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Abstract 

Knowledge Discovery for Time Series 

Matthew John Saffell 

Ph.D., OG1 School of Science and Engineering 

at Oregon Health & Science University 

October 2005 

Thesis Advisor: Dr. John Moody 

My thesis investigates the use of machine learning methods for analysis of economic 

and financial time series. Since structural models in economics and finance are known to 

have limited predictive power, I study a data driven, time series approach to knowledge 

discovery in these domains. The ultimate goal of building predictive models of such time 

series is to support decision making in areas such as business, investing, and government 

policy. 

Machine learning offers powerful tools for forecasting and decision making. Supervised 

learning methods can be used to develop forecasting models of economic series that can 

aid in decision support. Reinforcement learning methods can produce systems capable 

of making investment decisions. Hence, my thesis consists of two main investigations: a 

study of methods for predicting macroeconomic and financial time series, and a study 

of extensions to a reinforcement learning algorithm for constructing financial decision 

systems. 

. . . 
Xll l  



In the forecasting project, I develop a supervised training methodology for models that 

predict challenging macroeconomic and financial time series. I compare the performance 

of linear and nonlinear networks with a diverse set of standard linear benchmark models. 

While some advantage is obtained from the use of nonlinear networks for certain of these 

time series, a key result is that linear network models trained with stochastic, nonlinear 

neural network learning algorithms can achieve greatly improved performance over the 

benchmark methods on most of the data sets. 

The second topic investigated is enhancements to the Recurrent Reinforcement Learn- 

ing (RRL) algorithm. The RRL approach to trading system design has been shown to be 

effective at learning strategies that directly maximize financial objective functions, and 

also has been shown to outperform approaches based on supervised learning on artificial 

data sets. In my work, I investigate several significant extensions of RRL: to incorporate 

downside risk measures, to compare the RRL policy approach to an alternate RL value 

function approach, to extend the approach to portfolio management, and to conduct sim- 

ulation studies on a number of artificial and real data sets, including an S&P-500 asset 

allocation system and a high frequency foreign exchange trader. 

xiv 



Chapter 1 

Introduction 

In this thesis, I investigate the use of machine learning methods, including supervised 

and reinforcement learning algorithms, to analyze and forecast economic and financial 

time series. My goal is to utilize and extend existing techniques and methods to produce 

algorithms and automated methodologies for building nonlinear decision making models 

in economics and finance. There are many theories regarding the behavior of the world's 

economies and financial markets, however most of these have limited predictive power [24]. 

The algorithms I present are data driven, nonlinear time series based approaches that 

produce quantitative forecasts and actions that result in measurable performance gains 

relative to standardly used models. As such, these algorithms have the potential to support 

real decision making in business, financial, and governmental institutions. 

There is a dichotomy in the arena of macroeconomic and financial decision making: A) 

on the macroeconomic scale, possible actions to be taken are complex and multifaceted, 

and the outcomes of these actions have broad impacts, the desirability of which can be 

difficult to measure accurately; and B) on the scale of investment decisions, actions are 

easier to specify, and the desirability of outcom4s is more easily measured. So to support 

macroeconomic decision making, I present a Supervised Learning (SL) methodology for 

forecasting with neural network models, where the forecasts can be used as an input to the 

decision making process. On the other hand, Reinforcement Learning (RL) techniques are 

more appropriate in the investment decision arena as the models make decisions directly, 

and can be trained to maximize the investor's utility. 

Supervised learning is used to develop forecasting models that can aid in decision sup- 

port. SL is used to extract a robust representation of the relationship between the past 



and future values of macroeconomic and financial variables based on historical datasets. 

These monthly datasets are considered very challenging by standard time series measures, 

and are characterized by a very low signal-to-noise ratio and a high degree of nonstationar- 

ity. The series often exhibit non-normal distributions and heteroskedacticity (time-varying 

variance). 

Reinforcement learning is used to produce systems that can make investment decisions. 

In RL, a goal-directed agent actively explores unknown environments, and attempts to 

maximize rewards received from the actions taken. RL is useful when the structure of the 

desired information (eg. optimal trading decisions) is unknown, but there is a performance 

measure which can be used to evaluate the agent's action. Based on performance feedback, 

the agent adjusts its actions and explores its environment in order to maximize its rewards. 

In some cases, the feedback received by an RL agent can depend on a sequence of 

interdependent actions or can be substantially delayed from the associated actions that 

produced them. The need to assign credit among various actions over time is known as 

the temporal credit assignment problem [102]. This ability to interact with (and poten- 

tially influence) the environment, and having to deal with delayed feedback makes RL a 

fundamentally different type of learning problem from supervised learning. 

1.1 Overview 

In Chapter 2, I develop a supervised learning methodology for predicting challenging 

macroeconomic and financial time series. I present a methodology that addresses the 

challenges inherit in these series, and that automatically selects learning hyperparameters 

and chooses the model complexity. The methodology includes nonlinear, nonparametric 

models, sliding window retraining, various model regularization techniques, model com- 

plexity reduction, and bagging committee combinations to produce forecasts of the 1980- 

1989 test period. The application of this methodology is novel for neural networks in this 

problem domain. Previous studies [I071 of this scope for these types of series have used 

relatively rudimentary neural network models that do not use regularization, and that use 

a stepwise model construction method that does not fully take advantage of the nonlinear 



capabilities of the neural networks. 

I present results for 3 and 12-month forecasts of both level and direction of the series 

using both linear and nonlinear neural networks trained using the presented methodology. 

These results are compared with a number of more standard linear and trivial predictors. 

I find non-trivial predictability in many of the series, and evidence in some of nonlin- 

ear structure. Also, both the linear and nonlinear network models outperform the more 

standard linear models including a Bayesian Vector Autoregressive model, which is also a 

regularized model. Another key result is that the linear network models perform almost 

as well as the nonlinear models for these series. This argues strongly for the use of appro- 

priate linear models for comparison when fitting nonlinear models to these types of series. 

It could be that positive results in the literature from using nonlinear network models are 

due more to the estimation methodology than to actual nonlinear structure. 

In Chapter 3, I investigate enhancements for the investment decision problem. I extend 

the Recurrent Reinforcement Learning (RRL) trading model of Moody & Wu [74] in order 

to make it more practically useful for investors. Some characteristics of investors are that 

they are more risk averse than standard risk measures would indicate, they typically hold 

diversified portfolio of assets and thus need to make optimal decisions in that context, and 

they are more comfortable making investment decisions when they can have an intuitive 

sense of the rules being used to make the decision. 

To address these issues, I first implement downside performance measures for the 

model and examine the effect this has on trading performance. I find the RRL model to 

be capable of producing very desirable changes in behavior when using this modified risk 

measure. The systems trained using downside risk measures learn to cut their losses much 

more quickly than those using more traditional risk measures. I also present results for 

the single asset trader on a number of real financial datasets including an S&P-500 stock 

index asset allocation system and an intra-daily foreign exchange trading system. The 

models are very successful in finding tradeable structure in these series. These models are 

then examined using sensitivity analysis to gain insight into their operation. I also provide 

a discussion of the difference between representing policy functions and value functions, 

and present a comparison of the RRL model with a value function model on the S&P-500 



stock index asset allocation problem. Finally, I extend the single-asset model to manage a 

portfolio of assets. I find the systems perform well in simulations using artificial portfolios. 

The systems shows the ability to produce allocations that take into account the differing 

predictabilities of the underlying assets. 

In Chapter 4, I present a summary of the work and discuss some possible extensions. 

Additionally, Appendix A contains tables of forecasting results for the series forecasted in 

Chapter 2. 



Chapter 2 

Knowledge Discovery Through 

Supervised Learning 

2.1 Introduction 

In this chapter, I investigate the application of nonlinear estimation methods for linear 

and nonlinear predictive models for a spectrum of U.S. financial and macroeconomic time 

series. These series are very important measures of economic growth and the health of the 

economy. Forecasts of such macroeconomic variables play a key role in making decisions 

and setting policies in many arenas, from the level of international organizations down to 

the level of individual corporations. They are also very challenging series to forecast, and 

are characterized by very low signal-to-noise ratios and a high degree of nonstationarity. 

The data series are short, being comprised of monthly data for a 45 year period, and 

the potential feature set is very large. These characteristics pose special challenges for 

predictive modeling. 

The typical econometric approaches to dealing with these challenges are to use a linear 

statistical model or a nonlinear, structural model based on some economic hypothesis. The 

approach I take here is based on nonlinear, nonparametric statistical models. These models 

attempt to learn the predictive function from the data. Due to the inherent flexibility of 

these models, general constraints and restrictions are used during the training process to 

help prevent overfitting. The degree of constraint in the final model structure is determined 

by the data itself rather than being specified in an ad hoc manner. 

The goals of this research are: (1) to develop a methodology capable of dealing with 



the challenges mentioned above, (2) to examine the predictability of both point and direc- 

tional forecasts of monthly time series, (3) to test for the presence of nonlinearity in the 

series, and (4) to compare standard linear estimation methods to state-of-the-art meth- 

ods developed in the adaptive systems and machine learning literatures. The techniques 

I consider include data-based selection of hyperparameters, early stopping of training, 

weight decay regularization, year-by-year retraining, Principal Component Pruning for 

model complexity reduction, and bagging committees. 

I find nontrivial predictability in making point forecasts for many of the series stud- 

ied. For several, the results show some advantage from the use of nonlinear models over 

linear models when using the same sophisticated estimation methods. The Index of In- 

dustrial Production and the Housing Starts Index show the most advantage from the use 

of nonlinear versus linear models. I also find that the application of nonlinear neural 

network learning techniques to a linear network model considerably improves the perfor- 

mance relative to standard linear models such as least squares regression, univariate AR, 

and Bayesian vector AR models. When making directional forecasts, I find the output 

representation of the data during training to have a substantial impact on the learned 

model's accuracy. Also, for the series in this study, training more complex models to pre- 

dict quintiles of directional movement does not improve performance relative to simpler 

models trained to make point forecasts. 

I start in Section 2.2 by introducing some notation and nomenclature related to regres- 

sion and time series analysis that will be used later in the chapter. In Section 2.3 I intro- 

duce the macroeconomic time series domain and discuss the issues that make it challenging 

for forecasting, and review the related literature. Section 2.4 presents the methodological 

approach used to create the linear and nonlinear network forecasting models. Section 2.5 

describes the benchmark models that will be compared against. In Section 2.6 the im- 

plementation details of the models and datasets are described. In Sections 2.7 and 2.8 

I present the results from the forecasting experiments, and in Section 2.9 I review the 

findings presented in the chapter. 



2.2 Regression and Time Series Analysis 

In this chapter, data sets are represented as time series. That is, the data are a series 

of measurements of some variable measured sequentially through time. The process that 

creates these measurements is the data-generating process. A data generating process 

(DGP) is a process that takes some number of sources (including purely random signals) 

and produces a value that can be measured. For example, a generic DGP could have the 

form 

~i = (xi, €1 (2-1) 

where the output, yi, is a function of the input vector, xi, and some random noise variable, 

E .  There could be multiple sources of noise, as is common in state space models. A dataset 

consists of some number of pairs of inputs and outputs {xi, yi), i = 1,2,. . . , K. The DGP 

typically embodies some relationship between the inputs and the outputs. That is, even 

though there may be a stochastic element, a given set of values for the sources will produce 

some predictable change in the measurement due to the deterministic element of the data 

generating process. 

In a typical regression problem, there is not necessarily any significance to the ordering 

of the data in the dataset. That is, the data point with index i is not necessarily related 

to the data point with index i - 1. However, in a time series there is a clear ordering 

of data points based on the times at which the measurements were recorded. The value 

of an observation measured at time t ,  yt, may well be related to or explicitly dependent 

on previously measured values such as yt-1. These types of causal relationships will have 

implications on the way such problems are modeled. 

2.2.1 Time Series Modeling 

A time series whose future values can be exactly predicted from its historical values is 

said to be deterministic. Most series of interest to forecasters however cannot be fully 

predicted in this way, and are called stochastic processes as they have some random or 

unknown component that influences their future behavior. 



Autoregressive Moving Average Model 

The principal stochastic time series model is the autoregressive moving average (ARMA) 

process. A time series is an autoregressive process of order p, denoted AR(p), if the DGP 

is represented by 

where the ai are constant-valued parameters representing the relationship among the 

lagged values of yt, and ~t is a random variable. When a model is univariate, that is only 

containing lagged values of itself as inputs, it is usual to use y instead of x to represent 

the inputs. A time series is a moving average process of order q, denoted MA(q), if the 

DGP is represented by 

where the pi are constant-valued parameters representing the relationship among the 

lagged values of the noise variable c t .  By extension, the ARMA(p, q) process is represented 

by 

For a time series to be stationary, all transition probabilities from one state to another 

must be independent of time. A weak form of stationarity commonly cited in linear time 

series analysis requires that the first two moments of the series' returns distribution exist 

and that they be constant over time. For example, an AR(1) process 

is nonstationary if lal 1 >= 1 because the variance of the series is not constant over time. 

A time series is said to have a unit root if it is nonstationary, but has a differenced 

series that is stationary. For example, the AR(1) process with crl = 1 is a random walk; yt 

has mean yo, but nonstationary variance to:. A generalization of this process may include 

a trend: 



This series is a random walk with drift and has a nonstationary mean of yo + tp. However, 

the differenced series 

is stationary in mean and variance. Many of the economic time series discussed in this 

chapter contain trends or unit roots. This is one of the main motivations for forecasting 

the changes in the series (returns) rather then the levels themselves. 

Linear Vector Autoregression 

The standard linear vector autoregression (VAR) model extends the AR model to a mul- 

tivariate setting: 

where Yt  is a vector of n time series yi measured at time t, Ak is a matrix of parameters 

a i j k ,  p is the number of time lags to include, and f t  is a vector of iid noise with variances 

0;. To be explicit, Equation 2.8 represents a set of n equations: 

QiikYi(t-k) + a i j k Y j ( t - k )  + €it . 
k=1 j#i I 

The parameters of the VAR can be estimated using the standard ordinary least squares 

estimation method. Some limitations of this framework occur when the number of vari- 

ables and the number of time lags included in the model begin to grow. The amount of 

data needed to estimate the parameters becomes very large very quickly. 

2.2.2 Nonparametric Regression and Generalization 

Stated simply, the goal of nonparametric regression is to learn a relationship between two 

sets of variables. That is, given a set of data pairs, (xl,yl),  . . . , (XK, yK), where x is 

an n-dimensional vector of "inputs" and where y is (without loss of generality) a scalar 

"output", a function of x, 



and qt is a zero-mean random variable. We wish to learn a representation, f (x), of the 

relationship, g(x), that takes values of x to values of y. The learning of the model, f (x), 

involves setting the values of a set of parameters, 8, in response to the observed training 

data set, V = {(xl, yl), . . . , (xK, yK)). Following the notation in [35] we emphasize the 

dependence of the model on the training data by writing f (x; D) instead of f (x) . 

A typical measure of how well a model represents a relationship is the mean-squared 

error (MSE) measure: 

ED [(Y - f (xi D ) ) ~ I x ,  D] 7 (2.11) 

where ED[.] denotes the expected value over possible datasets, V. A straightforward 

learning algorithm would involve adjusting the model parameters, 8, to minimize the 

MSE measured on the available training data. 

Because the individual values of y in the dataset typically contain noise, it is of interest 

to look at the value, E[y(x], which is the average value of y conditioned on x. It is easy 

to show that E[ylx] minimizes MSE for any given value of x ,  and also has the property of 

being independent of any realization of D. In the following sections we will be interested 

in looking at the MSE defined using this "best" estimate 

The term generalization refers to how well the model f (x; D) is able to respond to 

values of x that were not contained in the training data set V. The main factors that 

affect generalization ability are the amount of noise present in the training data set, the 

number of available points in the training data set, the coverage of the training data set 

relative to the range of the DGP, and the flexibility of the model being fit to the data. 

When the flexibility of a model is such that it can be trained to a low error on V, but has 

a high error on similar but previously unseen data produced by the DGP, we say that the 

model has been overfit. Overfitting occurs when the model's flexibility allows it to model 

features produced by the noise in the training dataset. In this chapter, I will describe 

techniques such as regularization and Principal Component Pruning that can be used to 

reduce the effective number of parameters in a model, thus improving the generalization 

ability of a model. 



2.2.3 The Bias / Variance Tradeoff 

The bias / variance tradeoff is an old idea in statistics, and it describes the ways in which 

model flexibility contributes to the prediction error produced by a fitted model. The 

essence of the analysis is to decompose the estimation error into two components, a bias 

component and a variance component. 

EvKf (xi 'D) - E[Y l ~ I ) ~ l  

= (Ev[f (x; V)] - ~ [ y l x ] ) ~  "bias" + (2.13) 

ED [( f (x; V) - ED [( f (x; v ) ] ) ~ ]  "variance" (2.14) 

ED[.] denotes the expectation over all possible datasets, V, of length K. So a model, 

f (x; V), is said to be biased as an estimator of E[ylx] if on average it is different from 

E[ylx]. Even if E[ylx] is unbiased, the MSE can still be large due to the variance, that 

is the model is sufficiently flexible that any single model can be very different from the 

average model. Relevant references include [33, 116, 351. 

2.2.4 Noise & Nonstationarity 

The noise / nonstationarity tradeoff was first noted by Moody [62] (see also [66, 671). Sim- 

ilarly to the bias / variance tradeoff, the noise / nonstationarity tradeoff for nonstationary 

time series can be described by decomposing MSE into two components. The "noise" com- 

ponent represents the contribution to the error coming from the variance caused by having 

too short of a history on which to train. The "nonstationarity" component represents the 

portion of the error caused by having too long of a history, and thus including information 

that is more misleading than helpful to the model fitting process. 

2.2.5 Measuring Nonstationarity 

One method for measuring the effects of nonstationarity is to train models using a variety 

of training window lengths and then measure the test set errors for each model. Figure 2.1 

shows test set error vs. training window size for one of the macroeconomic series investi- 

gated in the remainder of this chapter. In this case the error is high due to noise effect 
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Figure 2.1: A graphical depiction of the noise / nonstationarity tradeof [62, 66, 671. The 
figure plots normalized mean-square error versus training window length for forecasts of 
the 12-month future log returns of the Index of Industrial Production from 1980-1989. 
Large error values occur for short window sizes due to large amounts of noise in the 
dataset. Error initially decreases as the training window size is increased, but then errors 
start increasing again as the effects of nonstationarity become evident. 

from the short training window sizes. As the training window lengthens, error decreases 

due to the increasing number of data points available for model fitting. However, as the 

window length increases even more the error begins to rise again. This increase in error is 

due to the fact that the additional data points being used for model fitting are becoming 

less and less relevant to the data points that are in the test set. That is, the data gener- 

ating process has evolved sufficiently over time so as to render data beyond a certain age 

useless for the task of more accurately learning the functional form of the current data 

generating process. 

In this thesis I also use sensitivity analysis to demonstrate the effect of nonstationarity 

on the learned models. The sensitivity analysis is described in Section 2.7.5, and allows us 

to open the neural network "black-box" to a certain degree and to examine the changing 

relationships between the inputs and outputs. I find that the relationships learned by the 

models trained to forecast the datasets considered can change significantly over the course 

of the test period. 



2.3 Problem Domain: Macroeconomic Forecasting 

Macroeconomics is the study of economic behavior in the aggregate. A primary concern of 

macroeconomic analysis is sustainable economic growth. Related to economic growth are 

the allocation of resources, employment of the workforce, stability of prices, and relation- 

ships between national economies. A large number of time series exist which are updated 

periodically in an attempt to quantify the variables used to describe the macroeconomy. 

Examples of macroeconomic variables include the gross domestic product, the infla- 

tion rate, and the unemployment rate. Often the values of these variables are estimated 

using statistical sampling or survey techniques. Figure 2.2 shows another macroeconomic 

variable, the Index of Industrial Production (IP), for the time period 1967-1993. IP is a 

monthly time series that measures the physical volume of output of the manufacturing 

sector. The shaded bars in the figure show the periods when the U.S. economy was offi- 

cially in a recession. The correspondence between downturns in IP and the recessions is 

clear. Accurate forecasts of IP would be very useful for predicting recessions, and could 

allow for the adjustment of monetary and political policy to ameliorate or even prevent 

the recession. 

Forecasts of macroeconomic variables play a key role in setting policies in many arenas, 

from the level of international organizations down to the level of some individual corpora- 

tions. I find evidence of predictability in several of the macroeconomic series considered 

in this chapter including the Index of Industrial Production. 

2.3.1 TheTime Series 

In this chapter, I consider a number of macroeconomic and financial data series for pre- 

diction and classification. The ten monthly series for which I produce results are listed 

in Table 2.1 and include the industrial production index, the housing starts index, the 

unemployment rate, the consumer price index (a measure of inflation), money supply, 

short and long-term interest rates, and the S&P 500 stock index. I include the 3-month 

treasury bill rate as an input, though do not produce predictions for it due to the amount 

of similarity between it and the Aaa bond yield. 
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Figure 2.2: The Index of Industrial Production is a monthly series that measures the 
physical volume of output of the manufacturing sector. There is a strong correspondence 
between downturns in the Index of Industrial Production and recessions in the US economy 
(shaded periods). 

Table 2.1: Data series are taken from the Citibase database for the period 1950 - 1995. All 
names except "DRM" and "YCS" are those given in the Citibase database. The notation 
1987 = 100 indicates that the series is normalized to that base year. 

Designation 

DLEAD 
DRM 
FM2DQ 
FSPCOM 
FYAAAC 
FYGM3 
HSBP 
IP  
LHUR 
PUNEW 
YCS 

Description 

Index of Leading Indicators. Seasonally adjusted. 1987 = 100. 
Default Risk Measure: (Baa Bond Yield) - (Aaa Bond Yield). 
M2 Money Supply 
Standard & Poor's 500. 1941 to 1943 = 10. 
Moody's Aaa Bond Yield. 
3-month Treasury Bill Yield. 
Housing Starts. Seasonally adjusted. 1967 = 100. 
Index of Industrial Production. Seasonally adjusted. 1987 = 100. 
Unemployment Rate. Seasonally adjusted. 
Consumer Price Index. Seasonally adjusted. 1982 to 1984 = 100. 
Yield Curve Slope: (10-Year Bond Composite) - (3-Month Treasury Bill). 



I construct both linear and nonlinear multivariate models to produce forecasts of these 

variables on 3 and 12 month horizons. The available dataset covers 1950-1995 and is of 

monthly resolution. Figure 2.3 shows examples of several of these series along with other 

indicative macroeconomic series. 

The set of inputs to the predictive models is based on the same set of macroeconomic 

and financial time series listed in the table. Various transformations were applied to each 

of the input series, creating a large number of inputs from which to choose. One trans- 

formation involves taking the logs of the series to make the variances of the price changes 

more stationary. The other involves taking the differences of the series on telescoping 

time scales. This improves the performance of the model fitting process by removing non- 

stationarity due to unit-roots, reducing the noise in the input signals, and representing 

pertinent time scales returns as individual inputs. See Section 2.6.2 for the details of the 

transformations. 

2.3.2 Challenges 

Macroeconomic modeling and forecasting is challenging for many reasons [62,25]. The lack 

of convincing a priori economic models [24] creates a severe model selection problem. Also, 

the series themselves display various characteristics which pose difficulties for standard 

modeling techniques, including high levels of noise, nonstationarity, and possible nonlinear 

structure. I will briefly discuss these issues in more detail. 

N o  a priori models 

Convincing and accurate scientific models of business cycle dynamics do not yet and may 

never exist. The U.S. economy is too large and too complex to ever measure exactly. 

There are many factors that influence the economy that cannot be measured or quantified 

including mass psychology and sociological effects. It is estimated that anywhere from 3- 

44% of the U.S. economic activity is conducted in a deliberately concealed manner [loll. 

In the face of these problems, two main approaches that economists use to model the 

macroeconomy are structural models and linear time series models. 

Structural models are based on explicit economic theory, and are often nonlinear in 
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Figure 2.3: The U.S. Index of Leading Indicators (DLEAD) and its 10 component series as 
contained in the Citibase dataset. The Leading Index is a key tool for forecasting business 
cycles. The difficulty of macroeconomic forecasting is evident, due to the high noise levels 
and erratic behaviors of DLEAD and its components. Of the series shown here, the 
DLEAD, HSBP, FM2DQ, and FSPCOM series are used for prediction and classification. 
(Note that the component series included in DLEAD have been changed several times 
during the past 50 years.) Also shown is the Index of Coincident Indicators (COINC), 
another composite series which is meant to track the business cycle rather than lead it. 



nature. These models attempt to model the macroeconomy at a relatively fine scale and 

can contain hundreds or thousands of equations and variables. The model structures are 

chosen by hand, as is the specification of endogenous and external variables. The model 

parameters can be estimated from the data, though their values are usually constrained 

by the underlying economic theory [56].  While structural models can be useful for un- 

derstanding the economy qualitatively, they are notoriously bad at making quantitative 

predictions. The popularity of these model tend to rise and fall with the currently pre- 

vailing macroeconomic theory [24]. 

Given the poor forecasting performance of these structural models, many economists 

have taken to forecasting economic activity using the statistical techniques of standard 

linear time series analysis such as the Vector Autoregression (VAR). These time series 

models typically have only half a dozen to a dozen input series if they do not include 

some prior assumptions to guide the model fitting process. The most reliable of this 

type of statistical model during the past two decades or so have been Bayesian Vector 

Autoregressive (BVAR) models [51]. The BVAR model is a variation on the standard 

linear VAR model which allows the imposition of prior information or belief about model 

structure on the model building process. See Section 2.5.4 for an overview of the BVAR 

model. 

The research presented here will show that neural networks and neural network tech- 

niques can outperform standard linear time series models. The lack of an a priori model of 

the economy makes input variable selection and network model complexity critical issues. 

See Section 2.4 for a description of the methods employed in this chapter. 

Noise 

Figure 2.3 shows examples of several macroeconomic time series. As can be seen, these 

series are very noisy and generally have poor signal to noise ratios. The noise is also 

apparent in Figure 2.4, which displays the logged Industrial Production series along with 

returns of the series on multiple time horizons. Among other sources, the noise is due 

to the many unobserved variables in the economy and to the survey techniques used 

to collect data for those variables that are measured [loll. Due to the complexity of 
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Figure 2.4: The U.S. Index of Industrial Production and several return series (rates of 
change measured as log returns) for the 1, 3, and 12-month time scales. The difficulty of 
the prediction task is evidenced by the poor signal to noise ratios and erratic behavior of 
the target series. For all returns series, significant nonstationarities and deviations from 
normality of the noise distributions are present. 

gathering the large amounts of data needed to even estimate some of these economic 

variables, the values are often still being revised for years after the initial estimates are 

published. A short discussion on the use of revised data in macroeconomic forecasting 

is given in Section 2.3.3. Some features of the noise distributions that complicate the 

model fitting process are the presence of heavy tails and outliers. The significant noise 

levels in combination with limited data histories makes controlling model variance, model 

complexity, and the bias / variance tradeoff (discussed in Section 2.2.3) important issues. 



Nonstationarity 

Macroeconomic series are intrinsically nonstationary due to changes in governmental pol- 

icy and innovations in business techniques. For example, the advent of computing tech- 

nologies over the past 20 years has radically changed the nature of business worldwide. 

Other sources of nonstationarity include changing noise distributions, periodic redefinition 

of many series, and changing measurement techniques. In general, the presence of non- 

stationarities will shorten the usable length of the data series, since the older data will be 

less useful for predicting the future. The combination of noise and nonstationarity gives 

rise to a noise / nonstationarity trade08 [62] (see Section 2.2.4). If training windows are 

made too short in an attempt to use only the most relevant data, the model variance will 

be high due to the noise in the remaining limited training data. Increasing the length of 

the training window will help mitigate the effects of noise, but if the window becomes too 

long, error will begin to rise due to the effects of nonstationarity. 

Nonlinearity 

Nonlinear theories and models of the economy have existed for quite a long time [24]. How- 

ever, until relatively recent history, the lack of computational power has limited statistical 

analysis to the linear domain [log]. Hence, traditional macroeconomic time series models 

are linear [37, 401. Recent work as well as the current work suggests that nonlinearities 

can improve macroeconomic forecasting models in some cases [38, 68, 79, 1061. Often the 

degree of nonlinearity captured by neural network models of macroeconomic series tends 

to be mild [68, 50, 89, 114, 1271. The current research suggests that simpler models can 

be favored due to the high noise levels and limited data. Also, weight-decay techniques for 

models using sigmoidal nonlinearities bias the fits toward linear structure, making reliable 

estimation of nonlinearities more difficult. 

2.3.3 Literature Review 

There are numerous texts on economic and econometric time series forecasting [61,32, 341, 

with one of the more seminal works being Granger and Newbold [37]. There are many 

decent texts with introductions to macroeconomic issues and economic indicators [83, 88, 



1011. The sections on the leading indicators are of particular relevance to the forecasting 

approach taken in this chapter. 

Historical Highlights 

Early attempts at modeling the economy involved using "structural models". Structural 

models interpret economic data using a particular economic theory [24]. These models 

can be quite large, involving hundreds of variables. The use of specific structural models 

tends to rise and fall based on the fortunes of the underlying economic theory. Nonstruc- 

tural models, being less tied to a specific theory, have been gaining in popularity over 

the years, and continue to progress at a rapid pace. Diebold [24] states that the popu- 

larity of nonstructural models for macroeconomic forecasting began to grow in the 1970s 

as the structural models based on Keynesian theory began to fall out of favor, though 

certainly nonstructural models existed prior to this period. Some of the earlier work on 

nonstructural models of economic forecasting was done in the 1920s by Slutsky and Yule 

who suggested that autoregressions were appropriate. Box and Jenkins ARM A-fitting 

methodology [13] was a very influential work in the 1970s on nonstructural time series 

analysis and forecasting. Vector autoregressions [I281 are important advances around this 

time as well. 

In 1986, McNees [56] compared the performance of the BVAR forecasts produced in 

real time by Litterman with several prominent forecasters of the time. McNees finds that 

the BVAR-generated forecasts present a strong challenge to conventional practices and 

serve as a powerful standard of comparison for other forecasts. McNees also notes that 

the forecasts produced by structural models are often adjusted by the model user to take 

into account the user's own judgment of the most likely outcome. BVAR forecasts are 

typically not adjusted by the forecaster, showing a difference in the philosophical positions 

of the forecasters regarding the role of empirical models in the social sciences. 

Swanson and White [107, 1061 perform an extensive comparison of econometric fore- 

casting models including artificial neural networks on a set of nine macroeconomic series. 

