ~ s . '4 "Design" object is the goal tha t a design activity wishes t o

achieve. In order to describe a design efficiently, "Design" objects make use of available

libraries. instead of always start ing from primitive components. such ss FETs. For

example, if certain design requires a one-bit half adder, it may directly get the adder as

an existing component from some library, instead of using four nand gates t o construct

the adder circuit explicitly. The detailed circuit connectivity is represented by objects

of type '!ImplernentedCell". Thus, we have the following TEDM type definition for

"Design".

Design = (usesLibrary +-+ Library
implementation -+ ImpIementedCeli)

The definition says tha t a "Design" object has two kinds of fields. those labeled by

"usesLibrarg" and taking values from "Library" objects, and exactly one Labeled by

"implementation" and taking i t s value from "ImplementedCell" objects. The notation

< L +) ? indicates a single-valued field, a field permitting exactly one value, and the nota-

tion "-+-+" denotes a multiple-occurrence field, a filed permitting zero or more values.

The Type "Library"

Information kept by a design "Library" object includes a name, "libraryName",

for identifying the library, and a type, "IibraryType", indicating whether the library is

global (standard) or local (nonstandard). The third component of a "Library" object is

a multiple-occurrence field "IibraryCeII", which keeps a list of known devices available

in the library. This type definition is given below:

Library = (1ibraryName -, String,
1ibraryType --, String.
1ibroryCell Cell)

The type for both "IibraryNsme" field and "!ibraryTypen field is the same,

"String", which is a primitive type. Primitive types are provided by system and cannot

be redefined. 'Lt'e assume using two string valued objects. "global" and "local" a s the

values for the "IibraryType" field. The objects of the field "libraryCel1" are of the type

"Cell". These library "CeIl" objects represent electronic components tha t are directly

available to the designers t o make new circuits.

The Type "Cell"

A "Cell" object represents digital circuitry with well defined functionality, such as

various logic gates, flip-flops, etc. Each such object has a name, "cellName", for exrer-

nal reference, and a multiple occurrence field, "cellfort". which maintains information

about the cell interface to the outside world. The "Cell" is defined by the following

type definition.

Cell = (ce1lName 4 String,
cellport -+--+ Port)

At this level, a "Cell" object is pretty much a black box with a certain I/O func-

tion. "Cell" objects only contain interface information, a list of connection points

through which the outside world can make use of the well defined cell f ~ n c t ~ i o n . M7e

assume library cells are correctly implemented, and are not concerned at. all how they

are implemented.

The Type "Port"

A "Port" object represents a connection p i n t , or a pin, of an electronic com-

ponent. It has a name field; "portName", Tor the purpose of pin identification, and a

direction field, "portDirectionn. indicating the direction of information flow on the pin.

The type definition is thus

Por t = (portName -+ String,
poftDirection --+ String)

Note in pract,ice, pins are usually identified using numbers, such as pin 1, pin 2, etc. We

use the type "String" instead.

The Type "hpbrnentedCeH"

The next type definition uses rt new notation - a type name Followed by s struc-

ture list. This notation relates a newly defined type t o one or more existing types by a

snbtype-supertype relationship. The new type is defined as a subtype of the type(s)

preceding the colon. '4 subtype inherits all the structures of i ts supertype(s).

TmpIementedCell =: CeII:(internal 4 Schematic)

Thus, "TmplementedCelI" is a subtype of "Cell". ,4s such, an "Imp1ernentedCelln

object will also have a name, and a number o l connecting ports just like a "Cell"

object. In addition, a n "ImplementedCell" object is also required t o have a

"Schematic" object to provide internally detailed implementation information, such as

components needed and connection topology among the components. Also. because the

type "ImplernentedCell" is a subtype of the type "Cell", an ImplernentedCell object can

be used where a Cell object is expected.

The Type "Sehernatie"

Detailed design implementration information is completely described by a par t list.

which arc. the components needed t o make a new device, and a connection list. which

are wires for connecting the components. as is reflected in the following definition.

Schematic = (par t -+it Component.
wlre --+* Connection)

The Type "Component"

A "Component" object represents an instance of a physical circuit, element used in

the design t o achieve certain electronic behavior. It is a logic symbol appearing in a

schematic, or a component with physical existence required when the design is actually

t o be manufactured.

Component = (compoNarne --+ String,
cell -+ Cell,
library -+ Library)

The informa.tion in a "Component" object is basically for identification purposes,

t h a t is, where t o find, when needed, and further descriptions of a component. Hence it

has three fields, a "compoName", a "cell" and a "Library". In pract.ict?, component

names correspond to the component numbering in a schematic.

The Type "Connection"

An object of type "Connection" represent a single electrical connection point in

the schematic. It is these objects t h a t group together various components t o perform a.

given digital function. The definition for "Connection" is:

Connection = (port 44 PortRef)

Thus, a "Connect.ionU object consists of a list of port references (of type "Por-

tRef"). a connection is made by tying aH cell ports tha t participate in the connection

to the same place. Again, we may use ports instead of port reference3 in the definition.

The Type "PortRef"

:I "PortRef" object represents a single wire originating from s port of s cell

instance of the type "Component". "PortRef" objects are used by the "Connection"

objects. Notice, in our model, tha t objects of type "Cell" or type ('Port'' are used a s

templates. and t h a t designs use instances of these templates. The definition of "Por-

tRef:' is the following:

PortRef = (port --+ Port ,
corn ponen t --+ Component)

Obviously, using the "port" of a cell instance and the "component" of the

instance, we can uniquely identify t o which circuit component instance this port

belongs. There would be ambiguities had we used component names and port names, as

two components may have the same name.

W e should mention tha t not all type definition facilibies available in TEDM are

demonstrated by this example appIication. There are places in the schema where finite

enumeration types would be more appropriate. We use a minimal TEDM model, which

only supports "String" and "Integer" as primitive types, for simplicity.

2.4. Example Objects in the CAD Database

This section provides example objects for the CAD database schema. The exam-

ples will be drawn from a simple circuit design for a four-bit adder. A complete object

representation in the CAD database for chis design is included as Appendix 1. The logic

diagram for the four-bit adder is shown below [Figure 2.3). The logic diagram is con-

structed by the author from a BitSim program provided by Dan Harnrnerstrom 'Ham-

merstrom86j.

In the diagram, double bold lines represent a d a t a bus of width 4, which is simply

captured here as 4 wires, though other alternatives exist. For example. tve could add a

"width" field in the schema for objects of type "Port". The rest are all s tandard logical

symbols. This design uses hhe twcsphased logic, with clocking signals labeled "phil"

and "phi2", respectively. Operands are loaded into two registers, "areg" and "breg",

from input bus "inbusB2" and controlled by "lda2" and "ldb-2". The add operation

is done by a four-bit full adder, and the result is saved in result register "rreg"

Example 1: An object representing a two-input and-gate of a design library:

Ceil:(celiNarne -, 'andJ',
cellport -, fort:(purtXame -+ 'pin-l',

portDirect.ion --t 'input').
cellPort --t Port:(portNarne -+ 'pin-?',

portDirection -+ 'input'),
cellport -4 Port:(portName -, 'pin-3'.

portDirec tion -+ 'output'))

While the examples we show here may seem verbose, we are not restricted t o any

specific surface syntax, a s we pointed out. We will introduce application-specific syntax

in Appendix I: where a complete design instance is presented.

Sotice how a multipie occurrence field occurs in the previous example, where

"'cellPort" repeated three times, hut with distinct object values. A short hand for mul-

tiple occurrence field is possible! as is shown in the next example.

Example 2: An object representing a two-input nand-gate:

Cell:(cellNarne -* ' n a n d J ' ,
ceIIPort -+ Port:(portName -, 'pin-1'.

portDirectiolr -+ 'input')
& Port:(portName -+ ' p i n J " ,

portDirection -+ 'input')
& Port:(port Name -+ 'pin-1 ',

portDirection - 'output'))

Instead of repeating fieId labels multiple times, an ampersand symbol "&" is used

as a connective for values of multiple occurrence fields. The next example is for a D

register cell.

Example 3: An object representing a D register:

Ce1l:tcellNarne -, ' d s e g i s t e ~ ' .
ceilPort -, Port:(portNarne -+ 'pin-l',

portDirection -+ 'input'),
k Port:(portNarne -+ 'clock',

portDirection -+ 'input'),
& Port:(portName -+ ' p in2 ' .

port Direction -+ 'output'))

The example cells we have seen so far are all s tandard library cells. They only

have external interface descriptions, which are suficient t o make use of them. The

functionality of the standard cells can be derived from their interns] implementations,

or be given as Boolean equations for primitive components. Note tha t in the BitSim

representation, the functionality is implicit in the expressions of the program. In gen-

eral, the following places are likely candidates for keeping this information: people's

heads, sirnuIation programs, additional fields in cells and other par ts of the DB.

The next example shows a nonstandard cell with implement,ation information.

The example illustrate the concept of object identities. In TEDM, every object has an

identifier, called the identity of the object. Object identities are uniquely assigned to

the objects on their creation. No two objects ever have the same identity. We use

symbolic names. such m "Ah?)12", "anAnd3,1f', 'LanAnd-..2,2", etc., t o represent

object identifiers.

Example 4: This object represents a metbod for making a four-input and gate

out of three two-input and gates. Wotice how placeholders are used in this

example t o indicate subobject sharing.

IrnplementedCell:
(cellName -, 'and-4',
cellPort -+ Port:(portNarne -+ 'pin-l',

portDirection --, 'input'),
cPr Port:(portNarne -+ 'pinfL',

portDirection -+ 'input'),
& Port:(portName -+ 'pin,3',

portDirection -+ 'input'),
82 Port:(portName -, 'pin-4',

portDirection -+ 'input'),
& Port:(portName -, 'pin-Fi',

portDirec tion --, 'output'),
internal -+ Schematic:

(par t --, Component: anAnd2-f
{compoName --, 'and-2-1 ',
cell -* AND,2',
library -+ DefaultLibj

& Component: a n A n d - 2 2
(compoName -+ ' a n d 2 - 2 ' .
cell -+ -4ND-2.
library 4 DefauItLib)

& Component: anAnd-2-3
CcornpoName --, 'and2,3',
cell -* A M 3 2 ,
library -+ DefaultLib))

wire + Connection:
(port -+ PortRef:(port -+ aPin-3,

component -+ ax4nd2-1)
& PortRef:(port Name -+ aP in-1,

component -+ snAnd.2-3))
& Connection:

{port -+ PortRef(portName -+ aPin-3,
componen t --+ anAnd-22)

& PortRef:(portName -+ aPin-2,
component -+ anAnd-2-3)))))

C3

In order to save space, we omitted five wires in the last example, which are used t o

establish the correspondence between the ports of the new cell, a four-input and gate,

and the ports of i ts components, three two-input and gates.

2.5. Example Queries an the CAD Database

Finally, we furnish a number of example queries on the CAD database t o finish our

introduction t o TEDh1.

Example 5: This command finds and displays all ports tha t a four-hit adder

has.

View:P1 <= cells --, CelI:C[cellName -+ 'adder4', ceIlPort 4 Port:Pj

The construct on the right-hand side of the symbol "<=" forms a pattern or fern-

plate. The construct "cells -+" on the right-hand side of the symbol ''<=='' means a

collection of database objects, reachable from the database root. Here "cells" refers to

a collection of "Cell" objects, which serves the purpose of defining a s tar t lng point or

scope for matching against databases. Conceptually, collections separate intension

from extension, in t h a t there can he multiple collections over a type. The command

processor searches through databases and uses the pat tern in the command t o match

objects on the "cells" collection. The objects that^ match the pattern a re retrieved and

a re assigned a s values of the variables in the pattern, which are then processed by

operations indicated by the construct t o the left hand side of the arrow symbol. In this

particular example, all port objects of cells named "adder-4" are retrieved by the pat-

tern and are displayed by the "View" command procedure.

Example 6: This command creates a new library of Cell objects for each

IrnplernentedCell object. The cells in the library object a re those cells used in

the implementation of the ImplementedCell object.

library -4 Library:*(librarpNsme -* N!
IibraryTy pe -+ 'global',
IibraryCelI +-+ C) <=

cellused -t implementedCell:(cellName -* N,
internal 4 Schematic:(part -+

Component:(cell --. C))),
cells -+ C

The asterisk "*" in the last command indicates 8n object creation operation. In

this case, objects of type 'LPort" are created. The newly created objects ail have che

same internal structure. Wevertheless. they are distinct objects since they have unique

ident.ities. Note also t h a t the notation -++ is used t o collect all objects bound to the

variable "C" in a multiple-occurrence field.

Example 7: This command adds "neighbor" field t o Component objects. The

values of this field of a Component object are the Component objects tha t are

directly connected t o t.he object.

C(neighbor -+ C1) <= connections -+
Connect ion:(port -+ PortRef:(cornponen t -+ Component:C):

& PortRef:(component -+ Componen t :Cl))

2.8. Chapter Summary

The basic modeling aspects of TEDM and its command language are introduced in

this chapter through an example application. The CAD database example provides a

good exposition t o the d a t a model, although it only uses a limited number of constructs

of TEDM. More thorough discussions are given in the next few chapters.

CHAPTER 3

DEFINING OBJECTS

The language aspects for describing objects are studied in this chapter. Although

we define different languages. our ultimate goal is t o do away with these auxiliary

Isnguages. In the end, we would use a single uniform (or canonical) language for all

purposes, stich as d a t a definition and d a t a manipulation. WOW can such a canonical

language be possible? One approach would be t o define the canonical 'langnage as the

union of all the auxiliary languages whose functionalities the resultant language intends

to incorporate. The union method solves the problem, but in a clumsy way. I t also

means t h a t future inclusion of a new language by the d a t a model amotints t o redefining

the canonical language by one more union component. In other words, the canonical

language obtained by the union method can not easily be extended. W e approach the

problem in a different way: We do not rely on inclusion of syntactic constructs from

different languages for obtaining a language with more power. Instead. we do w by

extending tbe databases, t o include objects tha t are semantically richer than applica-

tion d a t a . AIso, we only require a minimal syntactic extension to the object language

(when compared to similar languages in other systems).

The result of this convergence in language is a to ta l objectification in the following

sense: The object language becomes the canonical language, whme sentences denote

database objects. The expressions of the other languages become sent.encea of this

canonical language. For example, the language for defining types and the language for

defining commands are all sublanguages of the canonical object language. The? denote

special classes of database objects, namely, type-defining objects and command-defining

objects. I t is also convenient t o add new sublanguages, for example, for describing

displays. The new language would be similarly interpreted a s database objects.

Although the new language may have a special syntax, i ts semantics remain unchanged

as database objects, and can be described by the canonical language. Consequently.

every sentence in the Language has an object representation. And conversely, every

database object can be described by a sentence.

We will make a distinction between an abstract object and a concrete object. Con-

crete objects are lsbjects with identities and structures. They are the basic building

blocks for application modeling. From the database user's perspective, an object is a

conceptual representstion of certain aspects of a real world enti ty from an underlying

a,pplication domain. From the system's perspective, the representation of a database

object consists of an object identity and a co1lect.ion of fields. hbs t r sc t objects are a

different class of objects. Their presence improves the d a t a model in its ability t o

represent things other than application da ta . They have special semantics. which form

the basis for representing programs a s d a t a , and the basis for a canonical d a t a descrip-

tion language.

Abstract objects are used to represent patterns in commands. Their function is

similar t.o t h a t of variables in logic formulas; they a re templates t h a t can match con-

crete objects. Structurally, an abstract object also consists of a n object identity and a

collection of Gelds. The major differences bet ween abstract objects and concrete objects

lie in their semantic connotations The system t rea ts them a s fundamentally different

categories of objects, and is able t o distinguish them by their representations

This chapter contains four sections. Section 1 discusses motivations and the

rational for extending abject spaces. It discusses the requirements and t h e consequences

of a total objectification. Section 2 presents related syntactic issues. I t suggests split-

ting the meta-concept variable into two parts: one being placeholders and the ot<her

being object tags. The former contlnue t o be neta-enti t ies that range over individuals

of the object spaces. The lat ter (object tags), however, hecorne non-togical symbols

t h a t require interpretations. A syntax for an object definition Iangunge (the canon~cai

language for TEDM) is also proposed. Section 3 associates mean ing wirh expressions of

the object language Section 4 provides infcrmal discussigns for a few of the additional

features of the object definition language.

3,l. A Canonical Data Description Language

We elaborate on what we mean by the term total abjectificcttion. rZ d a t a model is

representationally complete if i t provides a unified view and representation for applica-

tion d a t a , their definition, manipulation, inference and displaying. If an object-oriented

d a t a model is representation complete, we say tha t i t is totally objectified. We consider

the definition, manipulation, inference and displaying of d a t a as the most important

activities for database management systems. from an end user's perspective. They are

singled out in this thesis as the criteria for the informai notion of representation corn-

pleteness. But others (such as constraints and access restrictions on objects) can be

added t o this criterion list, too.

Wit-h this notion of totally objectification. d a t a definition, manipulation. inference

and displaying all become part of an application database. They are all represent.ed

uniformly as objects. Consequently, they can be queried and manipulated. in the same

way as the application d a t a can, by the end users or the application developers, using

the tools and facilities provided by the database management system. Special pre-

defined types are provided for representing d a t a definition, manipulation, inference and

displaying a s objects. With this approach, types and commands can be manipulated i n

the same way other objects are manipulated. We do not exclude the possibility c;f

imposing certain restrictions on bow these special classes of objects can be manipulated.

For example, we may restrict updating on d a t a definition objects to control the com-

plexity in schema evolution.

For each cabegory of these special objects, TEDM provides a specification language

for the users' convenience. In part.icular, we have a language for creating objects, a

language for defining types, a language for querying and manipulating existing d a t a ,

and a language for deducing information. We anticipate tha t other languages would be

added in the future. For example, a language for display format specification for

objects, a s proposed in jAnderson86. FIynn88j. But as we pointed out , the language for

object definition (creation) will subsume t.he capabilities of the other languages com-

bined. In other words, although on the surface we provide different languages to

describe different categories of database objects, only the object definition Language is

fundamentally indispensable. The remaining ones are syntact,ical variations and are

supplied for the users' benefit. With this canonical language, we are able t o tailor indi-

vidual interface languages to best suit special needs. Hence, the system provides tailor-

able language e'ratel-faces in a clean way: Addition of a dialect amounts t o introducing a

simple dialect for the object definition language, whose semantics are already under-

stood by t<he current system. (Of course, the introduction of a new language with new

semantics would require new evaluation modules t o be added.) Furt.hermore, new

language dialect can be added in a fairly modularized fashion. We can also define mul-

tiple dialects for certain special objects. For example, either a textual language or a

graphical language or both can be used for defining compound commands, or for specifp-

ing display formats.

Objects and Their Structure

There are two generic classes of objects, simple objects and complex objects. Sim-

ple objects are atomic, namely, cannot be further decomposed. Simple objects have no

internal structure and are immutable: One cannot change the s t a t e or value of simple

objects. But when simple objects occur as par t of complex objects, they can he repla.ced

by other simple objects of a similar type, say as the result of an update operation on

the complex objects.

Example 8: String, Integer and Real are a few typical simple object types.

'Oregon Graduate Institute j 'Beaverton', 19600, 1969, 5.5, etc. a re examples of

simple objects. The notion of types is discussed in detail in the next chapter.

Complex objects, on the other band, has unique identities, possess structures, and

a re classified into different types. -4 complex object is a composite entity consisting of

one or more fields. The values of object fields a re themselves objects, simple or com-

plex.

Example 9: A Point object has an x-coordinate and a y-coordinate, which are

Integer ohject .~. PI and P2 represent the unique identifiers t h a t are assigned to

the two point object, respectively (but the actual identifier values are system

generated and not visible external t o t.he systernj.

,4. DircctedLine object has a s t a r t point and a n end point, which are Point

objects: DirectLine:L(atnrtPoint 4 Point:Pl , endpoint -+ Point:P3) a

Complex objects need not always be tree-structured, as in the last exampie. Since

objects have unique identities, structure sharing is easily supported.

Example 10: When t.wo directed lines have a common s t a r t point, an angle is

formed (This example uses objects from the previous example):

Angle:A(startEdge -+ Direc tedLine:L
endEdge + DirectedLine:M(startPoint -+ Point:P1

endpoint -+ Poiut:P3(x --c 2,
Y -+ 4)))

Similarly, cycles in the object structure graphs are also possible. For example, in

an organization database, a department has a chairperson who works in the depart-

ment. Figure 3.1 is a n illustration of the angle object described in Example 10. The

components, lines and points, a re labeled by their symbolic object identifiers.

Figure 3.1 A Complcx Object
' --.- -. ,

In summary, objects in TEDM are structuralIy hornomorphic t o (can be mapped

into) directed graphs. The results of the mapping are object strtrcttlre graphs. The

nodes in a n object structure graph represent objects, and are labeIed by object identi-

ties (simple object identities coincide with their values). The arcs represent the field

s tmcture of object.^, and are labeled by field names. The mapping st3rt.s from simple

objects. (If there are no simple objects, pick an arbitrary complex object t o start .) Sim-

ple objects are mapped t o isolated nodes. Consider each already mapped node in turn,

if the corresponding object occurs in another object as a field value, and there is no arc

labeled with field name connect,ing the two nodes (if the second object is not mapped,

create a node for i t first), add such a n arc from the node for t he second t o the node for

the first. This procedure results in a directed graph, with labeled nodes (by object. iden-

tities) and labeled arcs (by field names).

Describing Complex Structures

Convenient notations exist in the mathematics for describing complex structures.

Examples include the following:

1) The set notation: SET. SET is t h e basis for studying graphs abstractly. A

directed graph can be described as a pair of sets, a set of nodes, and a subset of

the self-product of the node set as the set of edges in the graph. For example. the

set pair

S = ((a, b, c, d), ((a, b), (a, c), (b, c), (b, d!, (d, a) 1 1

denotes the graph in Figure 3.2.

Figure 3.2 A Directed Graph
, " ... - - - - - - - - - - -

2) Variable-free terms: TERh4. The TERM notation is equivalent t o rooted directed

trees, directed acyclic connected graphs with two properties: a) The number of

edges is one less than the number of nodes; and b) there is a unique distinguished

node (the root) t h a t has no incoming edges. In formal logic, terms are an impor-

t a n t language construct*. Ground terms, terms without variables, denote precisely

the class of graphs of the rooted directed trees. For example, the ground term,

a(b, c(d, e))

represents the tree in Figure 3.3

..

Figure 3.3 A Rooted Tree
.. _

3). Terms with variables: TF3RMflA.R. This notation is a n immediate extension of

TERM. Although variables do not have meaning by themselves alone, they give

rise t o a class of formulas, quantified formulas, and their meaningful interpreta-

tions. Constants are substituted for variables before the t,ruth value of a formula

is determined. Such substitutions are required t o be consistent. T h a t is, they

must be functions from variables t o constants. Interestingly, this requirement

leads t o a desirable extension t o the graphical interpretations for TERM:

TERM/VAR effectively represents rooted directed acyclic graphs (see Figure 3.4).

For example, the t e r n

describes the following DAG.

Figure 3.4 A Directed Acyclic Graph

Gnfortunately, none of the three notations provides a complete solution to our

quest for a powerful specification Ianguage for object structure diagrams. The para-

graphs to follow discuss v ~ h y we need more.

its is evident from the last section, when their semantics are ignored, object struc-

ture graphs are precisely rooted directed graphs. But when taking semantic inforrna-

tion into consideration, we find t h a t not all such general graphs a re well-formed object

~ t r l r c t u r e graphs. For example, if we consider the fact t h a t objects a re typed, then pou-

sible edges emanating from a given node are restricted t o those labeled by field names

defined in the object's type. In particular, there should never be edges emanating from

nodes for simple objects.

T h e language TERM is too weak to be a canonical language. Since TERM

describes only the class of structures tha t a re rooted directed trees, i t cannot be used t o

specify structure sharing, which is important to the TEDM object model. The language

TERM/CrAR. on the other hand, supports a limited version of object, sharing. In

TERM/VAR, multiple occurrences of the same variable must be substituted con-

sistently, i.e., by the same object, which amounts to sharing the stibstit\itinrg object by

multiple containing objects. Object sharing in TERXI/I;AR is limited in the following

sense: Although they can be substituted by complex terms, the variable themselves can

only occur a s leaves. In ocher words. TERhf/VAR (before substitution) is structurally

equivalent t o the class of t r e e D,4G's, rooted directed trees whose leaf nodes may have

multiple paths from the root. Furthermore, if the language TERhf/VAR is used in a

system where only 0-arity terms (that is, constants) are permitted in substitution for

variables, TERMWAR denotes precisely the class of tree DAG's. There is still another

deficiency in this language: terms have fixed ari ty - they do not allow extra fields.

Therefore, TERhi/VAR is still too weak t o be TEDM's canonical language.

The language SET is strictly more powerful than the graph formalism. I t is capa-

ble of specifying any graph, a t a relatively low level. I t may be good a s an internal

representation language. For example, the 2-8 storage model in jZhu861 is basically a

set notation. Readability and intuitiveness are important qualities of languages.

Hence, the language SET needs t o be extended with richer syntactical constructs, to

become a useful specification language.

Extending the Language TERM/VAR

The language TERMPAR can be extended t o support a more general notion of

structure sharing. The basic idea for more generalized sharing is still the consistent

substitution for object variables. The semantic basis tha t makes the extension possible.

however, is the assumption tha t each complex structure is associated with a common

identity. Object variables are mapped t o object identities. If a n object variable has

multiple occurrences, then they are mapped to a unique object identity. referencing the

same complex structure. In fact , not only genuine rooted DAG's can be specified, cycles

can also be introduced into object structure diagrams under the scheme.

U'e call the result of this section's extension TERM/VAR*. Each sentence, or

term, in TERMPrAR* corresponds t o a primary object, and possibly a set of subordi-

nate objects, in the database. The language TERMfVAR* by itself alone, however. is

still insufficient a s TEDh4's canonical language. We will deal with the remaining

deficiencies in the next section.

The language TERMIVAR* is obt.ained from TERMPAR by the following relaxa-

tions on syntax: The order of argument terms can be rearranged without, affecting t,he

meaning (which is possible since the terms are labeled), terms may contain a variable

number of argument subterms, and variables may be associated with the term or sub-

terms. The resulting language, TERM/t'AR*, is essentially the language of the

0-terms of [Maier86l, and similar t o feature structures in unification grammars

The ordering of arguments in TEFthd/VAR* becomes insignificant, since tiold labels

a re used to associate the primary term with the subterms. This simple addition also

improves the readability to some extent. Consider the description of a schematic for an

RS-FlipFlop, shown in Figure 3.5. Points in a Cartesian coordinate space are

employeed t o convey the connection information among the pins of logical components.

When two pins refer to the same point, they are connected with each other.

53

R S

Figure 3.5 An RS Flip-Flop

Using TERM/V AR, we can describe the schematic object as follows:

rsFF(nand2(point(2, 0), point(l, 4)),
nand2(point(1, 4), point(2, 0)))

Some information is implicit in this description: We assume that the first argument in

"point" represents the x-coordinate of a point, while the second represents the y-

coordinate, and so on. Coordinate values are used to determine whether two points are

actually the same.

