
Knowledge Discovery for Time Series

Matthew John Saffell

B.S., LeTourneau University (1992)

M.S., University of Tennessee (1994)

A dissertation presented to the faculty of the

OGI School of Science and Engineering

a t Oregon Health & Science University

in partial fulfillment of the

requirements for the degree

Doctor of Philosophy

in

Computer Science and Engineering

October 2005

The dissertation "Knowledge Discovery for Time Series" by Matthew John Saffell has

been examined and approved by the following Examination Committee:

ry-/ T es' Research Adviser

Dr. Todd Leen
Professor

-
Dr. Dan Hammerstrom
Professor
Portland State University

Dr. Melanie Mitchell
Professor
Portland State University

Dedication

To my parents, whose unconditional love has supported me through my entire life.

Acknowledgments

The work in this thesis was made possible through support from DARPA under Contract

DAAH01-96-C-R026, AASERT Grant DAAH04-95-1-0485, the National Science Foun-

dation under ITR grant NSF-0342634, and the generous support of the OGI Computer

Science Department. Many thanks go to my advisor John Moody for the contribution of

his time and guidance through the course of this work. Many thanks also go to the com-

mittee members for their insightful questions, comments, and feedback. Special thanks

go to Yuansong Liao, Steve Rehfuss, Lizhong Wu, and Kyoungju Youn for assistance and

collaboration on the research included here, and thanks to Aron Rempel for proofreading

assistance and helpful comments.

Contents

. Dedication iii

. Acknowledgments iv

... Abstract xi11

. 1 Introduction 1

. 1.1 Overview 2

. Knowledge Discovery Through Supervised Learning 5
. 2.1 Introduction 5

. 2.2 Regression and Time Series Analysis 7
. 2.2.1 Time Series Modeling 7

. 2.2.2 Nonparametric Regression and Generalization 9
. 2.2.3 The Bias / Variance Tradeoff 11

. 2.2.4 Noise & Nonstationarity 11
. 2.2.5 Measuring Nonstationarity 11

. 2.3 Problem Domain: Macroeconomic Forecasting 13
. 2.3.1 The Time Series 13

. 2.3.2 Challenges 15
. 2.3.3 Literature Review 19

. 2.4 Modeling Approach 22
. 2.4.1 Neural Network Model Architectures 22

. 2.4.2 Learning 23
. 2.4.3 Moving Window Retraining 24

. 2.4.4 Regularization 26
. 2.4.5 Complexity Reduction & Model Selection 31

. 2.4.6 Committees & Variance Reduction 34
. 2.5 Benchmark Models 35

. 2.5.1 Trivial Predictors 36

. 2.5.2 Linear Regression 37

. 2.5.3 Linear Autoregression 37
. 2.5.4 Bayesian Vector Autoregression 38

. 2.6 Empirical Methodology & Setup 40
. 2.6.1 Model Structure 40

. 2.6.2 Data 41
. 2.6.3 Statistical Significance 44

. 2.7 Empirical Studies: Point Forecasts 46
. 2.7.1 Point Forecast Results Summary 46

. 2.7.2 Nonlinear structure 52
. 2.7.3 Complexity Reduction & Model Selection 52

. 2.7.4 Regularization Methods 55
. 2.7.5 Model Insight via Sensitivity Analysis 56

. 2.8 Empirical Studies: Directional and Quintile Forecasts 58
. 2.8.1 Representations for Directional Forecasts 58

. 2.8.2 Network Models for Directional Forecasting 60
. 2.8.3 Comparison Models 61

. 2.8.4 Directional Forecast Results Summary 61
. 2.8.5 Target Representation Comparison 64

. 2.8.6 Quantized Regression vs Directional Forecasters 64
. 2.9 Discussion 64

. 3 Knowledge Discovery Through Reinforcement Learning 69
. 3.1 Introduction 69

. 3.1.1 Reinforcement Learning 70
. 3.1.2 Reinforcement vs Supervised Learning 72
. 3.2 Problem Domain: Financial Decision Making 78

. 3.3 Literature Review 78
. 3.4 Review of the Recurrent Reinforcement Learning Model 81

. 3.4.1 Trading Systems and Performance Criteria 81
. 3.5 Portfolios 88

. 3.5.1 Profit and Wealth for Portfolios 89
. 3.6 Downside Risk 89

. 3.7 Learning to Trade 91
. 3.7.1 Recurrent Reinforcement Learning 92

. 3.7.2 Value Functions and Q-Learning 95
. 3.8 Policy vs Value Functions 97

. 3.8.1 Immediate vs . Future Rewards 97

. 3.8.2 Policies vs . Values 99
. 3.8.3 An Example 100

. 3.9 Results 100
. 3.9.1 Trader Simulation 102

3.9.2 Simulations for Maximizing the Downside Deviation Ratio 107
. 3.9.3 US Dollar/British Pound Foreign Exchange Trading System 110

. 3.9.4 S&P 500 / T-Bill Asset Allocation 114
. 3.9.5 Discussion of the S&P 500 / T-Bill Results 121

. 3.9.6 Portfolio Management Simulation 122
. 3.10 Discussion 125

. 4 Summary & Conclusions 128
. 4.1 Supervised Learning for Forecasts 128

. 4.1.1 Future Research Directions 130
. 4.2 Reinforcement Learning for Trading 130

. 4.2.1 Future Research Directions 131

. Bibliography 132

. A Tables of Results 143
. A . l Performance Metrics 143

. A.2 Tables of Results 144

. Biographical Note 166

vii

List of Tables

. 2.1 Citibase time series designations 14
. 2.2 The number of lags included in each univariate AR model 38

. 2.3 Summary of point forecast results by model type 49
. 2.4 Summary of 3-month point forecast results by model type 50
. 2.5 Summary of 12-month point forecast results by model type 51

2.6 Summary of the number of eigen-nodes pruned by Principal Component
. Pruning 53

. 2.7 Summary of the effectiveness of Principal Component Pruning 54
. 2.8 Summary of directional forecast results by model type 63

. 2.9 Summary of 3-month directional forecast results by model type 65
. 2.10 Summary of 12-month directional forecast results by model type 66

. 2.11 Comparison of directional forecast target representations 67

. A . 1 DLEAD.L.FD3 Regression Results 146
. A.2 DLEAD.L.FD3 Quantized Regression Results 146

. A.3 DLEAD.L.FD3 Classification Results 146

. A.4 DLEAD.L.FD12 Regression Results 147
. A.5 DLEAD.L.FD12 Quantized Regression Results 147

. A.6 DLEAD.L.FD12 Classification Results 147
. A.7 DRM.L.FD3 Regression Results 148

. A.8 DRM.L.FD3 Quantized Regression Results 148
. A.9 DRM.L.FD3 Classification Results 148

. A.10 DRM.L.FDl2 Regression Results 149
. A.l l DRM.L.FD12 Quantized Regression Results 149

. A.12 DRM.L.FD12 Classification Results 149
. A.13 FM2DQ.L.FD3 Regression Results 150

. A.14 FM2DQ.L.FD3 Quantized Regression Results 150
. A.15 FM2DQ.L.FD3 Classification Results 150
. A . 16 FM2DQ.L.FD12 Regression Results 151

. A . 17 FM2DQ.L.FD12 Quantized Regression Results 151
. A.18 FM2DQ.L.FD12 Classification Results 151

viii

. A.19 FSPCOM.L.FD3 Regression Results 152
. A.20 FSPCOM.L.FD3 Quantized Regression Results 152

. A.21 FSPCOM.L.FD3 Classification Results 152
. A.22 FSPCOM.L.FD12 Regression Results 153

. A.23 FSPCOM.L.FD12 Quantized Regression Results 153
. A.24 FSPCOM.L.FD12 Classification Results 153

. A.25 FYAAAC.L.FD3 Regression Results 154
. A.26 FYAAAC.L.FD3 Quantized Regression Results 154

. A.27 FYAAAC.L.FD3 Classification Results 154
. A.28 FYAAAC.L.FD12 Regression Results 155

. A.29 FYAAAC.L.FD12 Quantized Regression Results 155
. A.30 FYAAAC.L.FD12 Classification Results 155

. A.31 HSBP.FD3 Regression Results 156
. A.32 HSBP.FD3 Quantized Regression Results 156

. A.33 HSBP.FD3 Classification Results 156
. A.34 HSBP.FD12 Regression Results 157

. A.35 HSBP.FD12 Quantized Regression Results 157
. A.36 HSBP.FD12 Classification Results 157

. A.37 IP.L.FD3 Regression Results 158
. A.38 IP.L.FD3 Quantized Regression Results 158

. A.39 IP.L.FD3 Classification Results 158
. A.40 IP.L.FD12 Regression Results 159

. A.41 IP.L.FD12 Quantized Regression Results 159
. A.42 IP.L.FD12 Classification Results 159

. A.43 LHUR.FD3 Regression Results 160
. A.44 LHUR.FD3 Quantized Regression Results 160

. A.45 LHUR.FD3 Classification Results 160
. A.46 LHUR.FD12 Regression Results 161

. A.47 LHUR.FD12 Quantized Regression Results 161
. A.48 LHUR.FD12 Classification Results 161
. A.49 PUNEW.L.FD3 Regression Results 162

. A.50 PUNEW.L.FD3 Quantized Regression Results 162
. . A.51 PUNEW L.FD3 Classification Results 162

. . A.52 PUNEW L.FD12 Regression Results 163
. A.53 PUNEW L.FD 12 Quantized Regression Results 163

. A.54 PUNEW.L.FD12 Classification Results 163
. A.55 YCS.L.FD3 Regression Results 164

. A.56 YCS.L.FD3 Quantized Regression Results 164
. A.57 YCS.L.FD3 Classification Results 164
. A.58 YCS.L.FD12 Regression Results 165

. A.59 YCS.L.FD12 Quantized Regression Results 165
. A.60 YCS.L.FD12 Classification Results 165

List of Figures

2.1 A graphical depiction of the noise / nonstationarity tradeoff 12

2.2 The Index of Industrial Production . 14

2.3 The U.S. Index of Leading Indicators (DLEAD) and its 10 component series . 16

2.4 The U.S. Index of Industrial Production and five return series 18

2.5 Depiction of the year-by-year retraining procedure 25

2.6 A stylized representation of the early stopping process 27

2.7 Depiction of the random validation datasets for different committee members . 28

2.8 MSE as a function of regularization parameter 29

2.9 A graphical representation of the effect of regularization on the weights of

amodel .
2.10 A demonstration of the use of committees to reduce the variance of forecasts .
2.11 Normalized errors for making 3-month point forecasts
2.12 Normalized errors for making 3-month point forecasts
2.13 Normalized errors for making 12-month point forecasts
2.14 Normalized errors for making 12-month point forecasts
2.15 Example of the eigenvalue spectrum for 12-month Forecasts of IP
2.16 Demonstration of the effect of Principal Component Pruning on 12-month

Forecasts of FYAAAC .
2.17 Summary of the effectiveness of regularization techniques for the 3-month

. forecasts

2.18 Summary of the effectiveness of regularization techniques for the 12-month

forecasts .
2.19 Input sensitivity traces for several of the inputs to a 3-unit neural network

trained to make 12-month forecasts of the Index of Industrial Production . .
2.20 Normalized errors for making 3-month directional forecasts
2.21 Normalized errors for making 12-month directional forecasts

3.1 Block diagram of a trading system based on forecasts 74

3.2 Block diagram of a trading system trained with labeled data 75

3.3 Block diagram of a trading system based on recurrent reinforcement learning . 77

3.4 A graphical representation of the Q-Learning oracle problem 101

3.5 Online RRL for the long/short trader. 103

3.6 Expanded view of the long/short RRL trader's behavior 104

3.7 Histograms of performance measure for the RRL long/short trader. 105

3.8 Boxplots of trading frequency, cumulative sums of profits and Sharpe ratios

vs. transaction costs for the RRL long/short trader. 106

3.9 An example of the artificial price series used in the Downside Deviation

simulations. 108

3.10 Boxplots of performance results for the Downside Deviation simulations. . . 109
3.11 A comparison of the histograms of maximum drawdown incurred by the

"DDR" and "SR" trading systems. 110
3.12 A closeup of the behavior of the "DDR" and "SR" trading systems. 111

3.13 {Long, short, neutral) trading system of the US DollarlBritish Pound. . . . 113
3.14 Time series used by the S&P 500 / TBill asset allocation system. 115

3.15 Test results for ensembles of simulations of the S&P 500 stock index asset

allocation system. 118
3.16 Test results for ensembles of simulations of the S&P 500 stock index asset

allocation system. 11 9

3.17 Sensitivity traces for three of the inputs to the RRL-Trader trading system. 120
3.18 An expanded view from a simulation of the portfolio management system. . 124
3.19 Boxplots of performance measures vs transaction costs for the portfolio

management system. 125

3.20 Comparison of the "Max.SRn and "Max.Profit7' portfolio management sys-

tems . 126

Abstract

Knowledge Discovery for Time Series

Matthew John Saffell

Ph.D., OG1 School of Science and Engineering

at Oregon Health & Science University

October 2005

Thesis Advisor: Dr. John Moody

My thesis investigates the use of machine learning methods for analysis of economic

and financial time series. Since structural models in economics and finance are known to

have limited predictive power, I study a data driven, time series approach to knowledge

discovery in these domains. The ultimate goal of building predictive models of such time

series is to support decision making in areas such as business, investing, and government

policy.

Machine learning offers powerful tools for forecasting and decision making. Supervised

learning methods can be used to develop forecasting models of economic series that can

aid in decision support. Reinforcement learning methods can produce systems capable

of making investment decisions. Hence, my thesis consists of two main investigations: a

study of methods for predicting macroeconomic and financial time series, and a study

of extensions to a reinforcement learning algorithm for constructing financial decision

systems.

. . .
Xll l

In the forecasting project, I develop a supervised training methodology for models that

predict challenging macroeconomic and financial time series. I compare the performance

of linear and nonlinear networks with a diverse set of standard linear benchmark models.

While some advantage is obtained from the use of nonlinear networks for certain of these

time series, a key result is that linear network models trained with stochastic, nonlinear

neural network learning algorithms can achieve greatly improved performance over the

benchmark methods on most of the data sets.

The second topic investigated is enhancements to the Recurrent Reinforcement Learn-

ing (RRL) algorithm. The RRL approach to trading system design has been shown to be

effective at learning strategies that directly maximize financial objective functions, and

also has been shown to outperform approaches based on supervised learning on artificial

data sets. In my work, I investigate several significant extensions of RRL: to incorporate

downside risk measures, to compare the RRL policy approach to an alternate RL value

function approach, to extend the approach to portfolio management, and to conduct sim-

ulation studies on a number of artificial and real data sets, including an S&P-500 asset

allocation system and a high frequency foreign exchange trader.

xiv

Chapter 1

Introduction

In this thesis, I investigate the use of machine learning methods, including supervised

and reinforcement learning algorithms, to analyze and forecast economic and financial

time series. My goal is to utilize and extend existing techniques and methods to produce

algorithms and automated methodologies for building nonlinear decision making models

in economics and finance. There are many theories regarding the behavior of the world's

economies and financial markets, however most of these have limited predictive power [24].

The algorithms I present are data driven, nonlinear time series based approaches that

produce quantitative forecasts and actions that result in measurable performance gains

relative to standardly used models. As such, these algorithms have the potential to support

real decision making in business, financial, and governmental institutions.

There is a dichotomy in the arena of macroeconomic and financial decision making: A)

on the macroeconomic scale, possible actions to be taken are complex and multifaceted,

and the outcomes of these actions have broad impacts, the desirability of which can be

difficult to measure accurately; and B) on the scale of investment decisions, actions are

easier to specify, and the desirability of outcom4s is more easily measured. So to support

macroeconomic decision making, I present a Supervised Learning (SL) methodology for

forecasting with neural network models, where the forecasts can be used as an input to the

decision making process. On the other hand, Reinforcement Learning (RL) techniques are

more appropriate in the investment decision arena as the models make decisions directly,

and can be trained to maximize the investor's utility.

Supervised learning is used to develop forecasting models that can aid in decision sup-

port. SL is used to extract a robust representation of the relationship between the past

and future values of macroeconomic and financial variables based on historical datasets.

These monthly datasets are considered very challenging by standard time series measures,

and are characterized by a very low signal-to-noise ratio and a high degree of nonstationar-

ity. The series often exhibit non-normal distributions and heteroskedacticity (time-varying

variance).

Reinforcement learning is used to produce systems that can make investment decisions.

In RL, a goal-directed agent actively explores unknown environments, and attempts to

maximize rewards received from the actions taken. RL is useful when the structure of the

desired information (eg. optimal trading decisions) is unknown, but there is a performance

measure which can be used to evaluate the agent's action. Based on performance feedback,

the agent adjusts its actions and explores its environment in order to maximize its rewards.

In some cases, the feedback received by an RL agent can depend on a sequence of

interdependent actions or can be substantially delayed from the associated actions that

produced them. The need to assign credit among various actions over time is known as

the temporal credit assignment problem [102]. This ability to interact with (and poten-

tially influence) the environment, and having to deal with delayed feedback makes RL a

fundamentally different type of learning problem from supervised learning.

1.1 Overview

In Chapter 2, I develop a supervised learning methodology for predicting challenging

macroeconomic and financial time series. I present a methodology that addresses the

challenges inherit in these series, and that automatically selects learning hyperparameters

and chooses the model complexity. The methodology includes nonlinear, nonparametric

models, sliding window retraining, various model regularization techniques, model com-

plexity reduction, and bagging committee combinations to produce forecasts of the 1980-

1989 test period. The application of this methodology is novel for neural networks in this

problem domain. Previous studies [I071 of this scope for these types of series have used

relatively rudimentary neural network models that do not use regularization, and that use

a stepwise model construction method that does not fully take advantage of the nonlinear

capabilities of the neural networks.

I present results for 3 and 12-month forecasts of both level and direction of the series

using both linear and nonlinear neural networks trained using the presented methodology.

These results are compared with a number of more standard linear and trivial predictors.

I find non-trivial predictability in many of the series, and evidence in some of nonlin-

ear structure. Also, both the linear and nonlinear network models outperform the more

standard linear models including a Bayesian Vector Autoregressive model, which is also a

regularized model. Another key result is that the linear network models perform almost

as well as the nonlinear models for these series. This argues strongly for the use of appro-

priate linear models for comparison when fitting nonlinear models to these types of series.

It could be that positive results in the literature from using nonlinear network models are

due more to the estimation methodology than to actual nonlinear structure.

In Chapter 3, I investigate enhancements for the investment decision problem. I extend

the Recurrent Reinforcement Learning (RRL) trading model of Moody & Wu [74] in order

to make it more practically useful for investors. Some characteristics of investors are that

they are more risk averse than standard risk measures would indicate, they typically hold

diversified portfolio of assets and thus need to make optimal decisions in that context, and

they are more comfortable making investment decisions when they can have an intuitive

sense of the rules being used to make the decision.

To address these issues, I first implement downside performance measures for the

model and examine the effect this has on trading performance. I find the RRL model to

be capable of producing very desirable changes in behavior when using this modified risk

measure. The systems trained using downside risk measures learn to cut their losses much

more quickly than those using more traditional risk measures. I also present results for

the single asset trader on a number of real financial datasets including an S&P-500 stock

index asset allocation system and an intra-daily foreign exchange trading system. The

models are very successful in finding tradeable structure in these series. These models are

then examined using sensitivity analysis to gain insight into their operation. I also provide

a discussion of the difference between representing policy functions and value functions,

and present a comparison of the RRL model with a value function model on the S&P-500

stock index asset allocation problem. Finally, I extend the single-asset model to manage a

portfolio of assets. I find the systems perform well in simulations using artificial portfolios.

The systems shows the ability to produce allocations that take into account the differing

predictabilities of the underlying assets.

In Chapter 4, I present a summary of the work and discuss some possible extensions.

Additionally, Appendix A contains tables of forecasting results for the series forecasted in

Chapter 2.

Chapter 2

Knowledge Discovery Through

Supervised Learning

2.1 Introduction

In this chapter, I investigate the application of nonlinear estimation methods for linear

and nonlinear predictive models for a spectrum of U.S. financial and macroeconomic time

series. These series are very important measures of economic growth and the health of the

economy. Forecasts of such macroeconomic variables play a key role in making decisions

and setting policies in many arenas, from the level of international organizations down to

the level of individual corporations. They are also very challenging series to forecast, and

are characterized by very low signal-to-noise ratios and a high degree of nonstationarity.

The data series are short, being comprised of monthly data for a 45 year period, and

the potential feature set is very large. These characteristics pose special challenges for

predictive modeling.

The typical econometric approaches to dealing with these challenges are to use a linear

statistical model or a nonlinear, structural model based on some economic hypothesis. The

approach I take here is based on nonlinear, nonparametric statistical models. These models

attempt to learn the predictive function from the data. Due to the inherent flexibility of

these models, general constraints and restrictions are used during the training process to

help prevent overfitting. The degree of constraint in the final model structure is determined

by the data itself rather than being specified in an ad hoc manner.

The goals of this research are: (1) to develop a methodology capable of dealing with

the challenges mentioned above, (2) to examine the predictability of both point and direc-

tional forecasts of monthly time series, (3) to test for the presence of nonlinearity in the

series, and (4) to compare standard linear estimation methods to state-of-the-art meth-

ods developed in the adaptive systems and machine learning literatures. The techniques

I consider include data-based selection of hyperparameters, early stopping of training,

weight decay regularization, year-by-year retraining, Principal Component Pruning for

model complexity reduction, and bagging committees.

I find nontrivial predictability in making point forecasts for many of the series stud-

ied. For several, the results show some advantage from the use of nonlinear models over

linear models when using the same sophisticated estimation methods. The Index of In-

dustrial Production and the Housing Starts Index show the most advantage from the use

of nonlinear versus linear models. I also find that the application of nonlinear neural

network learning techniques to a linear network model considerably improves the perfor-

mance relative to standard linear models such as least squares regression, univariate AR,

and Bayesian vector AR models. When making directional forecasts, I find the output

representation of the data during training to have a substantial impact on the learned

model's accuracy. Also, for the series in this study, training more complex models to pre-

dict quintiles of directional movement does not improve performance relative to simpler

models trained to make point forecasts.

I start in Section 2.2 by introducing some notation and nomenclature related to regres-

sion and time series analysis that will be used later in the chapter. In Section 2.3 I intro-

duce the macroeconomic time series domain and discuss the issues that make it challenging

for forecasting, and review the related literature. Section 2.4 presents the methodological

approach used to create the linear and nonlinear network forecasting models. Section 2.5

describes the benchmark models that will be compared against. In Section 2.6 the im-

plementation details of the models and datasets are described. In Sections 2.7 and 2.8

I present the results from the forecasting experiments, and in Section 2.9 I review the

findings presented in the chapter.

2.2 Regression and Time Series Analysis

In this chapter, data sets are represented as time series. That is, the data are a series

of measurements of some variable measured sequentially through time. The process that

creates these measurements is the data-generating process. A data generating process

(DGP) is a process that takes some number of sources (including purely random signals)

and produces a value that can be measured. For example, a generic DGP could have the

form

~i = (xi, €1 (2-1)

where the output, yi, is a function of the input vector, xi, and some random noise variable,

E . There could be multiple sources of noise, as is common in state space models. A dataset

consists of some number of pairs of inputs and outputs {xi, yi), i = 1,2,. . . , K. The DGP

typically embodies some relationship between the inputs and the outputs. That is, even

though there may be a stochastic element, a given set of values for the sources will produce

some predictable change in the measurement due to the deterministic element of the data

generating process.

In a typical regression problem, there is not necessarily any significance to the ordering

of the data in the dataset. That is, the data point with index i is not necessarily related

to the data point with index i - 1. However, in a time series there is a clear ordering

of data points based on the times at which the measurements were recorded. The value

of an observation measured at time t , yt, may well be related to or explicitly dependent

on previously measured values such as yt-1. These types of causal relationships will have

implications on the way such problems are modeled.

2.2.1 Time Series Modeling

A time series whose future values can be exactly predicted from its historical values is

said to be deterministic. Most series of interest to forecasters however cannot be fully

predicted in this way, and are called stochastic processes as they have some random or

unknown component that influences their future behavior.

Autoregressive Moving Average Model

The principal stochastic time series model is the autoregressive moving average (ARMA)

process. A time series is an autoregressive process of order p, denoted AR(p), if the DGP

is represented by

where the ai are constant-valued parameters representing the relationship among the

lagged values of yt, and ~t is a random variable. When a model is univariate, that is only

containing lagged values of itself as inputs, it is usual to use y instead of x to represent

the inputs. A time series is a moving average process of order q, denoted MA(q), if the

DGP is represented by

where the pi are constant-valued parameters representing the relationship among the

lagged values of the noise variable c t . By extension, the ARMA(p, q) process is represented

by

For a time series to be stationary, all transition probabilities from one state to another

must be independent of time. A weak form of stationarity commonly cited in linear time

series analysis requires that the first two moments of the series' returns distribution exist

and that they be constant over time. For example, an AR(1) process

is nonstationary if lal 1 >= 1 because the variance of the series is not constant over time.

A time series is said to have a unit root if it is nonstationary, but has a differenced

series that is stationary. For example, the AR(1) process with crl = 1 is a random walk; yt

has mean yo, but nonstationary variance to:. A generalization of this process may include

a trend:

This series is a random walk with drift and has a nonstationary mean of yo + tp. However,

the differenced series

is stationary in mean and variance. Many of the economic time series discussed in this

chapter contain trends or unit roots. This is one of the main motivations for forecasting

the changes in the series (returns) rather then the levels themselves.

Linear Vector Autoregression

The standard linear vector autoregression (VAR) model extends the AR model to a mul-

tivariate setting:

where Yt is a vector of n time series yi measured at time t, Ak is a matrix of parameters

a i j k , p is the number of time lags to include, and f t is a vector of iid noise with variances

0;. To be explicit, Equation 2.8 represents a set of n equations:

QiikYi(t-k) + a i j k Y j (t - k) + €it .
k=1 j#i I

The parameters of the VAR can be estimated using the standard ordinary least squares

estimation method. Some limitations of this framework occur when the number of vari-

ables and the number of time lags included in the model begin to grow. The amount of

data needed to estimate the parameters becomes very large very quickly.

2.2.2 Nonparametric Regression and Generalization

Stated simply, the goal of nonparametric regression is to learn a relationship between two

sets of variables. That is, given a set of data pairs, (xl,yl), . . . , (XK, yK), where x is

an n-dimensional vector of "inputs" and where y is (without loss of generality) a scalar

"output", a function of x,

and qt is a zero-mean random variable. We wish to learn a representation, f (x), of the

relationship, g(x), that takes values of x to values of y. The learning of the model, f (x),

involves setting the values of a set of parameters, 8, in response to the observed training

data set, V = {(xl, yl), . . . , (xK, yK)). Following the notation in [35] we emphasize the

dependence of the model on the training data by writing f (x; D) instead of f (x) .

A typical measure of how well a model represents a relationship is the mean-squared

error (MSE) measure:

ED [(Y - f (xi D)) ~ I x , D] 7 (2.11)

where ED[.] denotes the expected value over possible datasets, V. A straightforward

learning algorithm would involve adjusting the model parameters, 8, to minimize the

MSE measured on the available training data.

Because the individual values of y in the dataset typically contain noise, it is of interest

to look at the value, E[y(x], which is the average value of y conditioned on x. It is easy

to show that E[ylx] minimizes MSE for any given value of x , and also has the property of

being independent of any realization of D. In the following sections we will be interested

in looking at the MSE defined using this "best" estimate

The term generalization refers to how well the model f (x; D) is able to respond to

values of x that were not contained in the training data set V. The main factors that

affect generalization ability are the amount of noise present in the training data set, the

number of available points in the training data set, the coverage of the training data set

relative to the range of the DGP, and the flexibility of the model being fit to the data.

When the flexibility of a model is such that it can be trained to a low error on V, but has

a high error on similar but previously unseen data produced by the DGP, we say that the

model has been overfit. Overfitting occurs when the model's flexibility allows it to model

features produced by the noise in the training dataset. In this chapter, I will describe

techniques such as regularization and Principal Component Pruning that can be used to

reduce the effective number of parameters in a model, thus improving the generalization

ability of a model.

2.2.3 The Bias / Variance Tradeoff

The bias / variance tradeoff is an old idea in statistics, and it describes the ways in which

model flexibility contributes to the prediction error produced by a fitted model. The

essence of the analysis is to decompose the estimation error into two components, a bias

component and a variance component.

EvKf (xi 'D) - E[Y l ~ I) ~ l

= (Ev[f (x; V)] - ~ [y l x]) ~ "bias" + (2.13)

ED [(f (x; V) - ED [(f (x; v)]) ~] "variance" (2.14)

ED[.] denotes the expectation over all possible datasets, V, of length K. So a model,

f (x; V), is said to be biased as an estimator of E[ylx] if on average it is different from

E[ylx]. Even if E[ylx] is unbiased, the MSE can still be large due to the variance, that

is the model is sufficiently flexible that any single model can be very different from the

average model. Relevant references include [33, 116, 351.

2.2.4 Noise & Nonstationarity

The noise / nonstationarity tradeoff was first noted by Moody [62] (see also [66, 671). Sim-

ilarly to the bias / variance tradeoff, the noise / nonstationarity tradeoff for nonstationary

time series can be described by decomposing MSE into two components. The "noise" com-

ponent represents the contribution to the error coming from the variance caused by having

too short of a history on which to train. The "nonstationarity" component represents the

portion of the error caused by having too long of a history, and thus including information

that is more misleading than helpful to the model fitting process.

2.2.5 Measuring Nonstationarity

One method for measuring the effects of nonstationarity is to train models using a variety

of training window lengths and then measure the test set errors for each model. Figure 2.1

shows test set error vs. training window size for one of the macroeconomic series investi-

gated in the remainder of this chapter. In this case the error is high due to noise effect

, , I 1 - o n F y : Error Versus T r y W i w L e ,

0.64 10 I
15 20

Window Length (years)

Figure 2.1: A graphical depiction of the noise / nonstationarity tradeof [62, 66, 671. The
figure plots normalized mean-square error versus training window length for forecasts of
the 12-month future log returns of the Index of Industrial Production from 1980-1989.
Large error values occur for short window sizes due to large amounts of noise in the
dataset. Error initially decreases as the training window size is increased, but then errors
start increasing again as the effects of nonstationarity become evident.

from the short training window sizes. As the training window lengthens, error decreases

due to the increasing number of data points available for model fitting. However, as the

window length increases even more the error begins to rise again. This increase in error is

due to the fact that the additional data points being used for model fitting are becoming

less and less relevant to the data points that are in the test set. That is, the data gener-

ating process has evolved sufficiently over time so as to render data beyond a certain age

useless for the task of more accurately learning the functional form of the current data

generating process.

In this thesis I also use sensitivity analysis to demonstrate the effect of nonstationarity

on the learned models. The sensitivity analysis is described in Section 2.7.5, and allows us

to open the neural network "black-box" to a certain degree and to examine the changing

relationships between the inputs and outputs. I find that the relationships learned by the

models trained to forecast the datasets considered can change significantly over the course

of the test period.

2.3 Problem Domain: Macroeconomic Forecasting

Macroeconomics is the study of economic behavior in the aggregate. A primary concern of

macroeconomic analysis is sustainable economic growth. Related to economic growth are

the allocation of resources, employment of the workforce, stability of prices, and relation-

ships between national economies. A large number of time series exist which are updated

periodically in an attempt to quantify the variables used to describe the macroeconomy.

Examples of macroeconomic variables include the gross domestic product, the infla-

tion rate, and the unemployment rate. Often the values of these variables are estimated

using statistical sampling or survey techniques. Figure 2.2 shows another macroeconomic

variable, the Index of Industrial Production (IP), for the time period 1967-1993. IP is a

monthly time series that measures the physical volume of output of the manufacturing

sector. The shaded bars in the figure show the periods when the U.S. economy was offi-

cially in a recession. The correspondence between downturns in IP and the recessions is

clear. Accurate forecasts of IP would be very useful for predicting recessions, and could

allow for the adjustment of monetary and political policy to ameliorate or even prevent

the recession.

Forecasts of macroeconomic variables play a key role in setting policies in many arenas,

from the level of international organizations down to the level of some individual corpora-

tions. I find evidence of predictability in several of the macroeconomic series considered

in this chapter including the Index of Industrial Production.

2.3.1 TheTime Series

In this chapter, I consider a number of macroeconomic and financial data series for pre-

diction and classification. The ten monthly series for which I produce results are listed

in Table 2.1 and include the industrial production index, the housing starts index, the

unemployment rate, the consumer price index (a measure of inflation), money supply,

short and long-term interest rates, and the S&P 500 stock index. I include the 3-month

treasury bill rate as an input, though do not produce predictions for it due to the amount

of similarity between it and the Aaa bond yield.

Index of Industrial Production: 1967 - 1993

1980

Year

Figure 2.2: The Index of Industrial Production is a monthly series that measures the
physical volume of output of the manufacturing sector. There is a strong correspondence
between downturns in the Index of Industrial Production and recessions in the US economy
(shaded periods).

Table 2.1: Data series are taken from the Citibase database for the period 1950 - 1995. All
names except "DRM" and "YCS" are those given in the Citibase database. The notation
1987 = 100 indicates that the series is normalized to that base year.

Designation

DLEAD
DRM
FM2DQ
FSPCOM
FYAAAC
FYGM3
HSBP
IP
LHUR
PUNEW
YCS

Description

Index of Leading Indicators. Seasonally adjusted. 1987 = 100.
Default Risk Measure: (Baa Bond Yield) - (Aaa Bond Yield).
M2 Money Supply
Standard & Poor's 500. 1941 to 1943 = 10.
Moody's Aaa Bond Yield.
3-month Treasury Bill Yield.
Housing Starts. Seasonally adjusted. 1967 = 100.
Index of Industrial Production. Seasonally adjusted. 1987 = 100.
Unemployment Rate. Seasonally adjusted.
Consumer Price Index. Seasonally adjusted. 1982 to 1984 = 100.
Yield Curve Slope: (10-Year Bond Composite) - (3-Month Treasury Bill).

I construct both linear and nonlinear multivariate models to produce forecasts of these

variables on 3 and 12 month horizons. The available dataset covers 1950-1995 and is of

monthly resolution. Figure 2.3 shows examples of several of these series along with other

indicative macroeconomic series.