Since they used quarterly data, they were able to compare the performance of their mod- 

els with the forecasts produced by the Society of Professional Forecasters, a number of 



professional forecasters from various professions, whose forecasts are recorded every quar- 

ter in real time. One of the questions Swanson & White address is whether adaptability 

in linear and nonlinear models is useful. They also take a model selection approach to 

the prediction problem as opposed to a hypothesis testing approach. One of their main 

findings is that their multivariate adaptive linear models outperform nonadaptive models, 

as well as the adaptive nonlinear models they considered and the forecasts of the Society 

of Professional Forecasters. They also find that various models are preferred depending 

on the performance measure, emphasizing the importance of model selection criteria. 

Data Vintages 

The problem of data vintages is usually ignored when macroeconomic series are considered. 

Macroeconomic series can never be truly, accurately measured, so, as discussed previously, 

the values reported are at best estimates. As time passes since the initial estimate of a 

series is made, more accurate estimates of the data point are often able to be made, and 

are used to replace the initial estimates. Swanson and White [I071 use unrevised, or "first 

reported" quarterly data which allows them to produce true ex-ante forecasts. However, 

this dataset was constructed by hand by searching through over 30 years of monthly issues 

of the "Survey of Current Business". Of course, even this type of dataset is incomplete 

by itself. To make "optimal" ex-ante predictions one would like to use maximally revised 

datasets that do not violate causality constraints [go]. This would correspond to having 

a full, unique dataset at each time step containing the most recently available revision 

of every historical data point. The "first reported" dataset used in [I071 will have an 

exceptionally high level of noise due to the use of the initial estimates only at all points in 

time. Also, presumably the errors are being calculated on these same noisy "first-reported" 

data points. As the amount of revision can often be large, this leads to questions as to 

the "true" accuracy of any error measure being calculated using this type of dataset. 

Diebold and Rudebusch [26] use a partially revised, causal dataset to build linear models 

for predicting the Composite Leading Index. They find a significant degradation in their 

linear models when switching from a fully revised to a partially revised dataset. 

Due to costs and availability I use fully revised monthly time series. The reported data 



is not actually publicly available, and substantial effort would be needed to attempt to 

collect it. Also, since the emphasis of this work is on model selection and the evaluation 

of the presence of nonlinearity in the series, I feel it is appropriate to use full revised data. 

This should allow a clearer picture of the actual underlying relationships present in the 

datasets. 

2.4 Modeling Approach 

In this section I discuss the various techniques that are used when training the networks 

to help deal with the problems of model selection, noise, nonstationarity, and nonlinearity 

described in Sections 2.1 and 2.3. These techniques include year-by-year retraining, model 

regularization, variable selection, and committees of models. Often there are a number of 

related techniques that could be used to achieve similar effects. This work does not try 

to compare techniques, but rather seeks to demonstrate the need for techniques such as 

those presented here. It is likely that different techniques will be preferred depending on 

the specific datasets under consideration. 

2.4.1 Neural Network Model Architectures 

In order to model the possible nonlinear structure in the macroeconomic time series, I 

use nonlinear models with sigmoid-type nonlinearities. These nonlinear models have been 

studied extensively, and further discussion beyond the scope of this thesis can be found in 

a number of references [42, 41, 361. This section describes the nonlinear models used in 

this project, and provides a brief overview of the training process. 

The model architecture used is a two-layer feed-forward neural network with tanh 

activation functions in the hidden layer, and a single linear output. The output of an 

individual network is given by the network equation: 

where xi is the value of the ith input, there are m inputs to the model, and n nodes in the 

hidden layer. The first-layer weight uji is the weight from the ith input to the j th hidden 



node and ujo is the bias of the jth hidden node. The second-layer weight vj is the weight 

connecting the jth hidden-layer node to the output, and vo is the output bias. 

For comparison, I also train linear networks: 

The linear networks differ from standard linear models in that they are trained using the 

methodology described in this section. 

The networks are trained using the well-known stochastic backpropagation algorithm. 

The backpropagation algorithm provides a method for adjusting the weights of a network 

to minimize some measure of error for a given dataset. This requires that the gradient of 

the error function with respect to the weights of the network be calculated. 

2.4.2 Learning 

Since there is not typically a well-defined mapping between forecast errors and the cost of 

a forecast error in macroeconomics, forecast accuracy is often based on the Mean Square 

Error (MSE) measure. Mean Square Error is defined as: 

where the w represent the parameters of the model, yi is the target value being predicted, 

and f(xi; w) is the model forecast based on the input vector xi and weight vector w. 

I train the networks to minimize the sum of the MSE and the weighted regularization 

term 

subject to the minimum error on the validation set. The regularization term is used to 

help avoid learning the noise in the training data set. Regularization will be discussed 

further in Section 2.4.4. 

The stochastic backpropagation algorithm proceeds by updating the network weights 

after each presentation of a data point from the training data set. The weights are initial- 

ized to small random values at the beginning of the learning process. The desired change 



in the weights is proportional to the gradient of the error function with respect to the 

model parameters: 

where the wi represent the individual weights of the network. The weights are adjusted 

by a small amount in the direction of the negative gradient: 

wi (t) = wi(t - 1) + Awi(t - 1) 7 (2.20) 

where q is the called the learning rate as it controls the amount by which the weights are 

changed in response to a training exemplar. A single pass through the entire training data 

set is commonly referred to as an epoch. Each network was trained for a maximum of 200 

epochs using a learning rate of r ]  = 0.16. These parameters were set by examination of the 

training and validation curves during training. The models showed good convergence on 

the training set, and the validation error reached its minimum before the maximum number 

of epochs. As will be described in Section 2.6.2, the inputs and targets are normalized 

prior to training; this helps the gradient descent by normalizing the scales of the inputs 

with respect to one another. 

2.4.3 Moving Window Retraining 

To help deal with the problem of nonstationarity I use a sliding, fixed-size training window, 

and perform model retraining on a year-by-year basis. The training window size is 25 years, 

or 300 months of data. A larger window size is chosen as the noise problem seems to have 

a more significant effect than nonstationarity for these datasets. For the datasets used 

here, the data prior to 1980 is used for parameter selection and training, and predictions 

are made for the 1980-1989 test period. 

To produce forecasts for a 10-year test period, the models are trained using data prior 

to the beginning of the 10-year period. Forecasts are then produced using these models 

for the first 12 months of the test period. The training window is shifted forward by 12 

months, dropping off the oldest 12 months of data that were previously in the training set, 

and the models are retrained from a new random initial set of weights (See Figure 2.5). 



Figure 2.5: A depiction of the year-by-year retraining procedure. Model parameters are 
reset to random values and retrained each time the training window is shifted forward. 
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This process proceeds until the final retraining which uses a training window that contains 

all the data up to the end of the 9th year of the test period. Forecasts are produced for the 

10th year of the test period, and are concatenated with the 9 previous sets of predictions. 

It is very important to manage the datasets correctly lest future information be in- 

corporated into the training dataset. For example, consider building a model to make 

h-month forecasts starting Jan. 1980. After constructing backward looking inputs and 

forward looking target pairs for the training process, the last date actually available for 

training on is Dec. 1979 - h. This is the date of the last full target return that can be 

calculated without overlapping the out-of-sample test period. In order for the prediction 

made at the beginning of 1980 to be a true ex-ante prediction, this total separation of 

training set and test set must be enforced. Also, the monthly macroeconomic series con- 

sidered here must be delayed by one month before being used, as the reported value for 

the Index of Industrial Production for the month of June is not actually available until 

the middle of July. So this information can not be used to produce a forecast until the end 

of July. However, the financial time series are real-time series, and the values are readily 

available at the end of the current month. 

One of the issues investigated for this project was to treat the training window length 

as a hyperparameter, and to use the training data to select the training window length to 

be used for the test set. I found this type of selection to be too unstable for the datasets 

studied. There did not seem to be much correlation between the best window length for 

adjacent periods of time. For such a method to work well, the optimal training window 

length would have to change very slowly over time. It would require a fair amount of 

Test2 I 
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historical data to have any confidence that such a procedure would produce stable or 

reliable results. This type of procedure might work for a higher frequency dataset, but for 

this study the training window is held constant at 25-years. As we can see from the shape 

of the curve in Figure 2.1, for these series it is better to have a too long training window 

than a too short training window. 

2.4.4 Regularization 

Due to the large amounts of noise in the macroeconomic data, I apply two different regu- 

larization techniques to the networks in an attempt to keep the networks from overfitting 

or learning the noise. The two techniques are often used in neural network training: early 

stopping and quadratic weight-decay. Both techniques introduce model bias in order to 

reduce model variance and thereby reduce prediction error. These methods control model 

complexity as measured by the egective number of parameters [63, 64, 651. 

Early stopping 

The goal of early-stopping is to minimize the prediction error on a test set by stopping 

training before over-fitting occurs. Figure 2.6 shows a stylized representation of the errors 

on the training, validation, and testing data sets as a function of training time. Due to 

the nature of the gradient descent process, the error on the training set will continue to 

decreases on average. However, once over-fitting begins to occur, the error on the test set 

begins to increase. 

Early stopping involves holding out a random 20% of the training window for valida- 

tion. The networks are trained on the remaining 80% of the data (the training set), and 

the hold-out data (the validation set) is used to estimate the prediction error. After each 

training epoch, the error is measured on the validation data. Training is stopped after 

the error on the validation data begins to increase, and the set of weights corresponding 

to the minimum error on the validation data is used to make forecasts of the test data. 

As will be discussed in Section 2.4.6, committees of 10 models each are used to produce 

forecasts. One major source of variation in the committee members is that each uses 

separate, randomly chosen training and validation data subsets of the training window. 
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Figure 2.6: This is a stylized representation of the errors on the training, validation, and 
testing data sets as a function of training time. Due to the nature of the gradient descent 
process, the error on the training set will continue to decreases on average. However, once 
overfitting begins to occur, the error on the test set begins to increase. The error on the 
hold-out validation set is used to approximate the error on the test set, and the training 
is stopped at the time corresponding to the minimum error on the validation set. 

Figure 2.7 depicts how the training and validation datasets vary between different com- 

mittee members. Early stopping occurs for committee member i when the error measured 

on the data points marked with black arrows (which are not used to train the parameters) 

is at a minimum. Early stopping for committee member j is based on the data points 

marked with white arrows. 

Quadratic weight decay 

Quadratic weight decay (similar to ridge regression in the context of linear regression in 

the statistical literature [44, 431) is a commonly used method to help avoid fitting the noise 

in a data set. Weight decay involves adding a term to the cost function that penalizes 

large weight values in the network 

E=MSE+XCW? (2.21) 
i 

where the wi are all of the weights in the model including the biases, and N is the number 

of data points in the training set. The weight decay parameter, A, determines the amount 
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Figure 2.7: A graphical depiction of how the validation datasets vary between committee 
members i and j. Early stopping occurs for committee member i when the error measured 
on the data points marked with black arrows (which are not used to train the parameters) 
is at  a minimum. Early stopping for committee member j is based on the data points 
marked with white arrows. 

of contribution the penalty term makes to the total error, and has the effect of controlling 

the eflective number of parameters. The best choice of X is problem dependent so a separate 

X is chosen for each series and forecast horizon, though the individual committee members 

all use the same value of X as described below. It is worth noting that for networks with 

sigmoidal nonlinearities, weight decay regularization in its usual form biases the model to 

a linear structure. 

For a given series and a given forecast horizon, I choose the weight decay parameter by 

performing a search over X based on the training set data. The search consists of evaluating 

each choice of X by testing the methodology using the sliding window retraining on the 

1970-1979 training data as described in Section 2.4.3 and depicted in Figure 2.5. The 

value of X which gives the best aggregate performance on this 10 year ex-ante simulation 

test period is then used to train the models for predicting the desired test period of the 

1980's. The reason this full 10-year period is used to evaluate the choice of X instead of 

a much smaller validation set as used for early stopping is so that models are not fooled 

into choosing too small or too large values based on a possibly unrepresentative sample of 

data. 

The importance of choosing an appropriate value of X is shown in Figure 2.8. This 
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Figure 2.8: Mean Square Error values of a test set as a function of the regularization 
parameter A. The separate curves represent various models trained to predict the test set. 
When the weight decay coefficient is small, errors are high due to the large model variance. 
When the weight decay coefficient is too large, errors increase because the models become 
too biased, and can not adequately represent the underlying structure in the data. Most 
of the models shown here produce the lowest errors when the regularization parameter is 
approximately 0.1 to 0.3 in magnitude. 

figure shows the characteristic effect on test-set error of using different amounts of reg- 

ularization during training. If the value of X is too small then the network overtrains 

on the training data, fitting noise features which have no relevance to the test data. As 

the value of X increases, the model variance decreases and generalization increases. If X 

becomes too large, error begins to increase again because now the network is too biased, 

and is no longer able to fit the true structure of the data. Most of the models shown here 

produce the lowest errors when the regularization parameter is approximately 0.1 to 0.3 

in magnitude. This relatively large value for X indicates that these series really have a 

very large amount of noise. 



Bayesian Interpretation of Weight Decay 

If we exponentiate the regularized error, Equation 2.21, we have 

exp (-MSE) . exp (-A w:) 

which is the penalized likelihood function. The first part of this represents the likelihood of 

the data given the model, p(V1w). The second part, derived from the regularization term, 

can be viewed as a prior on the model parameters, p(w). According to Bayes theorem, the 

posterior model probability p(w(D) is proportional to 2.22, so minimizing 2.21 corresponds 

to maximizing the posterior model probability. 

Discussion 

As will be shown in Section 2.7.4, I have found that both early stopping and quadratic 

weight decay are useful for improving the performance of the models. Though often early 

stopping offers only an incremental enhancement when used in the presence of weight 

decay. It is worth noting again the different ways in which the two methods are used 

to determine the amount of regularization each applies to the model. The weight decay 

parameter is chosen with respect to ex-ante performance from simulations on historical 

data, while the early stopping uses a validation dataset sampled from the current training 

window to estimate out-of-sample performance. Also, all committee members use the same 

weight decay coefficient while the early stopping point is determined on an individual basis 

using individual randomly selected validation datasets. 

Figure 2.9 is a depiction of the effects early stopping and weight decay have on the 

learned value of the weights. Note that WTt is the optimal weight vector for the training 

data set, not the true underlying function. Indeed, through the use of validation data 

sets, the presumption is that regularization will result in weight vectors closer to the 

true optimal value than could be learned from the training data alone. Early stopping 

halts training somewhere along the path from the initial weight vector to the training set 

optimal vector. Weight decay as implemented here biases the weight vector toward zero. 

If the initial weights are close to zero then the effect of early stopping may be hard to 

distinguish from the effect of weight decay. 



Early Stopping Weight Decay 

Figure 2.9: A graphical representation of the effect of regularization on the weights of 
a model. WWt is the optimal weight vector for the training data set. Early stopping 
halts training somewhere along the path from the initial weight vector to the training set 
optimal vector. Weight decay as implemented here biases the weight vector toward zero. 

For the network models used here, the use of weight decay to shrink toward zero 

corresponds to a prior of a random walk plus drift model. This is due to the preprocessing 

performed on the inputs and targets (See Section 2.6.2). To improve the learning dynamics 

of the network models, the target returns are demeaned and scaled to have unit variance 

based on the training set data. The out-of-sample forecasts are then transformed back 

using the previously calculated training set mean and variance. As the model weights 

shrink to zero, the model forecasts shrink to zero as well, but the the postprocessing adds 

the training set mean back in, resulting in the drift component. 

2.4.5 Complexity Reduction & Model Selection 

Model selection is a critical component of the forecasting problem. Model selection in- 

cludes choosing the input variables as well as defining the model topology. If there are 

too many adjustable parameters in a model relative to the amount of available data, then 

overfitting can occur during the model optimization procedure, resulting in poor general- 

ization on the test set. This problem is particularly acute when data sets are small and 

very noisy as is the case with the macroeconomic data sets considered in this chapter. 



Some authors, such as Swanson and White [107], use methods that grow the model 

structure starting from a linear model and add nonlinear components according to saliency 

measures that measure a tradeoff between model complexity and goodness of fit. This 

thesis uses a methodology that starts with a large number of inputs and a relatively 

complex model structure, and then proceeds to reduce the complexity of the model using 

data-based saliency measures. This section briefly discusses some input selection and 

model pruning methods including Principal Component Pruning which is used for the 

results presented later in this chapter. 

Input Selection 

There have been a number of model-independent and model-dependent variable selec- 

tion procedures proposed [48, 11. The Delta Test, a model-independent procedure, is a 

nonparametric statistical algorithm that selects meaningful predictor variables by direct 

examination of the data set [87]. The reader is referred to the preceding reference for 

a description of the algorithm. A preliminary study used the Delta Test to find a very 

successful set of inputs for predicting 12-month ahead values of the Index of Industrial 

Production. However, further experimentation with the technique revealed that it is very 

sensitive to the effects of noise in the data, and was not useful in general for the macroe- 

conomic data sets. 

Sensitivity-Based Pruning (SBP) techniques are model-dependent algorithms that prune 

unnecessary or harmful input variables from a trained network [77, 73, 65, 1141. Sensi- 

tivity results presented in Section 2.7.5 indicate that explicit input selection may be too 

difficult given the apparent amount of nonstationarity present in the data. 

Pruning & Rank Reduction 

There are a number of techniques available for pruning the structure of a network including 

the Optimal Brain Damage (OBD) [97] and Optimal Brain Surgeon (OBS) [loo] algorithms 

which prune weights from the network. These algorithms train the network to a local 

minimum in error, and then calculate the second derivative of the error function. OBD 

uses a diagonal approximation of the Hessian while OBS calculates the entire matrix. 



Then, weights are removed from the network model based on a saliency calculation using 

the Hessian or its approximation. 

In the work presented here I use supervised Principal Component Pruning (PCP) [50] 

to reduce the complexity of the network structures. PCP is a method for pruning the 

eigen-nodes in each layer of a neural network. PCP is intermediate between OBD and 

OBS in that it uses a block-diagonal approximation of the Hessian to select candidate 

weights for pruning. Unlike OBD and OBS, PCP does not require training to a local 

minimum, allowing it to be used in conjunction with early stopping and weight decay. 

Principal Component Pruning uses more information than OBD and the approximation 

to the Hessian is faster to compute than the OBS method. The PCP algorithm provides 

a tradeoff between accuracy and computational complexity. 

The PCP algorithm starts with a network structure where each layer calculates some 

function I?(.) of its weighted input 

where ui is the input for layer i and W i  is the weight for layer i. The algorithm then 

calculates the correlation matrix for each layer, i, in the network 

. 1 -  C"--C 
N 

ui (k)uiT (k) 
k=l 

where there are N data points and u(k) is the vector of layer inputs given network input 

k. C is then diagonalized 

and the eigenvectors are used to transform the inputs and weights of layer i 

The weighted input to the layer is then 



The PCP algorithm uses a diagonal pruning matrix Pi to prune the eigen-nodes for layer 

2 

Supervised PCP 

The supervised PCP algorithm as implemented here proceeds by ranking the eigen-nodes 

of xi in order of increasing effect on the training error. Then, starting with a diagonal 

pruning matrix pi = I, eigen-node j is deselected by setting P$ to 0, and the prediction 

error is estimated using a validation data set. If the prediction error is reduced then the 

eigen-node remains deselected and the process continues to the next eigen-node. If the 

prediction error increases, then the eigen-node is reselected and the pruning process is 

halted. The layer weights are then set to 

and the remaining, unprocessed layers of the network are retrained on the training set. 

This entire process is then repeated on the next layer of the network, and so on until each 

layer's eigen-nodes have been pruned. 

2.4.6 Committees & Variance Reduction 

Due to the extremely noisy nature of economic time series and the influence of initial 

conditions on the model optimization process, the control of forecast variance is a crit- 

ical issue. One approach for reducing forecast variance is to average the forecasts of a 

committee of models. 

In the work presented in this chapter, I use the simple average of ten individual fore- 

casts as the committee forecast 

where the individual fi are the predictions of the individual networks. Each network is 

trained using a separate, randomly selected validation data set, and starts with a different 

random set of initial weights. The efficacy of the data-driven portions of the methodology 



is directly related to the characteristics of the validation data compared to the unseen 

test data. Averaging over multiple realizations of the validation sets is crucial to not 

being misled by a specific feature or event that may occur in any specific validation set. 

Also, the stochastic backpropagation learning algorithm is sensitive to the model's starting 

point in weight space. Similarly, the averaging over initial starting points ameliorates the 

problems with any individual optimization becoming stuck in a local minimum of weight 

space. Breiman's bagging [15] algorithm relies on the use of bootstrapped data sets to 

introduce variation in the created models. He notes that the more variation that can be 

induced, the more advantage there is to the combining process. 

Figure 2.10 shows the variance reduction effect from using committees of models to 

produce forecasts. The comparison is between 1000 individual networks, and the same 

networks randomly divided into committees of 10. The committee approach sharply re- 

duces the variances in the resulting errors of the forecasts. With a convex error function, 

committee errors are necessarily less than the average of the individual errors; in this 

case they are typically very close, and committees serve mainly as a variance reduction 

technique. 

Researchers in economics have studied and used combined estimators for many years, 

and generally find that they outperform their component estimators and that unweighted 

averages tend to outperform weighted averages, for a variety of weighting methods [37, 126, 

211. These weighting methods usually try to take advantage of the correlations between 

the committee members. 

Another reason to combine forecasts would be to aggregate alternative sources of in- 

formation. These sources of information could be different inputs sets or even different 

model structures. These types of combinations are not considered here. 

2.5 Benchmark Models 

I compare the results of the network models with several benchmark models. There are 

two trivial predictor models: a random walk with drift model and a random trend model. 

There are two basic linear models: the multivariate ordinary least squares regression 
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Reduction in Forecast Variation via Committees 

Figure 2.10: A demonstration of the use of committees to reduce the variance of forecasts. 
In each pair of bars, the left bar shows the spread in average errors for the total 1000 
individual forecasting models. The right bar shows the spread in average errors when the 
forecasts are first combined using committees of ten models each. 

1.4 

model, and the univariate linear autoregressive model. The final comparison model is a 

Bayesian Vector Autoregression (BVAR) model. The BVAR model incorporates Bayesian 

regularization, and has performed well compared to standard models in previous macroe- 

conomic forecasting studies 151, 561. 

The following sections will assume that the models are forecasting returns. The h-day 

ahead return at  time t will be denoted yt(h). 

hvg of 106 committdes I I000 hets 
I 
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2.5.1 Trivial Predictors 

Comparing model performance to relevant trivial predictors is important for establishing 

a baseline, especially when there is no way to know what the best practically achievable 

performance is for a dataset. Otherwise, comparisons between more complicated models 

may be irrelevant if they cannot outperform very simple models. There are two trivial 

predictor models for which I include results. 

The median-return trivial predictor corresponds to a random walk with drift model. 



Its h-day ahead point forecast, jjt(h), is the median h-month return for the series measured 

over the preceding 25-year training period. While the no-change-in-level predictor, ijt(h) = 

0, would correspond to a random walk model, the random walk with drift model is a more 

appropriate baseline since the training set mean return is removed during training in a 

preprocessing step, and is later added back to the test set forecasts (see Section 2.6.2). 

The no-change-in-return trivial predictor corresponds to a random walk plus random 

trend model. For a forecast horizon h, the forecast at time t is 

This predicts that the next value, over horizon h, is equal to the current level plus the 

current trend as given by the just-completed return. 

2.5.2 Linear Regression 

The linear regression model is a basic linear regression based on all 76 inputs, 

and produces direct predictions of the target variable. The method of Ordinary Least 

Squares is used to estimate the parameters of these models. New models are fit each year 

using the sliding window retraining methodology described in Section 2.4.3. 

2.5.3 Linear Autoregression 

The linear AR model is univariate and has the structure as described in Section 2.2.1 

The AR order, p, for each series is determined by the statistically significant lags of the 

partial-autocorrelation of the series as listed in Table 2.2. Since the models are univariate, 

they only include lagged values of themselves, up to a maximum of 24 for each series. 

h-month forecasts are produced by iterating predictions of 1-month returns. That is, the 

1-month iterated forecasts 
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Table 2.2: The number of lags included in each univariate AR model. The number was
chosen based on the significant lags of the partial autocorrelation function of each series
up to a maximum of 24.

Yt+l,t = O'.lYt+ 0'.2Yt-l + . . . + O'.pYt-p+l

Yt+2,t = O'.lYt+l,t + 0'.2Yt + . . . + O'.pYt-p+2

are used to generate the 3-month ahead forecast

Yt(3) = Yt + Yt+1,t+ Yt+2,t . (2.36)

2.5.4 Bayesian Vector Autoregression

The Bayesian Vector Autoregression (BVAR) is a method for imposing prior information

on vector autoregressions in order to mitigate the effect of overfitting the observed data.

The BVAR method was first proposed by Litterman [51]. BVAR was proposed as an

alternative to the standard economic approach of using an economic theory to suggest

a small number of places to look for useful information. Litterman's BVAR approach is

based on the belief that useful information about the future is likely to be spread across a

wide spectrum of economic data and time lags. The priors in the BVAR approach allow

all of this data to be incorporated into a model when the relatively limited amount of

available data would be inadequate to support an unconstrained fit.

The BVAR model is based on the standard VAR model described in Section 2.2.1,

and extends it by using priors to bias the parameter values. The induced parameter bias

Series # of AR Lags
DLEAD 24
DRM 24

FM2DQ 6
FSPCOM 16
FYAAAC 24
HSBP 14
IP 24
LHUR 24
PUNEW 24
YCS 24
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improves the model fitting process by helping make up for the lack of the large amounts

of data needed to estimate the VAR parameters.

Recall the component equation for the VAR model (Equation 2.9):

Yit = t
[
CXiikYi(t-k) + L CXijkYj(t-k)

]

+ fit.
k=l #i

(2.37)

A commonly used prior definition [27] sets the prior distributions of the VAR parameters

to have the form:

CXijk rv N(O, O";jk) (2.38)

where CXijkis the coefficient at lag k, weighting the contribution of input j in the forecast

of variable i. The magnitude of the variances O"&kdecrease with increasing k and are de-

scribed below. This prior emphasizes a random walk with drift prior model. Litterman [51]

motivates the use of a 0 prior for many of the variables by noting a correspondence to

ridge regression.

The prior variances specify uncertainty about the pnor means. Due to the large

numbers of parameters in a typical VAR model, Doan et al. [27] suggested a formula to

generate the standard deviations from a small number of hyperparameters: e, <jJ,and a

weighting matrix W with elements w( i, j), allowing the specification of prior variances for

a large number of coefficients using only a few hyperparameters. The standard deviation

of the prior imposed on variable j in equation i at lag k is:

O"ijk = ew(i, j)k-q, (~u~ )O"m
(2.39)

where aui is the estimated standard error from a univariate autoregression involving vari-

able i, so that ~ is a scaling factor that adjusts for varying magnitudes of the variablesau,

across equations i and j. Doan et al. [27] label e the "overall tightness", reflecting the

standard deviation of the prior on the first lag of the dependent variable. The term k-q,

is a lag decay function with 0 ::; <jJ::; 1 which shrinks the standard deviation with in-

creasing lag length. This represents the belief that more distant lags contain less useful

information. The function w(i,j) specifies the tightness of the prior for the parameters



40

for variable j in Equation 2.8 relative to the tightness of the priors for the parameters for

the dependent lags of variable i in Equation 2.8.

The hyperparameters used in the standard prior described above have values e = 0.1

and q;= 1. The weighting matrix used is:

1

0.5

0.5 ... 0.5

1 0.5
(2.40)w=

0.5 0.5 ... 1

Implementation Details

The standard prior described is used in the simulation results reported in Section 2.7. The

sliding window methodology described in Section 2.4.3 was used when creating the BVAR

models. The inputs for each model are lags of the the one-month log returns of the 11

series listed in Table 2.1. The maximum input lag is k = 24, producing a total of 264

inputs per model. The h-month forecasts were made by iterating the one-month forecasts

forward in time as described for the AR models in the previous section. The BVAR models

presented in this chapter were created using a Matlab toolbox freely distributed by James

P. LeSage!.

2.6 Empirical Methodology & Setup

In this section I describe the details of the models and training procedures used in fore-

casting the macroeconomic and financial time series. In the following section I will present

the results of the studies done using the methodology described previously in this chapter.

2.6.1 Model Structure

The nonlinear models used for point forecasts are feedforward neural networks with three

tanh units in the hidden layer (see Section 2.4.1). Because of the relatively small amount of

available training data, I limited the size of the point forecast networks to only three units

1http:j jwww.spatial-econometrics.comj
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to help avoid overfitting problems. A total of ten committees of ten models each are used

to predict the 10-year period, 1980-1989, with one committee per year. First, a committee

is trained on a window of the training data prior to the first month of 1980 - h, where

h is the forecast horizon in months, and the window size is 300 months. The committee

is then used to make monthly predictions for the year of 1980, the training window is

shifted forward by 12 months, the training procedure is repeated, and predictions are

made for the next year. Each time the training window is shifted, the weights of each

committee member are reinitialized to random starting values. This is done also to help

avoid overfitting. The weight decay regularization parameter is chosen once for the ten-

year period based on the training data prior to 1980 - h as described in Section 2.4.4.

The nonlinear models used for directional forecasts are feedforward neural networks

with 3 or 10 tanh units in the hidden layer (see Section 2.4.1). I compare with networks

containing 10 hidden units due to the increased number of output units (4 or 5 outputs

per network depending on the output representation, see Section 2.8). Following the

methodology of the point forecast studies, a total of ten committees of ten models each

are used to predict the 10-year period, 1980-1989, with one committee per year. The

directional forecast models are used to predict quintiles of directional movement. That

is, the training returns are divided up into sets representing "large negative", "small

negative", "flat", "small positive", and "large positive" log price changes. Each class

is divided to contain 20% of the data in the initial training set. Note that the classes

are relative to the median return instead of the zero return value. So the "flat" class is

centered around the median return over the training period as opposed to representing no

return.

2.6.2 Data

The dataset used consists of monthly time series taken from the Citibase database. The

macroeconomic series are fully revised (see Section 2.3.3 for a discussion of revised vs real-

time macroeconomic datasets), and cover the time period, 1950-1995. The data prior to

1980 is used for hyperparameter and model selection purposes as described in Section 2.4,

and the results reported here are for the 1980-1990 test period. The macroeconomic data



are lagged by one month before being used in the models to account for reporting delays. 

The financial time series are real-time series, and the values are readily available. 

In addition to the results presented in this section, tables of numerical results for all 

the series are listed in Appendix A. 

