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data assimilation in a coastal margin observatory 
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Ph.D., OGI School of Science & Engineering at Oregon Health & Science University. 
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Research Advisor: Dr. António M. Baptista 

 

There is a building consensus among scientists, educators, managers, and 

politicians that integrated ocean observatories are a critical backbone to future scientific 

exploration, workforce training, and science-based management of coastal resources in 

the U.S. An integral part of the future infrastructure for these observatories is data 

assimilation (DA)—a mathematical technique that uses sparse observations of the ocean 

to constrain and improve the dynamics of a numerical model. The uses of DA in a coastal 

margin observatory are multiple and include an optimal estimate of the ocean state, an 

estimate of uncertainty for this state estimate, a suggestion for improving the design of 

the observational array, and a suggestion for improving the formulation of the numerical 

model. However, the wide application of DA in coastal margin observatories has been 

hampered, among other things, by the computational cost of existing algorithms, by the 

logistical difficulties in developing adjoint codes for rapidly evolving coastal models, by 



 xi

the strong nonlinearity of coastal circulation processes, and by our ignorance about the 

statistics of model and forcing errors. 

 

In this dissertation, we overcome many of the algorithmic and logistical 

challenges that impede wide application of advanced DA algorithms in coastal margin 

observatories. We demonstrate an application of the developed methods in an observatory 

for the Columbia River (CR) estuary and plume—an excellent test-bed for developing 

DA methods, with well documented, yet challenging dynamics. Once implemented, we 

used DA system in the CR to: 

1) Assimilate in situ measurements of water levels, salinity and temperature into a 

multi-annual hindcast of the estuary. 

2) Study the impact of DA on the dynamics of ecologically significant circulation 

features in the estuary and plume, such as the orientation and size of the plume, 

and the length of the salinity intrusion in the estuary. 

3) Guide optimal placement of observational arrays in the estuary and plume. 

4) Develop a real-time, assimilative forecast system for the estuary. 

 

Our successful application of the enabling algorithms in the CR suggests that the 

developed technologies for fast, model independent DA and for optimization of 

observational arrays can be applied in many other coastal margin and coastal ocean 

observatories, enabling the implementation of these observatories at low computational 

and personnel costs.  



 

1 

Chapter 1 

Introduction 

1.1 Integrated ocean observatories 
The Pew Oceans Commission report America’s Living Oceans: Charting a 

Course for Sea Change (Pew Oceans Commission 2003) calls attention to the declining 

health of coastal ecosystems in the U.S. that threatens the coast-based economy, the 

livelihood, and the legacy of this nation. Examples of these threats include: rapid growth 

of coastal communities; land, water, and air pollution; unsustainable exploitation of 

fishery resources; and, frequently, ineffective management of coastal resources. The price 

tag for this threatened ocean- and coast-based economy is estimated at $1 trillion (U.S. 

Commission on Ocean Policy 2004). To prevent these threats to coastal economies and 

ecosystems, the U.S. Commission on Ocean Policy suggested replacing the current, 

fragmented management of coastal resources with a new ecosystem-based management 

(U.S. Commission on Ocean Policy 2004). Coastal economies and ecosystems can 

uniquely benefit from such a management strategy, which is based on an investment in 

scientific exploration and science-based management. The blueprint for this investment 

in scientific and management infrastructure was outlined by the U.S. Commission on 

Ocean Policy (U.S. Commission on Ocean Policy 2004), with a follow-up report from the 

Joint Ocean Commission Initiative (Joint Ocean Commission Initiative 2006) identifying 

the top 10 priorities for Congress to act on. One of these top ten priorities is to enact 

legislation that will authorize and fund the Integrated Ocean Observing System (IOOS). 
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Once fully enacted, the annual funding for the IOOS initiative is estimated to cost $500 

million (Joint Ocean Commission Initiative 2006).  

 

The proposed IOOS observatory is one of many existing and emerging ocean 

observatories, some examples of which include the existing Tropical Atmosphere and 

Ocean Array in the tropical Pacific (McPhaden 1995), the emerging ORION observatory 

from the National Science Foundation (National Research Council 2003), and numerous 

regional coastal observatories (Edson, et al. 2001, Ruef, et al. 2003, Proctor, et al. 2005, 

Baptista 2006). A common goal of such observatories is to provide a sustained, integrated 

view of ocean conditions for the stakeholders of the observatory, which often include 

scientists, educators, and natural resource managers. To achieve this objective, a typical 

integrated ocean observatory consists of three components: (1) observation, (2) data 

management, and (3) data analysis and modeling. The focus of this dissertation is on the 

modeling component of an integrated ocean observatory, specifically on the data 

assimilation (DA), which is expected to provide scientists and managers with an 

integrated view of ocean conditions and to guide deployment of ocean observing assets.  

1.2 Data assimilation in a coastal-margin observatory 
Data assimilation is an integral part of the modeling infrastructure for integrated 

ocean observatories. DA is a modeling technique that uses sparse observations of the 

ocean to constrain the dynamics of a numerical model. The uses of DA in an ocean 

observatory are many and include optimal estimates of the ocean state, estimates of 

uncertainty for the model prediction, suggestions for improving the design of the 

observational array, and suggestions for improving the formulation of the numerical 

model.  

 

The theory of DA goes back to the seminal works of Gandin, Le Dimet , Bennett, 

Miller, and Cohn (Gandin 1963, Cohn 1982, Le Dimet, et al. 1986, Miller 1986, Bennett 

1992), which proposed to use methods developed in the fields of optimal estimation and 

optimal control to problems of ocean and atmospheric DA. One group of these methods 

is based on the Kalman filter (KF) recursion (Kalman 1960)—a two-step recursion that 

first forecasts a model state and error statistics and then estimates the best fit of the model 
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state to measurements, using the minimum least square criterion. The direct 

implementation of the KF recursion is out of computational reach for high-dimensional, 

nonlinear ocean models, principally due to the prohibitive computational cost of 

forecasting error statistics. As a result, a number of suboptimal KF algorithms have 

emerged (Gandin 1963, Cane, et al. 1996, Lermusiaux, et al. 1999, Pham 2001, Oke, et 

al. 2002, Evensen 2003) One such suboptimal algorithm is the ensemble KF (Evensen 

2003), which approximates the computationally expensive forecast of error-statistics 

using a limited (~100) ensemble of model states. Another such suboptimal algorithm is 

the optimal interpolation (Gandin 1963), which approximates error statistics using 

statistical models that are stationary in time and/or space.  

 

Many of the KF-based algorithms were previously applied to assimilate 

measurements into models of a coastal ocean (Martin 2000, Oke, et al. 2002, Kindle 

2005, Kurapov, et al. 2005, Wilkin, et al. 2005, Lermusiaux 2007). However, the 

applications of DA in the coastal margin, including estuaries, lagoons, and river plumes, 

are still rare (Xu, et al. 2002, Bertino, et al. 2002, Tores, et al. 2006). Moreover, many of 

these past applications in coastal ocean and coastal margin are based on variants of 

optimal interpolation—a simplified DA algorithm. Some of the challenges that have been 

precluding application of more advanced DA algorithms, like the ensemble KF, to 

problems in coastal ocean and coastal margin include: 

• The dynamics of coastal-margin circulation are often highly nonlinear. These 

nonlinearities can lead to stability constraints in many DA methods that are based 

on the linearization of model dynamics and observations, such as variational DA 

(Le Dimet, et al. 1986, Bennett 1992) and the extended KF (Evensen 1992). 

Although these stability problems can be overcome by iterative methods (Gelb 

1974, Bennett 2002), such methods are computational expensive. 

• Circulation and ecosystem models for coastal margin are still rapidly evolving 

and usually do not come with a hard-to-develop adjoint models, required by 

variational DA (Le Dimet, et al. 1986, Bennett 1992), hence restricting the choice 

of algorithms to those based on approximations to the KF recursion (Gandin 
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1963, Evensen 1994, Cane, et al. 1996, Lermusiaux, et al. 1999, Pham 2001, Oke, 

et al. 2002, Evensen 2003). 

• The computational cost of coastal ocean models is very high, since coastal 

circulation involves a multitude of temporal (from hours to decades) and spatial 

(from meters to hundreds of kilometers) scales. The high computational cost of 

these forward models determines the extremely high cost of DA algorithms since 

most existing DA algorithms require computational efforts equivalent to tens to 

hundreds of forward model integrations (Brusdal, et al. 2003, Ngodock, et al. 

2006).  

• Simulation of coastal ocean circulation usually requires specification of poorly 

known ocean boundary conditions and atmospheric forcings. In a forward model, 

these forcings are usually prescribed based on the predictions of larger-scale 

oceanic and atmospheric models. However, in an assimilative model, an error 

statistic for these forcings is also required, for which even less information is 

usually available. 

1.3 Objective of the research 
The objective of the research reported in this dissertation was to develop and to 

verify algorithms that will enable DA in complex, nonlinear environments that are 

common in coastal-margin observatories. The specific aims of our research were three 

fold: 

1) To develop DA algorithms, which are computationally efficient, nonlinear, free of 

the adjoint model, and come with freely available software.  

2) To develop algorithms for optimal placement of sensors in a coastal margin 

observatory. 

3) To verify the developed DA and optimal sensor-placement algorithms for a 

challenging application in a coastal margin observatory.  

  

The algorithmic approach that addresses the specific aims of our research is 

outlined in section 1.4. For verification of the developed algorithms we used the coastal-
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margin observatory in the Columbia River (CR) estuary and plume, which was chosen for 

the following reasons: 

1) The three-dimensional baroclinic dynamics of the estuary and plume are highly 

nonlinear and statistically non-stationary, which is likely to challenge the 

assumptions at the core of our DA algorithms. One such challenging, nonlinear 

dynamic is that of salinity intrusion, the length of which is determined by the 

balance of tidal mixing and the density difference between ocean and river waters. 

The statistical non-stationarity of the CR estuary circulation is partially due to 

non-stationarity in the river discharge, which modulates the length of salinity 

intrusion in the CR. 

2) The dynamics of the CR estuary and plume are well documented (Hamilton 1990, 

Jay, et al. 1990, Jay, et al. 1997, Hickey, et al. 1998, Garcia-Berdeal, et al. 2002, 

Baptista, et al. 2005, Hickey, et al. 2005), providing the theoretical framework for 

analysis of DA estimates. 

3) Observations and numerical models for the CR estuary and plume are readily 

available (Hickey 2004, Baptista, et al. 2005, Baptista 2006), hence removing the 

need for independent development of such observational and modeling programs. 

4) Improved understanding of the CR estuary and plume dynamics, which is 

expected from the DA estimates, is of high practical and scientific value. In the 

past, model characterizations of the dynamics in the CR estuary and plume were 

used to support fisheries research (Bottom, et al. 2005, Burla, et al. 2007, Burla, et 

al. submitted) and management of the CR ecosystem (USACE 2001).  

1.4 Overview of our algorithmic solutions  
To overcome the algorithmic challenges for advanced DA in a coastal margin 

observatory, we1 created and verified the following enabling technologies and 

algorithmic solutions in the CR estuary and plume: 

                                                 
1 Much of the initial work on algorithms for training of model surrogates and for the 
formalism of the reduced-dimension Kalman filter was conducted in close collaboration 
with scientists in the Adaptive Systems Lab at Oregon Health &  Science University and 
is reported in two articles (Lu, et al. 2007, van der Merwe, et al. 2007) that are not 
included in this dissertation. 
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• To expedite the computation of the KF, we developed the technology for neural-

network model surrogates. Model surrogates use fast neural networks to 

approximate the dynamics of slow circulation models. Because it is not 

computationally feasible to train the model surrogate in the high-dimensional 

space of the forward model, the surrogate is trained in the subspace spanned by 

the Empirical Orthogonal Functions (EOF) of the forward model.  

• To address strong nonlinearity in the dynamics of the CR estuary, we made a 

series of deliberate algorithmic choices. For example, instead of using more 

traditional linear autoregressive models (Hoteit, et al. 2003), we used nonlinear 

model surrogates, based on neural networks. To avoid linearization of 

observational and dynamical operators, we used a sigma point KF (van der 

Merwe, et al. 2001, van der Merwe 2004)—a nonlinear extension to the classical 

KF (Kalman 1960). 

• To address the lack of an adjoint model for SELFE (Zhang, et al. submitted), the 

circulation code of choice in the CR estuary, we developed our DA method using 

a sigma point KF, which, like all KFs, does not require development of an adjoint 

model.  

• To estimate the reduced-dimension dynamics of the model surrogate in the EOF 

subspace, we developed formalism of the reduced-dimension KF that extends a 

similar linear filter of (Cane, et al. 1996) to nonlinear systems and properly 

accounts for the EOF representation errors. 

• To estimate the unknown parameters of errors in forcings, we used cross-

validation (Bishop 1995)—a machine learning technique that effectively reuses 

available observational data for training and validation of a DA algorithm. 

 

To find a strategy for optimal placement of fixed sensors in a coastal-margin 

observatory, we used the following algorithmic solutions that were validated in the CR 

estuary and plume: 

• To quantify the utility of a candidate array, we used the statistical machinery of 

the best linear unbiased estimator (BLUE) (Ripley 1987), which predicts how 
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accurately the ocean state can be reconstructed from sparse measurements of a 

candidate array.  

• To characterize the covariance structure for the field of interest, required by the 

BLUE estimator, we used a realistic, stationary, low-rank approximation of the 

covariance matrix, computed from the output of non-assimilative (Baptista, et al. 

2005, Baptista 2006) and assimilative (Chapter 2 of this thesis) models of the CR 

estuary and plume. 

• To search for optimal placements of sensors, we used several modified versions 

of the exchange-type optimization algorithm (Fedorov 1994). 

• To quantify the statistical redundancy of an existing observational array, we 

analyzed the eigen-spectrum of the observation covariance matrix, using analysis 

similar to the array modes of Bennett (Bennett 1985, 1992). 

1.5 Structure of this dissertation 
The research presented in this dissertation consists of three components.  

 

In the first component of our research, a research group that included the author 

developed algorithms for fast, model-independent, nonlinear DA. This research is 

documented in two manuscripts that are not included in this dissertation. The first of 

these complementary manuscripts (van der Merwe, et al. 2007) is now published in 

Neural Networks and documents training algorithms for model surrogates and shows 

their applicability to fast simulation of large ocean systems. The second complimentary 

article (Lu, et al. 2007) is submitted to Journal of Inverse Problems and documents the 

framework for reduced-dimension KF. A compact, self-sufficient overview of the model 

surrogate and the reduced-dimension KF is presented in the Chapter 2 of this thesis. 

 

In the second component of our research, the developed algorithms were verified 

in the CR estuary and plume. The results of these verification experiments are presented 

in Chapters 2, 3, and 4, which are formatted for publication as independent papers in 

peer-reviewed journals. The compact overview of the chapters follows: 
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• In Chapter 2, we verified the applicability of the developed DA algorithms to 

estimation of salinity, temperature, and water level variability in the CR estuary.  

• In Chapter 3, we verified the applicability of the developed DA algorithms to 

estimation of ecologically significant circulation features of the CR estuary and 

plume, such as direction and size of the CR plume, and the length of salinity 

intrusion in the CR estuary.  

• In Chapter 4, we verified the applicability of the developed DA algorithms to a 

real-time assimilative nowcast of the CR estuary. 

 

In the third component of our research, the algorithms for evaluation and 

optimization of fixed observational network in a costal-margin observatory were 

developed and verified in the CR estuary and plume. The network optimization 

algorithms and the verification experiments are presented in Chapter 5. 



9 

 

References 
Baptista, A. M. (2006), "CORIE: The First Decade of a Coastal Margin Collaborative 
Observatory," in Oceans'06 MTS/IEEE, Boston. 

Baptista, A. M., Zhang, Y.-L., Chawla, A., Zulauf, M. A., Seaton, C., Myers, E. P., 
Kindle, J., Wilkin, M., Burla, M., and Turner, P. J. (2005), "A Cross-Scale Model for 3d 
Baroclinic Circulation in Estuary-Plume-Shelf Systems: Ii. Application to the Columbia 
River," Continental Shelf Research, 25, 935-972. 

Bennett, A. F. (1985), "Array Design by Inverse Methods," Progress in oceanography, 
15, 129-156. 

Bennett, A. F. (1992), Inverse Methods in Physical Oceanography, Cambridge 
University Press. 

Bennett, A. F. (2002), Inverse Modeling of the Ocean and Atmosphere, Cambridge, UK: 
Cambridge University Press. 

Bertino, L., Evensen, G., and Wackernagel, H. (2002), "Combining Geostatistics and 
Kalman Filtering for Data Assimilation in an Estuarine System," Inverse Problems, 18, 1-
23. 

Bishop, C. (1995), Neural Networks for Pattern Recognition, Oxford University Press. 

Bottom, D. L., Simenstad, C. A., Burke, J., Baptista, A. M., Jay, D. A., Jones, K. K., 
Casillas, E., and Schiewe, M. H. (2005), "Salmon at River's End. The Role of the Estuary 
in the Decline and Recovery of Columbia River Salmon," NOAA Technical 
Memorandum NMFS-NWFSC-68, U.S. Dept. Commer. 

Brusdal, K., Brankart, J. M., Halberstadt, G., Evensen, G., Brasseur, P., van Leeuwen, P. 
J., Dombrowsky, E., and Verron, J. (2003), "A Demonstration of Ensemble Based 
Assimilation Methods with a Layered Ogcm from the Perspective of Operational Ocean 
Forecasting Systems," Journal of Marine Systems, 40-41, 253-289. 

Burla, M., Baptista, A. M., Casillas, E., and Williams, J. G. (submitted), "The Influence 
of the Columbia River Plume on the Survival of Steelhead (Oncorhynchus Mykiss) and 
Chinook Salmon (O. Tshawytscha): A Numerical Exploration.," Can. J. Fish. Aquat. Sci. 

Burla, M., Baptista, A. M., Zhang, Y.-L., Casillas, E., Bottom, D. L., and Simenstad, S. 
A. (2007), "Salmon Habitat Opportunity in the Columbia River Estuary: Modeling the 
Physical Environment to Inform Management Decisions," in Coastal Zone '07, Portland, 
OR. 

Cane, M. A., Kaplan, A., Miller, R. N., Tang, B., Hackert, E., and Busalacchi, A. J. 
(1996), "Mapping Tropical Pacific Sea Level: Data Assimilation Via a Reduced State 
Space Kalman Filter," Journal of Geophysical Research, 101 (C10), 22599-22617. 

Cohn, S. E. (1982), "Methods of Sequential Estimation for Determining Initial Data in 
Numerical Weather Prediction," Ph.D. thesis, NYU. 

Edson, J., Austin, T., McGillis, W., Purcell, M., Petitt, R., Ware, J., McElroy, M., Hurst, 
S., and Grant, C. (2001), "The Martha’s Vineyard Coastal Observatory," in OHP/ION 



10 

 

Joint Symposium on Long-term Observations in the Oceans, Yamanashi Prefecture, 
Japan. 

Evensen, G. (1992), "Using the Extended Kalman Filter with a Multilayer Quasi-
Geostrophic Ocean Model," Journal of Geophysical Research, 97 (C11), 17905-17924. 

Evensen, G. (1994), "Sequential Data Assimilation with a Non-Linear Quasi-Geostrophic 
Model Using Monte Carlo Methods to Forecast Error Statistics," Journal of Geophysical 
Research, 99 (C5), 10143–10162. 

Evensen, G. (2003), "The Ensemble Kalman Filter: Theoretical Formulation and Practical 
Implementation," Ocean Dynamics, 53 (4), 343 - 367. 

Fedorov, V. V. (1994), "Optimal Experimental Design: Spatial Sampling," Calcutta 
Statistical Association Bulletin, 44 (173-174). 

Gandin, L. (1963), Objective Analysis of Meteorological Fields, Leningrad: 
Hydrometeoizdat. 

Garcia-Berdeal, I., Hickey, B., and Kawase, M. (2002), "Influence of Wind Stress and 
Ambient Flow on a High Discharge River Plume," Journal of Geophysical Research, 107 
(C9), 3130. 

Gelb, A. (ed.) (1974), Applied Optimal Estimation., MIT Press. 

Hamilton, P. (1990), "Modeling Salinity and Circulation for the Columbia River 
Estuary," Progress in Oceanography, 25, 113-156. 

Hickey, B. (2004), "River Influences on Shelf Ecosystems: Initial Impressions," in AGU 
Fall meeting, San Francisco. 

Hickey, B., Geier, S., Kachel, N., and MacFadyen, A. (2005), "A Bi-Directional River 
Plume: The Columbia in Summer," Continental Shelf Research, 25 (14), 1631-1656. 

Hickey, B. M., Pietrafesa, L. J., Jay, D. A., and Boicourt, W. C. (1998), "The Columbia 
River Plume Study: Subtidal Variability in the Velocity and Salinity Fields," Journal of 
Geophysical Research, 103 (C5), 10,339-10,369. 

Hoteit, I., and Pham, D. T. (2003), "Evolution of the Reduced State Space and Data 
Assimilation Schemes Based on the Kalman Filter," Journal of Meteorological Society 
Japan, 81, 21-39. 

Jay, D., and Smith, J. D. (1990), "Circulation, Density Distribution and Neap-Spring 
Transitions in the Columbia River Estuary," Progress in Oceanography, 25 (1-4), 81-
112. 

Jay, D. A., and Flinchem, E. P. (1997), "Interaction of Fluctuating River Flow with a 
Barotropic Tide: A Demonstration of Wavelet Tidal Analysis Methods," Journal of 
Geophysical Research, 102 (C3), 5705-5720. 

Joint Ocean Commission Initiative. (2006), "From Sea to Shining Sea: Priorities for 
Ocean Policy Reform." 

Kalman, R. E. (1960), "A New Approach to Linear Filtering and Prediction Problems," 
ASME Journal of Basic Engineering, 82, 35-45. 



11 

 

Kindle, J. (2005), "Near Real-Time Depiction of the California Current System," in AMS 
Conference on Coastal Atmospheric and Oceanic Prediction and Processes, San Diego, 
CA. 

Kurapov, A. L., Allen, J. S., Egbert, G. D., Miller, R. N., Kosro, P. M., Levine, M., Boyd, 
T., Barth, J. A., and Moum, J. (2005), "Assimilation of Moored Velocity Data in a Model 
of Coastal Wind-Driven Circulation Off Oregon: Multivariate Capabilities," Journal of 
Geophysical Research, 110 C10S08. 

Le Dimet, F.-X., and Talagrand, O. (1986), "Variational Algorithms for Analysis and 
Assimilation of Meteorological Observations: Theoretical Aspects," Tellus A, 38, 97-110. 

Lermusiaux, P. F. J. (2007), "Adaptive Modeling, Adaptive Data Assimilation and 
Adaptive Sampling," Physica D, 230 (1-2), 172-196. 

Lermusiaux, P. F. J., and Robinson, A. R. (1999), "Data Assimilation Via Error Subspace 
Statistical Estimation, Part I: Theory and Schemes," Monthly Weather Review, 127 (8), 
1385-1407. 

Lu, Z., Leen, T. K., van der Merwe, R., Frolov, S., and Baptista, A. M. (2007), 
"Sequential Data Assimilation with Sigma-Point Kalman Filter on Low-Dimensional 
Manifold," submited to Journal of Inverse Problems, also available at 
http://www.stccmop.org/files/CMOP-TR-07-001.pdf [Viewed on September 14, 2007]. 

Martin, P. J. (2000), Description of the Navy Coastal Ocean Model Version 1.0., Naval 
Research Laboratory, Technical Report. 

McPhaden, M. J. (1995), "The Tropical Atmosphere-Ocean Array Is Completed," 
Bulletin of the American Meteriological Society, 76, 739-742. 

