SANDS: A SERVICE-ORIENTED ARCHITECTURE FOR CLINICAL DECISION
SUPPORT IN A NATIONAL HEALTH INFORMATION NETWORK

by

Adam Wright

A DISSERTATION

Presented to the Department of Medical Informatics and Clinical Epidemiology
and the Oregon Health & Science University
School of Medicine
in partial fulfillment of
the requirements for the degree of
Doctor of Philosophy

May 2007

School of Medicine

Oregon Health & Science University

CERTIFICATE OF APPROVAL

This is to certify that the Ph.D. dissertation of
Adam Wright

has been approved

Adpvisor - Holly Jimison, PhD

Member - Dean F. Sittig, PhD

Member - Judy Logan, MD, MS

Member - Kent Spackman, MD, PhD

Member - John Halamka, MD, MS

Member - Blackford Middleton, MD, MPH, MSc

TABLE OF CONTENTS

Table Of CONENLEScooviiiiiiciciccc e 1
AcKNOWIEdZEMENESviiiie e 4
ADSETACE ..ot 9
1.1 Introducing Clinical Decision SUPPOTtccccciiviviiiiiniiiiiiiiicc e 2
1.2 Standalone Decision SUpport SYyStems...........cceuvveveveieieieieiciciccccccc s 8
1.3 Decision Support Integrated Into Clinical Systemsccccccviviiiiiiniiniiniinicne 13
1.4 Standards For Sharing Decision Support Contentccccccccvveicniniiiniiccnincene. 16
1.5 Service Models For Decision SUPPOTtcccovveieieieiiiiicicicicccccccc s 23
1.6 Conclusions On The Literaturecccccovuviririiiiiiiiiiicc s 25
2.1 A New Architecture For Decision SUPPOTt........cccvuiuiiviiiiiininiiiiiiiciiciccceeccenes 28
2.2 An Example Use Casecccccvuviiuiiiiiiiiiiiiiciicccicccse s 30
2.3 Architectural Key POINtS........cccccoiviiiiiiiiiniiiiiinicciicccnceeeeee e 32
2.4 The Role Of Standards..........cccciiiiiiiiiiiiie e 33
2.5 The NHIN INterfacecccccvueiriiirieiriciiiinicineieieneeeeeese et 34
2.6 The Decision Support Network Interface...........cccccoeeivireiiinniininncinccieecccenes 37
2.7 Advantages Of The New Architecture ..ot 39
3.1 A Taxonomy Of Decision Support FUNCtions............cccccoviiiviniiiiiniiiiiciiccce, 43
3.2 Prior Taxonomies In Clinical Decision SUPPOTtc.ccoveueiriniiiininieciirccceeeecenes 43
3.3 Methods For Developing A TaXONOMYcccccceiririiuiininiiiiininiiiinieneeiseeseeesseneesnnes 47

Site And Content Descriptionccccociiiiniiiiiniiiiiiiicce s 47

SHUAY DESIIN....ceoiiiiiiiciiicc et 48
3.4 Decision SUPPOrt TIIZEETScccoviiiiiiiiiiiiiiiiiic s 50
3.5 Input Data Elements For Decision SUPPOTtccocovvririnieinicinieiciciciccccccc, 52
3.6 Decision Support Intervention TYPes ..o 54
3.7 Respones Offered To The USer ..o 55
3.8 Comparison To Commercial SysStems..........ccocovvvieiiiiieieieieiiccccccce 57
3.9 Conclusions And IMpPlications...........ccccvvueueiriniiiiininiiiincee e 59

| I 50 (UL 718 (o) 1 S 61

Future DIr€Ctions ..o 62
4.1 Introduction To The Prototypecceueueieieciiiii s 64
4.2 Overview Of The NHINccccccoviiiiiiiiiiiic s 65
4.3 Patient Data Class LiDIarycccocciiviiiiininiiiiiiciiicccieceeecssseeesssene e 65

Rationale For A Patient Data Class Library ..o, 65

Elements Of The Patient Data Class Libraryccccccveeeeiniriinnincininicereeceeeenenee 67

Storing ODSEIVAIONSc.ccuviiuiiiiiiiiiiiiiciice e 69

Storing Drug INnformation ... 71

StOring Problems.........cciviiiiiiiiiiiiiiiic s 71

Family HIStOTYc.cciiiiiiiiiiiiiiiiciiccic e 72

Procedure HiStOrycououiiiiiiccccccc 72

AJLETZIES..c..ceiiiiiie ettt 74

Other Orders........coouoiiiiiiciicicicicccc s 74

CACING ..o 75
4.4 Decision Support Service INterface...........cccovueueiriricininiiiiccecceeceeeeeeeen 76

Decision Support Service Invocation Interface............cccoveiiviviiiinniiinniiiiccnes 77

Structured Intevention Interface............ccccooiiiiiiiiiii 79
4.5 A Reference Parser ... 81
4.6 Prototype Electronic Health Record...........cccccoeiiiiiiiiiniiiiniiiiiiciccicccce 82
4.7 Drug Interaction CheckKingccoueueieieieiciii s 86
4.8 Syndromic SUrveillance ..o 90
4.9 Diagnostic DeciSion SUPPOTt........cccoociviiiiiiiiiiiiiiii s 96
4.10 Inappropriate Prescribing In Older Adults.........ccoovoveieioiiiii 100
4.11 Information At The Point Of Care..........cccccoviiiiiiiiiiiiicae 102
4.12 A Simple Personal Health Record ..o 107
4.13 Notes On Local Mirroring Of SeIvicCes.........covviiriiiniriniiininieieieeeecccccceees 108
5.1 Academic Careers For Experimental Computer Scientists And Engineers................ 113
5.2 The Stead FrameworkK.........ccccuiuiiiiiiiiii s 114
5.3 The FrameworK ... 115
6.1 Feature Determination ... 119
0.2 EXISTOIICO ..ottt 125

ii

0.3 UHLILY oo 125

0.4 COVETAZE.....cviiiiiiitiiciiiei e bbb a s 130
0.5 Performance..........ccoviiiiiiiiiiiiicicc s 135
6.6 SUMMATY Of RESULLS ... 139
7.1 Challenges In Integrating Dataccccceviviiiiniiiiiiniiiiiicccce 141
7.2 Drug Terminology Challenges.............cccceiiiiiiiiiic 143
7.3 Problem List Terminology Challenges...........cccccoceoeiviriiininiiiniiciecceneeeeeeeeenee 145
7.4 Message And Service ArchiteCtures..........ccccccvviviiiiiiiniiiiininiiiiiicccceee 146
7.5 Economics And Business Models ..o 152
7.6 Organizational Issues And Implicationsccceeeiviriiiinniiinniecieeeceeeeeee 155
7.7 Lessons On Service Reliabilityccccoccoiiiiiiiiiniiiiiiiiiiinciiccccccces 156
7.8 A Vision For The Future Of ERr'scccooiiiiiiiic, 159
8.1 The Contribution Of Sands............coviiiiiiiiiiiiiiiiiii e 163
8.2 Final Notes On Adoption And Availability ..o 164
Appendix A: Formal Service Definition And Schema.............cccoooiiii, 166
Appendix B: Guide To The Service Definitioncccococcevivircininincinniiinrccieeeene 202
REfETENCES ..ot 218

iii

ACKNOWLEDGEMENTS

A research project of this magnitude could never have been completed without

the help of many people, to each of whom I am deeply indebted.

First, I owe great thanks to my advisors and mentors Holly Jimison and Dean
Sittig. I knew Drs. Sittig and Jimison long before I began my dissertation, and both of
them have been instrumental not only in this project but in helping me begin my career
in the field of medical informatics. They consistently provided leadership,
encouragement, perspective and feedback throughout the process of writing my

dissertation. Without their assistance, I could never have completed this project.

I also owe great thanks to Judy Logan and Kent Spackman, the other two
members of my advisory committee. I asked Drs. Logan and Spackman to join my
committee because I knew they would bring special expertise and perspective to the
table, and they did not disappoint. Both of them faithfully attended my committee
meetings, provided constructive feedback on my work, and helped me overcome the

hurdles that naturally crop up during a research project. Thank you.

Next, I wish to thank John Halamka and Blackford Middleton, both on the
faculty of the Harvard Medical School. Drs. Halamka and Middleton graciously served
as outside members on my examination committee and brought a real world perspective

to my work. Dr. Halamka is the chair of the Health Information Technology Standards

iv

Panel (HITSP), whose efforts significantly influenced my work. Dr. Middleton is head
of Clinical Informatics Research and Development (CIRD) at Partners Healthcare. I
spent a summer at CIRD, where I developed the taxonomy presented in Chapter 3, as

well as much of the service definition for the SANDS architecture.

The Department of Medical Informatics and Clinical Epidemiology has been my
academic home for the past three years. The program has flourished under the
leadership of William Hersh, and I was lucky to have the opportunity to train under Dr.
Hersh and the rest of the department’s faculty. The department is supported by a gifted
administrative staff, including Andrea Ilg, Lynne Schwabe, Ashley Jones, Jeani Crichlow
and Linda Slattery, all of whom graciously provided assistance and support to me

throughout my project.

I had the opportunity to spend the summer of 2005 in the Office of the National
Coordinator for Information Technology in the United States Department of Health and
Human Services. It was there that my idea for the SANDS architecture germinated. I
owe thanks to Dr. David Brailer, the first National Coordinator, as well as his staff,
including Lori Evans, Lammot Dupont, Missy Krasner, Lewis Mattison, Richard
Singerman, Kathleen Fyffe, Steve Posnack, Vish Sankaran and Katy Jensen, all of whom

provided thoughtful and creative advice about the architecture.

I refined my architecture significantly over the course of my service on the
steering committee for the Roadmap for National Action on Clinical Decision Support,

and am very grateful to my colleagues from the steering committee: Jerry Osheroff,

Jonathan Teich, Blackford Middleton, Elaine Steen and Don Detmer, as well as Richard

Singerman and Karen Bell, who participated in the committee on an ex officio basis.

During my summer in CIRD I worked under Howard Goldberg and Barry
Blumenfeld, who provided outstanding support and leadership. Marilyn Paterno, Vipul
Kashyap and Tonya Hongsermeier, all of CIRD also provided significant feedback about

my dissertation project.

While in Boston, I had the privilege of meeting Peter Szolovitz of MIT, Ken
Mandel of Boston Children’s Hospital, Henry Chueh of the Massachusetts General
Hospital Laboratory of Computer Science, John Glaser of Partners HealthCare, Robert
Greenes of the Brigham and Women’s Hospital Decision Systems Group and Eric Poon
and Tejal Gandhi, both from the Brigham and Women’s Hospital. Each of them

provided helpful advice, both about informatics careers and my research.

While at OHSU, I had the privilege of working with an outstanding group of
National Library of Medicine Fellows. Each provided helpful feedback, and often acted

as sounding boards for ideas relating to my architecture.

Over the past three years, I've been honored to participate as the student
representative to the board of the Oregon Chapter of the Healthcare Information
Management Systems Society. I thank my fellow board members for the opportunity to
serve in this role, and also for the helpful real-world perspective they have shared with

me as I conducted my research.

vi

The OHSU Information Technology Group (ITG) graciously provided me a large
number of surplus computers for use in my prototype and simulations. I am grateful to
Bulisani Sibanda and Denise Ingram who coordinated the transfer of these computers. I
am also grateful to the Clinical Outcomes Research Initiative who provided space in

their server room for these computers.

The Markle Foundation, developers of the Common Framework for sharing health
information has taken a recent interest in the architecture I have developed. David
Lansky, Clay Shirky and Carol Diamond of the Markle Foundation provided helpful
information, feedback and encouragement, and helped me see how my architecture fits

into a broader context of quality-oriented health information exchange.

The prototype I developed integrates services from a variety of sources,
including Computer Science Corporation’s NHIN prototype. I am grateful to them for
providing access to this prototype, and particularly to Andrew Wise of the Regenstrief
Institute, who answered several questions I had about interfacing with it. Isabel
Healthcare and Lexi-Comp provided free access to their decision support service which I
appreciated greatly. I also appreciate the help of a number of vendors, who wish to
remain anonymous, who responded to my request for information about their decision

support capabilities.

I also wish to thank Mark Musen, head of Stanford Medical Informatics. Dr.
Musen provided some of the early encouragement for me to enter the field, and has
provided me with helpful advice throughout my time as a student in informatics.

vii

Jonathan Leviss, my AMIA CIS working group mentor has also provided helpful advice
about research and careers in the field. I am also grateful to B] Fogg, whose lab I worked
in as an undergraduate. Dr. Fogg encouraged me to think of myself as a researcher, and
the research skills he taught me have served me well throughout my dissertation project.

Misha Pavel has also provided me helpful mentorship and advice.

This work, along with all of my training was supported by National Library of
Medicine Training Grant 1T15 LM009461. I thank the National Library of Medicine for
its support, and Drs. Spackman and Hersh who served as Principal Investigators on the

training grant.

And finally, I thank my parents. Without their love and support, none of this

would have been possible.

viii

ABSTRACT

Myriad studies have shown that clinical decision support can reduce medical
errors and improve healthcare quality in both inpatient and ambulatory settings.
However, only a small number of sites (generally academic medical centers and large
integrated delivery networks) make significant use of the most advanced and effective
decision support interventions. Community hospitals and independent healthcare
providers generally make only limited use of decision support, in fact frequently opting
to disable it entirely in their clinical systems. This lack of use stems from a variety of
causes, ranging from technical to political to economic; however, perhaps the main
cause is resources: academic medical centers and integrated delivery networks are more
likely to have clinical decision support committees and in-house development resources.

The natural solution to closing this gap seems to be content sharing — having the
successful sites share their content with the rest of the hospitals and providers. In fact,
medical informatics has worked on a variety of approaches for sharing content, starting
with Arden Syntax in 1989. However, to this day, none of these content sharing systems
have seen significant adoption and many have never made it out of the lab.

In this dissertation, I introduce a new approach to sharing decision support
content which leverages existing work towards developing a National Health
Information Network (NHIN). I call this approach SANDS: a Service-oriented

Architecture for NHIN Decision Support. Most approaches for sharing decision support

ix

content involve developing a lingua franca for encoding clinical knowledge. However,
because clinical knowledge is diverse and complex, and not always easy to represent in
the form of if-then rules, such approaches necessarily constrain the scope and type of
clinical knowledge which can be represented. SANDS, by contrast, defines a set of
interfaces that a decision support service should make available, but leaves the choice of
knowledge representation up to the implementer.

In addition to this interface-oriented design, SANDS allows knowledge to be
distributed. With SANDS, instead of storing all knowledge in the electronic health
record, it is made available over a network which many can contribute to. For example,
a medical specialty society might release its guidelines over SANDS, while AHRQ
would release evidence reports, and a commercial vendor might provide (for a fee)
access to its drug information database. This frees each care provider from having to
manage and maintain a complete body of decision support content — the medical
equivalent of re-inventing the wheel.

The basis for SANDS is a functional taxonomy of clinical decision support,
developed through analyzing the decision support content of a large integrated delivery
network. From this framework, I developed a complete technical architecture and
service definition. In turn, I built a prototype of the architecture. This prototype
integrates a prototype NHIN with a variety of decision support systems, ranging from
drug interaction checking to diagnostic decision support. The prototype provided a test-

bed to study the utility, performance and relative advantages of the SANDS architecture.

Ultimately, SANDS proved to be useful and effective, with good performance and

significant technical and functional advantages over earlier approaches.

xi

CHAPTER 1: BACKGROUND AND
REVIEW OF THE LITERATURE

1.1 INTRODUCING CLINICAL DECISION SUPPORT

Clinical decision support has been defined in myriad ways, ranging from
extremely precise and narrow definitions that exclude broad categories of work to
extremely wide definitions that intentionally include efforts which might not be
ordinarily thought of as clinical decision support. For the purposes of this dissertation a
definition from the National Clinical Decision Support Task Force commissioned by the
Office of the National Coordinator for Health Information Technology (ONC) in the US
Department of Health and Human Services will be used. This definition defines clinical
decision support as “Providing clinicians, patients or individuals with knowledge and
person-specific or population information, intelligently filtered or presented at
appropriate times, to foster better health processes, better individual patient care, and

better population health.”(1)

That said, it is instructive to look at a few examples of clinical decision support
systems to gather a feeling for their breadth and for a few of the many sorts of
applications for which such systems can be used. Like the definition, these examples
come from the Roadmap for National Action on Clinical Decision Support and were
assembled by the aforementioned task force. Figure 1 shows an example of a drug-drug

interaction warning. In this example, a physician has prescribed aspirin to a patient who

is also receiving naproxen, which therapeutically duplicates aspirin, and warfarin,

which, when combined with aspirin, poses a significant risk for bleeding.

) HEAL THvision Clinical Desktop - Microsoft Internet Explorer provided by HEAL THvision Inc.

© Fle Edit WVew Favorites Tools Help Links @] PtRef @&]IThome &]CPRef &]Hvmal &]PHSMal &] Amywho &] TravelFocus BN]

0-8 NR e PEe B & | Address :&'Ihltos:.l’.l’cI\mcian-heaWthvisinnncum‘default.asp?.f .

Stephen Brook:

. ~
Care shah james @ e
l -~ 67y Male DOB: 07/18/1936 Shah, James __ \MESCEreN

’ Major warning summary
4 i ,I ’-:.Jl

H Home WARNING: vou are prescribing aspirin - PO,

B Message Center
M Patient Data - ->
Patient Search

Wamnings noted-Continue Rx] Cancel Rx]

Therapeutic Duplication for ASPIRIN.

Patient Summary
Results
Reports
Medications
Messages
Account History
End OF Visit
ergies
Unsigned Items
Questionnaires

&n active order for aspirin exists and may represent therapeutic duplication by category
nonsteroidal anti-inflammatories

tunﬁmekxl CanodR.lI

Prob&Procedures

Order Entry Therapeutic Duplication for NAPROXEN.
Images

Referrals

CP Referrals
Disease Mgt

Reference Library

Major Drug-Drug interaction aspirin + warfarin.

News & Info
Calendar
Business Office
| Clinical Apps

GEMNERALLY AVOID: Aspirin, even in small doses, may increase the risk of bleeding in patients on
oral anticoagulants by inhibiting platelet aggregation and inducing gastrointestinal lesions.
MANAGEMENT: Aspirin-containing products, inciuding topical products, should be avoided in
patients on anticoagulants. Alternatively, a lesser degree of anticoagulation, if feasible, may
allow aspirin and an oral anticoagulant to be safely combined. Patients should be advised to

'::;Tic;':: Mgt promptly report any signs of bleeding to their physician, including pain, swelling, headache,
dizziness, weakness, prolonged bleeding from cuts, increased menstrual flow, vaginal bleeding,

Tools - iy L .
nosebleeds, bleeding of gums from brushing, unusual bleeding or bruising, red or brown urine, or

Help . 4

Log off red or black stools. Patients should also be counseled to avoid any other over-the-counter

salicylate products. View References

Continue Rx | D/C existing warfarin | _cancel Rx |

L=

FIGURE 1 - A THERAPEUTIC DUPLICATION ALERT.

2 @ Intemet

Real Solutions. Batter Hea

Figure 2 shows a screenshot of the Brigham Integrated Computing System (BICS)
(2, 3) in use at the Brigham and Women’s Hospital in Boston, MA. In this example, a
physician has prescribed Cefotaxime, a third-generation cephalosporin for a patient with
community acquired pneumonia. The computer has determined that, given the
diagnosis, a second generation cephalosporin, such as Cefuroxime, would be just as
effective but would cost less, have fewer side effects, and be less likely to contribute to

antibiotic resistance.

wlrders PtLookup Feedback Hel Goodhye
T.TEST 34F 08006600 Adm:= 11,81/91 Roomn:

MEDICATION ORDER

<change order to ceFuroxime <(Znd generation cephalosporin

Heep the original order >

order Othepr >

Enter all or part of the route (PO, NG, IU, etc).

FIGURE 2 - A BEST PRACTICE ALERT IN THE BICS SYSTEM.

th Results - Microsoft Internet Explorer

Search lost Results Help Log Off

Practice Guidelines

Search

Copyrights

Practice Guidelines Search Results =
1-20 Sorted by Reverse Chronological [> |
Article e .‘5. s

1 Heart Failure Society of America (HFSA) practice
guidelines. HFSA guidelines for management of
patients with heart failure caused by left ventricular
systolic d ction--pharmacelogical approaches.
JCard Fail - 1999 Dec; 5(4): 35782
From NIH/NLM MEDLINE, HealthSTAR

4 Joumnal Artseles On This Topic

2 [Standards and VEQ in cardiological rehabilitation Ad
hoc commission MNational Association of Hospital
Cardiologists (ANMCO). Ttahan Society of Cardiclo,

SIC). Ttalian Group of Functional Evaluation and
Eehabilitation of Cardiopathies (GIVERC)
G ftal Cardiol - 1999 Sep; 20(%): 1098-103
From NIH/NLM MEDLINE, HealthSTAR

& Joumal Articles On This Tovic -

ino, Wilmer

iblerms I show hld&-n
e’ Hide /

bl ™ show hidden

haore About ... vi

viore About ...

i
Epidemiclogy
“resentation

is

Clinical

Administration

FIGURE 3 - AN INFORMATION INTERVENTION.

Figure 3 shows the result of an Infobutton(4-6) query. In this case, the physician
has entered a diagnosis of Congestive Heart Failure in a clinical system, and has
executed a query via an Infobutton for clinical practice guidelines relating to heart

failure.

Clinical decision support has also been used frequently for best practices and
preventive care. Figure 4 shows a set of preventive care orders in the EpicCare system
(Epic Systems Corporation, Madison, WI) as implemented at Kaiser Permanente in the

Northwest(7, 8).

Hyperspace - EIN-TM - PRODUCTION | = (}:; 4] =] E3

Desktop Action Patient Care Scheduling HIM Reg/aDT Referrals Reports Tools Help
4@ Back = Foard #7% Home (20 Schedule B InBasket [Review 3 Encounter TelEnc SendMsg, yagdppte || Deptéppte D) Secure | 555 Print - 8 Log Out =

Hame | Workspaces
Kpnw, Forty 33 g;rs SEX 3;23?15967 41!;\,1';?:365 Morphine Sul?:f;g,leﬁms, Amoxicill = Specheat NBC;E uﬁ) |l:.2:tgi\.
6 i h 0

Chart Review b e R, & @ M, v *

SnapShat Agsociation Frimary Dx Edit [tem Add to Favarites Fharmacy [Huestionnaie Health aint Accept/Pend Accept/Sign Cancel
|lagen s | Gl DIAGNOSIS | ~Authorizing Provider
[ICiEEE =N Bl Diagnosis (multiple) ‘HOMER SPEROS [2573 J

Growth Chart 1 Exabd- COMPLETE/PART PHYSICAL [W70.0]

Flowshests O EXAM-GYN (Also check Screening Cervical Cancer DX below)

EKG Report O SCREENING- CERVICAL CANCER: (PAF)

Demagraphics E ORDERS

Letters B Lshoratory (multiple)

— @ PAP, LIQUID BASE - SCREENING [88174008]

History O UFID PROFILE, recommended g & years

T O HDL CHOLESTEROL, recommended o 5 years

m O CHOLESTEROL SERUM. recommended q § yvears ~SmanSet Nates
l— Imaging (multiple)

|t | & MaMM BILATERAL SCREENING [Pzt Qe Cizes

rder Eni for Tobaccao Crder

Y Imrmflnj (rultiple) 5/16/06 R Burris

Level of Service Internal Rafarrals multiple)

Wisit Mavigator Bl LEVEL OF SERWICE Dr. Bills; Prevention

Select SmanSet Lewvel of Service (zingle) gﬁ;gﬂge()sommme-a
smartset - PE.... [[ENCREICIRISA] 12/3/04 Reermove 140081

Bl Frogress Motes (multiple) rep w 14966, remove trac;l
1 PE FEMALE. AGE 50-69 - EXAM - RIGHT CLICK TO EDIT
O RIGHT CLICK HERE TO USE PHRASES OR FREETEXT e
Bl Patiert Instructions (multiple) | ® GStanding arder
| W1 PE FEMALE, 50-68 INSTRUCTIONS - RIGHT CLICK TO EDIT _lll B Future order
4 »
ExitWorkspace Y| [~ Right click data row1n edit | Loading SmanSet succeaded.

FIGURE 4 - A PREVENTIVE CARE ORDERSET.

The CDS Implementer’s Guide (9) lays out a taxonomy of six types of clinical

decision support systems:

1. Documentation forms / templates

2. Relevant data display

3. Order creation facilitators

4. Time-based checking and protocol/pathway support
5. Reference information and guidance

6. Reactive alerts and reminders

Other types of decision support, such as diagnostic decision support systems (10-
18), fall outside of this taxonomy but are still important in the history and evolution of

decision support.

The reasons for using decision support systems are numerous. Such systems
have been used to prevent errors, improve quality, reduce costs and save time. The best
evidence suggests that such systems, when used, can be extremely effective(19-25). For
example, a recent systemic review by Garg found that in 100 studies of clinical decision
support, “CDSS improved practitioner performance in 62 (64%) of the 97 studies
assessing this outcome, including 4 (40%) of 10 diagnostic systems, 16 (76%) of 21
reminder systems, 23 (62%) of 37 disease management systems, and 19 (66%) of 29 drug-

dosing or prescribing systems”. (21)

Another recent review by Kawamoto and Lobach(25) identified four critical
success factors for decision support systems: first, that such systems should
automatically provide decision support without first requiring an intentional request by
a clinician; second, that the system provide recommendations, not just assessments;
third, that the system provides support at the “time and location of decision making”;
and fourth, that the system be computer-based (paper-based and mechanical decision
support systems are also sometimes used). In their analysis, of the systems that met all
four of these criteria, 94% improved clinical practice significantly. While conducting this
review of the literature it was not uncommon to see reports of a single system, operating
at a single hospital and covering a single domain of medicine, which resulted in reduced
mortality of, say, half a dozen lives per year. When spread across all the hospitals in the
United States, and all the clinical domains in which a decision support system could be
implemented, it is quite possible to see the potential of such systems to significantly
reduce the 98,000 lives lost every year due to medical errors,(26) and to improve the
quality of care adults in the United States receive — current estimates suggest that adults

today receive only 54.9% of all care that evidence suggests they should.(27)

Despite their great potential, and a history of successes, clinical decision support
systems have not found wide use outside of a handful of mostly academic medical
centers, the VA, and large integrated delivery systems, such as Kaiser Permanente.(28)
To understand why, it’s necessary to look at the history and evolution of clinical

decision support which is accomplished in the next section.

1.2 STANDALONE DECISION SUPPORT SYSTEMS

Pinpointing the precise beginning of the field of medical informatics is, of course,
challenging but it is perhaps a safe choice to begin any discussion of the history of the
field with the 1959 paper “Reasoning foundations of medical diagnosis; symbolic logic,
probability, and value theory aid our understanding of how physicians reason” by
Robert Ledley and Lee Lusted.(29) Robert Ledley went on to invent the whole-body CT
scanner (30), and Lee Lusted became a leader in the field of medical decision making
(31). Their 1959 paper, however, laid out a probabilistic model for medical diagnosis
with grounds in set-theory and Bayesian inference. The article, published in Science,
was, in many ways, a tutorial in statistical and probabilistic inference for clinicians.
Amongst other contributions, the paper proposed an analog computer used to sort
cards. These cards would contain a diagnosis and a series of punches which represented
symptoms. By selecting the cards which matched the symptoms present in a given case
a clinician could begin to develop a differential diagnosis. The number of cards
supporting a particular diagnosis served as a measure of the likelihood of that diagnosis.
The system could easily be updated as new patients were seen — the clinician simply had
to fill out and punch a card for each new patient and diagnosis and drop it into the

sorter.

Two years after Ledley and Lusted published their paper, Homer Warner of the
University of Utah published a mathematical model for diagnosing congenital heart

defects.(32) This model used contingency tables to map symptoms and signs to

diagnoses based on the frequency of manifestation for each symptom or sign given an
underlying diagnosis. The system was evaluated by comparing its diagnoses with gold-
standard surgical diagnoses, and was found to compare favorably with experienced

cardiologists.

Shortly after Warner, Morris Collen developed a system for “Automated
Multiphasic Screening And Diagnosis”(33) which was used at Kaiser Permanente.
When a patient came in for an exam he or she was given a stack of cards each of which
contained a symptom or a question. The patient would put the cards which indicated a
symptom he or she was experiencing, or a question to which their answer was
affirmative, into a designated “Yes” box, and the rest of the cards into a "No” box.
These cards were then run through a computer system which proposed an initial

differential diagnosis.

In 1969 Howard Bleich developed a system to suggest therapy for acid-base
disorders.(34) This system was unique because it was the first system to suggest a
therapy in addition to a diagnosis. The system would take in information useful for
diagnosing acid-base disorders, such as the results of arterial blood gas tests, vital signs,
and clinical findings. If any information needed for decision-making was missing, the
system would prompt the user to collect and enter that information. If the information
was complete the system would produce an evaluation note, written in the same style as
a human specialist consultant, proposing a management plan for review by the

physician providing care.

Two years later, in 1971, de Dombal built a probabilistic model and computer
system for diagnosing abdominal complaints.(11, 35) The system was significant
because evaluation showed it to be quite effective. When compared to the final gold-
standard surgical diagnosis, the computer’s preliminary diagnosis was accurate 91.8% of
the time. By comparison, a group of senior clinicians was correct 79.6% of the time. Not
only was the computer able to match the performance of senior clinicians, it actually

improved significantly on it — cutting the error rate in half.

In the 1970s, the field of artificial intelligence began to influence medical
informatics in a significant way. In 1975 Shortliffe applied the tools and techniques of
expert systems to the problem of antibiotic prescribing with his system, MYCIN.(36)

MYCIN operated in three modes:

1. A consultation system which collected information, applied rules and

recommended therapy.

2. An explainer system which explains its recommendations in English.

3. A rule acquisition system, used by an expert to build rules for the knowledge

base.

Early evaluation showed it suggested acceptable therapy 75% of the time, but it

got better as more rules were added.

Most of these early systems would, broadly, take input of clinical parameters and
make suggestions of diagnoses or therapy. The ATTENDING system(37, 38) by Perry

10

Miller of Yale, however, took a different approach. The user of ATTENDING would, as
with the other systems, input clinical parameters, but he or she would also enter a
proposed plan. The system would then make comments and suggestions about the
plan, and it would be up to the user to change the plan based on these suggestions. This
method of interaction was called critiquing, and critiquing systems were eventually

developed for ventilator management, hypertension, and other clinical domains.

The systems discussed heretofore all have one thing in common: they are limited
to one specific area of medicine, such as antibiotic prescribing, or congenital heart
defects. The INTERNIST-I system, (16, 39) developed by Randy Miller, Harry Pople and
Jack Myers, on the other hand, attempted to provide diagnostic decision support across
the entire field of internal medicine. The system’s knowledge base, once fully
developed, comprised “15 person-years of work, 500 disease profiles, 3550
manifestations of disease.”(16) It was tested on 19 standardized clinical exercises
published in the New England Journal of Medicine, and did about as well as an average
doctor in proposing the correct diagnosis for the case, but not as well as the experts who
wrote the cases up. One key intellectual contribution of the INTERNIST system was the
way it abstracted the complex field of diagnosis into three concepts: evoking strength,
frequency and import. Shortly after INTERNIST, Octo Barnett, and others, released the
DXplain system.(10) The DXplain system is still available today, and has been updated
with a web-interface. INTERIST eventually evolved into the QMR system, though

neither system is still available.

11

All of the systems reviewed in this section fall into the category of standalone
decision support systems. That is, they were systems (usually computer programs)
which ran separately from any other system. To employ one, a clinician had to
intentionally and purposefully seek the system out, log into it, enter information about
his or her case, and then read and interpret the results. Such systems have several key
advantages over other types of clinical decision support systems. First, anyone can
make one. Doing so requires no special access to clinical data or clinical systems. There
is no need to standardize on anything: completely arbitrary systems can be used for
terminology, input structure, output format and knowledge representation. Such
systems are also easy to share — the creator could simply mail the tapes to anyone else
who wished to use his or her system (or, in the modern analog, upload the system to a
website). Along with these advantages, though, standalone clinical decision support
systems have some significant, and potentially disqualifying, disadvantages. First and
foremost, people have to seek the systems out, so the system can’t be proactive. But the
cause of many medical errors is lack of knowledge — people don’t know what they don’t
know. A system which isn’t proactive cannot be of assistance in such a case. The other
disadvantage is more practical — these systems were extremely inefficient to use. It
could take well over an hour to enter a case into the INTERNIST system, so its use was,
naturally, quite narrow. This limitation was especially bothersome where systems were
dealing with data, such as lab results, that were likely available in electronic form in

another system, but which still had to be manually entered due to a lack of integration.

12

1.3 DECISION SUPPORT INTEGRATED INTO CLINICAL
SYSTEMS

To surmount the significant problems with standalone clinical decision support
systems, developers began integrating such systems into other clinical systems, such as
computerized physician order entry (CPOE) and electronic health record (EHR) systems.
The HELP system(40), developed at the University of Utah, and used at LDS Hospital in
Salt Lake City was the first example of such integration. HELP had advanced Bayesian
decision support capabilities, and included modules for a variety of functions, including
many of the functions described above. HELP also served as the substrate for many
successful student projects in clinical decision support. One particularly notable project
was the COMPAS system(41, 42) developed by Dean Sittig. COMPAS was developed as
part of a trial of ECCO, a new ventilation modality for patients suffering from acute
respiratory distress syndrome (ARDS). The ventilation protocol was so complex that no
human could fully carry it out, so COMPAS was developed to provide computerized
execution of the protocol. It used the Blackboard Control Architecture, developed at
Stanford, to update and manage its internal state. The system interfaced with a variety
of other systems, and used data ranging from lab values, past ventilator settings and
clinical observations to recommend ventilator changes. The critically ill patients in the
trial had a 41% survival rate, compared to an historical rate of only 9%. The HELP

system also served as the basis for a critiquing system for blood ordering developed by

13

Reed Gardner(43) and a well-known antibiotic advising system developed by Scott

Evans.(44)

Around the same time as the HELP system, Clem McDonald of the Regenstrief
Institute in Indiana was developing the Regenstrief Medical Record System (RMRS).
This system used a large base of rules to make suggestions about care. The system was
evaluated in an experimental trial. In the first half of the trial, half of the users of the
RMRS system received suggestions based on the database of rules while half received no
suggestions. Dr. McDonald found that physicians carried out the suggestions they
received 51% of the time. However, when they didn’t receive suggestions, they carried
out the care only 22% of the time.(45) While this finding was, itself, quite important, the
most significant finding came after all the alerts were turned off. Almost immediately,
performance went back to baseline — the physicians who had been receiving the alerts,
and providing higher quality care, dropped down to the level they had been at before
the trial began. In other words, there was no learning effect. In a landmark paper,
McDonald argued that medicine had become so complex, and the amount of
information required to practice it effectively so expansive, that no un-aided human
actor could provide perfect care. Instead, he contended, some sort of ancillary aid, most

likely a computer, was needed.

In addition to HELP and RMRS, a variety of other clinical systems, mostly at
academic medical centers, have been used for clinical decision support. The WizOrder

system,(46-50) in use at Vanderbilt, and now available commercially as Horizon Expert

14

Orders from McKesson has been a fruitful development platform, as has BICS(2, 3, 51-
57). The Veterans Health Administration has also been a leader in the field of clinical
decision support with their Computerized Patient Record System (CPRS)(58, 59),
reporting spectacular outcomes for even simple interventions, and quickly rocketing
from a position as one of the lower-performing healthcare systems, to a quality

superstar.

Integrating CDS into clinical information systems solved some problems, while
creating others. Integrated systems have two key advantages over standalone systems:
first, since they're integrated, the user doesn’t have to reenter information which is
already stored electronically; and, second, such systems can be proactive — they can alert
a user to a dangerous drug-drug interaction or a dosing error without the user going out
and seeking assistance. The major downside of integrated systems is that there is no
way to share them or reuse their content. Standalone systems can be easily shared —
often by simply mailing a tape or emailing an executable program. In contrast, since
integrated systems are built directly into larger clinical systems they can’t be directly
shared with others who aren’t using the same clinical system. Also, integrating decision
support into a clinical system can create knowledge-management problems. It’s hard to
separate knowledge from code — if a clinical guideline is updated, it may be necessary to
review the entire source code for a clinical system to find the places where this guideline
is used. And finally, nearly everyone who has been successful at developing integrated

decision support systems has also developed their own clinical system. However, the

15

vast majority of hospitals and doctors buy rather than build clinical systems so this

limitation has kept decision support from seeing wide adoption.