Inputs 

The macroeconomic series are preprocessed before being used by the networks. The rep- 

resentation used for most input series is log returns, ie. the first difference on varying time 

scales of the logged series. 

rt(-h) = Ahlog (xt) = log - 
( 2 3  

where h takes on the values {1,3,6,9,12,18,24). Taking the logs of series is a commonly 

used transformation in econometrics, and is an example of a Box-Cox transformation [12]. 

These types of transformations are used to alleviate problems with heteroskedacticity in 

the returns series. 

The telescoping returns representation is used rather than a standard AR representa- 

tion in order to reduce the amount of noise in the input signals. This can help with the 

overfitting problems as there are fewer significant noise features in the inputs due to the 

averaging process implicit in the multi-month returns calculation. This may also enable 

faster learning as the future trend of a series is more likely to be related to the previous 

trend as opposed to any single month's return. On the other hand, the resulting correla- 

tion between the input signals contributes to a condition called "multicollinearity" where 

the effective dimension of the inputs can be less than the number of input signals, and can 

lead to increased variance in the optimized parameters. However, this type of problem 

can dealt with through the use of regularization techniques as described in this chapter. 

The short-hand notation used in this thesis when referring to a specific input series 

consists of the designation (Table 2.1) of the given series, for example "DLEAD", followed 

by an "L" if logs were taken of the series, and ended with an indication of the time scale 

on which the first difference was taken, for example "D6". So the notation for the 6 month 



log return of the Index of Leading Indicators would be 

Using the returns of the series is necessary to avoid complications due to unit roots2 in 

many of the series. The Housing Starts and the Unemployment Rate series did not appear 

to exhibit heteroskedacticity, and were not logged. 

In order to facilitate the network learning, an additional preprocessing step removes 

the mean of each input series, and scales the signal to have a unit variance. The mean 

and variance are measured over the 25-year training set. This same mean and variance is 

used to preprocess the inputs when the forecasts are being made out of sample. 

Targets 

The target series are similarly preprocessed, except that forward returns are used 

where B is the backwards shift operator: 

So, if the target is the 12 month forward return of the Index of Industrial Production, 

then this is denoted 

Predicting the 12 month forward return of a series at time t, contains the same information 

as predicting the value of the series 12 months into the future, but the properties of the 

returns series are more amenable to prediction methods. 

Again, an additional preprocessing step removes the mean of the target series, and 

scales the series to have a unit variance. The mean and variance are measured over the 

25-year training set. This same mean and variance is used to transform the out-of-sample 

forecasts. 

'See Section 2.2.1. 



In the results sections, I present results for making 3 and 12 month forecasts of value 

and of direction. As inputs to the models I include the 1, 3, 6, 9, 12, 18, and 24 month 

returns of the series listed in Table 2.1. Also, I include the levels of the interest rate series 

(including the Default Risk Measure series), the Unemployment Rate, and the Housing 

Starts Index. This makes a total of a 76 inputs to the forecasting models. The one 

exception is the M2 money supply series (FM2DQ). This series was added to the study 

at a later date, so while the other series do not contain it among their inputs, it of course 

includes itself among its inputs, and thus has a total of 83 inputs. 

The point forecast network models have 0 or 3 internal units and are structured as de- 

scribed in Section 2.4.1. Thus they contain 77 and 235 adjustable parameters respectively 

(84 and 256 for FM2DQ). The directional forecast network models have 0, 3, or 10 internal 

units, and 4 or 5 output nodes depending on the target representation. This corresponds 

to 308, 247, and 814 parameters (336, 268, and 884 for FM2DQ) for the models with 4 

outputs, and 385, 251, and 825 parameters (420, 272, and 895 for FM2DQ) for models 

with 5 outputs. 

2.6.3 Statistical Significance 

Due in part to the large amount of regularization used in producing the forecasting models, 

the forecast errors, eit = (yit - fi(xt; w)),  have properties that invalidate the use of stan- 

dard hypothesis testing. These properties include a non-gaussian distribution, non-zero 

mean forecast error, serial correlation, and contemporaneous correlation among different 

model structures. 

Recently in macroeconomic forecasting, a widely-used test for forecast accuracy has 

been the Diebold-Mariano test [25]. Diebold and Mariano propose a hypothesis test on 

the difference between two models errors that is generally valid under a wide variety of 

conditions including non-normal distributions and serial correlation. The test is also valid 

for loss functions besides the mean square error measure. 

First, compute the loss-differential series for two models i and j ,  dt = [g(eit) - g(ejt)], 



where g ( . )  is a generalized loss function. If the loss-differential series is covariance station- 

ary and short memory then 

where 

is the sample mean loss differential, 

inf 

fd(0) = ,& c 7 d ( ~ )  
T=- inf 

is the spectral density of the loss differential at frequency 0, yd(r) = E[(dt - p)(dt-, - p)] 

is the autocovariance of the loss differential at displacement T, and p is the population 

mean loss differential. 

In large samples then, the statistic for testing the null hypothesis is 

where fd(o) is a consistent estimate of fd(0). A consistent estimate of 2Tfd(0) may be 

obtained by taking a weighted sum of the available sample autocovariances, 

where 

1+ is the lag window, and S ( T )  is the truncation lag. Diebold and Mariano suggest 

that using a rectangular window with length k - 1 for a k-step-ahead forecast is adequate 

in many cases. In the presentation of results for this chapter I use squared error as the 

generalized loss function g(.), and use the k - 1 rectangular window. 

A number of more general non parametric tests such as the Wilcoxon Rank Sum 

test [60] were investigated for measuring the statistical significance of the results. Gen- 

erally, these tests were not able to distinguish between the different models performance 



very well. Even the Deibold-Mariano test sometimes has difficulty distinguishing between 

models which appear to exhibit marked differences in accuracy. There is the potential for 

more research to be done in this area, possibly with the use of the stationary bootstrap [30] 

to set confidence intervals. 

2.7 Empirical Studies: Point Forecasts 

In this and the next section I present results for point and directional forecasts of 3 and 

12 month changes in the macroeconomic and financial time series described previously. I 

show results for a number of linear and nonlinear models and compare their performance 

in terms of mean-square error and directional accuracy. I present the point forecast results 

in this section, and directional forecast results in the next section. 

The regression network models are trained with a single linear output node, and with 

either no hidden nodes or with 3 nonlinear hidden nodes. The target is the 3 or 12 

month future returns for the respective series, either logged or unlogged as described in 

Section 2.6.2. I find that the network models perform favorably compared to the other 

benchmarks considered. Figures 2.11 through 2.14 compare the errors produced by these 

models, and will be discussed in the next section. 

The results presented here are stated in terms of Normalized Mean Square Error 

(NMSE). 

That is, NMSE is the Mean Square Error performance of the model on the test set nor- 

malized by the variance of the test set. An NMSE of 1 would be achieved by predicting 

the average value of the test set. 

2.7.1 Point Forecast Results Summary 

Figures 2.11 and 2.12 show barcharts of the normalized mean-square error results for point 

forecasts of the 3-month ahead changes in the target series. Figures 2.11 and 2.14 show 

barcharts of the results for 12-month ahead point forecasts. Numerical tables of these and 
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Figure 2.11: Normalized mean square errors for making 3-month point forecasts of the
test set. The "RW+ Drift" model uses the median return measured on the training set as
a forecast. The "RW+RTrend" model uses the most recent 3-month return as a forecast.

The "LinReg (OLS)" forecast is an ordinary least squares linear regression based on the
76 inputs as described in the text. An NMSE of 1 would be achieved by predicting the
average value of the test set.
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Figure 2.12: Normalized mean square errors for making 3-month point forecasts of the
test set. The "RW+ Drift" model uses the median return measured on the training set as
a forecast. "LinAR" is a univariate AR time series model that uses iterated predictions.
"BVAR" is a Bayesian Vector Autoregression model as described in Section 2.5.4. "NNO"
is the linear network model, and "NN3" is the 3-unit nonlinear network model. An NMSE
of 1 would be achieved by predicting the average value of the test set.
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Figure 2.13: Normalized mean square errors for making 12-month point forecasts of the
test set. The "RW+Drift" model uses the median return measured on the training set as
a forecast. The "RW+RTrend" model uses the most recent 12-month return as a forecast.

The "LinReg (OLS)" forecast is a linear regression based on the 76 inputs as described in
the text. An NMSE of 1 wouldbe achievedby predicting the average value of the test set.
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Figure 2.14: Normalized mean square errors for making 3-month point forecasts of the
test set. The "RW+ Drift" model uses the median return measured on the training set as
a forecast. "LinAR" is a univariate AR time series model that uses iterated predictions.
"BVAR" is a Bayesian Vector Autoregression model as described in Section 2.5.4. "NNO"
is the linear network model, and "NN3" is the 3-unit nonlinear network model. An NMSE
of 1 would be achieved by predicting the average value of the test set.



Table 2.3: Summary of the number of times each point forecast model was not significantly 
worse than the best model at an estimated 5% significance level as determined by the 
Diebold-Mariano test. The 3-unit nonlinear network performs the best followed closely by 
the linear network. The more standard AR models and the random walk with drift model 
performed well on roughly half the series, while the linear regression and the random walk 
with random trend model were almost always significantly worse than the best model. 

following results are included in Appendix A. The linear regression models estimated with 

ordinary least squares (OLS) stand out as the worst performers for all series. The linear 

network and nonlinear network models are usually among the best models, due to the use 

of neural network-inspired estimation methods. 

Table 2.3 displays the number of times each model was the best, or indistinguishable 

from the best, in terms of normalized mean-square error at an estimated 5% significance 

level using the Diebold-Mariano test (Section 2.6.3 describes how the significance test is 

performed). Table 2.3 indicates that while the level of noise present makes if difficult to 

distinguish between some of the forecasting models, the network models are consistently 

among the best. 

Tables 2.4 and 2.5 list the best models for each of the ten series along with the models 

that are not significantly worse, followed by the models that are significantly worse. Among 

the network models, the 3-unit network is the winner for 3 and 12-month forecasts of IP, 

3-month forecasts of YCS, and 12-month forecasts of FYAAAC. Note that for these last 

two interest rate based series, the random walk with random trend model does just as 

well. The linear network does better than the nonlinear network on 3-month forecasts 

Model 
RW+Drift 
RW+ RTrend 
Linear AR 
BVAR 
Linear Regression 
Linear Network 
Neural Network 

Total 

11 / 20 
2 / 20 
13 / 20 
12 / 20 
0 / 20 
16 / 20 
18 / 20 

# Times Indistinguishable From Best 
3-Month MSE Win 

4 / 10 
0 / 10 
6 / 10 
6 / 10 
0 / 10 
8 / 10 
8 / 10 

12-Month MSE Win 
7 / 10 
2 / 10 
7 / 10 
6 / 10 
0 / 10 
8 / 10 
10 / 10 



Table 2.4: Summary of the best 3-month point forecasts model, models that are not 
significantly worse, and models that are significantly worse than the best at an estimated 
5% significance level. 

Significantly Worse 

RW+Drift , RW+RTrend, 

DRM 

FM2DQ 

FSPCOM 

Alternatives 

BVAR 
Series 

DLEAD 

FYAAAC 

of PUNEW and DLEAD. On both of these the BVAR model, also a regularized linear 

model, does just as well. Both AR models and the linear network outperform the nonlinear 

network for 12-month predictions of PUNEW. 

The random walk with random trend model only performs well on the 12 month 

forecasts of PUNEW and FM2DQ. The random walk with drift model does as well as the 

other models for most of the financial series, but has the lowest error for only 3-month 

forecasts of the yield-curve slope. Other than these financial series, the results indicate 

that there is nontrivial predictability in the macroeconomic series. Also, for all the series, 

at least one of the network models was the best model, or performed at least as well as 

the best model. 

Best Model 

LinNet 

LinNet 

BVAR 

3Net 

HSBP 

IP 

LHUR 

PUNEW 

YCS 

LinNet 

RW+Drift, AR, 
3Net 
LinNet , 3Net 

RW+Drift, AR, 

LinNet 

3Net 

LinNet 

LinNet 

RW+Drift 

AR, LinReg, 3Net 
RW+RTrend, BVAR, 
LinReg 
RW+Drift, RW+RTrend, 
AR, LinReg 
RW+RTrend, BVAR, 

LinNet 
RW+Drift , AR, 

LinReg 
RW+RTrend, LinReg 

BVAR, 3Net 
3Net 

AR 

BVAR, 3Net 

AR, BVAR 

AR, BVAR, 
3Net 

RW+Drift, RW+RTrend, 
AR, BVAR, LinReg 
RWfDrift , RW+RTrend, 
BVAR, LinReg, LinNet 
RW+Drift, RWfRTrend, 
AR, LinReg 
RW+Drift, RW+RTrend, 
LinReg, 3Net 
RW-tRTrend, LinReg, 
LinNet 



Table 2.5: Summary of the best 12-month point forecasts model, models that are not 
significantly worse, and models that are significantly worse than the best at an estimated 
5% significance level. 

Significantly Worse 
RW+Drift, RW+RTrend, 
AR, LinReg 
RW+RTrend, BVAR, 
LinReg 
LinReg 

RW+ RTrend, LinReg 

RW+RTrend, LinReg, 
LinNet 
RW+RTrend, AR, 
BVAR, LinReg 
RWfDrift , RW+RTrend, 
BVAR, LinReg, LinNet 
RW+Drift, RW+RTrend, 
AR, BVAR, LinReg 
LinReg 

RW+ RTrend, LinReg 

Alternatives 
BVAR, LinNet 

RW+Drift, AR, 
3Net 
RW+Drift, RW+RTrend, 
AR, LinNet, 3Net 
RW+Drift, AR, 
BVAR, 3Net 
RW+Drift, AR, 
BVAR 
RW+Drift, LinNet 

AR 

3Net 

RW+Drift, RW+RTrend, 
AR, LinNet, 3Net 
RW+Drift, BVAR, 
LinNet, 3Net 

Series 
DLEAD 

DRM 

FM2DQ 

FSPCOM 

FYAAAC 

HSBP 

IP 

LHUR 

PUNEW 

YCS 

Best Model 
3Net 

LinNet 

BVAR 

LinNet 

3Net 

3Net 

3Net 

LinNet 

BVAR 

AR 



2.7.2 Nonlinear structure 

Overall, evidence of nonlinear structure appears to be small. The Diebold-Mariano test 

identifies the decrease in error for the 3 and 12-month forecasts of the Index of Industrial 

Production as a significant change. There appears to be some advantage due to nonlinear 

structure found on the 12-month horizon for the Housing Starts Index, though the DM 

test does not identify this as significant. 

Swanson and White [I071 find little support for nonlinear structure in their study us- 

ing quarterly data, however they use a stepwise model building procedure, fitting a linear 

component first, and then adding sigmoidal units incrementally. This type of method can 

significantly bias models to linear structure even when significant nonlinearity is present. 

Their reason for using a stepwise procedure to build nonlinear models was to avoid over- 

fitting the training data. In this work I use regularization methods to deal with the 

overfitting issue, though it is worth pointing out that weight decay regularization will 

tend to bias the tanh units toward a more linear structure as well. 

A possible reason for the lack of more evidence of nonlinear structure is that the 

high levels of noise in the data and the associated large amounts of regularization used 

during the model building process tend to bias the models to a linear structure. Another 

possibility is that while economic theories support nonlinear models, the theory of Leading 

Indicators, which is the basis of the model inputs used here, is largely based on observed, 

linear correlations between economic series. Thus, there is not necessarily a reason why 

the relationships between these indicators should not be largely linear. 

2.7.3 Complexity Reduction & Model Selection 

Figure 2.15 shows examples of the eigenvalue spectrum for the input and hidden layers 

of a model trained to make 12-month forecasts of the Index of Industrial Production. 

The dashed line represents the cutoff point chosen by the Principal Component Prun- 

ing algorithm. In this example, 63 of the input layer eigen-nodes and 2 of the hidden 

layer eigen-nodes are pruned. The number of eigen-nodes pruned is determined using the 

validation data set as described in Section 2.4.5. 



Figure 2.15: An example of the eigenvalue spectrum for the input and hidden layers 
of a model trained to make 12-month forecasts of the Index of Industrial Production. 
The dashed line represents the cutoff point chosen by the Principal Component Pruning 
algorithm. In this example, 63 of the input layer eigen-nodes and 2 of the hidden layer 
eigen-nodes are pruned. 

Input Layer Eigenvalue Spectrum for an IP 12-month Forecaster Hidden Layer Eigenvalue Spectrum for an IP 12-month Forecaster 

Table 2.6 shows the average number of eigen-nodes pruned using the PCP algorithm 

during the testing period. The average is taken over the 10 committee members, 10 test 

set retrainings, and 10 time series. The average number of eigen-nodes pruned when 

forecasting the economic time series is less than the number pruned when forecasting the 

financial time series. This suggests that the economic series are more predictable given 

these input series, and that there is more usable nonlinear structure in the economic series. 

This is consistent with the other results presented here. 

Table 2.6: The average number of eigen-nodes pruned using the PCP algorithm during the 
testing period. The average number of eigen-nodes pruned when forecasting the economic 
time series is less than the number pruned when forecasting the financial time series. 
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Table 2.7: The change in normalized mean square test set errors for training the 3-unit 
nonlinear network models with and without the use of Principal Component Pruning. 
The test error was reduced in 15 out of 20 cases. The 3 changes marked with a '*' were 
determined to be significant by the Diebold-Mariano test. These results demonstrate that 
using PCP to reduce model complexity may improve forecasts and is unlikely to hurt. 

Table 2.7 shows a comparison on a sample of the series between using and not using 

Principal Component Pruning during training of the 3-unit nonlinear network models. 

The use of Principal Component Pruning reduces the test set error in 15 out of 20 cases. 

Three of the reductions were considered significant by the Diebold-Mariano test, while 

none of the increases in error were determined to be significant. 

It is interesting to note that the DM test identifies the small improvement in 12-month 

forecasts of FYAAAC to be a significant improvement. This is because the Principal Com- 

ponent Pruning algorithm was very effective in reducing the complexity of the model. Fig- 

ure 2.16 shows the resulting forecasts as PCP essentially reduced the 12-month FYAAAC 

Series Forecast 
Horizon 

DLEAD 3 month 
12 month 

DRM 3 month 
12 month 

FM2DQ 3 month 
12 month 

FSPCOM 3 month 
12month 

FYAAAC 3 month 
12 month 

HSBP 3 month 
12 month 

IP 3 month 
12 month 

LHUR 3 month 
12 month 

PUNEW 3 month 
12 month 

YCS 3 month 
12 month 

All Inputs All Inputs 
No PCP With PCP 

0.534 0.580 
0.309 0.334 
0.881 0.870 
0.785 0.787 
0.601 0.612 
0.679 0.676 
0.947 0.924 
1.090 1.088 
1.057 1.043 
1.054 1.053 
0.719 0.664 
0.785 0.591 
0.655 0.649 
0.633 0.578 
0.608 0.531 
0.349 0.342 
0.539 0.518 
0.686 0.598 
1.051 1.086 
1.128 1.078 

% Error Reduction 
With PCP 

-8.6 
-8.1 
1.3 
-0.3 
-1.8 
0.4 
2.4 
0.2 
1.3 

0.1* 
7.7 
24.7 
0.9 
8.7* 
12.7* 
2.0 
3.9 
12.8 
-3.3 
4.4 
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Figure 2.16: The training methodology reduced the 12-month FYAAAC NN model to a 
random walk with drift. This result is consistent with standard results in finance [45]. 
The nonzero forecast values are due to the fact that the in-sample drift is positive. 

NN model to a random walk with drift. This result is consistent with standard results in 

finance [45]. The pruning procedure effectively reduced the second layer of the networks 

to constant models, and learned a bias value. The nonzero forecast values are due to the 

fact that the in-sample drift is positive. 

2.7.4 Regularization Methods 

Figures 2.17 and 2.18 show the results from varying which regularization techniques are 

used during the training of the 3-tanh unit nonlinear networks. The "NoReg" models are 

unregularized, the "E.S." models correspond to only using early stopping for regulariza- 

tion, the "W.D." models use only weight decay regularization, and the "Both" models use 

both early stopping and weight decay together, The figures show that just using early 

stopping alone can provide a large enhancement over not using any regularization at all. 

Also, using weight decay regularization alone is very effective, usually more so than early 

stopping. I find that using early stopping in addition to weight decay usually does not 

help much except for the 12-month forecasts of the Yield-Curve Slope. Early stopping 

alone seems to be more effective on the 3-month horizon than on the 12-month horizon 
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Figure 2.17: The results for leaving out the regularization techniques when training 3-
hidden unit networks to make 3-month forecasts. The "NoReg" models are unregularized,
the "E.S." models correspond to only using early stopping for regularization, the "W.D."
models use only weight decay regularization, and the "Both" models use both early stop-
ping and weight decay together.

relative to weight decay alone. This may be because there are effectively more independent

data points in the validation data set for the 3-month forecasts compared to the 12-month

forecast. Since the validation data set contains the same number of points in both cases,

the targets for the 3-month forecasts will tend to overlap less frequently, and thus may

provide a better estimate of out-of-sample performance.

2.7.5 Model Insight via Sensitivity Analysis

I use a sensitivity analysis to open the neural network black box and examine how the

way the networks use the input variables changes over time. Sensitivity analysis can be

used to gain insight into the relationships learned by the neural network models.

I define the relative sensitivity of input i as:

Ltl~l.s' =
( I

dF

I)t maxj Lt dXj

(2.53)

where F is the model output and Xi denotes input i.

The sensitivity is calculated for each input for each year and averaged over the 10

committee members. The sensitivity value for each input is then normalized by maximum
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Figure 2.18: The results for leaving out the regularization techniques when training 3-
hidden unit networks to make 12-month forecasts. The "NoReg" models are unregular-
ized, the "E.S." models correspond to only using early stopping for regularization, the
"W.D." models use only weight decay regularization, and the "Both" models use both
early stopping and weight decay together.

sensitivity value calculated for that year. Thus a relative sensitivity value close to 1 means

that the input was highly influential for the predictions made during that year while a

value close to 0 means that changes in that input have relatively very little influence on

the output of the model during that time period.

Figure 2.19 shows input sensitivity traces for several of the inputs to a 3-unit neural

network trained to make 12-month forecasts of the Index of Industrial Production over the

period 1970-1989. A high degree of nonstationarity in the underlying relationship between

the input and target variables is evident in the figure. This example shows that 12-month

changes in the S&P-500 stock index were highly weighted during the 1970's, but then were

largely ignored during the 1980's. Also, the importance of the 9-month changes in the

Consumer Price Index to the model increased steadily over this time period.

While Figure 2.19 seems to indicate the presence of significant nonstationarity in the

datasets, Swanson and White [107] conclude that the amount of nonstationarity in the

macroeconomic series they studied is small based on their finding that longer training

windows are preferable to shorter windows. Another explanation for their result can be

found by referring to the noise / nonstationarity tradeoff discussed in Section 2.2.4. Given
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Figure 2.19: Input sensitivity traces for several of the inputs to a 3-unit neural network 
trained to make 12-month forecasts of the Index of Industrial Production over the period 
1970-1989. The figure shows a large amount of variation in how the model uses these in- 
puts. These nonstationary relationships highlight the challenges inherit in macroeconomic 
forecasting. 

the extremely large amounts of noise present in their "first-reported" quarterly dataset, 

it is quite likely that the noise component of the error dominated the nonstationarity 

contribution. 

2.8 Empirical Studies: Directional and Quintile Forecasts 

Aside from making actual point forecasts, even being able to forecast only the future 

direction of a macroeconomic or financial series adds value to the decision making process. 

In this section I present results for models trained to forecast directional movements of 

the series. 

2.8.1 Representations for Directional Forecasts 

One reason to try to forecast directional movements is that quantization of the target 

variables may result in a more robust representation for prediction by removing a certain 

amount of noise from the targets. The targets can be quantized into varying degrees 



of resolution. In this section, the targets are quantized into quintiles representing "large 

down", "small down", "no change", "small up", and "large up" as measured on the training 

dataset. The first quintile is defined to contain the lowest 20% of the data. The second 

quintile contains the data falling within the 20%-40% range, and so on. Thus the third 

quintile, "no change" corresponds to the median return and small deviations from it, and 

the fifth quintile corresponds to large positive returns relative to the training set. The 

quintiles were determined using the data prior to 1980, and not changed thereafter. 

There were several different approaches considered to solving this classification prob- 

lem. The first was using a unary output representation. The target classes would be 

represented as follows: 

class 1 --- 1 0 0 0 0  

class 2 --- 0 1 0 0 0  

class 3 --- 0 0 1 0 0  

class 4 --- 0 0 0 1 0  

class 5 --- 0 0 0 0 1  

The network models were trained with 5 output nodes, one for each class. The output of 

the forecasting model would be calculated using the softmax [17] representation 

where fi is the ith output of a network with a similar structure as described in Section 2.4.1. 

pi then represents the posterior probability of quintile i given the current input vector. 

The class chosen by the network is then determined as f C  = argmaxi(pi). The output of 

the committee is the class voted for by the most committee members. 

A drawback of using the unary representation is that the original relationship between 

classes is not exploited. In other words, it is likely that economic conditions that would 

cause a large relative increase (class 5) in IP are similar to conditions that would cause a 

moderate relative increase (class 4), but are largely different from conditions that would 

cause a large relative decrease (class 1) in IP. However, the unary target representation 

shown above does not contain any of this relative information. In other words, the target 

representation could be reassigned to arbitrary classes prior to training, and this would 



have no effect on the final solution produced. It would be desirable to be able to incorporate 

all available information in the training procedure including the relationships between 

classes. 

A simple method for doing this is to use a "thermometer code". The thermometer 

code represents the target classes as: 

class  1 --- 0  0  0  0  

class  2 --- 1 0 0 0  

class  3 --- 1 1 0 0  

class  4 --- 1 1 1 0  

class  5 --- 1 1 1 1  

With this representation, the Hamming distance between adjacent classes is equal to 1 

and increments monotonically with the distance between classes. The first representation 

has a Hamming distance of exactly 2 between all classes. This feature of the target 

representation should result in an effect on the internal representation that is learned by 

the predictors. Training with these targets to minimize mean-square error should result in 

improved classification accuracy, and indeed the results show a marked improvement using 

the thermometer code as opposed to the softmax outputs. The class for each committee 

member is determined by f = argmaxi(fi), and the output of the committee is the class 

voted for by the most committee members. 

2.8.2 Network Models for Directional Forecasting 

The nonlinear network models considered for the directional forecast problem have the 

same general form as described in Section 2.4.1, but have multiple outputs. Output i is 

calculated as 

where the xk are the input signals, ujk are the weights connecting the inputs to the internal 

tanh units, and vij are the weights connecting the internal units to the ith output. Due to 

the increased complexity in the output representation, I consider nonlinear models with 

both n = 3 and 10 internal tanh units. 



2.8.3 Comparison Models 

I compare these directional forecast models to results from quantizing the point forecasts 

made by the network and benchmark models. The quantization of the point forecasts uses 

the same quintile definitions measure on the training set as described in Section 2.8.1. The 

point forecasts are given class labels depending on which quintile contains the forecasted 

value. 

I include quantized forecasts for all of the point forecast models described in Section 2.7. 

The random-walk-with-drift and random-walk-with-random-trend models give the same 

result whether they are defined on the actual returns and quantized, or just calculated on 

the quantized returns. 

2.8.4 Directional Forecast Results Summary 

The directional forecasting results presented are stated in terms of the Mean Square Error 

based on the quintile classes. That is, if class(.) is the function that takes the quintile 

representation used by the models and transforms it into an ordinal class, then 

1 
Quintile MSE = , ~ ( c l a s s ( t a r g i )  -  class(^(^)))^ , 

where F is the committee prediction. Note that the class errors are not normalized as 

the point forecast errors are. The class errors are to be interpreted in terms of the class 

differences, so a model that could forecast the median return on the test set would have 

an MSE of 2 if the median return corresponded to the median return measured prior to 

1980. The significance results were calculated at the 5% level using the Diebold-Mariano 

test as described previously in Section 2.6.3. 

Figures 2.20 and 2.21 show the performance comparison between the unary and ther- 

mometer code representations graphically. Tables of numeric values are given in Ap- 

pendix A along with the point forecast results. Table 2.8 also summarizes the classifica- 

tion results by model type including the quantized point forecasts. Both of the quantized 

network models and the directional forecast networks that use the thermometer code rep- 

resentation perform well on average, being competitive in a total of 15 of the 20 series. 
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Figure 2.20: Comparison of the normalized errors for making 3-month directional forecasts
for the two class representations, the unary and thermometer code. In most cases, the
thermometer code representation produces superior models.
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Figure 2.21: Comparison of the normalized errors for making 12-month directional fore-
casts or the two class representations, the unary and thermometer code. In most cases,
the thermometer code representation produces superior models.



Table 2.8: Summary of the number of times each directional forecast model was not 
significantly worse than the best model at an estimated 5% significance level. Both of the 
quantized network models and the directional forecast networks that use the thermometer 
code representation perform well on average, and outperform the random walk with drift 
model on average. 

Model 

RW+Drift 
RW+RTrend 
Quant. Linear AR 
Quant. BVAR 
Quant . Linear Regression 
Quant. Linear Network 
Quant . 3-Unit Neural Network 
Unary Linear Network 
Unary 3-Unit Neural Network 
Unary 10-Unit Neural Network 
Therm. Linear Network 
Therm. 3-Unit Neural Network 
Therm. 10-Unit Neural Network 

Total 

11 / 20 
5 / 20 
9 / 20 
10 / 20 
6 / 20 
14 / 20 
15 / 20 
5 / 20 
6 / 20 
10 / 20 
14 / 20 
15 / 20 
11 / 20 

# Times Indistinguishable From Best 
3-Month MSE Win 

4 / 10 
1 / 10 
4 / 10 
3 / 10 
3 / 10 
6 / 10 
6 / 10 
2 / 10 
4 / 10 
4 / 10 
6 / 10 
8 / 10 
5 / 10 

12-Month MSE Win 

7 / 10 
4 / 10 
5 / 10 
7 / 10 
3 / 10 
8 / 10 
9 / 10 
3 / 10 
2 / 10 
6 / 10 
8 / 10 
7 / 10 
6 / 10 



While the random walk with drift model performs well in 11 of the 20 series, there does 

seem to be some additional predictable structure found by the network models. 

2.8.5 Target Representation Comparison 

Table 2.11 compares the performance of the directional forecast models using the unary 

and thermometer code representations. The additional information being encoded in the 

thermometer code gives these models a clear advantage over those that use the naive 

unary representation. The use of the thermometer code also reduced the number of model 

parameters because it only required 4 output units as compared to 5 for the unary rep- 

resentation. The thermometer code models are competitive in over 15 of the series while 

the unary representation models are competitive in only 8. 

