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Abstract 

Quality of Service Specification 
for Resource Management 

in Multimedia Systems 

Richard Alan Staehli 

Supervising Professor: Jonathan Walpole 

Digital multimedia systems are rapidly becoming ubiquitous with nearly all computer 

platforms offering support for audio and video. Multimedia computing promises t o  aug- 

ment or replace most of the traditional broadcast and print media with more interactive 

and personalized information services. Unfortunately, today's real-time multimedia ser- 

vices are either tailored to a personal computer environment or are vulnerable t o  perfor- 

mance degradations in a shared environment. Designers are faced with two fundamental 

problems: 

a choosing a digital representation for continuous media, and 

scheduling resources t o  approximate a real-time presentation. 

While some multimedia systems take an ad hoc approach t o  these problems, an optimal 

solution requires a complete specification of presentation quality requirements. 

This thesis offers the first complete framework for specifying presentation Quality of 

Service (QOS) requirements. Beginning with a formal definition of an ideal presenta- 

tion, the thesis describes a quality estimation function based on error in the presentation 

xiv 



outputs. This approach allows device and data independent descriptions of multime- 

dia services. We provide a detailed example of a formal QOS specification composed of 

orthogonal content, view, and quality descriptors. These descriptors are designed to  s u p  

port useful, complex multimedia presentations and to have a simple formal semantics. 

The practicality of the QOS specifications are demonstrated by a multimedia player that 

translates QOS requirements at runtime into acceptable presentations with near-optimal 

resource use. 



Chapter 1 

Introduction 

1.1 Multimedia Systems and Resource Management 

Multimedia systems facilitate better communication between people through the creation 

and exchange of multimedia information. A multimedia presentation uses complementary 

sensory channels t o  communicate more effectively and often more quickly than with a 

single media type, such as text. In particular, video and audio take advantage of our 

ability t o  recognize important information quickly through sight and sound. 

Another important feature of multimedia systems is that  natural sensory information 

can be recorded and reproduced without interpretation. Audio and video streams typically 

contain a large portion of irrelevant information that  is not easily separated from essential 

information. Today's successful multimedia systems handle audio and video da ta  types as 

Binary Large Objects (BLOBS) whose meaning is understood only by the user [68]. 

As audio and video capabilities are added t o  nearly every workstation and personal 

computer, the computer is assuming a new role as the smart user-interface t o  unified 

communication and information services. Computers add value t o  analog media through 

navigation support and information management services. 

We define a multimedia presentation t o  be the digital output representation of multime- 

dia information. This definition deliberately eliminates consideration of digital-to-analog 

conversion and display, because these mechanisms are typically not under software con- 

trol. A presentation may include digital video and audio, as well as synthetic compositions 

such as slide shows and computer-generated music. We call these presentations time-based 

because they communicate part of their information content through presentation timing. 



continuous signal digital representation real-time presentation 

Figure 1.1: Loss of quality in digital representation and presentation. 

Since digital video typically has higher bandwidth requirements than other da ta  types, we 

use it for most examples with the understanding that  analogies can be drawn for other 

time-based da ta  types. This thesis concentrates on the problems of real-time multimedia 

presentations from stored data. However, since our QOS specifications make no assump- 

tions about da ta  location, our results may be applied t o  presentations of live da ta  sources 

as well. 

What is so new about time-based presentations? While presentations of text and 

numeric da ta  are generally expected t o  be correct, for time-based presentations it is fre- 

quently impossible to  compute and display correct results in real-time. For example, a 

stored video that  is encoded a t  2 Mbps cannot be played in real-time over a 1 Mbps 

network connection without skipping frames or otherwise losing part of the information 

stream. We refer t o  this conflict between resource capacity and presentation timing as the 

real-time presentation problem. 

Some information loss is also inevitable in any conversion of continuous media between 

analog and digital representations. This loss occurs not only when the da ta  is initially 

captured, but also in lossy conversions between digital encodings, such as when a 24- 

bit color image must be dithered for an %bit display. We refer t o  this conflict between 

preserving information and digital encoding as the digital representation problem. 

Figure 1.1 illustrates the real-time presentation problem and the digital representation 

problem for reproduction of a continuous audio signal. These two problems are related 

through the resource requirements for da ta  processing, storage and transport. For exam- 

ple, a real-time presentation may be achieved with limited resources by using a highly 

compressed digital encoding, such as MPEG, that  sacrifices image quality for reduced 



storage-volume and transport-bandwidth requirements [23, 741. In fact, both problems 

have trivial solutions if the application allows arbitrary degradation of quality! But for 

acceptable presentations, a multimedia system must attempt to  provide accurate timing 

and good image quality. 

Since some loss of accuracy is inevitable, the goal is not t o  prevent loss, but instead t o  

keep losses within acceptable bounds. This goal presents a new challenge for multimedia 

systems: t o  represent requirements for acceptable presentations and t o  manage resources 

to  best satisfy those requirements. Of course, what is acceptable depends upon the user 

and the purpose for a particular presentation. 

The requirements for acceptable timing and image (or signal) quality are referred t o  

as presentation Quality of Service (QOS) requirements. Throughout this thesis we use 

the term QOS t o  refer to  the presentation requirements. When we refer t o  the quality of 

service requirements for a particular resource we use the resource name as a qualifier, as 

in "network QOS". 

Let a presentation plan be the combination of algorithms and resources used t o  imple- 

ment a presentation. The same QOS for a presentation can be achieved by presentation 

plans that  have very different resource demands. Figure 1.2 illustrates two alternative 

plans that  produce the same output. The choice of whether t o  use compression over 

a network link depends on the relative scarcity of network resources versus processor 

bandwidth for encoding and decoding. Furthermore, the same resources may be used by 

presentation plans that  have different output quality. For example, the compression in 

Figure 1.2 could produce high image quality with a low frame rate or vice versa with the 

same compression ratio and computational requirements. If resources are expensive, then 

the multimedia system should use no more resources than are needed t o  satisfy the QOS 

requirements. We refer t o  the determination of a presentation plan that  satisfies QOS 

requirements as the mapping problem. 

It is useful t o  consider the stored media in a multimedia system as a database and a 

time-based presentation as the result of a query on that  database. Database technology 

offers many benefits for multimedia applications, such as high-level query languages, con- 

currency control for document editing, and device and physical da ta  independence. But, 



source network display 

source network display 

Figure 1.2: Use of compression trades CPU processing for network bandwidth. 

current database systems do not adequately support time-based presentations. Relational 

da ta  manipulation languages have demonstrated the value of letting the application spec- 

ify what is wanted, and letting the database plan how t o  retrieve it. To support time-based 

presentations, a data  manipulation language for a multimedia database should also allow 

the application t o  specify when, where, and how precisely the data  should be delivered [50]. 

These constraints on delivery are an example of a QOS-based interface. The specification 

of QOS requirements is an issue for logical da ta  modelling. 

QOS management is both a problem and an opportunity. In the bad-old-days of 

analog media, the marketplace evolved a relatively small number of media t o  support 

the largest market segments. For example, the old analog phone system offered only 

two-way voice quality communications. The price of a phone call did not diminish when 

you needed only half the bandwidth. With digital technology, conversion between media 

formats is simply a matter of software and computer time; and of course computing 

time has become very cheap through technological advances and growth in the market 

for computers. Equivalently, digital technology makes it easy t o  offer the same media at 

virtually any resolution or sample rate. Just as ad-hoc queries are commonly used t o  select 

relevant information out of large relational databases, multimedia requests that  specify 

QOS requirements can be used t o  browse any type of media without paying the resource 

costs for best-quality presentation. 



Some examples help t o  illustrate that  QOS requirements vary with the application. 

One of the early titles in the CD-ROM multimedia publishing market is a repackaging of 

the Beatles' film, "A Hard Day's Night" [77]. This CD-ROM includes the entire film as 

a compressed digital-video movie. The resolution and playback fidelity is well below the 

quality of a VHS home video, but the CD-ROM compensates by offering random access 

and hypermedia links between annotations and film segments. Despite the lower video 

quality, the compressed video on CD-ROM is better able to  meet the needs of the film 

student than a lossless encoding requiring 100 times the storage volume and bandwidth. 

Another example application is mobile computing, where the ability t o  view multi- 

media email and other documents over low-bandwidth connections.and on low-resolution 

displays is important. Audio and video can be supported over 56-Kbps phone lines, albeit 

with reduced picture quality and frame rate [87]. In such applications, the timeliness 

of access t o  information may be more important than preservation of the source media 

quality. Network bandwidth, processing capacity and output device resolution may limit 

presentation quality, but they do not prevent us from providing real-time multimedia 

presentations. 

As a third example, consider a video database that  may be accessed concurrently 

by multiple users. The video will typically be encoded t o  support the highest quality 

playback, yet for tasks such as video editing and visual searches, it is possible t o  support 

many more concurrent sessions with lower quality. Despite this tolerance for lower quality, 

it is important t o  recognize the point a t  which poor quality impairs the usefulness of a 

presentation. An admission test can be invoked with each user request t o  determine if the 

request can be satisfied without excessively degrading the service t o  other users [5, 51,711. 

1.2 The Need for Presentation Quality of Service Specifica- 

t ions 

How can a request for multimedia services express its QOS requirements? A multimedia 

system will need t o  interpret these requirements in order t o  schedule resources appropri- 

ately. A formal approach for specifying accuracy requirements in database transactions 



has been described under the name Epsilon Serializability (ESR) [62]. ESR allows a query 

t o  specify an acceptable amount of error in data  values so that  the DBMS can relax some 

of the normal da ta  locking requirements. In multimedia systems, the  requirements for pre- 

sentation fidelity are analogous t o  the requirements for accuracy in the result of a database 

query. An approach similar t o  ESR is needed for time-based multimedia presentations t o  

allow relaxation of computation and resource scheduling constraints. 

Consider the way that  existing multimedia systems handle tradeoffs between QOS and 

resource use. Video on Demand (VOD) systems typically guarantee lossless data  transport 

and strict presentation timing by making conservative resource reservations [47, 6, 84, 611. 

This approach is designed t o  satisfy a specific application where the QOS requirements are 

high. A multimedia system designed t o  support a greater range of applications should also 

provide efficient support for moderate and low-QOS presentations. The Capacity-Based 

Session Reservation Protocol (CBSRP) allows the specification of discrete QOS classes 

based on sampling rate and spatial resolution [go]. Although the CBSRP definition of QOS 

does support dynamic control of resource usage, it does not constrain loss of information 

through quantization, temporal jitter, or synchronization errors. In the absence of a 

complete specification of QOS requirements, the implementation of CBSRP makes an ad 

hoc choice about how accurate the presentation timing must be and how much quantization 

error is allowed. 

As an alternative t o  guarantees, adaptive approaches attempt t o  provide the best qual- 

ity, but may degrade some aspects of presentation quality when resources are scarce. The 

Plateau group a t  Berkeley has described an adaptive algorithm for network video play- 

back that  attempts to  decode as many video frames as possible while staying ahead of 

the display schedule 1661. If the decoder falls behind, some number of frames are skipped 

in order t o  reduce the decoder's processing load. Skipping frames is one way t o  trade 

presentation quality for resource savings. While this solution allows the video playback 

t o  maintain approximate synchronization across a wide range of display platforms, their 

algorithm for skipping frames is based on ease of implementation rather than a minimal 

degradation of presentation quality. Cen, et al., have demonstrated that  an adaptive al- 

gorithm can achieve better perceived quality of MPEG video playback by intelligently 



choosing the pattern of dropped frames at the source [13]. Others have shown tha t  video 

resolution and picture quality can be varied dynamically t o  save bandwidth without d r o p  

ping frames [21, 141. As with a guarantee approach, adaptive algorithm designers are 

forced to  make ad hoc choices regarding which aspect of presentation quality t o  sacrifice 

because of the lack of a complete specification of QOS requirements. 

To date, researchers have found that  presentation-level QOS requirements are difficult 

t o  define [58, 19, 33, 71. Part  of the difficulty is due to  a confusion between specifying 

what presentation is desired and how to  achieve that  presentation. Presentation QOS 

requirements derive from what functionality is intended. On the other hand, resource 

QOS requirements derive from how the presentation is t o  be implemented. 

What is missing in the literature is a method for specifying presentation QOS. The 

need for presentation QOS specifications is now well recognized [7], but there has been 

little discussion of how t o  address this need. The approach we favor is t o  divide the 

problem into two parts: modelling the measurable error in a presentation and empirically 

determining QOS requirements in terms of this model. 

Since the purpose of a multimedia application is to  communicate some content t o  a 

human user, the QOS requirements necessarily derive from the need t o  limit noise and 

other error in the communication channel. An approximate model of human perception 

can provide a useful tool for presentation QOS management. The degree t o  which different 

types of error interfere with the user's ability to  understand the content can be determined 

by studies of human perception [75, 401. This thesis focuses on how t o  model the user- 

perceivable error. 

For a QOS specification t o  be useful for resource management, it must have formal 

semantics. Formal semantics allow a multimedia system designer t o  validate whether a 

particular presentation algorithm will be able t o  meet the specification. A formal spec- 

ification is a prerequisite for reliable presentation quality guarantees, even when those 

guarantees are of a statistical nature [83]. Even if the goal is only t o  provide the best 

quality with the available resources, a formal semantics for presentation quality is needed 

t o  validate the optimality of a particular presentation. A formal semantics implies that  

QOS specifications are based on well-defined measurable quantities. 



1.3 Scope and Contribution of this Thesis 

Our research group intends t o  build multimedia systems that  base their resource manage- 

ment decisions on the quality of service provided t o  the user. To advance this goal, we 

have surveyed techniques for QOS management in both research and commercial systems. 

The insights gained from this research suggested a new approach t o  specifying presenta- 

tion QOS. This thesis describes the motivation for and the formal semantics of this new 

specification technique. To demonstrate the value of formal QOS specifications, the the- 

sis describes the design and implementation of a multimedia player that  minimizes the 

resources used for a presentation while satisfying user-specified QOS requirements. This 

resource optimization allows more concurrent presentations with QOS guarantees than 

are possible with an ad hoc approach t o  QOS management. 

This thesis offers a formal QOS specification semantics that  can be used t o  provide 

presentation guarantees. The key precondition for optimal resource management in mul- 

timedia systems is t o  identify a metric for presentation quality. We describe a three step 

method for defining such a metric. First, define an ideal presentation. Second, choose an 

error model that  describe the difference between actual and ideal presentations. Third, 

define a quality estimation function in terms of the error model. We identify a complete- 

ness criteria for error models based on the ability to  account for all error in a presentation. 

This method and the completeness criteria distinguish our work from other descriptions 

of presentation-level QOS parameters. 

We also provide a particular example of a content authoring and playback model with 

formal QOS semantics. Our model contributes orthogonal definitions of content, view, 

and quality descriptors that  together determine presentation QOS requirements. The 

error model we use t o  define QOS semantics offers a formal definition of error measures 

such as jitter and synchronization error in multimedia presentations. We show that  our 

error model is complete. 

A quality metric produced by our method affords a new tool for judging the strengths 

and limitations of any multimedia system. Not only does it offer a measurement tool, but 

by identifying the different facets of presentation quality, new opportunities for resource 



optimization are more readily identified. 

Finally, the prototype implementation of QOS-based resource optimization provides a 

concrete example of an architecture for translating presentation QOS requirements into 

resource guarantees. Such translation will be an important part of systems tha t  allow 

a flexible range of service guarantees since users cannot be expected to  understand the 

resource costs in a large distributed system. 

1.4 Outline of the Thesis. 

The next chapter surveys a broad range of techniques for QOS management and classifies 

them by the type of guarantees that  they provide. This survey led us t o  the question of how 

t o  specify QOS requirements that  would constrain the choice of QOS management tech- 

niques. Chapter 3 describes our architectural model for QOS specification, presentation 

planning and execution. This architecture clarifies the role for formal QOS specifications 

and provides a reference for comparisons with other systems. 

The primary contribution of this thesis is the method and formal semantics for QOS 

specification given in Chapter 4. A practical implementation of a multimedia player based 

on formal QOS specifications is described in Chapter 5. Chapter 6 discusses related work 

in presentation-level QOS specification and Chapter 7 summarizes the major results and 

conclusions of the thesis. 



Chapter 2 

Real-Time Presentation of Stored 

Multimedia Data 

We use the term Constrained Latency Storage Access (CLSA) t o  describe applications 

tha t  have strict deadlines for the completion of some secondary storage accesses [70]. 

Examples of such applications are found not only in multimedia applications but also 

in real-time databases, which must satisfy strict constraints on transaction times [73, 11. 

There has been some controversy about whether the timing requirements of multimedia 

presentations should be considered t o  be hard or soft real-time [28, 291. A large body of 

knowledge exists on how t o  build hard-real-time systems, but it is generally expensive t o  

assure that  no deadline is ever missed [44, 37, 72, 671. Instead, most existing multimedia 

systems are susceptible t o  some da ta  loss and timing error. The majority of the techniques 

surveyed in this chapter describe ways to  reduce the magnitude of these errors. 

This chapter describes authoring tools that  specify presentation goals and then classi- 

fies the well known techniques for meeting these goals in various computing environments. 

Each technique is characterized by its effect on presentation quality as a function of re- 

source availability. The last section summarizes the results of the survey. 

2.1 Identifying Present at ion Requirements 

Figure 2.1 shows an abstract model for authoring and playback in multimedia systems. In 

the first step, a presentation author creates a descriptor for some multimedia content. A 

content descriptor defines a multimedia document in terms of basic media types, layout, 

synchronization, and links for navigation between documents. A presentation algorithm 



content 

idea (I"" 
I ' 

Author 
content descriptor a 

content eon 
5 \ 

Viewer 

presentation 

limitations / 

Figure 2.1: Authoring multimedia presentations. 

reproduces content from a descriptor, but the presentation may be degraded by device 

limitations or noise in the computing environment. A viewer receives the author's intended 

message by filtering the noise from the perceived content. 

The following tools offer varying amounts of support for presentation authoring and 

playback. All produce some form of content descriptor. But what is the correct way t o  

interpret a given content descriptor during a presentation? The discussion of each tool 

considers this question and describes the implicit presentation semantics. 

2.1.1 Continuous Media 

Audio and video recordings of natural phenomena have a natural presentation semantics 

as well: the goal is t o  reproduce the original phenomena. To this end, digital recording 

tools produce a minimal content descriptor to  accompany the encoded da ta  that  effectively 

specifies a normal presentation. 

Audio and video are considered continuous media data  types because they represent 

continuous natural phenomena. The amplitude of an audio signal varies continuously with 

time and the color value in a video varies continuously in both time and two-dimensional 

space. Digital recordings are created by periodically sampling an analog signal. The 

sampling process is characterized by the sampling frequency and the sample depth or 

number of bits used t o  represent a sample. For example, compact disk audio is sampled 



at 44 Khz with 16-bits (65536 values) per sample. Digital television for studio work is 

sampled at 13.5 Mhz with 8-bit samples for the luminance signal [59]. 

A content descriptor for continuous media playback can be as simple as a file name 

and a few parameters that  describe how the data  was recorded. For example, Sun audio 

files contain a header with sample rate and format information [76]. For best reproduction 

of the  original audio signal, the digital samples should be written t o  a digital-to-analog 

converter a t  the same rate and format that  they were recorded. This timing requirement 

is typically met by periodic scheduling of a low-latency output task. In addition, synchro- 

nization between audio and video tracks that  were recorded together should be preserved 

during playback. 

How accurate does the playback really need t o  be? Small amounts of timing error in a 

presentation have an effect similar to  that  of signal noise as illustrated in Figure 1.1. Re- 

sampling and conversion of the da ta  stream for a different audio device can also introduce 

perceived noise. But a digital recording already has a base level of quantization noise from 

the use of discrete values to  represent analog samples. Small timing and da ta  conversion 

errors are insignificant so long as they are masked by the quantization noise, but larger 

errors may be tolerable for some types of content and applications. Today's commercial 

tools attempt t o  provide the best playback quality possible for the recorded da ta  and do 

not incorporate any other notion of QOS requirements. 

2.1.2 Muse 

The  Athena Muse authoring environment offers four distinct representational approaches 

for specifying interactive multimedia learning environments: directed graphs, multidimen- 

sional spatial frameworks, declarative constraints, and a procedural language [32]. The 

directed graphs are useful for hypermedia style navigation. The spatial frameworks allow 

both specification of image display positions and placement of objects on a presentation 

timeline. Figure 2.2 illustrates the use of a timeline t o  specify synchronization in Muse. A 

timeline can be used t o  synchronize many objects including still images, text, video and 

audio segments. Declarative constraints, in the Muse system, are limited t o  bi-directional 
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Figure 2.2: Use of a timeline for synchronization in Muse. 

equality relations. For example, the scroll bar shown in Figure 2.2 is constrained t o  r e p  

resent the current position in the display of a timeline. When the scroll bar is moved, the 

view from the timeline is updated and vice versa. Finally, the procedural language allows 

arbitrary computations to  be embedded in the production. 

