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Abstract 

Formants are the resonant frequencies of the vocal tract. As the vocal 

tract is moved to different positions to produce different sounds, there is 

a corresponding change in the formant frequencies. Estimates of formant 

frequencies for the lowest three formants can give important information 

about the phoneme produced. Change in the vocal tract position causes the 

formant frequency ranges to overlap. We investigate the ability of neural 

network classifiers to learn important distinctions between the formants, and 

to assign the appropriate formant labels. 

We used both spoken letters of the English alphabet and continuous 

speech. Our backpropagation network uses conjugate gradient optimization. 

We first experimently determined the best feature set, influenced by the 

features used by human labelers. Then we experimentally determined the 

best representation of those features, and network configuration. Represen- 

tation questions include feature derivation, and absolute or relative indexing 

of location. Configuration questions include network size, and presentation 

and labeling of the feature vectors. We compare the performance to other 

published algorithms and human performance. This system also compares 

favorably to both. 



1 Introduction 

Formants represent the resonant frequencies of the vocal tract. The vocal cav- 

ities (including the nasal cavities) can be modeled as series of tubes[5]. The 

vocal cords vibrate and excite these cavities, which then produce their reso- 

nant frequencies. As the articulators (such as the tongue, and lips) change 

position, the corresponding formant frequencies also change. As the artic- 

ulators move from one target position to another (for different vowels), the 

formants may range greatly in frequency. We are interested in the first three 

formants (Fl,  F2, F3), since they have the most importance in identifying 

sonorants. 

1.1 Motivation 

Formants provide important information about the phoneme produced. Per- 

ceptual and analytical studies, such as Peterson and Barney[l3], have shown 

that vowel categories can be well separated by formant frequency locations. 

In speech synthesis work it has been demonstrated that the frequency loca- 

tions of the lowest three formants is sufficient to produce intelligible speech[l2]. 

Since formants represent the position of articulators in the vocal tract it fol- 

lows that the position of the formants is related to the sonorant produced. 

A spectogram, of the letter R ([aa] [r]), is included in Figure 1. At the top 

of the display is the waveform of the acoustical energy. From this waveform, 



Figure 1: Waveform and pitch-synchronous spectogram of the letter R, male 

speaker 

successive periods are calculated, and this information is used to generate 

a pitch-synchronous DFT (PSDFT). A PSDFT is a frequency-time display 

of the energy in the acoustical waveform. The dark bands of energy are 

the formants. In this utterance we can see F1 steady, F2 rising, and F3 

falling. At the very end of the utterance we can see F2 and F3 merging as 

the energy fades off. Above the dark band of F3 we can see the faint band 

of F4, F5 and even F6. In this case F4 and F5 are below 4kHz. The white 

bands superimposed over the formants are the formant peaks found by the 

formant estimation algorithm. The highlighted formant tracks correspond to 

the formants visible in the spectogram. 

A neural network can be viewed as a graph, with ordered layers of nodes. 
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Each node is fully connected to the previous and next layers. The connection 

between nodes is used to transmit the activation of the node to the next layer. 

There is a weight associated with each connection that modifies the activation 

sent over that connection. Each node performs some simple calculation, for 

example summing all the inputs with an output of 1 if the sum is over some 

threshold value. 

One of the great strengths of neural networks has been in classification. 

We sought to apply the classification ability of neural networks to the for- 

mant estimation problem. The ability to generalize individual cases from 

noisy data would enable a formant estimation algorithm to assign labels to 

spectral peaks, and then use that label assignment to estimate the formant 

frequencies. 

1.2 Issues 

Formant estimation is a difficult problem because of variation in fre- 

quency, merged formants, split formants, and fading formants. Formant 

frequencies vary between speakers because of the different vocal tract sizes. 

In addition, formant frequencies will vary greatly between different sonorants, 

even for the same speaker. Since the articulators are in motion the shape 

of the different vocal tract cavities can become similar, so the formants ma.y 

merge to form a single peak (Fl-2, or F2-3). When air is diverted through 



Table 1: Formant Frequency Range for a Sample Dataset 

the nasal cavity an anti-resonance is formed that creates a zero in the spectra 

of the F1. In a spectogram, this zero appears as white space that splits F1. 

Finally, as the different vocal tract cavities change shape, different amounts 

of acoustic energy are produced. This may result in a formant that disap- 

pears for a few frames. Coarticulation effects between adjacent vowels can 

produce even greater formant variance. All of this variance can greatly affect 

the frequency range of the formants. Table 1 shows the overlap in the first 

three formant frequencies (from the locally produced ISOLET dataset). 

1.3 Goals 

Our goal was to use the neural network to assign labels to spectral peaks, 

and then use those labels to estimate the formant locations. Neural networks 

have shown their ability to make classifications from noisy data. We expected 
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the neural network to use this ability and generalize characteristics from the 

training data. We had a secondary goal to determine whether knowledge- 

based features, or raw data (spectral coefficients) produced better neural 

network classification of spectral peaks. 

1.4 Previous Work 

Our work diverges from previous work in one major aspect. We use the neural 

network classifier to directly assign formant labels to spectral peaks. Previous 

work attempts to identify a spectral peak by finding the most probable label 

using either rule based constraint satisfaction or hidden markov models. 

1.4.1 Rule Based Slot Filling 

The work of McCandless is an example of a rule based system[11]. McCan- 

dless uses Linear Predictive Coding (LPC) for her speech processing. LPC 

is a model where each coefficient represents a complex pole. The resolution 

of the analysis is controlled by varying the number of coefficients (the more 

coefficients, the better the resolution). Candidate peaks are identified in the 

LPC coefficients, starting at the center of the syllable and working outward. 

Each LPC frame is viewed as having one slot for each of the first three for- 

mants. As each peak is found it is used to fill a formant slot, if the peak meets 

certain frequency and energy criteria. In the best case, the three strongest 
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peaks will coincide with the first three formants. Because of the variability 

in the formants discussed above, three peaks are not always found, or more 

than three peaks are found. In that case, a series of rules are algorithmically 

applied to resolve the conflicts. For example, in the case of a merged peak, 

one slot will go unfilled. The algorithm must identify it as a merged peak, 

and then fill in the remaining slot according to a predefined rule. 

1.4.2 Hidden Markov Models 

An example of formant tracking with HMMs is the work of Kopec [7, S, 91. 

Kopec uses Vector Quantization (VQ) for his speech processing. VQ consid- 

ers each frame of LPC coefficients as a vector. VQ reduces the redundancy in 

the LPC spectra by mapping similar coefficient vectors onto the same code- 

word. This reduces the possible encodings of the speech signal to 2048, 256 

or even 64 codewords. 

A HMM is a finite state machine, where the transitions between states 

are made based on probabilities determined by the observed input. These 

probabilities are determined by training the HMM on representative data. 

As sequences are seen in the training data, the transition probabilities are 

calculated based upon the observed likelihood of these sequences. 