2.8.6 Quantized Regression vs Directional Forecasters 

Table 2.8 compares the performance of the quantized regression forecast models and the 

directional forecast models. The linear and 3-unit neural network quantized regression 

models are competitive on balance with the corresponding thermometer code directional 

forecast models. This suggests that the additional flexibility of the thermometer code 

networks is not usually needed to achieve good forecasts of direction. 

2.9 Discussion 

I find non-trivial predictability in the forecasts for all series considered except the Aaa- 

bond yield, the S&P-500, and the yield-curve slope. There is also evidence of nonlinear 

structure in the Index of Industrial Production and possibly Housing Starts. While most 

theories of the economy are nonlinear, it seems difficult in practice to exploit these non- 

linearities. There are a variety of factors that could make nonlinearity difficult to detect 

in the remaining series. Among them are the large amounts of noise in the series, the 

resulting need for heavy regularization, and the types of inputs being used. Many of the 

series included in this study are higher level, more broad based series than the ones that 

structural economic theories use as explanatory variables. However the focus of this study 



Table 2.9: Summary of the best 3-month directional forecast model, models that are not 
significantly worse, and models that are significantly worse than the best at  an estimated 
5% significance 1evel.The prefix "Q" denotes a quantized regression model, "T" denotes 
the use of the thermometer code class representation during training, and "U" denotes 
the use of the 

Series 
DLEAD 

DRM 

FM2DQ 

FSPCOM 

FYAAAC 

HSBP 

IP 

LHUR 

PUNEW 

YCS 

unary class 

Best Model 
Q3Net 

U3Net 

QLinReg 

T3Net 

RW+Drift 

QLinNet 

QLinNet 

T3Net 

T3Net 

RW+Drift 

representation. 

Alternatives 
RW+Drift, QBVAR, 
QLinReg, QLinNet, 
ULinNet, U3Net, UlONet, 
TLinNet, TSNet, TlONet 
QLinNet, QSNet, 
TLinNet, T3Net 

RW+RTrend, QLinAR, 
ULinNet, USNet, 
UlONet, TLinNet, T3Net 
RW+Drift, QLinAR, 
QLinNet, Q3Net, 
TLinNet, TlONet 
QLinNet, Q3Net , 
T3Net 

Q3Net 

QLinAR, QLinReg, 
QSNet, U3Net, 
UlONet, TSNet, TlONet 
QBVAR, UlONet, 
TLinNet, TlONet 

QLinAR, QBVAR, 
TLinNet, TlONet 

Significantly Worse 
RW+RTrend, QLinAR 

RW+Drift, RW+RTrend, 
QLinAR, QBVAR, 
QLinReg, ULinNet, 
UlONet, TlONet 
RW+Drift, QBVAR, 
QLinNet, Q3Net, 
TlONet 
RW+RTrend, QBVAR, 
QLinReg, ULinNet, 
U3Net, UlONet 
RW+RTrend, QLinAR, 
QBVAR, QLinReg, 
ULinNet, U3Net, 
UlONet, TLinNet, TlONet 
RW+Drift, RW+RTrend, 
QLinAR, QBVAR, 
QLinReg, ULinNet, 
U3Net, UlONet, TLinNet, 
TSNet, TlONet 
RW+Drift, RW+RTrend, 
QBVAR, ULinNet, 
TLinNet 
RW+Drift, RW+RTrend, 
QLinAR, QLinReg, 
QLinNet, QSNet, 
ULinNet, U3Net 
RW+Drift, RW+RTrend, 
QLinReg, QLinNet, 
QSNet, ULinNet, 
U3Net, UlONet 
RW+RTrend, QLinAR, 
QBVAR, QLinReg, 
QLinNet, QSNet, 
ULinNet, U3Net, UlONet, 
TLinNet, T3Net, TlONet 



Table 2.10: Summary of the best 12-month directional forecast model, models that are not 
significantly worse, and models that are significantly worse than the best at an estimated 
5% significance level. The prefix "Q" denotes a quantized regression model, "T" denotes 
the use of the thermometer code class representation during training, and "U" denotes 
the  use of the unary class representation. 

UlONet, TLinNet, 
TSNet, TlONet 

ULinNet, U3Net, 

Alternatives 
QBVAR, Q3Net, 

Series 
DLEAD 

QBVAR, QLinReg, 

QBVAR, QLinNet, 
Q3Net, UlONet, 

Best Model 
QLinNet 

FM2DQ 

Significantly Worse 
RW+Drift, RW+Rnend, 
QLinAR, QLinReg, 
ULinNet. U3Net 

Q3Net 

 rift, QLinAR, 
QLinNet, QSNet, 
TLinNet. T3Net. TlONet UlONet 

RW+Drift, RW+RTrend, QLinAR, QLinNet, 
ULinNet, USNet, 
UlONet, T3Net, TlONet 
RW+RTrend, QLinReg, 
ULinNet, U3Net 

FYAAAC 

HSBP 

IP 

LHUR 

PUNEW 

Y CS 

RW+Drift 

Q3Net 

T3Net 

TlONet 

QBVAR 

RW+Drift 

TLinNet, TlONet 
RW+RTrend, QLinAR, U3Net 
QBVAR, QLinReg, 
QLinNet, QSNet, 
ULinNet, UlONet, 
TLinNet, T3Net , TlONet 
RW+Drift, QLinNet, 
TLinNet, TSNet, 
TlONet 

RW+Drift, QLinAR, 
QLinNet, Q3Net, 
U3Net, TLinNet 
QLinNet, QSNet, 
UlONet, TLinNet 

RW+Drift, RW+RTrend, 
QLinAR, QLinNet, 
QSNet, ULinNet, 
UlONet, T3Net 
QLinAR, QBVAR, 
QLinNet, QSNet, 
TLinNet, TSNet, TlONet 

RW+RTrend, QLinAR, 
QBVAR, QLinReg, 
ULinNet, U3Net, 
UlONet 
RW+RTrend, QBVAR, 
QLinReg, ULinNet, 
UlONet, TlONet 
RW+Drift, RW+RTrend, 
QLinAR, QBVAR, 
QLinReg, ULinNet, 
U3Net, T3Net 
QLinReg, USNet, 
TLinNet, TlONet 

RW+RTrend, QLinReg, 
ULinNet, USNet, UlONet 



Table 2.11: Comparison of the directional forecast target representation types. The table 
counts the number of times each directional forecast model was not significantly worse 
than the best model at an estimated 5% significance level. The additional class order- 
ing information included in the thermometer code representation gives these models an 
advantage over those using a straight unary class representation. 

was on the broader indicators of economic activity. 

One feature the forecast models exhibit is a large amount of nonstationarity in the 

learned relationship between the target and input variables. Swanson and White El071 

conclude that nonstationarity is not a factor in the models they build because the largest 

available training window they used was preferable to smaller windows. However, through 

the lens of sensitivity analysis, the relationships between variables learned by the models 

is seen to change significantly over the course of the test period. 

The results show that applying nonlinear estimation and model selection techniques 

to linear models results in large improvements over more standard linear model fitting 

techniques. This includes regularized models such as the Bayesian Vector Autoregression. 

This result argues strongly for the use of appropriate linear models for comparison when 

fitting nonlinear models to these types of series. It could be that positive results in the lit- 

erature from using nonlinear network models are due more to the estimation methodology 

than to actual nonlinear structure. 

When making directional forecasts, the models that incorporated class-ordering infor- 

mation in the target representation via use of a thermometer code representation yielded 

Total 

15 / 20 
4 / 20 
5 / 20 
6 / 20 
8 / 20 
15 / 20 
18 / 20 
15 / 20 

Model 

RW+Drift 
RW +RTrend 
Unary Linear Network 
Unary 3-Unit Neural Network 
Unary 10-Unit Neural Network 
Therm. Linear Network 
Therm. 3-Unit Neural Network 
Therm. 10-Unit Neural Network 

# Times Indistinguishable From Best 
3-Month MSE Win 

7 / 10 
1 / 10 
0 / 10 
2 / 10 
2 / 10 
7 / 10 
9 / 10 
7 / 10 

12-Month MSE Win 

8 / 10 
3 / 10 
5 / 10 
4 / 10 
6 / 10 
8 / 10 
9 / 10 
8 / 10 



significantly better results than those using a naive unary representation. Also, the re- 

gression network models trained on point forecasts perform as well in terms of directional 

forecasts as do the more complex classification models trained to directly forecast class 

labels. 



Chapter 3 

Knowledge Discovery Through 

Reinforcement Learning 

3.1 Introduction 

In this chapter I present enhancements to the Recurrent Reinforcement Learning (RRL) 

algorithm proposed by Moody and Wu [74] with the goal of making the trading systems 

trained via RRL more useful and desirable to investment managers. These enhancements 

include methods for optimizing portfolios, asset allocations, and trading systems using risk- 

adjusted performance measures that more accurately reflect investor preferences. Also, 

I show that the direct policy representation of RRL produces more stable, interpretable 

trading decisions than that of a value function reinforcement learning approach called 

Q-Learning. 

In the RRL approach, investment decision making is viewed as a stochastic control 

problem, and strategies are discovered directly. The need to build forecasting models is 

eliminated, and better trading performance is obtained by directly optimizing the relevant 

performance measure. The direct reinforcement approach differs from dynamic program- 

ming and reinforcement algorithms such as TD-learning and Q-learning, which attempt to 

estimate a value function for the control problem. The RRL direct reinforcement frame- 

work enables a simpler problem representation, avoids Bellman's curse of dimensionality 

and offers compelling advantages in efficiency. 

My contributions presented in this chapter include RRL systems trained using down- 

side risk measures (Sections 3.6 and 3.9.2). I also present a portfolio management system 



that allocates among several artificial assets (Section 3.9.6). In other simulation work us- 

ing real financial data, the RRL approach is compared to an alternative RL value function 

approach utilizing Q-Learning on a monthly asset allocation system for the S&P 500 Stock 

Index and T-Bills (Section 3.9.4). A simple example, the Oracle problem, is used to illus- 

trate the difference between the compared approaches (Section 3.8.3). Another real world 

application I present in this chapter includes an intra-daily currency trader (Section 3.9.3). 

Much of this work has been previously published in journal articles [72, 711. 

In the remainder of this section I will briefly overview the main types of reinforcement 

learning, and contrast reinforcement learning and supervised learning. Section 3.2 intro- 

duces the financial problem domain in which the algorithms will be tested, and Section 3.3 

reviews the pertinent literature. Section 3.4 will review the recurrent reinforcement learn- 

ing model of Moody and Wu [74] and describe the single asset trader setup. In Section 3.5 

I present the setup for managing a portfolio of assets. In Section 3.6 I introduce downside 

risk measures and formulate the downside deviation in a manner compatible with the re- 

current reinforcement learning setup. In Section 3.7 I discuss the problem of learning how 

to trade and the means by which the different types of reinforcement learning approach 

the problem, and in Section 3.8 compare the policy and value approaches for reinforcement 

learning. In Section 3.9 I present results from a number of simulations demonstrating the 

performance of the downside deviation ratio and portfolios, and comparing the recurrent 

reinforcement learning algorithm to a Q-Learning algorithm. In Section 3.10 I conclude 

by reviewing the main results of the chapter. 

3.1.1 Reinforcement Learning 

Reinforcement Learning (RL) is a learning paradigm that involves a goal-directed agent 

actively exploring an unknown environment, attempting to maximize rewards received 

from the actions taken. RL falls between supervised and unsupervised learning in the 

sense that it does not require the feedback of a knowledgeable teacher as in supervised 

learning, nor does it mechanically process data in the way that unsupervised learning does. 

Instead, RL uses indirect or limited feedback regarding the correctness of actions taken. In 

some cases, the rewards received can be substantially delayed from the associated actions 



that produced them, and can depend on a sequence of interdependent actions. The need to 

assign credit among various actions over time is known as the temporal credit assignment 

problem. This ability to interact with (and potentially influence) the environment, and 

having to account for delayed rewards makes RL a fundamentally different type of learning 

problem. 

The most general framework for an RL problem involves an environment consisting of 

a set of (possibly continuous) states through which an actor transits by following some 

policy for taking actions. The actor receives feedback based on the states it has visited 

and the actions which it has taken. The goal of RL typically is to maximize a function 

of the feedback (or reward) signal. The feedback signals in response to an action may 

be presented immediately following the action, or they may be significantly delayed or 

spread out across time. Typically the actor must utilize trial-and-error search to explore 

the environment as it seeks to maximize its feedback. 

There are several major categories of RL methods: value methods, policy methods, 

and actor-critic methods. Most value and actor-critic methods involve some form of ap- 

proximate dynamic programming. 

Value Methods 

Value methods involve learning a representation of the expected value of the reward or 

discounted reward. This representation is known as the "value function". The value 

function enumerates the expected value of future reward signals for each possible system 

state given a policy for deciding how to move between states. The value function is usually 

encoded in a lookup table or a function approximator. Policies are usually represented 

implicitly in value functions. That is, the best action for the current state is the one 

that takes you to the state with the highest value associated with it. As described in 

Section 3.7 the value function can be used to improve the policy. One of the advantages 

to a value function approach is that there are a number of proofs for the convergence of 

certain value function algorithms. A popular value function method is Q-Learning [118]. 

Q-Learning encodes the policies explicitly in the value function, and will be discussed 

further in Section 3.7. 



Policy Methods 

Policy methods (also called Direct Reinforcement) involve learning the representation of 

the policy function directly without having to learn a value function. Policy methods 

are most useful when there is immediate feedback on the results of actions taken, or 

when feedback delays are not large. Policy methods update the parameters of a policy 

function directly based on feedback from the environment. This often results in the use 

of gradient ascent to maximize the feedback signal. Often, a direct representation of the 

policy function is much more natural and less complex than implicitly representing the 

policy using a value function. The Recurrent Reinforcement Learning algorithm [74] is a 

policy method that incorporates recurrence in order to accurately account for the effect 

of previous actions. I compare value and policy methods in Section 3.8. 

Actor-Critic Methods 

Actor-critic methods involve explicitly representing both the policy function and the value 

function. The policy function is known as the "actor" and the "critic" learns a value 

function to provide feedback to the actor. Feedback from the critic is used to update the 

parameters of the actor. Actor-critic methods use a temporal difference signal, which is 

the difference between the estimate of the value for the current state and the estimate of 

the value for the previous state. Thus the policy function is being updated while the value 

function is still being learned. 

3.1.2 Reinforcement vs Supervised Learning 

'A block diagram for a generic trading system based on forecasts is shown in Figure 3.1. In 

such a system, a forecast module is optimized to produce price forecasts from a set of input 

variables. Supervised learning techniques are used to minimize forecast error (typically 

mean-squared-error) on a training sample. The forecasts are then used as input to a 

trading module that makes buy and sell decisions or adjusts portfolio weights. Parameters 

'"Performance Functions and Reinforcement Learning for Trading Systems and Portfolios", J. Moody, 
L. Wu, Y. Liao, and M. SafTell, Journal of Forecasting, vol. 17, no. 516, 01998 Copyright John Wiley & 
Sons Limited. Reproduced with permission. 



of the trading module may be optimized, but are often set by hand. 

Trading based on forecasts involves two steps, and minimizing forecast error is an 

intermediate step that is not the ultimate objective of the system. Moreover, the common 

practice of using only the forecasts as input to the trading module results in a loss of 

information relative to that available to the forecast module, in effect producing a forecast 

bottleneck. Both of these effects may lead to suboptimal performance. 

It is possible to train a system to make trading decisions directly from the input 

variables, while avoiding the intermediate step of making forecasts. This is more direct, 

and avoids the forecast bottleneck. One technique for optimizing such a system is to use 

a supervised learning algorithm to train the system to make desired trades, as shown in 

Figure 3.2. A sequence of desired target trades (or portfolio weights) used for training the 

system is first determined via a labeling procedure. The data can be labeled by a human 

"expert" or by an automatic labeling algorithm. The labeled trades are then used to train 

the trading system. 

Training on labeled data is a two-step process. The procedure for labeling the data 

attempts to solve the temporal credit assignment problem, while subsequently training the 

system on the labeled data attempts to solve the structural credit assignment problem.2 

Certain difficulties arise when trying to solve the structural and temporal credit assignment 

problems separately in this way, particularly when transaction costs are included. 

The performance achievable in practice by the trading module will usually be sub- 

stantially worse than that suggested by the labeled trades. This is because most labeling 

procedures are based on only the target series (possibly taking into account transaction 

costs), ignore the input variables and do not consider the conditional distributions of price 

changes in the target series given the input variables. Moreover, since transactions costs 

depend upon the actual sequence of trades made, the simulated costs associated with the 

labeled trades will differ from those incurred in practice. Hence, a labeling procedure is 

not likely to give rise to a sequence of trades that is realizable in practice or to a realistic 

assessment of the actual transaction costs likely to occur. Finally, since U(O,O1) is not 

 his terminology was proposed by Sutton [103]. 
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Figure 3.1: A trading system based on forecasts. The system includes a forecast module 
with adjustable parameters 0 followed by a trading module with parameters 0'. Price 
forecasts for the target series are based on a set of input variables. The forecast module 
is trained by varying I3 to minimize forecast error (typically mean squared error), which 
is an intermediate quantity. A more direct approach would be to simultaneously vary 0 
and 13' to maximize a measure of ultimate performance U(0, O'), such as trading profits, 
utility or risk-adjusted return. Note that the trading module typically does not make use 
of the inputs used by the forecast module, resulting in a loss of information or a forecast 
bottleneck. Performance of such a system is thus likely to be suboptimal. 
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Figure 3.2: A trading system trained with labeled data. The system includes a trading 
module with parameters 8 and a labeling procedure with parameters 8'. Trades are based 
on a set of input variables. Target trades are produced by the labeling procedure. The 
trading module is trained on the labeled trades using a supervised learning approach to 
vary 8. The ultimate performance of the system depends upon how good the labeling 
algorithm is (as determined by Of), and how well the trading module can learn to trade 
(by varying 8) using the input variables and labeled trades. Since the ultimate measure 
of performance U(8,Q1) is not used to optimize 8 directly, performance of such a system 
is thus likely to be suboptimal. 



optimized directly (see Figure 3.2), supervised learning based on labeled data will yield 

suboptimal performance. 

A trading system can be optimized to solve both the temporal credit assignment and 

structural credit assignment problems mentioned above simultaneously using reinforcement 

learning (see for example [I041 and references therein). 

Reinforcement learning algorithms find approximate solutions to stochastic dynamic 

programming problems [9] and can do so in an on-line mode. In reinforcement learning, 

target outputs are not provided. Rather, the system takes actions (makes trades), receives 

feedback on its performance (an evaluation signal) and then adjusts its internal parame- 

ters to increase its future rewards. With this approach, an ultimate measure of trading 

performance U ( 8 ) ,  such as profit, utility or risk-adjusted return is optimized directly. See 

Figure 3.3. 

A simultaneous solution of the structural and temporal credit assignment problems 

will generally require using a recurrent learning algorithm. Trading system profits depend 

upon sequences of interdependent decisions, and are thus path-dependent. Optimal trad- 

ing decisions when the effects of transactions costs, market impact and taxes are included 

require knowledge of the current system state. Including information related to past deci- 

sions in the inputs to a trading system results in a recurrent decision system.3 The proper 

optimization of a recurrent, path-dependent decision system is quite different from the 

simple supervised optimization techniques used for direct forecasts or for labeled trading 

data. 

Reinforcement learning analogs of recurrent learning algorithms are required to train 

the systems. Such recurrent learning algorithms include both off-line (batch) training 

algorithms like backpropagation through time (BPTT) [91, 1191 or on-line (adaptive) 

algorithms such as real-time recurrent learning (RTRL) [I251 or dynamic backpropaga- 

tion [78]. The recurrent reinforcement learning algorithms utilized here are variants of the 

3Here, recurrence refers to the nature of the algorithms required to optimize the system. For example, 
optimizing a feed forward NAR(p) model for one-step-ahead prediction does not require a recurrent learning 
algorithm, while optimizing the same NAR(p) model to perform iterated predictions does. The fact that 
a forecast or decision is made by a feedforward, non-recurrent network does not mean that optimizing it 
correctly can be done with a standard, non-recurrent training procedure. 



Figure 3.3: A trading system based on recurrent reinforcement learning, the approach 
taken in this chapter. The system makes trading decisions directly based upon a set of 
input variables and the system state. A trading performance function U(O),  such as profit, 
utility or risk-adjusted return, is used to directly op t im i ze  the trading system parameters 
8 using reinforcement learning. The system is recurrent; the feedback of system state 
(current positions or portfolio weights) enables the trading system to learn to correctly 
incorporate transactions costs into its trading decisions. In comparison to the systems in 
Figures 3.1 and 3.2, no intermediate steps such as making forecasts or labeling desired 
trades are required. 



above mentioned algorithms, and maximize immediate rewards in an on-line fashion. 

3.2 Problem Domain: Financial Decision Making 

4 ~ h e  investor's or trader's ultimate goal is to optimize some relevant measure of trad- 

ing system performance, such as profit, economic utility or risk-adjusted return. Invest- 

ment performance depends upon sequences of interdependent decisions, and is thus path- 

dependent. Optimal trading or portfolio rebalancing decisions require taking into account 

the current system state, which includes both market conditions and the currently held 

positions. Market frictions, the real-world costs of trading,5 make arbitrarily frequent 

trades or large changes in portfolio composition become prohibitively expensive. Thus, 

optimal decisions about establishing new positions must consider current positions held. 

One class of performance criteria frequently used in the financial community are mea- 

sures of risk-adjusted investment returns. RRL can be used to learn trading strategies 

that balance the accumulation of return with the avoidance of risk. The commonly used 

measures of risk in finance is the standard deviation of returns. Later in this chapter, I 

present the Downside Deviation Ratio, a risk-adjusted performance measure that is more 

in line with the typical investor's risk preferences in that it does not penalize large positive 

returns in the way that a symmetric risk measure does. The investor's utility also depends 

on the performance of all the assets held. To optimize this utility correctly requires a port- 

folio management system that makes decisions for individual assets in the context of the 

entire portfolio. 

3.3 Literature Review 

The term 'LDirect Reinforcement'' is used to refer to algorithms that do not have to learn 

a value function in order to derive a policy. Direct Reinforcement methods date back to 

the pioneering work by Farley and Clark [19, 201, but have received little attention from 

4 @ 2 ~ ~ l  IEEE. Reprinted, with permission, from "Learning to Trade via Direct Reinforcement", John 
Moody and Matthew SafFell, IEEE Tkansactions on Neural Networks, July 2001, vol. 12, no. 4. 

'Market frictions include taxes and a variety of transaction costs, such as commissions, bid / ask 
spreads, price slippage and market impact. 



the reinforcement learning community during the past two decades. Notable exceptions 

are Williams' REINFORCE algorithm [123, 1241 and Baxter & Bartlett's recent work [6].6 

Methods such as dynamic programming [7], TD-Learning [I031 or Q-Learning [118,117] 

have been the focus of most of the modern research. These methods attempt to learn a 

value function or the closely related Q-function. Such value function methods are natural 

for problems like checkers or backgammon where immediate feedback on performance is 

not readily available at each point in time. Actor-critic methods [5, 41 have also received 

substantial attention. These algorithms are intermediate between Direct Reinforcement 

and Value Function methods, in that the "critic" learns a value function which is then 

used to update the parameters of the " a ~ t o r " . ~  

Though much theoretical progress has been made in recent years in the area of value 

function learning, there have been relatively few widely-cited, successful applications of the 

techniques. Notable examples include TD-gammon [log, 1101, an elevator scheduler [23] 

and a space-shuttle payload scheduler [129]. Due to the inherently delayed feedback, these 

applications all use the TD-Learning or Q-Learning value function RL methods. 

For many financial decision making problems, however, results accrue gradually over 

time, and one can immediately measure short-term performance. This enables use of a 

Direct Reinforcement approach to provide immediate feedback to optimize the strategy. 

While this work emphasizes Direct Reinforcement, most applications in finance to 

date have been based upon dynamic programming type methods. Elton & Gruber [31] 

provide an early survey of dynamic programming applications in finance. The problems 

of optimum consumption and portfolio choice in continuous time have been formulated by 

Merton [57, 58, 591 from the standpoints of dynamic programming and stochastic control. 

The extensive body of work on intertemporal (multi-period) portfolio management and 

asset pricing is reviewed by Breeden [14]. Duffie [28, 291 describes stochastic control and 

dynamic programming methods in finance in depth. Dynamic programming provides the 

'Baxter & Bartlett have independently proposed the term "Direct Reinforcement" for policy gradient 
algorithms in a Markov Decision Process framework. Moody et al. use the term in the same spirit, but 
perhaps more generally, to refer to any reinforcement learning algorithm that does not  require learning a 
value function. 

7For reviews and in-depth presentations of value function and actor-critic methods, see [46, 10, 1041. 



basis of the Cox, Ross, Rubinstein [22] and other widely used binomial option pricing 

methods. See also the strategic asset allocation work of Brennan et al. [16]. Due to 

the curse of dimensionality, approximate dynamic programming is often required to solve 

practical problems, as in the work by Longstaff and Schwartz [52] on pricing American 

options. During the past six years, there have been several applications that make use of 

value function reinforcement learning methods. Van Roy [I151 uses a TD(X) approach for 

valuing options and performing portfolio optimization. Neuneier [84] uses a Q-Learning 

approach to make asset allocation decisions, and Neuneier & Mihatsch [85] incorporate 

a notion of risk sensitivity into the construction of the Q-Function. Derivatives pricing 

applications have been studied by Tsitsiklis and Van Roy [112, 1131. Moody and Saffell 

compare Direct Reinforcement to Q-Learning for asset allocation [69], and explore the 

minimization of downside risk using Direct Reinforcement [70]. 

Several papers that relate to this work have appeared. Samuelson [94] stimulated 

interest in power law utility functions and their relation to the differential Sharpe ratio. 

White [I211 suggested using a performance ratio based on the second lower partial moment. 

Samuelson [94] uses logarithmic and power law utility functions to evaluate simple 

asset allocation or market timing strategies (which he calls "across-time diversification"). 

Samuelson's analysis shows that under the assumption of a random walk price process, 

the optimum behavior for a trader with a power law utility function is to hold constant 

proportions of risky and risk-free securities. That is, in the absence of superior forecasting 

ability, across-asset-class diversification will on a risk-adjusted basis outperform across- 

time diversification. In contrast, the RRL approach assumes that superior forecasting and 

trading strategies are not impossible, and that dynamic asset allocation strategies may in 

some cases achieve higher utility than simple fixed allocation methods. 

Timmermann and Pesaran [ I l l ]  use wealth and the Sharpe ratio as selection criteria 

(rat her than optimization criteria) for trading systems. The set of traders considered are 

based on linear forecasting models that differ in the subsets of input variables included. 

The forecasting models are linear regressions with parameters estimated to minimize mean 

squared forecast error (MSFE). The wealth and the Sharpe ratio performance functions 

are not used for direct optimization of system parameters. The selection among forecasting 



models is updated periodically. The authors are able to use their simulation results to 

document predictability in monthly U.S. stock returns. In related work, Satchel1 and 

Timmerman [95] provide arguments that MSFE is a bad indicator for potential trading 

profits. They prove a theorem that there is not necessarily any monotonic relationship 

between the size of the MSFE and the probability of correctly forecasting the sign of a 

variable. 

In independent work, Bengio [8] points out that global optimization of trading systems 

consisting of separate forecasting and trading modules (such as that shown in Figure 3.1) 

provides better results than separately minimizing MSFE of the forecast module and 

subsequently maximizing profit of the trading module. Bengio optimizes portfolios and 

employs back-propagation through time to maximize final wealth. Kang et a1 [47] compare 

optimization of the Sharpe ratio and profits using a non-recursive supervised learning 

method applied to a simple asset allocation strategy. The allocation that is varied is 

the amount of capital invested in a fixed trading strategy. However, the authors do not 

directly optimize the trading system parameters (those that determine when to buy or 

sell) or take into account transaction costs. Neuneier [84] uses Q-Learning [118, 1171 to 

train an asset allocation system to maximize profit. Transaction costs consisting of both 

fixed and proportional parts are included in the analysis. Simulation results are presented 

for an artificial exchange rate trading system and a system that switches between cash 

and a portfolio of German stocks that tracks the DAX. The description of the methods 

used is sketchy, and most relevant details of the empirical work are not disclosed. Finally, 

White [I211 has done simulations that optimize the Sharpe ratio and other measures of 

risk-adjusted return based on downside risk (see Section 3.6). 

3.4 Review of the Recurrent Reinforcement Learning Model 

3.4.1 Trading Systems and Performance Criteria 

Trading Systems 

This section describes agents that trade fixed position sizes in a single security. The 

methods described here can be generalized to more sophisticated agents that trade varying 



quantities of a security, allocate assets continuously or manage multiple asset portfolios. 

See Moody et a1 [75] and Section 3.5 for a discussion of multiple asset portfolios. 

Here, the traders are assumed to take only long, neutral or short positions, Ft E 

{1,0, -11, of constant magnitude. A long position is initiated by purchasing some quantity 

of a security, while a short position is established by selling the security.8 

The price series being traded is denoted zt. The position Ft is established or maintained 

at the end of each time interval t ,  and is re-assessed at the end of period t + 1. A trade is 

thus possible at the end of each time period, although nonzero trading costs will discourage 

excessive trading. A trading system return Rt is realized at the end of the time interval 

( t  - 1, t] and includes the profit or loss resulting from the position FtVl held during that 

interval and any transaction cost incurred at time t due to a difference in the positions 

Ft-l and Ft. 

In order to properly incorporate the effects of transactions costs, market impact and 

taxes in a trader's decision making, the trader must have internal state information and 

must therefore be recurrent. A single asset trading system that takes into account trans- 

actions costs and market impact has the following recurrent decision function: 

Ft = F(Bt; Ft-l, It) with 

It = {-%a-1, ~ t - 2 ,  ; Yt,  Yt-lrYt-2,. - .) , (3.1) 

where Ot denotes the (learned) system parameters at time t and It denotes the information 

set at time t ,  which includes present and past values of the price series zt and an arbitrary 

number of other external variables denoted yt. A simple example is a {long, short) trader 

with m + 1 autoregressive inputs: 

where rt are the price returns of zt (defined below) and the system parameters 8 are 

the weights {u, vi, w). A trader of this form is used in the simulations described in Sec- 

tion 3.9.1. 