The specification of temporal and spatial layout in Muse constitutes a set of presen- 

tation goals that  the presentation engine should attempt to  meet. Unlike the continuous 

media data  types described above, the synthetic timing constraints of Muse composition 

are generally not periodic. The descriptor for a presentation must explicitly store each ob- 

ject presentation time specified on the timeline and the presentation engine must initiate 

presentation of the objects according to  this schedule. Muse has an informal presentation 

semantics and has been successfully used for authoring educational materials for presen- 

tation on a modified Athena workstation. 

2.1.3 Object Composition Petri Nets 

Little and Ghafoor have described an interval-based descriptor for multimedia presenta- 

tions called an Object Composition Petri Net (OCPN) [43]. Each media object is assigned 

t o  an output device and has a known display duration. An OCPN is constructed by 

specifying the temporal relation between two objects using one of the seven interval rela- 

tions shown in Figure 2.3. Some relations require a delay parameter as indicated by the 

small arrows. Every OCPN can be viewed as an object with known duration for recursive 

composition. 

OCPNs have an operational semantics that  guarantees that  no object is displayed 
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Figure 2.3: Interval relations in an Object Composition Petri Net. 

until the previous transition in the petri net has been enabled. For example, when the 

image display process in Figure 2.3 completes, the subsequent transition (vertical bar) is 

enabled and the associated video, audio, and delay processes can begin. However, there is 

no guarantee that  enabled processes will begin immediately or that  they will execute for 

precisely the specified duration. As with authoring in the Muse system, OCPNs do not 

specify presentation accuracy. Little and Ghafoor have suggested a partial list of network 

QOS parameters for communication of multimedia objects [42]. In Chapter 4, we offer 

a formal definition of some of these parameters and show where they fit into a complete 

model for presentation QOS specification. 

2.1.4 MAEstro 

MAEstro is a set of UNIX-based tools for authoring multimedia documents [19]. I t  pro- 

vides a timeline editor with a direct manipulation interface for synchronization of media 

segments. The appearance of the timeline editor is similar t o  Figure 2.2, but the MAEstro 

authoring model is more restrictive than Muse. For example, a presentation has only a 

single track for each media type so that  it is not possible to  specify two concurrent audio 

segments. Media segments are edited and played by a media editor that  is registered for 

each media type. During a presentation, the timeline editor detects the start  time for each 



segment and sends a message t o  the appropriate editor t o  display the appropriate data. 

MAEstro was designed t o  support network-based multimedia by delegating media 

handling responsibilities t o  the distributed media editors. As a concession t o  the difficulty 

of synchronizing distributed multimedia streams, MAEstro does not guarantee that  media 

editors stay synchronized with each other. Instead, it has rising-edge synchronization 

which means that  only the start  time for each media segment is controlled by the timeline 

editor. In practice though, even the initiation of media playback is subject t o  delays for 

message passing, process scheduling and storage access. MAEstro is used for authoring 

multimedia documents with coarse-grained synchronization on UNIX platforms. 

2.1.5 Algebraic Video 

Weiss, e t  al., have described an informal semantics for an algebra of video composition 

operators [85].  An algebraic video expression can represent a segment of raw video or a 

composition of other algebraic video expressions. The algebraic operators are shown in 

Table 2.1. This video algebra allows users t o  specify presentations through content-based 

queries and simple composition operations. Content is described with text annotations 

using the description operator. Since any video expression may be annotated, and video 

expressions may share common video segments, annotation properties may overlap. The 

union and intersection operators support composition and decomposition, respectively, of 

overlapping video segments. 

The output operators for algebraic video expressions specify a multimedia presentation, 

but do not describe presentation quality requirements. As with other authoring tools, 

the algebraic expressions describe presentation goals without providing constraints for an 

implementation. 

2.1.6 MHEG 

ISO's Multimedia Hypermedia Experts Group has defined the MHEG encoding standard 

for storage, exchange and execution of multimedia presentations [52]. The encoding s u p  

ports spatial layout and synchronization of common media elements and also supports 



Table 2.1: Algebraic video operations. 

Creation 
c rea t e  name begin end 
delay time 

Composition 

El 0 E2 
El u E2 
E~ n E~ 
El - E2 
El 11 E2 
El llE2 
(test)? El : E2 : ... : Ek 
loop El time 
s t r e t c h  El factor 
l i m i t  El time 
t r a n s i t i o n  El E2 type t 
contains  El query 

Output 
window El rectangle priority 
audio El channel f priority 

Description 
desc r ip t ion  El content 
hide-content El 

create a presentation from named video 
create a presentation with empty footage 

concatenation of El followed by E2 . 

El followed by E2, no duplication of common footage 
intersection with only common footage of El and E2 
difference with only footage of El that is not in E2 
El and Ez start simultaneously and play concurrently 
El and E2 play concurrently and end simultaneously 
Ei is played if test evaluates to i 
repetition of El for duration time 
stretch duration of El by factor 
limit duration of El to  time 
transition effect between El and E2 for duration t 
components of El that match query 

display El with priority in rectangle 
output El to  channel with priority 

annotate El with description of content 
hide the content annotations of El 



user interaction through hypermedia links, menu selections and data  entry. The funda- 

mental building blocks of an MHEG presentation are content objects that  represent an 

atomic piece of a particular media type. Layout and synchronization of content objects 

is described with virtual coordinates and virtual views that  must be mapped t o  real co- 

ordinates during presentation. State transitions in the playout of content objects, e.g. a 

completion event, can be used t o  trigger other presentation actions. The MHEG stan- 

dard is rich enough to  represent presentations created by many diverse authoring tools, 

including Muse, OCPNs, and MAEstro. 

2.1.7 Discussion 

Early multimedia systems, such as Muse and MAEstro, are designed t o  use the same pre- 

sentation engine for both authoring and playback. The authors can know the limitations 

of the presentation computing environment and can tailor content descriptors appropri- 

ately [19]. A viewer that  uses the same presentation engine and the same or similar 

computing environment is likely t o  perceive the presentation as the author intended. On 

the  other hand, the MHEG standard is predicated on the exchange of presentation de- 

scriptors between heterogeneous computing systems. But distribution and heterogeneity 

make it difficult for the author t o  tailor the content for playback. When a viewer attempts 

t o  view a presentation over a heavily loaded network or on a machine with lower perfor- 

mance than the authoring platform, there is a large probability that  the presentation will 

not be acceptable. Even when the presentation engine can adapt the presentation quality 

t o  the available resources, the engine has no information about how t o  balance the loss of 

playback quality between different aspects such as spatial resolution and frame rate. 

Current authoring and playback tools specify only presentation goals and not presenta- 

tion QOS. The presentation engines take an ad hoc approach t o  managing QOS tradeoffs. 

These tradeoffs are described in detail in the next section. 
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Figure 2.5: Overview of presentation techniques. 

2.2 Presentation Techniques 

Figure 2.4 shows an overview of the problems in multimedia system design. A presen- 

tation algorithm must solve three problems: how t o  compute multimedia outputs, when 

t o  compute them, and what system resources t o  use. The next sections survey how 

these problems are solved in existing multimedia systems. Section 2.2.1 discusses basic 

algorithms for computing multimedia outputs from stored data. Section 2.2.2 describes 

common algorithms for synchronization, i.e., control of when outputs occur. Resource 

constraints can be met by either reducing presentation resource requirements or increas- 

ing resource availability as suggested in Figure 2.5. Approaches for relaxing presentation 

resource requirements are described in Sections 2.2.3, 2.2.4, 2.2.5, and 2.2.6. Resource 

reservation techniques t o  assure resource availability are described in Section 2.2.7. 



2.2.1 Output Computation 

An important task in planning a presentation is t o  identify data  sources and sinks and t o  

determine what computation is needed t o  connect them. For example, presentation of an 

MPEG video requires reading the file, decoding the video stream, converting each frame t o  

the color map and dimensions of the output window, and copying the da ta  t o  the output 

framebuffer. These steps are typically organized as a pipeline of (possibly distributed) 

processes and some of the processing may be performed by specialized hardware. In any 

case, the choice of a computation algorithm directly determines the  values tha t  are output 

during the presentation. The computational steps in a presentation can be can classified 

in the following categories: 

a storage access 

a transport of data  

a compression and decompression 

a manipulation of content 

a output device access 

As discussed in the introduction, i t  may not be possible t o  represent the intended 

output values perfectly. For example, a black and white display cannot reproduce a color 

image, and a low resolution display cannot reproduce finely detailed images. Instead 

of a single correct computation for connecting sources t o  sinks, there are many possible 

computations that  approximate the intended output. 

The conversion from source encoding t o  an output representation can affect many 

aspects of presentation quality. In audio presentations, converting t o  a smaller number 

of bits-per-sample introduces more noise. Resampling an audio stream a t  a lower rate 

results in the loss of high audio frequencies. Even the volume of an audio presentation 

can be affected by data  processing steps. For images - such as text displays, still pictures, 

graphics and video - the output computation affects color fidelity, brightness, contrast, 

resolution, image noise, visual artifacts, and overall image proportions. The presentation 



planner must choose among the approximate computations, one which meets QOS goals 

with available resources. The following sections discuss techniques that  expand the range 

of options. 

2.2.2 Synchronization 

If acceptable computations of presentation outputs have been identified, then the question 

is when t o  execute those computations. The schedule for when output events should 

occur is defined both by the authoring tools and by interactive events. Schedules may be 

classified in three categories: 

periodic 

scripted 

event-driven 

A periodic schedule specifies a constant time period between output events. If the 

schedule is not periodic, but the output times are known in advance, we call it a scripted 

schedule. Finally, if output events are triggered by user interaction or other external 

events, we call the schedule event-driven. A presentation schedule may be constructed as 

a hierarchy of periodic, scripted and event-driven schedules. For example, an information 

kiosk might present video segments according to  a scripted schedule while each single 

video segment has a periodic schedule for frame output events. 

Event-driven schedules can be realized with an event-loop algorithm that  invokes a 

handler for each external event. The handler completes its work quickly, possibly by 

forking another process that  may run concurrent with the event loop. Typically, the 

initiation of a presentation in response t o  user interaction should occur as soon as possible, 

while the remainder of the presentation is defined by a periodic or scripted schedule. 

MHEG and other interactive multimedia documents support event-driven schedules, but 

it may be easy to  derive a new scripted schedule from the MHEG specification in response 

t o  each user interaction. 
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Figure 2.6: Clock-driven synchronization. 

Figure 2.6 illustrates a simple clock-driven synchronization algorithm. The presenta- 

tion is described a s  a sequence of pairs (ci, ti) where c; is an output computation and ti is 

the  ideal time for the computation to  occur. For each output computation, the algorithm 

waits for the clock to  reach the ideal time before running the output computation. For 

periodic events, this loop can be implemented with a periodic timer interrupt. This algo- 

rithm provides two guarantees: that  outputs are generated in order and that  no output 

happens early. Unfortunately, it does not guarantee that  any output is generated! 

Despite these minimal guarantees, the clock-driven algorithm is perfectly adequate for 

presentations where the latency for output computations is easily bounded. MAEstro 

and many other multimedia systems take this approach in environments where the time 

required t o  access and process da ta  for each output is negligible relative t o  the time 

between events [19]. But what should be done if the access and rendering time distort 

the presentation timing a s  shown in Figure 2.7? Not only does the title screen persist 

too long, but if the image is displayed after the presentation time for the end slide it gets 

immediately overwritten! 

If process latencies are predictable, one way t o  correct the output timing is t o  modify 

the schedule of output times, compensating each by the anticipated latency [19]. If the 

latencies are variable, but bounded, it may be possible t o  hide the latency by prefetching 

from storage as discussed in Section 2.2.6. 
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Figure 2.8: Duration-driven synchronization. 

An alternative t o  the clock-driven algorithm is t o  wait explicitly for the intended du- 

ration of a presentation before triggering subsequent actions. Figure 2.8 shows a duration- 

driven synchronization algorithm that  executes computation c; and then waits for a du- 

ration d; before continuing. A computation may fork a child process to  execute a sub- 

presentation recursively and in parallel, but it must then wait for the child t o  complete 

before it completes itself. This type of algorithm is described for executing an OCPN [43]. 

Duration-driven synchronization guarantees tha t  the output of every computation c; is 

not overwritten early by the next output of the presentation thread. Since other presen- 

tation actions may be occurring in parallel, this synchronization algorithm only preserves 

a partial order of presentation events. 



Duration-driven scheduling may be combined with clock-driven scheduling and event- 

driven scheduling. For example, most multimedia players handle user inputs that  start,  

stop, reposition and change the rate of presentation. The event-handling loop interprets 

the  user input and recomputes parameters for a clock or duration driven algorithm. In 

a duration-driven algorithm, some presentation computations may be implemented by a 

clock-driven process. 

So far, we have assumed that  the synchronization algorithms affect only the timing of 

computations and not the results. If it is more important to  complete computations on 

time than t o  complete all computations, then a clock-driven synchronization algorithm 

may be used to  skip computations. For example, instead of waiting for the next presenta- 

tion time in sequence, the algorithm might skip all but the last computation whose time 

has past. This guarantees that  every computation was current when it was initiated. If all 

computation latencies are bounded by a duration d then this algorithm guarantees that  

every computation completed is not more than 2d late. we call this type of algorithm 

strict clock-driven synchronization because it allows a strict limit on timing error with 

respect t o  the clock. 

If some computations must be skipped, i t  is desirable t o  have more control over which 

t o  omit. In continuous media presentations bandwidth limitations frequently limit the 

sample rate that  can be transmitted and decoded. Several researchers have described the 

use of software-feedback techniques to  determine the available bandwidth and t o  adapt the 

scheduled sample rate accordingly [66, 131. 

In a distributed system, there is no single clock that  can be used t o  control synchro- 

nization. Our ability t o  synchronize processes executing on different machines is limited 

by the communication latency between the machines, and by the variation in clock rates. 

Clock rates can vary in the parts-per-million range with normal temperature changes [55]. 

These uncertainties make it difficult to  assure that  media streams from different sources 

begin a t  the same time and proceed a t  the same rate. One solution is t o  use a network 

clock-synchronization protocol, such as NTP, t o  synchronize distributed clocks within a 

few milliseconds [55]. However, in most presentations of stored da ta  the output devices 

are attached t o  a single client machine. In that  case, i t  is a simple matter t o  control 



synchronization via a local clock on the client. Feedback algorithms have been described 

that  coordinate timing between servers and the client [13]. Section 2.2.6 describes this 

type of coordination in more detail. 

2.2.3 Storage Optimizations 

Video and audio data  can require large amounts of storage space. For many multime- 

dia applications, the da ta  is immutable and storage is optimized for read access. Many 

different storage architectures have been used for multimedia data,  including arrays of 

fast magnetic disks and optical disk jukeboxes [9, 151. The variations in throughput and 

latency characteristics of such systems is very large. CD-ROM drives with transfer rates 

of 1.2 MBytes per second and seek times on the order of 1 second are in common use 

on personal computer systems [82]. A throughput bottleneck in storage forces either a 

slow-down of the presentation or information loss through skipped data. Large storage 

access latency causes delay and jitter in a presentation. 

Storage optimizations are targeted a t  reducing latency and increasing throughput. 

Storage latency is a function not only of physical device characteristics, but also the 

policies that  dictate the placement of data  and when it is moved. Common device charac- 

teristics t o  be considered include RAM access speed, bus contention delays, disk controller 

overhead, seek time, rotational delay, transfer rate, mounting time for off-line disks in a 

jukebox, and network communication delays. The policies of the storage system are ev- 

ident in da ta  layout and caching, the handling of resource contention (including CPU) 

in multitasking environments, decompression and other processing requirements. Data  

layout optimizations are discussed in this section. LRU and other common disk caching 

policies are ineffective for multimedia presentations since the media streams are accessed 

serially and the datasets are frequently too large to  fit in main-memory. Instead, we dis- 

cuss prefetching techniques for hiding latency in Section 2.2.6. Compression techniques 

for reducing storage bandwidth requirements are described in Section 2.2.5. Resource 

reservations t o  avoid contention are discussed in Section 2.2.7. 



Data Layout 

A careful layout of da ta  in storage is an important part of many continuous media storage 

systems [47, 61. The goal of da ta  layout is t o  minimize seeks and rotational latency 

between reads. Seek time can be minimized by storing the da ta  stream in contiguous 

storage locations. Rotational latency can be minimized by dividing the da ta  into disk- 

transfer units and writing these units to  the next available disk sector a t  the same rate 

that  they will be read. Yu, et al. have described an optimal placement of audio da ta  on 

disk that  accounts for rotational latency [88]. 

A concurrent presentation of two or more streams, e.g. audio and video tracks, re- 

quires interleaved access t o  data  for each stream. If the streams are t o  be played out 

synchronously they can be multiplexed and stored a s  a single stream [63]. During play- 

back, a multiplexed stream must be de-multiplexed before the da ta  is written t o  separate 

output devices. 

If concurrent streams are not multiplexed, then the disk head must be scheduled to  

interleave reads from each stream. Figure 2.9 illustrates a cyclic disk schedule that  reads 

two sectors for one stream, seeks t o  a second stream t o  read one sector, then returns t o  

the first. This time sharing creates two problems for real-time disk access: increased jitter 

in the stream access and decreased disk bandwidth due to  the overhead for seeks. While 

the disk is servicing one stream, da ta  transfers for the other stream are delayed. When 

the disk scheduler switches streams it incurs the cost of seeking t o  the other stream. The 

jitter can be hidden from the presentation by introducing a buffer between the disk server 

and the display process. The disk scheduling and buffering requirements for continuous 

media da ta  have been described by Gemmell and others [25, 21. Some of these results are 

described in Section 2.2.6. 

Data  layout is further complicated by applications that  read only a portion of a contin- 

uous media stream, e.g., only the low-frequency components of a compressed video. One 

approach is t o  split a single media stream into base-layer and enhancement-layers [14]. 

For low-resolution access, an application need only read the base-layer stream. For best 

resolution, an application must read the base-layer and enhancement-layer streams and 



time 

data transfers seeks 

Figure 2.9: Interleaved disk scheduling for two streams. 

combine them. 

Disk Striping 

Disk striping is a common technique for increasing disk bandwidth. A da ta  stream is 

segmented by time-slicing and the segments are written in round-robin order t o  an array 

of N disks. When reading the data,  N slices can be transferred in parallel, achieving a 

near-linear speedup of disk bandwidth [9]. Video on Demand (VOD) systems have been 

built using disk striping t o  provide bandwidth guarantees for many concurrent users [47, 6, 

841. However, t o  share bandwidth between multiple playback streams requires interleaved 

service, just as for a non-striped disk. 

Figure 2.10(a) illustrates some problems associated with disk striping. The  da ta  for 

stream A is striped over only 3 out of 8 disks. If the stream is read a t  3 times the 

bandwidth of a single disk, disks 1-3 will be fully utilized while disks 4-8 will be available 

for other users. A request for stream B must wait until A is finished if any of its da ta  is 

located on the same disks. Figure 2.10(b) shows how the same requests can be serviced 

with less delay using staggered striping [6]. For each consecutive time slice, staggered 

striping increments the indices of the disks used to  stripe data  so that  the full stream is 
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Figure 2.10: Simple striping versus staggered striping. 

distributed across all disks. This da ta  layout allows the same maximum bandwidth for 

each stream without tying up any one disk for the entire playout duration. 

The maximum bandwidth for a stream is determined by the number of disks that  are 

accessed in parallel for each time slice. Reading a stream a t  a lower rate leaves the  disks 

underutilized since the bandwidth requirements of another stream is unlikely t o  match 

the particular pattern of idle disk time slices. This inflexibility can be solved by assigning 

stream segments t o  disks randomly instead of by striping. A random assignment of stream 

segments to  disks can balance the load among disks nearly as well as a striped layout, but 

makes it more difficult t o  provide bandwidth guarantees [54]. 

2.2.4 Process Optimizations 

Software transport, decoding and processing of video data  is often the bottleneck in mul- 

timedia systems. It is often possible t o  reduce the processing time by Eossless and lossy 

process optimizations. An optimization is lossless if it preserves information in the da ta  

stream, and lossy if some information is lost. Lossless optimizations include hand-tuning 

of machine code and elimination of unnecessary data  copying [45, 201. Specializations are 

optimizations that  depend on special knowledge of an application. For example, if it is 



known that  a video presentation window cannot be moved or obscured then the presenta- 

tion can bypass the window system and write directly t o  the display frame buffer. Lossless 

optimizations do not degrade the presentation quality. 

Lossy optimizations, in contrast, do affect presentation quality. For example, frame 

dropping is a common technique that  reduces the amount of CPU time used at the expense 

of the perceived frame rate. Ideally, frames are dropped at a regular rate t o  minimize the 

perceived degradation of quality and as early as possible in the pipeline t o  minimize 

handling costs [13]. Frame dropping is one example of subsampling a da ta  stream in 

time. Other examples include subsampling an audio stream and spatial subsampling of 

an image [18]. Another lossy optimization is the use of a less expensive and lower-quality 

dithering algorithm. For example, an error-diffusion dither generally yields the best image 

quality for pixel-depth reductions, but a simple truncation of pixel values to  the required 

depth is much faster [81]. 