For formant tracking, the states of the HMM represent the possible for- 

mant locations, i.e. each state represents a LPC coefficient. The observed 

sequences of VQ codewords in the training data are presented to the Hh lh l .  
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The transition probabilities are calculated based on these observations. For 

a sequence of input frames, the most probable path through the HMM rep- 

resents the formant track. 

1.5 Outline of Thesis 

In Chapter 2, we present an overview of the approach and describe the most 

successful formant estimation algorithm from our experiments. In Chapter 3, 

we describe the experiments that led to the best algorithm. The performance 

of the algorithm with different features and network configurations is also 

discussed. In Chapter 4, we evaluate the performance of the algorithm and 

it is evaluated against human performance on the same task. In Chapter 5, 

we discuss future research directions. 



Formant Estimation Algorithm 

Pitch Tracker 
..... .... ........ ....... 

Pitch Synchronous 

Feature Generation r-=i 
I Conjugate Gradient 

Classifier t 2~9:- ->Labeled Formant File 

Figure 2: Formant Estimation Algorithm 

2 Overview 

The processing steps that are used to assign formant labels to spectral peaks 

in sonorant intervals are shown in Figure 2. We apply a peak-finding algo- 

rithm to a Pitch-Synchronous DFT to detect candidate formant peaks. To 

classify these peaks we generate features that were found to be important for 

formant labeling. These features are then used as inputs to a neural network 

classifier which labels that peak as NotF, F1, F2, F3, merged F1-2, or merged 

F2-3. 



Figure 3: Pitch aligned Hanning Window over the acoustic waveform to 

generate a pitch-synchronous DFT 

2.1 Pitch-Synchronous DFT 

We use a pitch-synchronous discrete fourier transform (PSDFT) because it 

gives better resolution of the spectral peaks. The basis of this transform is 

the DFT. A pitch synchronous DFT is created by aligning a Hanning window 

to successive pitch periods (as shown in Figure 3), replacing the fixed window 

size and window increment normally used. Thus, the DFT is performed every 

pitch period. If the pitch tracker does not find a pitch period, then a constant 

increment DFT (10ms window with a 3ms increment) is used until another 

pitch period is found. 

A neural network pitch tracker provides the pitch estimates[l]. The pitch 
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tracker was trained to discriminate peaks that begin pitch periods from peaks 

(in the acoustic waveform) that do not begin pitch periods. 

2.2 Segmentation 

We are interested in the formant frequencies within sonorants. Sonorant 

intervals were found using a rule-based segmenter that provided segmentation 

and broad classification of the utteranceI41. For example, a pitch period, 

also marked by high peak to peak amplitude in the waveform, will indicate 

a sonorant, or a high zero crossing rate in the waveform indicates frication. 

This segmenter reliably detects the sonorant onset and offset so it is adequate 

for the formant estimation research. 

2.3 Peak Finding Algorithm 

To assign formant labels to spectral peaks we must first find the spectral 

peaks. We smooth the spectra in both frequency and in time. This smoothing 

is accomplished by using a weighted average (0.25 0.5 0.25) of each coefficient 

and the adjacent coefficients. The effect of this smoothing is to remove 

spurious peaks. A peak finding algorithm was developed at Carnegie Mellon 

University that locates all peaks below 4kHz. A peak is defined as a local 

maximum value that has a 3dB fall on both sides. The 3dB fall criteria 

was chosen empirically. The peak finding algorithm provides the frequency 
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location and amplitude of each candidate peak, for the six largest candidate 

peaks in a spectral frame. 

2.4 Feature Measurement and Normalization 

A neural network requires a basic representation of the information in a 

spectral slice. Knowledge-based features were determined by experiments 

described in section 3.1. The feature values were normalized from -1 to 1 by 

finding the maximum and minimum spectral coefficient values in the spectral 

frame, and then normalizing all the values by the difference of the maximum 

and minimum. We present the features of each peak to the network. In 

this case important information can be explicitly presented to the network, 

allowing the network to learn the important distinctions in that information. 

We hypothesized that the feature-based approach was superior to raw 

spectral coefficients because of inherent complexity in the formant labeling 

task. To confirm this hypothesis, our preliminary experiments were designed 

to investigate the proper feature set, and to compare these features to raw 

coefficients. The results of these experiments confirmed that a feature-based 

approach was superior. The features for each peak that we found most useful 

are: 

Frequency Location of the Peak 

Amplitude of the Peak 
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Width of the Peak, measured by the upper and lower falloff of the peak 

Interpeak Minima, Amplitude and Location 

2.5 Neural Network Classifier 

These features are used to create a feature vector which is then presented 

to a neural network for classification. The classifier is a fully-connected, 

feedforward, multi-layer perceptron that was trained using backpropagation 

with conjugate gradient optimization[2]. This algorithm is a modification of 

the standard backpropagation (BP) algorithm. A problem with BP is that 

there are parameters, such as momentum, that must be determined empir- 

ically for each data set. Adjusting these additional parameters may slow 

training further. The conjugate gradient training algorithm replaces these 

additional variables by using information derived from the error surface. This 

information is data dependent, and in essence, automatically sets the manual 

parameters of BP. Since these parameters are automatically determined from 

the data, training can proceed much more quickly than in BP. 

A three layer network is used in the algorithm. There are 77 input nodes. 

30 hidden nodes, and 6 output nodes (one for each of the six possible labels). 

The input vector provides the amplitude, frequency location, and upper and 

lower width measures for each peak. The interpeak minima are represented 

by their amplitude and frequency location. Up to 6 peaks in the target fra.me 
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are included in the vector to provide context. Because the vector is shifted 

across the inputs, there are additional input features for this context. A 

complete description of the network is included in Section 3.3.9. 



3 Experiments 

A series of experiments were performed to develop and evaluate the feature 

set. We also tested the performance of raw spectral coefficients against the 

performance of selected features. The second set of network experiments 

were conducted to evaluate the best neural network configuration. 

3.1 Feature Experiments 

The purpose of the initial series of experiments was to investigate the best 

set of features, and to develop the necessary software support. The initial set 

of features was established by determining the important information used 

by human labelers. These features include: peak location, peak amplitude, 

peak width, interpeak minimum (both location and amplitude), and median 

pitch. 

Peak location is critical in determining the formant label. Each formant 

has a frequency range. We found that it was the single most important 

information for classifying the formants. We used the index of the spectral 

coefficient as a measure of frequency. We used a 256 point PSDFT (128 real- 

valued coefficients). We were only concerned with information from 0-4kHz, 

so 64 coefficients covered the range of $kHz resulting in frequency increments 

of 62.5Hz. 

Peak a.mplitude is important for distinguishing non-formant peaks from 



15 

formant peaks, since formant peaks are stronger. For this feature we used 

the amplitude of each spectral coefficient measured in decibels. 

Peak width is important for distinguishing merged peaks. The merged 

peaks tend to be wider, especially relative to their amplitude. We first used 

the location of the 3 dB falloff provided by the peak finder. We also tried 

using a single number for the width (found by subtracting the index of the 

width features), which was less successful. We finally used a derivative based 

measure of width to better capture the shape of the spectral peak. This 

feature was calculated by using the frequencies with the maximum value 

for the first derivative of the spectral shape on either side of the peak. Of 

the basic features, width was the most difficult measure to find a suitable 

representat ion. 