Using field labels, we can rewrite the description for the RS-Flip-Flop as the fol-

lowing:

rsFF(leftNand-nand2(rightPin-point(x-2, y-O), outPin-point(x-l, y-4)),
rightNand-nand2(leftPin-point(x-l, y-4), outPin-point(x-2, y-O)))

where field labels are separated from subterms by "-". The situation is improved a

little, but we still have to rely on value equality to refer to the same object. To solve

this problem, we make use of object variables, variables that are bound to object identi-

ties. As a result, we can associate object variables with complex objects, and express

structure sharing readily. For example, the fact t h a t two point objects in the RS-Flip-

Fiop a re shared can be specified a s follows:

This desc~*iption captures the fa.ct t h a t the right pin of the left nand-gate and the top

pin of the right nand-gate are connected to the same grid point. Sirni1a.rly. the left pin

of the right nand-gate and the top pin of the left nand-gate are connected t o the same

grid point. In the description, "Pl" and "P2" are object variables. Sotice we no longer

need t o describe the coordinates for the rightNand t,o capture the shared connections.

A term is most often characterized by its name (functor) and i ts ari ty (t.he number

of arguments). A functor map be associated with several srities and different <functor.

ari ty> pairs refer t o distinct functions. In our use of TERM/VAR (including extensions

we have discussed), functors are construed as classifiers rather than functions. For

classification purposes, i t is useful t o define a n order on d a t a records, based on the

amount of information they contain (or the generality), a s exemplified by the following:

name(first -+ 'Joe') > name(first 4 Voe', last --+ 'Joy'): and
name(first --+ 'Joe', last -+ 'Joy') 2

narne(first -+ 'Joe', last -+ 'Joy', middle -4 'Jay')

The aricy of terms in TERMPAR* can he a variable quantity. In other words.

the functor alone determines the category of the d a t a records, although some records

may contain more information than the others. The fact t h a t no particular order is

required on term arguments also contributes t o the flexibility of adding or dropping suh-

t.erms. Continuing the RSFlip-Flop example, we add two input pins and a n output pin

to its description:

rsFF(IeftNand+nand2(rightPin-+point(x-*2, y--tO), topPin-+point{x+l, y-4)).
rightNand-+nand2(leftPin-+.point(x-+l, y-+4), toppin--+point,(x-+l, y-4)).
l e f tP in+ inPin(p inName~~Rt) ,
rightPin+inPin(pinWame+'St),
topPin-+outPin(pinName-, 'Q'))

Notice tha t both a n RS-FIipFIop and a two-input nand gate have a left pin ("luftPinl').

In this case. the two fields contain two distinct objects, although we mav expect ?.hat

the types of the two objects are related. e.g., external pins should have symbolic names.

3.2. Placeholders and Object Tags

Traditionally, variables are purely placeholders in a logic syst.em. They are used

t o help form abstractions with quantification. TJsually, a term with free variables is

hard t o interpret and most logic systems assign no meaning t o such terms. The

extended language with arbitrary co-reference variables still only yields ground terms.

Therefore, in addition t o co-reference variables? we add anot,her class of variables whose

free occurrences permit meaningful interpretations. This new class of variables are

called object tags (or simply tags), and they are interpreted by abstract objects.

Objects tags are closely related t o placeholders: Both are related to the notion of

substit,ution of one enti ty by another. The main difference is: placeholders must be

bound t o constants (including object identifiers), when occurring in a term. But object

tags in a term are not, handled a s variable substitution when the term is interpreted.

Instead, a n interpretation function shall map object tags t o abstract objeccs. In other

words, when a syntactical construct, e.g., a term, is interpreted by a semantic object

(or translated into a n internal representation), placeholders disappear in the represen-

tat ion, whereas object tags shall remain.

The significance of object tags is tha t they make it possible t o define inverse maps

under which object. tags become variables, or better yet , to define directly bindings of

one type of semantic object with another. The inverse maps allow us not only t o

recover d a t a stored (converting the internal representations t o the external forms), but

also t o recover commands, etc. , up t o renaming of placeholders.

T h e use of placeholders is consistent with their traditional roles. They are sy ntac-

tic symbols t h a t are not interpreted directly in a model. As in logic, nonclosed formulas

rely on variable assignments to determine their t ru th values. T r u t h values thus

obtained are relative to variable assignments. T h e treatment of placeholders in our

system is only slightly different. Object terms define the assignment to placeholders

occurring in them. Similarly, the notions of free occurrences and bound occurrences of

placeholders a re used t o define closed terms.

Example 11: In the following term. F and L occur free; and E and N occur

hound.

Employee:E(name --+ PersonName:N(first 4 F, Last -+ L))

They are bound to the objects (object identifiers) denoted by the terms

Employee:(narne -* PersonName:(first + F , last -+ L)) D

We augment TERM/VAR* with the distinction between placeholders and object tags.

We also refer to the sentences in the resulting language a s object terms.

Notation: The foilowing conventions are used in discussion. T, TI, T, , ... , T, are type

names. f, f , , f2, ..., fn are field names. V , V,. V,, ,... V, are placehoiders. P, P,, P?,

..., Pn are object tags. e, e,, e,, ..., c,, are constants. We also use w , w,, w,, wn t o

denote object terms.

Definition 1: Object terms are defined recursively as follows:

1 Each of the following is an object term
2 . 1 c (a constant).
1.2 V (2 placeholder).
1.3 T:P? {an ohject tag).

2 Given tha t w,, ..., wn are object terms, then so are these:
2.1 T:V(f, -+ w, , ..., fn 4 wn) (a complex object with a placeholder).
2.2 T:P?jf, -+ w , , ..., fn --+ wn) (a complex object wit.h an object tag).

3 T, w is an object term (a multiply typed object).
4 Nothing else is a n object term.

Each piaceholder V must occur exa.ct1y once in a 2.1 term, and zero or more

times in a 1.2 term. Placeholder occurrences are unique.

In this definition. the first set of clauses say tha t d a t a constants, placeholders and

typed object tags are object terms. The second set of clauses say tha t more complex

object terms are constructed by grouping simpler ones using field 1a.bels. In particular,

Clause 3.1 describes an object of type T with n fields. In addition, the identifier of the

object is bound t o a placeholder V . Clause 2.2 is similar t o Clause 2.1 except that an

object tag is used, indicating an abstract object. The third clause says there can be

more than one type symbol in an object term, indicating muftityping (one object being a

member of more than one type.) U'e also use the notation "T:{f, --c w,: ..., fn -+ wn)
>)

as a shorthand when the placeholder is unique.

Example 12: 12945 and 'Joe' are constant symbols denoting simple objects.

(Clause 1 .I). Person:P? is an object term denoting an abstract object that.

matches concrete objects of type Person (Clause 1.2). a

58

Example 13: The term

PersonName:(first -+ 'Joe', last -+ 'Dow')

denotes a complex object representing an individual's name (Clause 2.1). The

term

Person:V(name -+ PersonName:(first -+ 'Joe', last -+ 'Dow')
addr -+ Address:(strNo -+ 1234, strNm -+ 'First Ave.'))

denotes a complex object corresponding to a person, which consists of a Per-

sonName subobject and an Address subobject (Clause 2.2). The placeholder V

in this case is bound to the identifier of the object. In general, more than one

occurrence of V may occur in a term indicating sharing of objects, which is a

more useful scenario. The term

Person:P?(name -+ PersonName:N?(last -+ 'Dow'))

denotes an abstract object, which contains an abstract PersonName object

(Clause 2.3). The abstract PersonName object matches concrete PersonName

objects whose last name field has a value of a simple object, 'Dow'. The

abstract Person object matches concrete Person objects whose last name is

'Dow.' 0

Example 14: The term

Stockholder, Manager:(name -+ PersonName:(first -+ 'Joe',
last -+ 'Dow'),

addr -+ Address:(strNo -+ 1234,
strNm -+ 'First Ave.'))

denotes a complex object with multiple types. 0

59

We require all objects be properly typed. (The meaning of proper typing will be

made explicit in the next chapter.) Types are always explicitly given when writing

object terms, except for simple objects, whose types are self-declaring.

3.3. Semantics

Object terms or groups of object terms are specifications (and constructors as well)

for database objects. Technically, they are formulas interpreted by (or mapped to)

objects - the objects provide meanings for the terms. Designing a mapping (an

interpretation) from formulas to objects is usually referred to as defining the semantics

of a language. To accurately reflect the meaning of the syntactical objects, certain

constraints are always to be observed by interpretations. For example, an interpreta-

tion for the first-order logic must map constants to individuals of a data domain, a

function symbol to a function (of proper arity) over the data domain, and a predicate

symbol to a relation over the data domain, etc. In our case, each simple term is inter-

preted by one and only one atomic data value, while a complex term can be mapped to

anyone of an infinite number of complex objects (they are isomorphic nevertheless).

Other interpretation rules are detailed below.

We use structured spaces for interpreting the object definition language. Elements

(or objects) of such a space are rooted directed graphs, which we called object structure

graphs earlier. We utilize a textual format to describe elements of the interpretation

spaces.

Notation: G denotes an interpretation space. Elements of G are graphs, denoted as

8, 81, 82, ..., 8n' The following three disjoint sets are assumed: IDD is a set of nodes

60

labeled by primitive data values, whose elements are v, v l' V2' ... Vn' IDc is a set of

nodes labeled by concrete object identities. IDA is a set of nodes labeled by abstract

object identities. Unions of the three sets are denoted with proper subscripting. For

example, IDAC denotes the union of IDc and IDA; ID ACD denotes the union of IDD' IDc

and IDA, with elements are i, il, i2, ..., in, E denotes a set of edges labeled by field

names, whose elements are e, el' e2' ..., en (ej labeled by fJ In addition, all nodes in

an object structure graph are tagged by type names.

Definition 2: A structure space, G, is constructed as follows:

1). if v E AD, then (v, { (type:v T) }) E G, where v T denotes the type of v

2). if i E IDAC and gj E G, then g = (i, {(el :gl)' ..., (en:gn)' (type:iT)}) E G;

where iT denotes the type of i
we say g has as its components each g. and all of g. 's components;1 1

and any of the g's components can be g itself

0

The first statement of the definition covers the basis: graphs of simple data values

or object identifiers are elements of a structure space. The notation (e: g) means there

is an edge e going into the root of the subgraph g. The second statement says that a

new element can be constructed from simple ones: i is the root of g; and the root has (n

+ 1) edges, el' ..., en and e, directed to the roots of the subgraphs gl' ..., gn and iT'

respectively. Note that the field names need not be distinct - there may be two or

more edges with the same label going out from the root.

An interpretation maps object terms to object structure graphs in G, and works

as follows (refer to Definition 1).

61

1). Each of the two clauses is mapped to a node in the resulting object structure

graph. A constant c is mapped to a concrete node labeled by the value of the con-

stant, and tagged by the type of the value. An object tag placeholder T:P? is

mapped to an abstract node from IDA' labeled by a unique object identity and

tagged by the type of the abstract object id.

2). For each of the three subcases, a node is selected or created; and from the node, (n

+ 1) edges (labeled with fI, ..., fn) are added, leading to the roots obtained by

mapping wI' ..., wn' respectively. For case 2.1, a concrete node (of type T) with a

new object identifier is created. Handling of the case 2.2 is similar, except that in

this case, a symbol table containing binding information for placeholders needs to

be consulted or updated to deal with co-reference. (Recall this form defines the

binding of the placeholders to the object identity.) For case 2.3, a new abstract

node is introduced. An additional node (of type String) is created to hold the

external names for the abstract node; an edge labeled by tag is used to connect the

additional node to the abstract node.

3). For this case, a new type T is attached to the root node of the object graph for w.

The following definition restates the interpretation rules in a formal manner.

Definition 3: The semantic function, E, maps object terms into objects. In

doing so, it uses an environment, Env, that maps types to type defining objects

(see the next chapter). The environment is also used to maintain information

about placeholder and object tag bindings. We assume that the Env maps all

placeholders and object tags to unique abstract and concrete ids. The

interpretation of an object term is unique up to selection of these ids.

62

1.1) E I[c] Env = (c, {(type:Env cT)}

1.2) E I[V?] Env = (Env P, S),
where S is the set of edges defined by the unique occurrence of V in a 2.1 term

1.3) E I[T:P?] Env = (Env P, {(type:Env T), (tag:P)})

2.1) E I[T:V(fi -wI' ...,fn - wJ] Env=
(EnvV, {(type:Env T), (fI:E I[WI] Env), ...,

(fn: E I[Wn) Env))})

2.2) E I[T:P?(fi - WI'...,fn- Wn)] Env =

(Env V, {(type:Env T), (tag:i),
(fI:E I[WI) Env), ..., (fn:E I[Wn] Env))})

3) E I[T, W] Env = (type:T) U E I[W] Env

0

Clause 1.1 states that a constant is simply mapped to its value, which is itself. In

Clause 1.2, we used the notation "Env <name>" to denote looking up the <name>

from the environment. Type information is recorded via a distinguished edge from

every node. An object tag name is also recorded as a field.

Clause 2.1 creates a concrete object with the identity assigned to V, and fields

described by the object term. Clause 2.2, creates an abstract object in a similar

fashion. The interpretation for Clause 3 attaches an additional type to an object.

3.4. Other Considerations and Chapter Summary

Collection objects are not directly available in TEDM. Instead, they are sup-

ported indirectly via multiple occurrence fields, fields that may have more than one

value (including none). In object graphs, an object having a field with more than one

value means there are multiple edges with the same label emanating from the node for

the object.

A shorthand synt;ax is provided for indicating muitiple occurrence fields; this is

done by conjoining subterms with an ampersand (St). The following example illustrates

the use of multiple occurrence fields.

Example 15: In VLSI design, a polysilicon rectangle across a diffusion region

forms a transistor.

FETLayout :(fet -4 Simpleltayou t:
(layout unit 4 LayoutUnit:

(rect --r- Rectangle:
(width -+ 2:
height --, 61,

color -+ 'GREEN').
position --+ Point:(x -+ 3, y 4 0)))

St SimpleLayout:
(layoutunit -+ LayoutUnit:

(rect --+ Rectangle:
(width -+ 6,
height -+ 31,

color -, 'RED'),
position 4 Point:(x -+ 0, y -+ 2)))

Closely related to multiple occurrence fields are indexed fields, which are indicated

by index values delimited using square brackets. Like field labels, we assume index

vslues come from a fixed underlying domain (the positive integers.) Indexed fields are

useful for applications where the order among a group of similar objects needs t o he be

maintained.

Example 16: In VLSI layout design, i t is convenient t o place a number of lay-

out units as a group.

LayoutArray :(region -[lj SimpleLayout :
(layoutunit -+ LayoutUnit:

(rect --, Rectangle:
(width -+ 2,

height -+ 61,
color -+ 'GREEN'),

position --+ Point:(x -+ 2, y --+ O)j)
&[2j SimpleLayout:

(layoutunit -+ Layou tuni t :
(rect -+ Rectangle:

(width --, 2,
height -+ 8),

color -* 'GREEN'),

position -+ Point:(x -+ 6, y + 0)))

Example 27: A connection on a printed circuit. board can be represented as a.

connector object shared by pin objects to be connected together. In the follow-

ing pullup transistor, the gate pin and the drain pin are tied t o the same con-

neetor object, a s indicated by the placeholder C.

Pullup:(g -+ Terminal:
(termName + 'gate',
connectTo -+ Connector:C

(position -+ Point:jx 4 0, y 3 0).
signal --+ Signal:(aigName -+ 'T3D',

sigVal - ' u n k n o ~ n ')) ~
d -+ Terminal:

(termName 4 'drain', connectTo -+ C) ,
s -+ Terminal:

(termName -+ 'source',
connectTo -, Connector:

(position -+ Point:(x -+ 10: y --+ lo),
signal -+ Signal:(sigName -+ 'T30UT'.

sigVal --c 'unknown')))

To sum up. we have described a language for defining objects in TEDM. More

importantly, we have studied in detail several ways for describing complex struct.ures,

pointed out their strength and weakness. The study, combined with our goal to ~bchieve

total objectification, leads t o the decision of splitting traditional variables into two

kinds, placeholders and object tags. Finally, formal syntax and semantics of the object

definition language are proposed. It would be too hard t o extend semantics t o allow

duplicate object tags, making them function as both tags and co-reference placeholders.

CHAPTER 4

DEFIMENG TYPES

Types define and enforce the structure of objects: M a t fields an object may have

and what values these fields can take are stipulated t o s large degree by the type of the

object. W e allow an object t o be mult ip ly typed. In this case, the object is constrained

t o satisfy the structural requirements from each of i t s types. Types also play impor-

t an t s roles in conceptual modeling: They naturally correspond t o prototypical concepts

and can be used for classification purposes (dividing objects into conceptual classes).

The type system of TEDM .I designed t o a1Low these dual roles, constraining object

structure and representing prototypical concepts, t o be easily blended.

Several important concepts for typing are types , subtypes, con formi ty of objects t o

types, membership of objects participating in types [typesets) , and the classes of object

se ts (coNections or domains) definable from the typesets using the usual set operations

such a s intersection, subsetting, and so on.

The stat ic aspect of a type defines a set of fields, and their respective domains, a s

a necessary condition for i t s members: the conjormity condi t ion of a type. Such a con-

formity condition s ta tes that , in order for an object t o be a member of the type, it must

contain at least as many fields a s there are defined for the type, and each field has a

legitimate value as specified in the type definition. An object conforming t o a type can

become a member of the type (meaning a n element of the typeset). We require a.11

objects belong t o a t least one type. We also require type definitions be given before its

instances can be created.

This chapter discusses what types are and how they are defined in TEDM. For

these purposes, we briefly overview the general notion of types, and describe the syntax

and the semantics of a language for defining types. In Section 2, the notion of typing in

TEDh4 is described, along with four relations t h a t characterize how the types are

related to each other, and how objects and types are related. Section 3 presents the

syntax of a language for defining types. Section 4 discusses the semantics of the

language. The chapter is summarized in Section 5.

4.1. Wha* Is a Type?

The concept. of types has been used extensively in programming languages. Types

in programming languages arc used in the following two ways. They provide a high-

level abstraction on d a t a , allowing the construction of complex d a t a structures tha t are

not. directly representable by the hardware (for example, a record type); they give rise

to a n important feature in modern programming tools (for example, compilers), type

checking. Most compilers can detect obvious type errors, such as adding a Boolean

value and a Real value, or assigning a n Employee record t o an Account variable. To

detect more subtle errors, such as division by zero, type systems more comprehensive

than the ones in conventional programming languages a re needed. (For example, one

which can define a domain "PositiveNumber" a s ''Number" minus the zero.)

A subtle issue regarding type checking is type-equivatence: U%en are two types

considered identical and when are they are? There are approaches: equivalence by

declaration, and equivalence by structure compatibiIity. In the first approach, two

types a re considered distinct even if they have identical definitions. Hence, assigning a

value of one type to a variable of the second type always results in a type error. In the

second approach, two types are equivalent if they a re structurally compatible. The

structural compatibility can be determined by the compiler a t compile time.

The type systems of early languages such a s Pascal tend t o be ra ther rigid. The

rigid requirements often become a burden rather than a convenience. Consider a s an

example the identity function (Xx.x). Apparently, this function has a well defined type,

T.(T -4 T), where T is a type variable that can be replaced by any type. However.

this function is not implementable in PASCAL. Object-oriented (0 0) programming

languages have statically typed versions (such a s C++ [StroustrupS6] and Trellis/Owl

[Schaffer86]) and dynamically typed versions (such a s Smalltalk-SO [Goldberg83\ and

Objective-C[CoxYGj). 00 languages support limited polymorphism with their type

hierarchies, where objects of a subtype can be used wherever objects of i ts supertype(s)

are expected. In addition, types in 00 systems naturally correspond t o the conceptual-

ization of the real world entities. For example, a n object of type Person in an 00 sys-

tem is likely intended to be a n abstraction of a real person. Although s ta t ic typing is

advantageous in many respect, the flexibility of dynamically typed 00 languages makes

certain d a t a structure and operations extremely easy, heterogeneous collections or sets

being such a n example. O n the other hand, supporting Iate binding of messages t o

methods may require substantial compile-time analysis of run-time behavior. (Consider

an object of a subtype being assigned to a variable of a supertype. which is then sent a

message t h a t is redefined by the subtype).

The conceptually oriented semantics of types are especially appeafing t o database

systems, a s conceptual modeling ha.s always been an important pa r t of developing data-

base applications. Before 00 syscems, there was a clear dist.inction between types in

programming languages and those in conceptual schemas. The distinction has since

blurred and is eroding continually, as is evident from the large amount. of work in the

area of database programming languages [Nu1189]. I t is interesting t o note t h a t the

semantics of the type systems have been the driving force for the convergence, and a t

the same time, still a major source where the type systems of programming languages

and the type systems of databases differ. For example, one of the differences between

type semaatics in 00 programming Languages and 00 databases lies in the treatment

of subtype instances: are they also instances of the supertype? To th is question, most

00 databases' answer is probably "Yes", whereas most 00 progra.mming languages s

"NO" or "Don't know". (Free substitution by subtype instances does not necessarily

give rise to the containment semantics, the instances of a subtype being those of its

supertype or supertypes.) This difference in semantics becomes important for determin-

ing function types For example (see Preazu-Tannen~g]) , what is the type for

4.2. Typing in TEDM

TEDM uses types to organize objects according t o their structure. Objects of the

same type have a "similar" structure, and we say tha t the objects corqfarm t o t,he type.

In general, a n object conforming t o a type also conforms to i t s supertypejs). Neverthe-

less, i t is always possible t o define a unique type (up t o structure isomorphism) t.hat

bounds an object from below in a type hierarchy. This unique (boundary) type is said

to minimally define the object structure, in t h a t any field dismissal from the object.

s tructure would result in the object no longer conforming to the type. The most

general type, "All", is furnished by the system, which defines an empty structure, and

t o which every object conforms. Consequent.ly, the types of an object, though not

unique, a re always bounded both from ahove and from below.

There is a typeset associated with each type. The typeset of a type contains

objects conforming t o the type. However. the membership of an object in a typeset is

not automatic; request far inclusion into a typeset has t.0 be made explicitly. In other

words, although the notion of conformity of an object t o a type is determined solely by

structural compatibility, the notion of membership of an object in a typeset is depen-

dent on explicit declarations. The typeset defines the cactive domain for the type. An

object can be a member of multiple active domains.

Similar to the notion of conformity defined on objects and types, we define a rela-

tion t o characterize structural compatibility among types. A type T, is said t o specinl-

ize a second type T, (or T, generalizes T,), if the conformity condition of T, is

stronger than t h a t of T,. (Here T, has a stronger conformity condition means T,

defines a superset of fields of what T, defines.) If T, specializes T,, T, can be declared

t o be a subtype of T,. The subtype relation establishes a n explicit type hierarchy, with

each element in the relation corresponding t o a parent-child link in the diagram for the

types.

While i t may seem tha t the typeset for a type is an extension of the type, it is not

maintained a s such. Typeset membership is associated with the element objects, not

with the type (-defining object). An extension of a type is a n object set const.ructible

from the the active domain of the type. In other words, there can be many collections

of the objects of a given type. This is useful for dealing with types t h a t need multiple

incarnations, for example, books can be technical or nontechnical, employees can be still

in service or retired, etc. Although a typeset. is similar t o a table (or a relation) of the

relational modeI, the notion of extension in TEDM is different from what it is in the

relational model. In the relational model, each scheme f a n intension) defines one and

only one table (an extension). The separation of the intension of a type from t.he exten-

sion of the type has a number of implications. For example, more efficient query pro-

cessing is possible, a s each collection in the extension provides a reduced search space.

Also. the separation makes it easy for the objects t o migrate among the sets within the

family definable from a typeset. I n this case, no special processing on the abject type is

necessary. Objects are likely to move from one set to another more often than t o

change from one type t o another. For example, a person may get hired, becoming a

current. employee; the same person may retire in the fut.ure, becoming a retired

employee, etc.

Continuing with the general discussion, we define two relations between objects

and types. (In the sequel, we use TI to denote type intension, and TE type extension.)

The relation €? C G X T33 (read a s "defined member of") describes object's member-

ship in an active domain for a type. The meaning of o @ T, where o is an object and

T a type, is tha t o is a n element of the active domain of T (o E adom(Tf) . The rela-

tion e 2 G X TX (read aa "inferred member of" or "conforms to"), on the other hand,

is used to characterize object's s tructure with respect t o types. The meaning of the

expression o ci T is t h a t the object o conforms to the type T {struct(o) Z) structjl']).

Informally, the former relation s ta tes a membership fact, t h a t an object i s of a

type; while the la t ter relation s t a t es a membership possibility, t h a t an object can be of

a type. T h e two concepts are related as fo1lows:

-41~0, when an object acquires a type, it acquires all declared supertypes.

The characterization of subtyping aspect of TEDM's type system is similarly han-

dled. The relation hd TI X TI {read a s '.defined subtype of "), like Ed, captures t h e

declarational aspect: the expression T1 sd T2, where both T1 and T2 are types,

s ta tes tha t T1 is a n immediate subtype of T2. The relation si C: TI X TI (read as

"inferred subtypes of"), on the other hand, emphasizes the structural aspect: T1 si T2

means strztcflrfl) 3 structfT2)).

In parallel t o the relat,ionship between fd and $, the following holds between <'
and 5':

TI Ld T2 => TI si T2

The relation Sd must contain no cycles: a type cannot transitively be a subtype of

itself. The relation Li is required t o be a partial order: it is reflexive, transitive and

antisymmetric. Furthermore! sd* C_ 5': the reflexive and transitive closure of sd* is a

subset of <'.

The relation sd4 establishes the type hierarchy of a database. We mentioned

t h a t the top element of the type hierarchy is a predefined type "All". The type

definition for "All" is simply

A11 = (1.

As "All" defines a null conformity condition, every object in the database is @-related

to "All". Furthermore, every other type in the database is <'-related t o L'All".

When a type is defined in TEDM, several things happen. First, a n object of type

"TypeDef", a type-defining object, is created as the internal representation of t.he type.

The precise definition of "TypeDef" will be given in a later chapter. Second, the new

type is related to the existing types through the ed relation, which determines the rela-

tive position of the new type in the hierarchy. The rule for finding a position for the

new type is: if the type definition explicitly specifies a supertype (or multiple super-

types), then the new type is considered €*-related t o the supertype(s); otherwise, a

default supertype of "All" is assumed. Third. a structure template is created with

which the system can determine, given a n object, the conformity of the object with

respect t o the type. Finally, the typeset for t.he new type also comes into existence.

One uses value specifications (VS) and type specijcotions (TS) t o define types in

TEDM. A type specification defines a type. Value specifications provide a flexible way

t o define the domains for fields of a type. In a value specification, expressions can be

used t o define new domains. The implications are twofold. First , the domain of a field

does not have t o be a type, i t can be complex expresion composed of types or others

similar set-defining constructs. Second, the language for value specifications is strictly

more powerful than the language for type specifications. Semantically, each expression

in VS defines a predicate. characterizing admissible values for fields. Each expression in

TS, on the other hand, entails more complicated semantic relationships with other

types and objects in the database, among them a r e @, E', id and si.

4.3. Syntax

The syntax for defining types is present,ed in three st.eps. First, we define the syn-

tax for value specifications, which is an expression-like language wi th type names a s pri-

mary operands. Second, the syntax for type specification is described. the result is a

simple language with structure enr~rneration and nesting. Third, a simple sssignment-

like statement is given, which is used t o associate type names with type definitions.

Specifying Values

An expression in VS defines, for s field in a complex object, a range of values. the

set of admissible values (admiusibte sets). Three operators can be used in composing

such expressions: the canj?rnction (A), the disjunction (v) and the romplemetat (1).

