
Quality of Service Specification

for Resource Management

in Multimedia Systems

Richard Alan Staehli

B.S., The Evergreen State College, 1982

A dissertation submitted to the faculty of the

Oregon Graduate Institute of Science & Technology

in partial fulfillment of the

requirements for the degree

Doctor of Philosophy

in

Computer Science and Engineering

January 1996

@ Copyright 1996 by Richard Alan Staehli

All Rights Reserved

The dissertation "Quality of Service Specification for Resource Management in Multi-

media Systems" by Richard Alan Staehli has been examined and approved by the following

Examination Committee:

- .

Jonathan v3"aIpo$
Associate Professor
Thesis Research Adviser

David Maier
Professor

Principa john Nvl Member Tech. Staff
GTE ~aboratories, Inc.

iii

Dedication

To my wife, who yearns for me t o become a gardener.

Acknowledgements

The most important person t o acknowledge is my advisor Jonathan Walpole. Without his

encouragement and advice, I would not have entered the Ph.D. program a t OGI. I have

always felt strongly that taking time t o hike, to climb, t o ski and sail are as essential as any

other pursuit in this life. Jonathan demonstrated that one can continue outdoor pursuits

and still pursue science with a dedication that I had previously associated with digging

a snow cave in a blizzard. In addition, many of the ideas in this thesis evolved slowly

from our talks so that it is impossible to claim sole credit. Both Jonathan and Dave Maier

have provided suggestions and feedback, beginning with my research proficiency paper five

years ago and continuing up t o our most recent publication. While this thesis represents

work that I have developed and written on my own, I gratefully acknowledge the valuable

criticism that Jonathan and Dave have provided.

I would also like t o thank the students that have formed my a t work family for these

past years. Ravi Konuru and Harini Srinivasen were good friends through our first year of

classes and the qualifying exams. They each inspired me by finishing their thesis work in

good time and with good results. The other members of my "quals group" include Judy

Cushing, Steve Rehfuss, Jon Inouye, Moira Mallison, and Bennet Vance. All have been

valued friends and colleagues for sharing and learning the tricks of Ph.D. candidacy. I

owe Judy a unique debt for having introduced me t o computer programming when I took

her Data Structures course a t The Evergreen State College in 1982. Her letter of recom-

mendation was probably a key t o landing my first job out of college! Her creative energy

continues t o provide a fountain of opportunities for research and professional collabora-

tion. I'd also like t o acknowledge the many times that Bennet listened t o my description

of a problem that I could neither solve nor articulate well. It proved useful t o know what

parts of the problem I could communicate t o him. In addition t o these close friends that

took the qualifying exams with me, I need to mention Scott Daniels, who was like a big

brother t o me, Jenny Orr, and Nanda Kambhatla, who have always formed the core of the

party crowd in CSE, such as i t was. I regret that we didn't all have more time together

for recreation.

I've deliberately delayed acknowledging the assistance of Jon Inouye. Of course, I

need to thank Jon for the official B w OGI Ph.D. thesis template. This is only one of

many examples where Jon was so capable and willing t o provide expert consultation on

tools that I used without studying. I knew from previous industrial experience that an

organization works best if it cultivates an expert or two for each tool. These experts take

responsibility for maintaining and upgrading the tool and provide intelligent tutoring t o

other tool users. Jon Inouye has provided this expert service for B ' , HPUX, Mosaic

and many other tools that have been essential in writing my thesis. His sushi-making

skills and provisioning of the lab cookie jar are also much appreciated.

Other members of the faculty that have been of particular help include Jim Hook

who taught a mean Automata Theory course in his very first quarter of teaching at OGI,

and David Novick who was my first mentor and also advised me t o enter the Ph.D.

program. Harry Porter, a graduate student at the time, introduced me t o object-oriented

programming in his 1985 OOP class. Roger Lea, while only an adjunct faculty member

for a brief time, gave me some of the most memorable advice about completing my Ph.D.

work and its only through my own stubborn nature that I was unable t o follow it well. I

am also very grateful to Tom Little of Boston University for inviting me t o meet with his

research group in May of 1994 and t o John Nicol of G T E Labs for inviting me t o speak

there during the same trip. These groups endured a painfully early version of my thesis

talk. Of course, I am very grateful to the members of my thesis committee for each giving

this thesis a careful reading.

Financial support for this work came from National Science Foundation grant IRI-

9117008 for Multimedia Storage research and IRI-9223788 for Scientific Database research.

Additional support came from Tektronix, Inc., the Portland Trailblazers, and from AT&T

Bell Labs. I would particularly like t o acknowledge Bart Locanthi from Bell Labs who

built and loaned us our first digital video cameras. My first programs for capturing

and manipulating video images were executed on a MIPS Magnum running the Plan 9

operating system that Bart had installed and loaned t o us. I deeply regret that we were

not able t o make a commitment t o use Plan 9 for our other work. The opportunity t o

work with such a well crafted and documented set of tools was a great joy.

Special thanks t o my wife, Jan, for providing both pressure t o complete and respite

from the task of writing this thesis. We have acted together t o see this goal achieved, not

knowing how it would change our lives.

vii

Contents

. Dedication iv

. Acknowledgements v

. List of Tables xi

. List of Figures xii

. Abstract xiv

1 Introduction 1

. 1.1 Multimedia Systems and Resource Management 1
. 1.2 The Need for Presentation Quality of Service Specifications 5

. 1.3 Scope and Contribution of this Thesis 8
. 1.4 Outline of the Thesis 9

2 Real-Time Presentation of Stored Multimedia Data 10
. 2.1 Identifying Presentation Requirements 10

. 2.1.1 Continuous Media 11
. 2.1.2 Muse 12

. 2.1.3 Object Composition Petri Nets 13
. 2.1.4 MAEstro 14

. 2.1.5 Algebraic Video 15
. 2.1.6 MHEG 15

. 2.1.7 Discussion 17
. 2.2 Presentation Techniques 18

. 2.2.1 Output Computation 19
. 2.2.2 Synchronization 20

. 2.2.3 Storage Optimizations 24

. 2.2.4 Process Optimizations 27
. 2.2.5 Data Compression 28

. 2.2.6 Prefetching 30

viii

. 2.2.7 Resource Reservations 34
. 2.3 Summary 37

3 Reference Architecture 40

. 3.1 Reference Architecture Description 40
. 3.2 Application Examples 42

. 3.2.1 Electronic News Gathering 42

. 3.2.2 Digital Video Support for Professional Sports 46
. 3.3 Summary 48

4 Specification of Presentation Quality 49
. 4.1 Z Notation 50

. 4.2 ' Content Specification 51
. 4.2.1 Content Descriptors 52

. 4.2.2 Semantics 55
. 4.3 View Specification 60

. 4.3.1 View Descriptors 61
. 4.3.2 Semantics 63

. 4.3.3 Actual Presentation 64
. 4.4 Quality Specification 65

. 4.4.1 Reference Error Model 70
. 4.4.2 Quality Descriptors 74

. 4.4.3 Semantics 75
. 4.5 Summary 77

5 A QOS-Driven Multimedia Player 79
. 5.1 Purpose and Scope of the Prototype 79

. 5.2 QOS Request Generation 82
. 5.2.1 Creating and Selecting Content 82

. 5.2.2 View Controls 83
. 5.2.3 Quality Calibration and Constraint 86

. 5.2.4 Representation of QOS Requirements 88
. 5.3 Presentation Planning 88

. 5.3.1 Components of a Presentation Plan 89
. 5.3.2 Admission Test 91

. 5.3.3 Proof of QOS Guarantees 96
. 5.4 Presentation Execution 100

. 5.4.1 Resource Overload Detection and Handling 100

5.5 Discussion . 101

6 Related Work 103
6.1 QOS Specification . 103

6.2 Presentation Planning . 106

7 Conclusions 108
7.1 A Framework for Defining Formal QOS Semantics 108

7.2 An Architecture for Resource Optimization with QOS Guarantees 110

7.3 Future Work . 110

Bibliography . 112

Glossary . 120

Biographical Note . 123

List of Tables

. 2.1 Algebraic video operations 16

. 5.1 Calibration values for quality estimation function 88

List of Figures

. 1.1 Loss of quality in digital representation and presentation 2
. 1.2 Use of compression trades CPU processing for network bandwidth 4

. 2.1 Authoring multimedia presentations 11
. 2.2 Use of a timeline for synchronization in Muse 13

. 2.3 Interval relations in an Object Composition Petri Net 14
. 2.4 Abstract model of a real-time presentation 18

. 2.5 Overview of presentation techniques 18
. 2.6 Clock-driven synchronization 21

. 2.7 Output delay from process latencies 22
. 2.8 Duration-driven synchronization 22

. 2.9 Interleaved disk scheduling for two streams 26
. 2.10 Simple striping versus staggered striping 27

. 2.11 Abstract model for prefetching 30
. 2.12 Greedy prefetching 31

. 2.13 Summary of design technique benefits and costs 38

. 3.1 Editing and viewing multimedia presentations 41

3.2 Translating QOS specifications into an acceptable presentation plan 42
. 3.3 Architecture for a network-based digital television studio 43

. 3.4 Synchronized views of sporting action 47

. 4.1 Content descriptor example 55
. 4.2 Content semantics 57

. 4.3 Example of a view descriptor 61
. 4.4 Multiple interpretations of error 66

. 5.1 The SQUINT multimedia player 80
. 5.2 Smalltalk syntax for creating content descriptors 82

. 5.3 OMT notation for Class relationships 83
. 5.4 OMT notation for object snapshots 83

. 5.5 SQUINT content classes 84

xii

. 5.6 ViewSpec class 85
. 5.7 Mapping from real-time to 1ogical.time 85

. 5.8 Quality class 87
. 5.9 Player with dependent objects 89

. 5.10 QOS guarantees 90
. 5.11 Determination of worst-case jitter between updates 98

. 5.12 Computing bounds for timing error 101

xiii

Abstract

Quality of Service Specification
for Resource Management

in Multimedia Systems

Richard Alan Staehli

Supervising Professor: Jonathan Walpole

Digital multimedia systems are rapidly becoming ubiquitous with nearly all computer

platforms offering support for audio and video. Multimedia computing promises t o aug-

ment or replace most of the traditional broadcast and print media with more interactive

and personalized information services. Unfortunately, today's real-time multimedia ser-

vices are either tailored to a personal computer environment or are vulnerable t o perfor-

mance degradations in a shared environment. Designers are faced with two fundamental

problems:

a choosing a digital representation for continuous media, and

scheduling resources t o approximate a real-time presentation.

While some multimedia systems take an ad hoc approach t o these problems, an optimal

solution requires a complete specification of presentation quality requirements.

This thesis offers the first complete framework for specifying presentation Quality of

Service (QOS) requirements. Beginning with a formal definition of an ideal presenta-

tion, the thesis describes a quality estimation function based on error in the presentation

xiv

outputs. This approach allows device and data independent descriptions of multime-

dia services. We provide a detailed example of a formal QOS specification composed of

orthogonal content, view, and quality descriptors. These descriptors are designed to s u p

port useful, complex multimedia presentations and to have a simple formal semantics.

The practicality of the QOS specifications are demonstrated by a multimedia player that

translates QOS requirements at runtime into acceptable presentations with near-optimal

resource use.

Chapter 1

Introduction

1.1 Multimedia Systems and Resource Management

Multimedia systems facilitate better communication between people through the creation

and exchange of multimedia information. A multimedia presentation uses complementary

sensory channels t o communicate more effectively and often more quickly than with a

single media type, such as text. In particular, video and audio take advantage of our

ability t o recognize important information quickly through sight and sound.

Another important feature of multimedia systems is that natural sensory information

can be recorded and reproduced without interpretation. Audio and video streams typically

contain a large portion of irrelevant information that is not easily separated from essential

information. Today's successful multimedia systems handle audio and video da ta types as

Binary Large Objects (BLOBS) whose meaning is understood only by the user [68].

As audio and video capabilities are added t o nearly every workstation and personal

computer, the computer is assuming a new role as the smart user-interface t o unified

communication and information services. Computers add value t o analog media through

navigation support and information management services.

We define a multimedia presentation t o be the digital output representation of multime-

dia information. This definition deliberately eliminates consideration of digital-to-analog

conversion and display, because these mechanisms are typically not under software con-

trol. A presentation may include digital video and audio, as well as synthetic compositions

such as slide shows and computer-generated music. We call these presentations time-based

because they communicate part of their information content through presentation timing.

continuous signal digital representation real-time presentation

Figure 1.1: Loss of quality in digital representation and presentation.

Since digital video typically has higher bandwidth requirements than other da ta types, we

use it for most examples with the understanding that analogies can be drawn for other

time-based da ta types. This thesis concentrates on the problems of real-time multimedia

presentations from stored data. However, since our QOS specifications make no assump-

tions about da ta location, our results may be applied t o presentations of live da ta sources

as well.

What is so new about time-based presentations? While presentations of text and

numeric da ta are generally expected t o be correct, for time-based presentations it is fre-

quently impossible to compute and display correct results in real-time. For example, a

stored video that is encoded a t 2 Mbps cannot be played in real-time over a 1 Mbps

network connection without skipping frames or otherwise losing part of the information

stream. We refer t o this conflict between resource capacity and presentation timing as the

real-time presentation problem.

Some information loss is also inevitable in any conversion of continuous media between

analog and digital representations. This loss occurs not only when the da ta is initially

captured, but also in lossy conversions between digital encodings, such as when a 24-

bit color image must be dithered for an %bit display. We refer t o this conflict between

preserving information and digital encoding as the digital representation problem.

Figure 1.1 illustrates the real-time presentation problem and the digital representation

problem for reproduction of a continuous audio signal. These two problems are related

through the resource requirements for da ta processing, storage and transport. For exam-

ple, a real-time presentation may be achieved with limited resources by using a highly

compressed digital encoding, such as MPEG, that sacrifices image quality for reduced

storage-volume and transport-bandwidth requirements [23, 741. In fact, both problems

have trivial solutions if the application allows arbitrary degradation of quality! But for

acceptable presentations, a multimedia system must attempt to provide accurate timing

and good image quality.

Since some loss of accuracy is inevitable, the goal is not t o prevent loss, but instead t o

keep losses within acceptable bounds. This goal presents a new challenge for multimedia

systems: t o represent requirements for acceptable presentations and t o manage resources

to best satisfy those requirements. Of course, what is acceptable depends upon the user

and the purpose for a particular presentation.

The requirements for acceptable timing and image (or signal) quality are referred t o

as presentation Quality of Service (QOS) requirements. Throughout this thesis we use

the term QOS t o refer to the presentation requirements. When we refer t o the quality of

service requirements for a particular resource we use the resource name as a qualifier, as

in "network QOS".

Let a presentation plan be the combination of algorithms and resources used t o imple-

ment a presentation. The same QOS for a presentation can be achieved by presentation

plans that have very different resource demands. Figure 1.2 illustrates two alternative

plans that produce the same output. The choice of whether t o use compression over

a network link depends on the relative scarcity of network resources versus processor

bandwidth for encoding and decoding. Furthermore, the same resources may be used by

presentation plans that have different output quality. For example, the compression in

Figure 1.2 could produce high image quality with a low frame rate or vice versa with the

same compression ratio and computational requirements. If resources are expensive, then

the multimedia system should use no more resources than are needed t o satisfy the QOS

requirements. We refer t o the determination of a presentation plan that satisfies QOS

requirements as the mapping problem.

It is useful t o consider the stored media in a multimedia system as a database and a

time-based presentation as the result of a query on that database. Database technology

offers many benefits for multimedia applications, such as high-level query languages, con-

currency control for document editing, and device and physical da ta independence. But,

source network display

source network display

Figure 1.2: Use of compression trades CPU processing for network bandwidth.

current database systems do not adequately support time-based presentations. Relational

da ta manipulation languages have demonstrated the value of letting the application spec-

ify what is wanted, and letting the database plan how t o retrieve it. To support time-based

presentations, a data manipulation language for a multimedia database should also allow

the application t o specify when, where, and how precisely the data should be delivered [50].

These constraints on delivery are an example of a QOS-based interface. The specification

of QOS requirements is an issue for logical da ta modelling.

QOS management is both a problem and an opportunity. In the bad-old-days of

analog media, the marketplace evolved a relatively small number of media t o support

the largest market segments. For example, the old analog phone system offered only

two-way voice quality communications. The price of a phone call did not diminish when

you needed only half the bandwidth. With digital technology, conversion between media

formats is simply a matter of software and computer time; and of course computing

time has become very cheap through technological advances and growth in the market

for computers. Equivalently, digital technology makes it easy t o offer the same media at

virtually any resolution or sample rate. Just as ad-hoc queries are commonly used t o select

relevant information out of large relational databases, multimedia requests that specify

QOS requirements can be used t o browse any type of media without paying the resource

costs for best-quality presentation.

Some examples help t o illustrate that QOS requirements vary with the application.

One of the early titles in the CD-ROM multimedia publishing market is a repackaging of

the Beatles' film, "A Hard Day's Night" [77]. This CD-ROM includes the entire film as

a compressed digital-video movie. The resolution and playback fidelity is well below the

quality of a VHS home video, but the CD-ROM compensates by offering random access

and hypermedia links between annotations and film segments. Despite the lower video

quality, the compressed video on CD-ROM is better able to meet the needs of the film

student than a lossless encoding requiring 100 times the storage volume and bandwidth.

Another example application is mobile computing, where the ability t o view multi-

media email and other documents over low-bandwidth connections.and on low-resolution

displays is important. Audio and video can be supported over 56-Kbps phone lines, albeit

with reduced picture quality and frame rate [87]. In such applications, the timeliness

of access t o information may be more important than preservation of the source media

quality. Network bandwidth, processing capacity and output device resolution may limit

presentation quality, but they do not prevent us from providing real-time multimedia

presentations.

As a third example, consider a video database that may be accessed concurrently

by multiple users. The video will typically be encoded t o support the highest quality

playback, yet for tasks such as video editing and visual searches, it is possible t o support

many more concurrent sessions with lower quality. Despite this tolerance for lower quality,

it is important t o recognize the point a t which poor quality impairs the usefulness of a

presentation. An admission test can be invoked with each user request t o determine if the

request can be satisfied without excessively degrading the service t o other users [5, 51,711.

1.2 The Need for Presentation Quality of Service Specifica-

t ions

How can a request for multimedia services express its QOS requirements? A multimedia

system will need t o interpret these requirements in order t o schedule resources appropri-

ately. A formal approach for specifying accuracy requirements in database transactions

has been described under the name Epsilon Serializability (ESR) [62]. ESR allows a query

t o specify an acceptable amount of error in data values so that the DBMS can relax some

of the normal da ta locking requirements. In multimedia systems, the requirements for pre-

sentation fidelity are analogous t o the requirements for accuracy in the result of a database

query. An approach similar t o ESR is needed for time-based multimedia presentations t o

allow relaxation of computation and resource scheduling constraints.

Consider the way that existing multimedia systems handle tradeoffs between QOS and

resource use. Video on Demand (VOD) systems typically guarantee lossless data transport

and strict presentation timing by making conservative resource reservations [47, 6, 84, 611.

This approach is designed t o satisfy a specific application where the QOS requirements are

high. A multimedia system designed t o support a greater range of applications should also

provide efficient support for moderate and low-QOS presentations. The Capacity-Based

Session Reservation Protocol (CBSRP) allows the specification of discrete QOS classes

based on sampling rate and spatial resolution [go]. Although the CBSRP definition of QOS

does support dynamic control of resource usage, it does not constrain loss of information

through quantization, temporal jitter, or synchronization errors. In the absence of a

complete specification of QOS requirements, the implementation of CBSRP makes an ad

hoc choice about how accurate the presentation timing must be and how much quantization

error is allowed.

As an alternative t o guarantees, adaptive approaches attempt t o provide the best qual-

ity, but may degrade some aspects of presentation quality when resources are scarce. The

Plateau group a t Berkeley has described an adaptive algorithm for network video play-

back that attempts to decode as many video frames as possible while staying ahead of

the display schedule 1661. If the decoder falls behind, some number of frames are skipped

in order t o reduce the decoder's processing load. Skipping frames is one way t o trade

presentation quality for resource savings. While this solution allows the video playback

t o maintain approximate synchronization across a wide range of display platforms, their

algorithm for skipping frames is based on ease of implementation rather than a minimal

degradation of presentation quality. Cen, et al., have demonstrated that an adaptive al-

gorithm can achieve better perceived quality of MPEG video playback by intelligently

choosing the pattern of dropped frames at the source [13]. Others have shown tha t video

resolution and picture quality can be varied dynamically t o save bandwidth without d r o p

ping frames [21, 141. As with a guarantee approach, adaptive algorithm designers are

forced to make ad hoc choices regarding which aspect of presentation quality t o sacrifice

because of the lack of a complete specification of QOS requirements.

To date, researchers have found that presentation-level QOS requirements are difficult

t o define [58, 19, 33, 71. Part of the difficulty is due to a confusion between specifying

what presentation is desired and how to achieve that presentation. Presentation QOS

requirements derive from what functionality is intended. On the other hand, resource

QOS requirements derive from how the presentation is t o be implemented.

What is missing in the literature is a method for specifying presentation QOS. The

need for presentation QOS specifications is now well recognized [7], but there has been

little discussion of how t o address this need. The approach we favor is t o divide the

problem into two parts: modelling the measurable error in a presentation and empirically

determining QOS requirements in terms of this model.

Since the purpose of a multimedia application is to communicate some content t o a

human user, the QOS requirements necessarily derive from the need t o limit noise and

other error in the communication channel. An approximate model of human perception

can provide a useful tool for presentation QOS management. The degree t o which different

types of error interfere with the user's ability to understand the content can be determined

by studies of human perception [75, 401. This thesis focuses on how t o model the user-

perceivable error.

For a QOS specification t o be useful for resource management, it must have formal

semantics. Formal semantics allow a multimedia system designer t o validate whether a

particular presentation algorithm will be able t o meet the specification. A formal spec-

ification is a prerequisite for reliable presentation quality guarantees, even when those

guarantees are of a statistical nature [83]. Even if the goal is only t o provide the best

quality with the available resources, a formal semantics for presentation quality is needed

t o validate the optimality of a particular presentation. A formal semantics implies that

QOS specifications are based on well-defined measurable quantities.

1.3 Scope and Contribution of this Thesis

Our research group intends t o build multimedia systems that base their resource manage-

ment decisions on the quality of service provided t o the user. To advance this goal, we

have surveyed techniques for QOS management in both research and commercial systems.

The insights gained from this research suggested a new approach t o specifying presenta-

tion QOS. This thesis describes the motivation for and the formal semantics of this new

specification technique. To demonstrate the value of formal QOS specifications, the the-

sis describes the design and implementation of a multimedia player that minimizes the

resources used for a presentation while satisfying user-specified QOS requirements. This

resource optimization allows more concurrent presentations with QOS guarantees than

are possible with an ad hoc approach t o QOS management.

This thesis offers a formal QOS specification semantics that can be used t o provide

presentation guarantees. The key precondition for optimal resource management in mul-

timedia systems is t o identify a metric for presentation quality. We describe a three step

method for defining such a metric. First, define an ideal presentation. Second, choose an

error model that describe the difference between actual and ideal presentations. Third,

define a quality estimation function in terms of the error model. We identify a complete-

ness criteria for error models based on the ability to account for all error in a presentation.

This method and the completeness criteria distinguish our work from other descriptions

of presentation-level QOS parameters.