The interpeak minima are important because they help define the overall 

shape of the spectral peaks. For example, peaks about to merge have less 

distinct (the minima is not as low) interpeak minima, where the minimum 

between fully split peaks tends to be very low. 

Median pitch is important because the formant locations will vary with 

the size of the vocal tract. Generally, the longer the vocal tract the lower the 

pitch. 

3.1.1 Data 

We used utterances from the TIMIT database (the loca,lly produced ISO- 
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Label Training Testing 

Not F 2812 850 

F1 2666 684 

F2 2553 586 

F3 2389 594 

F1-2 2464 582 

F2-3 2697 789 

Total 1558 1 4085 

Table 2: Number of Labels used from TIMIT Dataset 

LET was not ready), a standardized continuous speech database of English 

language sentences [6, 101. We used 80 utterances in the training set, and 20 

utterances in the test set. The signal processing environment used for both 

datasets was similar. 

If a class in the training set has fewer instances (by an order of magnitude) 

than the other classes, then the neural network cannot learn that class. To 

get balanced numbers of training instances for each label, we sampled the 

input data files. We used the following percentages of each label: 

5% of NotF labels 

7% of F1 labels 

7% of F2 labels 



7% of F3 labels 

50% of F1-2 labels 

50% of F2-3 labels 

After sampling, the number of each label in the training and testing sets is 

presented in Table 2. 

3.1.2 Summary of Feature Experiments 

The network used in these experiments was the Repeated Target network 

(Figure 5), it is described in detail in Section 3.3.3. We were interested in 

the contribution of the various features. There were two reasons for this 

interest. One, we did not want to use any features that were not helping to 

distinguish formant labels. Two, we were interested in the relative impor- 

tance of the features. The remaining preliminary experiments were oriented 

to those goals. The results of the Feature Experiments are summarized in 

Table 3. 

3.1.3 Basic Approach 

Our first experiment consisted of training a network using all of the basic 

features except for median pitch. In this experiment the locations of the 3 

dB falloffs on either side of the peak were used as a measure of width. The 

network was able to correctly label 87% of the formant peaks in the test set. 



Amp, Freq & Width 

Amp, Freq, Width & Valley 86.92% 

All & Pitch 89.22% 

64 Coefficient 78.46% 

Table 3: Summary of Feature Experiments 



3.1.4 Amplitude Only 

For this experiment we trained a network using only the amplitude values of 

the peaks. Because the amplitudes were presented in peak order, there was 

implicit frequency information in the ordering of the peak amplitudes. This 

network was able to successfully label 49% of the formant peaks. 

We found this result interesting. With only the normalized amplitude of 

the peaks and their relative ordering, the network was still able to successfully 

classify half of the peaks. That is three times better than chance. We found 

that a testament to the power of neural network classifiers. 

3.1.5 Frequency Only 

The next experiment involved training a network using just the frequency 

coefficients. Because of the formants' frequency range overlap (see Table I), 

it would be interesting to see how well a network could distinguish formants 

with only frequency information. This network was able to successfully label 

nearly 68% of the formant peaks. 

This result was about what we expected. Frequency information is more 

specific than amplitude with relative ordering. 



3.1.6 Frequency and Amplitude 

In this experiment we trained a network using both frequency location and 

amplitude for each of the formant peaks. We expected this network to do 

better than the individual networks, since the explicit frequency information 

would help classify the formant peaks, and the amplitude information would 

help reject non-formant peaks. This network successfully labeled nearly 85% 

of the formant peaks. 

This result was a little surprising. It was performing nearly as well (within 

2%) of the network with the full feature set. These two features were account- 

ing for nearly all the performance of the network. 

3.1.7 Interpeak Minima 

In this experiment we wanted to investigate the utility of the valley fea- 

tures (the interpeak minima's location and amplitude). We trained networks 

using the last three feature sets (amplitude individually, frequency individu- 

ally, and both frequency and amplitude) adding the valley features to each. 

Not surprisingly it helped the amplitude-only network the most, with an im- 

provement of 13%. This improvement was most likely caused by the extra 

frequency information implicit in the valley frequencies. The valley on either 

side of an amplitude would put the location of the peak somewhere between 

the frequencies of the valleys. 
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The frequency only network was improved only by 3%. This small im- 

provement is probably due to the implicit width information in the valley 

separation. 

The network using both features and valleys was improved by less than 

1%. This small improvement is probably because there was very little extra 

information provided by the valleys. In this case, the only extra information 

would be implicit width. 

3.1.8 Width 

We were now interested in the importance of width. The next network used 

the amplitude, frequency and width features. First we ran a series of sub- 

experiments to find the best width feature. We empirically determined that 

a derivative based width feature was better than the 3 dB falloff provided by 

the peak picker. For these experiments we found the point on either side of 

the peak where the second derivative of the spectral waveform was 0. This 

change improved the performance of the width only network by 3%. 

The width feature improved the frequency and amplitude combination by 

2%, which was within 0.5% of the network performance using all the features. 

Both width and valley features improved the network's performance. There 

was much overlap in the improvements so they, expectedly, are providing 

similar information. They provide a slight improvement in combination, so 

they are not providing exactly the same information. 



Input Nodes to Neural Network 

~ r e ~ u e n c i  Location 64 Spectral Coefficients 
Of the Target Peak 

Figure 4: Spectral Coefficient Network (the input to the neural network is 

the 64 Spectral Coefficients and the Frequency Location of the peak) 

3.1.9 Pitch 

This was the final experiment in our exploration of the feature set. We took 

the full set of features and added pitch. Because much of the variation in 

formant location is due to differences in vocal tract size which is related 

to pitch, we expected this feature to significantly help the network. With 

pitch added the network successfully labeled over 89% of the formant peaks. 

Initially this result appears disappointing. It is only a 2.5% improvement. 

But it is actually reducing the error by 18%. 



3.1.10 Spectral Coefficients 

In the ongoing debate about neural networks, a key issue is the amount of 

processing that should be done to information before it is presented to the 

network. Our feature-based approach obviously requires much processing of 

the raw data. To test the validity of this approach we trained a network that 

used the 64 raw coefficients(Figure 4). They were normalized from 0-1, by 

subtracting the minimum amplitude in the frame from all values, and then 

dividing these modified values by the modified maximum value in the frame. 

Then the location of the peak found by the peak picker was used to designate 

the peak location for the network. This network was able to successfully label 

78% of the formant peaks. 

3.2 Discussion of Feature Experiments 

The initial feature selection was determined by the information human la- 

belers use to track formants in spectograms. The interesting result of our 

feature set experiments was that that initial features was also the final set of 

features, and that all of them provide some information to the network, that 

is, they improved the performance of the network. 



3.2.1 Frequency 

Frequency is obviously important for formant labeling. It is probably the 

single most important feature, which our experiments confirm. There is 

some overlap in the frequency range of formants, and for human labelers, the 

order of formants is usually sufficient to resolve formants that fall into the 

frequency range overlap. 