The set of inputs to the predictive models is based on the same set of macroeconomic

and financial time series listed in the table. Various transformations were applied to each

of the input series, creating a large number of inputs from which to choose. One trans-

formation involves taking the logs of the series to make the variances of the price changes

more stationary. The other involves taking the differences of the series on telescoping

time scales. This improves the performance of the model fitting process by removing non-

stationarity due to unit-roots, reducing the noise in the input signals, and representing

pertinent time scales returns as individual inputs. See Section 2.6.2 for the details of the

transformations.

2.3.2 Challenges

Macroeconomic modeling and forecasting is challenging for many reasons [62,25]. The lack

of convincing a priori economic models [24] creates a severe model selection problem. Also,

the series themselves display various characteristics which pose difficulties for standard

modeling techniques, including high levels of noise, nonstationarity, and possible nonlinear

structure. I will briefly discuss these issues in more detail.

N o a priori models

Convincing and accurate scientific models of business cycle dynamics do not yet and may

never exist. The U.S. economy is too large and too complex to ever measure exactly.

There are many factors that influence the economy that cannot be measured or quantified

including mass psychology and sociological effects. It is estimated that anywhere from 3-

44% of the U.S. economic activity is conducted in a deliberately concealed manner [loll.

In the face of these problems, two main approaches that economists use to model the

macroeconomy are structural models and linear time series models.

Structural models are based on explicit economic theory, and are often nonlinear in

DLEAD LPHRM

19501960197019801990
FSPCOM

38 1 I
19501960197019801990

HSBP

I . I

1950 1960 1970 1980 1990
MOCMQ

19501960197019801990
MPCONQ

Figure 2.3: The U.S. Index of Leading Indicators (DLEAD) and its 10 component series as
contained in the Citibase dataset. The Leading Index is a key tool for forecasting business
cycles. The difficulty of macroeconomic forecasting is evident, due to the high noise levels
and erratic behaviors of DLEAD and its components. Of the series shown here, the
DLEAD, HSBP, FM2DQ, and FSPCOM series are used for prediction and classification.
(Note that the component series included in DLEAD have been changed several times
during the past 50 years.) Also shown is the Index of Coincident Indicators (COINC),
another composite series which is meant to track the business cycle rather than lead it.

nature. These models attempt to model the macroeconomy at a relatively fine scale and

can contain hundreds or thousands of equations and variables. The model structures are

chosen by hand, as is the specification of endogenous and external variables. The model

parameters can be estimated from the data, though their values are usually constrained

by the underlying economic theory [56]. While structural models can be useful for un-

derstanding the economy qualitatively, they are notoriously bad at making quantitative

predictions. The popularity of these model tend to rise and fall with the currently pre-

vailing macroeconomic theory [24].

Given the poor forecasting performance of these structural models, many economists

have taken to forecasting economic activity using the statistical techniques of standard

linear time series analysis such as the Vector Autoregression (VAR). These time series

models typically have only half a dozen to a dozen input series if they do not include

some prior assumptions to guide the model fitting process. The most reliable of this

type of statistical model during the past two decades or so have been Bayesian Vector

Autoregressive (BVAR) models [51]. The BVAR model is a variation on the standard

linear VAR model which allows the imposition of prior information or belief about model

structure on the model building process. See Section 2.5.4 for an overview of the BVAR

model.

The research presented here will show that neural networks and neural network tech-

niques can outperform standard linear time series models. The lack of an a priori model of

the economy makes input variable selection and network model complexity critical issues.

See Section 2.4 for a description of the methods employed in this chapter.

Noise

Figure 2.3 shows examples of several macroeconomic time series. As can be seen, these

series are very noisy and generally have poor signal to noise ratios. The noise is also

apparent in Figure 2.4, which displays the logged Industrial Production series along with

returns of the series on multiple time horizons. Among other sources, the noise is due

to the many unobserved variables in the economy and to the survey techniques used

to collect data for those variables that are measured [loll. Due to the complexity of

3-Month Log Returns

1 -Month Log Returns
I ' 1

12-Month Log Returns

Figure 2.4: The U.S. Index of Industrial Production and several return series (rates of
change measured as log returns) for the 1, 3, and 12-month time scales. The difficulty of
the prediction task is evidenced by the poor signal to noise ratios and erratic behavior of
the target series. For all returns series, significant nonstationarities and deviations from
normality of the noise distributions are present.

gathering the large amounts of data needed to even estimate some of these economic

variables, the values are often still being revised for years after the initial estimates are

published. A short discussion on the use of revised data in macroeconomic forecasting

is given in Section 2.3.3. Some features of the noise distributions that complicate the

model fitting process are the presence of heavy tails and outliers. The significant noise

levels in combination with limited data histories makes controlling model variance, model

complexity, and the bias / variance tradeoff (discussed in Section 2.2.3) important issues.

Nonstationarity

Macroeconomic series are intrinsically nonstationary due to changes in governmental pol-

icy and innovations in business techniques. For example, the advent of computing tech-

nologies over the past 20 years has radically changed the nature of business worldwide.

Other sources of nonstationarity include changing noise distributions, periodic redefinition

of many series, and changing measurement techniques. In general, the presence of non-

stationarities will shorten the usable length of the data series, since the older data will be

less useful for predicting the future. The combination of noise and nonstationarity gives

rise to a noise / nonstationarity trade08 [62] (see Section 2.2.4). If training windows are

made too short in an attempt to use only the most relevant data, the model variance will

be high due to the noise in the remaining limited training data. Increasing the length of

the training window will help mitigate the effects of noise, but if the window becomes too

long, error will begin to rise due to the effects of nonstationarity.

Nonlinearity

Nonlinear theories and models of the economy have existed for quite a long time [24]. How-

ever, until relatively recent history, the lack of computational power has limited statistical

analysis to the linear domain [log]. Hence, traditional macroeconomic time series models

are linear [37, 401. Recent work as well as the current work suggests that nonlinearities

can improve macroeconomic forecasting models in some cases [38, 68, 79, 1061. Often the

degree of nonlinearity captured by neural network models of macroeconomic series tends

to be mild [68, 50, 89, 114, 1271. The current research suggests that simpler models can

be favored due to the high noise levels and limited data. Also, weight-decay techniques for

models using sigmoidal nonlinearities bias the fits toward linear structure, making reliable

estimation of nonlinearities more difficult.

2.3.3 Literature Review

There are numerous texts on economic and econometric time series forecasting [61,32, 341,

with one of the more seminal works being Granger and Newbold [37]. There are many

decent texts with introductions to macroeconomic issues and economic indicators [83, 88,

1011. The sections on the leading indicators are of particular relevance to the forecasting

approach taken in this chapter.

Historical Highlights

Early attempts at modeling the economy involved using "structural models". Structural

models interpret economic data using a particular economic theory [24]. These models

can be quite large, involving hundreds of variables. The use of specific structural models

tends to rise and fall based on the fortunes of the underlying economic theory. Nonstruc-

tural models, being less tied to a specific theory, have been gaining in popularity over

the years, and continue to progress at a rapid pace. Diebold [24] states that the popu-

larity of nonstructural models for macroeconomic forecasting began to grow in the 1970s

as the structural models based on Keynesian theory began to fall out of favor, though

certainly nonstructural models existed prior to this period. Some of the earlier work on

nonstructural models of economic forecasting was done in the 1920s by Slutsky and Yule

who suggested that autoregressions were appropriate. Box and Jenkins ARM A-fitting

methodology [13] was a very influential work in the 1970s on nonstructural time series

analysis and forecasting. Vector autoregressions [I281 are important advances around this

time as well.

In 1986, McNees [56] compared the performance of the BVAR forecasts produced in

real time by Litterman with several prominent forecasters of the time. McNees finds that

the BVAR-generated forecasts present a strong challenge to conventional practices and

serve as a powerful standard of comparison for other forecasts. McNees also notes that

the forecasts produced by structural models are often adjusted by the model user to take

into account the user's own judgment of the most likely outcome. BVAR forecasts are

typically not adjusted by the forecaster, showing a difference in the philosophical positions

of the forecasters regarding the role of empirical models in the social sciences.

Swanson and White [107, 1061 perform an extensive comparison of econometric fore-

casting models including artificial neural networks on a set of nine macroeconomic series.

Since they used quarterly data, they were able to compare the performance of their mod-

els with the forecasts produced by the Society of Professional Forecasters, a number of

professional forecasters from various professions, whose forecasts are recorded every quar-

ter in real time. One of the questions Swanson & White address is whether adaptability

in linear and nonlinear models is useful. They also take a model selection approach to

the prediction problem as opposed to a hypothesis testing approach. One of their main

findings is that their multivariate adaptive linear models outperform nonadaptive models,

as well as the adaptive nonlinear models they considered and the forecasts of the Society

of Professional Forecasters. They also find that various models are preferred depending

on the performance measure, emphasizing the importance of model selection criteria.

Data Vintages

The problem of data vintages is usually ignored when macroeconomic series are considered.

Macroeconomic series can never be truly, accurately measured, so, as discussed previously,

the values reported are at best estimates. As time passes since the initial estimate of a

series is made, more accurate estimates of the data point are often able to be made, and

are used to replace the initial estimates. Swanson and White [I071 use unrevised, or "first

reported" quarterly data which allows them to produce true ex-ante forecasts. However,

this dataset was constructed by hand by searching through over 30 years of monthly issues

of the "Survey of Current Business". Of course, even this type of dataset is incomplete

by itself. To make "optimal" ex-ante predictions one would like to use maximally revised

datasets that do not violate causality constraints [go]. This would correspond to having

a full, unique dataset at each time step containing the most recently available revision

of every historical data point. The "first reported" dataset used in [I071 will have an

exceptionally high level of noise due to the use of the initial estimates only at all points in

time. Also, presumably the errors are being calculated on these same noisy "first-reported"

data points. As the amount of revision can often be large, this leads to questions as to

the "true" accuracy of any error measure being calculated using this type of dataset.

Diebold and Rudebusch [26] use a partially revised, causal dataset to build linear models

for predicting the Composite Leading Index. They find a significant degradation in their

linear models when switching from a fully revised to a partially revised dataset.

Due to costs and availability I use fully revised monthly time series. The reported data

is not actually publicly available, and substantial effort would be needed to attempt to

collect it. Also, since the emphasis of this work is on model selection and the evaluation

of the presence of nonlinearity in the series, I feel it is appropriate to use full revised data.

This should allow a clearer picture of the actual underlying relationships present in the

datasets.

2.4 Modeling Approach

In this section I discuss the various techniques that are used when training the networks

to help deal with the problems of model selection, noise, nonstationarity, and nonlinearity

described in Sections 2.1 and 2.3. These techniques include year-by-year retraining, model

regularization, variable selection, and committees of models. Often there are a number of

related techniques that could be used to achieve similar effects. This work does not try

to compare techniques, but rather seeks to demonstrate the need for techniques such as

those presented here. It is likely that different techniques will be preferred depending on

the specific datasets under consideration.

2.4.1 Neural Network Model Architectures

In order to model the possible nonlinear structure in the macroeconomic time series, I

use nonlinear models with sigmoid-type nonlinearities. These nonlinear models have been

studied extensively, and further discussion beyond the scope of this thesis can be found in

a number of references [42, 41, 361. This section describes the nonlinear models used in

this project, and provides a brief overview of the training process.

The model architecture used is a two-layer feed-forward neural network with tanh

activation functions in the hidden layer, and a single linear output. The output of an

individual network is given by the network equation:

where xi is the value of the ith input, there are m inputs to the model, and n nodes in the

hidden layer. The first-layer weight uji is the weight from the ith input to the j th hidden

node and ujo is the bias of the jth hidden node. The second-layer weight vj is the weight

connecting the jth hidden-layer node to the output, and vo is the output bias.

For comparison, I also train linear networks:

The linear networks differ from standard linear models in that they are trained using the

methodology described in this section.

The networks are trained using the well-known stochastic backpropagation algorithm.

The backpropagation algorithm provides a method for adjusting the weights of a network

to minimize some measure of error for a given dataset. This requires that the gradient of

the error function with respect to the weights of the network be calculated.

2.4.2 Learning

Since there is not typically a well-defined mapping between forecast errors and the cost of

a forecast error in macroeconomics, forecast accuracy is often based on the Mean Square

Error (MSE) measure. Mean Square Error is defined as:

where the w represent the parameters of the model, yi is the target value being predicted,

and f(xi; w) is the model forecast based on the input vector xi and weight vector w.

I train the networks to minimize the sum of the MSE and the weighted regularization

term

subject to the minimum error on the validation set. The regularization term is used to

help avoid learning the noise in the training data set. Regularization will be discussed

further in Section 2.4.4.

The stochastic backpropagation algorithm proceeds by updating the network weights

after each presentation of a data point from the training data set. The weights are initial-

ized to small random values at the beginning of the learning process. The desired change

in the weights is proportional to the gradient of the error function with respect to the

model parameters:

where the wi represent the individual weights of the network. The weights are adjusted

by a small amount in the direction of the negative gradient:

wi (t) = wi(t - 1) + Awi(t - 1) 7 (2.20)

where q is the called the learning rate as it controls the amount by which the weights are

changed in response to a training exemplar. A single pass through the entire training data

set is commonly referred to as an epoch. Each network was trained for a maximum of 200

epochs using a learning rate of r] = 0.16. These parameters were set by examination of the

training and validation curves during training. The models showed good convergence on

the training set, and the validation error reached its minimum before the maximum number

of epochs. As will be described in Section 2.6.2, the inputs and targets are normalized

prior to training; this helps the gradient descent by normalizing the scales of the inputs

with respect to one another.

2.4.3 Moving Window Retraining

To help deal with the problem of nonstationarity I use a sliding, fixed-size training window,

and perform model retraining on a year-by-year basis. The training window size is 25 years,

or 300 months of data. A larger window size is chosen as the noise problem seems to have

a more significant effect than nonstationarity for these datasets. For the datasets used

here, the data prior to 1980 is used for parameter selection and training, and predictions

are made for the 1980-1989 test period.

To produce forecasts for a 10-year test period, the models are trained using data prior

to the beginning of the 10-year period. Forecasts are then produced using these models

for the first 12 months of the test period. The training window is shifted forward by 12

months, dropping off the oldest 12 months of data that were previously in the training set,

and the models are retrained from a new random initial set of weights (See Figure 2.5).

Figure 2.5: A depiction of the year-by-year retraining procedure. Model parameters are
reset to random values and retrained each time the training window is shifted forward.

I Training Window 1 I Test1
I Training Window2

This process proceeds until the final retraining which uses a training window that contains

all the data up to the end of the 9th year of the test period. Forecasts are produced for the

10th year of the test period, and are concatenated with the 9 previous sets of predictions.

It is very important to manage the datasets correctly lest future information be in-

corporated into the training dataset. For example, consider building a model to make

h-month forecasts starting Jan. 1980. After constructing backward looking inputs and

forward looking target pairs for the training process, the last date actually available for

training on is Dec. 1979 - h. This is the date of the last full target return that can be

calculated without overlapping the out-of-sample test period. In order for the prediction

made at the beginning of 1980 to be a true ex-ante prediction, this total separation of

training set and test set must be enforced. Also, the monthly macroeconomic series con-

sidered here must be delayed by one month before being used, as the reported value for

the Index of Industrial Production for the month of June is not actually available until

the middle of July. So this information can not be used to produce a forecast until the end

of July. However, the financial time series are real-time series, and the values are readily

available at the end of the current month.

One of the issues investigated for this project was to treat the training window length

as a hyperparameter, and to use the training data to select the training window length to

be used for the test set. I found this type of selection to be too unstable for the datasets

studied. There did not seem to be much correlation between the best window length for

adjacent periods of time. For such a method to work well, the optimal training window

length would have to change very slowly over time. It would require a fair amount of

Test2 I
. . .

Training Window10 I Test101

historical data to have any confidence that such a procedure would produce stable or

reliable results. This type of procedure might work for a higher frequency dataset, but for

this study the training window is held constant at 25-years. As we can see from the shape

of the curve in Figure 2.1, for these series it is better to have a too long training window

than a too short training window.

2.4.4 Regularization

Due to the large amounts of noise in the macroeconomic data, I apply two different regu-

larization techniques to the networks in an attempt to keep the networks from overfitting

or learning the noise. The two techniques are often used in neural network training: early

stopping and quadratic weight-decay. Both techniques introduce model bias in order to

reduce model variance and thereby reduce prediction error. These methods control model

complexity as measured by the egective number of parameters [63, 64, 651.

Early stopping

The goal of early-stopping is to minimize the prediction error on a test set by stopping

training before over-fitting occurs. Figure 2.6 shows a stylized representation of the errors

on the training, validation, and testing data sets as a function of training time. Due to

the nature of the gradient descent process, the error on the training set will continue to

decreases on average. However, once over-fitting begins to occur, the error on the test set

begins to increase.

Early stopping involves holding out a random 20% of the training window for valida-

tion. The networks are trained on the remaining 80% of the data (the training set), and

the hold-out data (the validation set) is used to estimate the prediction error. After each

training epoch, the error is measured on the validation data. Training is stopped after

the error on the validation data begins to increase, and the set of weights corresponding

to the minimum error on the validation data is used to make forecasts of the test data.

As will be discussed in Section 2.4.6, committees of 10 models each are used to produce

forecasts. One major source of variation in the committee members is that each uses

separate, randomly chosen training and validation data subsets of the training window.

I -
Training Time

Figure 2.6: This is a stylized representation of the errors on the training, validation, and
testing data sets as a function of training time. Due to the nature of the gradient descent
process, the error on the training set will continue to decreases on average. However, once
overfitting begins to occur, the error on the test set begins to increase. The error on the
hold-out validation set is used to approximate the error on the test set, and the training
is stopped at the time corresponding to the minimum error on the validation set.

Figure 2.7 depicts how the training and validation datasets vary between different com-

mittee members. Early stopping occurs for committee member i when the error measured

on the data points marked with black arrows (which are not used to train the parameters)

is at a minimum. Early stopping for committee member j is based on the data points

marked with white arrows.

Quadratic weight decay

Quadratic weight decay (similar to ridge regression in the context of linear regression in

the statistical literature [44, 431) is a commonly used method to help avoid fitting the noise

in a data set. Weight decay involves adding a term to the cost function that penalizes

large weight values in the network

E=MSE+XCW? (2.21)
i

where the wi are all of the weights in the model including the biases, and N is the number

of data points in the training set. The weight decay parameter, A, determines the amount

Validation Data i

Validation Data j

Figure 2.7: A graphical depiction of how the validation datasets vary between committee
members i and j. Early stopping occurs for committee member i when the error measured
on the data points marked with black arrows (which are not used to train the parameters)
is at a minimum. Early stopping for committee member j is based on the data points
marked with white arrows.

of contribution the penalty term makes to the total error, and has the effect of controlling

the eflective number of parameters. The best choice of X is problem dependent so a separate

X is chosen for each series and forecast horizon, though the individual committee members

all use the same value of X as described below. It is worth noting that for networks with

sigmoidal nonlinearities, weight decay regularization in its usual form biases the model to

a linear structure.

For a given series and a given forecast horizon, I choose the weight decay parameter by

performing a search over X based on the training set data. The search consists of evaluating

each choice of X by testing the methodology using the sliding window retraining on the

1970-1979 training data as described in Section 2.4.3 and depicted in Figure 2.5. The

value of X which gives the best aggregate performance on this 10 year ex-ante simulation

test period is then used to train the models for predicting the desired test period of the

1980's. The reason this full 10-year period is used to evaluate the choice of X instead of

a much smaller validation set as used for early stopping is so that models are not fooled

into choosing too small or too large values based on a possibly unrepresentative sample of

data.

The importance of choosing an appropriate value of X is shown in Figure 2.8. This

Error vs Regularization
0.9 1 . , 1 1

"Model 1"
"Model 2"

- . ,. "Model 3" -
.. .
i 'r

"Model 4"
.. . "Model 5" \

- ' . ,;, ,.. '., ., . "..
'.);. '. .! .

0.2 1 . I
I I

0.01 0.1 1

Weight Decay Coefficient

Figure 2.8: Mean Square Error values of a test set as a function of the regularization
parameter A. The separate curves represent various models trained to predict the test set.
When the weight decay coefficient is small, errors are high due to the large model variance.
When the weight decay coefficient is too large, errors increase because the models become
too biased, and can not adequately represent the underlying structure in the data. Most
of the models shown here produce the lowest errors when the regularization parameter is
approximately 0.1 to 0.3 in magnitude.

figure shows the characteristic effect on test-set error of using different amounts of reg-

ularization during training. If the value of X is too small then the network overtrains

on the training data, fitting noise features which have no relevance to the test data. As

the value of X increases, the model variance decreases and generalization increases. If X

becomes too large, error begins to increase again because now the network is too biased,

and is no longer able to fit the true structure of the data. Most of the models shown here

produce the lowest errors when the regularization parameter is approximately 0.1 to 0.3

in magnitude. This relatively large value for X indicates that these series really have a

very large amount of noise.

Bayesian Interpretation of Weight Decay

If we exponentiate the regularized error, Equation 2.21, we have

exp (-MSE) . exp (-A w:)

which is the penalized likelihood function. The first part of this represents the likelihood of

the data given the model, p(V1w). The second part, derived from the regularization term,

can be viewed as a prior on the model parameters, p(w). According to Bayes theorem, the

posterior model probability p(w(D) is proportional to 2.22, so minimizing 2.21 corresponds

to maximizing the posterior model probability.

Discussion

As will be shown in Section 2.7.4, I have found that both early stopping and quadratic

weight decay are useful for improving the performance of the models. Though often early

stopping offers only an incremental enhancement when used in the presence of weight

decay. It is worth noting again the different ways in which the two methods are used

to determine the amount of regularization each applies to the model. The weight decay

parameter is chosen with respect to ex-ante performance from simulations on historical

data, while the early stopping uses a validation dataset sampled from the current training

window to estimate out-of-sample performance. Also, all committee members use the same

weight decay coefficient while the early stopping point is determined on an individual basis

using individual randomly selected validation datasets.

Figure 2.9 is a depiction of the effects early stopping and weight decay have on the

learned value of the weights. Note that WTt is the optimal weight vector for the training

data set, not the true underlying function. Indeed, through the use of validation data

sets, the presumption is that regularization will result in weight vectors closer to the

true optimal value than could be learned from the training data alone. Early stopping

halts training somewhere along the path from the initial weight vector to the training set

optimal vector. Weight decay as implemented here biases the weight vector toward zero.

If the initial weights are close to zero then the effect of early stopping may be hard to

distinguish from the effect of weight decay.

Early Stopping Weight Decay

Figure 2.9: A graphical representation of the effect of regularization on the weights of
a model. WWt is the optimal weight vector for the training data set. Early stopping
halts training somewhere along the path from the initial weight vector to the training set
optimal vector. Weight decay as implemented here biases the weight vector toward zero.

For the network models used here, the use of weight decay to shrink toward zero

corresponds to a prior of a random walk plus drift model. This is due to the preprocessing

performed on the inputs and targets (See Section 2.6.2). To improve the learning dynamics

of the network models, the target returns are demeaned and scaled to have unit variance

based on the training set data. The out-of-sample forecasts are then transformed back

using the previously calculated training set mean and variance. As the model weights

shrink to zero, the model forecasts shrink to zero as well, but the the postprocessing adds

the training set mean back in, resulting in the drift component.

2.4.5 Complexity Reduction & Model Selection

Model selection is a critical component of the forecasting problem. Model selection in-

cludes choosing the input variables as well as defining the model topology. If there are

too many adjustable parameters in a model relative to the amount of available data, then

overfitting can occur during the model optimization procedure, resulting in poor general-

ization on the test set. This problem is particularly acute when data sets are small and

very noisy as is the case with the macroeconomic data sets considered in this chapter.

Some authors, such as Swanson and White [107], use methods that grow the model

structure starting from a linear model and add nonlinear components according to saliency

measures that measure a tradeoff between model complexity and goodness of fit. This

thesis uses a methodology that starts with a large number of inputs and a relatively

complex model structure, and then proceeds to reduce the complexity of the model using

data-based saliency measures. This section briefly discusses some input selection and

model pruning methods including Principal Component Pruning which is used for the

results presented later in this chapter.

Input Selection

There have been a number of model-independent and model-dependent variable selec-

tion procedures proposed [48, 11. The Delta Test, a model-independent procedure, is a

nonparametric statistical algorithm that selects meaningful predictor variables by direct

examination of the data set [87]. The reader is referred to the preceding reference for

a description of the algorithm. A preliminary study used the Delta Test to find a very

successful set of inputs for predicting 12-month ahead values of the Index of Industrial

Production. However, further experimentation with the technique revealed that it is very

sensitive to the effects of noise in the data, and was not useful in general for the macroe-

conomic data sets.

Sensitivity-Based Pruning (SBP) techniques are model-dependent algorithms that prune

unnecessary or harmful input variables from a trained network [77, 73, 65, 1141. Sensi-

tivity results presented in Section 2.7.5 indicate that explicit input selection may be too

difficult given the apparent amount of nonstationarity present in the data.

Pruning & Rank Reduction

There are a number of techniques available for pruning the structure of a network including

the Optimal Brain Damage (OBD) [97] and Optimal Brain Surgeon (OBS) [loo] algorithms

which prune weights from the network. These algorithms train the network to a local

minimum in error, and then calculate the second derivative of the error function. OBD

uses a diagonal approximation of the Hessian while OBS calculates the entire matrix.

Then, weights are removed from the network model based on a saliency calculation using

the Hessian or its approximation.

In the work presented here I use supervised Principal Component Pruning (PCP) [50]

to reduce the complexity of the network structures. PCP is a method for pruning the

eigen-nodes in each layer of a neural network. PCP is intermediate between OBD and

OBS in that it uses a block-diagonal approximation of the Hessian to select candidate

weights for pruning. Unlike OBD and OBS, PCP does not require training to a local

minimum, allowing it to be used in conjunction with early stopping and weight decay.

Principal Component Pruning uses more information than OBD and the approximation

to the Hessian is faster to compute than the OBS method. The PCP algorithm provides

a tradeoff between accuracy and computational complexity.

The PCP algorithm starts with a network structure where each layer calculates some

function I?(.) of its weighted input

where ui is the input for layer i and W i is the weight for layer i. The algorithm then

calculates the correlation matrix for each layer, i, in the network

. 1 - C"--C
N

ui (k)uiT (k)
k=l

where there are N data points and u(k) is the vector of layer inputs given network input

k. C is then diagonalized

and the eigenvectors are used to transform the inputs and weights of layer i

The weighted input to the layer is then

The PCP algorithm uses a diagonal pruning matrix Pi to prune the eigen-nodes for layer

2

Supervised PCP

The supervised PCP algorithm as implemented here proceeds by ranking the eigen-nodes

of xi in order of increasing effect on the training error. Then, starting with a diagonal

pruning matrix pi = I, eigen-node j is deselected by setting P$ to 0, and the prediction

error is estimated using a validation data set. If the prediction error is reduced then the

eigen-node remains deselected and the process continues to the next eigen-node. If the

prediction error increases, then the eigen-node is reselected and the pruning process is

halted. The layer weights are then set to

and the remaining, unprocessed layers of the network are retrained on the training set.

This entire process is then repeated on the next layer of the network, and so on until each

layer's eigen-nodes have been pruned.

2.4.6 Committees & Variance Reduction

Due to the extremely noisy nature of economic time series and the influence of initial

conditions on the model optimization process, the control of forecast variance is a crit-

ical issue. One approach for reducing forecast variance is to average the forecasts of a

committee of models.

In the work presented in this chapter, I use the simple average of ten individual fore-

casts as the committee forecast

where the individual fi are the predictions of the individual networks. Each network is

trained using a separate, randomly selected validation data set, and starts with a different

random set of initial weights. The efficacy of the data-driven portions of the methodology

is directly related to the characteristics of the validation data compared to the unseen

test data. Averaging over multiple realizations of the validation sets is crucial to not

being misled by a specific feature or event that may occur in any specific validation set.

Also, the stochastic backpropagation learning algorithm is sensitive to the model's starting

point in weight space. Similarly, the averaging over initial starting points ameliorates the

problems with any individual optimization becoming stuck in a local minimum of weight

space. Breiman's bagging [15] algorithm relies on the use of bootstrapped data sets to

introduce variation in the created models. He notes that the more variation that can be

induced, the more advantage there is to the combining process.

Figure 2.10 shows the variance reduction effect from using committees of models to

produce forecasts. The comparison is between 1000 individual networks, and the same

networks randomly divided into committees of 10. The committee approach sharply re-

duces the variances in the resulting errors of the forecasts. With a convex error function,

committee errors are necessarily less than the average of the individual errors; in this

case they are typically very close, and committees serve mainly as a variance reduction

technique.

Researchers in economics have studied and used combined estimators for many years,

and generally find that they outperform their component estimators and that unweighted

averages tend to outperform weighted averages, for a variety of weighting methods [37, 126,

211. These weighting methods usually try to take advantage of the correlations between

the committee members.

Another reason to combine forecasts would be to aggregate alternative sources of in-

formation. These sources of information could be different inputs sets or even different

model structures. These types of combinations are not considered here.

2.5 Benchmark Models

I compare the results of the network models with several benchmark models. There are

two trivial predictor models: a random walk with drift model and a random trend model.

There are two basic linear models: the multivariate ordinary least squares regression

Model

Reduction in Forecast Variation via Committees

Figure 2.10: A demonstration of the use of committees to reduce the variance of forecasts.
In each pair of bars, the left bar shows the spread in average errors for the total 1000
individual forecasting models. The right bar shows the spread in average errors when the
forecasts are first combined using committees of ten models each.

1.4

model, and the univariate linear autoregressive model. The final comparison model is a

Bayesian Vector Autoregression (BVAR) model. The BVAR model incorporates Bayesian

regularization, and has performed well compared to standard models in previous macroe-

conomic forecasting studies 151, 561.

The following sections will assume that the models are forecasting returns. The h-day

ahead return at time t will be denoted yt(h).

hvg of 106 committdes I I000 hets
I

- "no committee" m

T "comrniftee-of-10" m -

2.5.1 Trivial Predictors

Comparing model performance to relevant trivial predictors is important for establishing

a baseline, especially when there is no way to know what the best practically achievable

performance is for a dataset. Otherwise, comparisons between more complicated models

may be irrelevant if they cannot outperform very simple models. There are two trivial

predictor models for which I include results.

The median-return trivial predictor corresponds to a random walk with drift model.

Its h-day ahead point forecast, jjt(h), is the median h-month return for the series measured

over the preceding 25-year training period. While the no-change-in-level predictor, ijt(h) =

0, would correspond to a random walk model, the random walk with drift model is a more

appropriate baseline since the training set mean return is removed during training in a

preprocessing step, and is later added back to the test set forecasts (see Section 2.6.2).

The no-change-in-return trivial predictor corresponds to a random walk plus random

trend model. For a forecast horizon h, the forecast at time t is

This predicts that the next value, over horizon h, is equal to the current level plus the

current trend as given by the just-completed return.

2.5.2 Linear Regression

The linear regression model is a basic linear regression based on all 76 inputs,

and produces direct predictions of the target variable. The method of Ordinary Least

Squares is used to estimate the parameters of these models. New models are fit each year

using the sliding window retraining methodology described in Section 2.4.3.

2.5.3 Linear Autoregression

The linear AR model is univariate and has the structure as described in Section 2.2.1

The AR order, p, for each series is determined by the statistically significant lags of the

partial-autocorrelation of the series as listed in Table 2.2. Since the models are univariate,

they only include lagged values of themselves, up to a maximum of 24 for each series.

h-month forecasts are produced by iterating predictions of 1-month returns. That is, the

1-month iterated forecasts

38

Table 2.2: The number of lags included in each univariate AR model. The number was
chosen based on the significant lags of the partial autocorrelation function of each series
up to a maximum of 24.

Yt+l,t = O'.lYt+ 0'.2Yt-l + . . . + O'.pYt-p+l

Yt+2,t = O'.lYt+l,t + 0'.2Yt + . . . + O'.pYt-p+2

are used to generate the 3-month ahead forecast

Yt(3) = Yt + Yt+1,t+ Yt+2,t . (2.36)

2.5.4 Bayesian Vector Autoregression

The Bayesian Vector Autoregression (BVAR) is a method for imposing prior information

on vector autoregressions in order to mitigate the effect of overfitting the observed data.

The BVAR method was first proposed by Litterman [51]. BVAR was proposed as an

alternative to the standard economic approach of using an economic theory to suggest

a small number of places to look for useful information. Litterman's BVAR approach is

based on the belief that useful information about the future is likely to be spread across a

wide spectrum of economic data and time lags. The priors in the BVAR approach allow

all of this data to be incorporated into a model when the relatively limited amount of

available data would be inadequate to support an unconstrained fit.

The BVAR model is based on the standard VAR model described in Section 2.2.1,

and extends it by using priors to bias the parameter values. The induced parameter bias

Series # of AR Lags
DLEAD 24
DRM 24

FM2DQ 6
FSPCOM 16
FYAAAC 24
HSBP 14
IP 24
LHUR 24
PUNEW 24
YCS 24

39

improves the model fitting process by helping make up for the lack of the large amounts

of data needed to estimate the VAR parameters.

Recall the component equation for the VAR model (Equation 2.9):

Yit = t
[
CXiikYi(t-k) + L CXijkYj(t-k)

]

+ fit.
k=l #i

(2.37)

A commonly used prior definition [27] sets the prior distributions of the VAR parameters

to have the form:

CXijk rv N(O, O";jk) (2.38)

where CXijkis the coefficient at lag k, weighting the contribution of input j in the forecast

of variable i. The magnitude of the variances O"&kdecrease with increasing k and are de-

scribed below. This prior emphasizes a random walk with drift prior model. Litterman [51]

motivates the use of a 0 prior for many of the variables by noting a correspondence to

ridge regression.

The prior variances specify uncertainty about the pnor means. Due to the large

numbers of parameters in a typical VAR model, Doan et al. [27] suggested a formula to

generate the standard deviations from a small number of hyperparameters: e, <jJ,and a

weighting matrix W with elements w(i, j), allowing the specification of prior variances for

a large number of coefficients using only a few hyperparameters. The standard deviation

of the prior imposed on variable j in equation i at lag k is:

O"ijk = ew(i, j)k-q, (~u~)O"m
(2.39)

where aui is the estimated standard error from a univariate autoregression involving vari-

able i, so that ~ is a scaling factor that adjusts for varying magnitudes of the variablesau,

across equations i and j. Doan et al. [27] label e the "overall tightness", reflecting the

standard deviation of the prior on the first lag of the dependent variable. The term k-q,

is a lag decay function with 0 ::; <jJ::; 1 which shrinks the standard deviation with in-

creasing lag length. This represents the belief that more distant lags contain less useful

information. The function w(i,j) specifies the tightness of the prior for the parameters

40

for variable j in Equation 2.8 relative to the tightness of the priors for the parameters for

the dependent lags of variable i in Equation 2.8.