2.2.5 Data Compression 

Data  compression is used t o  reduce the storage and transport costs of multimedia data,  but 

these savings come a t  the expense of increased processing requirements for encoding and 

decoding. Typically, it is the decoding requirements that  are of concern for stored data,  

since encoding can be performed offline. The benefits of the compressed da ta  representa- 

tion must outweigh the costs of decompression when the da ta  is needed. This condition 

holds when storage is scarce and when available disk or network bandwidth is inadequate 

for the uncompressed data  stream. The bandwidth requirements of an uncompressed 

digitized NTSC video stream are conservatively estimated a t  80 Mbps, which currently 

exceeds the capacity of most file systems, network links, and even display interfaces. 

Lossless compression techniques, such as run-length encoding, differential encoding, 

and entropy encoding, remove redundant information from a da ta  stream without loss of 

information. Lossless techniques may only achieve a 2:l compression ratio with continu- 

ous media data,  but since continuous media data  can tolerate some loss of information, 

lossy compression algorithms have been created that  can achieve much higher compression 

ratios by throwing away redundant and perceptually less important information. Lossy 



compression techniques include truncation, subsampling, motion compensation and the 

discrete cosine transform (DCT). The Motion Picture Experts Group (MPEG) MPEG-1 

compression standard uses motion compensation and the DCT in combination with lossless 

compression techniques t o  achieve compression ratios on the order of 70:l [49, 23, 741. 

As with lossy code optimizations, lossy compression techniques are designed t o  min- 

imize the perceived degradation of quality. MPEG-1 compression has been optimized t o  

yield VHS quality video a t  CD-ROM data rates. However, the amount of compression 

that  is possible without unacceptable loss of image quality depends on the complexity of 

images and motion in the original video. The quantization of DCT coefficients limits the 

amount of high-frequency information that  can be encoded and produces visible artifacts 

around sharp edges where such information is needed. The motion compensation algo- 

rithm cannot find good matches for every block when the original video contains complex 

action as in close shots of a basketball game. With poor motion compensation, the dif- 

ference encoding has a large amount of high frequency information and again, artifacts 

appear in the decoded video images. The MPEG standard for encoding allows control of 

the resolution, the amount of quantization, the amount of frame difference encoding, and 

the search algorithm for motion compensation. As these parameters are used t o  increase 

compression, the loss of quality becomes greater. we have found that  it is possible t o  

produce useful video with 30 frames per second a t  a compression ratio of 500:1, but that  

the loss of resolution and other artifacts are annoying. 

Compression also makes a data  stream more vulnerable t o  the effects of packet losses 

in network transmission. For example, an MPEG video stream is typically encoded with 

bi-directionally predicted or "B" frames that  require both a previous and a subsequent 

frame t o  be decoded first as a reference. If a packet loss causes an error in the decoding of 

either of these two frames, then the error will be propagated to  (or prevent the decoding 

of) all the intervening B frames. 

Scalable video resolution may become a common requirement in future applications. 

MPEG video streams may be filtered in real-time t o  remove high-frequency coefficients, 

producing a lower-bandwidth and lower-resolution video stream at the expense of some 

additional processing a t  the server [21]. Stanford University and Sun Microsystems have 
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Figure 2.11: Abstract model for prefetching. 

designed a VOD system that  supports multi-resolution access to  encoded video [14]. The 

MPEG-2 video encoding allows both HDTV and NTSC resolution images t o  be decoded 

from a single stream. 

2.2.6 Prefetching 

Prefetching is a common technique for hiding storage latency when the access pattern is 

known in advance. A prefetching process reads data  from secondary storage into main 

memory before the data is actually needed, as shown in Figure 2.11. When the application 

tries to  access the data, it is found in main memory and storage access delays are avoided. 

In an earlier work we have described the problem of constrained-latency storage access 

(CLSA) and identified prefetching as the generic class for solutions [70]. 

Prefetching reduces presentation delay and reduces jitter (variation in delay) by allow- 

ing the display process t o  perform a shorter computation at the scheduled output time. 

Prefetching may also allow higher overall throughput, since computation may be over- 

lapped with concurrent disk access. However, prefetching does incur some computational 

overhead for scheduling concurrent processes. 

Figure 2.1 1 suggests that  prefetching and display processes can be viewed as a pipeline. 

Many continuous media players are organized as a pipeline of storage access, network 

transport, decoding and display processes [48, 4, 66, 13, 391. Let us generalize the idea 

of prefetching t o  describe any decoupling of a computation into concurrent producer and 

consumer processes. By this definition, an interrupt-driven process that  reads from a 
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Figure 2.12: Greedy prefetching. 

live-video camera and sends the data t o  a remote display process can be described as 

prefetching data  for the network process. The network process, in turn, is prefetching for 

the display process. 

Prefetching flow control is needed t o  avoid overwriting data  in the buffer or  starving 

the consumer. A wide range of prefetching techniques exist with differing methods for flow 

control between producer and consumer. Examples are described below, with a citation 

of where the technique is used and a discussion of the advantages and disadvantages. 

Greedy Prefetching 

We use the term greedy prefetching t o  refer t o  a process that  outputs a stream of da ta  t o  

a queue as long as the queue is not full. A process that  writes t o  a UNIX pipe is viewed 

as a greedy prefetching process because it does not wait for a read on the pipe unless the 

queue for the pipe is full [65]. The AudioFile system uses pipe semantics t o  connect an 

audio playback application t o  a device server using a fixed sized queue [39]. 

Greedy prefetching uses a simple back-pressure technique t o  synchronize a fast pro- 

ducer with slower consumer. So long as the queue is non-empty, the consumer is insulated 

from delay and jitter in the prefetching process. But what if the consumer is faster over 



some small interval of time? Suppose that  da ta  are passed from the producer t o  the con- 

sumer in 1 block units. Let r, be the rate that  blocks are consumed by application demand 

and rp be the rate that  blocks are produced by prefetching. The rate r, may vary with 

time. The rate r, will be zero when the queue is full and will be limited by scheduling 

delays and by the latency for each fetch when there is free space in the queue. Figure 2.12 

illustrates greedy prefetching with a queue of size 6. When r, < r,, the queue will fill up 

or remain full as shown. When r, < rp, the queue will empty out. To avoid starving the 

consumer, the greedy algorithm must allocate and fill enough buffers for the queue t o  be 

able t o  satisfy demand during the worst-case interval in which the consumption exceeds 

prefetching. For every interval ( t l ,  t2)  this condition can be expressed as follows: 

Note that  if c greatly exceeds p over some interval, this condition may require a very large 

queue. 

The system designer must understand the application and the storage performance 

well enough t o  specify how many buffers are needed to  allow the prefetch process t o  get a 

headstart on the consumer. 

Consider the case where a prefetch process reads continuous media data  from disk and 

a display process consumes this data  at a constant rate. If data  is read a sector a t  a time 

from disk, a minimum of two sector-sized storage buffers are needed t o  allow the consumer 

t o  read da ta  from one as the greedy prefetching algorithm copies data  into the other. Let 

the constant demand rate be rc bytes/second, the disk transfer rate be rt bytes/second, the 

size of a disk sector be s, bytes and the smallest unit of introduced delay (e.g. rotational 

delay) be dm;, seconds. Let the da ta  be clustered in segments of i contiguous sectors 

on disk and the maximum bound on seek time between consecutive segments be dm,, 

seconds. Gemmell and Christodoulakis show that  any sustainable prefetching algorithm 

must use a segment size of a t  least 
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sector-sized buffers [25]. 

One of the advantages of greedy prefetching is that  producers are automatically blocked 

when consumers block so that  no da ta  is lost. However, this feature can also be a disadvan- 

tage when an exception causes the delay of a consumer process. With greedy prefetching, 

when the consumer stalls, the entire pipeline is held up. Any attempt t o  resynchronize 

the  presentation by skipping da ta  will be delayed by the full latency of the pipeline. 

Rate-Based Prefet ching 

Rate-based prefetching separates prefetch scheduling from the queue space availability. 

Ideally, the prefetcher produces data  at the same rate that  it is consumed so that  the 

queue is never empty or full. In practice, the consumer must either adapt t o  the prefetch 

rate or use feedback to  adjust the rate of the prefetch process. The ACME continuous 

media I/O server supports connection-driven rate control, where a media output process 

adapts its rate of consumption t o  keep pace with a real-time file access process [4]. Rate- 

based feedback techniques allow distributed prefetching processes t o  be synchronized with 

consumer processes [64, 66, 13, 141. 

A rate-based approach is appropriate when the prefetched da ta  becomes obsolete at 

a predictable rate, regardless of whether the consumer process has read it. Obsolete da ta  

may be overwritten by the prefetching process without waiting for the consumer. Rate- 

based protocols can achieve flow control with less overhead than a greedy prefetching 

approach [64]. For minimal latency communications, unreliable messaging protocols such 

as UDP may be used since there is not time t o  retransmit lost messages [60]. Variations 

in prefetch and transport delays will produce jitter in the arrival of da ta  in the queue. 

The average amount of data  in the queue should be sufficient t o  avoid starvation when 

packets are delayed. The average amount of free space in the queue should be sufficient 

t o  accommodate packets that  arrive early without loss. 



Scheduled Prefetching 

Scheduled prefetching uses an explicit prefetch schedule of times to  initiate the retrieval of 

each object in a presentation. Many multimedia applications call for an aperiodic presen- 

tation of media objects. Rate-base prefetching is inappropriate for such presentations and 

a greedy prefetching approach wastes buffer space. If the prefetch latency can be predicted 

for each object, then a prefetch schedule can be derived from the presentation schedule by 

subtracting predicted latency from display times. By prefetching so that  da ta  is available 

"just-in-time", the data  can be displayed immediately with no buffering requirements. 

On personal computers and some workstation environments, storage latency is repeat- 

able and may be empirically determined by rehearsing a presentation 119, 531. Even if 

some buffering is desirable to  hide prefetch jitter, worst-case latency estimates may be 

used to  determine a schedule that  prefetches data  as late as possible. 

If prefetch latency is unpredictable, a worst-case bound may still provide a better 

prefetch schedule than the greedy approach. In a multi-user environment, a reasonable 

worst-case bound may require resource reservations as discussed below. 

Speculative Prefetching 

Prefetching strategies cannot satisfy unpredictable application access patterns unless all 

the candidate data  objects can be prefetched simultaneously. Ghandeharizadeh, e t  al., 

describe an interesting approach in which the start  of several possible data  streams are 

prefetched before the user has selected which will be needed [26]. Each stream supplies the 

da ta  for an outgoing path from the current location in a hypermedia graph. The storage 

system prefetches sufficient data  for each path t o  satisfy presentation demands while the 

storage system seeks t o  the remainder of the da ta  for the path that  was selected. 

2.2.7 Resource Reservations 

Multimedia applications have proliferated in the personal computer world in part because 

most PC platforms provide a single-user environment. Without competition for resources 

from other users, the performance of multimedia applications can be predictable. Even 



with multi-tasking, the scheduling of multimedia digital video and audio has been suc- 

cessfully achieved on single-user systems by elevating the priority of the media-handling 

tasks [48]. 

In a multi-user environment, reservations have been used t o  guarantee the availability 

of resources for a real-time application. Real-time file systems have been designed that  

guarantee a lower bound on bandwidth for sequential access t o  a file [46, 61, 51. The  Real- 

Time Mach operating system allows virtual memory pages t o  be "pinned-down" t o  avoid 

page faults [79]. Processor bandwidth may be reserved for periodic real-time tasks [51,61]. 

Network bandwidth reservation protocols have been described and implemented [22,2,86]. 

A reservation protocol describes the parameters used t o  make a reservation. For ex- 

ample, the Continuous Media File System (CMFS) defines a real-time session by the 

maximum read size and read frequency guaranteed for sequential file access [5]. Each real- 

time file in the CMFS is created with a maximum rate parameter that constrains the size 

and frequency of seek times that  may be incurred in all subsequent sessions that  require 

sequential accesses t o  the file. Before a request for a real-time session can be granted, 

the reservation protocol runs an admission test t o  determine if its maximum throughput 

and minimum buffer requirements can be met concurrently with the previously guaranteed 

sessions. The CMFS disk scheduling algorithm reads (writes) enough data for each session 

during a cycle t o  make sure that  none run out of da ta  between cycles. Since the algorithm 

is conservative in estimating the amount of da ta  needed t o  avoid starvation, the FIFO 

queues for each session will eventually fill up (empty out) ,  reducing the scheduling policy 

t o  a round-robin schedule of greedy prefetching (write out). Non real-time file accesses 

may be handled during slack time before the next cycle starts. 

Although processor, network and disk resources might seem very different, many of 

the  reservation protocols are very similar. The Continuous Media (CM) Resource Model 

provides a general characterization of workload requirements for a resource [2]. A real- 

time file session is characterized by the unit of da ta  access, guaranteed rate of delivery, 

and the workahead or number of units that  may be delivered ahead of schedule t o  allow 

servicing bursts. Processing reservations are characterized by the duration of a processing 

task, rate of periodic task scheduling, and scheduling workahead. Requests for real-time 



network connections specify message size, rate, and workahead. Processing and network 

resources are also characterized by the logical delay between the time a work unit arrives 

at the resource and the time that  it is completed. 

The reservation protocols cited above provide session guarantees beginning when the 

request is granted and continuing as long as the requester keeps the session open. Scripted 

presentations that  include access t o  many separate files may find it expensive t o  open 

sessions on all files before beginning the presentation. Conversely, if the presentation is 

begun before all sessions have been guaranteed, then the failure of a later session request 

may make it impossible t o  finish the presentation. It may be necessary t o  extend existing 

reservation protocols t o  allow reservations that  begin a t  a specific future time and have 

finite duration. 

The problem of scheduling a set of tasks with time and resource constraints is known t o  

be NP-complete [38]. While effective heuristic algorithms exist for this problem [91], they 

are sensitive t o  the uncertainty in task completion times. Worst case latency estimates 

can be so large as t o  make schedulability analysis impracticable. 

The Spring Kernel provides dynamic scheduling of new real-time tasks in parallel with 

the execution of previously guaranteed tasks [72]. The principle feature of its scheduling 

approach is a functional partitioning of CPU and other resources between a planning sched- 

uler and the dispatching and execution of guaranteed tasks. At any time, the scheduler 

has knowledge of the currently executing set of guaranteed tasks, their resource require- 

ments and worst case execution times. When a new task arrives, the scheduler uses a 

heuristic algorithm t o  find a new schedule that  avoids resource conflicts between tasks. If 

a feasible schedule is found, the new task is added t o  the guaranteed set and the old sched- 

ule replaced with the new. In complex scripted multimedia presentations, the number of 

storage access tasks t o  be scheduled can be very large and may swamp the capabilities of 

the algorithm used in the Spring Kernel. The complexity of their heuristic algorithm for 

scheduling a set of n tasks in a system having r resources is O(rn2) [91]. 

Blake and Schwan [8] report on another dynamic scheduler that  uses a bin-packing 

approach t o  provide real-time guarantees (if possible) for dynamically occurring tasks. 



As in the Spring Kernel, resources may be allocated exclusively by the scheduling pro- 

cess t o  avoid contention. Scheduling of periodic processes as a group and processes with 

precedence constraints is also supported. The bin-packing approach seems more appro- 

priate for the advance reservation needs of a scripted application but is even more likely 

t o  be overwhelmed by large scheduling problems. Blake and Schwan claim only that  the 

scheduling overhead is reasonable for moderate system loads of ten different deadline bins 

per processor. 

Distributed systems may have concurrent applications with conflicting resource reser- 

vation requests. Since a reservation is a form of lock acquisition, the results of distributed 

transaction theory are applicable to  distributed resource reservation protocols. In addi- 

tion, since the resource requirements for a presentation may be interdependent, it may 

be impossible t o  choose the optimal reservation parameters until a minimally acceptable 

set of reservations has been granted. The SRP protocol for distributed transport and 

processing of continuous media consists of two phases: a resource acquisition phase t o  

ensure that  a feasible set of reservations can be granted followed by a relaxation phase 

t o  minimize end-to-end delay [2]. If the reservation protocol were to  request too small 

an end-to-end delay value in the first phase, the request might not be granted due t o  an 

inability t o  schedule high-frequency (low-delay) service a t  some bottleneck resource. 

2.3 Summary 

Real-time scheduling is important for video presentations where a pause of 1/15th of 

a second is noticeable. But how much timing error can a presentation tolerate? The 

multimedia systems surveyed do not specify constraints on the accuracy of timing or even 

output values. Instead they use ad hoc techniques t o  approximately reproduce content 

with available resources and scheduling mechanisms. The number of techniques identified 

in this survey comprise a large space of variables for a multimedia system designer. The 

choice of techniques depends not only on resource availability but on the tradeoffs between 

different aspects of presentation quality. For example, a higher video frame rate may 

be achieved with lossy compression by reducing spatial resolution. An ad hoc choice 
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Figure 2.13: Summary of design technique benefits and costs. 
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multiplexing disk bandwidth specialized composition 
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lossless compression storage, bandwidth codec overhead 

lossy compression storage, bandwidth codec overhead, information loss 

lossless optimizations CPU bandwidth code specialization 

runtime subsampling CPU bandwidth resolution, jitter 

cheap dithering CPU bandwidth image fidelity 

clock-driven ordered, not early clock overhead 

strict clock-driven ordered, not early, runtime subsampling 
no delay accumulation 

duration-driven partially ordered, not early, synchronization 
minimum duration guaranteed 

greedy jitter, bandwidth buffer space, communication overhead 

rate-based jitter, communication overhead buffer space, rate synchronization 

scheduled jitter, communication overhead, schedule calculation 
buffer space 

dedicated resources bandwidth underutilization 

priority scheduling CPU bandwidth priority analysis 

bandwidth reservations bandwidth bandwidth analysis 

interval reservations bandwidth schedulability analysis 



of presentation techniques is not likely to  perform well with a variety of content across 

different hardware and resource configurations. 

Figure 2.13 shows a summary of the techniques described in this chapter indicating 

both the benefits and costs for each. The benefits for computation techniques are primarily 

in efficient resource use. The costs are harder t o  characterize. Data location techniques 

require specializations for a particular access pattern that  may be inappropriate for other 

uses. Compression techniques require compression and decompression processing and may 

result in an irreversible loss of signal quality. Processing optimizations may depend on 

specialized assumptions as with the data location techniques; or information loss as with 

the lossy compression techniques. The benefits of synchronization techniques appear in the 

presentation timing. The output synchronization techniques provide specific guarantees 

for event ordering while prefetching and reservation techniques reduce jitter due t o  resource 

contention. Output synchronization techniques have only the cost of interrupt handling 

overhead, except that  the strict clock-driven technique may also result in missed output 

events. The prefetching techniques all require buffering t o  hold the prefetched da ta  until 

it is needed. In addition, each has some overhead associated with the determination of 

when t o  prefetch. Reservation techniques require some overhead for an admission test and 

may result in an underutilization of the resource if the admission test is too conservative. 

To determine which techniques will produce acceptable presentation quality, it is neces- 

sary to  represent quality requirements and t o  predict the quality of alternative presentation 

plans. The next chapter describes a general architecture for presentation planning and 

Chapter 4 describes the formal semantics of a presentation QOS specification. The systems 

surveyed in this chapter lack this formal basis for making QOS management decisions. 



Chapter 3 

Reference Architecture 

3.1 Reference Architecture Description 

This chapter describes a high-level architecture for planning presentations that  satisfy for- 

mal QOS specifications. The terminology introduced here is used in subsequent chapters. 

A QOS specification consists of a content descriptor, a view descriptor, and a qual- 

ity descriptor. A content descriptor defines the logical structure and output values of a 

multimedia presentation. Digital audio and video da ta  have default content descriptors 

associated with them that  specify the sample size and rate for normal playback. Complex 

content descriptors may be composed from simpler content descriptors with an editor as 

illustrated in Figure 3.1. A player is used t o  browse and play-back content. The player 

generates a view descriptor to  specify the ideal mapping of logical content onto physi- 

cal devices and real-time. The parameters of a view descriptor include window size and 

playback rate. The player also generates a quality descriptor t o  limit the amount of error 

that  can be allowed in a presentation. Some of the quality parameters include spatial 

and temporal resolution, delay, and jitter. The player may derive the view and quality 

descriptors from application context, user inputs, or both. 

Content, view, and quality descriptors specify orthogonal aspects of a presentation, so 

that  any instance of one ma8y be combined with any instances of the other two t o  yield a 

valid QOS specification. A QOS specification is a predicate on the real-time state of device 

outputs that  may or may not be satisfied by a particular playback execution. Chapter 4 

provides a formal and complete definition of content, view, and quality. 