Visual inspection of the errors indicates that the network has learned 

some internal representation of this ordering. In cases where the peak finder 

misses F1, the network still tries to assign an F1 label even if the next peak 

is well above the normal range of F1. 

1 
1 

3.2.2 Amplitude 

That the network learned ordering information was apparent from the amplitude- 

only experiments. In these experiments, the amplitude of the 6 peaks in a 

frame, and their relative ordering were provided to the network. The network 

still labeled nearly 50% of the peaks correctly. The only information that 

amplitude directly supplies, is the energy contained in a peak which should 

help in detecting formant peaks, not labeling them. With only amplitude 

information, the network still assigned labels at a rate 3 times better than 

chance. The only information available to distinguish formants in this rep- 

resentation was the ordering of the peaks. It seems that the network learned 
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that the first candidate peak was F1. That the network did no better, is 

indicative that spurious peaks can have formant-like characteristics. 

3.2.3 Width 

The peak finding algorithm used a 3 dB fall on either side of a maxima 

to define a peak. Although this definition was adequate for peak finding, 

preliminary experiments revealed that the 3dB fall was not a good feature 

for classification. We then tried several derivative-based methods to find a 

better approximation of the peak width. The best measure was the location 

where the second derivative of the spectral peak was a maximum. This put 

the width measure well out on the shoulder of the peak. Visual inspection 

revealed that this measure was also less susceptible to minor variations in 

the spectral coefficients. 

Width had a minor effect on the performance of the classifier. Considering 

the other characteristics that the network learned (i.e. ordering, 3 peaks per 

frame), this is not a surprising result. The difference in performance by 

adding width was so small it is difficult to attribute the improvement to 

a specific classification. Width appears to help discriminate merged peaks, 

because there are significant variations in width between merged, and non- 

merged formants. 



3.2.4 Interpeak Minima (Valleys) 

Since we used a width feature, it did not seem that the valleys were help- 

ing define the size of the peak. They do provide some information about 

the shape of the spectral curve. Actual formant peaks tend to have dis- 

tinct low valleys between them, except for formants that are about to merge. 

Even then, the valleys are more distinct then valleys around spurious peaks. 

Visual inspection of errors revealed no pattern to the classifications the val- 

leys helped. That they helped implies that the network found some useful 

information. Unfortunately neural networks do not always use the same 

classification features that humans use. They sometimes develop a unique 

perspective, and that is apparent in the case of valleys. 

3.2.5 Combinations of Features 

There are some subtle interactions among these features. Due to small dif- 

ferences in performance, it is not always possible to analyze which features 

are acting in concert with other features. For width, we found that the fre- 

quency location of the peak shoulders performed better than a simple value 

representing the difference of those frequencies. The shoulder location also 

gives the network information about the skew of the peak, and the shape of 

the slopes. It appears that the network found useful information in the shape 

of the spectral curve as represented by the features. Since that il~forrnatio~l 
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is also available in the raw coefficients and they did not perform as well, it 

seems that the raw coefficient network was unable to extract all of the im- 

portant information from the coefficients, at least with the size of networks 

and amount of training data used in these experiments. 

3.3 Network Experiments 

The preliminary experiments established the most useful feature set. The 

purpose of the next set of experiments was to determine the most useful 

network configuration. The problem was how to best correlate the target 

peak with the other values in the input vector. That is, the network must be 

able to distinguish the target peak values from the other values in the input 

vector representing context. 

3.3.1 Data 

Except for some initial experiments to ensure continuity, all of these ex- 

periments were conducted on the ISOLET (Isolated Letter) Database[3]. The 

training set had 7 utterances from 20 speakers (140 utterances total), and 

the test set had 7 utterances from 10 speakers (70 utterances total). For each 

speaker there was an utterance for each of the sonorants found in the spoken 

English alphabet; [iy],ey],[eh],[aa],[u],[o], and two sonorants in the letter W. 

To reduce the number of vectors presented to the neural network, this da.ta 



Table 4: Number of Each Label used from ISOLET Dataset 

set was also sampled and the number of each label is presented in Table 4. 

For all of these experiments, the same features were used. The goal of 

these experiments was to test the network configuration, and we needed a 

constant feature set to determine if changing the network configuration was 

affecting the performance. The sole exception was an additional experiment 

to try a new width feature using the new network configuration. Table 5 is 

a summary of the network experimental results. 

3.3.2 Repeated Target Network 

The feature vector was always presented to the same input neurons; however, 

as the target peak changed the input neurons would have a different function. 

In Figure 5 for the first peak in the frame the square neurons receive the 

Label Training Testing 

Not F 913 252 

F1 849 214 

F2 708 183 

F3 815 205 

F1-2 815 194 

F2-3 1076 286 

Tot a1 5176 1334 
L .. 



Table 5: Summary of Network Experiment Results 

target peak features. For the second peak, these same neurons now receive 

the lower context peak features. As each new peak in the frame is presented, 

the function served by these neurons changes. By the sixth and last peak, 

these neurons now serve the relatively minor function of distant context. This 

changing function inhibits the neurons' ability to generalize. 

For this experiment the target peak was indicated by repeating that 

peak's features at  the beginning of the feature vector (Figure 5). This re- 

sulted in a feature vector with 38 elements that was used for the preliminary 

experiments. This network consisted of 38 input units, 15 hidden units, and 

6 output units. The network successfully labeled 87% of the formant peaks. 

There were three classes of error noticed in the labeled output of this 



Input Neurons 

=--__--' 
Classify First Peak in Frame 

In~ut Neurons 
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Classify Second Peak in Frame 

Figure 5: Target peak features repeated in front of the feature vector 

network. There were: 

Duplicate labels in each frame, for example two F2 labels. 

A low F4 was mislabeled as F3, which also caused some duplicate labels 

within a frame. 

Inconsistent labelings, either within a frame or between frames. For 

example, a frame with a F1 label and a merged F1-2 label. 

The Repeated Target Network did not present the target peak features 

to the same input neurons. This appears to have been interfering with the 

ability of the network to generalize. 

3.3.3 Shifted Vector Network 
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Figure 6: Shift feature vector to keep target peak features under the same 

inputs 

We were not comfortable with repeating the target features as a method for 

indicating the target peak. To test the assumption that this representation 

was inhibiting the network, we modified the representation. In the new 

representation (Figure 6) the target features were not repeated. Rather the 

feature vector was shifted across the input nodes so that the target features 

were always aligned under the same nodes. These nodes could then specialize 

as "target features". The nodes with features from peaks above and below 

the target could then specialize as context features. This Shifted Vector 

representation made the relative ordering of peaks explicit. It was felt that 

this would eliminate some of the duplicate label errors found in the initial 

representation. 
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Since backpropagation requires the same number of input nodes, it was 

then necessary to pad the ends of the feature vector with empty "peak values" 

to produce the full input vector. As the feature vector was shifted for each 

successive peak, zeros were added below the feature vector and removed from 

above the feature vector so the total input vector length was constant. This 

increased the size of the network to 76 input units, 30 hidden units, and 6 

output units. 