The hyperparameters used in the standard prior described above have values e = 0.1

and q;= 1. The weighting matrix used is:

1

0.5

0.5 ... 0.5

1 0.5
(2.40)w=

0.5 0.5 ... 1

Implementation Details

The standard prior described is used in the simulation results reported in Section 2.7. The

sliding window methodology described in Section 2.4.3 was used when creating the BVAR

models. The inputs for each model are lags of the the one-month log returns of the 11

series listed in Table 2.1. The maximum input lag is k = 24, producing a total of 264

inputs per model. The h-month forecasts were made by iterating the one-month forecasts

forward in time as described for the AR models in the previous section. The BVAR models

presented in this chapter were created using a Matlab toolbox freely distributed by James

P. LeSage!.

2.6 Empirical Methodology & Setup

In this section I describe the details of the models and training procedures used in fore-

casting the macroeconomic and financial time series. In the following section I will present

the results of the studies done using the methodology described previously in this chapter.

2.6.1 Model Structure

The nonlinear models used for point forecasts are feedforward neural networks with three

tanh units in the hidden layer (see Section 2.4.1). Because of the relatively small amount of

available training data, I limited the size of the point forecast networks to only three units

1http:j jwww.spatial-econometrics.comj

41

to help avoid overfitting problems. A total of ten committees of ten models each are used

to predict the 10-year period, 1980-1989, with one committee per year. First, a committee

is trained on a window of the training data prior to the first month of 1980 - h, where

h is the forecast horizon in months, and the window size is 300 months. The committee

is then used to make monthly predictions for the year of 1980, the training window is

shifted forward by 12 months, the training procedure is repeated, and predictions are

made for the next year. Each time the training window is shifted, the weights of each

committee member are reinitialized to random starting values. This is done also to help

avoid overfitting. The weight decay regularization parameter is chosen once for the ten-

year period based on the training data prior to 1980 - h as described in Section 2.4.4.

The nonlinear models used for directional forecasts are feedforward neural networks

with 3 or 10 tanh units in the hidden layer (see Section 2.4.1). I compare with networks

containing 10 hidden units due to the increased number of output units (4 or 5 outputs

per network depending on the output representation, see Section 2.8). Following the

methodology of the point forecast studies, a total of ten committees of ten models each

are used to predict the 10-year period, 1980-1989, with one committee per year. The

directional forecast models are used to predict quintiles of directional movement. That

is, the training returns are divided up into sets representing "large negative", "small

negative", "flat", "small positive", and "large positive" log price changes. Each class

is divided to contain 20% of the data in the initial training set. Note that the classes

are relative to the median return instead of the zero return value. So the "flat" class is

centered around the median return over the training period as opposed to representing no

return.

2.6.2 Data

The dataset used consists of monthly time series taken from the Citibase database. The

macroeconomic series are fully revised (see Section 2.3.3 for a discussion of revised vs real-

time macroeconomic datasets), and cover the time period, 1950-1995. The data prior to

1980 is used for hyperparameter and model selection purposes as described in Section 2.4,

and the results reported here are for the 1980-1990 test period. The macroeconomic data

are lagged by one month before being used in the models to account for reporting delays.

The financial time series are real-time series, and the values are readily available.

In addition to the results presented in this section, tables of numerical results for all

the series are listed in Appendix A.

Inputs

The macroeconomic series are preprocessed before being used by the networks. The rep-

resentation used for most input series is log returns, ie. the first difference on varying time

scales of the logged series.

rt(-h) = Ahlog (xt) = log -
(2 3

where h takes on the values {1,3,6,9,12,18,24). Taking the logs of series is a commonly

used transformation in econometrics, and is an example of a Box-Cox transformation [12].

These types of transformations are used to alleviate problems with heteroskedacticity in

the returns series.

The telescoping returns representation is used rather than a standard AR representa-

tion in order to reduce the amount of noise in the input signals. This can help with the

overfitting problems as there are fewer significant noise features in the inputs due to the

averaging process implicit in the multi-month returns calculation. This may also enable

faster learning as the future trend of a series is more likely to be related to the previous

trend as opposed to any single month's return. On the other hand, the resulting correla-

tion between the input signals contributes to a condition called "multicollinearity" where

the effective dimension of the inputs can be less than the number of input signals, and can

lead to increased variance in the optimized parameters. However, this type of problem

can dealt with through the use of regularization techniques as described in this chapter.

The short-hand notation used in this thesis when referring to a specific input series

consists of the designation (Table 2.1) of the given series, for example "DLEAD", followed

by an "L" if logs were taken of the series, and ended with an indication of the time scale

on which the first difference was taken, for example "D6". So the notation for the 6 month

log return of the Index of Leading Indicators would be

Using the returns of the series is necessary to avoid complications due to unit roots2 in

many of the series. The Housing Starts and the Unemployment Rate series did not appear

to exhibit heteroskedacticity, and were not logged.

In order to facilitate the network learning, an additional preprocessing step removes

the mean of each input series, and scales the signal to have a unit variance. The mean

and variance are measured over the 25-year training set. This same mean and variance is

used to preprocess the inputs when the forecasts are being made out of sample.

Targets

The target series are similarly preprocessed, except that forward returns are used

where B is the backwards shift operator:

So, if the target is the 12 month forward return of the Index of Industrial Production,

then this is denoted

Predicting the 12 month forward return of a series at time t, contains the same information

as predicting the value of the series 12 months into the future, but the properties of the

returns series are more amenable to prediction methods.

Again, an additional preprocessing step removes the mean of the target series, and

scales the series to have a unit variance. The mean and variance are measured over the

25-year training set. This same mean and variance is used to transform the out-of-sample

forecasts.

'See Section 2.2.1.

In the results sections, I present results for making 3 and 12 month forecasts of value

and of direction. As inputs to the models I include the 1, 3, 6, 9, 12, 18, and 24 month

returns of the series listed in Table 2.1. Also, I include the levels of the interest rate series

(including the Default Risk Measure series), the Unemployment Rate, and the Housing

Starts Index. This makes a total of a 76 inputs to the forecasting models. The one

exception is the M2 money supply series (FM2DQ). This series was added to the study

at a later date, so while the other series do not contain it among their inputs, it of course

includes itself among its inputs, and thus has a total of 83 inputs.

The point forecast network models have 0 or 3 internal units and are structured as de-

scribed in Section 2.4.1. Thus they contain 77 and 235 adjustable parameters respectively

(84 and 256 for FM2DQ). The directional forecast network models have 0, 3, or 10 internal

units, and 4 or 5 output nodes depending on the target representation. This corresponds

to 308, 247, and 814 parameters (336, 268, and 884 for FM2DQ) for the models with 4

outputs, and 385, 251, and 825 parameters (420, 272, and 895 for FM2DQ) for models

with 5 outputs.

2.6.3 Statistical Significance

Due in part to the large amount of regularization used in producing the forecasting models,

the forecast errors, eit = (yit - fi(xt; w)), have properties that invalidate the use of stan-

dard hypothesis testing. These properties include a non-gaussian distribution, non-zero

mean forecast error, serial correlation, and contemporaneous correlation among different

model structures.

Recently in macroeconomic forecasting, a widely-used test for forecast accuracy has

been the Diebold-Mariano test [25]. Diebold and Mariano propose a hypothesis test on

the difference between two models errors that is generally valid under a wide variety of

conditions including non-normal distributions and serial correlation. The test is also valid

for loss functions besides the mean square error measure.

First, compute the loss-differential series for two models i and j , dt = [g(eit) - g(ejt)],

where g (.) is a generalized loss function. If the loss-differential series is covariance station-

ary and short memory then

where

is the sample mean loss differential,

inf

fd(0) = ,& c 7 d (~)
T=- inf

is the spectral density of the loss differential at frequency 0, yd(r) = E[(dt - p)(dt-, - p)]

is the autocovariance of the loss differential at displacement T, and p is the population

mean loss differential.

In large samples then, the statistic for testing the null hypothesis is

where fd(o) is a consistent estimate of fd(0). A consistent estimate of 2Tfd(0) may be

obtained by taking a weighted sum of the available sample autocovariances,

where

1+ is the lag window, and S (T) is the truncation lag. Diebold and Mariano suggest

that using a rectangular window with length k - 1 for a k-step-ahead forecast is adequate

in many cases. In the presentation of results for this chapter I use squared error as the

generalized loss function g(.), and use the k - 1 rectangular window.

A number of more general non parametric tests such as the Wilcoxon Rank Sum

test [60] were investigated for measuring the statistical significance of the results. Gen-

erally, these tests were not able to distinguish between the different models performance

very well. Even the Deibold-Mariano test sometimes has difficulty distinguishing between

models which appear to exhibit marked differences in accuracy. There is the potential for

more research to be done in this area, possibly with the use of the stationary bootstrap [30]

to set confidence intervals.

2.7 Empirical Studies: Point Forecasts

In this and the next section I present results for point and directional forecasts of 3 and

12 month changes in the macroeconomic and financial time series described previously. I

show results for a number of linear and nonlinear models and compare their performance

in terms of mean-square error and directional accuracy. I present the point forecast results

in this section, and directional forecast results in the next section.

The regression network models are trained with a single linear output node, and with

either no hidden nodes or with 3 nonlinear hidden nodes. The target is the 3 or 12

month future returns for the respective series, either logged or unlogged as described in

Section 2.6.2. I find that the network models perform favorably compared to the other

benchmarks considered. Figures 2.11 through 2.14 compare the errors produced by these

models, and will be discussed in the next section.

The results presented here are stated in terms of Normalized Mean Square Error

(NMSE).

That is, NMSE is the Mean Square Error performance of the model on the test set nor-

malized by the variance of the test set. An NMSE of 1 would be achieved by predicting

the average value of the test set.

2.7.1 Point Forecast Results Summary

Figures 2.11 and 2.12 show barcharts of the normalized mean-square error results for point

forecasts of the 3-month ahead changes in the target series. Figures 2.11 and 2.14 show

barcharts of the results for 12-month ahead point forecasts. Numerical tables of these and

3-Month Ahead Predictions
4

3

2.5

w
en
::i: 2
z

1.5

0.5

0
DRM FM2DQ FSPCOM FYAAAC YCS

47

3-Month Ahead Predictions
2.5 - RW+Drift- RW+RTrend

D LinReg(OLS)
2

1.5
w
en
::i:
z

0.5

0
HSBP LHUR PUNEWDLEAD IP

Figure 2.11: Normalized mean square errors for making 3-month point forecasts of the
test set. The "RW+ Drift" model uses the median return measured on the training set as
a forecast. The "RW+RTrend" model uses the most recent 3-month return as a forecast.

The "LinReg (OLS)" forecast is an ordinary least squares linear regression based on the
76 inputs as described in the text. An NMSE of 1 would be achieved by predicting the
average value of the test set.

3-Month Ahead Predictions
2

1.8
- RW+Drift
l1li LinAR- BVAR
D NNO
D NN3

1.6

1.4

1.2
w
en
::i: 1
z

0.8

DRM FM2DQ FSPCOM FYAAAC YCS

3-Month Ahead Predictions

1.6 - RW+Drift
l1li LinAR- BVAR
D NNO
D NN3

1.4

1.2

HSBP LHUR PUNEWIP

Figure 2.12: Normalized mean square errors for making 3-month point forecasts of the
test set. The "RW+ Drift" model uses the median return measured on the training set as
a forecast. "LinAR" is a univariate AR time series model that uses iterated predictions.
"BVAR" is a Bayesian Vector Autoregression model as described in Section 2.5.4. "NNO"
is the linear network model, and "NN3" is the 3-unit nonlinear network model. An NMSE
of 1 would be achieved by predicting the average value of the test set.

12-Month Ahead Predictions
10 - RW+Drift
9H- RW+RTrend

D LinReg (OLS)
8

7

6
UJ
CfJ
:::E 5
z

4

3

2

0
DRM FM2DQ FSPCOM FYAAAC YCS

48

12-Month Ahead Predictions
3 - RW+Drift

D RW+RTrend
2.5~ D LinReg (OLS)

2

UJ

~1.5
z

0.5

0
DLEAD HSBP IP LHUR PUNEW

Figure 2.13: Normalized mean square errors for making 12-month point forecasts of the
test set. The "RW+Drift" model uses the median return measured on the training set as
a forecast. The "RW+RTrend" model uses the most recent 12-month return as a forecast.

The "LinReg (OLS)" forecast is a linear regression based on the 76 inputs as described in
the text. An NMSE of 1 wouldbe achievedby predicting the average value of the test set.

12-Month Ahead Predictions
2 - RW+Drift

1.8H- LinAR
D BVAR

1.6H- NNO
D NN3

1.4

1.2
UJ
CfJ
:::E 1
z

0.8

DRM FM2DQ FSPCOM FYAAAC YCS

12-Month Ahead Predictions
1.8 - RW+Drift
1.6H- LinAR- BVAR
1.4r~ ~~~1.2

UJ 1
CfJ
:::E
zO.8

0.6

0.4

0.2

0
DLEAD HSBP IP LHUR PUNEW

Figure 2.14: Normalized mean square errors for making 3-month point forecasts of the
test set. The "RW+ Drift" model uses the median return measured on the training set as
a forecast. "LinAR" is a univariate AR time series model that uses iterated predictions.
"BVAR" is a Bayesian Vector Autoregression model as described in Section 2.5.4. "NNO"
is the linear network model, and "NN3" is the 3-unit nonlinear network model. An NMSE
of 1 would be achieved by predicting the average value of the test set.

Table 2.3: Summary of the number of times each point forecast model was not significantly
worse than the best model at an estimated 5% significance level as determined by the
Diebold-Mariano test. The 3-unit nonlinear network performs the best followed closely by
the linear network. The more standard AR models and the random walk with drift model
performed well on roughly half the series, while the linear regression and the random walk
with random trend model were almost always significantly worse than the best model.

following results are included in Appendix A. The linear regression models estimated with

ordinary least squares (OLS) stand out as the worst performers for all series. The linear

network and nonlinear network models are usually among the best models, due to the use

of neural network-inspired estimation methods.

Table 2.3 displays the number of times each model was the best, or indistinguishable

from the best, in terms of normalized mean-square error at an estimated 5% significance

level using the Diebold-Mariano test (Section 2.6.3 describes how the significance test is

performed). Table 2.3 indicates that while the level of noise present makes if difficult to

distinguish between some of the forecasting models, the network models are consistently

among the best.

Tables 2.4 and 2.5 list the best models for each of the ten series along with the models

that are not significantly worse, followed by the models that are significantly worse. Among

the network models, the 3-unit network is the winner for 3 and 12-month forecasts of IP,

3-month forecasts of YCS, and 12-month forecasts of FYAAAC. Note that for these last

two interest rate based series, the random walk with random trend model does just as

well. The linear network does better than the nonlinear network on 3-month forecasts

Model
RW+Drift
RW+ RTrend
Linear AR
BVAR
Linear Regression
Linear Network
Neural Network

Total

11 / 20
2 / 20
13 / 20
12 / 20
0 / 20
16 / 20
18 / 20

Times Indistinguishable From Best
3-Month MSE Win

4 / 10
0 / 10
6 / 10
6 / 10
0 / 10
8 / 10
8 / 10

12-Month MSE Win
7 / 10
2 / 10
7 / 10
6 / 10
0 / 10
8 / 10
10 / 10

Table 2.4: Summary of the best 3-month point forecasts model, models that are not
significantly worse, and models that are significantly worse than the best at an estimated
5% significance level.

Significantly Worse

RW+Drift , RW+RTrend,

DRM

FM2DQ

FSPCOM

Alternatives

BVAR
Series

DLEAD

FYAAAC

of PUNEW and DLEAD. On both of these the BVAR model, also a regularized linear

model, does just as well. Both AR models and the linear network outperform the nonlinear

network for 12-month predictions of PUNEW.

The random walk with random trend model only performs well on the 12 month

forecasts of PUNEW and FM2DQ. The random walk with drift model does as well as the

other models for most of the financial series, but has the lowest error for only 3-month

forecasts of the yield-curve slope. Other than these financial series, the results indicate

that there is nontrivial predictability in the macroeconomic series. Also, for all the series,

at least one of the network models was the best model, or performed at least as well as

the best model.

Best Model

LinNet

LinNet

BVAR

3Net

HSBP

IP

LHUR

PUNEW

YCS

LinNet

RW+Drift, AR,
3Net
LinNet , 3Net

RW+Drift, AR,

LinNet

3Net

LinNet

LinNet

RW+Drift

AR, LinReg, 3Net
RW+RTrend, BVAR,
LinReg
RW+Drift, RW+RTrend,
AR, LinReg
RW+RTrend, BVAR,

LinNet
RW+Drift , AR,

LinReg
RW+RTrend, LinReg

BVAR, 3Net
3Net

AR

BVAR, 3Net

AR, BVAR

AR, BVAR,
3Net

RW+Drift, RW+RTrend,
AR, BVAR, LinReg
RWfDrift , RW+RTrend,
BVAR, LinReg, LinNet
RW+Drift, RWfRTrend,
AR, LinReg
RW+Drift, RW+RTrend,
LinReg, 3Net
RW-tRTrend, LinReg,
LinNet

Table 2.5: Summary of the best 12-month point forecasts model, models that are not
significantly worse, and models that are significantly worse than the best at an estimated
5% significance level.

Significantly Worse
RW+Drift, RW+RTrend,
AR, LinReg
RW+RTrend, BVAR,
LinReg
LinReg

RW+ RTrend, LinReg

RW+RTrend, LinReg,
LinNet
RW+RTrend, AR,
BVAR, LinReg
RWfDrift , RW+RTrend,
BVAR, LinReg, LinNet
RW+Drift, RW+RTrend,
AR, BVAR, LinReg
LinReg

RW+ RTrend, LinReg

Alternatives
BVAR, LinNet

RW+Drift, AR,
3Net
RW+Drift, RW+RTrend,
AR, LinNet, 3Net
RW+Drift, AR,
BVAR, 3Net
RW+Drift, AR,
BVAR
RW+Drift, LinNet

AR

3Net

RW+Drift, RW+RTrend,
AR, LinNet, 3Net
RW+Drift, BVAR,
LinNet, 3Net

Series
DLEAD

DRM

FM2DQ

FSPCOM

FYAAAC

HSBP

IP

LHUR

PUNEW

YCS

Best Model
3Net

LinNet

BVAR

LinNet

3Net

3Net

3Net

LinNet

BVAR

AR

2.7.2 Nonlinear structure

Overall, evidence of nonlinear structure appears to be small. The Diebold-Mariano test

identifies the decrease in error for the 3 and 12-month forecasts of the Index of Industrial

Production as a significant change. There appears to be some advantage due to nonlinear

structure found on the 12-month horizon for the Housing Starts Index, though the DM

test does not identify this as significant.

Swanson and White [I071 find little support for nonlinear structure in their study us-

ing quarterly data, however they use a stepwise model building procedure, fitting a linear

component first, and then adding sigmoidal units incrementally. This type of method can

significantly bias models to linear structure even when significant nonlinearity is present.

Their reason for using a stepwise procedure to build nonlinear models was to avoid over-

fitting the training data. In this work I use regularization methods to deal with the

overfitting issue, though it is worth pointing out that weight decay regularization will

tend to bias the tanh units toward a more linear structure as well.

A possible reason for the lack of more evidence of nonlinear structure is that the

high levels of noise in the data and the associated large amounts of regularization used

during the model building process tend to bias the models to a linear structure. Another

possibility is that while economic theories support nonlinear models, the theory of Leading

Indicators, which is the basis of the model inputs used here, is largely based on observed,

linear correlations between economic series. Thus, there is not necessarily a reason why

the relationships between these indicators should not be largely linear.

2.7.3 Complexity Reduction & Model Selection

Figure 2.15 shows examples of the eigenvalue spectrum for the input and hidden layers

of a model trained to make 12-month forecasts of the Index of Industrial Production.

The dashed line represents the cutoff point chosen by the Principal Component Prun-

ing algorithm. In this example, 63 of the input layer eigen-nodes and 2 of the hidden

layer eigen-nodes are pruned. The number of eigen-nodes pruned is determined using the

validation data set as described in Section 2.4.5.

Figure 2.15: An example of the eigenvalue spectrum for the input and hidden layers
of a model trained to make 12-month forecasts of the Index of Industrial Production.
The dashed line represents the cutoff point chosen by the Principal Component Pruning
algorithm. In this example, 63 of the input layer eigen-nodes and 2 of the hidden layer
eigen-nodes are pruned.

Input Layer Eigenvalue Spectrum for an IP 12-month Forecaster Hidden Layer Eigenvalue Spectrum for an IP 12-month Forecaster

Table 2.6 shows the average number of eigen-nodes pruned using the PCP algorithm

during the testing period. The average is taken over the 10 committee members, 10 test

set retrainings, and 10 time series. The average number of eigen-nodes pruned when

forecasting the economic time series is less than the number pruned when forecasting the

financial time series. This suggests that the economic series are more predictable given

these input series, and that there is more usable nonlinear structure in the economic series.

This is consistent with the other results presented here.

Table 2.6: The average number of eigen-nodes pruned using the PCP algorithm during the
testing period. The average number of eigen-nodes pruned when forecasting the economic
time series is less than the number pruned when forecasting the financial time series.

I - I
I

-

-

-

-

1.2
Eigenvalue

- - - Pruning Cutoff

OO- 50 O1 1.5 2 2.5 3 3.5 4
Eigen-node Dimens~on Eigen-node Dimension

20

2 1 5 - -
2
8 = 10-

5

1

All Series
Economic Series
Financial Series

- I
I ,
I
I
I
I
I

I I
I
I
I
I
I
I

12-Month Forecasters

0.8

J -
$0.6
m

0, .-
W

0.4

Input Layer

80%
74%
90%

3-Month Forecasters

-
0.2

Hidden Layer

47%
40%
56%

Input Layer

73%
65%
86%

Hidden Layer

43%
36%
53%

Table 2.7: The change in normalized mean square test set errors for training the 3-unit
nonlinear network models with and without the use of Principal Component Pruning.
The test error was reduced in 15 out of 20 cases. The 3 changes marked with a '*' were
determined to be significant by the Diebold-Mariano test. These results demonstrate that
using PCP to reduce model complexity may improve forecasts and is unlikely to hurt.

Table 2.7 shows a comparison on a sample of the series between using and not using

Principal Component Pruning during training of the 3-unit nonlinear network models.

The use of Principal Component Pruning reduces the test set error in 15 out of 20 cases.

Three of the reductions were considered significant by the Diebold-Mariano test, while

none of the increases in error were determined to be significant.

It is interesting to note that the DM test identifies the small improvement in 12-month

forecasts of FYAAAC to be a significant improvement. This is because the Principal Com-

ponent Pruning algorithm was very effective in reducing the complexity of the model. Fig-

ure 2.16 shows the resulting forecasts as PCP essentially reduced the 12-month FYAAAC

Series Forecast
Horizon

DLEAD 3 month
12 month

DRM 3 month
12 month

FM2DQ 3 month
12 month

FSPCOM 3 month
12month

FYAAAC 3 month
12 month

HSBP 3 month
12 month

IP 3 month
12 month

LHUR 3 month
12 month

PUNEW 3 month
12 month

YCS 3 month
12 month

All Inputs All Inputs
No PCP With PCP

0.534 0.580
0.309 0.334
0.881 0.870
0.785 0.787
0.601 0.612
0.679 0.676
0.947 0.924
1.090 1.088
1.057 1.043
1.054 1.053
0.719 0.664
0.785 0.591
0.655 0.649
0.633 0.578
0.608 0.531
0.349 0.342
0.539 0.518
0.686 0.598
1.051 1.086
1.128 1.078

% Error Reduction
With PCP

-8.6
-8.1
1.3
-0.3
-1.8
0.4
2.4
0.2
1.3

0.1*
7.7
24.7
0.9
8.7*
12.7*
2.0
3.9
12.8
-3.3
4.4

M k U C 12 mrlh p W i o ~ . 3-unl mwmk - NMSE: 1.053

- padction
.- 1-1

Figure 2.16: The training methodology reduced the 12-month FYAAAC NN model to a
random walk with drift. This result is consistent with standard results in finance [45].
The nonzero forecast values are due to the fact that the in-sample drift is positive.

NN model to a random walk with drift. This result is consistent with standard results in

finance [45]. The pruning procedure effectively reduced the second layer of the networks

to constant models, and learned a bias value. The nonzero forecast values are due to the

fact that the in-sample drift is positive.

2.7.4 Regularization Methods

Figures 2.17 and 2.18 show the results from varying which regularization techniques are

used during the training of the 3-tanh unit nonlinear networks. The "NoReg" models are

unregularized, the "E.S." models correspond to only using early stopping for regulariza-

tion, the "W.D." models use only weight decay regularization, and the "Both" models use

both early stopping and weight decay together, The figures show that just using early

stopping alone can provide a large enhancement over not using any regularization at all.

Also, using weight decay regularization alone is very effective, usually more so than early

stopping. I find that using early stopping in addition to weight decay usually does not

help much except for the 12-month forecasts of the Yield-Curve Slope. Early stopping

alone seems to be more effective on the 3-month horizon than on the 12-month horizon

3-Month Ahead Predictions - 3-unit Nets
1.5

w
en
::l;
z

0.5

0
DRM FM2DQ FSPCOM FYAAAC YCS

56

3-Month Ahead Predictions - 3-unit Nets
1.2 - NoReg

_E.S,
1H-W.D.

DBoth

0,8

w
~0.6
z

0.4

0.2

0
IP LHUR PUNEWDLEAD HSBP

Figure 2.17: The results for leaving out the regularization techniques when training 3-
hidden unit networks to make 3-month forecasts. The "NoReg" models are unregularized,
the "E.S." models correspond to only using early stopping for regularization, the "W.D."
models use only weight decay regularization, and the "Both" models use both early stop-
ping and weight decay together.

relative to weight decay alone. This may be because there are effectively more independent

data points in the validation data set for the 3-month forecasts compared to the 12-month

forecast. Since the validation data set contains the same number of points in both cases,

the targets for the 3-month forecasts will tend to overlap less frequently, and thus may

provide a better estimate of out-of-sample performance.

2.7.5 Model Insight via Sensitivity Analysis

I use a sensitivity analysis to open the neural network black box and examine how the

way the networks use the input variables changes over time. Sensitivity analysis can be

used to gain insight into the relationships learned by the neural network models.

I define the relative sensitivity of input i as:

Ltl~l.s' =
(I

dF

I)t maxj Lt dXj

(2.53)

where F is the model output and Xi denotes input i.

The sensitivity is calculated for each input for each year and averaged over the 10

committee members. The sensitivity value for each input is then normalized by maximum

12-Month Ahead Predictions - 3-unit Nets
2

1.4

1.2
w

~ 1
z

0.8

0.6

0.4

0.2

0
ORM FM20Q FSPCOM FYAAAC YCS

57

12-Month Ahead Predictions - 3-unit Nets
2 - NoReg

1.8H- E.S.
_W.O.

1.6~D Both
1.4

1.2
w

~ 1
z

0.8

0.6

0.4

0.2

0
IP LHUR PUNEWOLEAO HSBP

Figure 2.18: The results for leaving out the regularization techniques when training 3-
hidden unit networks to make 12-month forecasts. The "NoReg" models are unregular-
ized, the "E.S." models correspond to only using early stopping for regularization, the
"W.D." models use only weight decay regularization, and the "Both" models use both
early stopping and weight decay together.

sensitivity value calculated for that year. Thus a relative sensitivity value close to 1 means

that the input was highly influential for the predictions made during that year while a

value close to 0 means that changes in that input have relatively very little influence on

the output of the model during that time period.

Figure 2.19 shows input sensitivity traces for several of the inputs to a 3-unit neural

network trained to make 12-month forecasts of the Index of Industrial Production over the

period 1970-1989. A high degree of nonstationarity in the underlying relationship between

the input and target variables is evident in the figure. This example shows that 12-month

changes in the S&P-500 stock index were highly weighted during the 1970's, but then were

largely ignored during the 1980's. Also, the importance of the 9-month changes in the

Consumer Price Index to the model increased steadily over this time period.

While Figure 2.19 seems to indicate the presence of significant nonstationarity in the

datasets, Swanson and White [107] conclude that the amount of nonstationarity in the

macroeconomic series they studied is small based on their finding that longer training

windows are preferable to shorter windows. Another explanation for their result can be

found by referring to the noise / nonstationarity tradeoff discussed in Section 2.2.4. Given

Relative Input Sensitivities: IP 12 month forecasters

Time

Figure 2.19: Input sensitivity traces for several of the inputs to a 3-unit neural network
trained to make 12-month forecasts of the Index of Industrial Production over the period
1970-1989. The figure shows a large amount of variation in how the model uses these in-
puts. These nonstationary relationships highlight the challenges inherit in macroeconomic
forecasting.

the extremely large amounts of noise present in their "first-reported" quarterly dataset,

it is quite likely that the noise component of the error dominated the nonstationarity

contribution.

2.8 Empirical Studies: Directional and Quintile Forecasts

Aside from making actual point forecasts, even being able to forecast only the future

direction of a macroeconomic or financial series adds value to the decision making process.

In this section I present results for models trained to forecast directional movements of

the series.

2.8.1 Representations for Directional Forecasts

One reason to try to forecast directional movements is that quantization of the target

variables may result in a more robust representation for prediction by removing a certain

amount of noise from the targets. The targets can be quantized into varying degrees

of resolution. In this section, the targets are quantized into quintiles representing "large

down", "small down", "no change", "small up", and "large up" as measured on the training

dataset. The first quintile is defined to contain the lowest 20% of the data. The second

quintile contains the data falling within the 20%-40% range, and so on. Thus the third

quintile, "no change" corresponds to the median return and small deviations from it, and

the fifth quintile corresponds to large positive returns relative to the training set. The

quintiles were determined using the data prior to 1980, and not changed thereafter.

There were several different approaches considered to solving this classification prob-

lem. The first was using a unary output representation. The target classes would be

represented as follows:

class 1 --- 1 0 0 0 0

class 2 --- 0 1 0 0 0

class 3 --- 0 0 1 0 0

class 4 --- 0 0 0 1 0

class 5 --- 0 0 0 0 1

The network models were trained with 5 output nodes, one for each class. The output of

the forecasting model would be calculated using the softmax [17] representation

where fi is the ith output of a network with a similar structure as described in Section 2.4.1.

pi then represents the posterior probability of quintile i given the current input vector.

The class chosen by the network is then determined as f C = argmaxi(pi). The output of

the committee is the class voted for by the most committee members.

A drawback of using the unary representation is that the original relationship between

classes is not exploited. In other words, it is likely that economic conditions that would

cause a large relative increase (class 5) in IP are similar to conditions that would cause a

moderate relative increase (class 4), but are largely different from conditions that would

cause a large relative decrease (class 1) in IP. However, the unary target representation

shown above does not contain any of this relative information. In other words, the target

representation could be reassigned to arbitrary classes prior to training, and this would

have no effect on the final solution produced. It would be desirable to be able to incorporate

all available information in the training procedure including the relationships between

classes.

A simple method for doing this is to use a "thermometer code". The thermometer

code represents the target classes as:

class 1 --- 0 0 0 0

class 2 --- 1 0 0 0

class 3 --- 1 1 0 0

class 4 --- 1 1 1 0

class 5 --- 1 1 1 1

With this representation, the Hamming distance between adjacent classes is equal to 1

and increments monotonically with the distance between classes. The first representation

has a Hamming distance of exactly 2 between all classes. This feature of the target

representation should result in an effect on the internal representation that is learned by

the predictors. Training with these targets to minimize mean-square error should result in

improved classification accuracy, and indeed the results show a marked improvement using

the thermometer code as opposed to the softmax outputs. The class for each committee

member is determined by f = argmaxi(fi), and the output of the committee is the class

voted for by the most committee members.

2.8.2 Network Models for Directional Forecasting

The nonlinear network models considered for the directional forecast problem have the

same general form as described in Section 2.4.1, but have multiple outputs. Output i is

calculated as

where the xk are the input signals, ujk are the weights connecting the inputs to the internal

tanh units, and vij are the weights connecting the internal units to the ith output. Due to

the increased complexity in the output representation, I consider nonlinear models with

both n = 3 and 10 internal tanh units.

2.8.3 Comparison Models

I compare these directional forecast models to results from quantizing the point forecasts

made by the network and benchmark models. The quantization of the point forecasts uses

the same quintile definitions measure on the training set as described in Section 2.8.1. The

point forecasts are given class labels depending on which quintile contains the forecasted

value.

I include quantized forecasts for all of the point forecast models described in Section 2.7.

The random-walk-with-drift and random-walk-with-random-trend models give the same

result whether they are defined on the actual returns and quantized, or just calculated on

the quantized returns.

2.8.4 Directional Forecast Results Summary

The directional forecasting results presented are stated in terms of the Mean Square Error

based on the quintile classes. That is, if class(.) is the function that takes the quintile

representation used by the models and transforms it into an ordinal class, then

1
Quintile MSE = , ~ (c l a s s (t a r g i) - class(^(^)))^ ,

where F is the committee prediction. Note that the class errors are not normalized as

the point forecast errors are. The class errors are to be interpreted in terms of the class

differences, so a model that could forecast the median return on the test set would have

an MSE of 2 if the median return corresponded to the median return measured prior to

1980. The significance results were calculated at the 5% level using the Diebold-Mariano

test as described previously in Section 2.6.3.

Figures 2.20 and 2.21 show the performance comparison between the unary and ther-

mometer code representations graphically. Tables of numeric values are given in Ap-

pendix A along with the point forecast results. Table 2.8 also summarizes the classifica-

tion results by model type including the quantized point forecasts. Both of the quantized

network models and the directional forecast networks that use the thermometer code rep-

resentation perform well on average, being competitive in a total of 15 of the 20 series.

3-Month Ahead Directional Forecast
8 - UnaryO- Unary3
7H- Unary10- ThermO
6HD Therm3

D Therm10
5

w
~4

3

DRM FM2DO FSPCOM FYAAAC YCS

62

3-Month Ahead Directional Forecast
4

3.5

- UnaryO- Unary3- Unary10
D ThermO
D Therm3
D Therm10

3

2.5

w

~ 2

HSBP LHUR PUNEWIP

Figure 2.20: Comparison of the normalized errors for making 3-month directional forecasts
for the two class representations, the unary and thermometer code. In most cases, the
thermometer code representation produces superior models.