We also provide a particular example of a content authoring and playback model with

formal QOS semantics. Our model contributes orthogonal definitions of content, view,

and quality descriptors that together determine presentation QOS requirements. The

error model we use t o define QOS semantics offers a formal definition of error measures

such as jitter and synchronization error in multimedia presentations. We show that our

error model is complete.

A quality metric produced by our method affords a new tool for judging the strengths

and limitations of any multimedia system. Not only does it offer a measurement tool, but

by identifying the different facets of presentation quality, new opportunities for resource

optimization are more readily identified.

Finally, the prototype implementation of QOS-based resource optimization provides a

concrete example of an architecture for translating presentation QOS requirements into

resource guarantees. Such translation will be an important part of systems tha t allow

a flexible range of service guarantees since users cannot be expected to understand the

resource costs in a large distributed system.

1.4 Outline of the Thesis.

The next chapter surveys a broad range of techniques for QOS management and classifies

them by the type of guarantees that they provide. This survey led us t o the question of how

t o specify QOS requirements that would constrain the choice of QOS management tech-

niques. Chapter 3 describes our architectural model for QOS specification, presentation

planning and execution. This architecture clarifies the role for formal QOS specifications

and provides a reference for comparisons with other systems.

The primary contribution of this thesis is the method and formal semantics for QOS

specification given in Chapter 4. A practical implementation of a multimedia player based

on formal QOS specifications is described in Chapter 5. Chapter 6 discusses related work

in presentation-level QOS specification and Chapter 7 summarizes the major results and

conclusions of the thesis.

Chapter 2

Real-Time Presentation of Stored

Multimedia Data

We use the term Constrained Latency Storage Access (CLSA) t o describe applications

tha t have strict deadlines for the completion of some secondary storage accesses [70].

Examples of such applications are found not only in multimedia applications but also

in real-time databases, which must satisfy strict constraints on transaction times [73, 11.

There has been some controversy about whether the timing requirements of multimedia

presentations should be considered t o be hard or soft real-time [28, 291. A large body of

knowledge exists on how t o build hard-real-time systems, but it is generally expensive t o

assure that no deadline is ever missed [44, 37, 72, 671. Instead, most existing multimedia

systems are susceptible t o some da ta loss and timing error. The majority of the techniques

surveyed in this chapter describe ways to reduce the magnitude of these errors.

This chapter describes authoring tools that specify presentation goals and then classi-

fies the well known techniques for meeting these goals in various computing environments.

Each technique is characterized by its effect on presentation quality as a function of re-

source availability. The last section summarizes the results of the survey.

2.1 Identifying Present at ion Requirements

Figure 2.1 shows an abstract model for authoring and playback in multimedia systems. In

the first step, a presentation author creates a descriptor for some multimedia content. A

content descriptor defines a multimedia document in terms of basic media types, layout,

synchronization, and links for navigation between documents. A presentation algorithm

content

idea (I""
I '

Author
content descriptor a

content eon
5 \

Viewer

presentation

limitations /

Figure 2.1: Authoring multimedia presentations.

reproduces content from a descriptor, but the presentation may be degraded by device

limitations or noise in the computing environment. A viewer receives the author's intended

message by filtering the noise from the perceived content.

The following tools offer varying amounts of support for presentation authoring and

playback. All produce some form of content descriptor. But what is the correct way t o

interpret a given content descriptor during a presentation? The discussion of each tool

considers this question and describes the implicit presentation semantics.

2.1.1 Continuous Media

Audio and video recordings of natural phenomena have a natural presentation semantics

as well: the goal is t o reproduce the original phenomena. To this end, digital recording

tools produce a minimal content descriptor to accompany the encoded da ta that effectively

specifies a normal presentation.

Audio and video are considered continuous media data types because they represent

continuous natural phenomena. The amplitude of an audio signal varies continuously with

time and the color value in a video varies continuously in both time and two-dimensional

space. Digital recordings are created by periodically sampling an analog signal. The

sampling process is characterized by the sampling frequency and the sample depth or

number of bits used t o represent a sample. For example, compact disk audio is sampled

at 44 Khz with 16-bits (65536 values) per sample. Digital television for studio work is

sampled at 13.5 Mhz with 8-bit samples for the luminance signal [59].

A content descriptor for continuous media playback can be as simple as a file name

and a few parameters that describe how the data was recorded. For example, Sun audio

files contain a header with sample rate and format information [76]. For best reproduction

of the original audio signal, the digital samples should be written t o a digital-to-analog

converter a t the same rate and format that they were recorded. This timing requirement

is typically met by periodic scheduling of a low-latency output task. In addition, synchro-

nization between audio and video tracks that were recorded together should be preserved

during playback.

How accurate does the playback really need t o be? Small amounts of timing error in a

presentation have an effect similar to that of signal noise as illustrated in Figure 1.1. Re-

sampling and conversion of the da ta stream for a different audio device can also introduce

perceived noise. But a digital recording already has a base level of quantization noise from

the use of discrete values to represent analog samples. Small timing and da ta conversion

errors are insignificant so long as they are masked by the quantization noise, but larger

errors may be tolerable for some types of content and applications. Today's commercial

tools attempt t o provide the best playback quality possible for the recorded da ta and do

not incorporate any other notion of QOS requirements.

2.1.2 Muse

The Athena Muse authoring environment offers four distinct representational approaches

for specifying interactive multimedia learning environments: directed graphs, multidimen-

sional spatial frameworks, declarative constraints, and a procedural language [32]. The

directed graphs are useful for hypermedia style navigation. The spatial frameworks allow

both specification of image display positions and placement of objects on a presentation

timeline. Figure 2.2 illustrates the use of a timeline t o specify synchronization in Muse. A

timeline can be used t o synchronize many objects including still images, text, video and

audio segments. Declarative constraints, in the Muse system, are limited t o bi-directional

video stream

subtitle stream

audio stream

current position I

Figure 2.2: Use of a timeline for synchronization in Muse.

equality relations. For example, the scroll bar shown in Figure 2.2 is constrained t o r e p

resent the current position in the display of a timeline. When the scroll bar is moved, the

view from the timeline is updated and vice versa. Finally, the procedural language allows

arbitrary computations to be embedded in the production.

The specification of temporal and spatial layout in Muse constitutes a set of presen-

tation goals that the presentation engine should attempt to meet. Unlike the continuous

media data types described above, the synthetic timing constraints of Muse composition

are generally not periodic. The descriptor for a presentation must explicitly store each ob-

ject presentation time specified on the timeline and the presentation engine must initiate

presentation of the objects according to this schedule. Muse has an informal presentation

semantics and has been successfully used for authoring educational materials for presen-

tation on a modified Athena workstation.

2.1.3 Object Composition Petri Nets

Little and Ghafoor have described an interval-based descriptor for multimedia presenta-

tions called an Object Composition Petri Net (OCPN) [43]. Each media object is assigned

t o an output device and has a known display duration. An OCPN is constructed by

specifying the temporal relation between two objects using one of the seven interval rela-

tions shown in Figure 2.3. Some relations require a delay parameter as indicated by the

small arrows. Every OCPN can be viewed as an object with known duration for recursive

composition.

OCPNs have an operational semantics that guarantees that no object is displayed

delav . text delav . text

video v

reference

n d;
before

meets i
r,h- overiaps

s t k s
i d 0
:- : during

equals
i d 1 9
:- finishes

>
time

Figure 2.3: Interval relations in an Object Composition Petri Net.

until the previous transition in the petri net has been enabled. For example, when the

image display process in Figure 2.3 completes, the subsequent transition (vertical bar) is

enabled and the associated video, audio, and delay processes can begin. However, there is

no guarantee that enabled processes will begin immediately or that they will execute for

precisely the specified duration. As with authoring in the Muse system, OCPNs do not

specify presentation accuracy. Little and Ghafoor have suggested a partial list of network

QOS parameters for communication of multimedia objects [42]. In Chapter 4, we offer

a formal definition of some of these parameters and show where they fit into a complete

model for presentation QOS specification.

2.1.4 MAEstro

MAEstro is a set of UNIX-based tools for authoring multimedia documents [19]. I t pro-

vides a timeline editor with a direct manipulation interface for synchronization of media

segments. The appearance of the timeline editor is similar t o Figure 2.2, but the MAEstro

authoring model is more restrictive than Muse. For example, a presentation has only a

single track for each media type so that it is not possible to specify two concurrent audio

segments. Media segments are edited and played by a media editor that is registered for

each media type. During a presentation, the timeline editor detects the start time for each

segment and sends a message t o the appropriate editor t o display the appropriate data.

MAEstro was designed t o support network-based multimedia by delegating media

handling responsibilities t o the distributed media editors. As a concession t o the difficulty

of synchronizing distributed multimedia streams, MAEstro does not guarantee that media

editors stay synchronized with each other. Instead, it has rising-edge synchronization

which means that only the start time for each media segment is controlled by the timeline

editor. In practice though, even the initiation of media playback is subject t o delays for

message passing, process scheduling and storage access. MAEstro is used for authoring

multimedia documents with coarse-grained synchronization on UNIX platforms.

2.1.5 Algebraic Video

Weiss, e t al., have described an informal semantics for an algebra of video composition

operators [85]. An algebraic video expression can represent a segment of raw video or a

composition of other algebraic video expressions. The algebraic operators are shown in

Table 2.1. This video algebra allows users t o specify presentations through content-based

queries and simple composition operations. Content is described with text annotations

using the description operator. Since any video expression may be annotated, and video

expressions may share common video segments, annotation properties may overlap. The

union and intersection operators support composition and decomposition, respectively, of

overlapping video segments.

The output operators for algebraic video expressions specify a multimedia presentation,

but do not describe presentation quality requirements. As with other authoring tools,

the algebraic expressions describe presentation goals without providing constraints for an

implementation.

2.1.6 MHEG

ISO's Multimedia Hypermedia Experts Group has defined the MHEG encoding standard

for storage, exchange and execution of multimedia presentations [52]. The encoding s u p

ports spatial layout and synchronization of common media elements and also supports

Table 2.1: Algebraic video operations.

Creation
c rea t e name begin end
delay time

Composition

El 0 E2
El u E2
E~ n E~
El - E2
El 11 E2
El llE2
(test)? El : E2 : ... : Ek
loop El time
s t r e t c h El factor
l i m i t El time
t r a n s i t i o n El E2 type t
contains El query

Output
window El rectangle priority
audio El channel f priority

Description
desc r ip t ion El content
hide-content El

create a presentation from named video
create a presentation with empty footage

concatenation of El followed by E2 .

El followed by E2, no duplication of common footage
intersection with only common footage of El and E2
difference with only footage of El that is not in E2
El and Ez start simultaneously and play concurrently
El and E2 play concurrently and end simultaneously
Ei is played if test evaluates to i
repetition of El for duration time
stretch duration of El by factor
limit duration of El to time
transition effect between El and E2 for duration t
components of El that match query

display El with priority in rectangle
output El to channel with priority

annotate El with description of content
hide the content annotations of El

user interaction through hypermedia links, menu selections and data entry. The funda-

mental building blocks of an MHEG presentation are content objects that represent an

atomic piece of a particular media type. Layout and synchronization of content objects

is described with virtual coordinates and virtual views that must be mapped t o real co-

ordinates during presentation. State transitions in the playout of content objects, e.g. a

completion event, can be used t o trigger other presentation actions. The MHEG stan-

dard is rich enough to represent presentations created by many diverse authoring tools,

including Muse, OCPNs, and MAEstro.

2.1.7 Discussion

Early multimedia systems, such as Muse and MAEstro, are designed t o use the same pre-

sentation engine for both authoring and playback. The authors can know the limitations

of the presentation computing environment and can tailor content descriptors appropri-

ately [19]. A viewer that uses the same presentation engine and the same or similar

computing environment is likely t o perceive the presentation as the author intended. On

the other hand, the MHEG standard is predicated on the exchange of presentation de-

scriptors between heterogeneous computing systems. But distribution and heterogeneity

make it difficult for the author t o tailor the content for playback. When a viewer attempts

t o view a presentation over a heavily loaded network or on a machine with lower perfor-

mance than the authoring platform, there is a large probability that the presentation will

not be acceptable. Even when the presentation engine can adapt the presentation quality

t o the available resources, the engine has no information about how t o balance the loss of

playback quality between different aspects such as spatial resolution and frame rate.

Current authoring and playback tools specify only presentation goals and not presenta-

tion QOS. The presentation engines take an ad hoc approach t o managing QOS tradeoffs.

These tradeoffs are described in detail in the next section.

data a-*
inputs outputs

a
invokes ;

(what)

Figure 2.4: Abstract model of a real-time presentation.

accommodating resource constraints

relax requirements enhance availability

storage optimiz resource reservation

data compression I I code optimization

Figure 2.5: Overview of presentation techniques.

2.2 Presentation Techniques

Figure 2.4 shows an overview of the problems in multimedia system design. A presen-

tation algorithm must solve three problems: how t o compute multimedia outputs, when

t o compute them, and what system resources t o use. The next sections survey how

these problems are solved in existing multimedia systems. Section 2.2.1 discusses basic

algorithms for computing multimedia outputs from stored data. Section 2.2.2 describes

common algorithms for synchronization, i.e., control of when outputs occur. Resource

constraints can be met by either reducing presentation resource requirements or increas-

ing resource availability as suggested in Figure 2.5. Approaches for relaxing presentation

resource requirements are described in Sections 2.2.3, 2.2.4, 2.2.5, and 2.2.6. Resource

reservation techniques t o assure resource availability are described in Section 2.2.7.

2.2.1 Output Computation

An important task in planning a presentation is t o identify data sources and sinks and t o

determine what computation is needed t o connect them. For example, presentation of an

MPEG video requires reading the file, decoding the video stream, converting each frame t o

the color map and dimensions of the output window, and copying the da ta t o the output

framebuffer. These steps are typically organized as a pipeline of (possibly distributed)

processes and some of the processing may be performed by specialized hardware. In any

case, the choice of a computation algorithm directly determines the values tha t are output

during the presentation. The computational steps in a presentation can be can classified

in the following categories:

a storage access

a transport of data

a compression and decompression

a manipulation of content

a output device access

As discussed in the introduction, i t may not be possible t o represent the intended

output values perfectly. For example, a black and white display cannot reproduce a color

image, and a low resolution display cannot reproduce finely detailed images. Instead

of a single correct computation for connecting sources t o sinks, there are many possible

computations that approximate the intended output.

The conversion from source encoding t o an output representation can affect many

aspects of presentation quality. In audio presentations, converting t o a smaller number

of bits-per-sample introduces more noise. Resampling an audio stream a t a lower rate

results in the loss of high audio frequencies. Even the volume of an audio presentation

can be affected by data processing steps. For images - such as text displays, still pictures,

graphics and video - the output computation affects color fidelity, brightness, contrast,

resolution, image noise, visual artifacts, and overall image proportions. The presentation

planner must choose among the approximate computations, one which meets QOS goals

with available resources. The following sections discuss techniques that expand the range

of options.

2.2.2 Synchronization

If acceptable computations of presentation outputs have been identified, then the question

is when t o execute those computations. The schedule for when output events should

occur is defined both by the authoring tools and by interactive events. Schedules may be

classified in three categories:

periodic

scripted

event-driven

A periodic schedule specifies a constant time period between output events. If the

schedule is not periodic, but the output times are known in advance, we call it a scripted

schedule. Finally, if output events are triggered by user interaction or other external

events, we call the schedule event-driven. A presentation schedule may be constructed as

a hierarchy of periodic, scripted and event-driven schedules. For example, an information

kiosk might present video segments according to a scripted schedule while each single

video segment has a periodic schedule for frame output events.

Event-driven schedules can be realized with an event-loop algorithm that invokes a

handler for each external event. The handler completes its work quickly, possibly by

forking another process that may run concurrent with the event loop. Typically, the

initiation of a presentation in response t o user interaction should occur as soon as possible,

while the remainder of the presentation is defined by a periodic or scripted schedule.

MHEG and other interactive multimedia documents support event-driven schedules, but

it may be easy to derive a new scripted schedule from the MHEG specification in response

t o each user interaction.

compute (c i)
exit 0

Figure 2.6: Clock-driven synchronization.

Figure 2.6 illustrates a simple clock-driven synchronization algorithm. The presenta-

tion is described a s a sequence of pairs (ci, ti) where c; is an output computation and ti is

the ideal time for the computation to occur. For each output computation, the algorithm

waits for the clock to reach the ideal time before running the output computation. For

periodic events, this loop can be implemented with a periodic timer interrupt. This algo-

rithm provides two guarantees: that outputs are generated in order and that no output

happens early. Unfortunately, it does not guarantee that any output is generated!

Despite these minimal guarantees, the clock-driven algorithm is perfectly adequate for

presentations where the latency for output computations is easily bounded. MAEstro

and many other multimedia systems take this approach in environments where the time

required t o access and process da ta for each output is negligible relative t o the time

between events [19]. But what should be done if the access and rendering time distort

the presentation timing a s shown in Figure 2.7? Not only does the title screen persist

too long, but if the image is displayed after the presentation time for the end slide it gets

immediately overwritten!

If process latencies are predictable, one way t o correct the output timing is t o modify

the schedule of output times, compensating each by the anticipated latency [19]. If the

latencies are variable, but bounded, it may be possible t o hide the latency by prefetching

from storage as discussed in Section 2.2.6.

scheduled ! I

eve- rp2 access storage

render text decompress render text

render imape - - - - - - - - - - -- 0-
actual
events

>
presentation

< *-
actual duration of title slide duration

of image

Figure 2.7: Output delay from process latencies.

JI

wait (di)

Figure 2.8: Duration-driven synchronization.

An alternative t o the clock-driven algorithm is t o wait explicitly for the intended du-

ration of a presentation before triggering subsequent actions. Figure 2.8 shows a duration-

driven synchronization algorithm that executes computation c; and then waits for a du-

ration d; before continuing. A computation may fork a child process to execute a sub-

presentation recursively and in parallel, but it must then wait for the child t o complete

before it completes itself. This type of algorithm is described for executing an OCPN [43].

Duration-driven synchronization guarantees tha t the output of every computation c; is

not overwritten early by the next output of the presentation thread. Since other presen-

tation actions may be occurring in parallel, this synchronization algorithm only preserves

a partial order of presentation events.

Duration-driven scheduling may be combined with clock-driven scheduling and event-

driven scheduling. For example, most multimedia players handle user inputs that start,

stop, reposition and change the rate of presentation. The event-handling loop interprets

the user input and recomputes parameters for a clock or duration driven algorithm. In

a duration-driven algorithm, some presentation computations may be implemented by a

clock-driven process.

So far, we have assumed that the synchronization algorithms affect only the timing of

computations and not the results. If it is more important to complete computations on

time than t o complete all computations, then a clock-driven synchronization algorithm

may be used to skip computations. For example, instead of waiting for the next presenta-

tion time in sequence, the algorithm might skip all but the last computation whose time

has past. This guarantees that every computation was current when it was initiated. If all

computation latencies are bounded by a duration d then this algorithm guarantees that

every computation completed is not more than 2d late. we call this type of algorithm

strict clock-driven synchronization because it allows a strict limit on timing error with

respect t o the clock.

If some computations must be skipped, i t is desirable t o have more control over which

t o omit. In continuous media presentations bandwidth limitations frequently limit the

sample rate that can be transmitted and decoded. Several researchers have described the

use of software-feedback techniques to determine the available bandwidth and t o adapt the

scheduled sample rate accordingly [66, 131.

In a distributed system, there is no single clock that can be used t o control synchro-

nization. Our ability t o synchronize processes executing on different machines is limited

by the communication latency between the machines, and by the variation in clock rates.

Clock rates can vary in the parts-per-million range with normal temperature changes [55].

These uncertainties make it difficult to assure that media streams from different sources

begin a t the same time and proceed a t the same rate. One solution is t o use a network

clock-synchronization protocol, such as NTP, t o synchronize distributed clocks within a

few milliseconds [55]. However, in most presentations of stored da ta the output devices

are attached t o a single client machine. In that case, i t is a simple matter t o control

synchronization via a local clock on the client. Feedback algorithms have been described

that coordinate timing between servers and the client [13]. Section 2.2.6 describes this

type of coordination in more detail.

2.2.3 Storage Optimizations

Video and audio data can require large amounts of storage space. For many multime-

dia applications, the da ta is immutable and storage is optimized for read access. Many

different storage architectures have been used for multimedia data, including arrays of

fast magnetic disks and optical disk jukeboxes [9, 151. The variations in throughput and

latency characteristics of such systems is very large. CD-ROM drives with transfer rates

of 1.2 MBytes per second and seek times on the order of 1 second are in common use

on personal computer systems [82]. A throughput bottleneck in storage forces either a

slow-down of the presentation or information loss through skipped data. Large storage

access latency causes delay and jitter in a presentation.

Storage optimizations are targeted a t reducing latency and increasing throughput.

Storage latency is a function not only of physical device characteristics, but also the

policies that dictate the placement of data and when it is moved. Common device charac-

teristics t o be considered include RAM access speed, bus contention delays, disk controller

overhead, seek time, rotational delay, transfer rate, mounting time for off-line disks in a

jukebox, and network communication delays. The policies of the storage system are ev-

ident in da ta layout and caching, the handling of resource contention (including CPU)

in multitasking environments, decompression and other processing requirements. Data

layout optimizations are discussed in this section. LRU and other common disk caching

policies are ineffective for multimedia presentations since the media streams are accessed

serially and the datasets are frequently too large to fit in main-memory. Instead, we dis-

cuss prefetching techniques for hiding latency in Section 2.2.6. Compression techniques

for reducing storage bandwidth requirements are described in Section 2.2.5. Resource

reservations t o avoid contention are discussed in Section 2.2.7.

Data Layout

A careful layout of da ta in storage is an important part of many continuous media storage

systems [47, 61. The goal of da ta layout is t o minimize seeks and rotational latency

between reads. Seek time can be minimized by storing the da ta stream in contiguous

storage locations. Rotational latency can be minimized by dividing the da ta into disk-

transfer units and writing these units to the next available disk sector a t the same rate

that they will be read. Yu, et al. have described an optimal placement of audio da ta on

disk that accounts for rotational latency [88].

A concurrent presentation of two or more streams, e.g. audio and video tracks, re-

quires interleaved access t o data for each stream. If the streams are t o be played out

synchronously they can be multiplexed and stored a s a single stream [63]. During play-

back, a multiplexed stream must be de-multiplexed before the da ta is written t o separate

output devices.

If concurrent streams are not multiplexed, then the disk head must be scheduled to

interleave reads from each stream. Figure 2.9 illustrates a cyclic disk schedule that reads

two sectors for one stream, seeks t o a second stream t o read one sector, then returns t o

the first. This time sharing creates two problems for real-time disk access: increased jitter

in the stream access and decreased disk bandwidth due to the overhead for seeks. While

the disk is servicing one stream, da ta transfers for the other stream are delayed. When

the disk scheduler switches streams it incurs the cost of seeking t o the other stream. The

jitter can be hidden from the presentation by introducing a buffer between the disk server

and the display process. The disk scheduling and buffering requirements for continuous

media da ta have been described by Gemmell and others [25, 21. Some of these results are

described in Section 2.2.6.

Data layout is further complicated by applications that read only a portion of a contin-

uous media stream, e.g., only the low-frequency components of a compressed video. One

approach is t o split a single media stream into base-layer and enhancement-layers [14].

For low-resolution access, an application need only read the base-layer stream. For best

resolution, an application must read the base-layer and enhancement-layer streams and

time

data transfers seeks

Figure 2.9: Interleaved disk scheduling for two streams.

combine them.