For both networks (Repeated Target and Shifted Vector) we ran empirical 

studies on the number of hidden nodes required. Unfortunately, for this 

critical area of neural network design, there are no established methods. For 

both networks, the number of hidden nodes was varied from 10-50. For 

the Repeated Target Network 15 hidden nodes was found to provide the 
i 

best result. For the Shifted Target Network 30 hidden nodes were found to 

provide the best result. 

This network was able to successfully label 90% of the formant peaks. 

Although only a 3% improvement, this represents a 25% reduction in error. 

This representation was superior to the initial representation. A visual in- 

spection of the errors revealed that the occurance of duplicate labels was 

almost insignificant. In addition, there were fewer occurances of mislabeled 

F4. 

The network's ability to avoid duplicate labels is interesting. It is impor- 
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tant to remember that when each peak is labeled it is presented in isolation 

to other labels. That isolation means that the network does not have the 

information that it had previously labeled a peak as F1 in the same frame. 

Since it was avoiding duplicate labels when the previous network did not, 

it  seems that the network was developing an internal representation of the 

entire frame, and at  least implicitly labeling the other peaks. 

Since the target features were presented to different input neurons, the 

network had to learn the additional mapping of target location in the input 

vector. Since the target vector was now shifted under the input neurons, and 

a back-propagation style network needs a constant number of inputs, the 

input vector had to be padded to fill in the empty elements. This context on 

either side of the peak helped the network. We ran experiments by adding 

context of 1 through 5 adjacent peaks. The network did best when 5 peaks 

were added. This is not surprising, since only with the context of 5 adjacent 

peaks is the eptire input vector available to all shifted vectors. 

This network learned the characteristics mentioned above; ordering, num- 

ber of peaks. This generalization is a function of having the whole frame 

available, and knowing the position within the frame explicitly (represented 

by the amount of input vector on either side of the target). 



3.3.4 Shifted Vector Network (with pitch) 

The Shifted Vector representation was an improvement over the Repeated 

Target representation. Since frequency location variance is related to pitch 

(pitch varies with the size of the vocal tract), we felt that adding pitch 

as a feature would improve the performance of this representation. We were 

especially optimistic because the remaining classes of error, low F4 mislabeled 

as F3 and inconsistent combinations of labels, could be explained at least in 

part by the frequency overlap of the formants. This increased the size of the 

input vector by one, so the network configuration was now 77 input units, 

30 hidden units, and 6 output units. 

Adding pitch to the Shifted Vector representation improved performance, 

but not by much. The improvement was only 0.3%, compared to 2% improve- 

ment with the repeated Target Network, which could also be accounted for 

by random variation. There was no noticeable change in the class of errors 

made by this network. 

This result is puzzling. The only possible explanation is that the relative 

ordering of the peaks is as useful as pitch in discriminating formant labels. 

3.3.5 Individual Formant Specialist Network 

It is possible that the a.mbiguity and complexity of the labeling task was 

interfering with the network's ability to generalize. To test this hypothesis 
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we wanted to reduce the size of the problem. Our first attempt was to train 

individual networks that specialized on individual formant labels. The same 

vector configuration was input to the network. The difference was 2 outputs 

instead of 6 outputs, so the size of the network was reduced to 77 input 

units, 10 hidden units, and 2 (it is or is not the desired label) output units. 

Since there are 6 labels, we needed 6 networks in place of the previous single 

network. The performance of the network was disappointing. The main 

reason for the poor performance, 88%, was error introduced by arbitrating 

between the different networks when they had contradictory output. For 

example, the F1 and F1-2 networks might indicate the same peak. Several 

methods to resolve the conflicts were attempted, and none were satisfactory. 

3.3.6 Individual Spectra l  P e a k  Specialist Network 

We tried a second approach to providing invariance to the target features. 

Instead of shifting the feature vector with each successive peak, a single 

network could be trained for each peak (i-e. lowest peak, second peak, highest 

peak), therefore 6 networks were required(Figure 7). This representation 

would reduce the size of each network. The network size was 35 (down 

from 77) input units, 10 hidden units, and 6 output units. The performance 

of these networks was disappointing. They successfully labeled only S4% 

of the formant peaks. This approach suffered from the same problem as 

the individual forma.nt network: arbitration between la,bels. There was an 
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Peak 1 Network 
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Peak 2 Network 

Figure 7: Individual Peak Network (6 networks for each of 6 Peaks) 

additional problem caused by an imbalance of training examples. For each 

peak there would be very few examples of one or two labels in the training set. 

Their numbers were so small that the networks could never learn to classify 

them. For example, the second peak training set only had six F2-3 labels 

compared to several thousand F2 labels. For any reasonably sized training 

set, there were at  least 1% of the labels presented to each Peak Specialist 

Network that were unbalanced. Therefore the networks could never learn 

these labels, although increasing the training set size might help. 

3.3.7 Column Activation Network 

This experiment did not involve training a new network. It involved looking 

at an old network in a new way. For a given spectral frame the output 
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Figure 8: Output activation matrix showing 2 methods to assign labels, 

choose the best label for each peak or choose the best peak for each label) 
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activations can be thought of as a matrix (Figure 8) with the peaks along 

one axis (the Y-axis in this case), and the possible labels along the other axis 

(X-axis in this case). Originally, the rows were used to select the highest 

activation for the possible labels for that peak. In this experiment, the 

columns were used to find the peaks that had the highest F1, F2, and F3 

activations. This method ensured that each frame had at most one of each 

label. In the previous method, using rows associated with each peak, it 

was possible, and not uncommon, to get two F3 labels. Selecting the best 

activations by column has successfully labeled 82% of the formant peaks. 

Visual inspection of the errors reveals that this approach is very promising for 

spectra without merged peaks. For spectra with merged peaks, this approach 

encounters a serious problem with resolving conflicts between the merged and 

non-merged label for a given peak. 

3.3.8 Shifted Vector Network with New Width 

We made one last attempt at improving the performance of the width feature. 

We were not satisfied with any of the previous measures. The new feature 

had 2 changes. First the upper and lower cutoffs (shoulders) were defined as 

the points marking the middle 80% of the mass of the peak. The mass was 

found by taking the weighted average of the spectral coefficients. The upper 

and lower width cutoffs were found by calculating the index where 10% of the 

peak mass was above or below that index. This measure proved more reliable 
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since it was independent of the shape of the peak. Any measure based on the 

shape of the peak would encounter some situation where the curve of the peak 

would cause erroneous width markings. Second, we originally marked the 

width by giving the spectral index of the width locations. We felt that that 

might hide the more important information, namely the relative location of 

the width to the peak. 'CVe tired a method where the index was given relative 

to the peak location, i.e. +/- the difference in the coefficient index of the 

peak and of the width mark. Individually they improved the performance 

by 0.5%. In combination the 2 changes improved the performance of the 

network by 1% to 91%) which was 10% of the error. 