12-Month Ahead Directional Forecast
6 - UnaryO- Unary3
5H- Unary10- ThermO

D Therm3
4" D Therm10

DRM FM2DO FSPCOM FYMAC YCS

12-Month Ahead Directional Forecast
4

3.5

- UnaryO- Unary3- Unary10- ThermO
D Therm3
D Therm10

3

2.5

w

~ 2

HSBP IP LHUR PUNEW

Figure 2.21: Comparison of the normalized errors for making 12-month directional fore-
casts or the two class representations, the unary and thermometer code. In most cases,
the thermometer code representation produces superior models.

Table 2.8: Summary of the number of times each directional forecast model was not
significantly worse than the best model at an estimated 5% significance level. Both of the
quantized network models and the directional forecast networks that use the thermometer
code representation perform well on average, and outperform the random walk with drift
model on average.

Model

RW+Drift
RW+RTrend
Quant. Linear AR
Quant. BVAR
Quant . Linear Regression
Quant. Linear Network
Quant . 3-Unit Neural Network
Unary Linear Network
Unary 3-Unit Neural Network
Unary 10-Unit Neural Network
Therm. Linear Network
Therm. 3-Unit Neural Network
Therm. 10-Unit Neural Network

Total

11 / 20
5 / 20
9 / 20
10 / 20
6 / 20
14 / 20
15 / 20
5 / 20
6 / 20
10 / 20
14 / 20
15 / 20
11 / 20

Times Indistinguishable From Best
3-Month MSE Win

4 / 10
1 / 10
4 / 10
3 / 10
3 / 10
6 / 10
6 / 10
2 / 10
4 / 10
4 / 10
6 / 10
8 / 10
5 / 10

12-Month MSE Win

7 / 10
4 / 10
5 / 10
7 / 10
3 / 10
8 / 10
9 / 10
3 / 10
2 / 10
6 / 10
8 / 10
7 / 10
6 / 10

While the random walk with drift model performs well in 11 of the 20 series, there does

seem to be some additional predictable structure found by the network models.

2.8.5 Target Representation Comparison

Table 2.11 compares the performance of the directional forecast models using the unary

and thermometer code representations. The additional information being encoded in the

thermometer code gives these models a clear advantage over those that use the naive

unary representation. The use of the thermometer code also reduced the number of model

parameters because it only required 4 output units as compared to 5 for the unary rep-

resentation. The thermometer code models are competitive in over 15 of the series while

the unary representation models are competitive in only 8.

2.8.6 Quantized Regression vs Directional Forecasters

Table 2.8 compares the performance of the quantized regression forecast models and the

directional forecast models. The linear and 3-unit neural network quantized regression

models are competitive on balance with the corresponding thermometer code directional

forecast models. This suggests that the additional flexibility of the thermometer code

networks is not usually needed to achieve good forecasts of direction.

2.9 Discussion

I find non-trivial predictability in the forecasts for all series considered except the Aaa-

bond yield, the S&P-500, and the yield-curve slope. There is also evidence of nonlinear

structure in the Index of Industrial Production and possibly Housing Starts. While most

theories of the economy are nonlinear, it seems difficult in practice to exploit these non-

linearities. There are a variety of factors that could make nonlinearity difficult to detect

in the remaining series. Among them are the large amounts of noise in the series, the

resulting need for heavy regularization, and the types of inputs being used. Many of the

series included in this study are higher level, more broad based series than the ones that

structural economic theories use as explanatory variables. However the focus of this study

Table 2.9: Summary of the best 3-month directional forecast model, models that are not
significantly worse, and models that are significantly worse than the best at an estimated
5% significance 1evel.The prefix "Q" denotes a quantized regression model, "T" denotes
the use of the thermometer code class representation during training, and "U" denotes
the use of the

Series
DLEAD

DRM

FM2DQ

FSPCOM

FYAAAC

HSBP

IP

LHUR

PUNEW

YCS

unary class

Best Model
Q3Net

U3Net

QLinReg

T3Net

RW+Drift

QLinNet

QLinNet

T3Net

T3Net

RW+Drift

representation.

Alternatives
RW+Drift, QBVAR,
QLinReg, QLinNet,
ULinNet, U3Net, UlONet,
TLinNet, TSNet, TlONet
QLinNet, QSNet,
TLinNet, T3Net

RW+RTrend, QLinAR,
ULinNet, USNet,
UlONet, TLinNet, T3Net
RW+Drift, QLinAR,
QLinNet, Q3Net,
TLinNet, TlONet
QLinNet, Q3Net ,
T3Net

Q3Net

QLinAR, QLinReg,
QSNet, U3Net,
UlONet, TSNet, TlONet
QBVAR, UlONet,
TLinNet, TlONet

QLinAR, QBVAR,
TLinNet, TlONet

Significantly Worse
RW+RTrend, QLinAR

RW+Drift, RW+RTrend,
QLinAR, QBVAR,
QLinReg, ULinNet,
UlONet, TlONet
RW+Drift, QBVAR,
QLinNet, Q3Net,
TlONet
RW+RTrend, QBVAR,
QLinReg, ULinNet,
U3Net, UlONet
RW+RTrend, QLinAR,
QBVAR, QLinReg,
ULinNet, U3Net,
UlONet, TLinNet, TlONet
RW+Drift, RW+RTrend,
QLinAR, QBVAR,
QLinReg, ULinNet,
U3Net, UlONet, TLinNet,
TSNet, TlONet
RW+Drift, RW+RTrend,
QBVAR, ULinNet,
TLinNet
RW+Drift, RW+RTrend,
QLinAR, QLinReg,
QLinNet, QSNet,
ULinNet, U3Net
RW+Drift, RW+RTrend,
QLinReg, QLinNet,
QSNet, ULinNet,
U3Net, UlONet
RW+RTrend, QLinAR,
QBVAR, QLinReg,
QLinNet, QSNet,
ULinNet, U3Net, UlONet,
TLinNet, T3Net, TlONet

Table 2.10: Summary of the best 12-month directional forecast model, models that are not
significantly worse, and models that are significantly worse than the best at an estimated
5% significance level. The prefix "Q" denotes a quantized regression model, "T" denotes
the use of the thermometer code class representation during training, and "U" denotes
the use of the unary class representation.

UlONet, TLinNet,
TSNet, TlONet

ULinNet, U3Net,

Alternatives
QBVAR, Q3Net,

Series
DLEAD

QBVAR, QLinReg,

QBVAR, QLinNet,
Q3Net, UlONet,

Best Model
QLinNet

FM2DQ

Significantly Worse
RW+Drift, RW+Rnend,
QLinAR, QLinReg,
ULinNet. U3Net

Q3Net

 rift, QLinAR,
QLinNet, QSNet,
TLinNet. T3Net. TlONet UlONet

RW+Drift, RW+RTrend, QLinAR, QLinNet,
ULinNet, USNet,
UlONet, T3Net, TlONet
RW+RTrend, QLinReg,
ULinNet, U3Net

FYAAAC

HSBP

IP

LHUR

PUNEW

Y CS

RW+Drift

Q3Net

T3Net

TlONet

QBVAR

RW+Drift

TLinNet, TlONet
RW+RTrend, QLinAR, U3Net
QBVAR, QLinReg,
QLinNet, QSNet,
ULinNet, UlONet,
TLinNet, T3Net , TlONet
RW+Drift, QLinNet,
TLinNet, TSNet,
TlONet

RW+Drift, QLinAR,
QLinNet, Q3Net,
U3Net, TLinNet
QLinNet, QSNet,
UlONet, TLinNet

RW+Drift, RW+RTrend,
QLinAR, QLinNet,
QSNet, ULinNet,
UlONet, T3Net
QLinAR, QBVAR,
QLinNet, QSNet,
TLinNet, TSNet, TlONet

RW+RTrend, QLinAR,
QBVAR, QLinReg,
ULinNet, U3Net,
UlONet
RW+RTrend, QBVAR,
QLinReg, ULinNet,
UlONet, TlONet
RW+Drift, RW+RTrend,
QLinAR, QBVAR,
QLinReg, ULinNet,
U3Net, T3Net
QLinReg, USNet,
TLinNet, TlONet

RW+RTrend, QLinReg,
ULinNet, USNet, UlONet

Table 2.11: Comparison of the directional forecast target representation types. The table
counts the number of times each directional forecast model was not significantly worse
than the best model at an estimated 5% significance level. The additional class order-
ing information included in the thermometer code representation gives these models an
advantage over those using a straight unary class representation.

was on the broader indicators of economic activity.

One feature the forecast models exhibit is a large amount of nonstationarity in the

learned relationship between the target and input variables. Swanson and White El071

conclude that nonstationarity is not a factor in the models they build because the largest

available training window they used was preferable to smaller windows. However, through

the lens of sensitivity analysis, the relationships between variables learned by the models

is seen to change significantly over the course of the test period.

The results show that applying nonlinear estimation and model selection techniques

to linear models results in large improvements over more standard linear model fitting

techniques. This includes regularized models such as the Bayesian Vector Autoregression.

This result argues strongly for the use of appropriate linear models for comparison when

fitting nonlinear models to these types of series. It could be that positive results in the lit-

erature from using nonlinear network models are due more to the estimation methodology

than to actual nonlinear structure.

When making directional forecasts, the models that incorporated class-ordering infor-

mation in the target representation via use of a thermometer code representation yielded

Total

15 / 20
4 / 20
5 / 20
6 / 20
8 / 20
15 / 20
18 / 20
15 / 20

Model

RW+Drift
RW +RTrend
Unary Linear Network
Unary 3-Unit Neural Network
Unary 10-Unit Neural Network
Therm. Linear Network
Therm. 3-Unit Neural Network
Therm. 10-Unit Neural Network

Times Indistinguishable From Best
3-Month MSE Win

7 / 10
1 / 10
0 / 10
2 / 10
2 / 10
7 / 10
9 / 10
7 / 10

12-Month MSE Win

8 / 10
3 / 10
5 / 10
4 / 10
6 / 10
8 / 10
9 / 10
8 / 10

significantly better results than those using a naive unary representation. Also, the re-

gression network models trained on point forecasts perform as well in terms of directional

forecasts as do the more complex classification models trained to directly forecast class

labels.

Chapter 3

Knowledge Discovery Through

Reinforcement Learning

3.1 Introduction

In this chapter I present enhancements to the Recurrent Reinforcement Learning (RRL)

algorithm proposed by Moody and Wu [74] with the goal of making the trading systems

trained via RRL more useful and desirable to investment managers. These enhancements

include methods for optimizing portfolios, asset allocations, and trading systems using risk-

adjusted performance measures that more accurately reflect investor preferences. Also,

I show that the direct policy representation of RRL produces more stable, interpretable

trading decisions than that of a value function reinforcement learning approach called

Q-Learning.

In the RRL approach, investment decision making is viewed as a stochastic control

problem, and strategies are discovered directly. The need to build forecasting models is

eliminated, and better trading performance is obtained by directly optimizing the relevant

performance measure. The direct reinforcement approach differs from dynamic program-

ming and reinforcement algorithms such as TD-learning and Q-learning, which attempt to

estimate a value function for the control problem. The RRL direct reinforcement frame-

work enables a simpler problem representation, avoids Bellman's curse of dimensionality

and offers compelling advantages in efficiency.

My contributions presented in this chapter include RRL systems trained using down-

side risk measures (Sections 3.6 and 3.9.2). I also present a portfolio management system

that allocates among several artificial assets (Section 3.9.6). In other simulation work us-

ing real financial data, the RRL approach is compared to an alternative RL value function

approach utilizing Q-Learning on a monthly asset allocation system for the S&P 500 Stock

Index and T-Bills (Section 3.9.4). A simple example, the Oracle problem, is used to illus-

trate the difference between the compared approaches (Section 3.8.3). Another real world

application I present in this chapter includes an intra-daily currency trader (Section 3.9.3).

Much of this work has been previously published in journal articles [72, 711.

In the remainder of this section I will briefly overview the main types of reinforcement

learning, and contrast reinforcement learning and supervised learning. Section 3.2 intro-

duces the financial problem domain in which the algorithms will be tested, and Section 3.3

reviews the pertinent literature. Section 3.4 will review the recurrent reinforcement learn-

ing model of Moody and Wu [74] and describe the single asset trader setup. In Section 3.5

I present the setup for managing a portfolio of assets. In Section 3.6 I introduce downside

risk measures and formulate the downside deviation in a manner compatible with the re-

current reinforcement learning setup. In Section 3.7 I discuss the problem of learning how

to trade and the means by which the different types of reinforcement learning approach

the problem, and in Section 3.8 compare the policy and value approaches for reinforcement

learning. In Section 3.9 I present results from a number of simulations demonstrating the

performance of the downside deviation ratio and portfolios, and comparing the recurrent

reinforcement learning algorithm to a Q-Learning algorithm. In Section 3.10 I conclude

by reviewing the main results of the chapter.

3.1.1 Reinforcement Learning

Reinforcement Learning (RL) is a learning paradigm that involves a goal-directed agent

actively exploring an unknown environment, attempting to maximize rewards received

from the actions taken. RL falls between supervised and unsupervised learning in the

sense that it does not require the feedback of a knowledgeable teacher as in supervised

learning, nor does it mechanically process data in the way that unsupervised learning does.

Instead, RL uses indirect or limited feedback regarding the correctness of actions taken. In

some cases, the rewards received can be substantially delayed from the associated actions

that produced them, and can depend on a sequence of interdependent actions. The need to

assign credit among various actions over time is known as the temporal credit assignment

problem. This ability to interact with (and potentially influence) the environment, and

having to account for delayed rewards makes RL a fundamentally different type of learning

problem.

The most general framework for an RL problem involves an environment consisting of

a set of (possibly continuous) states through which an actor transits by following some

policy for taking actions. The actor receives feedback based on the states it has visited

and the actions which it has taken. The goal of RL typically is to maximize a function

of the feedback (or reward) signal. The feedback signals in response to an action may

be presented immediately following the action, or they may be significantly delayed or

spread out across time. Typically the actor must utilize trial-and-error search to explore

the environment as it seeks to maximize its feedback.

There are several major categories of RL methods: value methods, policy methods,

and actor-critic methods. Most value and actor-critic methods involve some form of ap-

proximate dynamic programming.

Value Methods

Value methods involve learning a representation of the expected value of the reward or

discounted reward. This representation is known as the "value function". The value

function enumerates the expected value of future reward signals for each possible system

state given a policy for deciding how to move between states. The value function is usually

encoded in a lookup table or a function approximator. Policies are usually represented

implicitly in value functions. That is, the best action for the current state is the one

that takes you to the state with the highest value associated with it. As described in

Section 3.7 the value function can be used to improve the policy. One of the advantages

to a value function approach is that there are a number of proofs for the convergence of

certain value function algorithms. A popular value function method is Q-Learning [118].

Q-Learning encodes the policies explicitly in the value function, and will be discussed

further in Section 3.7.

Policy Methods

Policy methods (also called Direct Reinforcement) involve learning the representation of

the policy function directly without having to learn a value function. Policy methods

are most useful when there is immediate feedback on the results of actions taken, or

when feedback delays are not large. Policy methods update the parameters of a policy

function directly based on feedback from the environment. This often results in the use

of gradient ascent to maximize the feedback signal. Often, a direct representation of the

policy function is much more natural and less complex than implicitly representing the

policy using a value function. The Recurrent Reinforcement Learning algorithm [74] is a

policy method that incorporates recurrence in order to accurately account for the effect

of previous actions. I compare value and policy methods in Section 3.8.

Actor-Critic Methods

Actor-critic methods involve explicitly representing both the policy function and the value

function. The policy function is known as the "actor" and the "critic" learns a value

function to provide feedback to the actor. Feedback from the critic is used to update the

parameters of the actor. Actor-critic methods use a temporal difference signal, which is

the difference between the estimate of the value for the current state and the estimate of

the value for the previous state. Thus the policy function is being updated while the value

function is still being learned.

3.1.2 Reinforcement vs Supervised Learning

'A block diagram for a generic trading system based on forecasts is shown in Figure 3.1. In

such a system, a forecast module is optimized to produce price forecasts from a set of input

variables. Supervised learning techniques are used to minimize forecast error (typically

mean-squared-error) on a training sample. The forecasts are then used as input to a

trading module that makes buy and sell decisions or adjusts portfolio weights. Parameters

'"Performance Functions and Reinforcement Learning for Trading Systems and Portfolios", J. Moody,
L. Wu, Y. Liao, and M. SafTell, Journal of Forecasting, vol. 17, no. 516, 01998 Copyright John Wiley &
Sons Limited. Reproduced with permission.

of the trading module may be optimized, but are often set by hand.

Trading based on forecasts involves two steps, and minimizing forecast error is an

intermediate step that is not the ultimate objective of the system. Moreover, the common

practice of using only the forecasts as input to the trading module results in a loss of

information relative to that available to the forecast module, in effect producing a forecast

bottleneck. Both of these effects may lead to suboptimal performance.

It is possible to train a system to make trading decisions directly from the input

variables, while avoiding the intermediate step of making forecasts. This is more direct,

and avoids the forecast bottleneck. One technique for optimizing such a system is to use

a supervised learning algorithm to train the system to make desired trades, as shown in

Figure 3.2. A sequence of desired target trades (or portfolio weights) used for training the

system is first determined via a labeling procedure. The data can be labeled by a human

"expert" or by an automatic labeling algorithm. The labeled trades are then used to train

the trading system.

Training on labeled data is a two-step process. The procedure for labeling the data

attempts to solve the temporal credit assignment problem, while subsequently training the

system on the labeled data attempts to solve the structural credit assignment problem.2

Certain difficulties arise when trying to solve the structural and temporal credit assignment

problems separately in this way, particularly when transaction costs are included.

The performance achievable in practice by the trading module will usually be sub-

stantially worse than that suggested by the labeled trades. This is because most labeling

procedures are based on only the target series (possibly taking into account transaction

costs), ignore the input variables and do not consider the conditional distributions of price

changes in the target series given the input variables. Moreover, since transactions costs

depend upon the actual sequence of trades made, the simulated costs associated with the

labeled trades will differ from those incurred in practice. Hence, a labeling procedure is

not likely to give rise to a sequence of trades that is realizable in practice or to a realistic

assessment of the actual transaction costs likely to occur. Finally, since U(O,O1) is not

 his terminology was proposed by Sutton [103].

Supervised b
Error((-

Portfolio

Figure 3.1: A trading system based on forecasts. The system includes a forecast module
with adjustable parameters 0 followed by a trading module with parameters 0'. Price
forecasts for the target series are based on a set of input variables. The forecast module
is trained by varying I3 to minimize forecast error (typically mean squared error), which
is an intermediate quantity. A more direct approach would be to simultaneously vary 0
and 13' to maximize a measure of ultimate performance U(0, O'), such as trading profits,
utility or risk-adjusted return. Note that the trading module typically does not make use
of the inputs used by the forecast module, resulting in a loss of information or a forecast
bottleneck. Performance of such a system is thus likely to be suboptimal.

Input

Supervised Learnin

Figure 3.2: A trading system trained with labeled data. The system includes a trading
module with parameters 8 and a labeling procedure with parameters 8'. Trades are based
on a set of input variables. Target trades are produced by the labeling procedure. The
trading module is trained on the labeled trades using a supervised learning approach to
vary 8. The ultimate performance of the system depends upon how good the labeling
algorithm is (as determined by Of), and how well the trading module can learn to trade
(by varying 8) using the input variables and labeled trades. Since the ultimate measure
of performance U(8,Q1) is not used to optimize 8 directly, performance of such a system
is thus likely to be suboptimal.

optimized directly (see Figure 3.2), supervised learning based on labeled data will yield

suboptimal performance.

A trading system can be optimized to solve both the temporal credit assignment and

structural credit assignment problems mentioned above simultaneously using reinforcement

learning (see for example [I041 and references therein).

Reinforcement learning algorithms find approximate solutions to stochastic dynamic

programming problems [9] and can do so in an on-line mode. In reinforcement learning,

target outputs are not provided. Rather, the system takes actions (makes trades), receives

feedback on its performance (an evaluation signal) and then adjusts its internal parame-

ters to increase its future rewards. With this approach, an ultimate measure of trading

performance U (8) , such as profit, utility or risk-adjusted return is optimized directly. See

Figure 3.3.

A simultaneous solution of the structural and temporal credit assignment problems

will generally require using a recurrent learning algorithm. Trading system profits depend

upon sequences of interdependent decisions, and are thus path-dependent. Optimal trad-

ing decisions when the effects of transactions costs, market impact and taxes are included

require knowledge of the current system state. Including information related to past deci-

sions in the inputs to a trading system results in a recurrent decision system.3 The proper

optimization of a recurrent, path-dependent decision system is quite different from the

simple supervised optimization techniques used for direct forecasts or for labeled trading

data.

Reinforcement learning analogs of recurrent learning algorithms are required to train

the systems. Such recurrent learning algorithms include both off-line (batch) training

algorithms like backpropagation through time (BPTT) [91, 1191 or on-line (adaptive)

algorithms such as real-time recurrent learning (RTRL) [I251 or dynamic backpropaga-

tion [78]. The recurrent reinforcement learning algorithms utilized here are variants of the

3Here, recurrence refers to the nature of the algorithms required to optimize the system. For example,
optimizing a feed forward NAR(p) model for one-step-ahead prediction does not require a recurrent learning
algorithm, while optimizing the same NAR(p) model to perform iterated predictions does. The fact that
a forecast or decision is made by a feedforward, non-recurrent network does not mean that optimizing it
correctly can be done with a standard, non-recurrent training procedure.

Figure 3.3: A trading system based on recurrent reinforcement learning, the approach
taken in this chapter. The system makes trading decisions directly based upon a set of
input variables and the system state. A trading performance function U(O), such as profit,
utility or risk-adjusted return, is used to directly op t im i ze the trading system parameters
8 using reinforcement learning. The system is recurrent; the feedback of system state
(current positions or portfolio weights) enables the trading system to learn to correctly
incorporate transactions costs into its trading decisions. In comparison to the systems in
Figures 3.1 and 3.2, no intermediate steps such as making forecasts or labeling desired
trades are required.

above mentioned algorithms, and maximize immediate rewards in an on-line fashion.

3.2 Problem Domain: Financial Decision Making

4 ~ h e investor's or trader's ultimate goal is to optimize some relevant measure of trad-

ing system performance, such as profit, economic utility or risk-adjusted return. Invest-

ment performance depends upon sequences of interdependent decisions, and is thus path-

dependent. Optimal trading or portfolio rebalancing decisions require taking into account

the current system state, which includes both market conditions and the currently held

positions. Market frictions, the real-world costs of trading,5 make arbitrarily frequent

trades or large changes in portfolio composition become prohibitively expensive. Thus,

optimal decisions about establishing new positions must consider current positions held.

One class of performance criteria frequently used in the financial community are mea-

sures of risk-adjusted investment returns. RRL can be used to learn trading strategies

that balance the accumulation of return with the avoidance of risk. The commonly used

measures of risk in finance is the standard deviation of returns. Later in this chapter, I

present the Downside Deviation Ratio, a risk-adjusted performance measure that is more

in line with the typical investor's risk preferences in that it does not penalize large positive

returns in the way that a symmetric risk measure does. The investor's utility also depends

on the performance of all the assets held. To optimize this utility correctly requires a port-

folio management system that makes decisions for individual assets in the context of the

entire portfolio.

3.3 Literature Review

The term 'LDirect Reinforcement'' is used to refer to algorithms that do not have to learn

a value function in order to derive a policy. Direct Reinforcement methods date back to

the pioneering work by Farley and Clark [19, 201, but have received little attention from

4 @ 2 ~ ~ l IEEE. Reprinted, with permission, from "Learning to Trade via Direct Reinforcement", John
Moody and Matthew SafFell, IEEE Tkansactions on Neural Networks, July 2001, vol. 12, no. 4.

'Market frictions include taxes and a variety of transaction costs, such as commissions, bid / ask
spreads, price slippage and market impact.

the reinforcement learning community during the past two decades. Notable exceptions

are Williams' REINFORCE algorithm [123, 1241 and Baxter & Bartlett's recent work [6].6

Methods such as dynamic programming [7], TD-Learning [I031 or Q-Learning [118,117]

have been the focus of most of the modern research. These methods attempt to learn a

value function or the closely related Q-function. Such value function methods are natural

for problems like checkers or backgammon where immediate feedback on performance is

not readily available at each point in time. Actor-critic methods [5, 41 have also received

substantial attention. These algorithms are intermediate between Direct Reinforcement

and Value Function methods, in that the "critic" learns a value function which is then

used to update the parameters of the " a ~ t o r " . ~

Though much theoretical progress has been made in recent years in the area of value

function learning, there have been relatively few widely-cited, successful applications of the

techniques. Notable examples include TD-gammon [log, 1101, an elevator scheduler [23]

and a space-shuttle payload scheduler [129]. Due to the inherently delayed feedback, these

applications all use the TD-Learning or Q-Learning value function RL methods.

For many financial decision making problems, however, results accrue gradually over

time, and one can immediately measure short-term performance. This enables use of a

Direct Reinforcement approach to provide immediate feedback to optimize the strategy.

While this work emphasizes Direct Reinforcement, most applications in finance to

date have been based upon dynamic programming type methods. Elton & Gruber [31]

provide an early survey of dynamic programming applications in finance. The problems

of optimum consumption and portfolio choice in continuous time have been formulated by

Merton [57, 58, 591 from the standpoints of dynamic programming and stochastic control.

The extensive body of work on intertemporal (multi-period) portfolio management and

asset pricing is reviewed by Breeden [14]. Duffie [28, 291 describes stochastic control and

dynamic programming methods in finance in depth. Dynamic programming provides the

'Baxter & Bartlett have independently proposed the term "Direct Reinforcement" for policy gradient
algorithms in a Markov Decision Process framework. Moody et al. use the term in the same spirit, but
perhaps more generally, to refer to any reinforcement learning algorithm that does not require learning a
value function.

7For reviews and in-depth presentations of value function and actor-critic methods, see [46, 10, 1041.

basis of the Cox, Ross, Rubinstein [22] and other widely used binomial option pricing

methods. See also the strategic asset allocation work of Brennan et al. [16]. Due to

the curse of dimensionality, approximate dynamic programming is often required to solve

practical problems, as in the work by Longstaff and Schwartz [52] on pricing American

options. During the past six years, there have been several applications that make use of

value function reinforcement learning methods. Van Roy [I151 uses a TD(X) approach for

valuing options and performing portfolio optimization. Neuneier [84] uses a Q-Learning

approach to make asset allocation decisions, and Neuneier & Mihatsch [85] incorporate

a notion of risk sensitivity into the construction of the Q-Function. Derivatives pricing

applications have been studied by Tsitsiklis and Van Roy [112, 1131. Moody and Saffell

compare Direct Reinforcement to Q-Learning for asset allocation [69], and explore the

minimization of downside risk using Direct Reinforcement [70].

Several papers that relate to this work have appeared. Samuelson [94] stimulated

interest in power law utility functions and their relation to the differential Sharpe ratio.

White [I211 suggested using a performance ratio based on the second lower partial moment.

Samuelson [94] uses logarithmic and power law utility functions to evaluate simple

asset allocation or market timing strategies (which he calls "across-time diversification").

Samuelson's analysis shows that under the assumption of a random walk price process,

the optimum behavior for a trader with a power law utility function is to hold constant

proportions of risky and risk-free securities. That is, in the absence of superior forecasting

ability, across-asset-class diversification will on a risk-adjusted basis outperform across-

time diversification. In contrast, the RRL approach assumes that superior forecasting and

trading strategies are not impossible, and that dynamic asset allocation strategies may in

some cases achieve higher utility than simple fixed allocation methods.

Timmermann and Pesaran [I l l] use wealth and the Sharpe ratio as selection criteria

(rat her than optimization criteria) for trading systems. The set of traders considered are

based on linear forecasting models that differ in the subsets of input variables included.

The forecasting models are linear regressions with parameters estimated to minimize mean

squared forecast error (MSFE). The wealth and the Sharpe ratio performance functions

are not used for direct optimization of system parameters. The selection among forecasting

models is updated periodically. The authors are able to use their simulation results to

document predictability in monthly U.S. stock returns. In related work, Satchel1 and

Timmerman [95] provide arguments that MSFE is a bad indicator for potential trading

profits. They prove a theorem that there is not necessarily any monotonic relationship

between the size of the MSFE and the probability of correctly forecasting the sign of a

variable.

In independent work, Bengio [8] points out that global optimization of trading systems

consisting of separate forecasting and trading modules (such as that shown in Figure 3.1)

provides better results than separately minimizing MSFE of the forecast module and

subsequently maximizing profit of the trading module. Bengio optimizes portfolios and

employs back-propagation through time to maximize final wealth. Kang et a1 [47] compare

optimization of the Sharpe ratio and profits using a non-recursive supervised learning

method applied to a simple asset allocation strategy. The allocation that is varied is

the amount of capital invested in a fixed trading strategy. However, the authors do not

directly optimize the trading system parameters (those that determine when to buy or

sell) or take into account transaction costs. Neuneier [84] uses Q-Learning [118, 1171 to

train an asset allocation system to maximize profit. Transaction costs consisting of both

fixed and proportional parts are included in the analysis. Simulation results are presented

for an artificial exchange rate trading system and a system that switches between cash

and a portfolio of German stocks that tracks the DAX. The description of the methods

used is sketchy, and most relevant details of the empirical work are not disclosed. Finally,

White [I211 has done simulations that optimize the Sharpe ratio and other measures of

risk-adjusted return based on downside risk (see Section 3.6).

3.4 Review of the Recurrent Reinforcement Learning Model

3.4.1 Trading Systems and Performance Criteria

Trading Systems

This section describes agents that trade fixed position sizes in a single security. The

methods described here can be generalized to more sophisticated agents that trade varying

quantities of a security, allocate assets continuously or manage multiple asset portfolios.

See Moody et a1 [75] and Section 3.5 for a discussion of multiple asset portfolios.

Here, the traders are assumed to take only long, neutral or short positions, Ft E

{1,0, -11, of constant magnitude. A long position is initiated by purchasing some quantity

of a security, while a short position is established by selling the security.8

The price series being traded is denoted zt. The position Ft is established or maintained

at the end of each time interval t , and is re-assessed at the end of period t + 1. A trade is

thus possible at the end of each time period, although nonzero trading costs will discourage

excessive trading. A trading system return Rt is realized at the end of the time interval

(t - 1, t] and includes the profit or loss resulting from the position FtVl held during that

interval and any transaction cost incurred at time t due to a difference in the positions

Ft-l and Ft.

In order to properly incorporate the effects of transactions costs, market impact and

taxes in a trader's decision making, the trader must have internal state information and

must therefore be recurrent. A single asset trading system that takes into account trans-

actions costs and market impact has the following recurrent decision function:

Ft = F(Bt; Ft-l, It) with

It = {-%a-1, ~ t - 2 , ; Yt, Yt-lrYt-2,. - .) , (3.1)

where Ot denotes the (learned) system parameters at time t and It denotes the information

set at time t , which includes present and past values of the price series zt and an arbitrary

number of other external variables denoted yt. A simple example is a {long, short) trader

with m + 1 autoregressive inputs:

where rt are the price returns of zt (defined below) and the system parameters 8 are

the weights {u, vi, w). A trader of this form is used in the simulations described in Sec-

tion 3.9.1.

'For stocks, a short sale involves borrowing shares and then selling the borrowed shares to a third party.
A profit is made when the shorted shares are repurchased at a later time at a lower price. Short sales
of many securities, including stocks, bonds, futures, options and foreign exchange contracts are common
place.

The above formulation describes a discrete-action, deterministic trader, but can be

easily generalized. One simple generalization is to use continuously valued F (), for example

by replacing sign with tanh. When discrete values Ft = {1,0, -1) are imposed, however,

the decision function is not differentiable. None-the-less, gradient based optimization

methods for 8 may be developed by considering differentiable pre-thresholded outputs or,

for example, by replacing sign with tanh during learning and discretizing the outputs

when trading.

Moreover, the models can be extended to a stochastic framework by including a noise

variable in F () :

Ft = F(6t; Ft-l, It; ~ t) with ~t - pe(c) . (3.3)

The random variable et induces a joint probability density for the discrete actions Ft,

model parameters and model inputs:

p(Ft; et; Ft-1, I t) .

The noise level (measured by a, or more generally the scale of p,) can be varied to control

the "exploration vs. exploitation" behavior of the trader. Also, differentiability of the

probability distribution of actions enables the straightforward application of gradient based

learning methods.

Profit and Wealth for Trading Systems

Trading systems can be optimized by maximizing performance functions, U(), such as

profit, wealth, utility functions of wealth or performance ratios like the Sharpe ratio. The

simplest and most natural performance function for a risk-insensitive trader is profit.

Additive profits are appropriate to consider if each trade is for a fixed number of shares

or contracts of security zt. This is often the case, for example, when trading small stock

or futures accounts or when trading standard US$ FX contracts in dollar-denominated

foreign currencies. I define rl = zt - zt-1 and rf = zf - zf-, as the price returns of a risky

(traded) asset and a risk-free asset (like T-Bills) respectively, and denote the transactions

cost rate as 6. The additive profit accumulated over T time periods with trading position

size p > 0 is then defined in term of the trading returns, Rt, as:

T

PT = Rt where
t=l

f Rt = p{rt + K l (r t -rtf) -dIFt - ~ t - 1 1)

with Po = 0 and typically FT = Fo = 0. When the risk-free rate of interest is ignored

(rf = 0): a simplified expression is obtained:

The wealth of the trader is defined as WT = Wo + PT.

Multiplicative profits are appropriate when a fixed fraction of accumulated wealth v > 0

f f is invested in each long or short trade. Here, rt = (zt/zt-l - 1) and rtf = (zt /zt-l - 1). If

no short sales are allowed and the leverage factor is set fixed at v = 1, the wealth at time

T is:

T

WT = wo n (1 + R,) where
t=l

(1 + Rt) - (1 + (1 - ~ t - l) r { + ~ t - l r t } x

When the risk-free rate of interest is ignored (rtf = 0), a second simplified expression is

obtained:

(1 + Rt) = (1 + Ft-lrt) (1 - SlFt - Ft-11) . (3.8)

Relaxing the constant magnitude assumption is more realistic for asset allocations and

portfolios, and enables better risk control. Related expressions for portfolios are presented

in Section 3.5.

Performance Criteria

In general, the performance criteria that are considered are functions of profit or wealth

U(WT) after a sequence of T time steps, or more generally of the whole time sequence of

trades

U(WT ,..., Wt,...,Wi,Wo) .

The simple form U(WT) includes standard economic utility functions. The second case is

the general form for path-dependent performance functions, which include inter-temporal

utility functions and performance ratios like the Sharpe ratio and Sterling ratio. In either

case, the performance criterion at time T can be expressed as a function of the sequence

of trading returns

U(RT,...,R~,...,R~,RI;WO) . (3.10)

For brevity, this general form is denoted by UT.