1.4 STANDARDS FOR SHARING DECISION SUPPORT
CONTENT

In response to the inability to share decision support content, a variety of efforts
have been undertaken to standardize clinical decision support content. Foremost among
these is the Arden Syntax(60-64). The initial version of the Arden Syntax was developed
at a three day consensus meeting in June of 1989 held at the Arden Homestead in New
York from which the standard got its name. The standard combined the syntaxes used
by the HELP system and the RMRS system because these systems were (and to an
extent, still are) the two most prominent clinical systems. Both systems are discussed
above. Rules encoded in Arden Syntax are called Medical Logic Modules. The Arden
Syntax divides rules into three sections, called the “maintenance”, “library” and
“knowledge” sections. The maintenance section contains meta-data about the rule, such
as who owns it, when it was created, when it was last reviewed or updated, and its
validation status. The library section contains meta-data describing the clinical role of
the rule, its purpose, an explanation, keywords, and a citation to the original source of
the guideline or best practice that the rule encodes. The computable portion of the rule
is encoded in the knowledge section. The knowledge section contains subsections called

“type”, “data”, “evoke”, “logic”, “action” and “urgency”. In the current version of

Arden Syntax, type is always set to “data-driven” because this is the only mode of

16

decision support offered. The data section is used to read data values, such as recent lab
tests, medications lists, or clinical problems from the encompassing clinical system. The
evoke section contains one or more triggers that might cause the rule to fire, such as
“new potassium value stored”. The logic section encodes the rule, generally as a series
of if-then statements, and the action section encodes what the rule does when its logic
section is satisfied — in general, Arden Syntax has only been used to raise alerts. The
urgency section contains a number between 1 and 100 to encode how important that rule
is. The guidelines used to assign urgencies is implementation dependent, and not fully
defined in the specification. The Arden Syntax has had some limited commercial
success. Three clinical system vendors (Eclipsys, McKesson and Siemens), which
represent about a quarter of the overall clinical system market, offer some support for
the Arden Syntax, and a number of vendors, most notably Thomson Micromedex and
Zynx sell Medical Logic Modules. Arden syntax has two key limitations: first, it can
only be used to encode event-driven, patient-specific rules. For use cases such as drug-
drug interaction checking, or panic lab value alerting, this modality is sufficient.
However, because Arden Syntax is patient-specific, it cannot be used for population-
based decision support (such as a quality-of-care dashboard), and because it is event-
driven, it can’t be used for point-of-care reference or information retrieval support. The
other key limitation relates to vocabulary: Arden Syntax does not define a standard
vocabulary for things like lab tests, drugs or procedures. As a result, even if two clinical
systems support the Arden Syntax, if they use different terminologies, Arden Syntax
rules from one system cannot be used in the other system without modification. For

17

example, if one hospital’s clinical system stored a blood test result as “Serum
Potassium” and another hospital’s clinical system stored the same result as “K+” a
human-guided mapping would be needed. To assist in this mapping, Arden Syntax
wraps system-specific terminological expressions in curly braces, and automated tools
exist to help the implementer disambiguate these bracketed terms, but human
intervention is still required. This problem is so limited and well-known that it is
referred to simply as the “curly braces problem.” The Arden Syntax has been revised
several times since it was first created in 1989, and its second version has been accepted
as a standard by both the American National Standards Institute (ANSI), and Health

Level 7 (HL?7), a healthcare standards body.

Since the creation of Arden Syntax, numerous other standards for representing
and sharing decision support content and knowledge have been created. Many of these
efforts have stalled, but one effort in particular, the Guideline Interchange Format(65-69)
(GLIF) has gained limited traction. GLIF was developed at Harvard by Lucila Ohno-
Machado. Unlike Arden Syntax, which is mostly designed for alerts and reminders,
GLIF focuses on more complex multi-part guidelines, though simpler Arden Syntax type
rules can also be encoded in GLIF. GLIF takes a three-level approach to knowledge
representation. The top level, termed the “conceptual” level, gives a high-level
overview of the logic in a guideline, represented as a flow-chart. Figure 5 shows the
conceptual-level representation of a guideline in GLIF and is taken from one of the first

papers to describe the GLIF approach.(66) This conceptual level encoding is further

18

refined into what GLIF calls a “computable” form — a formal representation of the exact

logic of the rule.

fowasa X"

(Action Slep 2)
IG&I Occupation I I Get Age |

(Synchrongation Step 1)
waaill untl
data callected

(Condiond Stee 1) CAclion Slez 3

Yesp Pediatnc
Dosage

ion Step 4)
Health-Care O

Worker OR
Age > 657

Yesy | Adult

Dosage

FIGURE 5 - CONCEPTUAL LEVEL REPRESENTATION OF AN INFLUENZA VACCINE
GUIDELINE ENCODED IN GLIF.(66)

Like Arden Syntax, GLIF gives implementers working at the computable level
wide terminological berth. Computable level guidelines, though formally described, are
not designed to be directly executed in a clinical information system. Instead, GLIF
envisions that these computable level guidelines will be translated by a human to
executable code, termed the “implementable” level. This is a significant hurdle to the
wide adoption of GLIF, because it means that GLIF guidelines cannot be directly loaded
into a clinical system and executed — instead, they exist as a formal representation for an

implementer to design a clinical system specific guideline. In later work, a general-

19

purpose execution engine for computable level guidelines was described(69), but it has
not been implemented in any commercially available system. Like Arden Syntax, GLIF

has been revised several times — the current version is GLIF3.

Although GLIF is not currently available in any commercial system, it was pilot
tested from 2000-2003 by a group of three schools: Stanford, Columbia and Harvard,
calling themselves the InterMed Consortium(70). The consortium received a grant to
practice encoding and sharing rules in GLIF, and had some success in doing so. By pilot
testing the standard, the consortium learned many lessons about the scope and potential
of the language, and used many of these findings to refine and improve the language.
Although it is unclear if any of the shared rules were ever used in a production clinical
system, the lessons learned were valuable. The types of decision support systems which
can be implemented in GLIF very closely parallel the systems which Arden Syntax can
implement. Like Arden Syntax, GLIF is unable to support population-based decision

support systems or point-of-care information retrieval tasks.

Closely tied to GLIF, and also receiving a fair amount of attention is the
Guideline Expression Language(71, 72) (GELLO) project. GLIF and Arden Syntax were
both designed according to the imperative paradigm(73) of computer programming.
However, object-oriented programming(74) has, over the last couple of decades, quickly
outpaced imperative programming and GELLO is an object-oriented expression
language for clinical knowledge representation. GELLO can replace the imperative

expression languages of either Arden Syntax or GLIF, bringing them into this more

20

modern paradigm and, to the limited extent that GELLO defines standardized
terminologies, can relax some of the terminological issues affecting these systems (i.e.

the curly braces problem).

Many other standards for representing decision support content in a
standardized way exist. OpenClinical(75) provides a fairly comprehensive overview of
guideline and knowledge modeling standards, such as Arden Syntax, GLIF and GELLO.
HL7 manages a number of these projects, including Arden Syntax, as discussed above,
as well as the Decision Support Service, which will be discussed in the next section, and

a new and promising orderset standard.

The use of standards to represent, encode, store and share knowledge overcomes
many of the disadvantages of the natively integrated decision support systems
described in Phase 2 above. In particular, it provides a method for sharing the decision
support content, and separates the code describing such content from the more general
code which implements the clinical information system. However, standards such as
the ones discussed also have some inherent limitations and disadvantages. First, there
are sometimes too many standards to choose from. There are several dozen standards,
in varying stages of readiness and adoption, available just to represent simple alerts and
reminders. The second problem is that any encoding standard inherently constrains
what a user can encode. Standards are developed for a specific purpose, and their
specification is often narrowly constrained to that purpose. This works well in many

cases, but can be very limiting when a user wants to go beyond the initial purpose of a

21

standard. At the time that Arden Syntax was developed the goal was to develop a
system for patient-specific event-driven decision support and, as such, this is the only
type of decision support that can be encoded in Arden Syntax. This limitation is not
present in standalone or natively integrated decision support systems. Since their scope
is limited only by the underlying capabilities of the programming language the clinical
system is implemented in and, to the extent that the chosen language is Turing-complete
(as most modern languages are) any computable task can be implemented. The
particular nature of this limitation has not been widely acknowledged in the decision
support literature, at least in comparison to the other limitations that will be described
but it is extremely significant, insofar as it limits the type of medical logic that can be
modeled in certain knowledge representation formalisms. Terminology issues also
significantly limited the adoption of these standards — unless clinical systems and
decision support systems shared a common terminology standard, cumbersome
mapping between the terminology used in the clinical system and the terminology used
in the decision support system had to be undertaken. Finally, even if there were a
perfect standard for sharing decision support rules and guidelines, there would remain
significant unanswered questions about where such guidelines would be held, how they
would be owned, who would be liable for them, how they would be evaluated, and who

would keep them up to date.

22

1.5 SERVICE MODELS FOR DECISION SUPPORT

More recent efforts have separated the clinical information system and clinical
decision support system components of an integrated decision support system and
recombined them by using a standard interface. The first effort along this front was the
Shareable Active Guideline Environment project (SAGE).(76, 77) SAGE placed an
interface in front of the clinical system. A properly designed SAGE rule could interact
with any clinical system that made this SAGE-compliant interface available. The
approach that SAGE took, placing a standardized interface in front of the clinical
system, has been termed a Virtual Medical Record(78) (VMR) approach. The principal
advantage of this approach is that it solves the vocabulary problem — the SAGE virtual
medical record exactly specifies the vocabularies that will be used to access and process
the medical record, and to the extent that a clinical system uses different terminologies,
it is required to provide a suitable mapping. This approach is extremely promising,
however, it has some significant shortcomings. First, it makes event-driven logic more
difficult. In SAGE, it is the job of the decision support module to query the clinical
system for data to act on, while the clinical system is relegated to a passive role —
providing data upon request. Many types of decision support are event-driven — for
example, a rule that checks for correct drug dosing should only fire when a new drug is
ordered, and the SAGE model makes such event logic very complex. There is no clear

method for a SAGE drug dosing decision support rule to know that a new drug has been

23

ordered, and that it should then run. Various back-channels have been proposed and
prototyped which would allow a clinical system to alert a SAGE module that an event
has occurred, but they have generally been too cumbersome. Also, like Arden Syntax, it
requires a standard guideline format, necessarily constraining the type of decision
support that can be implemented in SAGE. The SAGE project initially gathered great
momentum, but it has since mostly lost steam, in part because of a belief by some
vendors that it was too heavily dominated by IDX (IDX Systems Corporation,
Burlington, VT, now owned by GE). Nonetheless, the approach described by SAGE is

promising and it will inform in some significant ways the approach of this dissertation.

SEBASTIAN, a more recent system, has taken the opposite approach from
SAGE.(79) It places a standardized interface in front of clinical decision support
modules, and makes no demands on the clinical system to store data in any particular
way. In this model, any clinical system which understands the SEBASTIAN protocol
can make queries of centralized decision support services. SEBASTIAN began as a
student project, but progress is now continuing on it through HL7, where it is being
reviewed as the HL7 Patient Evaluation Service.(80) SEBASTIAN maintains most of the
same advantages of something like the Arden syntax, while freeing the user from the
restrictions that a statically defined knowledge representation format imposes.
Moreover, since the modules are located on the Internet, they can be shared by more
than one hospital, allowing for greater efficiency. However, SEBASTIAN puts a heavy

onus on the consumers (i.e. clinical systems) of the services it provides. First, although

24

SEBASTIAN is standardized, each knowledge module is free to require any given set of
data, which the clinical system must fetch and provide. Moreover, two SEBASTIAN
knowledge modules may use different vocabulary standards, forcing the consumer of
the service to provide the same data more than once in different encodings (and
necessitating that the clinical system provide support for all the vocabulary standards
chosen). Also, SEBASTIAN requires that a service consumer move patient data to the
service, which some hospitals or providers may be reluctant to do. Further, because the
amount of patient data needed may potentially be large, performance issues may
manifest, although in early testing to this point, performance has been found to be

acceptable.(79)

Both of these interface-oriented systems provide some significant advantages
over the systems which require a standard representation, and both are quite promising.
However, each system constrains itself to standardizing only one of the two interfaces at
the junction between a clinical decision support system and a clinical system (i.e. the
interface into the decision support system, and the interface into the clinical system),
which limits their potential for success. Also, both systems principally look at only one
clinical system and one decision support system at a time, although, in the real world,
knowledge about the patient (that which is stored in a clinical system) and knowledge
about medicine (that which is stored in a decision support system) can be fragmented

across several, or as many as dozens of sites.

1.6 CONCLUSIONS ON THE LITERATURE

25

There is a clear arc in the evolution of clinical decision support. The first clinical
decision support systems were standalone, while later systems were integrated. The
inability to share integrated decision support systems led to attempts at standardizing
knowledge representation but the limitations these attempts faced led to interface-
oriented approaches. The process was evolutionary and all of these approaches had
unique advantages and disadvantages, which are described in detail above. That said,
there were some common limitations that almost all the approaches faced and that no
single approach was able to entirely surmount: first, fixed knowledge representations
systems inherently circumscribe the type of knowledge that can be represented in them;
second, there are serious terminological issues; third, patient data may be spread across
several sources with no single source having a complete view of the patient; and fourth,
and perhaps most important, significant difficulties exist in transferring successful
interventions from one site to another. Although a small number of institutions had
great success with decision support, this success could not be (or was not) widely
replicated in community settings. The next chapter proposes a new distributed
architecture for clinical decision support which endeavors to overcome these limitations.
This architecture takes advantage of burgeoning efforts to create interoperable clinical

systems, and to develop a National Health Information Network (NHIN).

26

CHAPTER 2: TOWARDS A NEW
MODEL OF CLINICAL DECISION
SUPPORT

27

2.1 ANEW ARCHITECTURE FOR DECISION SUPPORT

This dissertation proposes a new architecture for decision support called the
Service-oriented Architecture for NHIN Decision Support, or SANDS. SANDS is
designed to surmount the limitations of existing architectures described in the previous
section. It is hypothesized that SANDS can provide significant advantages over existing
decision support architectures in the areas of transferability, scalability and integrability,

defined as:

Transferability: The ability to take a known-successful intervention in operation at one

site, and transfer it to another site.

Scalability: The ability to provide a wide variety of kinds of decision support (such as
patient level alerts and reminders, information interventions, panel or population-wide

interventions, patient-oriented decision support, etc.) within a given architecture.

Integrability: The ability to readily integrate a decision support system into a clinical
system. This covers issues such as proper terminology and data-field mapping as well

as issues like supportability and maintainability of knowledge content.

The purpose of this dissertation is to propose, describe, prototype and evaluate
such an architecture. A loose schematic for the proposed architecture is given in Figure
6. This architecture draws on the work done for both the SAGE and SEBASTIAN

projects, with significant enhancements. In this architecture, an interface is provided in

28

front of both the clinical system and decision support system components, instead of in
front of one or the other, as provided by SEBASTIAN and SAGE. Moreover, this
architecture explicitly contemplates the case where a patient’s record is spread across
multiple clinical systems, and the parallel case where several clinical decision support
systems are needed to fully inform a decision. The case where a patient’s record is
spread across several systems and needs to be reassembled to provide a complete
clinical picture is the exact case that efforts to create a National Health Information
Network (NHIN) are targeting and, as such, the patient data half of the architecture will

draw heavily on existing developments in the NHIN space.

@ @ CIS

CIS

CIS

Abstraction
UonoRISqY

CIS

FIGURE 6 - A SCHEMATIC REPRESENTATION OF THE PROPOSED ARCHITECTURE.

On the decision support network side, one could imagine a case where a
physician would like to query several different decision support service providers for

different kinds of decision support for a given patient. For example, if the physician

29

were prescribing a new drug to a diabetic patient, he or she might want to query a
guideline service provided by the American Diabetes Association for the latest
guidelines in diabetes management, and might also want to send the proposed
prescription to a drug-interaction checking service, such as the one provided by
Thomson Micromedex. This architecture also explicitly allows for the case where one
decision support system queries another — for example, the American Diabetes
Association might develop a decision support module for evidence-based diabetic care,
and that module may in turn depend on another module, provided by the American

Heart Association, that defines hypertension.

2.2 AN EXAMPLE USE CASE

To fully understand this architecture, it is perhaps best to operationalize it.
Figure 7 shows a simple case of this architecture. In this case, there are two providers:
Dr. Anderson, a primary care provider, who uses Epic’s EHR; and Dr. Baxter, a
gastroenterologist who uses the Logician EHR (now called the Centricity Physician
Office EHR [GE Healthcare, Waukesha, WI]). They share a common patient in Frank
Jones. Mr. Jones sees Dr. Baxter for management of severe Gastroesophageal Reflux
Disease (GERD), but today presents to his primary care provider, Dr. Anderson
complaining of a sore throat, which Dr. Anderson diagnoses as streptococcal
pharyngitis. Dr. Anderson plans to prescribe erythromycin to treat the infection, but
first asks Mr. Jones what medications he’s on. He reports that he is taking Lipitor and

Aspirin, as prescribed by Dr. Anderson, as well as Prevacid for his GERD, as prescribed

30

by Dr. Baxter. Seeing no danger, Dr. Anderson initiates a prescription for erythromycin
in her clinical system, but before the prescription is accepted, the decision support
network is queried. A message, containing the intended prescription, as well as a
pointer to Mr. Jones’ record in the NHIN is sent to a drug checking service that Dr.
Anderson subscribes to. This service sends a medication list query to the NHIN
interface which uses its record locator service to find that Mr. Jones has records in two
disparate clinical systems: those of Drs. Anderson and Baxter. The NHIN interface
requests the medication lists in these systems, aggregates them and returns them to the
drug checking service. This service notices, however, that Dr. Baxter’s medication list
indicates that Mr. Jones is actually on Propulsid for his GERD, not Prevacid, as Mr. Jones
had indicated to Dr. Anderson. There is a very severe and potentially fatal interaction
between Propulsid and Erythromycin, and the system provides this information to Dr.
Anderson’s clinical system which raises an alert and blocks the prescription. Although
this may seem like a simple case, it's important to note that, even though the FDA
engaged in a significant outreach and public relations campaign to make doctors aware
of this interaction it killed at least 78 people, and is suspected in the deaths of 302 others.
In the end, the FDA had to withdraw Propulsid from the market because it was unable
to reliably prevent the two drugs from being co-prescribed. This decision was necessary
because, in cases such as this one, where information is incomplete, this reaction is not
always preventable. A decision support architecture such as the one described herein
(or another safety mechanism, such as pharmacist verification) may be necessary to
reduce the risk of certain drugs to a level that would justify keeping them on the market.

31

2.3 ARCHITECTURAL KEY POINTS

This example case highlights several key points about this architecture.

CDS Network Interface

NHIN Interface

Dr. A Dr. B
Epic Logician

FIGURE 7 - DRUG INTERACTION CHECKING: A SIMPLE CASE OF THE DECISION SUPPORT
ARCHITECTURE.

First, this architecture is defined entirely by interfaces. There are no restrictions
on the internal knowledge representation approach taken by the decision support
components, and there are no restrictions on the way that the clinical systems store
clinical data internally. Aslong as the systems export the appropriate interfaces, they
are compliant with the requirements of this architecture. This interface-driven approach
is sometimes generically called a Service Oriented Architecture (SOA). SOAs are

currently making significant inroads in the healthcare IT space. Kaiser Permanente (81),

32

MD Anderson Cancer Center (82), the Mayo Clinic (81) and the Partners Healthcare
System (83) have all announced plans to migrate their clinical systems to an SOA. None,
however, have yet announced plans to fully migrate their decision support to an SOA,
largely because there is no clear architecture over which to do so. This dissertation aims

to fill that gap.

2.4 THE ROLE OF STANDARDS

Building an SOA for decision support requires a significant number of standards.
A sample of the standards that might be required is shown in Figure 8. The standards in
this figure fall roughly into two groups: healthcare informatics standards, such as HL7
(84-87), SNOMED (88), NCPDP SCRIPT (87), RxNorm (89, 90) and NDC (91, 92) which
might be used to describe drugs, or transfer patient data; and SOA-related standards,
such as SOAP and XML, which are used to transport data between services, and UDDI
and WSDL, which are used for discovery of services, and interface definition.
Depending on the application domain, other standards may also be required. Standards
are not a major focus of this dissertation, in large part because robust standards
harmonization activities, coordinated by the ANSI Healthcare Information Technology
Standards Panel (HITSP) under contact from ONC, are currently underway (93, 94). The
expected result of these activities is a set of harmonized standards ready for adoption.
Because the HITSP process is ongoing, this dissertation will preferentially use standards
approved by HITSP, augmented by other standards as needed. After the dissertation is

complete, it is anticipated that the architecture described will be submitted for

33

standardization, and this will be the appropriate time to consider standards related

issues.

NCPDP —
SCRIPT SNOMED

CDS Network Interface
UDDI WSDL

NHIN Interface
Sample Sample
CIS1 CIS 2

FIGURE 8 - A SAMPLE OF THE STANDARDS WHICH MIGHT BE REQUIRED FOR SUCH A
DISTRIBUTED DECISION SUPPORT ARCHITECTURE.

2.5 THE NHIN INTERFACE

As discussed in the previous sections, there are two key interfaces at the core of
the SANDS architecture: the NHIN Interface and the CDS Network Interface. This
section gives an overview of the NHIN Interface, while the next section gives an

overview of the CDS Network Interface.

34

At present, there is, of course, no actual NHIN, so for the sake of this dissertation
it will be necessary to give some consideration to both what an NHIN might do in
general terms, and also to current early efforts towards building an NHIN.
Fundamentally, an NHIN is a nationwide network for sharing patient information. Ata
minimum, an NHIN would consist of a set of data sources, a way of querying those
sources, and some system for managing privacy and security through a series of access
controls. Having an NHIN enables decision support in two ways: first, an NHIN
provides a more complete view of a patient’s medical record than any single clinical

system is likely to, and second, an NHIN is likely to present data in a standard format.

Perhaps the most comprehensive thinking about what the role and components
of an NHIN might be is given in the Markle Foundation’s Common Framework (95, 96).
The Common Framework is a set of implementation guidance developed for both local
health information exchanges (like RHIO’s) as well as composite exchanges like an
NHIN. A schematic of the Common Framework is given in Figure 9. This figure is
reproduced from the Common Framework document (96) by license from the Markle

Foundation.

35

|
[l

Policy Guides: Technical Guides:

How Information is Protected How Information is Exchanged

FPJI The Architecture for Privacy ina Networked T The Cammon Framewaork: Technical lssues]

Health Inform ation Environment and Requirements for [mplamentation
[pa Maodel Privacy Policies and Procedures fu" Headth Information Exchamge:)
Health Information Exchange T2 Arc hitecture Implementation Guide
- ”
FF‘31 Hotification and Consent When Using a | []
Record Locatnr Service T3 | tedication Hstory Standards
5 # N il
'_F’ 4 1 Comectly Matching Fatiens with] [
Thelr Racards T4 | Laborstory Resuks Standarnd
J J L
F5 | Authentication of System Usars T5 | Background tssues on Bata Cuality)
RN Tl sconmn . Tl Chrm [T | Rewrd Locstor Sanice: Technical Bsckgraund
. . J from the Massachuse®s Prootype Com munity
\

[Auditing Access to and Use of a Health] E5 5T T TES TSRS T T T |
P7 } Tnfiactitation Bibhanion ‘ Futurs Technical Guides i
HH | Breaches of Confidential Health Informiation
[=]=] A Comman Framework for Nebworked]

Persona Health Infarmation
e e R e e A
Future Policy Guides
T Pt -

Model Contractual Language

M1 Key Topics in a Model Contract for Heakth M2 A Model Contract for Health
Information Exchange Information Exchange

FIGURE 9 - MARKLE FOUNDATION COMMON FRAMEWORK (REPRODUCED WITH PERMISSION).

As shown in the figure, the Common Framework actually presents two parallel
sets of guidance: policy guides that lay out important policy questions and issues that
developers of health information exchanges must consider, and technical guides that

provide specific implementation guidance, specifying how Common Framework

36

compliant exchanges should operate. The Common Framework has been adopted by a
number of local information exchanges and is the basis for a prototype NHIN funded by

ONC.

2.6 THE DECISION SUPPORT NETWORK INTERFACE

In addition to the NHIN infrastructure components described in the previous
section, the SANDS architecture also requires a number of components, interfaces and
protocols relating directly to decision support. This is the core focus of this dissertation,

and most of these components are developed de novo. These components include:

Invocation method: Each decision support service will need to expose an API
publicly, to allow clients (whether they be clinical systems, other decision support
services, or users directly) to request the service. This would frequently be a triggering
event in a clinical system, but could be any event that the decision support service

developer makes available and a client supports.

Response Format: Many invocations of a decision support service require a
response, such as an alert in response to a query to a drug interaction service. However,
there is currently no formal way of describing such responses. The development of a
core taxonomy of response actions and a format for describing them is a key part of this

dissertation.

Discovery service: A network such as this could potentially support hundreds or

thousands of distinct decision support services. Most users will rely on a human curator

37

to sort through these services and make recommendations about the ones to use, but an
automated mechanism to discover and catalog such services is also desirable. This
discovery service will be based on the Universal Discovery, Description and Integration

(UDDI) protocol, which is commonly used in SOAs.

Interface service: Once a desired decision support service has been located it will
be necessary to determine the interface standards (API) it uses. The Web Service
Definition Language (WSDL) from the World Wide Web Consortium (W3C) will be

used for this purpose.

Mirroring service: Many decision support applications are real-time so
performance is important. Although a pure, distributed SOA model can be optimized
for performance, sometimes networking constraints (particularly latency) can limit
performance. A content distribution and mirroring service, based on existing
distribution systems for web and Internet content (such as the system employed by
Akamai (97)) will be developed to allow for local or near-local mirroring of content with

proper synchronization.

The two most critical and novel components of this architecture are the
invocation method and the response format. Because of their criticality, I will first
develop an empirical functional taxonomy of clinical decision support, which will serve
as the theoretical underpinning for these two components. This taxonomy will be

described in Chapter 3.

38

2.7 ADVANTAGES OF THE NEW ARCHITECTURE

There are significant advantages to using an SOA for clinical decision support.

While these advantages are discussed and developed throughout the Methods, Results,

Discussion and Conclusion chapters of the dissertation, it is perhaps instructive to frame

the next several chapters by previewing some of them now:

1.

Modularity: An SOA provides more modularity than other architectures,
allowing for work to be distributed. With a fully realized architecture specialty
societies might, for example, each produce guidelines in their area of expertise,
but make them available for consumption by anyone.

A Market for Decision Support: Commercial services can play a role in an SOA,
by providing services and content for which they charge a fee.

Trialability / switchability: An SOA reduces the cost and risk of trying new
decision support systems: a hospital or healthcare provider could always connect
to a new decision support service and try it out, but could freely disconnect if it
did not perform as desired.

Maximal Expressiveness: An SOA specifies the interfaces a service must
provide, but imposes no restrictions on its implementation. By contrast,
standards like the Arden Syntax, GLIF and GELLO limit content developers to
only those intervention types that can be expressed within the bounds of that

particular knowledge representation formalism.

39

5. Alignment with Interoperability: Finally, the key advantage of this architecture
is its potential to “unstick" progress on decision support, by uniting the direction
of clinical decision support with promising near-term efforts to improve

interoperability.

The American Medical Informatics Association (AMIA) and the American
College of Medical Informatics (ACMI) recently conducted a survey to identify grand
challenges and focus areas. This survey identified interoperability as the number one
grand challenge for informatics and clinical decision support as the number four
challenge (98). This architecture lies at the intersection of, and makes significant

contributions to both these areas.

Further, ONC has taken a keen interest in how clinical decision support would
work in an NHIN, and recently commissioned a national task force of decision support
experts to discuss these issues and provide consensus recommendations. The author
was invited to join the task force steering committee staff and is an author of its report
(99). A recent meeting of ACMI also discussed these issues. Both groups focused much
of their discussion on whether there should be a central repository of rules in a format
such as Arden Syntax, or whether a different architecture was needed, and both groups
seemed to lean, at least tentatively, towards an alternate architecture, without specifying
what that alternate architecture should be. The architecture described here meets the

consensus parameters.

40

41

CHAPTER 3: A TAXONOMY OF
DECISION SUPPORT FUNCTIONS

42

3.1 A TAXONOMY OF DECISION SUPPORT FUNCTIONS

As discussed in the previous section, a rigorously developed taxonomy of
decision support functions is necessary to support the development of a set of protocols
and messages to be used as the decision support interface for the proposed architecture.

This chapter describes such a taxonomy and how it was developed.

This chapter is based on an article titled “A Description and Functional
Taxonomy of Rule-Based Decision Support Content at a Large Integrated Delivery
Network”, authored by myself, Howard Goldberg, MD and Tonya Hongsermeier, MD
of Partners HealthCare and Blackford Middleton, MD, MPH, MSc of Partners
HealthCare and the Department of General Internal Medicine and Primary Care,
Brigham & Women’'s Hospital, Harvard Medical School. This paper was originally
published in the Journal of the American Medical Informatics Association (] Am Med
Inform Assn: 2007; 4; epub ahead of print April 25, 2007). All right, title and interest to
the article remains the property of the American Medical Informatics Association

("AMIA"). This article is republished here with the express permission of AMIA.

3.2 PRIOR TAXONOMIES IN CLINICAL DECISION
SUPPORT

A number of clinical decision support taxonomies have been proposed. Most are

based on expert opinion or designed for use in a specific task. One widely used

43

prescriptive taxonomy is that proposed by Osheroff, Pifer, Teich, Sittig and Jenders in

their book, Improving Outcomes with Clinical Decision Support: An Implementer's

Guide (100). They lay out a taxonomy of clinical decision support methods:

¢ Documentation forms / templates

¢ Relevant data display

e Order creation facilitators

e Time-based checking

e Protocol / pathway support

e Reference information and guidance

e Reactive alerts and reminders.

This taxonomy is very useful for considering which methods of intervention
might be useful to solve a particular clinical or quality problem, however, it is not as

useful for those who are seeking to develop or share a decision support system.

Other researchers have taken an empirical approach to developing taxonomies.
A recently published paper by Berlin, Sorani and Sim (101) develops a taxonomy based
on a review of 58 randomized controlled trials of clinical decision support systems
entailing 74 clinical decision support scenarios. They identify five categories: context,
knowledge and data source, decision support, information delivery and workflow. The
context category describes the “setting, objectives, and other contextual factors of a
system’s use” and includes taxa such as clinical setting and clinical task. The knowledge
and data source category looks at the sources of clinical knowledge (such as guidelines),

44

and patient data source (EMR, direct entry into the system, etc.). The decision support
category looks at the reasoning aspect of the system, such as the type of inference being
made and the complexity of the recommended action. The information delivery category
comprises taxa such as delivery format and mode — this category is particularly important
because not all of the decision support systems reviewed in the paper were fully
computerized — some, for example, resulted in printouts to be inserted into paper charts.
The final category in the Berlin taxonomy is workflow, which includes taxa such as the
user of the system (some systems target clinicians, while others are used directly by the
patient), and system-workflow integration. This taxonomy provides an insight into the

design and intent of clinical decision support systems.

Another taxonomy has been proposed by Wang, Shabot, Duncan, Polaschek and
Jones, based on their experience implementing a CPOE system at Cedars-Sinai hospital
(102). Their hierarchy has three levels. The top level describes the benefit of a clinical
rule: process improvement, policy implementation, error-prevention and decision-support.
Under these benefits are a set of domains, such as laboratory (under the process
improvement benefit), pharmacy (under the error-prevention and decision-support benefits)
and JCAHO requirements (under the policy implementation benefit). The lowest level of
the taxonomic tree is termed “class.” Classes are used to logically organize clinical rules
by content type and include such elements as drug-drug interaction checking, automated

orders and guided dosing.

45

The purpose of this taxonomy is to guide the organizational aspects of clinical
decision support. For example, the authors used the benefit classifications in
presentations about their CPOE system to help end users understand the advantages of
CPOE. The domain classification is used to determine the “owner” of a piece of decision
support content — for example, the pharmacy and therapeutics committee at the hospital
is responsible for decision support assigned to the pharmacy domain. The lowest level,
class, is useful for knowledge management and implementation tasks. Unlike the Berlin
taxonomy above, which is best-suited for decision support research, this taxonomy
would be most useful for applied use, in managing or administering a decision support

program.

The taxonomy presented here differs from the taxonomies described above in
two key ways. First, it is a functional taxonomy. It does not characterize the content or
purpose of the decision support interventions in the system, as the taxonomies by
Osheroff, Berlin and Wang do. Instead, it describes the functional requirements of
clinical decision support — those features that must be made available to decision
support systems so that they can carry out their activities. Such a taxonomy is useful for
designing clinical systems, since it is generally the clinical system which exposes these
features, but it is also useful for developers of decision support standards and
knowledge representation formalisms, as well as for those who might wish to design a
decision support service, because the elements of the taxonomy correspond to the input

and output requirements of such a formalism or service. In addition to its unique

46

perspective, this taxonomy also differs from previous work because of the breadth of its
empirical basis — it is derived from a comprehensive analysis of the decision support
content in use at Partners Healthcare System, a large integrated delivery network with a

long history of computer-based, point-of-care decision support (103, 104).

3.3 METHODS FOR DEVELOPING A TAXONOMY

SITE AND CONTENT DESCRIPTION

Partners Healthcare System is a federation of hospitals in the Boston
metropolitan area. Its original founding members were the Brigham and Women'’s
Hospital and the Massachusetts General Hospital, both teaching affiliates of Harvard
Medical School. Since its founding in 1994 Partners has grown and its current

membership is described in Table 1.

Members

Brigham and Women's Hospital*t
Massachusetts General Hospital*t
Faulkner Hospital

McLean Hospitalt
Newton-Wellesley Hospital

North Shore Medical Center

MGH Institute for Health Professions
Partners Community Healthcare, Inc.
Partners Continuing Care

* Founding Members
t Teaching Affiliates of Harvard Medical
School

TABLE 1 - MEMBERS OF PARTNERS HEALTHCARE.

47

Each member hospital maintains control over its own clinical systems and uses a
combination of centrally or locally managed information system resources. For example,
ancillary departmental systems are managed locally, but may employ services from the
centrally managed enterprise master patient index. In 2002 Partners launched an
enterprise knowledge management effort with the goal of moving all decision support
content in use at the sites into a centralized knowledge management portal. This portal
now contains most Partners content, though a small amount has not yet been moved,
and remains hard-coded in applications. This portal provides a robust environment for
collaborative development and review of clinical knowledge. The portal has been
described in depth elsewhere (105). The portal does not contain directly executable
content. Instead it contains knowledge specifications in various forms which can be

used by developers and implementers of clinical systems.

STUDY DESIGN

The authors conducted an exhaustive review of the contents of the knowledge
management portal in order to develop the taxonomy. Four functional categories were

identified a priori:

e Triggers: The events that cause a decision support rule to be invoked. Examples
of triggers include prescribing a drug, ordering a lab test, or entering a new
problem on the problem list.

e Input data: The data elements used by a rule to make inferences. Examples

include lab results, patient demographics or the problem list.

48

¢ Interventions: The possible actions a decision support module can take. These
include such actions as sending a message to a clinician, showing a guideline or
simply logging that an event took place.

e Offered choices: Many decision support events require users of a clinical system
to make a choice. For example, a rule that fired because a physician entered an
order for a drug the patient is allergic to might allow the clinician to cancel the
new order, choose a safer alternative drug, or to override the alert and keep the
order as written but provide an explanation.

These categories were identified because, together, they fully describe and
specify the components of an interface between a clinical decision support system and a
clinical system. Similar categories are seen in other efforts, particularly knowledge
representation formalisms and decision support services. For example, Arden Syntax
(61) rules are broken down similarly, with the Arden Syntax “evoke” section
corresponding to our trigger category, the “data” section corresponding to our input

data category, and the “action” section corresponding to our interventions category.

The individual elements, or taxa, inside the categories were determined
empirically over the course of the review, and each rule in the knowledge management
portal was assigned to the appropriate taxa. After the review was completed the taxa
were reviewed and refined using a modified card sort method. In the final model there

were great similarities between the taxa identified by this methodology and those

49

identified in other similar efforts (56, 61, 65, 106) and to concepts frequently considered

in informatics, such as elements in the HL7 Version 3 Reference Information Model (84).

One challenge encountered in conducting this study was determining the unit of
analysis. For the purpose of this analysis we introduce two concepts: the rule type, and
the rule. It is perhaps easiest to define these terms by example. At Partners there is a
single piece of logic which fires when a patient's quinidine level exceeds 7.0 pg/mL. This
would be counted as a single rule type and also as a single rule. Another module,
however, encodes 1,561 drug substitutions, all of which use the same logical structure.
This would be counted as one rule type, but 1,561 rules. The major unit of the analysis
for this paper is the rule type; however, all tables in the results section also present rule
counts. The rule type was chosen because it is the unit of knowledge management: each
rule type has a source, an author and one or more responsible persons, and each rule
type follows a management lifecycle. This challenge of choosing a unit of analysis has
been encountered in other studies (56), however, in the end it poses only a moderate

challenge since the universe of taxa is the same regardless of each taxon's frequency.