Disk Striping

Disk striping is a common technique for increasing disk bandwidth. A da ta stream is

segmented by time-slicing and the segments are written in round-robin order t o an array

of N disks. When reading the data, N slices can be transferred in parallel, achieving a

near-linear speedup of disk bandwidth [9]. Video on Demand (VOD) systems have been

built using disk striping t o provide bandwidth guarantees for many concurrent users [47, 6,

841. However, t o share bandwidth between multiple playback streams requires interleaved

service, just as for a non-striped disk.

Figure 2.10(a) illustrates some problems associated with disk striping. The da ta for

stream A is striped over only 3 out of 8 disks. If the stream is read a t 3 times the

bandwidth of a single disk, disks 1-3 will be fully utilized while disks 4-8 will be available

for other users. A request for stream B must wait until A is finished if any of its da ta is

located on the same disks. Figure 2.10(b) shows how the same requests can be serviced

with less delay using staggered striping [6]. For each consecutive time slice, staggered

striping increments the indices of the disks used to stripe data so that the full stream is

stream A

stream B

disk
1 2 3 4 5 6 7 8

disk
1 2 3 4 5 6 7 8

Figure 2.10: Simple striping versus staggered striping.

distributed across all disks. This da ta layout allows the same maximum bandwidth for

each stream without tying up any one disk for the entire playout duration.

The maximum bandwidth for a stream is determined by the number of disks that are

accessed in parallel for each time slice. Reading a stream a t a lower rate leaves the disks

underutilized since the bandwidth requirements of another stream is unlikely t o match

the particular pattern of idle disk time slices. This inflexibility can be solved by assigning

stream segments t o disks randomly instead of by striping. A random assignment of stream

segments to disks can balance the load among disks nearly as well as a striped layout, but

makes it more difficult t o provide bandwidth guarantees [54].

2.2.4 Process Optimizations

Software transport, decoding and processing of video data is often the bottleneck in mul-

timedia systems. It is often possible t o reduce the processing time by Eossless and lossy

process optimizations. An optimization is lossless if it preserves information in the da ta

stream, and lossy if some information is lost. Lossless optimizations include hand-tuning

of machine code and elimination of unnecessary data copying [45, 201. Specializations are

optimizations that depend on special knowledge of an application. For example, if it is

known that a video presentation window cannot be moved or obscured then the presenta-

tion can bypass the window system and write directly t o the display frame buffer. Lossless

optimizations do not degrade the presentation quality.

Lossy optimizations, in contrast, do affect presentation quality. For example, frame

dropping is a common technique that reduces the amount of CPU time used at the expense

of the perceived frame rate. Ideally, frames are dropped at a regular rate t o minimize the

perceived degradation of quality and as early as possible in the pipeline t o minimize

handling costs [13]. Frame dropping is one example of subsampling a da ta stream in

time. Other examples include subsampling an audio stream and spatial subsampling of

an image [18]. Another lossy optimization is the use of a less expensive and lower-quality

dithering algorithm. For example, an error-diffusion dither generally yields the best image

quality for pixel-depth reductions, but a simple truncation of pixel values to the required

depth is much faster [81].

2.2.5 Data Compression

Data compression is used t o reduce the storage and transport costs of multimedia data, but

these savings come a t the expense of increased processing requirements for encoding and

decoding. Typically, it is the decoding requirements that are of concern for stored data,

since encoding can be performed offline. The benefits of the compressed da ta representa-

tion must outweigh the costs of decompression when the da ta is needed. This condition

holds when storage is scarce and when available disk or network bandwidth is inadequate

for the uncompressed data stream. The bandwidth requirements of an uncompressed

digitized NTSC video stream are conservatively estimated a t 80 Mbps, which currently

exceeds the capacity of most file systems, network links, and even display interfaces.

Lossless compression techniques, such as run-length encoding, differential encoding,

and entropy encoding, remove redundant information from a da ta stream without loss of

information. Lossless techniques may only achieve a 2:l compression ratio with continu-

ous media data, but since continuous media data can tolerate some loss of information,

lossy compression algorithms have been created that can achieve much higher compression

ratios by throwing away redundant and perceptually less important information. Lossy

compression techniques include truncation, subsampling, motion compensation and the

discrete cosine transform (DCT). The Motion Picture Experts Group (MPEG) MPEG-1

compression standard uses motion compensation and the DCT in combination with lossless

compression techniques t o achieve compression ratios on the order of 70:l [49, 23, 741.

As with lossy code optimizations, lossy compression techniques are designed t o min-

imize the perceived degradation of quality. MPEG-1 compression has been optimized t o

yield VHS quality video a t CD-ROM data rates. However, the amount of compression

that is possible without unacceptable loss of image quality depends on the complexity of

images and motion in the original video. The quantization of DCT coefficients limits the

amount of high-frequency information that can be encoded and produces visible artifacts

around sharp edges where such information is needed. The motion compensation algo-

rithm cannot find good matches for every block when the original video contains complex

action as in close shots of a basketball game. With poor motion compensation, the dif-

ference encoding has a large amount of high frequency information and again, artifacts

appear in the decoded video images. The MPEG standard for encoding allows control of

the resolution, the amount of quantization, the amount of frame difference encoding, and

the search algorithm for motion compensation. As these parameters are used t o increase

compression, the loss of quality becomes greater. we have found that it is possible t o

produce useful video with 30 frames per second a t a compression ratio of 500:1, but that

the loss of resolution and other artifacts are annoying.

Compression also makes a data stream more vulnerable t o the effects of packet losses

in network transmission. For example, an MPEG video stream is typically encoded with

bi-directionally predicted or "B" frames that require both a previous and a subsequent

frame t o be decoded first as a reference. If a packet loss causes an error in the decoding of

either of these two frames, then the error will be propagated to (or prevent the decoding

of) all the intervening B frames.

Scalable video resolution may become a common requirement in future applications.

MPEG video streams may be filtered in real-time t o remove high-frequency coefficients,

producing a lower-bandwidth and lower-resolution video stream at the expense of some

additional processing a t the server [21]. Stanford University and Sun Microsystems have

data multimedia
inputs 9";'; a outputy

prefetching

P- . --v "-..- invokes ...a-'- _ . -

Figure 2.11: Abstract model for prefetching.

designed a VOD system that supports multi-resolution access to encoded video [14]. The

MPEG-2 video encoding allows both HDTV and NTSC resolution images t o be decoded

from a single stream.

2.2.6 Prefetching

Prefetching is a common technique for hiding storage latency when the access pattern is

known in advance. A prefetching process reads data from secondary storage into main

memory before the data is actually needed, as shown in Figure 2.11. When the application

tries to access the data, it is found in main memory and storage access delays are avoided.

In an earlier work we have described the problem of constrained-latency storage access

(CLSA) and identified prefetching as the generic class for solutions [70].

Prefetching reduces presentation delay and reduces jitter (variation in delay) by allow-

ing the display process t o perform a shorter computation at the scheduled output time.

Prefetching may also allow higher overall throughput, since computation may be over-

lapped with concurrent disk access. However, prefetching does incur some computational

overhead for scheduling concurrent processes.

Figure 2.1 1 suggests that prefetching and display processes can be viewed as a pipeline.

Many continuous media players are organized as a pipeline of storage access, network

transport, decoding and display processes [48, 4, 66, 13, 391. Let us generalize the idea

of prefetching t o describe any decoupling of a computation into concurrent producer and

consumer processes. By this definition, an interrupt-driven process that reads from a

buffer full

prefetched

consumed

-
time

Figure 2.12: Greedy prefetching.

live-video camera and sends the data t o a remote display process can be described as

prefetching data for the network process. The network process, in turn, is prefetching for

the display process.

Prefetching flow control is needed t o avoid overwriting data in the buffer or starving

the consumer. A wide range of prefetching techniques exist with differing methods for flow

control between producer and consumer. Examples are described below, with a citation

of where the technique is used and a discussion of the advantages and disadvantages.

Greedy Prefetching

We use the term greedy prefetching t o refer t o a process that outputs a stream of da ta t o

a queue as long as the queue is not full. A process that writes t o a UNIX pipe is viewed

as a greedy prefetching process because it does not wait for a read on the pipe unless the

queue for the pipe is full [65]. The AudioFile system uses pipe semantics t o connect an

audio playback application t o a device server using a fixed sized queue [39].

Greedy prefetching uses a simple back-pressure technique t o synchronize a fast pro-

ducer with slower consumer. So long as the queue is non-empty, the consumer is insulated

from delay and jitter in the prefetching process. But what if the consumer is faster over

some small interval of time? Suppose that da ta are passed from the producer t o the con-

sumer in 1 block units. Let r, be the rate that blocks are consumed by application demand

and rp be the rate that blocks are produced by prefetching. The rate r, may vary with

time. The rate r, will be zero when the queue is full and will be limited by scheduling

delays and by the latency for each fetch when there is free space in the queue. Figure 2.12

illustrates greedy prefetching with a queue of size 6. When r, < r,, the queue will fill up

or remain full as shown. When r, < rp, the queue will empty out. To avoid starving the

consumer, the greedy algorithm must allocate and fill enough buffers for the queue t o be

able t o satisfy demand during the worst-case interval in which the consumption exceeds

prefetching. For every interval (t l , t2) this condition can be expressed as follows:

Note that if c greatly exceeds p over some interval, this condition may require a very large

queue.

The system designer must understand the application and the storage performance

well enough t o specify how many buffers are needed to allow the prefetch process t o get a

headstart on the consumer.

Consider the case where a prefetch process reads continuous media data from disk and

a display process consumes this data at a constant rate. If data is read a sector a t a time

from disk, a minimum of two sector-sized storage buffers are needed t o allow the consumer

t o read da ta from one as the greedy prefetching algorithm copies data into the other. Let

the constant demand rate be rc bytes/second, the disk transfer rate be rt bytes/second, the

size of a disk sector be s, bytes and the smallest unit of introduced delay (e.g. rotational

delay) be dm;, seconds. Let the da ta be clustered in segments of i contiguous sectors

on disk and the maximum bound on seek time between consecutive segments be dm,,

seconds. Gemmell and Christodoulakis show that any sustainable prefetching algorithm

must use a segment size of a t least

disk sectors and must allocate a t least

n h 12 (dm, + C i n +
ss rt

sector-sized buffers [25].

One of the advantages of greedy prefetching is that producers are automatically blocked

when consumers block so that no da ta is lost. However, this feature can also be a disadvan-

tage when an exception causes the delay of a consumer process. With greedy prefetching,

when the consumer stalls, the entire pipeline is held up. Any attempt t o resynchronize

the presentation by skipping da ta will be delayed by the full latency of the pipeline.

Rate-Based Prefet ching

Rate-based prefetching separates prefetch scheduling from the queue space availability.

Ideally, the prefetcher produces data at the same rate that it is consumed so that the

queue is never empty or full. In practice, the consumer must either adapt t o the prefetch

rate or use feedback to adjust the rate of the prefetch process. The ACME continuous

media I/O server supports connection-driven rate control, where a media output process

adapts its rate of consumption t o keep pace with a real-time file access process [4]. Rate-

based feedback techniques allow distributed prefetching processes t o be synchronized with

consumer processes [64, 66, 13, 141.

A rate-based approach is appropriate when the prefetched da ta becomes obsolete at

a predictable rate, regardless of whether the consumer process has read it. Obsolete da ta

may be overwritten by the prefetching process without waiting for the consumer. Rate-

based protocols can achieve flow control with less overhead than a greedy prefetching

approach [64]. For minimal latency communications, unreliable messaging protocols such

as UDP may be used since there is not time t o retransmit lost messages [60]. Variations

in prefetch and transport delays will produce jitter in the arrival of da ta in the queue.

The average amount of data in the queue should be sufficient t o avoid starvation when

packets are delayed. The average amount of free space in the queue should be sufficient

t o accommodate packets that arrive early without loss.

Scheduled Prefetching

Scheduled prefetching uses an explicit prefetch schedule of times to initiate the retrieval of

each object in a presentation. Many multimedia applications call for an aperiodic presen-

tation of media objects. Rate-base prefetching is inappropriate for such presentations and

a greedy prefetching approach wastes buffer space. If the prefetch latency can be predicted

for each object, then a prefetch schedule can be derived from the presentation schedule by

subtracting predicted latency from display times. By prefetching so that da ta is available

"just-in-time", the data can be displayed immediately with no buffering requirements.

On personal computers and some workstation environments, storage latency is repeat-

able and may be empirically determined by rehearsing a presentation 119, 531. Even if

some buffering is desirable to hide prefetch jitter, worst-case latency estimates may be

used to determine a schedule that prefetches data as late as possible.

If prefetch latency is unpredictable, a worst-case bound may still provide a better

prefetch schedule than the greedy approach. In a multi-user environment, a reasonable

worst-case bound may require resource reservations as discussed below.

Speculative Prefetching

Prefetching strategies cannot satisfy unpredictable application access patterns unless all

the candidate data objects can be prefetched simultaneously. Ghandeharizadeh, e t al.,

describe an interesting approach in which the start of several possible data streams are

prefetched before the user has selected which will be needed [26]. Each stream supplies the

da ta for an outgoing path from the current location in a hypermedia graph. The storage

system prefetches sufficient data for each path t o satisfy presentation demands while the

storage system seeks t o the remainder of the da ta for the path that was selected.

2.2.7 Resource Reservations

Multimedia applications have proliferated in the personal computer world in part because

most PC platforms provide a single-user environment. Without competition for resources

from other users, the performance of multimedia applications can be predictable. Even

with multi-tasking, the scheduling of multimedia digital video and audio has been suc-

cessfully achieved on single-user systems by elevating the priority of the media-handling

tasks [48].

In a multi-user environment, reservations have been used t o guarantee the availability

of resources for a real-time application. Real-time file systems have been designed that

guarantee a lower bound on bandwidth for sequential access t o a file [46, 61, 51. The Real-

Time Mach operating system allows virtual memory pages t o be "pinned-down" t o avoid

page faults [79]. Processor bandwidth may be reserved for periodic real-time tasks [51,61].

Network bandwidth reservation protocols have been described and implemented [22,2,86].

A reservation protocol describes the parameters used t o make a reservation. For ex-

ample, the Continuous Media File System (CMFS) defines a real-time session by the

maximum read size and read frequency guaranteed for sequential file access [5]. Each real-

time file in the CMFS is created with a maximum rate parameter that constrains the size

and frequency of seek times that may be incurred in all subsequent sessions that require

sequential accesses t o the file. Before a request for a real-time session can be granted,

the reservation protocol runs an admission test t o determine if its maximum throughput

and minimum buffer requirements can be met concurrently with the previously guaranteed

sessions. The CMFS disk scheduling algorithm reads (writes) enough data for each session

during a cycle t o make sure that none run out of da ta between cycles. Since the algorithm

is conservative in estimating the amount of da ta needed t o avoid starvation, the FIFO

queues for each session will eventually fill up (empty out) , reducing the scheduling policy

t o a round-robin schedule of greedy prefetching (write out). Non real-time file accesses

may be handled during slack time before the next cycle starts.

Although processor, network and disk resources might seem very different, many of

the reservation protocols are very similar. The Continuous Media (CM) Resource Model

provides a general characterization of workload requirements for a resource [2]. A real-

time file session is characterized by the unit of da ta access, guaranteed rate of delivery,

and the workahead or number of units that may be delivered ahead of schedule t o allow

servicing bursts. Processing reservations are characterized by the duration of a processing

task, rate of periodic task scheduling, and scheduling workahead. Requests for real-time

network connections specify message size, rate, and workahead. Processing and network

resources are also characterized by the logical delay between the time a work unit arrives

at the resource and the time that it is completed.

The reservation protocols cited above provide session guarantees beginning when the

request is granted and continuing as long as the requester keeps the session open. Scripted

presentations that include access t o many separate files may find it expensive t o open

sessions on all files before beginning the presentation. Conversely, if the presentation is

begun before all sessions have been guaranteed, then the failure of a later session request

may make it impossible t o finish the presentation. It may be necessary t o extend existing

reservation protocols t o allow reservations that begin a t a specific future time and have

finite duration.

The problem of scheduling a set of tasks with time and resource constraints is known t o

be NP-complete [38]. While effective heuristic algorithms exist for this problem [91], they

are sensitive t o the uncertainty in task completion times. Worst case latency estimates

can be so large as t o make schedulability analysis impracticable.

The Spring Kernel provides dynamic scheduling of new real-time tasks in parallel with

the execution of previously guaranteed tasks [72]. The principle feature of its scheduling

approach is a functional partitioning of CPU and other resources between a planning sched-

uler and the dispatching and execution of guaranteed tasks. At any time, the scheduler

has knowledge of the currently executing set of guaranteed tasks, their resource require-

ments and worst case execution times. When a new task arrives, the scheduler uses a

heuristic algorithm t o find a new schedule that avoids resource conflicts between tasks. If

a feasible schedule is found, the new task is added t o the guaranteed set and the old sched-

ule replaced with the new. In complex scripted multimedia presentations, the number of

storage access tasks t o be scheduled can be very large and may swamp the capabilities of

the algorithm used in the Spring Kernel. The complexity of their heuristic algorithm for

scheduling a set of n tasks in a system having r resources is O(rn2) [91].

Blake and Schwan [8] report on another dynamic scheduler that uses a bin-packing

approach t o provide real-time guarantees (if possible) for dynamically occurring tasks.

As in the Spring Kernel, resources may be allocated exclusively by the scheduling pro-

cess t o avoid contention. Scheduling of periodic processes as a group and processes with

precedence constraints is also supported. The bin-packing approach seems more appro-

priate for the advance reservation needs of a scripted application but is even more likely

t o be overwhelmed by large scheduling problems. Blake and Schwan claim only that the

scheduling overhead is reasonable for moderate system loads of ten different deadline bins

per processor.

Distributed systems may have concurrent applications with conflicting resource reser-

vation requests. Since a reservation is a form of lock acquisition, the results of distributed

transaction theory are applicable to distributed resource reservation protocols. In addi-

tion, since the resource requirements for a presentation may be interdependent, it may

be impossible t o choose the optimal reservation parameters until a minimally acceptable

set of reservations has been granted. The SRP protocol for distributed transport and

processing of continuous media consists of two phases: a resource acquisition phase t o

ensure that a feasible set of reservations can be granted followed by a relaxation phase

t o minimize end-to-end delay [2]. If the reservation protocol were to request too small

an end-to-end delay value in the first phase, the request might not be granted due t o an

inability t o schedule high-frequency (low-delay) service a t some bottleneck resource.

2.3 Summary

Real-time scheduling is important for video presentations where a pause of 1/15th of

a second is noticeable. But how much timing error can a presentation tolerate? The

multimedia systems surveyed do not specify constraints on the accuracy of timing or even

output values. Instead they use ad hoc techniques t o approximately reproduce content

with available resources and scheduling mechanisms. The number of techniques identified

in this survey comprise a large space of variables for a multimedia system designer. The

choice of techniques depends not only on resource availability but on the tradeoffs between

different aspects of presentation quality. For example, a higher video frame rate may

be achieved with lossy compression by reducing spatial resolution. An ad hoc choice

technique benefit cost

Figure 2.13: Summary of design technique benefits and costs.

.- -
m
4 4

a z
8

C
0 .-
3
.l
&

2

8
.S
Q

Q

-
E

M
c
.- "Y

a -

2'
+ -

"Y

8

continguous disk bandwidth storage specialization

multiplexing disk bandwidth specialized composition

striping disk bandwidth storage specialization

lossless compression storage, bandwidth codec overhead

lossy compression storage, bandwidth codec overhead, information loss

lossless optimizations CPU bandwidth code specialization

runtime subsampling CPU bandwidth resolution, jitter

cheap dithering CPU bandwidth image fidelity

clock-driven ordered, not early clock overhead

strict clock-driven ordered, not early, runtime subsampling
no delay accumulation

duration-driven partially ordered, not early, synchronization
minimum duration guaranteed

greedy jitter, bandwidth buffer space, communication overhead

rate-based jitter, communication overhead buffer space, rate synchronization

scheduled jitter, communication overhead, schedule calculation
buffer space

dedicated resources bandwidth underutilization

priority scheduling CPU bandwidth priority analysis

bandwidth reservations bandwidth bandwidth analysis

interval reservations bandwidth schedulability analysis

of presentation techniques is not likely to perform well with a variety of content across

different hardware and resource configurations.

Figure 2.13 shows a summary of the techniques described in this chapter indicating

both the benefits and costs for each. The benefits for computation techniques are primarily

in efficient resource use. The costs are harder t o characterize. Data location techniques

require specializations for a particular access pattern that may be inappropriate for other

uses. Compression techniques require compression and decompression processing and may

result in an irreversible loss of signal quality. Processing optimizations may depend on

specialized assumptions as with the data location techniques; or information loss as with

the lossy compression techniques. The benefits of synchronization techniques appear in the

presentation timing. The output synchronization techniques provide specific guarantees

for event ordering while prefetching and reservation techniques reduce jitter due t o resource

contention. Output synchronization techniques have only the cost of interrupt handling

overhead, except that the strict clock-driven technique may also result in missed output

events. The prefetching techniques all require buffering t o hold the prefetched da ta until

it is needed. In addition, each has some overhead associated with the determination of

when t o prefetch. Reservation techniques require some overhead for an admission test and

may result in an underutilization of the resource if the admission test is too conservative.

To determine which techniques will produce acceptable presentation quality, it is neces-

sary to represent quality requirements and t o predict the quality of alternative presentation

plans. The next chapter describes a general architecture for presentation planning and

Chapter 4 describes the formal semantics of a presentation QOS specification. The systems

surveyed in this chapter lack this formal basis for making QOS management decisions.

Chapter 3

Reference Architecture

3.1 Reference Architecture Description

This chapter describes a high-level architecture for planning presentations that satisfy for-

mal QOS specifications. The terminology introduced here is used in subsequent chapters.

A QOS specification consists of a content descriptor, a view descriptor, and a qual-

ity descriptor. A content descriptor defines the logical structure and output values of a

multimedia presentation. Digital audio and video da ta have default content descriptors

associated with them that specify the sample size and rate for normal playback. Complex

content descriptors may be composed from simpler content descriptors with an editor as

illustrated in Figure 3.1. A player is used t o browse and play-back content. The player

generates a view descriptor to specify the ideal mapping of logical content onto physi-

cal devices and real-time. The parameters of a view descriptor include window size and

playback rate. The player also generates a quality descriptor t o limit the amount of error

that can be allowed in a presentation. Some of the quality parameters include spatial

and temporal resolution, delay, and jitter. The player may derive the view and quality

descriptors from application context, user inputs, or both.

Content, view, and quality descriptors specify orthogonal aspects of a presentation, so

that any instance of one ma8y be combined with any instances of the other two t o yield a

valid QOS specification. A QOS specification is a predicate on the real-time state of device

outputs that may or may not be satisfied by a particular playback execution. Chapter 4

provides a formal and complete definition of content, view, and quality.

Figure 3.2 illustrates how a presentation manager selects a presentation plan from

Editor

I time I
1 player -1

I \Content 4 view Jquallty

QOS specification

content descriptors stored media live media

Figure 3.1: Editing and viewing multimedia presentations.

among a set of plans that compute device outputs from available da ta sources. Each

presentation plan defines the resources required for each component and also the output

quality that can be guaranteed if resource requirements are met. For example, with a

given reservation of disk and CPU bandwidth, a prefetch task that reads compressed

frames from an MPEG file can guarantee a lower-bound on the rate of frames read from

disk. The presentation manager chooses a presentation plan whose resource requirements

can be met with available resources and whose QOS guarantees are sufficient t o satisfy

the QOS specification.

Reservations are made in transactions with resource managers. The resource managers

handle reservation requests from multiple applications and may deny a request if sufficient

resources are unavailable. Some examples of resource reservation protocols are discussed

in Chapter 2.