Figure 3.2 illustrates how a presentation manager selects a presentation plan from 
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Figure 3.1: Editing and viewing multimedia presentations. 

among a set of plans that  compute device outputs from available da ta  sources. Each 

presentation plan defines the resources required for each component and also the output 

quality that  can be guaranteed if resource requirements are met. For example, with a 

given reservation of disk and CPU bandwidth, a prefetch task that  reads compressed 

frames from an MPEG file can guarantee a lower-bound on the rate of frames read from 

disk. The presentation manager chooses a presentation plan whose resource requirements 

can be met with available resources and whose QOS guarantees are sufficient t o  satisfy 

the QOS specification. 

Reservations are made in transactions with resource managers. The resource managers 

handle reservation requests from multiple applications and may deny a request if sufficient 

resources are unavailable. Some examples of resource reservation protocols are discussed 

in Chapter 2. 
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Figure 3.2: Translating QOS specifications into an acceptable presentation plan. 

3.2 Application Examples 

This section provides two examples of applications that  require sophisticated multimedia 

database functionality with support for both high-quality presentations and highly inter- 

active browsing. One is television news production and the other is a video database for 

professional sports. These applications were identified through our relationships with local 

industry. The key characteristics of these applications are the variation in QOS require- 

ments for viewing and the need t o  share resources. Unlike video-on-demand applications 

that  deliver uniform quality for each user, the demands of television news editors vary 

considerably depending on the task. A studio can support more concurrent users with 

a given set of resources by allocating resources according to  actual QOS requirements 

than by allocating the resources equally. In the professional sports setting, a video player 

can support concurrent views more effectively if the QOS requirements for each view are 

explicitly specified. 

3.2.1 Electronic News Gathering 

The first example is Electronic News Gathering (ENG), which is expected t o  replace older 

analog video production technology in the broadcast news industry. Advances in computer 

and network technology have the potential t o  revolutionize the T V  production industry 

by providing integrated support for the functions that  are supported separately in analog 



Editing Workstations 

Figure 3.3: Architecture for a network-based digital television studio. 

production studios. A digital television studio provides the functionality of analog studios, 

but with a single high-bandwidth data network replacing many separate dedicated da ta  

and control channels, and specialized software replacing expensive hardware for special 

effects and control. 

The architecture of the studio, as sketched in Figure 3.3, consists of multiple database 

servers connected t o  editing and control workstations via an ATM network. Media input 

and output connections are made through workstation I/O devices, possibly on dedicated 

110 servers. Software on each machine provides bandwidth guarantees for real-time inter- 

process communication. 

The digital TV studio allows many users to  work concurrently with random accesses t o  

the database of continuous media. In contrast, analog video production relies on a master 

copy of each video tape that  can only be accessed serially by a single user. The primary 



functions of the studio consist of loading input media, editing content and specifying view 

and quality parameters for live output. The format and access characteristics of the input 

da ta  are summarized below. 

An NTSC color video signal can be digitized using &bit samples a t  three times the 

color subcarrier frequency to  yield an 80Mbps datastream. This figure is a reasonable 

estimate of the bandwidth requirements for a production studio, since compressing the 

da ta  by an order of magnitude will introduce visible artifacts with today's compression 

technology. When data is loaded into the database from live sources, i t  must be captured 

and written at this rate. 

A single day's news-feeds might constitute 10 hours of video and require up t o  360GB 

of storage. The studio can be expected to  have many terabytes of archival video on site. 

A single user may be interested in only an hour of video data  and thus might be able t o  

work effectively with a 35 GB partition of the database. 

Once in the database, video data is immutable. This constraint simplifies sharing of 

the data,  since the same segment of a video may be included by reference in independent 

content descriptions without making independent copies. Playback views can require the 

simultaneous presentation of multiple video segments with one or more audio tracks. The 

first time a user requests such a presentation, the database will need t o  retrieve all the 

da ta  streams concurrently. The aggregate bandwidth will be the sum of the bandwidths 

required for each individual stream. 

Input capture must occur concurrently with editing and production in the studio. In 

particular, live feeds must be captured, even as they are passed through for broadcast, so 

that  important events that  occur during other stories or commercial interruptions are not 

lost and can be played back from storage. 

Video tape recorders include time codes with every frame that  tell the time at which 

the frame was captured. The information from these time-codes must be preserved when 

the da ta  is loaded into the database, though it may be more useful t o  use them for 

indexing rather than leaving them embedded in the data  stream. These time codes can 

be used t o  automatically resynchronize video with its associated soundtrack. Similarly, 

when multiple cameras are recording the same proceedings, the timecodes provide a way 



t o  accurately cut between cameras on playback without losing audio synchronization. In 

addition t o  the time codes, video da ta  will have annotations such as title, author and 

location of shoot. These annotations can be used t o  query the database for appropriate 

video segments. 

The persons who edit the news need t o  retrieve useful video footage, load new data,  

interactively view the data, and compose selected segments into new video content de- 

scriptions. Interactive viewing includes manual fast-forward and reverse control t o  find 

visual and audio cues. A precise, or high-quality, playback rate is not as important during 

this interactive search as it is during normal-speed presentation. Interactive viewing does 

require that  full frames be retrieved without reading the entire da ta  stream serially from 

storage, since the latter might need several orders of magnitude more bandwidth than 

normal-speed playback. 

Content composition operators include sequential cuts from one data  stream t o  an- 

other, parallel compositions such as lip-synched audio or voice-over narration, spatial 

layout of multiple regions cf a display, and combination of inputs, including transitions 

such as wipes and fades. 

For reviewing the compositions, presentation must be real-time with broadcast-quality 

signal reproduction and synchronization of media elements. The products of the editing 

process are content descriptors. These descriptors specify the media selections and compo- 

sitions t o  be performed for playback. In contrast t o  the raw input media, these descriptors 

are viewed as mutable da ta  that  are updated in place. After creation of a content descrip 

tor,  committed versions may be viewed as immutable in order t o  facilitate sharing among 

editors. Eventually, a complex descriptor may be simplified by copying the da ta  refer- 

enced into a contiguous space: a process sometimes referred t o  as "flattening". However, 

flattening results in the loss of the original context of the component media segments. 

The digital television studio is representative of large multimedia systems with net- 

worked computing resources and multi-user execution environments. Real-time constraints 

are harder to  meet in such systems because of the greater number of factors that  contribute 

t o  delay, including network communications and contention for resources between com- 

peting users. The studio requirements for concurrent multi-user access t o  stored video 



da ta  argues for a global namespace and shared storage resources. Because the video data  

consumes large amounts of bandwidth and storage, it is not possible t o  replicate the entire 

database for each user. At the same time, it will almost certainly be necessary t o  do some 

caching of data when a user may need t o  search interactively through the da ta  many times 

without interference from other users. 

Database technology t o  search for and retrieve data  is needed in the digital television 

studio. Searching requirements include support for content-based queries that  specify 

attributes such as objects, people, shapes and textures. Browsing requirements include 

support for logical views of multimedia data  and optimized real-time presentation. Today's 

database systems are only beginning t o  address these needs. 

ENG provides a good example of the need for formal QOS specifications. During 

searching and editing functions, it is desirable to  support many concurrent streams a t  

various play rates and resolutions. For example, suppose that  a visual search of NTSC 

video a t  ten times normal speed can be effectively performed with 1/4 the resolution (1/16 

the bandwidth), but cannot afford t o  drop more than 9 frames in a row because of the risk 

that  an important visual cue would be missed. The result is that  the presentation has low 

resolution requirements, but must still display 30 frames per second. A QOS specification 

appropriate t o  the playback task tells the system where resource use can be reduced 

without an unacceptable degradation of presentation quality. Such resource optimizations 

allow more users t o  share resources without conflict. The specification language must 

be rich enough t o  express requirements for resolution, sample rate, image quality and 

potentially many other aspects of quality that  can vary in a presentation. 

3.2.2 Digital Video Support for Professional Sports 

Professional sports teams already have extensive analog videotaping and video production 

capabilities. Multimedia computing promises to  extend these current capabilities with au- 

tomated media annotation, ad-hoc query facilities, and random access review and editing 

capabilities. 

Our local National Basketball Association (NBA) franchise, the Portland Trailblazers, 
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Figure 3.4: Synchronized views of sporting action.

regularly videotapes each home game with three or more separate cameras and mIcro-

phones. The cameras offer different viewpoints onto the action and the microphones

provide sound tracks from either end of the floor and from the game commentary. These

sources provide approximately 6 hours of video per game.

The analog videotaping provides accurate time-codes in each video stream to allow

re-synchronization of the separate recordings. Further annotation can be derived from

manual statistics gathering, which records player names and actions such as blocked shots,

assists, field goals, and free throws.

These video recording and annotation functions can be incorporated into a digital

multimedia system with better support for interactive browsing. As with the ENG example

in the last section, the video recordings may be stored as immutable data and indexed

through time and annotations. The statistics annotations, which must be recorded in

near-real-time, allow ad hoc queries for time intervals that include selected actions and

players. A query might also specify one or more camera views to be displayed with accurate

synchronization as illustrated in Figure 3.4.

A professional sports team needs to study and evaluate the performance of both its own

players and its opponents. Quick access to replays involving a particular player can help

to identify and confirm patterns of behavior. Once an interesting play has been located,

interactive control of the temporal display point and slow motion replays are useful for

seeing actions that are easily overlooked at normal play speed. The multiple viewpoints

shown in Figure 3.4 reveal details that would be hidden in anyone camera view.

As with the ENG application discussed in the last section, digital video support for



professional sports requires visual searching and concurrent playback of multiple streams 

from large video databases. During a fast forward search, it may not be possible t o  provide 

full spatial resolution without frame dropping. Similarly, it may not be possible t o  provide 

multiple concurrent video displays with full resolution and maximum frame rate. 

A QOS specification can express the relative importance of synchronization, resolution, 

frame rate, and image quality. For example, t o  view a basketball game, the user might 

desire one large video display window and several small windows t o  monitor the  other 

camera angles. If the user selects one of the small windows, its content is subsequently 

displayed on the large window. This change affects both view and quality parameters. The 

large window would require the highest quality in all aspects since this would be the main 

focus of attention. The smaller windows have significantly lower quality requirements in 

every aspect and a QOS specification is needed t o  instruct the system how t o  achieve this 

unequal allocation of resources. 

3.3 Summary 

The previous examples illustrate the need for intelligent control of presentation QOS, 

both within a single application and between competing users. The key features of these 

examples are the variation in QOS requirements for concurrent presentations and the 

need t o  handle resource overloads. Chapter 4 describes a general method for defining 

presentation QOS and provides a detailed semantics for QOS specifications using content, 

view, and quality descriptors. The content descriptors support the major composition 

operations required by our application examples. Playback requirements for rate control 

and image scaling can be expressed through the view descriptor. Requirements for image 

quality, resolution, frame rate, and other parameters can be expressed through the quality 

descriptor. 



Chapter 4 

Specification of Presentation Quality 

This chapter presents a formal semantics for presentation QOS. The method for defining 

these semantics consists of 3 steps: defining an ideal presentation, choosing an model for 

describing error in an actual presentation, and representing constraints on that  error. The 

first step is illustrated with a new language for describing complex content and for describ- 

ing a presentation view of that  content. The new language permits a simple definition of 

an ideal presentation, but we believe similar definitions can be based on the multimedia 

authoring languages described in Chapter 2. The relation between an ideal presentation 

and the measurable outputs is of an actual presentation are described with an error model. 

The second step identifies the properties that  an error model for presentations must have 

and compares several alternatives. We give a formal definition for an error model that  

subsumes many of the QOS parameters suggested by other researchers. Finally, we de- 

scribe alternative forms for QOS constraints based on the error model. Section 4.4 gives 

a formal semantics for a conservative example of QOS constraints. 

The purpose of these formal specifications is t o  enable system designers t o  reason about 

the correctness of QOS management algorithms. The prototype described in Chapter 5 

demonstrates that  the definitions of content, view, and quality given in this chapter can 

be practically applied. The method used t o  develop these definitions can be applied t o  

define QOS semantics for other authoring models and less conservative constraints. 



4.1 Z Notation 

We use a subset of the Z (pronounced "Zed") specification language as defined in The Z 

Reference Manual [69] and augmented with the standard arithmetic and calculus operators 

and relations defined over the set of real numbers R. The definitions of syntax and notation 

given here should be used as a reference while reading the rest of the chapter. 

The example below shows a global declaration of a schema type S. A Z schema type 

consists of a signature of typed variables together with constraints on those variables. A 

declaration v : S says that  v has schema type S and the components v.x and v.y must 

obey the constraints for x and y respectively in schema S. 

Other global functions and constants can be declared with an axiomatic description. 

The following example declares that  length is a function from schema type S t o  the set of 

real numbers and that ,  for all variables v of type S, length v is the difference between the 

y and x components of v. 

length : S --, R 

V v : S length v = v.y - v.x 

Free type definitions declare type constructors and arguments that  generate a new 

type. For example, a Tree is either a leaf or a branch with an integer value and two 

subtrees. The  type constructor branch is a function from a 3-tuple of an integer and two 

Trees t o  a Tree. 

Tree ::= leaf I branch((Z x Tree x Tree)) 

The Z language includes common notation from set theory and first-order logic. The 

brief definitions here are for additional notation that  may be unfamiliar. 



S : P X  

X H Y  

X - Y  

X * Y  

dom f 

run f 
min S 

max S 

seq X  

0 
head s  

tail s 

V x :  T e P  

3 x : T e P  

(let x == El  l E2) 

{ x : T I P )  

{ x : T I P o E )  

S is declared as a subset of X  

binary relation on X  and Y 

total function from X  t o  Y  

partial function from X  t o  Y 

domain of the function f 

range of the function f 

the minimum of a nonempty set of numbers S 

the maximum of a nonempty set of numbers S 

a finite sequence with elements of type X  

the empty sequence 

head of sequence 

tail of sequence 

for all x with type T ,  P is true 

there exists some x with type T  such that  P  is true 

let x be an abbreviation for El in E2 

the set of all x such that  x has type T  and P  is true 

the set of all E  such that  x has type T and P is true 

Where evaluation order for these expressions is unclear we have used parentheses to  

provide an unambiguous interpretation. We frequently use the last two set expressions 

above t o  specify a set of tuples, in which case the declaration t o  the left of the vertical 

bar is a list of tuple elements and their types. 

4.2 Content Specification 

To provide a concrete example of presentation QOS semantics, this section defines a 

da ta  model for specifying the  content of multimedia presentations. The model supports 

composition of audio and video data  t o  create complex presentations. Other media such 

as text and still images may be included by modeling them as video stills with non-zero 

duration. This data  model can be extended t o  support user interaction by making content 

specifications depend on the timed sequence of user inputs, but we have kept it simple 



so as not to  distract from the main task of defining presentation quality. Because our 

subsequent definition of quality is independent of the content description model, it will 

apply t o  more complicated models. 

Our content specifications define a set of logical output channels and the acceptable 

real-number values for those outputs that  may vary continuously with time. An important 

feature of this model is that  the audio and video specifications may have infinite resolution. 

For example, the visualization of a continuous function whose values can be computed 

rather than read from storage is limited by the computational resources and the display 

device, but not by the content specification. Our content specifications provide physical 

da ta  independence since they do not describe the representation of source data. 

4.2.1 Content Descriptors 

The specification begins with a declaration of two types: real numbers and integers. Digital 

inputs and outputs will be declared as integers, but nearly all other quantities will be 

modeled as real numbers. Real numbers are used for the specification of logical values t o  

avoid placing an artificial limit on the content resolution. The reals are declared as a basic 

type and integers are declared as a subset of reals: 

[Rl 21 

Z c R  

The Interval schema gives a start  position and an interval extent. These are used for 

both clipping intervals and linear transformations, as described later. 

Interval 

start : R 

extent : R 

To make it easier t o  treat outputs uniformly, a single schema describes output dimen- 

sions. This schema must contain the maximal set of dimensions for all output types. For 

specification of audio outputs, the x and y intervals are unimportant as long as they have 



positive extent. The Space schema specifies intervals for t, x, and g coordinate dimension 

and a r interval for the output range. For example, the dimensions of a video source are 

described with a Space that stores the start time and duration in the t interval, the image 

dimensions in the x and y intervals, and the range of signal values in r. 

Space 

t : Interval 

x : Interval 

y : Interval 

z : Interval 

A Content descriptor is a recursive construct built from basic audio and video sources. 

Each audio, video descriptor defines a single logical output. More complex content may 

be specified using clip, transform, cat, synch, and select descriptors. The LOutput type 

is used in the select descriptor to reference a particular logical output. To distinguish 

logical outputs, each LOutput is identified by its media type, mAudio or mVideo, and by 

an integer. 

LOutput ::= mAudio ((Z)) ( rn Video ((Z)) 

Content ::= audio((Space x (R -+ R))) 

I video((Space x (R -+ R --, R + R))) 

I clip((Space x Content)) 

( tmnsform((Space x Content)) 

( cat ((seq Content)) 

1 synch((seq Content)) 

1 select ((LOutput x Content)) 

The audio descriptor takes a pair with a Space descriptor and a function from a real 

time coordinate to a real z value. The domain and range for the function are specified 

with the Space descriptor. As described in the following sections, the resolution of a 



presentation is limited only by an actual implementation on digital outputs. For example, 

the sine function could define an audio source with no implied limit on the resolution of 

the signal. The video descriptor also takes a pair with a Space descriptor and a function, 

but the video source function requires additional real coordinates for x and y. Again the 

domain and range for the function are specified by the Space descriptor. For simplicity, 

this definition supports only monochrome video, but the same approach can be generalized 

t o  specify a tuple of values a t  each point for color. 

Figure 4.1 provides an example of a content descriptor. The leaves of the tree consist 

of two video descriptors and the one audio descriptor. The first video descriptor references 

an external da ta  source, camA, and declares that  image values range from 0 t o  256 and are 

defined over t values from 0 t o  115, and (x, y) pairs from (0,O) to  (320,240). The second 

video source named camB is defined over t values from 0 t o  53, and (x, y) pairs from (0,O) 

t o  (640,480). The audio source micA has values ranging from 0 to  256 that  are defined for 

time values from 0 t o  100. The first video is scaled by a factor of 2 in x and y t o  match the 

dimensions of the  second video and is offset by -100 so that  the clip can begin a t  logical 

time zero. The second video and the audio are both offset for synchronization with the 

first video. The video presentation is assembled by concatenating a clip of seconds 0-5 

from the first transformed video with seconds 5-8 from the second, followed by the clip of 

seconds 8-15 from the first again. The result is then synchronized with a clip of seconds 

0-15 from the transformed audio. 

The transform, clip, cat, synch, and select descriptors support stretching and shrink- 

ing, cut, paste, synchronization, and selection of logical outputs. The formal meaning 

of each descriptor is given in the next subsection. These descriptors are very similar 

t o  the algebraic video operators described in Chapter2 [85]. Our cat is similar to  their 

conca tena t ion  operator. Our transform and synch descriptors are similar, but more 

general than their s t r e t c h ,  11, and 2 operators. They support additional features, such 

as transition effects from one video segment to  the next, but do not provide a formal 

presentation semantics. Our definition of a small set of very general content descriptors 

makes it easier t o  describe a formal semantics, while still supporting the composition of 

useful and complex multimedia presentations. 



Figure 4.1: Content descriptor example. 

4.2.2 Semantics 

The meaning of a content descriptor is defined by a set of allowed logical output values for 

every point of the logical output space. Let the Interval function I return the set of real 

numbers in an interval. Our definition of an interval includes the start  point but not the 

end point. Then a point ( x ,  y ,  t )  is in the logical space s if ( x  E I s.x) A ( y  E I s .y)  A ( t  E 

I s . t ) .  

I : Interval + P R 

I v = { r : R I (v.start 5 r )  A ( r  < v.start + v.extent) } t- 
The Interval type can also describe linear transformations. For any Interval i ,  t r  i is 

the linear transformation that  maps the unit interval onto i and utr i maps i onto the unit 

interval. For example, if i s tar t  = 3 and i.extent = 2 then t r  i 0 = 3 and t r  i 1.1 = 5.2. 

t r ,  utr : Interval + R + R 

tr  i x = x r i.extent + i.start 

I utr i x = ( x  - i.start)/i.extent 

Content descriptors constrain logical output values only during explicit intervals. For 

example, the  content descriptor in Figure 4.1 allows any output values before logical time 

0 and after logical time 15. The functions start, end,  and duration are used t o  reference 



the logical time interval over which output values are constrained by a content descriptor. 

The logical start  of a content descriptor is the minimum time t a t  which some output 

value is not acceptable! The logical end is the minimum time t such that  no output value 

is constrained for times greater than or  equal t o  t. 