For optimizing the traders, the RRL algorithm is interested in the marginal increase

in performance due to return Rt at each time step:

Dt N AUt = Ut - Ut-l . (3.11)

Note that Ut depends upon the current trading return Rt, but that Ut-l does not. The

strategy is to derive diferential performance criteria Dt cx AUt that capture the marginal

"utility" of the trading return Rt at each period.g

The Differential Sharpe Ratio

Rather than maximizing profits, most modern fund managers attempt to maximize risk-

adjusted return, as suggested by modern portfolio theory. The Sharpe ratio is the most

widely-used measure of risk-adjusted return 1961. Denoting as before the trading system

returns for period t (including transactions costs) as Rt, the Sharpe ratio is defined to be:

Average(Rt)
ST =

Standard Deviation(Rt)

where the average and standard deviation are estimated for periods t = (1,. . . , T). Note

that for ease of exposition and analysis, Moody and Wu have suppressed inclusion of

f f portfolio returns Rt due to the risk free rate on capital rt . Substituting excess returns

R~ = Rt - ~f for Rt in the equation above produces the standard definition. With this

caveat in mind, I use Equation (3.12) for discussion purposes without loss of mathematical

generality. lo

'Strictly speaking, many of the performance criteria commonly used in the financial industry are not
true utility functions, so the term "utility" is used in a more colloquial sense.

''For systems that trade futures and forwards, Rt should be used in place of fZt, because the risk free
rate is already accounted for in the relation between forwards prices and spot prices.

Proper on-line learning requires the computation of the influence on the Sharpe ratio

(marginal utility Dt) of the trading return Rt at time t. To accomplish this, Moody

& Wu have derived a new objective function called the differential Sharpe ratio for on-

line optimization of trading system performance [74, 751. It is obtained by considering

exponential moving averages of the returns and standard deviation of returns in (3.12),

and expanding to first order in the adaptation rate q:

Note that a zero adaptation rate corresponds to an infinite time average. Expanding about

q = 0 amounts to 'Yurning on" the adaptation.

Since only the first order term in this expansion depends upon the return Rt at time

t , the differential Sharpe ratio is defined as:

where the quantities At and Bt are exponential moving estimates of the first and second

moments of Rt :

Treating AtPl and Bt-1 as numerical constants, note that q in the update equations

controls the magnitude of the influence of the return Rt on the Sharpe ratio St. Hence,

the differential Sharpe ratio represents the influence of the trading return Rt realized at

time t on St. It is the marginal utility for the Sharpe ratio criterion.

The influences of risk and return on the differential Sharpe ratio are readily apparent.

The current return Rt enters expression (3.14) only in the numerator through AAt =

Rt - At-1 and ABt = R: - Bt-l. The first term in the numerator is positive if Rt exceeds

the moving average of past returns At-1 (increased reward), while the second term is

negative if R: exceeds the moving average of past squared returns Bt-1 (increased risk).

The differential Sharpe ratio Dt is used in the RRL algorithm (see Equation (3.37)

in Section 3.7) as the current contribution to the performance function Ut. Since St-1 in

Equation (3.13) does not depend on Rt , then

When optimizing the trading system using Equation (3.14), the relevant derivatives have

the simple form:

The differential Sharpe ratio has several attractive properties:

Facilitates recursive updating: The incremental nature of the calculations of At and

Bt make updating the exponential moving Sharpe ratio straightforward. It is not

necessary to recompute the average and standard deviation of returns for the entire

trading history in order to update the Sharpe ratio for the most recent time period.

Enables efficient on-line optimization: Dt and dDt/dRt can be cheaply calculated

using the previously computed moving averages At-1 and Bt-1 and the current

return Rt. This enables efficient stochastic optimization.

Weights recent returns more: Based on the exponential moving average Sharpe ratio,

recent returns receive stronger weightings in Dt than do older returns.

Provides interpretability: The differential Sharpe ratio isolates the contribution of

the current return Rt to the exponential moving average Sharpe ratio. The simple

form of Dt makes clear how risk and reward affect the Sharpe ratio.

One difficulty with the Sharpe ratio, however, is that the use of variance or R; as a

risk measure does not distinguish between upside and downside "risk". Assuming that

At-l > 0, the largest possible improvement in Dt occurs when

Thus, the Sharpe ratio actually penalizes gains larger than R,*, which is counter-intuitive

relative to most investors' notions of risk and reward. A more relevant performance

function is described in Section 3.6.

3.5 Port folios

As was mentioned previously, investors typically hold diversified portfolios of assets. One

of the main purposes of holding portfolios is to control the impact that unique risks

associated with individual assets have on the investor's wealth. Making trading decisions

relative to the portfolio as a whole, rather than on an asset by asset basis, is crucial for

managing these risks properly. Simulation results using the following setup are presented

in Section 3.9.6.

For trading multiple assets in general (typically including a risk-free instrument), a

multiple output trading system is required. Denoting a set of m markets with price series

{{z:} : a = 1 , . . . , m), the market return rf for price series z: for the period ending at

time t is defined as (z:/zLl - 1). Defining portfolio weights of the ath asset as Fa(), a

trader that takes only long positions must have portfolio weights that satisfy:
m

FazO and CFO=I . (3.19)

With these constraints, standard Markowitz mean-variance portfolio optimization is a

quadratic programming problem. However, when optimizing the parameters of a nonlinear

trading system, portfolio optimization becomes a nonlinear programming problem.

One approach to imposing the constraints on the portfolio weights (3.19) without

requiring that a constrained optimization be performed is to use a trading system that

has softmax outputs:

F ~ () = exp[f "01 for a = 1, ..., m .
CEl exp[f bol

Here, the f a () could be linear or more complex functions of the inputs, such as a two-

layer neural network with sigmoidal internal units and linear outputs. Such a trading

system can be optimized using unconstrained optimization methods. Note however that

the portfolio weights Fa obtained are invariant under shifts in the values of the f a of the

form {fa + f a + c; a = 1, . . . , m), so multiple solutions for the f a exist. Denoting the

sets of raw and normalized outputs collectively as the vectors f () and F() respectively, a

recurrent portfolio manager will have structure

Ft = softmax {ft(Bt-1; Ft-1, It))

Similarly to the single asset trader, the portfolio management model must be recurrent to

accurately account for transaction costs.

3.5.1 Profit and Wealth for Portfolios

When multiple assets are considered, the effective portfolio weighting change with each

time step due to price movements. Thus, maintaining constant or desired portfolio weights

requires that adjustments in positions be made at each time step. The wealth after T

periods for a portfolio trading system is

where F t is the effective portfolio weight of asset a before readjusting, defined as

and the trading returns Rt are defined implicitly. In (3.22), the first factor in the curly

brackets is the increase in wealth over the time interval t prior to rebalancing to achieve

the newly specified weights F t . The second factor is the reduction in wealth due to the

rebalancing costs. The profit after T periods is PT = WT - WO.

3.6 Downside Risk

Symmetric measures of risk such as variance are more and more being viewed as inadequate

measures due to the asymmetric preferences of most investors to price changes. Few

investors consider large positive returns to be "risky", though both large positive as well

as negative returns are penalized using a symmetric measure of risk such as the variance.

To most investors, the term "risk" refers intuitively to returns in a portfolio that decrease

its profitability.

Markowitz, the father of modern portfolio theory, understood this. Even though most

of his work focused on the mean-variance framework for portfolio optimization, he pro-

posed the semi-variance as a means for dealing with downside returns [55]. After a long

hiatus lasting three decades, there is now a vigorous industry in the financial commu-

nity in modeling and minimizing downside risk. Criteria of interest include the Downside

Deviation (DD), the Second Lower Partial Moment (SLPM) and the N~~ Lower Partial

Moment [99, 80, 81, 98, 821.

One measure of risk-adjusted performance widely used in the professional fund man-

agement community (especially for hedge funds) is the Sterling ratio, commonly defined

as:
Annualized Average Return

Sterling Ratio =
Maximum Drawn-Down '

Here, the maximum draw-down (from peak to trough) in account equity or net asset

value is defined relative to some standard reference period, for example one to three years.

Minimizing drawdowns is somewhat cumbersome, so I focus on the Downside Deviation

as a measure of downside risk in this chapter.ll

The Downside Deviation is defined to be the square root of the average of the square

of the negative returns:

Using the Downside Deviation as a measure of risk, I can now define a utility function

similar to the Sharpe ratio, which will be called the Downside Deviation Ratio (DDR):

The Downside Deviation Ratio rewards the presence of large average positive returns and

penalizes risky returns, where "risky" now refers to downside returns.

In order to facilitate the use of the recurrent reinforcement learning algorithm (Sec-

tion 3.7), the influence of the return at time t on the DDR must be computed. In a similar

manner to the development of the differential Sharpe ratio in Moody et al. [75], I define

exponential moving averages of returns and of the squared Downside Deviation:

"white has found that the Downside Deviation Ratio tracks the Sterling Ratio effectively [121].

and define the Downside Deviation Ratio in terms of these moving averages. I obtain the

performance function by considering a first order expansion in the adaptation rate q of

the DDR:

I define the first order term dDDRt/dq to be the Diferential Downside Deviation Ratio.

It has the form

From Equation (3.30) it is obvious that when Rt > 0, the utility increases as Rt increases,

with no penalty for large positive returns such as exists when using variance as the risk

measure. See Section 3.9 for detailed experimental results on the use of the Downside

Deviation Ratio to build RRL trading systems.

3.7 Learning to Trade

Reinforcement learning adjusts the parameters of a system to maximize the expected

payoff or reward that is generated due to the actions of the system. This is accomplished

through trial-and-error exploration of the environment and space of strategies. In contrast

to supervised learning, the system is not presented with examples of desired actions.

Rather, it receives a reinforcement signal from its environment (a reward) that provides

information on whether its actions are good or bad.

Moody et al. [74, 751 compared supervised learning to this Direct Reinforcement ap-

proach. The supervised methods discussed included trading based upon forecasts of mar-

ket prices and training a trader using labelled data. In both supervised frameworks,

difficulties are encountered when transaction costs are included. While supervised learn-

ing methods can be effective for solving the structural credit assignment problem, they do

not typically address the temporal credit assignment problem.

Structural credit assignment refers to the problem of assigning credit to the individual

parameters of a system. If the reward produced also depends on a series of actions of the

system, then the temporal credit assignment problem is encountered, ie. assigning credit

to the individual actions taken over time [102]. Reinforcement learning algorithms offer

advantages over supervised methods by attempting to solve both problems simultaneously.

Reinforcement learning algorithms can be classified as either Direct Reinforcement

(sometimes called "policy gradient" or "policy search"), Value Function or Actor-Critic

methods. The choice of the best method depends upon the nature of the problem domain.

I will discuss this issue in greater detail in Section 3.8. In this section, I present the

Recurrent Reinforcement Learning algorithm for Direct Reinforcement and review value

function based methods, specifically Q-Learning [118] and a refinement of Q-Learning

called Advantage Updating [3]. In Section 3.9.4, I compare the RRL and value function

methods for systems that learn to allocate assets between the S&P 500 stock index and

T-Bills.

3.7.1 Recurrent Reinforcement Learning

In this section, I describe the Recurrent Reinforcement Learning algorithm for Direct

Reinforcement [74, 751.

Given a trading system model Ft(0), the goal is to adjust the parameters 0 in order

to maximize UT. For traders of form (3.1) and trading returns of form (3.6) or (3.8),

the gradient of UT with respect to the parameters 0 of the system after a sequence of T

The system can be optimized in batch mode by repeatedly computing the value of UT

on forward passes through the data and adjusting the trading system parameters by using

gradient ascent (with learning rate p)

or some other optimization method. Note that due to the inherent recurrence, the quan-

tities dFt/dO are total derivatives that depend upon the entire sequence of previous time

periods. To correctly compute and optimize these total derivatives in an efficient manner

requires an approach similar to Back-Propagation Through Time (BPTT) [91, 1191. The

temporal dependencies in a sequence of decisions are accounted for through a recursive

update equation for the total policy gradient:

The first term on the right hand side is the partial or naive policy gradient. The above

expressions (3.31) and (3.33) assume differentiability of Ft. For the long/short traders

with thresholds described in Section 3.4.1, the reinforcement signal can be backpropagated

through the pre-thresholded outputs in a manner similar to the Adaline learning rule [122].

Equations (3.31), (3.32), and (3.33) constitute the batch RRL algorithm.

There are two ways in which the batch algorithm described above can be extended

into a stochastic framework. First, exploration of the strategy space can be induced by

incorporating a noise variable ct, as in the stochastic trader formulation of Equation (3.3).

The trade-off between exploration of the strategy space and exploitation of a learned policy

can be controlled by the magnitude of the noise variance a,. The noise magnitude can be

annealed over time during simulation, in order to arrive at a good strategy.

Secondly, a simple on-line stochastic optimization can be obtained by considering only

the term in (3.31) that depends on the most recently realized return Rt during a forward

pass through the data:

The parameters are then updated on-line using:

Such an algorithm performs a stochastic optimization, since the system parameters Ot are

varied during each forward pass through the training data. The stochastic, on-line analog

of Equation (3.33) is:

Equations (3.34), (3.35) and (3.36) constitute the stochastic (or adaptive) RRL algorithm.

It is a reinforcement algorithm closely related to recurrent supervised algorithms such as

Real Time Recurrent Learning (RTRL) [I251 and Dynamic Backpropagation [78]. See also

the discussion of backpropagating utility in Werbos [120].

For differential performance criteria Dt described in Equation (3.11) of Section 3.4.1

(such as the differential Sharpe ratio (3.14) and differential Downside Deviation ratio (3.30)),

the stochastic update equations (3.34) and (3.35) become:

I use on-line algorithms of this recurrent reinforcement learning type in the simulations

presented in Section 3.9. Note that I find that use of a noise variable et provides little

advantage for the real financial applications that I consider, since the data series contain

significant intrinsic noise. Hence, I find that a simple "greedy7' update is adequate.12

The above description of the RRL algorithm is for traders that optimize immediate

estimates of performance Dt for specific actions taken. This presentation can be thought

of as a special case of a more general Markov Decision Process (MDP) and policy gradient

formulation. One straightforward extension of the formulation can be obtained for traders

that maximize discounted future rewards. I have experimented with this approach, but

found little advantage for the problems I consider. A second extension to the formulation

is to consider a stochastic trader (Equation (3.3)) and an expected reward framework,

for which the probability distribution of actions is differentiable. This latter approach

makes use of the joint density of Equation (3.4). While the expected reward framework

is appealing from a theoretical perspective, Equations (3.34), (3.35) and (3.36) presented

above provide the practical basis for simulations.

12Tesauro finds a similar result for TD-Gammon 1109, 1101. A "greedy" update works well, because the
dice rolls in the game provided enough uncertainty to induce extensive strategy exploration.

3.7.2 Value Functions and Q-Learning

Besides explicitly training a trader to take actions, it is possible to also implicitly learn

correct actions through the technique of value iteration. Value iteration uses a value func-

tion to evaluate and improve policies (see Kaelbling et al. [46] for a tutorial introduction

and Sutton and Barto [I041 for a full overview of these algorithms). The value function,

VT(x), is an estimate of discounted future rewards that will be received from starting in

state x, and by following the policy T thereafter. The value function satisfies Bellman's

equation

where T(X, a) is the probability of taking action a in state a , pxy(a) is the probability of

transitioning from state x to state y when taking action a, D(x, y, a) is the immediate

reward (differential utility, as in Equation (3.11)) from taking action a and transitioning

from state x to state y and y is the discount factor that weighs the importance of future

rewards versus immediate rewards.

A policy is an optimal policy if its value function is greater than or equal to the value

functions of all other policies for a given set of states. The optimal value function is defined

as:

V* (x) = max V" (x) ,
n

and satisfies Bellman's optimality equation

The value iteration update:

is guaranteed to converge to the optimal value function under certain general conditions.

The optimal policy can be determined from the optimal value function through:

The technique named Q-Learning [I181 uses a value function which estimates future re-

wards based on both the current state and the current action taken. The Q-function

version of Bellman's optimality equation is

Similarly to Equation (3.41), the Q-function can be learned using a value iteration ap-

proach:

This iteration has been shown [I181 to converge to the optimal Q-function, Q*(x, a), given

certain constraints. The advantage of using the Q-function is that there is no need to

know the system model pZy (a) as in Equation (3.42) in order to choose the best action.

One calculates the best action as

a* = arg max(Q* (x, a)) , (3.45)

The update rule for training a function approximator is then based on the gradient of the

error:
1
-(D(x,Y, 2 a) + r m y Q (y , b) - Q(x,aN2 (3.46)

Advantage Updating

A refinement of the Q-Learning algorithm is provided by Advantage Updating [3]. Ad-

vantage Updating was developed specifically to deal with continuous-time reinforcement

learning problems, though it is applicable to the discrete-time case as well. It is designed

to deal with the situation where the relative advantages of individual actions within a state

are small compared to the relative advantages of being in different states. Also, Advantage

Updating has been shown to be able to learn at a much faster rate than Q-Learning in

the presence of noise.

Advantage Updating learns two separate functions: the advantage function A(x, a),

and the value function V(x). The advantage function measures the relative change in

value of choosing action a while in state x versus choosing the best possible action for that

st ate. The value function measures the expected discounted future rewards as described

previously. Advantage Updating has the following relationship with Q-Learning:

Q* (x, a) = V* (x) + A* (x, a) . (3.47)

Similarly to Q-Learning, the optimal action to take in state x is found by a* = arg max,(A* (x, a)).

See Baird [3] for a description of the learning algorithms.

3.8 Policy vs Value Functions

As mentioned in Section 3.7, reinforcement learning algorithms can be classified as ei-

ther Direct Reinforcement (sometimes called "policy search"), Value Function methods or

Actor-Critic methods. The choice of the best method depends upon the nature of the

problem domain.

3.8.1 Immediate vs. Future Rewards

Reinforcement signals received from the environment can be immediate or delayed. In

some problems, such as checkers [92, 931, backgammon [log, 1101, navigating a maze [86],

or maneuvering around obstacles [76], reinforcement from the environment is sometimes

provided only at the end of the game or task. The final rewards received are {success,

failure) or {win, lose). For such task formulations, the temporal credit assignment problem

is extreme. There is usually no a priori assessment of performance available during the

course of each game or trial. Hence, one is forced to learn a value function of the system

state at each time. This is accomplished by doing many runs on a trial and error basis,

and discounting the ultimate reward received back in time. This discounting approach is

the basis of Dynamic Programming [7], TD-Learning [I031 and Q-Learning [118, 1171.

For these Value Function methods, the action taken at each time is that which offers

the largest increase in expected value. Thus, the policy is not represented directly. An

intermediate class of reinforcement algorithms are actor-critic methods [5]. While the

actor module provides a direct representation of the policy for these methods, it relies on

the critic module for feedback. The role of the critic is to learn the value function.

In contrast, Direct Reinforcement methods represent the policy directly, and make

use of immediate feedback to adjust the policy. This approach is appealing when it is

possible to specify an instantaneous measure of performance, because the need to learn

a value function is bypassed. For most problems of real world interest, it is possible to

obtain feedback periodically. For example, intermediate game scores could be used in

backgammon.

In trading, asset allocation and portfolio management problems, for example, overall

performance accrues gradually over time. For these financial decision making problems, an

immediate measure of incremental performance is available at each time step. Although

total performance usually involves integrating or averaging over time, it is none-the-less

possible to adaptively update the strategy based upon the investment return received at

each time step.

Other domains that offer the possibility of immediate feedback include a wide range of

control applications. The standard formulation for optimal control problems involves time

integrals of an instantaneous performance measure. Examples of common loss functions

include average squared deviation from a desired trajectory or average squared jerk.13

A related approach that represents and improves policies explicitly is the policy gradient

approach. Policy gradient methods use the gradient of the expected average or discounted

reward with respect to the parameters of the policy function to improve the policy. The

expected rewards are typically estimated by learning a value function, or by using single

sample paths of the Markov reward process. There have been several recent, independent

proofs for the convergence of policy gradient methods. Marbach & Tsitsiklis [53, 541 and

Baxter & Bartlett [6]14 show convergence to locally optimal policies by using simulation

based methodologies to approximate expected rewards. Sutton et al. [I051 and Konda

& Tsitsiklis [49] obtain similar results when estimating expected rewards from a value

function implemented using a function approximator. An application to robot navigation

13'LJerk" is the rate of change of acceleration.
14Baxter & Bartlett have independently coined the term L'Direct Reinforcement" to describe policy gra-

dient methods in an MDP framework based on simulating sample paths and maximizing average rewards.
The usage of the term here is in the same spirit, but perhaps more general, referring to all algorithms that
do not need to learn a value function in order to derive a policy.

is provided by Grudic and Ungar [39]. Note that some of the so-called "policy gradient"

methods are not Direct Reinforcement methods, because they require the estimation of a

value function. Rather, these methods are more properly classified as actor-critic methods.

3.8.2 Policies vs. Values

Much attention in the reinforcement learning community has been given recently to the

question of learning policies versus learning value functions. Over the past twenty years

or so, the Value Function approach has dominated the field. The approach has worked

well in many applications, and a number of convergence theorems exist that prove that

the approach will work under certain conditions.

However, the value function approach suffers from several limitations. The original

formulation of Q-Learning is in the context of discrete state and action spaces. As such, in

many practical situations it suffers from the "curse of dimensionality". When Q-Learning

is extended to function approximators, it has been shown in many cases that there are

simple Markov Decision Processes for which the algorithms fail to converge [2]. Also, the

policies derived from a Q-Learning approach tend to be brittle, that is, small changes

in the value function can produce large changes in the policy. For finance in particular,

the presence of large amounts noise and nonstationarity in the datasets can cause severe

problems for a value function approach.15

I find the Recurrent Reinforcement Learning algorithm to be a simpler and more

efficient approach. Since the policy is represented directly, a much simpler functional

form is often adequate to solve the problem. A significant advantage of the RRL approach

is the ability to produce real valued actions (eg. portfolio weights) naturally without

resorting to the discretization necessary in the Q-Learning case. Constraints on actions

are also much easier to represent given the policy representation. Other advantages are

that the RRL algorithm is more robust to the large amounts of noise that exists in financial

data, and is able to quickly adapt to nonstationary market conditions.

1 5 ~ r o w n [18] provides a nice example that demonstrates the brittleness of Q-Learners in noisy
environments.

I present an example of how an increase in complexity occurs when a policy is represented

implicitly through the use of a value function. I start with the most simple trading

problem: a trader that makes decisions to buy and sell a single asset where there are no

transaction costs or trading frictions. The asset returns rt are from a binomial process in

(-1, +I). To make matters even more simple, I will assume that the next period's return

rt+l is known in advance. Given these conditions, the optimal policy does not require

knowledge of future rewards, so the Q-Learning discount parameter 7 will be set to 0. I

will measure the complexity of the solution by counting the number of tanh units that are

required to implement a solution using a single function approximator.

It is obvious that the policy function is trivial. The optimal policy is to take the action

at = rt+l. In terms of model structure, a single tanh unit would suffice. On the other

hand, if learning the value function before taking actions, in this case the value function

has the form of the XOR function. As shown in Figure 3.4, the value function is +1 when

the proposed action a has the same sign as rt+l and -1 otherwise. Because of the binomial

return process, this problem can be solved using only two tanh units. Due to the value

function representation of the problem, the complexity of the solution has doubled.

This doubling of model complexity is by comparison minor if the problem is made

a little more realistic by allowing returns to be drawn from a continuous real-valued

distribution. The complexity of the policy function has not increased, at = ~ i g n (r ~ + ~) .

However the value function's increase in complexity is potentially enormous. Since returns

are now real valued, approximating the value function to an arbitrarily small precision

requires an arbitrarily large model.

3.9 Results

This section presents empirical results for several simulations based on the various tech-

niques discussed in this chapter related to the RRL algorithm. First, controlled experi-

ments using artificial price series are presented to test the RRL algorithm's ability to learn

profitable trading strategies, to maximize risk adjusted return (as measured by the Sharpe

Figure 3.4: A representation of the value function to be learned by the Q-Learning algo-
rithm for the example given in the text (Section 3.8). The function represents the Q-value,
Q(r, a) , which is the value from taking action "a" in state "r". The figure on the left shows
the value function for the case of discrete, binary returns. The Q-function has the form
of the XOR problem, while the optimal policy is simply a = r . The figure on the right
shows the value function when returns are real-valued (note the change in axes). The
Q-function now becomes arbitrarily hard to represent accurately using a single function
approximator of tanh units while the optimal policy is still very simple, a = sign(r).

ratio), and to respond appropriately to varying transaction costs. The second problem

demonstrates the ability of RRL to discover structure in a real financial price series, the

half-hourly US Dollar / British Pound exchange rate. For this problem, the RRL trader

attempts to avoid downside risk by maximizing the Downside Deviation Ratio. Next, I

compare the performance of traders based on RRL and Q-Learning for a second real-world

problem, trading the monthly S&P 500 stock index. Over the 25 year test period, I find

that the RRL-Trader outperforms the Q-Trader, and that both outperform a buy and hold

strategy. Further discussion of the Q-Trader vs. RRL-Trader performance is presented in

Section 3.9.5. Finally, I present simulation results for a portfolio management system with

three artificial assets. The portfolio management system is shown to adjust its behavior

in response to changes in the environment and in response to the differing characteristics

of the assets being managed.

3.9.1 Trader Simulation

In this section I demonstrate the use of the RRL algorithm to optimize trading behavior

using the differential Sharpe Ratio (Equation (3.14)) in the presence of transaction costs.

More extensive results are presented in Moody et al. [75]. There, the authors find that

maximizing the differential Sharpe ratio yields more consistent results than maximizing

profits, and that both methods outperform trading systems based on forecasts.

The RRL-Traders studied here take {long, short) positions and have recurrent state

similar to that described in Section 3.4.1. To enable controlled experiments, the data

used in this section are artificial price series that are designed to have tradeable structure.

These experiments demonstrate that (a) RRL is an effective means of learning trading

strategies, and (b) trading frequency is reduced as expected as transaction costs increase.

Data

Following the procedure in Moody & Wu [74], I generate log price series as random walks

with autoregressive trend processes. The two parameter model is thus:

where a and k are constants, and ~ (t) and v(t) are normal random deviates with zero

mean and unit variance. The artificial price series is defined as

z(t) = exp (q)
where R is a scale defined as the range of p(t): max(p(t)) - min(p(t)) over a simulation

with 10,000 samples.16

For the results presented here, I set the parameters of the price process to a = 0.9 and

k = 3. The artificial price series are trending on short time scales and have a high level of

noise. A realization of the artificial price series is shown in the top panel of Figure 3.5.

1 6 ~ h i s is slightly more than the number of hours in a year (8760), so the series could be thought of
as representing hourly prices in a 24 hour artificial market. Alternatively, a series of this length could
represent slightly less than five years of hourly data in a market that trades about 40 hours per week.

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
time

Figure 3.5: Artificial prices (top panel), trading signals (second panel), cumulative sums
of profits (third panel) and the moving average Sharpe ratio with q = 0.01 (bottom panel).
The system performs poorly while learning from scratch during the first 2000 time periods,
but its performance remains good thereafter.

9100 9200 9300 9400 9500 9600 9700 9800 9900 10000
time

Figure 3.6: An expanded view of the last thousand time periods of Figure 3.5. The
exponential moving Sharpe ratio has a forgetting time scale of l /q = 100 periods. A
smaller q would smooth the fluctuations out.

-6.01 -0.005 0 0.005 0.01
. Returns

-5.01 -0.005 0 0.005 0.01

Oo0 1
Profits

-6.01 -0.005 0 0.005 0.01
Returns

. 1000[- - - -

Profits 1000, . .: ,

Figure 3.7: Histograms of the price changes (top), trading profits per time period (middle)
and Sharpe ratios (bottom) for the simulation shown in Figure 3.5. The left column is for
the first 5,000 time periods, and the right column is for the last 5,000 time periods. The
transient effects during the first 2000 time periods for the real-time recurrent learning are
evident in the lower left graph.

& ~ 0 0 . .
4

O : r LT i
-0.2 -0.1 0 0.1 0.2 -0.2 -0.1 0 0.1 0.2

Sharpe Ratios Sharpe Ratios

. ~ -

-
. . . . i . . . - -

-.

Figure 3.8: Boxplots of trading frequency, cumulative sums of profits and Sharpe ratios
vs. transaction costs. The results are obtained over 100 trials with various realizations of
artificial data and initial system parameters. Increased transaction costs reduce trading
frequency, profits and Sharpe ratio, as expected. The trading frequency is the percentage
of the number of time periods during which trades occur. All figures are computed on the
last 9,000 points in the data set.

Simulated Trading Results

Figures 3.5, 3.6 and 3.7 show results for a single simulation for an artificial market as

described above. For these experiments, the RRL-Traders are single threshold units with

an autoregressive input representation. The inputs at time t are constructed using the

previous eight returns.

The RRL-Traders are initialized randomly at the beginning, and adapted using real-

time recurrent learning to optimize the differential Sharpe ratio (3.14). The transaction

costs are fixed at a half percent during the whole real-time learning and trading process.

Transient effects of the initial learning while trading process can be seen in the first 2000

time steps of Figure 3.5 and in the distribution of differential Sharpe ratios in the lower

left panel of Figure 3.7.

Figure 3.8 shows box plots summarizing test performances for ensembles of 100 exper-

iments.

In these simulations, the 10,000 data samples are partitioned into an initial training

set consisting of the first 1,000 samples and a subsequent test data set containing the

last 9,000 samples. The RRL-Traders are first optimized on the training data set for 100

epochs and adapted on-line throughout the whole test data set. Each trial has differ-

ent realizations of the artificial price process and different randomly-chosen initial trader

parameter values. I vary the transaction cost from 0.2%) 0.5% to l%, and observe the

trading frequency, cumulative profit and Sharpe ratio over the test data set. As shown, in

all 100 experiments, positive Sharpe ratios are obtained. As expected, trading frequency

is reduced as transaction costs increase.

3.9.2 Simulations for Maximizing the Downside Deviation Ratio

Artificial Price Series with Skewed Returns

I generate price series as random walks with autoregressive trend processes with skewed

returns distributions. The two parameter model for an individual asset is thus:

where a and k are constants, and ~ (t) and v(t) are iid random deviates drawn from

a demeaned gamma distribution with shape parameter 5. The artificial price series is

defined as

z (t) = exp (q)
where R is a scale defined as the range of p(t): max(p(t)) - min(p(t)) over a simulation

with 10,000 samples. Figure 3.9 shows an example of an artificially created time series,

and a histogram of the returns distribution that generated it.

Long/Neutral/Short Trading System

In this section I compare trading systems that can take long, neutral and short positions

in a single asset. The dataset used consists of 10 different realizations of artificially created

data described in Section 3.9.2. One trading system is trained to maximize the Downside

Deviation ratio, "DDR" , and the other is trained to maximize the Sharpe ratio, "SR" . The

0 20W 4000 WOO 8 0 ~ lO&0 4 02 -0.01 0.0 0.01
Return

Figure 3.9: An example of the type of artificial price series used in the experiments here and
the negatively skewed returns distribution that generated it. The returns are generated
from a gamma distribution with shape parameter 5. The means of the distributions are
removed, and here the sign of the distribution is adjusted to produce a negatively skewed
distribution.

left panel in Figure 3.10 shows boxplots of the Sharpe ratio for 100 trading systems trained

from random initial weight configurations. The right panel shows the summary results

when measuring the Downside Deviation ratio. The plots show that the trading systems

are successful in maximizing the performance ratios they were trained to maximize.

A very interesting property of the systems here that were trained to maximize the

Downside Deviation ratio is that the maximum drawdowns incurred by these traders are

consistently less than the drawdowns incurred by the Sharpe ratio traders. Figures 3.11

and 3.12 show a comparison of drawdowns between the "DDR" and "SR" trading systems.

Figure 3.11 compares the histograms of maximum drawdowns for each trading system.

This figure shows that the worst drawdowns in the histogram for the "DDR" trading

system are truncated at approximately half the magnitude as that of the "SR" trading

system. Figure 3.12 shows an excerpt of the behavior of the two systems on a sample

test period. The top panel shows the underwater curves for the trading systems. An

underwater curve shows the magnitude of the drawdowns, and is equal to 0 when the

system is "above water", ie. when a new equity peak is achieved. The difference in

behavior during drawdowns can be clearly seen here as the "DDR" trader maintains a

Positive Skew Positive Skew
I t

Trader

Figure 3.10: Boxplots of performance results on the artificial data series for ensembles of
100 trading systems. The set of systems labeled "DDR7' were trained to maximize the
Downside Deviation ratio, and the set labeled "SR" were trained to maximize the Sharpe
ratio. The left panel shows summary statistics of the final Sharpe ratios and the right
panel shows the summary statistics of final Downside Deviation ratios calculated for each
of the 100 trials. The notches shown on the boxplots are robust confidence intervals on
the medians of the distributions. The plots show that the systems trained to maximize a
certain performance function do, on average, significantly outperform (according to their
performance measure) trading systems trained to maximize other performance functions.
The 100 trials were composed of trading system trained from 10 different random initial-
ization~ for each of 10 different artificially generated price series.

110

Log Histograms of Maximum DrawDowns
3

2

DDR
SR

2.5

--
c:
:J
0

81.5
0..-
0)
0

--I

0.5

0
-0.12 -0.1 -0.08 -0.06 -0.04

MaximumDrawDown
-0.02 0

Figure 3.11: A comparison of the histograms of maximum drawdown incurred by the
"DDR" and "SR" trading systems. The magnitudes of the worst drawdowns for the
"DDR" system are only half the size of those for the "SR" trading system.

neutral position during the worst of the "SR" trader's drawdowns. The lower panel shows

a moving average calculation of the Downside and Standard Deviations calculated from

the equity curves in the top panel. These are the risk penalty terms in the DDR and

SR performance functions respectively. Of particular interest is the time period between

100 and 150, where even though the "SR" trading system is recovering from a severe

drawdown, the penalty term (the Standard Deviation) is increasing. Examination of the

Downside Deviation shows an increase in penalty only when the drawdown becomes worse.