3.4 DECISION SUPPORT TRIGGERS

A total of nine triggers were identified, and they are described in Table 2. The
distribution of triggers is extremely skewed — the top three triggers account for 94% of
all rule types (and 94% of all rules). The top trigger is new order entered. Many common
decision support interventions, such as drug-drug interaction checking and test

appropriateness verification, all fire when a new order is entered. The second most

50

common trigger is lab result stored, such as a rule that alerts a clinician whenever a
potassium of greater than 5 mEq/L is stored. The major difference between the top two
triggers relates to their synchronicity — rules triggered by order entry are almost always
synchronous - that is, their result is displayed to the clinician as part of the ordering
process. Lab result triggered rules, however, are asynchronous by definition.
Depending on the clinical severity of the result, and the clinical system that the rule is
executing within, these rules may page a clinician, send an email, alert a nurse, generate
a patient letter or simply add a low-profile flag to a patient’s electronic medical record

(107).

The third trigger, outpatient encounter opened, is fairly specialized. Almost all
rules with this trigger occur in the Longitudinal Medical Record system (LMR). These
LMR rules generally relate to prevention — for example, whenever a new encounter is
opened, a rule fires which checks to see if that patient is up to date with current NCEP
cholesterol management guidelines (85). If the patient is not, an alert is shown along
with appropriate remedial actions, such as ordering a cholesterol test or starting the

patient on a statin.

The remaining triggers are much less frequent, and generally self-explanatory,
though a couple merit special discussion. The user request trigger relates to a number of
guidelines and order sets which do not have any automatic trigger — instead, a user must
intentionally request them. The time trigger has a number of different uses. For

example, one rule fires every morning at 9:00 am to check the currency of lab values.

51

Another rule fires one week after an abnormal mammogram, prompting the clinician to

contact the patient to confirm that appropriate follow-up measures are underway.

A single rule can have multiple triggers and many do. For example, one rule
watches for hypokalemia in patients on digoxin. The rule is triggered whenever digoxin
is ordered (a new ordered entered trigger), and also whenever a new potassium result is

stored (a lab result stored trigger).

Rule

Trigger Types Rules Example Rule

Order entered 104 6777 When digoxin is ordered, check potassium.

Lab result stored 93 998 When glucose stored, check value.

Outpatient encounter 42 48 When a patient presents for a routine physical,

opened order cholesterol test if needed.

User request 4 152 When user requests them, show antibiotic
utilization guidelines.

Time 4 25 24 hours since admission, check for a medication
list.

Admission 3 151 When a patient is admitted for congestive heart
failure, offer standard therapy.

Problem entered 1 145 When asthma is diagnosed, request date of onset.

Enter allergies 1 3 When a penicillin allergy entered, check drug list.

Enter weight 1 3 When a patient's weight is entered, ensure that it is

reasonable.

TABLE 2 - TRIGGERS FOR DECSION SUPPORT.

3.5 INPUT DATA ELEMENTS FOR DECISION SUPPORT

With fourteen taxa, input data is the largest category in the taxonomy. Table 3
shows the category. While still quite skewed, it has the largest spread of any category
with eight of the fourteen taxa being represented by at least ten rule types. The most

frequent input data elements consumed by rules are lab results and medications, exactly

52

mirroring the two most common triggers. Many rules use both of the data elements,

such as the rule described above, which monitors potassium in patients on digoxin.

The third most common data element is hospital unit. Many inpatient rules apply

only to patients in certain units — for example, patients in the coronary care unit have

more narrow cardiac parameters than patients in other units. There are also certain

drugs and procedures which can only be ordered in specific areas — for example,

succinylcholine can only be ordered in the ICU.

Input data Rule

element Types Rules Example Rule

Lab result / 126 2087

observation Check if latest HbA1C is >6%.

Drug list 108 4752 Active prescription for fluoxetine.

Hospital Unit 85 906 Coronary care unit.

Diagnosis / 43 1587 Decrease dose of cefuroxime in patients with renal

Problem insufficiency.

Age 39 3131 Warn about nifedipine use in the elderly

Non-drug orders 15 694 Patient has an active TPN order.

Gender 12 1595 Only suggest a mammogram in females.

Family history 10 10 Suggest lipid panel more frequently for patients
with family history of MI.

Allergy List 9 649 Check for a penicillin allergy when amoxicillin is
prescribed.

Weight 8 1310 Suggest lipid panel more frequently for overweight
patients.

Surgical history 8 8 Do not recommend mammogram with history of
bilateral mastectomy.

Reason for 2 148 Suggest default orders when a patient is admitted

admission for myocardial infarction.

Prior visit types 2 2 Check for ophthalmology visit in the past year for
diabetic patients.

Race 1 1 Recommend a calcium channel blocker for patients

with black race.

TABLE 3 - INPUT DATA ELEMENTS CONSUMED BY DECISION SUPPORT RULES.

53

As would be expected, a variety of demographic data are also used in decision
support, such as age, gender and race (which is used in only a single rule, which
recommends calcium channel blockers in black patients). Family history is also used — it
is encoded at Partners, by disease and severity. The mammogram rule would
recommend more frequent mammograms, beginning earlier, for a woman with an
extensive family history of breast cancer. The rest of the data elements used are
explained in the table. It is worth noting that there are very few natural language
processing systems in use at Partners, so none of the rules used in developing this
taxonomy used clinical notes or reports directly, although some systems did use specific

coded findings, which are exposed as observations.

3.6 DECISION SUPPORT INTERVENTION TYPES

The interventions category is the smallest category. The most common member
of the category is the most complex — notification. All forms of notification involve
communicating a piece of information to a responsible clinical user, but these
notifications can take many forms depending on the urgency of the information and the
application context. These forms are described in Table 4. In addition to a variety of
notification forms, notifications frequently offer the user choices. These choices

represent the fourth category of the taxonomy, and are described in the next section.

Synchronous Asynchronous

Urgent Pop-up messages Paging, visual alerts on the hospital unit

54

Non-urgent | Informational messages Email, clinical inbox
TABLE 4 — DIMENSIONS OF NOTIFICATION

After notification, logging is the most common intervention. Logged messages
are stored by the application and are available for analysis and review but, unlike
notifications, they are not shown to the user and do not have any associated choices.
Logging is frequently used in surveillance rules and monitoring rules, particularly for
adverse drug events and in research studies. Providing defaults and picklists as an
intervention is frequent with drug dosing rules. The Nephros system for renal dosing
(108) and the Gerios system for geriatric medication (109) use make substantial use of

this response type. The remaining interventions are less frequent, and all interventions

are described in Table 5.
Rule
Intervention Types Rules Example Rule
Notify 214 6748 Alert the user when a patient's potassium is >5.
Log 58 173 Log all uses of ketorolac for utilization review.
Provide defaults / Compute recommended doses for a patient with
picklists 21 3142 renal impairment.
Show Guidelines 15 740 Show guidelines for use of antibiotics.
Collect freetext 8 391 Request a reason for overriding an alert.
Get approval Send order to endocrinology when growth
3 662 hormone is ordered.
Show data entry Request details when asthma is added as a
template 2 147 problem

TABLE 5 - INTERVENTIONS BY DECISION SUPPORT RULES.

3.7 RESPONES OFFERED TO THE USER

As mentioned above, the offered choices category may be considered a child of
the notify intervention. The members of this category are listed in Table 6. The most

common offered choice is to write an order. This comes up in a variety of clinical

55

workflows — for example, Partners has a therapeutic substitution rule which
recommends famotidine when other equitherapeutic but more expensive Hz-receptor
antagonists are ordered — this recommendation of famotidine would qualify as an order
suggestion. This type also occurs in lab result oriented workflows. For example, when a
low potassium value is stored for a patient on digoxin, clinicians are given the option of
ordering potassium supplementation. The next two most frequent choice types, defer
warning and override rule/keep order both dismiss the notification received without
changing the user’s current course of action — the defer warning choice dismisses the
warning for a period of time, while the override rule choice dismisses it more
permanently — until the condition worsens, or until the action which caused the
notification is repeated. The next four choices: cancel existing order, cancel current order,
edit current order and edit existing order all primarily occur in drug-drug interaction rules.
When a clinician enters a potentially interacting order, he or she is offered the choice of

canceling or editing either the new drug order, or the existing order.

The set allergies choice most frequently occurs in response to interventions which
suggest a drug. When the system suggests, for example, a statin, the user is offered the
choice to turn the suggestion down because the patient is allergic to that statin. In
addition to dismissing the alert, this also adds the appropriate allergy to the patient’s
allergy list. The next two choices: write letter and write note provide starting text for
results letters to patients and for progress notes. They are primarily used in the LMR

SmartForm module at Partners (110). Finally, the edit problem list choice is used to add or

56

remove items from the problem list, while the enter weight, height and age choice is used

to query the user for this information, generally before proceeding to a calculation or

inference which requires this information.

Rule
Offered Choice Types Rules Example Rule
Write order 63 2059 Change a ranitidine order to famotidine.
Defer warning 47 94 Allow the user to defer a warning for 24 hours.
Override rule / 47 3014 Keep an order which triggered a low-severity drug
keep order interaction rule.
Cancel existing 30 240 Discontinue an existing order for fluoxetine when it is
order flagged as duplicating a new order paclitaxel.
Cancel current 29 3110 Cancel an order for furosemide in a patient with a sulfa
order drug allergy.
Edit current 26 1538 Change the dose of an order for 16g of acetaminophen.
order
Edit existing 23 42 Reduce dixogin when patient is hyonatremic.
order
Set allergies 14 20 Decline a suggestion to order atenolol because the
patient is allergic.
Write letter 7 86 Send a letter to a patient with a normal mammogram.
Write note 4 23 Provide default text for a note on a patient with an
elevated LDL.
Edit problem 4 4 Remove hypertension from the problem list, in response
list to a suggestion for antihypertensive therapy.
Enter weight, 3 787 Allow user to enter weight when ordering a drug with
height or age weight-based dosing.

TABLE 6 - OFFERED CHOICES AS PART OF NOTIFICATION INTERVENTIONS.

3.8 COMPARISON TO COMMERCIAL SYSTEMS

In order to understand the generalizability of this taxonomy, we presented it to

several commercial clinical system vendors and asked them to compare it to the features

available in their own clinical systems. Overall, the taxonomy appeared to map well to

the functionality available in most clinical systems, and was frequently a superset of the

functionality available. This process led to two clarifications of the taxonomy:

57

e The observation input data element can contain any structured data element — not
just a lab result. For example, nursing documentation entered into a flowsheet
and patient data entered into a structured template by a physician would both
qualify as observations.

e The exact timing of triggering events is left to the discretion of the clinical system
vendor. For example, ordering a new drug would be a triggering event in the
taxonomy, but whether this event should fire when the drug is selected from a
picklist, after the dose and instructions are entered or at the moment the order is

signed is left to the discretion of the clinical system implementer.

We also compared the taxonomy to an emerging effort from the Leapfrog Group
to certify the decision support capabilities of CPOE systems (114). Given the two
clarifications above, the taxonomy would be sufficient to describe the clinical decision

support expected in the certification process.

Finally, we compared the taxonomy to the HL7 Version 3 Reference Information
Model (RIM). The RIM is an attempt at building a unified information model for clinical
data, developed over the past decade. The RIM is controversial (115, 116), and has not
seen wide adoption, but it is probably the most complete model for representing
medical data available. We employed a two-way mapping process — first, we mapped
the taxonomy elements to the RIM, and found that all of them could be adequately
represented using the data model. Second, we attempted to map back from the RIM to

the taxonomy. We found that certain components of the RIM could not be fully

58

represented by the taxonomy. For example, the RIM Act hierarchy is much larger and
more comprehensive than the trigger category of the taxonomy, and any RIM Act could
conceivably be a trigger for clinical decision support. How, exactly, to reconcile this is a
difficult question. It would certainly be possible to extend the taxonomy to include any
particular act of interest, but it’s not clear that every act is relevant for clinical decision
support. One approach, taken by the HL7 Decision Support Service project and, to a
lesser extent, with GELLO is simply to declare the space of events and elements usable
for decision support to be the complete RIM. However, no current EHR supports the
RIM for its data model and it is unlikely that any EHR will do so soon, so we find value
in constraining the taxonomy to include those elements which we have seen used for
clinical decision support, or which are supported by current systems, while recognizing
that, as decision support evolves and matures, it may be necessary to extend the

taxonomy to include new approaches.

3.9 CONCLUSIONS AND IMPLICATIONS

This analysis indicates that a very large amount of decision support can be
accomplished with a fairly small number of functional constructs across a finite set of
categories. This suggests that the problem of integrating decision support into clinical
systems, though non-trivial, should be tractable, since these functional dimensions can
be loosely translated into functional requirements and specifications for clinical

applications and knowledge representation formalisms.

59

The taxonomy described here has a variety of applications. One major and
immediate use is the development of knowledge representation standards. This is a rich
tield, and a variety of formalisms, such as Arden Syntax (61), GLIF (66) and GELLO (72)
are available. It would be a productive exercise to see whether all of the taxa identified
here could be properly mapped by each of these formalisms, and the taxa could likewise
serve as a roadmap for future development of knowledge representation standards. For
example, as mentioned earlier, Arden Syntax can map many elements of our taxonomy,
but there are gaps — while we identify seven interventions (and twelve associated

choices), Arden Syntax only covers one: notify (which it terms “write”).

Beyond knowledge representation standards developers, this taxonomy may be
of interest to the broader standards community. It seems sensible that each trigger and
data element identified should be representable according to a suitable message and
vocabulary standard but this is not currently possible. As an example, while good
vocabulary standards are currently available and in use for drugs and lab tests, there is
much less standardization for data elements such as family history, allergies and
problems. Given the data presented here, this is, perhaps, reasonable since drug and lab
data are more frequently used than the other data elements. But in a perfect world all
data elements could be represented according to a standard and the results described

here may help in prioritizing the development and adoption of such standards.

This taxonomy should also be useful to developers and implementers of clinical

information systems and to clinical knowledge providers. Closely related to this use

60

case is certification. A clinical system that implements features satisfying all of the
functional dimensions described in this paper is likely to be capable of a fairly
comprehensive range of decision support, so these dimensions may be a useful starting
point in framing certification requirements for decision support, just as the HL7 EHR
definition (111, 112) was used as a starting point for the CCHIT ambulatory system

certification criteria.

We also hope that the taxonomy described here is useful for decision support
researchers. It is one tool for evaluating the generalizability of new decision support
systems and knowledge representation formalisms. Some of the most exciting
developments in decision support are likely to occur at the edge of the region of
functionality defined by this taxonomy, necessitating revision and expansion as new

areas are explored and new foci develop.

LIMITATIONS

The major limitation of this study is that it looks at content in only a single
integrated delivery network. Although this federation has a variety of hospitals,
ranging from major academic medical centers to small community hospitals, there is
some degree of homogeneity across the institutions. We are aware of certain classes of
decision support in use at other institutions which cannot be fully described using this
taxonomy. For example, the University of Utah has a decision support system for
ventilator control (113). This system can automatically tune ventilator parameters: a

function not included in the intervention or offered choice aspect of the taxonomy

61

described in this paper, so this taxonomy could not fully map such systems. This is an
inherent limitation of any empirically developed taxonomy — it can only include those

taxa found in the site or sites on which it is developed.

FUTURE DIRECTIONS

In future work, we intend to extend this taxonomy to other institutions with two
primary goals. The first goal of this extension is to measure the generalizability of the
taxonomy, and to measure the extent to which it can successfully describe content in
other settings. The second goal is to extend the taxonomy to include new taxa in use at
other institutions, and also to generalize it beyond rule-based knowledge to include
other forms of decision support, as well as other elements, such as the targeted actor or

relevant clinical situations and workflows.

We also intend to begin mapping the categories and taxa identified here to
currently available message and vocabulary standards as a way to assess the adequacy
of the current standards base for use in decision support systems. A complete analysis
of the standards landscape through the lens of decision support would be useful for

standards developers.

62

CHAPTER 4: DEVELOPING A
PROTOTYPE (METHODS)

63

4.1 INTRODUCTION TO THE PROTOTYPE

Given the goal of developing a working architecture for clinical decision support
across an NHIN, one faces the question of how, exactly, to develop such an architecture.
Some architectures and standards have been developed in a vacuum (that is, without a
real, working prototype). Experience suggests that development of any architecture is
most likely to be successful when it proceeds in parallel with development of a
prototype. There are bound to be challenges, edge cases or special requirements which
simply cannot be anticipated when an architecture is developed by simply writing it

down.

To that end, as I proceeded through research on the SANDS architecture, I
simultaneously developed a working prototype of the architecture, as well as a
prototype EMR. Together, these prototypes provided useful tools to test assumptions
about the architecture and they also helped to further specify the architecture. While the
architecture is fully specified in Appendices A and B, no written specification can be
fully specified without ambiguities. These prototypes, which will be made available
publicly under an open source license, help increase the specificity of the architecture’s
description. This illustrates a key point about this project’s structure: while the core
contributions of this project are theoretical (the development of a taxonomy and
architecture), these theoretical contributions are complemented by corresponding

applied contributions (the prototypes).

64

4.2 OVERVIEW OF THE NHIN

As described in Chapter 2, the architecture has two interface facets: the patient
data interface (here, the NHIN) and the decision support interface. The decision support
interface is described in the next sections. Because there is currently no actual NHIN, I
chose to use a prototype NHIN. The Office of the National Coordinator for Health
Information Technology funded four consortia (led by Accenture, IBM, Northrop
Grumman and CSC) to develop prototype NHINs. Each prototype was required to
connect local exchange efforts in three distinct geographic markets. For the SANDS
prototype I interfaced with the prototype developed by CSC and the Markle Foundation
which unites exchanges in Indianapolis, Massachusetts and Mendocino, CA. This
prototype was selected because it was the most mature at the time, had the greatest

diversity of local exchange architectures and because it was freely available.

4.3 PATIENT DATA CLASS LIBRARY

RATIONALE FOR A PATIENT DATA CLASS LIBRARY

As discussed in the chapter on taxonomies, most decision support interventions
will require two types of data to make their inferences. First, inferences generally
require data which describes the context in which inferences are being made. Second,
inferences also frequently require more general background data about the patient,

beyond the current context. For example, a drug interaction checker needs to know the

65

drugs that are about to be ordered (the contextual data), as well as the drugs a patient is
currently taking (the background data). Without both types of information no inference

can be made.

In the SANDS architecture contextual data comes from the invocation but
background data comes from the NHIN. The advantages of using the NHIN for
background data have already been described, but the key advantages are the ability to
consolidate patient data from multiple sources and the standardized view of patient
data that an NHIN affords. While, fundamentally, the patient data interface is the
NHIN, as I developed prototypes it quickly became clear that parsing raw data from the
NHIN was time consuming. Thus, I developed a patient data class library, described in
this section, which takes data from the NHIN and processes it into a form more usable
for common decision support tasks. This class library is in the spirit of a virtual medical
record or VMR (78). While the class library, itself, is read-only, since it represents a view
of data in the NHIN, new contents can be added simply by publishing data to the

NHIN, in accordance with the mechanisms that the NHIN itself provides.

The foundation of this class library comes from the data elements section of the
taxonomy presented in Chapter 3. The Patient Data Class Library makes each of these
elements available to developers of decision support systems. In addition to greater
ease-of-use the Patient Data Class Library also allows for more expansive prototyping of
decision support intervention. Because current NHIN prototypes are in early stages

they do not always support the complete complement of data types described in the

66

taxonomy. However, the Patient Data Class Library provides a way around this
limitation. In addition to its built-in support for populating data elements from the
NHIN, it can also be populated with coded test data for use in experiments. This makes
it possible to prototype decision support systems that require data not yet available in
early stage NHIN prototypes. This feature also allows us to create custom test patients
for certain decision support interventions. For example, the NHIN prototype did not
contain any pediatric patients, but one test case we developed was for diagnostic
decision support with a special focus on pediatric patients. We were able to use the test-
data feature of the Patient Data Class Library to test such interventions on simulated

pediatric patients.

ELEMENTS OF THE PATIENT DATA CLASS LIBRARY

The specific elements of the Patient Data Class Library are:

Demographics and Vital signs:
o First Name
e Lastname

e Gender

e Race

e Date of birth
e Weight

e Height

e C(Care setting

Clinical information:
e Observations
e Drugs
e Problems
e Family history
e Procedure history
o Allergies

67

e Other orders

For each of these elements one or more standard representation forms were
chosen. Where possible these representation forms were based on standards approved
by the Health Information Technology Standards Panel (HITSP) or the Consolidated
Health Informatics working group (CHI) of the Federal Health Architecture (FHA)
project, a coalition of federal agencies which work together to choose standards for
sharing amongst federal agencies (117). The efforts of CHI have recently been mostly
supplanted by HITSP, but there are cases where CHI standards are available, but

corresponding HITSP standards have not yet been chosen.

Storing the patient’s first name and last name is very simple because these are
simply free-text string elements. Gender and race are both stored according to
enumerated types defined by HL7, the “HL7 Gender Vocabulary Domain” and the “HL7
Race Vocabulary Domain”. These vocabulary domains are intentionally extremely
inclusive and are designed to be able to represent any patient’s race or gender,

regardless of whatever special conditions may apply.

Date of birth is stored as an HL7 formatted date (such as 20070405), while weight
and height are made available in both metric and standard units. Weight and height are
special data elements as patients often have serial weight and height measurements
stored. In such cases the most recent weight and height are available as discrete

elements, but all historic weight and height measurements are made available in the

68

observations section of the class library. The observation section also allows metadata to
be encoded; for example, whether the height and weight are patient-reported or whether
they were measured in the doctor’s office. Clinical decision support interventions that
make significant use of these data elements should process the observations section
directly to determine the best weight and height to use in their inferences or

calculations.

The final element of the demographics and vital signs section of the Patient Data
Class Library is care setting. This describes the current care setting for a patient; for
example, whether the patient is in the doctor’s office for an ambulatory visit, is in a
skilled nursing facility, or is currently admitted to the intensive care unit. In the case
where more than one care setting applies to a patient at a given time, the highest acuity
care setting is used. These care settings are encoded according to the HL7 “Dedicated

Clinical Location Role Type.”

STORING OBSERVATIONS

Observations, which include such data elements as lab results, vital signs,
nursing documentation and structured data entered by a physician are all made
available through the Patient Data Class Library. For the current implementation of the
library these elements are available in a form derived from the EHR-Lab Interoperability

and Connectivity Specification (ELINCS) (118).

ELINCS was recently the subject of some controversy during a meeting of the

American Health Information Community. Most current lab systems and EHR’s store

69

and communicate observations in the ELINCS format. However, ELINCS is based on
version 2.4 of the HL7 specification, and more recent versions of HL7 (versions 2.5 and
3.0) are already available. The HITSP recommended adoption of HL7 version 2.5 for lab
results. This resulted in a protest by the American Clinical Laboratory Association
(ACLA) (119), which requested that ELINCS be chosen instead. The controversy is
nearly resolved, as HL7 has taken over the development of ELINCS, and bringing it up
to HL7 2.5. A final harmonized implementation guide is expected by May, 2007. In the
meantime, CCHIT has announced that they will accept either ELINCS or HL7 version
2.5 compliance as a part of their certification process. Because ELINCS is more widely
used at present, and because the current NHIN prototypes use it as their format for
exchanging observations, ELINCS was chosen as the basis for observation
representation in the Patient Data Class Library. As future NHIN prototypes migrate
toward a newer version of HL7 standard it will be a simple matter to convert the
translation mechanism from reading ELINCS formatted observations to reading

observations stored in the newer, harmonized format.

Each observation made available through the Patient Data Class Library contains
a timestamp, a Logical Observation Identifiers Names and Code (LOINC), a value and,
where applicable, the units that value was measured in, a normal range and a result flag
indicated whether or not the value is abnormal. LOINC is a widely used vocabulary
standard for observations which was developed at the Regenstrief Institute (120, 121),

and includes codes for laboratory results, such as “chemistry, hematology, serology,

70

microbiology (including parasitology and virology), and toxicology “, as well as clinical
observations, including “vital signs, hemodynamics, intake/output, EKG, obstetric
ultrasound, cardiac echo, urologic imaging, gastroendoscopic procedures, pulmonary
ventilator management, selected survey instruments, and other clinical observations”

(122).

The LOINC vocabulary standard is key to the interpretation and utility of
observations in the Patient Data Class Library, and ensures that observations provide

not only syntactic but semantic interpretability.

STORING DRUG INFORMATION

Drug information in the Patient Data Class Library is stored according to
national drug code (NDC), name of drug, dosage instructions, start date, end date and
the date that the prescription was last filled. Selecting an appropriate drug vocabulary
system was especially difficult and is discussed more fully in section 7.2. However, for
most clinical decision support inventions, the current mode of storing drug data is
sufficient; and, where more precise data is required, a decision support invention can

bypass the Patient Data Class Library and query the NHIN directly.

STORING PROBLEMS

Patient problem list data includes a code describing the problem, a start date, end
date, status, verified date, and comments. Problems can be encoded either according to

the ICD-9 or SNOMED vocabularies with SNOMED strongly preferred. ICD-9 is

71

available as a choice only because many clinical information systems provide problem
data in ICD-9 format. It is important that any clinical decision support intervention be
able to interpret problem list entries in both ICD-9 and SNOMED, or that such an
intervention takes advantage of a translation layer to convert between the two problem
vocabularies. Several such translation systems are available, including a commercial
mapping developed by the American Health Information Management Association
(AHIMA) and the UMLS Metathesaurus, produced by the National Library of Medicine

(123).

FAMILY HISTORY

Family history items are actually special cases of the problem element type. Each
family history element is composed of a problem (in this case, a problem that a family
member rather than the patient had), the relationship of the person suffering from the
problem to the patient, the vital status of the problem sufferer (alive, dead or unknown),
his or her current age, and age at diagnosis. Relationships are encoded according to the

HL?7 “Personal Relationship Role Type.”

PROCEDURE HISTORY

Procedure history elements are composed of a code (either a Current Procedural
Terminology (CPT) code, or a SNOMED code), indication, service date and comment. In
most current prototypes, CPT codes are used to describe the procedure performed and
at least anecdotally CPT codes appear to be sufficiently expressive. The indication is

stored as a problem type as described above.

72

73

ALLERGIES

Perhaps the most difficult data elements to represent in this Patient Data Class
Library is the allergy. Current standards for exchanging data on patient allergies are
immature. The most detailed recommendation about allergy representation comes from
a recommendation made by CHI to the Secretary of Health and Human Services. This
recommendation has been reviewed by the National Committee on Vital and Health
Statistics, although adoption of the standard is extremely limited. The recommendation
portion of the document actually recommends 23 separate vocabulary standards for
encoding the three key elements of an allergy description: the allergen, reaction and
severity. The Patient Data Class Library uses a simplified system for encoding allergies,
employing SNOMED to describe the allergen, reaction and severity. There are currently
efforts underway, through HITSP, to harmonize allergy standards and release a single,
definitive implementation guide for allergy encoding. As these standards mature, the
Patient Data Class Library will be extended to match developments in the allergy

domain.

OTHER ORDERS

The final area of the Patient Data Class Library is other orders. This includes all
non-drug orders, including laboratory orders, nursing orders and procedure orders.
Laboratory orders are encoded according to ELINCS, nursing orders according to HL7

version 3 acts, and procedure orders according to CPT. The choice of acts for nursing

74

orders was difficult, as there is no widely used vocabulary standard for nursing orders.
However, there is currently a promising effort underway to integrate a nursing order
terminology system developed by Susan Matney at Intermountain Healthcare (124) into

the HL7 version 3 RIM Act hierarchy.

CACHING

Early tests of the patient data class library revealed unacceptable performance,
primarily due to very slow fetch time of data from the NHIN prototype (fetching all data
for a patient took 6-10 seconds). Analysis revealed that the delays were not primarily
due to network latency, data transfer time or XML parsing overhead, but, instead, were
a function of the current NHIN prototype’s reliance on relational databases to store
patient data. Many clinical systems use variants of MUMPS (125), an efficient
hierarchical database which stores all the data for a single patient contiguously, allowing
for quick access. However, the NHIN prototype uses relational databases, which store
data in tables by type. So, for example, all the lab results for all patients would be stored
in a single table, and all medications would be stored in another table. When it comes
time to assemble all the data for a given patient, these tables must be searched, and
records pertaining to that patient must be located and extracted. This process can be
sped up significantly with intelligent indexing strategies, but relational databases have a

hard cost of multiple hard disk seeks whenever patient data is stored non-contiguously.

To work around this problem, I implemented a caching strategy. The first time

data is requested from the Patient Data Class Library, the library fetches that data from

75

the NHIN and caches it. The library actually caches two different data elements: first,
the entire raw response from the NHIN, and second, a materialized instance of the
Patient Data Class Library. This allows client applications to avoid re-querying the
NHIN, regardless of whether they access patient data through the class library, or by

directly parsing the NHIN response.

Because the SANDS architecture is distributed, it would be inefficient if every
node had to keep a cached copy of the patient’s data. Instead, a wide-area distributed
hash table is employed. The hashing function is implemented by the patient data class
library using the NHIN query parameters, and the table is implemented by the
memcached system (126). The memcached system is widely used for data-driven web
and web-service applications, such as Wikipedia. One important question with any
caching strategy is currency, and two approaches are used in the prototype to help
ensure that data retrieved from the cache is current. First, all data entered into the cache
is given a short expiration time (a few hours), and second, when new data is stored for a
patient, the cached data objects for that patient are explicitly expired from the cache. In
the present implementation, the clinical system is responsible for forcing expiration, but
in the final form this would likely be a function of the record locator service. When the
RLS received notice of new patient data from a clinical system, it would automatically

expire that patient’s cached data objects (or possibly even force an update of them).

4.4 DECISION SUPPORT SERVICE INTERFACE

76

In addition to the Patient Data Class Library the architecture defines a decision
support service interface. This interface is fully described and specified in Appendices
A an B, but some of the critical design decisions are described in this section. The
decision support service interface consists of two components: one for invoking decision
support services, and the other for returning structured interventions. Both components
derive directly from the taxonomy presented in Chapter 3 in order to maximize their

applicability to real clinical decision support scenarios.

DECISION SUPPORT SERVICE INVOCATION INTERFACE

The decision support and service invocation interface is derived from the trigger
axis of the decision support taxonomy described in Chapter 3. This interface defines
the way in which decision support services are invoked according to triggering clinical

events. The general format for invocation is:

RULE(RULESET, PATIENT_ID, ATTRIBUTES)

Consider, for example, a decision support service designed to alert her clinician
when an extremely high or low lab value (sometimes called a panic value) is stored.
This service will be called whenever a new lab result is stored by a clinical system, so the

lab result stored trigger (as described in Appendices A an B) would be used:

LABRESULTSTORED("123456","RESULT=2697-1");

The two arguments passed to the Lab Result Stored invocation are an identifier for the

patient (keyed to the NHIN Master Patient Index by ID 123456), and a LOINC code

77

describing the result is also passed to the service. In this case, the code is 2697-1, which
is the code for a serum potassium value. It is important to note that the actual result is
not passed along with the invocation. It is the responsibility of the decision support
service to fetch whatever patient data is needed through the standard NHIN interface,
thus freeing the calling clinical system from having to predict what data elements the

clinical decision support service needs to make an inference.

The invocation interface is built on top of standard Web service protocols,
particularly SOAP, WSDL and UDDI. SOAP is a format for making remote object-
oriented function calls. The invocation calls shown above look like local function calls,
but they actually rely on SOAP to transport the function call to a remote service, and
also to transport the result of that remote function call back to the caller. SOAP toolkits
are available for most modern languages, including C, C++, C#, Java, PERL, Python,
Visual Basic, PHP and Ruby. These toolkits make the details of calling remote functions
transparent to the users. SOAP is, in turn, dependent on the WSDL standard, a way of
describing remote functions. So, for example, the fact that a remote method called
LabResultStored is provided by a decision support service, and that that method
requires two arguments is encoded in the WSDL format, which SOAP uses to encode
and decode function calls. The UDDI protocol provides discovery and description
services, so that new web services can be found by potential clients. All three of these
standards are, in turn, built on top of HTTP, an application layer protocol which itself is

built on the well-known TCP and IP protocols.

78

While the service definition specifies a variety of common invocation methods, it
is important to note that, ultimately, the form of invocation and arguments required is
determined by the provider of a decision support service. This provides significant
flexibility as new kinds of decision support workflows can be developed within the
framework of the SANDS architecture. That said, where possible, it is certainly
preferable to use the standard invocation patterns as these are most likely to be

supported by hooks in clinical systems.

STRUCTURED INTEVENTION INTERFACE

The expected result of a call to any decision support service is either instructions
to take no action or a set of one or more interventions describing actions to be taken
automatically by the clinical system or proposed to the user. The interventions and the
choices offered axes of the decision support taxonomy described in Chapter 3 form the
basis of a structured message format for describing decision support interventions. It is
perhaps easiest to understand a structured intervention interface by looking at an

example:

<deci si onSupport Response engi ne="Test Engi ne"
rul eset="QutpatientVisit"
time="2007-01-31T12: 12: 05- 05: 00" >
text="Patient has diabetes and nost recent LDL (144) above target (100) and
not on an HMG CoA-reductase inhibitor. Reconmend HMG CoA-reduct ase
inhibitor if not allergic."
gui d="35b6c020- 3e95- 11db- a98b- 0800200c9a66" >
<witeOder choicel D="1">
<or der abl e>si nvast at i n</ or der abl e>
<dose>20</ dose>
<doseUni t >ng</ doseUni t >
<frequency>qd</ f requency>
<nunber >90</ nunber >
</witeOder>
<addAl | ergy choi cel D="2" al | ergenCodeSyst en=" nesh" >
D27.505. 519. 186. 071. 202. 370
</ addAl | er gy>
<addPr obl em choi cel D="3">266468003</ addPr obl en®

79

<ent er Reason choi cel D="4">Decl i ne suggesti on: O her Conorbi diti es</enterReason>
<ent er Reason choi cel D="5">Decl i ne suggesti on: Cost of Treat nment</enterReason>
<ent er Reason choi cel D="6">Decl i ne suggesti on: Patient refuses</enterReason>
<r enmovePr obl em choi cel D="7">73211009</ r enovePr obl enr
<deferNotification choicel D="8">
<def er Ti me>P5D</ defer Ti me >
<def er Ti me>P1Mc/ deferTinme >
<def er Ti me>P3M</ defer Ti e >
</ deferNotification>
</ notify>
</ deci si onSupport Response>

This example describes a menu of interventions that might be taken for a diabetic
patient with hyperlipidemia who is not currently on a statin (a class of drugs used to
lower cholesterol). This response consists of a single intervention called “notify”. The
“notify” intervention has a severity (in this case 3, meaning low severity), a text
component to be displayed to the user (in this case “Patient has diabetes and most recent
LDL (144) above target (100) and not on an HMG CoA-reductase inhibitor. Recommend
HMG CoA-reductase inhibitor if not allergic.”), and a number of choices that would be
offered to the user, including the ability to order a statin, add an allergy to statins if the
patient is allergic, remove diabetes from the patient’s problem list, defer the warning, or

decline the suggestion for a variety of other reasons.

While the structured intervention message format describes the overall behavior
that a clinical system should carry out, it is important to note that it does not describe
the precise way that the clinical system carries that behavior out. For example,
consider an alert triggered by a patient’s rising potassium value. The decision support
service would send a Notify event, but the clinical system would have to determine
what to do with it. If the responsible clinician is currently logged in to the computer the
clinical system might provide a pop-up or other contextual alert that a notification is
available and allow the clinician to choose a response from the provided menu.

80

However, if the responsible clinician is not logged in, the clinical system might instead

page him or her with the information.

One notable element of the intervention is the GUID, or globally unique
identifier. A GUID is a guaranteed-unique serial number. Decision support services
have the option of passing a GUID along with their response to a query. If they do, the
calling clinical system is responsible for returning the choice taken by the user along
with the GUID to the decision support service that provided the intervention. This
information can either be used for further decision support or for statistical purposes,
such as evaluating the usefulness of the decision support intervention. For example, if
the designer of the intervention described here discovered that patients were often
refusing the intervention because of cost reasons, he or she might revise the intervention

to use a less expensive drug.

4.5 A REFERENCE PARSER

The formal service definition in the appendix is sufficient to fully describe the
representation format used by that standard, both with regards to triggers and to
structured intervention responses. However, experience suggests that interpretation of
such a standard will be most faithful when a working implementation of the standard is
also provided to interested developers. As such, a reference parser developed in C# will
be made available under an open-source license. Anyone interested in developing a
service to participate in this architecture should ensure that the results that their service

provides can be successfully interpreted by this reference parser. Anyone interested in

81

developing a clinical system that parses results of decision support services should use
the reference parser as the foundation or at least ensure that the parser that they develop

has the same behavior as the reference parser.

The current reference parser is intentionally designed to be very simple in
operation. It takes an XML document, insures that it is well formed and valid, and then
attempts to render the decision support response in a textual format. It contains checks
for a variety of common errors that might be made in the output format. Because most
decision support services provide only a small number of possible responses it should
be practical to verify those responses against their reference parser and ensure that the

desired behavior is observed.

4.6 PROTOTYPE ELECTRONIC HEALTH RECORD

To showcase this decision support architecture and service interface, I developed
a prototype electronic health record, called the SANDS Prototype Client. The SANDS
Prototype Client has most of the functionality of a regular electronic health record, along
with two special features. First, the SANDS prototype is unique amongst electronic
health records, because instead of having its own internal data store, it accesses the
NHIN prototype to retrieve patient information. It features a problem list viewer and
entry system, shown in Figure 10, a results viewer shown in Figure 11, a medication list
viewer and entry system shown in Figure 12 and a progress note editor shown in Figure
13. All of this data is read from the Patient Data Class Library, which, in turn, reads data

from the NHIN prototype.