Content descriptors also constrain only a finite number of logical outputs. In Figure 4.1 

only two logical outputs are constrained and we refer t o  these two logical outputs as 

mAudiol and m Videol. All other LOutput descriptors refer t o  unconstrained logical 

outputs. The function num takes a logical output type and a content descriptor and 

returns the integral number of logical outputs of that  type that  are constrained by the 

specification. The restrict function is used to  guarantee that  a number is within an interval. 

The function restrict takes an Interval and a number and repeatedly subtracts or adds 

the interval extent t o  the number until it can return a value within the interval. 

start,  end, duration : Content -+ R 

num : MType + Content + Z 

restrict : Interval + R -4 R 

start  c = min { t : R 1 
1 (Vl : LOutput; x, y, z : R l ( 1 ,  x, y, t ,  z) E logical c) ) 

end c = m i n  { t : R  I V t i : R o ( t  s t ' ) +  

(Vl : LOutput; x, y, z : R l (1, x,  y, ti, z) E logical c) ) 

duration c = end c - start c 

num m c = max { n : Z ) 1 (V x, y, t ,  z : R (m n, x, y, t ,  z )  E logical c) } 

restrict i x = ((x - i s t a r t )  modulo i.extent) + i.start 

The meaning of each of the content descriptors is captured by the following definition 

of a function for logical content. For a given content descriptor, the logical function returns 

a relation between a point in the logical output space and the acceptable output values for 

that  point. The expression (1, x, y, t ,  z) E logical c means the content descriptor c allows 

the logical output 1, a t  point (x, y) and time t to  have value z .  Note that  specifications 



z z 
#:$; $,: 

Sg8.6 1..~,~, 

9 %~< 

acceptable values 

1 

cat (c, c) 

Figure 4.2: Content semantics. 

reduce the set of allowable values as illustrated in Figure 4.2. Where nothing is specified, 

all values are acceptable. 



logical : Content + P LValue 

Zogical(audio(s, f ) )  = { 1 : LOutput; x ,  y, t ,  z : R I ( 1  = mAudio 1) A 

( t  E I s.t) 3 z = restrict ( I  s.z) ( f  t )  ) 

I logical(video(s,f)) = { I :  LOutput; x ,  y , t , z :  R I ( 1 =  mVideo 1)  A 

I ( x  E I s.x) A ( y  E I s.y) A ( t  E I s.t) + z =  restrict ( I  s .z)  ( f  t y x ) }  

logical(clip(s, c ) )  = { 1 : Loutput; x ,  y, t ,  z : R I 
( x  E I s.x) A ( y  E I s.y) A ( t  E I s.t) j 

(32' : R l ( I ,  x ,  y, t ,  z') E logical c A z = restrict ( I  s.z) z ' ) )  

logical(tmnsform(s, c ) )  = { 1 : LOutput; x ,  y, t ,  z : R 1 
( l , x , y , t , z ) E  logical c o ( 1 , t r  s.x x , t r  s.y y , tr  s.t t , t r s . z  z ) )  

logical(cat()) = { 1 : LOutput; x ,  y, t ,  z : R 1 true ) 

logical(cat q) = logical(head q) n 

{ 1 : LOutput; x ,  y, t ,  z : R I ( I ,  x ,  y, t ,  z )  E Eogical(cat(tai1 q ) )  

( I ,  x ,  y, t + end(head q) - start (cat(tai1 q ) ) ,  z )  ) 

logical (synch(()))  = ( l : LOutput; x ,  y, t ,  z : R I true ) 

logical (synch q) = logical (synch(head q ) )  n 
{ m : MType; n : Z ;  x ,  y, t ,  z : R I ( m  n ,  x ,  y, t ,  z )  E logical(synch(tail q ) )  

( m ( n  + num m (head q ) ) ,  x ,  311 t ,  .z) ) 

logical(select(m n ,  c ) )  = { m' : MType; n' : Z ;  x ,  y, t ,  z : R I 
(m' = m )  A (n' = 1)  3 ( ( m  n ,  x ,  y, t ,  z )  E logical c )  (m' n', x ,  y, t ,  z )  ) 

The first predicate for logical(audio(s, f ) )  says that  if 1 is the logical output mAudio 1 

and t is within the interval s.t, then the  only acceptable value for z is the function f ( t ) .  

Otherwise, any values are acceptable for z .  The predicate for logical(video(s, f ) )  expresses 

a similar constraint for the logical output mVideo 1. 

A clip(s, C )  descriptor specifies that  for all logical outputs, points with x ,  y, and t 

coordinates in the Space s are constrained t o  have the values specified by c restricted t o  



the interval s.z. All points not in s are effectively "clipped" out and may have any value. 

A transform(s, c) descriptor specifies a linear transformation of points in the con- 

tent specified by c. For example, if start c = 0, duration c = 60, s.t.start = 10, and 

s.t.extent = 2, then start(transform(s, c))  = 10 and duration(transform(s, c)) = 120. 

The transformation descriptor transform(s, c) with all s tart  fields in s equal t o  zero and 

all extent fields in s equal t o  one is the identity transformation and has no effect. 

A temporal sequence of content can be specified with a cat(q) descriptor. The content 

for a member of the sequence q is logically shifted in time t o  start  just as the previous 

content in the sequence ends. For example, a concatenation of two video descriptors results 

in a new content descriptor whose duration is the sum of the parts. In general, a content 

descriptor cat (cl, c2, ..., c,) defines a sequence of transition times (tl,  t2, ..., t,+l), where 

t; = start cl + x;;: duration cj. During each interval [t;, the logical outputs are 

defined by the content descriptor c;, offset t o  start a t  time t;. Note that  if a descriptor 

cl constrains only the logical output mVideo 1, but a descriptor c;! constrains two logical 

outputs mvideo 1 and mVideo 2, then the descriptor cat (cl, c2) constrains only mVideo 1 

during the first interval and both mVideo 1 and mVideo 2 during the second interval. 

The synch(q) descriptor specifies that  a set of content descriptors all reference the same 

time scale, but that  their logical outputs are disjoint. For example, each video descriptor 

constrains the single logical output mVideo 1. If cl and cz are two video descriptors, then 

synch (cl, c2) constrains the two logical outputs mVideo 1, and mVideo 2. The behavior 

of mVideo 1 is the same as specified by cl, while the behavior of mVideo 2 is the same as 

c2 specified for mVideo 1. The start time for the synch content descriptor is the earlier of 

the start  times of the original videos, while the end time is the later of the original two 

end times. The logical audio and the logical video outputs defined by a synch descriptor 

are independently renumbered according t o  their occurrence in the sequence of content 

descriptors. 

The select(1, c) descriptor offers a way t o  reference only the content of a single logical 

output within a complex descriptor. Where the synch descriptor aggregates multiple 

logical outputs into a single specification, select(/, c) specifies only a single logical output 

with the same content as c specifies for logical output I. For any logical output type 



m and integer n ,  the logical output defined by select(m n,  c) is (m 1). This maintains 

the invariant that  for all content descriptors c, constrained logical outputs of type m are 

numbered from 1 t o  num m c. If a content descriptor does not constrain a logical output 

1 then select(1, c) is the null specification; all values are permissible on all outputs. 

Figure 4.1 shows an example of a content descriptor in normalform. In normalform, 

every descriptor is a directed acyclic graph with a synch descriptor a t  the root. The 

synch descriptor specifies a sequence of cat descriptors. Each cat descriptor specifies a 

single logical output with a sequence of clip descriptors. Each clip specifies a portion of 

a transform descriptor and each transform descriptor defines the logical dimensions of a 

basic media source. A basic media source must be either an audio or video descriptor. 

Every content descriptor that  forms a finite, acyclic graph can be converted automatically 

t o  a normalform descriptor that  specifies the same logical content. The algorithm relies on 

the  fact that  audio and video descriptors can be trivially represented in normalform and 

each of the other content constructors can be eliminated if their children are in normalform. 

This definition of content satisfies the goal of a data  model for complex presentations 

except that  there is no way t o  relate the logical content t o  actual presentation outputs. 

The logical outputs of a content specification have both temporal and spatial proportions, 

but they have no physical size or real duration. The next section describes how the content 

is mapped t o  physical coordinates by a View specification. 

4.3 View Specification 

A View specification allocates physical devices for logical outputs and maps logical time t o  

a real-time clock. While the physical devices may present an upper bound on spatial and 

temporal resolution, the view does not specify presentation quality. We choose t o  define 

the presentation output t o  be the values of device registers written by the presentation 

process. We could instead measure the analog output of audio and video devices, but 

the  digital-to-analog conversion is typically inflexible and presents no opportunities for 

resource optimization. 

Figure 4.3 shows a view descriptor that  allocates a small window on a monochrome 
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map 
clock 

dev Idevlaudio tr x:O,lB y:400,lB z:0,11128 

tr ~0.1 clip x : O , W  y:400,160 z:0,2 

clip ~0,256 

Figure 4.3: Example of a view descriptor. 

(black and white) display for a bicycling video presentation. Although the output device 

clearly limits the quality of the presentation, the view does not specify how the content is 

t o  be represented on the display. It is the presentation plan, as described in Chapter 3, that  

determines how t o  sample the source and how t o  represent gray scale information. The 

combination of content and view descriptors serve as a device independent and physical- 

da ta  independent specification of a perfect quality presentation. The idea of an ideal 

presentation is formally defined in this section. The next section defines less-than-perfect 

quality based on the difference between this ideal presentation and actual presentation 

outputs. 

4.3.1 View Descriptors 

Since the details of physical 110 devices are unimportant for specifying an ideal presenta- 

tion, the following declaration simply assumes that  there is a set of audio output devices 

AudioDev and video output devices VideoDev. A Device is either one of the audio devices 

or one of the video devices. The only requirement for the implementation of a device is 

that  it supports writing output values a t  the coordinates specified in a View. 

[AudioDev, VideoDev] 



Device == AudioDev U VideoDev 

The logical dimensions in a content specification are generally not the same as the 

physical dimensions of the view. The Output schema declares a field tr that  defines the 

transformation from logical t o  view output dimensions and a field clip that  defines clipping 

bounds for view outputs. In Figure 4.3, the Output descriptor for mVideo 1 scales the 

640x480 logical image by a factor of 113 and then shifts the corner of the image down 

t o  display coordinate (0,400). The t. values are scaled from the logical range (0,256) t o  

the display range of (0,2). The clipping bounds for video match the full range of the 

transformed content. The audio content is not transformed in this example. The Output 

schema also allows each output t o  have an independent mapping from logical time t o  

real-time. However, in the implementation described in Chapter 5, an identity mapping 

for time is used to  preserve synchronization between logical outputs. 

Output 

dev : Device 

t r ,  clip : Space 

A View specifies a partial function map that  assigns a subset of the logical outputs 

t o  physical Output descriptors. Logical outputs that  are not in the domain of the map 

function are ignored. The tr field is used t o  transform logical time in a content speci- 

fication t o  a real-time clock. The clip field specifies the real-time start  and duration of 

the presentation. Just  as the details of 1/0 devices are unimportant, the designation of a 

real-time clock is left to  an implementation. 

I 
View 

map : LOutput -H Output 

t r  : Interval 

clip : Interval 

This definition of a View does not prevent us from mapping a logical audio output 

t o  a video device or a logical video to  an audio device. While a good user interface for 



view specification would prevent a user from creating such mappings by mistake, these 

cross-type mappings d o  not present a problem for view semantics. We simply assert that  

a t  each point in time, an audio signal defines a constant image intensity over its clipping 

region in x and y, while a video image defines a range of values that  the audio signal may 

have. 

4.3.2 Semantics 

A content specification together with a view specification defines an ideal presentation, 

where the output devices are assumed to  have infinite resolution. This assumption is 

necessary for a device-independent definition of quality. A presentation is modeled as 

a set of DValue tuples (d, x, y, t ,  z) that  give the z value for a particular Device d and 

coordinates x, y, and t. 

DValue == Device x R x R x R x R 

The function ideal c v returns the relation between devices and the values specified 

by a Content descriptor c and a View descriptor v. As with the previous definition of 

logical content, an ideal presentation allows any device values except where constrained 

by the  content and view descriptors. The relation ideal c v contains all DValue tuples 

(d, x ,  y, t ,  z), where the view maps a logical output I t o  a device d and x, y, and t are within 

the clipping bounds for dl only if the corresponding logical value is allowed by the content 

descriptor c. The corresponding logical point is expressed by substituting 1 for p and 

"un-transforming" x, y, t ,  and z back t o  logical space. For example, let c be the content 

descriptor shown in Figure 4.1, let v be the view descriptor from Figure 4.3, and let v 

map start c onto the real-time s. Then the tuple (Screen, 0,400, s, (camA 0 0 0)/128) is in 

ideal c v because the x and y coordinates are in the clipping rectangle for the video Output 

descriptor and the view maps this tuple to  the LValue (mvideo 1,0,O, start c, camA 0 0 O), 

which is in the set logical c. 



ideal : Content + View + P DValue 

ideal c v = { d : Device; x ,  y, t ,  z : R I 
(3 1 : LOutput; p : Output ( I  E dom v.map) A (v.map 1 = p) A (p.dev = d )  

A ( t  E I v.clip) A ( x  E I p.clip.x) A ( y  E I p.clip.y) +- 
( I ,  utr p.tr.x x, utr p.tr. y y, utr v.tr t ,  utr p.tr.z z )  E logical c )  ) 

4.3.3 Actual Presentation 

The z values in an ideal presentation can be compared directly with measurable outputs 

in an actual presentation. To make this comparison easier, we also model an actual 

presentation as a set of DValue tuples. 

The implementation of a presentation plan uniquely determines the value for every 

device a t  every point and time. The schema Presentation models a discrete-valued pre- 

sentation with integer functions for audio and video outputs. The audio function takes an 

AudioDev and an integer clock value and return an integer z value. The video function 

takes a VideoDev and integer values for the clock, x, and y coordinates, and returns the 

integer value at that  pixel. These definitions assume that  only one output value can be 

observed for each clock tick and for each video pixel. The z function provides a device 

independent way t o  refer t o  presentation device values. The Point schema is introduced 

here t o  simplify notation in the next section. 

r Point 

x ,  y, t : R 

Presentation 

audio : AudioDev 4 P -+ Z 

video : VideoDev 4 P --+ 2 -+ Z + Z 

z : Device -+ Point + R 

d E AudioDev j z d (x, y ,  t )  = audio d Lt] 

d E VideoDev j z d ( x ,  y , t )  = video d LxJ Lyl LtJ 



The next section defines a mapping from presentation device coordinates and values 

t o  the ideal values specified for some Content and View. This mapping will serve as the 

basis for a definition of presentation quality. 

4.4 Quality Specification 

Our definition of presentation quality is motivated by a few observations: 

1. For a given task, the utility of a presentation can be measured empirically. 

2. By definition, an ideal presentation delivers the highest utility. 

3. Utility decreases as presentation error increases. 

4. Utility is non-negative if users can recognize and ignore bad presentations. 

The utility of a presentation is a task-dependent empirical performance measure, such 

as the probability of correctly identifying a face. We define presentation quality t o  be the 

ratio of the utility of the actual presentation t o  the utility of an ideal presentation. Quality 

is unity when the actual presentation is without error and monotonically approaches zero 

as presentation error increases. Although the precise dependence of presentation quality 

on error must be determined empirically for each task, we suspect that  many of these 

relations can be modeled with a single parameterized function. 

This section provides a formal definition of presentation error and a function for es- 

timating presentation quality based on presentation error. The definition of presentation 

error depends only on the observable presentation outputs and not on the presentation 

mechanism. This ensures that  the QOS specifications described later are both device in- 

dependent and physical da ta  independent. In particular, the definition of quality is not 

based on the data  throughput required for a presentation, but instead can be used to  

derive throughput requirements as shown in Chapter 5. 

The declaration for an ErrorInterpretation in Section 4.4.1 is the most important part 

of our QOS specification because it provides an error model for describing presentation 

error. Let Error[Names] be a schema with named error component functions. Each error 

component function takes a device and a point and returns a real number. 



ideal 

I ~ . - - , - 1  m - - - - - - m  

rime time 

Figure 4.4: Multiple interpretations of error. 

... r Error [componentl component,] 

componentl, ..., component, : Device + Point + R 

This declaration uses a generic construct t o  represent a different schema for each set of 

component names. We call an instance of some schema Error[Names] an error interpreta- 

tion. An error model defines a set of error interpretations that  account for the differences 

between an actual presentation and an ideal presentation. 

ErrorModel[Names] == (Presentation x P DValue) -+ P Error[Names] 

I t  is important t o  recognize that  an error model can allow many different error interpre- 

tations for a given actual and ideal presentation. Consider the two examples in Figure 4.4. 

The ideal z value for an audio output is shown as a function of time. The error between 

the  ideal presentation and an actual presentation can be represented as a vector function 

of time, F with two error components for the r and t dimensions. On the left we show E' 

for a particular time near the beginning of the presentation. The vector function <has a 

large variable E, component, but the ct component is always zero. On the right side of 

Figure 4.4, the error between the same ideal and actual presentations can be described 

by a constant ct component and a smaller constant E ,  component. Both interpretations 



satisfy an error model that  requires E'to map points in the actual presentation t o  points 

in the ideal. 

The example error vector function has only two error components t o  describe error as a 

function of time on a single audio output. To describe error in a multimedia presentation, 

we need t o  define such a vector for every output device as a function of both spatial and 

temporal coordinates. We would also like t o  be able t o  describe spatial errors in x and y 

in addition t o  timing and z errors. Let MB be the basic error model that  defines a set of 

error interpretations with x, y, t ,  and z components that  map values in a Presentation P 

t o  ideal values in a set S: 

MB(P,S)  = {E:  Error[x, y , t , z ]  I 
(V d : Device; p : Point 

( d , p . x + ~ . x  d p ,p .y+e .y  d p , p . t + e . t  d p , P . z  d p + ~ . z  d p) E S)) 

MB allows interpretations that  express arbitrary displacements in any presentation dimen- 

sion, with the exception that  it does not allow presentation values on one output device 

t o  be mapped t o  ideal values on another device. A good presentation will output z values 

tha t  are close to  the ideal a t  approximately the correct time and at approximately the 

correct x and y coordinates. Thus, a good presentation P for some ideal presentation S 

may be characterized by a small number S > 0 such that ,  there exists an error interpreta- 

tion E E MB(P, S) in which the magnitude of the vector (e.x d p ,  e.y d p ,  e.t d p ,  e.z d p) 

is less than S for all Device d and Point p. We call the set of all such presentations a 

neighborhood of the ideal presentation S and denote this set with N(S, S).  Conversely, a 

poor presentation will make large temporal, spatial, or z value errors that  preclude the ex- 

istence of a small error interpretation. We can specify arbitrary accuracy in a multimedia 

presentation with Content descriptor c and View descriptor v by choosing a sufficiently 

small positive value for 6 and requiring that  the presentation be in the  neighborhood 

N(S, ideal c v). 

A neighborhood constrains all error components equally, ignoring any differences in 

importance between timing error and spatial error. A more general approach uses weights 



for each error component t o  compute a normalized error vector. We define a weighted- 

neighborhood N,(M, w, 6, S )  t o  be the set of presentations with error interpretations that, 

when normalized with positive weights from w, are everywhere less than 6 for an error 

model M and ideal presentation S: 

Positive == {r : R I r > 0) 

r Weight [componentl. ..component,] 

componentl, ..., component, : Device -+ Point -+ Positive 

N, : (ErrorModel[Names] x Weight[Names] x Positive x B DValue) 

+ P Presentation 

N, (M,  w, 6, S) = {P : Presentation I 
(3.5 : Error[Names] & E M P S 

(+)2)1/2 < 6) A V d : Device; p : Point (CiENomes ,, 

If each component of an error weight function w always returns a value of one, then 

N, ( M B ,  w, 6, S) = N (6, S). For other error models and error weights, a weighted- 

neighborhood can describe a different set of presentations. However, we would like all 

error models t o  share the following useful properties of MB. We say an error model M 

is sound if every weighted-neighborhood using M contains some positive neighborhood of 

the ideal and is also contained by some finite neighborhood of the  ideal. This property 

assures us that  our specifications will accept some non-trivial subset of good presentations 

and disallow presentations with unbounded error. The formal definition of soundness for 

error models is: 

An error model M : ErrorModel[Names] is sound if: 

Vw : Weight[Names]; 6 : Positive; S : P DValue 

(3 6', 6" : Positive N(6', S )  5 N,(M, w, 6, S) 5 N(Sn, S))  



We say an error model M is complete if every finite neighborhood of the ideal is con- 

tained by some weighted-neighborhood using M and every set of non-ideal presentations 

is excluded by some weighted-neighborhood using M .  This property assures us that  we 

can specify tolerance for any finite error and specify intolerance for arbitrary levels of er- 

ror, although not necessarily with the same specification ofa weighted neighborhood. The 

formal definition of completeness for error models is: 

An error model M : ErrorModel[Names] is complete if: 

Vw : Weight[Names]; 6 : Positive; S : P DValue 

(3 6' : Positive N(6, S) C N,(M, w, S', s)) 
A (3 6'' : Positive N, (M,  w, S", S) C N(6, S)) 

The definition for a complete error model observes that  every presentation P that  

contains DValue tuples not in an ideal presentation S must have a 6 > 0, such that  

N(6, S) excludes P .  ME can be shown to  be sound by choosing 6' equal t o  the reciprocal 

of the maximum weight and 6" equal to  the reciprocal of the minimum weight. MB can 

be shown t o  be complete by choosing all weights equal t o  one. But ME is a poor basis 

for specifying presentation QOS. Ideally, a presentation QOS specification should accept 

all presentations that  the user would accept and reject only those that  the user would 

reject. A conservative specification is one that  never accepts a presentation that  the user 

would reject. ME supports only very conservative specifications that  reject many good 

presentations. For example, if an application can tolerate up t o  a 5 second delay in the 

s tar t  of a video presentation, but then will tolerate no more than 1/10 second of jitter in the 

timing accuracy, then a 1 second delay in the start  with negligible timing error afterward 

would be acceptable. Yet, the conservative specification would reject this presentation, 

because ME is incapable of distinguishing between delay and jitter. We say that  an error 

model M j  is more expressive than an error model MK if, for any conservative specification 

N, (MI(, w, 6, S ) ,  there exists a conservative specification N,(Mj, w', S', S) that  accepts a 

strict superset of the presentations in N,(MI(, w, 6, S) .  The next subsection describes a 

more expressive error model that  is used t o  define our QOS semantics. 