3.9.3 US Dollar jBritish Pound Foreign Exchange Trading System

In this section, the use of the downside deviation ratio to train trading systems is demon-

strated on a real world data set. A {long, short, neutral} trading system is trained to trade

DDR Trader
SR Trader

Downside
Standard

Figure 3.12: A closeup of the behavior of the "DDR" and "SR" trading systems. The
top panel shows the underwater curves for the systems. The "DDR" system avoids the
large drawdowns incurred by the "SR" system. The bottom panel shows a moving average
calculation of the Downside Deviation and the standard deviation, the penalty terms of
the two utility measures. The standard deviation, used as a penalty term in the Sharpe
ratio, increases even though the "SR" system is recovering from a severe drawdown. On
the other hand, the Downside Deviation only increases as the drawdown worsens for the
"DDR" system.

Lo

.O 6 1 I r I
C m .- >
0

0 0
E

04.,,-\ '. \ I \ , / - ' \ \ l h < - - - - \ \ \

' \
\ 1 <.\I \ - " ,

\ .
K .-

2 OO
I I I I

50 100 150 200 250
Time

the half-hourly US Dollar / British Pound foreign exchange (FX) rate.17 The dataset used

here consists of the first 8 months of quotes from the 24 hour, 5-days a week foreign ex-

change market during 1996.18 Both bid and ask prices are in the dataset, and the trading

system is required to incur the transaction costs of trading through the bid/ask prices.

The trader is trained via the Recurrent Reinforcement Learning algorithm to maximize

the Differential Downside Deviation Ratio (3.30).

The network models consist of a single tanh unit. The inputs to the models are based

on the (1, 2, 4, 8, 16, 32, 48, 96, 240) time step backward differences of the British Pound

FX rate. These differences correspond to returns on time scales of (30 min, 60 min, 2

hours, 4 hours, 8 hours, 16 hours, 24 hours, 2 days, 5 days), and are intended to capture

daily and weekly seasonal structure (if present). Note that the currency market has three

major business time zones (East Asia, Europe, and North America). The return series are

further processed by splitting each into two signals, one containing the positive values (or

0 when the value is negative), and the other containing the negative values (or 0 when the

value is positive). This transformation is meant to allow the system to more easily react

differently to up and down market conditions. These 18 signals are then reduced using a

principal component analysis (using the training data) to 12 dimensions. This reduction

retains 90% of the variance of the inputs. As the networks contain a bias weight and a

recurrent input, there are a total of 14 network parameters.

The top panel in Figure 3.13 shows the US DollarlBritish Pound price series for the

8 month period. The trading system is initially trained on the first 2000 data points, and

then produces trading signals for the next 2 week period (480 data points). The training

window is then shifted forward to include the just tested on data, is retrained, and its

trading signals are recorded for the next 2 week out-of-sample time period. This process

for generating out-of-sample trading signals continues for the rest of the data set.

The second panel in Figure 3.13 shows the out-of-sample trading signal produced by

the trading system, and the third panel displays the equity curve achieved by the trader.

The bottom panel shows a moving average calculation of the Sharpe Ratio over the trading

 h he experiments described in this section were first reported in Moody & SafTell [70].
 he data is part of the Olsen & Associates HFDF96 dataset, obtainable by contacting www.olsen.ch.

1000 2000 3000 4000 5000 6000 7000 8000
time

Figure 3.13: {Long, short, neutral) trading system of the US DollarIBritish Pound that
uses the bid/ask spread as transaction costs. The data consists of half-hourly quotes for the
5 day per week, 24 hour interbank FX market. The time period shown is the first 8 months
of 1996. The trader is optimized via Recurrent Reinforcement Learning to maximize the
Differential Downside Deviation Ratio. The first 2000 data points (approximately two
months) are used for training and validation. The trading system achieves an annualized
15% return with an annualized Sharpe Ratio of 2.3 over the approximately 6 month long
out-of-sample test period. On average, the system makes a trade once every 5 hours.

period with a time constant of 0.01. The trading system achieves an annualized 15% return

with an annualized Sharpe Ratio of 2.3 over the approximately 6 month long test period.

On average, the system makes a trade once every 5 hours.

These FX simulations demonstrate the ability of the RRL algorithm to discover struc-

ture in a real-world financial price series. However one must be cautious when extrapo-

lating from simulated performance to what can be achieved in actual real-time trading.

One problem is that the data set consists of indicative quotes which are not necessarily

representative of the price at which the system would have actually been able to transact.

A related possibility is that the system is discovering market microstructure effects that

are not actually tradeable in real-time. Also, the simulation assumes that the Pound is

tradeable 24 hours a day during the 5-day trading week. Certainly a real-time trading

system will suffer additional penalties when trying to trade during off-peak, low liquidity

trading times. An accurate test of the trading system would require live trading with a

foreign exchange broker or directly through the interbank FX market in order to verify

real time transactable prices and profitability.

3.9.4 S&P 500 / T-Bill Asset Allocation

In this section I compare the use of Recurrent Reinforcement Learning to the Advantage

Updating formulation of the Q-Learning algorithm for building a trading system. These

comparative results were presented previously at NIPS*98 [69]. The long/short trading

systems trade the S&P 500 Stock Index, in effect allocating assets between the S&P 500

and 3-month Treasury Bills. When the traders are long the S&P 500, no T-Bill interest

is earned, but when the traders are short stocks (using standard 2:l leverage), they earn

twice the T-Bill rate. I use the Advantage Updating refinement instead of the standard

Q-Learning algorithm, because I found it to yield better trading results than the standard

formulation for this problem. See Section 3.7.2 for a description of the representational

advantages of the approach.

The S&P 500 target series is the total return index computed monthly by reinvest-

ing dividends. The S&P 500 indices with and without dividends reinvested are shown in

Figure 3.14 along with the 3-month Treasury Bill and S&P 500 dividend yields. The 84

16' I I I I J

- - -
-14- Treasury Bill Yield
S S&P 500 Div. Yield

I
r -

1970 1975 1980 1985 1990
Time

lo3

Figure 3.14: Time series that influence the return attainable by the S&P 500 / TBill asset
allocation system. The top panel shows the S&P 500 series with and without dividends
reinvested. The bottom panel shows the annualized monthly Treasury Bill and S&P 500
dividend yields.

monthly input series used in the trading systems include both the financial and macroe-

conomic data listed previously in Table 2.1. All data are obtained from Citibase,lg and

the macroeconomic series are lagged by one month to reflect reporting delays.

A total of 45 years of monthly data are used, from January 1950 through December

1994. The first 20 years of data are used only for the initial training of the system.

The test period is the 25 year period from January 1970 through December 1994. The

experimental results for the 25 year test period are true ex ante simulated trading results.

0 .
0 V)

a
td
V) .

I I I I .- * - -

lgCitibase historical data is obtainable from www.fame.com.

S&P 500 Index - - - With Divs. Reinvested

,
r , \ J

4
\,'

.-I

Simulation Details

The models trained here use many of the components of the methodology presented in

Chapter 2. This methodology used here includes sliding window retraining, early stopping,

weight decay regularization, input dimension reduction using principal components, and

committee voting.

For each year during 1970 through 1994, the system is trained on a moving window of

the previous 20 years of data. For 1970, the system is initialized with random parameters.

For each of the 24 subsequent years, the previously learned parameters are used to initialize

the training. In this way, the system is able to adapt to changing market and economic

conditions. Within the moving training window, the RRL-Trader systems use the first 10

years for stochastic optimization of system parameters, and the subsequent 10 years for

validating early stopping of training. The RRL-Trader networks use a single tanh unit,

and are regularized using quadratic weight decay during training with a regularization

parameter of 0.01. The 84 inputs are processed using a principal component analysis

performed using the data prior to 1970, and the top 15 principal components were used as

inputs to the models. Including a bias weight and the recurrent input, the RRL networks

have a total of 17 network parameters.

The Q-Trader systems use a bootstrap sample of the 20 year training window for

training, and the final 10 years of the training window are used for validating early stopping

of training. For the results reported, the networks are two-layer feedforward networks with

30 tanh units in the hidden layer. As discussed previously, the Advantage Updating form

of Q-Learning was used for this problem, and so required two separate networks of 30

units each to represent the Q-function. The networks are trained initially with the y

discounting factor set to 0 to learn the immediate rewards, and then y is set to 0.75 to

allow the systems to learn discounted future rewards. I find decreasing performance when

the value of y is adjusted to values higher than 0.75. The inputs are similarly the top 15

principal components as for the RRL-Trader.

To investigate the bias / variance tradeoff for the Q-Traders, I tried networks of size

10, 20, 30 and 40 hidden units. The 30 unit traders performed significantly better out of

sample than traders with smaller or larger networks. The 20-unit traders were significantly

better than the 10-unit traders, suggesting that the smaller networks could not represent

the Q function adequately (high model bias). The degradation in performance observed

for the 40 unit nets suggests possible overfitting (increased model ~ariance).~'

Including the bias weights and the additional action input to the Advantage network,

the entire Q-Trader system used here has a total of 1052 network parameters. This is

a considerable increase over the complexity of the RRL-Trader systems (17 parameters).

Even if the standard &-Learning framework was used (though again, the Advantage Up-

dating framework produced better results that the standard formulation out of sample) it

would still have 541 network parameters.

S&P Experimental Results

Figure 3.15 shows box plots summarizing the test performance for the full 25-year test

period of the trading systems with various realizations of the initial system parameters

over 30 trials for the RRL-Trader system, and 10 trials for the Q-Trader system21. The

transaction cost is set at 0.5%. Profits are reinvested during trading, and multiplicative

profits are used when calculating the wealth. The notches in the box plots indicate robust

estimates of the 95% confidence intervals on the hypothesis that the median is equal to

the performance of the buy and hold strategy. The horizontal lines show the performance

of the RRL-Trader voting, Q-Trader voting and buy and hold strategies for the same

test period. Note that in this case there is a big win for the committee result over the

average performance of the individual committee members. The total profits of the buy

and hold strategy, the Q-Trader voting strategy and the RRL-Trader voting strategy are

1348%, 3359% and 5860% respectively. The corresponding annualized monthly Sharpe

ratios 0.34, 0.63 and 0.83 respectively.22 Remarkably, the superior results for the RRL-

Trader are based on networks with a single thresholded tanh unit, while those for the

20~ewer runs were done with 40-unit traders due to the excessive computation time. Further experiments
with network sizes larger than 30 would be needed to more accurately assess the possibility of overfitting.

2 1 ~ e n trials were done for the Q-Trader system due to the amount of computation required in training
the systems

2 2 ~ h e Sharpe ratios calculated here are for the returns in excess of the 3-month treasury bill rate.

Figure 3.15: Test results for ensembles of simulations using the S&P 500 stock index
and 3-month Treasury Bill data over the 1970-1994 time period. The boxplots show
the performance for the ensembles of RRL-Trader and Q-Trader trading systems. The
horizontal lines indicate the performance of the systems and the buy and hold strategy.
The solid curves correspond to the RRL-Trader system performance, dashed curves to the
Q-Trader system and the dashed and dotted curves indicate the buy and hold performance.
Both systems significantly outperform the buy and hold strategy.

Final Equity: Q-Trader vs RRL-Trader

Q-Trader required networks with 30 hidden tanh units.23

Figure 3.16 shows results for following the strategy of taking positions based on a ma-

jority vote of the ensembles of trading systems compared with the buy and hold strategy.

The trading systems go short the S&P 500 during critical periods, such as the oil price

shock of 1974, the tight money periods of the early 19801s, the market correction of 1984,

and the 1987 crash. This ability to take advantage of high treasury bill rates or to avoid

periods of substantial stock market loss is the major factor in the long term success of

these trading models. One exception is that the RRL-Trader trading system remains long

during the 1991 stock market correction associated with the Persian Gulf war, a political

70

60

50

g40
u

23As discussed in the Section 3.9.4, care was taken to avoid both underfitting and overfitting in the
Q-Trader case, and smaller nets performed substantially worse.

W . h :
30 -

I
I

20 - I
I

-

-
I

-

- -
I

- - - Buy and Hold
- RRL-Trader
- - Q-Trader

-
I
I
I

RRL-Trader System vs Q-Trader System

Figure 3.16: Test results for ensembles of simulations using the S&P 500 stock index
and 3-month Treasury Bill data over the 1970-1994 time period. Shown are the equity
curves associated with the systems and the buy and hold strategy, as well as the trading
signals produced by the systems. The solid curves correspond to the RRL-Trader system
performance, dashed curves to the Q-Trader system and the dashed and dotted curves
indicate the buy and hold performance. Both systems significantly outperform the buy
and hold strategy. In both cases, the traders avoid the dramatic losses that the buy and
hold strategy incurred during 1974 and 1987.

: Buy and Hold
- RRL-Trader
- - Q-Trader

& lo1 : .-
3
u
W

l o0 3

event, though the Q-Trader system is fortunately short during the correction. On the

whole though, the Q-Trader system trades much more frequently than the RRL-Trader

1
2
'7 0 -
-I

g - 1 -
Z
-0

system, and in the end does not perform as well on this data set.

From these results I find that both trading systems outperform the buy and hold

I (I I 1 1 ~ 1 1 1 1 I I J I I I 1 1 II 1 1 1 1 1 I l l
I

I,, I 1 1 1 1 1 1 1 11 I 1 1 1 1 1 11 I(1 1 1 1 1 1 1 ;
I -

I I I 1 1 1 I I I 11 II
I

I 1 1 1 I I l l
1:: - dl I A Ill 1- I~ -~I L l l , L , " L , a - 1 - 1 - 1 L 1 1 - 1 1 -

I - -
1970 1975 1980 1985 1990

-

strategy, as measured by both accumulated wealth and Sharpe ratio. These differences

are statistically significant and support the proposition that there is predictability in the

U.S. stock and treasury bill markets during the 25 year period 1970 through 1994. A more

detailed presentation of the RRL-Trader results appears in Moody et al. [75]. Further

I I 1 - - 1 11 1 - 1 - 1 ' 11 1 - -11-1:
I - - - - - - - - - I r , 1 1 - - - - -

I
- - L d

-

-

-

Sensitivity Analysis: Average on RRL-Trader Committee

1370 1975 1980 1985 1990 1995
Date

Figure 3.17: Sensitivity traces for three of the inputs to the RRL-Trader trading system
averaged over the ensemble of traders. The nonstationary relationships typical among
economic variables is evident from the time-varying sensitivities.

discussion of the Q-Trader vs. RRL-Trader performance is presented in Section 3.9.5.

Model Insight Through Sensitivity Analysis

A sensitivity analysis of the RRL-Trader systems was performed in an attempt to deter-

mine on which economic factors the traders are basing their decisions. Figure 3.17 shows

the absolute normalized sensitivities for three of the more salient input series as a function

of time, averaged over the 30 members of the RRL-Trader committee. The sensitivity of

input i is defined as:

where F is the unthresholded trading output of the policy function and xi denotes input

a.

The time-varying sensitivities in Figure 3.17 emphasize the nonstationarity of economic

relationships. For example, the yield curve slope (which measures inflation expectations)

is found to be a very important factor in the 1970's, while trends in long term interest rates

(measured by the 6 month difference in the AAA bond yield) becomes more important in

the 19807s, and trends in short term interest rates (measured by the 6 month difference in

the treasury bill yield) dominate in the early 1990's.

3.9.5 Discussion of the S&P 500 / T-Bill Results

For the S&P 500 / T-Bill asset allocation problem described in Section 3.9.4, I find that

RRL offers advantages over Q-Learning in performance, interpretability and computa-

tional efficiency. Over the 25 year test period, the RRL-Trader produced significantly

higher profits (5860% vs. 3359%) and Sharpe ratios (0.83 vs. 0.63) than did the Q-Trader.

The RRL-Trader learns a stable and robust trading strategy, maintaining its positions for

extended periods. The frequent switches in position by the Q-Trader suggests that it is

more sensitive to noise in the inputs. Hence, the strategy it has learned is brittle.

Regarding interpretability, I find the value function representation to be obscure.

While the change in the policy as implemented by the RRL algorithm is directly related

to changes in the inputs, for the value function the effect on policy is not so clear. While

the RRL-Trader has an almost linear policy representation (a net with just a single tanh

unit), the Q-Trader's policy is the argmax of a two layer network for which the policy is

an input. The brittle behavior of the Q-Trader is probably due to the complexity of the

learned Q-function with respect to the inputs and actions. The problem representation

for the Q-Trader thus reduces explanatory value.

The sensitivity analysis presented for the RRL-Trader strategy in Section 3.9.4 was easy

to formulate and implement. It enables identification of the most important explanatory

variables, and to observe how their relative saliency varies slowly over time. For the

Q-Trader, however, a similar analysis is not straightforward. The possible actions are

represented as inputs to the Q-function network, with the chosen action being determined

by the argmax. While I can imagine proxies for a sensitivity analysis in a simple two

action {long, short) framework, it is not clear how to perform a sensitivity analysis for

actions versus inputs in general for a Q-Learning framework. This reduces the explanatory

value of a Q-Trader.

Since the {long, short) Q-Trader is implemented using a neural network function

approximator, Bellman's curse of dimensionality has a relatively small impact on the

results of the experiments presented here. The input dimensionality of the Q-Trader is

increased by only one, and there are only two actions to consider. However, in the case

of a portfolio management or multi-sector asset allocation system, the dimensionality

problem becomes severe. Portfolio management requires a continuous weight for each of

N assets included in the portfolio. This increases the input dimension for the Q-Trader

by N relative to the RRL-Trader. Then, in order to facilitate the argmax discovery of

actions, only discrete action sets can be used. The number of discrete actions that must

be considered is exponential in N. Another issue is the possible loss of utility that results

due to the finite resolution of action choices.

In terms of efficiency, the advantage updating representation used for the Q-Trader

required two networks each with 30 tanh units. In order to reduce run time, the simulation

code was written in C. Still, each run required approximately 25 hours to complete using

a Pentium Pro 200 running the Linux operating system. The RRL networks used a single

tanh unit, and were implemented as uncompiled Matlab code. Even given this unoptimized

coding, the RRL simulations were 150 times faster, taking only 10 minutes.

3.9.6 Port folio Management Simulation

As was stated previously, investors typically hold multiple assets at any given time. It is

important to make trading decisions in the context of the portfolio as a whole. In this

section, RRL is used to train a portfolio management system that make trading decisions

for three artificial assets.

Portfolio System and Data

The portfolio management system is allowed to invest proportions of its wealth among

three different securities with the restrictions that it must be fully invested at each time

step, and that no short selling is allowed. The output of the portfolio management system

is a set of portfolio weights {Fi, F;, Ft3), with the conditions that

3

Fe > 0 and Fe = 1 . (3.54)
a=l

The recurrent state of the systems is similar to that described in Section 3.5.

The artificial assets are created using the random walk with trend model described

in Section 3.9.1. When generating m price series according to this model, p, P, E and v

become m dimensional vectors and a and k become m x m matrices. For these experiments

I have m = 3, and set cr to be a diagonal matrix with elements {0.85,0.9,0.95) and k to

be diagonal with elements {3,3,3). Thus the series have different degrees of predictability

and are uncorrelated with one another. Examples of the artificial price series are shown

in the top panel of Figure 3.18.

Using the portfolio management system, I compare training to maximize the differen-

tial Sharpe ratio and training to maximize profits. I find for a variety of transaction costs,

that on average, training to maximize the differential Sharpe ratio outperforms training

to maximize profits.

Simulated Trading Results

Figure 3.18 shows a section of a single simulation of the portfolio management system.

The trading system starts from a random initial configuration and is then adapted to

optimize the differential Sharpe ratio. The transaction costs during this simulation are

set at 0.5%.

Figure 3.19 shows box plots summarizing test performances for ensembles of 100 ex-

periments. In these simulations, the trading system is initialized to a random starting

condition and then adapted on-line throughout the entire data set. The simulation ensem-

bles include 10 different initializations for each of 10 different realizations of the artificial

price series. I vary the transaction costs from 0.2%, 0.5% to l%, and observe the trading

frequency, cumulative profits and Sharpe ratio on the data set. The figures show that the

behavior of the portfolio management system is similar to that of the long/short trader in

response to increasing transaction cost. Also, as the middle panels of Figure 3.18 demon-

strate, the portfolio system tends to saturate the portfolio weights and take longlneutral

300 - - s -
g 200 - -

2
100-
3000 3200 3400 3600 3800 4000 4200 4400 4600 4800 5000

time

Figure 3.18: An expanded view of 2000 time periods from a simulation of the portfolio
management system with transaction costs = 0.5%. The top panel shows the three artifi-
cial price series used in the simulation. The middle three panels show the corresponding
portfolio weights chosen by the trading system at each time step. Note that the smoothest
price series is also the least invested in, and that the portfolio system is required to be
fully invested at all times. The bottom panel shows the cumulative wealth over this time
period. The portfolio system tripled its wealth during this time period even though the
price series showed almost no net gain during the period.

Figure 3.19: Boxplots of the average percent change in the portfolio weights, cumulative
profits and Sharpe ratios vs transaction costs for the "Max.SRV portfolio management
system. The results are obtained over 100 trials with various realizations of artificial data
and initial system parameters. Increased transaction costs reduce the amount of change in
portfolio weights, profits and Sharpe ratio, as expected. The change in portfolio weights
reported here is the average of the time averages of the changes in each of the three
portfolio weights. All figures are computed on the last 9,000 points in the data set.

positions in the individual securities.

Figure 3.20 compares training to maximize the differential Sharpe ratio ("Max.SR")

and training to maximize cumulative profits ("Max.Profit"). Statistics are collected over

an ensemble of 100 experiments as described previously. As the transactions costs increase,

the "Max.SRn system actually outperforms the "Max.Profit7' system in terms of average

final wealth. While both systems are attempting to maximize profit, it appears that in

these examples, concurrently minimizing risk can have tangible effects on actual as well

as risk-adjusted profits.

3.10 Discussion

The research presented here shows that the RRL algorithm is successful in optimizing

trader behavior relative to different utility functions. The use of downside performance

measures, which more accurately reflects actual investor preference, had interesting effects

Figure 3.20: Boxplots of the percent change in portfolio weights, the log base 10 of final
profits and the Sharpe ratios of the two trading systems, "Max.SR" and "Max.Profit".
The change in portfolio weights reported here is the average of the average change of
each of the three portfolio weights. Transaction costs are 0.2%, 0.5% and 1%. The results
are obtained over 100 trials with various realizations of artificial data and initial system
parameters.

on trading performance. Significant differences in behavior were apparent when compar-

ing systems trained to optimize performance ratios based on downside risk measure to

systems trained using more traditional symmetric risk measures. The systems trained

using downside risk measures learn to cut their losses much more quickly than those using

more traditional risk measures. This will have a significant impact on the feasibility of

applying RRL to actual investment scenarios.

This work also extended the RRL single-asset model to a portfolio management system

capable of trading multiple assets. The portfolio systems perform well in simulations using

artificial price series. Similarly to the single asset case, the system's trading behavior

changes as the costs of trading increase. Also, the systems show the ability to produce

allocations that take into account the predictability of the underlying assets.

I also presented a discussion of the difference between representing policy functions and

value functions. Relative to Q-Learning, RRL enables a simpler problem representation,

avoids Bellman's curse of dimensionality and offers compelling advantages in efficiency.

The two types of RL are compared using an S&P-500 stock index asset allocation problem.

The RRL trader uses elements of the robust training methodology developed for the

macroeconomic forecasting problem of Chapter 2. While the supervised forecasters were

not able to find significant, nontrivial forecastable structure in the S&P-500 at the 3 and

12-month horizons as presented in Chapter 2, the RRL asset management system was

able to identify a profitable trading strategy. This highlights the need to optimize systems

directly using the correct utility function. Results were also presented for another real

world dataset, an intra-daily British Pound foreign exchange trading system. Using RRL,

the trader finds and exploits structure in the exchange rate data during 1996. These

results for the RRL algorithm on actual financial dataset show that the algorithm has

great promise for producing trading systems that investors can actually use in real life to

manage their assets.

Chapter 4

Summary & Conclusions

In this thesis, I investigate the use of machine learning methods, including supervised

and reinforcement learning algorithms, to analyze and forecast economic and financial

time series. The algorithms are data driven, time series based approaches that produce

quantitative forecasts and actions that result in measurable performance gains relative to

standardly used techniques. As such, these algorithms have the potential to support real

decision making in business, financial, and governmental institutions.

4.1 Supervised Learning for Forecasts

In Chapter 2, I presented a comprehensive methodology for forecasting macroeconomic

and financial time series using nonlinear neural networks. The methodology includes

several types of techniques that are in common use nowadays in the neural network com-

munity, but that are still novel for this problem domain. These include the use of bagging

committees, model complexity pruning via Principal Component Pruning, and regular-

ized nonlinear models. My goal is to produce a robust methodology for training nonlinear

models using data series with limited history, poor signal to noise ratios, nonstationarities,

and possible nonlinear structure. I also address the question of whether there is detectable

nonlinear structure in the data.

I presented results for 3 and 12-month forecasts of macroeconomic and financial time

series using the methodology. There is non-trivial predictability in the forecasts for all

series considered except the Aaa-bond yield, the S&P-500, and the yield-curve slope.

There is also evidence of nonlinear structure in the Index of Industrial Production and

possibly Housing Starts. While most theories of the economy are nonlinear, it seems

difficult in practice to exploit these nonlinearities. There are a variety of factors that could

make nonlinearity difficult to detect in the remaining series. Among them are the large

amounts of noise in the series, the resulting need for heavy regularization, and the types of

inputs being used. Many of the series included in this study are higher level, more broad

based series than the ones that structural economic theories use as explanatory variables.

However the focus of this study was on the broader indicators of economic activity.

One feature the forecast models exhibit is a large amount of nonstationarity in the

learned relationship between the target and input variables. Swanson and White [I071

conclude that nonstationarity is not a factor in the models they build because the largest

available training window they used produced lower error rates than the smaller windows

they tried. This result is more likely due to the extreme amounts of noise in the "first-

reported" quarterly data they used rather than a statement about actual nonstationarity

in the underlying series. In this work, the sensitivity analysis shows that the relationships

between variables learned by the models changes significantly over the course of the test

period.

The results show that applying nonlinear estimation and model selection techniques

to linear models results in large improvements over more standard linear model fitting

techniques. This includes regularized models such as the Bayesian Vector Autoregression.

This result argues strongly for the use of appropriate linear models for comparison when

fitting nonlinear models to these types of series. It could be that positive results in the lit-

erature from using nonlinear network models are due more to the estimation methodology

than to actual nonlinear structure.

When making directional forecasts, the research showed that incorporated class-ordering

information in the target representation via use of a thermometer code representation

yielded significantly better results than those using a naive unary representation. Also,

the regression network models trained on point forecasts perform as well in terms of direc-

tional forecasts as do the more complex classification models trained to directly forecast

class labels, indicating that the additional complexity was not useful given the relatively

limited history of the data.

4.1.1 Future Research Directions

Comparing the performance of models is challenging because errors are non-normal and

serially correlated. The current best test is the Diebold-Mariano test. This test can have

problems distinguishing between models, even when there is a relatively large difference

in average error. Research is needed to develop more powerful hypothesis tests for these

types of challenging series. Possible extensions could involve developing a test based on

the stationary bootstrap to compare predictive accuracy.

Input selection is always a crucial issue. As was mentioned earlier, a preliminary

study of the Delta Test input selection technique yielded very promising results, though

the specific technique turned out not to be robust enough to be useful. Possible direc-

tions of research for input selection include sensitivity based selection or even the use of

heterogeneous committees, each with its own limited input set.

4.2 Reinforcement Learning for Trading

In Chapter 3, I presented extensions and enhancements to the Recurrent Reinforcement

Learning algorithm [74] that will make the algorithm more useful for investment manage-

ment. These enhancements include extending the use of the algorithm to multiple asset

portfolios, and extending the types of utility functions to include downside risk measures

which more accurately reflect the preferences of the typical investor. The results demon-

strated that the techniques are viable on real world datasets, and also compared the policy

gradient approach of RRL with a popular value function algorithm called Q-Learning. Not

only is the RRL trader more profitable, but it also produces more robust and interpretable

trading decisions than the Q-Learning trader.

The research presented here shows that the RRL algorithm is successful in optimizing

trader behavior relative to different utility functions. The use of downside performance

measures, which more accurately reflects actual investor preference, has interesting effects

on trading performance. Significant differences in behavior were apparent when compar-

ing systems trained to optimize performance ratios based on downside risk measure to

systems trained using more traditional symmetric risk measures. The systems trained

using downside risk measures learn to cut their losses much more quickly than those using

more traditional risk measures. This will have a significant impact on the feasibility of

applying RRL to actual investment scenarios.

This work also extended the RRL single-asset model to a portfolio management system

capable of trading multiple assets. The portfolio systems perform well in simulations using

artificial price series. Similarly to the single asset case, the system's trading behavior

changes as the costs of trading increase. Also, the systems show the ability to produce

allocations that take into account the predictability of the underlying assets.

I also presented a discussion of the difference between representing policy functions and

value functions. Relative to Q-Learning, RRL enables a simpler problem representation,

avoids Bellman's curse of dimensionality, and offers compelling advantages in efficiency.

The two types of RL are compared using an S&P-500 stock index asset allocation problem.

The RRL trader also uses elements of the robust training methodology developed for the

macroeconomic forecasting problem of Chapter 2. While the supervised forecasters were

not able to find nontrivial forecastable structure in the S&P-500 at the 3 and 12-month

horizons as presented in Chapter 2, the RRL asset management system was able to identify

a profitable trading strategy. This highlights the need to optimize systems directly using

the correct utility function. Results were also presented for another real world dataset,

an intra-daily British Pound foreign exchange trading system. Using RRL, the trader

finds and exploits structure in the exchange rate data during 1996. These results for the

RRL algorithm on actual financial datasets show that the algorithm has great promise for

producing systems that can be used in the real world to manage investment assets.

4.2.1 Future Research Directions

There is much research that could be done regarding the use of Recurrent Reinforcement

Learning with portfolios. RRL needs to be tested with larger portfolios that have more

complex correlation structure, and the robustness of allocations produced needs to be

characterized. The incorporation of Black-Litterman [l l] type priors to help stabilize the

allocations may be useful. Also, the allocation constraints could be relaxed to allow short

positions to be taken, creating a comprehensive framework for multi-asset trading systems.

Bibliography

[I] ANDERS, U., AND KORN, 0. Model selection in neural networks. Neural Networks

12, 2 (March 1999), 309-323.

[2] BAIRD, L., AND MOORE, A. Gradient descent for general reinforcement learning.

In Advances in Neural Information Processing Systems (1999), S. A. S. Michael

S. Kearns and D. A. Cohn, Eds., vol. 11, MIT Press, pp. 968-974.

[3] BAIRD, L . C . Advantage updating. Tech. Rep. WL-TR-93-1146, Wright Laboratory,

Wright-Patterson Air Force Base, OH 45433-7301, 1993.

[4] BARTO, A. G. Handbook of Intelligent Control. Van Nostrand Reinhold, New York,

1992, ch. 12, pp. 469-492.

[5] BARTO, A. G., SUTTON, R. S., AND ANDERSON, C. W. Neuronlike adaptive

elements that can solve difficult learning control problems. IEEE Transactions on

Systems, Man, and Cybernetics 13, 5 (September 1983), 12.

[6] BAXTER, J. , AND BARTLETT, P. L. Direct gradient-based reinforcement learn-

ing: I. Gradient estimation algorithms. Tech. rep., Computer Sciences Laboratory,

Australian National University, 1999.

[7] BELLMAN, R. E. Dynamic Programming. Princeton University Press, Princeton,

NJ, 1957.

[8] BENGIO, Y. Training a neural network with a financial criterion rather than a

prediction criterion. In Decision Technology for Financial Engineering (London,

1997), A. Weigend, Y. Abu-Mostafa, and A. N. Refenes, Eds., World Scientific.

[9] BERTSEKAS, D. P. Dynamic Programming and Optimal Control. Athena Scientific,

Belmont, MA, 1995.

[lo] BERTSEKAS, D. P . , AND TSITSIKLIS, J. N. Neuro-Dynamic Programming. Athena

Scientific, 1996.

[ll] BLACK, F., AND LITTERMAN, R. Asset allocation: Combining investor views with

market equilibrium. Journal of Fixed Income 1 (September 1991), 7-18.

[12] BOX, G . E. P., AND COX, D. R. An analysis of transformations. Journal of the

Royal Statistical Society B 26 (1964), 211-234.

[13] BOX, G . E. P., AND JENKINS, G . M. Time Series Analysis: Forecasting and

Control. Prentice Hall, 1970.

[14] BREEDEN, D. T . Intertemporal portfolio theory and asset pricing. In Finance,
J. Eatwell, M . Milgate, and P. Newman, Eds. The New Palgrave, Macmillan Press,

New York, 1987, pp. 180-193.

[15] BREIMAN, L. Bagging predictors. Machine Learning 24, 2 (August 1996), 123-140.

[16] BRENNAN, M. J., SCHWARTZ, E. S., AND LAGNADO, R. Strategic asset allocation.

Journal of Economic Dynamics and Control 21 (1997), 1377-1403.

[17] BRIDLE, J. S. Probabilistic interpretation of feedforward classification network out-

put, with relationships to statistical pattern recognition. In Neurocomputing: Algo-

rithms, Architectures and Applications, Fogelman-Soulie and Herault, Eds., NATO

AS1 Series. Springer, 1990.

[18] BROWN, T. X. Evaluating value functions can be arbitrarily harder than evalu-

ating policies. (http://ece.colorado.edu/~timxb/timxb/publications/OOl2slide.pdf)

Presented at Neural Information Processing Systems Workshop, Breckenridge, CO.,

December 2000.

[19] CLARK, W. A., AND FARLEY, B. G . Simulation of self-organizing systems by

digital computer. IRE Transactions on Information Theory 4 (1954)) 76-84.

[20] CLARK, W. A., AND FARLEY, B. G . Generalization of pattern recognition in a self-

organizing system. In Proceedings of the 1955 Western Joint Computer Conference

(1955), pp. 86-91.

[21] CLEMEN, R. T. Combining forecasts: A review and annotated bibliography. Inter-

national Journal of Forecasting, 5 (1989), 559-583.

[22] COX, J. C., ROSS, S. A. , AND RUBINSTEIN, M. Option pricing: A simplified

approach. Journal of Financial Economics 7 (October 1979), 229-263.

[23] CRITES, R. H., AND BARTO, A. G. Improving elevator performance using rein-

forcement learning. In Advances in NIPS (1996), D. S. Touretzky, M. C. Mozer,

and M. E. Hasselmo, Eds., vol. 8, pp. 1017-1023.

[24] DIEBOLD, F. X. The past, present and future of macroeconomic forecasting. Journal

of Economic Perspectives 12 (1998), 175-192.

[25] DIEBOLD, F. X., AND MARIANO, R. S. Comparing predictive accuracy. Journal

of Business & Economic Statistics 13, 3 (July 1995), 134-144.