82

E% SANDS Prototype Client FBX
Age: 83

Silver, Stephannie o 7

Current Problen Lizt

Froblem Status Added Yerfied

» . Alive /61973 1411/2005
Hppertenzion Active 11161572 211./2003
Migraine Headaches Active 1/14/1956 11/3/2004
Stress incontinence, female Alive E412/1955 1141542003
Cocaine dependence Erroneous 102141964 /642005
Rheurnataid arthritis Bctive 12/59977 1410/2005

Add Problem

22q partial trizomy syndrome

2-F.etoadipic acidemia

3 beta-Hpdrospsteroid debydrogenasze deficiency
FMethplalutaconic aciduria
5.10-Methylenetetrahpdrofolate reductase deficiency
A pattern strabismus

A amyloidosis

Add

]2

£

FIGURE 10 - SAMPLE PROBLEM LIST IN THE SANDS PROTOTYPE CLIENT.

83

SANDS Prototype Client

Silver, Stephannie

Preventive | Prablems | i Medications | Mate | CDS

Date Test Rezult Range ~
> Fatient Pozition zupine [Local Concept: 3354)

8/23/2003 MAP Auto 115 82102

8/29/2003 Pulze Auta EE B0-100

8/23/2003 Diastolic: BP Auto E8 B0-30

8/29/2003 Swstolic BP Auta 187 100-1E0

8/23/2003 Dximetry 93

8/29/2003 Temp Auto Oral 935 97.6-99

8/23/2003 Resp Rate Auto 23 16-20

8/29/2003 Clutput Shift ol 257

8/23/2003 Intake 24H Vol 802

8/29/2003 Clutput 24H Yol 7hE

8/29/2003 Output Urine Yol Bhrz 257

8/29/2003 Pt 180 244 il

8/23/2003 IN Oral/24H 8oy

8/29/2003 OUT Urine/24H 70

8/23/2003 Intake & Output 257

8/29/2003 L Diarn Diastolic 4.7 3652

8/23/2003 Height{ln] E1 3

FIGURE 11 - SAMPLE RESULTS TAB IN THE SANDS PROTOTYPE CLIENT.

84

SANDS Prototype Client

Silver, Stephannie

Preventive | Problems | Besults ;IMedicatinné"E Mate | CDS

I edic.ation List

Ferous Sulfate 325 Mg Tab #
Alprazolam 0.25 Mg T ablet
Myztop 100,000 Unitz/Gm Powvder
Warfarin Sodium 1 kg T ablet
“warfarin Sodium 4 kMg T ablet
Hydrocortizone 1% Cream

Topral %1 200 Mg Tablet Sa
Clarnithromycin 500 Mg T ablet
Trazodone 100 kg T ablet

Topral #1100 Mg Tablet S5a
Hydrocodone/4pap 5/500 Tab
Ditropan 110 kMg Tablet Sa
“warfarin Sodium 5 kMg T ablet
Ciprofloxacin Hel 250 Mg Tab
Furazemide 40 Mg T ablet

Qrder Medization

A And B Otic 5414 MG AML: A
A fnd B Otic Solution 5414 MG /ML

A B Otic Drops 5.4;1.442 %%

&-Fil Cream 5.0.5.0 MGMG

A Hydrocort Injection 100 MG/2kL

A Hydrocort Injection 100 MG AAL

A Hydrocort Injection 250 MG ¥

Order l [Check. Interactions

FIGURE 12 - SAMPLE MEDICATION LIST IN THE SANDS PROTOTYPE CLIENT.

85

SANDS Prototype Client FEX
Age: 83

Silver, Stephannie o 7

i gt @) -

Subjective:
Objechive:
Agzezzment;

Flar:

FIGURE 13 - SAMPLE PROBLEM PROGRESS NOTE ENTRY DIALOG IN THE SANDS
PROTOTYPE CLIENT.

The other unique feature of the SANDS Prototype Client is, of course, its support of the

SANDS architecture.

4.7 DRUG INTERACTION CHECKING

The next six sections of the dissertation describe sample use cases developed
according to the decision support service definition described earlier in this chapter and
in Appendices A an B. These use cases were developed in order to provide real-world

validation of the architecture contemplated and the interfaces developed for it.

86

The first use case is a classic one: drug-drug interaction checking. Many
medications, when given in combination, interact, leading to a variety of possible
adverse results including direct toxicity, or overactivity or underactivity of one or both
of the interacting medications. These interactions are frequent, and can be very
dangerous (127-130). However, automated alerting systems can be very effective at
reducing both the rate of interacting medication orders, and harmful adverse sequelae
(2, 51, 131-133). However, such systems are not universally adopted, and, where used,
are frequently part of pharmacy computer systems rather than ordering systems,

limiting their effectiveness at the point of care.

It would certainly be desirable to increase the adoption of effective drug-drug
interaction alerting in ordering systems and several commercial products and databases
of drug-drug interactions are available (134). However, integrating these databases into
clinical systems can frequently be difficult, and in many cases, vendors of clinical
systems have relationships with a single database provider limiting users of these
clinical systems to only that provider of drug information. In this use case, I developed
a service for a drug interaction checking based on a commercial drug information
database developed by Lexi-Comp, Inc. The Lexi-Comp database was chosen because
Lexi-Comp offers a pre-existing web service interface, which could be readily adapted to

the standardized interface developed here.

The SANDS prototype client supports calling the drug interaction service in two

modes: first, it can be called when the user clicks the “Check Drug Interactions” button,

87

highlighted in Figure 14. This button checks the patient’s current consolidated
medication list for drug interactions. Second, the service can be called when a new
medication is ordered, to check for interactions between that medication and the rest of

the patient’s medication list.

SANDS Prototype Client

Silver, Stephannie

Preventive | Problems Flesultsé\ Mate | CDS

I edication List

Ferrous Sulfate 325 Mg Tab s
Alprazolam 025 Mg T ablet
Muygtop 100,000 Unitz/Gm Powder
“warfarin Sodium 1 kg T ablet
“Warfarin Sodium 4 kMg T ablet
Huydrocortizone 1% Cream

Topral =1 200 kMg Tablet Sa
Clarithrorycin 500 kg T ablet
Trazodone 100 Mg T ablet

Topral #1100 Mg Tablet Sa
Hydrocodone/Adpap 5/500 Tab
Ditropan #1110 kg T ablet Sa
“Warfarin Sodium 5 Mg T ablet
Ciprofloxacin Hel 250 Mg Tab
Furozemide 40 kg Tablet

Order Medication

A And B Ohic 5414 MG /ML ~
A fnd B Otic Solution 5414 MG /ML

A B Otic Drops 541,442 %%

A-Fil Cream 5.0.5.0 MG MG

A Hudrocort | njection 100 MG /2L

A Hydrocort |njection 100 MGEAAL

A Hydrocort | njget (L]

m Check. Interactions |

FIGURE 14 - THE CHECK INTERACTIONS BUTTON IN THE SANDS PROTOTYPE CLIENT.

Consider a sample case where the patient is taking both doxycycline (a
tetracycline-derived antibiotic) and ferrous sulfate (an iron salt used for iron

supplementation in anemic patients). Ferrous sulfate reduces the absorption of

88

doxycline, potentially to a sub-therapeutic level (135). When the user clicks the “Check
Interactions” button, the drug interaction compares all of the medications on the paient’s
medication list and generates an alert. The alert contains a link to a monograph which
describes the interactions. The SANDS Prototype Client then displays the monograph to

the user directly inside of the EHR, as shown in Figure 15.

SANDS Prototype Client

Silver, Stephannie

Preventive | Problems | Results | Medications | Mote | CDS
N> NEIRs

Title Tetracycline Dervatives / Tron Salts
Eisk Batng D Consider therapy modification

Summary Tron Salts may decrease the absorption of Tetracycline Derivatives. Only a concern with
orally administered products. Severity IMajor Reliability Rating Excellent

Patient Ifanagement In general, the coadministration of oral iren salts and oral tetracycline
derivatives should be avoided Interactions can be tinimized by administering oral iren preparations
at least 2 hours before, or 4 hours after, the dose of the oral tetracycline denvatives. Even with dose
separation, doxyoyclne therapy may still be compromised. Iomtor for decreased therapeutic effect
of oral tetracyclne denvatives.

Tetracycline Denvatives Interacting Members Demeclocycline;, Doxyevcline®, Minocycline™®;
Craytetracycline™; Tetracycline™

Tron Salts Interacting Members Ferrous Fumarate; Ferrous Gluconate, Ferrous Sulfate™;
Polysacchande-Tron Complex Exceptions Ferric Gluconate; Iron Destran Complex;, Iron Sucrose

* Denctes agent(s) specifically implhicated in clinical data. Unmarlced agents are listed because they

FIGURE 15 - A DRUG INTERACTION MONOGRAPH, SHOWING AN INTERACTION
BETWEEN TETRACYCLINE DERIVATIES AND IRON SALTS. (MONOGRAPH TEXT
PROVIDED BY LEXI-COMP, INC.).

Integrating the drug-drug interaction service with the clinical system using the
SANDS architecture was achieved quite easily, and the intervention seems effective. As

89

discussed previously, it is well-known that effective drug-drug interaction alerting
systems can reduce adverse drug events. The only major issue encountered in the
integration process relates to the threshold for alerts. It is widely thought that
commercial drug information databases have too low a threshold for alerts (i.e. that they
alert too often, and that many alerts they provide are not clinically relevant) (134, 136-
138), and that appeared to be the case here. The Lexi-Comp drug interaction service has
a severity grading system, but alerts graded C, D or X (those alerts that Lexi-Comp
classifies as needing human intervention) are extremely common. For example, one
sample patient’s consolidated medication list yielded 750 alerts, 685 of which were
graded C, D or X. While some of the interactions were clinically significant (such as the
example presented above), it would be impractical for a clinical to review 685 separate
alerts. Before a drug-drug interaction service could be deployed for real-world use, it
would be important to thoughtfully pare down the interaction database, a process

already underway at some advanced sites (139, 140).

4.8 SYNDROMIC SURVEILLANCE

The next use case I developed was for syndromic surveillance and reporting of
reportable diseases to public health authorities. Unlike the previously presented use
cases, there was no pre-existing service for this function. Instead I developed the
decision support system de novo based on published documents from the Oregon Health
Department. Like most states, epidemiologists at the Oregon Health Department track

the spread of a variety of infectious disease. One key element of this tracking program is

90

mandatory reporting of diseases. Some of this reporting is carried out by medical
laboratories which are obligated to report positive tests for diseases in reportable
groups. However, certain diseases, such as pertussis, are often diagnosed solely on
clinical factors, so the responsibility for reporting the disease falls on the provider that
made the diagnosis. Although data about how often reportable diseases are actually
reported are sparse, it is widely believed that there is significant underreporting of
diseases, largely due to providers who either are not aware of the rules or who do not
have the time to comply with them. To support both providers and public health
authorities I developed a reporting system which takes all new diagnoses, at the time
they are entered by providers, and runs them through a filter to determine whether or
not they represent reportable diseases. This use case makes interesting use of the
SNOMED terminology. Problems reported to the decision support system are reported
according to SNOMED concept ID’s, which provides a good level of specificity. In many
cases, determining whether a disease is reportable or not is a simple matter of
comparing the concept ID being reported to a list of the concept ID’s for reportable
diseases. However, in certain cases, the analysis is more complex. Consider, for
example infection by the organism Nesseria gonorrhoeae, which is reportable under
Oregon law. While a SNOMED concept ID (15628003) exists for such an infection, there
are actually 90 clinical concepts which descend from this term, all of which would be
considered reportable in Oregon. However because SNOMED has a robust semantic
structure it is unnecessary to identify, a priori, all of these concepts. Instead, the rule is
defined to include SNOMED concept 15628003, and all of its descendents. If, in the

91

future, new problems are added under concept 15628003, any decision support system
which uses the semantic structures of SNOMED will automatically have the benefit of

these updates, without needing to be modified.

In the current embodiment of this prototype, whenever a new problem is entered
into the prototype electronic health record which is reportable under Oregon law a pop-
up is given to the user based on a database which describes the reporting requirements
for each disease. The alert informs the provider whether or not they need to contact the
state epidemiologist directly or whether the automatic notification already received is
sufficient. If it is necessary to contact the epidemiologist, the system provides detailed
information to the clinician about the phone number to call and how long he or she has
to report the disease. This is important because some diseases require immediate

consultation with the epidemiologist while others can be reported days later.

Figure 16 shows an example of this feature. In this case, a diagnosis of pertussis
was entered for a patient who lives in Multnomah County, Oregon. In Oregon pertussis
is a reportable disease, so an alert is triggered. Because the patient lives in Multnomah

County, the reporting number for the appropriate health department is also provided.

92

Current Probilem List
Problem Status Added Werified
Diabetes, Tupe |l Uncomplicated Achive . 3EM973 . 14112005
Hypertension Active . 1141641972 . 211/2003

Reportable lliness Alert

Pertussis is a reportable iliness, and this diagnosis has been reported to the state, Please call (S03) 988-3406 and speak with the
epidemiclogist on call within 24 hours, induding weekends or holidays.

Add Problem

| Pertugsis

Pervazive developmental disorder
| Pes anserinus bursitis
| Pes anserinus tendinitiz —
| Pes cavus

| Pertussis vaccine adverse reaction ‘
| Pez planus |

Add

FIGURE 16 - AN ALERT REMINDING THE CLINICIAN THAT PERTUSSIS IS A REPORTABLE
ILLNESS IN OREGON, AND PROVIDING INSTRUCTIONS FOR HOW TO REPORT IT.

This service stands out amongst the others in that it not only provides an interface to an
electronic health record, but also provides a separate interface to public health
management systems. In this case, an epidemiologist with proper authorization can
query the system for a list of all cases that match certain query parameters. For example,
an epidemiologist might query the database to see where cases of pertussis were
reported within the Portland metropolitan area over the past seven days. The current
prototype system then links to Google Earth, a 3-D map visualization, program to
provide a geospatial representation of the cases in the database. This requires that the
disease reporting service, in turn, consults a geocoder service. Geocoding is the process
of taking an address as might be stored in a patient’s electronic health record and

converting that address to a spatial location, usually the latitude and longitude at that

93

point. Figure 17 shows how these services

interact.

Geocoder

EHR Reporting

Service

Viewer

FIGURE 17 - SCHEMATIC SHOWING RELATIONSHIP BETWEEN THE REPORTING SERVICE,
AND THE OTHER SYSTEMS AND SERVICES IT CONNECTS TO.

In the typical interaction between the electronic health record and the reporting
service, the EHR would send a problem-added invocation to the reporting service. If
necessary the reporting service would respond to the EHR with a notify intervention,

explaining that the problem most recently added represents a reportable disease.

This use case demonstrates three special aspects of this architecture. First, it
shows the ability of a single service to provide decision support to two different kinds of

clinical systems. There are many use cases where this could be helpful: for example, a

94

drug allergy warning service which interfaces with both an electronic health record and

a personal health record.

Second this use case demonstrates service composition: the reporting service
contacts another service, the geocoder, to complete its work. Many cases of decision
support will use service composition. For example, a therapeutic reminder system
might first query an allergy system to determine whether or not the therapy that it is

about to suggest is contraindicated due to a patient allergy.

Third, this use case demonstrates the ability to modularly replace services. In
this project and another related project, performed for the Oregon State Health
Department, six different geocoding services were reviewed. Each of the services have
advantages and disadvantages, with their primary differentiation in the quality of their
mapping and their cost. A number of free services are available, provided by Google,
Yahoo and others. These services generally use free but lower quality maps (such as the
Census Tiger Line File). Paid services generally use higher quality maps, such as those
from TeleAtlas and NavTeq. Because one of the goals of this project is to showcase free
software and free services, and because accuracy down to be house level is not especially
important for the public health use case, I chose to use the Google geocoder service. The
service is free, and provides reasonably high quality matches with very high system
availability. However, for their purposes the state chose to use a higher quality and
more accurate geocoding service, which requires payment. The ability to freely choose

from a variety of decision support services makes development, testing and

95

maintenance of software much easier, and it is hoped that one day the robust and

competitive market we saw for geocoding services might be replicated for decision

support services.

= Google Earth
File Edit “iew Toolz Add Help

~ Search
FyTo Find Businesses | Directions | i <

e.q., Reservoir Rd. Clayvile, Y

\ 8

|@ | & | & @

@ M2 Pickup

3 Tutorial

D Sightsesing
Select this folder and click on the 'Play’
button below, to start the tour.

default

L= Temparary Places
1 & PertussisPortiand fml

8
E3EY
> Layers i
View: |Core v|

E [@ Primary Database
00 Terrain

50 48 30 Buidings

P borders

lﬁ' roacks

\& Geographic Web L 4

T W s Rll Pointer 45:31:22:042 N 12

B,

éo&agqle"r'

Eye alt 357851t

FIGURE 18 - SIMULATED PERTUSSIS CASES FROM THE SYNDROMIC SURVEILLANCE /
REPORTABLE DISEASE SERVICE, AS VIEWED IN GOOGLE EARTH.

4.9 DIAGNOSTIC DECISION SUPPORT

The next use case is a diagnostic decision support system. Diagnostic decision
support systems have been used for the past 30 years. Two of the most ambitious
systems were the INTERNIST system (16) developed by Randoph Miller and DXPlain

(10) developed by Octo Barnett at Massachusetts General Hospital. Both systems are

96

described in the background section of this dissertation. It is important to note,
however, that neither of these systems achieved widespread clinical use in the real
world, largely because they were very difficult to integrate into clinical workflows.
However, recently, novel approaches to diagnostic decision support systems have been
pursued, and a number of new diagnostic decision support systems are available which

make it easier to integrate such decision support into clinical workflows.

In my prototype architecture, I built an interface between the Isabel diagnostic
decision support system (Isabel Healthcare, Reston, Virginia) and my prototype
electronic health record. The Isabel system uses rudimentary natural language
processing techniques to provide clinical decision support instead of using a
comprehensive knowledge base of medicine as previous systems have. Isabel uses an
automated text mining system to review medical literature and medical textbooks. It
then compares the structure and semantic content of these books with a narrative report
entered by the user. In this case the interface with Isabel sends the subjective and
objective components of a progress note, as entered in my prototype electronic health

record system, to Isabel for processing.

Isabel already provided a simple web service interface to enable their product to
be integrated with EMR systems. This interface was proprietary, however, so I
developed a wrapper to map the proprietary interface to the SANDS architecture
standard interface. In many respects this interface was the easiest that I created because

Isabel uses free text and has its own natural language processing engine and its own

97

thesaurus. As such, it was not necessary to provide any coded data to Isabel so there

were no vocabulary standards issues to resolve.

Consider a simple case of a seven-year-old child with left ear pain. The provider

has entered the subjective and objective components of his note:

SUBJECTIVE: PATIENT COMPLAINS OF THREE DAY HISTORY
OF LEFT EAR PAIN.

OBJECTIVE: LEFT TYMPANIC MEMBRANE ERYTHEMATOUS
AND SWOLLEN.

The entry of this note into the SANDS prototype client is shown in Figure 19.

SANDS Prototype. Client

Jones, Samanatha

i g @) -

Subjective:
patient complaing of three day higtory of left ear pain.

Ohjective:
left tyrpanic mermbrane erthematous and swollen.

Agsezament:

Flar:

FIGURE 19 - A PROGRESS NOTE ENTERED IN THE SANDS PROTOTYPE CLIENT.

98

Now, before proceeding to the assessment and plan, the provider activates the
Isabel decision support system over the prototype architecture by clicking a button in
his electronic medical record. This triggers the electronic medical record system to send
a standard message to the Isabel decision support system containing the text of the note
entered so far by the practitioner as well as a pointer to the patient’s electronic medical
record and the national health information network. The diagnostic decision support
system uses this note as well as other background information such as demographics

retrieved from the NHIN. Figure 20 shows Isabel’s response.

SANDS Prototype Client

Jones, Samanatha

Preventive | Problems | Fesults | Medications | Mote | CDS
(€N BEIR=
. -
Have you considered...? General
(" savesPrint/Email/Feedback) (: more diagnoses »)
| DISORDERS OF THE EAR == Click here | INFECTIMIS DISEASES == Click hare
*| Dhitis Media R Gonococoal Infection RD
|DERMATDLDG‘|' 2= Click here | | % Pseudomonas RD
Staphvococcal Scalded Skin - *| Herpes Simplex ¥irus Infection RD
Syndrome [S555
Candidal Infection RD
| RHEUMATIC DISEASES == Click here |
i . . | GASTROINTESTINAL DISORDERS == Click here
Malignant Atrophic Papulosis ¢ RD
Dego's Disease
sLE o | HEMATOLOGY == Click hera
| ENDMMCRINE SYSTEM =2 Click here
HEQOPLASTIC DISEASES == Click here
Retinoblastoma RD
-

FIGURE 20 - DIAGNOSTIC DECISION SUPPORT RESPONSE FROM ISABEL, AS DISPLAYED
IN THE SANDS CLIENT.

99

Based on its knowledge base, Isabel provides a differential containing nine
diagnoses across five systems. In this case, the first diagnosis proposed by Isabel is the
correct one. This is not always the case as Isabel does not attempt to order its diagnosis
list. Instead, Isabel’s goal is to provide the correct diagnosis within the first screen.
Although this case may appear trivial to a human, it is still impressive given the past
challenges that diagnostic decision support systems have faced. Published evidence

suggests that Isabel provides good accuracy, even in very complex cases (141-144).

One difficulty encountered in integrating Isabel into the decision support
workflow was the fact that, in current versions, Isabel provides its differential diagnosis
results in an unstructured format. This precluded developing a feature allowing the
user to click a diagnosis in Isabel and have it automatically added to the progress note or
problem list. In future work, we hope to map Isabel’s diagnoses to SNOMED so they
can be more readily integrated into clinical systems. Were such codes already available,
we would use the addpProblem response type so that a compliant electronic health record

system could automatically add the chosen diagnosis to the problem list.

4.10 INAPPROPRIATE PRESCRIBING IN OLDER ADULTS

The next use case is a drug-therapy decision support system designed to assist
clinicians in prescribing medications for older adults. Certain medications are
metabolized differently in older adults than in younger people, and it is important to
take this into account when prescribing. To this end, an expert consensus panel

developed guidelines which specify drugs which are either unsafe in older adults, or

100

which require dose adjustment (145). This guidance is referred to as the Beers criteria,
after Dr. M. H. Beers, a past editor of the Merck Manual, and author of an early list of
medications whose use is contra-indicted in older adults. Although this guidance is
available, it is well-known that such drugs are still frequently used in older adults, even

when better alternatives are available (146).

Because no existing Beers criteria decision support service was available, I
developed one from scratch, based on the guidance published in Archives of Internal
Medicine (145). Figure 21 shows a sample alert raised by the service, in response to an

order for Skelaxin (metaxalone, a skeletal muscle relaxant) in an 83 year old female.

Medication List

Skelaxin 400 MG

Skelaxin 400 MG

Ferrous Sulfate 325 Mg Tab
Alprazolam 0.25 kg Tablet

Mystop 100,000 Units./Gm Povwder

Beers Criteria Warning

Use Special Caution in the Elderly: Most muscle relaxants and antispasmodic drugs are poorly tolerated by elderly patients, since

these cause anticholinergic adverse effects, sedation, and weakness, Addiionally, their effectiveness at doses tolerated by
elderly patients is questionable.

Urder Medication
Skelaxin 400 MG

Skelid 200 MG

Skelid 240 MG

Skin Bleaching Gel 4 % dor-
Skin Lightener Cream 2 02

Skin Lightener Cream 4 % v

l Order] [Check Interactions

| B]

FIGURE 21 - AN ALERT BASED ON THE BEERS CRITERIA.

101

The inference pattern of this service is simple rule-based reasoning. The service
maintains a memory-resident associative array (or dictionary), which binds medications
to alert text. When the service is invoked for a new medication order, it fetches the
patient’s age. If the patient is 65 or younger, no alert can be returned, and the logic
terminates. If the patient is over 65, the array is queried for the medication being
ordered (an O(1) operation). If the medication is not found, no alert is returned, and the
logic terminates. However, if an alert is found, a notify response containing the
appropriate alert text is generated (as described in section 4.3) and returned to the

requesting clinical system.

One interesting facet of this use case is the method by which its content was
developed. While the Beers criteria was developed by an expert consensus panel, it has
been formatted for use in a clinical information system through a wiki (the Clinfowiki:
http://www.clinfowiki.org) using what Benkler has called “commons-based peer
production” (147). In this model, collaborators (including the author of this dissertation)
have worked to refine the criteria, add alert text and put the data into machine-readable
format using wiki software (148). This method seems to work fairly well, and the alerts
are now available online (http://www.clinfowiki.org/wiki/index.php?title=Tab-

separated_file_of_Beers_criteria_alerts), under the GNU Free Documentation License.

4.11 INFORMATION AT THE POINT OF CARE

During the course of caring for patients, clinicians have a variety of information

needs. One oft-cited study conducted by Paul Gorman and Mark Helfand in 1995 found

102

that clinicians have, on average, one question for every two patients they see, but that
they only pursue about 30% of these questions, and that they use the computer
infrequently (149). More recent studies have found similar results, and while use of
computers for point of care information needs is increasing, print sources still dominate
(150-152). In many cases, print sources may be the most convenient, but electronic
sources have some critical advantages: they can be updated more frequently, they can be
accessed by multiple people, and they support searching. It is known that, given the
right tools, clinicians are willing to use electronic reference sources (152, 153), and that

good, usable electronic references sources exist (154).

However, it has been difficult to connect clinicians to these electronic resources
for two reasons: first, clinicians who are using an EHR and who wish to consult such a
source must generally open a web browser outside of the EHR, access the reference
source and log-in, and then must consult the source, while possibly switching back and
forth between the EHR and the reference source. These context switches impose a high
cognitive burden. Second, clinicians frequently have contextual questions — for example,
they are ordering a drug, and want information on appropriate dosing. In many cases,
they have already created this context in their EHR by, for example, starting an order,
and then they are forced to re-create the same context in the separate information tool.
Various attempts, such as the Infobutton standard, have been made to more closely
integrate information resources with clinical information systems, and early results are

at least somewhat encouraging (155, 156).

103

In this use case, I developed a decision support system for providing context-
specific information to clinicians at the point of care. I chose not to use the Infobutton
standard for my interface because of various licensing and patent encumbrances on the
standard (157). I used two information sources for my service: UpToDate and Google
Co-op. UpToDate is a commercial source of evidence summaries for a variety of
conditions that might be encountered in primary care. It is widely used, and very
popular with clinicians (154). It is also very expensive . Google Co-op, on the other
hand, is free. It is a health search engine based on the main Google index, but
supplemented with tags added by 26 trusted contributors, such as the Health on the Net
Foundation, the Mayo Clinic, Kaiser Permanente, the National Library of Medicine and
Harvard Medical School. These contributors add tags to articles, describing the type of
information they contain, thus helping to improve the quality of search results for
medical conditions and drugs. Both of these sources use free-text search, and neither of
their indexes are linked to any structured vocabulary, so direct, free-text search terms

are passed to them through the decision support interface.

This decision support service is accessed by context menus in the SANDS prototype
client. Figure 22 shows a sample context menu for information about a disease. This
menu allows the user to choose whether they want to query UpToDate or Google. If the
user wants to query Google, there are options to narrow the search to treatment,
symptoms, tests / diagnosis, causes / risk factors, practice guidelines, patient handouts

and clinical trials. These correspond to disease information tags in the Google Co-op

104

knowledge base.

SANDS Prototype Client

Silver, Stephannie

M

Preventive || Problems | Results | Medications

P @9 -
Subiec| Disease Information ’ UpToDate
Drug Information

DS

-

Treatment

Objectre Symptoms

Tests / Diagnosis
Causes [Risk Factors
Plar: Practice Guidelines
Patient Handouts
Clinical Trials

Azzezzment:

FIGURE 22 - POINT OF CARE INFORMATION CONTEXT MENU IN THE SANDS PROTOTYPE
CLIENT.

The same service is called regardless of what category is selected, with the
information category selected by the user passed in to the decision support service as a
parameter. In a typical use case, a clinical system analyst at a hospital would use the
user interface design toolkit provided by their clinical system vendor to develop a
custom menu, where each item was a hook into an information service. The clinical

system designer would customize the menu items available based on the information

105

sources that the hospital subscribes to and the information needs of clinicians at that

hospital.

Figure 23 shows the result of a user request for information from UpToDate on
otitis media. In this case, the user is taken directly to an index of UpToDate’s knowledge
content on otitis media (not to the front page of UpToDate), and the content is provided

inside of the clinical system, without needing to switch to a web browser. Print

capability is supported, so the user can print copies of information for patients.

SANDS Prototype Client FEX
. - Age: 83
Silver, Stephannie Sox. F
Freventive || Problems | Results | Medications | Mote | chs |
(€ N> REaN=
AMOXICILLIN - ORAL D
el PRONUNCIATION: {(ah-moxX-th-SILL-in)
BRAND NAME(S): Amoxil Wiew lmages
alta
codone
. AMOXICILLIN ORAL USES
r Amaxicillin iz a penicillin-type antibiotic uzed to treat a wide variety of bacterial
hptil infections. Wwarks by stopping the grosth of bacteria.
Thiz antibiatic treatz only bacterial infections. twill not wark for viral infections {e.q.,
cammaon cold, flu). Unnecessary use or overuse of any antibiotic can lead to its -
e decreased effectiveness.
nntin How to use Amoxicillin Oral
1% Take this medication by mouth with orwithout food, usually every 8 or 12 hours, or as
AERE directed by yvour doctor. The dosage is based on your medical condition and
response to therapy.
isone Drink plenty of luids while using this medication unless yvour doctar tells you
otherwise.
cet
I Antibiotics work bestwhen the amount of medicine in your body is kept at a constant
el level. Therefore, take this drug at evenly spaced intervals. 3
< | ¥

FIGURE 23 - PATIENT HANDOUT ON AMOXICILLIN.

106

4.12 A SIMPLE PERSONAL HEALTH RECORD

The final use case that I developed was a simple personal health record, shown
in Figure 24. It is a web-based application that a patient would access. It provides a
read-only view into the patient’s medication list, as stored in the NHIN, allowing the
patient to see what medications are active across a number of providers. The personal
health record also provides drug-interaction checking and links to information resources
targeted at patients. These services are actually identical to the services provided
through the EHR and discussed in sections 4.7 and 4.11. This is one of the key
advantages of the SANDS architecture — because decision support content is exposed as

services, the content can be reused across different end-user applications (the EHR, as

described in sections 4.7 and 4.11) and the PHR as described here.

) Medication Display - Mozilla Firefox
File Edit View History Bockmarks Tools Help

- - @ (i [0 htp:ffocaihost: 26 16/PHR Default. aspx [~[&] [[G-] &)
L Medication Display a8 .

Welcome to the Medication Decision Support Tool. We've assembled a list of all the medications you might be taking across a variety of providers
using the National Health Information Netwotk, Ifyou have any questions about this list, o hew to take your medications, please contact your doctor
ot phamacist.

Cwrent Meds:

FERROUS SULFATE ferrous sulfate Get infe
ALPRAZCLAM Alprazolam Get info
HUMULIE 70/30 VIAL Insulin, Isophane, Human Insulin, Regular, Human Get info
WARFARTN SODIUNM 4 MG TABLET TWarfarin Get info
PARONETINE HCL 30 MG TABLET Paroxetine Get info
LEVAQUIN 250 MG TABLET Leveflozacin Get info
TRAMADOL HCL 50 MG TABLET Tramadol Get info

Done

FIGURE 24 - PERSONAL HEALTH RECORD USE CASE.

107

4.13 NOTES ON LOCAL MIRRORING OF SERVICES

Service performance, reachability and uptime is discussed in detail in Chapter 6
of this dissertation. Overall, though, the performance of these services proved to be
quite good, and the overhead added by the SANDS architecture was minimal. That
said, it is recognized that some users might prefer to run services locally. In the case of
locally-developed services this is natural, however, there is also likely to be demand for

mirroring services. As such, a mechanism for mirroring services was developed.

The mirroring mechanism is based on HTTP, so each service that supports
mirroring must provide a mirror URL. All SANDS decision support services, regardless
of whether or not they support mirroring, should provide a method called
GetMirrorURL, which takes no parameters. If a service chooses not to provide
mirroring (perhaps it uses a proprietary database or algorithm), it should return null in
response to such a query. Services that wish to provide mirroring will return the mirror
URL. Once the mirror URL is received by the client, the client then makes an HTTP/1.1
request for that URL. Because each client may support one or more different formats for
service executables (i.e. Java, PHP, .NET, etc.), the client must include an Accept header
with the request, specifying a media range of those MIME types which the client is
willing to accept. The server will have a parallel set of possible formats that the service
to be mirrored can be provided in (and may support automatic translation between
formats). If a mutually agreeable format can be found, the server will return the service

executable in that format, along with a Cont ent - Type header giving the MIME type of

108

the format chosen. The service must guarantee that all formats return identical output

for identical input.

The server should also include an Expi r es response header which gives the
time at which the service content expires. It is the responsibility of the client to re-query
the service at the time of first invocation after the date given in the Expi r es response
header to see if a new version is available. The client should use the | f - Modi f i ed-

Si nce request header to prevent re-downloading the service if it is unchanged. The
decision support service provider may need to expire the content before the Expi r es
header date is reached (in the case, for example, of a drug recall), and a mechanism is
provided for this. After successfully downloading the mirrored service executable, the
client should register with the service by invoking the Regi st er M rr or function, and
providing a URL on a server controlled by the client but reachable by the decision
support service. If the service provider wishes to expire the content early, they would
POST a blank message to the URL provided. The POST method was chosen because
RFC 2616 specifies that the GET method should not have side effects (i.e. that no change
in state should occur as a result of calling the GET method). Registering for expiration
notifications is not a replacement for honoring the Expi r es response header, because
receiving the expiration notification is not guaranteed — if the service provider cannot
successfully complete the expiration notification on its first attempt, it is not required to

continue attempting the notification.

109

In most cases, mirroring should be transparent to the client. This would
normally be accomplished by a proxy. With a proxy, all requests for local, remote or
mirrored services are sent through the proxy. When the proxy detects frequent queries
to a remote service, it automatically attempts to mirror that service locally. If successful,
future queries to that service are rewritten so they call the local mirror without needing

to update the client.

While the technical details of the mirroring mechanism are complex, its purpose
is simple: to provide clients the ability to run remote content locally. This is likely to
alleviate four concerns that potential users may have about a service-oriented
architecture: performance (local services run faster), accessibility (local services can be
accessed even if the external internet connection is down), security (local services don’t
require that patient data be provided to outside parties) and concerns about external
factors (local services won’t become unavailable if the service provider goes out of

business, or if there is a dispute between the client and the service provider).

In certain cases, providers of decision support services may not want to allow
mirroring. For example, the service may use proprietary data or algorithms which the
provider would not want to expose to clients. Or, in the case of fee-based services, the
provider may not wish to allow mirroring because a mirror would allow the client to use
the service even if they stopped paying for it. Because of these issues, mirroring is not a
required capability, but it is expected that clients would prefer having the capability,

and might preferentially choose services which offer it.

110

111

CHAPTER 5: A FRAMEWORK
FOR EVALUATION

112

A project such as this one, with both theoretical and applied contributions,
requires a tailored evaluation framework. In order to develop such a framework, I
worked closely with my committee. We reviewed a number of representative
dissertation in medical informatics and computer science with similar approaches to my
own as well as two key works on evaluation in medical informatics and experimental
computer science: a 1994 report from the National Academy of Sciences, Academic
Careers for Experimental Computer Scientists and Engineers (158) and William Stead’s
“Designing medical informatics research and library-resource projects to increase what
is learned” (159). Because of their centrality to the final evaluation framework that was

developed they are briefly reviewed in this chapter.

5.1 ACADEMIC CAREERS FOR EXPERIMENTAL
COMPUTER SCIENTISTS AND ENGINEERS

In 1994 the National Academy of Sciences released a report titled Academic
Careers for Experimental Computer Scientists and Engineers. This report was written in
response to a tension between theoretical and academic computer scientists about what
sort of research constitutes “real science.” While it primarily discusses career-related
issues such as promotion and tenure, it also has a chapter on evaluation. It considers
evaluation not from the perspective of methods, as is typical, but instead from the
perspective of dissemination. While it acknowledges that papers in refereed academic
journals represent the pinnacle of dissemination, it discusses other forms of

dissemination which can also form valuable contributions to knowledge (158):

113

e Conference papers

e Demonstrations

e Sharing source for software

e Providing access to experimental computer systems
e Sharing chip designs

e Disseminating graphic images and CAD tools

e Providing access to data

This dissertation meets the evaluation standard set out by Academic Careers for
Computer Scientists because the taxonomy paper has been accepted for publication in a
major, refereed informatics journal and another submission describing the architecture
and evaluation results is now under preparation. However, several of the alternative
dissemination methods have also been employed. The architecture has been
demonstrated at four academic medical centers (Cincinnati Children’s Hospital,
Columbia, the Regenstrief Institute and Partners), the source code is available under an
open source license, and a manuscript describing the architecture has been submitted to

the 2007 AMIA student paper competition.