Definition 4: The set of well-formed value specifications, VS, is the smallest

se t satisfying the fallowing:

I) T E VS, where T is a type name,
2) V, -rV, f VS, if V,, V, EVS
3) V, A V ~ E V S , ifV,,V, f VS
4) V, \/ V, E VS , if V, , V, f VS

A type name alone is a n expression (Clause I). The admissible se t is the typeset of

the type. For example, "Number", "String", "Point?' and "Rectangle" are all value

specifications. They define the set of numbers, strings, point objects and rectangle

objects, respectively.

The complement a n expression is a n expression (Clause 2). The admissible set is

the set difference of the two types' admissibie sets. For example, "Employee -,

Manager" deiines the se t of Employee objects excluding Manager objects. We use "7

F '' a s a shorthand for "All -7 F ". Two expressions combined with a conjunction opera-

tor form a new expression (Clause 31, with the resulting admissibIe set being the inter-

section of those of i t s two operands. For example, "Employee n Student" defines the

se t of database objects t h a t pcxssess both type Employee and type Student. Similarly.

two expressions combined with a disjunction operator also form a new expression

(Clause 4), with the resulting admksihIe set being the union of those of its two

operands. For example, "Number V String" defines the set of database objects t h a t are

either a number or a string.

Other forms of value specifications are also possible. For example, a n abstract

object (actl.~ally, its syntactical coi~nterpar t , the tag variable), can be a va.Iue

specification. I t denotes a se t of database objects t h a t it matches. Finite enumerations

or structure restrictions can also be value specifications. denoting the finite se t of values

or a subset satisfying the restrictions, respectively. An informal discussion on these pos-

sible extensions will be given in a later chapter.

Specifying Types

The language for type specification contains suitable constructs for enumerating

finite lists: the lists of fields in complex object types. Each field consists of s field name

and a value specification. In addition t o lists of fields, type expressions may also be

formed by successive supertype prefixing. Each such prefix defines for the new type a

supercype (by extending the sd relation).

Definition 5: Given tha t T is a type name, and ti's the field names, for i = I ,

..., n, the set of well-formed type specification expressions, TS, is the smallest

set satisfying the foHo-wing.

t) (f, 4V,, ..., -,vn)f TS;
2) T: t ETS, if t f TS.

A list of fields delimited with a pair of parentheses is a type specification {Clause

1). No duplicate field name may occur, and the type defined in this manner contains

precisely the fields in the Iist. Each field of the form "fieldName -* valueSpec$catiora"

defines a conformity condition primitive, which says tha t for an object t o conform with

the type. i t must contain a field with the name "fieldName" t h a t takes value from the

admissible set defined by the "valueSpecification". Clause 2 suggests t h a t the prefix of

the form "typeName:" can be prepended to type expressions, which is a convenient way

t o define supertypes. The resulting type defined Chis way becomes a subtype of the

types listed. T h e field list of the new type is the field Iist appearing in the definition,

augmented with the field list from each of i ts supertypes (mulii'ple inheritance).

Name conflict in multiple inheritance is handled as follows. When two supertypes

contain a common field name. "fieldName", with value specifications "vaiueSpecl" and

"valueSpec2", repectively, the subtype inherits "fieldName" with a value specification

"valueSpecl v valueSpec2". Thak is. the admissibte set of the subtype on this field is

the union of those of i ts two supertypes. Generalization into the case with more than

two supertypes is immediate.

77

Example 18: Below are simple type specifications. The first defines a struc-

ture needed to represent points in the 2-D Cartesian space. The second defines

a structure that can be used to store the width and the height of a geometric

figure, such as a rectangle. The third is a structure to contain the information

about the filling color of a rectangle. The fourth type specification contains a

super type prefix, which extends the type for 2-D measurements to a type for

3-D measurements.

(x - Integer, y - Integer)
(width - Integer, height - Integer)
(rect - Rectangle, color - String)
Measurement2D:(depth - Integer)

0

In the language for defining objects, multiple values in a multiple occurrence field

are simply given as an ampersand-separated list. It is not possible to distinguish a sin-

gle occurrence field from a multiple occurrence field that happens to have a single

value. We will need such a distinction in type specifications, as processing on the two

kinds of fields are different in most cases (for example, in conformity checking and in

pattern matching). We use a double arrow "--" to indicate multiple occurrence

fields.

Example 19: A synchronized version of a simple flip-flop is formed by adding

a couple of new gates and a few more connections.

RSFlipFlop:(extraGate --Gate, extraConn --Connection)

0

78

The sufficient condition for an object to conform to a type is: 1) for each single

occurrence field "f -+ V", the object has the field f with one and only one value drawn

from the admissible set defined by V, 2) for each multiple occurrence field "f -+-+ V",

the object has the field f with a subset of values drawn from the admissible set defined

by V. Notice that the sufficient condition does not prohibit the objects from having

extra fields in addition to what is required by their types, which is the prescriptive typ-

ing idea in [Maier85]. The type systems of Cardelli [Cardelli84] and of Ohori [Ohori87]

are also prescriptive.

Type Names

Types have unique names. Type names are introduced by one of three ways:

equating with (=, two consecutive equal signs), subtyping from «) and assigning to (=),

existing types or type specifications.

Definition 6: Each of the following three forms introduces a type name:

1) Tl = T2, where Tl and T2 are type names
2) Tl < T2,
3) T = t, where T is a type name and t a type specification

0

Clause 1 defines a new type that is similar to the definiens. Clause 2 defines a new

type that is <d-related to the definiens. In the third clause, the type specification is

assigned a name.

Example 20: Assigning a type specification to the type name "Rectangle", as

is permitted by Clause 3:

Rectangle = (width -+ Integer, height -+ Integer)

79

A square can be simply defined as a rectangle (possibly with additional con-

straint that the width and the height must be the same).

Square = Rectangle

0

Introducing a type name by equating it with an existing type name does not make

them aliases. Instead, a type with an exact copy of the structure (including the posi-

tion in the type hierarchy) with the definiens is created and is assigned the name. In

the example above, the type "Rectangle" and the type "Square" are the same in every

respect except that each of them has its own typeset and extension. They are indepen-

dent types; and any future evolution by one of them would not affect the other. In

other words, they are not Ed-related.

Example 21: Using Clause 2, we define Student as a subtype of Person, as all

students are persons.

Student < Person

This definition introduces a new type with the name "Student" and relates it

with the type "Person" using the <d relation. 0

A new type introduced using Clause 2 also makes a copy of the structure from the

definiens, like one defined using Clause 1. In example 21, the type "Student" would

have an exact copy of the structure of "Person". There are differences between the two

cases. The two types in Clause 1 are only casually related, in that one is a snapshot of

the other. They are independent in every other aspect. The two types in Clause 2 are

<d-related. Consequently, future changes in one will affect the other. For example,

80

addition of fields to the supertype is propagated downwards, and addition of instances

to the typeset of the subtype is propagated upwards.

Example 22: Using Clause 3, new types are defined by explicitly giving a type

specification. Here are a couple of examples for defining types by Clause 3,

defining a "Point" and a "LayoutUnit" type, respectively.

Point = (x -- Integer, y -- Integer)
LayoutUnit = (reet -- Rectangle, color -- String)

0

Example 23: Clause 3 provides a way for defining subtypes with structure

extensions. In this example, the type "Employee" is defined as a subtype of

the type "Person". The new type ("Employee") contains two fields, "worksIn"

and "salary", in addition to what it inherits from the supertype "Person".

Employee = Person:(worksIn -- Department, salary -- Integer)

0

4.4. Semantics

The semantics of the language for defining types are discussed from two perspec-

tives: How a type definition relates the type to its instances, and how a type definition

relates the type to other types.

Admissible Value Sets

Each value specification defines a range of values that a field of a complex object

can take. These values form the admissible value set on the field.

Definition 7: A 1-1 function T is assumed to exist t h a t maps a type (name) t o

its typeset. The function u assigns meanings t o value specifications. For each

V E VS. v V 1 is the admissible value set defined by V .

1) v f T I =?(TI
2) v f V, -r V, f = u [V1 1 - v I(V2 f . where "-" denotes set difference

3) 4 V, AV, f = v f V, 1 n ~ J j v2 I
4) 4 V, VV, f =v1! V, f u ~ X V2 1

T h e definition uses t,he typeset.^ to characterize actmissible value sets. We point

out tha t

7(Integer) = {0, &I, 32, ...)
<String) = the set of all finite strings over a fixed alphabet,.

...
<All) = ?(Integer) U <String) U <TI) U (T,) U ...

Object Conformity

The formal notion of objects conforming to types is defined in a bot,tom-up

manner. Each field f in a type T defines a primitive and necessary condition for an

object to conform t.o T, tcr In the following definition, we use the dot notation t o indi-

cate selection of object fields. For example, "aPerson.age" would retrieve the "age"

value from a person object "aPerson", and "aPerscm.children*" would retrieve all chil-

dren of the person (as a set).

Definition 8: The construct s t ruc t f l) is used t o denote the set of fields defined

in T . Assume t h a t o is a n object.

I) f -+V f etrttcl(Tj, t h e n o ~ ~ T ; i f i o . f * (= l ~ o . f E V E V

2) f -+--,V ET. t h e n o rcfTl i fo . f*Cvft f f

If a type contains a single occurrence field, an object must, for it t.o conform with

the type, have the same field with precisely one value drawn from the right domain

(Clause I).

Example 9: As 100, 200 E -/(Integer), an object defined by the following

expression: (x -+ 100; y -+ 200) is both r; and %-related t o the type

Point = (x 4 Integer, y 4 Integer)

For a multiple occurrence field, say f , the condikion becomes t h a t a n object must

have the field f with all the vaiues drawn from the right domain. By using set not.ation

t o describe values for multiple occurrence fields we allow a n empty set t o be used a s a

legitimate value.

Example 24: S u p p a e t h a t the type "Connectionf' is defined t o contain a

"connection" field t h a t has multiple occurrences, as follows:

Connection == (connection e-+ PortRef)

Then the object o K~~~~~~~~~~ Port , where o is the object defined by:

(connection -+ PortRef:(portNarne -+ 'source-of-pullup',
component -+ aPu1lupTransistor)

& PortRef(portName 4 'drain-of-pulldown',

component -+ aPuIIf)ownTransist or))

where "aPullupTransistor" and "aPu11DownTransistor7' represent object iden-

tities. U

The sufficient conformity condition of a type is derived from its individual field

conformity primitives using logical conjunctions.

Definition 10: We say that an object o conforms to a type T, denoted by o K

T, if one of the following conformity conditions (corresponding t o the different

forms in which a type can be defined) is satisfied.

Case 1: T = If, -t T,, ..., fn -+ T,):
ifo K T /\ ... i \ o K~ T, t h e n o K T

f',
Case 2: T = T,:t,, whe?e t2 is a type specification:

if o tc T, A o K T,, where T, =kg. then o n T

From Case 1 and the definition of "<", we have the following lemma.

Lemma 1: If T < T, and if o K T, then, o K T, Q

Example 25: Given the following two type definitions:

Rectangle = {width -* Number, height -+ Number)
LayoutUnit = (rect --, Rectangle, color -+ String)

and a n object o described using the foliowing expression

LayoutUnit: (rect 4 Rectangle: {width 4 2, height -+ 6)? color -+ 'RED')

then o rc Layoutt'nit Q

Type Specialization

Similarly, we break down the condition for specializing types into primitives on

individual fields.

DeBnition 11: Suppose S contains a field f -+ V,: and T contains a field f -+

V,. Jlre say S specializes T on f , written a s S If T , if v 1[V, f C u [V2 f .

The definition for type specialization is remarkably similar to tha t for object con-

formity.

Definition 12: Type S is a specialization of type T , if one of the following

conditions is satisfied.

Cme 1: T = (f, -+ TI, ..., in --+ T,):
i f T . . T, t h e n S rT

tn
Case 2: T = T, :t,, where t2 is a type specification:

if S t$ T, A S T,, where T, =t,, then S 51:

Lemma If T < T, and if S f T, then, 8 T, a

A simpler version can be stated as: S is a epeciafization of T if the set of fields

defined in S is a superset of those in T . and for each field f of T: S ff T .

Example 26: T h e following two types, one defining points in 3-D Cartesian

coordinate space, the other defining points in ZD Cartesian coordinate space,

exhibit the type specialization relationship: TkreeDPoint TwoDPoint.

TwoDPoint = (x -* Integer, y -, Integer)
ThreeDPnint = (x -+ Integer, y + Integer, z -+ Integer)

Notee t h a t any type S defined using one of the two subtyping forms is a lways a

specialization of T :

Example 27: tZie define "ThreeDfoint" as a n extension of "TwoDPoint". In

this case the assertion .'ThreeDPoint 6 TwoDfoint" stil l holds.

ThreeDfoint = TwoDPoint:(z -+ Integer)

4.5. Chapter Summary

We presented a type system for TEDM in this chapter. The central concepts in

this type system include the conformity conditions, defined by types and applied to

objects, and the notion of type generalization. A language for defining types is pro-

posed. Formal syntax and semantics of the type language were discussed.

QUERMNG AND MANTPULATfNG OBJECTS

Query and manipuIation of database objects are supported by a command

language. The statements of the language can be interactively executed, stored ss

database objects. or grouped t o form compound commands, which can in turn be exe-

cuted or stored as database objects. Normally, we would need two totally different

interpretation schemes to handle the sernant,ics of the language, since the interpretation

of the command s ta tements depends on how they are used. We need operational

semantics for the commands tha t a re executed immediately, and translational sernan-

tics for the commands t h a t are t o be stored as objects. I t turns out there is no such

complication in TEDM, as command? are uniformly interpreted a s database objects.

The pattern-matching semantics of the commands are kept intact by abstracc objects.

The operational semantics of the commands are preserved using a special class of ds ta -

base objects - command-defining objects (or CDOs).

This chapter describes a language for defining database commands. The study on

the meanings of the commands in this chapter explores only the part ial sernant.ics.

focusing. on the pattern-matching aspect and on the operation aspect. The next

chapter will sllpply the translational aspect, to complete the study on command seman-

tics.

The language for defining commands is also a dialect (of a subset) of the canonical

object language. Every command defines a CDO; but there are CDOs t h a t cannot be

defined in the command language. As CDOs are database objects, they can also be

defined by an object term in the canonical language. Furthermore, ail CDOs can be

defined a s object terms. However, the command language usualIy gives more succinct

descriptions of CDOs than the object language.

This chapter contains five sections. Sect,ion 1 gives an informal description of the

command language. Section 2 discusses two important notions: cnmmnnd pafterns and

paffern *;ariabtes in commands. Section 3 describes rommund heads, which denote

imperative operations on class of objects defined by command patterns. Section 4

discusses compound commands as a grouping construct on multiple commands. Section

5 describes the semantics of command execution.

5.1. Commands and Their Informal Semantics

-4 database command consists of a pattern and an action. The pattern and the

action of a command are separated using the symbol "<==". Pat te rns as well as

actions in turn are built from terms or term-like constructs. Either the pattern or the

action can be null. A null action indicates a null operation. A null pattern, on the

other hand, indicates unconditional execution of the action.

Although a command resembles a production rule in syntax, their interpretations

differ. For example, in a production system, the pattern part of a rule is a predicate

with only two pwsible interpretations, "true" or "fabe". The pattern par t of a corn-

mand is a constructit)e predicate, not only possessing a t ruth value but also denoting a

set of database objects t h a t establish the t ru th value. Also, the action par t of a rule

usually only changes the s t a te of s single entity. The action par t of a command, on the

other hand, operates on a set of objects (the set defined by the pattern).

Before the syntax of the command language is introduced, we use the following

abstract. form t o describe a command.

hction[Xl, ..., Xn] <= PatternjY1, ..., YJ,

where Xi's are distinct variables, so are Y.'s; Xi's and Yj's may overlap. We assume
1

tha t the set of variables appearing in t.he pattern always contains those appearing in

the action as a subset. That is. X i] i = 1 . n C Y 1 j = 1, . m . With this

assumption, we can informally s t a te the semantics of such a command a s follows. First,

the pattern par t is used t o match the database t o get variables bound t o database

objects. A binding is a list of tuples of the form [bl: bz, ..., bkj, where b; = ;YI1:oil. ...,

Yj,:oi,jJ for database objects oij and some finite value k The list is called a binding

matrix, and each row a binding vector. Second, the action par t is used t o operate on the

database objects in t h e binding matrix. The action is applied t o a11 binding vectors.

The mode of the operation, namely, parallel or sequential, is unspecified. Actions in a

command can be predefined simple system procedures, for example, for viewing o r

updating objects. They can also he user-defined compound commands.

Example 28: Suppose rectangle objects are defined by the origin and the

corner points. This command browses the corner points of the rectangles

(whose origin) situated at a fixed point (2, 3)

View!C] <= rects -+ Rectangle:R(origin -+ Point:Pjx --t 2, y -* 3),
corner -+ Point:C)

In this example, "rects" is the name of an extension, a set of objects of a given

type. "C", "P" and "R" are command or pattern variables, which are bound during

pattern-matching. Although they resemble placehoklers in the object language, their

treatment will be sightly different. "View" is a predefined operation tha t displays corn-

plex objects in a nested text form; and "rects" is a collection of rectangle objects. T o

execute the command, the processor lmks for "Rectangle" objects with the given

description (namely, situated a t the point (2,3)) from the colIection "rects". For each

such rectangle object matching the description, bind i ts object identifier t o the variable

':£I", its origin point t o '(P" and its corner point t o "C". The "View" operation then

display the corner point objects. ,4ssurne tha t there are two rectangle objects in t he

collection, whose definitions are as follows (we use lower case variables to represent

object identifiers):

Rettangle:rl(origin -+ Point:pl(x --+ 2: y --+ 31,
corner --+ Point:ql(x 3 5, y -P 10))

Rectangle:r3(origin -+ Point:pa(x -+ 3, y -+ 3),
corner -+ Point:q2(x --+ 6, y -+ 15))

Then the binding matrix produced by pattern matching would be the following:

And the result of the "View" operation is the following display:

5.2. Patterns and Variables

Pat terns and variables in the patterns play irnpurtant roles in commands. Object

terms (in the object language) and patterns are similsr in syntax. In conventional

approach they would difTer in semantics: The former denote database objects; the Iatter

denote operations (matching) on database objects. But this discrepancy in semantics no

longer exists in TEDM. As we discussed in Chapter 3, we extended the databases t o

accommodate abstract objects with pattern-matching semantics. The implication,

t,hen, is tha.t patterns are object terms, and tha t a TEDM database is capable of stor-

ing both d a t a and pattern-matching operations. In other words, the syntax and the

semant.ics of the patterns are subsumed by those of object terms and the pattern-

matching semantics of the abstract objects.

For the discussion in the remainder of this chapter, we define a special syntax for

pstt,erns. In genera.1, patt,erns contain simple constants as we11 as arbitrary literals (or

structured constants).

Definition 13: The set of literals: it, is the following.

I) d E tit, where d is a constant
2) (g, -t l,, ..., gm --, Lmj €Lit,

where gi's are field labels and li E it
3) T:l E Lit, where T is a type name and 1 is a literal define by I) or 2)

We assume that there is a domain of variables.

Definition 14: The set of simple patterns, Simpat, satisfy the folIuwing.

1) T:V E Si-at , where T is a type name and V a variable
2) T:V(gl -4 pl, ..., gm --+ pa) E s impat , where pi E s i w a t or pi E L i t

A pattern can be a s simple a s a typed variable (Clause I). In this case, the pat-

tern matches all concrete objects of the given type. Complex patterns contain refer-

ences to simpler patterns or arbitrary literals (Clause 2). The simpler patterns

pzr ticipat e in pattern matching on subobjects and may produce additional bindings.

The literals are used merely as selection criteria during pattern matching.

The next definit.ion extends the previous one by allowing multiple simple pat,terns

t o be grouped t o form compound patterns.

Definition 15: The set of well formed patterns. Pat: is the set satisfying the

following.

I) p E Pa+, where p E simpat
2j p,, p, E: Pat, where pl E Pat and p, f Pat -

Example 28: The following pattern matches Student objects with a "major"

field and the value of the field is a constant 'CS', and additionally, the s t u -

dents must also be Th.

St.udent:S(major -+ 'CS'), TeachingAssistant:S

5.3. Command Actions

Command heads denote imperative operations on the database objects obtained

through pattern matching. There may be multiple heads in the action par t of a com-

mand. In this case, operations denoted by the heads are applied t.o the objects in a

sequential order. l3a.sic operations, such as adding types and adding Jelds, are all

described using object terms. We describe these basic operations.

Adding Objects to Types

.4s a database evolves, an object may acquire new types, lose or change existing

types. T o assign a type t o an object (add the object t o the typeset of the type), we use

an object term of the following form.

The meaning of such a command head is tha t each object. bound t o the variable V dur-

ing pattern-matching phase gets a new type T: provided the object conforms t o T.

Example 30: The command below adds the type "TeachingAssistant " t o stu-

dents who also teach courses. (Presumably, each student- tha t matches the

pat tern would also conform t o the type "Teachinghsktant".)

TeachingAssistant:S <= student 4 Student:S(teaches -+ C) , Course:C

Deleting Objects from Types

Types can be removed from objects as weli. For example, after one graduates

from school, ones "Student" type is no longer needed and should be changed accordingly

{say, becoming a n "Alumnus").

T:- V

The meaning of such a command head is tha t objects bound to the variable V lose the

type T. In general. removing types from objects does not cause semantic problems.

Example 31: M'hen an employee sells all of his shares of the company stock,

the employee is no longer a stockholder of the company.

CompanyStockWolder:* E <=== employee -+ Empolyee:E(share --+ 0)

Adding Fields to Objects

Although facilities for objects t o change types are provided, study shows tha t

objects changing types is not a high frequency event in most application databases;

many objects never change types once created IZdonik8TI. On the other hand. the next

two operations on objects, adding and deleting fields, happen more frequently.

Adding fields to objects is denoted using constructs similar t o a.n object description

with a list of fields.

Example 32: l i t the end of a term, add a 'passed' field with a Course object

as its value t o all students who were enrolled in the course and got a pass

grade.

S(passed --, C) <== enrolment -t
Enrollmen t:(course -+ C ,

student -* Student:S,
grade -, 'Pass')

There are several semantics1 issues t o consider in an "add field" operation. If an

object does not have the field t o be added, the operation adds the field to the object. If

the object has the field as is declared by its type, then if the field is single occurrence,

the field is updated; if the fieid is multiple occurrence, the field value is added t o t.he

object a s an additional value. Updating the value of a multiple occurrence field is made

possible by the following convention. We assume if. in an adding field operation. a field

t o be added also appears in the pattern, with value bound t o concrete objects, then it

means updating the value of the field. In this case, a value bound in the pattern is

replaced by a value in the action.

Example 33. New offices on the second Boor are assigned phone numbers

O(phoneNo -+ P) <-
office -+ Office:O(floor -+ 'second'),
phone -+ PhonelZssignment:A(phoneNo -+ P, office 4 0)

Exarnpb 34: Phone numbers far offices on the second floor changed their

prefixes.

P(prefix -+ 777) <=
office -a ORFice:Offioor -+ 'second'),
phone -+ P hone-4ssignrnent :

AiphoneNo -.t PhoneNo:P(prefix -, 666), office + 0)

a

Another obvious way t o do update is t o use a delete operation followed by an add

operation.

Deleting Fieide from Objects

Deleting fields from objects is denoted using the foliowing general constructs.

v - (fl -+ W1' .'.' I" -* Wn)

An object map no longer conform t o a type if a field defined in t he type is deleted

from the object. In this case, the database contains invalid information. We caa sim-

ply reject operations tha t would create inconsistencies. We can a i m deal with this

problem using compound commands, where a number of commands are grouped

together and are treated as a unit of operation. FOP example, after deleting fields from

an object, a logical operation is t o adjust the types for the object.

Example 35: Delete users' accounts on systems where the users have been

given a cputime qu0t.a of 0.

Student:U - (account -+ A) <==
quote --, Quot-a:Q(system -+ S, user + ID. cputime 4 O),
student -+ Student:t:(~lserID 4 ID),
system -+ Systern:S(chargeNo -+ A)

n

There is s confusion between deleting only the value or the entire field. Our con-

vention is: For a multiple occurrence field, it always means deleting values. For a single

occurrence Geld, i t always means deleting the entire field.

Creating New Objects

The object creation operation introduces new objects into databases, using the foI-

lowing general form:

T:* (fi -wl , ..., fn +wn)

The asterisk "*" indicates a new objects identifier. I t can be embedded in one nf w,, ...,

wn, In tha t case, it denotes creating a subobject. New objects are created with given

typela). The conformity condition i ~ 3 checked t o make sure the given types are correct.

Example 30: This command creates a "ContactCut" object for each "Sim-

pleLayout7' object t h a t is placed 30 units away vertically from the reference

point.

ContactCut:*jrect -* Rectangle:*(width -+ 2. height -+ 2)) <=
simplelayout --, SimpleLayout:(posn --+ (y --* 30))

Temporary types (not yet defined types) can he used for the purpose of collecting

newly created objects. Their definitions can be autornaticaliy generated upon commit.

N e w objects can also be placed into an extension upon i ts creation, by supplying

the name of the extension.

<rxtension> -+ T:* (f, -+ w,, ..., fn 4 wn)

Example 37: This command is the same as the one in the previous example,

except t h a t the new "ContactCut" objects are placed in the extension "cut"

cnt. -+ ContactCut :*(rect -4 Rectangle:*(width --t 2, height -+ 3))
<== simpleLayout -4 SimpleLayout:(pusn --t (y -+ 301)

a

The extensions a re crested if these name is not present already. The update semantics

of a.n extension are the same ias for a multiple occurrence field. To remove a n object

from a n extension, one uses a n expression of the form

To indicate sharing of a newly created object by two or more ot~her objects. we

can place a variable after the asterisk in the construct denoting object creation, and

use the same variable elsewhere to refer t o the new object.

Example 38: This command creates "DoubleSox" objects t h a t contain t w o

boxes with a shared reference point.

DoubleEfox:*(boxl --+ Box:*(side -+ W,
reference 4 Point:*P(x -+ X? y -+ Y)j:

box2 -* Box:"(side -+ W,
reference --+ Point:P)) <=

simpleLayout --, Sirnp1eLayout:jrect -+ Rectangle:
(width - W, height 4 H),

posn --t Point:(x 4 X, y -+ Y))

Cornpaund Commands

Compound commands allow the user t o group ~ernant~ically related simple da ta -

base manipulation functions together and execute them a s a single transaction. The

general syntax for using a compound command in command head is (V.'s are argu-

ments):

CompoundComrnandName [V1, .. ., Vk]

Example 39: Suppose "HireEmployee" is a compound command t h a t takes

one argument, then the command head

HireErnployee[P] <- candidate -+

Person:P(education 4 "PhD", specialty -* "CS",
proficiency --+ "High")

would mean hiring qualified candidates. The compound command "HireEm-

ployee" would perform what is necessary for hiring new employees. U

Some compound commands a re predefined. Typically, "View" is defined for exa-

mining objects and "Install" is defined for committing updates.

5.4. Defining Campound Commands

Compound commands are groups of individual command statements. They a re a

control abstraction mechanism like procedures in programming languages. Individual

commands in a compound command are executed sequentially. However, we require

that either all of the individual commands are executed or none of them is executed. In

other words. the execution of a compound command is atomic.