1261 DIEBOLD, F. X., AND RUDEBUSCH, G. D. Forecasting output with the composite

leading index: A real time analysis. Journal of the American Statistical Association

(1991), 603-610.

[27] DOAN, T . , LITTERMAN, R., AND SIMS, C. Forecasting and conditional projection

using realistic prior distributions. Econometric Reviews 3 (1984), 1-144.

1281 DUFFIE, D. Security Markets: Stochastic Models. Academic Press, 1988.

[29] DUFFIE, D. Dynamic Asset Pricing Theory, 2 ed. Princeton University Press, 1996.

[30] EFRON, B., AND TIBSHIRANI, R. J. A n Introduction to the Bootstrap. No. 57 in

Monographs on Statistics and Applied Probability. Chapman & Hall, 1993.

[31] ELTON, E. J . , AND GRUBER, M. J . Dynamic programming applications in finance.

Journal of Finance 26, 2 (1971), 437-506.

[32] ENDERS, W. Applied Econometric Time Series. Wiley Series in Probability and

Mathematical Statistics. John Wiley & Sons, 1995.

[33] EUBANK, R. L. Spline Smoothing and Nonparametric Regression. Marcel Dekker,

Inc., 1988.

[34] FRANSES, P. H. Time Series Models for Business and Economic Forecasting. Cam-

bridge University Press, 1998.

[35] GEMAN, S., BIENENSTOCK, E., AND DOURSAT, R. Neural networks and the

biaslvariance dilemma. Neural Computation 4 (1992), 1-58.

[36] GOLDEN, R. M. Mathematical Methods for Neural Network Analysis and Design.

MIT Press, 1996.

1371 GRANGER, C. W. J., AND NEWBOLD, P. Forecasting Economic Time Series,

2nd ed. Academic Press, San Diego, California, 1986.

[38] GRANGER, C. W. J., AND TERASVIRTA, T . Modelling Nonlinear Economic Rela-

tionships. Oxford University Press, 1993.

[39] GRUDIC, G. Z., AND UNGAR, L. H. Localizing policy gradient estimates to action

transitions. In Seventeenth International Conference on Machine Learning (2000).

[40] HAMILTON, J. D. Time Series Analysis. Princeton University Press, 1994.

[41] HAYKIN, S. Neural Networks: A Comprehensive Foundation. IEEE Press, 1994.

[42] HERTZ, J . , KROGH, A., AND PALMER, R. G. Introduction to the Theory of Neural

Computation. Addison-Wesley Publishing Company, 1991.

[43] HOERL, A., AND KENNARD, R. Ridge regression: Applications to nonorthogonal

problems. Technometrics 12 (1970), 69-82.

[44] HOERL, A., AND KENNARD, R. Ridge regression: Biased estimation for nonorthog-

onal problems. Technometrics 12 (1970), 55-67.

[45] JARROW, R. A. Modelling Fixed Income Securities and Interest Rate Options.

McGraw-Hill, 1996.

[46] KAELBLING, L. P . , LITTMAN, M. L., AND MOORE, A. W. Reinforcement learning:

A survey. Journal of Artificial Intelligence Research 4 (1996), 237-285.

[47] KANG, J . , CHOEY, M., AND WEIGEND, A. Nonlinear trading models and asset

allocation based on Sharpe ratio. In Decision Technology for Financial Engineering

(London, 1997), A. Weigend, Y. Abu-Mostafa, and A. N. Refenes, Eds., World

Scientific.

[48] KEARNS, M., MANSOUR, Y., NG, A. Y., AND RON, D. An experimental and

theoretical comparison of model selection methods. Machine Learning 27, 1 (April

1997), 7-50.

[49] KONDA, V. R., AND TSITSIKLIS, J . N. Actor-critic algorithms. In Advances in

Neural Information Processing Systems (2000), S. A. Solla, T. K. Leen, and K.-R.

Muller, Eds., vol. 12, MIT Press, pp. 1008-1014.

[50] LEVIN, A. U., LEEN, T . K., AND MOODY, J. E. Fast pruning using principal com-

ponents. In Advances in Neural Information Processing Systems 6 (1994), J . Cowan,
G. Tesauro, and J . Alspector, Eds., Morgan Kaufmann Publishers, San Francisco,

CA, pp. 35-42.

[51] LITTERMAN, R. B. Forecasting with Bayesian vector autoregressions - five years of

experience. Journal of Business and Economic Statistics 4 , 1 (1986), 25-38.

[52] LONGSTAFF, I?., AND SCHWARTZ, E. Valuing American options by simulation: A

simple least squares approach. Review of Financial Studies 14, 1 (2001), 113-147.

[53] MARBACH, P., AND TSITSIKLIS, J. N. Simulation-based optimization of Markov

reward processes. In IEEE Conference on Decision and Control (1998), vol. 3,

pp. 2698-2703.

[54] MARBACH, P., AND TSITSIKLIS, J. N. Simulation-based optimization of Markov

reward processes. IEEE Transactions on Automatic Control 46, 6 (February 2001),

191-209.

[55] MARKOWITZ, H. Portfolio Selection: Eficient Diversification of Investments. New

York: Wiley, 1959.

[56] MCNEES, S. K. Forecasting accuracy of alternative techniques: A comparison

of U.S. macroeconomic forecasts. Journal of Business & Economic Statistics 4, 1

(1986), 5-23.

[57] MERTON, R. C. Lifetime portfolio selection under uncertainty: The continuous-time

case. Review of Economics and Statistics 51 (August 1969), 247-257.

[58] MERTON, R. C. Optimum consumption and portfolio rules in a continuous-time

model. Journal of Economic Theory 3 (December 1971), 373-413.

[59] MERTON, R. C. Continuous- Time Finance. Blackwell Publisher Inc, 1990.

[60] MILLER, I., AND MILLER, M. John E. Freund's Mathematical Statistics. Prentice

Hall, 1998.

[61] MILLS, T. C. The Econometric Modelling of Financial Time Series, second ed.

Cambridge University Press, 1993.

[62] MOODY, J. Challenges of economic forecasting: Noise, nonstationarity, and nonlin-

earity. Invited talk presented at Machines that Learn, Snowbird Utah, April 1994,

Unpublished.

[63] MOODY, J. Note on generalization, regularization, and architecture selection in
nonlinear learning systems. In Proceedings of the First IEEE-SP Workshop on Neural

Networks for Signal Processing (Los Alamitos, CA, 1991), IEEE Computer Society

Press, pp. 1-10.

[64] MOODY, J. The effective number of parameters: An analysis of generalization and

regularization in nonlinear learning systems. In Advances in Neural Information

Processing Systems 4 (1992), J. E. Moody, S. J. Hanson, and R. P. Lippmann, Eds.,

Morgan Kaufmann Publishers, San Mateo, CA, pp. 847-854.

[65] MOODY, J . Prediction risk and neural network architecture selection. In

From Statistics to Neural Networks: Theory and Pattern Recognition Applications,

V. Cherkassky, J. Friedman, and H. Wechsler, Eds. Springer-Verlag, 1994.

[66] MOODY, J . Economic forecasting: Challenges and neural network solu-

tions. (ftp.cse.ogi.edu/pub/neural/papers/moody95.macroeconomic.ps.Z) Keynote

talk presented at the International Symposium on Artificial Neural Networks,

Hsinchu, Taiwan, 1995.

[67] MOODY, J . Forecasting the economy with neural nets: A survey of challenges and

solutions. In Neural Networks: Tricks of the Trade, G. B. Orr and K.-R. Muller,

Eds. Springer Verlag, 1998, ch. 16, pp. 347-371.

[68] MOODY, J., LEVIN, A., AND REHFUSS, S. Predicting the U.S. index of industrial

production. Neural Network World 3, 6 (1993), 791-794. Special Issue: Proceedings

of Parallel Applications in Statistics and Economics '93.

[69] MOODY, J . , AND SAFFELL, M. Reinforcement learning for trading. In Advances

i n Neural Information Processing Systems (1999), S. A. S. Michael S. Kearns and

D. A. Cohn, Eds., vol. 11, MIT Press, pp. 917-923.

[70] MOODY, J . , AND SAFFELL, M. Minimizing downside risk via stochastic dynamic

programming. In Computational Finance 1999 (2000), A. W. L. Yaser S. Abu-

Mostafa, Blake LeBaron and A. S. Weigend, Eds., MIT Press, pp. 403-415.

[71] MOODY, J . , AND SAFFELL, M. Learning to trade via direct reinforcement. IEEE
Transactions on Neural Networks 12, 4 (July 2001).

[72] MOODY, J . , SAFFELL, M., LIAO, Y., AND WU, L. Reinforcement learning for

trading systems and portfolios: Immediate vs future rewards. In Decision Technolo-

gies for Financial Engineering (Netherlands, 1998), A. N. Refenes, N. Burgess, and

J. Moody, Eds., Kluwer. This volume is the proceedings for the 1997 Computational
Finance conference held at London Business School.

[73] MOODY, J . , AND UTANS, J. Architecture selection strategies for neural networks:

Application to corporate bond rating prediction. In Neural Networks i n the Capital

Markets, A. N. Refenes, Ed. John Wiley & Sons, 1994, pp. 277-307.

[74] MOODY, J., AND WU, L. Optimization of trading systems and portfolios. In Neural

Networks in the Capital Markets (London, 1997), A. S. Weigend, Y. Abu-Mostafa,

and A. N. Refenes, Eds., World Scientific.

[75] MOODY, J. , WU, L., LIAO, Y., AND SAFFELL, M. Performance functions and

reinforcement learning for trading systems and portfolios. Journal of Forecasting 1 7

(1998), 441-470.

[76] MOORE, A. W., AND ATKESON, C. G . Prioritized sweeping: Reinforcement learn-

ing with less data and less real time. Machine Learning 13 (1993), 103-130.

[77] MOZER, M. C., AND SMOLENSKY, P. Skeletonization: A technique for trimming

the fat from a network via relevance assessment. In Advances in Neural Information

Processing Systems 1 (1990), D. S. Touretzky, Ed., Morgan Kaufmann Publishers,

San Mateo, CA.

[78] NARENDRA, K. S., AND PARTHASARATHY, K. Identification and control of dy-

namical systems using neural networks. IEEE Dansactions on Neural Networks I,

1 (1990), 4-27.

[79] NATTER, M., HAEFKE, C., SONI, T., AND OTRUBA, H . Adaptive methods in

macroeconomic forecasting. International Journal of Intelligent Systems in Account-

ing, Finance and Management 6, 1 (March 1997), 1-10.

[80] NAWROCKI, D. Optimal algorithms and lower partial moment: Ex post results.

Applied Economics 23 (1991), 465-470.

[81] NAWROCKI, D . The characteristics of portfolios selected by n-degree lower partial

moment. International Review of Financial Analysis I (1992), 195-209.

[82] NAWROCKI, D. A brief history of downside risk measures. Journal of Investing (Fall

1999), 9-26.

[83] NELSON, C. R. The Investor's Guide to Economic Indicators. John Wiley and

Sons, New York, 1987.

[84] NEUNEIER, R. Optimal asset allocation using adaptive dynamic programming. In

Advances in NIPS (1996), D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, Eds.,

vol. 8, pp. 952-958.

[85] NEUNEIER, R., AND MIHATSCH, 0. Risk sensitive reinforcement learning. In

Advances in Neural Information Processing Systems (1999), M. S. Kearns, S. A.
Solla, and D. A. Cohn, Eds., vol. 11, MIT Press, pp. 1031-1037.

[86] PENG, J . , AND WILLIAMS, R. J . Efficient learning and planning within the Dyna

framework. Adaptive Behavior 1, 4 (1993), 437-454.

[87] PI, H., AND PETERSON, C. Finding the embedding dimension and variable depen-

dencies in time series. Neural Computation 6 (1994), 509-520.

[88] PLOCEK, J . E. Economic Indicators: How America Reads Its Financial Health.

New York Institute of Finance, New York, 1991.

[89] REHFUSS, S. Macroeconomic forecasting with neural networks. Unpublished simu-

lations., 1994.

[go] ROBERTSON, J . C., AND TALLMAN, E. W. Data vintages and measuring forecast

model performance. Economic Review, 4 Q (1998), 4-20.

[91] RUMELHART, D., HINTON, G . , AND WILLIAMS, R. Learning internal represen-

tations by error propagation. In Parallel Distributed Processing: Exploration i n

the microstructure of cognition, D. Rumelhart and J. McClelland, Eds. MIT Press,

Cambridge, MA, 1986, ch. 8, pp. 319-362.

[92] SAMUEL, A. L. Some studies in machine learning using the game of checkers. IBM

Journal on Research and Development 3 (1959), 211-229.

[93] SAMUEL, A. L. Some studies in machine learning using the game of checkers. I1 -

Recent progress. IBM Journal on Research and Development 11 (1967), 601-617.

[94] SAMUELSON, P . A. Asset allocation could be dangerous to your health. The Journal

of Portfolio Management (Spring 1990), 5-8.

[95] SATCHELL, S., AND TIMMERMANN, A. An assessment of the economic value of

non-linear foreign exchange rate forecasts. Journal of Forecasting 14 (1995), 477-

497.

[96] SHARPE, W. F . Mutual fund performance. Journal of Business (Jan 1966), 119-

138.

[97] SOLLA, S., CUN, Y. L., AND DENKER, J. Optimal brain damage. In Advances i n
Neural Information Processing Systems (1990), D. S. Touretzky, Ed., vol. 2, Morgan

Kaufmann Publishers Inc., pp. 598-605.

[98] SORTINO, F. , AND FORSEY, H. On the use and misuse of downside risk. The

Journal of Portfolio Management 22 (1996), 35-42.

[99] SORTINO, F. , AND VAN DER MEER, R. Downside risk - capturing what's at stake

in investment situations. The Journal of Portfolio Management 1 7 (1991), 27-31.

[loo] STORK, D., AND HASSIBI, B. Second order derivatives for network pruning: Opti-

mal brain surgeon. In Advances in Neural Information Processing Systems (1993),

T . J . Sejnowski, G. E. Hinton, and D. S. Touretzky, Eds., vol. 5, Morgan Kaufmann

Publishers Inc., pp. 164-171.

[loll STUTELY, R. The Economist Guide to Economic Indicators. John Wiley and Sons,

New York, 1997.

[I021 SUTTON, R. S. Temporal credit assignment in reinforcement learning. Ph.D. thesis,

University of Massachusetts, Amherst, 1984.

[I031 SUTTON, R. S. Learning to predict by the method of temporal differences. Machine

Learning 3, 1 (1988), 9-44.

[104] SUTTON, R. S., AND BARTO, A. G. Reinforcement Learning: A n Introduction.

MIT Press, Cambridge, MA, 1997.

[lo51 SUTTON, R. S., MCALLESTER, D., SINGH, S., AND MANSOUR, Y. Policy gradient

methods for reinforcement learning with function approximation. In Advances in

Neural Information Processing Systems (2000), T . K. L. Sara A. Solla and K.-R.

Muller, Eds., vol. 12, MIT Press, pp. 1057-1063.

[I061 SWANSON, N., AND WHITE, H. A model selection approach to real-time macroe-

conomic forecasting using linear models and artificial neural networks. Discussion

paper, Department of Economics, Pennsylvania State University, 1995.

[lo71 SWANSON, N., AND WHITE, H. A model selection approach to real-time macroe-

conomic forecasting using linear models and artificial neural networks. Review of

Economics and Statistics 79, 4 (1997), 540-550.

[I081 SWANSON, N . R., AND FRANSES, P. H. Nonlinear econometric modelling: A
selective review. In Nonlinear Time Series Analysis of Economic and Financial
Data, P. Rothman, Ed. Kluwer Academic Publishers, Boston, 1999, ch. 4, pp. 87-

109.

[log] TESAURO, G. TD-Gammon, a self-teaching backgammon program, achieves master-

level play. Neural Computation 6, 2 (1994), 215-219.

[I101 TESAURO, G. Temporal difference learning and TD-Gammon. Communications of

the ACM 38, 3 (1995), 58-68.

[I l l] TIMMERMANN, A., AND PESARAN, H. Predictability of stock returns: Robustness

and economic significance. Journal of Finance 50 (1995), 1201-1228.

[I121 TSITSIKLIS, J . N., AND ROY, B. V. Optimal stopping of Markov processes:

Hilbert space theory, approximation algorithms, and an application to pricing high-

dimensional financial derivatives. IEEE Z'ransactions on Automatic Control 44, 10

(October 1999), 1840-1851.

[113] TSITSIKLIS, J . N., AND ROY, B. V. Regression methods for pricing complex

American-style options. IEEE ZYansactions on Neural Networks 12, 4 (July 2001),

694-703.

[I141 UTANS, J . , MOODY, J . , REHFUSS, S., AND SIEGELMANN, H. Input variable selec-

tion for neural networks: Application to predicting the U.S. business cycle. In Pro-

ceedings of Computational Intelligence for Financial Engineering (1995), pp. 118-

122.

[I151 VAN ROY, B. Temporal-difference learning and applications in finance. In Compu-

tational Finance 1999 (2001), Y . S. Abu-Mostafa, B. LeBaron, A. W. Lo, and A. S.
Weigend, Eds., MIT Press, pp. 447-461.

[I161 WAHBA, G. Spline Models for Observational Data. No. 59 in Regional Conference

Series in Applied Mathematics. Society for Industrial and Applied Mathematics,

1990.

[117] WATKINS, C. J . , AND DAYAN, P. Technical note: Q-Learning. Machine Learning

8, 3 (1992), 4.

[I181 WATKINS, C. J . C. H. Learning with Delayed Rewards. PhD thesis, Cambridge

University, Psychology Department, 1989.

(1191 WERBOS, P. Back-propagation through time: What it does and how to do it. IEEE

Proceedings 78, 10 (Oct. 1990), 1550-1560.

[I201 WERBOS, P. Neurocontrol and supervised learning: An overview and evaluation. In

Handbook of Intelligent Control, D. A. White and D. A. Sofge, Eds. Van Nostrand

Reinhold, New York, 1992, ch. 3, pp. 65-90.

[I211 WHITE, H. Personal communication. Unpublished. 1996.

[122] WIDROW, B., AND HOFF, M. E. Adaptive switching circuits. In IRE WESCON

Convention Record (1960), pp. 96-104.

[123] WILLIAMS, R. J . Toward a theory of reinforcement-learning connectionist systems.

Tech. Rep. NU-CCS-88-3, College of Computer Science, Northeastern University,

Boston, MA, 1988.

[I241 WILLIAMS, R. J. Simple statistical gradient-following algorithms for connectionist

reinforcement learning. Machine Learning 8 (1992), 229-256.

[I251 WILLIAMS, R. J . , AND ZIPSER, D. A learning algorithm for continually running

fully recurrent neural networks. Neural Computation 1 (1989), 270-280.

[126] WINKLER, R. L., AND MAKRIDAKIS, S. The combination of forecasts. Journal of

the Royal Statistical Society, A, 146 (1983), 150-157.

[127] WU, L., AND MOODY, J. A smoothing regularizer for feedforward and recurrent

networks. Neural Computation 8, 3 (1996), 461-489.

[I281 ZELLNER, A., AND PALM, F. Time series analysis and simultaneous equation econo-

metric models. Journal of Econometrics 2 (1974), 17-54.

[129] ZHANG, W. , AND DIETTERICH, T. G. High-performance job-shop scheduling with

a time-delay td(X) network. In Advances in NIPS (1996), D. S. Touretzky, M. C.

Mozer, and M. E. Hasselmo, Eds., vol. 8, pp. 1024-1030.

Appendix A

Tables of Results

This appendix lists tables of results for the macroeconomic prediction problem presented

in Chapter 2 along with a variety of performance metrics for evaluating the performance

of the predictive models.

A. 1 Performance Metrics

For these results I use three primary performance metrics: Normalized Root Mean Square

Error, (NRMSE), Normalized Mean Absolute Error (NMAE), and Misclassification Rate.

All metrics are averages over the entire test set, 1980 - 1990. In the following formulas,

t is the target, p is the prediction, and (.) gives the expected value over the test period.

The NRMSE is the root mean square error, normalized by the variance of the target series

over the test period,

This definition of NRMSE can be interpreted as "fraction of unexplained variance". The

NMAE is the average absolute error, normalized by the mean absolute deviation of the

target series over the test period,

The NMAE behaves similarly to NRMSE, but is more robust to outliers in the data. The

Misclassification Rate is the percent of the predictions which have the opposite sign of

the target. This is a measure of how well the model predicts the direction of change of

the series. The Misclassification Rate can be calculated from the Confusion Matrix. The

Confusion Matrix is a table that contains a count of the realized combinations of up and

down predictions with up and down targets:

target

predicted
down

The Misclassification Rate is the sum of the off-diagonal elements divided by the total

number of elements. In the previous example, the Misclassification Rate is (7 + 5)/(12 +
14 + 7 + 5) = 0.3158. If a target is zero, then that point is not included in the calculation

of the confusion matrix. If the prediction of a given model is zero then that point is not

included in the calculation of the confusion matrix for that model.

The Confusion Matrix calculated for the point forecast results uses a return of 0 as the

dividing line between up and down returns. In the case of quintile directional forecasts

(for the classification and quantized regression models), the median return is used as the

dividing line. Thus an up target corresponds to a target in the top two quintiles of the

returns distribution, and a down target corresponds to a target return in the bottom

two quintiles of the returns distribution. The middle quintile (around the median) is not

included as an up or down return.

A.2 Tables of Results

The following tables list numerical results of the performance measures described previ-

ously for the point and direction forecasts. The series are listed in alphabetical order

by the Citibase designation (Table 2.1), and for each series, results for the 3-month and

12-month forecasts are given.

For each series-horizon combination, there are a set of three tables: the first for point

forecasts, the second for the quantized point forecasts evaluated against the classification

targets, and the third for the direct classification forecasts. In each table, the best model,

according to each performance measure, is marked with a '*'. The models which are not

significantly worse than the best at the 5% significance level (according to the Diebold-

Mariano test as described in Section 2.6.3) are also marked with a '*'.

The significance of the regression models results in the top table on each page are

tested relative to each other. The significance of the quantized regression and classification

models results in the bottom two tables on each page are tested relative to each other as

a whole.

Refer to Section 2.5 for descriptions of the models used.

Table A.l: DLEAD.L.FD3 Regression Results

Table A.2: DLEAD.L.FD3 Quantized Regression Results

Direct Predictions
Linear Linear Neural3

Regression Network Network
0.928 0.492* 0.579
0.964 0.701* 0.761
1.013* 0.759* 0.801*
47 14 57 13 60 12
26 31 16 32 13 33

0.339 0.246 0.212

Table A.3: DLEAD.L.FD3 Classification Results

Iterated Predictions
Linear Bayesian

AR VAR
1.069 0.554*
1.034 0.744*
1.003 0.832*
52 19 57 15
21 26 16 30

0.339 0.263

Regression:
NMSE
NRMSE
NMAE
Confusion
Matrix
Misclass.
Rate

Trivial Predictors
Median No Change
Return Return
1.001 1.459
1.000 1.208
0.998 1.125
73 45 54 19
0 0 19 26

0.381 0.322

Direct Predictions
Linear Linear Neural3

Regression Network Network

1.750* 1.258* 1.250'
1.323* 1.122* 1.118*
0.950* 0.858* 0.833*
24 5 31 2 33 1
13 31 7 33 6 34

0.247 0.123 0.095

Iterated Predictions
Linear Bayesian

AR VAR
2.108 1.425*
1.452 1.194*
1.125 0.892*
17 8 32 5

12 26 7 30

0.317 0.162

Quantized
Regression:

MSE
RMSE
MAE
Confusion
Matrix
Misclass.
Rate

Trivial Predictors
Median No Change
Return Return

1.817* 2.375
1.348* 1.541
1.117 1.142
0 0 22 11
0 0 0 0

- 0.333

Thermometer Representation

Linear Neural3 NeurallO
1.308* 1.408* 1.250*
1.144* 1.187* 1.118*
0.792* 0.842* 0.800*
33 3 35 6 35 4
5 26 5 27 3 26

0.119 0.151 0.103

Softmax Representation

Linear Neural3 NeurallO
1.667* 1.667* 1.700*
1.291* 1.291* 1.304*
0.917* 0.917* 0.967
38 5 38 5 37 6
5 23 5 23 4 21

0.141 0.141 0.147

Classification:
MSE
RMSE
MAE
Confusion
Matrix
Misclass.
Rate

Trivial Classifiers
Median No Change
Return Return
1.817* 2.375
1.348* 1.541
1.117 1.142
0 0 22 11
0 0 0 0

- 0.333

Table A.4: DLEAD.L.FD12 Regression Results

Table A.5: DLEAD.L.FD12 Quantized Regression Results

Direct Predictions
Linear Linear Neural3

Regression Network Network
1.414 0.341* 0.334*
1.189 0.584* 0.578*
1.036 0.555* 0.577*
52 10 60 3 63 5
21 37 13 44 10 42

0.258 0.133 0.125

Regression:
NMSE
NRMSE
NMAE
Confusion
Matrix
Misclass.
Rate

Table A.6: DLEAD.L.FD12 Classification Results

Quantized
Regression:

MSE
RMSE
MAE
Confusion
Matrix
Misclass.
Rate

I Trivial Classifiers I Softmax Representation I Thermometer Representation
- - -

Trivial Predictors
Median No Change
Return Return

1.031 2.380
1.015 1.543
1.026 1.542
73 47 43 29

0 0 30 18

0.392 0.492

Iterated Predictions
Linear Bayesian

AR VAR
1.137 0.497*
1.066 0.705*
1 .OOO 0.720
59 35 55 4
14 12 18 43

0.408 0.183

Trivial Predictors
Median No Change
Return Return

1.700 3.783
1.304 1.945
1.100 1.500
0 0 15 18
0 0 0 0

- 0.545

Classification:
MSE
RMSE
MAE
Confusion
Matrix
Misclass. ' Rate

Iterated Predictions
Linear Bayesian

AR VAR

2.267 0.792*
1.506 0.890*
1.150 0.625*
3 7 38 1

14 35 0 50

0.356 0.011

Direct Predictions
Linear Linear Neural3

Regression Network Network

1.767 0.625" 0.650*
1.329 0.791* 0.806*
1.017 0.508* 0.567*
18 10 33 0 34 0
8 50 2 50 1 50

0.209 0.024 0.012

Median No Change
Return Return
1.700 3.783
1.304 1.945
1.100 1.500
0 0 15 18
0 0 0 0

- 0.545

Linear Neural3 NeurallO
0.908 1.300 0.833*
0.953 1.140 0.913*
0.675* 0.850 0.650*
35 4 37 6 35 7
0 41 2 43 0 39

0.050 0.091 0.086

Linear Neural3 NeurallO
0.867* 0.817* 0.792*
0.931* 0.904* 0.890*
0.617* 0.633' 0.592"
38 5 37 5 39 5
0 53 0 49 0 47

0.052 0.055 0.055

Table A.7: DRM.L.FD3 Regression Results

Table A.8: DRM.L.FD3 Quantized Regression Results

Direct Predictions
Linear Linear Neural3

Regression Network Network

2.403 0.870* 0.870*
1.550 0.933* 0.933*
0.994 0.972* 0.958*
34 38 28 22 25 18
21 27 27 43 30 47

0.492 0.408 0.400

Regression:
NMSE
NRMSE
NMAE
Confusion
Matrix
Misclass.
Rate

Table A.9: DRM.L.FD3 Classification Results

Trivial Predictors
Median No Change
Return Return
1.005* 2.615
1.003* 1.617
0.995* 1.615

0 0 18 37
55 65 37 28

0.458 0.617

Direct Predictions
Linear Linear Neural3

Regression Network Network

4.600 3.167* 2.575*
2.145 1.780* 1.605*
1.650 1.333* 1.242*
33 23 23 13 22 11
16 19 16 22 14 23

0.429 0.392 0.357

Quantized
Regression:
MSE
RMSE
MAE
Confusion
Matrix
Misclass.
Rate

Iterated Predictions
Linear Bayesian

AR VAR
1.114" 1.519
1.055* 1.232
1 .OOO* 1.272
28 28 23 29
27 37 32 36

0.458 0.508

Classification:
MSE
RMSE
MAE
Confusion
Matrix
Misclass.
Rate

Trivial Predictors
Median No Change
Return Return

2.383 5.592
1.544 2.365

1.350* 1.942
0 0 17 27
0 0 0 0

- 0.614

Iterated Predictions
Linear Bayesian

AR VAR

3.033 4.592
1.742 2.143
1.417* 1.692
21 16 21 20

6 8 22 17

0.431 0.525

Trivial Classifiers
Median No Change
Return Return
2.383 5.592
1.544 2.365
1.350* 1.942

0 0 17 27
0 0 0 0

- 0.614

Softmax Representation

Linear Neural3 NeurallO
4.567 2.325* 4.192
2.137 1.525* 2.047
1.617 1.325* 1.542
20 10 0 0 17 8
26 28 0 0 21 26

0.429 0.000 0.403

Thermometer Representation

Linear Neural3 NeurallO
3.208* 2.400* 3.400
1.791* 1.549* 1.844
1.375 1.317* 1.400
22 12 6 4 24 11
17 23 9 14 18 25

0.392 0.394 0.372

Table A.lO: DRM.L.FD12 Regression Results

Table A.ll: DRM.L.FD12 Quantized Regression Results

Regression:

NMSE
NRMSE
NMAE
Confusion
Matrix
Misclass.
Rate

Table A. 12: DRM.L.FD 12 Classification Results

Iterated Predictions
Linear Bayesian

AR VAR

0.922* 1.382
0.960* 1.175
0.991* 1.311
20 30 29 35
35 35 26 30

0.542 0.508

Trivial Predictors
Median No Change
Return Return

1.054* 2.893
1.027* 1.701
1.023* 1.627

0 0 32 34
55 65 23 31

0.458 0.475

Quantized
Regression:

MSE
RMSE
MAE
Confusion
Matrix
Misclass.
Rate

Direct Predictions
Linear Linear Neural3

Regression Network Network

3.232 0.728* 0.787*
1.798 0.853* 0.887*
1.049 0.897* 0.909*
35 40 33 29 34 29
20 25 22 36 21 36

0.500 0.425 0.417

Trivial Predictors
Median No Change
Return Return

1.967* 5.125
1.402* 2.264
1.167" 1.808

0 0 29 27
0 0 0 0

- 0.482

Classification:
MSE
RMSE
MAE
Confusion
Matrix
Misclass.
Rate

Iterated Predictions
Linear Bayesian

AR VAR

1.825* 3.708
1.351 * 1.926
1.142* 1.525
25 13 27 15
2 11 14 18

0.294 0.392

Softmax Representation

Linear Neural3 NeurallO
3.325 3.292* 3.500
1.823 1.814* 1.871
1.358 1.325 1.433
33 7 33 8 31 11
24 29 24 29 21 25

0.333 0.340 0.364

Trivial Classifiers
Median No Change
Return Return
1.967* 5.125
1.402* 2.264
1.167* 1.808

0 0 29 27
0 0 0 0

- 0.482

Direct Predictions
Linear Linear Neural3

Regression Network Network

3.933 1.983* 2.092*
1.983 1.408* 1.446*
1.567 1.033* 1.025*
39 20 33 6 32 8
13 9 10 23 13 25

0.407 0.222 0.269

Thermometer Representation

Linear Neural3 NeurallO
2.917* 1.883* 2.325*
1.708* 1.372* 1.525*
1.300 0.983* 1.092
31 9 30 5 34 8
20 25 18 25 19 25

0.341 0.295 0.314

Table A. 13: FM2DQ.L.FD3 Regression Results

Table A.14: FM2DQ.L.FD3 Quantized Regression Results

Direct Predictions
Linear Linear Neural3

Regression Network Network

1.493 0.571* 0.612*
1.222 0.756* 0.782*
1.021 0.825* 0.842*
46 14 76 18 76 14
40 20 10 16 10 20

0.450 0.233 0.200

Regression:

NMSE
NRMSE
NMAE
Confusion
Matrix
Misclass.
Rate

Table A.15: FM2DQ.L.FD3 Classification Results

Trivial Predictors
Median No Change
Return Return
1.061 1.199
1.030 1.095

1.025* 1.149
86 34 68 15
0 0 18 19

0.283 0.275

Direct Predictions
Linear Linear Neural3

Regression Network Network

3.492 1.858* 1.933*
1.869 1.363* 1.390*
1.375 0.975* 1.000*
11 9 23 8 23 10

22 44 11 36 8 36

0.360 0.244 0.234

Quantized
Regression:

MSE
RMSE
MAE
Confusion
Matrix
Misclass.
Rate

Iterated Predictions
Linear Bayesian

AR VAR
1.021 0.486*
1.010 0.697*
1.004 0.747*
76 25 78 15
10 9 8 19

0.292 0.192

Trivial Predictors
Median No Change
Return Return
1.983* 2.775
1.408* 1.666
1.167* 1.258

0 0 16 11
0 0 0 0

- 0.407

Classification:
MSE
RMSE
MAE
Confusion
Matrix
Misclass.
Rate

Iterated Predictions
Linear Bayesian

AR VAR
2.625 1.575*
1.620 1.255*
1.292 0.842*
13 9 27 7

14 30 4 36

0.348 0.149

Softmax Representation

Linear Neural3 NeurallO
3.825 3.625 3.617
1.956 1.904 1.902
1.408 1.375 1.383
25 18 25 15 25 16
13 39 13 42 13 41

0.326 0.295 0.305

Trivial Classifiers
Median No Change
Return Return
1.983* 2.775
1.408* 1.666
1.167* 1.258

0 0 16 11
0 0 0 0

- 0.407

Thermometer Representation

Linear Neural3 NeurallO
2.483 2.408 2.250*
1.576 1.552 1.500*
1.133 1.125 1.033*
24 12 24 15 27 13
8 3 9 1034 7 38

0.241 0.301 0.235

Table A.16: FM2DQ.L.FD12 Regression Results

Table A.17: FM2DQ.L.FD12 Quantized Regression Results

Direct Predictions
Linear Linear Neural3

Regression Network Network

4.453 0.720" 0.676"
2.110 0.849* 0.822*
1.017 0.875* 0.858*
39 9 88 28 82 26

50 22 1 3 7 5

0.492 0.242 0.275

Table A.18: FM2DQ.L.FD12 Classification Results

Iterated Predictions
Linear Bayesian

AR VAR
1.031* 0.670*
1.016* 0.818*
1.023* 0.805*
79 31 79 11
10 0 10 20

0.342 0.175

Regression:
NMSE
NRMSE
NMAE
Confusion
Matrix
Misclass.
Rate

Trivial Predictors
Median No Change
Return Return
1.143* 1.019*
1.069* 1.010*
1.045* 1.045*
89 31 74 10
0 0 15 21