'For stocks, a short sale involves borrowing shares and then selling the borrowed shares to a third party. 
A profit is made when the shorted shares are repurchased at a later time at  a lower price. Short sales 
of many securities, including stocks, bonds, futures, options and foreign exchange contracts are common 
place. 



The above formulation describes a discrete-action, deterministic trader, but can be 

easily generalized. One simple generalization is to use continuously valued F (), for example 

by replacing sign with tanh.  When discrete values Ft = {1,0, -1) are imposed, however, 

the decision function is not differentiable. None-the-less, gradient based optimization 

methods for 8 may be developed by considering differentiable pre-thresholded outputs or, 

for example, by replacing sign with tanh during learning and discretizing the outputs 

when trading. 

Moreover, the models can be extended to a stochastic framework by including a noise 

variable in F () : 

Ft = F(6t; Ft-l, It; ~ t )  with ~t - pe(c) . (3.3) 

The random variable et induces a joint probability density for the discrete actions Ft, 

model parameters and model inputs: 

p(Ft; et; Ft-1, I t )  . 

The noise level (measured by a, or more generally the scale of p,) can be varied to control 

the "exploration vs. exploitation" behavior of the trader. Also, differentiability of the 

probability distribution of actions enables the straightforward application of gradient based 

learning methods. 

Profit and Wealth for Trading Systems 

Trading systems can be optimized by maximizing performance functions, U(), such as 

profit, wealth, utility functions of wealth or performance ratios like the Sharpe ratio. The 

simplest and most natural performance function for a risk-insensitive trader is profit. 

Additive profits are appropriate to consider if each trade is for a fixed number of shares 

or contracts of security zt. This is often the case, for example, when trading small stock 

or futures accounts or when trading standard US$ FX contracts in dollar-denominated 

foreign currencies. I define rl = zt - zt-1 and rf = zf - zf-, as the price returns of a risky 

(traded) asset and a risk-free asset (like T-Bills) respectively, and denote the transactions 

cost rate as 6. The additive profit accumulated over T time periods with trading position 



size p > 0 is then defined in term of the trading returns, Rt, as: 

T 

PT = Rt where 
t=l 

f Rt = p{rt + K l ( r t  -rtf) -dIFt - ~ t - 1 1 )  

with Po = 0 and typically FT = Fo = 0. When the risk-free rate of interest is ignored 

(rf = 0): a simplified expression is obtained: 

The wealth of the trader is defined as WT = Wo + PT. 

Multiplicative profits are appropriate when a fixed fraction of accumulated wealth v > 0 

f f is invested in each long or short trade. Here, rt = (zt/zt-l - 1) and rtf = (zt /zt-l - 1). If 

no short sales are allowed and the leverage factor is set fixed at v = 1, the wealth at time 

T is: 

T 

WT = wo n (1 + R,) where 
t=l 

(1 + Rt) - (1  + (1 - ~ t - l ) r {  + ~ t - l r t }  x 

When the risk-free rate of interest is ignored (rtf = 0), a second simplified expression is 

obtained: 

(1 + Rt) = (1 + Ft-lrt) (1 - SlFt - Ft-11) . (3.8) 

Relaxing the constant magnitude assumption is more realistic for asset allocations and 

portfolios, and enables better risk control. Related expressions for portfolios are presented 

in Section 3.5. 

Performance Criteria 

In general, the performance criteria that are considered are functions of profit or wealth 

U(WT) after a sequence of T time steps, or more generally of the whole time sequence of 

trades 

U(WT ,..., Wt,...,Wi,Wo) . 



The simple form U(WT) includes standard economic utility functions. The second case is 

the general form for path-dependent performance functions, which include inter-temporal 

utility functions and performance ratios like the Sharpe ratio and Sterling ratio. In either 

case, the performance criterion at time T can be expressed as a function of the sequence 

of trading returns 

U(RT,...,R~,...,R~,RI;WO) . (3.10) 

For brevity, this general form is denoted by UT. 

For optimizing the traders, the RRL algorithm is interested in the marginal increase 

in performance due to return Rt at each time step: 

Dt N AUt = Ut - Ut-l . (3.11) 

Note that Ut depends upon the current trading return Rt, but that Ut-l does not. The 

strategy is to derive diferential performance criteria Dt cx AUt that capture the marginal 

"utility" of the trading return Rt at each period.g 

The Differential Sharpe Ratio 

Rather than maximizing profits, most modern fund managers attempt to maximize risk- 

adjusted return, as suggested by modern portfolio theory. The Sharpe ratio is the most 

widely-used measure of risk-adjusted return 1961. Denoting as before the trading system 

returns for period t (including transactions costs) as Rt, the Sharpe ratio is defined to be: 

Average(Rt ) 
ST = 

Standard Deviation(Rt ) 

where the average and standard deviation are estimated for periods t = (1,. . . , T). Note 

that for ease of exposition and analysis, Moody and Wu have suppressed inclusion of 

f f portfolio returns Rt due to the risk free rate on capital rt . Substituting excess returns 

R~ = Rt - ~f for Rt in the equation above produces the standard definition. With this 

caveat in mind, I use Equation (3.12) for discussion purposes without loss of mathematical 

generality. lo 

'Strictly speaking, many of the performance criteria commonly used in the financial industry are not 
true utility functions, so the term "utility" is used in a more colloquial sense. 

''For systems that trade futures and forwards, Rt should be used in place of fZt, because the risk free 
rate is already accounted for in the relation between forwards prices and spot prices. 



Proper on-line learning requires the computation of the influence on the Sharpe ratio 

(marginal utility Dt) of the trading return Rt at time t. To accomplish this, Moody 

& Wu have derived a new objective function called the differential Sharpe ratio for on- 

line optimization of trading system performance [74, 751. It is obtained by considering 

exponential moving averages of the returns and standard deviation of returns in (3.12), 

and expanding to first order in the adaptation rate q: 

Note that a zero adaptation rate corresponds to an infinite time average. Expanding about 

q = 0 amounts to 'Yurning on" the adaptation. 

Since only the first order term in this expansion depends upon the return Rt at time 

t ,  the differential Sharpe ratio is defined as: 

where the quantities At and Bt are exponential moving estimates of the first and second 

moments of Rt : 

Treating AtPl and Bt-1 as numerical constants, note that q in the update equations 

controls the magnitude of the influence of the return Rt on the Sharpe ratio St. Hence, 

the differential Sharpe ratio represents the influence of the trading return Rt realized at 

time t on St. It is the marginal utility for the Sharpe ratio criterion. 

The influences of risk and return on the differential Sharpe ratio are readily apparent. 

The current return Rt enters expression (3.14) only in the numerator through AAt = 

Rt - At-1 and ABt = R: - Bt-l. The first term in the numerator is positive if Rt exceeds 

the moving average of past returns At-1 (increased reward), while the second term is 

negative if R: exceeds the moving average of past squared returns Bt-1 (increased risk). 



The differential Sharpe ratio Dt is used in the RRL algorithm (see Equation (3.37) 

in Section 3.7) as the current contribution to the performance function Ut. Since St-1 in 

Equation (3.13) does not depend on Rt ,  then 

When optimizing the trading system using Equation (3.14), the relevant derivatives have 

the simple form: 

The differential Sharpe ratio has several attractive properties: 

Facilitates recursive updating: The incremental nature of the calculations of At and 

Bt make updating the exponential moving Sharpe ratio straightforward. It is not 

necessary to recompute the average and standard deviation of returns for the entire 

trading history in order to update the Sharpe ratio for the most recent time period. 

Enables efficient on-line optimization: Dt and dDt/dRt can be cheaply calculated 

using the previously computed moving averages At-1 and Bt-1 and the current 

return Rt. This enables efficient stochastic optimization. 

Weights recent returns more: Based on the exponential moving average Sharpe ratio, 

recent returns receive stronger weightings in Dt than do older returns. 

Provides interpretability: The differential Sharpe ratio isolates the contribution of 

the current return Rt to the exponential moving average Sharpe ratio. The simple 

form of Dt makes clear how risk and reward affect the Sharpe ratio. 

One difficulty with the Sharpe ratio, however, is that the use of variance or R; as a 

risk measure does not distinguish between upside and downside "risk". Assuming that 

At-l > 0, the largest possible improvement in Dt occurs when 

Thus, the Sharpe ratio actually penalizes gains larger than R,*, which is counter-intuitive 

relative to most investors' notions of risk and reward. A more relevant performance 

function is described in Section 3.6. 



3.5 Port folios 

As was mentioned previously, investors typically hold diversified portfolios of assets. One 

of the main purposes of holding portfolios is to control the impact that unique risks 

associated with individual assets have on the investor's wealth. Making trading decisions 

relative to the portfolio as a whole, rather than on an asset by asset basis, is crucial for 

managing these risks properly. Simulation results using the following setup are presented 

in Section 3.9.6. 

For trading multiple assets in general (typically including a risk-free instrument), a 

multiple output trading system is required. Denoting a set of m markets with price series 

{{z:} : a = 1 , .  . . , m), the market return rf for price series z: for the period ending at 

time t is defined as (z:/zLl - 1). Defining portfolio weights of the ath asset as Fa(), a 

trader that takes only long positions must have portfolio weights that satisfy: 
m 

FazO and CFO=I  . (3.19) 

With these constraints, standard Markowitz mean-variance portfolio optimization is a 

quadratic programming problem. However, when optimizing the parameters of a nonlinear 

trading system, portfolio optimization becomes a nonlinear programming problem. 

One approach to imposing the constraints on the portfolio weights (3.19) without 

requiring that a constrained optimization be performed is to use a trading system that 

has softmax outputs: 

F ~ ( )  = exp[f "01 for a = 1, ..., m . 
CEl exp[f bol 

Here, the f a ( )  could be linear or more complex functions of the inputs, such as a two- 

layer neural network with sigmoidal internal units and linear outputs. Such a trading 

system can be optimized using unconstrained optimization methods. Note however that 

the portfolio weights Fa obtained are invariant under shifts in the values of the f a  of the 

form {fa + f a  + c; a = 1, . . . , m), so multiple solutions for the f a  exist. Denoting the 

sets of raw and normalized outputs collectively as the vectors f ( )  and F() respectively, a 

recurrent portfolio manager will have structure 

Ft = softmax {ft(Bt-1; Ft-1, It)) 



Similarly to the single asset trader, the portfolio management model must be recurrent to 

accurately account for transaction costs. 

3.5.1 Profit and Wealth for Portfolios 

When multiple assets are considered, the effective portfolio weighting change with each 

time step due to price movements. Thus, maintaining constant or desired portfolio weights 

requires that adjustments in positions be made at each time step. The wealth after T 

periods for a portfolio trading system is 

where F t  is the effective portfolio weight of asset a before readjusting, defined as 

and the trading returns Rt are defined implicitly. In (3.22), the first factor in the curly 

brackets is the increase in wealth over the time interval t prior to rebalancing to achieve 

the newly specified weights F t .  The second factor is the reduction in wealth due to the 

rebalancing costs. The profit after T periods is PT = WT - WO. 

3.6 Downside Risk 

Symmetric measures of risk such as variance are more and more being viewed as inadequate 

measures due to the asymmetric preferences of most investors to price changes. Few 

investors consider large positive returns to be "risky", though both large positive as well 

as negative returns are penalized using a symmetric measure of risk such as the variance. 

To most investors, the term "risk" refers intuitively to returns in a portfolio that decrease 

its profitability. 

Markowitz, the father of modern portfolio theory, understood this. Even though most 

of his work focused on the mean-variance framework for portfolio optimization, he pro- 

posed the semi-variance as a means for dealing with downside returns [55]. After a long 



hiatus lasting three decades, there is now a vigorous industry in the financial commu- 

nity in modeling and minimizing downside risk. Criteria of interest include the Downside 

Deviation (DD), the Second Lower Partial Moment (SLPM) and the N~~ Lower Partial 

Moment [99, 80, 81, 98, 821. 

One measure of risk-adjusted performance widely used in the professional fund man- 

agement community (especially for hedge funds) is the Sterling ratio, commonly defined 

as: 
Annualized Average Return 

Sterling Ratio = 
Maximum Drawn-Down ' 

Here, the maximum draw-down (from peak to trough) in account equity or net asset 

value is defined relative to some standard reference period, for example one to three years. 

Minimizing drawdowns is somewhat cumbersome, so I focus on the Downside Deviation 

as a measure of downside risk in this chapter.ll 

The Downside Deviation is defined to be the square root of the average of the square 

of the negative returns: 

Using the Downside Deviation as a measure of risk, I can now define a utility function 

similar to the Sharpe ratio, which will be called the Downside Deviation Ratio (DDR): 

The Downside Deviation Ratio rewards the presence of large average positive returns and 

penalizes risky returns, where "risky" now refers to downside returns. 

In order to facilitate the use of the recurrent reinforcement learning algorithm (Sec- 

tion 3.7), the influence of the return at time t on the DDR must be computed. In a similar 

manner to the development of the differential Sharpe ratio in Moody et al. [75], I define 

exponential moving averages of returns and of the squared Downside Deviation: 

"white has found that the Downside Deviation Ratio tracks the Sterling Ratio effectively [121]. 



and define the Downside Deviation Ratio in terms of these moving averages. I obtain the 

performance function by considering a first order expansion in the adaptation rate q of 

the DDR: 

I define the first order term dDDRt/dq to be the Diferential Downside Deviation Ratio. 

It has the form 

From Equation (3.30) it is obvious that when Rt > 0, the utility increases as Rt increases, 

with no penalty for large positive returns such as exists when using variance as the risk 

measure. See Section 3.9 for detailed experimental results on the use of the Downside 

Deviation Ratio to build RRL trading systems. 

3.7 Learning to Trade 

Reinforcement learning adjusts the parameters of a system to maximize the expected 

payoff or reward that is generated due to the actions of the system. This is accomplished 

through trial-and-error exploration of the environment and space of strategies. In contrast 

to supervised learning, the system is not presented with examples of desired actions. 

Rather, it receives a reinforcement signal from its environment (a reward) that provides 

information on whether its actions are good or bad. 

Moody et al. [74, 751 compared supervised learning to this Direct Reinforcement ap- 

proach. The supervised methods discussed included trading based upon forecasts of mar- 

ket prices and training a trader using labelled data. In both supervised frameworks, 

difficulties are encountered when transaction costs are included. While supervised learn- 

ing methods can be effective for solving the structural credit assignment problem, they do 

not typically address the temporal credit assignment problem. 



Structural credit assignment refers to the problem of assigning credit to the individual 

parameters of a system. If the reward produced also depends on a series of actions of the 

system, then the temporal credit assignment problem is encountered, ie. assigning credit 

to the individual actions taken over time [102]. Reinforcement learning algorithms offer 

advantages over supervised methods by attempting to solve both problems simultaneously. 

Reinforcement learning algorithms can be classified as either Direct Reinforcement 

(sometimes called "policy gradient" or "policy search"), Value Function or Actor-Critic 

methods. The choice of the best method depends upon the nature of the problem domain. 

I will discuss this issue in greater detail in Section 3.8. In this section, I present the 

Recurrent Reinforcement Learning algorithm for Direct Reinforcement and review value 

function based methods, specifically Q-Learning [118] and a refinement of Q-Learning 

called Advantage Updating [3]. In Section 3.9.4, I compare the RRL and value function 

methods for systems that learn to allocate assets between the S&P 500 stock index and 

T-Bills. 

3.7.1 Recurrent Reinforcement Learning 

In this section, I describe the Recurrent Reinforcement Learning algorithm for Direct 

Reinforcement [74, 751. 

Given a trading system model Ft(0), the goal is to adjust the parameters 0 in order 

to maximize UT. For traders of form (3.1) and trading returns of form (3.6) or (3.8), 

the gradient of UT with respect to the parameters 0 of the system after a sequence of T 

The system can be optimized in batch mode by repeatedly computing the value of UT 

on forward passes through the data and adjusting the trading system parameters by using 

gradient ascent (with learning rate p) 

or some other optimization method. Note that due to the inherent recurrence, the quan- 

tities dFt/dO are total derivatives that depend upon the entire sequence of previous time 



periods. To correctly compute and optimize these total derivatives in an efficient manner 

requires an approach similar to Back-Propagation Through Time (BPTT) [91, 1191. The 

temporal dependencies in a sequence of decisions are accounted for through a recursive 

update equation for the total policy gradient: 

The first term on the right hand side is the partial or naive policy gradient. The above 

expressions (3.31) and (3.33) assume differentiability of Ft. For the long/short traders 

with thresholds described in Section 3.4.1, the reinforcement signal can be backpropagated 

through the pre-thresholded outputs in a manner similar to the Adaline learning rule [122]. 

Equations (3.31), (3.32), and (3.33) constitute the batch RRL algorithm. 

There are two ways in which the batch algorithm described above can be extended 

into a stochastic framework. First, exploration of the strategy space can be induced by 

incorporating a noise variable ct, as in the stochastic trader formulation of Equation (3.3). 

The trade-off between exploration of the strategy space and exploitation of a learned policy 

can be controlled by the magnitude of the noise variance a,. The noise magnitude can be 

annealed over time during simulation, in order to arrive at a good strategy. 

Secondly, a simple on-line stochastic optimization can be obtained by considering only 

the term in (3.31) that depends on the most recently realized return Rt during a forward 

pass through the data: 

The parameters are then updated on-line using: 

Such an algorithm performs a stochastic optimization, since the system parameters Ot are 

varied during each forward pass through the training data. The stochastic, on-line analog 

of Equation (3.33) is: 



Equations (3.34), (3.35) and (3.36) constitute the stochastic (or adaptive) RRL algorithm. 

It is a reinforcement algorithm closely related to recurrent supervised algorithms such as 

Real Time Recurrent Learning (RTRL) [I251 and Dynamic Backpropagation [78]. See also 

the discussion of backpropagating utility in Werbos [120]. 

For differential performance criteria Dt described in Equation (3.11) of Section 3.4.1 

(such as the differential Sharpe ratio (3.14) and differential Downside Deviation ratio (3.30)), 

the stochastic update equations (3.34) and (3.35) become: 

I use on-line algorithms of this recurrent reinforcement learning type in the simulations 

presented in Section 3.9. Note that I find that use of a noise variable et provides little 

advantage for the real financial applications that I consider, since the data series contain 

significant intrinsic noise. Hence, I find that a simple "greedy7' update is adequate.12 

The above description of the RRL algorithm is for traders that optimize immediate 

estimates of performance Dt for specific actions taken. This presentation can be thought 

of as a special case of a more general Markov Decision Process (MDP) and policy gradient 

formulation. One straightforward extension of the formulation can be obtained for traders 

that maximize discounted future rewards. I have experimented with this approach, but 

found little advantage for the problems I consider. A second extension to the formulation 

is to consider a stochastic trader (Equation (3.3)) and an expected reward framework, 

for which the probability distribution of actions is differentiable. This latter approach 

makes use of the joint density of Equation (3.4). While the expected reward framework 

is appealing from a theoretical perspective, Equations (3.34), (3.35) and (3.36) presented 

above provide the practical basis for simulations. 

12Tesauro finds a similar result for TD-Gammon 1109, 1101. A "greedy" update works well, because the 
dice rolls in the game provided enough uncertainty to induce extensive strategy exploration. 



3.7.2 Value Functions and Q-Learning 

Besides explicitly training a trader to take actions, it is possible to also implicitly learn 

correct actions through the technique of value iteration. Value iteration uses a value func- 

tion to evaluate and improve policies (see Kaelbling et al. [46] for a tutorial introduction 

and Sutton and Barto [I041 for a full overview of these algorithms). The value function, 

VT(x), is an estimate of discounted future rewards that will be received from starting in 

state x, and by following the policy T thereafter. The value function satisfies Bellman's 

equation 

where T(X, a) is the probability of taking action a in state a ,  pxy(a) is the probability of 

transitioning from state x to state y when taking action a, D(x, y, a) is the immediate 

reward (differential utility, as in Equation (3.11)) from taking action a and transitioning 

from state x to state y and y is the discount factor that weighs the importance of future 

rewards versus immediate rewards. 

A policy is an optimal policy if its value function is greater than or equal to the value 

functions of all other policies for a given set of states. The optimal value function is defined 

as: 

V* (x) = max V" (x) , 
n 

and satisfies Bellman's optimality equation 

The value iteration update: 

is guaranteed to converge to the optimal value function under certain general conditions. 

The optimal policy can be determined from the optimal value function through: 



The technique named Q-Learning [I181 uses a value function which estimates future re- 

wards based on both the current state and the current action taken. The Q-function 

version of Bellman's optimality equation is 

Similarly to Equation (3.41), the Q-function can be learned using a value iteration ap- 

proach: 

This iteration has been shown [I181 to converge to the optimal Q-function, Q*(x, a), given 

certain constraints. The advantage of using the Q-function is that there is no need to 

know the system model pZy (a) as in Equation (3.42) in order to choose the best action. 

One calculates the best action as 

a* = arg max(Q* (x, a)) , (3.45) 

The update rule for training a function approximator is then based on the gradient of the 

error: 
1 
-(D(x,Y, 2 a)  + r m y Q ( y ,  b)  - Q(x,aN2 (3.46) 

Advantage Updating 

A refinement of the Q-Learning algorithm is provided by Advantage Updating [3]. Ad- 

vantage Updating was developed specifically to deal with continuous-time reinforcement 

learning problems, though it is applicable to the discrete-time case as well. It is designed 

to deal with the situation where the relative advantages of individual actions within a state 

are small compared to the relative advantages of being in different states. Also, Advantage 

Updating has been shown to be able to learn at a much faster rate than Q-Learning in 

the presence of noise. 

Advantage Updating learns two separate functions: the advantage function A(x, a), 

and the value function V(x). The advantage function measures the relative change in 



value of choosing action a while in state x versus choosing the best possible action for that 

st ate. The value function measures the expected discounted future rewards as described 

previously. Advantage Updating has the following relationship with Q-Learning: 

Q* (x, a) = V* (x) + A* (x, a )  . (3.47) 

Similarly to Q-Learning, the optimal action to take in state x is found by a* = arg max,(A* (x, a)).  

See Baird [3] for a description of the learning algorithms. 

3.8 Policy vs Value Functions 

As mentioned in Section 3.7, reinforcement learning algorithms can be classified as ei- 

ther Direct Reinforcement (sometimes called "policy search"), Value Function methods or 

Actor-Critic methods. The choice of the best method depends upon the nature of the 

problem domain. 

3.8.1 Immediate vs. Future Rewards 

Reinforcement signals received from the environment can be immediate or delayed. In 

some problems, such as checkers [92, 931, backgammon [log, 1101, navigating a maze [86], 

or maneuvering around obstacles [76], reinforcement from the environment is sometimes 

provided only at  the end of the game or task. The final rewards received are {success, 

failure) or {win, lose). For such task formulations, the temporal credit assignment problem 

is extreme. There is usually no a priori assessment of performance available during the 

course of each game or trial. Hence, one is forced to learn a value function of the system 

state at  each time. This is accomplished by doing many runs on a trial and error basis, 

and discounting the ultimate reward received back in time. This discounting approach is 

the basis of Dynamic Programming [7], TD-Learning [I031 and Q-Learning [118, 1171. 

For these Value Function methods, the action taken at each time is that which offers 

the largest increase in expected value. Thus, the policy is not represented directly. An 

intermediate class of reinforcement algorithms are actor-critic methods [5]. While the 

actor module provides a direct representation of the policy for these methods, it relies on 

the critic module for feedback. The role of the critic is to learn the value function. 



In contrast, Direct Reinforcement methods represent the policy directly, and make 

use of immediate feedback to adjust the policy. This approach is appealing when it is 

possible to specify an instantaneous measure of performance, because the need to learn 

a value function is bypassed. For most problems of real world interest, it is possible to 

obtain feedback periodically. For example, intermediate game scores could be used in 

backgammon. 

In trading, asset allocation and portfolio management problems, for example, overall 

performance accrues gradually over time. For these financial decision making problems, an 

immediate measure of incremental performance is available at each time step. Although 

total performance usually involves integrating or averaging over time, it is none-the-less 

possible to adaptively update the strategy based upon the investment return received at 

each time step. 

Other domains that offer the possibility of immediate feedback include a wide range of 

control applications. The standard formulation for optimal control problems involves time 

integrals of an instantaneous performance measure. Examples of common loss functions 

include average squared deviation from a desired trajectory or average squared jerk.13 

A related approach that represents and improves policies explicitly is the policy gradient 

approach. Policy gradient methods use the gradient of the expected average or discounted 

reward with respect to the parameters of the policy function to improve the policy. The 

expected rewards are typically estimated by learning a value function, or by using single 

sample paths of the Markov reward process. There have been several recent, independent 

proofs for the convergence of policy gradient methods. Marbach & Tsitsiklis [53, 541 and 

Baxter & Bartlett [6]14 show convergence to locally optimal policies by using simulation 

based methodologies to approximate expected rewards. Sutton et al. [I051 and Konda 

& Tsitsiklis [49] obtain similar results when estimating expected rewards from a value 

function implemented using a function approximator. An application to robot navigation 

13'LJerk" is the rate of change of acceleration. 
14Baxter & Bartlett have independently coined the term L'Direct Reinforcement" to describe policy gra- 

dient methods in an MDP framework based on simulating sample paths and maximizing average rewards. 
The usage of the term here is in the same spirit, but perhaps more general, referring to all algorithms that 
do not need to learn a value function in order to derive a policy. 



is provided by Grudic and Ungar [39]. Note that some of the so-called "policy gradient" 

methods are not Direct Reinforcement methods, because they require the estimation of a 

value function. Rather, these methods are more properly classified as actor-critic methods. 

3.8.2 Policies vs. Values 

Much attention in the reinforcement learning community has been given recently to the 

question of learning policies versus learning value functions. Over the past twenty years 

or so, the Value Function approach has dominated the field. The approach has worked 

well in many applications, and a number of convergence theorems exist that prove that 

the approach will work under certain conditions. 

However, the value function approach suffers from several limitations. The original 

formulation of Q-Learning is in the context of discrete state and action spaces. As such, in 

many practical situations it suffers from the "curse of dimensionality". When Q-Learning 

is extended to function approximators, it has been shown in many cases that there are 

simple Markov Decision Processes for which the algorithms fail to converge [2]. Also, the 

policies derived from a Q-Learning approach tend to be brittle, that is, small changes 

in the value function can produce large changes in the policy. For finance in particular, 

the presence of large amounts noise and nonstationarity in the datasets can cause severe 

problems for a value function approach.15 

I find the Recurrent Reinforcement Learning algorithm to be a simpler and more 

efficient approach. Since the policy is represented directly, a much simpler functional 

form is often adequate to solve the problem. A significant advantage of the RRL approach 

is the ability to produce real valued actions (eg. portfolio weights) naturally without 

resorting to the discretization necessary in the Q-Learning case. Constraints on actions 

are also much easier to represent given the policy representation. Other advantages are 

that the RRL algorithm is more robust to the large amounts of noise that exists in financial 

data, and is able to quickly adapt to nonstationary market conditions. 

1 5 ~ r o w n  [18] provides a nice example that demonstrates the brittleness of Q-Learners in noisy 
environments. 



I present an example of how an increase in complexity occurs when a policy is represented 

implicitly through the use of a value function. I start with the most simple trading 

problem: a trader that makes decisions to buy and sell a single asset where there are no 

transaction costs or trading frictions. The asset returns rt are from a binomial process in 

(-1, +I).  To make matters even more simple, I will assume that the next period's return 

rt+l is known in advance. Given these conditions, the optimal policy does not require 

knowledge of future rewards, so the Q-Learning discount parameter 7 will be set to 0. I 

will measure the complexity of the solution by counting the number of tanh units that are 

required to implement a solution using a single function approximator. 

It is obvious that the policy function is trivial. The optimal policy is to take the action 

at = rt+l. In terms of model structure, a single tanh unit would suffice. On the other 

hand, if learning the value function before taking actions, in this case the value function 

has the form of the XOR function. As shown in Figure 3.4, the value function is +1 when 

the proposed action a has the same sign as rt+l and -1 otherwise. Because of the binomial 

return process, this problem can be solved using only two tanh units. Due to the value 

function representation of the problem, the complexity of the solution has doubled. 

This doubling of model complexity is by comparison minor if the problem is made 

a little more realistic by allowing returns to be drawn from a continuous real-valued 

distribution. The complexity of the policy function has not increased, at = ~ i g n ( r ~ + ~ ) .  

However the value function's increase in complexity is potentially enormous. Since returns 

are now real valued, approximating the value function to an arbitrarily small precision 

requires an arbitrarily large model. 

3.9 Results 

This section presents empirical results for several simulations based on the various tech- 

niques discussed in this chapter related to the RRL algorithm. First, controlled experi- 

ments using artificial price series are presented to test the RRL algorithm's ability to learn 

profitable trading strategies, to maximize risk adjusted return (as measured by the Sharpe 



Figure 3.4: A representation of the value function to be learned by the Q-Learning algo- 
rithm for the example given in the text (Section 3.8). The function represents the Q-value, 
Q(r,  a) ,  which is the value from taking action "a" in state "r". The figure on the left shows 
the value function for the case of discrete, binary returns. The Q-function has the form 
of the XOR problem, while the optimal policy is simply a = r .  The figure on the right 
shows the value function when returns are real-valued (note the change in axes). The 
Q-function now becomes arbitrarily hard to represent accurately using a single function 
approximator of tanh units while the optimal policy is still very simple, a = sign(r). 

ratio), and to respond appropriately to varying transaction costs. The second problem 

demonstrates the ability of RRL to discover structure in a real financial price series, the 

half-hourly US Dollar / British Pound exchange rate. For this problem, the RRL trader 

attempts to avoid downside risk by maximizing the Downside Deviation Ratio. Next, I 

compare the performance of traders based on RRL and Q-Learning for a second real-world 

problem, trading the monthly S&P 500 stock index. Over the 25 year test period, I find 

that the RRL-Trader outperforms the Q-Trader, and that both outperform a buy and hold 

strategy. Further discussion of the Q-Trader vs. RRL-Trader performance is presented in 

Section 3.9.5. Finally, I present simulation results for a portfolio management system with 

three artificial assets. The portfolio management system is shown to adjust its behavior 

in response to changes in the environment and in response to the differing characteristics 

of the assets being managed. 



3.9.1 Trader Simulation 

In this section I demonstrate the use of the RRL algorithm to optimize trading behavior 

using the differential Sharpe Ratio (Equation (3.14)) in the presence of transaction costs. 

More extensive results are presented in Moody et al. [75]. There, the authors find that 

maximizing the differential Sharpe ratio yields more consistent results than maximizing 

profits, and that both methods outperform trading systems based on forecasts. 