Miller, R. N. (1986), "Toward the Application of the Kalman Filter to Regional Open 
Ocean Modeling," Journal of Physical Oceanography, 16, 72-86. 

National Research Council. (2003), "Enabling Ocean Research in the 21st Century: 
Implementation of a Network of Ocean Observatories." 

Ngodock, H., E., Jacobs, G., A., and Chen, M. (2006), "The Representer Method, the 
Ensemble Kalman Filter and the Ensemble Kalman Smoother: A Comparison Study 
Using a Nonlinear Reduced Gravity Ocean Model," Ocean Modeling, 12 (3-4), 378-400. 

Oke, P. R., Allen, J. S., Miller, R. N., Egbert, G. D., and Kosro, P. M. (2002), 
"Assimilation of Surface Velocity Data into a Primitive Equation Coastal Ocean Model," 
Journal of Geophysical Research, 107 (C9), 3122. 

Pew Oceans Commission. (2003), "America’s Living Oceans: Charting a Course for Sea 
Change. A Report to the Nation." 

Pham, D. T. (2001), "Stochastic Methods for Sequential Data Assimilation in Strongly 
Nonlinear Systems," Monthly Weather Review, 129 (5), 1194-1207. 

Proctor, R., Howarth, J., Holt, J., Wolf, J., Knight, P., Allen, I., and Holt, M. (2005), "The 
Synthesis of Modeling and Measurements in a Coastal Observatory," in Asian and 
Pacific Coasts, Jeju, Korea. 

Ripley, B. D. (1987), Spatial Statistics, New York: John Wiley. 



12 

 

Ruef, W., Devol, A., Emerson, S., Dunne, J., Newton, J., Reynolds, R., and Lynton, J. 
(2003), "In Situ and Remote Monitoring of Water Quality in South Puget Sound: The 
Orca Time-Series," in Georgia Basin/Puget Sound Research Conference, Vancouver, 
British Columbia. 

Tores, R., Allen, J. I., and Figueiras, F. G. (2006), "Sequential Data Assimilation in an 
Upwelling Influenced Estuary," Journal of Marine Systems, 60, 317–329. 

U.S. Commission on Ocean Policy. (2004), "An Ocean Blueprint for the 21st Century. 
Final Report." 

USACE. (2001), "Columbia River Channel Improvement Project: 2001 Biological 
Assessment," U. S. Army Corps of Engineers. 

van der Merwe, R. (2004), "Sigma-Point Kalman Filters for Probabilistic Inference in 
Dynamic State-Space Models," Ph.D., OHSU. 

van der Merwe, R., Leen, T. K., Lu, Z., Frolov, S., and Baptista, A. M. (2007), "Fast 
Neural Network Surrogates for Very High Dimensional Physics-Based Models in 
Computational Oceanography," Neural Networks. 

van der Merwe, R., and Wan, E. (2001), "Efficient Derivative-Free Kalman Filters for 
Online Learning," in Proceedings of the European Symposium on Artificial Neural 
Networks (ESANN), (Bruges, Belgium). 

Wilkin, J. L., Arango, H. G., Haidvogel, D. B., Lichtenwalner, C. S., Glenn, S. M., and 
Hedström, K. S. (2005), "A Regional Ocean Modeling System for the Long-Term 
Ecosystem Observatory," Journal of Geophysical Research, 110 (C06S91). 

Xu, J., Shenn-Yu, C., Raleigh, H. R., Wang, H. V., and Boicourt, W. C. (2002), 
"Assimilating High-Resolution Salinity Data into a Model of a Partially Mixed Estuary," 
Journal of Geophysical Research, 107 (C7), 11-11. 

Zhang, Y.-L., and Baptista, A. M. (submitted), "A Semi-Implicit Eulerian-Lagrangian 
Finite-Element Model for Cross-Scale Ocean Circulation," Ocean Modeling. 

 

 



 

13 

Chapter 2 

Fast Data Assimilation Using a Nonlinear 

Kalman Filter and a Model Surrogate: an 

Application to the Columbia River Estuary 

 

List of authors: Frolov, S., Baptista, A. M., Leen T., Lu, Z., van der Merwe, R. 

 



14 

 

Abstract: 
 

A fast, adjoint-free, nonlinear data assimilation (DA) system was developed for a 

3D baroclinic simulation of the Columbia River (CR) estuary. The DA system took 

advantage of two recently developed technologies: (1) a nonlinear model surrogate (van 

der Merwe, et al. 2007) that executes forward simulation three orders of magnitude faster 

than a traditional numerical circulation code and (2) a nonlinear extension to the reduced-

dimension Kalman filter (Lu, et al. 2007) that estimates the state of the model surrogate. 

The noise sources in the Kalman filter were calibrated using empirical cross-validation 

and included errors in model forcings and model error.  

 

The developed DA system was applied to assimilate in situ measurements of 

water levels, salinities, and temperatures into the model surrogate of the CR estuary. To 

validate the DA results, we used a combination of cross-validation studies, process-

oriented studies, and tests of statistical and dynamical consistency. The validation studies 

showed that DA improved upon the non-assimilative model in representing several 

important processes in the CR estuary, such as nonlinear tides, salinity intrusion, seasonal 

cycle of heating and cooling, and responses of the estuary to coastal winds.  
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Notation:

k – index of the discrete  time; 
( )x k  – state vector in the full space; 
( )u k  – vector of forcings; 
( )y k  – vector of observations; 
( )sx k  – state vector in the reduced 
space; 

( )x k�  – reconstruction of the vector 
( )sx k  in the full space M ; 

ˆ ( )sx k−

 – optimal prediction of the state 
at time k conditioned on the 
observations up to time k-1 (state 
forecast); 

ˆ ( )sx k  – estimate of the reduced state at 
time k conditioned on the 
observations up to time k (state 
analysis); 

ˆ( )y k  – optimal prediction of the 
observation at time k; 

Xk – time-lagged input to the model 
surrogate at time k (vector of past 
states); 

Uk – time-lagged input to the model 
surrogate at time k (vector of past 
and future forcings); 

Yk – time-lagged output of the model 
surrogate at time k (vector of future 
states); 

(.)f  – nonlinear dynamical model in the 
full space; 

(.)h  – nonlinear observation function in 
the full space; 

fs(.) – nonlinear model of the dynamics 
in the reduced space; 

hs(.) – nonlinear observation function for 
the reduced state xs; 

fms(.) – nonlinear model surrogate; 
v, vui, vx,, vms and vxms – process, 

forcing, model, model surrogate, and 
combined model and model 
surrogate errors, and Qui, Qx, Qms, 

and Qxms are the respective error 
covariance matrixes; 

mn  – measurement (sensor) errors; 
on  – vector of observation errors for the 

reduced space observation function 
hs(.); 

M  – full space lR  of state vectors 
( )x k ; 

nlM  – low-dimensional, possibly 
nonlinear, manifold of model 
trajectories; 

sM  – reduced space; 
Π  – EOF dimension-reduction operator; 
ε  – reconstruction error; 
μ  – mean of the state vector; 
σvart – normalization constant for the 

components of the state vector; 
E[.] – expectation operator; 
W  – concatenated vector of unknown 

weights and bias terms in the neural 
network; 

λ – regularization parameter of the 
neural network; 

Ti – internal PCA operator of the neural 
network; 

xx
−P  – error covariance matrix for the 

state ˆsx−

 (forecast error covariance); 
xxP  – error covariance matrix for the 

state estimate ˆsx  (analysis error 
covariance); 

yy
−P  – covariance of innovation 

( ˆ( ) ( )y k y k−− ); 
Kk – Kalman gain at time k; 

uα  and xα  – inflation factors for the 
forcing and model error covariance 
Qu and Qxms; 

2ˆinovσ  and 
2
inovσ  – predicted and measured 

variance of the forecast error. 
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2.1 Introduction 
Data assimilation (DA) plays a central role in emerging costal observatories. 

However, a wide application of many existing DA methods has been hampered, among 

other things, by the limited computational resources available to coastal oceanographers, 

by the logistical difficulties of developing adjoint codes for rapidly evolving coastal 

models, and by the strong nonlinearity of coastal flows. To address the need for fast, 

adjoint-free, nonlinear data assimilation methods, we recently proposed a nonlinear 

extension to the reduced-dimension Kalman filter (KF) (Lu, et al. 2007). The 

computational efficiency of the new method comes, in part, from the use of neural 

network model surrogates (van der Merwe, et al. 2007) that execute forward simulations 

three orders of magnitude faster than the traditional numerical circulation codes. This 

article reports on the application of the enabling technologies from (Lu, et al. 2007, van 

der Merwe, et al. 2007) to a realistic simulation of tides, salinity intrusion, and 

temperature in the Columbia River (CR) estuary. 

 

The CR estuary is an excellent test-bed for developing DA methods for coastal 

observatories. The nonlinear dynamics of the CR estuary are well-documented (Hamilton 

1990, Jay, et al. 1990, Jay, et al. 1997) and are likely to challenge the assumptions at the 

core of a DA algorithm. One such challenging, nonlinear dynamic is that of salinity 

intrusion, the length of which is determined by the balance of tidal mixing and the density 

difference between ocean and river waters. In the CR estuary, salinity intrusion length is 

also modulated by variations in astronomic tides, non-stationary river discharge, and 

coastal winds. A realistic representation of the salinity intrusion in the CR estuary 

requires a nonlinear model, capable of representing the flow of a stratified fluid, and 

requires precise knowledge of the forces that modulate the length of the salinity intrusion, 

which is hard to obtain.  

  

CORIE—a coastal observatory for the CR estuary and plume—studies the 

dynamics of the CR estuary using a real-time observation network (Baptista 2006) and a 

modeling system for 3D baroclinic circulation of the CR estuary and the adjacent ocean 

(Baptista, et al. 2005). CORIE data and modeling products (Baptista, et al. 2005, Baptista 
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2006) are used to support the research and development of novel modeling techniques 

(Zhang, et al. 2004, Zhang, et al. submitted), fisheries research (Bottom, et al. 2005, 

Burla, et al. 2007, Burla, et al. submitted), and the CR ecosystem management (USACE 

2001). The modeling products include multi-annual hindcasts and real-time forecasts of 

the baroclinic circulation, which are produced by SELFE (Zhang, et al. submitted), a 

finite-element, Eulerian-Lagragian forward model. DA is expected to improve the quality 

of these modeling products by reducing uncertainties in the model forcings (e.g., in 

salinity and temperature of the open ocean) and by correcting some persistent modeling 

errors (e.g., in seasonal cycle of heating and cooling). 

 

A plethora of algorithms is available in oceanography for DA, with most of them 

falling into two broad categories: sequential and variational methods. Most sequential 

algorithms are based on KF (Kalman 1960)—a two-step recursion that first forecasts a 

model state and error statistics and then estimates the best fit of the model state to 

measurements, using the least squares criterion. The direct implementation of the KF 

recursion is out of computational reach for high-dimensional, nonlinear models like those 

used at CORIE, principally due to the prohibitive computational cost of forecasting error 

statistics. As a result, a number of sub-optimal KF-solutions have emerged (Gandin 1963, 

Cane, et al. 1996, Lermusiaux, et al. 1999, Pham 2001, Oke, et al. 2002, Evensen 2003). 

One such sub-optimal solution is the ensemble KF (EnKF) (Evensen 2003), which 

approximates the computationally expensive forecast of error-statistics using a limited 

(~100) ensemble of model states. Another such sub-optimal solution is the optimal 

interpolation (Gandin 1963), which approximates error statistics using statistical models 

that are stationary in time and/or space. In contrast to the sequential methods, the 

variational DA methods are based on solutions to Euler-Lagrange equations, where the 

numerical model is used as a dynamic constraint. Four leading variational algorithms are 

the 3DVAR (Le Dimet, et al. 1986), the 4DVAR (Le Dimet, et al. 1986), the representer 

method (Bennett 1992), and the adjoint method for parameter estimation (Carrera, et al. 

1986).  
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In the past, DA algorithms have been successfully applied to assimilate 

measurements into models of the coastal ocean (Martin 2000, Heemink, et al. 2002, Oke, 

et al. 2002, Kurapov, et al. 2005, Wilkin, et al. 2005) and estuaries (Xu, et al. 2002, 

Bertino, et al. 2002). However, the existing DA algorithms are not likely to satisfy the 

needs of the CORIE observatory. First, the advanced DA algorithms are too 

computationally expensive to implement in the context of multi-annual hindcasts and 

real-time forecasts of the CR estuary. For example, implementing DA algorithms that 

allow for time-varying error statistics (like the EnKF, the 4DVAR, and the representer 

methods) might require a 100-fold increase in computational resources at CORIE. 

Second, the logistical costs of implementing variational methods (like the 4DVAR and 

the representer methods) are very high, since these methods require the development of a 

tangent-linear model and an adjoint model that are usually not available for emerging 

models like SELFE. Furthermore, while the computational and the logistical costs of 

implementing optimal interpolation are relatively low, the stationary approximation of 

the error covariance, used by the optimal interpolation, is likely to be inadequate for 

modeling the statistics of a system as dynamic as the CR estuary.  

 

To overcome the limitations of the existing DA algorithms, we have recently 

developed a number of enabling technologies (Lu, et al. 2007, van der Merwe, et al. 

2007) that rely on a model surrogate to expedite the KF computations. A model surrogate 

(van der Merwe, et al. 2007) is a very fast, nonlinear neural network that is trained to 

approximate a slow forward model. It is estimated that the model surrogate is 1,000-

10,000 faster than the forward model (van der Merwe, et al. 2007). Because it is not 

computationally feasible to train the model surrogate in the high-dimensional space of the 

forward model, the surrogate is trained in the subspace spanned by the Empirical 

Orthogonal Functions (EOF) of the forward model. In our previous work (van der 

Merwe, et al. 2007), we developed algorithms for training of the model surrogates and 

demonstrated a successful application of the model surrogates to a month-long simulation 

of the CR estuary and plume.  
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To implement the KF recursion, we used the reduced-dimension KF (Lu, et al. 

2007). Unlike similar filters (Cane, et al. 1996, Hoteit, et al. 2003) that used simplified 

models to propagate the error statistics and the original forward model to propagate the 

central forecast, the reduced-dimension KF assimilates the observations directly into the 

model surrogate. As a result, the need for a slow forward model in the reduced-dimension 

KF is obviated. Because the state of the model surrogate is usually small (<100 degrees 

of freedom), it is possible to implement the reduced-dimension KF using a full-rank KF. 

In our experiments, we used a Sigma Point KF (SPKF) (van der Merwe, et al. 2003, van 

der Merwe 2004)—a nonlinear extension to the classical KF that uses an ensemble of 

deterministically sampled model states (sigma points) to sample the covariance of model, 

forcing, and observational errors. In our previous work (Lu, et al. 2007), we demonstrated 

the application of the reduced-dimension KF to a synthetic estuary, successfully 

estimating both the state of the synthetic estuary and the time-varying errors in forcings.  

 

Our reduced-dimension KF is similar to the existing reduced-space KFs, like the 

ensemble KF (Evensen 2003), the singular evolutive interpolated KF (Pham, et al. 1998), 

and the reduced-order extended KF (Cane, et al. 1996). One such similarity is the 

assumption that a model trajectory lies on a manifold of a lower dimension than the state-

space of the numerical model. Most existing methods used this assumption to justify the 

rank reduction for the error covariance, while preserving the complexity of the forward 

model, e.g., (Pham, et al. 1998, Evensen 2003). In the reduced-dimension KF framework, 

we approximate the forward model with a model surrogate that already operates in the 

EOF space of a reduced dimension, which restricts the span of the error covariance to the 

same EOF subspace. To highlight this difference and to distinguish our KF framework 

from the existing reduced-space KFs, we use the term reduced-dimension KF. Since the 

performance of our reduced-dimension KF depends critically on the quality of the model 

surrogate, we speculate that our DA framework may work well for applications where the 

forward model has high skill in representing the statistics of the modeled system, hence 

providing good training samples for the model surrogate and the EOF basis. The reduced-

dimension KF framework can be especially relevant in coastal applications, were errors 

are likely to come from uncertainties in the boundary conditions. 
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In this paper, we demonstrate an application of the model surrogate (van der 

Merwe, et al. 2007) and the reduced-dimension KF (Lu, et al. 2007) to a realistic, 1-year-

long hindcast simulation of the 3D baroclinic circulation in the CR estuary. We 

assimilated in situ measurements of water levels, salinities, and temperatures into the 

model surrogate of the CR estuary, which was trained using 6 years of the high-resolution 

hindcast simulation data for the CR estuary. Our experiments showed that, for an 

application like the CR estuary, both an EOF and a model surrogate can be trained to 

perform well outside of the period they were originally trained on, thus allowing their 

application on unseen data in a real-time assimilative nowcast. Our validation studies 

showed that DA improves upon the non-assimilative model in representing several 

important processes in the CR estuary, such as nonlinear tides, responses of the estuary to 

coastal winds, salinity intrusion, and seasonal cycle of heating and cooling.  

2.2 Data assimilation in the Columbia River estuary 
One of the world’s classic river-dominated estuaries, the CR estuary, is a highly 

energetic and dynamic system that responds quickly to changes in ocean tides, regulated 

river discharge, and coastal winds. The tides, with amplitudes of up to 3.6 m, are driven 

by nonlinear interactions of astronomic tides with complicated bathymetry, non-

stationary river discharge, and coastal wind (Jay, et al. 1997). Compressed and often 

stratified, the estuarine circulation in the CR is subject to extreme variations in salinity 

intrusion and stratification regimes (Hamilton 1990, Jay, et al. 1990, Baptista, et al. 

2005). In this paper, we report on the first data assimilation study of the 3D baroclinic 

circulation in the CR estuary. 

2.2.1 Observational data for the Columbia River estuary 

The observational network for CR estuary is presented in Figure 1. Each station in 

the network was instrumented with an array of sensors that measured a variable 

combination of parameters, including water level, salinity, temperature, velocity profile, 

air temperature, and wind velocity. In our DA experiments, we used measurements of 

water level, salinity, and temperature from 34 distinct sensors at 13 stations that are 

shown in Figure 1. Sensors at most of the stations were deployed at a single depth, 
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usually within a meter above the bottom. The exceptions were red26 and am169, where 

three salinity and temperature sensors were placed throughout the water column to 

observe the vertical stratification of the estuary. In addition, three locations in the estuary 

(red26, tansy, and am169) were instrumented with acoustic Doppler profilers, which 

were used to validate our DA results. Most of the stations in Figure 1 were operated by 

CORIE2, with the exception of tidal stations tpoint and wauna, which were operated by 

National Atmospheric and Oceanic Administration3. 

 

During the period of our study, there was a significant data loss in the observation 

network, due to a combination of bio-fouling, telemetry drop-outs, and gaps in the 

deployment schedule of sensors. To illustrate the extent of the problem, Figure 2 shows 

how the number of active sensors changed during the DA experiments. The black line in 

Figure 2 corresponds to all active sensors and the gray line, to salinity sensors influenced 

by the estuarine salt wedge. Of 34 total sensors, an average of only 23 sensors (70%) was 

available at any given time. From all sensors, the salinity sensors located in the estuarine 

salt wedge were most prone to bio-fouling, which led to inconsistent observations of the 

salinity intrusion. For example, it was common in July-August 2004 that only one or two, 

out of 10, salinity sensors remained active.  

2.2.2 Hindcast simulation of the Columbia River estuary 

One type of simulation generated by the CORIE modeling group is a multi-

annual, high-resolution hindcast simulation of the CR estuary and plume. At the time of 

our experiments, the most accurate hindcast simulation of the CR estuary was DB16. 

DB16 had a realistic representation of the circulation, notwithstanding uncertainties in the 

boundary conditions and some persistent model errors, such as errors in atmospheric heat 

fluxes. We used the results of DB16 to compute the EOFs and to train the model 

surrogates described in sections 2.4 and 2.5. Here we present only a short summary of 

modeling choices and analysis of model results for DB16.  

 

                                                 
2 Available at http://www.stccmop.org/corie/observation_network 
3 Available at http://www.co-ops.nos.noaa.gov/. 
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The simulation domain of DB16 (Figure 1) started at the mouth of the CR estuary 

and extended 88 kilometers upstream. DB16 was generated using SELFE (Zhang, et al. 

submitted) – a finite element, Eulerian-Lagrangian model that solves a set of nonlinear, 

baroclinic, shallow-water equations. The domain of DB16 was discretized using an 

unstructured horizontal grid (~16.000 elements) and a sigma-coordinate vertical grid (26 

levels). The prognostic variables for DB16 included horizontal velocities, salinities, 

temperatures, and water levels.  

 

DB16 was generated using the following boundary conditions: 

Ocean boundary: The time series of water level, salinity, and temperature at the mouth 

of the estuary were extracted from DB14—a river-to-ocean model; 

River boundary: The temperature and the flow of the CR estuary were based on 

measurements from the USGS station Beaver Army (beaver)4; 

Atmospheric forces: The 2D fields of wind stress, atmospheric pressure, and surface 

heat flux were generated using a combination of forecast and re-analysis products, which 

were provided by the National Center for Environmental Prediction and Oregon State 

University.  

 

The modeled circulation in DB16 exhibited strong nonlinearity through the 

baroclinicity of the estuarine salt wedge, through sharp gradients of velocities, and 

through shallow-water tides. The spatial scales, resolved by DB16, were limited by the 

resolution of the numerical grid and ranged from ~40 m in the main channel of the 

estuary to ~600 m in tidal flats. The resolved periodic timescales included nonlinear tides 

(4-6 hours), astronomical tides (12-24 hours), spring-neap tidal cycle (~15 days), and 

seasonal changes in surface heat-fluxes and river temperature (~1 year). Nonperiodic 

timescales included weather changes (~2-10 days) and inter-annual variation in ocean 

conditions (>1 year).  

                                                 
4 USGS stands for U.S. Geological Survey. Data for station Beaver Army is available at: 
http://waterdata.usgs.gov/usa/nwis/uv?site_no=14246900. 
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2.2.3 Aims for data assimilation in the Columbia River estuary  

In the DA study presented in this article, we aimed to assimilate a long-term 

record of observations to ensure that the assimilated hindcast was consistent with the 

observed data. Specifically, we were interested in how the assimilation of a 1-year-long 

record of water level, salinity, and temperature measurements could improve the 

simulated long-term variability of tides, salinity intrusion, and temperature in the CR 

estuary. Several alternative aims for DA in the CR estuary are not addressed in this 

article. One such aim is assimilating high-resolution data from research cruises to 

improve the forecasts of salinity intrusion. Another is assimilating velocity data to 

improve the simulated transport of baroclinic tracers (e.g., salinity and temperature) and 

passive tracers (e.g., nutrients and pollutants) in the CR estuary. 

2.3 DA method 
2.3.1 Overview 

The DA algorithm employed in our DA experiments was based on the framework 

for the reduced-dimension KF (Lu, et al. 2007), where observations are assimilated into 

the model surrogate, instead of into the original forward model. This formulation led to 

the following four-step algorithm: 

1) A long, statistically representative hindcast simulation of the system, using the 

forward model SELFE, was used to provide training samples for a model 

surrogate of the CR estuary. 

2) The training algorithms developed in (van der Merwe, et al. 2007) were used to 

train the model surrogate. Because it was not computationally feasible to train the 

model surrogate in the high-dimensional space of the forward model, the 

surrogate was trained in the EOF subspace.   

3) The state of the model surrogate was estimated using a KF of choice. Because the 

estimated state of the model surrogate was small (50 degrees of freedom), we 

choose to use the SPKF– a state-of-the-art, full-rank KF (van der Merwe, et al. 

2003, van der Merwe 2004).  

4) The output of the KF was analyzed by reconstructing the estimated state and the 

estimated model errors from the EOF subspace, where the model surrogate and 
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the KF operated, to the full space of the model, where many analysis and 

visualization tools operated.  