4.4.1 Reference Error Model 

The following ErrorInterpretation schema defines many new error components t o  achieve 

a better match between conservative QOS specifications and human perception. The 

declarations for shift, jitter, and the other functions define a set of error component names 

for an error model. We call this error model, the reference error model, abbreviated as 

MR. The she'ft error component allows a presentation t o  be behind (or ahead of) schedule. 

Rather than require the time shift to  be constant, many applications allow it  t o  vary 

through a presentation. The rate a t  which the time shift changes can be constrained by a 

rate error component. The rate error is zero while the shift error is constant, but increases 

in magnitude when the' presentation speeds up or slows down. MR also includes a jitter 

error component, which allows small "hiccups" in the timing error that  would be prohibited 

by constraints on rate error if they were attributed to  shift. For example, if each frame of 

a video has an ideal time for its display, then the video display constitutes a logical clock 

that  advances in discrete jumps. Rather than accounting for these discontinuities in the 

rate error component, the small jumps in time may be interpreted as jitter. 

How much of the timing error is due to  jitter and how much t o  shift is a matter 

of interpretation. There is no information in the presentation outputs t o  distinguish 

timing error from z error and no information t o  distinguish jitter from shift. Instead, the 

"best" interpretation of error depends on which error components have the least effect on 

presentation quality. 

A synch error component for each pair of devices is defined as the difference in the shift 

error a t  each device. The synch component allows the specification of a high tolerance 

for shift errors while at the same time specifying a low tolerance for synchronization error 

between outputs. 

The shift, rate, and jitter error components are defined similarly for x and y dimensions 

since spatial presentations can suffer from displacement, scaling and small distortions 

analogous t o  the temporal error components. 

Even after accounting for temporal and spatial errors, the difference between an ac- 

tual presentation value and the corresponding ideal value a t  an infinitesimal point is not 



particularly meaningful. The problem is that  humans don't perceive independent values 

at infinitesimal points, but instead integrate over small display areas and time intervals. 

This fact is routinely exploited by graphics algorithms that  use dithering. For example, a 

black and white display can represent a 50% gray tone by a pattern with every other pixel 

turned on. Dithering trades off spatial resolution for more accurate tone or color values. 

Resolution in the x dimension can be thought of as the width of the narrowest vertical 

stripe that  can be reproduced by a presentation. Resolution in y and in time has a similar 

intuitive definition. Then the interesting measure of z error is the difference in average 

value over the neighborhood of a point defined by x, y, and t resolution. This definition 

of z error allows the error model t o  interpret objective iralue errors as a combination of 

perceived resolution loss and perceived value errors. 

The following declaration of the avg function simplifies the definition of the reference 

error model in the ErrorInterpretation schema. The avg function is needed to  express the 

relation between error in z and resolution error in x, y, and t .  The expression avg res p f 

returns the average value of the function f over the cube with size res p centered on point 

p. Because audio outputs do not vary in x or y, the average avg res p f is independent 

of the x and y resolution components of an error interpretation. 

avg : (Point + Point) -+ Point + (Point ----+ R )  -+ R L 
(let r == res p; rl == p - ( r / 2 ) ;  rz == p + (9-12) 

An ErrorInterpretation can now be declared as a set of error component functions 

that  satisfy MR for a particular trio of Content, View, and Presentation. The jitter and 

shift functions return a vector of x, y, and t components so that  they each define three 

independent error component functions. The rate function is defined as  the differential 

of shift, i.e. the gradient of each component of shift. The result of the rate function is a 

3 x 3 matrix containing x, y, and t components for each gradient vector. The res function 

also returns a vector of x, y, and t components that  define the size of the cube around 

each point for computing average %Error. The synch function returns the difference in 



the time component of shift error between any two output devices. Error components for 

devices and points that  are not constrained by the content and view will always allow a 

zero interpretation of error. The number of devices that  are constrained by the content 

and view descriptors define a finite set of error components that  might not have a zero 

error interpretation. To simplify notation, the "+" operator is used t o  add functions with 

the obvious meaning that  ( f  + g )  x = (f x)  + ( g  x )  . 

x,  y , t :  Point 

ErrorInterpretation 

c : Content 

v : View 

P : Presentation 

jitter : Device --, Point + Point 

shift : Device + Point + Point 

rate : Device -+ Point + Matrix 

res : Device + Point + Point 

zError : Device --, Point -+ R 

synch : Device -+ Device --+ Point + R 

Q d : Device; p : Point 

3 f : Device + Point + R a 

(let E == jitter d p + shift d p 

( d , p . z + ~ . x , p . y + ~ . y , p . t + ~ . t , P . z  d p + f  d p )  E ideal c v) 

A rate d = differential (shift d )  

A avg (res d )  p ( f  d )  = avg (res d )  p (zError d )  

A V d' : Device synch d dl p = (shift d p).t - (shift dl p).t 

To show that  the reference error model MR is sound, we need t o  find a subset N(6', S )  

and a superset N(bN, S) for any weighted neighborhood N,(MR,o,6, S ) .  Let 6' be an 



unspecified positive real number. Then, by the definition of a neighborhood, for any 

presentation P E N(S1, S), there exists an error interpretation EB E MB(P,  S) ,  such that: 

V d  : Device; p : Point ( ~ i s ( r , u , t , l ) ( ~ ~ . i  d  p)2)1/2 < 6' 

This implies that  each of the error components, Eg.X, E B . ~ ,  E B . ~ ,  and EB.Z, is everywhere 

less than 6'. Let ER be the interpretation in MR(P,  S) such that: 

and all other components of ER are zero. If w,;, is the minimum weight from w for 

all devices and points, then the magnitude of the error vector defined by ER is every- 

where less than ((6 ' /~, ; , )~ * 4)ll2. If we choose 6' = (6 * wm;,)/2 then we have identi- 

fied a neighborhood that  is a subset of N,(MR, w, 6, S). Now consider any presentation 

P E N,(MR, w, 6, S). By the definition of a weighted neighborhood, there exists an error 

interpretation ER E MR(P,  S) such that: 

V d  : Device; p : Point (Eisna,e,,(":f~)2)1/2 < 6) 

where NamesR is the set of error component names for the reference error model MR. Let 

w,,, be the largest weight from w for all devices and points. Then the magnitude of every 

component of ER is everywhere less than 6 * w,,,. Let EB be an error interpretation in 

MB (P, S) such that: 

V d  : Device; p : Point ( E ~ . x , E B . ~ , E B . ~ )   shift  shi jitter 

Then the error component ER.zError is the average of cB.z over a region defined by ER.res. 

There must be an upper bound E,,, > EB.Z for all devices and points. If not, we could 

prove a contradiction, since the average of EB.Z is finite, an ideal specification always 

allows finite values, and since a Presentation is, by definition, constant over unit regions. 

Taking 6" = ((2 * 6 * w,,,)~ * 3 + E:,,)'/~, it follows that  the neighborhood N(SN, S) is a 

superset of N, (MR, w, 6, S). 

In the proof of soundness, we showed that  for any set N,(MR, w, 6, S )  we can find a 

subset N(St1 S) and a superset N(6", S).  The proof of completeness uses the same reasoning 



t o  find a superset Nw(MR, w ,  St,  S )  and a subset N,(MR, w ,  dt', S )  for any N ( S ,  S) and weight 

function w. 

The reference error model MR is more expressive than MB, since MR is equivalent t o  

MB if shift and res error components are interpreted as zero everywhere, but non-zero 

interpretations for these components allow smaller interpretations of jitter and zError. 

4.4.2 Quality Descriptors 

Quality is a schema that  declares a value min to  represent the minimum acceptable level 

of quality and a function estimate for estimating quality from an error interpretation. The 

estimate function uses values from weight functions jitter,, shift,, rate,, res,, tError,, and 

synch, t o  model the importance of each error component. A small weight indicates that  

quality is very sensitive t o  the corresponding error component. Conservative estimates 

of presentation quality can be made by specifying sufficiently small return values for all 

weight functions. The estimate models quality as an exponential decay function of the 

error vector magnitude. This model has the following properties: 

quality is one when all error components are zero. 

quality decreases monotonically with an increase in any error component. 

quality approaches zero as error components approach infinity. 



r Quality 

min : R 

I jitter, : Output - Point 

I s h h  : output i Point 

rate, : Output -+ Matrix 

res, : Output + Point 

zError, : Output + R 

I synch, : Output i Output - R 

estimate : ErrorInterpretation --+ Output --+ Point -+ R 

(0 5 min) A (min < 1)  I- 
estimate E o p = 

I (LET  Ej  == &.jitter o.dev p; &, == &.shift o.dev p;  ~d == &.rate o.dev p; 

I w j  ==jitter, o; w, == shift, o; w d  == rate, o; 

w, == res, 0 ;  w,  == zError, 0;  

( E d . X . X ) 2  + (cd.r.y)2 + (-)2 + ( E d . Y - x ) 2  + (Ed.Y.Y)2 + (-)2+ 
Wd.X.X Wd.X.y wd.2.t Wd.Y.X "'d.Y.Y wd.y.t 

i . s  nch o.deu of .deu p + C o i  E rana.u.mop ( sync*, o o f  

e-&norm ) 

4.4.3 Semantics 

The meaning of the quality schema in conjunction with content and view descriptors is 

given by the following schema for a QOS specification: 



- Qos 
c : Content 

v : View 

q : Quality 

P : Presentation 

3~ : Errorlnterpretation ~ . c  = c A E.V = v A 5.P = P A 

(V o E ranE.v.map; p : Point 

This schema consists of Content, View, and Quality descriptors that  constrain a pre- 

sentation P. The QOS specification is satisfied only if an Errorlnterpretation exists for 

c v and P such that ,  a t  every point on every output, the quality of the presentation is 

greater than or equal t o  q.min. 

This definition for QOS specifications is very strict in that  quality must exceed the 

minimum everywhere during a presentation. It would be nice t o  extend the specification 

semantics t o  allow a presentation t o  occasionally drop below this minimum quality, but 

this extension is left for future work. 

For a given presentation and its specification, the reference error model allows an 

infinite number of interpretations, each with a different affect on the calculation of presen- 

tation quality. What matters is that  an interpretation exists that  has acceptable errors. 

This claim assumes that  humans are good a t  recognizing the intended presentation content 

and that  they will recognize an interpretation with acceptable error if it exists. 

To calibrate the quality estimation function, the functions in a Quality descriptor 

can be defined from empirical studies of user perception. These values returned by the 

functions jitter,, shift,, rate,, res,, ~Error,, and synch, are called critical error values. 

For every error component in the error model, there is a corresponding critical error value 

in the Quality descriptor. When an error component equals the corresponding critical 

error value the quality is a t  most e-' or approximately 0.37. For a simple user model, 

these critical error values can be chosen to  correspond t o  poor quality. 



4.5 Summary 

The QOS semantics described in this chapter demonstrate the following important results: 

Content, view, and quality are orthogonal. 

The specification of an ideal presentation allows a formal definition of presentation 

error. 

Differences between actual and ideal presentations can be accurately described by 

many different error models. 

QOS specifications can have device independence and physical da ta  independence by 

requiring only the existence of a satisfactory presentation-level error interpretation. 

A quality estimation function can be used to  specify satisfactory presentations. 

The definition of Content and View descriptors given in Sections 4.2 and 4.3 provide 

a minimal language for multimedia authoring with simple semantics for an ideal presen- 

tation. Other languages provide a richer authoring environment, but fail t o  define an 

ideal presentation. MAEstro, OCPNs, and the MHEG standard all describe an opera- 

tional semantics where the timing of one presentation event may depend on the run-time 

behavior of another presentation process [19, 41, 521. These languages can be extended 

t o  define an ideal presentation by specifying ideal run-time behavior for all presentation 

actions. With such extensions, formal QOS specifications can be defined by following the 

framework described in this chapter. 

The definition of a Quality descriptor in Section 4.4 provides an expressive error model 

and quality estimation function for constraining presentation error. The reference error 

model borrows familiar concepts such as "jitter" from the literature on QOS specification. 

However, ours is the first formal definition of these error components in terms of a mapping 

from an actual t o  an ideal presentation. The reference error model allows specifications 

with a high tolerance for one component of error, such as temporal shift, and a low 

tolerance for another, such as temporal jitter. In the next chapter we demonstrate tha t  

this error model is expressive enough for practical applications. However, more expressive 



error models may be desirable to express tolerance for other presentation artifacts. For 

example, another error model could distinguish errors in image brightness and contrast 

from image noise. 



Chapter 5 

A QOS-Driven Multimedia Player 

5.1 Purpose and Scope of the Prototype 

Chapter 3 described an architecture for specifying multimedia presentations and for plan- 

ning and scheduling resources t o  satisfy the specifications. The SQUINT multimedia 

player provides an implementation of the specification and planning portions of this archi- 

tecture. As the name suggests, SQUINT supports controls for image resolution and other 

components of presentation quality. SQUINT is also an acronym for Smalltalk QOS User 

INTerface, because i t  makes heavy use of the Smalltalk programming environment [57]. 

This section gives a brief overview of the design goals for the player. A detailed description 

of the design and implementation of the player are given in Sections 5.2, 5.3, and 5.4. 

The main purpose of the player is to  show how content, view, and quality descriptors 

can be generated and used for resource scheduling. SQUINT demonstrates the orthogo- 

nality of content, view and quality by allowing any content t o  be displayed with any view 

and any quality specification. The trio of content, view, and quality descriptors form a 

QOS specification that  is used t o  request worst-case error guarantees from a presentation 

manager. Of course, the computing platform and software components limit the best qual- 

ity tha t  can be achieved. When SQUINT detects a conflict between platform capabilities 

and QOS requirements, a description of the conflict location is generated. 

Figure 5.1 illustrates the control panel for the player. The content button brings up a 

menu of content descriptors. The descriptors are created outside of SQUINT as described 

in the next section. Selecting from the content menu opens a display window for each 

video track in the presentation and displays the name of the selected content at the  top 
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Figure 5.1: The SQUINT multimedia player.

of the control panel. Audio tracks are played using the HP Audio Application Program

Interface [30]. The position slider shows the current logical time in seconds, where the left

and right ends of the slider correspond to the presentation start and finish respectively.

The play rate slider controls the rate at which logical time advances. For example,

setting the slider at 2.0 makes the playback occur twice as fast as normal. The normal

rate button sets the rate to 1. The start/stop button also controls the rate by toggling

between the current play rate setting and zero. In addition to the buttons and sliders

on the control panel, the video windows have the standard Motif window decorations that

support positioning and resizing. As discussed in Section 5.2, the player controls generate

view and quality descriptors for the presentation.

The SQUINT interface also supports experimentation with user QOS controls. The

control panel allows the user to set the minimum acceptable quality measure and also the

calibration values for image resolution and jitter. These controls are described fully in

Section 5.2.3. The prototype interprets the QOS specification derived from user interface

controls as an accurate specification of application requirements. SQUINT can be eas-

ily modified to obtain calibration values from other sources, such as a table indexed by

playback mode.

Formal specification of QOS requirements can be used to optimize resource usage

III a multimedia system. SQUINT provides a simple example of QOS-driven resource



optimization. The variables for stored video access include spatial resolution and frame 

skipping. Each of several test video sources has been encoded and stored in multiple 

files at full, 112, 114, and 1/8 resolution. All files encode every frame a t  the  original 

frame rate, but the presentation has the option t o  skip frames for a lower presentation 
4 

frame rate. If presentation QOS requirements permit lower resolution or lower frame 

rate, then SQUINT will reduce the file access bandwidth t o  conserve both CPU and disk 

resources. The calibration values for the quality estimation function described in Chapter 

4 allow SQUINT t o  balance bandwidth tradeoffs intelligently between frame rate and 

spatial resolution. 

We call a presentation plan viable if it would satisfy QOS requirements when resources 

are plentiful. Tha t  is, the plan is guaranteed t o  have an acceptable error interpretation if 

there are no scheduling delays. We call a presentation plan acceptable if it is viable and 

scheduling requirements can be met. Given a QOS specification, the determination of an 

acceptable presentation plan is referred t o  as the mapping problem. A general solution for 

the  mapping problem is intractable and depends on real-time resource scheduling. In par- 

ticular, SQUINT does not provide a priori guarantees for presentation timing since timing 

guarantees require real-time scheduling not only for SQUINT, but also for X Window, 

audio server, and file system processes. Instead, SQUINT maps QOS requirements onto 

a viable presentation plan. The player then monitors jitter at run-time and invokes an 

error notification handler when jitter guarantees are violated. SQUINT can be extended 

t o  explore the mapping problem with scheduling guarantees, distributed resources and 

more dimensions for variable quality and resource usage. 

SQUINT currently supports arbitrary compositions of synthetic video and of stored 

uncompressed monochrome video data. Synthetic videos are defined by a continuous real 

function of x, y, and time. Limited support is available for presentations of MPEG-1 

encoded video and standard audio formats. SQUINT can display any number of video 

tracks in separate windows and can play a single audio track using the default audio 

server. Because SQUINT does not support mixing outputs, multiple audio tracks cannot 

be played on a single audio device. 



I vSrc aSrc composition 1 

vSrc := Digitalvideo 
file: 'dog' width: 256 height: 240 depth: 4 sampleRate: 10.0. 

aSrc := DigitalAudio 
file: 'bark' depth: 8 sampleRate: 8000. 

composition := Synch new 
specs: (OrderedCollection 

with: (Video new source: vSrc; space: vSrc space) 
with: (Audio new source: aSrc; space: aSrc space)). 

Figure 5.2: Smalltalk syntax for creating content descriptors. 

5.2 QOS Request Generation 

5.2.1 Creating and Selecting Content 

The process for creating and editing content descriptors is external to the SQUINT player. 

In the Smalltalk programming environment, content descriptor objects can be created from 

any text window by evaluating code expressions as shown in Figure 5.2. In this example, 

three temporary variables are declared with the names vSrc, aSrc, and composition. 

The first two variables are assigned the results of Media object constructor expressions 

that describe stored data. The last expressions assigns composition to be a new Synch 

content descriptor. This content descriptor contains a collection of references to  Video 

and Audio content descriptors that reference the digital video and audio media. 

Content is described by objects that closely model the Z content descriptors in the last 

chapter. Figures 5.3 and 5.4 introduce a subset of the OMT (Object Modeling Technique) 

notation used in subsequent figures [24]. Figure 5.5 shows the SQUINT Content class 

hierarchy and a subset of the protocol associated with each class. 

The class Content maintains a dictionary of content descriptors that may be referenced 

by name. The Smalltalk environment provides a dictionary inspector that supports adding 

new descriptors and editing existing ones. SQUINT opens a pop-up menu of names in 
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Operation Operation YetAnotherClass 

Figure 5.3: OMT notation for Class relationships. 

Figure 5.4: OMT notation for object snapshots. 

the Content dictionary when the button labeled content is pressed. The content selected 

by name from the pop-up menu is displayed in the top text field of the SQUINT control 

panel, and a default view for the content is opened as described below. 

5.2.2 View Controls 

The class ViewSpec shown in Figure 5.6 describes a view descriptor that  maps from logical 

t o  physical outputs and from logical time t o  a real-time clock. The values in this view 

specification can be modified via the SQUINT control panel. 

A default view descriptor is created when SQUINT'S content selection is changed. 