The RRL-Traders studied here take {long, short) positions and have recurrent state 

similar to that described in Section 3.4.1. To enable controlled experiments, the data 

used in this section are artificial price series that are designed to have tradeable structure. 

These experiments demonstrate that (a) RRL is an effective means of learning trading 

strategies, and (b) trading frequency is reduced as expected as transaction costs increase. 

Data 

Following the procedure in Moody & Wu [74], I generate log price series as random walks 

with autoregressive trend processes. The two parameter model is thus: 

where a and k are constants, and ~ ( t )  and v(t) are normal random deviates with zero 

mean and unit variance. The artificial price series is defined as 

z(t) = exp (q) 
where R is a scale defined as the range of p(t): max(p(t)) - min(p(t)) over a simulation 

with 10,000 samples.16 

For the results presented here, I set the parameters of the price process to a = 0.9 and 

k = 3. The artificial price series are trending on short time scales and have a high level of 

noise. A realization of the artificial price series is shown in the top panel of Figure 3.5. 

1 6 ~ h i s  is slightly more than the number of hours in a year (8760), so the series could be thought of 
as representing hourly prices in a 24 hour artificial market. Alternatively, a series of this length could 
represent slightly less than five years of hourly data in a market that trades about 40 hours per week. 
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Figure 3.5: Artificial prices (top panel), trading signals (second panel), cumulative sums 
of profits (third panel) and the moving average Sharpe ratio with q = 0.01 (bottom panel). 
The system performs poorly while learning from scratch during the first 2000 time periods, 
but its performance remains good thereafter. 
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Figure 3.6: An expanded view of the last thousand time periods of Figure 3.5. The 
exponential moving Sharpe ratio has a forgetting time scale of l /q  = 100 periods. A 
smaller q would smooth the fluctuations out. 
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Figure 3.7: Histograms of the price changes (top), trading profits per time period (middle) 
and Sharpe ratios (bottom) for the simulation shown in Figure 3.5. The left column is for 
the first 5,000 time periods, and the right column is for the last 5,000 time periods. The 
transient effects during the first 2000 time periods for the real-time recurrent learning are 
evident in the lower left graph. 
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Figure 3.8: Boxplots of trading frequency, cumulative sums of profits and Sharpe ratios 
vs. transaction costs. The results are obtained over 100 trials with various realizations of 
artificial data and initial system parameters. Increased transaction costs reduce trading 
frequency, profits and Sharpe ratio, as expected. The trading frequency is the percentage 
of the number of time periods during which trades occur. All figures are computed on the 
last 9,000 points in the data set. 

Simulated Trading Results 

Figures 3.5, 3.6 and 3.7 show results for a single simulation for an artificial market as 

described above. For these experiments, the RRL-Traders are single threshold units with 

an autoregressive input representation. The inputs at time t are constructed using the 

previous eight returns. 

The RRL-Traders are initialized randomly at the beginning, and adapted using real- 

time recurrent learning to optimize the differential Sharpe ratio (3.14). The transaction 

costs are fixed at a half percent during the whole real-time learning and trading process. 

Transient effects of the initial learning while trading process can be seen in the first 2000 

time steps of Figure 3.5 and in the distribution of differential Sharpe ratios in the lower 

left panel of Figure 3.7. 

Figure 3.8 shows box plots summarizing test performances for ensembles of 100 exper- 

iments. 

In these simulations, the 10,000 data samples are partitioned into an initial training 



set consisting of the first 1,000 samples and a subsequent test data set containing the 

last 9,000 samples. The RRL-Traders are first optimized on the training data set for 100 

epochs and adapted on-line throughout the whole test data set. Each trial has differ- 

ent realizations of the artificial price process and different randomly-chosen initial trader 

parameter values. I vary the transaction cost from 0.2%) 0.5% to l%, and observe the 

trading frequency, cumulative profit and Sharpe ratio over the test data set. As shown, in 

all 100 experiments, positive Sharpe ratios are obtained. As expected, trading frequency 

is reduced as transaction costs increase. 

3.9.2 Simulations for Maximizing the Downside Deviation Ratio 

Artificial Price Series with Skewed Returns 

I generate price series as random walks with autoregressive trend processes with skewed 

returns distributions. The two parameter model for an individual asset is thus: 

where a and k are constants, and ~ ( t )  and v(t) are iid random deviates drawn from 

a demeaned gamma distribution with shape parameter 5. The artificial price series is 

defined as 

z ( t )  = exp (q) 
where R is a scale defined as the range of p(t): max(p(t)) - min(p(t)) over a simulation 

with 10,000 samples. Figure 3.9 shows an example of an artificially created time series, 

and a histogram of the returns distribution that generated it. 

Long/Neutral/Short Trading System 

In this section I compare trading systems that can take long, neutral and short positions 

in a single asset. The dataset used consists of 10 different realizations of artificially created 

data described in Section 3.9.2. One trading system is trained to maximize the Downside 

Deviation ratio, "DDR" , and the other is trained to maximize the Sharpe ratio, "SR" . The 
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Figure 3.9: An example of the type of artificial price series used in the experiments here and 
the negatively skewed returns distribution that generated it. The returns are generated 
from a gamma distribution with shape parameter 5. The means of the distributions are 
removed, and here the sign of the distribution is adjusted to produce a negatively skewed 
distribution. 

left panel in Figure 3.10 shows boxplots of the Sharpe ratio for 100 trading systems trained 

from random initial weight configurations. The right panel shows the summary results 

when measuring the Downside Deviation ratio. The plots show that the trading systems 

are successful in maximizing the performance ratios they were trained to maximize. 

A very interesting property of the systems here that were trained to maximize the 

Downside Deviation ratio is that the maximum drawdowns incurred by these traders are 

consistently less than the drawdowns incurred by the Sharpe ratio traders. Figures 3.11 

and 3.12 show a comparison of drawdowns between the "DDR" and "SR" trading systems. 

Figure 3.11 compares the histograms of maximum drawdowns for each trading system. 

This figure shows that the worst drawdowns in the histogram for the "DDR" trading 

system are truncated at approximately half the magnitude as that of the "SR" trading 

system. Figure 3.12 shows an excerpt of the behavior of the two systems on a sample 

test period. The top panel shows the underwater curves for the trading systems. An 

underwater curve shows the magnitude of the drawdowns, and is equal to 0 when the 

system is "above water", ie. when a new equity peak is achieved. The difference in 

behavior during drawdowns can be clearly seen here as the "DDR" trader maintains a 
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Figure 3.10: Boxplots of performance results on the artificial data series for ensembles of 
100 trading systems. The set of systems labeled "DDR7' were trained to maximize the 
Downside Deviation ratio, and the set labeled "SR" were trained to maximize the Sharpe 
ratio. The left panel shows summary statistics of the final Sharpe ratios and the right 
panel shows the summary statistics of final Downside Deviation ratios calculated for each 
of the 100 trials. The notches shown on the boxplots are robust confidence intervals on 
the medians of the distributions. The plots show that the systems trained to maximize a 
certain performance function do, on average, significantly outperform (according to their 
performance measure) trading systems trained to maximize other performance functions. 
The 100 trials were composed of trading system trained from 10 different random initial- 
ization~ for each of 10 different artificially generated price series. 
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Figure 3.11: A comparison of the histograms of maximum drawdown incurred by the
"DDR" and "SR" trading systems. The magnitudes of the worst drawdowns for the
"DDR" system are only half the size of those for the "SR" trading system.

neutral position during the worst of the "SR" trader's drawdowns. The lower panel shows

a moving average calculation of the Downside and Standard Deviations calculated from

the equity curves in the top panel. These are the risk penalty terms in the DDR and

SR performance functions respectively. Of particular interest is the time period between

100 and 150, where even though the "SR" trading system is recovering from a severe

drawdown, the penalty term (the Standard Deviation) is increasing. Examination of the

Downside Deviation shows an increase in penalty only when the drawdown becomes worse.

3.9.3 US Dollar jBritish Pound Foreign Exchange Trading System

In this section, the use of the downside deviation ratio to train trading systems is demon-

strated on a real world data set. A {long, short, neutral} trading system is trained to trade
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Figure 3.12: A closeup of the behavior of the "DDR" and "SR" trading systems. The 
top panel shows the underwater curves for the systems. The "DDR" system avoids the 
large drawdowns incurred by the "SR" system. The bottom panel shows a moving average 
calculation of the Downside Deviation and the standard deviation, the penalty terms of 
the two utility measures. The standard deviation, used as a penalty term in the Sharpe 
ratio, increases even though the "SR" system is recovering from a severe drawdown. On 
the other hand, the Downside Deviation only increases as the drawdown worsens for the 
"DDR" system. 
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the half-hourly US Dollar / British Pound foreign exchange (FX) rate.17 The dataset used 

here consists of the first 8 months of quotes from the 24 hour, 5-days a week foreign ex- 

change market during 1996.18 Both bid and ask prices are in the dataset, and the trading 

system is required to incur the transaction costs of trading through the bid/ask prices. 

The trader is trained via the Recurrent Reinforcement Learning algorithm to maximize 

the Differential Downside Deviation Ratio (3.30). 

The network models consist of a single tanh unit. The inputs to the models are based 

on the (1, 2, 4, 8, 16, 32, 48, 96, 240) time step backward differences of the British Pound 

FX rate. These differences correspond to returns on time scales of (30 min, 60 min, 2 

hours, 4 hours, 8 hours, 16 hours, 24 hours, 2 days, 5 days ), and are intended to capture 

daily and weekly seasonal structure (if present). Note that the currency market has three 

major business time zones (East Asia, Europe, and North America). The return series are 

further processed by splitting each into two signals, one containing the positive values (or 

0 when the value is negative), and the other containing the negative values (or 0 when the 

value is positive). This transformation is meant to allow the system to more easily react 

differently to up and down market conditions. These 18 signals are then reduced using a 

principal component analysis (using the training data) to 12 dimensions. This reduction 

retains 90% of the variance of the inputs. As the networks contain a bias weight and a 

recurrent input, there are a total of 14 network parameters. 

The top panel in Figure 3.13 shows the US DollarlBritish Pound price series for the 

8 month period. The trading system is initially trained on the first 2000 data points, and 

then produces trading signals for the next 2 week period (480 data points). The training 

window is then shifted forward to include the just tested on data, is retrained, and its 

trading signals are recorded for the next 2 week out-of-sample time period. This process 

for generating out-of-sample trading signals continues for the rest of the data set. 

The second panel in Figure 3.13 shows the out-of-sample trading signal produced by 

the trading system, and the third panel displays the equity curve achieved by the trader. 

The bottom panel shows a moving average calculation of the Sharpe Ratio over the trading 

 h he experiments described in this section were first reported in Moody & SafTell [70]. 
 he data is part of the Olsen & Associates HFDF96 dataset, obtainable by contacting www.olsen.ch. 
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Figure 3.13: {Long, short, neutral) trading system of the US DollarIBritish Pound that 
uses the bid/ask spread as transaction costs. The data consists of half-hourly quotes for the 
5 day per week, 24 hour interbank FX market. The time period shown is the first 8 months 
of 1996. The trader is optimized via Recurrent Reinforcement Learning to maximize the 
Differential Downside Deviation Ratio. The first 2000 data points (approximately two 
months) are used for training and validation. The trading system achieves an annualized 
15% return with an annualized Sharpe Ratio of 2.3 over the approximately 6 month long 
out-of-sample test period. On average, the system makes a trade once every 5 hours. 



period with a time constant of 0.01. The trading system achieves an annualized 15% return 

with an annualized Sharpe Ratio of 2.3 over the approximately 6 month long test period. 

On average, the system makes a trade once every 5 hours. 

These FX simulations demonstrate the ability of the RRL algorithm to discover struc- 

ture in a real-world financial price series. However one must be cautious when extrapo- 

lating from simulated performance to what can be achieved in actual real-time trading. 

One problem is that the data set consists of indicative quotes which are not necessarily 

representative of the price at which the system would have actually been able to transact. 

A related possibility is that the system is discovering market microstructure effects that 

are not actually tradeable in real-time. Also, the simulation assumes that the Pound is 

tradeable 24 hours a day during the 5-day trading week. Certainly a real-time trading 

system will suffer additional penalties when trying to trade during off-peak, low liquidity 

trading times. An accurate test of the trading system would require live trading with a 

foreign exchange broker or directly through the interbank FX market in order to verify 

real time transactable prices and profitability. 

3.9.4 S&P 500 / T-Bill Asset Allocation 

In this section I compare the use of Recurrent Reinforcement Learning to the Advantage 

Updating formulation of the Q-Learning algorithm for building a trading system. These 

comparative results were presented previously at NIPS*98 [69]. The long/short trading 

systems trade the S&P 500 Stock Index, in effect allocating assets between the S&P 500 

and 3-month Treasury Bills. When the traders are long the S&P 500, no T-Bill interest 

is earned, but when the traders are short stocks (using standard 2:l  leverage), they earn 

twice the T-Bill rate. I use the Advantage Updating refinement instead of the standard 

Q-Learning algorithm, because I found it to yield better trading results than the standard 

formulation for this problem. See Section 3.7.2 for a description of the representational 

advantages of the approach. 

The S&P 500 target series is the total return index computed monthly by reinvest- 

ing dividends. The S&P 500 indices with and without dividends reinvested are shown in 

Figure 3.14 along with the 3-month Treasury Bill and S&P 500 dividend yields. The 84 
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Figure 3.14: Time series that influence the return attainable by the S&P 500 / TBill asset 
allocation system. The top panel shows the S&P 500 series with and without dividends 
reinvested. The bottom panel shows the annualized monthly Treasury Bill and S&P 500 
dividend yields. 

monthly input series used in the trading systems include both the financial and macroe- 

conomic data listed previously in Table 2.1. All data are obtained from Citibase,lg and 

the macroeconomic series are lagged by one month to reflect reporting delays. 

A total of 45 years of monthly data are used, from January 1950 through December 

1994. The first 20 years of data are used only for the initial training of the system. 

The test period is the 25 year period from January 1970 through December 1994. The 

experimental results for the 25 year test period are true ex ante simulated trading results. 
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Simulation Details 

The models trained here use many of the components of the methodology presented in 

Chapter 2. This methodology used here includes sliding window retraining, early stopping, 

weight decay regularization, input dimension reduction using principal components, and 

committee voting. 

For each year during 1970 through 1994, the system is trained on a moving window of 

the previous 20 years of data. For 1970, the system is initialized with random parameters. 

For each of the 24 subsequent years, the previously learned parameters are used to initialize 

the training. In this way, the system is able to adapt to changing market and economic 

conditions. Within the moving training window, the RRL-Trader systems use the first 10 

years for stochastic optimization of system parameters, and the subsequent 10 years for 

validating early stopping of training. The RRL-Trader networks use a single tanh unit, 

and are regularized using quadratic weight decay during training with a regularization 

parameter of 0.01. The 84 inputs are processed using a principal component analysis 

performed using the data prior to 1970, and the top 15 principal components were used as 

inputs to the models. Including a bias weight and the recurrent input, the RRL networks 

have a total of 17 network parameters. 

The Q-Trader systems use a bootstrap sample of the 20 year training window for 

training, and the final 10 years of the training window are used for validating early stopping 

of training. For the results reported, the networks are two-layer feedforward networks with 

30 tanh units in the hidden layer. As discussed previously, the Advantage Updating form 

of Q-Learning was used for this problem, and so required two separate networks of 30 

units each to represent the Q-function. The networks are trained initially with the y 

discounting factor set to 0 to learn the immediate rewards, and then y is set to 0.75 to 

allow the systems to learn discounted future rewards. I find decreasing performance when 

the value of y is adjusted to values higher than 0.75. The inputs are similarly the top 15 

principal components as for the RRL-Trader. 

To investigate the bias / variance tradeoff for the Q-Traders, I tried networks of size 

10, 20, 30 and 40 hidden units. The 30 unit traders performed significantly better out of 



sample than traders with smaller or larger networks. The 20-unit traders were significantly 

better than the 10-unit traders, suggesting that the smaller networks could not represent 

the Q function adequately (high model bias). The degradation in performance observed 

for the 40 unit nets suggests possible overfitting (increased model ~ariance).~'  

Including the bias weights and the additional action input to the Advantage network, 

the entire Q-Trader system used here has a total of 1052 network parameters. This is 

a considerable increase over the complexity of the RRL-Trader systems (17 parameters). 

Even if the standard &-Learning framework was used (though again, the Advantage Up- 

dating framework produced better results that the standard formulation out of sample) it 

would still have 541 network parameters. 

S&P Experimental Results 

Figure 3.15 shows box plots summarizing the test performance for the full 25-year test 

period of the trading systems with various realizations of the initial system parameters 

over 30 trials for the RRL-Trader system, and 10 trials for the Q-Trader system21. The 

transaction cost is set at 0.5%. Profits are reinvested during trading, and multiplicative 

profits are used when calculating the wealth. The notches in the box plots indicate robust 

estimates of the 95% confidence intervals on the hypothesis that the median is equal to 

the performance of the buy and hold strategy. The horizontal lines show the performance 

of the RRL-Trader voting, Q-Trader voting and buy and hold strategies for the same 

test period. Note that in this case there is a big win for the committee result over the 

average performance of the individual committee members. The total profits of the buy 

and hold strategy, the Q-Trader voting strategy and the RRL-Trader voting strategy are 

1348%, 3359% and 5860% respectively. The corresponding annualized monthly Sharpe 

ratios 0.34, 0.63 and 0.83 respectively.22 Remarkably, the superior results for the RRL- 

Trader are based on networks with a single thresholded tanh unit, while those for the 

20~ewer  runs were done with 40-unit traders due to the excessive computation time. Further experiments 
with network sizes larger than 30 would be needed to more accurately assess the possibility of overfitting. 

2 1 ~ e n  trials were done for the Q-Trader system due to the amount of computation required in training 
the systems 

2 2 ~ h e  Sharpe ratios calculated here are for the returns in excess of the 3-month treasury bill rate. 



Figure 3.15: Test results for ensembles of simulations using the S&P 500 stock index 
and 3-month Treasury Bill data over the 1970-1994 time period. The boxplots show 
the performance for the ensembles of RRL-Trader and Q-Trader trading systems. The 
horizontal lines indicate the performance of the systems and the buy and hold strategy. 
The solid curves correspond to the RRL-Trader system performance, dashed curves to the 
Q-Trader system and the dashed and dotted curves indicate the buy and hold performance. 
Both systems significantly outperform the buy and hold strategy. 

Final Equity: Q-Trader vs RRL-Trader 

Q-Trader required networks with 30 hidden tanh units.23 

Figure 3.16 shows results for following the strategy of taking positions based on a ma- 

jority vote of the ensembles of trading systems compared with the buy and hold strategy. 

The trading systems go short the S&P 500 during critical periods, such as the oil price 

shock of 1974, the tight money periods of the early 19801s, the market correction of 1984, 

and the 1987 crash. This ability to take advantage of high treasury bill rates or to avoid 

periods of substantial stock market loss is the major factor in the long term success of 

these trading models. One exception is that the RRL-Trader trading system remains long 

during the 1991 stock market correction associated with the Persian Gulf war, a political 
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23As discussed in the Section 3.9.4, care was taken to avoid both underfitting and overfitting in the 
Q-Trader case, and smaller nets performed substantially worse. 
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RRL-Trader System vs Q-Trader System 

Figure 3.16: Test results for ensembles of simulations using the S&P 500 stock index 
and 3-month Treasury Bill data over the 1970-1994 time period. Shown are the equity 
curves associated with the systems and the buy and hold strategy, as well as the trading 
signals produced by the systems. The solid curves correspond to the RRL-Trader system 
performance, dashed curves to the Q-Trader system and the dashed and dotted curves 
indicate the buy and hold performance. Both systems significantly outperform the buy 
and hold strategy. In both cases, the traders avoid the dramatic losses that the buy and 
hold strategy incurred during 1974 and 1987. 
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event, though the Q-Trader system is fortunately short during the correction. On the 

whole though, the Q-Trader system trades much more frequently than the RRL-Trader 
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system, and in the end does not perform as well on this data set. 

From these results I find that both trading systems outperform the buy and hold 
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strategy, as measured by both accumulated wealth and Sharpe ratio. These differences 

are statistically significant and support the proposition that there is predictability in the 

U.S. stock and treasury bill markets during the 25 year period 1970 through 1994. A more 

detailed presentation of the RRL-Trader results appears in Moody et al. [75]. Further 
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Sensitivity Analysis: Average on RRL-Trader Committee 
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Figure 3.17: Sensitivity traces for three of the inputs to the RRL-Trader trading system 
averaged over the ensemble of traders. The nonstationary relationships typical among 
economic variables is evident from the time-varying sensitivities. 

discussion of the Q-Trader vs. RRL-Trader performance is presented in Section 3.9.5. 

Model Insight Through Sensitivity Analysis 

A sensitivity analysis of the RRL-Trader systems was performed in an attempt to deter- 

mine on which economic factors the traders are basing their decisions. Figure 3.17 shows 

the absolute normalized sensitivities for three of the more salient input series as a function 

of time, averaged over the 30 members of the RRL-Trader committee. The sensitivity of 

input i is defined as: 

where F is the unthresholded trading output of the policy function and xi denotes input 

a. 

The time-varying sensitivities in Figure 3.17 emphasize the nonstationarity of economic 

relationships. For example, the yield curve slope (which measures inflation expectations) 



is found to be a very important factor in the 1970's, while trends in long term interest rates 

(measured by the 6 month difference in the AAA bond yield) becomes more important in 

the 19807s, and trends in short term interest rates (measured by the 6 month difference in 

the treasury bill yield) dominate in the early 1990's. 

3.9.5 Discussion of the S&P 500 / T-Bill Results 

For the S&P 500 / T-Bill asset allocation problem described in Section 3.9.4, I find that 

RRL offers advantages over Q-Learning in performance, interpretability and computa- 

tional efficiency. Over the 25 year test period, the RRL-Trader produced significantly 

higher profits (5860% vs. 3359%) and Sharpe ratios (0.83 vs. 0.63) than did the Q-Trader. 

The RRL-Trader learns a stable and robust trading strategy, maintaining its positions for 

extended periods. The frequent switches in position by the Q-Trader suggests that it is 

more sensitive to noise in the inputs. Hence, the strategy it has learned is brittle. 

Regarding interpretability, I find the value function representation to be obscure. 

While the change in the policy as implemented by the RRL algorithm is directly related 

to changes in the inputs, for the value function the effect on policy is not so clear. While 

the RRL-Trader has an almost linear policy representation (a net with just a single tanh 

unit), the Q-Trader's policy is the argmax of a two layer network for which the policy is 

an input. The brittle behavior of the Q-Trader is probably due to the complexity of the 

learned Q-function with respect to the inputs and actions. The problem representation 

for the Q-Trader thus reduces explanatory value. 

The sensitivity analysis presented for the RRL-Trader strategy in Section 3.9.4 was easy 

to formulate and implement. It enables identification of the most important explanatory 

variables, and to observe how their relative saliency varies slowly over time. For the 

Q-Trader, however, a similar analysis is not straightforward. The possible actions are 

represented as inputs to the Q-function network, with the chosen action being determined 

by the argmax. While I can imagine proxies for a sensitivity analysis in a simple two 

action {long, short) framework, it is not clear how to perform a sensitivity analysis for 

actions versus inputs in general for a Q-Learning framework. This reduces the explanatory 

value of a Q-Trader. 



Since the {long, short) Q-Trader is implemented using a neural network function 

approximator, Bellman's curse of dimensionality has a relatively small impact on the 

results of the experiments presented here. The input dimensionality of the Q-Trader is 

increased by only one, and there are only two actions to consider. However, in the case 

of a portfolio management or multi-sector asset allocation system, the dimensionality 

problem becomes severe. Portfolio management requires a continuous weight for each of 

N assets included in the portfolio. This increases the input dimension for the Q-Trader 

by N relative to the RRL-Trader. Then, in order to facilitate the argmax discovery of 

actions, only discrete action sets can be used. The number of discrete actions that must 

be considered is exponential in N. Another issue is the possible loss of utility that results 

due to the finite resolution of action choices. 

In terms of efficiency, the advantage updating representation used for the Q-Trader 

required two networks each with 30 tanh units. In order to reduce run time, the simulation 

code was written in C. Still, each run required approximately 25 hours to complete using 

a Pentium Pro 200 running the Linux operating system. The RRL networks used a single 

tanh unit, and were implemented as uncompiled Matlab code. Even given this unoptimized 

coding, the RRL simulations were 150 times faster, taking only 10 minutes. 

3.9.6 Port folio Management Simulation 

As was stated previously, investors typically hold multiple assets at any given time. It is 

important to make trading decisions in the context of the portfolio as a whole. In this 

section, RRL is used to train a portfolio management system that make trading decisions 

for three artificial assets. 

Portfolio System and Data 

The portfolio management system is allowed to invest proportions of its wealth among 

three different securities with the restrictions that it must be fully invested at each time 

step, and that no short selling is allowed. The output of the portfolio management system 



is a set of portfolio weights {Fi, F;, Ft3), with the conditions that 

3 

Fe > 0 and Fe = 1 . (3.54) 
a=l 

The recurrent state of the systems is similar to that described in Section 3.5. 

The artificial assets are created using the random walk with trend model described 

in Section 3.9.1. When generating m price series according to this model, p, P,  E and v 

become m dimensional vectors and a and k become m x m matrices. For these experiments 

I have m = 3, and set cr to be a diagonal matrix with elements {0.85,0.9,0.95) and k to 

be diagonal with elements {3,3,3). Thus the series have different degrees of predictability 

and are uncorrelated with one another. Examples of the artificial price series are shown 

in the top panel of Figure 3.18. 

Using the portfolio management system, I compare training to maximize the differen- 

tial Sharpe ratio and training to maximize profits. I find for a variety of transaction costs, 

that on average, training to maximize the differential Sharpe ratio outperforms training 

to maximize profits. 

Simulated Trading Results 

Figure 3.18 shows a section of a single simulation of the portfolio management system. 

The trading system starts from a random initial configuration and is then adapted to 

optimize the differential Sharpe ratio. The transaction costs during this simulation are 

set at 0.5%. 

Figure 3.19 shows box plots summarizing test performances for ensembles of 100 ex- 

periments. In these simulations, the trading system is initialized to a random starting 

condition and then adapted on-line throughout the entire data set. The simulation ensem- 

bles include 10 different initializations for each of 10 different realizations of the artificial 

price series. I vary the transaction costs from 0.2%, 0.5% to l%, and observe the trading 

frequency, cumulative profits and Sharpe ratio on the data set. The figures show that the 

behavior of the portfolio management system is similar to that of the long/short trader in 

response to increasing transaction cost. Also, as the middle panels of Figure 3.18 demon- 

strate, the portfolio system tends to saturate the portfolio weights and take longlneutral 
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Figure 3.18: An expanded view of 2000 time periods from a simulation of the portfolio 
management system with transaction costs = 0.5%. The top panel shows the three artifi- 
cial price series used in the simulation. The middle three panels show the corresponding 
portfolio weights chosen by the trading system at each time step. Note that the smoothest 
price series is also the least invested in, and that the portfolio system is required to be 
fully invested at all times. The bottom panel shows the cumulative wealth over this time 
period. The portfolio system tripled its wealth during this time period even though the 
price series showed almost no net gain during the period. 



Figure 3.19: Boxplots of the average percent change in the portfolio weights, cumulative 
profits and Sharpe ratios vs transaction costs for the "Max.SRV portfolio management 
system. The results are obtained over 100 trials with various realizations of artificial data 
and initial system parameters. Increased transaction costs reduce the amount of change in 
portfolio weights, profits and Sharpe ratio, as expected. The change in portfolio weights 
reported here is the average of the time averages of the changes in each of the three 
portfolio weights. All figures are computed on the last 9,000 points in the data set. 

positions in the individual securities. 

Figure 3.20 compares training to maximize the differential Sharpe ratio ("Max.SR") 

and training to maximize cumulative profits ("Max.Profit"). Statistics are collected over 

an ensemble of 100 experiments as described previously. As the transactions costs increase, 

the "Max.SRn system actually outperforms the "Max.Profit7' system in terms of average 

final wealth. While both systems are attempting to maximize profit, it appears that in 

these examples, concurrently minimizing risk can have tangible effects on actual as well 

as risk-adjusted profits. 

3.10 Discussion 

The research presented here shows that the RRL algorithm is successful in optimizing 

trader behavior relative to different utility functions. The use of downside performance 

measures, which more accurately reflects actual investor preference, had interesting effects 



Figure 3.20: Boxplots of the percent change in portfolio weights, the log base 10 of final 
profits and the Sharpe ratios of the two trading systems, "Max.SR" and "Max.Profit". 
The change in portfolio weights reported here is the average of the average change of 
each of the three portfolio weights. Transaction costs are 0.2%, 0.5% and 1%. The results 
are obtained over 100 trials with various realizations of artificial data and initial system 
parameters. 



on trading performance. Significant differences in behavior were apparent when compar- 

ing systems trained to optimize performance ratios based on downside risk measure to 

systems trained using more traditional symmetric risk measures. The systems trained 

using downside risk measures learn to cut their losses much more quickly than those using 

more traditional risk measures. This will have a significant impact on the feasibility of 

applying RRL to actual investment scenarios. 

This work also extended the RRL single-asset model to a portfolio management system 

capable of trading multiple assets. The portfolio systems perform well in simulations using 

artificial price series. Similarly to the single asset case, the system's trading behavior 

changes as the costs of trading increase. Also, the systems show the ability to produce 

allocations that take into account the predictability of the underlying assets. 

I also presented a discussion of the difference between representing policy functions and 

value functions. Relative to Q-Learning, RRL enables a simpler problem representation, 

avoids Bellman's curse of dimensionality and offers compelling advantages in efficiency. 

The two types of RL are compared using an S&P-500 stock index asset allocation problem. 

The RRL trader uses elements of the robust training methodology developed for the 

macroeconomic forecasting problem of Chapter 2. While the supervised forecasters were 

not able to find significant, nontrivial forecastable structure in the S&P-500 at the 3 and 

12-month horizons as presented in Chapter 2, the RRL asset management system was 

able to identify a profitable trading strategy. This highlights the need to optimize systems 

directly using the correct utility function. Results were also presented for another real 

world dataset, an intra-daily British Pound foreign exchange trading system. Using RRL, 

the trader finds and exploits structure in the exchange rate data during 1996. These 

results for the RRL algorithm on actual financial dataset show that the algorithm has 

great promise for producing trading systems that investors can actually use in real life to 

manage their assets. 