 

The four steps are grouped into two stages in Figure 3: the off-line stage, which 

involves one-time, off-line training of the model surrogate (steps 1 and 2 above; left box 

in Figure 3), and the on-line stage, which involves multiple DA experiments (steps 3 and 

4 above; right box in Figure 3). Since all DA experiments (on-line stage, step 3 above) 

were performed in the reduced EOF subspace, the CPU, memory, and storage 

requirements for these DA experiments were very low. In the case of DB16, it took 

SELFE ~40 weeks to generate 6 years of the hindcast simulation using a single AMD 

Athlon© CPU. It took us ~4 weeks to compute the EOF basis and to train the model 

surrogate. And it took us only ~0.5 week to assimilate 6 years of observational data into 

the model surrogate. In practice, all these computations were distributed over multiple 

CPU processors, leading to shorter “wall-clock” times. 

 

We present the description of our DA method for the CR estuary in two parts. In 

the first part (section 2.3), we present a concise overview of the concepts that comprise 

the reduced-dimension KF (Lu, et al. 2007), which include the EOF-based dimension 

reduction (Jolliffe 1986), the model surrogate (van der Merwe, et al. 2007), the classical 

KF (Kalman 1960), and the SPKF (van der Merwe, et al. 2003, van der Merwe 2004). 

Each of these concepts is well established in the literature, and readers are referred to the 

original sources for further algorithmic and theoretical details. In the second part (section 

2.4), we document our implementation of the reduced-dimension KF for the CR estuary.  

2.3.2 State model in the full space 

The forward model and the observational system, described in sections 2.2.2 and 

2.2.1, can be formalized as nonlinear dynamical and observation equations defined on the 

full space of the forward model: 

( ) ( ( 1), ( ), ( ))x k f x k u k v k= − ,   (1) 
( ) ( ( ), ( ))my k h x k n k= ,   (2) 
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where ( ) lx k ∈R  is a state of the system (e.g., water level, salinity, temperature, 

and velocity) at discrete time k, ( ) pu k ∈R  is a vector of forcings (e.g., wind, tides, ets), 

( ) my k ∈R  is a measurement vector, (.) : l lf 6R R  is a nonlinear dynamical model (e.g., 

SELFE), (.) : l mh 6R R  is a nonlinear measurement model (e.g as described in section 

2.2.1), and vv∈R  and n
mn ∈R  are the process- and measurement-noise sources. We 

further denote the space lR  of state vectors ( )x k , the full space M . 

2.3.3 Dimension reduction 

To enable training of the model surrogates, computationally impossible in the full 

space M , an EOF-based dimension reduction (also known as principle component 

analysis or proper orthogonal decomposition) is employed. To justify the use of EOF, it is 

assumed that the trajectories of the system occupy a low-dimensional (possibly 

nonlinear) manifold nlM  embedded in the full state-space M . This nonlinear manifold 

is approximated by a linear, low-dimensional subspace sM , dim( ) dim( )s s≡ <<M M . 

The EOF subspace is a good candidate for the linear subspace sM , since, of all linear 

subspaces of dimension s, the EOF subspace captures the highest percentage of the state 

variance.  

 

The EOF subspace is characterized by an orthonormal projection operator Π that 

maps the vectors of the full space x∈M  to the vectors of the reduced space s
sx ∈M : 

( )sx x μ= −Π ,    (3) 
and reconstructs (embeds) the reduced space vectors s

sx ∈M  in to the full space 

as x∈M� : 

[ ( ) ]

T
s

T

x x

x x x

μ

ε μ μ ε

= +

= + = − + +

Π

Π Π

�
�

,  (4) 

where µ is the mean of the dataset and ε is the reconstruction error.  

 

The EOF projection operator Π is characterized by the r leading eigen vectors (φi) 

of the covariance matrix C for state vectors x(k):  
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[ ]1,..., rϕ ϕ=Π .    (5) 
In practice, a Singular Vector Decomposition (SVD) (Golub, et al. 1996) is used 

to compute the operator Π efficiently, without computing the covariance matrix C 

explicitly (Bai, et al. 2000).  

2.3.4 Nonlinear model surrogate 

The projection and embedding equations (3 and 4) enable an easy interchange 

between the full space M  and the reduced space sM  representation of the system state. 

However, for the purpose of simulation, a representation of the dynamics f(.) (Eq. 1) in 

the EOF basis (Eq. 5) is also needed. In the case of linear dynamics, the forward model 

f(.) can be expressed as a matrix operator and projected to the space sM  using the 

projection operator Π  (Eq. 3) (Cane, et al. 1996). In a nonlinear case, the Galerkin 

method can be used to project the nonlinear equations of the dynamics to the EOF basis 

(Holmes, et al. 1996). However, such nonlinear projection is non-trivial to implement. To 

simplify our task, we used a model surrogate to approximate the dynamics of the forward 

model (Eq. 1) in the reduced basis (Eq. 5).  

 

In the past, linear model surrogates were used to expedite DA algorithms. For 

example, Hoteit et al. (Hoteit, et al. 2003) used a linear autoregressive model to expedite 

the DA of tropical Pacific. In our preliminary experiments, we also trained a linear model 

surrogate using the autoregressive model with exogenous inputs (ARX) and the robust 

least-squares optimization method (Nabney 2004). However, we found that the trained 

surrogate was often unstable and led to the exponential growth of the ARX predictor 

response over time. To address the problem of the unstable linear ARX predictor, we 

trained a nonlinear model surrogate using a neural network. Output of the neural network 

is bound by design and cannot yield the exponential response that the linear ARX model 

yields.  

 

The detailed discussion of the network architecture and the network’s training and 

validation algorithms is presented in (van der Merwe, et al. 2007). The implementation 

details and the analysis of the accuracy are presented in section 2.4.4 of the present paper. 
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Below, we present a brief review of the concepts and terminology that underlie model 

surrogate training, many of which are common to the neural network literature (Bishop 

1995). 

 

Model surrogate: A model surrogate is a time-lagged, nonlinear neural network 

designed for iterative prediction: 

1( , )

( ')
( ') ( 1) .

. . , ( )
( ) ( ) .

( )

ms
k k k ms

s s
ms

ms

s s

Y f X U v

u k p
x k p x k

f vu k
x k x k n

u k p

−= + =

⎛ ⎞+⎡ ⎤
⎜ ⎟⎢ ⎥⎡ ⎤ ⎡ ⎤+ −⎜ ⎟⎢ ⎥⎢ ⎥ ⎢ ⎥⎜ ⎟⎢ ⎥= +⎢ ⎥ ⎢ ⎥⎜ ⎟⎢ ⎥⎢ ⎥ ⎢ ⎥−⎜ ⎟⎢ ⎥⎣ ⎦ ⎣ ⎦
⎜ ⎟⎢ ⎥−⎣ ⎦⎝ ⎠

, (6) 

where: Y, X, and U are the vectors of the time-lagged outputs, inputs, and 

forcings; vms is the error of the surrogate prediction; (.)msf  is a neural network 

implementation of the model surrogate; k is the index of the current time step; and n, p 

and p’ are time-embedding indexes.  

 

Intuitively, the reduced-space representation xs captures the spatial frequencies of 

the modeled system, while time-lag in the input and the forcing vectors X and U captures 

the temporal frequencies and improves the accuracy of the network prediction. Time-lag 

in the output vector Yk helps to train models for more accurate iterative predictions.  

 

Although the dependence of the predicted state xs(k) on the future forcings 

[u(k+1):…: u(k+p)] in Eq. 6 may seem counterintuitive, this dependency should be 

viewed as an artifact of the training procedure. As training methods for model surrogates 

mature, the time-lag of prediction targets and future forcings may become obsolete, for 

example as in the algorithm SUR2 in (van der Merwe, et al. 2007). At this time, after 

training is complete, we discard the predictions of the future steps and only use the 

prediction of the first time step xs(k) in the iterative prediction loop, which leads to the 

following simplification in the notation for the model surrogate (Eq. 6):  

1( ) ( , )ms
s k k msx k f X U v−= + .    (7) 
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Neural network: We implemented the model surrogate (Eq. 6) with a standard 

feed-forward multi-layer perceptron network. The network had a single hidden layer 

(with hyperbolic tangent activation functions), a linear output layer, and input pre-

processing with an internal PCA (principle component analysis). Such networks are very 

well-equipped for modeling nonlinear relations among high-dimensional inputs and 

outputs where large datasets are available for model fitting (training). Where there is 

significant nonlinearity, their performance far exceeds that of traditional linear models 

such as ARX, ARMA, ARMAX and GLMs (Bishop 1995).  

 

A mathematical expression for our network architecture is the following: 

1

1
2 1 1 2

1 1 2 2

2 1

( , )

tanh

[ (:); (:); (:); (:)];

ms
k k k ms

m
kT

i i I ms
i k

I I I I

Y f X U v

X
w w T b b v

U

w b w b
T N N

−

−

= + =

⎛ ⎞⎡ ⎤
= + + +⎜ ⎟⎢ ⎥

⎣ ⎦⎝ ⎠
=
= Π

∑
W

 ,  (8) 

where tanh(.) is a hyperbolic tangent function; m is the size of the hidden layer; 

w1, b1 and w2, b2 are the weight and bias vectors for the first and second layer of the 

network; and W  is a concatenated vector of all unknown parameters: w1, b1, w2, and b2.  

 

Inputs to the network are pre-processed using matrix TI – a dimension reduction 

operator that consists of the orthonormal projection operator ΠI (computed using PCA of 

the network inputs) and two diagonal normalization matrixes NI1 and NI2. The matrixes 

NI1 and NI2 normalize the inputs and the outputs of the internal PCA operator TI, by 

dividing each input and output with their standard deviations. After normalization, the 

inputs and the outputs of the operator TI have unit variances. The pre-processing with 

matrix TI reduces the number of unknown parameters in the network, improves the 

scaling of the network’s cost function, and, as a result, leads to the faster convergence of 

the optimization algorithm. 

 

The vector of unknown parameters W  in Eq. 8 was optimized using a scaled 

conjugate-gradient algorithm (Møller 1996) that minimizes a regularized cost function: 
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22
1

( ) ( , )
N

ms
i i i

i

J t f X U λ
=

= − +∑
2 2W W ,   (9) 

where Xi and Ui are the input and forcing vectors that correspond to the training 

target ti, N is the number of available targets (data points), 2

2
 is the square of the 2-

norm, and λ is the weight decay parameter determined through cross-validation. The cost 

function (Eq. 9) is a balance between the first term that penalizes the high prediction error 

msv  of the neural network and a weight-decay regularizer (Bishop 1995) that penalizes 

large weights in the neural network and reduces model variance. The regularization of the 

network is critical to prevent over-fitting to data, which is a consequence of having too 

few data and too many free parameters. We determined the magnitude of the weight-

decay parameter λ through cross-validation. For details on the optimization and the cross-

validation algorithms, see (van der Merwe, et al. 2007) and section 2.4.3 of this paper.  

 

Errors in the model surrogate: We assume that errors of a well-trained model 

surrogate are time-independent, zero-mean, Gaussian variables. We estimate the 

covariance of errors as: 

[ ] [( ( , )( ( , )) ]T ms ms T
ms ms msQ E v v E t f X U t f X U= = − − . (10) 

2.3.5 Kalman filter in the reduced space 

State equations in the subspace: To estimate the state of the dynamical system 

in the reduced space (Eq. 5), we define a reduced-dimension KF that assimilates data into 

the model surrogate (Eq. 7) (instead of the original dynamic model (Eq. 1)). We start by 

defining a dynamical equation in the reduced space: 

1( ) ( , , ( ))s
s k kx k f X U v k−=  ,    (11) 

where (.)sf  is a reduced space model implemented with the model surrogate (Eq. 

7); Xi and Ui are the time-lagged input and forcing vectors; and v(k) is a process-noise 

vector that concatenates all error sources in the dynamical model (.)sf , including the 

model surrogate error vms. We expand the definition of the noise vector v(k) for our 

application in the implementation section 2.4.6.  
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To redefine the observation function h(.) for the reduced state xs, we employ the 

embedding equation (Eq. 4): 

( ) ( ( ), ( ))

( ( ) , ( ))

( ( ), ( ))
( ) [ ; ( )]

m
T s

m
s s

o

o m

y k h x k n k

h x k n k

h x k n k
n k n k

μ ε

ε

= =

= Π + + =

=

=

,  (12) 

where hs(.) is the observation function for reduced state xs, ε  is the reconstruction 

error from Eq. 4, and no(k) is the concatenation of the measurement nm and reconstruction 

error ε . We expand on implementation of the noise source no(k) in section 2.4.6. 

 

Kalman Filter recursion: The following recursive minimum-mean-square-error 

estimate5 for the state ˆ ( )sx k  in Eq. 11, conditioned on the observational data y(k) in Eq. 

12, can be derived (Kalman 1960): 

ˆ ˆ ˆ( ) ( ) ( ( ) ( ))s s k

TK Kxx xx k yy k

x k x k K y k y k− −

−= −

= + −

P P P
 , (13) 

where ˆ ( )sx k−  is the optimal prediction of the state at time k conditioned on the 

observations up to time k-1 (state forecast), ˆ ( )y k−  is the optimal prediction of the 

observation at time k, xx
−P  is the error covariance matrix for the state ˆ ( )sx k−  (the forecast 

error covariance), yy
−P  is the covariance of innovation ˆ( ( ) ( ))y k y k−− , and Kk is the 

Kalman gain at time k. The optimal terms in this recursion are given by: 

1

1

ˆ ( ) [ ( , , ( ))]
ˆ ˆ( ) [ ( ( ), ( ))]
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5 For a Gaussian prior and the linear state equations (11 and 12), the posterior distribution on the state 
ˆ ( )sx k  is Gaussian. In this case, the mean of the posterior distribution is an optimal estimate under the 

minimum mean-square error, the maximum likelihood, and the maximum a posteriori criteria. In the case 
of a non-Gaussian noise source or non-linear state equations, the KF is only optimal under the minimum 
mean-square error criterion. 
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The recursion (Eq. 13) is linear in K; however, optimal terms (Eq. 14) do not 

assume linearity of the model (.)sf  or measurement operator (.)sh . 

 

Implementing the KF recursion: For linear state equations (11 and 12), the 

solution for the optimal terms in the recursion (Eq. 14) is the well-known linear KF 

(Kalman 1960). To compute the optimal terms (Eq. 14) for nonlinear state equations (11 

and 12), we used the SPKF (van der Merwe, et al. 2003, van der Merwe 2004). However, 

other versions of the KF (e.g., the ensemble KF) can be used together with a model 

surrogate to compute the optimal terms (Eq. 14) in the KF recursion, provided that the 

model surrogate and projection errors are properly accounted for. An example of such 

implementation using the ensemble KF can be found in (Lu, et al. 2007). 

2.3.6 Sigma point Kalman filter  

In the last two decades, several innovative algorithms were developed that 

implement the KF recursion for a nonlinear and/or a large system. In oceanographic 

literature, these algorithms  include the ensemble KF (Evensen 2003), the singular 

evolutive interpolated KF (SEIK) (Pham 2001), and the singular evolutive extended KF 

(SEEK) (Pham, et al. 1998). In machine learning and control literature, the SPKF family 

of filters (van der Merwe, et al. 2001, 2003, van der Merwe 2004) is one of such novel 

algorithms. The major difference between the two groups of filters is that the 

oceanographic filters support very large estimation problems (~107 degrees of freedom), 

which is achieved by allowing the time- and measurement-updates in the KF recursion 

using a reduced-rank error covariance. For example, in the ensemble KF these updates 

involve only a limited (~100) number of ensemble states that span the subspace of the 

reduced-rank error covariance.  In our experiments, we estimated a much smaller state of 

the model surrogate (50 degrees of freedom), which allowed us to use a full-rank KF, 

such as the SPKF. The SPKF is a state-of-the-art nonlinear extension to the classical KF; 

it is well-analyzed (van der Merwe, et al. 2003, van der Merwe 2004); and it comes with 

theoretically proven statistical properties (van der Merwe 2004), a freely available 

Matlab© toolkit (van der Merwe 2002-2006), and a large user-base.  
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We start introducing the SPKF algorithm by comparing it to the ensemble filters 

commonly used in oceanography, such as the ensemble KF (Evensen 2003) and the SEIK 

(Pham 2001). Like other ensemble methods (e.g., the ensemble KF and the SEIK), the 

SPKF represents the model statistics through a set of ensemble members (sigma points). 

As a result, the SPKF avoids the need for a tangent-linear approximation used by the 

variants of the extended KF, such as the SEEK (Pham, et al. 1998). Similarly to the 

SEIK, the SPKF algorithm uses the deterministic sampling of the prior covariance, unlike 

the ensemble KF that uses the Monte Carlo sampling, which is a more computationally 

expensive sampling method. Another advantage of the SPKF is that it directly supports 

nonlinear observation function and nonlinear observation- and process-noise models, 

which are only partially supported by the ensemble KF and the SEIK filter.  

 

From a technical viewpoint, the SPKF algorithm addresses the problem of 

computing the optimal terms ˆ ( )sx k− , ˆ ( )y k− , and Kk (Eq. 14) in the KF recursion (Eq. 13). 

In the SPKF, the state distribution is modeled as a Gaussian and is represented by a set of 

carefully chosen, weighted sample points (the sigma point transformation of the random 

variable). Figure 4 illustrates the sigma point transformation for the mean and the 

covariance of a highly nonlinear function y=g(x) and a Gaussian random variable x. First, 

the prior distribution is sampled using 2n+1 sigma points drawn according to one of the 

deterministic methods (the central-difference method here). The mean and the covariance 

of the sigma points is exactly that of the prior. Second, the sigma points are propagated 

through a nonlinear function (a random neural network here). Lastly, the posterior mean 

and covariance are computed as a weighted sample mean and covariance of the updated 

sigma points, which capture the posterior mean and the covariance to the second order of 

accuracy (van der Merwe 2004).  

 

A generic algorithm for the SPKF is listed in Appendix A1. Various 

implementations of the SPKF algorithm, including the hybridization with the particle 

filter, are discussed in (van der Merwe 2004). The details of the algorithm used in our 

experiment are specified in the implementation section 2.4.5. 
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2.4 Implementation 
2.4.1 State vector and model forcings 

Two representations of the state vector were used in our experiments: 

1) The full-space state vector x(k) in Eq. 1, which described the state of DB16 and 

provided training samples for estimating the EOF dimension-reduction operator 

(Eq. 3); and 

2) The reduced space state vector xs(k) in Eq. 11, which was used for training of the 

model surrogate (Eq. 6) and for the state estimation in the KF (Eq. 13). 

 

The full-space state vector consisted of concatenated model variables defined at 

the nodes of the computational grid, namely: water level, salinity, temperature, and u and 

v components of velocity. The total length of the state vector was ~106.  

 

Prior to concatenation, each model variable was normalized with the inverse of its 

standard deviation: 

2
vart vart vart

1 1

1 1 ( ( , ) ( ))
l k

j i

x j i j
l k

σ μ
= =

⎡ ⎤= −⎢ ⎥⎣ ⎦
∑ ∑ , (15) 

where i is the time index, j is the index over grid nodes, the subscript vart indicates 

the variable type (e.g., salinity or temperature), xvart is the state vector for this variable 

type, μvart is the mean vector, k is the number of samples xvart, and l is the number of 

nodes in the state vector xvart. Only one normalization constant was used for each variable 

type. 

 

To represent the extensive wetting and drying of tidal flats in the CR estuary, for 

which the model variables were set to missing values by the forward model, we used the 

following procedure to handle the missing values in the EOF algorithm. For water levels, 

we substituted the missing values with the values of the bathymetry at these locations. 

For the rest of the variables, we substituted the missing values with the mean values at 

these locations. During the reconstruction of the full state from the reduced state, we first 

reconstructed the water levels. Then, similarly to the masking of dry areas in SELFE, we 
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masked the nodes as dry at the locations where the water column was shallower than 0.1 

m. 

 

To describe the forcing vector of the model surrogate, we concatenated the 

original forcings of the forward model (DB16), including the time series of the ocean, 

river, and atmospheric boundary conditions. The boundary conditions were pre-processed 

using an EOF dimension reduction, resulting in the forcing vector with 29 degrees of 

freedom. 

2.4.2 EOF dimension-reduction 

To compute the EOF dimension-reduction operator for a large hindcast database 

of the CR estuary, we used two SVD-based algorithms, described in Appendix A2. Both 

algorithms address the computational limitations of the existing SVD algorithms, such as 

the QR algorithm in LAPACK (Anderson, et al. 1999), the Lancoz algorithm in 

ARPACK (Sorensen 1992), and the incremental SVD algorithm of (Brand 2002). None 

of these algorithms were able to directly compute the SVD decomposition of a 4Tb 

dataset that represented the 6.5 years of the simulated data in DB16.  

 

Both EOF algorithms (Appendix A2) address the computational limitations of the 

existing SVD algorithms by computing an approximation to the EOF basis, based on a 

small random sub-sample of the original dataset. The second of the two algorithms—the 

divide-and-conquer EOF algorithm (DC-EOF)—has less stringent computational 

requirements, since it computes the EOF approximation in two steps: (i) the DC-EOF 

divides the large SVD problem into smaller sub-problems (e.g., by variable type or by 

region) and (ii) it combines the solutions of sub-problems into a global solution using the 

secondary EOF.  

 

The EOF basis that was used in our experiments was originally computed using 

the DC-EOF algorithm, due to a stringent 2 Gb limitation on the size of the dataset, 

imposed by a 32-bit computer that was available at the time of experiments. At a later 

time, we compared the results of the two EOF algorithms discussed in Appendix A2, 
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using a 64-bit computer. We used 1000 random samples in the first step of both EOF 

algorithms. After retaining 50 EOF modes, we found that the reconstruction error was 

equally small for either algorithm. For the DC-EOF, the error was 2.0%; for the random 

sub-sampling EOF algorithm, the error was 1.9%. Since such a small difference in the 

reconstruction error was not likely to adversely affect the performance of the DA system, 

we chose to retain the DA results computed using the DC-EOF algorithm. 

2.4.3 Model surrogate 

To train and validate the model surrogates, we used the training and the cross-

validation algorithms described in (van der Merwe, et al. 2007). The software 

implementation of these algorithms was developed by (van der Merwe, et al. 2007) and 

was based on Netlab (Nabney 2004)—a free network optimization library for 

MATLAB©. The neural network cost function (Eq. 9) was optimized using the scaled 

conjugate gradient algorithm (Møller 1996), with the network inputs normalized using 

the internal PCA (Eq. 8). A two-fold cross-validation, using a simple random 

permutation6, estimated the value of the weight-decay parameter λ=5000. 

 

To improve the accuracy of a model surrogate in the recursive prediction, we 

introduced training algorithm SUR3, which modifies algorithm SUR1 originally 

described in (van der Merwe, et al. 2007). The original SUR1 algorithm trained a model 

surrogate to predict only a single, next state of the system (p’=0 in Eq. 6), which was 

inconsistent with our intended use of the model surrogate for the recursive prediction. To 

resolve this inconsistency, van der Merwe (van der Merwe, et al. 2007) proposed the 

algorithm SUR2 that recursively trained the network to predict several steps in the future. 

Unfortunately, the algorithm SUR2 proved to be too computationally expensive for the 

intended application in the CR estuary. Instead, we introduced algorithm SUR3, which 

predicts a short time history of the future states (p’>0 in Eq. 6). The SUR3 algorithm 

removes the computationally expensive recursion from the training procedure, yet it 

informs the network of the long-term dynamics in the system.  

 

                                                 
6 The term “random shuffle” cross-validation from (van der Merwe, et al. 2007) 
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Using simple trail-and-error calibration, we found the following values for the 

time-embedding parameters in Eq. 6: the time step for states and forcings Δt=0.5 hour, 

the past history of states n=12 hours, the past history of forcings p=24 hours, and the 

future history of state targets and forcings p’=6 hours. In the internal PCA pre-processing 

(with operator Ti in Eq. 8), we retained 99% of the varaince, which reduced the input 

layer of the network from 2911 inputs to 548 inputs.  