The ViewSpec class method #defaultFor: takes a content descriptor as an argument 

and creates a view descriptor with one window for each video track and at most one 

output for an audio track. For each window, the view has an Output descriptor that  

specifies a spatial transformation tr and clipping bounds c l ip .  For the default view, the 

window size and clipping bounds are taken from the logical dimensions of the first clip 
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Figure 5.5: SQUINT content classes. 
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Figure 5.6: ViewSpec class. 
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Figure 5.7: Mapping from real-time t o  logical-time. 

in each video track. The output transform is the identity transform so that  the  logical 

coordinates are equivalent to  window coordinates. 

The time mapping for a view descriptor is defined by a LogicalClock instance. The 

default view sets the logical start  time lStart t o  the start  of the presentation and sets 

the  rate t o  zero so that  the presentation is stopped. Figure 5.7 illustrates the  mapping 

from real-time t o  logical-time defined by the parameters lStart, start, and rate. The 

position slider shows the current logical time with the left and right end points of the 

slider corresponding t o  the content start  and end, respectively. 

The user can drag the position and play rate sliders at any time t o  redefine the view 



specification's time mapping. The start/stop button toggles the logical clock's rate 

between zero and the current setting of the play rate slider. Adjusting the position 

slider manually causes the presentation t o  jump t o  the new logical time. Adjusting the 

play rate slider causes the presentation t o  speed up or slow down, Each change in the 

view specification triggers a recomputation of the presentation plan as described in the 

next section. 

SQUINT also supports interactive control of the window dimensions in a view. Window 

resize events generated by the window manager are caught by SQUINT and are used t o  

update the spatial output mapping in the view descriptor. These updates t o  the view also 

cause a recalculation of the presentation plan. 

The generation of a default view for a newly selected content descriptor is a policy 

decision. SQUINT could just as easily leave the view descriptor unchanged when selecting 

new content. In that  case, the video windows would simply display the video tracks of 

the new selection with the same display transformations, clipping and clock rate tha t  the 

previous content had been playing. Another policy choice is what t o  do a t  the end of 

a presentation. There are three obvious choices: display null content, freeze the display 

with the last output value, or loop-back to  restart a t  the beginning. SQUINT implements 

only a loop-back policy, but could be extended to  offer a choice of policies. 

5.2.3 Quality Calibration and Constraint 

SQUINT uses the error model and quality estimation function described in the last chapter. 

An example of a Quality descriptor is shown in Figure 5.8. A Quality descriptor has an 

instance variable min indicating the minimum acceptable value for the quality estimation 

function. Recall from Chapter 4 that  we define presentation quality t o  be the  ratio of 

actual t o  ideal presentation utility. The value of min is set by the quality slider on the 

SQUINT control panel. Calibration values for the quality estimation function are stored in 

a structure of nested Dictionary objects and accessed through the Quality descriptor's 

calibration instance variable. Individual calibration values are retrieved by using error 

component attributes as arguments to  the Dictionary lookup method #at :. For example, 

((calibration at: Video) at: #jitter) at: #t returns the calibration value for 



aQuality 

calibration 

Figure 5.8: Quality class. 

the time component of jitter on a video output. SQUINT sets this value t o  the reciprocal 

of the control panel's sample rate slider value. Values for ((calibration at : Video) 

at: #res) at: #x and ((calibration at: Video) at: #res) at: #y are set t o  

the reciprocal of the resolution slider value. The reciprocal is used because the number 

of resolvable pixels in the image decreases as resolution error increases. 

The remaining calibration values are the constants shown in Table 5.1. The units 

for temporal components of jitter, shift, res, and synch are in seconds. All values for 

spatial error in x and y are given relative t o  the size of the output window. The values 

for zError are also relative to the output t range. The mte error components represent 

the rate of change of the shift error in the appropriate units. For example, the rate of 

change of the x component of shift with respect t o  time is given in units of "window- 

widths per second". Values for the rate of change of the x component of shift are given 

in the first rate column and values for the y and t components are given in the next two 

columns. The calibration value for each error component was determined subjectively 

from a presentation of basketball video by increasing the component in question, while 

all other error components were negligible. The calibration value represents the point a t  

which the error was judged t o  be "very annoying". The quality estimation function can 

be modified for other tasks by changing these values. 

The same calibration values are used for all outputs with the same device type. This 

feature allows a quality descriptor t o  apply to  views with any number of outputs, but also 

makes i t  impossible for SQUINT t o  specify that  quality is more important in one video 



Table 5.1: Calibration values for quality estimation function. 

window than in another. To support different calibration values for each output, SQUINT 

could be extended to  instantiate specialized calibration values as they are specified for 

each output. 

The quality estimation function is hard-coded into the planning algorithm described 

in Section 5.3. 

5.2.4 Representation of QOS Requirements 

The content, view, and quality descriptors comprise the state of a P l a y e r  instance. 

SQUINT treats the player as an abstract description of a presentation with two dependent 

objects. The first dependent object is the Applicationwindow, which displays the cur- 

rent state of the control panel. The second dependent object is the PresentationManager 

that  is responsible for displaying video frames and audio samples. Figure 5.9 illustrates 

a P l a y e r  and its dependents. User changes to  the player state via buttons, sliders, and 

typing, cause update messages to be sent t o  the dependents. Also, a real-time process 

advances the logical presentation time and sends update messages t o  the dependents. The 

dependents have access t o  the player's current state. 

5.3 Present at ion Planning 

The planning algorithm uses a heuristic to  choose the lowest quality presentation plan 

tha t  satisfies the QOS specification. By mapping QOS requirements t o  a set of acceptable 

presentation plans, SQUINT is able t o  choose the plan with the least resource require- 

ments. For example, if the image resolution required is 256x192 and the stored images 



Figure 5.9: Player with dependent objects. 

< 

can be retrieved a t  either 320x240 or 640x480, SQUINT will choose the lower resolution 

with the assumption that  it requires less bandwidth for storage access and transport. 
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5.3.1 Components of a Presentation Plan 

A few new terms are needed to  describe a presentation plan. The term track refers t o  a 

sequence of content displayed on a single output device. A clip in a presentation refers t o  

content from a single source. 

Figure 5.10 shows a tree of objects that  make up a presentation plan. At the root of 

the tree, a PresentationManager is responsible for guaranteeing the QOS requirements 

of the player. It guarantees synchronization between outputs by requiring each of its 

children t o  synchronize with a common clock. The remainder of the QOS responsibilities 

are delegated t o  the TrackManager objects beneath it. Each TrackManager is responsible 

for the timing of samples written to  a single output. Responsibility for the quality of video 

frames and audio samples is delegated to  the Clipserver objects. 

A presentation plan is created or modified each time the values of the content, view, 

or quality descriptors are changed. A PresentationManager is created only once for each 

instance of the SQUINT player. The PresentationManager creates a TrackManager for 

each output in the view specification. Each TrackManager is given a content descriptor 

for the track, a reference t o  the output descriptor, a real-time clock, and a request for 

minimum QOS guarantees. If any of the guarantees cannot be met then a guarantee-fail 

handler is invoked. In the current version of SQUINT, the guarantee-fail handler simply 

prints a diagnostic message and the presentation plan continues t o  execute in a best-effort 
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shifr <= (0.0,O) 
jitter <= clip jitter + interrupt period 

res <= clip res 

zError <= clip res 

aTrackManager 

shifi <= (0,0,0) 

jitter <= clip jitter + interrupt period 

res < = clip res 

zError <= clip res 

1 
aClipServer 

jitter < = 0.0001 

res <= 0 
zError <= In56 

Figure 5.10: QOS guarantees. 

mode. 

The QOS guarantees are expressed as an upper bound for the magnitude of each 

error component. A TrackManager passes on the request for QOS guarantees to each 

ClipServer that it needs to supply data for the presentation. If all ClipServer objects 

grant the QOS request, then the TrackManager computes worst-case bounds for temporal 

jitter based on the ClipServer jitter guarantee and on the TrackManagerls own timing 

accuracy. Since SQUINT cannot predict process execution times or the scheduling be- 

havior of the underlying operating system, the TrackManager objects make the optimistic 

assumption that execution times and scheduling delays are negligible. Violations of this 

assumption are detected a t  run-time and the guarantee-fail handler is invoked. To make 

timing guarantees in the admission test, the operating system and other resource managers 

would need to provide resource reservation protocols as discussed in Chapter 2. 

A specialized Clipserver  is created for each media source to  retrieve, convert, and 

display data a t  the specified quality and in the format required by the output device. 



Each ClipServer is created with a request for worst-case limits on all error. These 

guarantees may be determined from annotations on the source da ta  and properties of 

the data  transport and processing algorithms. The current ClipServer implementations 

account for error in the data  sources, and for the introduction of error in spatial scaling, 

and in output timing. For example, a high-quality video might provide a resolution of 

640x480 pixels, a signal-to-noise ratio of 100, and 30 fps. SQUINT creates a half-resolution 

version of a video by reducing each 2 x 2 block of pixels t o  one pixel with the average value 

of the block. A new guarantee for worst-case rError can be computed for each version of 

a video. Spatial scaling error is introduced when the ideal presentation requires fractional 

scaling, since SQUINT always rounds t o  integer scale factors. The maximum presentation 

frame rate is limited both by the recording rate of the source and by the bandwidth of the 

presentation platform. A ClipServer will introduce jitter through skipping source frames 

and through the imprecision of scheduling display events. 

The definition of a ClipServer is intended to  allow many types of specialization t o  suit 

a particular QOS request. For example, MPEG video decoding can be greatly simplified 

by the elimination of inter-frame dependencies. An MPEG video stream consists of a 

repeating pattern of I, P, and B frames, where I frames may be decoded independently, 

P frames require the previous I frame for decoding, and B frames require both the previous 

and next I or P frame for decoding. Suppose that  an MPEG video file is encoded a t  30 fps 

with the pattern IBPB so that  the frequency of I frames is more than 7 fps. A playback 

request with a T jitter limit of 1/7 second could return a ClipServer that  is specialized 

t o  read and decompress only I frames. In general, a ClipServer can be implemented by a 

pipeline of processes distributed across a network. Each stage of the pipeline modifies the 

guarantees of the previous stage with da ta  format changes and new timing guarantees. 

5.3.2 Admission Test 

An admission test is a necessary part of any system that  offers QOS guarantees. In 

SQUINT, the admission test involves two activities: calculating error limits and requesting 

guarantees from plan components. A set of error limits are called satisfactory if they satisfy 

the QOS requirements and feasible if they can be guaranteed by the components of some 



presentation plan. SQUINT first calculates a set of satisfactory error limits, then attempts 

t o  build a presentation plan that  will guarantee those limits. If any component cannot 

provide the requested guarantees, the admission test fails and a guarantee-fail handler is 

invoked. 

An optimal solution would require testing every satisfactory set of error limits t o  see if it 

is feasible. Having found a set of plans that  guarantee a satisfactory presentation, it would 

still be desirable to  choose among them, the plan with the fewest resource requirements. 

This optimization problem reduces t o  the problem of scheduling a set of tasks with time 

and resource constraints, which is known t o  be intractable [91]. SQUINT instead employs 

a few simple heuristics to  identify error limits that  are likely t o  be. feasible and t o  create 

a presentation plan that  uses near-minimal resources. 

The first heuristic is that  an error interpretation based on the intended correspondence 

between the actual and ideal presentations is likely t o  provide a near-optimal estimate of 

presentation quality. Let the term sample refer t o  a discrete output value. We define the 

intended correspondence for each sample written to  the output devices as follows. Suppose 

that  every sample written by a Cl ipServer  is annotated with the parent TrackManager's 

Output descriptor, a timestamp indicating the ideal output time and duration for the 

sample value, and the res error and zError guarantees for the Cl ipServer .  Suppose 

also that  the annotations remain associated with the output location until the value is 

overwritten. The SampleAnnotations schema represents this information and the  sample 

function returns the annotations for any Device and Point. 

SampleA nnotations 

output : Output 

I timestamp : Interval 

res : Point 

zError : R 

I sample : Device i Point i SampleAnnotations 

The following definition for a minimum difference dm;, helps t o  define the smallest 



interpretation of temporal jitter when samples have a non-zero ideal display duration. 

The difference dm;, i t between an intervd i and a time t is zero if t is contained in i. 

If t is before the interval than the minimum difference is the interval start  minus t .  If t 

follows the interval than the minimum distance is the interval end minus t. 

dm;, : Internal -+ R -+ R 

V i : Interval; t : R 

( t  E I i + dm;, i t = 0 )  

A ( t  < i.start + dm;, i t = i.start - t )  

A ( t  > i.start + i.extent + dm;, i t = a'.start + i.extent - t )  

The error interpretation used by the admission test is called ES  and is defined as 

follows: 

V d : Device; p : Point 

( L E T  s == sample d p; 

constrained == ( 3  z : R 1 ( ( d ,  p.x, p.y, p.t, z )  E ideal E ~ . C  E S . V ) )  

constrained 3  jitter d p = ( O , O ,  dm;, s.timestamp p.t) 

A &s.res d p = (s.res.x, s.res.y,O)) 

A 1 constrained + (Es.jitter d p = (0,0,O) A &s.res d p = (0 ,0 ,0 )  

A ~ ~ . & r o r  d p = 0 ) )  

Since SQUINT does not allow timing error t o  accumulate, the t component of shift is 

always interpreted as zero. The rate and synch error components are also zero everywhere 

since they depend only on the interpretation of shift. We could use a simpler error model 

without these error components, but it is comforting t o  observe that  an expressive error 



model does not force a complicated interpretation of error. The x and y components of 

shift and jitter are zero because SQUINT accurately maps spatial coordinates. This state- 

ment is not quite true for views that  call for non-integral scale factors for video rendering, 

but the definition of e s  can be extended t o  describe these cases also. In the interest of 

brevity, this description of ES  assumes that  rendering requires only integral scale factors. 

For the remaining error components, ES  distinguishes between points that  are constrained 

in the ideal presentation and points that  are allowed t o  have any value. For constrained 

points, the t component of jitter is defined as  the difference between the current time and 

the timestamp associated with the value a t  each point. If a sample is intended t o  have a 

non-zero duration, then jitter is zero during the timestamp interval. The interpretation 

of res is taken directly from the resolution associated with each sample except that  the t 

component of res is always zero. The interpretation of zError is defined by the schema for 

an Errorlnterpretation, but for any Device d and Point p, (sample d p).zError provides 

an upper bound on the magnitude of es.zError d p. For points that  are unconstrained, 

all error components are zero. 

Recall from Chapter 4 that  a presentation satisfies a QOS specification if, for some 

error interpretation, the value of the quality estimation function is everywhere greater 

than min. The admission test for SQUINT is more strict: the presentation plan must 

guarantee acceptable worst-case error bounds for the error interpretation e s .  Of course, 

E S  was chosen t o  be near-minimal in its worst-case behavior. 

The second heuristic employed by SQUINT is that  if any set of error limits for ss is 

feasible, then a set is likely to  be feasible in which variable error components contribute 

equally t o  lowering the quality estimate. A set of error limit values for each output are 

expressed with the ErrorLimits schema. 



- ErrorLirnits 

jitter : Output -?r Point 

shift : Output ---+ Point 

rate : Output -+ Matrix 

res : Output 4 Point 

zError : Output + R 

synch : Output --+ Output + R 

The worst-case behavior of an error interpretation ES is bounded by a set of error 

limits 1 if, for any Device d and Point p, each error component in ES  is less than or  equal 

t o  the corresponding limit for the output in sample d p. For example, (cs.jitter d p).t 

must be less than or equal t o  (1.jitter (sample d p).output).t. 

From Chapter 4 ,  the quality estimation function is e-EnOrm, where E,,,, is the mag- 

nitude of a vector of all error components, each divided by the corresponding weights. A 

set of error limits is satisfactory if the quality estimate using limit values for the error 

components is greater than the value of min specified in the Quality descriptor. This 

requirement can be rewritten as 

where the 1.i are the error limit values and the w.i are the corresponding weights for each 

error component name i in MR. Let Is be the satisfactory set of ErrorLimits chosen by 

the admission test. For outputs not specified in the view all error limits are zero. For 

the error interpretation E S ,  the worst-case error for shift, rate, synch, the t component of 

res, and x and y components of jitter are all zero. Consequently, SQUINT sets the error 

limits for these components t o  zero. The worst-case value Is.zError o for an output o is 

determined by the media sources for that  output. Only the x and y components of res 

error and the temporal component of jitter are variables of the presentation plan. 

By applying the second heuristic, each of the terms for x and y res error and t jitter 

error for this track are equal t o  some value v.  Then Equation 5.1 can be rewritten with 



these substitutions and solved for the value of v :  

and 

Since the weights for the z and y components of res error on the track are (q.res o).x 

and (q.res o)  .y respectively, and the weight for the t component of jitter is (q.jitter o). t ,  

SQUINT chooses the following values t o  complete a set of satisfactory error limits for the 

track: 

These error limits are used to request guarantees when creating the Clipserver com- 

ponents of a presentation plan. 

If these error limits are not feasible, i t  may still be possible to  obtain guarantees by 

relaxing one or more limits and tightening the rest to  compensate. Since there are three 

variable error components, the limits for two could be reduced to  zero, allowing the third 

t o  be relaxed up t o  a factor of &. However, this range is not likely to  greatly improve 

the chances of finding a feasible set of error limits. 

The third heuristic employed by SQUINT is that  a plan with weaker error guarantees is 

likely to use fewer resources. In the prototype, resource requirements are strictly increasing 

with both resolution and sample rate. Consequently, SQUINT finds the plan with near- 

minimal resource requirements by selecting the viable plan components with the weakest 

error guarantees. 

5.3.3 Proof of QOS Guarantees 

SQUINT interprets a press of the start/stop button as a request to  begin a presentation 

immediately. Unfortunately, the error interpretation es forces SQUINT t o  interpret any 



start-up delay as jitter. To allow time for presentation planning, we can add a new error 

component t o  the reference error model. Let response error be the time tha t  i t  takes t o  

create and initialize a new presentation plan. During this startup period, all other error 

components may be interpreted as zero. 

Claim: Every presentation that  passes the admission test satisfies the player's QOS 

requirements. 

Proof: It has already been shown that  the error interpretation ES satisfies the  QOS 

predicate if its worst-case behavior is bounded by the set of error limits Is .  I t  remains t o  

be shown that  a successful admission test produces plan components that  guarantee these 

error limits. 

Par t  of this proof is trivial, since shift, rate, synch, and x and y components of jitter 

are zero by definition in ES. All plans produced by the admission test assume this error 

interpretation and therefore guarantee that these error components are everywhere equal 

t o  the error limit of zero specified in Is. Also, any plan trivially guarantees zero error for 

every device d and point p where the ideal presentation is unconstrained. The non-trivial 

part of the proof is to  show that  &s.zError, the x and y components of &s.res, and the t 

component of  jitter are less than the error limits for all device coordinates constrained 

in the ideal presentation. 

Let d be any device and p be any point constrained by the ideal presentation. There is 

a finite set of outputs in the view (typically only one) that  define a mapping of constraints 

onto d a t  p. Let 0 be that  set. If the response error limit has not expired a t  time p.t 

then all errors are ignored and the guarantees are considered satisfied. If p.t is beyond the 

response error limit and some TrackManager has not updated its output then SQUINT 

invokes the guarantee-fail handler with a timing error. Recall that  SQUINT detects timing 

errors only a t  run-time, so a timing-guarantee failure is considered a late failure of the 

admission test. If p.t is beyond the response error limit and all TrackManagers have 

updated their outputs, then we need t o  prove that  the output sample value at p satisfies 

the remaining QOS requirements. 

Since all outputs have been written, the sample value of d a t  p is considered annotated 

with s = sample d p, where s.output E 0. Our hypothesis asserts that  the acceptance 
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Figure 5.11: Determination of worst-case jitter between updates. 

test was successful, therefore the ClipServer that  wrote this sample guarantees that  

cs.zError d p 5 Is.zError o with E ~ . r e s  d p 5 Is.res o. Finally, the t component 

of  jitter d p is dm;, s.timestamp p.t. Every time a TrackManager writes an output 

value, it computes a worst-case analysis of temporal jitter since the last write. If the 

magnitude of  jitter d p).t could have exceeded (ls.jitter o).t during this interval than 

the guarantee-fail handler is invoked. 

The protocol for creating a TrackManager guarantees only that  the jitter limit will not 

be exceeded when there are no scheduling delays. Figure 5.11 illustrates the parameters 

tha t  determine jitter. A periodic software interrupt is used by each TrackManager for 

updates. At each interrupt, the TrackManager requests a sample from the appropriate 

ClipServer for a target time midway between interrupts. Each ClipServer guarantees 

that  it will provide a sample with a timestamp not more than one-half the source sample 

period from the target time. 

Let t, be the sample period, tp the interrupt period, t, the time that  an output was 

generated after an interrupt at ti, and td the start  of the output sample timestamp. Let 

t h  be the maximum time t o  handle an interrupt. The following inequalities are true for 

the definitions above. 