Atomicity is needed to guarantee the consistency of databases. A database is in a

consistent s t a t e if i ts objects and types satisfy all the constraints. Constraints can be

appIicztion-independent or application-dependent. Application-independent constraints

are imposed by the system. In our case, the conformity condition and specialization

condition are application-independent. Application-dependent constraints are user-

defined and embed specific application domain knowledge. For example, in a ?'I,SI

CADICAM design database, a possible applicstion-dependent constraint. is t h a t t,he

"width" of "ContactCut" object can he no smaller than 2 X. Currently, we are only

concerned with constraints of the first kind: application-independent constraints. A

database can potentially be in a transient inconsistent s ta te . For example, after exe-

cuting the s ta tement

Manager:E <= employee -4

Ernp1oyee:qnarne -4 PersonPiame:(first -t 'Joe'! last -.* 'Dow'))

the object conformity condition may be violated, assuming tha t type "Manager" is

defined a s a subtype of type "Employee" with an additional field "manages". The

st,atement adds some "Employee" ohject(s) t o type "Manager". Since object(s) result-

ing from pattern matching may not contain a "manages" field, these objects do not

conform t o type "Manager", in this si t~ration, severa.1 related commands collectively

may ensure consistency; and they can be grouped together t o form a compound com-

mand. As the execution of a compound command is atomic, transient inconsistent

database statks are invisible from outside the command.

Example 40: W e can define a compound command, call it. "Pro-

moteToManager" and then invoke it using

PrornoteTohfsnagerlE, Dj <= employee -*
Ernployee:E(name --+ PersonNarne.(first --+ '.Joe', Lsst -+ 'Dow')),
department --+ Department:D(name -+ *Sales')

to promote "Joe Dow" and still maintain a consistent view on the database.

The compound command definition is as follows.

The syntax for compound commands is much like a procedure in other languages.

Each compound command consists of a number of database commands. In addition. a

compound command may also contain arguments and local variables. The generic form

for compound commands is the following:

CompoundCommandName i Tl :VI, ..., Tn:Vn

S1:U1, *.., Sm:tJm;
Actionl <==: Pattern*;

where Ti's and Si's are type names, Vi's are arguments, Vi's are local variables.

5.5. Command Semantics

As was mentioned, the semantics of the commands have two perspectives: the role

in manipulating database objects and the role of being par t of the database itself.

Although the two roles are unified i n TEDM as database objects, understanding them

separately may improve the clarity of the presentation. We concentrate on the first

role of the database commands (or their active semantics) in this section.

Semantics of Patterns

Binding matrices play an important role in defining the semantics for patterns.

Each pat tern defines a set of bindings when it is matched against database objects.

The bindings of complex patterns are obtained from those of simpler ones by combining

their binding matrices in two ways, joan externion and lifcral selection.

We discuss join extension first. Given two binding matrices

M1 = [X1:xll, ..., X,:x,,, Z,:z,,, ..., 2 k :z k J

. . .
i"Y1:~lm} ..', Xn:xnrn' Z1:~lrnl .." Z k : ~ k m i

and = [Y,:yl1. ..., Y,:p,,, Z,:w,,, ..., Zk:wkl]
...

[Y1:yltJ ..., YJstl Z1:wI1' ..., Zk:wkt]

where Xi's and Yj's are distinct pattern variables, the join extension of the two binding

matrices is defined as follows.

Definition IS: The join extension of MI and MIL' denoted by MI W ML, is a

binding matrix consisting of rows: [X,:xl, ..., Xn:xn, Zl:zl, ..., Zk:zk, Yl:yl:

YS:yJ, such t h a t [X1:xl, ..., Xn:xn, Z1:zl, ..., Zk:zk] is a row of M1 and [Y1:yl, ...,

Ys:ys, Z1:zl, ..., Zk:zk] is a row of M2.

Note tha t neither the order of rows nor the order of columns are significant in the

binding matrices. Therefore, the above join operation on binding matrices can easily be

shown associative and commutative [Maier83], which allows us t o omit parentheses for

two or more join operations or t o shuffle the operands of a join.

The literals provide another way for manipulating binding matrices - they elim-

inate the rows with components tha t do not match literals. A row is eliminated from a

binding matrix if the row contains a variable bound t o a database object, but the vari-

able has a literal tha t the database object does not match. Literals match database

objects in a straightforward way: exact match.

Definition 17: The notion of matching literally, lit-match (c it X G), is

defined a s follows.

1) d lit-match v ,
if the simple object v is the interpretation of constant d

2) (gl d l , ..., gm -* lm) lit-match C [(fl --+ w l , ..., f, -+ w,) 1 ,
if gi 4 fi (gi = f j A li lit-match x [wj 1)

3) T:l lit-match x [T1 ... T,:w] ,
if T = Ti for some i and 1 lit-match C [w 1

A literal selection trims a binding matrix M by eliminating rows from M, using

lit-match as the criterion.

Definition 18: Given a binding matrix M = [V1, ..., V,], the literal selection of

M by literals Ill, ..., lIk1 4 M ; 111, ..., lIk), is MI consisting of the rows of M satis-

fying 111 l i t -match VI1 /\ ... /\ lIk lit-match VIk. 0

Definition 19: The notion of simple match, aim-match, is defined as follows.

1) T:V aim-match C [T, ... Tk:w 1 , if T = Ti for some i
2) T:V(gl -+ pl, ..., gm + p,) aim-match

C [T1 ... Tk:(fl -+ w,, ..., fn -+ wn)] ,
if v gi 3 f, (gi = fj

/\ (pi l i t - m a t c h C I wj 1 V pi sim-match C I wj 1))

Definition 20: We use a semantic function, ?r, t o assign meanings t o patterns.

The interpretation of well-formed patterns is defineds as follows. (Recall 7

maps types t o typesets.)

1) 7r T:V aim-match C [w) 1 = [V:v], fJ v E 7(T)
where w is an arbitrary object term,

2) ?r [T:V(fl -+ pl, ..., f n --t pn, gl --t Ill ..., gm -+ lm) aim-match

' [)) = o([V1 "r(p1) "' "r(pn)]; Ill " ' 1

where pi E P a t , li E L i t , var(p) is the top-level variable in p

3) [Pl, P2 1 = M1 W M21 where Pl, P2 E P a t 1

and MI and M2 their binding matrices respectively.

Note tha t the binding matrix M obtained using Clause 1 is a single column matrix.

M may contain multiple rows, a s the pattern matches all objects of a given type.

Semantics of Command Heads

The discussion on the semantics for the command heads is simplified by only con-

sidering single occurrence fields. The result can be generalized t o include multiple

occurrence fields. Also, for the basic operations (without compound commands), we

require t h a t each of them preserve consistency.

Some notational convention. Formal meanings of command heads are defined by

6, an update function on databases. A k-row binding matrix is denoted by M~ or simply

M when k is irrelevant. The i-th row (the i-th binding vector) in a binding matrix M is

denoted by Mi, for some i 5 k. The notation MI^^, ,.,, Yn is used t o denote the restriction

of M on variables V1, ..., Vn: a submatrix obtained by removing column of bindings

other than the ones for V1, ..., Vn. We use x' t o denote the value for x after an opera-

tion. The symbol ":=" is used t o make an assignment (for example, x' := x). A semi-

colon is used t o separate two sequential semantical actions. The minus sign "-" is used

t o denote set difference. Also recall tha t ed denotes a declared membership, E' an

inferred membership, 2' an inferred subtype and sd a declared subtype. (sd* is the

reflexive and transitive closure of sd .)

Adding Types

Adding a type t o an object means tha t the object becomes a member of the

typeset of the type, and a member of the supertypes, provided tha t object conforms t o

the type.

Definition 21: 6 [T:V] M = ?(t) := (q t) u { o I o E M)V A o ci T)), t (T

sd* t) 0

Deleting Types

When deleting a type from an object, we make sure the object is also deleted from

the subtypes.

Definition 22: S [T:- V) M = ?(t) := ($t) - MIv, v t (t sd* T)) 0

Deleting Fields

The function struct is used t o denote the fields of an object, and the function state

is used t o denote the s t a te (fields and values) of an object. Deleting field operations

delete one or more field from an object (not just values). A field is not deleted from an

object if the resulting object would violate a type conformity condition.

Definition 23: The vj's are ignored when interpreting delete-field operation.

S [V- (fl + vl, ...' f" + V n)] M =

for each oi E MilV and each j, j = 1, ..., n:

struct(oi) := struct(oi) - { f . J), if oi' E~ t , v t (oi E~ t)

Note t h a t Milv is a one-element matrix. 0

Adding Fields

T h e semantic function, C, is used t o interpret constants. A field is added t o an

object if the object does not contain the field already. Otherwise, it replaces the value

of the existing field, if the value is admissible (according to type definitions).

Definition 24: Let 4 [vj] be i) C [vj 1, if vj is a constant or ii) Milv if v.
j J

is a variable. Let state(o) @(f: v) be i) state(o) U {(f: v)), if f $ strucE(o), ii)

state(o) - {(f: 0.f)) lJ {(f: v)), if f E struct(o) and v is a n admissible value of the

field f, or iii) state(o), otherwise.

Then,

6 [V(fl -+ v,, ..., f, + vn) 1 M =

for each oi E MilV and each j, j = I , ..., n:
statd(oi) := state(oi) $(fj:) [vj]))

Creating Objects

New objects are created by obtaining a new object identifier (different from any of

the existing ones), and assigning fields and values t o the object.

Definition 25: Let) [vj 1 be i) E v,] , if vj is a constant, ii) M. I if v. is ' "j J

a variable, or iii) 6 1 vj] , if vj is request for creating subobject. Then,

6 [T:*(f, -+ v,, ..., f, -+ v,) 1 M =

state(0) := {(f,: 9 1 v, 1), .--, (fn: 4 I V, 1)I)
where o is a new object identifier.

Since collections (or extensions) can be viewed as a field in the unique top-level

database object, the root object, their update semantics are the same as for multiple

occurrence fields. Generalizing the update function 6 t o handle multiple command

actions amounts t o applying 6 on each of the actions in turn.

Semantics Summary

T o summarize the active semantics for the commands, we use dbstate t o denote

the s t a t e of the database. We also use C (the semantic function for object terms) t o

interpret database commands:

C [<Action> <= <Pat tern>] =
dbstate' := 6 <Action> I ?r I(<Pat tern> 1 (dbstate)

Note t h a t the new s t a t e dbstatel is not a new copy of the old s t a t e with changes.

dbStatel is obtained by updating the old s t a t e dbstate directly. (To make this point

more explicit, we can think of dbstate a s a database object, the root object from which

all other objects are reachable.)

5.6. Chapter Summary

In this chapter, we discussed mechanisms for querying and manipulating database

objects in TEDM. A rule-like language was presented. The pattern matching style of

query processing was described. We also studied the active semantics of the command

language.

CHAPTER 6

MATCHING WITH ABSTRACT OBJECTS

Commands are stored a s CDOs. The key notion tha t makes storing commands

possible is t h a t of abstract objects, s tructural templates with flexible components.

Abstract objects are created as a result of interpreting object terms containing object

tags, a notion explored in Chapter 3.

Other than containing variable components, the structure of abstract objects is

not unlike tha t of concrete objects. Abstract objects also contain fields with values.

The value of a field can be a simple object or a complex object. The value can be an

abstract object or a concrete object. Abstract objects are also typed or multiply typed.

Nevertheless, there are considerable differences between the semantics of abstract

objects and concrete objects. The centrol notion in abstract objects is t h a t of pattern

matching. The pattern-matching semantics dictate how t o t r ea t the other aspects of

abstract objects. For example, although abstract objects are typed, the type confor-

mity condition does not apply t o them. Saying t h a t an abstract object is of type T

means t h a t the abstract object can match a t most the objects in the typeset of T.

(Note t h a t subtypes are implied.)

As abstract objects are interpretations of the object tags, which in turn are intro-

duced as a variant of the variable concept in logic, the pattern-matching semantics are

comparable with the binding of variables t o semantical entities. But the abstract

objects are more powerful than simple variables, a s matching with abstract objects is

based on given patterns; and even the simplest pattern has the power of a variable.

This chapter studies the properties of abstract objects. We discuss the structure

and the semantics of this new class of objects. Most of all, we explore the pattern-

matching semantics of the abstract objects. We also describe two uses of abstract

objects, in type-defining objects and in command-defining objects. The chapter is

organized a s follows. Section 1 reviews the basic concepts in pattern matching. Section

2 defines pattern matching for TEDM using match junctions. I t also describes two

classs of restricted match functions: decomposition maps and generalized decomposition

maps. The former reflect the pattern-matching semantics of abstract objects on con-

crete objects; and the lat ter reflect the pattern-matching semantics of abstract object

on abstract objects. Section 3 discusses an application of abstract objects, where type

structures are stored a s abstract objects in type-defining objects. With this representa-

tion, type conformity checking in the system can be treated a s an ordinary pattern-

matching problem. Section 4 is another application of abstract objects, where we dis-

cuss representing commands as objects. The chapter summary is given in Section 5.

6.1. Pattern Matching: The Basics

Pat te rn matching is the foundation of query processing and object manipulation in

TEDM. The resulting database language supports set-oriented querying a s well a s

update for an object-oriented d a t a model. Compared with other similar efforts (such as

Zaniolo's extension t o the relational algebra [Zaniolo85], Kuper and Vardi's logic d a t a

model[Kuper84], Bancilhon and Khoshafian's object calculus [Bancilhon86] and Beeri's

object logic [Beeri87]), TEDM's approach is natural and flexible. For example, patterns

can be freely composed, resulting in queries with arbitrary complexity and precision.

Furthermore, pat terns are pa r t of the database itself, complex pat tern objects can be

dynamically created by connecting existing simple pattern objects.

Pa t t e rn matching can be thought of a s a special case of unification, a computation

mechanism used by Prolog for resolution. In pattern matching, two kinds of entities are

distinguished: the patterns (or templates) for matching and the objects t o be matched.

The roles of the two are different and asymmetric. In matching a pat tern with an

object, the constants in the pattern are compared with their counterparts in the object,

and the variables in the pattern are substituted by their counterparts in the object. If

the match is successful (the definition for a successful match would vary from system t o

system), the substitution (or binding) contains useful information about the structure of

the matched object and is said t o be the answer of the match.

The binding of a successful match contains handles t o the matched objects, which

TEDM uses for associative retrieval. Updates on the objects are also made possible by

the set of handles. Pa t t e rn matching in TEDM is set-oriented: An answer substitution

is a set of bindings, each being the result of a successful match. The set of objects in

the answer substitution are stored using binding matrices, which also keep the informa-

tion about the correspondence of an variable and i ts bindings.

We take one more significant s tep in adopting the pattern-matching technique for

query processing: We store the patterns and even commands a s objects. We motivate

this approach by contrasting i t with more traditional ones. I t is customary t o t rea t

database objects and the operations on them separately a s two distinct entities: The

databases objects are passive entities stored in databases; the operations are active and

are processed interactively (or embedded in a host language). For example, the

traditional dichotomy of a conceptual d a t a model is a d a t a definition language and a

d a t a manipulation language. They are clearly separated with non-overlapping roles.

The DDL is used t o define, constrain and possibly populate a database; whereas the

DML is used t o describe operations on the database. I t is difficult t o define database

operations in terms of database objects (using a DML), as operations are foreign t o the

d a t a model. Consequently, it is difficult t o manipulate database commands in terms of

themselves. Views are usually supported as an add-on feature of a DML and are pro-

cessed differently.

TEDM addresses this shortcoming by storing commands as objects. Compared

with other solutions (such as INGRES and POSTGRES [Stonebraker84, Stonebraker861,

in which QUEL commands are storable attributes a s text strings), TEDM's approach is

abst ract and powerful. For example, INGRES t reats QUEL commands as textual

strings, or possibly cached in a compiled form or byte codes. In either case, they are

nondecomposable atomic values and there is no way t o look inside them. TEDM on the

other hand, associates commands with a semantical structure from the underlying

interpretation space and stores them as objects using CDOs. T h e storage format of

CDOs preserves the structural semantics of the commands. The significance of storing

commands as database objects is the following: Firstly, commands can be manipulated

as ordinary objects. They can be queried in a form similar t o what they mean, espe-

cially for command patterns and their pattern-matching semantics. Secondly, a s

objects, they can be freely composed with other objects, promoting reuse and the

dynamic construction of commands. Thirdly, pre-tested queries can be packaged with

application databases.

Abstract objects are introduced primarily for storing commands. They are a new

class of objects with identifiers distinguishable from those of concrete objects. In the

definition of the object space G in Chapter 3, the set of abstract object identifiers was

denoted by ID,. We point out tha t there is a big difference in our treatment of com-

plex objects from the others: We view complex objects a s semantical entities with both

identities and structures (or as graphs), not just identities (or nodes in graphs). We use

a function, i: G -+ ID,,,, t o extract object identifiers from complex objects as follows.

We can use L t o characterize abstract objects succinctly - an object o is an

abstract object if and only if i(o) € ID,. Furthermore, we extend i t o i* t o operate

on objects and return all their components.

1) ~ * (v) = { i (v)) , i f v € IDD
2) L* (V) = { i(v)) u i*(wl) u ... u i*(wn), if v = (id , {(fl :wl), ..., (fn:wn)>)

6.2. Matching on Objects

Pat te rn matching relies on structural "similarity" t o establish a relationship

between a template and a n object: The template matches the object. T h e notion of

similarity adopted by TEDM is made precise by match junctions (denoted by p) , 1-1

mappings from amongst objects.

Definition 26: Given two objects:

a 1-1 mapping from L*(v,) t o L*(v,), p, is a match function if the following

conditions hold t rue simultaneously:

1) 1 = i2

2) v i (i f L*(v,)), t (i ed t) , ~ (i) E~ t
3) v i (i f L*(v,)), if i .f is defined, then p(i).f is defined and p(i.f) = y(i).f

The first condition requires t h a t a match function preserve the root. The second

condition says t h a t a match function must also respect the type(s). The third condition

requires t h a t a match function preserve the object structure.

Using a 1-1 function, we limit the scope of matching t o those t h a t are "truly struc-

turally compatible" with the matching template. For example, in Figure 6.1, h is a

match function, but f and g are not. The 1-1 condition can be overly restrictive, a s is

evident from the case for f: Without the 1-1 condition, f would be a match function in

which both a and b a re matched with c.

I I
I I
I I

ii 1 x....f........;:. f ,': I @ "-. ..g

..' _.. ..__
.'i

. .
.. -- . -,.

I I
I I

I I
I I
I I

I
e L e

I I
I I

(h)
I I
I (f) I (9)

Figure 8.1: Match Functions and Non-match Functions

113

We say t h a t an object o, matches an object o,, if there is a match function from

o, t o 0,. In the case with only single occurrence fields, it can be shown tha t if o,

matches o,, then there is a unique match function from o, t o 0,.

We consider computing match functions for objects with only single occurrence

fields. The extension t o including multiple occurrence field is not difficult but is not dis-

cussed. Let ol = (idl, Sl) and o2 = (id2, S2), where Si is of the form of {..., (fj: oj), ...I, if

o, matches o,, then the match function p can be computed as follows.

The computation s ta r t s from the root of 0,:

Case 1). When S1 = 0, the assertion is obviously true with p(idl) = id2.

Case 2). Assume p is defined for mapping nodes of ol with depth n or less t o
nodes of 02. Consider in ol a field label f leading t o a node of depth
n+l, a,, from a node of depth n, ao, and p(ao) = bo, we can extend h
toward a match function and assign bl t o p(al), such tha t bo.f = b,.

The result above gives us a way t o compute match functions: Traverse the struc-

ture using breadth-first search, start ing from the root. I t breaks up matching on two

large structures into matching on small pieces. Furthermore, the order of matching on

small pieces is immaterial.

When there is a match from object ol t o object 02, the match function establishes

a 1-1 correspondence from ol t o portions of 02. The 1-1 correspondence makes matching

in the semantic space useful. We are particularly interested in the pairs of a match

function where the source is an abstract object and the target is a concrete object,

since they precisely correspond t o the kind of pattern matching needed for command

processing. T o t h a t end, the interesting pairs from each match function are extracted

t o form a restricted version of the match function, called a decomposition map, since it

has the ability t o break up complex structures. Given a match function p and a pair

(ol, 02) E p, the pair is an abstract-abstract match pair if both object o, and object o2

are abs t rac t objects; the pair is a n abstract-concrete match pair if object o, is a n

abstract object and o2 is a concrete object. Thus, a decomposition map is a match

function restricted t o contain only abstract-concrete pairs. O r equivalently, a decom-

position map is a match function with domain restricted t o abstract objects and with

range restricted t o concrete objects.

Suppose t h a t we partition the components of a complex object into two collec-

tions, one consisting of abstract objects and the other concrete objects, then Figure 6.3

illustrates a decomposition map.

h

Figure 6.2 A Decompoeition Map

In writing, a decomposition map is usually arranged into a row of map pairs, simi-

lar to a binding vector in command processing, as in "al:cl, a2:c2, ..., a,:cnl', where ails

are abstract objects, and cils are concrete objects.

Example 41: Consider two objects, described by

1) Point:P?(x + Integer:X?, y + lo), and
2) Point:(x -+ 20, y -+ lo),

respectively. Suppose the object identifier for the abstract Point object

(defined by 1) is a100, the object identifier for the abstract Integer object is

a200, and the object identifier for the concrete Point object (defined by 2) is

c300, then, the abstract Point object matches the concrete Point object, with

the following decomposition map:

Extending the decomposition maps t o include abstract-abstract match pairs

results in generalized decomposition maps. In other words, generalized decomposition

maps remove the concrete-object-only restriction on the ranges of the decomposition

maps. Note t h a t the abstract-object-only restriction on the domains still stands. Fig-

ure 6.3 illustrates a generalized decomposition map.

The motivation for the extension t o generalized decomposition maps is twofold.

Firstly, with abstract-abstract matching, abstract objects can be retrieved as a result

of pattern matching, the same mechanism tha t is used t o retrieve concrete objects.

They can also be manipulated using database commands. Secondly, abstract-abstract

match pairs complement abstract-concrete match pairs, in t h a t they together form a

unified view for pattern matching: a process in which a template decomposes complex

structure, resulting in the binding of the flexible components of the template (abstract

objects) t o the components of the complex structure.

h
-.

Figure 6.3 A Generalized Decomposition Map

*

Consider the following update command for setting the x-coordinate value of the

Point objects whose y-coordinate value is 10,

P(x -+ 0) <= points -+ Point:P(y -+ 10)

If the match is not restricted t o concrete object only, then the abstract object described

by the following term is also updated.

Point:P?(x -+ Integer:X?, y -+ 10)

Considering tha t concrete objects are perhaps manipulated more often than

abstract objects, we give the user or application the control over the kind of objects t o

match against in pat tern matching with a slight extension t o the syntax for patterns.

(Corresponding CDOs also need adjustment t o reflect this change in syntax, and t o be

able t o capture the difference in matching semantics.)

T o indicate abstract-concrete matching (a decomposition map), we use the same

notation t h a t we have been using. For example, the command

P(x + 0) <= points + Point:P(y -4 10)

says setting the x-coordinate value of concrete Point objects only, a s the pattern indi-

cates a n abstract-concrete matching.

To indicate a generalized decomposition map, we use a question mark following a

variable of a pattern. For example, the command

P(x + 0) <= points -+ Point:P?(y -+ 10)

would update the x-coordinate value of both abstract and concrete Point objects tha t

match the pattern.

Finally, t o indicate an abstract-abstract match (the range of the match function

restricted t o abstract objects), we use two consecutive question marks following a vari-

able of a pattern. For example, the command

P(x + 0) <= points + Point:P??(y + 10)

only picks up abstract Point objects for update

6.3. Using Abstract Objects in TDOa

This section discusses one application of abstract objects, the use of them in type-

defining objects, or TDOs. TDOs are the database objects for type definitions. Their

function is similar t o the system catalogue of a relational database system for main-

taining information about tables.

We use the type "TypeDef" t o represent TDOs. The basic considerations in the

design of "TypeDef" are t h a t it is general, so t h a t i t can capture the essential informa-

tion about types, and t h a t it is efficient, so t h a t i t can perform frequently-needed opera-

tions on types quickly and easily. The type definition for "TypeDef" is given below:

Typedef = (typename + String,
supertypes ++ Typedef,
template + All?)

where we use the notation "aTypeName" followed by a question mark t o indicate an

admissible value set consisting of only abstract objects of the given type "aTypeName".

We discuss how this schema meets the two requirements above. The essential

information about a type is its name, its supertypes and its structure. I t is clear tha t

the name and the supertypes are captured by "TypeDef". Where do we maintain the

information about the structure? The answer is: in the "template" field. When defining

a type, a n abstract object of the new type is created and is assigned t o the "template"

field a s its value. We call this object a template object, or T O . The T O contains all the

structure defined by its type, with values set t o the T O s of the corresponding field

specifications. For example, consider the type definition

RectSelect = (rect -+ Rectangle, cursor -+ Point)

I t s T D O can be described as:

RectSelect :R?(rect + TOJorJtectangle, cursor -+ TOJorJ'oint)

Thus, the first requirement is met. I t turns out the second requirement is also satisfied.

Two of the most frequent operations are conformity checking and subtype checking,

which can be easily formulated a s pattern-matching problems with the TOs. Detailed

discussion along this line is given in Chapter 8.

The constraining type for the "template" field is "All", the reason is t h a t user-

defined types can be arbitrarily close t o the top of a type hierarchy (namely, the type

"All").

We describe our mapping from several type definition forms t o their corresponding

TDOs. First, consider the general type definition with a list of fields.

T = (f, + T,, ..., fn + Tn)

I t s T D O is is illustrated in Figure 6.4.

If the type S is defined a s

S = T:(g, + S,, ..., gm + Sm)

then, i ts T D O is illustrated in Figure 6.5. Note tha t the inherited fields are explicitly

duplicated.

1.

String

'T'
Typedef

typenarne -- -
supertypes -

\

template 7,

' n

T
1.--

Figure 6.4 TDO for Type T's Definition

Figure 6.5 TDO for Type S's Definition

Given a type definition

u =S,

its TDO is shown in Figure 6.6. (Note that there is no linkage to the type S.)

String
I

'U' I Typedef

w
u I , < T O for

r
Tn

typenarne

supertypes

template

--
T D O for

T 0
Figure 6.6 TDO for Type U's Definition

--
--

In contrast t o the last case, a type, W, defined using the form

W < S

is mapped t o the T D O shown in Figure 6.7.

Figure 6.7 TDO for Type W's Definition

8.4. Using Abstract Objects in CDOs

Another interesting the use of abstract objects is representing command-defining

objects, or CDOs. We use the type "Command" t o store CDOs. The definition of

"Command" is a s follows.

Command = (head + Head, @collection ++ All?)
Head = (a p e r a t i o n +-+ All?)

The notation "@aFieldName" is used t o denote a n abstract field, a field whose

name is a variable. The field "@ollection" reflects the fact t h a t pat tern matching in

command processing always has a scope of a collection of objects. The field "@opera-

tion" can be substituted by one of the seven concrete operations: addType, delType,

addField, delField, changeField, newobject and compoundCommand. ("View" and

"Install" are treated as predefined compound commands.)

The "head" field is defined here as a single occurrence field. Nevertheless, multiple

heads are allowed in a command. A better scheme is t o define "head" as an ordered

multiple occurrence field. T h a t treatment is discussed in Chapter 7.

Consider again the command for setting the x-coordinate value of a Point object

whose y-coordinate value is 10:

P(x + 0) <= points + P ~ i n t : P (~ -+ 10)

I t s CDO is the following (Recall tha t object tags are non-repeating):

Command:C(head + Head:H(changeField@head + P?(x -+ 0),
points@collection -+ Point:P?(y + 10))

8.5. Chapter Summary

In this chapter, the concept of pattern-matching is studied. The semantics of

pattern-matching with abstract objects are described. We also discussed two interest-

ing applications of abstract objects in the TEDM d a t a model itself: in type-defining

objects and in command-defining objects.