2.4.4 Accuracy of EOF subspace and model surrogate 

The accuracy of the model surrogate and of the EOF basis is critical to the 

performance of the reduced-dimension KF. In our analysis, we distinguished between 

two aspects of accuracy: the accuracy in reproducing data that was seen in training (the 

training error) and the accuracy in reproducing new, unseen data (the generalization 

error). In a hindcast DA, it can be sufficient to have a small training error, since it is 

always possible to overlap the time interval of a hindcast DA experiment with the time 

interval that was used in training of the model surrogate. However, a low training error is 

not sufficient in a real-time assimilative nowcast, which also requires a low 

generalization error on unseen data. In case of a high generalization error, a cumbersome 

retraining of the EOF basis and the model surrogate may become necessary (however, 

this was not necessary in our experiments; see section 2.5.3).  

 

To determine whether the EOF subspace and the model surrogate, which were 

trained using DB16, generalized well beyond their training interval, we trained the model 

surrogate MSB and the basis EOFB. Both were trained using the first 5 years of DB16 and 

were tested using the remaining 1.5 years. The model surrogate MSB and the basis EOFB 

can generalize well if they have similar errors on training and test sets. To eliminate the 

possibility that the difference between the training and the test error was due to the 

temporal variability of the error, we compared the test errors for the EOFB and the MSB 

with the errors for the globally trained EOFA and MSA. The EOFA and MSA were trained 

on the entire 6.5 years of the DB16 data7. 

                                                 
7 The 6.5 years of DB16 simulation covered the period of data from April 1999 to September of 2005. 
During this period, no El Niño events were observed, which precluded us from testing the generalization 
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The analysis of the EOF-reconstruction error and the model surrogate prediction 

error8, presented in Figure 5, showed that both the EOFB and the model surrogate MSB 

had low training errors (2.1% for EOFB and 1.9% for MSB). However, we found that only 

the EOF basis EOFB was able to generalize well (errors of 2.1% on the training set and 

2.0% on the test set). The model surrogate MSB had a small discrepancy between errors 

on the training and the test set (1.5% vs. 2.3%), which was confirmed to be a 

generalization error, after we compared the errors of the model surrogate MSA and the 

MSB.  

 

It is likely that the generalization error for the MSB can be reduced by using more 

sophisticated cross-validation strategies for calibrating the weight-decay parameter λ in 

Eq. 9; see (van der Merwe, et al. 2007) for such strategies. Section 2.5.1.1 presents 

further analysis of how this generalization error affected the overall performance of the 

DA system and, hence, the prospect of deploying our DA system as a real-time nowcast.  

 

To illustrate how the generalization error for the model surrogate MSB affected 

the predicted values of salinity and temperature in the CR estuary, we compared the 

daily-averaged salinity (Figure 6.I) and the daily-averaged temperature (Figure 6.II) for 

the model surrogate MSA and the MSB. The comparisons were for the bottom sensor at 

station am169. Figure 6 shows that both the model surrogates, MSA (sub-panels a) and 

MSB (sub-panels b), tracked the solution of DB16 well. For example, the differences 

between DB16 and the model surrogates MSA and MSB, as measured by the root mean 

square (RMS) error, were very small: 2.2 psu vs. 2.8 psu for salinity and 0.5 C˚ vs. 0.6 C˚ 

for temperature.  

                                                                                                                                                 
skills of the EOF and model surrogate in reproducing the response of the estuary to climatic forcing from 
La Niña and El Niño.  
8 The model surrogate error was measured for a continuous 6.5 years feedback integration of the model 
surrogate, using the initial condition and the model forcings from DB16. The mean square errors were 
normalized by the variance of the state vector in the full space. 
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2.4.5 Sigma point Kalman Filter 

To estimate the state of the system, we used a square root central difference 

formulation of the SPKF (van der Merwe, et al. 2003, van der Merwe 2004) with the 

scaling parameter 3h = . The square root version of the SPKF propagates the 

covariance matrix Pxx in numerically more stable and computationally more efficient 

square root form; the central difference refers to a sampling algorithm for the sigma 

points; and the scaling parameter determines the spread of the sigma points. Our 

implementation was based on ReBel (van der Merwe 2002-2006)—a well-tested, freely 

available Matlab© package for the recursive Bayesian estimation.  

 

To ensure that the measurements of different types (like water level and salinity) 

were weighted similarly in the update equations for the KF (13), we normalized the 

measurements the same way we normalized the state vector of the system (15). The 

observations were assimilated by the SPKF every half-hour.  

2.4.6 Noise models 

A successful state estimation requires a well-designed process-noise model and a 

well-designed measurement-noise model. In section 2.3, we kept our derivation of the KF 

as general as possible by accumulating all sources of uncertainty in a generic noise vector 

v(k) for the process noise and no(k) for the observational noise. In this section, we 

describe how we implemented these noise sources for the CR experiments. 

 

Process noise: To characterize the errors in the model forcings, the errors of the 

model surrogate prediction, and the errors of the original forward model, we designed the 

following process-noise model: 
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where tanh(.) is a hyperbolic tangent function, m is the size of the hidden layer , 

w1, b1 and w2, b2 is the trained weight and bias vectors for the model surrogate (Eq. 8) 

(truncated to provide only one-step-ahead prediction), and IT  is the internal PCA 

operator of the trained model surrogate.  

 

The noise sources in the Eq. 16 are:  

~ ( , )
~ ( , ) ( , )

ui ui

xms x ms xms x ms

v N
v v v N N α= + =

0 Q
0 Q 0 Q

, (17) 

where vui, vx, and vms is the forcing, the forward model, and the model surrogate 

errors, with the error covariance Qui, Qx, and Qms respectively. The prediction errors for 

the model surrogate vms and for the forward model vx are combined in to a single noise 

source vxms, with the combined covariance Qxms. 

 

To characterize the combined prediction error vxms, we approximated the error 

covariance Qxms with a scaled variance of the model surrogate error vms: 

(var[ ])xms x ms x msdiag vα α= = ∗Q Q ,  (18) 
where xα  is the tunable scaling parameter. 

 

To characterize the forcings error covariance Qui, we used a scaled version of the 

forcing variance that was projected on the subspace of the network weights using the 

internal PCA operator IT : 
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where Z is a square zero matrix with the size equal to the length of past states X, 

and uα  is a scaling parameter that requires tuning. The projection (Eq. 19) accomplished 

two objectives: (i) it expedited the SPKF computation by reducing the dimension of the 

process-noise vector, and (ii) it introduced the temporal correlations in the forcing noise, 

which were encoded in the operator IT . 
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The KF in this study estimated only the current time step ˆ ( )sx k , with the 

uncertainty in the initial conditions entering a single past-time-step ( 1)sx k − . The 

remaining past states in the model surrogate [ ( 2);...; ( )]s sx k x k n− −  were treated as a 

bookkeeping variable. The KF in our study is unlike the original reduced-dimension KF 

(Lu, et al. 2007) that estimated the entire time history of the present and the past states 

ˆ ˆ[ ( );...; ( )]s sx k x k n− , which led to a fix-lag formulation of the Kalman smoother. 

 

To summarize, uncertainty (noise) entered our modeling system (Eq. 11) in 

several ways. Uncertainty in the initial conditions entered into the past state ( 1)sx k −  

through the covariance matrix Pxx. Uncertainty in forcings entered the entire time-

embedded history of forcings Uk as a white Gaussian noise, projected to the subspace of 

the network weights. Finally, the uncertainty in the accuracy of the modeling system 

entered as a scaled version of the model surrogate error vms.  

 

The process-noise model (Eqs. 16-19) was easy to implement and was based on 

simple, tunable proxies that did not require us to specify the hard-to-obtain realistic 

models of the forcing and model noises. In cases where the simple process-noise model 

(Eqs. 16-19) is not sufficient, a more sophisticated model can be developed using 

problem-specific information on the statistics of the process and forcing noise. For 

example, in our previous work (Lu, et al. 2007), we incorporated the knowledge about the 

autocorrelation in the forcing noise into the KF that was used to simultaneously estimate 

the state of the synthetic estuary and the time series of the forcing noise.  

 

Observation noise: In section 2.3, we used a generic nonlinear observation 

function (Eq. 12) in the derivation of the reduced-dimension KF. In our experiments, the 

nonlinearity in observations was due to vertical interpolation on the sigma grid. 

Assuming that the reconstruction error ε  was small, in comparison to the reconstructed 

state x� , we used the following approximation to the Eq. 12: 
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where ~ (0, )N Rεε  and ~ (0, )m mn N R are the reconstruction and the measurement 

errors, and ( )hμ ε is the observation of the reconstruction error for the mean state μ. The 

covariance of the reconstruction error εR  was estimated as: 

[var( )]diagε ε=R .    (21) 
 

We made the following best guesses for the values of the standard deviation for 

the measurement error nm for: water level, 0.01 m; salinity, 0.5 psu; and temperature, 0.1 

°C.  

2.4.7 Calibration of process-noise models through cross-validation 

To calibrate the meta-parameters αx and αu of the noise model (Eqs. 16-19), we 

used three different optimization criteria: 

1) The n-fold cross-validation (Bishop 1995); 

2) The maximum likelihood criterion of (Dee 1995); and 

3) The consistency criterion described in section 2.5.5.1 (Eq. 24). 

 

The n-fold cross-validation is an empirical cross-validation technique that can 

reuse the observational data effectively to calibrate and validate the DA algorithm. In the 

n-fold cross-validation, the dataset is divided into n parts. A new model is trained using 

n-1 randomly selected parts (training dataset), while the remaining part is used to validate 

the trained model (validation dataset). The training/validation procedure is repeated n 

times for all possible combinations of the training and validation datasets. The resulting 

error is an average across all trained models.  

 

Unlike the cross-validation criterion, which optimizes DA to accurately estimate 

the system-state at a rotating set of validation stations, the maximum likelihood and the 

consistency criteria optimize DA to accurately predict the statistics of the model error. 

That is, they adjust the parameters of the noise model until the predicted forecast error 

covariance matches the observed forecast error covariance, e.g., as measured at the 

locations of the observations.  
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The results of the cross-validation experiment are presented in Figure 7, with the 

estimated values of αx=20 and αu=1. To fit the noise model parameters xα  and uα  we 

used a four-fold (n=4) cross-validation technique. The errors from different sensors were 

normalized similarly to section 2.4.5. We first searched for the optimal value of xα  and 

then for the value of uα . To optimize for data availability and to save computational 

resources, we ran cross-validation experiments using three weeks of observational data 

(05/07/2004-05/28/2004).  

 

The calibration results based on the maximum likelihood and the consistency 

criteria showed good agreement with the result obtained using the cross-validation 

criterion, suggesting that the noise model (Eqs. 16-19) was of high-quality. Under the 

maximum likelihood criterion, the calibrated value of αx was 15; and for the consistency 

criterion (Eq. 24), αx was 30. As shown by the cross-validation curve for αx (Figure 7 

panel a), there was no significant difference between the values of two estimates (αx=15 

and αx=30), since the quality of the state estimate did not change much between the two 

values of αx. In the DA-experiments, presented in section 2.5, we used the parameters 

optimized under the cross-validation criterion, hence trading a sub-optimal forecast of the 

model uncertainty for a better quality of the state estimates.  

2.5 Validation experiments 
2.5.1 Validation strategy 

To validate our DA algorithm described in sections 2.3 and 2.4, we examined how 

DA can improve the simulated variability of the CR estuary. Specifically, we evaluated 

the improvements at locations other than the locations of assimilated measurements and 

the improvements to the long-term hindcast simulation of the CR estuary. The 

assimilated data included water level, salinity, and temperature measurements, from the 

fixed network of sensors described in section 2.2.1. In the absence of extensive 

observational data from sensors independent of the fixed network, such as sensors 

deployed on mobile or remote sensing platforms, we used a cross-validation procedure. 
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The cross-validation procedure is discussed in detail in section 2.5.1.1, and is similar to 

the procedure that was used to calibrate the process-noise model in section 2.4.7. 

 

We focused on answering four specific questions regarding the skill of the DA 

system that we developed for the CR estuary: 

1) Does our DA method improve the simulated variability of the CR estuary? 

To evaluate the improvement, we used a leave-one-out cross-validation procedure 

to estimate the reduction of model errors across the CR estuary. The details of the 

procedure are documented in section 2.5.1.1. 

2) Is it possible to apply our DA method to a real-time nowcast, without 

retraining the model surrogate and the EOF basis? To study this possibility, 

we used the leave-one-out cross-validation procedure to compare the error 

reduction for two DA experiments that used different model surrogates. The first 

model surrogate, MSA, was used in a prototype of the hindcast DA experiment, 

since MSA was partially trained during the period of the cross-validation study. 

The model surrogate MSB was used in a prototype of the nowcast DA 

experiment, since it was trained outside the cross-validation period.  

3) Does our DA method improve the accuracy of a long, hindcast simulation? 

To evaluate such improvements, we conducted a year-long experiment, where the 

accuracy of the DA experiment was validated at key stations in the estuary. 

Specifically, we evaluated whether DA could improve the representation of tidal 

and sub-tidal variability of water levels, the response of salinity intrusion to 

changes in river and ocean conditions, and the representation of the seasonal cycle 

of heating and cooling in the CR. 

4) Are the DA-estimates of the CR estuary statistically and dynamically 

consistent? To study the statistical consistency of the DA estimates, we checked 

whether the error-statistics predicted by the DA were consistent with the observed 

error-statistics. To study the dynamical consistency of the DA estimates, we 

checked whether the estimates obeyed mass- and volume-conservation laws. 
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To distinguish between different DA experiments, we introduced the following 

nomenclature. The baseline DA experiment, which used all available data, was denoted 

DA-all. For validation experiments, we used a three-part abbreviation DA-(abbreviated 

variable name)-(station name) to indicate the nature of data that were withheld for 

validation. For example, the name DA-wl-tpoint denoted the validation experiment where 

the water level (wl) data from the station tpoint were withheld for validation.  

2.5.1.1 Using cross-validation to validate DA experiments 

A cross-validation procedure is a machine-learning technique (Bishop 1995) that 

is well suited for estimating the accuracy of a DA solution across model variables and 

throughout a computational domain. Obtaining such estimates can be difficult due to the 

shortage of independent validation data. For example, the observations that are used to 

constrain the DA experiment cannot be used for the independent validation of the same 

DA experiment. It is common to resolve this difficulty by dividing all available data into 

assimilation and validation datasets. However, this division results in using fewer data in 

the assimilation dataset, which can degrade the quality of the assimilated solution, 

especially in cases where the observations come from a sparse observation network.  

 

A leave-one-out cross-validation is a validation procedure that can effectively 

reuse observational data for both assimilation and validation. This reuse is achieved by 

averaging the validation errors over multiple DA experiments. In each experiment, data 

from only a single sensor are withheld for the validation, hence leading to a minimal 

impact on the accuracy of the assimilated solution. Such multiple DA experiments are too 

computationally expensive in the context of traditional DA algorithms that use 

expensive-to-compute forward and adjoint models. However, our DA method is driven 

by a fast model surrogate, which leads to low computational cost of the cross-validation 

study.  

 

A concern with using the cross-validation criterion to measure the DA accuracy is 

that errors at the validation stations may be strongly correlated with the errors at 

assimilation stations, hence providing poor candidates for independent validation of the 
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DA accuracy. However, from the design-of-experiment literature (Fedorov 1972, 

Bretherton, et al. 1976), we know that the strength of the error correlations is an 

indication of the density of the observation network. For example, in the CR estuary 

some stations are likely to have stronger error correlations than others, indicating better-

sampled areas in the estuary. The cross-validation addresses the problem of estimating 

DA-accuracy across the well-sampled and the under-sampled areas by averaging the error 

over multiple validation experiments. Each of these experiments validates the DA 

accuracy at a different station, located in different areas of the estuary.  

  

To illustrate how the error-correlation strength varied between different validation 

stations, we used the R2 statistic9. This statistic measures the percentage of the error-

variance at a validation station, explained by the cross correlation with errors at 

assimilation stations.  Figure 8 presents the variability in R2 values as an empirical 

cumulative distribution function.  

 

Results in Figure 8 show that our observational array had the strongest error 

correlation for water level measurements (average R2=0.93) and had the weakest error 

correlation for salinity measurements (average R2=0.37). The R2 values varied strongly 

among different stations in the CR estuary. In the case of salinity measurements, the R2 

value varied from 0.16 for the surface sensor at am169 to 0.62 for the mid-water sensor at 

am169. The strong error correlation for water levels, as compared to the weak error 

correlation for salinity, indicated an under-sampled salinity-error field, as compared to 

the well-sampled water-level-error field.  

2.5.2 Overall improvement in simulated variability of the CR estuary 

To evaluate the overall accuracy of our  DA system, we applied the leave-one-out 

cross-validation procedure to a three-week-long time interval (05/07/2004–05/21/2004), 

which was chosen to simplify the analysis of the DA accuracy by minimizing the impact 

of gaps in observational data. The results of the cross-validation study are presented in 

two tables (1 and 2). Table 1 presents the results in terms of RMS errors, while Table 2 
                                                 
9 The R2 statistic was computed using the best linear unbiased estimator as described in (Fedorov 1994). 
The empirical error covariance matrix was computed from the time series of the model surrogate errors. 
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presents the errors as a percentage of the data variance. The cross-validation results are 

presented for the locations of assimilation stations (columns D and F in both tables) and 

for the locations of validation stations (columns E and G). The error at validation stations 

was averaged over all validation experiments. In this section, we present the results of the 

hindcast DA experiment (columns D and E), which was based on the model surrogate 

MSA, described in section 2.4.4. For a comparison between the hindcast and the nowcast 

experiment, see section 2.5.3. 

 

The cross-validation study showed that DA effectively reduced errors in water 

levels, salinities, and temperatures at both the assimilation stations (column D) and the 

validation stations (column E). As expected, our results showed little improvement in 

velocity-magnitude errors, since observations of water velocity were not used in the DA 

experiments. At the assimilation stations (column D), the average error (over all stations 

and time) was reduced from 0.14 m to 0.06 m for water levels, from 4.3 psu to 1.2 psu for 

salinity, and from 1.2 °C to 0.5 °C for temperature. When the errors were expressed as 

the percentage of the data variance at stations, the errors for water levels were reduced 

from 2.5% to 0.5%, for salinity from 13% to 1.1%, and for temperature from 0.7% to 

0.1%.  As expected, the errors after DA at the assimilation stations were at or below the 

combined observation error no, which varied for water levels from 0.03 m to 0.06 m, for 

salinity from 0.5 psu to 2.0 psu, and for temperature from 0.12 °C to 0.34 °C. At the 

validation stations (column E), the reduction in errors was smaller than at the assimilation 

stations (column D), but was still substantial: for water levels from 0.15 m to 0.10 m 

(from 2.5% to 1.2%), for salinity from 4.3 psu to 3.0 psu (from 13.0% to 6.1%), and for 

temperature from 1.2 °C to 0.7 °C (from 0.7% to 0.3%).  

2.5.3 Comparison of error reduction in the nowcast and hindcast 
experiments 

To evaluate the ability of our DA algorithm to assimilate data in a real-time 

nowcast, we compared the performance of DA experiments based on two different model 

surrogates, described in section 2.4.4. The model surrogate MSA was used in a prototype 

of the hindcast DA experiment, since MSA was partially trained during the period of the 
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cross-validation study. The model surrogate MSB was used in a prototype of the nowcast 

DA experiment, since it was trained outside of the cross-validation period.   

 

The comparison of cross-validation errors in Tables 1 and 2 suggests that the 

nowcast DA experiment (columns F and G) was as accurate as the hindcast DA 

experiment (columns D and E). The result of this comparison is of significance for the 

operational applications of our DA method, since this result shows that the reduced-

dimension KF can be successfully applied in a real-time nowcast without the need to 

retrain the model surrogate and the EOF on a new set of data.  

2.5.4 Improvements in the simulated variability of a long-term 
hindcast experiment 

To determine whether our DA improved the simulated variability of a long-term 

hindcast simulation, we analyzed the accuracy of the simulated tides, salinity intrusion, 

and temperature in a one-year-long hindcast simulation of the CR estuary. 

2.5.4.1 Tidal variability 

Tidal variability in the CR estuary is nonlinear and non-stationary (Jay, et al. 

1997); it is governed by the nonlinear interactions between several external forcings, such 

as ocean tides, ocean set-up due to atmospheric influences, bottom-friction forces, and 

river discharge. The uncertainties in these forcings can lead to errors in the simulated 

tides. To study whether DA can reduce the tidal errors, we performed the DA experiment 

DA-wl-tpoint, where the water level data were assimilated at all stations, but tpoint, 

which was used for an independent validation.  

 

The results from the validation experiment DA-wl-tpoint showed that the DA 

improved the representation of the tides in the CR estuary, as seen in Figure 9, which 

compares the maximum daily errors at the validation station tpoint for DB16 and the DA 

experiment DA-wl-tpoint. The water level errors were reduced from 0.14 m to 0.07 m for 

the all-pass band, from 0.10 m to 0.04 m for the tidal band (T<30 h), and from 0.10 m to 

0.06 m for the sub-tidal band (T>30 h). While the error reduction in the tidal band was 

consistent throughout the experiment, the reduction in the sub-tidal band was most 
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prominent during winter storms (January-March and October-December). The exceptions 

to this effective error-reduction were two short periods, marked with arrows in Figure 9, 

when most of the water-level sensors failed, and when the errors in the DA experiment 

were similar to the errors of DB16. 

2.5.4.2 Salinity intrusion 

To determine whether our DA method improved upon the simulated salinity in 

DB16, we studied the errors in simulated salinity at four distinct regions of the CR 

estuary: the mouth of the estuary, the mid-estuary, the upper estuary, and in a small 

lateral channel of the estuary. For each region, the results of two DA experiments were 

analyzed. In the first experiment, all available data were assimilated (DA-all). In the 

second experiment, the data at one of the stations in the region were withheld for 

validation. To present the long-term variability of salinity at the validation stations, we 

used the daily salinity-means as a proxy statistics in Figure 10. The daily-averages were 

computed over a tidal day of 30 hours.  

 

The results of the validation experiments showed that DA improved the simulated 

salinity at three regions of the CR estuary: in the mouth of the estuary, in the mid-estuary, 

and in the small lateral channel. When all data were used in assimilation, the simulated 

variability improved substantially, including the reduction in the model bias and the 

better representation of episodic events. When the validation data were withheld from the 

assimilation, the improvements at these validation stations were modest. The strongest 

improvement was at the mid-estuary station am169, which suggests that the observation 

network was more informative in the middle of the estuary than in the mouth or in the 

lateral channel of the estuary.  

 

In the fourth region—the upper estuary—the DA method failed to improve the 

simulated salinity, possibly due to the limitation of the EOF subspace, where our KF was 

defined. In fact, the EOF space, trained on the forward model, encoded the upper estuary 

as permanently fresh, since the forward model (DB16) failed to propagate any salinity to 

the upper estuary. As a result, the KF, defined in this subspace, also failed to estimate 
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nonzero salinity in the upper estuary. However, the region of the upper estuary, where the 

KF failed, was relatively small, in comparison to the rest of the estuary, where the KF 

succeeded in improving the simulated salinity. The detailed analysis of the DA results 

follows. 

 

Mouth of the CR estuary: To evaluate the simulated salinity in the mouth of the 

CR estuary, we used the salinity data from the bottom sensor at station jetta. In addition 

to the strong tidal signal (not shown in Figure 10), the changes in ocean upwelling, 

spring-neap tidal cycle and river discharge all influenced the salinity signal at jetta. 