<A->

1 QOS specification

QOS guarantees

I I
I

Presentation Plan

requirements
Resource Manager source process device A

-

Figure 3.2: Translating QOS specifications into an acceptable presentation plan.

3.2 Application Examples

This section provides two examples of applications that require sophisticated multimedia

database functionality with support for both high-quality presentations and highly inter-

active browsing. One is television news production and the other is a video database for

professional sports. These applications were identified through our relationships with local

industry. The key characteristics of these applications are the variation in QOS require-

ments for viewing and the need t o share resources. Unlike video-on-demand applications

that deliver uniform quality for each user, the demands of television news editors vary

considerably depending on the task. A studio can support more concurrent users with

a given set of resources by allocating resources according to actual QOS requirements

than by allocating the resources equally. In the professional sports setting, a video player

can support concurrent views more effectively if the QOS requirements for each view are

explicitly specified.

3.2.1 Electronic News Gathering

The first example is Electronic News Gathering (ENG), which is expected t o replace older

analog video production technology in the broadcast news industry. Advances in computer

and network technology have the potential t o revolutionize the T V production industry

by providing integrated support for the functions that are supported separately in analog

Editing Workstations

Figure 3.3: Architecture for a network-based digital television studio.

production studios. A digital television studio provides the functionality of analog studios,

but with a single high-bandwidth data network replacing many separate dedicated da ta

and control channels, and specialized software replacing expensive hardware for special

effects and control.

The architecture of the studio, as sketched in Figure 3.3, consists of multiple database

servers connected t o editing and control workstations via an ATM network. Media input

and output connections are made through workstation I/O devices, possibly on dedicated

110 servers. Software on each machine provides bandwidth guarantees for real-time inter-

process communication.

The digital TV studio allows many users to work concurrently with random accesses t o

the database of continuous media. In contrast, analog video production relies on a master

copy of each video tape that can only be accessed serially by a single user. The primary

functions of the studio consist of loading input media, editing content and specifying view

and quality parameters for live output. The format and access characteristics of the input

da ta are summarized below.

An NTSC color video signal can be digitized using &bit samples a t three times the

color subcarrier frequency to yield an 80Mbps datastream. This figure is a reasonable

estimate of the bandwidth requirements for a production studio, since compressing the

da ta by an order of magnitude will introduce visible artifacts with today's compression

technology. When data is loaded into the database from live sources, i t must be captured

and written at this rate.

A single day's news-feeds might constitute 10 hours of video and require up t o 360GB

of storage. The studio can be expected to have many terabytes of archival video on site.

A single user may be interested in only an hour of video data and thus might be able t o

work effectively with a 35 GB partition of the database.

Once in the database, video data is immutable. This constraint simplifies sharing of

the data, since the same segment of a video may be included by reference in independent

content descriptions without making independent copies. Playback views can require the

simultaneous presentation of multiple video segments with one or more audio tracks. The

first time a user requests such a presentation, the database will need t o retrieve all the

da ta streams concurrently. The aggregate bandwidth will be the sum of the bandwidths

required for each individual stream.

Input capture must occur concurrently with editing and production in the studio. In

particular, live feeds must be captured, even as they are passed through for broadcast, so

that important events that occur during other stories or commercial interruptions are not

lost and can be played back from storage.

Video tape recorders include time codes with every frame that tell the time at which

the frame was captured. The information from these time-codes must be preserved when

the da ta is loaded into the database, though it may be more useful t o use them for

indexing rather than leaving them embedded in the data stream. These time codes can

be used t o automatically resynchronize video with its associated soundtrack. Similarly,

when multiple cameras are recording the same proceedings, the timecodes provide a way

t o accurately cut between cameras on playback without losing audio synchronization. In

addition t o the time codes, video da ta will have annotations such as title, author and

location of shoot. These annotations can be used t o query the database for appropriate

video segments.

The persons who edit the news need t o retrieve useful video footage, load new data,

interactively view the data, and compose selected segments into new video content de-

scriptions. Interactive viewing includes manual fast-forward and reverse control t o find

visual and audio cues. A precise, or high-quality, playback rate is not as important during

this interactive search as it is during normal-speed presentation. Interactive viewing does

require that full frames be retrieved without reading the entire da ta stream serially from

storage, since the latter might need several orders of magnitude more bandwidth than

normal-speed playback.

Content composition operators include sequential cuts from one data stream t o an-

other, parallel compositions such as lip-synched audio or voice-over narration, spatial

layout of multiple regions cf a display, and combination of inputs, including transitions

such as wipes and fades.

For reviewing the compositions, presentation must be real-time with broadcast-quality

signal reproduction and synchronization of media elements. The products of the editing

process are content descriptors. These descriptors specify the media selections and compo-

sitions t o be performed for playback. In contrast t o the raw input media, these descriptors

are viewed as mutable da ta that are updated in place. After creation of a content descrip

tor, committed versions may be viewed as immutable in order t o facilitate sharing among

editors. Eventually, a complex descriptor may be simplified by copying the da ta refer-

enced into a contiguous space: a process sometimes referred t o as "flattening". However,

flattening results in the loss of the original context of the component media segments.

The digital television studio is representative of large multimedia systems with net-

worked computing resources and multi-user execution environments. Real-time constraints

are harder to meet in such systems because of the greater number of factors that contribute

t o delay, including network communications and contention for resources between com-

peting users. The studio requirements for concurrent multi-user access t o stored video

da ta argues for a global namespace and shared storage resources. Because the video data

consumes large amounts of bandwidth and storage, it is not possible t o replicate the entire

database for each user. At the same time, it will almost certainly be necessary t o do some

caching of data when a user may need t o search interactively through the da ta many times

without interference from other users.

Database technology t o search for and retrieve data is needed in the digital television

studio. Searching requirements include support for content-based queries that specify

attributes such as objects, people, shapes and textures. Browsing requirements include

support for logical views of multimedia data and optimized real-time presentation. Today's

database systems are only beginning t o address these needs.

ENG provides a good example of the need for formal QOS specifications. During

searching and editing functions, it is desirable to support many concurrent streams a t

various play rates and resolutions. For example, suppose that a visual search of NTSC

video a t ten times normal speed can be effectively performed with 1/4 the resolution (1/16

the bandwidth), but cannot afford t o drop more than 9 frames in a row because of the risk

that an important visual cue would be missed. The result is that the presentation has low

resolution requirements, but must still display 30 frames per second. A QOS specification

appropriate t o the playback task tells the system where resource use can be reduced

without an unacceptable degradation of presentation quality. Such resource optimizations

allow more users t o share resources without conflict. The specification language must

be rich enough t o express requirements for resolution, sample rate, image quality and

potentially many other aspects of quality that can vary in a presentation.

3.2.2 Digital Video Support for Professional Sports

Professional sports teams already have extensive analog videotaping and video production

capabilities. Multimedia computing promises to extend these current capabilities with au-

tomated media annotation, ad-hoc query facilities, and random access review and editing

capabilities.

Our local National Basketball Association (NBA) franchise, the Portland Trailblazers,

47

Figure 3.4: Synchronized views of sporting action.

regularly videotapes each home game with three or more separate cameras and mIcro-

phones. The cameras offer different viewpoints onto the action and the microphones

provide sound tracks from either end of the floor and from the game commentary. These

sources provide approximately 6 hours of video per game.

The analog videotaping provides accurate time-codes in each video stream to allow

re-synchronization of the separate recordings. Further annotation can be derived from

manual statistics gathering, which records player names and actions such as blocked shots,

assists, field goals, and free throws.

These video recording and annotation functions can be incorporated into a digital

multimedia system with better support for interactive browsing. As with the ENG example

in the last section, the video recordings may be stored as immutable data and indexed

through time and annotations. The statistics annotations, which must be recorded in

near-real-time, allow ad hoc queries for time intervals that include selected actions and

players. A query might also specify one or more camera views to be displayed with accurate

synchronization as illustrated in Figure 3.4.

A professional sports team needs to study and evaluate the performance of both its own

players and its opponents. Quick access to replays involving a particular player can help

to identify and confirm patterns of behavior. Once an interesting play has been located,

interactive control of the temporal display point and slow motion replays are useful for

seeing actions that are easily overlooked at normal play speed. The multiple viewpoints

shown in Figure 3.4 reveal details that would be hidden in anyone camera view.

As with the ENG application discussed in the last section, digital video support for

professional sports requires visual searching and concurrent playback of multiple streams

from large video databases. During a fast forward search, it may not be possible t o provide

full spatial resolution without frame dropping. Similarly, it may not be possible t o provide

multiple concurrent video displays with full resolution and maximum frame rate.

A QOS specification can express the relative importance of synchronization, resolution,

frame rate, and image quality. For example, t o view a basketball game, the user might

desire one large video display window and several small windows t o monitor the other

camera angles. If the user selects one of the small windows, its content is subsequently

displayed on the large window. This change affects both view and quality parameters. The

large window would require the highest quality in all aspects since this would be the main

focus of attention. The smaller windows have significantly lower quality requirements in

every aspect and a QOS specification is needed t o instruct the system how t o achieve this

unequal allocation of resources.

3.3 Summary

The previous examples illustrate the need for intelligent control of presentation QOS,

both within a single application and between competing users. The key features of these

examples are the variation in QOS requirements for concurrent presentations and the

need t o handle resource overloads. Chapter 4 describes a general method for defining

presentation QOS and provides a detailed semantics for QOS specifications using content,

view, and quality descriptors. The content descriptors support the major composition

operations required by our application examples. Playback requirements for rate control

and image scaling can be expressed through the view descriptor. Requirements for image

quality, resolution, frame rate, and other parameters can be expressed through the quality

descriptor.

Chapter 4

Specification of Presentation Quality

This chapter presents a formal semantics for presentation QOS. The method for defining

these semantics consists of 3 steps: defining an ideal presentation, choosing an model for

describing error in an actual presentation, and representing constraints on that error. The

first step is illustrated with a new language for describing complex content and for describ-

ing a presentation view of that content. The new language permits a simple definition of

an ideal presentation, but we believe similar definitions can be based on the multimedia

authoring languages described in Chapter 2. The relation between an ideal presentation

and the measurable outputs is of an actual presentation are described with an error model.

The second step identifies the properties that an error model for presentations must have

and compares several alternatives. We give a formal definition for an error model that

subsumes many of the QOS parameters suggested by other researchers. Finally, we de-

scribe alternative forms for QOS constraints based on the error model. Section 4.4 gives

a formal semantics for a conservative example of QOS constraints.

The purpose of these formal specifications is t o enable system designers t o reason about

the correctness of QOS management algorithms. The prototype described in Chapter 5

demonstrates that the definitions of content, view, and quality given in this chapter can

be practically applied. The method used t o develop these definitions can be applied t o

define QOS semantics for other authoring models and less conservative constraints.

4.1 Z Notation

We use a subset of the Z (pronounced "Zed") specification language as defined in The Z

Reference Manual [69] and augmented with the standard arithmetic and calculus operators

and relations defined over the set of real numbers R. The definitions of syntax and notation

given here should be used as a reference while reading the rest of the chapter.

The example below shows a global declaration of a schema type S. A Z schema type

consists of a signature of typed variables together with constraints on those variables. A

declaration v : S says that v has schema type S and the components v.x and v.y must

obey the constraints for x and y respectively in schema S.

Other global functions and constants can be declared with an axiomatic description.

The following example declares that length is a function from schema type S t o the set of

real numbers and that , for all variables v of type S, length v is the difference between the

y and x components of v.

length : S --, R

V v : S length v = v.y - v.x

Free type definitions declare type constructors and arguments that generate a new

type. For example, a Tree is either a leaf or a branch with an integer value and two

subtrees. The type constructor branch is a function from a 3-tuple of an integer and two

Trees t o a Tree.

Tree ::= leaf I branch((Z x Tree x Tree))

The Z language includes common notation from set theory and first-order logic. The

brief definitions here are for additional notation that may be unfamiliar.

S : P X

X H Y

X - Y

X * Y

dom f

run f
min S

max S

seq X

0
head s

tail s

V x : T e P

3 x : T e P

(let x == El l E2)

{ x : T I P)

{ x : T I P o E)

S is declared as a subset of X

binary relation on X and Y

total function from X t o Y

partial function from X t o Y

domain of the function f

range of the function f

the minimum of a nonempty set of numbers S

the maximum of a nonempty set of numbers S

a finite sequence with elements of type X

the empty sequence

head of sequence

tail of sequence

for all x with type T , P is true

there exists some x with type T such that P is true

let x be an abbreviation for El in E2

the set of all x such that x has type T and P is true

the set of all E such that x has type T and P is true

Where evaluation order for these expressions is unclear we have used parentheses to

provide an unambiguous interpretation. We frequently use the last two set expressions

above t o specify a set of tuples, in which case the declaration t o the left of the vertical

bar is a list of tuple elements and their types.

4.2 Content Specification

To provide a concrete example of presentation QOS semantics, this section defines a

da ta model for specifying the content of multimedia presentations. The model supports

composition of audio and video data t o create complex presentations. Other media such

as text and still images may be included by modeling them as video stills with non-zero

duration. This data model can be extended t o support user interaction by making content

specifications depend on the timed sequence of user inputs, but we have kept it simple

so as not to distract from the main task of defining presentation quality. Because our

subsequent definition of quality is independent of the content description model, it will

apply t o more complicated models.

Our content specifications define a set of logical output channels and the acceptable

real-number values for those outputs that may vary continuously with time. An important

feature of this model is that the audio and video specifications may have infinite resolution.

For example, the visualization of a continuous function whose values can be computed

rather than read from storage is limited by the computational resources and the display

device, but not by the content specification. Our content specifications provide physical

da ta independence since they do not describe the representation of source data.

4.2.1 Content Descriptors

The specification begins with a declaration of two types: real numbers and integers. Digital

inputs and outputs will be declared as integers, but nearly all other quantities will be

modeled as real numbers. Real numbers are used for the specification of logical values t o

avoid placing an artificial limit on the content resolution. The reals are declared as a basic

type and integers are declared as a subset of reals:

[Rl 21

Z c R

The Interval schema gives a start position and an interval extent. These are used for

both clipping intervals and linear transformations, as described later.

Interval

start : R

extent : R

To make it easier t o treat outputs uniformly, a single schema describes output dimen-

sions. This schema must contain the maximal set of dimensions for all output types. For

specification of audio outputs, the x and y intervals are unimportant as long as they have

positive extent. The Space schema specifies intervals for t, x, and g coordinate dimension

and a r interval for the output range. For example, the dimensions of a video source are

described with a Space that stores the start time and duration in the t interval, the image

dimensions in the x and y intervals, and the range of signal values in r.

Space

t : Interval

x : Interval

y : Interval

z : Interval

A Content descriptor is a recursive construct built from basic audio and video sources.

Each audio, video descriptor defines a single logical output. More complex content may

be specified using clip, transform, cat, synch, and select descriptors. The LOutput type

is used in the select descriptor to reference a particular logical output. To distinguish

logical outputs, each LOutput is identified by its media type, mAudio or mVideo, and by

an integer.

LOutput ::= mAudio ((Z)) (rn Video ((Z))

Content ::= audio((Space x (R -+ R)))

I video((Space x (R -+ R --, R + R)))

I clip((Space x Content))

(tmnsform((Space x Content))

(cat ((seq Content))

1 synch((seq Content))

1 select ((LOutput x Content))

The audio descriptor takes a pair with a Space descriptor and a function from a real

time coordinate to a real z value. The domain and range for the function are specified

with the Space descriptor. As described in the following sections, the resolution of a

presentation is limited only by an actual implementation on digital outputs. For example,

the sine function could define an audio source with no implied limit on the resolution of

the signal. The video descriptor also takes a pair with a Space descriptor and a function,

but the video source function requires additional real coordinates for x and y. Again the

domain and range for the function are specified by the Space descriptor. For simplicity,

this definition supports only monochrome video, but the same approach can be generalized

t o specify a tuple of values a t each point for color.

Figure 4.1 provides an example of a content descriptor. The leaves of the tree consist

of two video descriptors and the one audio descriptor. The first video descriptor references

an external da ta source, camA, and declares that image values range from 0 t o 256 and are

defined over t values from 0 t o 115, and (x, y) pairs from (0,O) to (320,240). The second

video source named camB is defined over t values from 0 t o 53, and (x, y) pairs from (0,O)

t o (640,480). The audio source micA has values ranging from 0 to 256 that are defined for

time values from 0 t o 100. The first video is scaled by a factor of 2 in x and y t o match the

dimensions of the second video and is offset by -100 so that the clip can begin a t logical

time zero. The second video and the audio are both offset for synchronization with the

first video. The video presentation is assembled by concatenating a clip of seconds 0-5

from the first transformed video with seconds 5-8 from the second, followed by the clip of

seconds 8-15 from the first again. The result is then synchronized with a clip of seconds

0-15 from the transformed audio.

The transform, clip, cat, synch, and select descriptors support stretching and shrink-

ing, cut, paste, synchronization, and selection of logical outputs. The formal meaning

of each descriptor is given in the next subsection. These descriptors are very similar

t o the algebraic video operators described in Chapter2 [85]. Our cat is similar to their

conca tena t ion operator. Our transform and synch descriptors are similar, but more

general than their s t r e t c h , 11, and 2 operators. They support additional features, such

as transition effects from one video segment to the next, but do not provide a formal

presentation semantics. Our definition of a small set of very general content descriptors

makes it easier t o describe a formal semantics, while still supporting the composition of

useful and complex multimedia presentations.

Figure 4.1: Content descriptor example.

4.2.2 Semantics

The meaning of a content descriptor is defined by a set of allowed logical output values for

every point of the logical output space. Let the Interval function I return the set of real

numbers in an interval. Our definition of an interval includes the start point but not the

end point. Then a point (x , y , t) is in the logical space s if (x E I s.x) A (y E I s .y) A (t E

I s . t) .

I : Interval + P R

I v = { r : R I (v.start 5 r) A (r < v.start + v.extent) } t-
The Interval type can also describe linear transformations. For any Interval i , t r i is

the linear transformation that maps the unit interval onto i and utr i maps i onto the unit

interval. For example, if i s tar t = 3 and i.extent = 2 then t r i 0 = 3 and t r i 1.1 = 5.2.

t r , utr : Interval + R + R

tr i x = x r i.extent + i.start

I utr i x = (x - i.start)/i.extent

Content descriptors constrain logical output values only during explicit intervals. For

example, the content descriptor in Figure 4.1 allows any output values before logical time

0 and after logical time 15. The functions start, end, and duration are used t o reference

the logical time interval over which output values are constrained by a content descriptor.

The logical start of a content descriptor is the minimum time t a t which some output

value is not acceptable! The logical end is the minimum time t such that no output value

is constrained for times greater than or equal t o t.

Content descriptors also constrain only a finite number of logical outputs. In Figure 4.1

only two logical outputs are constrained and we refer t o these two logical outputs as

mAudiol and m Videol. All other LOutput descriptors refer t o unconstrained logical

outputs. The function num takes a logical output type and a content descriptor and

returns the integral number of logical outputs of that type that are constrained by the

specification. The restrict function is used to guarantee that a number is within an interval.

The function restrict takes an Interval and a number and repeatedly subtracts or adds

the interval extent t o the number until it can return a value within the interval.

start, end, duration : Content -+ R

num : MType + Content + Z

restrict : Interval + R -4 R

start c = min { t : R 1
1 (Vl : LOutput; x, y, z : R l (1 , x, y, t , z) E logical c))

end c = m i n { t : R I V t i : R o (t s t ') +

(Vl : LOutput; x, y, z : R l (1, x, y, ti, z) E logical c))

duration c = end c - start c

num m c = max { n : Z) 1 (V x, y, t , z : R (m n, x, y, t , z) E logical c) }

restrict i x = ((x - i s t a r t) modulo i.extent) + i.start

The meaning of each of the content descriptors is captured by the following definition

of a function for logical content. For a given content descriptor, the logical function returns

a relation between a point in the logical output space and the acceptable output values for

that point. The expression (1, x, y, t , z) E logical c means the content descriptor c allows

the logical output 1, a t point (x, y) and time t to have value z . Note that specifications

z z
#:$; $,:

Sg8.6 1..~,~,

9 %~<

acceptable values

1

cat (c, c)

Figure 4.2: Content semantics.

reduce the set of allowable values as illustrated in Figure 4.2. Where nothing is specified,

all values are acceptable.

logical : Content + P LValue

Zogical(audio(s, f)) = { 1 : LOutput; x , y, t , z : R I (1 = mAudio 1) A

(t E I s.t) 3 z = restrict (I s.z) (f t))

I logical(video(s,f)) = { I : LOutput; x , y , t , z : R I (1 = mVideo 1) A

I (x E I s.x) A (y E I s.y) A (t E I s.t) + z = restrict (I s .z) (f t y x) }

logical(clip(s, c)) = { 1 : Loutput; x , y, t , z : R I
(x E I s.x) A (y E I s.y) A (t E I s.t) j

(32' : R l (I , x , y, t , z') E logical c A z = restrict (I s.z) z '))

logical(tmnsform(s, c)) = { 1 : LOutput; x , y, t , z : R 1
(l , x , y , t , z) E logical c o (1 , t r s.x x , t r s.y y , tr s.t t , t r s . z z))

logical(cat()) = { 1 : LOutput; x , y, t , z : R 1 true)

logical(cat q) = logical(head q) n

{ 1 : LOutput; x , y, t , z : R I (I , x , y, t , z) E Eogical(cat(tai1 q))

(I , x , y, t + end(head q) - start (cat(tai1 q)) , z))

logical (synch(())) = (l : LOutput; x , y, t , z : R I true)

logical (synch q) = logical (synch(head q)) n
{ m : MType; n : Z ; x , y, t , z : R I (m n , x , y, t , z) E logical(synch(tail q))

(m (n + num m (head q)) , x , 311 t , .z))

logical(select(m n , c)) = { m' : MType; n' : Z ; x , y, t , z : R I
(m' = m) A (n' = 1) 3 ((m n , x , y, t , z) E logical c) (m' n', x , y, t , z))

The first predicate for logical(audio(s, f)) says that if 1 is the logical output mAudio 1

and t is within the interval s.t, then the only acceptable value for z is the function f (t) .

Otherwise, any values are acceptable for z . The predicate for logical(video(s, f)) expresses

a similar constraint for the logical output mVideo 1.

A clip(s, C) descriptor specifies that for all logical outputs, points with x , y, and t

coordinates in the Space s are constrained t o have the values specified by c restricted t o

the interval s.z. All points not in s are effectively "clipped" out and may have any value.

A transform(s, c) descriptor specifies a linear transformation of points in the con-

tent specified by c. For example, if start c = 0, duration c = 60, s.t.start = 10, and

s.t.extent = 2, then start(transform(s, c)) = 10 and duration(transform(s, c)) = 120.

The transformation descriptor transform(s, c) with all s tart fields in s equal t o zero and

all extent fields in s equal t o one is the identity transformation and has no effect.

A temporal sequence of content can be specified with a cat(q) descriptor. The content

for a member of the sequence q is logically shifted in time t o start just as the previous

content in the sequence ends. For example, a concatenation of two video descriptors results

in a new content descriptor whose duration is the sum of the parts. In general, a content

descriptor cat (cl, c2, ..., c,) defines a sequence of transition times (tl, t2, ..., t,+l), where

t; = start cl + x;;: duration cj. During each interval [t;, the logical outputs are

defined by the content descriptor c;, offset t o start a t time t;. Note that if a descriptor

cl constrains only the logical output mVideo 1, but a descriptor c;! constrains two logical

outputs mvideo 1 and mVideo 2, then the descriptor cat (cl, c2) constrains only mVideo 1

during the first interval and both mVideo 1 and mVideo 2 during the second interval.