CHAPTER 7

GROUPING COMMANDS INTO COMPOUND OPERATIONS

Database commands can be grouped together t o form compound commands. The

commands in a compound command are executed sequentially, with the condition tha t

either all of them are executed or none of them are executed. In other words, a com-

pound command is a unit of atomicity. Hence, it is most sensible t o group semantically

related operations a s compound commands. The atomicity condition guarantees t h a t

the semantics are enforced consistently. For example, removing a field followed by

removing a type from a n object can be a good combination for maintaining the confor-

mity condition.

Compound commands are also a control abstraction mechanism, like the pro-

cedural abstraction mechanism in programming languages. They provide high-level

semantics based on low-level operations. They resemble parameterized functions or

subroutines, only need t o be defined once, and can be used many times from different

contexts and with different arguments.

This chapter describes mechanisms for grouping commands into compound com-

mands in TEDM. The discussion centers more on the implementational aspects than on

semantical issues. Part icular attention is paid t o the problem of passing parameters in

and out of compound commands. Section 1 defines the syntax for compound commands

and describe how they are executed. The generic syntax form is a slightly modified ver-

sion of the one given in Chapter 5. The variation reflects some of the implementation

considerations. Section 2 describes the issues in representing commands a s objects.

Section 3 describes a parameter-passing scheme suitable for the pattern-matching style

of command execution in TEDM. Section 4 discusses the creation and the manipulation

of the parameter objects. Section 5 uses a n example t o illustrate how t o execute a com-

pound command from its database representation. Section 6 contains remarks on

extension and a chapter summary.

7.1. Syntax and Semantics of Compound Commands

We gave a generic form for defining compound commands in Chapter 5. The form

below is a slightly modified version. The modification is needed t o incorporate some

implementation strategies. For example, argument terms are introduced t o implement

parameter-passing. (The parser of the prototype recognizes this modified version.) The

formal syntax of compound commands is described in the BNF-style a s follows.

According to this definition, a generic form for writing compound commands is a s

follows:

Note tha t there are two new concepts in the commands of this generic form: mul-

tiple actions t o the left-hand side of "<=", and an additional argument term "anAr-

gumentTerm" t o the right-hand side of "<=". The multiple actions in a command

head form a compound head. The pattern and the argument term form a parameterized

pattern.

The example below is based on the following type definitions:

StateTrivia = (bird + String, flower + String, tree + String,
song -+ String, motto -+ String)

GeoState = (stateName --, String, area + Integer, population + Integer,
postalAbbr --, Integer, fipsCode + Integer,
capital -+ String, trivia -+ StateTrivia)

Example 42: This command displays GeoState objects, with names given by

the calling environment. Note tha t the term "ViewStates(nm -4 N)" is a n

argument term.

ViewStates[nm + String:N]

{
View[Sj <= s ta tes -+ GeoState:S(nm --+ N), ViewStates(nm + N);

}

We discuss the semantics of compound commands informally. Individual com-

mands are executed one a t a time in a sequential order. However, t o maintain data-

base integrity, we require tha t either all commands are executed or none of them are

executed. A simple command is executed in essentially the same way as before: pattern

matching followed by the execution of actions. Nevertheless, new concepts are i n t r e

duced t o handle parameter-passing from the calling environment into individual com-

mands and from one action into another. The execution of a compound head is

coordinated using a simple strategy: the actions are executed one a t a time sequentially

from left t o right. The outcome of a pattern matching is still a binding matrix, which

supplies handles t o objects. The bindings from the pattern matching phase are directly

used during the execution of the first action. Each action may extend the binding

matrix with i ts output parameters. The binding matrix is passed t o the second action

for i ts execution, which in turn may modify the binding matrix and pass it to the next

one, and so on. The binding matrix from the last action of a compound head is in the

final form of executing a single command, which also reflects the update t o the data-

base implicitly.

Initially, a se t of objects are passed from the outside into a compound command

through parameter-passing. Accessing incoming parameters inside the compound com-

mand is accomplished by argument terms, which, together with pattern terms, form a

parameterized pattern. An argument term consists of a compound command name and

a list of arguments, similar to the header portion (tha t is, the signature portion) of a

compound command definition. The purpose of arguments terms is t o match the tem-

porary workspace objects for the argument relation, hence the ac tual arguments are

effectively used by the compound command.

Like a procedure, a compound command is invoked by name and a list of actual

arguments. Upon entering a compound command, ac tual parameters are bound t o for-

mal parameters. A compound command can be used a s a n action in the command

head, which is also a simple and convenient way for obtaining actual arguments for the

command, via pattern matching, as is shown below.

aCommandName[anArgl -+ T1:V,, ..., anArgn + Tn:Vp] <. aPa t t e rn .

A compound command expects, for i t s execution, a set of bindings for each param-

eter, V1, ... Vn. Note tha t it is incorrect t o pass the binding set for each individual

argument separately. Consider a command tha t needs two arguments for execution, a s

in "TwoArgumentCommand[a 4 A, b -+ B]", and the binding matrix obtained in pat-

tern matching is

If the parameters are passed as two separate sets, (1, 2) and (1, 2), for A and B respec-

tively, i t is impossible t o reconstruct the binding matrix, and leading t o incorrect execu-

tion. A correct but inefficient way t o pass a set of bindings is t o pass them one at a

time. In this approach, the command above would need three iterations before it gets

the complete information from the binding matrix.

We propose a set-oriented parameter-passing mechanism tha t is correct, efficient

a s well as elegant. The basic idea of the method is the following. Create a temporary

object for each binding vector, and define argument terms in the command bodies in

such a way tha t they match these temporary objects; then, when individual commands

are executed, the pattern-matching process will pick up the temporary object into the

binding matrix for the head of the command. This approach is correct since the tem-

porary objects preserve the binding matrix structure. I t is efficient because the whole

binding matrix is passed all a t once. I t is elegant because i t is based on pattern-

matching, a concept used everywhere in the d a t a model.

7.2. Representing Compound Commancb

Compound command definitions are stored as objects of the type "Compound"

Each "Compound" object maintains the information about the name, the arguments

and a list of commands. The type definition of "Compound" is the following: (The

notation "[]-+" indicates a n ordered multiple occurrence field.)

Compound = (name -4 String, a r g u m e n t -++ All?, command [I+ Command)
Command = (a p e r a t i o n [I+ All? @collection -++ All?)

We have slightly modified the definition for type "Command" from the last

chapter, t o accommodate the notion of compound heads. We also used the notation for

abstract field in the definition.

Example 43: The compound command "ViewStates" can be represented as

follows.

Compound:(name -+ 'ViewStates',
n m a r g u m e n t + String:N?,
command + Command:(View@operation + S?,

states@ollection + GeoState:S?
(nm + N?),

viewStates@collection -+ N?

We consider a more complex example. This example is based the following type

definitions:

Point = (x -+ Integer, y -+ Integer)
Rectangle = (width + Integer, height -.+ Integer)
LayoutUnit = (rect -+ Rectangle, color -+ String)
Layout = (unit -+ LayoutUnit, position + Point)

These types define a simple representation for a VLSI layout application, where a

point on the layout plane is determined by i ts x-coordinate and y-coordinate, both of

type integers. A rectangle is geometric shape defined by its width and height, assuming

orientation is always parallel t o the x and y axes. A layout unit is a rectangle filled

with color, which indicates the layer type of the unit, polysilicon or diffusion, for exam-

ple. Finally, a layout object is simply such a layout unit with its position fixed, by asso-

ciating a point in the layout plane with the upper-left corner of the rectangle.

Example 44: NMOS design uses the following color code t o indicate different

layers: BLUE for metal, RED for polysilicon, GREEN for diffusion, BLACK for

contact cut and YELLOW for implant. A unit used t o measure distance in

design is called X, whose absolute values range from 3 microns down t o 1

micron. There is a set of design rules governing a layout design, which dic-

t a t e s the minimum size of (separation between) layout objects t o ensure cer-

tain electrical and electronic behavior of the resulting VLSI chips. For exam-

ple, a polysilicon layout objects must be larger than 2X, two polysilicon layout

objects must be separated by a t least 2X and a polysilicon and a diffusion by

a t least lX, etc.

The following syntax defines a compound command t h a t takes a s i ts

input parameter a collection of Layout objects, shifts all diffusion layout

object, with a vertical position of 10, from the input collection, by 10X, and

changes all layout objects with a vertical position of 5, again from the input

collection, t o polysilicon objects.

ShiftDiff [layout -+ Layout :LO]

{
P(y -+ 0) <= layoutobjects --t Layout:LO

(position -+ Point:P(y 4 lo),
unit -+ LayoutUnit:U(color --, 'GREEN')),
ShiftDiff(1ayout --t LO);

U(co1or -+ 'RED7) <= layoutobjects -+ Layout:LO
(position --, Point :P(y --, 5),
unit -+ LayoutUnit:U),
ShiftDiff(1ayout -+ LO);

1

One way t o invoke this compound command is shown below, which selects

from all layout objects those with a width of 2 X, and apply the "ShiftDiff"

command t o the results of the selection.

ShiftDiff[layout -4 X] <== layoutobjects -+ Layout0bject:X
(unit 4 LayoutUnit:(rect -+ Rectangle:(width -+ 2)))

Example 45: The object translation of the compound command "ShiftDifY7 is

the following.

Compound:(name --, 'ShiftDiff',
layout@argument + Layout:LO?,
command [I]-+ Command:(changeField@operation + P?(y + O),

layout a o l l e c tion -+ Layout :LO?
position --, Point:P?(y --, lo),
unit --, LayoutUnit:U?(color 4 'GREEN'),

Shift@collection LO?)
command [2]+ Command: ...

1

7.3. Argument Terms and Parameter Passing

Argument terms match temporary parameter objects, which are created by the

system based on the results of pattern-matching connected with the call of the com-

mand. One temporary object is created for each row in the binding matrix. In its sim-

plest form, a n argument term inside a compound command is merely a repetition of the

header of the command, which enables an individual command t o access parameter

objects by pat tern matching. The examples we have seen so far are of this kind (which

is the only type the current implementation accepts). However, more complex argu-

ment terms can be introduced, for example, t o provide simple transformations on

parameter objects before they are used.

There are four issues t o consider for the parameter-passing problem. The first one

is how t o represent compound command headers, t h a t is, command names and formal

arguments. The second one is how t o translate and store argument terms. The third is

the inverse of the second, namely, how t o generate patterns out of stored argument

terms. Finally, the fourth issue is how t o generate parameter objects, in such a format

t h a t they will match argument terms. We discuss the first two problems in this section,

and leave the last two t o the next section.

The header of a command definition serves the purpose of associating a name with

the definition. O n invocation, the name is used a s the unique identification for locating

the definition of the compound command. In addition, the header also contains a tem-

plate for formal arguments, which is used to establish a correspondence between the

formal arguments and the actual arguments, or parameter-passing. We used the type

"Signature" t o represent the header portion in command definitions.

Signature = (name 4 String, a r g u m e n t -+ All?)

Using "Signature", the type "Compound" is rewritten as

Compound = Signature:(command [I-, Command)

As mentioned above, the mechanism tha t makes arguments passed t o a compound

command accessible t o individual commands is argument terms, a special kind of pat-

tern appearing in the body of a command. An argument term may selectively use the

parameters of a compound command, by including all or some of the argument names.

In syntax, an argument term is similar t o a command header in a compound command

definition. I t is formed with a command name followed by a list of arguments. Furth-

ermore, the command name must be identical with the one appearing in command

header, and the arguments must be a subset of those in the command header. Also, the

field names in the argument term must also be a subset of the parameter names.

7.4. Parameter Objects

When a compound command is invoked, its definition is retrieved. The object

representation of the definition is assembled into an executable form and executed.

P a r t of this conversion process is t o identify argument terms in the definition and con-

vert them into a form t h a t can effectively use parameters from the calling environment.

This conversion depends on the format in which parameter objects are created.

Another important piece of processing during command invocation is augmenting the

code with instructions for generating parameter objects dynamically.

Parameters for compound commands are sets of bindings (binding matrix). Each

row in this matrix corresponds t o a parameter object. Parameter objects are created in

a temporary workspace.

Example 46: Given a binding matrix with four binding vectors

and a command with one argument "ShiftDiff[layout -+ Layout:LO]", then,

four parameter objects are created:

Moreover, the pattern "Parameter:P(layout + LO)" would match all of them.

The type definition for "Parameter" is as follows:

Parameter = (@rgname ++ All?)

7.5. Compound Command Execution

We use an example t o illustrate the the process of compound command execution.

Consider the following command definition of an earlier example:

ShiftDiff[layout + Layout:LO]

{
P(y + 0) <= IayoutObjects -+ Layout:LO

(position + Point:P(y --+ lo) ,
unit -+ LayoutUnit:U(color -+ 'GREEN')),
ShiftDiff(1ayou t -+ LO);

U(co1or + 'RED') <= layoutobjects -+ Layout:LO
(position + Point:P(y + 5) ,
unit -+ LayoutUnit:U),
ShiftDiff(1ayout -+ LO);

Suppose we invoke the command a s follows:

and assume the database contain the following objects (assuming they are labeled by

object identifiers):

01) Layout:(unit -+ LayoutUnit:
(rect -, Rectangle:(width -+ 2, height -+ 13), color -, 'GREEN'),
position -+ Point:(x -+ 2, y -+ I))

02) Layout :(unit -+ LayoutUnit:
(rect -+ Rectangle:(width -+ 4, height -+ 2), color 4 'GREEN'),
position --, Point :(x -+ 1, y -+ 2))

03) Layout:(unit -+ LayoutUnit:
(rect -+ Rectangle:(width --, 4, height -+ 2), color -+ 'GREEN'),
position --t Point:(x + 1, y --c 6))

04) Layout:(unit -+ LayoutUnit:
(rect -, Rectangle:(width 4 4, height -+ 2), color -+ 'GREEN'),
position --+ Point:(x -, 1, y -+ 10))

05) Layout:(unit -+ LayoutUnit:
(rect -+ Rectangle:(width -+ 10, height -+ 21, color -+ 'BLACK'),
position --, Point:(x -+ 0, y -+ 13))

Step 1, pat tern matching on "Layout:L" produces the following binding matrix, a s

the pat tern matches all layout objects:

Step 2, the command head is recognized a s a n invocation t o compound command

"ShiftDiP7. The corresponding CDO is retrieved and reassembled for execution. At the

same time, the following parameter objects are created before the control is transferred

t o the body of the compound command:

Step 3, the first simple command is executed. The binding matrix of i ts pattern

matching is

[LO:o4, P:p], where p is an identifier for a Point object

Therefore, the action par t of this command changes the y-coordinate value of the point

object in the binding matrix t o 0.

The last step executes the second simple command, which updates the layout unit

situated a t points whose y-coordinate value is 5, and make them a "RED" unit.

7.8. Remarks and Chapter Summary

Our discussion in this chapter reflects the implementation of the prototype. This

closing section suggests some future directions: restrictions on how the binding matrices

may change during execution t o simplify runtime storage management and t o improve

the performance and some extensions t o the parameter-passing technique.

We do not allow a command t o update the value of its binding matrix, nor do we

permit the number of bindings in a binding matrix t o grow. However, we allow a com-

mand t o reject bindings, decreasing the number of bindings in i ts binding matrix. The

reason for t h a t is very simple. Conceptually, bindings are always the results of pattern

matching. Although command execution can potentially change the outcome of the

pattern matching prior t o i ts execution, this change will not be seen until another pat-

tern matching outside the current command is performed. The decision t o allow rejec-

tion of bindings is based on the consideration tha t , unlike introducing new bindings,

shrinking in a binding matrix would not involve allocation of storage space.

One consequence of these restrictions is tha t , using this strategy for set-oriented

parameter passing, the storage space requirement will never grow a s new invocations

are made. Therefore, it is possible to use a stack based procedure invocation mechan-

ism for a more realistic implementation in the future.

We consider a number of extensions related t o compound command invocation and

parameter passing. First, execution of a command may augment i ts binding with new

columns, namely, the binding matrix may grow horizontally. Within such a command,

such an intention is indicated by assigning object values t o corresponding formal argu-

ments, perhaps with the assistance of a new kind of header term, assignment terms.

If the storage management function of the system strictly enforces the non-

increasing policy, we may invent commands t h a t have ability t o preallocate space for

intended binding matrix augmentation.

T o summarize, this chapter discussed ideas for grouping database commands t o

form a high-level control abstraction. The notion of atomicity was important t o

guarantee the database integrity. The discussion was mostly based on the features and

techniques of the current prototype, except the content of this last section. The con-

cept of argument terms was instrumental in solving the set-oriented parameter-passing

problem for command invocation.

CHAPTER 8

PROTOTYPING

We have implemented a prototype of the TEDM model described in this thesis.

The prototype is memory-based: I t creates and manipulates objects only in (virtual)

memory. The prototype is written using a combination of three different programming

languages. Quintus Prolog is used t o implement a model manager (MM), which handles

the majority of the functionalities of the prototype, ranging from language translation

t o query answering. Tektronix Smalltalk is used t o build a small user interaction facil-

ity (UIF), which adds t o the prototype a simple window-based user interface. The MM

module and the UIF module are each a concurrent process. The communications

between the two processes are facilitated by a set of independent C++ library tasks

(CLIB).

We discuss the prototype in this chapter, how it is organized and how it is imple-

mented. The emphasis of the discussion is on the MM module. We pay particular

at tention t o how complex objects are mapped into simple forms (decomposition), how

they are stored (storage model), and how type-defining objects and command-defining

objects are represented. Also of interest is the extensibility of the MM with respect t o

languages. Several language interfaces a re implemented in the prototype. Others can

be easily incorporated if needed, Addition of a new language follows a straightforward

procedure and is done in a modular fashion.

The organization of this chapter is as follows. Section 1 contains a n overview of

the overall architecture and a brief description for each of the three major functional

blocks. Section 2 considers representation issues, such a s how t o partition object space

and how t o decompose complex objects. Section 3 describes a translator for objects

from their definition t o their representation. Section 4 and Section 5 discuss similar

translators for types and commands, respectively. Command execution is also described

there. Section 5 examines the prototype's adaptability t o interface languages, one of

many advantages reswlting from a n expressive object language and generalized object

spaces.

8.1. Architecture

The three functional blocks are connected (conceptually) using a strict linear

hierarchy, as shown in Figure 8.1.

User Interaction

Facilities

C Interface Library

Tasks

I
Model Manager

Figure 8.1 System Organization

-

Notice t h a t each block in the diagram is a separate runtime task. The

parentlchild relationship among the concurrent tasks coincides with the hierarchical

structure of the block diagram. The process relationship is set up during initialization.

A CLIB task is forked from Smalltalk during the creation of a UIF object. The CLIB

task in turn s t a r t s a Prolog servant a s its child process. There are two pipes between

the Smalltalk process and a CLIB task: a write-pipe for sending d a t a t o the CLIB pro-

cess and a read-pipe for receiving d a t a in the opposite direction. The communications

between a CLIB task and its Prolog servant use the external language library tha t

comes with the Quintus Prolog system.

The UIF Process

The UIF is constructed using the MVC paradigm of Smalltalk. The user s t a r t s a

TEDM session by opening a UIF window, enters and edits definitions for objects, types

or commands in the UIF window, selects expressions and invokes appropriate menu

ac t ions.

In addition t o common editing features such a s "cut" and "paste", the interface

supports the following functions:

1). Translate Object: This function sends an object term t o the model manager, via

the CLIB task. The model manager translates the term and checks if the object

described by the term is valid, according t o type conformity requirements.

2). Translate Type: This function sends a type definition t o the model manager. The

model manager translates the definition into a "Typedef" object, and stores the

result in the database.

3). Translate Command: This function sends a command procedure definition t o the

model manager. The model manager translates the procedure definition into a

"Command" or "CompoundCommand" object, and stores the result in the data-

base.

4). Execute Command: This function sends an interactive command t o the model

manager. The model manager compiles the interactive command and executes it.

The result of execution is sent back t o the Smalltalk process displayed in a popup

window.

The CLIB Tasks

A group of C++ programs make up the CLIB. Their primary function is t o create

Prolog servant processes. They also handle the communications between the UIF and

the MM. Although the amount of d a t a from the UIF t o the MM is usually small, d a t a

transfer in the opposite direction may require large bandwidth. For example, the result

of a viewing operation may contain all objects in the database. Consequently, a GLIB

task uses pre-determined files in which a servant process deposits execution results. (It

turns ou t the external language interface of Quintus Prolog only supports low-level and

low-bandwidth communications.) The successful completion of a servant process is com-

municated to a CLIB task via a return Boolean value.

The Servant Processes

Each servant process is a n incarnation of the model manager. Database objects

are represented a s Prolog facts and stored on a heap. Commands are translated into

and executed a s Prolog goals. Several features of Prolog have proven valuable in the

implementation. For example, the definite clause grammar (DCG) formalism facilitates

parser construction, and the unification mechanism fits well with the pattern-matching

style of command processing.

The MM is made up of three translators and a command processor. Each transla-

tor converts external syntax into internal representation (tha t is, Prolog facts and

rules). The command processor compiles commands into Prolog queries, executes them

using the Prolog interpreter, and maintains the result in a binding matrix. The block

labeled by "Object Memory" is simulated using par t of Prolog's heap space. A separate

access interface is defined t o hide the implementation details of the object memory from

how it is used by the MM. This way, the amount of change is minimized when we

switch t o a disk-based object store. Figure 8.2 shows the organization of the model

manager.

Object

Translation

1 I I I
I

Object Access

Libraries

Object Memory

Figure 8.2 Model Manager Organization

Type

Translation

Command

Translation

Command

Execution

A

8.2. Representing Objects

Two issues in object representation are the management of object identifiers and

the mapping of complex structure into the storage model.

Managing Object Identifiers

The most fundamental requirement on object identifiers, t h a t they must be unique,

can be met using a natural number generator. In addition, we partition the space of

object identifiers into disjoint subspaces, and use object identifiers from different sub-

spaces t o represent different categories of objects (concrete, abs t rac t , etc.) Also, only a

portion of the natura l numbers should be used a s object identifiers, for we still need t o

support the primitive type "Number". Similarly, t o support the primitive type

"String", another chunk of the natural numbers is reserved as indexes into the table for

string values (stringTable). Finally, based on the consideration of uniformity in the

storage model, a table (symbolTable) is used t o maintain symbols.

Storing Objects in Tuples

T h e storage space for database objects is a quadruary relation (the quadruary

storage model or Q S M) . Complex objects on a field occurrence basis a re fully decom-

posed into tuples with a uniform storage structure. Advantages and disadvantages of

the fully decomposed storage model versus the direct storage model have been studied

in detail by Copeland and Khoshafian [Copeland85]. The applicability of each approach

is discussed in an earlier working paper [Zhu85]. The quadruary relation is essentially a

fully decomposed model, with minor variations and extensions.

The four columns in the (QSM) are O B J E C T J D , FIELDJABEL, FIELDJNDEX

and FIELD-VALUE. The following rules are observed by the QSM:

1). OBJECTJD and FIELD-VALUE may contain object identifiers, integer values

and str ing indices.

2). OBJECTJD and FIELD-VALUE, FIELDLABEL and FIELDJNDEX have pair-

wise disjoint domains.

Values in FIELDJNDEX are encoded a s follows. A negative one (-1) denotes a

single occurrence field. A zero (0) denotes a multiple occurrence field. A positive

integer denotes a n indexed field. In this case, the value in the FIELD-VALUE column is

the field value a t the index position.

Decomposing Objects

In order t o store complex objects using the QSM, they must be decomposed into

quadruary tuples. We illustrate the idea of decomposition using a simple example.

Given a n object of the following form

State:(stateName + 'Oregon', postalcode --+ 'OR'),

the decomposition process would generate the following QSM tuples.

The first tuple represents the type membership ("anIndexToSymbolType") of the

object ("aStateIDn). In the example, the object is a member of the typeset for type

"State" ("t heStateTypeID"). Since objects can be multiply typed, the index field con-

tains a 0. The remaining two tuples represent the two fields in the object. Note tha t

field labels are represented by indexes t o the symbol table, and string values are

represented by indexes t o the string table. The general decomposition procedure is the

following.

1). For a n atomic integer value, no decomposition is possible. The identity of the

integer value is itself.

2). For a n atomic string value, no decomposition is possible. Insert the string into the

string table and use the index t o the string table a s the identity of the string

value.

3). For a complex object, T:(fl + vl, ..., f -+ vn). Obtain a new object identity, say,

id, for the object, and its decomposed form is

{(id, fl, fi,, id,), ..., (id, fn, f in, idn), (id, type, 0, idT), ...) U Dl U ... U Dn

where fii is the field occurrence indicator for fi, idi is the identity for vi, and Di is

the result of decomposing vi.

8.3. Translating Objects

The object translator (OT) converts external object descriptions (in the object

definition language) into internal representation (in QSM). The structure of O T follows

t h a t of s tandard language processors, consisting of a scanner, a parser, a semantic

checker and a QSM representation generator.

The scanner is a low level utility t h a t is shared by other translators in the MM. I t

handles text input and token recognition. The output of the scanner is a list of token

type and token value pairs. Syntactical analysis is done using a definite clause gram-

mar parser. The parser generates abstract syntax trees (in the form of Prolog terms).

The semantic checker traverses the abstract syntax trees, produces a n intermediate

form with temporary object identifiers, and checks the satisfaction of the conformity

conditions. If the semantic checking is successful, a QSM representation of the object(s)

is created and added t o the database. An additional activity during generating QSM

representation is eliminating redundancy in the intermediate form.

Parsing Objects

Language parsing in Prolog is a n easy task. We sketch definite clause grammars

(DCG) t o help describe the translators. A DCG is a set of definite clauses (Horn clauses

with exactly one positive literal). A definite clause,

with the assumption t h a t each literal is of arity 2 (one input and one output), can be

interpreted a s a production with a nonterminal p a s i ts left-hand-side, and grammar

symbol sequence pl, ..., pn as i ts right-hand-side. A DCG for a context-free grammar

without left recursion is easily obtained by a natural isomorphism. To illustrate, con-

sider the following example.

Example 47: Given a grammar, with two nonterminal symbols: "object-term"

and "field-list", and five productions:

object-term ::= '(' field-list ')' I string I number
field-list ::= f i e l d j a m e '4' object-term ',' field-list

I f i e ldaame '4' object-term

the corresponding DCG is:

object-term + consume-lparenthesis, field-list, consumerparenthesis.
object-term 4 consume2tring.
object-term -+ consumesumber .

fieldJist + consumefieldname, consume,arrow, object-term,
consume,comma, fieldJist .

field-list + consumefieldname, consume-arrow, object-term.

where literals of the form "consumeX" are rules for token consumptions (usu-

ally supported by lexical analysis routines).

The resulting DCG is an executable parser. A query of the form

"object,term(TokenList, [I)", with "TokenList" bound t o a sentence represented as a

list, would determine whether the sentence is in the language. The DCG formalism is

convenient as i t requires a minimal amount of programming. The DCG mechanism is

general a s i t is applicable t o any context-free grammar without left recursion, which is

known t o be equivalent t o the class of context-free grammars itself. The disadvantage

of using DCG for parsing is t h a t certain DCG parsers may be inefficient t o execute.