Examples of these influences can be seen in the daily-mean salinity signal displayed in 

Figure 10, panel I.  

 

DB16 (Figure 10.I.a) represented the tidal variation in the salinity signal at jetta 

relatively well, with an RMS error of 4.5 psu and a bias of -2.3 psu, which indicated that 

the model was on average too saline. After the assimilation, in the DA experiment DA-

all, the simulated salinity at jetta was greatly improved, with an RMS error of 1.8 psu and 

a bias of -0.6 psu. Specifically, the assimilated solution improved the tracking of the 

episodic variations in the daily-mean salinity. An example of such improvement was a 

series of events during May-June of 2004 (Figure 10.I.b). In the validation experiment 

DA-salt-jetta (Figure 10.I.c), where the data from jetta were withheld from the 

assimilation and used as the validation data, the simulated salinity at jetta improved 

modestly, with an RMS error of 4.3 psu and a bias of -1.7 psu.  

 

Mid-estuary: To evaluate the simulated salinity in the middle of the CR estuary, 

we used the salinity data from the bottom sensor at station am169. The salinity variability 

at am169 had a strong non-stationary component, which was defined by the interaction of 

tides with river discharge and ocean conditions. For example, the daily-average salinity in 

Figure 10.II.a had a strong spring/neap tidal cycle, which was modulated by non-

stationary changes in the river discharge. An example of this modulation was the period 

of higher minimum salinity (~10 psu vs. 0 psu) that coincided with the period of the low 
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river discharge in the months of July through November, e.g., as seen in the visual 

comparison of panels V and II in Figure 10. 

 

RMS errors for DB16 at station am169 (RMSE=6.9 psu) were dominated by a 

model bias of -5.1 psu, which suggests that the simulated salinity in DB16 was too saline 

at am169 (Figure 10.II.a). The model bias and the RMS error were greatly reduced in 

both of the DA experiments: the DA-all (bias=0.2 psu, RMS=1.0 psu) and the DA-salt-

am169 (bias=0.2 psu, RMS=4.6 psu). In the validation experiment DA-salt-am169, all 

salinity measurements collected at station am169 were excluded from the assimilation to 

avoid their influence on the error reduction at the bottom senor, which was used for the 

validation. 

 

Lateral channel of the CR estuary: To evaluate the simulated salinity in the 

lateral channel of the CR estuary, we used the salinity data from the bottom sensor at 

station cbnc3. During our study, salinity reached cbnc3 only episodically, usually during 

periods of the very low river-discharge, as seen in August-October in Figure 10.III.a.  

 

DB16 represented the episodic nature of the salinity intrusion at cbnc3 correctly. 

However, DB16 failed to simulate the correct magnitude and timing of the salinity-

intrusion events. In the DA experiment DA-all, the salinity intrusion events were 

represented better than in DB16, as was measured by a reduction in an RMS error (from 

1.5 psu to 0.6 psu) and a model bias (from 0.7 psu to 0.0 psu). The validation experiment 

DA-salt-cbnc3 improved the salinity intrusion at cbnc3 modestly; the examples of such 

improvements were two isolated events in March of 2004, Figure 10.III.c. These modest 

improvements are likely to indicate that the lateral channel, where cbnc3 was located, 

was under-sampled, as compared to the main channel, where am169 was located.  

 

Upper CR estuary: To evaluate the simulated salinity in the upper CR estuary, 

we used the salinity data from the bottom sensor at station eliot. Similar to cbnc3, salinity 

reached eliot only episodically. However, since eliot was located further upstream, these 

events were even less frequent than at cbnc3.  
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During our study, DB16 failed to propagate any salinity to station eliot; see Figure 

10.IV.a. Assimilating salinity measurements from station eliot did not improve the 

simulated salinity either; see Figure 10.IV.b.  

 

To further illustrate the ability of the DA to control the length and the shape of the 

salt wedge, we compared the transects of model-salinity from DB16 and the DA 

experiment DA-all. The transects were taken along the southern channel of the estuary, 

during a period (September 20-27, 2004) of higher model error. In DB16 the simulated 

estuary was over stratified and too saline at station am169, as seen in Figure 11.1.a. After 

DA, the stratification at am169 was corrected, as shown in Figure 11.2.a, resulting in a 

more mixed estuary, as shown in Figure 11.2.b.  

2.5.4.3 Temperature variability 

To determine whether DA improved upon the simulated temperature in DB16, we 

studied three regions of the CR estuary: the mouth of the estuary, the mid-estuary, and a 

small lateral channel of the estuary. The results of the validation studies showed that DA 

improved the temperature representation at all three regions of the estuary. In the mouth 

of the estuary and in the mid-estuary, DA improved the representation of cold water 

intrusion events. In the small lateral channel, DA further improved the representation of 

the annual temperature trend. The detailed analysis of the validation experiments for each 

of the regions follows. 

 

Mouth of the CR estuary: To evaluate the simulated temperature in the mouth of 

the CR estuary, we used temperature data from the bottom sensor at station jetta. In 

Figure 12.I, the effect of coastal upwelling is highly visible in the time series of daily-

mean temperature. For example, during the summer months of June through October the 

maximums of the events are shown with arrows. The timing of these events correlated 

with the relaxation of the upwelling-favorable winds, as seen in the time series of the 

North-South winds off-shore of the CR mouth (Figure 12.IV). 
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DB16 tracked the annual temperature trend well, but failed to track the mean 

temperature during the episodes of ocean upwelling; see Figure 12.I.a. In both DA 

experiments, the DA-all and the DA-temp-jetta, the tracking of the upwelling events have 

improved, for example as seen in the summer months of June through October of 2004 

(Figure 12.I.b and 12.I.c). However, an RMS error improved only for the experiment DA-

all (reduction from 1.2 °C to 0.4 °C). 

 

Mid-estuary: To evaluate the simulated temperature in the middle of the CR 

estuary, we used the temperature data from the bottom sensor at station am169. The 

observational data indicated a strong influence of both the ocean and the river water at 

the location of am169. The influence of the ocean water at am169 was seen in several 

episodes, when the cold ocean water lowered the daily-mean temperatures during the 

months of May trough October (blue circles in Figure 12.II.a). The influence of the river 

water was seen in the annual trend of the temperature, which varied at the river boundary 

from ~5 °C in winter to ~25 °C in summer. 

 

Unlike the observational data (blue circles in Figure 12.II.a), the simulated 

temperature in DB16 (red line Figure 12.II.a) was dominated by the annual trend in river 

temperature, with no substantial influence of the cold ocean water in the months of May 

trough October. In both DA experiments, the DA-all and the DA-temp-am169, the 

tracking of the cold-temperature events improved. RMS errors were reduced from 2.4 °C, 

for DB16, to 1.4 °C, for the DA-all experiment, and to 1.9 °C, for the DA-temp-am169 

experiment.  

 

Lateral channel of the CR estuary: To evaluate the simulated temperature in the 

lateral channel of the CR estuary, we used the temperature data from the bottom sensor at 

station cbnc3.  The temperature signal at cbnc3 was dominated by the temperature of the 

river water, including the influences of atmospheric heating and cooling as the river water 

reached the tidal flats, where cbnc3 was located.  
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DB16 (red line in Figure 12.III.a) repressed the annual temperature-trend at cbnc3 

relatively well (RMS error of 1.4 °C). However, DB16 failed to accurately capture the 

observed daily-mean temperature (blue circles in Figure 12.III.a), possibly due to the 

misrepresentation of the heat exchange with the atmosphere. This misrepresentation was 

exemplified by the warmer model temperatures in the winter and the colder model 

temperatures in the summer, as can be seen in Figure 12.III.a. In both DA experiments, 

the DA-all and the DA-temp-cbnc3, the simulated daily-mean temperature at cbnc3 

improved substantially. The improvement was measured by reduced RMS errors, which 

reduced from 1.4 °C, for DB16, to 0.4 °C, for the DA-all experiment, and to 0.6 °C, for 

the DA-temp-cbnc3 experiment. 

2.5.5 Consistency of assimilated results 

2.5.5.1 Statistics of the innovation errors 

To determine whether the estimate of error statistics predicted by the DA was 

statistically consistent with the measured error statistics, we compared the predicted error 

variance for the state forecast ˆ ( )sx k−  

2ˆ ( ) [ ( )] /inov yyk trace k mσ −= P   (22) 
with the measured variance of the innovation errors 

2 ˆ( ) var[ ( ) ( )]inov k y k y kσ −= − , (23) 
where y(k) are the observational data, ˆ ( )y k−  are the observations of the state 

forecast (Eq. 14), yy
−P  is the covariance of the innovation (Eq. 14) predicted by the KF, 

and m is the number of measurements. A consistent KF should on average satisfy the 

following equality (Bar-Shalom, et al. 1988): 
2 2ˆ ( ) ( )inov inovk kσ σ= .   (24) 

 

For the DA experiment DA-all, the time average of the measured error variance 
2
inovσ =0.3 exceeded the predicted error variance 2ˆinovσ =0.2, indicating a slightly 

inconsistent KF. The calibration experiments in section 2.4.7 showed that it was possible 

to satisfy the criterion (Eq. 24) at all times, by optimizing parameters in the process-noise 

model (Eq. 16). However, we decided against such optimization, since further 
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optimization led to the slightly degraded accuracy of the state estimates. See section 2.4.7 

for the results of the cross-validation study. 

 

The gaps in the observational data, discussed in section 2.2.1, introduced an 

additional source of uncertainty to the analysis of data presented in Figure 13. For 

example, during the months of June-August, the predicted error variance was 

underestimated, as shown by the gray line in Figure 13. However, it was during the same 

time period that most of the salinity sensors in the CR estuary failed, as shown by the 

gray line in Figure 2. It is unclear if the decrease in the predicted error variance in Figure 

13 is attributable to the changes in the error statistics of the KF, or it is attributable to the 

changes in the available observational data that were used to estimate the predicted error 

variance.  

2.5.5.2 Conservation laws 

To determine whether the DA estimates were dynamically consistent, we 

evaluated the conservation properties of the DA estimates. Obeying conservation laws, 

such as mass, volume, momentum, and transport conservation, is an important attribute of 

a numerical algorithm and is crucial for the conservative transport of scalar tracers like 

salinity, nutrients, and pollutants. The conservation of mass is enforced in a forward 

model, like SELFE, by the deliberate design of the numerical algorithms. However, at the 

time of experiments, neither the EOF projection, nor the model surrogate, nor the DA 

algorithm enforced the conservation laws. 

 

To quantify the conservation errors in the DA estimates, we concentrated on 

volume conservation and transport conservation laws. A numerical algorithm is called 

volume-conservative when the flux through the boundary of a control volume is 

equivalent to the change in the volume of a control volume (via movement of the free 

surface). A numerical algorithm is called transport-conservative when the mass-flux of a 

tracer (e.g., salinity) trough the boundary of a control volume is equivalent to the change 

in the mass of a tracer occurring inside of a control volume. To evaluate the conservation 
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quantities in the year-long DA experiment DA-all, we used the entire domain of DB16 as 

the control volume.  

 

Volume conservation was well preserved in SELFE with a low10 conservation 

error of 0.7%. Unlike the states in the SELFE model, the states reconstructed from the 

EOF projection and from the DA estimate had a slightly larger error: 1.6% for the EOF 

and 6% for the DA experiment. The larger error for the DA experiment is a likely 

indicator of inconsistencies between the water levels that experienced strong corrections 

from the DA and the velocities that experienced little change from the DA.  

 

Transport conservation was also well preserved in SELFE, leading to a small 

conservation error of 1.3%. The states reconstructed from the EOF projection had a 

similar error of 1.4%, possibly indicating a very low reconstruction error for the velocity 

and the salinity fields. Unlike DB16 and the EOF, the DA results had a larger 

conservation error of 15%.  

2.6 Conclusions  
In applying the reduced-dimension KF to a realistic simulation of the CR estuary, 

we determined that: 

1) The novel framework of the reduced-dimension KF can be applied to estimate the 

state of a complex, nonlinear coastal circulation, such as the CR estuary; 

2) In the CR estuary, our DA method improved upon the non-assimilative model in 

simulating the long-term variability of tides, salinity, and temperature; 

3) The reduced-dimension KF was successful in a real-time nowcast of the CR 

estuary, without the need to retrain the model surrogates and the EOF basis; 

4) Implementing our DA method using the reduced-dimension KF led to substantial 

computational and logistical economies. Computationally, our DA method was 

~100 times faster than the forward model and ~100-10,000 times faster than most 

                                                 
10 The conservation error was even lower when it was computed using model variables internal to the 
SELFE numerics (e.g., the velocities defined at side-centers and the water levels at element-centers). 
However, only the external representation of these variables was available for our experiments (e.g., 
defined on the nodes of the computational grid), which led to a higher conservation-error. 
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existing DA algorithms. Logistically, our DA method did not require a tedious 

development of the tangent linear and adjoint models. 
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Appendix A1: Algorithm of the Sigma Point Kalman 
Filter 

The SPKF algorithm11 is a straightforward application of the sigma point 

transformation to the calculation of the optimal terms (Eq. 14) in the KF recursion (Eq. 

13), where the state of the system is redefined as an augmented state 

ˆ( ) [ ( ); ( ); ( )]a
s ox k x k v k n k= . Below we present the algorithm for a generic SPKF filter: 

• Initialization: 

ˆ ˆ ˆ(0) [ (0)], (0) [( (0) (0))( (0) (0)) ]
ˆ ˆ(0) [ (0)] [ (0); (0); (0)]

ˆ ˆ(0) [( (0) (0))( (0) (0)) ]
(0) 0 0

      0 0
0 0

T
s s xx s s s s
a a

s
a a a a a T
xx

x

x E x E x x x x

x E x x v n

E x x x x

= = − −

= =

= − − =

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

P

P
P

Q
R

 

• Kalman filter loop k=1..end 

                                                 
11 The description of the SPKF algorithm is adopted from (van der Merwe, et al. 2003, van der Merwe 
2004). 
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1) Calculate sigma points 

ˆ ˆ ˆ( 1) [ ( 1), ( 1) ( 1), ( 1) ( 1)]a a a a a ak x k x k k x k kς ς− = − − + − − − −P PX  

2) Time-update equations 

2

0
2 2

0 0

( ) ( ( 1), , ( ))

ˆ ( ) ( )

( ) ( ( ))( ( ))

x s x v
k

L
m x

s i i
i

L L
c x x T

xx ij i j
i j

k f k U k

x k w k

k w k k

−

=

−

= =

= −

=

=

∑

∑∑P
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3) Measurement-update equations 

2

0
2 2
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2 2

0 0

1

( ) ( ( ), ( ))

ˆ ( ) ( )
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ˆ ˆ ˆ( ) ( ) ( ( ) ( ))s s k

TK Kxx xx k yy k

x k x k K y k y k− −

−= −

= + −

P P P
 

• Parameters: [ ; ; ]a x v n=X X X X  is the partitioning of the sigma-point matrix, ζ is a 

scaling parameter that determines the spread of the sigma points, L is the 

dimension of the augmented state, and m
iw  and c

ijw  are the scalar weights. 

Parameters ζ, m
iw , and c

ijw  depend on the chosen form of the SPKF.  

• Notes: the state variable ˆ ˆ( 1) [ ( 1); ( 2);...; ( )]x x
s sk k x k x k n− = − − −X X����  is 

introduced to keep the record of past state estimates ˆ ˆ[ ( 2);...; ( )]s sx k x k n− − , 

required by the model surrogate (Eq. 11). The described KF filter only estimates 

current state ˆ ( )sx k  and does not re-estimate the past states ˆ ˆ[ ( 1);...; ( )]s sx k x k n− −  

in the bookkeeping variable xX���� . 
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Appendix A2: EOF algorithms for large datasets 
Random sub-sampling: A simple strategy for approximating the EOF subspace 

of a large dataset is based on the following random sub-sampling technique:  

1) Compute the approximation of the EOF basis ˆ 'Π  and the mean state ˆ 'μ  based on a 

small random sample of states (e.g., a 1,000 out of 100,000): 

ˆ ' ( ( ))
ˆ ' ([..., ( ) ',...])

mean x j

svd x j

μ

μ

=

= −TΠ SV ,   (A.1) 
where j is the index over a random sample of states; 

2) Project the entire database of states into the approximated subspace ˆ 'Π : 

( )ˆ ˆ( ) ' ( ) 'sx i x i μ= −Π ;    (A.2) 

3) Compute the orthonormal rotation of the approximated subspace ˆ 'Π  by decorrelating 

the time series of the projected states: 

( ( ))

([..., ( ) ,...])
ˆ ˆ ˆˆ' ; ( ) ; '

s s

s s

T
s s

mean x i

svd x i

x i

μ

μ

μ μ μ

=

= −

= = = −

T

T

USV

Π Π U SV Π .  (A.3) 
The resulting EOF operator Π̂  is a true EOF in the subspace spanned by its columns. That 

is, the EOF modes of operator Π̂  are oriented along the major axis of variability in this 

subspace. 

 

Although the SVD computation (Eq. A.1) of a small random sample is feasible, it 

may remain a computational bottleneck for the EOF algorithm (Eqs. A.1-3). For example, 

consider a case where, due to computational limitations, the random sample used in SVD 

computation (Eq. A.1) is too small and not statistically representative of the entire 

simulation database. In this case, the spanning subspace ˆ 'Π  would be of poor quality, 

which in turn would lead to a poor approximation of the global EOF.  

 

Divide-and-conquer EOF algorithm: To address the computational bottleneck 

discussed above, we devised a divide-and-conquer EOF (DC-EOF) algorithm similar to 

the algorithm of (Xue, et. al. 1997). The DC-EOF divides the large SVD problem (Eq. 

A.1) into smaller sub-problems (e.g., by variable type or by geographic region) and then 
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joins the smaller sub-problems using a secondary EOF. Since each of the sub-problems is 

smaller than the original EOF problem A.1, more samples can be used to compute the 

EOF of each sub-problem, leading to the improved representation of the spanning 

subspace. The drawback of the DC-EOF algorithm comes from ignoring the cross-

correlations among reconstruction errors of each sub-problem, which can be tolerated 

when the reconstruction errors for each sub-problem remain small.  

 

The DC-EOF algorithm consists of three parts. Where appropriate, we use the 

MATLAB© notation for matrix operations. The MATLAB© code for this algorithm is 

available on request. 

   

1) Compute EOFs for n sub-problems: Assume that we have a large, zero-mean 

dataset D of column vectors, and we have n indexes idxbi that determine the division of 

the large dataset into smaller sub-problems Dbi. We also have temporal index idxt that 

determines random sub-sampling of the large dataset D. Then the datasets for each sub-

problem can be abbreviated as: 
1 ( , )t

bi bi tidx idx=D D .   (A.4) 
The length of the temporal index idxt is selected to allow for practical computation of the 

EOF analysis using the SVD algorithm of choice. The first part of the DC-EOF is 

completed by computing n dimension-reduction operators biΠ  using EOF decomposition: 

1EOF( )t
bi bi←Π D .   (A.5) 

 

2) Assemble intermediate results:  

1 1 1 10

0

sb sb
T

b b b b

bn bn bn bn

= ⇔

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥⇔ =⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

D Π D

Π D Π D

Π D Π D

"
# # % # #

" , (A.6) 
where sbΠ  is the intermediate EOF operator, and sbD  is the intermediate dataset. 

 

The intermediate reconstruction error is defined as: 
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( )1/ 22( )T
sb sb sbEε ⎡ ⎤= −⎣ ⎦D Π D

.  (A.7) 
Formulas A.5 and A.6 can be computed for each individual block bi, without assembling 

the blocked matrix sbΠ  explicitly. Similarly, the expectation operator E[.] can be 

computed incrementally. 

 

3) Compute secondary EOF and assemble final result: The result (A.6) is 

already an admissible dimension reduction (e.g., sbΠ  is orthonormal), and in our case it 

yields a considerable reduction in the degrees of freedom (from ~106 to 103). However, 

this dimension-reduction is not yet efficient, since there are correlations among individual 

sub-problems; that is, rows of sbD  are correlated.  

 
To achieve an efficient dimension reduction, a secondary EOF is computed: 

EOF( )

( )
A sb

s A sb A sb

←

= = =

Π D

D Π D Π Π D ΠD ,  (A.8) 
where AΠ  is the secondary EOF operator and sD  is the final dataset in the reduced space 

defined by the global EOF operator Π . 

 
The new reconstruction error for the operator Π  is defined as: 

( )T T
sb A s A sb

T T T
s sb A sb s

x x

x x

ε ε

ε ε ε

= + + =

= + + = +

Π Π

Π Π Π ,  (A.9) 
where x and xs are the state vectors that are elements of the datasets D  and sD . 

 
The output of the algorithm is the global EOF operator Π  and the global 

reconstruction error ε : 

A sb

T
sb A sbε ε ε

=

= +

Π Π Π

Π .    (A.10) 
All products with the blocked matrix sbΠ  can be arranged without assembling sbΠ  

explicitly.  
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Appendix A3: Statistics of the innovation signal 
The statistics of the innovation signal:  

ˆ( ) ( ) ( )y k y k y kδ − −= − ,  (A.11) 
where ˆ ( )y k−  is the observation of the DA prior, can provide insights to the optimality of 

the DA system {Bar-Shalom, 1988 #84; Bennett, 2002 #60}. In a statistically consistent 

DA system the innovation vectors yδ −  should be zero-mean, temporally uncorrelated, 

and drawn from the normal distribution  

N(0, )yyyδ − −P∼ ,  (A.12) 

where yy
−P  is the covariance of the prior innovations estimated by the DA system (Eq. 

14). In this appendix, we determine whether the innovations statistics yδ −  in our DA 

experiments were zero-mean, temporally uncorrelated, and were drawn from the 

distribution in Eq. A.12. 

 

To verify that the innovation sequences yδ −  were zero-mean, we compared the 

mean innovation from the non-assimilated model .non assimE yδ −⎡ ⎤⎣ ⎦  (column B in Table 3) 

with the mean innovations of DA prior E yδ −⎡ ⎤⎣ ⎦  (column C in Table 3). Column B shows 

that that, in violation of DA assumptions, the non-assimilated model was biased, with 

non-zero mean innovation .non assimE yδ −⎡ ⎤⎣ ⎦ . Since our DA was not designed to account for 

a bias in the non-assimilated model, it would be too optimistic to expect that the 

innovations for the DA prior be unbiased. Table 3 shows that, in fact, the mean 

innovations after DA (column C) were small but often non-zero; however, these mean 

innovations after DA were also consistently smaller than the mean innovations before DA 

(column B).  

 

To verify that the innovation sequences yδ −  were temporally uncorrelated, we 

compared in Table 3 the temporal decorrelation scales TD of the innovations in non-

assimilated model .non assim
DT yδ −⎡ ⎤⎣ ⎦  (column D) with the decorrelation scales of 
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innovations in the DA prior DT yδ −⎡ ⎤⎣ ⎦  (column E). The decorrelation scales TD  were 

estimated from the lag-time of the first zero crossing in the vector autocorrelation 

function: 

( )( )

( )( ) ( )( )
1

1/ 2

1 1

( ) ( ) ( ) *

( ) ( ) ( ) ( )

K T

k

K KT T

k k

c l y k y y k l y

y k y y k y y k l y y k l y

δ δ δ δ

δ δ δ δ δ δ δ δ

=

−

= =

⎡ ⎤= − − −⎢ ⎥⎣ ⎦

⎡ ⎤⎡ ⎤ ⎡ ⎤− − − − − −⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

∑

∑ ∑
, (A.13) 

where c(l) is the autocorrelation function for the time-lag l  and K is the number of time 

instances in the vector time series of innovations yδ .  