The synch(q) descriptor specifies that a set of content descriptors all reference the same

time scale, but that their logical outputs are disjoint. For example, each video descriptor

constrains the single logical output mVideo 1. If cl and cz are two video descriptors, then

synch (cl, c2) constrains the two logical outputs mVideo 1, and mVideo 2. The behavior

of mVideo 1 is the same as specified by cl, while the behavior of mVideo 2 is the same as

c2 specified for mVideo 1. The start time for the synch content descriptor is the earlier of

the start times of the original videos, while the end time is the later of the original two

end times. The logical audio and the logical video outputs defined by a synch descriptor

are independently renumbered according t o their occurrence in the sequence of content

descriptors.

The select(1, c) descriptor offers a way t o reference only the content of a single logical

output within a complex descriptor. Where the synch descriptor aggregates multiple

logical outputs into a single specification, select(/, c) specifies only a single logical output

with the same content as c specifies for logical output I. For any logical output type

m and integer n , the logical output defined by select(m n, c) is (m 1). This maintains

the invariant that for all content descriptors c, constrained logical outputs of type m are

numbered from 1 t o num m c. If a content descriptor does not constrain a logical output

1 then select(1, c) is the null specification; all values are permissible on all outputs.

Figure 4.1 shows an example of a content descriptor in normalform. In normalform,

every descriptor is a directed acyclic graph with a synch descriptor a t the root. The

synch descriptor specifies a sequence of cat descriptors. Each cat descriptor specifies a

single logical output with a sequence of clip descriptors. Each clip specifies a portion of

a transform descriptor and each transform descriptor defines the logical dimensions of a

basic media source. A basic media source must be either an audio or video descriptor.

Every content descriptor that forms a finite, acyclic graph can be converted automatically

t o a normalform descriptor that specifies the same logical content. The algorithm relies on

the fact that audio and video descriptors can be trivially represented in normalform and

each of the other content constructors can be eliminated if their children are in normalform.

This definition of content satisfies the goal of a data model for complex presentations

except that there is no way t o relate the logical content t o actual presentation outputs.

The logical outputs of a content specification have both temporal and spatial proportions,

but they have no physical size or real duration. The next section describes how the content

is mapped t o physical coordinates by a View specification.

4.3 View Specification

A View specification allocates physical devices for logical outputs and maps logical time t o

a real-time clock. While the physical devices may present an upper bound on spatial and

temporal resolution, the view does not specify presentation quality. We choose t o define

the presentation output t o be the values of device registers written by the presentation

process. We could instead measure the analog output of audio and video devices, but

the digital-to-analog conversion is typically inflexible and presents no opportunities for

resource optimization.

Figure 4.3 shows a view descriptor that allocates a small window on a monochrome

(0,O) logical video 1

(640,480) (1280,1024)
logical physical

View

map
clock

dev Idevlaudio tr x:O,lB y:400,lB z:0,11128

tr ~0.1 clip x : O , W y:400,160 z:0,2

clip ~0,256

Figure 4.3: Example of a view descriptor.

(black and white) display for a bicycling video presentation. Although the output device

clearly limits the quality of the presentation, the view does not specify how the content is

t o be represented on the display. It is the presentation plan, as described in Chapter 3, that

determines how t o sample the source and how t o represent gray scale information. The

combination of content and view descriptors serve as a device independent and physical-

da ta independent specification of a perfect quality presentation. The idea of an ideal

presentation is formally defined in this section. The next section defines less-than-perfect

quality based on the difference between this ideal presentation and actual presentation

outputs.

4.3.1 View Descriptors

Since the details of physical 110 devices are unimportant for specifying an ideal presenta-

tion, the following declaration simply assumes that there is a set of audio output devices

AudioDev and video output devices VideoDev. A Device is either one of the audio devices

or one of the video devices. The only requirement for the implementation of a device is

that it supports writing output values a t the coordinates specified in a View.

[AudioDev, VideoDev]

Device == AudioDev U VideoDev

The logical dimensions in a content specification are generally not the same as the

physical dimensions of the view. The Output schema declares a field tr that defines the

transformation from logical t o view output dimensions and a field clip that defines clipping

bounds for view outputs. In Figure 4.3, the Output descriptor for mVideo 1 scales the

640x480 logical image by a factor of 113 and then shifts the corner of the image down

t o display coordinate (0,400). The t. values are scaled from the logical range (0,256) t o

the display range of (0,2). The clipping bounds for video match the full range of the

transformed content. The audio content is not transformed in this example. The Output

schema also allows each output t o have an independent mapping from logical time t o

real-time. However, in the implementation described in Chapter 5, an identity mapping

for time is used to preserve synchronization between logical outputs.

Output

dev : Device

t r , clip : Space

A View specifies a partial function map that assigns a subset of the logical outputs

t o physical Output descriptors. Logical outputs that are not in the domain of the map

function are ignored. The tr field is used t o transform logical time in a content speci-

fication t o a real-time clock. The clip field specifies the real-time start and duration of

the presentation. Just as the details of 1/0 devices are unimportant, the designation of a

real-time clock is left to an implementation.

I
View

map : LOutput -H Output

t r : Interval

clip : Interval

This definition of a View does not prevent us from mapping a logical audio output

t o a video device or a logical video to an audio device. While a good user interface for

view specification would prevent a user from creating such mappings by mistake, these

cross-type mappings d o not present a problem for view semantics. We simply assert that

a t each point in time, an audio signal defines a constant image intensity over its clipping

region in x and y, while a video image defines a range of values that the audio signal may

have.

4.3.2 Semantics

A content specification together with a view specification defines an ideal presentation,

where the output devices are assumed to have infinite resolution. This assumption is

necessary for a device-independent definition of quality. A presentation is modeled as

a set of DValue tuples (d, x, y, t , z) that give the z value for a particular Device d and

coordinates x, y, and t.

DValue == Device x R x R x R x R

The function ideal c v returns the relation between devices and the values specified

by a Content descriptor c and a View descriptor v. As with the previous definition of

logical content, an ideal presentation allows any device values except where constrained

by the content and view descriptors. The relation ideal c v contains all DValue tuples

(d, x , y, t , z), where the view maps a logical output I t o a device d and x, y, and t are within

the clipping bounds for dl only if the corresponding logical value is allowed by the content

descriptor c. The corresponding logical point is expressed by substituting 1 for p and

"un-transforming" x, y, t , and z back t o logical space. For example, let c be the content

descriptor shown in Figure 4.1, let v be the view descriptor from Figure 4.3, and let v

map start c onto the real-time s. Then the tuple (Screen, 0,400, s, (camA 0 0 0)/128) is in

ideal c v because the x and y coordinates are in the clipping rectangle for the video Output

descriptor and the view maps this tuple to the LValue (mvideo 1,0,O, start c, camA 0 0 O),

which is in the set logical c.

ideal : Content + View + P DValue

ideal c v = { d : Device; x , y, t , z : R I
(3 1 : LOutput; p : Output (I E dom v.map) A (v.map 1 = p) A (p.dev = d)

A (t E I v.clip) A (x E I p.clip.x) A (y E I p.clip.y) +-
(I , utr p.tr.x x, utr p.tr. y y, utr v.tr t , utr p.tr.z z) E logical c))

4.3.3 Actual Presentation

The z values in an ideal presentation can be compared directly with measurable outputs

in an actual presentation. To make this comparison easier, we also model an actual

presentation as a set of DValue tuples.

The implementation of a presentation plan uniquely determines the value for every

device a t every point and time. The schema Presentation models a discrete-valued pre-

sentation with integer functions for audio and video outputs. The audio function takes an

AudioDev and an integer clock value and return an integer z value. The video function

takes a VideoDev and integer values for the clock, x, and y coordinates, and returns the

integer value at that pixel. These definitions assume that only one output value can be

observed for each clock tick and for each video pixel. The z function provides a device

independent way t o refer t o presentation device values. The Point schema is introduced

here t o simplify notation in the next section.

r Point

x , y, t : R

Presentation

audio : AudioDev 4 P -+ Z

video : VideoDev 4 P --+ 2 -+ Z + Z

z : Device -+ Point + R

d E AudioDev j z d (x, y , t) = audio d Lt]

d E VideoDev j z d (x , y , t) = video d LxJ Lyl LtJ

The next section defines a mapping from presentation device coordinates and values

t o the ideal values specified for some Content and View. This mapping will serve as the

basis for a definition of presentation quality.

4.4 Quality Specification

Our definition of presentation quality is motivated by a few observations:

1. For a given task, the utility of a presentation can be measured empirically.

2. By definition, an ideal presentation delivers the highest utility.

3. Utility decreases as presentation error increases.

4. Utility is non-negative if users can recognize and ignore bad presentations.

The utility of a presentation is a task-dependent empirical performance measure, such

as the probability of correctly identifying a face. We define presentation quality t o be the

ratio of the utility of the actual presentation t o the utility of an ideal presentation. Quality

is unity when the actual presentation is without error and monotonically approaches zero

as presentation error increases. Although the precise dependence of presentation quality

on error must be determined empirically for each task, we suspect that many of these

relations can be modeled with a single parameterized function.

This section provides a formal definition of presentation error and a function for es-

timating presentation quality based on presentation error. The definition of presentation

error depends only on the observable presentation outputs and not on the presentation

mechanism. This ensures that the QOS specifications described later are both device in-

dependent and physical da ta independent. In particular, the definition of quality is not

based on the data throughput required for a presentation, but instead can be used to

derive throughput requirements as shown in Chapter 5.

The declaration for an ErrorInterpretation in Section 4.4.1 is the most important part

of our QOS specification because it provides an error model for describing presentation

error. Let Error[Names] be a schema with named error component functions. Each error

component function takes a device and a point and returns a real number.

ideal

I ~ . - - , - 1 m - - - - - - m

rime time

Figure 4.4: Multiple interpretations of error.

... r Error [componentl component,]

componentl, ..., component, : Device + Point + R

This declaration uses a generic construct t o represent a different schema for each set of

component names. We call an instance of some schema Error[Names] an error interpreta-

tion. An error model defines a set of error interpretations that account for the differences

between an actual presentation and an ideal presentation.

ErrorModel[Names] == (Presentation x P DValue) -+ P Error[Names]

I t is important t o recognize that an error model can allow many different error interpre-

tations for a given actual and ideal presentation. Consider the two examples in Figure 4.4.

The ideal z value for an audio output is shown as a function of time. The error between

the ideal presentation and an actual presentation can be represented as a vector function

of time, F with two error components for the r and t dimensions. On the left we show E'

for a particular time near the beginning of the presentation. The vector function <has a

large variable E, component, but the ct component is always zero. On the right side of

Figure 4.4, the error between the same ideal and actual presentations can be described

by a constant ct component and a smaller constant E , component. Both interpretations

satisfy an error model that requires E'to map points in the actual presentation t o points

in the ideal.

The example error vector function has only two error components t o describe error as a

function of time on a single audio output. To describe error in a multimedia presentation,

we need t o define such a vector for every output device as a function of both spatial and

temporal coordinates. We would also like t o be able t o describe spatial errors in x and y

in addition t o timing and z errors. Let MB be the basic error model that defines a set of

error interpretations with x, y, t , and z components that map values in a Presentation P

t o ideal values in a set S:

MB(P,S) = {E: Error[x, y , t , z] I
(V d : Device; p : Point

(d , p . x + ~ . x d p ,p .y+e .y d p , p . t + e . t d p , P . z d p + ~ . z d p) E S))

MB allows interpretations that express arbitrary displacements in any presentation dimen-

sion, with the exception that it does not allow presentation values on one output device

t o be mapped t o ideal values on another device. A good presentation will output z values

tha t are close to the ideal a t approximately the correct time and at approximately the

correct x and y coordinates. Thus, a good presentation P for some ideal presentation S

may be characterized by a small number S > 0 such that , there exists an error interpreta-

tion E E MB(P, S) in which the magnitude of the vector (e.x d p , e.y d p , e.t d p , e.z d p)

is less than S for all Device d and Point p. We call the set of all such presentations a

neighborhood of the ideal presentation S and denote this set with N(S, S). Conversely, a

poor presentation will make large temporal, spatial, or z value errors that preclude the ex-

istence of a small error interpretation. We can specify arbitrary accuracy in a multimedia

presentation with Content descriptor c and View descriptor v by choosing a sufficiently

small positive value for 6 and requiring that the presentation be in the neighborhood

N(S, ideal c v).

A neighborhood constrains all error components equally, ignoring any differences in

importance between timing error and spatial error. A more general approach uses weights

for each error component t o compute a normalized error vector. We define a weighted-

neighborhood N,(M, w, 6, S) t o be the set of presentations with error interpretations that,

when normalized with positive weights from w, are everywhere less than 6 for an error

model M and ideal presentation S:

Positive == {r : R I r > 0)

r Weight [componentl. ..component,]

componentl, ..., component, : Device -+ Point -+ Positive

N, : (ErrorModel[Names] x Weight[Names] x Positive x B DValue)

+ P Presentation

N, (M, w, 6, S) = {P : Presentation I
(3.5 : Error[Names] & E M P S

(+)2)1/2 < 6) A V d : Device; p : Point (CiENomes ,,

If each component of an error weight function w always returns a value of one, then

N, (M B , w, 6, S) = N (6, S). For other error models and error weights, a weighted-

neighborhood can describe a different set of presentations. However, we would like all

error models t o share the following useful properties of MB. We say an error model M

is sound if every weighted-neighborhood using M contains some positive neighborhood of

the ideal and is also contained by some finite neighborhood of the ideal. This property

assures us that our specifications will accept some non-trivial subset of good presentations

and disallow presentations with unbounded error. The formal definition of soundness for

error models is:

An error model M : ErrorModel[Names] is sound if:

Vw : Weight[Names]; 6 : Positive; S : P DValue

(3 6', 6" : Positive N(6', S) 5 N,(M, w, 6, S) 5 N(Sn, S))

We say an error model M is complete if every finite neighborhood of the ideal is con-

tained by some weighted-neighborhood using M and every set of non-ideal presentations

is excluded by some weighted-neighborhood using M . This property assures us that we

can specify tolerance for any finite error and specify intolerance for arbitrary levels of er-

ror, although not necessarily with the same specification ofa weighted neighborhood. The

formal definition of completeness for error models is:

An error model M : ErrorModel[Names] is complete if:

Vw : Weight[Names]; 6 : Positive; S : P DValue

(3 6' : Positive N(6, S) C N,(M, w, S', s))
A (3 6'' : Positive N, (M, w, S", S) C N(6, S))

The definition for a complete error model observes that every presentation P that

contains DValue tuples not in an ideal presentation S must have a 6 > 0, such that

N(6, S) excludes P . ME can be shown to be sound by choosing 6' equal t o the reciprocal

of the maximum weight and 6" equal to the reciprocal of the minimum weight. MB can

be shown t o be complete by choosing all weights equal t o one. But ME is a poor basis

for specifying presentation QOS. Ideally, a presentation QOS specification should accept

all presentations that the user would accept and reject only those that the user would

reject. A conservative specification is one that never accepts a presentation that the user

would reject. ME supports only very conservative specifications that reject many good

presentations. For example, if an application can tolerate up t o a 5 second delay in the

s tar t of a video presentation, but then will tolerate no more than 1/10 second of jitter in the

timing accuracy, then a 1 second delay in the start with negligible timing error afterward

would be acceptable. Yet, the conservative specification would reject this presentation,

because ME is incapable of distinguishing between delay and jitter. We say that an error

model M j is more expressive than an error model MK if, for any conservative specification

N, (MI(, w, 6, S) , there exists a conservative specification N,(Mj, w', S', S) that accepts a

strict superset of the presentations in N,(MI(, w, 6, S) . The next subsection describes a

more expressive error model that is used t o define our QOS semantics.

4.4.1 Reference Error Model

The following ErrorInterpretation schema defines many new error components t o achieve

a better match between conservative QOS specifications and human perception. The

declarations for shift, jitter, and the other functions define a set of error component names

for an error model. We call this error model, the reference error model, abbreviated as

MR. The she'ft error component allows a presentation t o be behind (or ahead of) schedule.

Rather than require the time shift to be constant, many applications allow it t o vary

through a presentation. The rate a t which the time shift changes can be constrained by a

rate error component. The rate error is zero while the shift error is constant, but increases

in magnitude when the' presentation speeds up or slows down. MR also includes a jitter

error component, which allows small "hiccups" in the timing error that would be prohibited

by constraints on rate error if they were attributed to shift. For example, if each frame of

a video has an ideal time for its display, then the video display constitutes a logical clock

that advances in discrete jumps. Rather than accounting for these discontinuities in the

rate error component, the small jumps in time may be interpreted as jitter.

How much of the timing error is due to jitter and how much t o shift is a matter

of interpretation. There is no information in the presentation outputs t o distinguish

timing error from z error and no information t o distinguish jitter from shift. Instead, the

"best" interpretation of error depends on which error components have the least effect on

presentation quality.

A synch error component for each pair of devices is defined as the difference in the shift

error a t each device. The synch component allows the specification of a high tolerance

for shift errors while at the same time specifying a low tolerance for synchronization error

between outputs.

The shift, rate, and jitter error components are defined similarly for x and y dimensions

since spatial presentations can suffer from displacement, scaling and small distortions

analogous t o the temporal error components.

Even after accounting for temporal and spatial errors, the difference between an ac-

tual presentation value and the corresponding ideal value a t an infinitesimal point is not

particularly meaningful. The problem is that humans don't perceive independent values

at infinitesimal points, but instead integrate over small display areas and time intervals.

This fact is routinely exploited by graphics algorithms that use dithering. For example, a

black and white display can represent a 50% gray tone by a pattern with every other pixel

turned on. Dithering trades off spatial resolution for more accurate tone or color values.

Resolution in the x dimension can be thought of as the width of the narrowest vertical

stripe that can be reproduced by a presentation. Resolution in y and in time has a similar

intuitive definition. Then the interesting measure of z error is the difference in average

value over the neighborhood of a point defined by x, y, and t resolution. This definition

of z error allows the error model t o interpret objective iralue errors as a combination of

perceived resolution loss and perceived value errors.

The following declaration of the avg function simplifies the definition of the reference

error model in the ErrorInterpretation schema. The avg function is needed to express the

relation between error in z and resolution error in x, y, and t . The expression avg res p f

returns the average value of the function f over the cube with size res p centered on point

p. Because audio outputs do not vary in x or y, the average avg res p f is independent

of the x and y resolution components of an error interpretation.

avg : (Point + Point) -+ Point + (Point ----+ R) -+ R L
(let r == res p; rl == p - (r / 2) ; rz == p + (9-12)

An ErrorInterpretation can now be declared as a set of error component functions

that satisfy MR for a particular trio of Content, View, and Presentation. The jitter and

shift functions return a vector of x, y, and t components so that they each define three

independent error component functions. The rate function is defined as the differential

of shift, i.e. the gradient of each component of shift. The result of the rate function is a

3 x 3 matrix containing x, y, and t components for each gradient vector. The res function

also returns a vector of x, y, and t components that define the size of the cube around

each point for computing average %Error. The synch function returns the difference in

the time component of shift error between any two output devices. Error components for

devices and points that are not constrained by the content and view will always allow a

zero interpretation of error. The number of devices that are constrained by the content

and view descriptors define a finite set of error components that might not have a zero

error interpretation. To simplify notation, the "+" operator is used t o add functions with

the obvious meaning that (f + g) x = (f x) + (g x) .

x, y , t : Point

ErrorInterpretation

c : Content

v : View

P : Presentation

jitter : Device --, Point + Point

shift : Device + Point + Point

rate : Device -+ Point + Matrix

res : Device + Point + Point

zError : Device --, Point -+ R

synch : Device -+ Device --+ Point + R

Q d : Device; p : Point

3 f : Device + Point + R a

(let E == jitter d p + shift d p

(d , p . z + ~ . x , p . y + ~ . y , p . t + ~ . t , P . z d p + f d p) E ideal c v)

A rate d = differential (shift d)

A avg (res d) p (f d) = avg (res d) p (zError d)

A V d' : Device synch d dl p = (shift d p).t - (shift dl p).t

To show that the reference error model MR is sound, we need t o find a subset N(6', S)

and a superset N(bN, S) for any weighted neighborhood N,(MR,o,6, S) . Let 6' be an

unspecified positive real number. Then, by the definition of a neighborhood, for any

presentation P E N(S1, S), there exists an error interpretation EB E MB(P, S) , such that:

V d : Device; p : Point (~ i s (r , u , t , l) (~ ~ . i d p)2)1/2 < 6'

This implies that each of the error components, Eg.X, E B . ~ , E B . ~ , and EB.Z, is everywhere

less than 6'. Let ER be the interpretation in MR(P, S) such that:

and all other components of ER are zero. If w,;, is the minimum weight from w for

all devices and points, then the magnitude of the error vector defined by ER is every-

where less than ((6 ' /~, ; ,)~ * 4)ll2. If we choose 6' = (6 * wm;,)/2 then we have identi-

fied a neighborhood that is a subset of N,(MR, w, 6, S). Now consider any presentation

P E N,(MR, w, 6, S). By the definition of a weighted neighborhood, there exists an error

interpretation ER E MR(P, S) such that:

V d : Device; p : Point (Eisna,e,,(":f~)2)1/2 < 6)

where NamesR is the set of error component names for the reference error model MR. Let

w,,, be the largest weight from w for all devices and points. Then the magnitude of every

component of ER is everywhere less than 6 * w,,,. Let EB be an error interpretation in

MB (P, S) such that:

V d : Device; p : Point (E ~ . x , E B . ~ , E B . ~) shift shi jitter

Then the error component ER.zError is the average of cB.z over a region defined by ER.res.

There must be an upper bound E,,, > EB.Z for all devices and points. If not, we could

prove a contradiction, since the average of EB.Z is finite, an ideal specification always

allows finite values, and since a Presentation is, by definition, constant over unit regions.

Taking 6" = ((2 * 6 * w,,,)~ * 3 + E:,,)'/~, it follows that the neighborhood N(SN, S) is a

superset of N, (MR, w, 6, S).

In the proof of soundness, we showed that for any set N,(MR, w, 6, S) we can find a

subset N(St1 S) and a superset N(6", S). The proof of completeness uses the same reasoning

t o find a superset Nw(MR, w , St, S) and a subset N,(MR, w , dt', S) for any N (S , S) and weight

function w.

The reference error model MR is more expressive than MB, since MR is equivalent t o

MB if shift and res error components are interpreted as zero everywhere, but non-zero

interpretations for these components allow smaller interpretations of jitter and zError.