5.2 THE STEAD FRAMEWORK

One of the earliest and most widely read papers on evaluation in medical
informatics is “Designing medical informatics research and library-resource projects to
increase what is learned” by William Stead and the members of the Biomedical Library

and Informatics Review Committee (BLIRC). The BLIRC is the board that reviews

114

grants submitted to the National Library of Medicine. The BLIRC developed a consensus
framework to “increase what is learned from information access, information systems,
and medical informatics research projects” by improving the quality of evaluation in the

field of informatics. The framework is summarized in Table 7 which is reproduced from

the paper.
Evaluation
I 11 11 v \Y%
Laboratory Remote Field
System Development Definition Bench Field Validity Efficacy
A Specification — !
B Component development !
C Combination of —/| —/| l
components into a
system
D Integration of system — —/] —/] l
into environment
E Routine use — - —

TABLE 7 - STEAD'S EVALUATION FRAMEWORK (REPRODUCED FROM STEAD, ET AL.
(159)).

This table sets out five levels of project development (from specification through
routine use) and five levels of evaluation (from definition to remote field efficacy). At
the vertices, the researcher is directed to move further in system development, move
further in evaluation, or take either option. The goal of the evaluation framework is to

ensure that the evaluation level is appropriate to the level of system development.

5.3 THE FRAMEWORK

Based on this background review, my committee and I developed a five-phase

evaluation framework:

115

1. Feature determination: Determine a set of desirable features for a decision support
architecture, and describe the relative ability of the SANDS architecture and other
architectures to exhibit these desirable features.

2. Existence: Develop an architecture for decision support which exhibits this set of
features, and demonstrate that the architecture is feasible by building a proof-of-
concept prototype of it.

3. Utility: Demonstrate that the the architecture is useful by showing that it can be
integrated with existing decision support systems.

4. Coverage: Demonstrate that the architecture is sufficiently general by measuring
how well it covers a large knowledge base of decision support content and compare
its coverage to the coverage possible with other architectures such as Arden Syntax,
GLIF, SEBASTIAN and SAGE.

5. Performance: Demonstrate that the architecture is fast enough to enable a reasonable

response time in applications.

Based on Stead’s framework for development, the taxonomy and specification
form a level A (specification) project, while the proof-of-concept is at levels B

(component development) and C (combination of components into a system).

The first and second phase of evaluation, feature determination and existence,
cross phases I (definition) and II (laboratory bench) of evaluation, and begins to lay the
groundwork for further review. The third phase, utility, crosses laboratory bench and

field, and ventures into remote field validity because the third-party services that were

116

integrated were outside the control of the research team, which is the defining point of
remote field evaluation. Phases 4-5 of the evaluation plan, coverage and performance,
actually track the same evaluation levels as phase 3, but provide additional dimensions

to measure along.

Taken together, the five phases of evaluation satisfy both the Stead and NAS
frameworks while also providing a way to think about the feasibility and usefulness of
the SANDS architecture and its relative advantages and disadvantages when compared

to other approaches for sharing decision support content.

117

CHAPTER 6: RESULTS

118

6.1 FEATURE DETERMINATION

The driving force behind developing a new architecture for clinical decision
support was a recognition that other existing architectures had limitations which
impaired their ability to be maximally effective. Based on a review of the history of
decision support systems and architectures (discussed in Chapter 1 of this dissertation),
as well as a review of some best practices for decision support, a set of desirable features
for a decision support architecture was identified. These are given in Table 8, and
described in detail below. One fundamental question is whether any of the major
architectures for decision support could satisfy all of these features. All four the
architectural approaches were considered in the review: standalone, integrated,
standardized and service-oriented. For standalone and integrated architectures,
hypothetical best-in-class were considered - if it is possible for any system developed in
that architectural paradigm to exhibit a feature, that feature is credited to the
hypothetical system for that paradigm, whether it actually currently exists or not. For
standards-based systems, Arden Syntax and GLIF 3.5 were used. GLIF offers a choice of
expression languages, with GELLO being the recommended choice. We used GELLO
for three reasons: first, because it's recommended, second, because it’s the most
expressive expression language for GLIF, and third, because there is some extremely
promising work on developing a GELLO toolkit and authoring environment underway
(121). For service-oriented systems, SEBASTIAN and SAGE were evaluated. The results

of the comparison are presented in Table 8.

119

GLIF

Stand- 3.5/

Feature alone Integrated Arden GELLO SEBASTIAN SAGE
Avoids vocabulary issues X X X
Shareable X X X X X
Can view decision support

X X X X X
content

Content separate from

X X X X
code

Central updates X

Explicitly designed for
multiple patient data
sources

Explicitly designed for

multiple CDS sources X
Content integrated into
X X X X X

workflows
Supports event driven CDS X X X X X
Supports non-event driven X x
CDS
Support decision support

g . X X X
across multiple patients
Enables_s&_epgratlon of X X X x «
responsibilities
Enal:_)Ies composition of X X X
services
Allows black-box services X X X
Free choice of X X x

programming language
TABLE 8 - FEATURE COMPARISON FOR A VAREITY OF DECISION SUPPORT
ARCHITECTURES.

The dimensions of comparison are:

¢ Avoids vocabulary issues: One key challenge of decision support is vocabulary
issues. Standards like Arden Syntax create vocabulary issues by leaving vocabulary
undefined. Stand-alone systems, however, avoid them entirely by not interfacing
with other systems. SANDS avoids such issues by tying its vocabulary requirements
to those standards approved by HITSP, so there is no additional effort required of

clinical system developers to support the vocabulary needs of SANDS, so long as

120

they support these standards (such support is beginning to be mandated by the
(voluntary) CCHIT certification process).

Shareable: The basic goal of most knowledge representation formalisms is enabling
the sharing of decision support content. Each approach, except for fully integrated
systems, enables this. Standalone systems are trivially shareable, since they can
simply be copied from one system to another.

Can view decision support content: Formalisms like Arden Syntax and GLIF specify
a format for sharing knowledge that is both human and machine readable. This is
generally a good thing because it allows consumers of content to review it.
However, in certain cases, a content developer may not want to allow consumers to
view the content (e.g. if they consider their content proprietary). While the
developer of a SANDS service always has the option to show the code to the
consumer, this ability is not guaranteed in SANDS.

Content separate from code: A common goal of knowledge management and
software engineering is the separation of content (decision support rules) from the
code for the clinical system. All of the architectures, except the fully integrated
model, make this separation explicit. In the case of the integrated model knowledge
and code are sometimes mixed together.

Central updates: One challenge in clinical decision support is keeping decision
support systems up to date, particularly since medical knowledge changes quickly.
With SEBASTIAN and SANDS clinical decision support content is held with its
developer, allowing it to be updated centrally.

121

Explicitly design for multiple patient data sources: Patient data is commonly
spread across multiple clinical systems — for example, a patient may have data in
their primary care provider’s system, a specialist’s system and a hospital system
from a hospital admission. SANDS is the only approach which is explicitly designed
to handle multiple patient data sources which efforts such as RHIO’s and the NHIN
are intended to address.

Explicitly designed for multiple CDS sources: SANDS and SEBASTIAN are both
designed to allow for multiple decision support services, and both support
mechanisms for choreographing and integrating these services. This is important,
particularly when control of services is decentralized and distributed. For example,
in the case of medication ordering, a clinical system might want decision support
relating to drug interactions (which could be provided by a commercial knowledge
vendor), formulary coverage (likely provided by the patient’s insurer) and black-box
warnings (which could be provided by the FDA).

Content integrated into workflows: In the ideal case, decision support is closely
integrated into clinical workflows. All of the approaches for clinical decision
support, with the exception of standalone systems, provide this capability.
Supports event driven CDS: Most clinical decision support is event-driven — some
event in a clinical system (such as ordering a medication or receiving a lab result)
triggers the decision support to fire. All of the approaches support event-driven
decision support, except for standalone systems, which the user must explicitly
invoke.

122

Supports non-event driven CDS: Certain cases of clinical decision support are not
necessarily event driven — for example, a system which brings up a list of all diabetic
patients who haven’t had a hemoglobin A1C test in the past year could be a form of
decision support, even though it lacks a specific triggering clinical event. While this
use case can be easily handled in standalone and integrated systems, the other
approaches have varying levels of support. Arden Syntax can only handle event-
driven decision support. GLIF has reasonable support for non-event driven logic,
and SAGE and SEBASTIAN can be made to perform non-event driven logic.
SANDS explicitly allows for it.

Support decision support across multiple patients: Most decision support (and
most decision support systems) is designed around a single patient at a time.
However, useful systems can be built which reason across multiple patients, such as
the hemoglobin Alc panel viewer described previously, or the public health use case
reviewed in Chapter 4. Standalone and integrated systems enable this but Arden,
GLIF and SEBASTIAN do not. Support for such systems is explicitly designed into
SANDS and SAGE.

Enables separation of responsibilities: The people who develop a clinical system
(often computer programmers) and the people who develop decision support
content (usually clinicians and informaticists) are frequently different. As such, it is
helpful if these responsibilities can be separated. This is possible in any of the
approaches, but it becomes challenging when decision support content is hardcoded
directly into a clinical system, as can be the case in the integrated approach.

123

Enables composition of services: It is sometimes the case that one decision support
system might want to invoke another decision support system. This is explicitly
considered in the three service-oriented approaches (SEBASTIAN, SAGE and
SANDS) and is also possible with integrated systems. However, Arden Syntax does
not enable this capability very directly, and it can be difficult to achieve with
standalone systems unless their inputs and outputs are synchronized.

Allows black-box services: In certain cases decision support developers may
consider the logic of their systems to be proprietary. In the case of integrated
systems, Arden Syntax and GLIF, the developers must expose their logic to the
consumers of their system. However, standalone systems and the three service
approaches allow for black-box services, where the logic is not exposed. This brings
the large caveat that, in a black box service, the consumer cannot review or validate
the logic, so choosing to consume such a service must be carefully reasoned, but is,
perhaps, justifiable if the service comes from a highly reliable source.

Free choice of programming language: Integrated systems, Arden Syntax and GLIF
all require decision support developers to use a specific language for representing
their content. In many cases this imposes little limitation, but if the decision support
developer is not comfortable working in that language, or if the language does not
support the type of logic that the developer intends to use, this can be a very high
cost. This is not faced in standalone systems, since they aren’t designed to integrate
with clinical systems and it is also avoided by the three service architectures, since
they impose only interface requirements.

124

Overall, this analysis indicates that each of the existing architectures has gaps
when compared against this list of desirable features. While some of these gaps could be
resolved simply by adding features to the existing architectures, others are structural —
for example, a fully integrated system, by definition, cannot use a central knowledge
service. The SANDS architecture is intentionally designed to support all of these desired

features.

6.2 EXISTENCE

Now that the SANDS architecture has been described and shown to support a set
of useful features, the next logical question is whether is feasible. The goal of the
existence phase is to demonstrate the feasibility of the SANDS architecture by building a
working prototype of it — an existence proof. The prototype is described in detail in
Chapter 3, and the protocols and messages used are described in detail in Appendices A
an B. Further, open source code is available so that others can run and use the

architecture. The code can be found at http://medir.ohsu.edu/~wrightad/sands/.

Demonstrations of the architecture have been conducted at a variety of sites around the

country.

6.3 UTILITY

The next step beyond existence is utility. The working prototype shows that the
architecture is feasible, but can it do useful things? In this section, two dimensions of

utility are considered: clinical utility (can clinically useful interventions be developed in

125

http://medir.ohsu.edu/%7Ewrightad/sands/

a system like SANDS) and functional utility (does SANDS allow for a useful variety of

different interventions).

In this dissertation, clinical utility is measured based on inherited utility from the

use cases — most of the use cases comprise decision support interventions whose utility

has been demonstrated in previous studies. To the extent that SANDS provides the

ability to implement these proven interventions, it inherits their clinical utility. We will

review the clinical utility use case by use case:

Drug interaction checking: Significant evidence exists that medication ordering
errors (including drug-drug interactions) are extremely common, and that these
errors are associated with morbidity and mortality (127-130). There is also evidence
that decision support, such as drug interaction checking, can reduce the frequency of
both prescribing errors and resultant adverse events (51, 104, 131, 133, 134, 136, 138,
139). SANDS provides a new way to tightly and conveniently integrate drug
interaction checking into the ordering process.

Syndromic surveillance: Syndromic surveillance is a high priority and automated
electronic systems for detecting disease outbreaks can be very effective (160-167).
SANDS enables reporting of clinical diagnoses from electronic health records (rather
than administrative codes, which are more commonly reported), and also allows
specialized public health information systems to tightly integrate with the same

network.

126

Diagnostic decision support: Since the beginning of the field of informatics,
researchers have developed diagnostic decision support systems. The available
evidence suggests that, while such systems are frequently impractical or unwieldy,
they are generally as accurate as, or more accurate than human clinicians, and they
can help clinicians improve their diagnostic accuracy (10-18, 23, 24, 29, 32-35, 39, 45,
53, 58, 141-144, 168-174). In this particular use case SANDS has been used to
integrate the Isabel Diagnostic Reminder System (Isabel Healthcare, Reston,
Virginia) with an electronic health record, and further evidence exists that Isabel is
clinically useful (141, 142, 144) when so integrated.

Inappropriate prescribing in older adults: Inappropriate prescribing in older adults
is known to be common (146) in spite of available guidance about avoiding such
prescribing (145). In this dissertation a service was created to enable automated
checking of prescriptions against this guidance.

Information at the point of care: It is well known that clinicians have many
questions at the point of care (149, 151) and good information tools exist to help
them resolve these questions (154-156, 175-179). SANDS makes it easier to tightly
integrate these tools into the clinical workflow.

Personal health record: Personal health records have great promise for improving
patients” understanding of their health, their sense of self efficacy and their
compliance with their healthcare plans (180-184). The personal health record use

case in SANDS shows the feasibility of creating a composite personal health record

127

based on an NHIN, and providing patient-facing clinical decision support through

that personal health record.

In addition to clinical utility, SANDS provides functional utility: the architecture

allows for use cases with a variety of functional properties, as shown in Table 9.

Diagnostic POC Info: POC Info: Inappropriat
_ Support ___Google _ UpToDate e Prescribing
Developer Isabel Google UpToDate Self
User Clinician Clinician Clinician Clinician
Information Textbooks Internet Expert writers Expert panel
source (expert
curated)
Clinical Diagnosis Diagnosis / Diagnosis/ Drug therapy
purpose therapy therapy
Inference type NLP IR IR Rule-based
Composition None Provider Provider Provider
role
Business Subscription Ad- Subscription Public service
model supported
Pay Yes No Yes No
Status Already a Already a Wrapper De novo
service service
Drug-drug Syndromic Personal
interaction surveillance
Developer Lexi-Comp Self Self
User Clinician Clinician, Patient
epidemiologist
Information Lexi-Comp State Health Other data
source pharmacists Dept. sources
Clinical Drug therapy Public health Patient
purpose information
Inference type Rule-based Rule-based, Compositional
geospatial
Composition Provider Consumer Consumer
role
Business Subscription Government Unclear:
model supported public service
/ subscription
/ third party

128

pay

Pay Yes No No
Status Already a De novo De novo
service

TABLE 9 - PROPERTIES OF SANDS PROTOTYPE USE CASES.

The properties in Table 9 are:

e Developer: Who developed the decision support system. Table 9 shows that use
cases from a variety of commercial developers, as well as self-developed use
cases have been prototyped in SANDS.

e User: The intended user of a decision support system. Most decision support is
targeted at clinicians, but use cases targeted at public health departments and
patients have also been prototyped.

¢ Information source: A variety of information sources are demonstrated, ranging
from staff experts in a number of the commercial cases, to the internet or
government agencies in other use cases.

e Clinical purpose: Use cases crossing diagnosis, therapy, information display and
public health have all been implemented in the SANDS prototype.

e Inference type: A variety of inference types are demonstrated, ranging from
simple rule-based systems to complex NLP interventions. This is particularly
significant because many current knowledge representation formalisms are
limited to rule-based interventions. Since SANDS imposes no restrictions on the
way decision support interventions are implemented (so long as they implement
the SANDS interface), it is possible to develop a service using any arbitrary

inference type in SANDS.

129

Composition role: One key advantage of SANDS is that services can be
composed of other services. This is demonstrated in a number of ways in
SANDS. For example, the public health service calls a geo-coding service, while
the PHR use case calls a number of other services, including the point-of-care
information tools and the drug interaction checker. These services are then used
to provide patient-tailored information on medications and drug interactions.
Business model: A variety of business models are demonstrated, including
commercial services, services which might be provided by the government and
services which would be provided by medical specialty societies (who currently
provide written guidelines).

Pay: Both pay and free services have been prototyped.

Status: Some of the use cases were already available as a service (which could be
easily translated to the SANDS protocols), while others required development of

a service wrapper and some were developed de novo.

As shown in Table 9 and the accompanying discussion a wide variety of clinical

decision support types can be implemented in SANDS. This is quantified in section 6.5.

Combined with the clinical utility of the decision support interventions described

previously, this analysis suggests that SANDS has high utility — it can be employed to

carry out useful tasks.

6.4 COVERAGE

130

The next element of the evaluation framework is coverage — the ability of the
SANDS architecture to encode clinical knowledge in comparison to other approaches.
The basis for the coverage metric is the large knowledge base of clinical decision support
content described in Chapter 3. This knowledge base spans several hospitals and a large
number of outpatient clinics, and contains 181 rule types and 7,120 rule instances.
SANDS is compared against a variety of architectures for sharing decision support
content from all four of the architecture phases described in Chapter 1. For the first two
phases — standalone and integrated, a hypothetical best-in-class system is considered.
For stand-alone, this means a system which can use any kind of data element, but with
the significant limitation that decision support can only be triggered by user request.
The hypothetical integrated system is actually the gold standard — when decision
support is hard-coded directly into a clinical system there is no limit to what can be done
(although there are a variety of disadvantages to fully integrated systems, as described
in Chapter 1 and the next section of this chapter). For standards-based integrated
systems, Arden Syntax and GLIF are used as representatives, since they are the two
most widely used and studied approaches. Both of the existing service-oriented
approaches, SEBASTIAN and SAGE are also included in the comparison. Table 10
shows the capability mapping between the taxonomy and the comparison systems, as

well as SANDS.

131

Stand Integ- Arde GLIF SEBAS SAGE SAND

- rated n -TIAN S
alone
Trigger
Order entered
Lab result stored
Outpatient
encounter
User request X X X X X X
Time X X X
Admission X X X X X X
Problem entered X X X X X X
Enter allergies X X X X X X
Enter weight X X X X X X
Data element
Lab result / X X X X X X X
observation
Drug list X X X X X X X
Hospital Unit X X X X X X X
Diagnosis / Problem X X X X X X X
Age X X X X X X X
Non-drug orders X X X X X X X
Gender X X X X X X X
Family history X X X X X X X
Allergy List X X X X X X X
Weight X X X X X X X
Surgical history X X X X X X X
Reason for X X X X X X X
admission
Prior visit types
Race
Intervention
Notify X X X X X X
Log
Provide defaults / X X
picklists
Show Guidelines X X X X X
Collect freetext X X
Get approval X X
Show data entry X X X
template

132

Stand Integ- Arde GLIF SEBAS SAGE SAND

- rated n -TIAN S
alone

Offered choice

Write order X X X

Defer warning

Override rule / keep X X X
order

Cancel existing X X X X X
order

Cancel current X X X X X
order

Edit current order

Edit existing order

Set allergies

X | X | X | X

Write letter

Write note

Edit problem list

X | X | X | X | X |X | X
X | X | X | X | X |X | X

Enter weight, height
or
age

TABLE 10 - FUNCTIONAL CAPABILITIES OF VARIOUS DECISION SUPPORT
ARCHITECTURES.

The mapping in Table 10 was then applied to the entire database of decision
support content to compute metrics, seen in Figure 25. These coverage metrics represent
the percentage of rules in the database which can be represented in the given
architecture. For any given rule to be representable in an architecture, each of the
functions that the rule requires (in terms of triggers, data elements, interventions and

choices offered) must be provided by that architecture.

As Figure 25 indicates, SANDS achieved coverage equal to the gold standard —
tully integrated systems. This, of course, is by design — SANDS was intentionally
developed to have full coverage of this knowledge base. SAGE also performed very
well. GLIF and SEBASTIAN were able to map slightly less than half the content in the

133

database. Their performances were very similar largely because they employ similar
data models. Arden Syntax had much lower coverage, mapping only slightly more

than 15% of the database. This is largely attributable to the fact that Arden Syntax

Coverage of A Large Knowledge Base

7120rules
100.00%
- [[[[|
7120rules
100.00%

Integrated

SANDS

6262 rules
SAGE 87.95%
3204 rules
45.00%
A N A B
3163 rules
44.42%

GLIF 3.5 (w/ GELLO)

SEBASTIAN

1076 rules

Ard
Rl 15.11%

Standalone

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Proportion of Rules Representable by the Architecture

FIGURE 25 - COVERAGE METRICS FOR VARIOUS DECISION SUPPORT ARCHITECTURES.

supports only simple notifications — it does not allow for offering actionable choices to
the user in response to a notification. If this limitation is excluded from the analysis,
Arden Syntax’s coverage score increases to 45.88%. Standalone systems, as expected,

offer the poorest coverage because they don’t support triggers or actionable choices, so

134

only very rudimentary decision support rules (those without a triggering event, and

with no response actions) can be fully represented.

It is important to note that this coverage analysis should not be viewed as a
competition between SANDS and the other approaches. Each of the approaches (with
the exception of standalone systems) could be extended to achieve 100% coverage, and it
is likely that some of them will be as a result of this analysis. Instead, the purpose of this
evaluation is two-fold: first, to show that the SANDS architecture is sufficiently general
to map a wide variety of decision support content types, and second to show that there
are, at present, remediable gaps in the other architectures. Further, one important intent
of SANDS is that it does not restrict the developer’s approach to knowledge
representation and execution, so SANDS is not intended to supplant other knowledge
representation formalisms. Instead, it is entirely possible (and has been roughly
prototyped) to develop decision support systems for SANDS in any of these formalisms.
Such an approach would be a natural way to extend any of the other formalisms to 100%
coverage. For example, if the medical and action ontologies in GLIF were replaced by
the SANDS taxonomy (and GLIF is designed with enough generality to allow for such a

substitution), this would close the coverage gap.

6.5 PERFORMANCE

One critical factor of any decision support system is performance. A common
goal of clinical system developers is sub-second response time (185) and one critical

question we faced was whether this ideal could be achieved using the SANDS

135

architecture. The SANDS architecture is subject to five kinds of delay which are

generally additive:

Network latency: The time it takes for a packet to propagate between two hosts on a
network. This is a startup cost of transmission — after the first packet, throughput is
governed by transmission delay.

Transmission delay: The time needed to transmit a message over the network once
latency is overcome. With SANDS’ small message sizes, throughput is usually not a
major source of delay.

Patient data fetch: SANDS fetches a patient’s clinical data from the NHIN. The cost
of this fetch can be fairly high so SANDS employs a caching strategy to reduce this
delay.

Parsing overhead: SANDS is based on XML protocols and there is overhead in
parsing the XML. Given the size of the messages used in SANDS, the overhead is
fairly small.

Inference time: This is the actual time that the inference takes to run. This is not
overhead added by SANDS. Even tightly integrated decision support systems face

this delay.

The latency delay of a typical transmission varies significantly depending on the

distance between the client and server. Within a subnet, it is generally less than one

millisecond. Within the continental United States, I observed times ranging from 3ms to

170ms, with typical transmissions seeing about 75ms latency delay. Because the amount

136

of data SANDS transmits is small, transmission delay tends to be very small, on the
order of 1-3ms. The patient data fetch time is a function of the NHIN architecture and,
as discussed in Section 4.3, tended to be unacceptably slow (on the order of 6-10
seconds). As a result, caching was employed, which reduced the fetch delay to zero
(when stored locally in the service), or on the order of 100-200ms, when stored in the
cross-service distributed cache described in the same section. The parsing overhead for
SANDS messages was approximately 10ms using Microsoft’s native XML parser. The
tirst four delays are all overhead added by SANDS. The final source of delay, inference
time, is a property of the decision support service, and was the most variable. Simple
services could complete their inferences very quickly (from 50-100ms), which other

services took nearly a second.

To assess the robustness of the SANDS architecture and the delays associated
with it we conducted a timing and reliability study. We set up the system to
automatically poll each service in the SANDS implementation every 5 minutes (24
hours/day, 7 days/week) over a continuous four week period (a total of 13,440 requests).
Table 11 shows the results of this study. The “Avg Time” column gives the mean
response time in milliseconds for each service. The next four columns give the
frequency with which various results occurred: if the query failed, if it returned within 1
second, if it returned within 5 seconds, or if it was successful but took 5 or more seconds
to complete. Seven of the nine (78%) SANDS decision support modules had subsecond

response times > 97% of the time. The prescribing in the elderly service was unavailable

137

for two brief periods because it was being reprogrammed — these periods are excluded

from the analysis.

Avg Result
Time

| Service (ms)

Self-Developed Services

Prescribing in the
elderly

Syndromic
surveillance

Externally-Developed Services

21,711 73.32 0.00% 100.00% 100.00% 0.00%

24,765 73.58 0.00% 100.00% 100.00% 0.00%

Diagnosis (Isabel) 24,765 524.61 0.03% 99.43% 99.95% 0.02%
Information (Google) 24,765 192.45 0.03% 99.23% 99.89% 0.08%
(Up'Trg[C)’;Tea)‘“O” 24,765 788.40 0.38% 94.61% 99.07% 0.55%
Drug-drug interaction 24,765 1382.17 0.02% 0.00% 99.62% 0.36%
Google geocoder 24,765 137.90 0.06% 99.72% 99.94% 0.01%
Yahoo geocoder 24,765 250.57 0.14% 98.07% 99.71% 0.15%
Geocoder.us 24,765 262.76 0.63% 98.51% 99.23% 0.14%

TABLE 11 - PERFORMANCE OF SANDS PROTOYPE SERVICES.

Overall, these results indicate that it is not only possible, but highly reliable and
quick, to perform a variety of useful clinical decision support interventions using the
SANDS architecture with sub-second response time as the standard. Most (7/9) services
consistently (>97% of the time) serviced requests in under one second. The syndromic
surveillance and prescribing in the elderly services, which were self developed, had
outstanding performance because they were optimized for efficiency and located locally
so a request to them did not have to traverse the Internet. The drug-drug interaction
service never completed within 1 second, but almost always (99.83%) completed within

5 seconds. This is likely due to the data structures used by the developer of the service.

138

The last three services, called Geocoders, merit further comment. The syndromic
surveillance use case has a mapping capability, where cases of reportable diseases are
displayed geospatially. To do this, a service called a Geocoder is used. A Geocoder
takes an address and finds the corresponding latitude and longitude. Three different
free Geocoding services were tested and the variation in performance was striking —
Google’s Geocoder almost never failed, and returned within 1 second 99.9% of the time.
Yahoo's Geocoder, doing the same task, failed twice as often and took, on average,
nearly twice as long, as seen in Table 11. The implications of the variable performance of
these three identically purposed services are more fully discussed in section 7.7. Clearly,
system reliability and performance will be an important consideration for any user of
the SANDS architecture. While the architecture itself imposes only minimal latency and
overhead, the performance of the same task, implemented by different developers, may
vary greatly so it will be important to carefully evaluate performance before choosing

services.

6.6 SUMMARY OF RESULTS

As discussed in the preceding sections, SANDS performs favorably on a variety
of metrics. I demonstrated that the architecture is feasible, that it has a variety of
desirable features sometimes lacking in other architectures for decision support, that it
has excellent clinical and functional utility, that it is able to successfully model a large
knowledge base of decision support content and that its performance is more than

adequate for sub-second response time.

139

CHAPTER 7: DISCUSSION

140

7.1 CHALLENGES IN INTEGRATING DATA

As described in section 4.2, I developed a Patient Data Class Library that
integrates data from the NHIN and prepares it for easy use in decision support. The

data elements represented by the Patient Data Class Library were:

Demographics and vital signs:
e First Name
e Last name

e Gender

e Race

e Date of birth
o Weight

e Height

e (Care setting
Clinical information:

e (Observations

e Drugs

e Problems

e Family history

e Procedure history

e Allergies

e Other orders

The standards used and challenges in representation were discussed in section
4.2. However there were also some difficulties in integrating patient data. For
demographics, discrepancies were uncommon and usually of little significance (for
example, discrepant spellings of the patient’s first name). When present, they were
resolved by using the most recent observation as the correct one. Vital signs were

resolved in a similar fashion: all vital signs were stored and made available with

141

timestamps as observations. For height, weight and care setting the most recent value
was also made available as a discrete value in the demographics component of the

Patient Data Class Library

Integrating the clinical information was more difficult. For some data elements,
such as observations and procedure history, the correct integrated set is simply the
union of all non-duplicate elements stored in clinical systems on the national health

information network.

However, for drugs in particular, the problem was much more difficult. We
often encountered patients who had medication lists spread across a variety of clinical
systems, often containing the same drug with different doses or two drugs in a
therapeutic class where co-administration is very uncommon. We were not able to
accurately reconcile such medication lists in a fully automated fashion. This problem is
well understood and described in the literature (186, 187) and is the focus of a number of
active research projects, such as the RxSafe project in Lincoln City, OR (188). It is likely
that any comprehensive solution will require human intervention, whether it’s a

clinician to reconcile the medication lists, a pharmacist or the patient himself.

That said, for many clinical decision support applications a fully reconciled
medication list is unnecessary. Consider, for example, drug interaction checking.
Assume that the patient has a three-year-old order for warfarin entered by another
provider with no updates in any other systems. While it may be very probable the
patient is no longer on warfarin; if a current provider wrote an order for, say aspirin, it

142

would still be sensible to show an alert that the contemplated order poses a serious
contraindication with the old warfarin order. The provider could then query the patient

to determine if the patient was still taking warfarin and act accordingly.

For certain types of decision support, however, this may not be adequate.
Consider, for example, a hypothetical pill burden calculator. Unless the calculator has
an accurate way of determining what medications a patient is still taking calculating a
correct pill burden would be very difficult. Luckily this problem cuts across all uses and
users of integrated medication data, so it is likely to see significant attention in the

future.

7.2 DRUG TERMINOLOGY CHALLENGES

Many systems, including the national health information network prototype that
I used in this dissertation use national drug codes or NDCs. These codes are popular
because they are the basis of most pharmaceutical claims. Since nearly all
pharmaceutical claims are processed electronically they tend to be much more widely
available than prescription data because electronic prescribing is still rare. The most
significant difficulty with NDCs are their specificity. Each individual dose form and
quantity of a medication is assigned a unique national drug code. That means that a
common generic drug, like aspirin, may have dozens or hundreds of applicable NDCs.
This creates a challenge for decision support, because any rule that references a given
drug by its NDC must be aware of the fact that there could actually be many NDCs for

that drug, and that more may appear in the future. A further challenge is that NDCs can

143

be unreliable. The code space for NDCs is managed in a decentralized fashion, with the
FDA assigning parent codes to all manufacturers of pharmaceuticals. These
manufacturers then assign NDCs from their code space whenever they produce a new
drug. Unfortunately, there are cases where manufacturers recycle drug codes, or simply
assign the same drug code to multiple drugs. And while manufacturers are required to
report their assignments back to the FDA, there are cases where they fail to do so. As
such, even in our limited prototype we encountered a number of situations where NDCs
found on a patient’s drug list could not be matched by decision support systems. For
example, the NDC code 00093086301 represents one form of ciprofloxacin. When this
code was passed to the Lexi-Comp drug interaction service the query failed. Although
the service, of course, contains data on ciprofloxacin, this particular NDC for
Ciprofloxacin was not in its database. The same issue was encountered for NDC
68249020010 (for the drug Humibid, a brand name version of guaifenesin with
potassium guaiacolsulfonate) and for NDC 00591049950 (a generic 100 MG doxycycline

hyclate tablets produced by Watson Laboratories).

It is my strong recommendation that terminologies besides NDCs be used to
describe drugs. The National Drug File Reference Terminology (NDF-RT) would be one
good choice, but there are actually many. This cause is helped by the RxNorm project of
the National Library of Medicine (90). RXNorm is designed to be a comprehensive map
amongst various drug terminologies. While it includes NDCs, it faces the same

limitations that other terminology systems based on NDCs have encountered: namely,

144

that certain NDCs which have been assigned to drugs do not appear in RxNorm.
Another ray of hope comes from the NCPDP SCRIPT electronic prescribing standard
(87). Electronic prescriptions using NCPDP SCRIPT use robust drug vocabularies, and
as more electronic prescriptions are written, the need to use claims data (where NDCs

are most commonly found) is lessened.

7.3 PROBLEM LIST TERMINOLOGY CHALLENGES

While the largest terminological issue I encountered in the development of this
prototype was related to drugs, problem list terminology also provided some interesting
challenges. Perhaps the most widely used system for encoding problems is ICD-9. The
ICD system, originally called the International Classification of Causes of Death was
initially designed for use on death certificates. It has since been modified for clinical
use, particularly in billing (the modified version is called ICD-9-CM, for clinical
modification). Medical bills in the United States are generally comprised of ICD-9 codes,
which describe the disease or indication for a procedure, and a CPT code which
describes what the provider did. Many electronic health record systems have also
adopted ICD-9 codes for use in problem lists. While this works in many cases, and
certainly simplifies billing, it is frequently the case that the level of detail required for
describing a problem for clinical purposes differs from the level of detail required for

describing the same problem for billing purposes.

An initial version of the prototype system used ICD-9 codes because of their

wide use and availability, and because the NHIN prototype used generally provides

145

problem information in ICD-9 format. However, ongoing use of the prototype quickly
showed that ICD-9 codes were inadequate for describing many common clinical
problems, a problem which has been previously described in the literature (189). As
such, I converted the problem list format for my prototype to SNOMED. Because
SNOMED is a very large terminology designed for a variety of clinical purposes. I
employed a subset of the SNOMED terminology designed for problem lists and
developed by Kaiser Permanente and the Department of Veterans Affairs. This subset is
frequently used for problem lists and is available either directly from the Veterans
Affairs administration or via the UMLS. In addition to more clinically relevant
problems, using SNOMED provides several significant advantages for decision support
developers. SNOMED provides a rich semantic structure and hierarchy of concepts, so
it’s possible to develop rules that correctly handle generality. For example, SNOMED
defines a heart disease concept so it’s possible to develop a rule that says “patients with
a history of heart disease should receive an influenza vaccination.” Then, even if the
patient’s problem list does not contain the concept “heart disease”, but contains a sub-
concept such as “dilated cardiomyopathy” a rule engine that exploits SNOMED's
concept network can correctly reason that the influenza vaccination rule still applies.
While ICD-9 has its own concept hierarchy it is much less rich than SNOMED’s and is

designed for billing rather than clinical purposes.

7.4 MESSAGE AND SERVICE ARCHITECTURES

146

One of the early questions faced during the development of the SANDS
architecture was whether to develop it as a message-based architecture or a service-
oriented architecture. To understand the difference between the two architecture types
it is perhaps easiest to consider an example. Consider an electronic prescribing
transaction — a physician has decided to write a prescription for an antibiotic, so he or
she enters the prescription into an EHR, and asks the EHR to transmit it electronically to
the pharmacy. In a message-based architecture, the EHR would generate a message,
formatted according to some agreed upon standard, and “release” it to a network, and
that network would be responsible for properly routing the message and acting on it
(probably with the help of some sort of message router or hub). In this model, the EHR
gives no consideration to where the message goes (i.e. what pharmacy), or how it gets
there. This relieves the EHR of significant responsibility, since it doesn’t need to know
what pharmacies exist, or how to reach them, but comes at the high cost of the EHR not
being able to control how the message is distributed, or possibly even knowing if the
message was delivered successfully or not. In a service-oriented model, the EHR would
be much more proactive — it would connect to a prescribing service offered by a
pharmacy (and would then, of course, need to know how to reach that pharmacy, or
have a way to find out how to reach it), and would communicate directly with that
service, providing the appropriate information needed, and having more fine-grained

control of the service’s behavior.

147

One common way of thinking about the difference between services and
messages is that messages make data explicit but behavior implicit, while services make
data implicit but behavior explicit. In healthcare, message-based architectures have
predominated, particularly in the domains of reimbursement and intra-hospital clinical
system integration. In the case of reimbursement, messages are generally routed by fee-
based clearinghouses: RxHub and SureScripts for pharmacy claims using NCPDP
message formats, and a variety of clearinghouses for medical claims, using HIPAA
transaction message formats. Within a hospital, message architectures have also been
predominant, usually based on HL7. All of the early HL7 standards were message
standards — they defined a message format, and depended on a network to move the
messages around. For this purpose, many hospitals have an internal message bus, such
as the IBM Enterprise Service Bus, or Microsoft’s BizTalk server, which is responsible for
routing the HL7 messages. In addition to architectures based on a message bus, HL7

also supports point-to-point interfaces, which operate more similarly to services.