Chapter 4 

Summary & Conclusions 

In this thesis, I investigate the use of machine learning methods, including supervised 

and reinforcement learning algorithms, to analyze and forecast economic and financial 

time series. The algorithms are data driven, time series based approaches that produce 

quantitative forecasts and actions that result in measurable performance gains relative to 

standardly used techniques. As such, these algorithms have the potential to support real 

decision making in business, financial, and governmental institutions. 

4.1 Supervised Learning for Forecasts 

In Chapter 2, I presented a comprehensive methodology for forecasting macroeconomic 

and financial time series using nonlinear neural networks. The methodology includes 

several types of techniques that are in common use nowadays in the neural network com- 

munity, but that are still novel for this problem domain. These include the use of bagging 

committees, model complexity pruning via Principal Component Pruning, and regular- 

ized nonlinear models. My goal is to produce a robust methodology for training nonlinear 

models using data series with limited history, poor signal to noise ratios, nonstationarities, 

and possible nonlinear structure. I also address the question of whether there is detectable 

nonlinear structure in the data. 

I presented results for 3 and 12-month forecasts of macroeconomic and financial time 

series using the methodology. There is non-trivial predictability in the forecasts for all 

series considered except the Aaa-bond yield, the S&P-500, and the yield-curve slope. 

There is also evidence of nonlinear structure in the Index of Industrial Production and 



possibly Housing Starts. While most theories of the economy are nonlinear, it seems 

difficult in practice to exploit these nonlinearities. There are a variety of factors that could 

make nonlinearity difficult to detect in the remaining series. Among them are the large 

amounts of noise in the series, the resulting need for heavy regularization, and the types of 

inputs being used. Many of the series included in this study are higher level, more broad 

based series than the ones that structural economic theories use as explanatory variables. 

However the focus of this study was on the broader indicators of economic activity. 

One feature the forecast models exhibit is a large amount of nonstationarity in the 

learned relationship between the target and input variables. Swanson and White [I071 

conclude that nonstationarity is not a factor in the models they build because the largest 

available training window they used produced lower error rates than the smaller windows 

they tried. This result is more likely due to the extreme amounts of noise in the "first- 

reported" quarterly data they used rather than a statement about actual nonstationarity 

in the underlying series. In this work, the sensitivity analysis shows that the relationships 

between variables learned by the models changes significantly over the course of the test 

period. 

The results show that applying nonlinear estimation and model selection techniques 

to linear models results in large improvements over more standard linear model fitting 

techniques. This includes regularized models such as the Bayesian Vector Autoregression. 

This result argues strongly for the use of appropriate linear models for comparison when 

fitting nonlinear models to these types of series. It could be that positive results in the lit- 

erature from using nonlinear network models are due more to the estimation methodology 

than to actual nonlinear structure. 

When making directional forecasts, the research showed that incorporated class-ordering 

information in the target representation via use of a thermometer code representation 

yielded significantly better results than those using a naive unary representation. Also, 

the regression network models trained on point forecasts perform as well in terms of direc- 

tional forecasts as do the more complex classification models trained to directly forecast 

class labels, indicating that the additional complexity was not useful given the relatively 

limited history of the data. 



4.1.1 Future Research Directions 

Comparing the performance of models is challenging because errors are non-normal and 

serially correlated. The current best test is the Diebold-Mariano test. This test can have 

problems distinguishing between models, even when there is a relatively large difference 

in average error. Research is needed to develop more powerful hypothesis tests for these 

types of challenging series. Possible extensions could involve developing a test based on 

the stationary bootstrap to compare predictive accuracy. 

Input selection is always a crucial issue. As was mentioned earlier, a preliminary 

study of the Delta Test input selection technique yielded very promising results, though 

the specific technique turned out not to be robust enough to be useful. Possible direc- 

tions of research for input selection include sensitivity based selection or even the use of 

heterogeneous committees, each with its own limited input set. 

4.2 Reinforcement Learning for Trading 

In Chapter 3, I presented extensions and enhancements to the Recurrent Reinforcement 

Learning algorithm [74] that will make the algorithm more useful for investment manage- 

ment. These enhancements include extending the use of the algorithm to multiple asset 

portfolios, and extending the types of utility functions to include downside risk measures 

which more accurately reflect the preferences of the typical investor. The results demon- 

strated that the techniques are viable on real world datasets, and also compared the policy 

gradient approach of RRL with a popular value function algorithm called Q-Learning. Not 

only is the RRL trader more profitable, but it also produces more robust and interpretable 

trading decisions than the Q-Learning trader. 

The research presented here shows that the RRL algorithm is successful in optimizing 

trader behavior relative to different utility functions. The use of downside performance 

measures, which more accurately reflects actual investor preference, has interesting effects 

on trading performance. Significant differences in behavior were apparent when compar- 

ing systems trained to optimize performance ratios based on downside risk measure to 

systems trained using more traditional symmetric risk measures. The systems trained 



using downside risk measures learn to cut their losses much more quickly than those using 

more traditional risk measures. This will have a significant impact on the feasibility of 

applying RRL to actual investment scenarios. 

This work also extended the RRL single-asset model to a portfolio management system 

capable of trading multiple assets. The portfolio systems perform well in simulations using 

artificial price series. Similarly to the single asset case, the system's trading behavior 

changes as the costs of trading increase. Also, the systems show the ability to produce 

allocations that take into account the predictability of the underlying assets. 

I also presented a discussion of the difference between representing policy functions and 

value functions. Relative to Q-Learning, RRL enables a simpler problem representation, 

avoids Bellman's curse of dimensionality, and offers compelling advantages in efficiency. 

The two types of RL are compared using an S&P-500 stock index asset allocation problem. 

The RRL trader also uses elements of the robust training methodology developed for the 

macroeconomic forecasting problem of Chapter 2. While the supervised forecasters were 

not able to find nontrivial forecastable structure in the S&P-500 at the 3 and 12-month 

horizons as presented in Chapter 2, the RRL asset management system was able to identify 

a profitable trading strategy. This highlights the need to optimize systems directly using 

the correct utility function. Results were also presented for another real world dataset, 

an intra-daily British Pound foreign exchange trading system. Using RRL, the trader 

finds and exploits structure in the exchange rate data during 1996. These results for the 

RRL algorithm on actual financial datasets show that the algorithm has great promise for 

producing systems that can be used in the real world to manage investment assets. 

4.2.1 Future Research Directions 

There is much research that could be done regarding the use of Recurrent Reinforcement 

Learning with portfolios. RRL needs to be tested with larger portfolios that have more 

complex correlation structure, and the robustness of allocations produced needs to be 

characterized. The incorporation of Black-Litterman [ l l ]  type priors to help stabilize the 

allocations may be useful. Also, the allocation constraints could be relaxed to allow short 

positions to be taken, creating a comprehensive framework for multi-asset trading systems. 
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Appendix A 

Tables of Results 

This appendix lists tables of results for the macroeconomic prediction problem presented 

in Chapter 2 along with a variety of performance metrics for evaluating the performance 

of the predictive models. 

A. 1 Performance Metrics 

For these results I use three primary performance metrics: Normalized Root Mean Square 

Error, (NRMSE), Normalized Mean Absolute Error (NMAE), and Misclassification Rate. 

All metrics are averages over the entire test set, 1980 - 1990. In the following formulas, 

t is the target, p is the prediction, and (.) gives the expected value over the test period. 

The NRMSE is the root mean square error, normalized by the variance of the target series 

over the test period, 

This definition of NRMSE can be interpreted as "fraction of unexplained variance". The 

NMAE is the average absolute error, normalized by the mean absolute deviation of the 

target series over the test period, 

The NMAE behaves similarly to NRMSE, but is more robust to outliers in the data. The 

Misclassification Rate is the percent of the predictions which have the opposite sign of 

the target. This is a measure of how well the model predicts the direction of change of 



the series. The Misclassification Rate can be calculated from the Confusion Matrix. The 

Confusion Matrix is a table that contains a count of the realized combinations of up and 

down predictions with up and down targets: 

target 

predicted 
down 

The Misclassification Rate is the sum of the off-diagonal elements divided by the total 

number of elements. In the previous example, the Misclassification Rate is (7 + 5)/(12 + 
14 + 7 + 5) = 0.3158. If a target is zero, then that point is not included in the calculation 

of the confusion matrix. If the prediction of a given model is zero then that point is not 

included in the calculation of the confusion matrix for that model. 

The Confusion Matrix calculated for the point forecast results uses a return of 0 as the 

dividing line between up and down returns. In the case of quintile directional forecasts 

(for the classification and quantized regression models), the median return is used as the 

dividing line. Thus an up target corresponds to a target in the top two quintiles of the 

returns distribution, and a down target corresponds to a target return in the bottom 

two quintiles of the returns distribution. The middle quintile (around the median) is not 

included as an up or down return. 

A.2 Tables of Results 

The following tables list numerical results of the performance measures described previ- 

ously for the point and direction forecasts. The series are listed in alphabetical order 

by the Citibase designation (Table 2.1), and for each series, results for the 3-month and 

12-month forecasts are given. 

For each series-horizon combination, there are a set of three tables: the first for point 

forecasts, the second for the quantized point forecasts evaluated against the classification 

targets, and the third for the direct classification forecasts. In each table, the best model, 

according to each performance measure, is marked with a '*'. The models which are not 



significantly worse than the best at the 5% significance level (according to the Diebold- 

Mariano test as described in Section 2.6.3) are also marked with a '*'. 

The significance of the regression models results in the top table on each page are 

tested relative to each other. The significance of the quantized regression and classification 

models results in the bottom two tables on each page are tested relative to each other as 

a whole. 

Refer to Section 2.5 for descriptions of the models used. 



Table A.l:  DLEAD.L.FD3 Regression Results 

Table A.2: DLEAD.L.FD3 Quantized Regression Results 

Direct Predictions 
Linear Linear Neural3 

Regression Network Network 
0.928 0.492* 0.579 
0.964 0.701* 0.761 
1.013* 0.759* 0.801* 
47 14 57 13 60 12 
26 31 16 32 13 33 

0.339 0.246 0.212 

Table A.3: DLEAD.L.FD3 Classification Results 

Iterated Predictions 
Linear Bayesian 

AR VAR 
1.069 0.554* 
1.034 0.744* 
1.003 0.832* 
52 19 57 15 
21 26 16 30 

0.339 0.263 

Regression: 
NMSE 
NRMSE 
NMAE 
Confusion 
Matrix 
Misclass. 
Rate 

Trivial Predictors 
Median No Change 
Return Return 
1.001 1.459 
1.000 1.208 
0.998 1.125 
73 45 54 19 
0 0 19 26 

0.381 0.322 

Direct Predictions 
Linear Linear Neural3 

Regression Network Network 

1.750* 1.258* 1.250' 
1.323* 1.122* 1.118* 
0.950* 0.858* 0.833* 
24 5 31 2 33 1 
13 31 7 33 6 34 

0.247 0.123 0.095 

Iterated Predictions 
Linear Bayesian 

AR VAR 
2.108 1.425* 
1.452 1.194* 
1.125 0.892* 
17 8 32 5 

12 26 7 30 

0.317 0.162 

Quantized 
Regression: 

MSE 
RMSE 
MAE 
Confusion 
Matrix 
Misclass. 
Rate 

Trivial Predictors 
Median No Change 
Return Return 

1.817* 2.375 
1.348* 1.541 
1.117 1.142 
0 0 22 11 
0 0 0 0 

- 0.333 

Thermometer Representation 

Linear Neural3 NeurallO 
1.308* 1.408* 1.250* 
1.144* 1.187* 1.118* 
0.792* 0.842* 0.800* 
33 3 35 6 35 4 
5 26 5 27 3 26 

0.119 0.151 0.103 

Softmax Representation 

Linear Neural3 NeurallO 
1.667* 1.667* 1.700* 
1.291* 1.291* 1.304* 
0.917* 0.917* 0.967 
38 5 38 5 37 6 
5 23 5 23 4 21 

0.141 0.141 0.147 

Classification: 
MSE 
RMSE 
MAE 
Confusion 
Matrix 
Misclass. 
Rate 

Trivial Classifiers 
Median No Change 
Return Return 
1.817* 2.375 
1.348* 1.541 
1.117 1.142 
0 0 22 11 
0 0 0 0 

- 0.333 



Table A.4: DLEAD.L.FD12 Regression Results 

Table A.5: DLEAD.L.FD12 Quantized Regression Results 

Direct Predictions 
Linear Linear Neural3 

Regression Network Network 
1.414 0.341* 0.334* 
1.189 0.584* 0.578* 
1.036 0.555* 0.577* 
52 10 60 3 63 5 
21 37 13 44 10 42 

0.258 0.133 0.125 

Regression: 
NMSE 
NRMSE 
NMAE 
Confusion 
Matrix 
Misclass. 
Rate 

Table A.6: DLEAD.L.FD12 Classification Results 

Quantized 
Regression: 

MSE 
RMSE 
MAE 
Confusion 
Matrix 
Misclass. 
Rate 

I Trivial Classifiers I Softmax Representation I Thermometer Representation 
- - -  

Trivial Predictors 
Median No Change 
Return Return 

1.031 2.380 
1.015 1.543 
1.026 1.542 
73 47 43 29 

0 0 30 18 

0.392 0.492 

Iterated Predictions 
Linear Bayesian 

AR VAR 
1.137 0.497* 
1.066 0.705* 
1 .OOO 0.720 
59 35 55 4 
14 12 18 43 

0.408 0.183 

Trivial Predictors 
Median No Change 
Return Return 

1.700 3.783 
1.304 1.945 
1.100 1.500 
0 0 15 18 
0 0 0 0 

- 0.545 

Classification: 
MSE 
RMSE 
MAE 
Confusion 
Matrix 
Misclass. ' Rate 

Iterated Predictions 
Linear Bayesian 

AR VAR 

2.267 0.792* 
1.506 0.890* 
1.150 0.625* 
3 7 38 1 

14 35 0 50 

0.356 0.011 

Direct Predictions 
Linear Linear Neural3 

Regression Network Network 

1.767 0.625" 0.650* 
1.329 0.791* 0.806* 
1.017 0.508* 0.567* 
18 10 33 0 34 0 
8 50 2 50 1 50 

0.209 0.024 0.012 

Median No Change 
Return Return 
1.700 3.783 
1.304 1.945 
1.100 1.500 
0 0 15 18 
0 0 0 0 

- 0.545 

Linear Neural3 NeurallO 
0.908 1.300 0.833* 
0.953 1.140 0.913* 
0.675* 0.850 0.650* 
35 4 37 6 35 7 
0 41 2 43 0 39 

0.050 0.091 0.086 

Linear Neural3 NeurallO 
0.867* 0.817* 0.792* 
0.931* 0.904* 0.890* 
0.617* 0.633' 0.592" 
38 5 37 5 39 5 
0 53 0 49 0 47 

0.052 0.055 0.055 



Table A.7: DRM.L.FD3 Regression Results 

Table A.8: DRM.L.FD3 Quantized Regression Results 

Direct Predictions 
Linear Linear Neural3 

Regression Network Network 

2.403 0.870* 0.870* 
1.550 0.933* 0.933* 
0.994 0.972* 0.958* 
34 38 28 22 25 18 
21 27 27 43 30 47 

0.492 0.408 0.400 

Regression: 
NMSE 
NRMSE 
NMAE 
Confusion 
Matrix 
Misclass. 
Rate 

Table A.9: DRM.L.FD3 Classification Results 

Trivial Predictors 
Median No Change 
Return Return 
1.005* 2.615 
1.003* 1.617 
0.995* 1.615 

0 0 18 37 
55 65 37 28 

0.458 0.617 

Direct Predictions 
Linear Linear Neural3 

Regression Network Network 

4.600 3.167* 2.575* 
2.145 1.780* 1.605* 
1.650 1.333* 1.242* 
33 23 23 13 22 11 
16 19 16 22 14 23 

0.429 0.392 0.357 

Quantized 
Regression: 
MSE 
RMSE 
MAE 
Confusion 
Matrix 
Misclass. 
Rate 

Iterated Predictions 
Linear Bayesian 

AR VAR 
1.114" 1.519 
1.055* 1.232 
1 .OOO* 1.272 
28 28 23 29 
27 37 32 36 

0.458 0.508 

Classification: 
MSE 
RMSE 
MAE 
Confusion 
Matrix 
Misclass. 
Rate 

Trivial Predictors 
Median No Change 
Return Return 

2.383 5.592 
1.544 2.365 

1.350* 1.942 
0 0 17 27 
0 0 0 0 

- 0.614 

Iterated Predictions 
Linear Bayesian 

AR VAR 

3.033 4.592 
1.742 2.143 
1.417* 1.692 
21 16 21 20 

6 8 22 17 

0.431 0.525 

Trivial Classifiers 
Median No Change 
Return Return 
2.383 5.592 
1.544 2.365 
1.350* 1.942 

0 0 17 27 
0 0 0 0 

- 0.614 

Softmax Representation 

Linear Neural3 NeurallO 
4.567 2.325* 4.192 
2.137 1.525* 2.047 
1.617 1.325* 1.542 
20 10 0 0 17 8 
26 28 0 0 21 26 

0.429 0.000 0.403 

Thermometer Representation 

Linear Neural3 NeurallO 
3.208* 2.400* 3.400 
1.791* 1.549* 1.844 
1.375 1.317* 1.400 
22 12 6 4 24 11 
17 23 9 14 18 25 

0.392 0.394 0.372 



Table A.lO: DRM.L.FD12 Regression Results 

Table A.ll: DRM.L.FD12 Quantized Regression Results 

Regression: 

NMSE 
NRMSE 
NMAE 
Confusion 
Matrix 
Misclass. 
Rate 

Table A. 12: DRM.L.FD 12 Classification Results 

Iterated Predictions 
Linear Bayesian 

AR VAR 

0.922* 1.382 
0.960* 1.175 
0.991* 1.311 
20 30 29 35 
35 35 26 30 

0.542 0.508 

Trivial Predictors 
Median No Change 
Return Return 

1.054* 2.893 
1.027* 1.701 
1.023* 1.627 

0 0 32 34 
55 65 23 31 

0.458 0.475 

Quantized 
Regression: 

MSE 
RMSE 
MAE 
Confusion 
Matrix 
Misclass. 
Rate 

Direct Predictions 
Linear Linear Neural3 

Regression Network Network 

3.232 0.728* 0.787* 
1.798 0.853* 0.887* 
1.049 0.897* 0.909* 
35 40 33 29 34 29 
20 25 22 36 21 36 

0.500 0.425 0.417 

Trivial Predictors 
Median No Change 
Return Return 

1.967* 5.125 
1.402* 2.264 
1.167" 1.808 

0 0 29 27 
0 0 0 0 

- 0.482 

Classification: 
MSE 
RMSE 
MAE 
Confusion 
Matrix 
Misclass. 
Rate 

Iterated Predictions 
Linear Bayesian 

AR VAR 

1.825* 3.708 
1.351 * 1.926 
1.142* 1.525 
25 13 27 15 
2 11 14 18 

0.294 0.392 

Softmax Representation 

Linear Neural3 NeurallO 
3.325 3.292* 3.500 
1.823 1.814* 1.871 
1.358 1.325 1.433 
33 7 33 8 31 11 
24 29 24 29 21 25 

0.333 0.340 0.364 

Trivial Classifiers 
Median No Change 
Return Return 
1.967* 5.125 
1.402* 2.264 
1.167* 1.808 

0 0 29 27 
0 0 0 0 

- 0.482 

Direct Predictions 
Linear Linear Neural3 

Regression Network Network 

3.933 1.983* 2.092* 
1.983 1.408* 1.446* 
1.567 1.033* 1.025* 
39 20 33 6 32 8 
13 9 10 23 13 25 

0.407 0.222 0.269 

Thermometer Representation 

Linear Neural3 NeurallO 
2.917* 1.883* 2.325* 
1.708* 1.372* 1.525* 
1.300 0.983* 1.092 
31 9 30 5 34 8 
20 25 18 25 19 25 

0.341 0.295 0.314 



Table A. 13: FM2DQ.L.FD3 Regression Results 

Table A.14: FM2DQ.L.FD3 Quantized Regression Results 

Direct Predictions 
Linear Linear Neural3 

Regression Network Network 

1.493 0.571* 0.612* 
1.222 0.756* 0.782* 
1.021 0.825* 0.842* 
46 14 76 18 76 14 
40 20 10 16 10 20 

0.450 0.233 0.200 

Regression: 

NMSE 
NRMSE 
NMAE 
Confusion 
Matrix 
Misclass. 
Rate 

Table A.15: FM2DQ.L.FD3 Classification Results 

Trivial Predictors 
Median No Change 
Return Return 
1.061 1.199 
1.030 1.095 

1.025* 1.149 
86 34 68 15 
0 0 18 19 

0.283 0.275 

Direct Predictions 
Linear Linear Neural3 

Regression Network Network 

3.492 1.858* 1.933* 
1.869 1.363* 1.390* 
1.375 0.975* 1.000* 
11 9 23 8 23 10 

22 44 11 36 8 36 

0.360 0.244 0.234 

Quantized 
Regression: 

MSE 
RMSE 
MAE 
Confusion 
Matrix 
Misclass. 
Rate 

Iterated Predictions 
Linear Bayesian 

AR VAR 
1.021 0.486* 
1.010 0.697* 
1.004 0.747* 
76 25 78 15 
10 9 8 19 

0.292 0.192 

Trivial Predictors 
Median No Change 
Return Return 
1.983* 2.775 
1.408* 1.666 
1.167* 1.258 

0 0 16 11 
0 0 0 0 

- 0.407 

Classification: 
MSE 
RMSE 
MAE 
Confusion 
Matrix 
Misclass. 
Rate 

Iterated Predictions 
Linear Bayesian 

AR VAR 
2.625 1.575* 
1.620 1.255* 
1.292 0.842* 
13 9 27 7 

14 30 4 36 

0.348 0.149 

Softmax Representation 

Linear Neural3 NeurallO 
3.825 3.625 3.617 
1.956 1.904 1.902 
1.408 1.375 1.383 
25 18 25 15 25 16 
13 39 13 42 13 41 

0.326 0.295 0.305 

Trivial Classifiers 
Median No Change 
Return Return 
1.983* 2.775 
1.408* 1.666 
1.167* 1.258 

0 0 16 11 
0 0 0 0 

- 0.407 

Thermometer Representation 

Linear Neural3 NeurallO 
2.483 2.408 2.250* 
1.576 1.552 1.500* 
1.133 1.125 1.033* 
24 12 24 15 27 13 
8 3 9  1034 7 38 

0.241 0.301 0.235 



Table A.16: FM2DQ.L.FD12 Regression Results 

Table A.17: FM2DQ.L.FD12 Quantized Regression Results 

Direct Predictions 
Linear Linear Neural3 

Regression Network Network 

4.453 0.720" 0.676" 
2.110 0.849* 0.822* 
1.017 0.875* 0.858* 
39 9 88 28 82 26 

50 22 1 3  7 5 

0.492 0.242 0.275 

Table A.18: FM2DQ.L.FD12 Classification Results 

Iterated Predictions 
Linear Bayesian 

AR VAR 
1.031* 0.670* 
1.016* 0.818* 
1.023* 0.805* 
79 31 79 11 
10 0 10 20 

0.342 0.175 

Regression: 
NMSE 
NRMSE 
NMAE 
Confusion 
Matrix 
Misclass. 
Rate 

Trivial Predictors 
Median No Change 
Return Return 
1.143* 1.019* 
1.069* 1.010* 
1.045* 1.045* 
89 31 74 10 
0 0 15 21 

0.258 0.208 

Direct Predictions 
Linear Linear Neural3 

Regression Network Network 

3.550* 1.633 1.350* 
1.884* 1.278 1.162* 
1.367 1.017* 0.917" 
14 5 12 6 18 6 

23 51 10 36 9 39 

0.301 0.250 0.208 

Quantized 
Regression: 
MSE 
RMSE 
MAE 
Confusion 
Matrix 
Misclass. 
Rate 

Trivial Predictors 
Median No Change 
Return Return 
1.967* 2.192* 
1.402* 1.480* 
1.183* 1.125* 

0 0 13 9 
0 0 0 0 

- 0.409 

Classification: 
MSE 
RMSE 
MAE 
Confusion 
Matrix 
Misclass. 
Rate 

Iterated Predictions 
Linear Bayesian 

AR VAR 
2.525 1.508* 
1.589 1.228* 
1.358 0.808* 
15 13 25 9 
13 31 7 40 

0.361 0.198 

Softmax Representation 

Linear Neural3 NeurallO 

2.975 3.533 3.533 
1.725 1.880 1.880 
1.242 1.350 1.350 
26 14 26 16 26 16 
12 39 12 43 12 43 

0.286 0.289 0.289 

Trivial Classifiers 
Median No Change 
Return Return 
1.967* 2.192* 
1.402* 1.480* 
1.183* 1.125* 

0 0 13 9 
0 0 0 0 

- 0.409 

Thermometer Representation ' 

Linear Neural3 NeurallO 
2.192* 2.208 2.467 
1.480* 1.486 1.571 
1.058 1.075 1.217 
23 15 26 13 26 13 
10 39 9 38 12 37 

0.287 0.256 0.284 



Table A.19: FSPCOM.L.FD3 Regression Results 

Table A.20: FSPCOM.L.FD3 Quantized Regression Results 

Direct Predictions 
Linear Linear Neural3 

Regression Network Network 
2.292 0.927" 0.924* 
1.514 0.963* 0.961* 
1.022 0.970" 0.976* 
38 24 70 25 66 20 
43 15 11 14 15 19 

0.558 0.300 0.292 

Regression: 
NMSE 
NRMSE 
NMAE 
Confusion 
Matrix 
Misclass. 
Rate 

Table A.21: FSPCOM.L.FD3 Classification Results 

Trivial Predictors 
Median No Change 
Return Return 
1.019* 2.056 
1.009" 1.434 
1.020* 1.356 
81 39 57 23 
0 0 24 16 

0.325 0.392 

Direct Predictions 
Linear Linear Neural3 

Regression Network Network 
5.375 2.267* 2.300* 
2.318 1.506* 1.517* 
1.908 1.167* 1.217" 
22 20 20 9 20 7 
32 15 14 19 18 21 

0.584 0.371 0.379 

Iterated Predictions 
Linear Bayesian 

AR VAR 
1.094* 1.333 
1.046* 1.154 
1.027' 1.222 
73 33 52 21 
8 6 29 18 

0.342 0.417 

Iterated Predictions 
Linear Bayesian 

AR VAR 
2.417" 3.692 
1.555* 1.921 
1.300* 1.492 

3 0 23 15 
8 7 21 20 

0.444 0.456 

Quantized 
Regression: 
MSE 
RMSE 
MAE 
Confusion 
Matrix 
Misclass. 
Rate 

Trivial Predictors 
Median No Change 
Return Return 
2.258' 3.875 
1.503* 1.968 
1.308* 1.525 

0 0 30 17 
0 0 0 0 

- 0.362 

Classification: 

MSE 
RMSE 
MAE 
Confusion 
Matrix 
Misclass. 
Rate 

Softmax Representation 

Linear Neural3 NeurallO 

4.467 3.758 4.342 
2.113 1.939 2.084 
1.617 1.458 1.592 
30 13 28 13 27 12 
25 23 13 13 23 17 

0.418 0.388 0.443 

Trivial Classifiers 
Median No Change 
Return Return 

2.258* 3.875 
1.503* 1.968 
1.308* 1.525 

0 0 30 17 
0 0 0 0 

- 0.362 

Thermometer Representation 

Linear Neural3 NeurallO 
2.525* 2.242* 2.908* 
1.589* 1.497* 1.705* 
1.208* 1.208* 1.325 
22 7 22 10 18 7 
20 24 14 20 19 24 

0.370 0.364 0.382 



Table A.22: FSPCOM.L.FD12 Regression Results 

Table A.23: FSPCOM.L.FD12 Quantized Regression Results 

Direct Predictions 
Linear Linear Neural3 

Regression Network Network 

3.098 0.996* 1.088* 
1.760 0.998* 1.043* 
1.013* 1.059 1.107 
58 18 67 28 66 23 
32 12 23 2 24 7 

0.417 0.425 0.392 

Table A.24: FSPCOM.L.FD12 Classification Results 

Iterated Predictions 
Linear Bayesian 

AR VAR 
1.222* 1.502* 
1.105* 1.226* 
1.162 1.236 
90 30 66 16 
0 0 24 14 

0.250 0.333 

Regression: 
NMSE 
NRMSE 
NMAE 
Confusion 
Matrix 
Misclass. 
Rate 

Trivial Predictors 
Median No Change 
Return Return 
1.130* 2.995 
1.063* 1.731 
1.126 1.721* 
90 30 60 30 
0 0 30 0 

0.250 0.500 

Direct Predictions 
Linear Linear Neural3 

Regression Network Network 

5.250 2.600* 2.692* 
2.291 1.612* 1.641* 
1.767 1.383 1.408 
30 10 17 0 13 0 
33 14 20 19 22 22 

0.494 0.357 0.386 

Iterated Predictions 
Linear Bayesian 

AR VAR 
2.633* 3.242* 
1.623* 1.800* 
1.467* 1.525* 

0 0 26 4 
4 5 22 23 

0.444 0.347 

Quantized 
Regression: 

MSE 
RMSE 
MAE 
Confusion 
Matrix 
Misclass. 
Rate 

Trivial Predictors 
Median No Change 
Return Return 

2.617* 6.775 
1.618* 2.603 
1.483* 2.208 

0 0 27 33 
0 0 0 0 

- 0.550 

Thermometer Representation 

Linear Neural3 NeurallO 

3.100* 2.392* 2.592* 
1.761* 1.546* 1.610* 
1.417* 1.275* 1.358* 
27 1 30 0 22 0 

23 32 26 29 23 22 

0.289 0.306 0.343 

Softmax Representation 

Linear Neural3 NeurallO 

3.783 3.950 3.425* 
1.945 1.987 1.851* 
1.600 1.583 1.342* 
28 6 28 4 42 2 
28 21 26 28 24 28 

0.410 0.349 0.271 

Classification: 

MSE 
RMSE 
MAE 
Confusion 
Matrix 
Misclass. 
Rate 

Trivial Classifiers 
Median No Change 
Return Return 
2.617* 6.775 
1.618* 2.603 
1.483* 2.208 

0 0 27 33 
0 0 0 0 

- 0.550 



Table A.25: FYAAAC.L.FD3 Regression Results 

Table A.26: FYAAAC.L.FD3 Quantized Regression Results 

Regression: 
NMSE 
NRMSE 
NMAE 
Confusion 
Matrix 
Misclass. 
Rate 

Table A.27: FYAAAC.L.FD3 Classification Results 

Trivial Predictors 
Median No Change 
Return Return 
1.044* 2.051 
1.022* 1.432 
1.021 1.389* 
56 63 29 30 
0 0 27 33 