4.4.2 Quality Descriptors

Quality is a schema that declares a value min to represent the minimum acceptable level

of quality and a function estimate for estimating quality from an error interpretation. The

estimate function uses values from weight functions jitter,, shift,, rate,, res,, tError,, and

synch, t o model the importance of each error component. A small weight indicates that

quality is very sensitive t o the corresponding error component. Conservative estimates

of presentation quality can be made by specifying sufficiently small return values for all

weight functions. The estimate models quality as an exponential decay function of the

error vector magnitude. This model has the following properties:

quality is one when all error components are zero.

quality decreases monotonically with an increase in any error component.

quality approaches zero as error components approach infinity.

r Quality

min : R

I jitter, : Output - Point

I s h h : output i Point

rate, : Output -+ Matrix

res, : Output + Point

zError, : Output + R

I synch, : Output i Output - R

estimate : ErrorInterpretation --+ Output --+ Point -+ R

(0 5 min) A (min < 1) I-
estimate E o p =

I (LET Ej == &.jitter o.dev p; &, == &.shift o.dev p; ~d == &.rate o.dev p;

I w j ==jitter, o; w, == shift, o; w d == rate, o;

w, == res, 0 ; w, == zError, 0;

(E d . X . X) 2 + (cd.r.y)2 + (-)2 + (E d . Y - x) 2 + (Ed.Y.Y)2 + (-)2+
Wd.X.X Wd.X.y wd.2.t Wd.Y.X "'d.Y.Y wd.y.t

i . s nch o.deu of .deu p + C o i E rana.u.mop (sync*, o o f

e-&norm)

4.4.3 Semantics

The meaning of the quality schema in conjunction with content and view descriptors is

given by the following schema for a QOS specification:

- Qos
c : Content

v : View

q : Quality

P : Presentation

3~ : Errorlnterpretation ~ . c = c A E.V = v A 5.P = P A

(V o E ranE.v.map; p : Point

This schema consists of Content, View, and Quality descriptors that constrain a pre-

sentation P. The QOS specification is satisfied only if an Errorlnterpretation exists for

c v and P such that , a t every point on every output, the quality of the presentation is

greater than or equal t o q.min.

This definition for QOS specifications is very strict in that quality must exceed the

minimum everywhere during a presentation. It would be nice t o extend the specification

semantics t o allow a presentation t o occasionally drop below this minimum quality, but

this extension is left for future work.

For a given presentation and its specification, the reference error model allows an

infinite number of interpretations, each with a different affect on the calculation of presen-

tation quality. What matters is that an interpretation exists that has acceptable errors.

This claim assumes that humans are good a t recognizing the intended presentation content

and that they will recognize an interpretation with acceptable error if it exists.

To calibrate the quality estimation function, the functions in a Quality descriptor

can be defined from empirical studies of user perception. These values returned by the

functions jitter,, shift,, rate,, res,, ~Error,, and synch, are called critical error values.

For every error component in the error model, there is a corresponding critical error value

in the Quality descriptor. When an error component equals the corresponding critical

error value the quality is a t most e-' or approximately 0.37. For a simple user model,

these critical error values can be chosen to correspond t o poor quality.

4.5 Summary

The QOS semantics described in this chapter demonstrate the following important results:

Content, view, and quality are orthogonal.

The specification of an ideal presentation allows a formal definition of presentation

error.

Differences between actual and ideal presentations can be accurately described by

many different error models.

QOS specifications can have device independence and physical da ta independence by

requiring only the existence of a satisfactory presentation-level error interpretation.

A quality estimation function can be used to specify satisfactory presentations.

The definition of Content and View descriptors given in Sections 4.2 and 4.3 provide

a minimal language for multimedia authoring with simple semantics for an ideal presen-

tation. Other languages provide a richer authoring environment, but fail t o define an

ideal presentation. MAEstro, OCPNs, and the MHEG standard all describe an opera-

tional semantics where the timing of one presentation event may depend on the run-time

behavior of another presentation process [19, 41, 521. These languages can be extended

t o define an ideal presentation by specifying ideal run-time behavior for all presentation

actions. With such extensions, formal QOS specifications can be defined by following the

framework described in this chapter.

The definition of a Quality descriptor in Section 4.4 provides an expressive error model

and quality estimation function for constraining presentation error. The reference error

model borrows familiar concepts such as "jitter" from the literature on QOS specification.

However, ours is the first formal definition of these error components in terms of a mapping

from an actual t o an ideal presentation. The reference error model allows specifications

with a high tolerance for one component of error, such as temporal shift, and a low

tolerance for another, such as temporal jitter. In the next chapter we demonstrate tha t

this error model is expressive enough for practical applications. However, more expressive

error models may be desirable to express tolerance for other presentation artifacts. For

example, another error model could distinguish errors in image brightness and contrast

from image noise.

Chapter 5

A QOS-Driven Multimedia Player

5.1 Purpose and Scope of the Prototype

Chapter 3 described an architecture for specifying multimedia presentations and for plan-

ning and scheduling resources t o satisfy the specifications. The SQUINT multimedia

player provides an implementation of the specification and planning portions of this archi-

tecture. As the name suggests, SQUINT supports controls for image resolution and other

components of presentation quality. SQUINT is also an acronym for Smalltalk QOS User

INTerface, because i t makes heavy use of the Smalltalk programming environment [57].

This section gives a brief overview of the design goals for the player. A detailed description

of the design and implementation of the player are given in Sections 5.2, 5.3, and 5.4.

The main purpose of the player is to show how content, view, and quality descriptors

can be generated and used for resource scheduling. SQUINT demonstrates the orthogo-

nality of content, view and quality by allowing any content t o be displayed with any view

and any quality specification. The trio of content, view, and quality descriptors form a

QOS specification that is used t o request worst-case error guarantees from a presentation

manager. Of course, the computing platform and software components limit the best qual-

ity tha t can be achieved. When SQUINT detects a conflict between platform capabilities

and QOS requirements, a description of the conflict location is generated.

Figure 5.1 illustrates the control panel for the player. The content button brings up a

menu of content descriptors. The descriptors are created outside of SQUINT as described

in the next section. Selecting from the content menu opens a display window for each

video track in the presentation and displays the name of the selected content at the top

80

Figure 5.1: The SQUINT multimedia player.

of the control panel. Audio tracks are played using the HP Audio Application Program

Interface [30]. The position slider shows the current logical time in seconds, where the left

and right ends of the slider correspond to the presentation start and finish respectively.

The play rate slider controls the rate at which logical time advances. For example,

setting the slider at 2.0 makes the playback occur twice as fast as normal. The normal

rate button sets the rate to 1. The start/stop button also controls the rate by toggling

between the current play rate setting and zero. In addition to the buttons and sliders

on the control panel, the video windows have the standard Motif window decorations that

support positioning and resizing. As discussed in Section 5.2, the player controls generate

view and quality descriptors for the presentation.

The SQUINT interface also supports experimentation with user QOS controls. The

control panel allows the user to set the minimum acceptable quality measure and also the

calibration values for image resolution and jitter. These controls are described fully in

Section 5.2.3. The prototype interprets the QOS specification derived from user interface

controls as an accurate specification of application requirements. SQUINT can be eas-

ily modified to obtain calibration values from other sources, such as a table indexed by

playback mode.

Formal specification of QOS requirements can be used to optimize resource usage

III a multimedia system. SQUINT provides a simple example of QOS-driven resource

optimization. The variables for stored video access include spatial resolution and frame

skipping. Each of several test video sources has been encoded and stored in multiple

files at full, 112, 114, and 1/8 resolution. All files encode every frame a t the original

frame rate, but the presentation has the option t o skip frames for a lower presentation
4

frame rate. If presentation QOS requirements permit lower resolution or lower frame

rate, then SQUINT will reduce the file access bandwidth t o conserve both CPU and disk

resources. The calibration values for the quality estimation function described in Chapter

4 allow SQUINT t o balance bandwidth tradeoffs intelligently between frame rate and

spatial resolution.

We call a presentation plan viable if it would satisfy QOS requirements when resources

are plentiful. Tha t is, the plan is guaranteed t o have an acceptable error interpretation if

there are no scheduling delays. We call a presentation plan acceptable if it is viable and

scheduling requirements can be met. Given a QOS specification, the determination of an

acceptable presentation plan is referred t o as the mapping problem. A general solution for

the mapping problem is intractable and depends on real-time resource scheduling. In par-

ticular, SQUINT does not provide a priori guarantees for presentation timing since timing

guarantees require real-time scheduling not only for SQUINT, but also for X Window,

audio server, and file system processes. Instead, SQUINT maps QOS requirements onto

a viable presentation plan. The player then monitors jitter at run-time and invokes an

error notification handler when jitter guarantees are violated. SQUINT can be extended

t o explore the mapping problem with scheduling guarantees, distributed resources and

more dimensions for variable quality and resource usage.

SQUINT currently supports arbitrary compositions of synthetic video and of stored

uncompressed monochrome video data. Synthetic videos are defined by a continuous real

function of x, y, and time. Limited support is available for presentations of MPEG-1

encoded video and standard audio formats. SQUINT can display any number of video

tracks in separate windows and can play a single audio track using the default audio

server. Because SQUINT does not support mixing outputs, multiple audio tracks cannot

be played on a single audio device.

I vSrc aSrc composition 1

vSrc := Digitalvideo
file: 'dog' width: 256 height: 240 depth: 4 sampleRate: 10.0.

aSrc := DigitalAudio
file: 'bark' depth: 8 sampleRate: 8000.

composition := Synch new
specs: (OrderedCollection

with: (Video new source: vSrc; space: vSrc space)
with: (Audio new source: aSrc; space: aSrc space)).

Figure 5.2: Smalltalk syntax for creating content descriptors.

5.2 QOS Request Generation

5.2.1 Creating and Selecting Content

The process for creating and editing content descriptors is external to the SQUINT player.

In the Smalltalk programming environment, content descriptor objects can be created from

any text window by evaluating code expressions as shown in Figure 5.2. In this example,

three temporary variables are declared with the names vSrc, aSrc, and composition.

The first two variables are assigned the results of Media object constructor expressions

that describe stored data. The last expressions assigns composition to be a new Synch

content descriptor. This content descriptor contains a collection of references to Video

and Audio content descriptors that reference the digital video and audio media.

Content is described by objects that closely model the Z content descriptors in the last

chapter. Figures 5.3 and 5.4 introduce a subset of the OMT (Object Modeling Technique)

notation used in subsequent figures [24]. Figure 5.5 shows the SQUINT Content class

hierarchy and a subset of the protocol associated with each class.

The class Content maintains a dictionary of content descriptors that may be referenced

by name. The Smalltalk environment provides a dictionary inspector that supports adding

new descriptors and editing existing ones. SQUINT opens a pop-up menu of names in

referenceToCollection
Operation Operation YetAnotherClass

Figure 5.3: OMT notation for Class relationships.

Figure 5.4: OMT notation for object snapshots.

the Content dictionary when the button labeled content is pressed. The content selected

by name from the pop-up menu is displayed in the top text field of the SQUINT control

panel, and a default view for the content is opened as described below.

5.2.2 View Controls

The class ViewSpec shown in Figure 5.6 describes a view descriptor that maps from logical

t o physical outputs and from logical time t o a real-time clock. The values in this view

specification can be modified via the SQUINT control panel.

A default view descriptor is created when SQUINT'S content selection is changed.

The ViewSpec class method #defaultFor: takes a content descriptor as an argument

and creates a view descriptor with one window for each video track and at most one

output for an audio track. For each window, the view has an Output descriptor that

specifies a spatial transformation tr and clipping bounds c l ip . For the default view, the

window size and clipping bounds are taken from the logical dimensions of the first clip

X

Space

extent

Media
I

-
Content

duration
start
end
va1ueAtOutput:X:Y:T

duration
contentspecs
sampleServerTransform:clip:guarantees number

A
content content contents content

Transform 7
Synch

I

-5

file:width:height:depth:sampleRate: file:depth:sampleRate:
image At:

R ?

Figure 5.5: SQUINT content classes.

,,,,,I?[clock

1 Logicalclock

1 rate 1 4-T clip > r w Istart Output Space
dev Reallntewal

start 1 extent 1

Figure 5.6: ViewSpec class.

lStart]Start + (t * rate)
logical time z

real time D
start start+t

Figure 5.7: Mapping from real-time t o logical-time.

in each video track. The output transform is the identity transform so that the logical

coordinates are equivalent to window coordinates.

The time mapping for a view descriptor is defined by a LogicalClock instance. The

default view sets the logical start time lStart t o the start of the presentation and sets

the rate t o zero so that the presentation is stopped. Figure 5.7 illustrates the mapping

from real-time t o logical-time defined by the parameters lStart, start, and rate. The

position slider shows the current logical time with the left and right end points of the

slider corresponding t o the content start and end, respectively.

The user can drag the position and play rate sliders at any time t o redefine the view

specification's time mapping. The start/stop button toggles the logical clock's rate

between zero and the current setting of the play rate slider. Adjusting the position

slider manually causes the presentation t o jump t o the new logical time. Adjusting the

play rate slider causes the presentation t o speed up or slow down, Each change in the

view specification triggers a recomputation of the presentation plan as described in the

next section.

SQUINT also supports interactive control of the window dimensions in a view. Window

resize events generated by the window manager are caught by SQUINT and are used t o

update the spatial output mapping in the view descriptor. These updates t o the view also

cause a recalculation of the presentation plan.

The generation of a default view for a newly selected content descriptor is a policy

decision. SQUINT could just as easily leave the view descriptor unchanged when selecting

new content. In that case, the video windows would simply display the video tracks of

the new selection with the same display transformations, clipping and clock rate tha t the

previous content had been playing. Another policy choice is what t o do a t the end of

a presentation. There are three obvious choices: display null content, freeze the display

with the last output value, or loop-back to restart a t the beginning. SQUINT implements

only a loop-back policy, but could be extended to offer a choice of policies.

5.2.3 Quality Calibration and Constraint

SQUINT uses the error model and quality estimation function described in the last chapter.

An example of a Quality descriptor is shown in Figure 5.8. A Quality descriptor has an

instance variable min indicating the minimum acceptable value for the quality estimation

function. Recall from Chapter 4 that we define presentation quality t o be the ratio of

actual t o ideal presentation utility. The value of min is set by the quality slider on the

SQUINT control panel. Calibration values for the quality estimation function are stored in

a structure of nested Dictionary objects and accessed through the Quality descriptor's

calibration instance variable. Individual calibration values are retrieved by using error

component attributes as arguments to the Dictionary lookup method #at :. For example,

((calibration at: Video) at: #jitter) at: #t returns the calibration value for

aQuality

calibration

Figure 5.8: Quality class.

the time component of jitter on a video output. SQUINT sets this value t o the reciprocal

of the control panel's sample rate slider value. Values for ((calibration at : Video)

at: #res) at: #x and ((calibration at: Video) at: #res) at: #y are set t o

the reciprocal of the resolution slider value. The reciprocal is used because the number

of resolvable pixels in the image decreases as resolution error increases.

The remaining calibration values are the constants shown in Table 5.1. The units

for temporal components of jitter, shift, res, and synch are in seconds. All values for

spatial error in x and y are given relative t o the size of the output window. The values

for zError are also relative to the output t range. The mte error components represent

the rate of change of the shift error in the appropriate units. For example, the rate of

change of the x component of shift with respect t o time is given in units of "window-

widths per second". Values for the rate of change of the x component of shift are given

in the first rate column and values for the y and t components are given in the next two

columns. The calibration value for each error component was determined subjectively

from a presentation of basketball video by increasing the component in question, while

all other error components were negligible. The calibration value represents the point a t

which the error was judged t o be "very annoying". The quality estimation function can

be modified for other tasks by changing these values.

The same calibration values are used for all outputs with the same device type. This

feature allows a quality descriptor t o apply to views with any number of outputs, but also

makes i t impossible for SQUINT t o specify that quality is more important in one video

Table 5.1: Calibration values for quality estimation function.

window than in another. To support different calibration values for each output, SQUINT

could be extended to instantiate specialized calibration values as they are specified for

each output.

The quality estimation function is hard-coded into the planning algorithm described

in Section 5.3.

5.2.4 Representation of QOS Requirements

The content, view, and quality descriptors comprise the state of a P l a y e r instance.

SQUINT treats the player as an abstract description of a presentation with two dependent

objects. The first dependent object is the Applicationwindow, which displays the cur-

rent state of the control panel. The second dependent object is the PresentationManager

that is responsible for displaying video frames and audio samples. Figure 5.9 illustrates

a P l a y e r and its dependents. User changes to the player state via buttons, sliders, and

typing, cause update messages to be sent t o the dependents. Also, a real-time process

advances the logical presentation time and sends update messages t o the dependents. The

dependents have access t o the player's current state.

5.3 Present at ion Planning

The planning algorithm uses a heuristic to choose the lowest quality presentation plan

tha t satisfies the QOS specification. By mapping QOS requirements t o a set of acceptable

presentation plans, SQUINT is able t o choose the plan with the least resource require-

ments. For example, if the image resolution required is 256x192 and the stored images

Figure 5.9: Player with dependent objects.

<

can be retrieved a t either 320x240 or 640x480, SQUINT will choose the lower resolution

with the assumption that it requires less bandwidth for storage access and transport.

aplayer

content
view
quality
dependents

5.3.1 Components of a Presentation Plan

A few new terms are needed to describe a presentation plan. The term track refers t o a

sequence of content displayed on a single output device. A clip in a presentation refers t o

content from a single source.

Figure 5.10 shows a tree of objects that make up a presentation plan. At the root of

the tree, a PresentationManager is responsible for guaranteeing the QOS requirements

of the player. It guarantees synchronization between outputs by requiring each of its

children t o synchronize with a common clock. The remainder of the QOS responsibilities

are delegated t o the TrackManager objects beneath it. Each TrackManager is responsible

for the timing of samples written to a single output. Responsibility for the quality of video

frames and audio samples is delegated to the Clipserver objects.

A presentation plan is created or modified each time the values of the content, view,

or quality descriptors are changed. A PresentationManager is created only once for each

instance of the SQUINT player. The PresentationManager creates a TrackManager for

each output in the view specification. Each TrackManager is given a content descriptor

for the track, a reference t o the output descriptor, a real-time clock, and a request for

minimum QOS guarantees. If any of the guarantees cannot be met then a guarantee-fail

handler is invoked. In the current version of SQUINT, the guarantee-fail handler simply

prints a diagnostic message and the presentation plan continues t o execute in a best-effort

L J mAudio 1
an A~~licationWindow output -
aPresentationManager

f \

-- r
\

anOutputManager

outputviews 1 aDictionary

mVideo 1

shifr <= (0.0,O)
jitter <= clip jitter + interrupt period

res <= clip res

zError <= clip res

aTrackManager

shifi <= (0,0,0)

jitter <= clip jitter + interrupt period

res < = clip res

zError <= clip res

1
aClipServer

jitter < = 0.0001

res <= 0
zError <= In56

Figure 5.10: QOS guarantees.

mode.

The QOS guarantees are expressed as an upper bound for the magnitude of each

error component. A TrackManager passes on the request for QOS guarantees to each

ClipServer that it needs to supply data for the presentation. If all ClipServer objects

grant the QOS request, then the TrackManager computes worst-case bounds for temporal

jitter based on the ClipServer jitter guarantee and on the TrackManagerls own timing

accuracy. Since SQUINT cannot predict process execution times or the scheduling be-

havior of the underlying operating system, the TrackManager objects make the optimistic

assumption that execution times and scheduling delays are negligible. Violations of this

assumption are detected a t run-time and the guarantee-fail handler is invoked. To make

timing guarantees in the admission test, the operating system and other resource managers

would need to provide resource reservation protocols as discussed in Chapter 2.

A specialized Clipserver is created for each media source to retrieve, convert, and

display data a t the specified quality and in the format required by the output device.

Each ClipServer is created with a request for worst-case limits on all error. These

guarantees may be determined from annotations on the source da ta and properties of

the data transport and processing algorithms. The current ClipServer implementations

account for error in the data sources, and for the introduction of error in spatial scaling,

and in output timing. For example, a high-quality video might provide a resolution of

640x480 pixels, a signal-to-noise ratio of 100, and 30 fps. SQUINT creates a half-resolution

version of a video by reducing each 2 x 2 block of pixels t o one pixel with the average value

of the block. A new guarantee for worst-case rError can be computed for each version of

a video. Spatial scaling error is introduced when the ideal presentation requires fractional

scaling, since SQUINT always rounds t o integer scale factors. The maximum presentation

frame rate is limited both by the recording rate of the source and by the bandwidth of the

presentation platform. A ClipServer will introduce jitter through skipping source frames

and through the imprecision of scheduling display events.

The definition of a ClipServer is intended to allow many types of specialization t o suit

a particular QOS request. For example, MPEG video decoding can be greatly simplified

by the elimination of inter-frame dependencies. An MPEG video stream consists of a

repeating pattern of I, P, and B frames, where I frames may be decoded independently,

P frames require the previous I frame for decoding, and B frames require both the previous

and next I or P frame for decoding. Suppose that an MPEG video file is encoded a t 30 fps

with the pattern IBPB so that the frequency of I frames is more than 7 fps. A playback

request with a T jitter limit of 1/7 second could return a ClipServer that is specialized

t o read and decompress only I frames. In general, a ClipServer can be implemented by a

pipeline of processes distributed across a network. Each stage of the pipeline modifies the

guarantees of the previous stage with da ta format changes and new timing guarantees.

5.3.2 Admission Test

An admission test is a necessary part of any system that offers QOS guarantees. In

SQUINT, the admission test involves two activities: calculating error limits and requesting

guarantees from plan components. A set of error limits are called satisfactory if they satisfy

the QOS requirements and feasible if they can be guaranteed by the components of some

presentation plan. SQUINT first calculates a set of satisfactory error limits, then attempts

t o build a presentation plan that will guarantee those limits. If any component cannot

provide the requested guarantees, the admission test fails and a guarantee-fail handler is

invoked.

An optimal solution would require testing every satisfactory set of error limits t o see if it

is feasible. Having found a set of plans that guarantee a satisfactory presentation, it would

still be desirable to choose among them, the plan with the fewest resource requirements.

This optimization problem reduces t o the problem of scheduling a set of tasks with time

and resource constraints, which is known t o be intractable [91]. SQUINT instead employs

a few simple heuristics to identify error limits that are likely t o be. feasible and t o create

a presentation plan that uses near-minimal resources.

The first heuristic is that an error interpretation based on the intended correspondence

between the actual and ideal presentations is likely t o provide a near-optimal estimate of

presentation quality. Let the term sample refer t o a discrete output value. We define the

intended correspondence for each sample written to the output devices as follows. Suppose

that every sample written by a Cl ipServer is annotated with the parent TrackManager's

Output descriptor, a timestamp indicating the ideal output time and duration for the

sample value, and the res error and zError guarantees for the Cl ipServer . Suppose

also that the annotations remain associated with the output location until the value is

overwritten. The SampleAnnotations schema represents this information and the sample

function returns the annotations for any Device and Point.

SampleA nnotations

output : Output

I timestamp : Interval

res : Point

zError : R

I sample : Device i Point i SampleAnnotations

The following definition for a minimum difference dm;, helps t o define the smallest

interpretation of temporal jitter when samples have a non-zero ideal display duration.

The difference dm;, i t between an intervd i and a time t is zero if t is contained in i.

If t is before the interval than the minimum difference is the interval start minus t . If t

follows the interval than the minimum distance is the interval end minus t.

dm;, : Internal -+ R -+ R

V i : Interval; t : R

(t E I i + dm;, i t = 0)

A (t < i.start + dm;, i t = i.start - t)

A (t > i.start + i.extent + dm;, i t = a'.start + i.extent - t)

The error interpretation used by the admission test is called ES and is defined as

follows:

V d : Device; p : Point

(L E T s == sample d p;

constrained == (3 z : R 1 ((d , p.x, p.y, p.t, z) E ideal E ~ . C E S . V))

constrained 3 jitter d p = (O , O , dm;, s.timestamp p.t)

A &s.res d p = (s.res.x, s.res.y,O))

A 1 constrained + (Es.jitter d p = (0,0,O) A &s.res d p = (0 ,0 ,0)

A ~ ~ . & r o r d p = 0))

Since SQUINT does not allow timing error t o accumulate, the t component of shift is

always interpreted as zero. The rate and synch error components are also zero everywhere

since they depend only on the interpretation of shift. We could use a simpler error model

without these error components, but it is comforting t o observe that an expressive error

model does not force a complicated interpretation of error. The x and y components of

shift and jitter are zero because SQUINT accurately maps spatial coordinates. This state-

ment is not quite true for views that call for non-integral scale factors for video rendering,

but the definition of e s can be extended t o describe these cases also. In the interest of

brevity, this description of ES assumes that rendering requires only integral scale factors.