Timestamps for digital video in SQUINT have zero duration, so  jitter is simply 

td - t.  Since jitter decreases monotonically between outputs, the maximum value between 

outputs occurs at the start  of the interval. Setting t = to makes jitter td - to ,  which is 

always less than or equal to  0.5(tp + t,). The minimum value for jitter occurs just before 

the next output. Setting t = t t ,  where the prime indicates a value associated with the next 

interrupt, makes jitter t: - t:, which is always greater than or equal t o  0.5(tp - t,) - th. 

SQUINT uses these equations t o  compute the largest acceptable values for tp from the 

temporal jitter error limit. Taking th = tp and recalling that  the jitter limit for the  sample 

in question is ( I s .  jitter s. output). t gives: 

0.5(tp + t,) I (ls.jitter s.output).t (5.5) 

With this value for the interrupt period, each TrackManager guarantees that  temporal 

jitter will not be exceeded as long as each interrupt is handled before the next occurs. 

This completes the proof that  SQUINT's admission test guarantees the QOS specified 

in the  player. 

How does SQUINT's admission test compare with other multimedia systems? Most of 

the systems surveyed in this thesis make guarantees based on bandwidth requirements for 

a particular media representation [56, 121. They lack a means for expressing QOS require- 

ments independent of the data type. Other systems that  support scalable presentation 

quality do not provide complete guarantees [80, 211. SQUINT's admission test supports 



QOS specifications that  are scalable and independent of device and da ta  representations. 

These QOS specifications are translated into presentation plans that  are guaranteed not 

t o  exceed the error constraints. SQUINT'S admission test demonstrates that  a formal 

approach t o  QOS management can be implemented efficiently, a t  least in simple cases. 

5.4 Presentation Execution 

In a sense, the SQUINT multimedia player is executing a presentation a t  all times. When 

the view's rate is zero, the presentation is considered stopped, but the presentation view 

must still display the video frames corresponding to  the current logical time. A stopped 

presentation is simply a presentation in which logical time does not advance. When the 

rate parameter becomes non-zero, logical time begins t o  advance a t  the specified rate and 

the presentation view must be updated accordingly. 

Any change t o  the player's QOS specification causes the PresentationManager t o  

compute a new presentation plan and to  begin executing it. The controls for QOS specifi- 

cation have been described in Sections 5.2, 5.2.2, and 5.2.3. When the position or rate are 

changed, the Presentation view does not create new TrackManager and Clipserver 

components, but instead merely broadcasts a message t o  the existing components that 

the logical clock's time mapping has changed. Each component of the plan reads the new 

mapping t o  determine what the current sample should be. Interactive changes t o  the 

minimum quality specification cause a re-computation of allowable error limits and these 

new limits are used t o  request new Clipservers with sufficient guarantees for resolution, 

image noise, and real-time sampling rate. 

5.4.1 Resource Overload Detection and Handling 

During execution, the TrackManager components compute the actual jitter for video dis- 

plays a t  each output event. The timing error for an output event is just the difference 

tactual  - t i d e a l .  Presentation authoring specifies the value of t idear  when an output event 

should occur. The value of tac tua l  can be determined approximately a t  runtime as illus- 

trated in Figure 5.12. The measurement accuracy for tactual  is limited by the resolution of 
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Figure 5.12: Computing bounds for timing error. 

the clock, by the latency of clock reading operations, and by the duration of the output 

operation. Accepting this uncertainty, it is still possible to  compute a bound on timing 

error from the range of possible values for tactual. 

Each TrackManager reads the clock before and after each frame is displayed and com- 

putes the worst-case jitter since the previous frame was displayed. A guarantee violation 

handler is invoked when jitter limits are exceeded. Currently, the handler simply displays 

a message saying that  jitter limits were exceeded. 

5.5 Discussion 

SQUINT illuminates some of the complexity of using formal QOS specifications t o  drive 

resource management. In general, a multimedia player will support interactive views on 

content that  may be distributed over a variety of storage devices. Our experience with 

SQUINT suggests that  media objects should support a protocol for creating specialized 

clip servers with full QOS guarantees. These clip servers may be organized internally as 

pipelines or even trees for distributed media access. A track manager, or some process 

within a clip server may assume ultimate responsibility for the output timing. SQUINT 



demonstrates that simple heuristics allow fast translation of QOS requirements into rea- 

sonable resource scheduling parameters. 

The decision t o  synchronize all controllers with a single clock eliminates many of the 

synchronization concerns that  have been raised by other researchers [41, 34, 581. The use 

of a fixed schedule allows every component of the presentation plan t o  work independent of 

the others while still achieving good overall synchronization. The danger of this approach 

is that  processing delays result in skipped segments of audio and video. The correct choice 

of whether t o  preserve a fixed schedule or t o  preserve information content is application 

dependent. Our QOS specification model allows expression of such a choice through the 

quality estimation function's calibration values. 

The major goal for SQUINT was t o  test the practicality of using formal QOS speci- 

fication in a multimedia player. The informal proof of correctness for the admission test 

demonstrates that  meaningful execution guarantees can be derived from a formal QOS 

specification. While it seems impractical to  provide a proof of correctness for every exten- 

sion of a multimedia player, the existence of a formal semantics for the QOS specifications 

is useful for understanding the goals of a presentation. It seems clear that  the methodol- 

ogy used t o  build and validate SQUINT can be vastly improved, increasing the benefits 

of the formal specification approach. 

The problem of implementing a presentation plan without exposing performance is 

called the mapping dilemma and the use of QOS specifications in a request for multi- 

media services is an example of a metaprotocol [35]. Without a QOS specification, a 

multimedia system does not have enough information t o  control performance aspects of a 

presentation. The result is that  inappropriate implementation choices provide unaccept- 

able performance. A QOS specification describes performance requirements so that  the 

implementation can be specialized for each request. 



Chapter 6 

Related Work 

6.1 QOS Specification 

Much of the  literature on QOS specification focuses on Continuous Media (CM) da ta  

transport services. Anderson identifies the following seven parameters that  can be used 

for reserving a continuous-media transport session: maximum message size, maximum 

message rate, input workahead limit, output workahead limit, maximum logical delay, 

minimum actual delay, minimum unbuffered actual delay [2]. These parameters are de- 

fined in terms of the CM-resource model and are used t o  derive end-to-end guarantees 

for real-time transport of an abstract stream of "messages". This work supplies an im- 

portant analysis of techniques for bounding jitter in continuous media transport but does 

not address other user-level QOS issues such as scalable image quality. Other QOS pa- 

rameters and algorithms have been described for reservation of file system [5, 47, 61, 841, 

CPU [80, 511, and network capacity [22, 90, 42, 3, 86, 891. All of these resource reservation 

approaches characterize bandwidth as a QOS parameter. We do not include bandwidth 

in presentation QOS specifications because it depends on implementation choices for da ta  

encoding. In particular, the physical bandwidth for a media stream will vary a t  each stage 

of a pipeline where the da ta  is compressed, decompressed, or filtered for transport and 

display requirements. By specifying only presentation output behavior and not implemen- 

tation, our specifications are device and data  independent. 

The Multimedia System Services (MSS) architecture defines a set of "core QOS char- 

acteristics" consisting of the following parameters: 

guarantee level: Guaranteed, Best Effort, or No Guarantee 



reliable: True or False 

delay bounds: minimum and maximum delay 

jitter bounds: minimum and maximum delay variance 

bandwidth bounds: minimum and maximum bandwidth 

The  MSS architecture was developed by the Interactive Multimedia Association, an or- 

ganization with representatives from Hewlett-Packard (HP) , IBM and SunSoft [36]. As 

with earlier work, their QOS parameters do not address scalable image quality and are 

oriented toward resource reservations rather than user-level QOS. 

The Multimedia Projects Group a t  Lancaster University is developing the Quality of 

Service Architecture (QOS-A) for multimedia communications [ll]. This architecture ex- 

plicitly recognizes the need for distinct QOS characterizations a t  each level of the protocol 

stack. The objectives of the QOS-A project are t o  define an OSI-compatible architecture 

for QOS management in an Open Distributed Processing (ODP) multimedia environ- 

ment. Application-layer QOS parameters are encapsulated within a set of commonly used 

"channel types". New channel types are created by providing a QOS-mapper service t o  

translate from the channel type name into a QOS specification for the  next layer down. 

As an example, the channel type "StandardVideov is mapped t o  the following parame 

ters: bandwidth=25 Mbps, jitter = 10 ms, delay = 250 ms, traffic type = probabilistic, 

and error rate = The user is able t o  choose among these standard channel types, 

possibly even selecting a different channel type during a presentation. Our work extends 

this architecture by offering a continuum of channel types. The mapping from our QOS 

specifications to  low-level QOS parameters can be accomplished by simple heuristics such 

as those employed in SQUINT, or by more complex algorithms tha t  take into account the 

current resource availability t o  provide the best quality. 

Our work is also distinguished from previous approaches by our methodology for choos- 

ing QOS parameters. Our framework breaks the QOS specification problem into two parts: 

definition of an error model and specification of acceptable quality in terms of the error 



model. We have described a completeness criteria for the definition of error model com- 

ponents. This methodology is similar t o  the formal theory for Epsilon Serializability in 

transaction processing [62]. Using the relational da ta  model, ESR proposes a general 

theory for defining a transaction error metric and using that  metric to determine when 

locking requirements can be relaxed. 

Whether QOS is specified through a set of ad hoc parameters or  through a formal 

model as we have proposed, a correct specification of quality requirements depends on the 

purpose of a presentation and on human perception. 

Higgins describes some of the factors that  determine human perception of image qual- 

ity [31]. Objective measures are given for tone reproduction, sharpness, and graininess. 

His definition of these quantities constitutes an error model for still images that  is more 

expressive than the reference error model proposed in Chapter 4. In particular, tone 

reproduction conveys information about contrast errors and brightness shift, while our 

model can only express local differences in tone. While these measures allow more accu- 

rate user-models for still images, Higgins does not report estimates of image quality from 

a combination of these values. 

Limb reports experiments in which the subjects rated a set of images by how annoying 

the perceived distortions were [40]. The subjective evaluations of distortion are corre- 

lated with root-mean-square-error and other objective measures. His success a t  creating 

a crude quantitative model for image fidelity suggests that  useful empirical models can be 

determined for other multimedia presentation tasks. 

Other researchers have reported empirical determinations of acceptable quality for 

various types of presentation error. Steinmetz documents the perceived level of annoyance 

as a function of synchronization error between audio and video [75]. His results argue for 

acceptable values of synchronization error between -80 ms and +80 ms when users are 

watching a moderate close-up of a person talking. 



6.2 Presentation Planning 

Most existing multimedia systems do not have the capability t o  select different QOS levels 

for the same content. However, future multimedia system will incorporate technology 

for scalable video quality and other tradeoffs between presentation quality and resource 

use [16, 17, 14, 211. Other researchers are only now beginning t o  solve the problem of how 

t o  choose from among many possible presentation plans. 

Nahrstedt and Smith have proposed the QOS Broker technique for presentation plan- 

ning [56]. Application QOS requirements are input t o  a broker-buyer which translates 

, them into requirements for local and remote resources. The broker-buyer first negotiates 

with the local operating system for local resources, rejecting or modifying the application 

requirements if sufficient resources are unavailable. Only when the local resources are 

reserved does the broker-buyer begin negotiations with a remote broker-seller for remote 

resources. The local bandwidth reservations determines the appropriate bandwidth t o  

request from the remote broker. Finally, after both local and remote OS resources have 

been reserved, the broker-buyer requests appropriate communications channels from the 

network subsystem. Nahrstedt and Smith have implemented a prototype of the QOS Bro- 

ker with a telerobotics application. The application QOS requirements are expressed in 

terms of sample size, sample rate, loss rate, and end-to-end delay. The translation of the 

application QOS parameters into network QOS requirements is relatively straightforward 

for fixed-sized samples. 

The Circus multimedia environment from G T E  Labs features a blackboard approach 

for orchestrating resource management [27]. Distributed elements that  provide or require 

multimedia services communicate through a global blackboard where the Orchestrator 

attempts to  configure optimal connections between them. 

The AMOS Multimedia Playout Manager allows integration of multimedia data  in a 

distributed database management system [78]. Physical storage and access for continuous 

media are supported by specialized services that  can perform adaptive prefetching t o  make 

da ta  available on demand in a client's local buffer. A goal of AMOS' adaptive playout 

management scheme is t o  consider user-specific sensitivity t o  presentation deficiencies. 



Scalable media quality is currently supported by redundantly storing the same content 

with different compression factors. QOS goals are expressed in terms of sample rates and 

sample depth. This is a data-encoding-dependent approach t o  QOS specification that  

makes it difficult t o  guarantee the actual quality of a presentation. Our approach to  QOS 

specification allows a complete specification of requirements and da ta  independence. 

Software feedback techniques have been used t o  dynamically adjust stream processing 

workloads t o  available system bandwidth [lo, 13, 66, 801. Our quality estimation function 

can be used with feedback techniques t o  optimize a presentation for the current resource 

availability. For example, a presentation manager can monitor each of the presentation 

error components a t  runtime. Network and processor bandwidth overloads are detected 

by missed deadlines for display events [13]. Many of the techniques described in Chapter 

2 can reduce bandwidth requirements, including switching t o  a more highly compressed 

da ta  source or skipping video frames. The response t o  overload detection should be an 

adaptation of the presentation plan to reduce bandwidth requirements. If each component 

of a presentation plan can predict the error in its outputs, then our quality estimation 

function can be used to drive the adaptation by indicating which new presentation plan 

is likely t o  deliver the best presentation quality. Useful predictions of presentation error 

are possible for clip servers based on source attributes and the assumption that  reduced 

bandwidth requirements will nearly eliminate missed deadlines. However, the predictions 

may prove false if adaptations do not affect the bottleneck resources. The absence of 

overload detection may be used as a signal t o  increase bandwidth requirements in an 

attempt to  improve presentation quality. Our quality estimation function can be used t o  

drive this adaptation as well. 



Chapter 7 

Conclusions 

This thesis has described a new framework for QOS specification in multimedia systems 

and provides a concrete example of useful QOS specifications with formal semantics. 

The primary contributions of our specification semantics are the orthogonal definitions 

of content, view and quality descriptors. These definitions support device independent 

and physical-data independent authoring, playback, and requests for presentation quality. 

The SQUINT multimedia player demonstrates that our QOS specifications can be used 

t o  satisfy a diverse mix of multimedia service requirements. 

7.1 A Framework for Defining Formal QOS Semantics 

Chapter 4 described a formal QOS specification semantics that  can be used t o  provide 

presentation guarantees. The key precondition for optimal resource management in mul- 

timedia systems is t o  identify a metric for presentation quality. The methodology we 

used t o  define such a metric consists of three major steps. First, define an ideal presenta- 

tion. Second, choose an error model that describe the difference between actual and ideal 

presentations. Third, define a quality estimation function in terms of the error model. 

Chapter 4 identifies completeness and soundness criteria t o  help in defining useful error 

models. This methodology distinguishes our work from other descriptions of presentation- 

level QOS parameters. 

The content descriptors defined in Chapter 4 allow a physical-data independent speci- 

fication of logical content and the view descriptors define a device independent mapping of 



logical content onto an ideal presentation. The quality descriptor preserves this physical- 

da ta  and device independence by specifying presentation output behavior rather than 

implementation. Physical-data and device independence increase the portability of a mul- 

timedia application by allowing it to  use the same request for presentation functionality 

on any platform. 

Our content descriptors were designed t o  abstract away or eliminate features that  

distract from the goal of QOS specification while still supporting complex and useful 

authoring tasks. We found that  a very small set of operations could satisfy this goal. 

The result is a stripped down model of multimedia authoring that  may provide a useful 

base for serendipitous investigations. Another deliberate property of the definitions is 

complete orthogonality of content and view descriptors. For example, the author-specified 

size and layout of video windows can be customized in a view to  suit the requirements 

of a playback application. Content and view can be specified independently and reused: 

the same content appearing in many different views and the same view displaying many 

different content descriptors. This orthogonality extends t o  the quality descriptor as well. 

A single quality descriptor can be determined for a class of applications and reused with 

many different content and view descriptors. 

The declaration of an Errorlnterpretation defines a particular error model for describ- 

ing the relation between an actual and an ideal presentation. The error component names 

suggest familiar concepts, but the formal definition of these error components is new.. In 

particular, our model defines temporal jitter as all the timing error that  is not shift (de- 

lay) error, but allows multiple interpretations of timing error and shift error for a given 

presentation. We found that  a unique definition for jitter requires knowledge of a presen- 

tation's implementation. By abandoning an implementation-based definition of error, our 

QOS specifications gain device and physical-data independence. Such QOS specifications 

allow a player freedom t o  choose an optimal implementation according t o  current resource 

availability and cost. 



7.2 An Architecture for Resource Optimization with QOS 

Guarantees 

Chapter 5 describes an architecture for QOS-based resource optimization. The SQUINT 

multimedia player provides a concrete example of this architecture and demonstrates that  

simple heuristics allow fast translation of our QOS specifications into conservative resource 

scheduling parameters. The key components of the architecture are the player that  defines 

the QOS specification, a presentation manager that  reacts t o  changes in the QOS specifi- 

cation, track managers that  interpret the specification for a given output, and specialized 

clip servers that  each supply da ta  from a single source. The track managers and clip 

servers support an admission test protocol for QOS guarantees. 

The proof of correctness for the admission test demonstrates that  meaningful execution 

guarantees can be derived from a presentation-level QOS specification. SQUINT does 

not provide a priori guarantees for resource scheduling, but it does guarantee a viable 

presentation plan. SQUINT reduces CPU and file system usage in response t o  relaxed 

QOS requirements. This feature allows better control of resource allocation in shared 

environments, such as the digital television studio described in Chapter 3. 

7.3 Future Work 

The survey of QOS management techniques in Chapter 2 should be extended t o  discuss 

transport protocols for distributed communications and their effect on presentation qual- 

ity. Despite its incomplete scope, the survey identifies a large space of variables for the 

system designer, including data  location, compression, prefetching and reservation tech- 

niques. SQUINT makes use of only two forms of compression for scaling quality and 

resource management. Multimedia players that  use more of these techniques face in- 

creased planning complexity and will require more sophisticated heuristics. In particular, 

distributed resource reservation algorithms are needed for reliable access t o  remote da ta  

and network resources. 

Empirical studies of user task performance are needed to  improve the quality estima- 

tion function. SQUINT relies on user interface controls to  define QOS requirements. I t  



would be nice for a player to  infer QOS requirements automatically from the application 

mode, perhaps with some consideration of the content and view descriptors. 
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Appendix A 

Glossary 

clip A finite time segment from a single media source. 

Clipserver SQUINT class for delivering a segment of a presentation from a single source. 

complete error model An error model in which arbitrary accuracy can be specified by 

constraints on the magnitude of error model components. 

content Specification of logical output values over time. 

continuous media Common term in literature for digital audio and video, which a p  

proximate continuous real-time signals. 

DBMS Database Management System. 

distributed An activity spanning several computer systems. 

error interpretation A set of functions that  map an actual presentation onto an ideal 

presentation. 

error model A definition of error component functions that  may be used in an error 

interpretation. 

error The difference between an ideal value and an actual value. 

fps Frames per second. 

hypermedia A network of media elements and navigable links between elements. 

jitter error The high-frequency component of an error signal. 

Kbps,Mbps,Gbps Data  throughput units for thousands, millions, and billions of bits 

per second respectively. 



logical output An abstraction for a physical output device such as a video display or an 

audio channel. 

mapping dilemma Object implementation must map high-level functionality onto low- 

level mechanisms, but performance of this mapping decision cannot be hidden from 

clients. 

mapping problem Finding a low-level presentation plan that  satisfies a QOS specifica- 

tion. 

MPEG-1 Motion Picture Experts Group standard for encoding a real-time stream of 

moving pictures. 

presentation descriptor A set of parameters that  specify a presentation. 

presentation Real-time delivery of a composition that  may include multiple media tracks. 

QOS Quality of Service. Fidelity measure of service performance as compared t o  some 

ideal. 

quality Specification of the allowable error between an ideal presentation and the actual 

outputs. 

rate error The  rate of change of shift error. 

reference architecture Chapter 3 describes the elements for QOS playback from stor- 

age. 

resolution The smallest reproducible pulse width. 

resolution error The interval width for computing zError. 

SQUINT Smalltalk QOS User Interface, the prototype multimedia player described in 

Chapter 5. 

sample Data  representing an output value at a single instant of time. 

shift error The low-frequency component of an error signal. 

sound error model An error model for which every specification allows presentations 

that  are sufficiently close t o  the ideal and disallows presentations with unbounded 

error. 

synch error The difference in shift error between two outputs. 



track A composition of clips all t o  be presented on a single output device. 

TrackManager SQUINT main class for presentation execution. Translates QOS requests 

into Clipserver requests. 

PresentationManager SQUINT main class for presentation planning. Translates QOS 

requirements into subordinate TrackManager requests. 

view A mapping from logical content t o  physical device coordinates and real time. 

t. value Either audio signal level or video image intensity. 

zError The average difference between ideal z value and actual z value. 
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