 

Table 3 shows that after DA the temporal correlations were often shorter, 

indicating that the information from observations were extracted by DA, leading to an 

increase in the skill of the model. Specifically, for water levels, decorrelation scales 

decreased from 31 hours, which is twice the 12.4 hour period of the dominant M2 tide, to 

only 4 hours, which is shorter than the period of M2 tide. For salinity and temperature, we 

computed decorrelation scales separately for ocean stations, which were strongly 

influenced by the ocean, and for river stations, which were strongly influenced by the 

river and only occasionally by the ocean. After DA, the decorrelation length scale for 

ocean salinity sensors was 5.5. hours, which is shorter than the period of M2 tide. For 

river salinity sensors, decorrelation scale was 5.5 days, which is shorter than the spring-

neap cycle. For ocean temperature sensors, decorrelation scale decreased from 12 weeks, 

which is comparable to the seasonal cycle, to 1 week, which is shorter than the spring-

neap cycle. Finally, for river temperature sensors, decorrelation scale remained at 12 

weeks, which is shorter than the seasonal cycle of solar heating.  

 

To verify that the innovation sequences yδ −  were drawn from a normal 

distribution consistent with the predicted innovation covariance yy
−P , we considered the 

random variable: 
12 T

yyX y yδ δ
−− − −⎡ ⎤ ⎡ ⎤= ⎣ ⎦ ⎣ ⎦P , (A.14) 
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which should be distributed according to a X2 distribution with m degrees of freedom, 

where m is the number of observations {Bar-Shalom, 1988 #84}. The time series of the 

X2 variable, normalized by the number of observations m, are shown in Figure 14.a. To 

facilitate visual comparisons, all the time series in Figure 14 were filtered, with 

fluctuations shorter than one week removed. On average, the normalized variable (X2/m) 

should be equal to unity, with 98% of fluctuations captured between ~0.5 and ~1.8 

normalized units. As Figure 14.a shows the normalized X2/m was sometimes close to the 

expected value of unity, however also often as large as 29. The comparisons of the time 

series for the variable X2/m with the time series of river discharge (panel b) shows that 

DA system was close to optimal during periods of strong to medium river discharges and 

was not optimal during periods of weak river discharge. The comparison with the time 

series of model surrogate and EOF errors (panel c) does not show any strong correlations 

with the temporal changes in the accuracy of the model surrogate or EOF, with a possible 

exception of slightly higher EOF errors during periods of elevated levels of X2/m 

variable.  

 

To summarize, the results of our optimality tests presented in Table 3 and Figure 

14 show that our DA system was often close to optimal. However more work is needed 

to: (i) account for systematic biases in the non-assimilated model, (ii) better extract 

information from salinity and temperature measurements on the timescale of a single tidal 

period, and (iii) improve the optimality of the filter during periods of low river discharge.  
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Figures:  
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Figure 1: Map of the bathymetry in the computational domain.  
Overlaid are the names and locations of the observation stations. 
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Figure 2: Number of active sensors available for assimilation in 2004.  
Bold black line shows all available sensors. Light gray line shows sensors influenced by 
the estuarine salt wedge (from jetta to am169, excluding the top-sensor at am169). 
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Figure 3: Information flow in the data assimilation method. 
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Modified from van der Merwe 2004Modified from van der Merwe 2004  
 
Figure 4: Illustration of the sigma point transformation for an arbitrary nonlinear function 
y=g(x) and a Gaussian random variable x.  
(Image adopted from (van der Merwe 2004) with the permission of the author). 
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Figure 5: Time series of monthly averaged, normalized mean square error (NMSE) for 
model surrogate and EOF errors.  
The NMSE was computed as a feedback prediction error for the model surrogates MSA 
and MSB and as a reconstruction error for the EOFA and EOFB. Training and testing 
periods for MSB and EOFB are delineated by the black vertical line.  
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Figure 6: Daily averages for salinity (I) and temperature (II) at am169 (bottom sensor). 
 
Panel (a) is for the model surrogate MSA, and panel (b) is for the model surrogate MSB. 
The root mean square errors (RMSE) are between DB16 (blue line) and the model 
surrogates (red line). 
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Figure 7: Cross-validation curves for αx (panel a) and αu (panel b). 
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Figure 8: Empirical cumulative distribution function (ECDF) for the percentage of the 
error variance at a validation stations (list on the right) explained by the assimilation 
stations.  
 
X-axis: R2 – the percentage of the error variance at the validation station explained by the 
assimilation stations.  
Y-axis: probability that the explained error variance at a validation station is lower than x.    
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Figure 9: Maximum daily error in simulated water levels for DB16 (dashed) and DA 
experiment DA-wl-tpoint (solid).  
All-pass errors (a), errors in tidal band (b), and errors in sub-tidal band (c). Separation 
into tidal and sub-tidal bands was with a butterworth filter (T=30h). Values of the root 
mean square errors are listed to the left of panels. Vertical arrows indicate periods when 
most water level sensors in the estuary failed. 
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Figure 10: Daily-averaged salinities at stations jetta (I), am169 (II), cbnc3 (III), and eliot 
(IV). Observed, daily-averaged river discharge (V).  
Observational data are in blue circles, and model data are in red dots (panels I, II, and 
III). For each station, except for eliot, three results are presented: (a) no data were 
assimilated (DB16), (b) data from this station were used for assimilation (DA-all), and (c) 
data from this station were withheld for validation. Values of a root mean square error 
(RMSE) and a model bias are listed for each panel.  
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Figure 11: Salinity stratification at am169 (shown on sub-panels [a]), compared to the 
transect of salinity along the south channel (shown on sub-panels [b]). 
 
In sub-panel [a] observations are in blue; and model data are in red. Stratification is 
computed as a difference of salinities between the bottom and top sensors. Transect is 
taken at September 23, 2004 at 07:15 (solid vertical line on panel [a]). Panel (1) is before 
data assimilation, and panel (2) is after data assimilation. 
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Figure 12: Daily-averaged temperatures at stations jetta (I), am169 (II), and cbnc3 (III).  
The two-day average of the North-South wind measured off-shore of the CR mouth 
(NOAA buoy 46029), panel IV.  
Observational data are in blue circles, and model data are in red dots (panels I, II, and 
III). For each station three results are presented: (a) no data were assimilated (DB16), (b) 
data from this station were used for assimilation (DA-all), and (c) data from this station 
were withheld for validation. Values of a root mean square error (RMSE) and a model 
bias are listed for each panel. Green arrows highlight upwelling episodes.  
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Figure 13: Measured (black line) and expected (gray line) variance of the innovation 
signal for DA experiment DA-all.  
The low pass (T>30h) filter was used to improve the visual representation of the time 
series. 
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Figure 14: Statistics of the innovation signal.  
(a) Normalized X2 variable compared to its expected mean and variance. Normalization 
was with the number of observations m. (b) Time series of the river discharge. (c) Time 
series of the model surrogate (blue) and EOF (red) errors. Errors in (c) were normalized 
by the variance of the state. Vertical green lines in panel (a) indicate the time period 
during which the DA system was calibrated. To facilitate visual comparisons, all time 
series in were filtered, with fluctuations shorter than one week removed. Confidence 
bands estimated using Matlab’s© chi2inv(.) function.   
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Tables:  
Table 1: Root mean square errors (RMSE) for the cross-validation experiments. 
 Observ. noise RMSE 
Variable nm no DB16 Hindcast Nowcast 
    Assim. Valid. Assim. Valid.

 A B C D E F G 
W. levels (m) 0.01 0.04 0.14 0.06 0.10 0.06 0.10
Salinity (psu) 0.5 1.5 4.3 1.2 3.0 1.2 3.0 
Temp. (C)  0.1 0.3 1.2 0.5 0.7 0.5 0.7 
Velocity  
Magnitude (m/s) 

 
n/a 

 
n/a 0.274 n/a 0.268 n/a 0.270

 
Table 2: Errors in cross-validation experiments as a percentage of the data variance at 
stations. 
Variable DB16 Hindcast Nowcast 
  Assim. Valid. Assim. Valid.
 C D E F G 
W. levels (%) 2.5 0.5 1.2 0.5 1.2 
Salinity (%) 13.0 1.1 6.1 1.0 6.2 
Temp. (%)  0.7 0.1 0.3 0.1 0.3 
Velocity  
Magnitude (%) 30.1 n/a 28.8 n/a 29.3

 

Table 3: Optimality measures for model innovations. 
 Bias Temporal autocorrelation 

Variable .non assimE yδ −⎡ ⎤⎣ ⎦  E yδ −⎡ ⎤⎣ ⎦  .non assim
DT yδ −⎡ ⎤⎣ ⎦  DT yδ −⎡ ⎤⎣ ⎦  

A B C D E 
Water levels 0.041 m 0.039 m 31 hours 4 hours 

Salinity  
(ocean stations) 

-3.6 psu -0.4 psu 5.5 hours 5.5 hours 

Salinity  
(river stations) 

0.74 psu 0.2 psu 7 days 5.5 days 

Temperature  
(ocean stations) 

0.3 °C 0.1 °C 12 weeks 1 week 

Temperature  
(river stations) 

-0.4 °C 0.0 °C 12 weeks 12 weeks 

Note: Ocean stations include jetta, sandi, dsdma, red26, tansy. River stations include 
cbnc3, eliot, grays, marsh. 
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Abstract: 
A data assimilation method was used to estimate the variability of three 

ecologically significant features of the Columbia River (CR) estuary and plume: the size 

of the CR plume, the orientation of the CR plume, and the length of the salinity intrusion 

in the CR estuary. Our data assimilation method was based on a reduced-dimension 

Kalman filter that enables fast data assimilation of nonlinear dynamics in the CR estuary 

and plume. Assimilated data included measurements of salinity, temperature, and water 

levels at 13 stations in the CR estuary and at 5 moorings in the CR plume.  

 

The analysis of our experimental results showed that data assimilation played a 

significant role in controlling the magnitude and timing of dynamic events in the CR 

estuary and plume, such as events of extreme salinity intrusion and events of regime 

transitions in the CR plume. Data assimilation also changed the response of the salinity 

intrusion length to variations in the CR discharge, hence imposing a new dynamic on the 

CR estuary. The validation of the assimilated solution with independent data showed that 

these corrections were likely to be realistic, since the assimilated model was closer to the 

true ocean than the original non-assimilated model. 
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3.1 Introduction 
The dynamics of the Columbia River (CR) estuary and plume exert significant 

control over the ecological productivity of the CR ecosystem, specifically over the 

survival of juvenile salmon (Bottom, et al. 2005, Burla, et al. submitted). Since many 

features of these dynamics, e.g., the volume of the CR plume, are hard to measure 

directly in nature,  numerical models are used (Bottom, et al. 2005, Burla, et al. 

submitted) to characterize the variability of these dynamical features. However, such 

numerical models are limited in their ability to realistically simulate nature due to 

uncertainties in model forcings (e.g., offshore winds) and due to approximations in model 

physics (e.g., parameterization of vertical mixing in the estuary). In Chapter 2 of this 

thesis, we showed that errors due to these uncertainties and approximations can be 

reduced through data assimilation—a modeling technique that uses observational data to 

constrain the solution of a numerical. In this article, we describe how data assimilation 

affects the simulated dynamics of the ecologically significant features in the CR estuary 

and plume, specifically the length of the salinity intrusion in the CR estuary, and the 

orientation and the size of the CR plume.  

 

To assimilate observational data, we used recently developed reduced-dimension 

Kalman filter (Lu, et al. 2007)—a nonlinear extension to the classical Kalman filter that 

employs fast neural network model surrogates (van der Merwe, et al. 2007) to expedite 

computation of the Kalman filter equations. The assimilated data included the in situ 

measurements of salinity and temperature from 13 stations in the CR estuary and from 

five moorings in the CR plume. Our validation experiments, against independent data 

from fixed stations and research cruises, showed that data assimilation was more accurate 

than a non-assimilated model in simulating distribution of salinity in the CR estuary and 

plume. However, at the time of experiments, we did not have sufficient observational 

data to reliably quantify the improvements in simulation of such hard-to-measure 

quantities as salinity intrusion length and size of the CR plume, which limited our 

analysis to qualitative comparisons.  
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The analysis of our experimental results, presented in section 3.4, shows that data 

assimilation played a significant role in controlling the simulated magnitude and timing 

of dynamic events in the CR estuary and plume, such as events of extreme salinity 

intrusion and events of regime transitions in the CR plume. Data assimilation was also 

able, with limited success, to correct for some persistent biases in the numerical model, 

such as the underprediction of the salinity intrusion in the CR estuary. However, the 

ability of data assimilation to correct for the underprediction of salinity intrusion was 

limited by the observational data available for the assimilation and by the accuracy of the 

non-assimilated model.  

3.2 Oceanographic setting 
The freshwater output of the CR, the second largest in the U.S., sustains two 

prominent oceanographic and ecological features in the region: the CR estuary and the 

CR plume. Both the CR estuary and the CR plume are highly responsive to variations in 

river, ocean, and atmospheric forcings, and are tightly coupled by the transport of mass 

and momentum through the mouth of the CR estuary. In the following paragraphs, we 

summarize the dynamics of, the modeling successes and challenges in, and the data 

assimilation goals for the CR estuary and plume. 

 

The CR plume: The large buoyant plume of the CR is controlled by a multitude 

of forces. The volume and the size of the CR plume are controlled by the river discharge 

and mixing, while the orientation of the CR plume is controlled by ambient ocean 

currents and local winds. Seasonal changes in the ambient ocean currents and the local 

winds tend to orient the CR plume towards north in fall and winter, and towards 

southwest in spring and summer (Hickey, et al. 1998). However, the instantaneous 

orientation of the CR plume can respond quickly (hours to days) to changes in local 

winds (Garcia-Berdeal, et al. 2002, Baptista, et al. 2005, Hickey, et al. 2005). In fact, it is 

not uncommon that the CR plume has a bi-directional structure during the periods of 

highly variable winds (Hickey, et al. 2005).  

 

In this article, we study the effect of data assimilation on two ecologically 

significant features of the CR plume: the plume size (as measured by the plume’s 
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volume, area, and thickness) and the plume orientation (as manifested by the salinity 

levels at a distributed array of moorings and by the position of the plume’s centroid). 

Burla (Burla, et al. 2007, Burla, et al. submitted) showed that the size and location of the 

CR plume is a good predictor for the survival of juvenile salmon, as they migrate from 

the CR estuary to the ocean. Verification with cruise data, remote sensing data, and data 

from fixed moorings suggest that the non-assimilated model is mostly correct in 

predicting the orientation and the horizontal extent of the CR plume (Baptista, et al. 

2005). However, as shown in section 3.4.1, it was not uncommon for the non-assimilated 

model to mischaracterize the transitions of the CR plume from one direction to another, 

possibly due to errors in wind forcings. 

 

CR estuary: The CR estuary, a classical river-dominated estuary, responds 

quickly to changes in ocean tides, regulated river discharge, and coastal winds. The tidal 

dynamics in the CR is significant (tidal amplitudes of ~3.6 meters) and is driven by the 

non-linear interactions of astronomic tides with complicated bathymetry, non-stationary 

river discharge, and coastal winds (Jay, et al. 1997). Compressed and often stratified, the 

estuarine circulation in the CR is subject to extreme variations in salinity intrusion and 

stratification regimes (Hamilton 1990, Jay, et al. 1990, Baptista, et al. 2005). 

 

An ecologically significant feature of the CR estuary circulation, studied in this 

article, is the salinity intrusion length in the CR estuary, which is controlled by the river 

discharge, tidal mixing, and the density of the ocean water supplied to the CR estuary 

from the continental shelf. The stronger river discharge tends to displace the position of 

the salt wedge further downstream; while the enhanced tidal mixing during spring tides 

counteracts the baroclinic density differences that force salinity upstream. Jay (Jay, et al. 

1990) reported that the daily maximum of the salinity intrusion varies in the modern CR 

estuary from a low of ~28 km, during high river flow conditions, to a high of ~52 km, 

during low river flow conditions. The report by Bottom (Bottom, et al. 2005) identified 

salinity intrusion as a possible factor determining the habitat opportunity for juvenile 

salmon, which requires further investigation using modeling studies. At the time of our 

experiments, the non-assimilated model of the CR estuary underpredicted the length of 
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the salinity intrusion in the CR estuary. For more discussion on model-data comparisons 

in the CR estuary; see section 3.4.1. 

3.3 Data assimilation methods 
3.3.1 Overview of the DA method 

To assimilate observational data into a model of the CR estuary and plume, we 

used the reduced-dimension Kalman filter (Lu, et al. 2007)—a recently developed data 

assimilation method, which is fast, model-independent, adjoint-free, and nonlinear. The 

computational efficiency of the new method comes, in part, from the use of a neural 

network model surrogate (van der Merwe, et al. 2007) that executes forward simulations 

three to four orders of magnitude faster than a traditional numerical circulation code. The 

new method was successfully applied for data assimilation in the CR estuary (Chapter 2 

of this thesis) and, in this research, was extended to the coupled dynamics in the CR 

estuary and plume.  

 

Our implementation of the data assimilation algorithm closely follows the 

description presented in Chapter 2 of this thesis, with the differences in the 

implementation described in section 3.3.4. Following is the short overview of the 

framework for reduced-dimension Kalman filter that was used in our experiments, which 

was described in detail in Chapter 2 of this thesis and in (Lu, et al. 2007): 

1) A long, statistically representative hindcast simulation of the CR system was 

generated using the forward model SELFE (Zhang, et al. submitted). Two such 

hindcast databases were used: database 14 (DB14) for the CR estuary and plume, 

and database 16 (DB16) for the CR estuary. 

2) Samples drawn from the hindcast database in step (1) were used to train a model 

surrogate, using training algorithms developed in (van der Merwe, et al. 2007). 

Because it was not computationally feasible to train the model surrogate in the 

high-dimensional space of the forward model, the model surrogate was trained in 

the subspace spanned by the empirical orthogonal functions (EOFs) of the 

forward model. 
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3) The state of the model surrogate was estimated using a Kalman filter of choice. 

Because the estimated state of the model surrogate was small (50-100 degrees of 

freedom), we choose to use the sigma point Kalman filter– a state-of-the-art, full-

rank Kalman filter (van der Merwe, et al. 2003, van der Merwe 2004).  

4) The output of the Kalman filter was analyzed by reconstructing the estimated state 

and the estimated model error from the EOF subspace, where the model surrogate 

and the Kalman filter operated, to the full space of the model, where many 

analysis and visualization tools operated.  

 

Since all data assimilation experiments in step (3) above were performed in the 

reduced EOF subspace, CPU, memory, and storage requirements for these data 

assimilation experiments were very low. For the CR estuary domain, data assimilation 

was ~100 times faster than the forward model SELFE. For example, using a single AMD 

Athlon©, it took SELFE ~100 days to generate a two-year non-assimilated simulation of 

the CR estuary, while it took only ~2 days for the reduced-dimension KF to assimilated 

two years of observational data. In practice, all these computations were distributed over 

multiple CPU processors, leading to shorter “wall-clock” times. 

3.3.2 Hindcast simulations 

To train the model surrogates and the EOF subspaces (step 2 in section 3.3.1), we 

used model states drawn from two hindcast simulations of the CR system (Baptista, et al. 

2005, Baptista 2006). The first model surrogate was trained using hindcast database 

DB14, which simulated the coupled dynamics of the CR estuary and plume. The second 

model surrogate was trained using hindcast database DB16, which simulated the 

dynamics of the CR estuary, using a high-resolution model nested inside of the DB14 

domain. The hindcast databases were generated using SELFE (Zhang, et al. submitted)—

a finite element, Eulerian-Lagrangian model that solves a set of nonlinear, baroclinic, 

shallow-water equations. The prognostic variables included horizontal velocities, 

salinities, temperatures, and water levels.  The model domains were discretized using 

unstructured horizontal grids (40.000 and 17.000 elements in DB14 and DB16 

respectively), and sigma-z vertical grids (54 and 26 levels respectively).  
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To generate DB14 the following boundary conditions were used:  

• Ocean conditions: Tides were imposed using eight tidal constituents (M2, S2, N2, 

K2, K1, O1, P1, Q1) derived from the data-assimilated tidal model (Foreman 1977, 

Myers, et al. 2001). The sea surface slope (Z0) was imposed based on the daily 

averaged sea-surface height from the navy costal ocean modal (NCOM) (Martin 

2000). Away from the CR plume, ocean temperature and salinity were nudged to 

the NCOM prediction.  

• River inputs: The temperature and the flow of the CR estuary were based on the 

measurements from the USGS station Beaver Army (beaver)12. 

• Atmospheric boundary conditions: The 2D fields of wind stress, atmospheric 

pressure, and surface heat flux were generated using a combination of forecast 

and re-analysis products, which were provided by the National Center for 

Environmental Prediction and Oregon State University. 

 

Boundary conditions for DB16 were similar, except for the ocean boundary in the 

CR mouth, where the time series of salinity, temperature, and elevations, which were 

extracted from DB14, were imposed as the ocean boundary condition in DB16. 

 

The spatial scales, resolved by both hindcast models, were limited by the 

resolution of the numerical grid and ranged from ~30 m in the main channel of the 

estuary, to ~600 m in tidal flats, to ~1 km in the plume, and to 24 km in the coastal ocean. 

The resolved periodic timescales included nonlinear tides (4-6 hours); astronomical tides 

(12-24 hours); spring-neap tidal cycle (~15 days); and seasonal changes in surface heat-

fluxes, river temperature, and river discharge (~1 year). Nonperiodic timescales included 

the response of the CR plume and estuary to weather changes (~2-10 days) and inter-

annual variations in ocean conditions (>1 year).  

                                                 
12 USGS stands for U.S. Geological Survey. Data for station Beaver Army is available at: 
http://waterdata.usgs.gov/usa/nwis/uv?site_no=14246900. 
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3.3.3 Observational system 

The locations of the observation stations used in our data assimilation 

experiments are presented in Figure 15. At each station an array of sensors measured a 

variable combination of parameters, including water level, salinity, temperature, velocity 

profile, wind temperature, and wind velocity. The assimilated data in the CR estuary 

included water level, salinity, and temperature data from 15 CTD sensors and 6 tidal 

gages located at 13 stations in Figure 15.3. The assimilated data in the CR plume 

included salinity and temperature data from 13 CTD sensors located at five ocean 

moorings: risec, rises, risen13, ogi0114, and ogi02 (Figure 15.2). Most of the stations in 

Figure 15 were operated by CORIE15, with the exception of tidal stations tpoint and 

wauna, which were operated by National Atmospheric and Oceanic Administration16, 

and stations risen, risec, and rises, which were deployed as a part of the RISE project17. 

 

In addition to observations from the fixed sensors, which were used for 

assimilation, we used data collected by research cruises in the CR estuary and plume to 

validate our data assimilation experiments. Remote sensing measurements of the surface 

temperature, color, salinity, and velocities were not available or had poor temporal 

coverage during the period of our data assimilation experiments and hence were not used 

for assimilation or validation.  

3.3.4 Implementation of the DA method 

The implementation of the data assimilation method for estuary-only simulation, 

DB16, was described in detail in Chapter 2 of this thesis. The implementation for the 

estuary-plume simulation, DB14, was similar, notwithstanding differences in 

                                                 
13 In DB14 the width of the northward-going jet of the CR plume did not extend as far west as the location 
of the station risen, where observational data for the variability of the northward jet was collected. Since 
assimilating data from risen at it’s actual location  produced unphysical shape of the CR plume, we opted 
for assimilating risen data at the location of risen*—the artificially placed station within the jet of the CR 
plume, located 13 km east of the actual location of risen. The eastern displacement of stations risen* was 
selected to minimize model-data misfits with DB14.  
14 Data from the mooring ogi01 was assimilated only for a short period, since this mooring was lost during 
the 2004 season. 
15 Available at http://www.stccmop.org/corie/observation_network 
16 Available at http://www.co-ops.nos.noaa.gov/. 
17 See http://www.ocean.washington.edu/rise/ 
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implementation that emerged from the higher complexity of the coupled dynamics in the 

CR estuary and plume.  