In IT, broadly, there has been a recent transition from mostly message-based
architectures (which are viewed as an older technology) to service-oriented
architectures, but this transition has been slower in HL7. A number of HL7 technical
committees and working groups have been developing service specifications to
complement messages, but this activity is not without controversy. In fact, although
discussion within HL7 is usually fairly staid, there has been vigorous debate about the

appropriateness and desirability of messages versus services. Much of this discussion

148

has taken place on the HL7 SOA mailing list. The list is normally moderate-volume,
with 407 threads over the past year. Most of those threads are devoted to technical
details, but both the longest (with 46 posts) and second longest (with 20 posts) threads in
the discussion were debates on the merits of services vs. messages. The next-runner-up
had only 13 posts. It appears that resolution is not near for HL7, and that both service

and message standards will be developed in parallel for the foreseeable future.

The issue of service-oriented architecture in medicine was also the subject of
some recent debate in the Journal of the American Medical Informatics Association. In the
March-April 2007 issue of the Journal, Kensaku Kawamoto and David Lobach, both of
Duke, lay out an argument in favor of service-oriented architectures, while Prakash
Nadkarni of Yale and Randolph Miller of Vanderbilt provide a counterpoint piece called
“Service-oriented Architecture in Medical Software: Promises and Perils”. Nadkarni
and Miller acknowledge many of the benefits of SOA, but point out several pitfalls.
First, they emphasize the importance and difficulty of developing standards, which has
been a consistent focus of the SANDS effort. Every dimension of SANDS is carefully
mapped to approved or emerging HITSP standards, and there are eventual plans to take
SANDS itself into a standards process. Second, they raise the question of service
discovery, which is an important one. As more and more services are made available (in
any domain), cataloging and choosing amongst them can become challenging. For
SANDS, I have chosen a fairly organic approach — developing an open architecture that

allows anyone to contribute services to the catalog, and then relying on the judgment of

149

consumers or expert curators to rank and choose amongst these services. In fact,
SANDS explicitly allows for the development of services which exist simply to funnel
queries to other services, which would allow, for example, a medical specialty society to
provide an endorsement service, funneling queries to services the specialty society
judged favorably. Other approaches, however, are possible, such as a centrally
controlled system, where permission of some authority is required to provide a service.
The third point that Nadkarni and Miller raise are the issues of reliability, liability and
business models — these issues, as they relate to SANDS, are discussed in section 6.5 of
this dissertation. The final point raised relates to control and commercialization.
Kawamoto and Lobach have filed for a patent on their approach to service-oriented
architectures for decision support, while simultaneously bringing it through a standards
process. This tactic has some significant implications for anyone who might want to use
this architecture. The approach I've taken with SANDS is simple — I will not seek any
protection for the intellectual property I have developed and described here — I believe
that any network for decision support should be free and open, and that no individual
should control it. Anyone is free to develop SANDS services, or to integrate SANDS

support into their clinical systems.

Ultimately, I'm not convinced that there is a single answer to the messages
versus services debate. In many cases, equivalent functionality can be achieved with
either model. However, for certain applications, like claims processing, messages seem

more suitable, but for others, like decision support, services seem to offer better

150

capabilities. In that light, it makes sense to take an open approach: choosing messages
or services based on their appropriateness for a given task. For the SANDS architecture,

I made the decision to use services rather than messages for three main reasons:

1. Messages require a clearinghouse for routing, and it is unclear who the
clearinghouse for decision support would or should be. For claims, submitters have
a clear incentive to pay a clearinghouse, since their claims won’t be paid unless they
do. The incentive for decision support is less clear. Also, whoever ran a decision
support clearinghouse would have a great deal of power because they would control
who could provide content over the network. A service oriented architecture is de-
centralized — there is no broker, so anyone can offer content in the form of services,
and consumers have the freedom to choose the service providers they want to
access.

2. Most clinical decision support requires real-time, synchronous feedback: when a
drug is ordered, that order needs to be transmitted to a decision support service,
which will do its inference, and return a result, all within a short period of time.
This is easy to achieve in a service-oriented architecture, which is based on the
familiar function call paradigm. In a message-based architecture, it requires several
messages traversing a network. In some cases message networks are designed to be
best-effort-only, meaning that they don’t guarantee delivery of a message, or they

may employ queues, batching messages for later delivery. While this is

151

surmountable with special attention to the design of a message network, this
paradigm is more naturally realized with a service-oriented architecture.
One of the most promising elements of a service-oriented architecture is the ability to
compose services together to form new services (sometimes called service
choreography). This is seen in the public health use case, where the decision support
service calls a child service (the geocoder). One might imagine a variety of other
services that could be created and choreographed — for example, an omnibus drug
service which could query a variety of other services, like a drug-interaction service,
an allergy service, a renal dosing service or a formulary checker, and then
intelligently prioritize and assemble their responses. This sort of choreography is
natural with a service-oriented architecture, but more difficult to implement in a

message-based architecture.

7.5 ECONOMICS AND BUSINESS MODELS

At present, a number of restraints hinder the development of a full and robust
market for clinical decision support. For most purchasers of clinical systems, such as
electronic health records or computerized physician order entry systems, the easiest
option for purchasing decision support content is to purchase it directly from their
clinical system vendor. These vendors often have partnerships with preferred content
providers. This creates a significant degree of vendor lock-in because if that vendor’s
customer wishes to employ a non-preferred clinical decision support system, they may

be forced to develop costly interfaces. With open standards-based systems, such as

152

SANDS, purchasers of clinical information systems can instead adopt a building block
model — purchasing the clinical information system of their choice and then choosing,

application by application, the decision support systems that best meet their needs.

I anticipate that with an architecture such as this we would see a variety of
business models for providing clinical decision support content. In some ways, one can
conceptualize this architecture as being a sort of Internet for clinical decision support.
Just as the Internet has a rich market of content suppliers ranging from paid providers of
content to open source content, and even community edited content such as Wikipedia,
so too could all of these models be supported in this decision support architecture. In
many cases, we might expect that users would prefer to purchase decision support
content from established vendors. However, it is also easy to imagine cases where
individuals or organizations with an established interest in a topic might provide free
decision support content. For example, many medical specialty societies have expressed
interest in providing electronic forms of the paper guidelines they currently publish. An
architecture such as this one would provide an open and high-leverage way for specialty
societies to increase the adoption and use of such guidelines. One might further imagine
other stakeholders that would be interested in providing clinical decision support
systems. Consider for example the syndromic surveillance and disease reporting system
described earlier in this dissertation. At present, public health departments spend a
large amount of money developing disease tracking systems and publicizing them to

encourage providers to report diagnoses of reportable diseases. Some of these resources

153

could instead be dedicated to providing electronic decision support systems such as the
one developed here which would automate portions of this process. Then, users of
clinical systems who wish to automatically report reportable diseases could simply add
this decision support service to their clinical system. Both the provider of a decision
support system (in this case, the public health department) and the consumer of the
service (in this case, a care provider) have strong incentives to cooperate around such a

free decision support service.

Because of the exciting potential for a variety of business models to flourish I was
careful to avoid being prescriptive about the business model or economic relationship
between service providers and service consumers. Instead any provider or consumer
who can communicate according to the decision support standard defined in this
dissertation would be welcome to participate in an architecture such as this one. The
business relationship, if any, between the provider and the consumer would be

determined by the two parties.

One concern that arises when there is a business relationship between a provider
of clinical information and a provider of clinical care is the issue of liability. In the
1980’s, there was much debate in the field of informatics about whether clinical systems
and clinical decision support systems should be regulated as medical devices, and
whether there should be liability on the part of system providers for errors or omissions
in their content or systems (174). While this question is still not settled law, the strong

direction is that decision support content should be regulated and held liable using the

154

same principles that apply to medical textbooks (which are, after all, a paper form of
clinical decision support). In this paradigm, so long as there is a human intermediary
between the device or system and the patient, that intermediary is the responsible
provider, and there is no consequential liability for the system provider. That said,
content providers and purchasers could certainly contract for additional indemnification
— for example, a drug information provider might guarantee that their system will not
miss any documented high severity drug interactions. This is a form of insurance, and it
is possible that it, too, might become a basis of competition in a marketplace for clinical
decision support. All things being equal, a decision support service which offered
indemnity would be more attractive than one that didn’t. If, on the other hand, there
was an additional cost for this indemnity, providers and purchasers would have to
conduct internal cost benefit analyses to determine the cost and value of such indemnity

protection.

7.6 ORGANIZATIONAL ISSUES AND IMPLICATIONS

In addition to the economic implications, there are also organizational
implications to consider with any clinical decision support or clinical system and this
architecture is no different. The best evidence suggests that a phased approach to the
implementation of any new clinical system or clinical decision support intervention is
most likely to be successful (190). However, phased implementations are often very
difficult to execute when using a monolithic system because the parts of the system often

fail to function unless integrated into a whole. The SANDS architecture is inherently

155

designed for extreme modularity. It would be conceivable that one might initially
deploy a clinical system with no decision support turned on. After the issues
surrounding the deployment settle out, the implementer could then slowly turn on
clinical decision support modules as user experience and organizational priorities

dictate.

Moreover, an architecture such as SANDS allows an organization to be more
responsive to user feedback. For example, if users report that they are extremely
satisfied with the user interface of a new clinical system, but very dissatisfied with the
accuracy of the drug interaction alerts that the system produces, it would be easy to
keep the same clinical system, but substitute a different drug interaction service. It
would even be possible to conduct trials of various decision support services to
determine which service provides the greatest accuracy and user satisfaction.
Modularity would be much more difficult to achieve with other decision support

architectures.

7.7 LESSONS ON SERVICE RELIABILITY

One significant risk of a service-oriented architecture is the external
dependencies it creates. It is challenging to maintain good performance and uptime in
any clinical system, but with an architecture like SANDS, where decision support
services are distributed around the country or world, the intensity of the problem is
magnified: now reliable operation of the system depends not only on a hospital’s ability

to keep their own systems and network running, but also on the ability of external

156

service providers to keep their services and network running reliably. The SANDS
architecture is informed by significant lessons on reliability from other fields where

service-oriented architectures are more prevalent.

Like many problems, service reliability has both technical and organizational
dimensions. It is technically feasible to deploy reliable services with excellent uptime
properties, as evidenced both here, in section 6.3, and also by the fact that a variety of
industries, ranging from banking and insurance to telecommunications and
transportation use service-oriented architectures for their mission critical systems. A
detailed discussion of technical approaches for achieving high-reliability in service-
oriented architectures is outside the scope of this discussion, but techniques such as
mirroring, peering, redundancy and quality of service management all contribute to the
technical foundation of high-reliability service-oriented architectures, and are well-

discussed in the literature (191-198).

I encountered some interesting performance-related issues while prototyping the
SANDS architecture, as described in Section 6.5. One that stands out, in particular, is the
performance of the Yahoo geocoding service. Its performance, overall, was worse than
the equivalent Google service, and there were periodic spikes where its performance
dropped substantially. Time-series analysis indicated that the service exhibits diurnal
periodicity, as shown in Figure 26. The response time is elevated from 7am until 5pm
Pacific Time, peeking in the noon hour. 88% of the queries that took greater than one

second to return happen in this time period. The implication is that Yahoo does not

157

have sufficiently capacity to maintain its best performance level under the loads
encountered during the daytime hours.
Response time of Yahoo's Geocoder service by hour of day
400 -

350

300

]
an
=]

)
(=)
(=)

hlean response time

—
an
=)

100

50

0 T

5 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Hour of day in Pacific ime {i.e. 0 = midnight to Tam, 16=4pm-Spm)

FIGURE 26 - RESPONSE TIME OF YAHOO'S GEOCODER SERVICE BY HOUR OF DAY.

2223

Beyond the technical foundations of reliability lie the organizational foundations.

First, it is important for any service consumer to be an informed consumer. Before

contracting with a decision support service provider, a consumer should gather data

about the reliability of the various alternatives, whether from direct observation (as we

did in section 6.3), from current clients of those service providers or from some other

data provider, such as a ratings service. Second, reliability should be part of any

negotiations with a service provider — just as hospitals are used to negotiating service

level agreements (SLA’s) with guaranteed minimum reliability thresholds during the

158

purchase of things like telecommunications services, they should also negotiate
reliability guarantees with decision support service providers. This aligns the interests
of the service consumers with the service providers: unless an acceptable level of

reliability is achieved, no money changes hands.

Finally, over time, we might hope that reliability and uptime would become a
basis for competition in the market for decision support services. It would be a natural
basis for two reasons: first, it is important to consumers of a service, and second, it is a
basis for differentiation in the marketplace: just as we saw significant differences across
the reliability of three providers of geocoding services in section 6.3, so too might we

also expect to see differentiation across other service providers.

7.8 A VISION FOR THE FUTURE OF EHR'S

Developing the SANDS prototype client provided some interesting insight into
the role of an electronic health record in an NHIN. Right now, EHR’s are mostly viewed
as repositories for patient information — the record a provider keeps for any given
patient should, ideally, contain all the information needed both to document treatment
provided, and to treat that patient in the future. Because today’s EHR'’s are generally
not connected, special challenges arise when a patient is being cared for by more than
one provider. While the most significant issue this leads to is incomplete information,
with all the attendant risks, I found that it also leads to duplicate entry, which often
makes it difficult to decipher clinical intent. Consider, for example, a patient who is

being seen by two physicians, both of whom use electronic health records, and whose

159

records are not connected. Now, assume that a review of both these records reveals that
one physician added Coumadin to the patient’s medication list on April 1, and the
second added warfarin (the same drug) on April 15. We can reasonably infer that the
intent of the first physician was both to prescribe the drug, and document that the
patient was taking it. The intent of the second clinician was less clear — was he simply
documenting the patients new medication (a good practice), or was he prescribing
duplicative (and possibly very dangerous) drug therapy? Because of issues such as this,
merging medication lists proved very challenging in development of the SANDS
architecture. This is discussed in more detail in Section 7.1, but, fundamentally, it turns
out that the practice of duplicate entry, which providers are employing precisely
because their systems are not interoperable, actually interferes with the aim of achieving

interoperability by making it difficult to integrate and de-duplicate various data sources.

The SANDS client takes a unique approach: unlike traditional EHR’s, it has no
internal data store — its data store is the NHIN. The data elements one normally finds in
an electronic medical record are all present, but because they are read from the network,
the need for duplicate entry is obviated — if a provider anywhere orders a drug for a
patient, providers everywhere can see it when they view that patient’s medication list. I
believe that systems like this are the future of clinical systems: in the future, systems
ranging from EHR’s and CPOE to PHR’s and pharmacy systems will be nothing more
than purpose-tailored views of a virtual medical record assembled from distributed data

sources. While individual end clinical systems might choose, for a variety of reasons

160

such as speed or liability, to mirror data locally, the definitive medical record for a
patient would be the union of all records and sources of information regarding that
patient made available over the NHIN. This will, of course, necessitate significant
evolution of both our laws and technology, but current efforts such as RHIO’s, NHIN
prototypes and HHS’s Health Information Security and Privacy Collaborative are laying

the foundation for these changes.

161

CHAPTER 8: CONCLUSIONS

162

8.1 THE CONTRIBUTION OF SANDS

As discussed in Chapter 6 and throughout the dissertation, SANDS has many
advantages over other architectures for sharing decision support content. But beyond
these technical advantages, the SANDS architecture and the work of this dissertation lay

a broader foundation of contributions, including;:

¢ A new way of thinking about electronic health records, not as siloed repositories,
but instead as views into connected, distributed data sources.

e Guidance for developing regional and national health information exchange
systems which go beyond simple exchange of information by directly enabling
clinical decision support and quality measurement.

e An architecture which ties progress on decision support to progress on
interoperability. Most other architectures for decision support focus on
knowledge representation. The problem of knowledge representation is
interesting, but progress on it has been very slow. With SANDS, knowledge
representation is no longer a concern, because only the interface to the
knowledge is relevant. And SANDS bases that interface on the interfaces
(including format and vocabulary standards) currently being developed by
HITSP, the NHIN prototypes and others — robust, well-funded and well-
supported efforts. With SANDS, as progress is made on interoperability

standards progress on decision support will directly follow.

163

e Better alignment of incentives for decision support by separating responsibilities.
With SANDS, the burden of developing decision support no longer falls on the
hospital or provider, but can be spread across a variety of entities such as
medical specialty societies, government agencies, researchers and commercial
interests, each of whom may have a more natural expertise and interest in

providing this content than individual providers.

Beyond the SANDS architecture itself, the other key intellectual contribution of
this dissertation is the taxonomy of clinical decision support described in Chapter 3. In
many ways, this taxonomy is the core theoretical contribution of this dissertation (with
the SANDS architecture being the core applied contribution). A taxonomy such as this
has broad applicability, not only for developers of clinical decisions support, but also for
developers of clinical systems in general, standards development organizations,
certifying bodies and policymakers. While prior taxonomies of clinical decision support
existed, none was targeted at the functional aspects, and none had as broad an empirical

base as this one.

8.2 FINAL NOTES ON ADOPTION AND AVAILABILITY

It is my hope that the SANDS architecture will be an enabling step towards
wider adoption of clinical decision support. To that end, I am making the full
specifications of the architecture freely available, and am simultaneously releasing a
collection of open source tools, libraries and reference implementations to guide those

who wish to implement SANDS. While I foresee a wide variety of business models

164

developing around SANDS, I believe that no single person or entity should try to own,
control or restrict access to such a network, just as no entity owns or controls the
Internet. To that end, I pledge not to seek any exclusionary intellectual property rights
to SANDS, such as patents, which would allow me to or others to exert such control.
Instead, I will work through open standards processes to ensure that anyone who
wishes to access SANDS, either as a provider or consumer of decision support services,

can do so freely.

165

APPENDIX A: FORMAL SERVICE
DEFINITION AND SCHEMA

166

The SANDS service framework is based on XML Web Services and SOAP.

Calling a decision support service has three aspects:

1. The client (usually a clinical system) invokes a decision support service by
sending it a SOAP message.

2. The service uses the information provided by the client in its invocation,
along with other patient information retrieved from the NHIN to make an
inference.

3. The service returns an XML-formatted response to the client. This response
is defined by SANDS, and validates against the XML schema described in

this Appendix.

This Appendix is formal documentation describing the XML schema. Appendix B is a

more descriptive reference that describes the schema in more general terms.

Schema

<?xm version="1.0" encodi ng="UTF- 8" ?>
<xs:schema xm ns: xs="http://ww. w3. org/ 2001/ XM_Schema" el enent For nDef aul t =" qual i fi ed">
<xs: el ement nanme="deci si onSupport Response" >
<xs:conpl exType>
<xs:sequence maxQccur s="unbounded" m nCccurs="0">
<xs:element ref="10g" maxCccurs="unbounded" m nCccurs="0"/>
<xs: el ement ref="showURL" maxCccurs="unbounded" mi nCccurs="0"/>
<xs:el ement ref="showOrderset” maxCccurs="unbounded" m nCccurs="0"/>
<xs: el ement ref="showDat aEntryTenpl ate" maxCccurs="unbounded" m nCccurs="0"/>
<xs: el ement ref="getApproval" nmaxQccurs="unbounded" m nCccurs="0"/>
<xs: el ement ref="providePicklist" maxCccurs="unbounded" m nCccurs="0"/>
<xs:element ref="notify" maxCccurs="unbounded" m nCccurs="0"/>
</ xs: sequence>
<xs:attribute nanme="engi ne" use="required" type="xs:string"/>
<xs:attribute name="rul eset" use="required" type="xs:string"/>
<xs:attribute name="time" use="required" type="xs:dateTine"/>
</ xs: conpl exType>
</ xs: el ement >
<xs: el ement nanme="| og" type="xs:string"/>
<xs: el ement name="showURL" >
<xs:conpl exType>
<xs:attribute name="URL" use="required" type="xs:anyURl"/>

167

<xs:attribute name="URLText" use="optional"/>
</ xs: conpl exType>
</ xs: el ement >
<xs: el ement nanme="showOr derset">
<xs:conpl exType m xed="true">
<xs:attribute name="URL" type="xs:anyURlI" use="optional"/>
</ xs: conpl exType>
</ xs: el ement >
<xs: el ement nanme="showbDat aEntryTenpl at e" >
<xs:conpl exType m xed="true">
<xs:attribute name="URL" type="xs:anyURlI" use="optional"/>
</ xs: conpl exType>
</ xs: el ement >
<xs: el ement name="get Approval ">
<xs: conpl exType>
<xs: sequence maxCccurs="unbounded" m nCccurs="0">
<xs: el ement ref="approvi ngPerson" maxCccurs="unbounded" m nCccurs="0"/>
<xs: el ement ref="approval Queue" maxCccurs="unbounded" m nCccurs="0"/>
</ xs: sequence>
<xs:attribute name="nmessage" use="required"/>
</ xs: conpl exType>
</ xs: el ement >
<xs: el ement nane="approvi ngPer son" type="xs:string"/>
<xs: el ement nanme="approval Queue" type="xs:string"/>
<xs: el ement nanme="provi dePi cklist">
<xs:conpl exType>
<Xs: sequence>
<xs: el ement maxCccur s="unbounded" ref="picklistlteni/>
</ Xxs: sequence>
</ xs: conpl exType>
</ xs: el ement >
<xs: el ement nanme="picklistlten>
<xs:conpl exType>
<xs:sequence maxCccurs="1" m nCccurs="1">
<xs: el ement ref="name" maxCccurs="1" m nCccurs="1"/>
<xs:any maxCccurs="unbounded" mi nCccurs="0" />
</ xs: sequence>
</ xs: conpl exType>
</ xs: el ement >
<xs: el ement nane="nanme" type="xs:string"/>
<xs: el ement name="notify">
<xs:conpl exType>
<xs:sequence maxCccur s="unbounded" mi nCccurs="0">
<xs: el ement ref="addAl | ergy" maxCccurs="unbounded" m nCccurs="0"/>
<xs: el ement ref="addProbl ent maxCccurs="unbounded" mi nCccurs="0"/>
<xs: el ement ref="enterReason" nmaxCQccurs="unbounded" m nCccurs="0"/>
<xs:element ref="witeOder" maxCccurs="unbounded" m nCccurs="0"/>
<xs: el ement ref="cancel Current Order" maxCccurs="unbounded" m nCccurs="0"/>
<xs: el ement ref="cancel Exi stingOrder" maxCccurs="unbounded" mi nCccurs="0"/>
<xs:element ref="deferNotification" maxCccurs="unbounded" m nCccurs="0"/>
<xs:element ref="editCurrentOrder" maxCccurs="unbounded" m nCccurs="0"/>
<xs: el ement ref="editExistingOder" maxCccurs="unbounded" m nCccurs="0"/>
<xs: el ement ref="keepCurrentOder" maxCccurs="unbounded" m nCccurs="0"/>
<xs: el ement ref="removeProbl eni’ maxCccur s="unbounded" m nCccurs="0"/>
<xs:element ref="witelLetter" nmaxQccurs="unbounded" m nCccurs="0"/>
<xs:element ref="writeNote" maxCccurs="unbounded" m nCccurs="0"/>
<xs: el ement ref="enterAge" maxCccurs="unbounded" mi nCccurs="0"/>
<xs: el ement ref="enterWight" maxQccurs="unbounded" m nCccurs="0"/>
<xs:el ement ref="enterHeight" nmaxQccurs="unbounded" m nCccurs="0"/>
</ xs: sequence>
<xs:attribute name="gui d" use="optional" type="xs:string"/>
<xs:attribute name="severity" use="required" type="severity"/>
<xs:attribute name="text" use="required"/>
</ xs: conpl exType>
</ xs: el ement >
<xs: el ement nanme="addAl | ergy">
<xs:conpl exType>
<xs: si npl eCont ent >
<xs: extensi on base="xs:string">
<xs:attribute name="all ergenCodeSysten' use="required" type="xs:string"/>
<xs:attribute name="choi cel D' use="required" type="xs:integer"/>

168

</ xs: ext ensi on>
</ xs: si npl eCont ent >
</ xs: conpl exType>
</ xs: el ement >
<xs: el ement nanme="addPr obl ent' >
<xs: conpl exType>
<xs: si npl eCont ent >
<xs:extension base="xs:integer">
<xs:attribute name="choi cel D' use="required" type="xs:integer"/>
</ xs: ext ensi on>
</ xs: si npl eCont ent >
</ xs: conpl exType>
</ xs: el ement >
<xs: el ement name="enter Reason">
<xs:conpl exType m xed="true">
<xs:attribute name="choi cel D' use="required" type="xs:integer"/>
</ xs: conpl exType>
</ xs: el ement >
<xs: el ement name="witeO der">
<xs:conpl exType>
<Xs: sequence>
<xs:any maxCccurs="unbounded" nmi nCccurs="0" />
</ xs: sequence>
<xs:attribute name="choi cel D' use="required" type="xs:integer"/>
</ xs: conpl exType>
</ xs: el ement >
<xs: el ement name="nunber" type="xs:integer"/>
<xs: el ement nanme="cancel Current Order" >
<xs:conpl exType>
<xs:attribute name="choi cel D' use="required" type="xs:integer"/>
</ xs: conpl exType>
</ xs: el ement >
<xs: el ement name="cancel Exi sti ngOrder">
<xs:conpl exType>
<xs: si npl eCont ent >
<xs: extensi on base="xs:integer">
<xs:attribute name="choi cel D' use="required" type="xs:integer"/>
</ xs: ext ensi on>
</ xs: si npl eCont ent >
</ xs: conpl exType>
</ xs: el ement >
<xs: el ement name="deferNotification">
<xs:conpl exType>
<Xxs: sequence>
<xs: el ement maxCccur s="unbounded" ref="deferTi me"/>
</ xs: sequence>
<xs:attribute name="choi cel D' use="required" type="xs:integer"/>
</ xs: conpl exType>
</ xs: el ement >
<xs: el ement nanme="deferTi ne" type="xs:duration"/>
<xs: el ement name="editCurrent Order">
<xs: conpl exType>
<xs:attribute name="choi cel D' use="required" type="xs:integer"/>
</ xs: conpl exType>
</ xs: el ement >
<xs: el ement nanme="edit Exi sti ngOrder">
<xs: conpl exType>
<xs: si npl eCont ent >
<xs:extension base="xs:integer">
<xs:attribute name="choi cel D' use="required" type="xs:integer"/>
</ xs: ext ensi on>
</ xs: si npl eCont ent >
</ xs: conpl exType>
</ xs: el ement >
<xs: el ement nanme="keepCurrent O der">
<xs: conpl exType>
<xs:attribute name="choi cel D' use="required" type="xs:integer"/>
</ xs: conpl exType>
</ xs: el ement >
<xs: el ement name="renoveProbl eni' >
<xs:conpl exType>

169

<xs: si npl eCont ent >
<xs: ext ensi on base="xs:integer">
<xs:attribute name="choi cel D' use="required" type="xs:integer"/>
</ xs: ext ensi on>
</ xs: si npl eCont ent >
</ xs: conpl exType>
</ xs: el ement >
<xs:element name="writelLetter">
<xs:conpl exType mi xed="true">
<xs:attribute name="choi cel D' use="required" type="xs:integer"/>
</ xs: conpl exType>
</ xs: el ement >
<xs:el ement name="writeNote">
<xs:conpl exType mi xed="true">
<xs:attribute name="choi cel D' use="required" type="xs:integer"/>
</ xs: conpl exType>
</ xs: el ement >
<xs: el ement nanme="enter Age" >
<xs: conpl exType>
<xs:attribute name="choi cel D' use="required" type="xs:integer"/>
</ xs: conpl exType>
</ xs: el ement >
<xs: el ement nanme="ent er Wi ght ">
<xs: conpl exType>
<xs:attribute name="choi cel D' use="required" type="xs:integer"/>
</ xs: conpl exType>
</ xs: el ement >
<xs: el ement nanme="enter Hei ght">
<xs:conpl exType>
<xs:attribute name="choi cel D' use="required" type="xs:integer"/>
</ xs: conpl exType>
</ xs: el ement >
<xs: el ement nanme="orderabl e" type="xs:string"/>
<xs: el ement name="dose" type="xs:double"/>
<xs: el ement nane="doseUnit" type="xs:string"/>
<xs: el ement nanme="frequency" type="xs:string"/>
<xs:si npl eType nane="severity">
<xs:restriction base="xs:integer">
<xs:enumneration val ue="1">
<xs:annot ati on>
<xs: docunent ati on>
Severe - requires imediate, preenptive notification
</ xs: docunent ati on>
</ xs: annot ati on>
</ xs: enuneration>
<xs:enuneration val ue="2">
<xs:annot ati on>
<xs: docunent ati on>
Moderate - User should be notified, but notification does not need to be
preenptive.
</ xs: docunent ati on>
</ xs: annot ati on>
</ xs: enumneration>
<xs:enuneration val ue="3">
<xs:annot ati on>
<xs: docunent ati on>
Informational - Notification should be provided, but can be |lowprofile
</ xs: document ati on>
</ xs: annot ati on>
</ xs: enumer ati on>
</ xs:restriction>
</ xs: si nmpl eType>
</ xs: schema>

Schema Document Properties

170

Target Namespace None

Global element and attribute declarations belong to

Element and Attribute this schema's target namespace.

Namespaces

o By default, local element declarations belong to this
schema's target namespace.

. By default, local attribute declarations have no
namespace.

Declared Namespaces

Prefix ~Namespace
xml http://www.w3.0rg/XML/1998/namespace

XS http://www.w3.0rg/2001/XMLSchema

Schema Component Representation
<xs:schema elementFormDefault="qualified">

</xs:schema>

Global Declarations

Element:

Name addAllergy

Used by (from the Element notify

same schema

document)

Type Locally-defined complex type
Nillable no

Abstract no

Logical Diagram

171

XML Instance Representation
<addAllergy

allergenCodeSystem=" xs:string [1]"
choicelD=" xs:integer [1]">

xs:string

</addAllergy>

Diagram

xl

Schema Component Representation

<xs:element name="addAllergy">

<xs:complexType>

<xs:simpleContent>

<xs:extension base=" xs:string ">

<xs:attribute name="allergenCodeSystem" type=" xs:string " use="required"/>
<xs:attribute name="choicelD" type=" xs:integer " use="required"/>
</xs:extension>

</xs:simpleContent>

</xs:complexType>

</xs:element>

Element:

Name addProblem

Used by (from the Element notify

same schema

document)

Type Locally-defined complex type
Nillable no

Abstract no

Logical Diagram

172

xl

XML Instance Representation
<addProblem

choicelD=" xs:integer [1]">
xs:integer

</addProblem>

Diagram

xl

Schema Component Representation

<xs:element name="addProblem">

<xs:.complexType>

<xs:simpleContent>

<xs:.extension base=" xs:integer ">

<xs:attribute name="choicelD" type=" xs:integer " use="required"/>
</xs:extension>

</xs:simpleContent>

</xs:complexType>

</xs:element>

Element:

Name approvalQueue

Used by (from the Element getApproval
same schema

document)

Type Xs:string

Nillable no

Abstract no

Logical Diagram

xl

XML Instance Representation
<approvalQueue> xs:string </approvalQueue>
Diagram

xl

173

Schema Component Representation
<xs:element name="approvalQueue" type=" xs:string "/>

Element:

Name

Used by (from the
same schema
document)

Type

Nillable

Abstract

Logical Diagram

xl

approvingPerson

Element getApproval

xs:string

no

no

XML Instance Representation
<approvingPerson> xs:string </approvingPerson>

Diagram

xl

Schema Component Representation
<xs:element name="approvingPerson" type=" xs:string "/>

Element:

Name

Used by (from the
same schema
document)

Type

Nillable

Abstract

Logical Diagram

cancelCurrentOrder

Element notify

Locally-defined complex type

no

no

174

xl

XML Instance Representation
<cancelCurrentOrder
choicelD=" xs:integer [1]"/>
Diagram

x|

Schema Component Representation

<xs:element name="cancelCurrentOrder">

<xs:.complexType>

<xs:attribute name="choicelD" type=" xs:integer " use="required"/>
</xs:complexType>

</xs:element>

Element:

Name cancelExistingOrder

Used by (from the Element notify

same schema

document)

Type Locally-defined complex type
Nillable no

Abstract no

Logical Diagram

xl

XML Instance Representation
<cancelExistingOrder
choicelD=" xs:integer [1]">
xs:integer
</cancelExistingOrder>
Diagram

xl

Schema Component Representation
<xs:.element name="cancelExistingOrder">
<xs:.complexType>

<xs:simpleContent>

<xs:.extension base=" xs:integer ">

175

<xs:attribute name="choicelD" type=" xs:integer " use="required"/>
</xs:extension>

</xs:simpleContent>

</xs:complexType>

</xs:element>

Element:

Name decisionSupportResponse
Type Locally-defined complex type
Nillable no

Abstract no

Logical Diagram

xl

XML Instance Representation

176

<decisionSupportResponse
engine=" xs:string [1]"
ruleset=" xs:string [1]"
time=" xs:dateTime [1]">
Start Sequence [0..*]

<log> ... </log> [0..*]
<showURL> ... </showURL> [0..*]

<showOrderset> ... </showOrderset> [0..*]
<showDataEntryTemplate> ... </showDataEntryTemplate> [0..*]
<getApproval> ... </getApproval> [0..*]

<providePicklist> ... </providePicklist> [0..*]

<notify> ... </notify> [0..*]

End Sequence

</decisionSupportResponse>

Diagram

xl

Schema Component Representation

<xs:element name="decisionSupportResponse">

<xs:.complexType>

<xs:sequence maxOccurs="unbounded" minOccurs="0">

<xs:element ref="log " maxOccurs="unbounded" minOccurs="0"/>
<xs:element ref=" showURL " maxOccurs="unbounded" minOccurs="0"/>
<xs:element ref=" showOrderset " maxOccurs="unbounded" minOccurs="0"/>
<xs:element ref=" showDataEntryTemplate " maxOccurs="unbounded" minOccurs="0"/>
<xs:element ref=" getApproval " maxOccurs="unbounded" minOccurs="0"/>
<xs:element ref=" providePicklist " maxOccurs="unbounded" minOccurs="0"/>
<xs:element ref=" notify " maxOccurs="unbounded" minOccurs="0"/>
</xs:sequence>

177

<xs:attribute name="engine" type=" xs:string " use="required"/>
<xs:attribute name="ruleset" type=" xs:string " use="required"/>
<xs:attribute name="time" type=" xs:dateTime " use="required"/>
</xs:complexType>

</xs:element>

Element:

Name deferNotification

Used by (from the Element notify

same schema

document)

Type Locally-defined complex type
Nillable no

Abstract no

Logical Diagram

xl

XML Instance Representation
<deferNotification

choicelD=" xs:integer [1]">
<deferTime> ... </deferTime> [1..*]
</deferNotification>

Diagram

xl

Schema Component Representation

<xs:element name="deferNotification">

<xs:.complexType>

<xs:.sequence>

<xs:element ref=" deferTime " maxOccurs="unbounded"/>
</xs:sequence>

<xs:attribute name="choicelD" type=" xs:integer " use="required"/>
</xs:complexType>

</xs:element>

178

Element:

Name deferTime

Used by (from the Element deferNotification
same schema

document)

Type xs:duration

Nillable no

Abstract no

Logical Diagram

xl

XML Instance Representation
<deferTime> xs:duration </deferTime>
Diagram

xl

Schema Component Representation
<xs:element name="deferTime" type=" xs:duration "/>

Element:

Name dose
Type xs:double
Nillable no
Abstract no

Logical Diagram

xl

XML Instance Representation
<dose> xs:double </dose>
Diagram

179

xl

Schema Component Representation
<xs:element name="dose" type=" xs:double "/>

Element:

Name
Type
Nillable

Abstract

Logical Diagram

xl

Diagram

doseUnit

xs:string

no

no

XML Instance Representation
<doseUnit> xs:string </doseUnit>

xl

Schema Component Representation
<xs:element name="doseUnit" type=" xs:string "/>

Element:

Name

Used by (from the
same schema
document)

Type

Nillable

Abstract

Logical Diagram

editCurrentOrder

Element notify

Locally-defined complex type

no

no

180

xl

XML Instance Representation
<editCurrentOrder
choicelD=" xs:integer [1]"/>
Diagram

x|

Schema Component Representation

<xs:element name="editCurrentOrder">

<xs:.complexType>

<xs:attribute name="choicelD" type=" xs:integer " use="required"/>
</xs:complexType>

</xs:element>

Element:

Name editExistingOrder

Used by (from the Element notify

same schema

document)

Type Locally-defined complex type
Nillable no

Abstract no

Logical Diagram

xl

XML Instance Representation
<editExistingOrder
choicelD=" xs:integer [1]">
xs:integer
</editExistingOrder>

Diagram

xl

Schema Component Representation
<xs:element name="editExistingOrder">
<xs:.complexType>

<xs:simpleContent>

<xs:.extension base=" xs:integer ">

181

<xs:attribute name="choicelD" type=" xs:integer " use="required"/>
</xs:extension>

</xs:simpleContent>

</xs:complexType>

</xs:element>

Element:

Name enterAge

Used by (from the Element notify

same schema

document)

Type Locally-defined complex type
Nillable no

Abstract no

Logical Diagram

xl

XML Instance Representation
<enterAge

choicelD=" xs:integer [1]"/>
Diagram

x|

Schema Component Representation

<xs:element name="enterAge">

<xs:complexType>

<xs:attribute name="choicelD" type=" xs:integer " use="required"/>
</xs:complexType>

</xs:element>

Element:

Name enterHeight

Used by (from the Element notify

same schema

document)

Type Locally-defined complex type

182

Nillable no

Abstract no

Logical Diagram

xl

XML Instance Representation
<enterHeight

choicelD=" xs:integer [1]"/>
Diagram

x|

Schema Component Representation

<xs:element name="enterHeight">

<xs:complexType>

<xs:attribute name="choicelD" type=" xs:integer " use="required"/>
</xs:complexType>

</xs:element>

Element:

Name enterReason

Used by (from the Element notify

same schema

document)

Type Locally-defined complex type
Nillable no

Abstract no

Logical Diagram

xl

XML Instance Representation

<enterReason
choicelD=" xs:integer [1]"/>
Diagram

B

Schema Component Representation
<xs:element name="enterReason">
<xs:.complexType mixed="true">

183

<xs:attribute name="choicelD" type=" xs:integer " use="required"/>
</xs:complexType>
</xs:element>

Element:

Name enterWeight

Used by (from the Element notify

same schema

document)

Type Locally-defined complex type
Nillable no

Abstract no

Logical Diagram

xl

XML Instance Representation

<enterWeight
choicelD=" xs:integer [1]"/>
Diagram

x|

Schema Component Representation

<xs:.element name="enterWeight">

<xs:.complexType>

<xs:attribute name="choicelD" type=" xs:integer " use="required"/>
</xs:complexType>

</xs:element>

Element:

Name frequency
Type xs:string
Nillable no
Abstract no

Logical Diagram

184

xl

XML Instance Representation
<frequency> xs:string </frequency>
Diagram

xl

Schema Component Representation
<xs:element name="frequency" type=" xs:string "/>

Element:

Name getApproval

Used by (from the Element decisionSupportResponse
same schema

document)

Type Locally-defined complex type
Nillable no

Abstract no

Logical Diagram

xl

XML Instance Representation

<getApproval

message="anySimpleType [1]">

Start Sequence [0..*]

<approvingPerson> ... </approvingPerson> [0..*]
<approvalQueue> ... </approvalQueue> [0..*]
End Sequence

</getApproval>

Diagram

185

Schema Component Representation

<xs:element name="getApproval">

<xs:.complexType>

<xs:sequence maxOccurs="unbounded" minOccurs="0">

<xs:element ref=" approvingPerson " maxOccurs="unbounded" minOccurs="0"/>
<xs:element ref=" approvalQueue " maxOccurs="unbounded" minOccurs="0"/>
</xs:sequence>

<xs:attribute name="message" use="required"/>

</xs:complexType>

</xs:element>

Element:

Name keepCurrentOrder

Used by (from the Element notify

same schema

document)

Type Locally-defined complex type
Nillable no

Abstract no

Logical Diagram

xl

XML Instance Representation

<keepCurrentOrder
choicelD=" xs:integer [1]"/>
Diagram

x|

Schema Component Representation

<xs:element name="keepCurrentOrder">

<xs:complexType>

<xs:attribute name="choicelD" type=" xs:integer " use="required"/>
</xs:complexType>

</xs:element>

186

Element: log

log

Element decisionSupportResponse

xs:string

no

no

Logical Diagram

i
|

XML Instance Representation
<log> xs:string </log>
Diagram

5

Schema Component Representation
<xs:element name="log" type=" xs:string "/>

Element: name

name

Element picklistltem

xs:string

no

no

Logical Diagram

5

XML Instance Representation

187

<name> xs:string </name>
Diagram

xl

Schema Component Representation
<xs:element name="name" type=" xs:string "/>

Element:

Name notify

Used by (from the Element decisionSupportResponse
same schema

document)

Type Locally-defined complex type
Nillable no

Abstract no

Logical Diagram

188

189

XML Instance Representation

<notify

guid=" xs:string [0..1]"

severity="severity [1]"

text="anySimpleType [1]">

Start Sequence [0..*]

<addAllergy> ... </addAllergy> [0..*]

<addProblem> ... </addProblem> [0..*]
<enterReason> ... </enterReason> [0..*]
<writeOrder> ... </writeOrder> [0..*]
<cancelCurrentOrder> ... </cancelCurrentOrder> [0..*]
<cancelExistingOrder> ... </cancelExistingOrder> [0..*]
<deferNatification> ... </deferNotification> [0..*]
<editCurrentOrder> ... </editCurrentOrder> [0..*]
<editExistingOrder> ... </editExistingOrder> [0..*]
<keepCurrentOrder> ... </keepCurrentOrder> [0..*]
<removeProblem> ... </removeProblem> [0..*]
<writeLetter> ... </writeLetter> [0..*]

<writeNote> ... </writeNote> [0..*]

<enterAge> ... </enterAge> [0..*]

<enterWeight> ... </enterWeight> [0..*]

<enterHeight> ... </enterHeight> [0..*]
End Sequence

</notify>
Diagram

190

191

Schema Component Representation

<xs:.element name="notify">

<xs:complexType>

<xs:sequence maxOccurs="unbounded" minOccurs="0">

<xs:element ref=" addAllergy " maxOccurs="unbounded" minOccurs="0"/>
<xs:element ref=" addProblem " maxOccurs="unbounded" minOccurs="0"/>
<xs:element ref=" enterReason " maxOccurs="unbounded" minOccurs="0"/>
<xs:element ref=" writeOrder " maxOccurs="unbounded" minOccurs="0"/>
<xs:element ref=" cancelCurrentOrder " maxOccurs="unbounded" minOccurs="0"/>
<xs:element ref=" cancelExistingOrder " maxOccurs="unbounded" minOccurs="0"/>
<xs:element ref=" deferNotification " maxOccurs="unbounded" minOccurs="0"/>
<xs:element ref=" editCurrentOrder " maxOccurs="unbounded" minOccurs="0"/>
<xs:element ref=" editExistingOrder " maxOccurs="unbounded" minOccurs="0"/>
<xs:element ref=" keepCurrentOrder " maxOccurs="unbounded" minOccurs="0"/>
<xs:element ref=" removeProblem " maxOccurs="unbounded" minOccurs="0"/>
<xs:element ref=" writeLetter " maxOccurs="unbounded" minOccurs="0"/>
<xs:element ref=" writeNote " maxOccurs="unbounded" minOccurs="0"/>
<xs:element ref=" enterAge " maxOccurs="unbounded" minOccurs="0"/>
<xs:element ref=" enterWeight " maxOccurs="unbounded" minOccurs="0"/>
<xs:element ref=" enterHeight " maxOccurs="unbounded" minOccurs="0"/>
</xs:sequence>

<xs:attribute name="guid" type=" xs:string " use="optional"/>

<xs:attribute name="severity" type=" severity " use="required"/>

<xs:attribute name="text" use="required"/>

</xs:complexType>

</xs:element>

Element:

Name number
Type xs:integer
Nillable no
Abstract no

Logical Diagram

xl

XML Instance Representation
<number> xs:integer </number>
Diagram

192

Schema Component Representation
<xs:element name="number" type=" xs:integer "/>

Element:

Name
Type
Nillable

Abstract

Logical Diagram

xl

orderable

xs:string

no

no

XML Instance Representation
<orderable> xs:string </orderable>

Diagram

xl

Schema Component Representation
<xs:element name="orderable" type=" xs:string "/>

Element:

Name

Used by (from the
same schema
document)

Type

Nillable

picklistitem

Element providePicklist

Locally-defined complex type

no

193

Abstract no

Logical Diagram

xl

XML Instance Representation

<picklistitem>

<name> ... </name> [1]

Allow any elements from any namespace (strict validation). [0..*]
</picklistltem>

Diagram

xl

Schema Component Representation

<xs:element name="picklistltem">

<xs:complexType>

<xs:sequence maxOccurs="1" minOccurs="1">
<xs:element ref=" name " maxOccurs="1" minOccurs="1"/>
<xs:any maxOccurs="unbounded" minOccurs="0"/>
</xs:sequence>

</xs:complexType>

</xs:element>

Element:

Name providePicklist

Used by (from the Element decisionSupportResponse
same schema

document)

Type Locally-defined complex type
Nillable no

Abstract no

Logical Diagram

xl

XML Instance Representation
<providePicklist>
<picklistitem> ... </picklistitem> [1..*]

194

</providePicklist>
Diagram

xl

Schema Component Representation

<xs:element name="providePicklist">

<xs:complexType>

<xs:.sequence>

<xs:element ref=" picklistitem " maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>

</xs:element>

Element:

Name removeProblem

Used by (from the Element notify

same schema

document)

Type Locally-defined complex type
Nillable no

Abstract no

Logical Diagram

xl

XML Instance Representation
<removeProblem

choicelD=" xs:integer [1]">
xs:integer

</removeProblem>

Diagram

xl

Schema Component Representation

<xs:element name="removeProblem">

<xs:.complexType>

<xs:simpleContent>

<xs:.extension base=" xs:integer ">

<xs:attribute name="choicelD" type=" xs:integer " use="required"/>
</xs:extension>

195

</xs:simpleContent>
</xs:complexType>
</xs:element>

Element:

Name

Used by (from the
same schema
document)

Type

Nillable

Abstract

Logical Diagram

showDataEntryTemplate

Element decisionSupportResponse

Locally-defined complex type

no

no

xl

XML Instance Representation

<showDataEntryTemplate
URL=" xs:anyURI [0..1]"/>

Diagram

x|

Schema Component Representation

<xs:element name="showDataEntryTemplate">
<xs:complexType mixed="true">

<xs:attribute name="URL" type=" xs:anyURI " use="optional"/>

</xs:complexType>
</xs:element>

Element:

Name

Used by (from the
same schema
document)

Type

showOrderset

Element decisionSupportResponse

Locally-defined complex type

196

Nillable no

Abstract no

Logical Diagram

xl

XML Instance Representation
<showOrderset

URL=" xs:anyURI [0..1]"/>
Diagram

B

Schema Component Representation

<xs:element name="showOrderset">

<xs:.complexType mixed="true">

<xs:attribute name="URL" type=" xs:anyURI " use="optional"/>
</xs:complexType>

</xs:element>

Element:

Name showURL

Used by (from the Element decisionSupportResponse
same schema

document)

Type Locally-defined complex type
Nillable no

Abstract no

Logical Diagram

xl

XML Instance Representation
<showURL

URL=" xs:anyURI [1]"
URLText="anySimpleType [0..1]"/>
Diagram

197

xl

Schema Component Representation

<xs:element name="showURL">

<xs:complexType>

<xs:attribute name="URL" type=" xs:anyURI " use="required"/>
<xs:attribute name="URLText" use="optional"/>
</xs:complexType>

</xs:element>

Element:

Name writeLetter

Used by (from the Element notify

same schema

document)

Type Locally-defined complex type
Nillable no

Abstract no

Logical Diagram

xl

XML Instance Representation

<writeLetter
choicelD=" xs:integer [1]"/>
Diagram

B

Schema Component Representation

<xs:element name="writeLetter">

<xs:.complexType mixed="true">

<xs:attribute name="choicelD" type=" xs:integer " use="required"/>
</xs:complexType>

</xs:element>

Element:

198

writeNote

Element notify

Locally-defined complex type

no

no

Logical Diagram

5

XML Instance Representation
<writeNote

choicelD=" xs:integer [1]"/>
Diagram

o

Schema Component Representation

<xs:element name="writeNote">

<xs:complexType mixed="true">

<xs:attribute name="choicelD" type=" xs:integer " use="required"/>
</xs:complexType>

</xs:element>

Element: writeOrder

writeOrder

Element notify

Locally-defined complex type

no

no

Logical Diagram

199

XML Instance Representation

<writeOrder

choicelD=" xs:integer [1]">

Allow any elements from any namespace (strict validation). [0..*]
</writeOrder>

Diagram

xl

Schema Component Representation

<xs:element name="writeOrder">

<xs:.complexType>

<xs:sequence>

<xs:any maxOccurs="unbounded" minOccurs="0"/>
</xs:sequence>

<xs:attribute name="choicelD" type=" xs:integer " use="required"/>
</xs:complexType>

</xs:element>

Global Definitions

Simple Type:
Super-types: xs:integer < severity (by restriction)
Sub-types: None
Name severity
Used by (from the Element notify
same schema
document)
Content . Base XSD Type: integer
. value comes from list: {'1'|'2'|'3}
Diagram

200

Schema Component Representation
<xs:simpleType name="severity">
<xs:restriction base=" xs:integer ">
<xs:enumeration value="1"/>
<xs:enumeration value="2"/>
<xs:enumeration value="3"/>
</xs:restriction>

</xs:simpleType>

201

APPENDIX B: GUIDE TO THE
SERVICE DEFINITION

202

INTRODUCTION

While Appendix A gave a formal schema and description of the SANDS
response message format, this appendix is designed to give a more user-friendly
description of the response message types. It is perhaps easiest to introduce the
response message format with some examples: first, a response to a preventive health
query, which suggests a statin for a diabetic patient with insufficiently controlled LDL
(and is based on a rule in use right now at Partners HealthCare), and second, an empty
response, when the engine has nothing to suggest. More examples are given in the

proof-of-concept mappings, included here as Appendix A.

Drug Suggestion for a patient with DM and hyperlipidemia:

<deci si onSupport Response engi ne="Test Engi ne"
rul eset="CQutpatientVisit"
time="2007-01-31T12: 12: 05- 05: 00" >
<notify severity="3"
text="Patient has diabetes and nost recent LDL (144) above target (100) and
not on an HMG CoA-reductase inhibitor. Recommrend HMG CoA-reduct ase
inhibitor if not allergic.”
gui d="35b6c020- 3e95- 11db- a98b- 0800200c9a66" >
<writeOrder choicel D="1">
<rxcui >36567</rxcui > <!--Sinvastatin-->
<dose>20</ dose>
<doseUni t >ng</ doseUni t >
<frequency>qd</ frequency>
<nunber >90</ nunber >
</witeO der>
<addAl | ergy choi cel D="2" all ergenCodeSyst en=" nesh" >
D27.505. 519. 186. 071. 202. 370
</ addAl | er gy>
<addPr obl em choi cel D="3">266468003</ addPr obl en>
<ent er Reason choi cel D="4">Decl i ne suggestion: Qher Conorbidities</enterReason>
<ent er Reason choi cel D="5">Decl i ne suggestion: Cost of Treatnent</enterReason>
<ent er Reason choi cel D="6">Decl i ne suggestion: Patient refuses</enterReason>
<renoveProbl em choi cel D="7">73211009</ r enovePr obl en>
<deferNotification choicel D="8">
<def er Ti me>P5D</ def er Ti me >
<def er Ti me>P1M/ def er Ti me >
<def er Ti me>P3Mk/ def er Ti me >
</ def erNoti ficati on>
</notify>
</ deci si onSuppor t Response>

203

Empty response:

<deci si onSuppor t Response engi ne="Test Engi ne"
rul eset="QutpatientVisit"
time=" 2006-08-24T12: 12: 05- 05: 00"/ >

RESPONSE PREAMBLE

Each response from the decision support engine is encoded as an XML
document, according to an XML schema. The root node of this document is
decisionSupportResponse. The attributes of this node form the preamble for the
response, and are described in this section. The only legal children of this root node are
response actions, which are described in the next section. The three attributes of

decisionSupportResponse are:

e Engine: A descriptor of the rule engine. This should ideally encode the name and
version of the engine, and may optionally encode the machine the engine is running
on, for debugging purposes.

¢ Ruleset: The name of the ruleset executed. This should match the first argument of
the RunRules function used to invoke the service.

e Time: A timestamp, in valid XML datetime format.

RESPONSE ACTIONS

The core of the decision support response is a set of response actions. Each
response can have zero or more response actions, which are then rendered by the

receiving application, according to the guidance provided in this service definition.

204

NOTIFY

Description:

The notify action is used to provide information to a user, and optionally to offer
choices to the user. These choices are described in the Response Choices section of this
service definition, and are children of the not i f y node in the XML schema.

Required Attributes:

e Severity: Severity is coded 1, 2 or 3:
0 1. Severe: Requires immediate, preemptive notification, such as paging, or
displaying a popup.
0 2. Moderate: User should be notified, but notification does not need to be
preemptive.
0 3. Informational: Notification should be provided, but can be done in a low-
profile way.
e Text: Text is a valid XML string (which must be escaped if it contains special
characters). This text will be displayed to the user.

Optional Attributes:

e guid: A GUID unique to this notification. If a GUID is provided, the application
must provide a response back to the service specifying the GUID and the response
action chosen by the user. If no GUID is provided, no response will be returned to
the service. The two use cases for this information are variable snooze periods and
reporting / data collection. In both these cases, the engine will need to know what
action the user chose, and the GUID will enable this.

Example:

<notify severity="1"
text="Vincristine ordered with intrathecal route. This route of
administration is fatal and absolutely contraindicated.">

LOG

Description:

The log action is used to log a piece of information, without providing any
notification to the user. It is most frequently used in surveillance rules, and in research.

Element Contents:

205

The receiving clinical system will log the contents of the XML log element as text.
The contents must be properly escaped if it contains special characters.

Example:

<l 0og>Ri si ng HGH ordered wi thout docunented indication.</|og>

SHOWURL

Description:

The showURL action shows a URL. Applications may choose to automatically
launch the page, show it inline, or present it as a clickable hyperlink. If it is presented as
a hyperlink, the URLText attribute should be used.

Required Attributes:

e URL: The URL to be displayed

Optional Attributes:

e URLText: The text to be displayed in the hyperlink. If this attribute is omitted, and
the application chooses to display a hyperlink, it should substitute the URL for the
text of the hyperlink.

Example:

<showURL
URL="http://ww. ogp. med. va. gov/ cpg/ CHF/ 28766chr oni cheartfail ure. pdf"
URLText =" VA/ DoD CHF CGui del i ne">

SHOWORDERSET

Description:

The showOrderset action shows an orderset.

Optional Attributes:

e URL: The URL for an HL7 orderset. The application will fetch that orderset and
render it. If this attribute is not specified, the application will interpret the contents
of the showOrderset element as an HL7 orderset.

Element Contents:

206

A valid HL7 orderset to be rendered by the application. The element contents
are only read if no URL attribute is specified. If both the URL and element contents are
specified, the application will ignore the element contents. This is not an error, but the
application may choose to raise a warning.

Example:

<showOrderset URL="http://ordersets.org/copd. xm ">

SHOWDATAENTRYTEMPLATE

Description:

The showDataEntryTemplate action shows a data entry template.

Optional Attributes:

e URL: The URL for an XForms document. The application will fetch that document
and render it. If this attribute is not specified, the application will interpret the
contents of the element as an XForms document.

Element Contents:

A valid XForms document to be rendered by the application. The element
contents are only read if no URL attribute is specified. If both the URL and element
contents are specified, the application will ignore the element contents. This is not an
error, but the application may choose to raise a warning.

Example:

<showDat aEnt ryTenpl at e
URL=" http://nmozilla.org/projects/xforns/sanpl es/tax_fornm TaxForm xhtm " />

GETAPPROVAL

Description:

The getApproval action instructs the clinical system to route the current action to
an approving person or an approval queue. This action should not be used for standard
order routing workflows — it should only be used when specific clinical circumstances
require special approvals.

Element Contents:

207

The element should contain one or more child elements of type
appr ovi ngPer son or appr oval Queue. These elements are described as follows:

e approvingPerson: The NPI of the person to whom the order should be routed for
approval.
e approvalQueue: An implementation-specific queue identifier.

If more than one approving person or approving queue is included, all of the
approvers must provide approval. If a group of approvers is available, and only one of
them is required to approve the action, a corresponding approval queue should be
created.

Example:

<get Approval message="Ordering HGH for non-approved indication">
<approvi ngPer son>2739428672</ appr ovi ngPer son>
<approval Queue>l nfecti ous Di sease</ approval Queue>

</ get Appr oval >

PROVIDEPICKLIST

Description:

The providePicklist action is used to provide items for a picklist, or to provide a
default value for use in a UL

Required Element Contents:

The element should contain one or more child elements of type pi ckl i stltem
In turn, each pi ckl i st1temshould contain at least one node. The child nodes for
pi ckli stltemare highly context-dependent, and their selection is left up to the
implementer. A name element containing a human readable name for the choice is
recommended, unless it can be inferred automatically by the application.

This action type can also be used to provide a single default value. This is simply
implemented as a case where the pr ovi dePi ckl i st element contains only a single
picklistltem

Example:

<provi dePi ckl i st>

<picklistltem
<nanme>Aspi ri n</ nane>
<rxcui >1191</ rxcui >
<dose>650</ dose>
<doseUni t >ng</ doseUni t >
<frequency>q4h prn</frequency>

</witeCOder>

</picklistltenmr

<picklistltem
<nane>Acet am nophen</ nane>

208

<r xcui >161</r xcui >
<dose>500</ dose>
<doseUni t >ng</ doselni t >
<frequency>q4h prn</frequency>
</witeO der>
</picklistltenr
</ provi dePi ckl i st>

209

RESPONSE CHOICES

Response choices are children of the notify response action. A single notify
action can contain an unlimited number of choices. Each response choice should have a
unique value in its choiceID attribute. This, together with the notify action’s GUID
allow for unique identification of the choice made for a notification, as described in the
notify response action section.

WRITEORDER

Description:

The writeOrder choice allows the user to order something.

Element Contents:

The wri t eOr der element is required to contain an or der abl e child element. It
may optionally contain other elements, which are item specific, and can be freely
extended.

Example:

<witeOrder choicel D="1">
<or der abl e>327</ or der abl e>
<dose>500</ dose>
<doseUni t >ng</ doseUni t >
<frequency>q4h prn</frequency>
</witeOder>

DEFERNOTIFICATION

Description:

The deferNotification choice allows the user to defer the notification they
received to a later date. The notification and context should be stored by the application,
and presented to the user at the selected time. Note that this is different than the snooze
functionality that may be implemented by a rule. Snooze does not cause the notification
to reappear after a set period of time — it simply stops the notification from being
generated during that period of time. It will not be regenerated after the snooze until
the rule is triggered again.

Element Contents:

210

The def er Not i fi cati on element is required to contain one or more def er Ti me
child elements. These elements have an XML duration in ISO 8601 format as their
contents:

Example:
<deferNotification choiceID="1">
<deferTime>P5D</deferTime >
<deferTime>P1lM</deferTime >
<deferTime>P3M</deferTime >

</deferNotification>

KEEPCURRENTORDER

Description:

The keepCurentOrder choice allows the user to keep the order that prompted the
notification action. It is essentially an override. There are no attributes or element
contents, other than the standard choicelD attribute.

Example:

<keepCurrent Order choiceID="1"/>

CANCELCURRENTORDER

Description:

The cancelCurentOrder choice allows the user to cancel the order that prompted
the notification action. When chosen by the user, the application should return to
whatever state it was in before the user started the order which triggered the notify
action. There are no attributes or element contents, other than the standard choiceIlD
attribute.

Example:

<cancel Current Order choiceID="1"/>

EDITCURRENTORDER

Description:

211

The editCurentOrder choice allows the user to edit the order that prompted the
notification action. When chosen by the user, the application should allow editing of the
order which triggered the notify action. After the order is edited, the engine should be
re-invoked as though the user had entered the newly edited order from scratch. There
are no attributes or element contents, other than the standard choicelD attribute.

Example:

<edi tCurrent Order choiceID="1"/>

CANCELEXISTINGORDER

Description:

The cancelExistingOrder choice allows the user to cancel an already existing
order for a patient. When chosen by the user, the application should cancel the existing
order, and continue through the ordering workflow for the current (new) order.

Element Contents:

The contents of the cancelExistingOrder element should be an ID which
identifies the existing order to be cancelled.

Example:

<cancel Exi sti ngOrder choiceID="1">27314</cancel Exi sti ngOrder >

EDITEXISTINGORDER

Description:

The editExistingOrder choice allows the user to edit an already existing order for
a patient. When chosen by the user, the application should suspend the current
ordering context, and allow the user to edit the order in question (with full decision
support for that ordering session). After the existing order is revised, the current
ordering session should be resumed, and the engine should be re-invoked for the
current (new) order that triggered the notify action.

Element Contents:

The contents of the editExistingOrder element should be an ID which identifies
the existing order to be edited.

Example:

212

<edi t Exi sti ngOrder choiceID="1">27314</editExi sti ngOrder>

ADDALLERGY

Description:

The addAllergy choice allows the user to set a new allergy a patient. When
chosen by the user, the application should add the allergy to the allergy list and then re-
invoke the engine in the context that generated the notify action. The addAllergy
response action uses the CHI recommended vocabularies
(http://www.ncvhs.hhs.gov/0609131t.htm) for allergen. Only allergen is specified.
Systems which need information on severity or reaction should prompt the user for this
information.

Required Attributes:

e allergenCodeSystem: The coding system used to describe the allergen. Must be one
of unii , rxnormbn, ndfrt, Or nesh.

Element Contents:

The element should contain the allergen code according to the chosen code
system.

Example:
<addAl | ergy choiceID="1" allergenCodeSyst en"nesh">
D27.505. 519. 186. 071. 202. 370

</ addAl | er gy>

Note: D27. 505. 519. 186. 071. 202. 370 is the MESH term for Hydroxymethylglutaryl-
CoA Reductase Inhibitors.

WRITENOTE

Description:

The writeNote choice starts a progress note. If chosen by the user, the progress
note should appear in an editor, where it can be revised and finalized..

Element Contents:

The default text for the progress note, which must be properly escaped if it
contains special characters.

213

Example:

<witeNote choiceID="1">| referred the patient to a di abetes educator for
assistance with his glycemc control. </witeNote>

WRITELETTER

Description:

The writeLetter choice generates a letter to the patient.

Element Contents:

The body of the letter, which must be properly escaped if it contains special
characters. The application will add the appropriate greeting and salutation.

Example:

<writelLetter choiceID="1"> Your nost recent henogl obin A1C test result was 11%
This is higher than your goal of 7% Please schedul e an appointment with your physician
or di abetes educator to discuss options for reducing your HbAlc.</witelLetter>

ADDPROBLEM

Description:

The addProblem choice adds a problem to the patient’s problem list. After the
problem is added, the engine should be re-invoked in the same context that generated
the notify action.

Element Contents:

The element should contain a SNOMED code for the problem to be added.

Example:

<addPr obl em choiceID="1">266468003</ addPr obl en»>

REMOVEPROBLEM

Description:

The removeProblem choice removes a problem from the patient’s problem list.
After the problem is removed, the engine should be re-invoked in the same context that
generated the notify action.

214

Element Contents:

The element should contain a SNOMED code for the problem to be removed.

Example:

<addPr obl em choiceID="1">13644009</ addPr obl en>

ENTERAGE

Description:

The enterAge choice gives the user the option to enter the patient’s age. It should
only be presented when the age is unknown, or suspected to be inaccurate. If the user
chooses this option and enters an age, the ruleset should be invoked again, in the same
context as it was previously. There are no attributes or element contents, other than the
standard choicelD attribute.

Example:

<ent er Age choi cel D="1" />

ENTERWEIGHT

Description:

The enterWeight choice gives the user the option to enter the patient’s weight. It
should only be presented when the weight is unknown, or suspected to be inaccurate. If
the user chooses this option and enters a weight, the ruleset should be invoked again, in
the same context as it was previously. There are no attributes or element contents, other
than the standard choicelD attribute.

Example:

<ent er Wei ght choi cel D="1" />

ENTERHEIGHT

Description:

The enterHeight choice gives the user the option to enter the patient’s height. It
should only be presented when the height is unknown, or suspected to be inaccurate. If
the user chooses this option and enters a height, the ruleset should be invoked again, in

215

the same context as it was previously. There are no attributes or element contents, other
than the standard choicelD attribute.

Example:

<ent er Hei ght choi cel D="1" />

ENTERREASON

Description:

The enterReason choice allows the user to select a reason. This choice is a form
of override — after the reason is chosen, the application logs the reason chosen, and
proceeds with the action that prompted the notify action continues unmodified. The
enterReason choice is relatively unstructured, so other, more specific choices should be
chosen where possible.

Element Contents:

The reason to be displayed to the user and logged.

Example:

<ent er Reason choi cel D="1">Pati ent Refused</ ent er Reason>

OTHERREASON

Description:

The otherReason choice allows the user to input a free-text reason. This choice is
a form of override — after the reason is chosen, the application logs the reason chosen,
and proceeds with the action that prompted the notify action continues unmodified.
The otherReason choice is relatively unstructured, so other, more specific choices should
be chosen where possible. There are no attributes or element contents, other than the
standard choicelD attribute.

Example:

<ot her Reason choi cel D="1"/ >

216

RETURNING THE USER’S CHOICE TO THE SERVICE

In some cases, it is it desirable to return the choice that a user made to the
decision support service. This might be useful for statistical purposes, such as
determining how frequently a user accepted a suggestion, or which of several choices
they selected. It can also be used to cause rules to snooze for a period of time, as
described above. When the user makes a choice, the application should make a return
call to the service:

Regi st er Response(gui d, choicel D)

Where guid is the GUID attribute of the notify response action, and choicelD is
the choicelD attribute of the choice the user made. in the drug Suggestion for a patient
with DM and hyperlipidemia described in the Response Overview section, if the patient
refused the statin due to cost of treatment, the return call would be:

Regi st er Response(" 35b6c020- 3e95- 11db- a98b- 0800200c9a66", "4")

217

REFERENCES

1. Osheroff JA, Teich JM, Middleton B, Steen EB, Wright A, Detmer DE. A
Roadmap for National Action on Clinical Decision Support. 2006.

2. Teich JM, Merchia PR, Schmiz JL, Kuperman GJ, Spurr CD, Bates DW. Effects of
computerized physician order entry on prescribing practices. Arch Intern Med. 2000 Oct
9;160(18):2741-7.

3. Teich JM, Spurr CD, Flammini S, et al. Response to a trial of physician-based
inpatient order entry. Proc Annu Symp Comput Appl Med Care. 1993:316-20.

4. Baorto DM, Cimino JJ. An "infobutton" for enabling patients to interpret on-line
Pap smear reports. Proc AMIA Symp. 2000:47-50.

5. Cimino JJ, Li J. Sharing infobuttons to resolve clinicians' information needs.
AMIA Annu Symp Proc. 2003:815.

6. Cimino JJ, Li], Bakken S, Patel VL. Theoretical, empirical and practical
approaches to resolving the unmet information needs of clinical information system
users. Proc AMIA Symp. 2002:170-4.

7. Chin HL, Krall M. Implementation of a comprehensive computer-based patient
record system in Kaiser Permanente's Northwest Region. MD Comput. 1997 Jan-
Feb;14(1):41-5.

8. Garrido T, Jamieson L, Zhou Y, Wiesenthal A, Liang L. Effect of electronic health
records in ambulatory care: retrospective, serial, cross sectional study. Bmj. 2005 Mar
12;330(7491):581.

9. Osheroff JA, Pifer EA, Sittig DF, Jenders RA, Teich JM. Improving outcomes with
clinical decision support: an implementers' guide. Chicago: HIMSS; 2005.

10. Barnett GO, Cimino JJ, Hupp JA, Hoffer EP. DXplain. An evolving diagnostic
decision-support system. Jama. 1987 Jul 3;258(1):67-74.

11. de Dombal FT, Leaper DJ, Staniland JR, McCann AP, Horrocks JC. Computer-
aided diagnosis of acute abdominal pain. Br Med J. 1972 Apr 1;2(5804):9-13.

12. Gorry GA, Barnett GO. Experience with a model of sequential diagnosis. Comput
Biomed Res. 1968 May;1(5):490-507.

218

13. Gorry GA, Barnett GO. Sequential diagnosis by computer. Jama. 1968 Sep
16;205(12):849-54.

14. Miller RA. Medical diagnostic decision support systems--past, present, and
future: a threaded bibliography and brief commentary.] Am Med Inform Assoc. 1994
Jan-Feb;1(1):8-27.

15. Miller RA, Masarie FE, Jr. The demise of the "Greek Oracle" model for medical
diagnostic systems. Methods Inf Med. 1990 Jan;29(1):1-2.

16. Miller RA, Pople HE, Jr., Myers JD. Internist-1, an experimental computer-based
diagnostic consultant for general internal medicine. N Engl] Med. 1982 Aug
19;307(8):468-76.

17. Nelson S, Blois MS, Tuttle MS, et al. Evaluating RECONSIDER. A computer
program for diagnostic prompting.] Med Syst. 1985 Dec;9(5-6):379-88.

18. Weiss S, Kulikowski CA, Safir A. Glaucoma consultation by computer. Comput
Biol Med. 1978 Jan;8(1):25-40.

19. Balas EA, Weingarten S, Garb CT, Blumenthal D, Boren SA, Brown GD.
Improving preventive care by prompting physicians. Arch Intern Med. 2000 Feb
14;160(3):301-8.

20. Cabana MD, Rand CS, Powe NR, et al. Why don't physicians follow clinical
practice guidelines? A framework for improvement. Jama. 1999 Oct 20;282(15):1458-65.

21. Garg AX, Adhikari NK, McDonald H, et al. Effects of computerized clinical
decision support systems on practitioner performance and patient outcomes: a
systematic review. Jama. 2005 Mar 9;293(10):1223-38.

22. Grimshaw JM, Russell IT. Effect of clinical guidelines on medical practice: a
systematic review of rigorous evaluations. Lancet. 1993 Nov 27;342(8883):1317-22.

23. Hunt DL, Haynes RB, Hanna SE, Smith K. Effects of computer-based clinical
decision support systems on physician performance and patient outcomes: a systematic
review. Jama. 1998 Oct 21;280(15):1339-46.

24. Johnston ME, Langton KB, Haynes RB, Mathieu A. Effects of computer-based
clinical decision support systems on clinician performance and patient outcome. A
critical appraisal of research. Ann Intern Med. 1994 Jan 15;120(2):135-42.

25. Kawamoto K, Houlihan CA, Balas EA, Lobach DF. Improving clinical practice
using clinical decision support systems: a systematic review of trials to identify features
critical to success. Bmj. 2005 Apr 2;330(7494):765.

219

26. Kohn LT, Corrigan J, Donaldson MS. To err is human: building a safer health
system. Washington, D.C.: National Academy Press; 2000.

27. McGlynn EA, Asch SM, Adams J, et al. The quality of health care delivered to
adults in the United States. N Engl] Med. 2003 Jun 26;348(26):2635-45.

28. Chaudhry B, Wang], Wu S, et al. Systematic Review: Impact of Health
Information Technology on Quality, Efficiency, and Costs of Medical Care. Ann Intern
Med. 2006;144(10).

29. Ledley RS, Lusted LB. Reasoning foundations of medical diagnosis; symbolic
logic, probability, and value theory aid our understanding of how physicians reason.
Science. 1959 Jul 3;130(3366):9-21.

30. Sittig DF, Ash JS, Ledley RS. The story behind the development of the first
whole-body computerized tomography scanner as told by Robert S. Ledley.] Am Med
Inform Assoc. 2006 Sep-Oct;13(5):465-9.

31. O'Connor GT, Sox HC, Jr. Bayesian reasoning in medicine: the contributions of
Lee B. Lusted, MD. Med Decis Making. 1991 Apr-Jun;11(2):107-11.

32. Warner HR, Toronto AF, Veasey LG, Stephenson R. A mathematical approach to
medical diagnosis. Application to congenital heart disease. Jama. 1961 Jul 22;177:177-83.

33. Collen MF, Rubin L, Neyman], Dantzig GB, Baer RM, Siegelaub AB. Automated
Multiphasic Screening And Diagnosis. Am] Public Health Nations Health. 1964
May;54:741-50.

34. Bleich HL. Computer evaluation of acid-base disorders. J Clin Invest. 1969
Sep;48(9):1689-96.

35. de Dombal FT, Horrocks JC, Staniland JR, Guillou PJ. Construction and uses of a
'data-base’ of clinical information concerning 600 patients with acute abdominal pain.
Proc R Soc Med. 1971 Sep;64(9):978.

36. Shortliffe EH, Davis R, Axline SG, Buchanan BG, Green CC, Cohen SN.
Computer-based consultations in clinical therapeutics: explanation and rule acquisition
capabilities of the MYCIN system. Comput Biomed Res. 1975 Aug;8(4):303-20.

37. Miller PL. Critiquing anesthetic management: the "ATTENDING" computer
system. Anesthesiology. 1983 Apr;58(4):362-9.

38. Miller PL. Extending computer-based critiquing to a new domain: ATTENDING,
ESSENTIAL-ATTENDING, and VQ-ATTENDING. Int] Clin Monit Comput.
1986;2(3):135-42.

220

39. Masarie FE, Jr., Miller RA, Myers JD. INTERNIST-I properties: representing
common sense and good medical practice in a computerized medical knowledge base.
Comput Biomed Res. 1985 Oct;18(5):458-79.