3.3.9 Smoothed Spectrum 

Visual investigation of the error revealed that there was a problem with 

distinguishing spurious peaks, especially at  the higher frequencies in the F3 

range. To reduce the number of spurious peaks we smoothed the spectra 

in time and in frequency. We used a simple 0.25 0.5 0.25 weighted average 

of each coefficient with the adjacent coefficients. This made a significant 

reduction in spurious peaks and enhanced some valid peaks, at  the expense 

of a slight increase in the number of merged peaks. This smoothing improved 

the performance by 2%,to 92%) which was about 20% of the error. Smoothing 

the spectra resulted in the network with best performance. Interestingly, 

the new width measure did not improve the network performance with the 



smoothed spectra. 

3.3.10 Summary 

We tried many different network configurations, although our second at- 

tempt, the Shifted Vector Network, performed best with 90% success. In- 

vestigation of the errors led us to re-evaluate the features used, and we tried 

several improved width measures, and only increased the performance by 

1%. We then tried to improve the quality of the spectra used as input and 

applied the smoothing of the spectral coefficients. The smoothing increased 

performance by 2%, and the improved width measures had little effect on the 

performance of the network. The Shifted Vector Network with pitch using 

the smoothed input gave us the best result, 92%. 



4 Performance Evaluation 

4.1 Performance on Continuous Speech 

We were using the isolated letter dataset to develop the network configura- 

tion. The initial feature experiments used the TIMIT standardized dataset 

of continuous speech. When we changed datasets we trained the same net- 

work configuration and feature set on both datasets for continuity. We were 

surprised that the performance on the TIMIT dataset was 2% better. Since 

continuous speech is more difficult we were interested in why the performance 

was better. To verify this result we later trained the Shifted Vector Network 

on the TIMIT dataset, and the results were still 2% better, 92% correctly 

labeled peaks. 

There are 2 possible explanations for the better performance. The record- 

ing environment of the TIMIT dataset may have been sufficiently different, 

and consequently the utterances produce more distinct spectral represent a- 

tions. The other involves training the neural network. To generalize classes, 

there must be a sufficiently large and varied training set. With letters of 

the English alphabet, half of the sonorants are [iy] or ley], both are very 

similar in their formant locations and transitions. It is possible that with the 

greater formant variation of continuous speech, the network was better able 

to generalize the formant labels. 
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4.2 Human Perception Experiments 

The review of the literature reveals one glaring deficiency; human perfor- 

mance on formant estimation is never adequately documented. The reasons 

for not making such measurements are probably the same as the reasons that 

make formant estimation difficult (merging, splitting, and disappearing for- 

mants). We conducted limited human perception experiments to investigate 

the difficulty in measuring human performance, and to provide a performance 

measure for the neural network. 

We gave experienced human labelers the same task as the neural net- 

work to establish a benchmark for comparison. We did not compare the 

performance against the hand-labeled files, because of the differences used to 

assign those labels. The hand-labeled formant files were labeled by consensus 

among the same three labelers. In that case, the full context of the formant 

file, and the spectrogram were available. The network is presented only a 

single spectral slice. To better measure the network's performance, that is 

what we presented to the human labelers. 

For this experiment, each human labeler was given copies of 165 spectral 

slices, containing 898 possible formant peaks. Their task was to assign a 

label to each of the peaks, based upon only the information available in a 

single slice. The criteria used to score these tests were the same as those 

used to score the network's performance. If the label on a peak did not agree 



Table 6: Human Labeler Performance 

with that of the reference formant file, then it was marked incorrect. The 

human labelers were able to correctly label S9% of the peaks (Table 6). 

We acknowledge that the task presented to the network and the human 

labelers is not exactly the same. The network has no knowledge of what 

labels it already assigned to other peaks in the slice. Discussion with the 

human labelers indicates that even if asked to only label a single peak, human 

labelers tend to label the entire slice, and then select the label from the 

desired peak. This bias is ignored in these experiments for two reasons. 

First, it is difficult to remove. The whole frame is presented to the human 

labeler, and he needs that information. Second it was found to occasionally 

cause errors, as for example when F1 is mislabeled all the labels tend to 

be wrong. (It was also apparent that human labelers work bottom up in 

assigning the labels.) 

There is some inherent ambiguity in assigning a formant label to a single 



11 Total Between All 89.6% 11 
Table 7: Agreement Between Human Labelers 

peak in a spectral coefficient array. In some cases, a formant (even F2, or 

F3) splits, and either split peak can be justified as the correct peak. Two 

different experiments were performed to gain a feeling for the amount of this 

ambiguity. When the formant files were hand labeled, randomly selected files 

were labeled by separate labelers, and then their labelings were compared. 

In this case, the labelers had the full spectogram to work with in resolving 

ambiguity. These labeled files had about 98% agreement. 

The second experiment consisted of taking the human labeling results of 

the perception experiment and measuring the agreement between the three 

human labelers. The results are presented in Table 7. With a full spectogram, 

experienced labelers have 2% disagreement. With only a single frame the dis- 

agreement is 10%. This disagreement establishes the ambiguity in the label- 

ing task, and hence establishes a reference. Disagreement with the reference 

of more than 10% shows that performance can be improved. Disagreement 
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of less than 10% shows performance is better than expected. The classifier 

is finding some method of reducing the ambiguity, i.e. it is doing as well as 

the human labelers. 

4.3. Comparison to Previous Work 

In Section 1.4 we described previous methods for formant tracking. The 

I<opec HMM error rate is about 15%, the McCandless Rule Based system 

error rate is about lo%, and our neural network error rate is about 8% for 

the ISOLET data and 6% for the TIMIT data. 

The Rule-Based system is tuned to 10 speakers, and could require signif- 

icant re-tuning of parameters to generalize to new speakers[ll]. The HMM 

and our neural network approach could be expanded by simply increasing 

the size of the training set. For our neural network classifier, even that may 

not be needed. In several cases we ran the trained network on new data 

(without retraining), and the performance decreased by only a few percent. 

4.4 ,Analysis of Error 

Most of the errors produced by the algorithm are reasonable. That is, the 

algorithm does not produce errors such as F2 below F1. Visual inspection 

reveals that many of the errors are the result of poor resolution on the spec- 

tograms. Browsing of errors indicates that when the network has difficulty 



Figure 9: Spectogram 1 of the letter Q spoken by a female speaker 

classifying peaks, huma.n labelers also encounter difficulties on the s a n e  spec- 

togram. 

In the examples that follow we can see typical errors. In most cases the 

errors are reasonable given the context. The biggest source of error is a pitch- 

tracking problem that reduces the F3 and causes co~lfusion between F:3 and 

NotF. That problem is discussed in Section 4.6. 