 

To compute the EOF modes of the coupled estuary-plume model, we used the 

DC-EOF algorithm (Chapter 2 of this thesis), where in the first step of the DC-EOF 

algorithm the EOFs for the plume variables where computed separately from the 

estuarine variables.  After the DC-EOF algorithm merged the preliminary EOFs for 

plume and estuary, we used the first 100 merged EOF for training of the model surrogate, 

capturing 96.5% of the state variance in the CR plume and 98.3% of the state variance in 

the CR estuary. Unfortunately, due to the larger size and higher complexity of the 

coupled CR estuary-plume system, we failed to train a model surrogate that was accurate 

outside of the training interval. Instead, we trained a model surrogate that was accurate 

(within 5.7%) during year 2004, in the summer of which the observational data in the CR 

plume were available. As was discussed in Chapter 2 of this thesis, it is still possible to 

use this model surrogate, trained during year 2004, for hindcast data assimilation during 

the same time interval. The parameters of the process-noise model in DB14 were selected 

using maximum-likelihood criterion of Dee (Dee 1995). 

3.4 Results 
We present the results of data assimilation experiments in two subsections. In 

section 3.4.1, we describe how data assimilation changed the simulated size and the 

orientation of the CR plume, and, in section 3.4.2, we describe how data assimilation 

changed the simulated salinity intrusion length in the CR estuary. In each section, we first 

determine, using independent data, whether data assimilation improved upon the non-

assimilated models in simulating salinity of the CR estuary and plume. Then, we analyze 

how data assimilation changed the representation of ecologically significant features of 

interest in the CR estuary and plume.  
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3.4.1 Size and orientation of the CR plume 

3.4.1.1 Accuracy of the assimilated solution  

To determine whether data assimilation improved the simulated salinity in the CR 

plume, we compared the results of our data assimilation experiments to observations of 

salinity at fixed stations and to vertical profiles of salinity. At stations, where 

observational data were assimilated, data assimilation reduced root mean square (RMS) 

errors in simulated salinity from 2.0 to 1.1 psu at the station rises, from 2.3 to 1.3 psu at 

the station risec, and from 2.2 to 1.2 psu at the station risen. These reductions in errors 

were consistent at all times, and were especially significant during periods when DB14 

had large errors. See the low-pass (T>30h) time series in Figure 16, panels III.a-III.c. For 

example, large errors in DB14 at the station risen on August 5th were substantially 

reduced by data assimilation, as shown in Figure 16, panel III.c.  

 

The validation with independent data from the vertical profiles of salinity showed 

consistent improvement; see Table 1 for the list of RMS errors before and after data 

assimilation. All, but one short cruise in Table 1, showed a reduction in the RMS error. 

An average RMS error over all cruises was reduced by 19%, from 2.5 psu to 2.0 psu. 

Data for one of the research cruises in Table 1 are presented in Figure 17. The research 

cruise in Figure 17 was conducted on July 27th and measured vertical distribution of 

salinity and temperature inside of the CR estuary and in the southern branch of the CR 

plume. For the map of the cruise path see panel III in Figure 17. Vertical profiles of 

salinity and temperature inside of the CR plume are presented in Figure 17 on panels I 

and II respectively. On average, the RMS error for this cruise was reduced from 4.7 psu 

to 3.6 psu for salinity, and for temperature the RMS error was reduced from 2.7 °C to 1.7 

°C. The strongest corrections from data assimilation were applied to vertical profiles of 

temperature, as seen in Figure 17, panels II.a and II.b. For example for the vertical profile 

at 12:16 PST, the RMS error was reduced from 3.3 °C to 0.5 °C. 

 

The validations of our data assimilative model against data from the fixed stations 

and against data from the research cruises showed that data assimilation was more 
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accurate in simulating salinity distribution in the CR plume. However, these validation 

data lacked the synoptic coverage necessary to quantitatively validate the predicted size 

of the CR plume. One source of such synoptic data is the remote sensing data, such as 

airborne salinity measurements and satellite measurements of sea surface temperature, 

ocean color, and chlorophyll. Unfortunately, the airborne measurements of salinity in the 

CR plume were not available during the deployment of the RISE moorings. Our attempts 

to use proxy measurements—such as sea surface temperature, ocean color, and 

chlorophyll—were unsuccessful, primarily due to the extensive cloud cover and high 

uncertainty of comparisons with proxy measurements.  

3.4.1.2 Size and orientation of the CR plume in assimilated and non-
assimilated model 

To characterize changes that data assimilation introduced to the dynamics of the 

CR plume, we compiled Figure 16 that presents the low-pass (T>30h) time series for:  

• Characteristics of the CR plume: Panels I.a-I.c present the volume, area, and 

thickness of the CR plume, as was defined by the 28 psu isohaline. Panels II.a and 

II.b show the east-west and the north-south displacements of the CR plume 

centroid from the seasonal mean.  

• Measurements of salinity in the CR plume, Panels III.a-III.c compare the 

observations of salinity (blue) at stations rises, risec, and risen with the simulated 

salinity from DB14 (green) and from data assimilation (red). Salinity observed at 

risen is compared with modeled salinity extracted at the location of risen*, a 

virtual station located inside of the coastal jet for the CR plume.  

• Plume forcings: Panels IV.a-IV.b show the magnitude of wind velocity in the 

east-west and the north-south directions. The wind velocities were observed at the 

National Oceanic and Atmospheric Administration buoy 46029 and are plotted in 

blue; the velocities that were used as model forcings are plotted in green. Panel V 

shows the observed time series of the river discharge that were used to force the 

river boundary in all models.   

• Snapshots of surface salinity: Panels VI.a-VI.d present four selected cases of the 

CR plume before and after data assimilation. 
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Size of the CR plume: To characterize changes in the size of the CR plume, we 

plotted in Figure 16 the volume, area, and thickness of the CR plume, as was defined by 

the 28 psu isohaline. The comparison of the plume’s size in non-assimilated DB14 (green 

line in Figure 16, panels I.a-I.c) and assimilated model (red line) suggests that data 

assimilation episodically changed the volume and the area of the CR plume, while 

maintaining similar plume thickness at most times. It is likely that the size of the CR 

plume estimated by data assimilation was more representative of the true size of the CR 

plume than the size predicted by DB14, since the timing of the changes in the estimated 

size coincided with periods when data assimilation was correcting for large errors in 

DB14.  

 

To illustrate how correction of large errors in non-assimilated DB14 changed the 

size of the CR plume, we considered two examples: one of a larger plume, on July 9th, 

and one of a smaller plume, on August 8th. On July 9th, the simulated salinity in DB14 

was overpredicted (too saline) at stations risec (Figure 16.III.b) and rises (Figure 

16.III.a), suggesting that the true plume of the CR was larger than predicted by DB14. 

After data assimilation corrected for these overpredictions, the size of the CR plume 

increased, as seen in a snapshot in Figure 16.IV.a and in the time series of the volume and 

area of the CR plume in Figure 16.I.a and 16.I.b. In the second case, on August 8th, data 

assimilation corrected underprediction of salinity at stations rises and risec, resulting in a 

smaller plume, as seen in a snapshot in Figure 16.VI.b and in the time series of the 

volume and area of the CR plume in Figure 16.I.a and 16.I.b.  

 

Orientation of the CR plume: To characterize changes in the orientation of the 

CR plume, we plotted in Figure 16 the deviation of the CR plume from the location of the 

plume’s seasonal centroid, which was located in summer of 2004 within 1.7 km from the 

station risec. As with the size of the CR plume, data assimilation changed the position of 

the centroid episodically, usually coinciding with periods when large errors in non-

assimilated DB14 were corrected. To illustrate the result of these corrections, we selected 

two episodes when the position of the CR plume was changed dramatically by data 
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assimilation. In the first episode, on August 5th, the CR plume was redirected by data 

assimilation from south to north, as a result of correcting for a large overprediction of 

salinity at the station risen and for a smaller underprediction at the station rises, seen in 

Figure 16.III.c and 16.III.a.  In the second episode, on August 25th, the CR plume was 

restructured from a uni-directional to bi-directional, in response to correcting for the 

overprediction of salinity at the station rises.   

3.4.1.3 Summary 

The analysis of the CR plume variability showed that data assimilation changed 

the size and the orientation of the CR plume, primarily in response to correcting for 

episodes of large errors in non-assimilated model (DB14). The comparison of the 

assimilated solution with independent data suggested that these corrections were likely to 

be realistic, since the assimilated model was closer to the true ocean than the non-

assimilated DB14. Since the direct measurements of the area and volume of the CR 

plume were not available, it was impossible to quantify the accuracy of the predicted area 

and volume before and after data assimilation. 

3.4.2 Salinity intrusion in the CR estuary 

3.4.2.1 Accuracy of the assimilated model 

To determine whether data assimilation improved upon the non-assimilated model 

(DB16) in representing salinity intrusion length in the CR estuary, we used four, 

progressively more complex, validation studies: (1) a cross-validation study that used 

data from the fixed observation stations, (2) a validation study that used independent data 

collected by research cruises, (3) a validation study against direct, but sparse, 

measurements of the salinity intrusion length in the CR estuary, and (4) a validation study 

against data at the station eliot that recorded several infrequent events of extreme salinity 

intrusion in the CR estuary.   

 

Cross-validation study: To determine whether on average data assimilation 

improved the simulated salinity in the CR estuary, we used a cross-validation study 

described in Chapter 2 of this thesis. The cross-validation established that data 
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assimilation was effective in reducing salinity errors in the CR estuary. Specifically, 

before assimilation, an average RMS error for 15 salinity sensors in the CR estuary was 

4.3 psu. After assimilation, the salinity RMS error was reduced to 1.2 psu for the 

assimilation stations, and to 3.0 psu for the cross-validation stations.  

 

Validation against cast data: To determine whether data assimilation improved 

the simulated salinity in the navigational channel of the CR estuary, where the length of 

the salinity intrusion is measured, we validated the data assimilation results against data 

collected by research cruises in the navigation channel of the CR estuary. During the 

period of our study, data from two such cruises were available. In the first cruise, on 

September 20th, 2004, the salinity RMS error was reduced from 5.0 to 4.0 psu. In the 

second cruise, shown in Figure 18, the RMS error was reduced from 3.3 to 1.8 psu. In 

addition to the reduction of the RMS error, the visual comparison of vertical profiles for 

non-assimilated DB16 and for data assimilation in Figure 18 suggests that data 

assimilation results were more consistent with observational data. For example, both the 

observational data and the data assimilation results show non-zero bottom salinity of ~2 

psu after 11:45 PST, unlike the non-assimilated DB16 that shows 0 psu salinity after 

11:45 PST.  

 

Validation against observations of the salinity intrusion length: To determine 

whether data assimilation predicted the salinity intrusion length more accurately than 

DB16, we compared the simulated salinity intrusion length in the CR estuary with a few 

direct observations of the salinity intrusion length. During the period of our model study 

(2003-2004) the only available observation of the salinity intrusion length came from the 

research cruise on May 09, 2003; see Figure 18 for the time series of observed vertical 

salinity profiles. To determine the length of the salinity intrusion based on the profiles of 

vertical salinity, we used the time series of the bottom salinity extracted from these 

vertical profiles and shown in Figure 19, panel I. When the observed bottom salinities of 

two consecutive profiles were on different sides of the 2 psu cutoff, we estimated the 

observed salinity intrusion length using linear interpolation. These observed intrusion 

lengths are compared to the predicted lengths in Figure 19, panel II. The model-data 
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comparisons in Figure 19 show that data assimilation better represented the bottom 

salinity in the CR estuary and, as a consequence, better represented the salinity intrusion 

length. For example, data assimilation reduced the RMS error for the bottom salinity 

from 6.0 psu to 3.0 psu, and, when the data were available, the RMS error for the salinity 

intrusion length was reduced from 9.7 to 1.6 km.  

 

Validation against measurements of the strong salinity intrusion events: To 

determine whether data assimilation improved representation of infrequent events of 

strong salinity intrusion in the CR estuary, we compared simulated salinity with 

observations of salinity collected from the station eliot. As seen in Figure 20 

(observational data plotted as a solid line) the sensor at eliot saw salt only occasionally, 

usually during periods of low river discharge and neap tides. Unfortunately, both the 

assimilated and the non-assimilated DB16 failed to propagate salinity as far as eliot. 

Hence, in Figure 20, we compared the observations of salinity at eliot with the simulated 

salinity at the station encu5—an artificial station in the navigational channel of the CR 

estuary, located 4.5 km downstream of eliot.  

 

Comparisons of data in Figure 20 shows that, prior to data assimilation, DB16 

(dashed line in panel I) was able to represent only few events of strong salinity intrusion, 

e.g., on July 27th and on August 11th. After data assimilation (dashed line in panel II), the 

representation of events was greatly improved. For example, all of the salinity intrusion 

events that were registered at the station eliot were reproduced at the station encu5 by 

data assimilation, shown as a dashed line in panel II. The assimilated solution was also 

more accurate in reproducing the timing and magnitude of the salinity intrusion events 

than the non-assimilated DB16, e.g., compare the timing of the event on July 12th shown 

in Figure 20. Unfortunately, the assimilated solution was able to represent the salinity 

intrusion events only when observations of salinity upstream of tpoint were available, 

specifically from the stations mottb and cbnc3. As shown in Figure 20, panel III, when 

observational data from mottb and cbnc3 were not assimilated, the assimilated solution 

lost the ability to represent the events of strong salinity intrusion.  
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3.4.2.2 Comparison of salinity intrusion length in assimilated and non-
assimilated model 

In section 3.4.2.1, we established that data assimilation was more accurate in 

simulating the length of salinity intrusion in the CR estuary than non-assimilated DB16. 

To understand the differences between the dynamics of salinity intrusion length in 

assimilated and non-assimilated model, we:  

1) Compared the daily maximum salinity intrusion length in assimilated and non-

assimilated models; and  

2) Compared the response of the daily maximum salinity intrusion length to river 

discharge in assimilated and non-assimilated models. 

 

Daily maximum salinity intrusion length: To characterize the differences in the 

representation of salinity intrusion length in the assimilated and non-assimilated models, 

we plotted in Figure 21 the time series of the daily maximum salinity intrusion length in 

the CR estuary before and after assimilation. Figure 21 shows that salinity intrusion 

length was longer in assimilated (black line) than in non-assimilated DB16 (gray line), by 

an average of 3.6 km, i.e., the average salinity intrusion length was 32.9 km in DB16 and, 

36.5 km in data assimilation. Although data assimilation was successful in extending the 

average length of salinity intrusion, the absolute maximum of salinity intrusion, which 

usually coincides with period of low river flow and neap tides, remained the same after 

assimilation (~40 km) and was short of the historically observed 52 km (Jay, et al. 1990). 

 

It is likely that inability of data assimilation to propagate the maximum length of 

salinity intrusion demonstrated the limitation of the reduced-dimension Kalman filter—

the data assimilation algorithm used in our experiments. In fact, since the reduced-

dimension Kalman filter estimates the dynamics of the CR estuary in the EOF subspace 

of the forward model, the estimated salinity intrusion can not exceed the maximum length 

in the non-assimilated model. To verify this hypothesis empirically, we compared data 

assimilation results that were computed from two different hindcast models: DB16 that 

had higher maximum intrusion length of 43 km and DB14 that had lower maximum 

intrusion length of 40 km. In Figure 22, we plotted the salinity intrusion length for these 
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two databases before and after data assimilation. Before assimilation (panel a), the 

salinity intrusion length differed between DB14 and DB16 during periods of high salinity 

intrusion and was the same during periods of low salinity intrusion. After assimilation 

(panel b), salinity intrusion length shows similar behavior in both assimilated databases; 

however, as our hypothesis suggested, the assimilated solution based on DB16 showed 

higher salinity intrusion length, by 2 km. This analysis, together with the results of 

validation studies in section 3.4.2.1, suggests that, during periods of low salinity 

intrusion, the estimate of salinity intrusion length is more accurate in the assimilated 

model than in the non-assimilated model. However, during periods of high salinity 

intrusion, the estimate in the assimilated model is at least as accurate as in the non-

assimilated model. 

 

Response to river discharge: To determine whether data assimilation not only 

changed the average salinity intrusion length in the CR estuary, but also changed the 

response of the salinity intrusion length to variation in the CR river discharge, we 

compared the regression relationships for the assimilated (solid line in Figure 23) and the 

non-assimilated (dashed line in Figure 23) model of the CR estuary. These relationships 

regressed the length of the daily maximum salinity intrusion length on the daily average 

river flow. As Figure 23 shows, these regression relationships differed, suggesting that 

the salinity dynamics in the assimilated and non-assimilated model differed. Specifically, 

the assimilated model showed a weaker response to changes in the river discharge (lower 

R2), hence indicating that other factors may play a stronger role in determining the 

salinity intrusion length in the CR estuary. A further validation of regression lines in 

Figure 23 is warranted as more observations of salinity intrusion will become available.  

3.4.2.3 Summary 

Model-data comparisons showed that data assimilation had more realistic 

representation of the salinity intrusion length in the CR estuary than non-assimilated 

DB16. Specifically, data assimilation was able, with limited success, to correct for the 

underestimation of the salinity intrusion length in the non-assimilated model. Data 

assimilation also improved the representation of infrequent events of strong salinity 
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intrusion in the CR estuary, specifically the timing and the magnitude of these events. On 

average, the salinity intrusion length in data assimilation was longer, by 3.6 km, and had 

a weaker response to the variations in the CR flow than non-assimilated model had. In 

spite of multiple improvements, the maximum salinity intrusion length in the assimilated 

model was still too short and was limited by the maximum salinity intrusion length in the 

non-assimilated model. To further improve the prediction of the maximum salinity 

intrusion length, an improvement in the dynamics of the non-assimilated model will be 

needed. 

3.5 Summary and conclusions 
The reduced-dimension Kalman filter was applied to estimate the variability of 

three ecologically significant circulation features of the CR estuary and plume: the size of 

the CR plume, the orientation of the CR plume, and the length of the salinity intrusion in 

the CR estuary. From the analysis of our data assimilation estimates, we determined that: 

1) Data assimilation was able to constrain the simulated dynamics of the CR estuary 

and plume, producing more accurate estimates of salinity than the non-assimilated 

model; 

2) Data assimilation changed the simulated size and the orientation of the CR plume, 

usually in response to correcting for episodes of large errors in the non-

assimilated model; 

3) Data assimilation corrected, with a limited success, for the underestimation of the 

simulated salinity intrusion length in the CR estuary, and improved the 

representation of infrequent events of strong salinity intrusion; 

4) Data assimilation estimates had weaker response of the salinity intrusion length to 

variations in the CR discharge. 
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Figure 15: Maps of the computational domain and observation stations. 
(1) The computational grid for DB14. Maps of observation stations in the CR plume (2) 
and the CR estuary (3). The map of stations in panels 2 and 3 is overlaid over the 
bathymetry. Stations risen, risec, and rises were operated by the RISE project 
(www.ocean.washington.edu/rise/). Tide gages tpoint and wauna were operated by 
National Oceanographic and Atmospheric Agency. Stations risen* and encu5 on panels 2 
and 3 are locations of virtual stations that were used in our experiments.  
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Figure 16: Time series of CR plume parameters and forcings. 
(I) Size of the CR plume. (II) Displacement of the plume’s centroid from the seasonal mean, which in 
summer of 2004 was located within 1.7 km of risec. (III) Salinity at stations rises, risec, and risen. (IV) 
Wind velocities at the NOAA buoy 46029. (V) River discharge at the USGS station Beaver Army. (VI) 
Snapshots of surface salinity from DB14 and DA. On panels (I-V) observational data is in blue, DB14 is in 
green, and DA is in red. Time series in panels (I-V) were filtered using low-pass filter (T>30h). 
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Figure 17: Data from research cruises on July 27th, 2004. 
(I) Salinity and (II) temperature profiles from research cruise on July 27th, 2004. (III) Map 
of the research cruise. (I.a and II.a) Vertical profiles of salinity and temperature in the CR 
plume. (I.b and II.b) A selected profile of salinity and temperature in the CR plume. 
Times of the casts are in PST. The wire frame in panel (III) highlights the period of the 
research cruise shown in panel (I and II).  
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Figure 18: Data from research cruises on July 27th, 2004. 
 (I) Salinity profiles from research cruise on May 6th, 2003. (II.a) Salinity profile at 11:28. 
(II.b) Salinity and (II.c) and temperature profiles at 12:50. (III) Map of the research 
cruise. The wire frame in panel (III) highlights the period of the research cruise shown in 
panel (I).  
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Figure 19: Salinity intrusion length interpolated from measurements of bottom salinity. 
(I) Bottom salinity measured by research cruise on  May 6th, 2003. For the map of the 
cruise see Figure 18, panel III. (II) Salinity intrusion length during the cruise on May 6th, 
2003. Observational data is marked with (o), DB16 data is marked with (+), and DA data 
is marked with (.). Observations of salinity intrusion were estimated from the time series 
of the bottom salinity using linear interpolation. 
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Figure 20: Daily salinity maximums observed at eliot and simulated at encu5.  
(I) Model data is from DB16; (II) model data is from data assimilation; and (III) model 
data is from data assimilation run, where data from cbnc3 and mottb were not used in 
assimilation.  



109 

 

 
 
Figure 21: Daily salinity maximum of salinity intrusion length (SIL) before (gray) and 
after data assimilation (black)
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Figure 22: Daily salinity maximum of salinity intrusion length (SIL) as represented by 
two hindcast databases: DB14 (marked with ‘+’) and DB16 (marked with ‘.’).  
Top panel, SIL before assimilation. Bottom panel, SIL after assimilation. 
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Figure 23: Regression relationships for river discharge (Q) vs. salinity intrusion length 
(SIL).  
Regression line for DA is plotted in solid line and for DB16, in dashed line. 
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Tables 
Table 1: Root mean square errors (RMSE) for cast data in the CR plume. 
Date RMSE cruise description 

  
Before DA 
(DB14) 

After DA Change 
(%) location 

# of 
casts 

7/10/04 2.4 2.1 9ogi02 15 
7/11/04 1.6 1.3 19ogi02 53 
7/12/04 1.2 1.5 -27mouth 11 
7/13/04 2.0 1.7 12north/center/south 89 
7/14/04 1.5 1.3 11mouth 14 
7/15/04 1.6 1.3 20north 78 
7/20/04 1.9 1.7 10mouth 13 
7/24/04 1.9 1.7 13ogi02 25 
7/25/04 2.0 1.8 10ogi02/south 51 
7/27/04 4.7 3.6 24estuary + plume south 72 

all 2.5 2.0 19     
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Abstract  
A very fast nowcast-forecast system was developed for the circulation of the 

Columbia River (CR) estuary. The computational efficiency of the developed system was 

due to the new technology for model-surrogate prediction and reduced-dimension 

Kalman filtering. The developed system was used daily to assimilate three days of 

observational data and to predict the state of the estuary up to 3 days in the future. The 

assimilated data included measurements of salinity, temperature, and water levels from 

fixed in situ sensors in the CR estuary. Our validation studies showed that the model-

surrogate forecast was as accurate as the forecast using the traditional circulation model, 

and, when observational data were assimilated, the errors in the simulation of the CR 

estuary were reduced substantially. The computational cost of the developed nowcast-

forecast system was only a fraction (1/100) of the cost of the traditional non-assimilated 

circulation model.  
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4.1 Introduction 
Accurate descriptions of the current and future state of the coastal ocean are in 

demand by government agencies, industries, researchers, and recreational users18. Some 

of this descriptions are already available from operational observation systems like 

PORTS®19 and from forecast and nowcast of the ocean state simulated with circulation 

models like POM (Blumberg, et al. 1987), ROMS (Haidvogel, et al. 2000), and SELFE 

(Zhang, et al. submitted). However, observations of the ocean tend to be sparse in space 

or time, and  the circulation models may have erroneous predictions. Data assimilation 

(DA) is a modeling technique that addresses these limitations by constraining the 

dynamics of a circulation model using sparse observations of the ocean. Recently, an 

operational assimilative nowcast of a coastal ocean circulation became a reality 

(Robinson 1999, Martin 2000, Kindle 2005, Lermusiaux 2007). However, an assimilative 

nowcast of circulation in a coastal margin—e.g., in estuaries, tidal inlets, and river 

plumes—is yet to be developed.  