0.258 0.208

Direct Predictions
Linear Linear Neural3

Regression Network Network

3.550* 1.633 1.350*
1.884* 1.278 1.162*
1.367 1.017* 0.917"
14 5 12 6 18 6

23 51 10 36 9 39

0.301 0.250 0.208

Quantized
Regression:
MSE
RMSE
MAE
Confusion
Matrix
Misclass.
Rate

Trivial Predictors
Median No Change
Return Return
1.967* 2.192*
1.402* 1.480*
1.183* 1.125*

0 0 13 9
0 0 0 0

- 0.409

Classification:
MSE
RMSE
MAE
Confusion
Matrix
Misclass.
Rate

Iterated Predictions
Linear Bayesian

AR VAR
2.525 1.508*
1.589 1.228*
1.358 0.808*
15 13 25 9
13 31 7 40

0.361 0.198

Softmax Representation

Linear Neural3 NeurallO

2.975 3.533 3.533
1.725 1.880 1.880
1.242 1.350 1.350
26 14 26 16 26 16
12 39 12 43 12 43

0.286 0.289 0.289

Trivial Classifiers
Median No Change
Return Return
1.967* 2.192*
1.402* 1.480*
1.183* 1.125*

0 0 13 9
0 0 0 0

- 0.409

Thermometer Representation '

Linear Neural3 NeurallO
2.192* 2.208 2.467
1.480* 1.486 1.571
1.058 1.075 1.217
23 15 26 13 26 13
10 39 9 38 12 37

0.287 0.256 0.284

Table A.19: FSPCOM.L.FD3 Regression Results

Table A.20: FSPCOM.L.FD3 Quantized Regression Results

Direct Predictions
Linear Linear Neural3

Regression Network Network
2.292 0.927" 0.924*
1.514 0.963* 0.961*
1.022 0.970" 0.976*
38 24 70 25 66 20
43 15 11 14 15 19

0.558 0.300 0.292

Regression:
NMSE
NRMSE
NMAE
Confusion
Matrix
Misclass.
Rate

Table A.21: FSPCOM.L.FD3 Classification Results

Trivial Predictors
Median No Change
Return Return
1.019* 2.056
1.009" 1.434
1.020* 1.356
81 39 57 23
0 0 24 16

0.325 0.392

Direct Predictions
Linear Linear Neural3

Regression Network Network
5.375 2.267* 2.300*
2.318 1.506* 1.517*
1.908 1.167* 1.217"
22 20 20 9 20 7
32 15 14 19 18 21

0.584 0.371 0.379

Iterated Predictions
Linear Bayesian

AR VAR
1.094* 1.333
1.046* 1.154
1.027' 1.222
73 33 52 21
8 6 29 18

0.342 0.417

Iterated Predictions
Linear Bayesian

AR VAR
2.417" 3.692
1.555* 1.921
1.300* 1.492

3 0 23 15
8 7 21 20

0.444 0.456

Quantized
Regression:
MSE
RMSE
MAE
Confusion
Matrix
Misclass.
Rate

Trivial Predictors
Median No Change
Return Return
2.258' 3.875
1.503* 1.968
1.308* 1.525

0 0 30 17
0 0 0 0

- 0.362

Classification:

MSE
RMSE
MAE
Confusion
Matrix
Misclass.
Rate

Softmax Representation

Linear Neural3 NeurallO

4.467 3.758 4.342
2.113 1.939 2.084
1.617 1.458 1.592
30 13 28 13 27 12
25 23 13 13 23 17

0.418 0.388 0.443

Trivial Classifiers
Median No Change
Return Return

2.258* 3.875
1.503* 1.968
1.308* 1.525

0 0 30 17
0 0 0 0

- 0.362

Thermometer Representation

Linear Neural3 NeurallO
2.525* 2.242* 2.908*
1.589* 1.497* 1.705*
1.208* 1.208* 1.325
22 7 22 10 18 7
20 24 14 20 19 24

0.370 0.364 0.382

Table A.22: FSPCOM.L.FD12 Regression Results

Table A.23: FSPCOM.L.FD12 Quantized Regression Results

Direct Predictions
Linear Linear Neural3

Regression Network Network

3.098 0.996* 1.088*
1.760 0.998* 1.043*
1.013* 1.059 1.107
58 18 67 28 66 23
32 12 23 2 24 7

0.417 0.425 0.392

Table A.24: FSPCOM.L.FD12 Classification Results

Iterated Predictions
Linear Bayesian

AR VAR
1.222* 1.502*
1.105* 1.226*
1.162 1.236
90 30 66 16
0 0 24 14

0.250 0.333

Regression:
NMSE
NRMSE
NMAE
Confusion
Matrix
Misclass.
Rate

Trivial Predictors
Median No Change
Return Return
1.130* 2.995
1.063* 1.731
1.126 1.721*
90 30 60 30
0 0 30 0

0.250 0.500

Direct Predictions
Linear Linear Neural3

Regression Network Network

5.250 2.600* 2.692*
2.291 1.612* 1.641*
1.767 1.383 1.408
30 10 17 0 13 0
33 14 20 19 22 22

0.494 0.357 0.386

Iterated Predictions
Linear Bayesian

AR VAR
2.633* 3.242*
1.623* 1.800*
1.467* 1.525*

0 0 26 4
4 5 22 23

0.444 0.347

Quantized
Regression:

MSE
RMSE
MAE
Confusion
Matrix
Misclass.
Rate

Trivial Predictors
Median No Change
Return Return

2.617* 6.775
1.618* 2.603
1.483* 2.208

0 0 27 33
0 0 0 0

- 0.550

Thermometer Representation

Linear Neural3 NeurallO

3.100* 2.392* 2.592*
1.761* 1.546* 1.610*
1.417* 1.275* 1.358*
27 1 30 0 22 0

23 32 26 29 23 22

0.289 0.306 0.343

Softmax Representation

Linear Neural3 NeurallO

3.783 3.950 3.425*
1.945 1.987 1.851*
1.600 1.583 1.342*
28 6 28 4 42 2
28 21 26 28 24 28

0.410 0.349 0.271

Classification:

MSE
RMSE
MAE
Confusion
Matrix
Misclass.
Rate

Trivial Classifiers
Median No Change
Return Return
2.617* 6.775
1.618* 2.603
1.483* 2.208

0 0 27 33
0 0 0 0

- 0.550

Table A.25: FYAAAC.L.FD3 Regression Results

Table A.26: FYAAAC.L.FD3 Quantized Regression Results

Regression:
NMSE
NRMSE
NMAE
Confusion
Matrix
Misclass.
Rate

Table A.27: FYAAAC.L.FD3 Classification Results

Trivial Predictors
Median No Change
Return Return
1.044* 2.051
1.022* 1.432
1.021 1.389*
56 63 29 30
0 0 27 33

0.529 0.479

Direct Predictions
Linear Linear Neural3

Regression Network Network

6.308 3.392* 3.167*
2.512 1.842* 1.780*
1.975 1.608* 1.567'
19 30 19 27 15 17
27 30 3 10 2 6

0.538 0.508 0.475

Quantized
Regression:

MSE
RMSE
MAE
Confusion
Matrix
Misclass.
Rate

Iterated Predictions
Linear Bayesian

AR VAR
1.086* 1.135*
1.042* 1.065*
1.016 1.103
34 45 37 39
22 18 19 24

0.563 0.487

Direct Predictions
Linear Linear Neural3

Regression Network Network

2.450 1.033* 1.043*
1.565 1.016* 1.021*

0.984* 1.014 1.017
24 33 55 54 56 58
32 30 1 9 0 5

0.546 0.462 0.487

Trivial Predictors
Median No Change
Return Return

2.875* 5.183
1.696* 2.277
1.575* 1.767*

0 0 23 24
0 0 0 0

- 0.511

Classification:
MSE
RMSE
MAE
Confusion
Matrix
Misclass.
Rate

Iterated Predictions
Linear Bayesian

AR VAR

3.917 4.608
1.979 2.147

1.650* 1.625"
21 18 28 26
17 18 17 28

0.473 0.434

Softmax Representation

Linear Neural3 NeurallO
4.742 5.492 6.025
2.178 2.343 2.455
1.692* 1.825 1.942
19 28 18 24 20 34
12 19 20 21 15 16

0.513 0.530 0.576

Trivial Classifiers
Median No Change
Return Return
2.875* 5.183
1.696* 2.277
1.575* 1.767*

0 0 23 24
0 0 0 0

- 0.511

Thermometer Representation

Linear Neural3 NeurallO
4.283 3.075* 3.750
2.070 1.754* 1.936
1.700* 1.525* 1.667
19 28 22 21 15 26
15 14 2 11 6 10

0.566 0.411 0.561

Table A.28: FYAAAC.L.FD12 Regression Results

Table A.29: FYAAAC.L.FD12 Quantized Regression Results

Direct Predictions
Linear Linear Neural3

Regression Network Network

4.304 1.091 1.053*
2.075 1.044 1.026*
1.003 1.023 0.999*
42 19 64 56 64 56
22 37 0 0 0 0

0.342 0.467 0.467

Table A.30: FYAAAC.L.FD 12 Classification Results

Iterated Predictions
Linear Bayesian

AR VAR
1.107* 1.145*
1.052* 1.070*
1.018 1.047*
56 53 49 37
8 3 15 19

0.508 0.433

Regression:
NMSE
NRMSE
NMAE
Confusion
Matrix
Misclass.
Rate

Quantized
Regression:

MSE
RMSE
MAE
Confusion
Matrix
Misclass.
Rate

I Trivial Classifiers I Softmax Representation / Thermometer Representation

Trivial Predictors
Median No Change
Return Return
1.096* 1.792
1.047* 1.339
1.020* 1.312*
64 56 40 33
0 0 24 23

0.467 0.475

Trivial Predictors
Median No Change
Return Return

2.850* 4.417*
1.688* 2.102*
1.517* 1.583*

0 0 21 19
0 0 0 0

- 0.475

Classification:
MSE
RMSE
MAE
Confusion
Matrix
Misclass.
Rate

Iterated Predictions
Linear Bayesian

AR VAR
3.617* 3.725*
1.902* 1.930*
1.733* 1.525*
7 15 21 25
11 7 11 25

0.650 0.439

Direct Predictions
Linear Linear Neural3

Regression Network Network

3.692* 3.058* 2.850*
1.921* 1.749* 1.688*
1.242* 1.575* 1.517*
32 19 0 0 0 0
12 41 5 1 0 0

0.298 0.833 0.000

Median No Change
Return Return
2.850* 4.417*
1.688* 2.102*
1.517* 1.583*

0 0 21 19
0 0 0 0

- 0.475

Linear Neural3 NeurallO
4.417* 4.983 4.683*
2.102* 2.232 2.164*
1.583* 1.700* 1.600*
18 18 16 25 18 21
25 32 19 29 24 33

0.462 0.494 0.469

Linear Neural3 NeurallO
4.375* 4.942* 4.842*
2.092* 2.223* 2.200*
1.575* 1.742* 1.692*

3 3 0 0 0 0
42 56 47 58 43 56

0.433 0.448 0.434

Table A.31: HSBP.FD3 Regression Results

Table A.32: HSBP.FD3 Quantized Regression Results

Direct Predictions
Linear Linear Neural3

Regression Network Network
1.402 0.647* 0.664"
1.184 0.804* 0.815*
1.056 0.793* 0.823'
42 28 46 20 46 19
14 29 10 37 10 38

0.372 0.265 0.257

Table A.33: HSBP.FD3 Classification Results

Iterated Predictions
Linear Bayesian

AR VAR
1.266 1.184
1.125 1.088
0.999 1.115
31 25 45 28
25 32 11 29

0.442 0.345

Regression:
NMSE
NRMSE
NMAE
Confusion
Matrix
Misclass.
Rate

Trivial Predictors
Median No Change
Return Return
1 .OOO 2.011
1 .OOO 1.418
0.999 1.371
56 57 31 27

0 0 25 30

0.504 0.460

Quantized
Regression:
MSE
RMSE
MAE
Confusion
Matrix
Misclass.
Rate

Iterated Predictions
Linear Bayesian

AR VAR
3.483 2.883
1.866 1.698
1.467 1.233
7 14 33 20
15 20 6 26

0.518 0.306

Trivial Predictors
Median No Change
Return Return
2.233 4.167
1.494 2.041
1.283 1.550
0 0 20 16
0 0 0 0

- 0.444

Direct Predictions
Linear Linear Neural3

Regression Network Network
3.183 1.592* 1.642*
1.784 1.262* 1.281"
1.417 0.958* 0.975*
27 20 33 9 35 9
9 27 5 29 6 28

0.349 0.184 0.192

Thermometer Representation

Linear Neural3 NeurallO
2.525 2.033 2.508
1.589 1.426 1.584
1.208 1.133 1.158
37 14 29 14 37 20
5 26 9 26 5 23

0.232 0.295 0.294

Softmax Representation

Linear Neural3 NeurallO
3.242 3.867 3.733
1.800 1.966 1.932
1.308 1.450 1.417
31 14 36 20 33 17
13 35 11 33 14 36

0.290 0.310 0.310

Classification:
MSE
RMSE
MAE
Confusion
Matrix
Misclass.
Rate

Trivial Classifiers
Median No Change
Return Return
2.233 4.167
1.494 2.041
1.283 1.550
0 0 20 16
0 0 0 0

- 0.444

Table A.34: HSBP.FD12 Regression Results

Table A.35: HSBP.FD12 Quantized Regression Results

Regression:

NMSE
NRMSE
NMAE
Confusion
Matrix
Misclass.
Rate

Table A.36: HSBP.FD12 Classification Results

Iterated Predictions
Linear Bayesian

AR VAR

1.302 0.926
1.141 0.962
1.011 1.009
24 40 40 30
22 31 6 41

0.530 0.308

Trivial Predictors
Median No Change
Return Return

1.026* 2.244
1.013* 1.498
1.044* 1.555
46 71 15 31

0 0 31 40

0.607 0.530

Direct Predictions
Linear Linear Neural3

Regression Network Network

2.283 0.813* 0.591*
1.511 0.902* 0.769*
0.988 0.903* 0.751*
27 20 30 21 40 26
19 51 16 50 6 45

0.333 0.316 0.274

Quantized
Regression:

MSE
RMSE
MAE
Confusion
Matrix
Misclass.
Rate

Trivial Predictors
Median No Change
Return Return

1.783* 4.075
1.335* 2.019
1.100* 1.625

0 0 11 17
0 0 0 0

- 0.607

Iterated Predictions
Linear Bayesian

AR VAR

2.775 2.175
1.666 1.475
1.342 1.092
10 11 30 20
15 20 2 22

0.464 0.297

Direct Predictions
Linear Linear Neural3

Regression Network Network

2.625 1.575* 1.492*
1.620 1.255* 1.221*
1.192 0.992* 0.758*
23 16 18 6 33 8
11 50 3 13 4 29

0.270 0.225 0.162

Thermometer Representation

Linear Neural3 NeurallO
2.033* 1.967* 2.242*
1.426* 1.402* 1.497*
0.983* 0.917* 1.225
29 23 29 24 27 24
3 32 1 37 2 12

0.299 0.275 0.400

Softmax Representation

Linear Neural3 NeurallO

2.733 2.883 3.550
1.653 1.698 1.884
1.167 1.217 1.400
28 22 27 23 27 27
7 43 8 45 6 38

0.290 0.301 0.337

Classification:

MSE
RMSE
MAE
Confusion
Matrix
Misclass.
Rate

Trivial Classifiers
Median No Change
Return Return
1.783* 4.075
1.335* 2.019
1.100* 1.625

0 0 11 17
0 0 0 0

- 0.607

Table A.37: IP.L.FD3 Regression Results

Table A.38: IP.L.FD3 Quantized Regression Results

Regression:
NMSE
NRMSE
NMAE
Confusion
Matrix
Misclass.
Rate

Table A.39: IP.L.FD3 Classification Results

Trivial Predictors
Median No Change
Return Return
1.270 1.430
1.127 1.196
1.134 1.132
80 39 62 21

0 0 18 18

0.328 0.328

Iterated Predictions
Linear Bayesian

AR VAR
0.936* 1.011
0.967* 1.005
1.005* 1.043
80 37 65 21
0 2 15 18

0.311 0.303

Direct Predictions
Linear Linear Neural3

Regression Network Network
1.473 0.748 0.649*
1.214 0.865 0.806*
1.148 0.920 0.847*
48 4 74 29 74 28
32 35 6 10 6 11

0.303 0.294 0.286

Quantized
Regression:

MSE
RMSE
MAE
Confusion
Matrix
Misclass.
Rate

Iterated Predictions
Linear Bayesian

AR VAR

1.358* 1.692
1.165* 1.301
0.892* 0.925*

5 2 16 14
3 34 4 43

0.114 0.234

Trivial Predictors
Median No Change
Return Return

1.700 1.750
1.304 1.323
1.083 0.967
0 0 12 7
0 0 0 0

- 0.368

Direct Predictions
Linear Linear Neural3

Regression Network Network

1.400' 1.125* 1.150*
1.183* 1.061* 1.072*
0.850* 0.775* 0.800*
11 3 17 7 13 8
8 58 1 43 1 41

0.138 0.118 0.143

Classification:
MSE
RMSE
MAE
Confusion
Matrix
Misclass.
Rate

Softmax Representation

Linear Neural3 NeurallO
1.950 1.167* 1.458*
1.396 1.080* 1.208*
1.033 0.767* 0.842*
16 20 12 8 19 15
1 36 3 45 3 46

0.288 0.162 0.217

Trivial Classifiers
Median No Change
Return Return

1.700 1.750
1.304 1.323
1.083 0.967
0 0 12 7
0 0 0 0

- 0.368

Thermometer Representation

Linear Neural3 NeurallO
1.458 1.333* 1.300*
1.208 1.155* 1.140*

0.892* 0.850* 0.867*
15 13 19 11 16 13
2 43 1 35 1 32

0.205 0.182 0.226

Table A.40: IP.L.FD12 Regression Results

Table A.41: IP.L.FD12 Quantized Regression Results

Direct Predictions
Linear Linear Neural3

Regression Network Network
2.422 0.724 0.578*
1.556 0.851 0.760*
0.974 0.868* 0.766"
56 17 77 11 80 9
30 14 9 20 6 22

0.171 0.128 0.402

Table A.42: IP.L.FD12 Classification Results

Iterated Predictions
Linear Bayesian

AR VAR
1.115* 1.206
1.056* 1.098
1.062* 1.158
86 31 74 15
0 0 12 16

0.265 0.231

Regression:

NMSE
NRMSE
NMAE
Confusion
Matrix
Misclass.
Rate

Quantized
Regression:

MSE
RMSE
MAE
Confusion
Matrix
Misclass.
Rate

Trivial Predictors
Median No Change
Return Return
1.561 2.447
1.249 1.564
1.321 1.563
86 31 66 21

0 0 20 10

0.265 0.350

Trivial Predictors
Median No Change
Return Return

1.600* 3.017
1.265* 1.737
1.050* 1.283*

0 0 1 16
0 0 0 0

- 0.941

Thermometer Representation

Linear Neural3 NeurallO
1.433* 0.958* 1.158
1.197* 0.979* 1.076
0.800* 0.742* 0.842
15 17 15 12 15 17
0 59 0 53 0 55

0.187 0.150 0.195

Iterated Predictions
Linear Bayesian

AR VAR

1.275" 1.633
1.129* 1.278
0.792* 0.933

0 0 13 17
2 45 0 47

0.043 0.221

Softmax Representation

Linear Neural3 NeurallO

1.833 1.492* 1.750
1.354 1.221* 1.323
1.033 0.908* 0.983
16 20 16 15 16 19
0 51 0 54 0 52

0.230 0.176 0.218

Classification:

MSE
RMSE
MAE
Confusion
Matrix
Misclass.
Rate

Direct Predictions
Linear Linear Neural3

Regression Network Network

1.608 0.992* 0.967*
1.268 0.996* 0.983*

0.975* 0.675* 0.667*
9 5 15 10 15 11
6 63 1 58 0 57

0.133 0.131 0.133

Trivial Classifiers
Median No Change
Return Return
1.600* 3.017
1.265* 1.737
1.050* 1.283*

0 0 1 16
0 0 0 0

- 0.941

Table A.43: LHUR.FD3 Regression Results

Table A.44: LHUR.FD3 Quantized Regression Results

Regression:
NMSE
NRMSE
NMAE
Confusion
Matrix
Misclass.
Rate

Table A.45: LHUR.FD3 Classification Results

Iterated Predictions
Linear Bayesian

AR VAR
0.811 0.670*
0.900 0.819*
1.006 0.846*
29 25 26 11
9 35 12 49

0.347 0.235

Trivial Predictors
Median No Change
Return Return

1.001 0.978
1.001 0.989
1 .OOO 0.965
38 60 27 23
0 0 11 37

0.612 0.347

Direct Predictions
Linear Linear Neural3

Regression Network Network

1.414 0.514* 0.531*
1.189 0.717* 0.729"
1.086 0.736* 0.759*
28 36 30 15 34 17
10 24 8 45 4 43

0.469 0.235 0.214

Direct Predictions
Linear Linear Neural3

Regression Network Network

3.092 1.825 1.800
1.758 1.351 1.342
1.358 0.975 1.000
44 28 39 15 43 17
13 8 7 34 5 30

0.441 0.232 0.232

Iterated Predictions
Linear Bayesian

AR VAR

2.092 1.692*
1.446 1.301'
1.058 0.875*
42 15 41 6
13 22 11 33

0.304 0.187

Quantized
Regression:

MSE
RMSE
MAE
Confusion
Matrix
Misclass.
Rate

Trivial Predictors
Median No Change
Return Return

1.900 2.067
1.378 1.438
1.217 1 .OOO
0 0 36 17
0 0 0 0

- 0.321

Thermometer Representation

Linear Neural3 NeurallO
1.600* 1.233* 1.233*
1.265* 1.111* 1.111*
0.983 0.867* 0.800*
3 7 5 43 9 43 7
1130 2 1 8 10 30

0.193 0.153 0.189

Softmax Representation

Linear Neural3 NeurallO
1.933 2.292 1.525*
1.390 1.514 1.235*

0.867* 1.008 0.775*
50 13 59 33 5817
10 32 1 12 2 28

0.219 0.324 0.181

Classification:
MSE
RMSE
MAE
Confusion
Matrix
Misclass.
Rate

Trivial Classifiers
Median No Change
Return Return
1.900 2.067
1.378 1.438
1.217 1.000
0 0 36 17
0 0 0 0

- 0.321

Table A.46: LHUR.FDl2 Regression Results

Table A.47: LHUR.FD12 Quantized Regression Results

Direct Predictions
Linear Linear Neural3

Regression Network Network
2.218 0.326* 0.342*
1.489 0.571* 0.585*
0.971 0.630* 0.635*
27 35 40 26 39 23
13 40 0 49 1 52

0.417 0.226 0.209

Regression:

NMSE
NRMSE
NMAE
Confusion
Matrix
Misclass.
Rate

Table A.48: LHUR.FD12 Classification Results

Trivial Predictors
Median No Change
Return Return

1.013 1.858
1.006 1.363

0.979* 1.346
0 0 27 19

40 75 13 56

0.348 0.278

Quantized
Regression:

MSE
RMSE
MAE
Confusion
Matrix
Misclass.
Rate

Iterated Predictions
Linear Bayesian

AR VAR
1.000 0.608
1.000 0.780
1.052 0.851
21 45 36 21
19 30 4 54

0.557 0.217

Iterated Predictions
Linear Bayesian

AR VAR

2.300 1.458
1.517 1.208
1.267 0.875
26 17 38 7
4 11 4 30

0.362 0.139

Trivial Predictors
Median No Change
Return Return

2.142 3.208
1.463 1.791

1.208* 1.458
0 0 28 14
0 0 0 0

- 0.333

Direct Predictions
Linear Linear Neural3

Regression Network Network

4.042 1.058* 1.067*
2.010 1.029* 1.033*
1.608 0.725* 0.700*
28 21 42 13 41 11
13 16 1 33 2 37

0.436 0.157 0.143

Thermometer Representation

Linear Neural3 NeurallO
1.025* 2.142 0.808*
1.012* 1.463 0.899*
0.658* 1.008* 0.675*
38 2 21 1 39 3
5 36 16 38 4 37

0.086 0.224 0.084

Softmax Representation

Linear Neural3 NeurallO

1.708 1.600 1.292*
1.307 1.265 1.137*
0.942 0.817* 0.742*
29 4 34 3 39 4
5 33 5 34 2 32

0.127 0.105 0.078

Classification:
MSE
RMSE
MAE
Confusion
Matrix
Misclass.
Rate

Trivial Classifiers
Median No Change
Return Return
2.142 3.208
1.463 1.791
1.208* 1.458

0 0 28 14
0 0 0 0

- 0.333

Table A.49: PUNEW.L.FD3 Regression Results

Table A.50: PUNEW.L.FD3 Quantized Regression Results

Regression:
NMSE
NRMSE
NMAE
Confusion
Matrix
Misclass.
Rate

Table A.51: PUNEW.L.FD3 Classification Results

Iterated Predictions
Linear Bayesian

AR VAR
0.552* 0.447*
0.743* 0.669*
1.000" 0.687*
112 4 113 4
2 0 1 0

0.051 0.042

Trivial Predictors
Median No Change
Return Return
1.174 0.712
1.084 0.844

0.982* 0.865
114 4 110 4
0 0 4 0

0.034 0.068

Quantized
Regression:

MSE
RMSE
MAE
Confusion
Matrix
Misclass.
Rate

Direct Predictions
Linear Linear Neural3

Regression Network Network

1.661 0.444* 0.518
1.289 0.666* 0.719
1.129 0.708* 0.776*
110 4 114 4 114 4
4 0 0 0 0 0

0.068 0.034 0.034

Trivial Predictors
Median No Change
Return Return

1.542 1.508
1.242 1.228

0.958* 0.842
0 0 34 8
0 0 0 0

- 0.190

Classification:
MSE
RMSE
MAE
Confusion
Matrix
Misclass.
Rate

Iterated Predictions
Linear Bayesian

AR VAR
1.133* 1.117*
1.065* 1.057*
0.717" 0.733*
60 6 38 3
6 0 4 12

0.167 0.123

Softmax Representation

Linear Neural3 NeurallO
1.400 1.358 1.267
1.183 1.165 1.125
0.883 0.875 0.833
63 3 61 3 61 3
8 6 8 4 8 4

0.138 0.145 0.145

Trivial Classifiers
Median No Change
Return Return
1.542 1.508
1.242 1.228

0.958* 0.842
0 0 34 8
0 0 0 0

- 0.190

Direct Predictions
Linear Linear Neural3

Regression Network Network

1.950 1.192 1.525
1.396 1.092 1.235
1.050 0.758* 0.858
56 6 43 9 46 12
7 0 3 5 6 5

0.188 0.200 0.261

Thermometer Representation

Linear Neural3 NeurallO
1.050* 0.917" 0.992*
1.025* 0.957* 0.996*
0.733* 0.650* 0.642*
60 4 59 3 61 3
6 4 3 2 3 2

0.135 0.090 0.087

Table A.52: PUNEW.L.FD12 Regression Results

Table A.53: PUNEW .L.FD12 Quantized Regression Results

Direct Predictions
Linear Linear Neural3

Regression Network Network
2.862 0.429* 0.598*
1.692 0.655' 0.773*
1.052 0.683* 0.817*
108 0 120 0 120 0
12 0 0 0 0 0

0.100 0.000 0.000

Regression:
NMSE
NRMSE
NMAE
Confusion
Matrix
Misclass.
Rate

Table A.54: PUNEW.L.FD12 Classification Results

Quantized
Regression:

MSE
RMSE
MAE
Confusion
Matrix
Misclass.
Rate

Trivial Predictors
Median No Change
Return Return
1.432* 0.502*
1.196* 0.709'
0.977* 0.727*
120 0 120 0
0 0 0 0

0.000 0.000

Iterated Predictions
Linear Bayesian

AR VAR
0.423* 0.361"
0.650* 0.601*
1.023* 0.628*
119 0 120 0

1 0 0 0

0.008 0.000

Classification:
MSE
RMSE
MAE
Confusion
Matrix
Misclass.
Rate

Direct Predictions
Linear Linear Neural3

Regression Network Network

2.592 1 .OOO* 1.225*
1.610 1.000* 1.107*
1.142 0.683* 0.792*
69 10 50 11 47 12
16 0 1 0 2 0

0.274 0.194 0.230

Trivial Predictors
Median No Change
Return Return

1.367* 1.000*
1.169* 1.000*
0.867" 0.750*

0 0 37 0
0 0 0 0

- 0.000

Iterated Predictions
Linear Bayesian

AR VAR

0.975* 1.000*
0.987* 1.000*
0.608* 0.683*

71 7 48 3
11 0 3 0

0.202 0.111

Trivial Classifiers
Median No Change
Return Return
1.367* 1 .OOO*
1.169* 1.000*
0.867* 0.750*

0 0 37 0
0 0 0 0

- 0.000

Softmax Representation

Linear Neural3 NeurallO
1.533 1.692 1.633
1.238 1.301 1.278
0.967 1.025 0.967
72 0 72 5 75 4
14 0 10 0 10 0

0.163 0.172 0.157

Thermometer Representation

Linear Neural3 NeurallO
2.092 1.350* 1.475
1.446 1.162* 1.214
1.058 0.833 0.892
66 0 73 8 70 8
18 0 12 0 14 0

0.214 0.215 0.239

Table A.55: YCS.L.FD3 Regression Results

Table A.56: YCS.L.FD3 Quantized Regression Results

Direct Predictions
Linear Linear Neural3

Regression Network Network
3.567 1.238 1.086*
1.889 1.112 1.042"
0.987 1.175 1.103
25 32 17 28 17 30
28 35 36 39 36 37

0.500 0.533 0.550

Table A.57: YCS.L.FD3 Classification Results

Iterated Predictions
Linear Bayesian

AR VAR
1.075* 1.297*
1.037* 1.139*
0.993* 1.296
22 35 25 33
31 32 28 34

0.550 0.508

Regression:
NMSE
NRMSE
NMAE
Confusion
Matrix
Misclass.
Rate

Quantized
Regression:
MSE
RMSE
MAE
Confusion
Matrix
Misclass.
Rate

Trivial Predictors
Median No Change
Return Return
1.037* 2.318
1.018* 1.522
0.987* 1.491

0 0 19 33
53 67 34 34

0.442 0.558

Trivial Predictors
Median No Change
Return Return
1.892* 4.225
1.375" 2.055
1.158* 1.608

0 0 19 22
0 0 0 0

- 0.537

Classification:

MSE
RMSE
MAE
Confusion
Matrix
Misclass.
Rate

Iterated Predictions
Linear Bayesian

AR VAR
2.692 3.975
1.641 1.994

1.275" 1.542
21 19 23 22
12 15 22 18

0.463 0.518

Softmax Representation

Linear Neural3 NeurallO
4.100 4.292 5.075
2.025 2.072 2.253
1.600 1.642 1.808
18 19 24 31 21 23
19 16 13 8 32 17

0.528 0.579 0.591

Trivial Classifiers
Median No Change
Return Return
1.892* 4.225
1.375* 2.055
1.158* 1.608

0 0 19 22
0 0 0 0

- 0.537

Direct Predictions
Linear Linear Neural3

Regression Network Network
4.658 3.175 2.825
2.158 1.782 1.681
1.708 1.458 1.392
25 19 15 14 17 14
22 21 21 13 15 9

0.471 0.556 0.527

Thermometer Representation

Linear Neural3 NeurallO
3.575 3.358 3.075
1.891 1.833 1.754
1.508 1.442 1.442
25 25 36 26 18 16
18 9 9 4 20 9

0.558 0.467 0.571

Table A.58: YCS.L.FD12 Regression Results

Table A.59: YCS.L.FD12 Quantized Regression Results

Regression:

NMSE
NRMSE
NMAE
Confusion
Matrix
Misclass.
Rate

Table A.60: YCS.L.FD12 Classification Results

Trivial Predictors
Median No Change
Return Return
1.287* 2.556
1.134* 1.599
1.155 1.594
0 0 37 32

69 51 32 19

0.575 0.533

Quantized
Regression:

MSE
RMSE
MAE
Confusion
Matrix
Misclass.
Rate

Iterated Predictions
Linear Bayesian

AR VAR
1.004* 1.597*
1.002* 1.264*
1.040 1.254
30 22 36 27
39 29 33 24

0.508 0.500

Trivial Predictors
Median No Change
Return Return

1.683* 3.717
1.297* 1.928
1.100* 1.483*

0 0 37 18
0 0 0 0

- 0.327

Classification:
MSE
RMSE
MAE
Confusion
Matrix
Misclass.
Rate

Direct Predictions
Linear Linear Neural3

Regression Network Network

9.050 1.055* 1.078*
3.008 1.027* 1.038*
1.011* 1.089 1.100
31 20 34 15 33 13
38 31 35 36 36 38

0.483 0.417 0.408

Iterated Predictions
Linear Bayesian

AR VAR
1.892* 2.833*
1.375* 1.683*
1.058* 1.283*
44 19 38 19

4 3 17 5

0.329 0.456

Trivial Classifiers
Median No Change
Return Return
1.683* 3.717
1.297* 1.928
1.100* 1.483*

0 0 37 18
0 0 0 0

- 0.327

Direct Predictions
Linear Linear Neural3

Regression Network Network

5.508 1.925* 2.100*
2.347 1.387* 1.449*
1.958 1.058* 1.133*
32 14 40 17 36 13
37 12 6 0 8 0

0.537 0.365 0.368

Softmax Representation

Linear Neural3 NeurallO
3.417 3.433 3.500
1.848 1.853 1.871
1.450* 1.417* 1.433*
40 15 46 19 50 21
2311 226 18 2

0.427 0.441 0.429

Thermometer Representation '

Linear Neural3 NeurallO
2.808* 2.708* 2.858*
1.676* 1.646* 1.691*
1.308* 1.258* 1.325*
43 12 43 13 37 12
16 8 17 6 18 5

0.354 0.380 0.417

Biographical Note

Matthew John SafTell was born August 14, 1970 in Youngstown, Ohio. He received a B.S. in Computer

Science and Engineering with a minor in Mathematics from LeTourneau University in 1992. In 1994 he

received an M.S. in Computer Science from the University of Tennessee. His areas of interest include

machine learning, time series, and finance. Matthew served on the Student Council at OGI for a total

of four years, the last year of which he was Student Body President. He also received the Distinguished

Student Award in 1998.