4.4.1 Spectogram 1 

In Figure 9 we see a spectogram with pitch-synchronous spectra (lineogram) 

from within the area indicated on the spectogram. The spectra are disp1a:-ed 

with the coefficients plotted horizontally. The display is only below 4 kHz 

since the formants of interest are below 4 kHz. The scale of the 2 displays 
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are different, so the LineSpecTool is only displaying the portion of the spec- 

togram indicated by the dark bar over the spectogram time display. The 

displayed part of the spectogram is the middle portion where the F2 appears 

to fade away. Looking at the Lineogram, we can see that it does not fade 

away completely. Even with these faint peaks the neural network continues 

to correctly label those peaks. In the second frame it misses the F2, and 

the F3 is marked on the wrong peak. In the fourth and fifth frames the 

broadening of the F1 caused the classifier to mislabel the peak as a merged 

F1-2 (4 on the display). In the fourth and sixth frames it also inserts two F3 

labels. Given the diminished F2 through this section, the errors are reason- 

able. In addition, towards the end of the lineogram, you can see that with 

the stronger F2, there is no error in labeling. 

4.4.2 Spectogram 2 

The next example is more troublesome (Figure 10). In this case, a Y spoken 

by a male speaker with low pitch, the F4 and even F5 are dropping below 

4kHz. The section of spectrum displayed on the Lineogram shows how the 

extra formants confuse the classifier. Actually, as long as just F4 is below 

4kHz, there is little problem. When F5 is a distinct peak (in the first 3 

frames), the classifier labels F4 as F3 and consequently has an upward bias 

in labeling the other peaks (i.e. the network errs in assigning labels to peaks 

that are high in the frequency range). In the first 3 frames there is an extra 

I 



Figure 10: Spectogram 2 of the letter Y spoken by a female speaker 

F2 label. In the second frame the merged F1-2 is mislabeled as a F1. The F4 

is also causing confusion in the seventh frame since the merged peak is again 

labeled as F' l .  In this case it did not confuse the other peaks. Remember 

that each peak is labeled in isolation from the other labels in the frame. For 

each peak, the classifier does not know that the label was already assigned, 

or not assigned. Considering that there are 4 and even 5 formants presented 

to the network, it has reasonably sorted them out. 

4.4.3 Spectogram 3 

The next example is a situation where the network correctly labeled the 

spectogram (Figure 11). In this R, the F3 drops very low, and F4 isfaintly 

visible. Looking at the Lineogram, we can see that there is a significant 



Figure 11: Spectogram 3 of the letter R spoken by a male speaker 

difference between F4 and the other formants. The classifier correctly labels 

all the formants. It catches the merged F2-3 at the end of the Lineogram, 

and does not mislabel F1 as F1 starts to fade. 

4.4.4 Spectogram 4 

This is a case (Figure 12) of the formants widening just enough to allo~r the 

neural network to assign merged labels (4 and 5) to individual formant peaks. 

If you look at  the center of the spectogram display, you can see the formants 

through the middle of the sonorant are slightly wider. The mislabeled peaks 

are isolated so this type of error is easy to correct with almost any kind of 

post-processing. Since there were only 2 other such errors in the uttera.nce, 

even uncorrected they are not a major problem. 



Figure 12: Spectogram 4 of the letter V spoken by a male speaker 

4.4.5 Network Output 

Table 8 displays the confusion matrix for the Shifted Vector Network. In- 

spection of this matrix reveals that the confusions are reasonable. F2 and 

F3, in particular, tend to be confused with No-Formant peaks. Considering 

the fa11 off in energy that is seen in spectra, that is only partially offset by 

pre-emphasis, the higher formant peaks tend to be smaller in the spectra. It 

is reasonable that these smaller peaks would get confused with No-Formant 

peaks. 

The effect of the smaller peaks in the higher frequencies is also apparent 

in the confusions for F2 and F3. For the most part they are confused with 

the merged F2-3 label. Notice that the network as learned to distinguish F2 



Table 8: Confusion Matrix for Output of Best Network 

from F1-2 rather well. The confusion of F2-3 is also with F2 and F3. The 

network does well in detecting the merged peaks, meaning it generally does 

not assign a No-Formant label to them. 

F1 is generally only confused with F1-2. Again this is reasonable, consid- 

ering the very slight differences between the two labels. The network is very 

good at detecting the F1 peak, and at least assigning some label to it. 

4.5 Weight Magnitudes 

The hidden node a.ctivations of a neura.1 network can give an indication of 

the types of distinctions that the network is making. The weight magnitudes 

to and from the hidden nodes are one way of measuring the contribution of 

the node to a given classification. \Ve use a tool, called XOPT, that will 



Figure 13: Weight Activations for Hidden Node 14 

display the weight magnitudes for networks produced by our simulator. It is 

not always the case that the distinctions found by the network are the same 

that people would use in making the same classifications. 

For the formant classification network, many of the hidden node distinc- 

tions are not obvious. As an example of the XOPT tool, we will look at the 

weight magnitudes for hidden node 14 in the Shifted Vector Network (Fig- 

ure 13). This node makes one of the more easily understood distinctions, 

F1 and Not merged F1-2. The display shows the 3 layers of nodes. The top 

row is the output neurons. The second row is the hidden layer. Because of 

its length, the input layer has been broken up into 3 rows. The third and 

fifth rows are the lower and upper context units, each with 6 peaks and sis 

valleys. The fourth row is the nodes representing the target peak. The units 
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that compose each peak represent the frequency and magnitude. The lower 

node on either side is the frequency of the shoulder of the peak. Finally, in 

the context units the two lowest nodes between each peak are the frequency 

and magnitude of the interpeak valleys. 

Each box represents a node. The size of the box indicates the magnitude 

of the weight. In this case, the size of the input layer boxes indicates the 

magnitude of the weight going in to the hidden node, and the size of the 

output layer boxes indicates the magnitude of the weight going from the 

hidden node to each output node. Since there are no connections between 

nodes in a layer, the other hidden nodes are a uniform size. The displayed 

hidden node has rounded corners. Finally, the color (black or white) indicates 

negative or positive weights. 

The F1 node is strongly activated when hidden node 14 is activated. No- 

tice that although all the other output nodes are negatively affected by the 

activation of hidden node 14, the output for F1-2 is more strongly affected 

than the others. So, not only does hidden node 14 detect F1, it also dis- 

tinguishes F1 from the merged F1-2. Notice that all of the features in the 

target peak NEGATIVELY affect the hidden node. The input features are 

normalized from -1 to 1, so the lower frequencies are presented as negative 

numbers. The immediately adjacent upper context nodes appear to have a 

strong affect. The negative weights on frequency input nodes reflects the 
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normalization of the input, i.e. lower frequencies are represented by negative 

numbers. This hidden node is reacting to a target peak with low frequency, 

and that has a neighboring peak that is low in frequency, which is reasonable 

for F1. 

The other hidden nodes are not making such clear cut distinctions. In 

many cases, the distinction is negative. That is the decision is Not F1, which 

may be in part caused by the normalization. Apparently the node that 

receives the fewest nay votes wins. Other distinctions are not intuitive. For 

example there are several hidden nodes that distinguish NotF, F1, and F2 

from F3, F1-2, and F2-3. In this case it seems that the node is segregating the 

low amplitude formants from the high amplitude formants. But that cannot 

be completely true since many of the NotF peaks are also low amplitude. 