0.529 0.479 

Direct Predictions 
Linear Linear Neural3 

Regression Network Network 

6.308 3.392* 3.167* 
2.512 1.842* 1.780* 
1.975 1.608* 1.567' 
19 30 19 27 15 17 
27 30 3 10 2 6 

0.538 0.508 0.475 

Quantized 
Regression: 

MSE 
RMSE 
MAE 
Confusion 
Matrix 
Misclass. 
Rate 

Iterated Predictions 
Linear Bayesian 

AR VAR 
1.086* 1.135* 
1.042* 1.065* 
1.016 1.103 
34 45 37 39 
22 18 19 24 

0.563 0.487 

Direct Predictions 
Linear Linear Neural3 

Regression Network Network 

2.450 1.033* 1.043* 
1.565 1.016* 1.021* 

0.984* 1.014 1.017 
24 33 55 54 56 58 
32 30 1 9  0 5 

0.546 0.462 0.487 

Trivial Predictors 
Median No Change 
Return Return 

2.875* 5.183 
1.696* 2.277 
1.575* 1.767* 

0 0 23 24 
0 0 0 0 

- 0.511 

Classification: 
MSE 
RMSE 
MAE 
Confusion 
Matrix 
Misclass. 
Rate 

Iterated Predictions 
Linear Bayesian 

AR VAR 

3.917 4.608 
1.979 2.147 

1.650* 1.625" 
21 18 28 26 
17 18 17 28 

0.473 0.434 

Softmax Representation 

Linear Neural3 NeurallO 
4.742 5.492 6.025 
2.178 2.343 2.455 
1.692* 1.825 1.942 
19 28 18 24 20 34 
12 19 20 21 15 16 

0.513 0.530 0.576 

Trivial Classifiers 
Median No Change 
Return Return 
2.875* 5.183 
1.696* 2.277 
1.575* 1.767* 

0 0 23 24 
0 0 0 0 

- 0.511 

Thermometer Representation 

Linear Neural3 NeurallO 
4.283 3.075* 3.750 
2.070 1.754* 1.936 
1.700* 1.525* 1.667 
19 28 22 21 15 26 
15 14 2 11 6 10 

0.566 0.411 0.561 



Table A.28: FYAAAC.L.FD12 Regression Results 

Table A.29: FYAAAC.L.FD12 Quantized Regression Results 

Direct Predictions 
Linear Linear Neural3 

Regression Network Network 

4.304 1.091 1.053* 
2.075 1.044 1.026* 
1.003 1.023 0.999* 
42 19 64 56 64 56 
22 37 0 0 0 0 

0.342 0.467 0.467 

Table A.30: FYAAAC.L.FD 12 Classification Results 

Iterated Predictions 
Linear Bayesian 

AR VAR 
1.107* 1.145* 
1.052* 1.070* 
1.018 1.047* 
56 53 49 37 
8 3 15 19 

0.508 0.433 

Regression: 
NMSE 
NRMSE 
NMAE 
Confusion 
Matrix 
Misclass. 
Rate 

Quantized 
Regression: 

MSE 
RMSE 
MAE 
Confusion 
Matrix 
Misclass. 
Rate 

I Trivial Classifiers I Softmax Representation / Thermometer Representation 

Trivial Predictors 
Median No Change 
Return Return 
1.096* 1.792 
1.047* 1.339 
1.020* 1.312* 
64 56 40 33 
0 0 24 23 

0.467 0.475 

Trivial Predictors 
Median No Change 
Return Return 

2.850* 4.417* 
1.688* 2.102* 
1.517* 1.583* 

0 0 21 19 
0 0 0 0 

- 0.475 

Classification: 
MSE 
RMSE 
MAE 
Confusion 
Matrix 
Misclass. 
Rate 

Iterated Predictions 
Linear Bayesian 

AR VAR 
3.617* 3.725* 
1.902* 1.930* 
1.733* 1.525* 
7 15 21 25 
11 7 11 25 

0.650 0.439 

Direct Predictions 
Linear Linear Neural3 

Regression Network Network 

3.692* 3.058* 2.850* 
1.921* 1.749* 1.688* 
1.242* 1.575* 1.517* 
32 19 0 0 0 0 
12 41 5 1 0 0 

0.298 0.833 0.000 

Median No Change 
Return Return 
2.850* 4.417* 
1.688* 2.102* 
1.517* 1.583* 

0 0 21 19 
0 0 0 0 

- 0.475 

Linear Neural3 NeurallO 
4.417* 4.983 4.683* 
2.102* 2.232 2.164* 
1.583* 1.700* 1.600* 
18 18 16 25 18 21 
25 32 19 29 24 33 

0.462 0.494 0.469 

Linear Neural3 NeurallO 
4.375* 4.942* 4.842* 
2.092* 2.223* 2.200* 
1.575* 1.742* 1.692* 

3 3 0 0 0 0 
42 56 47 58 43 56 

0.433 0.448 0.434 



Table A.31: HSBP.FD3 Regression Results 

Table A.32: HSBP.FD3 Quantized Regression Results 

Direct Predictions 
Linear Linear Neural3 

Regression Network Network 
1.402 0.647* 0.664" 
1.184 0.804* 0.815* 
1.056 0.793* 0.823' 
42 28 46 20 46 19 
14 29 10 37 10 38 

0.372 0.265 0.257 

Table A.33: HSBP.FD3 Classification Results 

Iterated Predictions 
Linear Bayesian 

AR VAR 
1.266 1.184 
1.125 1.088 
0.999 1.115 
31 25 45 28 
25 32 11 29 

0.442 0.345 

Regression: 
NMSE 
NRMSE 
NMAE 
Confusion 
Matrix 
Misclass. 
Rate 

Trivial Predictors 
Median No Change 
Return Return 
1 .OOO 2.011 
1 .OOO 1.418 
0.999 1.371 
56 57 31 27 

0 0 25 30 

0.504 0.460 

Quantized 
Regression: 
MSE 
RMSE 
MAE 
Confusion 
Matrix 
Misclass. 
Rate 

Iterated Predictions 
Linear Bayesian 

AR VAR 
3.483 2.883 
1.866 1.698 
1.467 1.233 
7 14 33 20 
15 20 6 26 

0.518 0.306 

Trivial Predictors 
Median No Change 
Return Return 
2.233 4.167 
1.494 2.041 
1.283 1.550 
0 0 20 16 
0 0 0 0 

- 0.444 

Direct Predictions 
Linear Linear Neural3 

Regression Network Network 
3.183 1.592* 1.642* 
1.784 1.262* 1.281" 
1.417 0.958* 0.975* 
27 20 33 9 35 9 
9 27 5 29 6 28 

0.349 0.184 0.192 

Thermometer Representation 

Linear Neural3 NeurallO 
2.525 2.033 2.508 
1.589 1.426 1.584 
1.208 1.133 1.158 
37 14 29 14 37 20 
5 26 9 26 5 23 

0.232 0.295 0.294 

Softmax Representation 

Linear Neural3 NeurallO 
3.242 3.867 3.733 
1.800 1.966 1.932 
1.308 1.450 1.417 
31 14 36 20 33 17 
13 35 11 33 14 36 

0.290 0.310 0.310 

Classification: 
MSE 
RMSE 
MAE 
Confusion 
Matrix 
Misclass. 
Rate 

Trivial Classifiers 
Median No Change 
Return Return 
2.233 4.167 
1.494 2.041 
1.283 1.550 
0 0 20 16 
0 0 0 0 

- 0.444 



Table A.34: HSBP.FD12 Regression Results 

Table A.35: HSBP.FD12 Quantized Regression Results 

Regression: 

NMSE 
NRMSE 
NMAE 
Confusion 
Matrix 
Misclass. 
Rate 

Table A.36: HSBP.FD12 Classification Results 

Iterated Predictions 
Linear Bayesian 

AR VAR 

1.302 0.926 
1.141 0.962 
1.011 1.009 
24 40 40 30 
22 31 6 41 

0.530 0.308 

Trivial Predictors 
Median No Change 
Return Return 

1.026* 2.244 
1.013* 1.498 
1.044* 1.555 
46 71 15 31 

0 0 31 40 

0.607 0.530 

Direct Predictions 
Linear Linear Neural3 

Regression Network Network 

2.283 0.813* 0.591* 
1.511 0.902* 0.769* 
0.988 0.903* 0.751* 
27 20 30 21 40 26 
19 51 16 50 6 45 

0.333 0.316 0.274 

Quantized 
Regression: 

MSE 
RMSE 
MAE 
Confusion 
Matrix 
Misclass. 
Rate 

Trivial Predictors 
Median No Change 
Return Return 

1.783* 4.075 
1.335* 2.019 
1.100* 1.625 

0 0 11 17 
0 0 0 0 

- 0.607 

Iterated Predictions 
Linear Bayesian 

AR VAR 

2.775 2.175 
1.666 1.475 
1.342 1.092 
10 11 30 20 
15 20 2 22 

0.464 0.297 

Direct Predictions 
Linear Linear Neural3 

Regression Network Network 

2.625 1.575* 1.492* 
1.620 1.255* 1.221* 
1.192 0.992* 0.758* 
23 16 18 6 33 8 
11 50 3 13 4 29 

0.270 0.225 0.162 

Thermometer Representation 

Linear Neural3 NeurallO 
2.033* 1.967* 2.242* 
1.426* 1.402* 1.497* 
0.983* 0.917* 1.225 
29 23 29 24 27 24 
3 32 1 37 2 12 

0.299 0.275 0.400 

Softmax Representation 

Linear Neural3 NeurallO 

2.733 2.883 3.550 
1.653 1.698 1.884 
1.167 1.217 1.400 
28 22 27 23 27 27 
7 43 8 45 6 38 

0.290 0.301 0.337 

Classification: 

MSE 
RMSE 
MAE 
Confusion 
Matrix 
Misclass. 
Rate 

Trivial Classifiers 
Median No Change 
Return Return 
1.783* 4.075 
1.335* 2.019 
1.100* 1.625 

0 0 11 17 
0 0 0 0 

- 0.607 



Table A.37: IP.L.FD3 Regression Results 

Table A.38: IP.L.FD3 Quantized Regression Results 

Regression: 
NMSE 
NRMSE 
NMAE 
Confusion 
Matrix 
Misclass. 
Rate 

Table A.39: IP.L.FD3 Classification Results 

Trivial Predictors 
Median No Change 
Return Return 
1.270 1.430 
1.127 1.196 
1.134 1.132 
80 39 62 21 

0 0 18 18 

0.328 0.328 

Iterated Predictions 
Linear Bayesian 

AR VAR 
0.936* 1.011 
0.967* 1.005 
1.005* 1.043 
80 37 65 21 
0 2 15 18 

0.311 0.303 

Direct Predictions 
Linear Linear Neural3 

Regression Network Network 
1.473 0.748 0.649* 
1.214 0.865 0.806* 
1.148 0.920 0.847* 
48 4 74 29 74 28 
32 35 6 10 6 11 

0.303 0.294 0.286 

Quantized 
Regression: 

MSE 
RMSE 
MAE 
Confusion 
Matrix 
Misclass. 
Rate 

Iterated Predictions 
Linear Bayesian 

AR VAR 

1.358* 1.692 
1.165* 1.301 
0.892* 0.925* 

5 2 16 14 
3 34 4 43 

0.114 0.234 

Trivial Predictors 
Median No Change 
Return Return 

1.700 1.750 
1.304 1.323 
1.083 0.967 
0 0 12 7 
0 0 0 0 

- 0.368 

Direct Predictions 
Linear Linear Neural3 

Regression Network Network 

1.400' 1.125* 1.150* 
1.183* 1.061* 1.072* 
0.850* 0.775* 0.800* 
11 3 17 7 13 8 
8 58 1 43 1 41 

0.138 0.118 0.143 

Classification: 
MSE 
RMSE 
MAE 
Confusion 
Matrix 
Misclass. 
Rate 

Softmax Representation 

Linear Neural3 NeurallO 
1.950 1.167* 1.458* 
1.396 1.080* 1.208* 
1.033 0.767* 0.842* 
16 20 12 8 19 15 
1 36 3 45 3 46 

0.288 0.162 0.217 

Trivial Classifiers 
Median No Change 
Return Return 

1.700 1.750 
1.304 1.323 
1.083 0.967 
0 0 12 7 
0 0 0 0 

- 0.368 

Thermometer Representation 

Linear Neural3 NeurallO 
1.458 1.333* 1.300* 
1.208 1.155* 1.140* 

0.892* 0.850* 0.867* 
15 13 19 11 16 13 
2 43 1 35 1 32 

0.205 0.182 0.226 



Table A.40: IP.L.FD12 Regression Results 

Table A.41: IP.L.FD12 Quantized Regression Results 

Direct Predictions 
Linear Linear Neural3 

Regression Network Network 
2.422 0.724 0.578* 
1.556 0.851 0.760* 
0.974 0.868* 0.766" 
56 17 77 11 80 9 
30 14 9 20 6 22 

0.171 0.128 0.402 

Table A.42: IP.L.FD12 Classification Results 

Iterated Predictions 
Linear Bayesian 

AR VAR 
1.115* 1.206 
1.056* 1.098 
1.062* 1.158 
86 31 74 15 
0 0 12 16 

0.265 0.231 

Regression: 

NMSE 
NRMSE 
NMAE 
Confusion 
Matrix 
Misclass. 
Rate 

Quantized 
Regression: 

MSE 
RMSE 
MAE 
Confusion 
Matrix 
Misclass. 
Rate 

Trivial Predictors 
Median No Change 
Return Return 
1.561 2.447 
1.249 1.564 
1.321 1.563 
86 31 66 21 

0 0 20 10 

0.265 0.350 

Trivial Predictors 
Median No Change 
Return Return 

1.600* 3.017 
1.265* 1.737 
1.050* 1.283* 

0 0 1 16 
0 0 0 0 

- 0.941 

Thermometer Representation 

Linear Neural3 NeurallO 
1.433* 0.958* 1.158 
1.197* 0.979* 1.076 
0.800* 0.742* 0.842 
15 17 15 12 15 17 
0 59 0 53 0 55 

0.187 0.150 0.195 

Iterated Predictions 
Linear Bayesian 

AR VAR 

1.275" 1.633 
1.129* 1.278 
0.792* 0.933 

0 0 13 17 
2 45 0 47 

0.043 0.221 

Softmax Representation 

Linear Neural3 NeurallO 

1.833 1.492* 1.750 
1.354 1.221* 1.323 
1.033 0.908* 0.983 
16 20 16 15 16 19 
0 51 0 54 0 52 

0.230 0.176 0.218 

Classification: 

MSE 
RMSE 
MAE 
Confusion 
Matrix 
Misclass. 
Rate 

Direct Predictions 
Linear Linear Neural3 

Regression Network Network 

1.608 0.992* 0.967* 
1.268 0.996* 0.983* 

0.975* 0.675* 0.667* 
9 5 15 10 15 11 
6 63 1 58 0 57 

0.133 0.131 0.133 

Trivial Classifiers 
Median No Change 
Return Return 
1.600* 3.017 
1.265* 1.737 
1.050* 1.283* 

0 0 1 16 
0 0 0 0 

- 0.941 



Table A.43: LHUR.FD3 Regression Results 

Table A.44: LHUR.FD3 Quantized Regression Results 

Regression: 
NMSE 
NRMSE 
NMAE 
Confusion 
Matrix 
Misclass. 
Rate 

Table A.45: LHUR.FD3 Classification Results 

Iterated Predictions 
Linear Bayesian 

AR VAR 
0.811 0.670* 
0.900 0.819* 
1.006 0.846* 
29 25 26 11 
9 35 12 49 

0.347 0.235 

Trivial Predictors 
Median No Change 
Return Return 

1.001 0.978 
1.001 0.989 
1 .OOO 0.965 
38 60 27 23 
0 0 11 37 

0.612 0.347 

Direct Predictions 
Linear Linear Neural3 

Regression Network Network 

1.414 0.514* 0.531* 
1.189 0.717* 0.729" 
1.086 0.736* 0.759* 
28 36 30 15 34 17 
10 24 8 45 4 43 

0.469 0.235 0.214 

Direct Predictions 
Linear Linear Neural3 

Regression Network Network 

3.092 1.825 1.800 
1.758 1.351 1.342 
1.358 0.975 1.000 
44 28 39 15 43 17 
13 8 7 34 5 30 

0.441 0.232 0.232 

Iterated Predictions 
Linear Bayesian 

AR VAR 

2.092 1.692* 
1.446 1.301' 
1.058 0.875* 
42 15 41 6 
13 22 11 33 

0.304 0.187 

Quantized 
Regression: 

MSE 
RMSE 
MAE 
Confusion 
Matrix 
Misclass. 
Rate 

Trivial Predictors 
Median No Change 
Return Return 

1.900 2.067 
1.378 1.438 
1.217 1 .OOO 
0 0 36 17 
0 0 0 0 

- 0.321 

Thermometer Representation 

Linear Neural3 NeurallO 
1.600* 1.233* 1.233* 
1.265* 1.111* 1.111* 
0.983 0.867* 0.800* 
3 7 5  43 9 43 7 
1130 2 1 8  10 30 

0.193 0.153 0.189 

Softmax Representation 

Linear Neural3 NeurallO 
1.933 2.292 1.525* 
1.390 1.514 1.235* 

0.867* 1.008 0.775* 
50 13 59 33 5817 
10 32 1 12 2 28 

0.219 0.324 0.181 

Classification: 
MSE 
RMSE 
MAE 
Confusion 
Matrix 
Misclass. 
Rate 

Trivial Classifiers 
Median No Change 
Return Return 
1.900 2.067 
1.378 1.438 
1.217 1.000 
0 0 36 17 
0 0 0 0 

- 0.321 



Table A.46: LHUR.FDl2 Regression Results 

Table A.47: LHUR.FD12 Quantized Regression Results 

Direct Predictions 
Linear Linear Neural3 

Regression Network Network 
2.218 0.326* 0.342* 
1.489 0.571* 0.585* 
0.971 0.630* 0.635* 
27 35 40 26 39 23 
13 40 0 49 1 52 

0.417 0.226 0.209 

Regression: 

NMSE 
NRMSE 
NMAE 
Confusion 
Matrix 
Misclass. 
Rate 

Table A.48: LHUR.FD12 Classification Results 

Trivial Predictors 
Median No Change 
Return Return 

1.013 1.858 
1.006 1.363 

0.979* 1.346 
0 0 27 19 

40 75 13 56 

0.348 0.278 

Quantized 
Regression: 

MSE 
RMSE 
MAE 
Confusion 
Matrix 
Misclass. 
Rate 

Iterated Predictions 
Linear Bayesian 

AR VAR 
1.000 0.608 
1.000 0.780 
1.052 0.851 
21 45 36 21 
19 30 4 54 

0.557 0.217 

Iterated Predictions 
Linear Bayesian 

AR VAR 

2.300 1.458 
1.517 1.208 
1.267 0.875 
26 17 38 7 
4 11 4 30 

0.362 0.139 

Trivial Predictors 
Median No Change 
Return Return 

2.142 3.208 
1.463 1.791 

1.208* 1.458 
0 0 28 14 
0 0 0 0 

- 0.333 

Direct Predictions 
Linear Linear Neural3 

Regression Network Network 

4.042 1.058* 1.067* 
2.010 1.029* 1.033* 
1.608 0.725* 0.700* 
28 21 42 13 41 11 
13 16 1 33 2 37 

0.436 0.157 0.143 

Thermometer Representation 

Linear Neural3 NeurallO 
1.025* 2.142 0.808* 
1.012* 1.463 0.899* 
0.658* 1.008* 0.675* 
38 2 21 1 39 3 
5 36 16 38 4 37 

0.086 0.224 0.084 

Softmax Representation 

Linear Neural3 NeurallO 

1.708 1.600 1.292* 
1.307 1.265 1.137* 
0.942 0.817* 0.742* 
29 4 34 3 39 4 
5 33 5 34 2 32 

0.127 0.105 0.078 

Classification: 
MSE 
RMSE 
MAE 
Confusion 
Matrix 
Misclass. 
Rate 

Trivial Classifiers 
Median No Change 
Return Return 
2.142 3.208 
1.463 1.791 
1.208* 1.458 

0 0 28 14 
0 0 0 0 

- 0.333 



Table A.49: PUNEW.L.FD3 Regression Results 

Table A.50: PUNEW.L.FD3 Quantized Regression Results 

Regression: 
NMSE 
NRMSE 
NMAE 
Confusion 
Matrix 
Misclass. 
Rate 

Table A.51: PUNEW.L.FD3 Classification Results 

Iterated Predictions 
Linear Bayesian 

AR VAR 
0.552* 0.447* 
0.743* 0.669* 
1.000" 0.687* 
112 4 113 4 
2 0 1 0  

0.051 0.042 

Trivial Predictors 
Median No Change 
Return Return 
1.174 0.712 
1.084 0.844 

0.982* 0.865 
114 4 110 4 
0 0 4 0 

0.034 0.068 

Quantized 
Regression: 

MSE 
RMSE 
MAE 
Confusion 
Matrix 
Misclass. 
Rate 

Direct Predictions 
Linear Linear Neural3 

Regression Network Network 

1.661 0.444* 0.518 
1.289 0.666* 0.719 
1.129 0.708* 0.776* 
110 4 114 4 114 4 
4 0 0 0 0 0 

0.068 0.034 0.034 

Trivial Predictors 
Median No Change 
Return Return 

1.542 1.508 
1.242 1.228 

0.958* 0.842 
0 0 34 8 
0 0 0 0 

- 0.190 

Classification: 
MSE 
RMSE 
MAE 
Confusion 
Matrix 
Misclass. 
Rate 

Iterated Predictions 
Linear Bayesian 

AR VAR 
1.133* 1.117* 
1.065* 1.057* 
0.717" 0.733* 
60 6 38 3 
6 0 4 12 

0.167 0.123 

Softmax Representation 

Linear Neural3 NeurallO 
1.400 1.358 1.267 
1.183 1.165 1.125 
0.883 0.875 0.833 
63 3 61 3 61 3 
8 6 8 4 8 4 

0.138 0.145 0.145 

Trivial Classifiers 
Median No Change 
Return Return 
1.542 1.508 
1.242 1.228 

0.958* 0.842 
0 0 34 8 
0 0 0 0 

- 0.190 

Direct Predictions 
Linear Linear Neural3 

Regression Network Network 

1.950 1.192 1.525 
1.396 1.092 1.235 
1.050 0.758* 0.858 
56 6 43 9 46 12 
7 0 3 5 6 5 

0.188 0.200 0.261 

Thermometer Representation 

Linear Neural3 NeurallO 
1.050* 0.917" 0.992* 
1.025* 0.957* 0.996* 
0.733* 0.650* 0.642* 
60 4 59 3 61 3 
6 4 3 2 3 2 

0.135 0.090 0.087 



Table A.52: PUNEW.L.FD12 Regression Results 

Table A.53: PUNEW .L.FD12 Quantized Regression Results 

Direct Predictions 
Linear Linear Neural3 

Regression Network Network 
2.862 0.429* 0.598* 
1.692 0.655' 0.773* 
1.052 0.683* 0.817* 
108 0 120 0 120 0 
12 0 0 0 0 0 

0.100 0.000 0.000 

Regression: 
NMSE 
NRMSE 
NMAE 
Confusion 
Matrix 
Misclass. 
Rate 

Table A.54: PUNEW.L.FD12 Classification Results 

Quantized 
Regression: 

MSE 
RMSE 
MAE 
Confusion 
Matrix 
Misclass. 
Rate 

Trivial Predictors 
Median No Change 
Return Return 
1.432* 0.502* 
1.196* 0.709' 
0.977* 0.727* 
120 0 120 0 
0 0 0 0 

0.000 0.000 

Iterated Predictions 
Linear Bayesian 

AR VAR 
0.423* 0.361" 
0.650* 0.601* 
1.023* 0.628* 
119 0 120 0 

1 0  0 0 

0.008 0.000 

Classification: 
MSE 
RMSE 
MAE 
Confusion 
Matrix 
Misclass. 
Rate 

Direct Predictions 
Linear Linear Neural3 

Regression Network Network 

2.592 1 .OOO* 1.225* 
1.610 1.000* 1.107* 
1.142 0.683* 0.792* 
69 10 50 11 47 12 
16 0 1 0  2 0 

0.274 0.194 0.230 

Trivial Predictors 
Median No Change 
Return Return 

1.367* 1.000* 
1.169* 1.000* 
0.867" 0.750* 

0 0 37 0 
0 0 0 0 

- 0.000 

Iterated Predictions 
Linear Bayesian 

AR VAR 

0.975* 1.000* 
0.987* 1.000* 
0.608* 0.683* 

71 7 48 3 
11 0 3 0 

0.202 0.111 

Trivial Classifiers 
Median No Change 
Return Return 
1.367* 1 .OOO* 
1.169* 1.000* 
0.867* 0.750* 

0 0 37 0 
0 0 0 0 

- 0.000 

Softmax Representation 

Linear Neural3 NeurallO 
1.533 1.692 1.633 
1.238 1.301 1.278 
0.967 1.025 0.967 
72 0 72 5 75 4 
14 0 10 0 10 0 

0.163 0.172 0.157 

Thermometer Representation 

Linear Neural3 NeurallO 
2.092 1.350* 1.475 
1.446 1.162* 1.214 
1.058 0.833 0.892 
66 0 73 8 70 8 
18 0 12 0 14 0 

0.214 0.215 0.239 



Table A.55: YCS.L.FD3 Regression Results 

Table A.56: YCS.L.FD3 Quantized Regression Results 

Direct Predictions 
Linear Linear Neural3 

Regression Network Network 
3.567 1.238 1.086* 
1.889 1.112 1.042" 
0.987 1.175 1.103 
25 32 17 28 17 30 
28 35 36 39 36 37 

0.500 0.533 0.550 

Table A.57: YCS.L.FD3 Classification Results 

Iterated Predictions 
Linear Bayesian 

AR VAR 
1.075* 1.297* 
1.037* 1.139* 
0.993* 1.296 
22 35 25 33 
31 32 28 34 

0.550 0.508 

Regression: 
NMSE 
NRMSE 
NMAE 
Confusion 
Matrix 
Misclass. 
Rate 

Quantized 
Regression: 
MSE 
RMSE 
MAE 
Confusion 
Matrix 
Misclass. 
Rate 

Trivial Predictors 
Median No Change 
Return Return 
1.037* 2.318 
1.018* 1.522 
0.987* 1.491 

0 0 19 33 
53 67 34 34 

0.442 0.558 

Trivial Predictors 
Median No Change 
Return Return 
1.892* 4.225 
1.375" 2.055 
1.158* 1.608 

0 0 19 22 
0 0 0 0 

- 0.537 

Classification: 

MSE 
RMSE 
MAE 
Confusion 
Matrix 
Misclass. 
Rate 

Iterated Predictions 
Linear Bayesian 

AR VAR 
2.692 3.975 
1.641 1.994 

1.275" 1.542 
21 19 23 22 
12 15 22 18 

0.463 0.518 

Softmax Representation 

Linear Neural3 NeurallO 
4.100 4.292 5.075 
2.025 2.072 2.253 
1.600 1.642 1.808 
18 19 24 31 21 23 
19 16 13 8 32 17 

0.528 0.579 0.591 

Trivial Classifiers 
Median No Change 
Return Return 
1.892* 4.225 
1.375* 2.055 
1.158* 1.608 

0 0 19 22 
0 0 0 0 

- 0.537 

Direct Predictions 
Linear Linear Neural3 

Regression Network Network 
4.658 3.175 2.825 
2.158 1.782 1.681 
1.708 1.458 1.392 
25 19 15 14 17 14 
22 21 21 13 15 9 

0.471 0.556 0.527 

Thermometer Representation 

Linear Neural3 NeurallO 
3.575 3.358 3.075 
1.891 1.833 1.754 
1.508 1.442 1.442 
25 25 36 26 18 16 
18 9 9 4 20 9 

0.558 0.467 0.571 



Table A.58: YCS.L.FD12 Regression Results 

Table A.59: YCS.L.FD12 Quantized Regression Results 

Regression: 

NMSE 
NRMSE 
NMAE 
Confusion 
Matrix 
Misclass. 
Rate 

Table A.60: YCS.L.FD12 Classification Results 

Trivial Predictors 
Median No Change 
Return Return 
1.287* 2.556 
1.134* 1.599 
1.155 1.594 
0 0 37 32 

69 51 32 19 

0.575 0.533 

Quantized 
Regression: 

MSE 
RMSE 
MAE 
Confusion 
Matrix 
Misclass. 
Rate 

Iterated Predictions 
Linear Bayesian 

AR VAR 
1.004* 1.597* 
1.002* 1.264* 
1.040 1.254 
30 22 36 27 
39 29 33 24 

0.508 0.500 

Trivial Predictors 
Median No Change 
Return Return 

1.683* 3.717 
1.297* 1.928 
1.100* 1.483* 

0 0 37 18 
0 0 0 0 

- 0.327 

Classification: 
MSE 
RMSE 
MAE 
Confusion 
Matrix 
Misclass. 
Rate 

Direct Predictions 
Linear Linear Neural3 

Regression Network Network 

9.050 1.055* 1.078* 
3.008 1.027* 1.038* 
1.011* 1.089 1.100 
31 20 34 15 33 13 
38 31 35 36 36 38 

0.483 0.417 0.408 

Iterated Predictions 
Linear Bayesian 

AR VAR 
1.892* 2.833* 
1.375* 1.683* 
1.058* 1.283* 
44 19 38 19 

4 3 17 5 

0.329 0.456 

Trivial Classifiers 
Median No Change 
Return Return 
1.683* 3.717 
1.297* 1.928 
1.100* 1.483* 

0 0 37 18 
0 0 0 0 

- 0.327 

Direct Predictions 
Linear Linear Neural3 

Regression Network Network 

5.508 1.925* 2.100* 
2.347 1.387* 1.449* 
1.958 1.058* 1.133* 
32 14 40 17 36 13 
37 12 6 0 8 0 

0.537 0.365 0.368 

Softmax Representation 

Linear Neural3 NeurallO 
3.417 3.433 3.500 
1.848 1.853 1.871 
1.450* 1.417* 1.433* 
40 15 46 19 50 21 
2311 226 18 2 

0.427 0.441 0.429 

Thermometer Representation ' 

Linear Neural3 NeurallO 
2.808* 2.708* 2.858* 
1.676* 1.646* 1.691* 
1.308* 1.258* 1.325* 
43 12 43 13 37 12 
16 8 17 6 18 5 

0.354 0.380 0.417 
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