Generating parse trees or abstract syntax trees is just as easy: one simply adds

additional arguments t o literals. We can also select what t o include in the abstract

syntax tree. For example, punctuations or delimiters are typically excluded.

Example 48: In this example, we add an argument t o the literal

"object,term" t o obtain a tree representation.

object-term(oterm(F1)) + consumeJparenthesis,
fieldJist(FL), consumerparenthesis.

object-term(oterm(ST)) + consumestring(ST).
object-term(oterm(NM)) + consumenumber(NM).

fieldAist(flist(FN, FV, FL)) --+ consume~e ldname(FN) ,
consume-arrow, object-term(FV), consume,comma, fieldJist(FL).

fieldJist(flist(FN, FV)) -+ consumeAeldname(FN),
consume-arrow, object-term(FV).

Example 49: Given the following object description (with appropriate lexical

processing) as input:

(name -+ (first -+ 'Joe', last -+ 'Dow'), age -+ 2)

The parser in the previous example would produce the following abstract syn-

t a x tree (as a Prolog term):

oterm(flist(name, oterm(flist(first, 'Joe', flist(last, 'Dow'))), flist(age, 2))

Traversing the resulting tree is also a simple task. The synthesis and the analysis

of the abstract tree bear a surprising symmetry in Prolog.

Example 50: The following program analyzes a tree structure, assuming the

result of the analysis is saved a s global facts and communications are through

the global states. I t traverses the tree in a depth-first fashion.

analyzeAieldJist(flist(FN, FV, FL)) :- analyzeJeldname(FN),
analyze-object-term(FV), analyzeAieldJist(FL).

fieldJist(flist(FN, FV)) :- analyzeAeldname(FN), analyze-object-term(FV).

Generating Intermediate Forms

The intermediate representation is a direct implementation of the object decompo-

sition algorithm of the previous section. As the trees are traversed depth-first, and new

temporary object identifiers are acquired along the way, a stack is used t o store the

intermediate identifiers.

Example 51: Adding a stack t o the traversal routine of the last example, we

obtain a program for generating intermediate forms. (Assuming the stack is

implemented elsewhere.)

analyze-object-term(oterm(FL)) :- acquire-tempid(ID),
pushstack(ID), analyzefieldJist(F1).

analyze-object-term(oterm(ST)) :-
analyzestr ing(ST, STJD), pushstack(STJD).

analyze-object-term(oterm(Nh4)) :-
a n a l y z e ~ u m b e r (N M , NMJD), pushstack(NMJD).

analyzefieldJist(flist(FN, FV, FL)) :- analyzefieldname(FN FNJD),
analyze-object,term(FV), popstack(FVJD), topstack(OBJD),
emit-tuple(OBJD, F N J D , FVJD), analyzefieldJist(F1).

fieldJist(flist(FN, FV)) :- analyzeJieldname(FN, FNJD),
analyze,object,term(FV), popstack(FVJD),
topstack(OBJD), emit-tuple(OBJD, FNJD, FVJD).

Example 52: Consider the following object description again:

(name -+ (first -+ 'Joe', last + 'Dow'), age + 2)

I t s intermediate representation contains the following tuples.

TEMPID-1, name, - 1, TEMPIDJ,
TEMPID-1, age, -1, TEMPID-3,
TEMPIDJ, first, -1, TEMPID-4,
TEMPIDJ, last, - 1, TEMPID-5,
TEMPID-3, integer, -1, 2,
TEMPID-4, string, -1, 'Joe',
TEMPID-5, string, - 1, 'Dow '

We should point out t h a t this series of illustrative examples reflect the general principle

of the object translator. Nevertheless, the code shown here is a much simplified version

of the actual implementation.

Generating Internal Representation

Generating the final internal represen tation involves checking the intermediate

forms against possible semantic violations (such as conformity), removing redundant

tuples in the intermediate form, processing placeholders and tags and replacing tem-

porary object identifiers with permanent object identifiers.

Redundancy is introduced for several reasons. One is t o maintain additional infor-

mation for delayed processing. Another is t o make it easier t o structure the code (a

recursion pattern, for example).

In the intermediate form, atomic d a t a values (integers and strings) are represented

a s tuples of the following form:

TEMF'JD, integer, -1, <integer-value>
TEMF'JD, string, -1, <string-value>

In the final representation, atomic values are directly used instead. The following p r e

cedure is used t o remove these redundant tuples:

1). Find all tuples t h a t references the temporary identifiers for atomic values

2). Substitute corresponding atomic values for the references.

Example 53: Continuing with the previous example. The following is the

result after removing tuples for atomic d a t a values,

TEMPID-1, name, -1, T E M P I D 2
TEMPIDJ, age, -1, 2
TEMPIDJ, first, -1, 'Joe'
TEMPIDJ, last, -1, 'Dow'

Translating object descriptions containing object tags requires additional semantic

processing. The following two questions need t o be addressed: How are they translated?

How do they match concrete objects? The assumption t h a t object tags are non-

repeating also simplifies the translation process. Each object t ag is always translated

into a distinct abstract object. However, object tags may be related t o each other by

placeholders. There are two cases t o consider when translating an object tag, depend-

ing on whether or not the tag is related t o another t ag by co-referencing placeholders.

(Recall t h a t no placeholder means distinct a distinct placeholder.) Assume placeholder

H1 is associated with t ag T1 and placeholder Hz with t ag T2. (HI and H2 are always

different.)

Case 1 (H1 H2):
the two abstract objects denoted by TI and T, have the

-

same pattern-matching power (any object matching with one also matches
with the other.)

Case 2 (Hl # H2):
the two abstract objects denoted by TI and T2 perform
independent matching.

While placeholders disappear after the translation, object tags remain. This infor-

mation is used t o determine what object t o create in the final stage of translation. The

final s tep in this process is t o replace temporary object identifiers by permanent object

identifiers.

Example 54: The QSM representation for the object description in this series

of examples contains the following tuples (with the FIELDJNDEX column

omitted).

PERMID-1, name, P E R M I D 2
PERMID-1, age, 2
PERMIDJ, first, 'Joe'
PERMIDJ, last, 'Dow'

8.4. Translating Types

The translator for types consists of a parser, a semantic checker and a QSM

representation generator, much like the object translator. Our discussion focuses on the

representation of type definitions and semantic checking issues.

Type-Defining Objects

Type definitions are stored a s type-defining objects (TDOs). A T D O is a concrete

object with, among others, a component abstract object. Recall t h a t the type

definition for TDOs is the following:

TypeDef = (typename --, String,
supertypes ++ TypeDef,
template -, All?)

The field "typename" contains the external name of a type ("Employee", for

example). The field "supertypes" contains a type-defining object for each of the super-

types. The field "template" contains a n abstract object defining a structure template

(the template object, or T O) for the instances of the type.

We have t o use the most general type ("All") on "template" in a TDO, because

this field contains a template for the T D O itself, and "All" is the only type tha t bounds

from above every other type.

Example 55: We write the following type definition, "Implementation", for

VLSI CAD design application as a TDO.

Implementation = Cell:(cellImplementation -+ CellImplementation)
Cell = (cellName + String,

cellPorts -+-+ Port)

The T D O for type "Implementation" is (with placeholder or tags omitted):

TypeDef:(typename -+ 'Implementation',
supertypes -+-+ TDOJor,Cell,
template -+ Implementation:?

(cellName -+ TOJorStr ing,
cellports ++ TOJorJ'ort,
cellImplementation TOfor~CellImplementation))

Using TO for Conformity Checking

When translating an object from its external description into the QSM form, the

object is also added t o one or more typeset. Each type defines a conformity condition,

which the object being added may violate, for example, when the object does not con-

tain all the fields defined by the type (call the object defective). We have three alterna-

tives for dealing with this problem a t the time of object creation: ignoring the defects

(and restricting the use of such object until the defects are removed), repairing the

defects (using null values) and rejecting objects with defects. The prototype uses the

third approach: defective objects are not created.

The template objects in TDOs provide a number of convenient ways for confor-

mity checking. We can formulate the problem as query-ezecution or structure-matching.

T o check if an object conforms t o a type in the first formulation, we proceed a s follows.

1) Retrieve the type-defining for the type.

2) Extract the template object from the TDO.

3) Execute the T O as a query

4) The object conforms t o the type if and only if it is included in the answer

The conformity-checking-as-query-execution approach demonstrates the versatility

of the abstract objects and an interesting application of command objects. This

approach t o conformity checking can be expensive, a s the potential search space is the

entire database. Checking conformity condition in the second formulation directly

makes use of the matching semantics of the abstract objects. The template object in

the T D O and the object in question are directly handed t o the matcher of the query

processor, which decides whether the object matches the T O , hence whether the object

conforms t o the type.

Checking Type Specialization

When new types are defined, they are related t o existing types by the subtype

relation. If no explicit supertype is given, a new type by default has the supertype

"All". To relate two existing types using the subtype relation (via T, < T,, for exam-

ple), we need t o check if the intended subtype is indeed a specialization of the super-

type. Similarly, the template objects in the TDOs can be used for this purpose. Since

one type is a specialization of another if the former contains all fields defined in the

la t ter , we use the T O of the lat ter t o match the T O of the former. The condition for

subtyping is not violated if and only if the match succeeds.

8.5. Processing Commands

There are two kinds of processing on commands: Translating their external

description into internal representation (as command-defining objects, or CDOs) and

storing them, or translating their external description into executable forms and execut-

ing them.

Translating Commands

Consider the following command:

{
View[S] <= s ta tes + GeoState:S(stateName -+ N), ViewStates(nm -+ N)

1

Its QSM representation consists of the following tuples.

aCommandID, type, TDOfor-Compound
aCommandID, name, 'ViewStates'
aCommandID, nm@rgument, anAbstractStringObject
aCommandID, command, aSimpleCommandID
aSimpleCommandID, type, TDOfor-Command
aSimpleCommand, View@bperation, anAbstractGeoStateObject
aSimpleCommand, states, anAbstractGeoStateObject
aSimpleCommand, name, 'ViewStates'
aSimpleCommand, nm@argument, anAbstractStringObject
anAbstractGeoStateObject, stateName, anAbstractStringObject,

Executing Commands

Executing a command is a two s tep procedure: Translat ing the command into an

executable form and then the actual execution. The executable form of a command

consists of an executable pattern and an executable action. The execution of com-

mands, as discussed previously, consists of pattern-matching followed by an imperative

operation. An executable pattern (pattern-matching goal) is a conjunction of simple

literals in the QSM, and is executed by the Prolog interpreter. As patterns always take

a collection a s the search scope for matching, a root object ("$TEDMRootObject") is

defined t o hold top-level collections. Thus, given the following example pattern

s t a t es -+ GeoState:S(stateName + N)

I t s executable form is

$TEDMRootObject, s tates, Variables
Variables, type, TDOJor-GeoState
Variables, s tateName, VariableN

An executable action (operation goal) is also a conjunction of Prolog literals, either

user defined operations (such as "PromoteToManager") or built-in predicates (such a s

"assert" and "retract"). In addition, there are a number of user-defined predicates tha t

function a s a n access interface t o the built-in update predicates ("assert" and

"retract") simulating the object memory.

The communications between the pattern-matching phase and the action phase

make the results of binding available t o the operations. There are several ways t o

satisfy this communications needs. A simple and elegant technique is t o append the

operation goal t o the pattern-matching goal, and rely on the unification mechanism of

Prolog t o naturally establish the communication. A second approach is t o generalize

the parameter-passing strategy for compound-command invocation, namely, creating

temporary binding objects. The current implementation uses a third approach. In this

method, binding objects are retained a s parameters t o the Prolog procedure invocation,

rather than being kept a s temporary objects in the workspace. An additional procedure

is used t o explicitly bind the objects from pattern-matching t o the placeholders in the

operation.

8.6. Tailoring for Special Languages and Chapter Summary

T o conclude this chapter, we offer a few comments on the tailorability of the pro-

totype architecture with respect to syntax variations of the different languages. We

point out t h a t all the languages discussed in this chapter, except the object definition

language, can be implemented with a n alternative elegant architecture. As the object

definition language is a canonical language, it is logical t o construct preprocessors for

the other languages, a s they are special-purpose dialects of the canonical language.

The same idea can be extended t o general cases. A presentation format or concrete

syntax can always be easily supported by adding a preprocessor front-end t o the canon-

ical language processor.

In this chapter, we described a prototype for the TEDM model. The overall archi-

tecture and the functions of i ts major components were discussed. The process for

translating objects into internal representations was given in detail. The issues and

strategies in semantic checking during translations were also presented.

CHAPTER 9

SUPPORTING COMPUTATION

We propose a novel technique for incorporating computation into databases. We

extend a database with computational objects, or objects with functional interpreta-

tions. Such a n object, with given arguments in an environment, can be evaluated t,o

produce a value, the value of the computational object.

We use the graph reduction technique from functional programming as a basis for

supporting computation. We discuss semantic issues for such an extension, including

ordering of pattern-matching and computation and maintaining intermediate results.

As we know, commands are executed in two phases in TEDM, a matching phase fol-

lowed by a n action phase. During the first phase, objects matching the pattern are

bound t o pattern variables. The second phase performs imperative operations on the

matched objects (again, through variable binding). A strategy for extending the query

processor, then, is t o add a reduction phase t o the two phase-execution scheme, a s is

proposed in [Maier87a]. The graph-reduction technique (and the G-machine) fit well

with the proposal, since the d a t a entities in graph-reduction are directed graphs, or

complex objects. There is not much difficulty in mapping the nodes in a graph t o an

object in the database. For example, we can proceed a s follows. Define a database

type for each node type in the graph, whose instances represent nodes in a n expression

graph. Primitive d a t a types in the G-machine, such a s integers, strings, cons and nils,

a re all mapped straightforwardly. For a "function" node, define a type t o contain the

name of the function and the compiled code for the function. Computational objects

would be used t o represent a "apply" node.

This chapter provides a n overview of the graph reduction technique and a n

abstract reduction machine (the G-machine) in Section 1. Section 2 discusses issues in

extending the query processor with an evaluation engine (the G-machine). We discuss a

three-phase query evaluation strategy, matching-reduction-execution, and its operational

semantics. In Section 3, we look a t the possibilities of parallel computation for certain

aspects in query processing. In particular, pattern-matching produces a set of results,

so parallelizing the reduction process a t a large granularity is feasible. The chapter

summary is given in Section 4.

9.1. Reduction in the G-Machine

A reduction architecture evaluates an expression by transforming it through a

series of intermediate forms until it cannot be further transformed, under a set of

rewrite rules. The expression is then said t o be in normal form, which is the value

at tr ibuted t o the original expression. In a pure reduction system (such a s beta-

reduction, combinator reduction or string reduction), the control-the selection of the

next reduction step-is derived dynamically from the form of the current expression.

An alternative is programmed reduction, in which the steps of a computation are still

applications of reduction rules, but where control is derived from a s ta t ic analysis of

the original expression.

By using a representation for an expression t h a t is a graph, ra ther than a simple

string, multiple occurrences of a common subexpression are captured a s multiple refer-

ences t o a common subgraph. Graph reduction refers t o a reduction process in which

expressions are represented a s such graphs, which avoids redundant re-evaluations of a

common expression. In a graph-reduction architecture, a reducer traverses the graph of

a n applicative expression t o locate a redex (a subexpression for rewriting), chosen

according t o the computation rule. A graph-rewrite rule is then applied t o replace the

redex with a subgraph representation of i ts value. Other par ts of the graph tha t refer-

enced the redex now have access t o this value. In a programmed graph-reduction archi-

tecture, the reducer executes a program derived from the definition of the function used

a t the redex t o perform the replacement.

The G-machine is a n abstract architecture for programmed graph reduction. I t

was defined by Thomas Johnsson and Lennart Augustsson [Johnsson84] a s the evalua-

tion model for a compiler for lazy MI, (LML). In it , the reduction step is quite efficient,

a s the program computes in terms of a stack of pointers (the P-stack) into the expres-

sion graph.

The G-machine consists of a stack and a graph memory. The graph memory holds

nodes interconnected a s a directed graph. The stack contains pointers t o nodes in the

graph t o be manipulated by instructions. Graph manipulation involves creation of new

nodes, change of connection patterns and reduction using predefined operations.

Evaluation of an expression s t a r t s by constructing a graph in the graph memory t o

represent the expression, and invoking precompiled code t o transform the graph into a

new graph representing the normal form of the expression, if the expression has a nor-

mal form.

As a n example of graph reduction with the G-machine, consider the following pro-

gram.

letrec fact n = if n=O then 1 else n X fact (n-1) in fact 3

The definition of the factorial function is compiled into the following G-machine

instructions. (Read left t o right.)

push 1;
pushint 0;
j false label-1;
label label-1;

get;

get;
sub ;
mkap ;
mul;
update 3:

eval;

get;
pushint
push 1:
push 2:
pushint
mkint ;
eval;
mkint;
ret 2;

get;
eq;

1; jmp label-2:
eval;
eval:

1: get;
pushfun fact:

get ;
label label-2;

The evaluation of the expression "fact 3" after building a n initial graph for the

expression, s t a r t s by executing a n "eval" instruction. Each recursive invocation of the

"fact" function does the following:

1) Push the argument node and the function node onto the stack (unwinding).

2) Evaluate the argument and if i ts value is 0, return with a value 1.

3) O r else if another recursive call is needed, save a copy of the argument value in

the dump stack (a temporary storage for primitive d a t a values and saving current

context upon entry of a function).

4) Decrement the current argument and build a n expression graph for the recursive

call.

5) Make a new stack t o hold the pointer to the new expression graph, save the

current stack and instruction register using the dump and then enter a new

evaluation cycle.

The graphs during the execution of the first few instructions are illustrated in Fig-

ure 9.1.

fact 3 fact 3 fact 3 0 fact 3

(8) (b) (c) (dl

Figure 9.1 Effects of the First Few Instructions

In the diagram, (a) is the configuration after a so-called unwinding process, in

which pointers t o the argument node (INT 3) and the function node (FUNC fact) are

pushed onto the stack (which grows upwards), and compiled code for the function (fact)

is looked up from the environment and loaded into the instruction memory. S ta te (b) is

the result of executing the first instruction (push I) , which pushes another pointer t o

the argument node (INT 1). The next instruction in the compiled code (eval) does not

change the configuration since the expression t o be evaluated (INT 1) is already

reduced. The next instruction (get) moves the integer value 1 from the top of the stack

to the dump (not shown in the diagram). S ta te (c) is the result of executing the instruc-

tion "pushint On, which creates a new graph node (INT 0) and pushes the pointer t o it

onto the stack. The next few instructions primarily operate on the dump stack. First,

the "get" instruction pushes a n integer value 0 onto the dump. Next, the "eq" instruc-

tion compares the top-most two items (3 and 0) in the dump stack and replaces them

with a Boolean value "false". Then the "jfalse l a b e l l " instruction consumes the

Boolean value and makes a jump t o "label-1". The configuration after the instruction

"push 1" is shown in (d).

Figure 9.2 shows the configuration of the machine upon entry of the next recursive

call. Configuration (a) illustrates the s t a t e before the call. Configuration (b) is the

s t a t e a t the time after the initial unwinding of the function call is done.

fact 3 fact 2 fact 2

(8) (b

Figure 9.2 Configuration After One Recursion

For more detailed introduction t o the G-machine, the graph reduction techniques

and their hardware realizations, the reader is referred t o [Johnsson84, Kieburtz85, 87a1

87b, 87c].

The graph memory supports seven kinds of nodes. Two of them, CONS and NIL,

support the list built-in d a t a structure; another three, INT, BOOL and FUNC,

represent primitive d a t a types. The APPLY node denotes an application of a function

t o i ts arguments. The HOLE node is a temporary placeholder for constructing graphs

containing recursions.

9.2. The Semantics of Computational Objects

For the discussion in this section, we call the result of pattern-matching during

command execution a binding matrix, For example, suppose t h a t a student named "John

Smith" is stored in the database, and he has taken "Calculus", "Algebra" and "Phy-

sics", and got grade "A" for all of them. Then the binding matrix for the command

View[C] <=
students -+ Student:S(name -+ (first -+ 'John', last + 'Smith')),
enrollments -+ Enrollment:E(course + C, student -+ S, grade + 'A')

after pattern-matching may look like the following.

where sl , el, e2, e3, cl, c2 and c3 are all object identifiers.

We explore two ways t o extend query processing based on the interactions between

the pattern-matching phase and the reduction phase. The first mixes the two and

second separates them.

Mixing Reduction with Pattern-Matching

In the mixed strategy, pattern objects may contain computational objects and vice

versa. We view pattern-matching phase as a reduction process. The outcome of the

process is a normalized graph (containing no more reduction patterns) and a binding

matrix. The binding matrix is used by the action phase in the usual way. We write a

database command using the following variant format.

This strategy may be unsafe: I t is possible to generate infinite binding matrices. A

computational object may evaluate t o infinite values, if it contains unbound arguments.

However, we can always precompile the reduction process t o obtain a safe plan, if it

exists.

T o illustrate the mixed strategy, consider the following example command, which

finds in a person profile database all people whose last name is the concatenation of

their first names and middle names, and displays them.

View[P] <= persons + Person:P
(name + PersName:N(first -* F,

middle + M,
last -4 Concat:L(argl -+ F , arg2 + M)))

where the pattern object of type "PersName" and tagged by "N" has three fields,

"first", "middle" and "last". Field values for the "first" field and the "second" field are

pattern variables "F" and "M" respectively. The field value for the "last" field is a

computational object tha t concatenates i ts two arguments. -41~0 assume the database

contains the following three Person objects.

1). Person:(name + PersName:(first -+ 'BOW',
middle + 'LONG',
last + 'BOWLONG'))

2). Person:(name + PersName:(first -+ 'FRANK',
middle + 'FELIX7,
last + 'BROWN'))

3). Person:(name + PersName:(first + 'JOY',
middle + 'SMITH',
last -+ ' JOYSMITH'))

The previous command execution can proceed a s follows. In the first step, i t s t a r t s

from the top of the pattern object, retrieving all three "Person" objects. The second

step grabs the name field values of the "Person" objects. At this point, the binding

matrix is a s shown below. (We make up object identifiers a s needed.)

Next, the pattern matching continues, fields "first" and "middle" and their values are

retrieved, resulting in the following binding matrix.

There are two ways t o go on from here. One is t o go ahead and fully instantiate the

binding matrix and get:

Then the computational object is activated t o perform the reduction. The result of

each reduction is compared with corresponding "L" binding, invalidating the second

binding vector. The final binding matrix is then

O r alternatively, we can interleave pattern matching with reduction. With this

strategy, reduction is performed a s soon as "F" and "M" are bound. The result of

reduction then replaces "L" a s an added selection criterion (indicate using L'). Since

reduction does not change binding matrices. the binding matrix remains the same after

the reduction:

When the pattern matching process resumes, a dynamic test condition is activated

t o validate the current binding vectors, which is t o test if the object nl has a "last"

field with value 'BOWLONG' , and so on, producing the same result:

Either execution plan produce the same final binding matrix a s the result of the

reduction phase. The second plan will likely perform better , since there is no wasted

variable bindings t o database objects; but i t requires a precompiled safe execution plan

or an intelligent runtime scheduler. The first plan, on the other hand, has the advan-

tage of being conceptually simpler, since there is no interleaving of pattern matching

with reduction. Note there is a difference in the treatment of the variable "L" in the

two different approaches. In the first approach, i t is just another pat tern variable;

while in the second, it is used as a temporary storage for the results of a computational

object. We also point out t h a t the command itself can be rewritten into the following

form, which makes the first execution plan clearer. The collection "compobjects" is

used t o hold computational objects.

V i e w r] <=
persons -+ Person:P(name -+ PersName:N(first -+ F ,

middle -+ M,
last + L)),

compobjects -+ Concat:L(argl + F , arg2 + M)

Precompilation of command execution plan with matching and reduction interleav-

ing is based on the notion of safe patterns and safety dependencies, a concept similar t o

functional dependencies.

Separating Reduction from Pattern-Matching

In the separate strategy, graphs nodes of pattern objects and graph nodes of com-

putational objects do not interact, although they may share variables. T o emphasize

this non-interactiveness, we write a command as follows:

Action[X,, ..., Xn] <= Reduction[YI, .., Ym] (Pattern[Z1, ..., Zp],

In this case, the binding matrix is initially created during pattern-matching. I t is

modified by the reduction phase. The d a t a retrieved during pattern matching are fed

t o a reduction phase, which can change the binding matrix in two ways. First, it can

augment the binding matrix in width by adding certain reduction results t o the matrix,

those temporarily stored in variables not appearing in the pattern. Second, it can also

shrink the binding matrix in height by invalidating certain binding vectors produced by

pattern matching, when results of the reduction are in conflict with the results of the

matching.

Consider another example. Suppose we define a company employee database as

follows. A "Person" object has a "name" field of type "PersonName", and a "dob"

(date of birth) field of type "Date". An "Employee" object is also a "Person" object

and in addition has a "dept" field, a "salary" field and a "yos" (year of service) field.

Suppose also the company's pay raise policy is stated using a "PayScale" object, which

has a "base" field defining the base pay, a "rate" field specifying the ra te of increase,

and a "period" field stat ing how often a raise occurs. The database schema is summar-

ized below.

PersonName = (first + String, middle + String, last -+ String)
Date = (day + Number, month + Number, year -+ Number)
Person = (name + PersonName, dob -* Date)
Department = (dname -+ String, manager -+ Employee)
Employee = Person: (dept + Department, salary + Number, yos + Number)
PayScale = (base -+ Number, rate + Number, period -+ Number)

The command below updates the salaries of employees according t o the company's

pay raise plan.

E(sa1ary -+ NS)
<= Add:NS(argl -+ BS, arg2 -+

Mul:(argl + BS, arg2 +
Mul:(argl -+ RT, arg2 +
Div:(argl + YH, arg2 -+ PD))))

I Employee:E(yos + YH),
PayScale:(base + BS, ra te -+ RT, period -+ PD)

Assume the company has three employees, who have been with the company for 5,

10 and 15 years respectively. Also assume the "PayScale" object is a s shown below:

PayScale:(base + 25000, r a t e -* 10, period + 5)

where the ra te means 10 percent.

The command execution s t a r t s up by entering the pattern matching phase and

producing the following binding matrix, say:

[E:ell YH: 5, BS:25000, RT:10, PD:5]
[E:e2, YH:lO, BS:25000, RT:10, PD:5]
[E:e3, YH:15, BS:25000, RT:10, PD:5]

Next the reduction phase takes over, performing the desired arithmetic and the

results a re reflected in this final binding matrix:

[E:el, YH: 5, BS:25000, RT:10, PD:5, NS:27500]
[E:e2, YH:10, BS:25000, RT:10, PD:5, NS:30000]
[E:e3, YH:15, BS:25000, RT:10, PD:5, NS:32500]

which can then be used t o update the employee objects.

Semantics Independent of Evaluation Order

We investigate the semantics of a computational object t h a t do not depend on

specific evaluation orders in this section. We call i t orderless semantics. We will see

t h a t if a computational object is unsafe under this abstract orderless semantics, then

there is no safe evaluation order for it. On the other hand, a computational object t h a t

is safe under the orderless semantics may not necessarily have a safe evaluation order.

We will collectively refer t o both computational objects and pattern objects a s

patterns, viewing computation as a special kind of pattern matching, one t h a t can

potentially produce infinitely many bindings. A dual view is t h a t a pattern object is a

computational object t h a t can be reduced nondeterministically. Notationally, we may

always rewrite a computational object Func:X(X1, ..., Xn) into a pattern form

FuncPat(X1, ..., X,, X), such t h a t if X = Func(X1, ..., X,) then there is an object

FuncPat(X1, ..., X,, X) matching the pattern.