Visual inspection of the classifier error indicates that the NotF, F3 dis- 

tinction is difficult for the classifier. This observation is born out in looking 

at the hidden nodes. 28 of 30 hidden nodes contribute towards distinguish- 

ing these labels. For comparison, of the 15 possible label distinction pairs 

(such as F1 F2, F1-2 F3), 10 of them use between 19-21 hidden nodes. The 

4 remaining pairs use less than 19 hidden nodes. 

Inspecting the weight magnitudes can be a useful exercise, although for 

this network, the results of this inspection are not clear cut. The most 

surprising observation is that most of the magnitudes are small. The network 



Figure 14: Erroneous and Correct Pitch Marks. In the top picture the pitch 

marks are not at the peaks of the wa.veforms, and the bottom picture shows 

correct pitch mark locations. 

as found few definite characteristics that separate the formant classes. The 

small size of the magnitudes makes it difficult to reach many conclusions 

about the function of individual hidden nodes. The weight magnitudes do 

confirm the results of the visual inspection of errors that the network finds 

the NotF-F3 distinction difficult. 

Close visual inspection of the labeling errors led us to look at the underly- 

ing spectral represelltation. To understand a certain type of problenl in tlie 

PSDFT we looked at the pitch files. We discovered a very suhtle psobleln. 
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The problem in the PSDFT is that the pitch marks from the pitch tracker 

are not aligned with the actual pitch period (Figure 14). The upper display 

shows the pitch marks are placed after the pitch peak. The lower display 

shows correctly placed pitch marks for another utterance. This shifts the 

DFT window, and allows the resolution of harmonics in the PSDFT (Fig- 

ure 15). The figure shows a Lineogram of the spectogram. In this picture 

the coefficients are plotted horizontally to better display the values. These 

harmonics introduce numerous spurious peaks and reduce the valid peaks. 

The pitch tracker uses a pitch peak location algorithm to locate candidate 

peaks. This pitch peak algorithm relies mostly on the low frequency compo- 

nent of the pitch. In this case there is a major component of the pitch that is 

above 2500 Hz, and it causes the pitch marks to be erroneously placed. The 

pitch period between marks is the same since all the marks are shifted uni- 

formly. The problem manifests itself when generating a pitch-synchronous 

DFT. Only in this situation do we need a definite marker at the beginning 

of the pitch period. Since the pitch tracker places these marks in the wrong 

place the DFT window is incorrect and that accounts for the harmonic effects 

visible in the spectogram. 

To test this hypothesis we manually moved the pitch marks to Inore 

closely correspond to the pitch period (Figure 14). The resulting PSDFT 

(Figure 16) has a.n identifiable F2-3 where the uncorrected PSDFT just had 



Figure 15: Lineogram of spectra with Bad Pitch Marks, note that there is 

no identifiable F2 or F3 that continues through the entire utterance 
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arbitrary peaks. For this utterance the error rate was reduced from 40% 

to 10%. We feel an improved pitch tracker will provide the greatest im- 

provement. The largest remaining error is distinguishing F3 from NotF. An 

improved pitch tracker will remove many of the spurious peaks that were 

confused with F3, aiding both training and classification. 

A related problem is glottalization, the periods when the vocal cords are 

accelerating or decelerating and the vibrations are irregular. An improved 

segmenter will assign a glottalization label, so this source of error will simply 

be avoided. It is a small part of the total error, but it can be a large source 

of error in a single utterance. 



&~form filrt a t .  d o  

Figure 16: Lineogram of the Spectra after the pitch marks were corrected 

showing the improved peak resolution, note the identifiable merged F2-3 



5 Future Directions 

We are pleased with performance of the neural network formant estimation 

algorithm. With the information available to it, it is performing at  human 

levels of performance. Analysis of the types of errors indicates that the fun- 

damental approach is sound. The errors that occur are reasonable given the 

information available in a single frame. To resolve these errors information 

is required about formant labels in adjacent frames. There are several meth- 

ods to acquire this informat ion: algorithmic (rule-based) post-processing, 

recurrent neural networks, or constraint satisfaction. 

5.1 Algorithmic Post-Processing 

This approach would simply apply a series of rules to any frame that had 

an inconsistent formant labeling (e.g. two F3 labels). These rules would be 

developed by observation from the datasets, and the classes of errors iden- 

tified by visual inspection of the algorithm output. This approach would 

only be able to us information from immediately adjacent frames. It is pos- 

sible that by running the inconsistent formant labels through the algorithm 

several times that "correct" information could be propagated to  the inconsis- 

tent frames. This approach suffers from the same problems as any rule-based 

approach that the rules are fine-tuned to the existing data, and do not gen- 

eralized well. 



5.2 Recurrent Neural Networks 

Recurrent Neural Networks (RNNs) implicitly carry information from previ- 

ous input vectors forward to the next input vector. They do this by some 

form of feedback in the internal weight connections between nodes. These 

connections may feed the output back into the same node, or into a node in 

a previous layer. This feedback allows the activation from previous inputs 

to be used in the next input presentation. Superficially this would appear to 

provide the inter-frame context we sought. - The problem is that the informa- 

tion needed to resolve inconsistent labels, may be in later spectral frames. 

For example, at  the beginning of a sonorant, the frames needed to resolve 

inconsistencies are located after the frame being classified. In this case, the 

RNN would not provide any advantage. It may be possible lo  delay a deci- 

sion for several frames so that the network will have context from both sides 

of the target frame. 

5.3 Constraint Relaxation 

This is a method that uses a modified Hopfield network for post-processing. 

In this network each node represents a label for a peak in the frame. The 

connections between nodes (within the same peak, frame, or between frames) 

are inhibitory representing constraints on which labelings are consistent. For 

example, all the F1 nodes within a frame are inhibitory since there can only 



6 2 

be one F1 label in a frame. The input to the network is the output of the 

Shifted Vector Network, where the activation of each output neuron is used 

as the input for each label node in the Hopfield network. Initial results with 

such a network were encouraging. It was able to correct individual errors 

(i.e. single errors with the adjacent peaks, and frames correct). In cases 

where there was a series of inconsistent frames, the network did not do well. 

Further research is needed to find a method to propagate the inhibitions 

through several inconsistent frames. 



6 Conclusion 

Our various experiments with the individual peak classification has been en- 

couraging. In those utterances without spectral representation problems, the 

basic network does well, correctly labeling 90-98% of the peaks. If this level 

of performance can be reliably maintained after cleaning up the representa- 

tion, then simple post-processing methods of resolving incorrect labels will 

be sufficient. 

Even without further developments, our neural network approach seems 

to have better performance than the 2 major alternatives. Neural networks 

are robust. Even if variation in data causes the performance to degrade, 

simply retraining the existing network will recover the performance. Our 

perception experiments show that the neural network classifier is slightly 

better than experienced human labelers. 

Our research has shown that neural network classifiers ca.n be used suc- 

cessfully for formant estimation. They are better than the major alternatives. 

They are better than human labelers. In addition for formant estimation 

with neural networks, we have shown that derived features provide better 

performance than raw data. 
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