For the remaining error components, ES distinguishes between points that are constrained

in the ideal presentation and points that are allowed t o have any value. For constrained

points, the t component of jitter is defined as the difference between the current time and

the timestamp associated with the value a t each point. If a sample is intended t o have a

non-zero duration, then jitter is zero during the timestamp interval. The interpretation

of res is taken directly from the resolution associated with each sample except that the t

component of res is always zero. The interpretation of zError is defined by the schema for

an Errorlnterpretation, but for any Device d and Point p, (sample d p).zError provides

an upper bound on the magnitude of es.zError d p. For points that are unconstrained,

all error components are zero.

Recall from Chapter 4 that a presentation satisfies a QOS specification if, for some

error interpretation, the value of the quality estimation function is everywhere greater

than min. The admission test for SQUINT is more strict: the presentation plan must

guarantee acceptable worst-case error bounds for the error interpretation e s . Of course,

E S was chosen t o be near-minimal in its worst-case behavior.

The second heuristic employed by SQUINT is that if any set of error limits for ss is

feasible, then a set is likely to be feasible in which variable error components contribute

equally t o lowering the quality estimate. A set of error limit values for each output are

expressed with the ErrorLimits schema.

- ErrorLirnits

jitter : Output -?r Point

shift : Output ---+ Point

rate : Output -+ Matrix

res : Output 4 Point

zError : Output + R

synch : Output --+ Output + R

The worst-case behavior of an error interpretation ES is bounded by a set of error

limits 1 if, for any Device d and Point p, each error component in ES is less than or equal

t o the corresponding limit for the output in sample d p. For example, (cs.jitter d p).t

must be less than or equal t o (1.jitter (sample d p).output).t.

From Chapter 4 , the quality estimation function is e-EnOrm, where E,,,, is the mag-

nitude of a vector of all error components, each divided by the corresponding weights. A

set of error limits is satisfactory if the quality estimate using limit values for the error

components is greater than the value of min specified in the Quality descriptor. This

requirement can be rewritten as

where the 1.i are the error limit values and the w.i are the corresponding weights for each

error component name i in MR. Let Is be the satisfactory set of ErrorLimits chosen by

the admission test. For outputs not specified in the view all error limits are zero. For

the error interpretation E S , the worst-case error for shift, rate, synch, the t component of

res, and x and y components of jitter are all zero. Consequently, SQUINT sets the error

limits for these components t o zero. The worst-case value Is.zError o for an output o is

determined by the media sources for that output. Only the x and y components of res

error and the temporal component of jitter are variables of the presentation plan.

By applying the second heuristic, each of the terms for x and y res error and t jitter

error for this track are equal t o some value v. Then Equation 5.1 can be rewritten with

these substitutions and solved for the value of v :

and

Since the weights for the z and y components of res error on the track are (q.res o).x

and (q.res o) .y respectively, and the weight for the t component of jitter is (q.jitter o). t ,

SQUINT chooses the following values t o complete a set of satisfactory error limits for the

track:

These error limits are used to request guarantees when creating the Clipserver com-

ponents of a presentation plan.

If these error limits are not feasible, i t may still be possible to obtain guarantees by

relaxing one or more limits and tightening the rest to compensate. Since there are three

variable error components, the limits for two could be reduced to zero, allowing the third

t o be relaxed up t o a factor of &. However, this range is not likely to greatly improve

the chances of finding a feasible set of error limits.

The third heuristic employed by SQUINT is that a plan with weaker error guarantees is

likely to use fewer resources. In the prototype, resource requirements are strictly increasing

with both resolution and sample rate. Consequently, SQUINT finds the plan with near-

minimal resource requirements by selecting the viable plan components with the weakest

error guarantees.

5.3.3 Proof of QOS Guarantees

SQUINT interprets a press of the start/stop button as a request to begin a presentation

immediately. Unfortunately, the error interpretation es forces SQUINT t o interpret any

start-up delay as jitter. To allow time for presentation planning, we can add a new error

component t o the reference error model. Let response error be the time tha t i t takes t o

create and initialize a new presentation plan. During this startup period, all other error

components may be interpreted as zero.

Claim: Every presentation that passes the admission test satisfies the player's QOS

requirements.

Proof: It has already been shown that the error interpretation ES satisfies the QOS

predicate if its worst-case behavior is bounded by the set of error limits Is . I t remains t o

be shown that a successful admission test produces plan components that guarantee these

error limits.

Par t of this proof is trivial, since shift, rate, synch, and x and y components of jitter

are zero by definition in ES. All plans produced by the admission test assume this error

interpretation and therefore guarantee that these error components are everywhere equal

t o the error limit of zero specified in Is. Also, any plan trivially guarantees zero error for

every device d and point p where the ideal presentation is unconstrained. The non-trivial

part of the proof is to show that &s.zError, the x and y components of &s.res, and the t

component of jitter are less than the error limits for all device coordinates constrained

in the ideal presentation.

Let d be any device and p be any point constrained by the ideal presentation. There is

a finite set of outputs in the view (typically only one) that define a mapping of constraints

onto d a t p. Let 0 be that set. If the response error limit has not expired a t time p.t

then all errors are ignored and the guarantees are considered satisfied. If p.t is beyond the

response error limit and some TrackManager has not updated its output then SQUINT

invokes the guarantee-fail handler with a timing error. Recall that SQUINT detects timing

errors only a t run-time, so a timing-guarantee failure is considered a late failure of the

admission test. If p.t is beyond the response error limit and all TrackManagers have

updated their outputs, then we need t o prove that the output sample value at p satisfies

the remaining QOS requirements.

Since all outputs have been written, the sample value of d a t p is considered annotated

with s = sample d p, where s.output E 0. Our hypothesis asserts that the acceptance

sample
period

output I
target

Figure 5.11: Determination of worst-case jitter between updates.

test was successful, therefore the ClipServer that wrote this sample guarantees that

cs.zError d p 5 Is.zError o with E ~ . r e s d p 5 Is.res o. Finally, the t component

of jitter d p is dm;, s.timestamp p.t. Every time a TrackManager writes an output

value, it computes a worst-case analysis of temporal jitter since the last write. If the

magnitude of jitter d p).t could have exceeded (ls.jitter o).t during this interval than

the guarantee-fail handler is invoked.

The protocol for creating a TrackManager guarantees only that the jitter limit will not

be exceeded when there are no scheduling delays. Figure 5.11 illustrates the parameters

tha t determine jitter. A periodic software interrupt is used by each TrackManager for

updates. At each interrupt, the TrackManager requests a sample from the appropriate

ClipServer for a target time midway between interrupts. Each ClipServer guarantees

that it will provide a sample with a timestamp not more than one-half the source sample

period from the target time.

Let t, be the sample period, tp the interrupt period, t, the time that an output was

generated after an interrupt at ti, and td the start of the output sample timestamp. Let

t h be the maximum time t o handle an interrupt. The following inequalities are true for

the definitions above.

Timestamps for digital video in SQUINT have zero duration, so jitter is simply

td - t. Since jitter decreases monotonically between outputs, the maximum value between

outputs occurs at the start of the interval. Setting t = to makes jitter td - to , which is

always less than or equal to 0.5(tp + t,). The minimum value for jitter occurs just before

the next output. Setting t = t t , where the prime indicates a value associated with the next

interrupt, makes jitter t: - t:, which is always greater than or equal t o 0.5(tp - t,) - th.

SQUINT uses these equations t o compute the largest acceptable values for tp from the

temporal jitter error limit. Taking th = tp and recalling that the jitter limit for the sample

in question is (I s . jitter s. output). t gives:

0.5(tp + t,) I (ls.jitter s.output).t (5.5)

With this value for the interrupt period, each TrackManager guarantees that temporal

jitter will not be exceeded as long as each interrupt is handled before the next occurs.

This completes the proof that SQUINT's admission test guarantees the QOS specified

in the player.

How does SQUINT's admission test compare with other multimedia systems? Most of

the systems surveyed in this thesis make guarantees based on bandwidth requirements for

a particular media representation [56, 121. They lack a means for expressing QOS require-

ments independent of the data type. Other systems that support scalable presentation

quality do not provide complete guarantees [80, 211. SQUINT's admission test supports

QOS specifications that are scalable and independent of device and da ta representations.

These QOS specifications are translated into presentation plans that are guaranteed not

t o exceed the error constraints. SQUINT'S admission test demonstrates that a formal

approach t o QOS management can be implemented efficiently, a t least in simple cases.

5.4 Presentation Execution

In a sense, the SQUINT multimedia player is executing a presentation a t all times. When

the view's rate is zero, the presentation is considered stopped, but the presentation view

must still display the video frames corresponding to the current logical time. A stopped

presentation is simply a presentation in which logical time does not advance. When the

rate parameter becomes non-zero, logical time begins t o advance a t the specified rate and

the presentation view must be updated accordingly.

Any change t o the player's QOS specification causes the PresentationManager t o

compute a new presentation plan and to begin executing it. The controls for QOS specifi-

cation have been described in Sections 5.2, 5.2.2, and 5.2.3. When the position or rate are

changed, the Presentation view does not create new TrackManager and Clipserver

components, but instead merely broadcasts a message t o the existing components that

the logical clock's time mapping has changed. Each component of the plan reads the new

mapping t o determine what the current sample should be. Interactive changes t o the

minimum quality specification cause a re-computation of allowable error limits and these

new limits are used t o request new Clipservers with sufficient guarantees for resolution,

image noise, and real-time sampling rate.

5.4.1 Resource Overload Detection and Handling

During execution, the TrackManager components compute the actual jitter for video dis-

plays a t each output event. The timing error for an output event is just the difference

tactual - t i d e a l . Presentation authoring specifies the value of t idear when an output event

should occur. The value of tac tua l can be determined approximately a t runtime as illus-

trated in Figure 5.12. The measurement accuracy for tactual is limited by the resolution of

clock control output

Figure 5.12: Computing bounds for timing error.

the clock, by the latency of clock reading operations, and by the duration of the output

operation. Accepting this uncertainty, it is still possible to compute a bound on timing

error from the range of possible values for tactual.

Each TrackManager reads the clock before and after each frame is displayed and com-

putes the worst-case jitter since the previous frame was displayed. A guarantee violation

handler is invoked when jitter limits are exceeded. Currently, the handler simply displays

a message saying that jitter limits were exceeded.

5.5 Discussion

SQUINT illuminates some of the complexity of using formal QOS specifications t o drive

resource management. In general, a multimedia player will support interactive views on

content that may be distributed over a variety of storage devices. Our experience with

SQUINT suggests that media objects should support a protocol for creating specialized

clip servers with full QOS guarantees. These clip servers may be organized internally as

pipelines or even trees for distributed media access. A track manager, or some process

within a clip server may assume ultimate responsibility for the output timing. SQUINT

demonstrates that simple heuristics allow fast translation of QOS requirements into rea-

sonable resource scheduling parameters.

The decision t o synchronize all controllers with a single clock eliminates many of the

synchronization concerns that have been raised by other researchers [41, 34, 581. The use

of a fixed schedule allows every component of the presentation plan t o work independent of

the others while still achieving good overall synchronization. The danger of this approach

is that processing delays result in skipped segments of audio and video. The correct choice

of whether t o preserve a fixed schedule or t o preserve information content is application

dependent. Our QOS specification model allows expression of such a choice through the

quality estimation function's calibration values.

The major goal for SQUINT was t o test the practicality of using formal QOS speci-

fication in a multimedia player. The informal proof of correctness for the admission test

demonstrates that meaningful execution guarantees can be derived from a formal QOS

specification. While it seems impractical to provide a proof of correctness for every exten-

sion of a multimedia player, the existence of a formal semantics for the QOS specifications

is useful for understanding the goals of a presentation. It seems clear that the methodol-

ogy used t o build and validate SQUINT can be vastly improved, increasing the benefits

of the formal specification approach.

The problem of implementing a presentation plan without exposing performance is

called the mapping dilemma and the use of QOS specifications in a request for multi-

media services is an example of a metaprotocol [35]. Without a QOS specification, a

multimedia system does not have enough information t o control performance aspects of a

presentation. The result is that inappropriate implementation choices provide unaccept-

able performance. A QOS specification describes performance requirements so that the

implementation can be specialized for each request.

Chapter 6

Related Work

6.1 QOS Specification

Much of the literature on QOS specification focuses on Continuous Media (CM) da ta

transport services. Anderson identifies the following seven parameters that can be used

for reserving a continuous-media transport session: maximum message size, maximum

message rate, input workahead limit, output workahead limit, maximum logical delay,

minimum actual delay, minimum unbuffered actual delay [2]. These parameters are de-

fined in terms of the CM-resource model and are used t o derive end-to-end guarantees

for real-time transport of an abstract stream of "messages". This work supplies an im-

portant analysis of techniques for bounding jitter in continuous media transport but does

not address other user-level QOS issues such as scalable image quality. Other QOS pa-

rameters and algorithms have been described for reservation of file system [5, 47, 61, 841,

CPU [80, 511, and network capacity [22, 90, 42, 3, 86, 891. All of these resource reservation

approaches characterize bandwidth as a QOS parameter. We do not include bandwidth

in presentation QOS specifications because it depends on implementation choices for da ta

encoding. In particular, the physical bandwidth for a media stream will vary a t each stage

of a pipeline where the da ta is compressed, decompressed, or filtered for transport and

display requirements. By specifying only presentation output behavior and not implemen-

tation, our specifications are device and data independent.

The Multimedia System Services (MSS) architecture defines a set of "core QOS char-

acteristics" consisting of the following parameters:

guarantee level: Guaranteed, Best Effort, or No Guarantee

reliable: True or False

delay bounds: minimum and maximum delay

jitter bounds: minimum and maximum delay variance

bandwidth bounds: minimum and maximum bandwidth

The MSS architecture was developed by the Interactive Multimedia Association, an or-

ganization with representatives from Hewlett-Packard (HP) , IBM and SunSoft [36]. As

with earlier work, their QOS parameters do not address scalable image quality and are

oriented toward resource reservations rather than user-level QOS.

The Multimedia Projects Group a t Lancaster University is developing the Quality of

Service Architecture (QOS-A) for multimedia communications [ll]. This architecture ex-

plicitly recognizes the need for distinct QOS characterizations a t each level of the protocol

stack. The objectives of the QOS-A project are t o define an OSI-compatible architecture

for QOS management in an Open Distributed Processing (ODP) multimedia environ-

ment. Application-layer QOS parameters are encapsulated within a set of commonly used

"channel types". New channel types are created by providing a QOS-mapper service t o

translate from the channel type name into a QOS specification for the next layer down.

As an example, the channel type "StandardVideov is mapped t o the following parame

ters: bandwidth=25 Mbps, jitter = 10 ms, delay = 250 ms, traffic type = probabilistic,

and error rate = The user is able t o choose among these standard channel types,

possibly even selecting a different channel type during a presentation. Our work extends

this architecture by offering a continuum of channel types. The mapping from our QOS

specifications to low-level QOS parameters can be accomplished by simple heuristics such

as those employed in SQUINT, or by more complex algorithms tha t take into account the

current resource availability t o provide the best quality.

Our work is also distinguished from previous approaches by our methodology for choos-

ing QOS parameters. Our framework breaks the QOS specification problem into two parts:

definition of an error model and specification of acceptable quality in terms of the error

model. We have described a completeness criteria for the definition of error model com-

ponents. This methodology is similar t o the formal theory for Epsilon Serializability in

transaction processing [62]. Using the relational da ta model, ESR proposes a general

theory for defining a transaction error metric and using that metric to determine when

locking requirements can be relaxed.

Whether QOS is specified through a set of ad hoc parameters or through a formal

model as we have proposed, a correct specification of quality requirements depends on the

purpose of a presentation and on human perception.

Higgins describes some of the factors that determine human perception of image qual-

ity [31]. Objective measures are given for tone reproduction, sharpness, and graininess.

His definition of these quantities constitutes an error model for still images that is more

expressive than the reference error model proposed in Chapter 4. In particular, tone

reproduction conveys information about contrast errors and brightness shift, while our

model can only express local differences in tone. While these measures allow more accu-

rate user-models for still images, Higgins does not report estimates of image quality from

a combination of these values.

Limb reports experiments in which the subjects rated a set of images by how annoying

the perceived distortions were [40]. The subjective evaluations of distortion are corre-

lated with root-mean-square-error and other objective measures. His success a t creating

a crude quantitative model for image fidelity suggests that useful empirical models can be

determined for other multimedia presentation tasks.

Other researchers have reported empirical determinations of acceptable quality for

various types of presentation error. Steinmetz documents the perceived level of annoyance

as a function of synchronization error between audio and video [75]. His results argue for

acceptable values of synchronization error between -80 ms and +80 ms when users are

watching a moderate close-up of a person talking.

6.2 Presentation Planning

Most existing multimedia systems do not have the capability t o select different QOS levels

for the same content. However, future multimedia system will incorporate technology

for scalable video quality and other tradeoffs between presentation quality and resource

use [16, 17, 14, 211. Other researchers are only now beginning t o solve the problem of how

t o choose from among many possible presentation plans.

Nahrstedt and Smith have proposed the QOS Broker technique for presentation plan-

ning [56]. Application QOS requirements are input t o a broker-buyer which translates

, them into requirements for local and remote resources. The broker-buyer first negotiates

with the local operating system for local resources, rejecting or modifying the application

requirements if sufficient resources are unavailable. Only when the local resources are

reserved does the broker-buyer begin negotiations with a remote broker-seller for remote

resources. The local bandwidth reservations determines the appropriate bandwidth t o

request from the remote broker. Finally, after both local and remote OS resources have

been reserved, the broker-buyer requests appropriate communications channels from the

network subsystem. Nahrstedt and Smith have implemented a prototype of the QOS Bro-

ker with a telerobotics application. The application QOS requirements are expressed in

terms of sample size, sample rate, loss rate, and end-to-end delay. The translation of the

application QOS parameters into network QOS requirements is relatively straightforward

for fixed-sized samples.

The Circus multimedia environment from G T E Labs features a blackboard approach

for orchestrating resource management [27]. Distributed elements that provide or require

multimedia services communicate through a global blackboard where the Orchestrator

attempts to configure optimal connections between them.

The AMOS Multimedia Playout Manager allows integration of multimedia data in a

distributed database management system [78]. Physical storage and access for continuous

media are supported by specialized services that can perform adaptive prefetching t o make

da ta available on demand in a client's local buffer. A goal of AMOS' adaptive playout

management scheme is t o consider user-specific sensitivity t o presentation deficiencies.

Scalable media quality is currently supported by redundantly storing the same content

with different compression factors. QOS goals are expressed in terms of sample rates and

sample depth. This is a data-encoding-dependent approach t o QOS specification that

makes it difficult t o guarantee the actual quality of a presentation. Our approach to QOS

specification allows a complete specification of requirements and da ta independence.

Software feedback techniques have been used t o dynamically adjust stream processing

workloads t o available system bandwidth [lo, 13, 66, 801. Our quality estimation function

can be used with feedback techniques t o optimize a presentation for the current resource

availability. For example, a presentation manager can monitor each of the presentation

error components a t runtime. Network and processor bandwidth overloads are detected

by missed deadlines for display events [13]. Many of the techniques described in Chapter

2 can reduce bandwidth requirements, including switching t o a more highly compressed

da ta source or skipping video frames. The response t o overload detection should be an

adaptation of the presentation plan to reduce bandwidth requirements. If each component

of a presentation plan can predict the error in its outputs, then our quality estimation

function can be used to drive the adaptation by indicating which new presentation plan

is likely t o deliver the best presentation quality. Useful predictions of presentation error

are possible for clip servers based on source attributes and the assumption that reduced

bandwidth requirements will nearly eliminate missed deadlines. However, the predictions

may prove false if adaptations do not affect the bottleneck resources. The absence of

overload detection may be used as a signal t o increase bandwidth requirements in an

attempt to improve presentation quality. Our quality estimation function can be used t o

drive this adaptation as well.

Chapter 7

Conclusions

This thesis has described a new framework for QOS specification in multimedia systems

and provides a concrete example of useful QOS specifications with formal semantics.

The primary contributions of our specification semantics are the orthogonal definitions

of content, view and quality descriptors. These definitions support device independent

and physical-data independent authoring, playback, and requests for presentation quality.

The SQUINT multimedia player demonstrates that our QOS specifications can be used

t o satisfy a diverse mix of multimedia service requirements.

7.1 A Framework for Defining Formal QOS Semantics

Chapter 4 described a formal QOS specification semantics that can be used t o provide

presentation guarantees. The key precondition for optimal resource management in mul-

timedia systems is t o identify a metric for presentation quality. The methodology we

used t o define such a metric consists of three major steps. First, define an ideal presenta-

tion. Second, choose an error model that describe the difference between actual and ideal

presentations. Third, define a quality estimation function in terms of the error model.

Chapter 4 identifies completeness and soundness criteria t o help in defining useful error

models. This methodology distinguishes our work from other descriptions of presentation-

level QOS parameters.

The content descriptors defined in Chapter 4 allow a physical-data independent speci-

fication of logical content and the view descriptors define a device independent mapping of

logical content onto an ideal presentation. The quality descriptor preserves this physical-

da ta and device independence by specifying presentation output behavior rather than

implementation. Physical-data and device independence increase the portability of a mul-

timedia application by allowing it to use the same request for presentation functionality

on any platform.

Our content descriptors were designed t o abstract away or eliminate features that

distract from the goal of QOS specification while still supporting complex and useful

authoring tasks. We found that a very small set of operations could satisfy this goal.

The result is a stripped down model of multimedia authoring that may provide a useful

base for serendipitous investigations. Another deliberate property of the definitions is

complete orthogonality of content and view descriptors. For example, the author-specified

size and layout of video windows can be customized in a view to suit the requirements

of a playback application. Content and view can be specified independently and reused:

the same content appearing in many different views and the same view displaying many

different content descriptors. This orthogonality extends t o the quality descriptor as well.

A single quality descriptor can be determined for a class of applications and reused with

many different content and view descriptors.

The declaration of an Errorlnterpretation defines a particular error model for describ-

ing the relation between an actual and an ideal presentation. The error component names

suggest familiar concepts, but the formal definition of these error components is new.. In

particular, our model defines temporal jitter as all the timing error that is not shift (de-

lay) error, but allows multiple interpretations of timing error and shift error for a given

presentation. We found that a unique definition for jitter requires knowledge of a presen-

tation's implementation. By abandoning an implementation-based definition of error, our

QOS specifications gain device and physical-data independence. Such QOS specifications

allow a player freedom t o choose an optimal implementation according t o current resource

availability and cost.

7.2 An Architecture for Resource Optimization with QOS

Guarantees

Chapter 5 describes an architecture for QOS-based resource optimization. The SQUINT

multimedia player provides a concrete example of this architecture and demonstrates that

simple heuristics allow fast translation of our QOS specifications into conservative resource

scheduling parameters. The key components of the architecture are the player that defines

the QOS specification, a presentation manager that reacts t o changes in the QOS specifi-

cation, track managers that interpret the specification for a given output, and specialized

clip servers that each supply da ta from a single source. The track managers and clip

servers support an admission test protocol for QOS guarantees.