We introduce pat tern graphs for visualizing the discussion. Consider a pattern of

the form P1(X1,ll ..., ..., Pn(Xnt1, ..., Xntmn), where variables are distinct within a

single pat tern term, but they can overlap across the terms. Then the pattern graph for

the pat tern is constructed a s follows. The node set is {PI, ..., P,), t h a t is, a one node

for each pat tern term P1 through Pn. The edges are undirected and the edge set

includes a n edge, with label X, connecting two nodes Pi and Pj , if and only if pattern Pi

and pat tern Pj share variable X.

After constructing a pattern graph, we can associate with each node a binding

matrix, a s we did for entire patterns. Constructing a binding matrix for a node not

involving computations relies on matching the pattern against the database. In a top-

down fashion, a n initial binding matrix for the root variable of the pattern is first built.

As the pat tern matching moves down through the substructure of the pattern, this

binding matrix is updated in two ways, by join extension or by literal selection.

The binding matrix for a computational node is taken t o be the function (in the

mathematical sense of a n n-nary relation) the node denotes. As such, a binding matrix

for a computational node may be infinite, with infinite number of binding vectors.

Nevertheless, assuming we are only dealing with primitive recursive functions, the set of

row elements is always totally enumerable. Therefore, a binding matrix for a computa-

tional node P, denoting P(X1, ..., Xn), can also be written a s

For commonly seen functions, such as arithmetic, logic and comparison operations,

we always use their natura l semantics t h a t we are all familiar with.

Example 56: The binding matrix for Add:(argl + X, arg2 -+ Y, sum + Z),

an addition function on positive integers, is

Individual binding matrices are combined using join extension t o form a binding

matrix as the meaning for the whole pattern. Join extension is similar t o the natural

join operation in relational databases. The join extension of two binding matrices MI

and M2, denoted M1 W M2, is based on their shared variables, t h a t is, the edges con-

necting their nodes. Note it is possible t h a t M1 W M2 produces a finite binding matrix,

even if each of the operands is infinite.

If a pattern graph has nodes PI, ..., P n , and Mi is a binding matrix for Pi, then the

binding matrix for the whole pattern graph is defined t o be

M, WM, W ... WM,

A pattern is safe if i t s binding matrix is guaranteed t o be finite. A pattern is corn-

putationally safe if there is an order of evaluation t o compute i ts binding matrix such

tha t each intermediate binding matrix is finite. Note tha t according t o this definition,

computational safeness implies safeness, since the final binding matrix computed is a

special intermediate result. Hence we have the following observation. If either the

separate strategy or the mixed strategy results in a finite binding matrix for a pattern,

then the pattern is safe. But a safe pattern need not be computationally safe.

Example 57: The pattern below is safe, but not computationally safe, where

"Ident" is a n identity function.

Add:S(argl -+ X, arg2 + Y), Mul:S(argl -+ X, arg2 + Y),
Ident:S(arg -, 4).

On the other hand, if a pattern is not safe under the orderless semantics, we can

assert t h a t there exists no order by which the pattern can be safely evaluated. A non-

safe pattern is not computationally safe.

There are some connections between pattern graphs and the notion of computa-

tional safeness. For each pattern, we construct i ts pattern graph, and use the following

procedure t o reduce the graph.

1) remove database pattern nodes and their incident edges
2) repeatedly remove computational nodes tha t have a t most one incident edge

I t is easily seen t h a t if the above procedure results in an empty graph, then the

pattern is computationally safe. (We make an implicit assumption tha t there can be no

column with infinitely many values tha t are related t o a single row on the remaining

columns in i t s interpretation of any computational object.)

Finally, computationally safe patterns can be compiled into a n execution plan

based on the notion of safety dependency. At any point in the procedure above, we say

t h a t a computational object is applicable if i ts node has a t most one incident edge.

Then a strategy for precompilation is tha t a computational object is scheduled for exe-

cution as soon as i t becomes applicable.

The notions of pattern graphs and query safety appeared in [Maier83], in the con-

text of query processing for relational d a t a models. Queries are represented a s query

graphs and query optimizations are processes in which query graphs are transformed t o

obtain more efficient executions. Query safety is introduced when computed relations

are proposed in [Maier81]. The generalized notion of safeness for non-first normal form

databases and t o deductive databases can be found, for example, in (Bancilhon86,

Zaniolo861.

9.3. Further Extension

We consider two directions for further extension. The first is the opportunity for

parallel execution created by the pattern-matching style of query processing and reduc-

tion. T h e second is an extended abstract machine tha t would allow tighter coupling of

graph reduction with pattern-matching.

Parallel Reduction

Each binding independently provides all the d a t a needed for an execution of the

reduction engine. Under a sequential model, the whole reduction process can be logi-

cally viewed a s an iterative computation, in which the binding vectors are fed t o the

reduction engine one a t a time, and the results of the reduction are built up a s another

binding matrix, which is later merged with the original binding matrix in one of two

ways, binding augmentation or binding validation, a s discussed earlier. However this

computation can be fully parallelized, since there are no d a t a dependencies among bind-

ing vectors.

We propose t o achieve parallelism a t a very high level (or large grain), tha t is, a t

independent reduction graph level. Schematically, the idea is illustrated as follows (Fig-

ure 9.3).

Each binding vector from the intermediate binding matrix forks out a reduction pro-

cess, and each reduction process performs reduction independently. Finally, a union

process is added t o collect results from individual processes. Conceptually, this parallel

procedure is extremely simple and clean. Yet we expect there is substantial amount of

parallelism t o be gained from it , especially when pattern matching always produces tall

binding matrices, since there is practically no communication cost overhead involved.

As a n example, consider the example from the last section. The fork and union

processes are illustrated below (Figure 9.4).

Pattern

Matching

mperative 6 Reduction Action

Reduction
...

Reduction

Figure 9.3 A Parallel Reduction Scheme

E YH BS RT PD E YH BS RT PD NS
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

e l 25k 10 5 al 5 25k 10 5 27.5k

e 10 25k 10
2 5 e2 10 25k 10 5 30k

e3 15 25k 10 5 v3 15 25k 10 5 32.5k

Figure 9.4 An Example Parallel Reduction

In Figure 9.4 above, the box labeled with "P" denotes the pattern

Employee:E(yos + YH),
PayScale:(base + BS, ra te -+ RT, period --, PD)

The box labeled with "A" denotes the action

E(sa1ary -+ NS)

And the box labeled with "F" denotes the function

Add:NS(argl -+ BS, arg2 -+

Mul:(argl -+ BS, arg2 --,
Mul:(argl -+ RT, arg2 +
Div:(argl -+ YH, arg2 + PD))))

Schaefer [SchaeferSO] explores fine grain parallel graph reductions, where reduction

computation is mapped t o a distributed memory architecture. In his approach, a vir-

tual processor is allocated t o every reducible expression in the program graph. The

advantage there is t h a t reduction of a single expression is very simple, so i t is possible

t o use "flyweight" tasks in which the cost of context switch is extremely low.

Tighter Coupling

Tight coupling between pattern matching and reduction can be done a t the level

of integrating the two processing engines. The idea is tha t the G-machine can be

extended architecturally with abstract instructions capable of constructing patterns in

the graph memory, coordinating the pattern matching process and retaining answers

from the pattern matching.

Instructions for constructing patterns are similar t o those already present in G-

machine constructing expression graphs. We may want t o enrich the kinds of nodes in

the graph memory, t o include more d a t a types, such as strings and variables (or

abstract objects [Zhu88]).

T o coordinate pattern matching against the database, we may introduce a

"match)' instruction, whose function is t o use the pattern referenced by the top element

of the pointer stack t o match the database objects, and t o save the bindings in an addi-

tional memory repertory (see below). All of the work can be done by invoking a system

defined pattern matching routine. :

T o retain the results of executing the "match" instruction, (that is, binding

matrices) we propose t o add an additional memory resource t o the machine's architec-

ture, call i t pattern memory. Pat tern memories are dedicated t o supporting table struc-

tured da ta . I t is allocated in preparation for the execution of a "match" instruction

and is modified as the "match" instruction proceeds.

9.4. Chapter Summary

In this chapter, we discussed a novel approach t o computing in databases. We

explored the feasibility through a case study, where we incorporated the graph-

reduction technique into the TEDM d a t a model. The result is a database language sup-

porting complex object manipulation as well as computation.

CHAPTER 10

SUPPORTING VIRTUAL DATA

A database contains both stored and implied information, the information not

directly represented by physical d a t a but deducible from the known information by

inference rules. Virtual d a t a are important a s they provide alternative ways for look-

ing a t the same set of physical da ta . An application can choose a logical presentation

t h a t best fits its needs. The relational databases support derived d a t a using views.

Each view is a virtual table defined by a query statement. In deductive databases,

there is no clear line between virtual d a t a and physical d a t a (though one could say

facts are physical). In this case, the database contains both facts and rules. Query-

answering becomes a demonstration for deducibility.

TEDM supports virtual d a t a using database rules. Three kinds of virtual informa-

tion are supported by database rules: virtual membership, virtual fields and virtual

objects. A database rule is like a definite clause in Prolog, both in syntax and t o some

degree in semantics. Nevertheless, database rules may contain complex structure tha t

may not readily be representable a s Prolog rules.

Section 1 discusses three kinds of rules in TEDM, for virtual (typeset) membership,

virtual fields and virtual objects. They are called type rules, field rules and object

rules, respectively. Section 2 describes the handling of type rules and field rules: Direct

translation into Prolog rules and the use of them in query processing. Section 3 investi-

gates issues in translating object rules, and describes a meta-interpreter t o handle

object rules. Section 4 is the chapter summary.

The ideas discussed in this chapter are not implemented in the current version of

the prototype. However, they are part of an earlier implementation [Zhu85]; and the

translation of rules and the meta-interpreter are drawn from tha t implementation.

10.1. Database Rules

Like commands, rules are made up of a head and a body. The body of a rule is a

template for matching database objects. Both the form and the meaning of a body in a

rule are the same as a command pattern. The head of a rule is a restricted form of a

command head. The restriction is needed t o control the complexity of the definable

rules. The general syntax for the rules is written as:

<Virtual Type> I <Virtual Field> I <Virtual Object> c <Pattern>.

A rule is a deferred command executed on demand, triggered by the execution of

other commands. As we do not materialize the rules, the effect of the rules is visible

only during the execution of commands. The problem of updating on virtual d a t a is

beyond the scope of this thesis.

Type Rules

T o define a virtual type of an object, the following type rule is used.

T:V t <Pattern>

where T is a type name and V is a variable (placeholder) t h a t gets bound t o a data-

base object during pattern-matching. The rule defines a virtual type for a class of

objects tha t satisfy the pattern.

Example 58: This rule defines a virtual type "ManagementEmployeel' for peo-

ple with a title "Manager".

ManagementEmp1oyee:E c Employee:E(title -+ 'Manager')

If, say, 'Joe' and 'Mary' are managers, then they would be of both type

'Employee' and type 'ManagementEmployee'. Thus, they would be selected for

viewing in the following command.

View[E] <= managers + ManagementEmp1oyee:E

Field Rules

A field rule is written as

V(fl 4 w,, ..., fn -+ wn) + <Pattern>

where wi is a variable or a constant. The variables are assumed t o be bound by

the pattern. The rule defines, for each object bound t o V , n virtual fields, with name

fl , ..., f n , and value w,, ..., we, respectively.

Example 59: This rule defines a virtual field "grandFatherH for each person

object.

P(grandFather -+ G) t
person + Person:P(father + Person:F(father 4 Person:G))

A database rule is safe if the closure of the database with respect t o the rule is

finite. Type rules and field rules are always safe as they only reference existing objects,

and there are only finitely many such objects.

Object Rules

Virtual objects are defined using rules of the following form.

T:*(fl -+ w,, ..., fn + wn) t <Pattern>

The asterisk (*) assigns a temporary object identifier t o each virtual object.

Example 00: The rule below defines virtual Couple objects.

Couple:*(husband -+ H, wife -, W) 4- Person:H(wife + Person:W)

There exist two difficult problems in deriving new objects. First, object rules with

recursion (direct or indirect) may not be safe, as the computation may not terminate, in

an a t tempt t o create an infinite number of objects. Thus, we require tha t object rules

contain no recursion. (Note tha t recursion is still allowed in field rules, and the

transitive-closure type of computation is expressible.)

The second problem is tha t virtual objects may have multiple identifiers. Different

activations would assign different identifiers t o a virtual object. One way t o maintain

unique identifiers in different activations is t o use Skolem functions as temporary object

identifiers. Each virtual object has an identity tha t is functionally dependent on the

specific binding of 'the variables. Consequently, object identifiers remain the same as

long as the binding does not change. The idea of using Skolem functions as object

identifiers is investigated in Chen and Warren [ChenW89] and Kifer and Wu [Kifer89].

10.2. Translating Simple Rulea

Type rules and field rules are simple rules as they are directly translated into Pro-

log clauses.

Translating Type Rules

A type rule for an object is translated into a single Prolog clause, with the head

asserting the virtual type for the object and the body defining the condition t h a t the

object must satisfy. The general form of a translation is the following. (We use QSM

in description, and omit the column FIELDJNDEX.)

qsm(V, type, T) :- <TranslationForPattern>

Example 81: The translation of the type rule

ManagementEmp1oyee:E t Employee:E(title + 'Manager')

qsm(E, type, 'ManagementEmployee') :-
qsm(E, type, 'Employee'), qsm(E, title, 'Manager')

Translating Field Rulea

A field rule for a n object is translated into multiple Prolog clauses, one for each

virtual field, with i ts head defining the virtual field. All Prolog clauses for a particular

field rule have the same body, obtained by translating the pattern:

qsm(V, f, , w,) :- <TranslationForPattern>
. . .

qsm(V, f n , wn) :- <TranslationForPattern>

183

Example 62: The translation of the field rule

P(grandFather -+ G) - Person:P(father -+ Person:F(father -+ Person:G))

IS

qsm(P, grandFather, G) :-
qsm(P, type, 'Person'), qsm(P, father, F),
qsm(F, type, 'Person'), qsm(F, father, G).

0

10.3. Handling Object Rules

Object rules cannot be directly translated into Prolog clauses, as doing so would

cause the database to produce incorrect answers. To illustrate the problem, consider

the object rule for virtual couples:

Couple:*(husband -+ H, wife -+ W) - Person:H(wife -+ Person:W)

Suppose we simply translated this rule into the following Prolog clauses:

qsm(C, type, 'Couple') :- newObjectID(C),
qsm(H, type, 'Person'), qsm(W, type, 'Person'), qsm(H, wife, W).

qsm(C, husband, H) :-
qsm(H, type, 'Person'), qsm(W, type, 'Person'), qsm(H, wife, W).

qsm(C, wife, W) :- .
qsm(H, type, 'Person'), qsm(W, type, 'Person'), qsm(H, wife, W).

Notice that the variable C occurs in the head only in the last two clauses. The

intended meaning for C is an object identifier for each virtual object defined by the

object rule. Although C changes as it can denote different virtual objects, it should

remain a constant for a particular object. Consider the scenario (a is married to b, c is

single) described in the QSM as the following facts:

qsm(a, type, 'Person'), qsm(b, type, 'Person'), qsm(a, wife, b)

184

qsm(c, type, 'Person')

Intuitively, only one virtual Couple object should be derivable from this database.

However, the goal

:- qsm(O, type, 'Couple'), qsm(O, husband, X), qsm(O, wife, Y).

would succeed for every person in the database, effectively deriving three virtual Couple

objects, one each for a, band c, respectively.

The problem arises because variables in Prolog are local in clauses. In order for

the translation of an object rule to work, variable binding should occur simultaneously

in all the clauses generated from the object rule. (In the example, the binding needs to

occur in all three Prolog clauses.) As Prolog does not have the power to support global

binding, a meta-interpreter was developed to handle object rules.

The meta-interpreter is built in Prolog itself. Object rules are stored as Prolog

facts: rule(HEAD, BODY), where both HEAD and BODY are lists. For example, the

object rule for virtual couples is stored as

rule([qsm(C, type, 'Couple'), qsm(C, husband, H), qsm(C, wife, W)],
[qsm(H, type, 'Person'), qsm(W, type, 'Person'), qsm(H, wife, W)]).

Virtual objects are accumulated along the way when they are derived. Both the

current goal and the virtual objects are kept in the form of a list, (GO-LIST and

VO-LIST), To solve a goal, the interpreter tries the following alternatives in turn:

1). Solve the goal using the database

2). Solve the goal using virtual objects derived so far;

185

3). Solve the goal using rule clauses: If the goal matches one of the terms in a rule

head, add the rule head to the virtual objects, and add the rule body to the

current goal.

To see how the meta-interpreter works, consider the example of this section again:

DATABASE:

qsm(a, type, 'Person'), qsm(b, type, 'Person'), qsm(a, wife, b)
qsm(c, type, 'Person')

RULE:

rule([qsm(C, type, 'Couple'), qsm(C, husband, H), qsm(C, wife, W)],
[qsm(H, type, 'Person'), qsm(W, type, 'Person'), qsm(H, wife, W)]).

GOAL:

:- qsm(O, type, 'Couple'), qsm(O, husband, X), qsm(O, wife, Y).

The initial state of the meta-interpreter is

GO-LIST = [qsm(O, type, 'Couple'), qsm(O, husband, X), qsm(O, wife, Y)],
VO-LIST = [J.

The current subgoal is "qsm(O, type, 'Couple')". It is matched against the database

and the match fails. The match against VO-LIST also fails. The third trial, matching

against the rules, succeeds. Thus the head of the of the rule is added into VO-LIST,

and the body of the rule to GO-LIST. The current state becomes:

GO-LIST = [qsm(H,type, 'Person'), qsm(W, type, 'Person'), qsm(H, wife, W),
newObjectID(VO), qsm(VO, husband, X), qsm(VO, wife, Y)]

VO-LIST = [qsm(VO, type, 'Couple'), qsm(VO, husband, H), qsm(VO, wife, W)].

The next three subgoals successfully match the database, binding a to Hand b to W

respectively. At this point, the predicate newObjectID is executed, producing for the

potential virtual object a unique object identifier (say, id2000 in this case). The state

IS:

GO-LIST = [qsm(id2000,husband, X), qsm(id2000,wife, Y)],
VO-LIST = [qsm(id2000, type, 'Couple'), qsm(id2000, husband, a),

186

qsm(id2000, wife, b)].

The next two steps successfully resolve the remaining two subgoals against VOJ.JST,

resulting in an empty GOJ.,IST. Thus, the following virtual Couple object (with

identifier id2000) is derived:

Couple:C(husband ~ Person:a, wife ~ Person:b).

On backtracking, the subgoal "qsm(id2000, wife, Y)' is retried and it fails, as

id2000 is unique. Similarly, the retry for "qsm(id2000, husband, X) also fails. The

predicate "newObjectID" is not backtrackable: it also fails. The system gets to the

state:

GOJ.,IST = [newObjectID(VO), qsm(VO, husband, X), qsm(VO, wife, Y)],
VOJ.,IST = [qsm(VO, type, 'Couple'), qsm(VO, husband, a), qsm(VO, wife, b)].

On further backtracking, the goal "qsm(a, wife, W)" still fails, leaving the system at

the state:

GOJ.,IST = [qsm(H,type, 'Person'), qsm(H, wife, W), newObjectID(VO),
qsm(VO, husband, X), qsm(VO, wife, Y)],

VOJ.,IST = [qsm(VO,type, 'Couple'), qsm(VO, husband, H), qsm(VO, wife, W)].

Resatisfying the goal "qsm(H, type, 'Person')" would succeed in binding H to band

c, leaving the system state at, respectively:

GOJ.,IST = [qsm(b,wife, W), newObjectID(VO),
qsm(VO, husband, X), qsm(VO,wife, Y)],

VOJ.,IST = [qsm(VO,type, 'Couple'), qsm(VO, husband, b), qsm(VO, wife, W)].

and

GOJ.,IST = [qsm(c,wife, W), newObjectID(VO),
qsm(VO, husband, X), qsm(VO,wife, Y)],

VOJ.,IST = [qsm(VO,type, 'Couple'), qsm(VO, husband, c), qsm(VO, wife, W)].

However, the next subgoal fails in either state, and the resolution fails.

10.4. Chapter Summary

The mechanism for supporting derived information in TEDM is discussed. Three

kinds of rules are identified. Type rules and field rules are directly translated into Pro-

log clauses. The problem with direct translation of object rules is demonstrated. The

operation of a meta-interpreter for handling object rules is also discussed.

CHAPTER 11

FUTURE DIRECTIONS AND CONCLUDING REMARKS

We have been exploring other possible extensions t o TEDM. In particular, the fol-

lowing areas are considered for future research: more support for application modeling,

the use of abstract objects in schema definitions and the role of local variables in corn-

pound commands and workspaces, We discuss these directions in this chapter. At the

end, a few remarks are given t o conclude the thesis.

The chapter is organized as follows. Section 1 discusses a number of new concepts

for conceptual modeling, including abstract fields and abstract types. Their potential

uses are also examined. Section 2 discusses the use of abstract objects in schema

definitions. Section 3 proposes more extensions t o compound commands. Summary and

concluding remarks are provided in Section 4.

11.1. More Modeling Concepts

The ideas discussed in this section grew out of a study reported in [Anderson89].

In the study, TEDM is used to represent CSG solids. Their study shows tha t , in some

cases, the conceptual framework of TEDM does not support the application modeling in

a direct way. The study suggests that , for complex modeling tasks such as CSG model-

ing, i t is desirable tha t the d a t a model support a wider range of modeling constructs

and allow these constructs t o be flexibly combined. In particular, they proposed the

concepts of abstract types and abstract fields, and used these concepts in their design.

Abstract Fields

Complex objects are constructed from simpler ones using the concept of fields. We

made the following assumption about the set of names (or labels) for fields: I t is a non-

structured set. Each element is independent from the rest of the set. However, allow-

ing field names t o be organized in meaningful ways adds a lot t o the modeling power of

the d a t a model. For example, a type describing a corporate office may contain a field

with the name "officer". When creating instances, i t is helpful to include concrete titles

such as L(marketingVP'', "researchVP", and so on. In this instance, both "mark-

etingVP" and "researchVP" are corporate officers, but they are more concrete and

carry more information.

The concept of abstract fields intends t o allow this kind of scenario t o be modeled

elegantly. I t defines a hierarchical structure on the set of field names. In the example

above, a s "marketingVPn 5 "officer" and "researchVPV 5 "officer", we can use the

"marketingVP" or "researchVPV for object creation. The field name "officer" is called

an abstract field. KLONE [Brachman85], a system for knowledge representation, allows

classification on slot names, which is essentially similar t o the notion of abstract fields.

Abstract Types

An abstract type is a type tha t does not have instances. In object-oriented pro-

gramming, a good practice is t o t o define common generic behavior in a n abstract

superclass, and supplement the superclass with variations and more specific behavior

using subtypes. For example, the "Collection" class and i t s subclasses such as "Set"

and "Bag" in Smalltalk-80 belong t o this approach. In conceptual modeling, abstract

types can provide a common abstraction on generic entities. The difference is tha t an

abstract type can be made instantiable without having t o extend the type hierarchy (by

defining subtypes). An abstract type is instantiated by concrete types using substitu-

tion. For example, an abstract type "GenericShape" can define the structure of generic

geometric figures (square, circles, polygons, etc.), as a sequence of coordinate points.

The abstract type can be instantiated using, say, "Square@GenericShape",

('Circle@GenericShape", "Polygon@GenericShape" and so on. Then, the instances of

the type "GenericShape" can be created as squares, circles or polygons. Note tha t

"Square" (or "Circle@GenericShape" or "Polygon@GenericShape") does not need t o be

a subtype of "GenericShape".

Optional Fields

Optional fields are useful in early design phases. Optional fields reflect the antici-

pation by the designer on the final outcome of a complex object structure, and allows

flexibility t o exist in the design. The concept is a compromise between prescriptive t y p

ing (allowing more fields) and strict typing (allowing no more, no less).

For example, in designing a d a t a path for a VLSI circuit, i t may not be clear in

the outset whether or not a certain buffer would improve the performance. We can

make use of optional fields in this situation:

DataPath = (..., [buffer + Buffer], ...)

where the construct "[... 1" encloses optional fields. Thus, a DataPa th may or may not

contain a field named "buffer". More importantly, if the field "buffer" does occur in

such an object, its type is constrained t o be of "Buffer".

11.2. Abstract Objects as Value Specifications

Abstract objects and types have many things in common. For each type, there is

a conformity condition, which classifies objects a s those t h a t conform and those tha t do

not. Similarly, for each abstract object, there is a classification of objects based on

whether or not each object matches the abstract object. Furthermore, t o test the con-

formity condition of a type on an object, the abstract object of the type-defining object

is used t o match the object: The object conforms t o the type if and only if the match

succeeds. These parallelisms suggests tha t we can use abstract objects the same way

we use types.

We explore one such use - the use of abstract objects in type definitions, a s value

specifications. For example, given an abstract object described by

which, incidently, matches "Rectangle" objects with a width of 10, t o define a special

type "WidthlOLayoutUnit", we can use the abstract object (description) in the follow-

ing type definition:

WidthlOLayoutUnit = (rect + Rec tangle:RECT?(width -, lo),
position -+ Point)

In most cases, using an abstract object in a type definition amounts t o adding

more constraints t o the object conformity condition with respect t o t h a t type. In the

previous example, for an object t o conform t o the type "WidthlOLayoutUnit", the

object has t o have both a "rect" field and a "position" field. In addition, the value of

the "rect" field, a "Rectangle" object, has t o be of a specific width (10).

The appearance of an abstract object in a type definition does not make the

abst ract object a type. T o trigger such a transition, we introduce a new form of type

definition. For example, we can use the following

WidthlORectangle := Rectangle:RECT(width -+ 10)

t o promote the abstract object t o a type.

11.3. Extensions to Compound Commands

This section suggests two ways for extending compound commands: the use of local

variables and local rules in compound commands.

Local Variables

Compound commands are a mechanism for control abstraction: the execution of a

compound command has the same effect as i ts individual commands executed in

sequence. (One additional condition is that either all of the commands are executed or

none of them is executed.) The concepts of local variables and stat ic scoping from

block-structured programming languages can also be incorporated into compound com-

mands.

Local variables in a compound command are visible t o i ts individual commands.

The binding of a local variable becomes invalid beyond the execution of the compound

command. Local variables are similar t o parameters, except the bindings of the former

are established and used by the compound command itself, but those of the lat ter are

provided or used by the surrounding environment. T h e approach we used t o handle

arguments and parameters can be applied t o local variables. For example, an argu-

ment term may contain local variables, in addition t o arguments. Access t o local

variables can be provided using argument terms containing local variables.

Local Rules

The scope and the effect of database rules can also be defined by compound com-

mands. This is useful for controlling the activation of rules. For example, for da ta

security reasons, some rules can be used only in certain privileged transactions.

Rules defined in a compound command are local rules. They are visible only t o the

individual commands of the compound commands. The general form for compound

commands can be extended as follows.

Actionl <= Pattern, , A r g ~ m e n t T e r m ~ ;

11.4. Summary and Concluding Remarks

We studied a number of interesting and important issues in object-oriented data-

bases. Several new concepts are proposed to extend the database technology for non-

traditional applications. The study is based on a specific logic-based object-oriented

d a t a model (TEDM), but the concepts discussed are generally applicable. We also

reported a prototype implementation of TEDM.