40. Kuperman GJ, Gardner RM, Pryor TA. Help: a dynamic hospital information
system. New York: Springer-Verlag; 1991.

41. Sittig DF. COMPAS: a computerized patient advice system to direct ventilatory
care. [Dissertation]. Salt Lake City, UT: The University of Utah; 1988.

42, Sittig DF, Gardner RM, Pace NL, Morris AH, Beck E. Computerized management
of patient care in a complex, controlled clinical trial in the intensive care unit. Comput
Methods Programs Biomed. 1989 Oct-Nov;30(2-3):77-84.

43. Gardner RM, Golubjatnikov OK, Laub RM, Jacobson JT, Evans RS. Computer-
critiqued blood ordering using the HELP system. Comput Biomed Res. 1990
Dec;23(6):514-28.

44, Evans RS, Pestotnik SL, Classen DC, et al. A computer-assisted management
program for antibiotics and other antiinfective agents. N Engl] Med. 1998 Jan
22;338(4):232-8.

45. McDonald CJ. Protocol-based computer reminders, the quality of care and the
non-perfectability of man. N Engl] Med. 1976 Dec 9;295(24):1351-5.

46. Geissbuhler A, Miller RA. Clinical application of the UMLS in a computerized
order entry and decision-support system. Proc AMIA Symp. 1998:320-4.

47. Geissbuhler A, Miller RA. Distributing knowledge maintenance for clinical
decision-support systems: the "knowledge library" model. Proc AMIA Symp. 1999:770-4.

48. Heusinkveld], Geissbuhler A, Sheshelidze D, Miller R. A programmable rules
engine to provide clinical decision support using HTML forms. Proc AMIA Symp.
1999:800-3.

49, Miller RA, Waitman LR, Chen S, Rosenbloom ST. The anatomy of decision
support during inpatient care provider order entry (CPOE): empirical observations from
a decade of CPOE experience at Vanderbilt.] Biomed Inform. 2005 Dec;38(6):469-85.

50. Waitman LR, Pearson D, Hargrove FR, et al. Enhancing Computerized Provider
Order Entry (CPOE) for neonatal intensive care. AMIA Annu Symp Proc. 2003:1078.

51. Bates DW, Teich JM, Lee], et al. The impact of computerized physician order
entry on medication error prevention.] Am Med Inform Assoc. 1999 Jul-Aug;6(4):313-21.

221

52. Teich JM, Kuperman GJ, Bates DW. Clinical Decision Support: Making the
Transition from the Hospital to the Community Network. Healthc Inf Manage.
1997;11(4):27-37.

53. Bates DW, Kuperman GJ, Rittenberg E, et al. A randomized trial of a computer-
based intervention to reduce utilization of redundant laboratory tests. Am] Med. 1999
Feb;106(2):144-50.

54. Bates DW, Pappius E, Kuperman GJ, et al. Using information systems to measure
and improve quality. Int] Med Inform. 1999 Feb-Mar;53(2-3):115-24.

55. Doolan DF, Bates DW, James BC. The use of computers for clinical care: a case
series of advanced U.S. sites.] Am Med Inform Assoc. 2003 Jan-Feb;10(1):94-107.

56. Greenes RA, Sordo M, Zaccagnini D, Meyer M, Kuperman GJ. Design of a
standards-based external rules engine for decision support in a variety of application
contexts: report of a feasibility study at Partners HealthCare System. Medinfo. 2004;11(Pt
1):611-5.

57. Shojania KG, Yokoe D, Platt R, Fiskio J, Ma'luf N, Bates DW. Reducing
vancomycin use utilizing a computer guideline: results of a randomized controlled trial.
J Am Med Inform Assoc. 1998 Nov-Dec;5(6):554-62.

58. Payne TH, Hoey PJ, Nichol P, Lovis C. Preparation and use of preconstructed
orders, order sets, and order menus in a computerized provider order entry system. J
Am Med Inform Assoc. 2003 Jul-Aug;10(4):322-9.

59. Thompson TG, Brailer DJ. The Decade of Health Information Technology:
Delivering Consumer-centric and Information-rich Health Care. Washington, DC: US
Department of Health and Human Services; 2004.

60. Health Level 7. Arden Syntax for Medical Logic Systems Standard Version 2.5.
Washington, DC: American National Standards Institute; 2004.

61. Hripcsak G. Arden Syntax for Medical Logic Modules. MD Comput. 1991 Mar-
Apr;8(2):76, 8.

62. Hripcsak G, Ludemann P, Pryor TA, Wigertz OB, Clayton PD. Rationale for the
Arden Syntax. Comput Biomed Res. 1994 Aug;27(4):291-324.

63. Jenders RA, Hripcsak G, Sideli RV, et al. Medical decision support: experience
with implementing the Arden Syntax at the Columbia-Presbyterian Medical Center.
Proc Annu Symp Comput Appl Med Care. 1995:169-73.

222

64. Karadimas HC, Chailloleau C, Hemery F, Simonnet J, Lepage E. Arden/J: an
architecture for MLM execution on the Java platform.] Am Med Inform Assoc. 2002 Jul-
Aug;9(4):359-68.

65. Maviglia SM, Zielstorff RD, Paterno M, Teich JM, Bates DW, Kuperman GJ.
Automating complex guidelines for chronic disease: lessons learned.] Am Med Inform
Assoc. 2003 Mar-Apr;10(2):154-65.

66. Ohno-Machado L, Gennari JH, Murphy SN, et al. The guideline interchange
format: a model for representing guidelines.] Am Med Inform Assoc. 1998 Jul-
Aug;5(4):357-72.

67. Patel VL, Allen VG, Arocha JF, Shortliffe EH. Representing clinical guidelines in
GLIF: individual and collaborative expertise.] Am Med Inform Assoc. 1998 Sep-
Oct;5(5):467-83.

68. Peleg M, Boxwala AA, Ogunyemi O, et al. GLIF3: the evolution of a guideline
representation format. Proc AMIA Symp. 2000:645-9.

69. Wang D, Peleg M, Tu SW, et al. Design and implementation of the GLIF3
guideline execution engine.] Biomed Inform. 2004 Oct;37(5):305-18.

70. Peleg M, Boxwala AA, Tu S, et al. The InterMed approach to sharable computer-
interpretable guidelines: a review.] Am Med Inform Assoc. 2004 Jan-Feb;11(1):1-10.

71. Sordo M, Boxwala AA, Ogunyemi O, Greenes RA. Description and status update
on GELLO: a proposed standardized object-oriented expression language for clinical
decision support. Medinfo. 2004;11(Pt 1):164-8.

72. Sordo M, Ogunyemi O, Boxwala AA, Greenes RA. GELLO: an object-oriented
query and expression language for clinical decision support. AMIA Annu Symp Proc.
2003:1012.

73. Aho AV, Sethi R, Ullman JD. Compilers, principles, techniques, and tools.
Reading, Mass.: Addison-Wesley Pub. Co.; 1986.

74. Grune D. Modern compiler design. Chichester; New York: Wiley; 2000.

75. OpenClinical. Summaries of guideline representation methods. 2006 [cited May
3, 2006]; Available from: http://www.openclinical.org/gmmsummaries.html

76. Parker CG, Rocha RA, Campbell JR, Tu SW, Huff SM. Detailed clinical models
for sharable, executable guidelines. Medinfo. 2004;11(Pt 1):145-8.

77. Ram P, Berg D, Tu S, et al. Executing clinical practice guidelines using the SAGE
execution engine. Medinfo. 2004;11(Pt 1):251-5.

223

http://www.openclinical.org/gmmsummaries.html

78. Johnson PD, Tu SW, Musen MA, Purves I. A virtual medical record for
guideline-based decision support. Proc AMIA Symp. 2001:294-8.

79. Kawamoto K, Lobach DF. Design, Implementation, Use, and Preliminary
Evaluation of SEBASTIAN, a Standards-Based Web Service for Clinical Decision
Support. Proc AMIA Symp. 2005.

80. Health Level 7. Patient Evaluation Service Draft Standard. Ann Arbor, MI; 2005.

81. HL7 Services Specification Project Workgroup, OMG Healthcare Domain Task
Force. Healthcare Services Specification Project: The Business Case and Importance of
Services (presentation). 2007 [cited 2007 2007 Feb 09]; Available from:
http://hssp.wikispaces.com/space/showimage/2007-

01 07 HSSP Public Slide Deck Version 1.2.ppt

82. Lamont J. Decision support systems prove vital to healthcare. KMWorld. 2007(01
Feb).

83. Glaser J, Flammini S. The Service-Oriented Solution for Health IT. HHN Most
Wired. 2007(Feb 1).

84. Bakken S, Campbell KE, Cimino JJ, Huff SM, Hammond WE. Toward vocabulary
domain specifications for health level 7-coded data elements.] Am Med Inform Assoc.
2000 Jul-Aug;7(4):333-42.

85. Dolin RH, Alschuler L, Beebe C, et al. The HL7 Clinical Document Architecture. J
Am Med Inform Assoc. 2001 Nov-Dec;8(6):552-69.

86. Dolin RH, Alschuler L, Boyer S, et al. HL7 Clinical Document Architecture,
Release 2.] Am Med Inform Assoc. 2006 Jan-Feb;13(1):30-9.

87. Huff SM. Clinical data exchange standards and vocabularies for messages. Proc
AMIA Symp. 1998:62-7.

88. Spackman K. SNOMED RT and SNOMEDCT. Promise of an international clinical
terminology. MD Comput. 2000 Nov-Dec;17(6):29.

89. Coonan KM. Medical informatics standards applicable to emergency department
information systems: making sense of the jumble. Acad Emerg Med. 2004
Nov;11(11):1198-205.

90. Parrish F, Do N, Bouhaddou O, Warnekar P. Implementation of RxNorm as a
Terminology Mediation Standard for Exchanging Pharmacy Medication between
Federal Agencies. AMIA Annu Symp Proc. 2006:1057.

224

http://hssp.wikispaces.com/space/showimage/2007-01_07_HSSP_Public_Slide_Deck_Version_1.2.ppt
http://hssp.wikispaces.com/space/showimage/2007-01_07_HSSP_Public_Slide_Deck_Version_1.2.ppt

91. Gibson JT, Barker KN. Quality and comprehensiveness of the National Drug
Code Directory on magnetic tape. Am] Hosp Pharm. 1988 Feb;45(2):337-40.

92. Cobb WM. The National Drug Code system: its purpose and potential. Hosp
Formul. 1976 Nov;11(11):593-5.

93. US Department of Health and Human Services. Health Information Technology
Initiative. Major Accomplishments: 2004-2006. 2007.

94. Halamka JD. Harmonizing healthcare data standards.] Healthc Inf Manag. 2006
Fall;20(4):11-3.

95. Diamond C, Ricciardi L. Building consumer trust into health information
exchange.] Ahima. 2006 Nov-Dec;77(10):36, 8.

96. Markle Foundation. The Connecting for Health Common Framework: Resources
for Implementing Private and Secure Health Information Exchange. New York; 2006.

97. Akamai Corporation. About Akamai. 2007 [cited 2007 Feb 09]; Available from:
http://www.akamai.com/html/about/index.html

98. Corn M, Delaney C, Starren J. Grand Challenges for Informatics Research &
Academics. Proc AMIA Spring Congress. 2006.

99. Osheroff JA, Teich JM, Middleton B, Steen EB, Wright A, Detmer DE. A
Roadmap for National Action on Clinical Decision Support.] Am Med Inform Assoc.
2007 March-April;14(2):141-5.

100. Osheroff JA, Pifer EA, Teich JM, Sittig DF, Jenders RA. Improving Outcomes
with Clinical Decision Support: An Implementer's Guide. Chicago, IL: HIMSS; 2005.

101. Berlin A, Sorani M, Sim I. A taxonomic description of computer-based clinical
decision support systems.] Biomed Inform. 2006 Jan 9.

102. Wang JK, Shabot MM, Duncan RG, Polaschek JX, Jones DT. A clinical rules
taxonomy for the implementation of a computerized physician order entry (CPOE)
system. Proceedings / AMIA Annual Symposium. 2002:860-3.

103. Chaudhry B, Wang J, Wu S, et al. Systematic review: impact of health
information technology on quality, efficiency, and costs of medical care. Annals of
internal medicine. 2006 May 16;144(10):742-52.

104. Kuperman GJ, Teich JM, Gandhi TK, Bates DW. Patient safety and computerized
medication ordering at Brigham and Women's Hospital. Jt Comm] Qual Improv. 2001
Oct;27(10):509-21.

225

http://www.akamai.com/html/about/index.html

105. Hongsermeier T, Kashyap V, Masson R. Collaborative Authoring of Decision
Support Knowledge: A Demonstration. 2005 [cited 2006 Sep 5, 2006]; Available from:
http://www.partners.org/cird/PPTS/CollabAuthDemo.ppt

106. Zielstorff RD, Teich JM, Paterno MD, et al. P-CAPE: a high-level tool for entering
and processing clinical practice guidelines. Partners Computerized Algorithm and
Editor. Proceedings / AMIA Annual Symposium. 1998:478-82.

107. Kuperman GJ, Teich JM, Bates DW, et al. Detecting alerts, notifying the
physician, and offering action items: a comprehensive alerting system. Proc AMIA Annu
Fall Symp. 1996:704-8.

108. Chertow GM, Lee J, Kuperman GJ, et al. Guided medication dosing for inpatients
with renal insufficiency. Jama. 2001 Dec 12;286(22):2839-44.

109. Palchuk MB, Seger DL, Alexeyev A, et al. Implementing renal impairment and
geriatric decision support in ambulatory e-prescribing. AMIA Annu Symp Proc.
2005:1071.

110. Palchuk M, Postilnik A, Vashevko M, et al. Smart Form Framework as a
Foundation for Clinical Documentation Platform. Proceedings / AMIA Annual
Symposium. 2006:(In press).

111. HL7. HL7 Electronic Health Record Functional Model and Standard. 2004.

112. Shafarman M, Van Hentenryck K. HL7 makes headway on Version 3: framers of
the EHR draft standards invite the industry to try them out. Healthc Inform. 2004
Sep;21(9):50.

113. Sittig DF, Pace NL, Gardner RM, Beck E, Morris AH. Implementation of a
computerized patient advice system using the HELP clinical information system.
Computers and biomedical research, an international journal. 1989 Oct;22(5):474-87.

114. Classen DC, Avery AJ, Bates DW. Evaluation and certification of computerized
provider order entry systems.] Am Med Inform Assoc. 2007 Jan-Feb;14(1):48-55.

115. Schadow G, Mead CN, Walker DM. The HL7 reference information model under
scrutiny. Stud Health Technol Inform. 2006;124:151-6.

116. Smith B, Ceusters W. HL7 RIM: an incoherent standard. Stud Health Technol
Inform. 2006;124:133-8.

117. Office of the National Coordinator for Health Information Technology.
Presidential Initiatives: Consolidated Health Informatics. 2006 [cited 2007 Feb 15];
Available from: http://www.hhs.gov/healthit/chiinitiative.html

226

http://www.partners.org/cird/PPTS/CollabAuthDemo.ppt
http://www.hhs.gov/healthit/chiinitiative.html

118. Calinforna Healthcare Foundation. ELINCS: Developing a National Lab Data
Standard for EHRs. Oakland, CA: California Healthcare Foundation. 2005.

119. American Clinical Laboratory Association. ACLA Statement to the American
Health Information Community on Laboratory Interfaces. 2006 [cited 2007 Feb 15];
Available from: http://www.clinical-labs.org/documents/AHIC103106statement.pdf

120. Forrey AW, McDonald CJ, DeMoor G, et al. Logical observation identifier names
and codes (LOINC) database: a public use set of codes and names for electronic
reporting of clinical laboratory test results. Clin Chem. 1996 Jan;42(1):81-90.

121. Huff SM, Rocha RA, McDonald CJ, et al. Development of the Logical
Observation Identifier Names and Codes (LOINC) vocabulary.] Am Med Inform Assoc.
1998 May-Jun;5(3):276-92.

122, Regenstrief Institute. Logical Observation Identifiers Names and Codes
(LOINC®). 2007 [cited 2007 Feb 15]; Available from:
http://www.regenstrief.org/medinformatics/loinc/

123. Brouch K. AHIMA project offers insights into SNOMED, ICD-9-CM mapping
process.] Ahima. 2003 Jul-Aug;74(7):52-5.

124. Matney S, Dent C, Rocha RA. Development of a compositional terminology
model for nursing orders. Int] Med Inform. 2004 Aug;73(7-8):625-30.

125. Bowie J, Barnett GO. MUMPS--an economical and efficient time-sharing system
for information management. Comput Programs Biomed. 1976 Apr;6(1):11-22.

126. Fitzpatrick B. Distributed caching with memcached. Linux Journal.
2004;2004(124).

127. Bates DW, Boyle DL, Vander Vliet MB, Schneider], Leape L. Relationship
between medication errors and adverse drug events.] Gen Intern Med. 1995
Apr;10(4):199-205.

128. Leape LL, Bates DW, Cullen D], et al. Systems analysis of adverse drug events.
ADE Prevention Study Group. Jama. 1995 Jul 5;274(1):35-43.

129. Leape LL, Brennan TA, Laird N, et al. The nature of adverse events in
hospitalized patients. Results of the Harvard Medical Practice Study II. N Engl] Med.
1991 Feb 7;324(6):377-84.

130. Stanaszek WF, Franklin CE. Survey of potential drug interaction incidence in an
outpatient clinic population. Hosp Pharm. 1978 May;13(5):255-7, 61, 63.

227

http://www.clinical-labs.org/documents/AHIC103106statement.pdf
http://www.regenstrief.org/medinformatics/loinc/

131. Bates DW, Leape LL, Cullen D], et al. Effect of computerized physician order
entry and a team intervention on prevention of serious medication errors. Jama. 1998
Oct 21;280(15):1311-6.

132. Bates DW, O'Neil AC, Boyle D, et al. Potential identifiability and preventability
of adverse events using information systems.] Am Med Inform Assoc. 1994 Sep-
Oct;1(5):404-11.

133. Feldstein AC, Smith DH, Perrin N, et al. Reducing warfarin medication
interactions: an interrupted time series evaluation. Arch Intern Med. 2006 May
8;166(9):1009-15.

134. Kuperman GJ, Bobb A, Payne TH, et al. Medication-related clinical decision
support in computerized provider order entry systems: a review.] Am Med Inform
Assoc. 2007 Jan-Feb;14(1):29-40.

135. Neuvonen PJ, Penttila O. Effect of oral ferrous sulphate on the half-life of
doxycycline in man. Eur] Clin Pharmacol. 1974 Aug 23;7(5):361-3.

136. SpinaJR, Glassman PA, Belperio P, Cader R, Asch S. Clinical relevance of
automated drug alerts from the perspective of medical providers. Am] Med Qual. 2005
Jan-Feb;20(1):7-14.

137. van der Sijs H, Aarts], Vulto A, Berg M. Overriding of drug safety alerts in
computerized physician order entry.] Am Med Inform Assoc. 2006 Mar-Apr;13(2):138-
47.

138. Weingart SN, Toth M, Sands DZ, Aronson MD, Davis RB, Phillips RS. Physicians'
decisions to override computerized drug alerts in primary care. Arch Intern Med. 2003
Nov 24;163(21):2625-31.

139. Greim JA, Shek C, Jones L, et al. Enterprise-wide drug-drug interaction alerting
system. AMIA Annu Symp Proc. 2003:856.

140. Shah NR, Seger AC, Seger DL, et al. Improving acceptance of computerized
prescribing alerts in ambulatory care.] Am Med Inform Assoc. 2006 Jan-Feb;13(1):5-11.

141. Bavdekar SB, Pawar M. Evaluation of an Internet delivered pediatric diagnosis
support system (ISABEL) in a tertiary care center in India. Indian Pediatr. 2005
Nov;42(11):1086-91.

142. Ramnarayan P, Tomlinson A, Rao A, Coren M, Winrow A, Britto J. ISABEL: a
web-based differential diagnostic aid for paediatrics: results from an initial performance
evaluation. Arch Dis Child. 2003 May;88(5):408-13.

228

143. Ramnarayan P, Winrow A, Coren M, et al. Diagnostic omission errors in acute
paediatric practice: impact of a reminder system on decision-making. BMC Med Inform
Decis Mak. 2006;6:37.

144. Ramnarayan P, Roberts GC, Coren M, et al. Assessment of the potential impact of
a reminder system on the reduction of diagnostic errors: a quasi-experimental study.
BMC Med Inform Decis Mak. 2006;6:22.

145. Fick DM, Cooper JW, Wade WE, Waller JL, Maclean JR, Beers MH. Updating the
Beers criteria for potentially inappropriate medication use in older adults: results of a US
consensus panel of experts. Arch Intern Med. 2003 Dec 8-22;163(22):2716-24.

146. van der Hooft CS, Jong GW, Dieleman JP, et al. Inappropriate drug prescribing in
older adults: the updated 2002 Beers criteria--a population-based cohort study. Br] Clin
Pharmacol. 2005 Aug;60(2):137-44.

147. Benkler Y. Coase's Penguin, or, Linux and the Nature of the Firm. Yale Law
Journal. 2002;112(3):367-445.

148. Leuf B, Cunningham W. The Wiki way: quick collaboration on the Web:
Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA; 2001.

149. Gorman PN, Helfand M. Information seeking in primary care: how physicians
choose which clinical questions to pursue and which to leave unanswered. Med Decis
Making. 1995 Apr-Jun;15(2):113-9.

150. Covell DG, Uman GC, Manning PR. Information needs in office practice: are they
being met? Ann Intern Med. 1985 Oct;103(4):596-9.

151. Ely JW, Burch R]J, Vinson DC. The information needs of family physicians: case-
specific clinical questions.] Fam Pract. 1992 Sep;35(3):265-9.

152. Westbrook JI, Gosling AS, Coiera E. Do clinicians use online evidence to support
patient care? A study of 55,000 clinicians.] Am Med Inform Assoc. 2004 Mar-
Apr;11(2):113-20.

153. Schilling LM, Steiner JF, Lundahl K, Anderson R]. Residents' patient-specific
clinical questions: opportunities for evidence-based learning. Acad Med. 2005
Jan;80(1):51-6.

154. Campbell R, Ash J. Comparing bedside information tools: a user-centered, task-
oriented approach. AMIA Annu Symp Proc. 2005:101-5.

155. Cimino JJ, Li], Graham M, et al. Use of online resources while using a clinical
information system. AMIA Annu Symp Proc. 2003:175-9.

229

156. Maviglia SM, Yoon CS, Bates DW, Kuperman G. KnowledgeLink: impact of
context-sensitive information retrieval on clinicians' information needs.] Am Med
Inform Assoc. 2006 Jan-Feb;13(1):67-73.

157. Columbia University Center for Advanced Information Management. Info

Button Manager Fact Sheet. 2006 [cited 2007 19 Feb]; Available from:
http://www.cat.columbia.edu/pdfs/Info Button Mgr 2006.pdf

158. National Research Council (U.S.). Committee on Academic Careers for
Experimental Computer Scientists. Academic careers for experimental computer
scientists and engineers. Washington, DC: National Academy Press; 1994.

159. Stead WW, Haynes RB, Fuller S, et al. Designing medical informatics research
and library--resource projects to increase what is learned.] Am Med Inform Assoc. 1994
Jan-Feb;1(1):28-33.

160. Sosin DM, DeThomasis J. Evaluation challenges for syndromic surveillance--
making incremental progress. MMWR Morb Mortal Wkly Rep. 2004 Sep 24;53
Suppl:125-9.

161. Townes JM, Kohn MA, Southwick KL, et al. Investigation of an electronic
emergency department information system as a data source for respiratory syndrome
surveillance.] Public Health Manag Pract. 2004 Jul-Aug;10(4):299-307.

162. Bravata DM, McDonald KM, Smith WM, et al. Systematic review: surveillance
systems for early detection of bioterrorism-related diseases. Ann Intern Med. 2004 Jun
1;140(11):910-22.

163. Lombardo J, Burkom H, Elbert E, et al. A systems overview of the Electronic
Surveillance System for the Early Notification of Community-Based Epidemics
(ESSENCE II).] Urban Health. 2003 Jun;80(2 Suppl 1):i32-42.

164. Muscatello DJ, Churches T, Kaldor J, et al. An automated, broad-based, near real-
time public health surveillance system using presentations to hospital Emergency
Departments in New South Wales, Australia. BMC Public Health. 2005;5:141.

165. Platt R, Bocchino C, Caldwell B, et al. Syndromic surveillance using minimum
transfer of identifiable data: the example of the National Bioterrorism Syndromic
Surveillance Demonstration Program.] Urban Health. 2003 Jun;80(2 Suppl 1):125-31.

166. Espino JU, Wagner M, Szczepaniak C, et al. Removing a barrier to computer-
based outbreak and disease surveillance--the RODS Open Source Project. MMWR Morb
Mortal Wkly Rep. 2004 Sep 24;53 Suppl:32-9.

230

http://www.cat.columbia.edu/pdfs/Info_Button_Mgr_2006.pdf

167. Wagner MM, Espino], Tsui FC, et al. Syndrome and outbreak detection using
chief-complaint data--experience of the Real-Time Outbreak and Disease Surveillance
project. MMWR Morb Mortal Wkly Rep. 2004 Sep 24;53 Suppl:28-31.

168. Tierney WM, McDonald CJ, Martin DK, Rogers MP. Computerized display of
past test results. Effect on outpatient testing. Ann Intern Med. 1987 Oct;107(4):569-74.

169. Kingsland LC, 3rd, Lindberg DA, Sharp GC. AI/RHEUM. A consultant system
for rheumatology.] Med Syst. 1983 Jun;7(3):221-7.

170. Sittig DF. Grand challenges in medical informatics?] Am Med Inform Assoc.
1994 Sep-Oct;1(5):412-3.

171. Berner ES. Clinical decision support systems: theory and practice. New York:
Springer; 1999.

172. Jimison H, Sher P. Clinical decision support systems: theory and practice. In:
Berner ES, editor. Health informatics. New York: Springer; 1999. p. 139-66.

173. Buckland A. Dr. Weed's computer world.] Am Med Rec Assoc. 1987 Jul;58(7):21-
3.

174. Miller RA, Schaffner KF, Meisel A. Ethical and legal issues related to the use of
computer programs in clinical medicine. Ann Intern Med. 1985 Apr;102(4):529-37.

175. McCord G, Smucker WD, Selius BA, et al. Answering questions at the point of
care: do residents practice EBM or manage information sources? Acad Med. 2007
Mar;82(3):298-303.

176. Fenton SH, Badgett R. Are there differences in online resources for answering
primary care questions? AMIA Annu Symp Proc. 2005:953.

177. Leff B, Harper GM. The reading habits of medicine clerks at one medical school:
frequency, usefulness, and difficulties. Acad Med. 2006 May;81(5):489-94.

178. Koonce TY, Giuse NB, Todd P. Evidence-based databases versus primary
medical literature: an in-house investigation on their optimal use.] Med Libr Assoc. 2004
Oct;92(4):407-11.

179. Peterson MW, Rowat J, Kreiter C, Mandel J. Medical students' use of information
resources: is the digital age dawning? Acad Med. 2004 Jan;79(1):89-95.

180. Iakovidis I. Towards personal health record: current situation, obstacles and
trends in implementation of electronic healthcare record in Europe. Int] Med Inf.
1998;52(1-3):105-15.

231

181. Kim MI, Johnson KB. Personal Health Records: Evaluation of Functionality and
Utility. Journal of the American Medical Informatics Association. 2002;9(2):171.

182. Sittig DF. Personal health records on the internet: a snapshot of the pioneers at
the end of the 20th Century. Int] Med Inf. 2002;65(1):1-6.

183. Denton IC. Will Patients Use Electronic Personal Health Records? Responses
from a Real-Life Experience. Journal of Healthcare Information Management.
2001;15(3):251-9.

184. Tang PC, Ash JS, Bates DW, Overhage JM, Sands DZ. Personal health records:
definitions, benefits, and strategies for overcoming barriers to adoption.] Am Med
Inform Assoc. 2006 Mar-Apr;13(2):121-6.

185. Doherty W], Thadhani AJ. The economic value of rapid response time. IBM
Report.

186. Hamann C, Poon E, Smith S, et al. Designing an electronic medication
reconciliation system. AMIA Annu Symp Proc. 2005:976.

187. Poon EG, Blumenfeld B, Hamann C, et al. Design and implementation of an
application and associated services to support interdisciplinary medication
reconciliation efforts at an integrated healthcare delivery network.] Am Med Inform
Assoc. 2006 Nov-Dec;13(6):581-92.

188. Gorman P. RxSafe: Using IT to Improve Medication Safety for Rural Elders. 2006
[cited 2007 Feb 09]; Available from:
http://medir.ohsu.edu/~gormanp/slides/051003 RxSafe2 HO.pdf

189. Campbell JR, Payne TH. A comparison of four schemes for codification of
problem lists. Proc Annu Symp Comput Appl Med Care. 1994:201-5.

190. Gross PA, Bates DW. A pragmatic approach to implementing best practices for
clinical decision support systems in computerized provider order entry systems.] Am
Med Inform Assoc. 2007 Jan-Feb;14(1):25-8.

191. GaoT, MaH, Yen IL, Bastani F, Tsai WT. Toward QoS Analysis of Adaptive
Service-Oriented Architecture. Service-Oriented System Engineering, 2005 SOSE 2005
IEEE International Workshop. 2005:227-36.

192. Kohlhoff C, Steele R. Evaluating SOAP for High Performance Business
Applications: Real-Time Trading Systems. Proceedings of WWW2003. 2003:03-2002.

193. LiuH, Lin X, Li M. Modeling response time of SOAP over Http. Web Services,
2005 ICWS 2005 Proceedings 2005 IEEE International Conference on. 2005:679.

232

http://medir.ohsu.edu/%7Egormanp/slides/051003_RxSafe2_HO.pdf

194. Papazoglou MP. Service-oriented computing: concepts, characteristics and
directions. Web Information Systems Engineering, 2003 WISE 2003 Proceedings of the
Fourth International Conference on. 2003:3-12.

195. Seshasayee B, Schwan K, Widener P. SOAP-binQ: high-performance SOAP with
continuous quality management. Distributed Computing Systems, 2004 Proceedings
24th International Conference on. 2004:158-65.

196. Sharma A, Adarkar H, Sengupta S, Limited IT. Managing QoS through
prioritization in Web services. Web Information Systems Engineering Workshops, 2003
Proceedings Fourth International Conference on. 2003:140-8.

197. W3C Web Services Architecture Working Group. QoS for Web Services:
Requirements and Possible Approaches. Boston, MA: W3C; 2003.

198. Wang G, Chen A, Wang C, Fung C, Uczekaj S. Integrated quality of service (QoS)
management in service-oriented enterprise architectures. Enterprise Distributed Object
Computing Conference, 2004 EDOC 2004 Proceedings Eighth IEEE International.
2004:21-32.

233

	TABLE OF CONTENTS
	ACKNOWLEDGEMENTS
	ABSTRACT
	1.1 INTRODUCING CLINICAL DECISION SUPPORT
	1.2 STANDALONE DECISION SUPPORT SYSTEMS
	1.3 DECISION SUPPORT INTEGRATED INTO CLINICAL SYSTEMS
	1.4 STANDARDS FOR SHARING DECISION SUPPORT CONTENT
	1.5 SERVICE MODELS FOR DECISION SUPPORT
	1.6 CONCLUSIONS ON THE LITERATURE
	2.1 A NEW ARCHITECTURE FOR DECISION SUPPORT
	2.2 AN EXAMPLE USE CASE
	2.3 ARCHITECTURAL KEY POINTS
	2.4 THE ROLE OF STANDARDS
	2.5 THE NHIN INTERFACE
	2.6 THE DECISION SUPPORT NETWORK INTERFACE
	2.7 ADVANTAGES OF THE NEW ARCHITECTURE
	3.1 A TAXONOMY OF DECISION SUPPORT FUNCTIONS
	3.2 PRIOR TAXONOMIES IN CLINICAL DECISION SUPPORT
	3.3 METHODS FOR DEVELOPING A TAXONOMY
	SITE AND CONTENT DESCRIPTION
	STUDY DESIGN
	3.4 DECISION SUPPORT TRIGGERS
	3.5 INPUT DATA ELEMENTS FOR DECISION SUPPORT
	3.6 DECISION SUPPORT INTERVENTION TYPES
	3.7 RESPONES OFFERED TO THE USER
	3.8 COMPARISON TO COMMERCIAL SYSTEMS
	3.9 CONCLUSIONS AND IMPLICATIONS
	LIMITATIONS
	FUTURE DIRECTIONS

	4.1 INTRODUCTION TO THE PROTOTYPE
	4.2 OVERVIEW OF THE NHIN
	4.3 PATIENT DATA CLASS LIBRARY
	RATIONALE FOR A PATIENT DATA CLASS LIBRARY
	ELEMENTS OF THE PATIENT DATA CLASS LIBRARY
	STORING OBSERVATIONS
	STORING DRUG INFORMATION
	STORING PROBLEMS
	FAMILY HISTORY
	PROCEDURE HISTORY
	ALLERGIES
	OTHER ORDERS
	CACHING

	4.4 DECISION SUPPORT SERVICE INTERFACE
	DECISION SUPPORT SERVICE INVOCATION INTERFACE
	STRUCTURED INTEVENTION INTERFACE

	4.5 A REFERENCE PARSER
	4.6 PROTOTYPE ELECTRONIC HEALTH RECORD
	4.7 DRUG INTERACTION CHECKING
	4.8 SYNDROMIC SURVEILLANCE
	4.9 DIAGNOSTIC DECISION SUPPORT
	4.10 INAPPROPRIATE PRESCRIBING IN OLDER ADULTS
	4.11 INFORMATION AT THE POINT OF CARE
	4.12 A SIMPLE PERSONAL HEALTH RECORD
	4.13 NOTES ON LOCAL MIRRORING OF SERVICES
	5.1 ACADEMIC CAREERS FOR EXPERIMENTAL COMPUTER SCIENTISTS AND ENGINEERS
	5.2 THE STEAD FRAMEWORK
	5.3 THE FRAMEWORK
	6.1 FEATURE DETERMINATION
	6.2 EXISTENCE
	6.3 UTILITY
	6.4 COVERAGE
	6.5 PERFORMANCE
	6.6 SUMMARY OF RESULTS
	7.1 CHALLENGES IN INTEGRATING DATA
	7.2 DRUG TERMINOLOGY CHALLENGES
	7.3 PROBLEM LIST TERMINOLOGY CHALLENGES
	7.4 MESSAGE AND SERVICE ARCHITECTURES
	7.5 ECONOMICS AND BUSINESS MODELS
	7.6 ORGANIZATIONAL ISSUES AND IMPLICATIONS
	7.7 LESSONS ON SERVICE RELIABILITY
	7.8 A VISION FOR THE FUTURE OF EHR'S
	8.1 THE CONTRIBUTION OF SANDS
	8.2 FINAL NOTES ON ADOPTION AND AVAILABILITY
	APPENDIX A: FORMAL SERVICE DEFINITION AND SCHEMA
	APPENDIX B: GUIDE TO THE SERVICE DEFINITION
	INTRODUCTION
	Drug Suggestion for a patient with DM and hyperlipidemia:
	Empty response:

	RESPONSE PREAMBLE
	RESPONSE ACTIONS
	NOTIFY
	Description:
	Required Attributes:
	Optional Attributes:
	Example:

	LOG
	Description:
	Element Contents:
	Example:

	SHOWURL
	Description:
	Required Attributes:
	Optional Attributes:
	Example:

	SHOWORDERSET
	Description:
	Optional Attributes:
	Element Contents:
	Example:

	SHOWDATAENTRYTEMPLATE
	Description:
	Optional Attributes:
	Element Contents:
	Example:

	GETAPPROVAL
	Description:
	Element Contents:
	Example:

	PROVIDEPICKLIST
	Description:
	Required Element Contents:
	Example:

	 RESPONSE CHOICES
	WRITEORDER
	Description:
	Element Contents:
	Example:

	DEFERNOTIFICATION
	Description:
	Element Contents:
	Example:

	KEEPCURRENTORDER
	Description:
	Example:

	CANCELCURRENTORDER
	Description:
	Example:

	EDITCURRENTORDER
	Description:
	Example:

	CANCELEXISTINGORDER
	Description:
	Element Contents:
	Example:

	EDITEXISTINGORDER
	Description:
	Element Contents:
	Example:

	ADDALLERGY
	Description:
	Required Attributes:
	Element Contents:
	Example:

	WRITENOTE
	Description:
	Element Contents:
	Example:

	WRITELETTER
	Description:
	Element Contents:
	Example:

	ADDPROBLEM
	Description:
	Element Contents:
	Example:

	REMOVEPROBLEM
	Description:
	Element Contents:
	Example:

	ENTERAGE
	Description:
	Example:

	ENTERWEIGHT
	Description:
	Example:

	ENTERHEIGHT
	Description:
	Example:

	ENTERREASON
	Description:
	Element Contents:
	Example:

	OTHERREASON
	Description:
	Example:

	 RETURNING THE USER’S CHOICE TO THE SERVICE
	REFERENCES