The proof of correctness for the admission test demonstrates that meaningful execution

guarantees can be derived from a presentation-level QOS specification. SQUINT does

not provide a priori guarantees for resource scheduling, but it does guarantee a viable

presentation plan. SQUINT reduces CPU and file system usage in response t o relaxed

QOS requirements. This feature allows better control of resource allocation in shared

environments, such as the digital television studio described in Chapter 3.

7.3 Future Work

The survey of QOS management techniques in Chapter 2 should be extended t o discuss

transport protocols for distributed communications and their effect on presentation qual-

ity. Despite its incomplete scope, the survey identifies a large space of variables for the

system designer, including data location, compression, prefetching and reservation tech-

niques. SQUINT makes use of only two forms of compression for scaling quality and

resource management. Multimedia players that use more of these techniques face in-

creased planning complexity and will require more sophisticated heuristics. In particular,

distributed resource reservation algorithms are needed for reliable access t o remote da ta

and network resources.

Empirical studies of user task performance are needed to improve the quality estima-

tion function. SQUINT relies on user interface controls to define QOS requirements. I t

would be nice for a player to infer QOS requirements automatically from the application

mode, perhaps with some consideration of the content and view descriptors.

Bibliography

[I] ABBOTT, R., A N D GARCIA-MOLINA, H. Scheduling real-time transactions. SIGMOD

Record 17, 1 (March 1988), 71-81.

[2] ANDERSON, D. P. Metascheduling for continuous media. ACM Transactions on

Computer Systems 11, 3 (August 1993), 226-252.

[3] ANDERSON, D, P., HERRTWICH, R. G., AND SCHAEFER, C. SRP: A resource

reservation protocol for guaranteed-performance communication in the Internet. Tech.

Rep. TR-90-006, International Computer Science Institute, February 1990.

[4] ANDERSON, D. P., AND HOMSY, G. A continuous media 1 /0 server and its syn-

chronization mechanism. Computer 24, 10 (October 1991), 51-57.

[5] ANDERSON, D. P. , OSAWA, Y ., AND GOVINDAN, R. A file system for continuous

media. ACM Transactions on Computer Systems 10, 4 (November 1992), 311-337.

[6] BERSON, S., GHANDEHARIZADEH, S., MUNTZ, R., AND J u , X. Staggered striping

in multimedia information systems. In SIGMOD 94, Minneapolis, MN (May 1994),

pp. 79-90.

[7] BLAIR, G., CAMPBELL, A., COULSON, G., DAVIES, N., GARCIA, F., AND SHEP-

HERD, D. Summary of the 4th International Workshop on Network and Operating

System Support for Digital Audio and Video. Operating Systems Review 28, 2 (April

1994), 22-33.

[8] BLAKE, B. A., AND SCHWAN, K. Experimental evaluation of a real-time scheduler for

a multiprocessor system. IEEE Transactions on Software Engineering 17, 1 (January

1991), 34-44.

[9] CABRERA, L.-F., AND LONG, D. D. E. Swift: A storage architecture for large

objects. In Proceedings of the 11 th IEEE Symposium on Mass Storage Systems (1991),

pp. 123-129.

[lo] CAMPBELL, A., COULSON, G., GARCIA, F., AND HUTCHISON, D. A continuous me-

dia transport and orchestration service. In SIGCOMM '92, Computer Communcation

Review (August 1992), vol. 22, ACM Press, New York, pp. 99-110.

[l l] CAMPBELL, A., COULSON, G., GARCIA, F., HUTCHISON, D., AND LEOPOLD, H.

Integrated quality of service for multimedia communications. In Proceedings IEEE
INFOCOMM '93 (San Francisco, USA, April 1993), IEEE.

[12] CAMPBELL, A., COULSON, G . , AND HUTCHISON, D. A quality of service architec-

ture. Computer Communication Review 24, 2 (April 1994), 6-27.

[13] CEN, S., Pu, C., STAEHLI, R., AND WALPOLE, J . A distributed real-time MPEG

video audio player. In NOSSDAV 95 (1995), vol. 1018 of Lecture Notes i n Computer

Science, Springer-Verlag, pp. 151-162.

[14] CHADDHA, N., WALL, G. A., AND SCHMIDT, B. An end to end software only
scalable video delivery system. In NOSSDAV 95 (April 1995), vol. 1018 of Lecture

Notes in Computer Science, Springer-Verlag, pp. 139-150.

[15] CHRISTODOULAKIS, S . , AND FALOUTSOS, C. Design and performance considerations

for an optical-disk based, multimedia object server. IEEE Computer 19, 12 (Dec

1986).

[16] CKER CHIUEH, T., AND KATZ, R. H. Multi-resolution video representation for
parallel disk arrays. In ACM Multimedia 93 (August 1993), pp. 401-410.

[17] DELGROSSI, L., HALSTRICK, C., HEHMANN, D., HERRTWICH, R., KRONE, O.,
SANDVOSS, J., A N D VOGT, C. Media scaling for audiovisual communication with

the Heidelberg Transport System. In ACM Multimedia 93 (August 1993), pp. 99-104.

[18] DELGROSSI, L., HALSTRICK, C., HEHMANN, D., HERRTWICH, R. G., KRONE, O.,

SANDVOSS, J., AND VOGT, C. Media scaling in a multimedia communication system.

Multimedia Systems 2, 4 (October 1994), 172-180.

[19] DRAPEAU, G. D. Synchronization in the MAEstro multimedia authoring environ-

ment. In ACM Multimedia 93 (August 1993), pp. 331-340.

[20] DRUSCHEL, P., ABBOTT, M. B., PAGELS, M. A., AND PETERSON, L. L. Network

subsystem design. IEEE Network 7, 4 (July 1993), 8-17.

[21] ELEFTHERIADIS, A., AND ANASTASSIOU, D. Meeting arbitrary QoS constraints
using dynamic rate shaping of coded digital video. In NOSSDAV 95 (April 1995),

vol. 1018 of Lecture Notes in Computer Science, Springer-Verlag, pp. 95-106.

[22] FERRARI, D. Real-time communication in an internetwork. Journal of High Speed

Networks 1, 1 (1992), 79-103.

[23] GALL, D. L. MPEG: A video compression standard for multimedia applications.

Comm. ACM 34, 4 (April 1991).

[24] GAMMA, E., HELM, R., JOHNSON, R., AND VLISSIDES, J. Design Patterns: Ele-

ments of Reusable Object-Oriented Software. Addison-Wesley, Reading, M A , 1995.

1251 GEMMELL, J., AND CHRISTODOULAKIS, S. Principles of delay-sensitive multimedia

data storage and retrieval. ACM TOIS 10, 1 (January 1992), 51-90.

[26] GHANDEHARIZADEH, S., RAMOS, L., ASAD, Z., AND QURESHI, W. Object place-

ment in parallel hypermedia systems. In Proceedings of the 17th International Con-

ference on Very Large Data Bases (September 1991), pp. 243-253.

[27] GUTFREUND, Y.-S., DIAZ-GONZALEZ, J . , SASNETT, R., AND PHUAH, V. Cir-
custalk: An orchestration service for distributed multimedia. In ACM Multimedia

93, proceedings (August 1993), pp. 351-358.

[28] HERRTWICH, R. The role of performance, scheduling and resource reservation in

multimedia systems. In Operating Systems of the 90s and Beyond (1991), vol. 563 of

Lecture Notes In Computer Science, Springer Verlag, pp. 279-284.

[29] HERRTWICH, R. G. Summary of the Second International Workshop on Network and

Operating System Support for Digital Audio and Video. Operating Systems Review

26, 2 (April 1992), 32-59.

[30] HEWLETT-PACKARD CO. Using the Audio Application Program Interface. Palo Alto,

CA, 1992.

[31] HIGGINS, G. Image quality criteria. Journal of Applied Photographic Engineering 3,

2 (1977), 53-60.

[32] HODGES, M. E., SASNETT, R. M., A N D ACKERMAN, M. S. A construction set for

multimedia applications. IEEE Software (January 1989), 37-43.

[33] HUTCHISON, D., COULSON, G., CAMPBELL, A., AND BLAIR, G. S. Quality of

service management in distributed systems. Tech. Rep. MPG-94-02, Lancaster Uni-

versity, 1994.

[34] JEFFAY, K., STONE, D., TALLEY, T., AND SMITH, F. Adaptive, best-effort delivery

of digital audio and video across packet-switched networks. In Third International

Workshop on Network and Operating System Support for Digital Audio and Video

(San Diego, California, November 1992), IEEE Computer Society, pp. 1-12.

[35] KICZALES, G., AND LAMPING, J. Operating systems: Why object-oriented? In Pro-
ceedings Third International Workshop on Object Orientation in Operating Systems

(December 1993), pp. 25-30.

[36] KOEGEL-BUFORD, J. F. Middleware system services architecture. In Multimedia

Systems. Addison-Wesley, New York, 1994, pp. 221-244.

[37] LEHOCZKY, J. , SHA, L., A N D DING, Y. The rate monotonic scheduling algorithm:

exact characterization and average case behavior. In Proc. IEEE 10th Real-Time
Systems Symp. (December 1989), pp. 166-171.

1381 LENSTRA, J., RINNOOY, A., AND BRUCKER, P. Complexity of machine scheduling

problems. Annals of Discrete Mathematics 1 (1977).

[39] LEVERGOOD, T. M., PAYNE, A. C., GETTYS, J., TREESE, G. W., AND STEWART,

L. C. Audiofile: A network-transparent system for distributed audio applications. In

USENIX Summer Conference (June 1993).

[40] LIMB, J. 0. Distortion criteria of the human viewer. IEEE Trans. on Systems, Man,

and Cybernetics SMC-9 (December 1979), 778-793.

[41] LITTLE, T., GHAFOOR, A., CHEN, C., CHANG, C., A N D BERRA, P. Multimedia

synchronization. Data Engineering 14, 3 (September 1991), 26-35.

[42] LITTLE, T. D., AND GHAFOOR, A. Network considerations for distributed multi-

media object composition and communication. IEEE Network 4 (November 1990),

32-49.

[43] LITTLE, T. D., AND GHAFOOR, A. Synchronization and storage models for multi-

media objects. IEEE Journal on Selected Areas in Communication 8, 3 (April 1990),

413-27.

[44] LIU, C., AND LAYLAND, J. W. Scheduling algorithms for multiprogramming in a

hard real time environment. JACM 20, 1 (1973), 46-61.

[45] LOCANTHI, B. N. Fast bitblt() with asm() and cpp. In Proceedings of EUUG '87

Conference (Dublin, Ireland, August 1987).

[46] LOUGHER, P., AND SHEPHERD, D. The design and implementation of a continuous

media storage server. In Third International Workshop on Network and Operating
System Support for Digital Audio and Video (San Diego, California, November 1992),

IEEE Computer Society, pp. 63-74.

[47] LOUGHER, P., AND SHEPHERD, D. The design of a storage server for continuous

media. The Computer Journal 36, 1 (February 1993), 32-42.

[48] LUTHER, A. C. Digital Video in the PC Environment. McGraw-Hill, New York,

1989.

[49] LUTHER, A. C. Digital video and image compression. In Multimedia Systems.

Addison-Wesley, New York, 1994, pp. 143-174.

[SO] MAIER, D., WALPOLE, J., AND STAEHLI, R. Storage system architectures for con-

tinuous media data. In Foundations of Data Organization and Algorithms, FODO

'93 (1993), vol. 730 of Lecture Notes in Computer Science, Springer-Verlag, pp. 1-18.

[51] MERCER, C., SAVAGE, S., AND TOKUDA, H. Processor capacity reserves: Operat-

ing system support for multimedia applications. In Proceedings of the International

Conference on Multimedia Computing and Systems, Boston, MA (May 1994), IEEE

Computer Society Press, Los Alamitos, pp. 90-99.

[52] MEYER-BOUDNIK, T., AND EFFELSBERG, W. MHEG explained. IEEE Multimedia

2, 1 (1995), 26-38.

[53] MICROSOFT CORPORATION. Microsoft Windows Multimedia Programmer's Work-

book. Microsoft Press, 1991.

[54] MILLER, E. L., AND KATZ, R. H. Rama: Easy access to a high-bandwidth massively

parallel file system. In Proceedings of the 1995 Winter USENIX Conference (New

Orleans, LA, January 1995), USENIX Association, pp. 59-70.

[55] MILLS, D. L. Precision synchronization of computer network clocks. Computer

Communication Review 24, 2 (April 1994), 28-43.

[56] NAHRSTEDT, K., A N D SMITH, J. M. The QOS broker. IEEE Multimedia 2, 1 (1995),

53-67.

[57] PARCPLACE SYSTEMS, INC. VisualWorks. 999 E. Arques Ave., Sunnyvale, CA 94086,

1992.

[58] PEREZ-LUQUE, M. J . , AND LITTLE, T. A temporal reference framework for multi-

media synchronization. To appear in IEEE Journal on Selected Areas in Communi-

cations (1995).

[59] PHILIPS SEMICONDUCTORS. Desktop Video Handbook. Palo Alto, CA, 1992.

[60] PISCITELLO, D. M., A N D CHAPIN, A. L. Open Systems Networking. Addison-Wesley,

1993.

[61] RAMAKRISHNAN, K., VAITZBLIT, L., GRAY, C., VAHALIA, U., TING, D., TZELNIC,
P., GLASER, S., AND DUSO, W. Operating system support for a video-on-demand
file service. In NOSSDAV '93 (November 1993), Lancaster University, pp. 225-236.

[62] RAMAMRITHAM, K., AND Pu, C. A formal characterization of epsilon serializability.

IEEE Transactions on Knowledge and Data Engineering (June 1995).

[63] RANGAN, P . V., BURKHARD, W. A., BOWDIDGE, R. W., VIN, H. M., LINDWALL,

J . W., CHAN, K., AABERG, I. A., AND YAMAMOTO, L. M. A testbed for man-

aging digital video and audio storage. In Proceedings of the Summer 1991 USENIX

Conference (1991), pp. 199-208.

[64] RANGAN, P. V., AND RAMANATHAN, S. Rate-based feedback techniques for con-

tinuity and synchronization in multimedia retrieval over high-speed networks. Tech.

Rep. (392-230, UCSD, March 1992.

[65] ROCHKIND, M. J . Advanced UNIX Programming. Prentice Hall, Englewood Cliffs,

New Jersey, 1985.

[66] ROWE, L. A., PATEL, K. D., SMITH, B. C., AND LIU, K. MPEG video in software:

Representation, transmission, and playback. In High Speed Networking and Multime-

dia Computing, IS&T/SPIE, Symposium on Elec. Imaging Sci. 13 Tech., San Jose,

CA (February 1994).

[67] SHA, L., AND SATHAYE, S. S. A systematic approach to designing distributed real-

time systems. Computer 26, 9 (September 1993), 68-78.

[68] SHETLER, T. Birth of the BLOB. BYTE (USA) 15, 2 (Feb 1990), 221-2, 224, 226.

[69] SPIVEY, J. The Z Notation: a Reference Manual, second ed. Prentice-Hall Interna-

tional, New York, 1992.

[70] STAEHLI, R. A., AND WALPOLE, J. Constrained-latency storage access. Computer

26, 3 (March 1993), 44-53.

[71] STANKOVIC, J. A., A N D RAMAMRITHAM, K. The Spring Kernel: A new paradigm

for real-time operating systems. Operating Systems Review 23, 3 (July 1989), 54-71.

[72] STANKOVIC, J. A., AND RAMAMRITHAM, K. The Spring Kernel: A new paradigm

for real-time systems. IEEE Software (May 1991), 62-72.

[73] STANKOVIC, J. A., AND ZHAO, W. On real-time transactions. SIGMOD Record 17,

1 (March 1988), 4-18.

[74] STEINMETZ, R. Data compression in muhimedia computing - standards and systems.

Multimedia Systems 1, 5 (March 1994), 187-204.

[75] STEINMETZ, R., AND ENGLER, C. Human perception of media synchronization.

Tech. Rep. 43.9310, IBM European Networking Center, 1993.

[76] SUN MICROSYSTEMS. AUDIOHDR(3) . Sun Software Technical Bulletin, 1989.

[77] THE VOYAGER COMPANY. A Hard Day's Night. 1992. CD-ROM.

[78] THIMM, H., AND KLAS, W . Delta-sets for optimized reactive adaptive playout man-

agement in distributed multimedia database systems. To appear in 12th International

Conference on Data Engineering, New Orleans, LA (February 1996).

[79] TOKUDA, H., NAKAJIMA, T., A N D RAO, P. Real-time Mach: Towards a predictable

real-time system. In Mach Workshop (1990), USENIX Association.

[80] TOKUDA, H., TOBE, Y., CHOU, S. T.-C., A N D MOURA, J. M. Continuous media

communication with dynamic QOS control using ARTS with an FDDI network. In
SIGCOMM '92, Computer Communcation Review (1992)) vol. 22, ACM Press, New

York, pp. 88-98.

[81] ULICHNEY, R. Digital Halftoning. The MIT Press, 1987.

[82] VENKATRAMANI, C., AND CKER CHIUEH, T. A survey of near-line storage technolo-

gies: Devices and systems. Tech. Rep. Experimental Computer Systems Lab, T R #2,

Dept. of Computer Science, SUNY Stony Brook, October 1993.

[83] VIN, H. M., GOYAL, P., AND GOYAL, A. A statistical admission control algorithm

for multimedia servers. In ACM Multimedia 94 (October 1994)) pp. 33-40.

1841 VIN, H. M., AND RANGAN, P. V. Designing a multi-user HDTV storage server.

IEEE Journal on Selected Areas in Communication 11, 1 (January 1993).

[85] WEISS, R., DUDA, A., AND GIFFORD, D. K. Composition and search with a video

algebra. IEEE Multimedia 2, 1 (1995), 12-25.

[86] WERNIK, M., ABOUL-MAGD, O., AND GILBERT, H. Traffic management for B-ISDN

services. IEEE Network 6 (September 1992), 10-19.

[87] WHITE PINE SOFTWARE. CU-SeeMe, 1995. software.

[88] Yu, C., SUN, W., BITTON, D., YANG, Q., BRUNO, R., AND TULLIS, J . Efficient

placement of audio da ta on optical disks for real-time applications. Comm. ACM 32,
7 (July 1989).

[89] ZHANG, H., AND FERRARI, D. Improving utilization for deterministic service in
multimedia communication. In Proceedings of the International Conference on Mul-
timedia Computing and Systems (May 1994), pp. 295-305.

[go] ZHANG, L., DEERING, S., ESTRIN, D., SHENKER, S., AND ZAPPALA, D. RSVP: A

new resource reservation protocol. IEEE Network 7 (September 1993), 8-18.

[91] ZHAO, W., AND RAMAMRITHAM, K. Simple and integrated heuristic algorithms for
scheduling tasks with time and resource constraints. Journal of Systems and Software

7 (August 1987).

Appendix A

Glossary

clip A finite time segment from a single media source.

Clipserver SQUINT class for delivering a segment of a presentation from a single source.

complete error model An error model in which arbitrary accuracy can be specified by

constraints on the magnitude of error model components.

content Specification of logical output values over time.

continuous media Common term in literature for digital audio and video, which a p

proximate continuous real-time signals.

DBMS Database Management System.

distributed An activity spanning several computer systems.

error interpretation A set of functions that map an actual presentation onto an ideal

presentation.

error model A definition of error component functions that may be used in an error

interpretation.

error The difference between an ideal value and an actual value.

fps Frames per second.

hypermedia A network of media elements and navigable links between elements.

jitter error The high-frequency component of an error signal.

Kbps,Mbps,Gbps Data throughput units for thousands, millions, and billions of bits

per second respectively.

logical output An abstraction for a physical output device such as a video display or an

audio channel.

mapping dilemma Object implementation must map high-level functionality onto low-

level mechanisms, but performance of this mapping decision cannot be hidden from

clients.

mapping problem Finding a low-level presentation plan that satisfies a QOS specifica-

tion.

MPEG-1 Motion Picture Experts Group standard for encoding a real-time stream of

moving pictures.

presentation descriptor A set of parameters that specify a presentation.

presentation Real-time delivery of a composition that may include multiple media tracks.

QOS Quality of Service. Fidelity measure of service performance as compared t o some

ideal.

quality Specification of the allowable error between an ideal presentation and the actual

outputs.

rate error The rate of change of shift error.

reference architecture Chapter 3 describes the elements for QOS playback from stor-

age.

resolution The smallest reproducible pulse width.

resolution error The interval width for computing zError.

SQUINT Smalltalk QOS User Interface, the prototype multimedia player described in

Chapter 5.

sample Data representing an output value at a single instant of time.

shift error The low-frequency component of an error signal.

sound error model An error model for which every specification allows presentations

that are sufficiently close t o the ideal and disallows presentations with unbounded

error.

synch error The difference in shift error between two outputs.

track A composition of clips all t o be presented on a single output device.

TrackManager SQUINT main class for presentation execution. Translates QOS requests

into Clipserver requests.

PresentationManager SQUINT main class for presentation planning. Translates QOS

requirements into subordinate TrackManager requests.

view A mapping from logical content t o physical device coordinates and real time.

t. value Either audio signal level or video image intensity.

zError The average difference between ideal z value and actual z value.

Biographical Note

Richard Staehli was born in Portland, OR, on October 29,1957. He attended Washington

High School in Portland for four years, graduating in 1975. During his sophomore year he

moved with his family t o Rome, Italy, where he continued his course work by mail. Richard

attended the Honors College a t the University of Oregon for one year as a pre-Journalism

major. After two years working in a custom photography lab, he returned t o school a t The

Evergreen State College in Olympia, WA, t o study physics. Richard completed his B.S.

there in 1982. From 1982 t o 1989 he worked as a software engineer a t Electro Scientific

Industries (ESI) in Portland. At ESI, he developed a strong appreciation for the principles

of modular programming and object-oriented software development. Although working

primarily with the Pascal programming language, he learned Smalltalk through a 1985

class at the Oregon Graduate Institute (then called the Oregon Graduate Center) and

brought object-oriented programming techniques t o new software development at ESI.

Seeking a stronger background in computer science, he joined the doctoral program at the

Oregon Graduate Institute in the fall of 1989. His research interests include multimedia

information systems, distributed operating systems, and object-oriented programming.

Selected publications

Richard Staehli, Jonathan Walpole, and David Maier. Device and physical da ta indepen-

dence for multimedia presentations, To appear in ACM Computing Surveys, Symposium

on Multimedia Systems, 1996.

Richard Staehli, Jonathan Walpole, and David Maier. Quality of service specifications for

multimedia presentations. Multimedia Systems, 3(5/6):251,263, November 1995.

Shanwei Cen, Calton Pu, Richard Staehli, and Jonathan Walpole. A distributed real-time

MPEG video audio player. In Proceedings of the 5th International Workshop on Network

and Operating Systems Support for Digital Audio and Video, volume 1018 of Lecture Notes

i n Computer Science, pages 151-162. Springer-Verlag, 1995.

David Maier, Jonathan Walpole, and Richard Staehli. Storage system architectures for
continuous media data. In Foundations of Data Organization and Algorithms, FODO '93,
volume 730 of Lecture Notes in Computer Science, pages 1-18. Springer-Verlag, 1993.

Richard Staehli and Jonathan Walpole. Using script-based QOS specifications for resource

scheduling. In Proceedings of the 4th International Workshop on Network and Operating

Systems Support for Digital Audio and Video, pages 93-95, Lancaster, England, November

1993. Lancaster University.

Richard A. Staehli and Jonathan Walpole. Constrained-latency storage access. Computer,

26(3):44-53, March 1993.

	199601.staehli.richard to p. 50.pdf
	199601.staehli.richard to p. 124.pdf