We described in detail several important languages for defining objects, types,

commands, as well as for composing interactive queries. With the goal of "total

objectification", and in searching for a canonical language for object description, we

studied different ways for describing complex d a t a structure. The result of the search is

a language (the object definition language) tha t can describe other model constructs

such as types, patterns and commands. The abstract object extension t o the object

model plays an important role for the goal "total objectification."

Rules are the mechanism for deductive query processing and d a t a derivation.

Three kinds of database rules are supported: type rules, field rules and object rules.

Two problems concerning object rule translation are: consistent object identifiers and

safety in derivations.

The prototype system consists of three major functional blocks: the model

manager, the user interface facility and the communication library. The model

manager has support for three languages, for defining objects, defining types and

defining commands. Addition of new languages or modification of existing languages is

a simple task in the prototype.

The notion of abstract objects is the key contribution of this thesis. I t is a

significant step towards a complete self-descriptive d a t a model: treating types and com-

mands a s database objects. From a theoretical perspective, it provides a clean seman-

tics for variables and command objects in such d a t a models. The pattern-matching

semantics for abstract objects form a consistent basis for all of their uses in the thesis.

BIBLIOGRAPHY

Abiteboul, S. and Hull, R., "IFO: A Formal Semantic Database Model,"
ACM Transactions On Database Systems, 12(4), 1987.

Abrial, J . R., "Data Semantics," Data Base Management, North Hol-
land, Amsterdam, 1974.

Ait-Kaci, H., "Lattice Theoretic Approach t o Computation Based on A
Calculus of Partially Ordered Type Structures," Ph.D. Thesis, Univer-
sity of Pennsyvania, 1984.

Albano, A., Cardelli, L. and Orsini, R., "Galileo: A Strongly-Typed,
Interactive Conceptual Language," ACM Transactions On Database
Systems, 10(2), 1985.

Anderson, T. L., Ecklund, E. F . J r . and Maier D., "PROTEUS: Objecti-
fying the DBMS User Interface," Proceedings of the International
Workshop on Object-Oriented Database Systems, 1986.

Anderson, T. L., Ohkawa, H., Gjovaag, J., Maier, D. and Shulman, S.,
'Representing CSG Solids Using a Logic-Based Object Da ta Model,"
Proceedings of the International Workshop on Object-Oriented Database
Systems, 1989.

Andrews, T. and Harris, C. "Combining Language and Database
Advances in a n Object-Oriented Development Environment," Proceed-
ings of 86 Conference on Object-Oriented Programming Systems,
Languages and Applications, 1987.

h t r a h a n , M. M., Blasgen, M. W., Chamberlin, D. D., Eswaran, K. P.,
Gray, J . N., Griffiths, P. P. , King, W. F., Lorie, R. A., McJones, P . R.,
Mehl, J. W., Putzolu, G. R., Traiger, I. L., Wade, N. W. and Waston,
R., "System R: Relational Approach t o Database Management," ACM
Transactions on Database Systems, 1(2), 1976.

Atkinson, M. P., Chisholm, K. J., Cockshott, W. P., Bailey, P. J. and
Morris, R., "An Approach t o Persistent Programming," The Computer
Journal, 26(4), 1983.

[Atkinson84] Atkinson, M. P., Bailey, P . J., Cockshott, W. P., Chisholm, K. J. and
Morris, R., "Progress with Persistent Programming," Database - Role
and Structure, an Advanced Course, Stocker, P. M., Gray, P. M. D. and
Atkinson, M. P. (eds.), Cambridge University Press, New York, 1984.

[Atkinson871 Atkinson, M. P . and Buneman, 0 . P., "Types and Persistence in Data-
base Programming Languages," ACM Computing Surveys, June, 1987.

[Augustson88] Augustsson, L. and Johnson, T. , Lazy ML User's Manual, Preliminary
Drafet, 1988.

[Bancilhon85] Bancilhon, F., Kim, W. and Korth, H. F., "A Model of CAD Transac-
tions," Proceedings of 11th International Conference on Very Large Data
Bases, 1985.

[Bancilhon86] Bancilhon F. and Khoshafian, F. S., "A Calculus for Complex Objects,"
Proceedings of ACM Symposium on Principles of Database Systems,
1986.

IBanerjee871 Banerjee, J., Chou, H. T., Garza, J. F., Kim, W., Woelk, D., Ballou, N.
and Kim, H. J., "Data Model Issues for Object-Oriented Applications,"
ACM Transaction on Ofice Information Systems, 5(1) 1987.

[Banerjee87a] Banerjee, J., Kim, W., Kim, H. J . and Korth, H. F., "Semantics and
Implementations of Schema Evolution in Object-Oriented Databases,"
Proceedings of the ACM-SIGMOD International Conference on the
Management of Data, 1987.

[Ba tory841 Batory, D. S. and Buchmann, A. P., "Molecular Objects, Abstract Da ta
Types and Data Models: A Framework," Proceedings of 10th Interna-
tional Conference on Very Large Data Bases, 1984.

[Batory85] Batory, D. S. and Kim, W., "Modeling Concepts for VLSI Objects,"
ACM Transaction on Database Systems, 1 q 3) 1985.

[Beeris71 Beeri, C., "On Combining Object Orientation and Logic Program-
ming," XP8.5i Workshop, Oregon Graduate Center, 1987.

[Brachman85] Brachman, R. J. and Schmolze, J . G., "An Overview of the K G O N E
Knowledge Representation System," Cognitive Science, Vol. 9, 1985.

[Breazu-Tamen891
Breazu-Tannen, V., Buneman, P. and Ohori, A., "Can Object-Oriented

Databases Be Statically Typed?" Proceedings of the 2nd Workshop on
Database Programming Languages. 1989.

Brodie, M. L., "Axiomatic Definitions For Da ta Model Semantics,"
Information Systems, 7(2) 1982.

Buneman, P . and Frankel, R. E., "FQL - A Functional Query
Language," Proceedings of the ACM-SICMOD International Conference
on the Management of Data, 1979.

Buneman, 0 . P . and Atkinson, M. P., "Inheritance and Persistence in
Database Programming Languages," Proceedings of the ACM-SICMOD
International Conference on the Management of Data, 1986.

Cardelli, L., "Amber," Technical Memorandum, TM 11271-84092410,
AT&T Bell Laboratories, 1984.

Carey, M. J., DeWitt, D. J., Frank, D., Graefe, G., Richardson, J . E.,
Shekita, E. J . and Mutalikrishna, M., T h e Architecture of the
EXODUS Extensible DBMS," Proceedings of International Workshop on
Object-Oriented Databases, 1986.

Carey, M. J., DeWitt, D. J., Richardson, J . E. and Shekita, E. J.,
"TObject and File Management in the EXODUS Extensible Database
System," Proceedings of 12th International Conference on Very Large
Data Bases, 1986.

Chen, P., "The Entity-Relationship Model: Toward a Unified View of
Data," ACM Transactions On Database Systems, 1(1), 1976.

Chen, W. D. and Warren, D. S., "GLogic of Complex Objects," Proc. of
the ACM Symp. on Principles of Database System, 1989.

Chen, W. D., Kifer, M. and Warren, D. S., "Hi-Logic as a Platform for
Database Languages," Proc. of the 2nd International Workshop on Data-
base Programming Languages, 1989.

Cockshott, W. P., Atkinson, M. P., Chisholm, K. J., Bailey, P. J. and
Morris, R., "Persistent Object Management System," Software Practice
and Experience, 14(1), 1984.

Codd, E. F., "A Relational Model for Large Shared Data Banks," Corn-
munications of the ACM, 13(6), 1970.

[Codd79] Codd, E. F., "Extending the Database Relational Model to Capture
More Meanings," ACM Transactions on Database Systems, 4(4), 1979.

[Copeland841 Copeland, G. and Maier, D., "Making Smalltalk a Database System,"
Proceedings of the ACM-SIGMOD International Conjerence on the
Management of Data, 1984.

[Copeland851 Copeland, G. and Khoshafian, S., "A Decomposition Storage Model,"
Unpublished Manuscript, MCC, 1985.

[Cox861 Cox, B. J., Object-Oriented Programming - An Evolutionary Approach,
Addition Wesley, 1986.

[Derrett85] Derrett, N., Kent, W. and Lyngbaek, P., "Some Aspects of Operations
in an Object-Oriented Database," IEEE Database Engineering, 8(4),
1985.

(Dittrich861 Dittrich, K. R., Gotthard, W. and Lockemann, P . C., "DAMOKLES -
A Database System for Software Engineering Environments," Proceed-
ings of IFIP Workshop on Advanced Programming Environments, 1986.

[Ecklund87] Ecklund, D. J., Ecklund, E. F . Jr., Eifrig, B. 0 . and Tonge, F. M.,
"DVSS: A Distributed Version Storage Server for CAD Applications,"
Proceedings of International Conjerence on VLDB, 1987.

[Ege87] Ege, A. and Ellis, C. A., "Design and Implementation of GORDION, an
Object Base Management System," Proceedings of 19th International
Conference on Very Large Data Bases, 1987.

(Ernden761 van Emden, M. and Kowalski, R., "The Semantics of Predicate Logic
as a Programming Language", Journal of the Association for Computing
Machinery, 23(4), 1976.

[Fishman871 Fishman, D. H., Beech, D., Cate , H. P., Chow, E. C., Connors, T. ,
Davis, J. W., Derrett, N., Hoch, C . G., Kent, W., Lyngbaek, P., Mah-
bod, B., Neimat, M. A., Ryan, T . A. and Shan M. C., 'lris: An Object-
Oriented Dababase Management System," ACM Transaction on Ofice
Information Systems, 5(1) 1987.

[Flynn88] Flynn, B. C., 'User Interface Management for Database Objects,"
Research Paper, Oregon Graduate Center, 1988.

[Gallaire841 Gallaire, H., Minker, J. and Nicolas, J. M., "Logic and Databases: a
Deductive Approach," ACM Computing Surveys, 16(2), 1984.

[Goldberg831 Goldberg, A. and Robson, D., Smalltalk-80, The Language and its Imple-
mentation, Addison- Wesley, 1983.

(Graefe871 Graefe, G., "The EXODUS Optimizer Generator," Proceedings of the
ACM-SIGMOD International Conference on the Management of Data,
1987.

[Hammer811 Hammer, M. and Mcleod D., "Database Description with SDM: A
Semantic Database Model," ACM Transactions On Database Systems,
6(3), 1981.

[Hammerstrom86]
Hammerstrom, D., 'Microsimulator (BitSim) Style," CSE 529 Course
Material, Oregon Graduate Center, 1986.

(Honeywell80] Honeywell Information Systems, Series 60 (level 68). Multics Relational
Data Store Reference Manual, Order Number AW53, 200 Smith Street,
Waltham, Massachusetts, 1980.

[Hull841 Hull, R. and Yap, C. K., 'The Format Model: A Theory of Database
Organization," Journal of the ACM, 31(3), 1984.

[Hull891 Hull, R., Morrison, R. and Stemple, D. (eds.), Proceedings of the 2nd
Workshop on Database Programming Languages. 1989.

[Jensen74] Jensen, K. and Wirth, N., Pascal User's Manual and Report, Springer
Verlag, 1974.

[Johnsson84] Johnsson, T. , "Efficient Compilation of Lazy Evaluation," Proceedings
of ACM SIGPLAN, 1984.

[Ka tz83] 'Managing the Chip Design Database", Katz , R. H., IEEE Computer,
16(12), 1983.

[Kowalski78] Kowalski, R., "Logic for Da ta Descriptionw, Logic and Databases, N i c e
las, J. M., Gallaire, H. and Minker, J. (eds.), Plenum Press, New York,
1978.

[Kernper871 Kemper, A., Lockemann, P. C. and Wallrath, M., "An Object-Oriented
Database System for Engineering App1icationslw Proceedings of the

[Maie r83]

[Maier84]

ACM-SIGMOD International Conference on the Management of Data,
1987.

Kent, W., "Limitations of Record-Based Information Models," ACM
Transactions On Database Systems, 4(1), 1976.

Kifer, M. and Wu, J., 'hlaier's OJogic Revisited," Proc. of the ACM
Symp. on Principles o j Database Systems, 1989.

Kifer, M. and Lausen, G., "F-Logic: A Higher-Order Logic for Reason-
ing about Objects, Inheritance and Scheme," Proc. of the ACM Interna-
tional Conference on Management of Data, 1989.

Kim, W., Chou, H. T. and Banerjee, J., "Operations and Implementa-
tion of Complex Objects," Proceedings of 18th International Conference
on Very Large Data Bases, 1987.

Kuper, G. M. and Vardi, M. Y., "A New Approach t o Database Logic,"
Proceedings of the ACM Symposium on Principles of Database Sys-
tems, 1984.

Lindsay, B., McPherson, J . and Pirahesh, H., "A Data Management
Extension Architecture," Proceedings of the ACM-SIGMOD Interna-
tional Conference on the Management o j Data, 1987.

Lloyd, J . W., Foundation of Logic Programming, Springer-Verlag, Ber-
lin, 1984.

Lorie, R. and Plouffe W., "Complex Objects and Their Use in Design
Transactions," Proceedings of SIGMOD Conference, Database Week,
1983.

The Theory of Relational Databases, Maier, D., Computer Science
Press, 1983.

Maier D. and Price D., "Data Model Requirements for Engineering
Applications," Proceedings of IEEE 1st International Workshop on
Ezpert Database Systems, 1984.

Maier, D., "TEDM Data Model," Working Paper, Department of Com-
puter Science and Engineering, Oregon Graduate Center, 1985.

[Maier86] Maier, D., Stein, J., Otis A. and Purdy, A., "Development of an
Object-Oriented DBMS," Proceedings of 86 Conference on Object-
Oriented Programming Systems, Languages and Applications, 1986.

[Maier86a] Maier, D. and Stein J., "Indexing in Object-Oriented DBMS," Proceed-
ings of International Workshop on Object-Oriented Databases, 1986.

[Maier87] Maier, D. and Warren D. S., Computing With Logic, Benjamin-
Cummings, 1987.

[Maier87a] Maier, D., "Why Database Languages are a Bad Idea," First Interna-
tional Workshop on Database Programming Languages, Roscoff, France,
1987.

jMaier891 Maier, D., "Why Isn't There An Object-Oriented D a t a Model," IFIP-
89, San Francisco, 1989.

[Maiersga] Maier, D., Zhu, J. and Ohkawa, H., "Features of the TEDM Object
Model," Proceedings of the First International Conference on Deductive
and Object-Oriented Databases, Tokyo, Japan, 1989.

[Mylopoulos80] Mylopoulos, J., Bernstein, P . A. and Wong H. K. T., "A Language
Facility for Designing Database-Intensive Applications," ACM Tran-
sactions on Database Systems, 5(2), 1980.

[Ohkawa87] Ohkawa, H., "Mapping an Engineering Data Model t o a Distributed
Storage System," Research Paper, Oregon Graduate Center, 1987.

[Ohor i88] Ohori, A., "Semantics of Types for Database Objects," Proceedings of
the International Conjerence on Database Theory, LNCS 326, 1988.

(Ohori891 Ohori, A., Buneman, P . and Breazu-Tannen, V., "Database Program-
ming in Machivelli - A Polymorphic Language with Static Type Infer-
ence," Proceedings of the ACM-SIGMOD International Conference on
the Management of Data, 1989.

[Paul871 Paul, H. B., Scheck, H. J., Weikum, G. and Deppisch, U., "Architecture
and Implementation of the Darmstadt Database Kernel System,"
Proceedings of the ACM-SIGMOD International Conference on the
Management of Data, 1987.

[Porter881 Porter, H., A Logic-Based Grammar Formalism Incorporating Feature-
Structures and Inheritance, Ph.D. Dissertation, Oregon Graduate

Institute, 1988.

(Rosenberg801 Rosenberg, L. M., T h e Evolution of Design Automation t o Meet the
Challenges of VLSI," Proceedings of 17th Design Automation Confer-
ence, 1980.

[Schaffer86] Schaffer, C., Cooper, T., Bollis, B., Kilian, M and Wilpolt, C., "An
Introduction to Trellis/Owl," Proceedings of 86 Conjerence on Object-
Oriented Programming Systems, Languages and Applications, 1986.

(Schaefer901 Schaefer, B., Massive Asynchronous Concurrency Through Parallel
Combinator Reduction, Ph.D. Dissertation, Oregon Graduate Institute,
1990.

(Schmidt831 Schimdt, J. W. and Brodie, M. L., Relational Database Systems,
Springer-Verlag, 1983.

[Shipman811 Shipman, D., "The Functional D a t a Model and the Da ta Language
DAPLEX," ACM Transactions on Database Systems, 6(1), 1981.

[Shoens79] Shoens, K. A. and Rowe, L. A., "Data Abstraction, Views and Updates
in RIGEL," Proceedings of the ACM-SIGMOD International Conference
on the Management of Data, 1979.

(Sidle801 Sidle, T. W., "Weakness of Commercial Database Management Sys-
tems in Engineering Applications," Proceedings o j 17th Design Automa-
tion Conference, 1980.

[Smith771 Smith, J. M. and Smith, D. C. P., "Database Abstractions: Aggregation
and Generalization," A C M Transactions On Database Systems, 2(2),
1977.

[Stonebraker76] Stonebraker, M., Wong, E., Kreps, P. and Held, G., Wade, N. W. and
and Waston, R., "Design and Implementation of INGRES," ACM Tran-
sactions on Database Systems, 1(3), 1976.

[Stonebraker84] Stonebraker, M., Anderson, E., Hanson, E. and Rubenstein, B., "QUEL
as a Da ta Type," Proceedings of the ACM-SIGMOD International
Conjerence on the Management of Data, 1984.

[Stonebraker86] Stonebraker, M. and Rowe, L. A., ''The Design of POSTGRES,"
Proceedings of the ACM-SIGMOD International Conference on the
Management o j Data, 1986.

(Stonebraker86a]Stonebrakerl M., "Inclusion of New Types In Relational Data Base Sys-
tems," Proceedings of IEEE International Conference on Data Engineer-
ing, 1986.

[Stonebraker87] Stonebraker, M., ''The Design of POSTGRES Rules System", Proceed-
ings of IEEE International Conference on Data Engineering, 1987.

[StroustrupSG] Stroustrup, B., The C++ Programming Language, Addison-Wesley, New
York, 1986.

[Su83] Su, S. Y. W., "SAM*: A Semantic Association Model for Corporate and
Scientific Statistical Databases," Information Sciences, 29, 1983.

[Todd761 Todd, S., "The Peterlee Relational Test Vehicle - A System Over-
view," IBM Systems Journal, 15(4), 1976.

[Ullman83] The Principles of Database Systems, Ullman, J. D., Computer Science
Press, 1983.

[Zaniolo85] Zaniolo, C., "The Represen tation and Deductive Retrieval of Complex
Objects," Proceedings o j ~nternational Conference on VLDB, 1985.

[Zdonik85] Zdonik, S., "Object -Management Systems for Design Environments,"
IEEE Database Engineering, 8(4), 1985.

[Zdonik88] Zdonik, S., "Can Object Change Type? Can Type Objects Change?"
Manuscript, Department of Computer Science, Brown University, 1988.

[Zhu85] Zhu, J., "Prototype Implementation of an Engineering D a t a Model,"
Unpublished Manuscript, Oregon Graduate Center, 1985.

[Zhu88] Zhu, J. and Maier, D., "Abstract Objects In An Object-Oriented Data
Model," Proceedings of 2nd International Conjerence of Ezpert Database
Systems, 1988.

[Zhu89] Zhu, J. and Maier, D., "Computational Objects In Object-Oriented
D a t a Models," Proceedings of 2nd International Workshop on Database
Programming Languages, 1989.

APPENDIX I: A CAD Database Application

This appendix contains a design object instance populated using the schema dis-

cussed in Chapter 2. In order t o help simplify the presentation and improve i ts reada-

bility, we make several syntactical adaptations t o TEDM's object definition language so

t h a t the format for the example is more natural t o the domain of VLSI design. We

point out tha t these adaptations affect only syntactical appearance. Also, as was dis-

cussed throughout the thesis, domain-specific presentation format is easily supported in

TEDM.

Syntactic Variations and Their Specificationr

Before a listing for the example application database is given, we describe each

syntactical variations tha t we will use in this appendix. We outline a general

specification mechanism for syntactic variations, a s an extension t o schema definitions.

First, instead of repeating field labels "portName" and "instanceName" for "Por-

tRef" objects, we omit the labels and use the following form

where <portName> and <instanceName> denote values for the respective fields. This

variation is described by the following extended type definition.

PortRef = (portName -+ string:, instanceNarne -+ String:)
{ <portName> of <instanceName>)

Similarly, t o present "Port" objects, we use a <portName> followed by either an

upward arrow or a downward arrow t o indicate the signal direction of the port.

Port = (portName --, String:, portDirection ++ String:)
{ <portName> (t I 1)

An "Instance" object is presented using

<instanceName> of <cellName> from <libraryName>

Instance = (instanceName + String:, cellName -, String:, libraryName + String:)
{ <instanceName> of <cellName> from <libraryName>)

Values in this multiple occurrence field in "Connect" objects are simply written as a

list.

Connection = (portRef ++ PortRef:)
{ '{' <Po;tRef>, ... '1')

A "Cell" object is identified by a cell name, followed by a list of "Port'' object descrip

tions.

Cell = (cellName -, String:, cellport ++ Port:)
{ Cell <ceIlName> Port '{' <Port>, ... '1')

A "CellImplementation" object is described as a list of component instances and a list

of connections among the components.

CellImplementation = (instance -++ Instance:, connection +-+ Connection:)
{ with Instances <Instance> ... and Connections <Connection>) ...)

An "Implementation" object is represented by a list of ports and a representation of a n

"Implementation".

Implementation = Cell:(celUmplemen t a t ion -., CellImplementation:)
{ Interface '{' <Ports> ... '1' Implementation <CellImplementation>)

A "Library" object is abbreviated t o a name, a type and a list of "Cell" representa-

tions.

Library = (IibraryName -+ String:, IibraryType + String:, IibraryCell -++ Cell:)
{ <name> of <type> with <Cell> ...)

Finally, the representation for a "Design" object consists a list of "Library" representa-

tions and an "Implementation".

Design = (useLibrary 44 Library:, implementation + ImplementedCell:)
{ Design of <name> uses Libraries <Library> ... <ImplementedCell>
End 1

Listing of A Design Instance

Design of fourBitAdder
uses Libraries default of global with
Cell not Port { not-11, not221)
Cell a n d 2 Port { and2-11, a n d 2 2 1 , a n d 2 3 1)
cell a n d 3 Port { and-3,11, and-321, and-3-31, and-3-41)
Cell and-5 Port (and-5-14, and-5-24, and-5-31, and-5-41? and-5-54,

and-5-61! and-5-71! and-5-87, and-5-91)
Cell n a n d 2 Port { nand2-11, n a n d 2 2 1 , nand2-31)
Cell n o r 2 Port { nor2-11, n o r 2 2 4 , n o r 2 3 1)
Cell adder-4 Port { a d d e r - ~ c l k l , adder-4-14, adder-4-21, adder-4-31,

adder-4-44, adder-4-54, adder-4-61, adder-4-71?
adder-4-81, adder-4-91, adder-LlOt, adder-4-111,
adder-Ll2t)

Cell register-4 Port { register-4,clkl, register-Lll , register-421,
register-4-34, register-4-44, register-4-57,
register-4-61, register-4-71, register-4-81)

Interface { inbusJ32-11, inbusJ3221, inbusJ32-31, inbusJ32-41,
resetl , l d a 2 1 , ldb-21, restkn-11, ph i l l ,
phi21, out-11, o u t 2 1 , out-31, out-41)

ImplementedCellwith Components
U-1 of and-5 from default
U 2 of a n d 2 from default
U 3 of a n d 2 from default
U-4 of a n d 2 from default
U-5 of a n d 2 from default
U-6 of a n d 2 from default
U-7 of not from default
U-8 of n o r 2 from default
U-9 of not from default
U-10 of n o r 2 from default
U-11 of not from default

U-12 of n o r 2 from default
U-13 of n o r 2 from default
U-14 of not from default
U-15 of n o r 2 from default
U-16 of not from default
U-17 of n o r 2 from default
U-18 of a n d 2 from default
U-19 of a n d 2 from default
UJO of a n d 2 from default
U 2 1 of n o r 2 from default
U-22 of n o r 2 from default
U 2 3 of n o r 2 from default
U 2 4 of a n d 2 from default
U-25 of a n d 3 from default
U 2 6 of a n d 2 from default
U 2 7 of a n d 3 from default
U 2 8 of a n d 2 from default
U 2 9 of n o r 2 from default
U-30 of a n d 2 from default
U 3 1 of a n d 2 from default
U-32 of n a n d 2 from default
U-33 of register-4 from default
U-34 of register-4 from default
U-35 of adder-4 from default
U-36 of register-4 from default
and Connections

{ inbus32-1 of fourBitAdder, and-5-1 of U-1)
{ i n b u s 3 2 2 of fourBitAdder, and-52 of U-1)
{ inbusJ32-3 of fourBitAdder, and-5-3 of U-1)
{ inbusJ32-4 of fourBitAdder, and-5-4 of U-1)
{ n o t 2 of U-7, nor2-1 of U-8)
{ reset of fourBitAdder, n o r 2 2 of U-8, n o r 2 2 of U-10, n o r 2 2 of U-12)
{ I d a 2 of fourBitAdder, and2-1 of U-3)
{ n o t 2 of U-9, nor2-1 of U-10)
{ l d b 2 of fourBitAdder, and2-1 of U-5)
{ n o t 2 of U-11, n o r 2 1 of U-12)
{ restkn-1 of fourBitAdder, n o r 2 2 of U 2 1 ,
{ phi1 of fourBitAdder, a n d 2 2 of U 2 4 , and-3,1 of U 2 5 , a n d 2 2 of U 2 6 ,

and-3,1 of U-27, and2-1 of U 2 8 , a n U - 1 of U 3 0)
{ phi2 of fourBitAdder, and-2-5 of U-1, a n d 2 2 of U 2 , a n d 2 2 of U 3 ,

a n d 2 2 of U-4, a n d 2 2 of U-5, a n d 2 2 of U-6, and2-1 of U-19,
and2-1 of U 2 0 , a n d 2 2 of U 3 1)

{ n o r 2 3 of U-8, and2-1 of U 2)
{ n o r 2 3 of U-10, and2-1 of U-4)
{ n o r 2 3 of U-12, and2-1 of U-6)
{ and-5-6 of U-1, register-4-1 of U 3 4)

BIOGRAPHICAL NOTE

The author was born 8 October 1957, in Nanchang City, Jiangxi Province, People's
Republic of China. He has been married for five years t o Xing Liu and they have a
child, Yun (Eddie), age 3.

The author graduated from Wenjiang High School of Sichuan Province in 1975.
He studied a t South-China Institute of Technology where he received in 1982 his
Bachelor of Science degree in Computer Engineering.

The author entered the Oregon Sta te University in 1983 a s a graduate student
and completed in 1984 with the degree Master of Science in Computer Science.

The author s tar ted his graduate study a t the Oregon Graduate Institute Of Sci-
ence and Technology in 1985.

The author is currently a member of the technical staff in the Department of Sci-
ence and Technology, U S WEST Advanced Technologies, 6200 South Quebec Street,
Englewood, Colorado 801 11.

	198907.zhu.jianhua to p. 100.pdf
	198907.zhu.jianhua to p. 181.pdf
	198907.zhu.jianhua to p. 209.pdf