 

A major impediment for developing DA nowcasts for coastal margin circulation 

is the high computational cost of assimilative models. For example, (Ngodock, et al. 

2006) reported that computational cost of an advanced DA algorithm can be equivalent to 

500 simulations of a traditional circulation model. To enable fast DA in coastal margin 

models, we recently developed a technology for model-surrogate prediction (van der 

Merwe, et al. 2007), which enables fast DA by approximating a slow traditional 

circulation model with a fast neural network. To train the neural network, a long hindcast 

simulation of the coastal ocean is usually used. Model surrogates were previously used by 

us (in Chapter 2) to expedite DA of the baroclinic circulation in the CR estuary. In this 

article, we report on the extension of this hindcast system to a real-time nowcast-forecast 

system and on the application of the developed nowcast-forecast system in support of 

research cruises in the CR estuary.  

                                                 
18 For an overview of possible applications see: http://www.mercator-
ocean.fr/html/applications/index_en.html 
19 Physical Oceanographic Real-Time System® operated by National Oceanic and Atmospheric 
Administration and accessible at http://tidesandcurrents.noaa.gov/ports.html.  
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4.2 Coastal observatory for the CR estuary 
The application of our DA nowcast-forecast system was for the CR estuary. The 

CR estuary, a classic river-dominated estuary, is a highly energetic and dynamic system 

that responds quickly to changes in ocean tides, regulated river discharge, and coastal 

winds. The tidal dynamics in the CR are significant (tidal amplitudes of up to 3.6 m) and 

are driven by the non-linear interaction of astronomic tides with complicated bathymetry, 

non-stationary river discharge, and coastal wind (Jay, et al. 1997). Compressed and often 

stratified, the estuarine circulation in the CR is subject to extreme variations in salinity 

intrusion and stratification regimes (Jay, et al. 1990).  

 

CORIE—a coastal observatory for the CR estuary and plume—studies the 

dynamics of the CR estuary using a real-time observation network (Baptista 2006) and a 

modeling system for the 3D baroclinic circulation of the CR estuary and the adjacent 

ocean (Baptista, et al. 2005). At the time of our experiments, CORIE observatory had 

three major components:  

1) A real-time observation system that included a network of fixed stations and 

research cruises. Fixed stations utilized in our experiments are shown in Figure 

24. At each station, an array of sensors measured a variable combination of 

parameters, including water level, salinity, temperature, velocity, air temperature, 

and wind velocity. 

2) A modeling system for simulating the 3D baroclinic circulation of the CR estuary, 

plume, and adjacent coastal ocean. The model simulations used in our 

experiments were generated using an Eulerian-Lagrangian model SELFE (Zhang, 

et al. submitted) and were forced with a combination of realistic atmospheric, 

ocean, and river forcings. 

3) A hindcast and forecast DA system, based on the RDKF algorithm (Lu, et al. 

2007). The hindcast DA system was described in Chapter 2. In this paper, we 

describe the implementation of the RDKF algorithm in a nowcast system.  
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4.3 Data assimilation method 
To assimilate observational data into a model of the CR estuary and plume, we 

used the RDKF algorithm (Lu, et al. 2007)—a recently developed DA method, which is 

fast, model-independent, adjoint-free, and nonlinear. The computational efficiency of the 

new method comes, in part, from the use of a neural network model surrogate (van der 

Merwe, et al. 2007) that executes forward simulations three to four orders of magnitude 

faster than a traditional numerical circulation code. The new method was successfully 

applied for hindcast DA in the CR estuary (Chapter 2 of this thesis) and, in this research, 

was extended to the real-time nowcast. Following is the short overview of the framework 

for the RDKF that we used in our experiments: 

1) A long, statistically representative hindcast simulation of the CR system was 

generated using the forward model SELFE (Zhang, et al. submitted). Similarly to 

Chapter 2 of this thesis, we used hindcast database DB16 for training of the model 

surrogate. 

2) Samples drawn from the hindcast database in step (1) were used to train a model 

surrogate, using training algorithms developed in (van der Merwe, et al. 2007). 

Because it was not computationally feasible to train the model surrogate in the 

high-dimensional space of the forward model, the model surrogate was trained in 

the subspace spanned by the empirical orthogonal functions (EOFs) computed 

from the hindcast database. 

3) The state of the model surrogate was estimated using a Kalman filter of choice. 

Because the estimated state of the model surrogate was small (50 degrees of 

freedom), we choose to use the sigma point Kalman filter–a state-of-the-art, full-

rank Kalman filter (van der Merwe, et al. 2003).  

4) The output of the Kalman filter was analyzed by reconstructing the estimated state 

and the estimated model error from the EOF subspace, where the model surrogate 

and the Kalman filter operated, to the full space of the model, where many 

analysis and visualization tools operated.  
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Since all DA experiments in step (3) above were performed in the reduced EOF 

subspace, CPU, memory, and storage requirements for these DA experiments were very 

low, as will be demonstrated later in section 4.4.2.  

4.4 Implementation of the real-time nowcast system 
The real-time nowcast-forecast system was implemented using the RDKF 

algorithm, which requires the following list of inputs for its computation:  

1) A model surrogate, which is used to expediently update the ensemble of model 

states; 

2) An initial condition for the state and the error covariance; 

3) A description of the process noise model that characterizes uncertainty in the 

prediction of the model surrogate and in the accuracy of the model forcings; 

4) A times series of systems forcings, such as wind stress, river discharge, and ocean 

tides; and 

5) Observations of the environment. 

 

The implementation of the real-time nowcast was conducted in two stages. In the 

first, off-line, stage, we trained a model surrogate and calibrated process-noise models of 

the Kalman filter, items 1-3 above. For a brief summary of experimental procedures used 

in this off-line stage see section 4.4.1, or see Chapter 2 of this thesis for a detailed 

description of methods. In the second, on-line, stage, we estimated the state of the CR 

estuary using a RDKF, which was implemented as a real-time nowcast-forecast system. 

The real-time nowcast system, described in section 4.4.2, was responsible for the timely 

collection of inputs and observational data that were used by the DA system, items 4 and 

5 above.  

4.4.1 Off-line training of the model surrogate and process-noise 
models 

To implement the nowcast system, we used the model surrogate and the process-

noise model that were trained and validated in our hindcast experiments, described in 

detail in Chapter 2 of this thesis. Here, we briefly summarize the training procedures and 

the results of the validation studies. 
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To train the model surrogate, required by the RDKF for fast computation of the 

ensemble forecast, we used training algorithms described in (van der Merwe, et al. 2007). 

The model surrogate was trained to approximate the variability of the CR estuary, as was 

represented by a six-year-long hindcast simulation of the CR estuary (Baptista, et al. 

2005, Baptista 2006). We will later refer to this simulation as DB16. To enable training 

of the model surrogate, the simulated dynamics of the CR estuary were projected on 50 

leading EOFs, computed from the hindcast DB16. Both the EOF and the model surrogate 

were trained on five years of simulation data (from 1999 to 2003) and were validated for 

prediction on 1.5 years of simulation data (from 2004-2005). As documented in Chapter 

2 of this thesis, the EOFs were equally accurate, within 2% of the normalized mean 

square error, on both training and test datasets. The model surrogate was slightly more 

accurate on training dataset (1.5%) than on test dataset (2.3%).  

 

To calibrate the process-noise model, we used the n-fold empirical cross 

validation (Bishop 1995)—a machine learning techniques that reuses observational data 

to effectively calibrate and validate a DA algorithm. Our process-noise models included 

uncertainty in model forcings and model prediction. The uncertainty in model forcings 

were characterized by a scaled variance of the forcings, which included: river discharge 

and temperature; ocean tides, temperature, and salinity; wind stress; and atmospheric 

fluxes. The uncertainty in model prediction was approximated by the scaled variance of 

the model surrogate error. The scaling parameters for the forcing and model errors were 

optimized using an n-fold empirical cross validation. 

4.4.2 Real-time nowcast system 

To generate operational nowcasts of the CR estuary, we implemented machinery 

that ensured timely execution of programs that prepared the inputs for the DA algorithm, 

executed the DA algorithms, and post-processed outputs of the DA algorithm.  

 

The dataflow diagram for the developed nowcast machinery is shown in Figure 

25. As seen from this diagram, the developed DA nowcast model relied not only on the 
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external forcings, like the atmospheric weather forecast, but also on the output of the 

regional ocean model. We used the output of this regional ocean model to provide ocean 

boundary conditions for the DA model, which was embedded in the domain of the 

regional ocean model. The five main components of the nowcast machinery were: 

1) Acquisition of the model forcings, which included atmospheric forcings from the 

National Center for Environmental Prediction, measured river discharge and 

temperature from the USGS station Beaver Army20, and ocean boundary 

conditions from the Navy Coastal Ocean Model (Martin 2000) and from the tidal 

model of Foreman (Foreman 1977). The acquisition time for all forcing files was 

~ 2 hours. 

2) Regional ocean forecast with a traditional circulation model SELFE. This 7-day 

forecast was for the CR estuary, CR plume, and the adjacent coastal ocean. It took 

~30 hours to generate this 7-day forecast using a single AMD Athlon© processor.  

3) Acquisition of observational data. Observational data from the CORIE network 

were acquired using near real-time telemetry and for the station tpoint, using 

automated downloads from the NOAA website21. The acquisition time for 

observational data was ~15 minutes. 

4) Assimilative nowcast and forecast. Once the inputs to the assimilative model were 

ready, a DA run was executed, which assimilated the previous two and a half days 

of observational data. The initial conditions from this assimilated run were then 

used for a three day forecast using model surrogate. It took under 5 minutes to 

generate both the hindcast and the forecast of the CR estuary. 

5) Post processing of model results. The outputs of the DA nowcast and model 

surrogate forecast were processed using automated scripts and displayed as static 

and dynamic images on the web. The complete post-processing cycle took ~45 

minutes. 

 

                                                 
20 USGS stands for U.S. Geological Survey. Data for station Beaver Army is available at: 
http://waterdata.usgs.gov/usa/nwis/uv?site_no=14246900. 
21 NOAA stands for National Oceanic and Atmospheric Administration.  Data for the station tpoin available 
at http://www.co-ops.nos.noaa.gov/. 



123 

 

The timing diagram for the developed nowcast-forecast system is presented in 

Figure 26. For each of the tasks, the filled rectangle shows the timing of the task 

execution, and the solid black line shows the length of the dataset produced by this task. 

As seen from the timing diagram, the DA model was executed once a day, resulting in a 

hindcast assimilation of the past two days of observational data, a single nowcast state 

estimate, and a three-day forecast. Because it took only five minutes to run the nowcast-

forecast model, it is possible in the future to run the assimilative model more frequently 

than once a day, hence providing constant updates to the nowcast estimate of the CR 

estuary. 

4.5 Evaluation of results 
To determine the accuracy of the developed DA system, we computed an estimate 

of the average error for a hindcast-nowcast-forecast. The errors were averaged over 365 

hindcast-nowcast-forecast cycles and over 8 water level sensors, 13 salinity sensors, and 

15 temperature sensors. In each cycle of this experiment the state of the CR estuary was 

estimated for one previous day, using a hindcast-nowcast cycle, and was forecasted using 

model surrogate for two more days. The time series of the average errors are presented in 

Figure 27. In addition to the error of the developed DA system (in red), we plotted 

average errors for the non-assimilated forecast with the model surrogate (in green) and 

with the traditional circulation model SELFE (in blue).  

 

The time series of the average RMS errors in Figure 27 show that: 

1) When observational data were not assimilated, the model-surrogate forecast was 

as accurate as the forecast with the traditional circulation model, but only at a 

fraction of the computational cost, ~10,000 faster.  

2) When observational data were assimilated, the accuracy of the CR estuary 

simulation was substantially improved, while the computational cost remained 

very low, ~100 faster than the non-assimilated forecast with the traditional 

circulation model SELFE.  

3) When DA estimates were used to initialize the model-surrogate forecast, the 

positive impact of DA reduced quickly and the skill of the model-surrogate 

forecast did not differ substantially from the non-assimilated forecast. For 
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example, for salinity errors, the forecast skill improved only slightly, by <1 psu 

over the next 10 hours. In contrast, for water levels errors, the forecast skill 

degraded by ~0.1m for ~10 hours after the forecast initialization, possibly due to 

an initialization shock. 

4.6 Application for adaptive data collection 
Both the assimilated and the non-assimilated forecast of the CR estuary are 

routinely used to support adaptive field sampling programs in the CR estuary. An 

example of such program is the study of the microbiological diversity in the estuary 

turbidity maximum—a biologically unique region of the estuary, located close to the 

moving edge of salinity intrusion. During such sampling an ensemble of physical and 

microbiological data are collected using research vessel Forerunner, which is guided 

using model forecasts that are accessed using Internet-enabled computer on board of the 

research vessel.  

 

An example of the salinity transect collected during one of such sampling 

programs on June 5th is displayed in Figure 28. Qualitatively, the assimilated forecast 

reproduced observations salinities better. For example, assimilated forecast represented 

the observed non-zero salinities after 13:34 hours, which non-assimilated forecast failed 

to represent.  

4.7 Conclusions 
A real-time assimilative hindcast-nowcast-forecast system was implemented for 

the CR estuary. The DA system used the RDKF as a DA algorithm and a model surrogate 

as a forecast algorithm. The DA system was validated and applied in a field exercise that 

involved adaptive data collection. The DA system was successful in assimilating 

observational data and reducing errors in simulated circulation of the CR estuary. When 

data were not assimilated, model-surrogate forecast was as accurate as the non-

assimilated forecast with the traditional circulation model SELFE. However, the 

computational cost of the DA system was only a fraction of the cost of the traditional 

circulation model: ~100 times faster when observational data was assimilated, and 

~10,000 when no data were assimilated in the model-surrogate forecast. The very low 
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computational cost of the our DA system shows great promise for enabling 

computationally inexpensive, real-time DA nowcasts and forecasts in challenging coastal 

environments, such as the baroclinicaly driven circulation in a river-dominated estuary.  
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Figure 24: Map of the bathymetry in the computational domain.  
Overlaid are the names and locations of the observation stations. Stations marked with 
the circles were used in the calibration of the DA algorithm. Stations marked with a 
triangle were used in the real-time forecasts. 
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Figure 25: Data flow in the nowcast/forecast system.  
MS—model surrogate. RDKF—reduced-dimension Kalman filter. b.c.—boundary 
conditions. 
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Figure 26: Timing diagram for the nowcast/forecast system. 
MS—model surrogate. RDKF—reduced-dimension Kalman filter. 
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Figure 27: Root mean square error (RMSE) averaged over 365 hindcast-nowcast-forecast 
cycles. (a) RMSE for water levels, (b) RMSE for salinity, (c) RMSE for temperature. 
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Figure 28: Profiles of observed (a) and modeled (b, c) salinity in the Columbia River 
estuary on June 5th.  
(b) profiles before assimilation. (c) profiles after observations from fixed stations were 
assimilated. (d) map of the transect. 
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Abstract 
Proliferation of coastal observatories necessitates an objective approach to 

managing of observational assets. In this article, we used our experience in the coastal 

observatory for the Columbia River estuary and plume to identify and address common 

problems in managing of fixed observational assets, such as salinity temperature and 

water level sensors attached to pilings and moorings. Specifically, we address the 

following problems: assessing the quality of an existing array, adding stations to an 

existing array, removing stations from an existing array, validating an array design, and 

targeting of an array toward data assimilation or monitoring. 

 

Our analysis was based on a combination of methods from oceanographic and 

statistical literature, mainly on the statistical machinery of the best linear unbiased 

estimator. The key information required for our analysis was the covariance structure for 

a field of interest, which was computed from the output of assimilated and non-

assimilated models of the Columbia River estuary and plume. The network optimization 

experiments in the Columbia River estuary and plume proved to be successful, largely 

withstanding the scrutiny of sensitivity and validation studies, and hence providing 

valuable insight into optimization and operation of the existing observational network. 

Our success in the CR estuary and plume suggest that algorithms for network 

optimization can play a significant role in the design of other ocean observatories, such as 

the Ocean Observation Initiative and the Integrated Ocean Observing System that are 

currently under development in the U.S. 
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5.1 Introduction 
A series of reports identified integrated ocean observatories as the backbone of 

future scientific exploration and science-based management for coastal resources 

(National Research Council 2003, Pew Oceans Commission 2003). As a result, the U.S. 

is planning to spend upward of $500 million a year on developing two complementary 

ocean observatories: the Ocean Observation Initiative (OOI) (National Research Council 

2003), with the goal to advance the scientific understanding of the ocean, and the 

Integrated Ocean Observing System (IOOS) (U.S. Commission on Ocean Policy 2004), 

with the goal to support scientifically informed management of the coastal ocean. 

Although the design-objectives of the two observatories are different, they both are 

expected to involve sensors deployed on fixed and mobile observational platforms, such 

as moorings, gliders, costal radars, and satellite sensors. Hence, many common 

challenges are expected in the design of these observatories. One such common challenge 

is finding such an optimal co-placement of fixed sensors that will maximize the amount 

of collected information, exploit the synergy with existing observational networks, and 

minimizing the development and operational costs of the observatory.  

 

A possible strategy for the optimal sensor placement can be found using methods 

from the theory of optimal experiment design (Fedorov 1972, Silvey 1980, Pukelsheim 

1993)—a subfield of formal statistics. In the past, many of these methods were applied to 

design observational arrays in oceanography (Bretherton, et al. 1976, Hackert, et al. 1998, 

Oke, et al. 2007) and meteorology (Berliner, et al. 1999, Bishop, et al. 2000). However, 

the application of these methods to design of coastal observatories is not common (She, 

et al. 2006). Recent advances in modeling of the coastal ocean circulation show great 

promise in providing information necessary for extending the application of optimal 

design methods to design of coastal observatories. In the research reported in this article, 

we studied how outputs of a circulation model and a data assimilation system can be used 

to find an optimal placement of sensors in a coastal observatory for the Columbia River 

(CR) estuary and plume. 
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The CR estuary and plume provide great examples of challenging dynamical 

environments, where an increasing number of observational and modeling assets are 

emerging, hence necessitating an objective approach for optimal placement of new and 

existing sensors. Recent observational assets in the CR estuary and plume include several 

multi-annual observational arrays, such as the CORIE observational arrays for the estuary 

and plume (Baptista 2006), the RISE observational array (Hickey 2004) for the CR 

plume, and an array of tide gages and atmospheric buoys operated by National 

Atmospheric and Oceanic Administration. Complementary to these observational assets, 

several realistic models were recently developed for the CR estuary and plume (Baptista, 

et al. 2005, MacCready, et al. 2007) and Chapter 2 of this thesis.  

 

To understand how much of the CR estuary and plume variability is already 

known from the existing observation and modeling studies, and how much remains to be 

learned from deploying new observational assets, we sought answers to six specific 

questions regarding optimal placement of fixed observational assets in the CR estuary 

and plume:  

1) How informative are the existing observational networks about the variability of 

salinity, temperature, and water levels in the CR estuary and plume? 

2) How robust is the existing observational network in the CR estuary and plume to 

data dropouts? 

3) Which sensors in the existing CR network collect redundant information and, 

hence, can be removed from the network? 

4) Where in the CR estuary and plume should new sensors be placed? 

5) How can the CR network be optimized for monitoring or for data assimilation? 

6) How can the validity of proposed optimal sensor placements be validated? 

Many of these questions are common to other observatories with fixed 

observational assets and, hence, can be extended for optimal placement of fixed 

observational assets in the national OOI and IOOS observatories. 

 

To understand how to best place existing and future observational assets in the 

CR estuary and plume, we adopted a set of classical algorithms from the statistical and 
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oceanographic literature, including the best linear unbiased estimator (BLUE) (Ripley 

1987), the exchange-type optimization algorithm (Fedorov 1994), and the array modes of 

Bennett (Bennett 1985, 1992). The BLUE estimator , our main analysis algorithm, uses 

the correlation length-scales for the field of interest (e.g. salinity in the CR estuary) to 

quantify how observing this field at locations of fixed stations reduces the uncertainty in 

the remaining, unobserved, locations in the CR estuary. To characterize these correlation 

length-scales in the CR, we used the temporally-averaged statistics about simulated fields 

(salinity, temperature, and water levels) and errors in these simulated fields, which were 

computed from non-assimilative (Baptista, et al. 2005, Baptista 2006) and assimilative 

(Chapters 2 and 3 of this thesis) models of the CR estuary and plume. To verify 

optimality of the proposed sensor-placements, we compared the predicted utility of the 

sensor-placement (predicted with the BLUE estimator) against the true utility (computed 

using a data assimilation experiment). 

 

Our sensor-placement experiments in the CR estuary and plume proved to be 

successful, largely withstanding the scrutiny of sensitivity and validation studies and, 

hence, providing valuable insight into optimization and operation of the existing 

observational network. For example, we found that the existing water level network in 

the CR was very informative and robust, unlike the salinity network that was too sparse 

and too prone to data dropouts to reliably measure errors in the simulated salinity of the 

CR estuary. Using an optimization algorithm, we developed strategies for removing 

redundant stations and adding new, more informative stations in the CR estuary and 

plume. For example, the optimized array in the CR plume was predicted to be more 

informative than the historic array, even though the optimized array used only three 

moorings instead of five historic moorings.  

5.2 Observatory for the CR estuary and plume 
The test-bed for our network optimization experiments was CORIE—an 

observatory for the CR estuary and plume. The CR estuary, a classic river-dominated 

estuary, is a highly energetic and dynamic system that responds quickly to changes in 

ocean tides, regulated river discharge, and coastal winds. The tidal dynamic in the CR is 

significant (tidal amplitudes of up to 3.6 m) and is driven by the non-linear interaction of 
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astronomic tides with complicated bathymetry, non-stationary river discharge, and 

coastal wind (Jay, et al. 1997). Compressed and often stratified, the estuarine circulation 

in the CR is subject to extreme variations in salinity intrusion and stratification regimes 

(Jay, et al. 1990, Baptista, et al. 2005). The CR plume is a dominant hydrographic feature 

on the U.S. west coast that plays an important role in the transport of dissolved and 

particulate matter for hundreds of kilometers along and across the continental shelf 

(Barnes, et al. 1972, Grimes, et al. 1996). The far field of the CR plume has a 

predominant orientation towards north in fall and winter, and towards southwest in spring 

and summer (Hickey, et al. 1998). The near field of the CR plume has a shorter response 

time (hours to days) and can react quickly to changes in the local wind (Garcia-Berdeal, 

et al. 2002, Baptista, et al. 2005, Hickey, et al. 2005). 

 

CORIE studies the dynamics of the CR estuary using a real-time observation 

network (Baptista 2006) and a modeling system for 3D baroclinic circulation of the CR 

estuary and the adjacent ocean (Baptista, et al. 2005). CORIE data and modeling products 

(Baptista, et al. 2005, Baptista 2006) are used to support the research and development of 

novel modeling techniques (Zhang, et al. 2004, Zhang, et al. submitted), fisheries 

research (Bottom, et al. 2005, Burla, et al. 2007, Burla, et al. submitted), and the CR 

ecosystem management (USACE 2001). At the time of our experiments, CORIE 

observatory had three major components:  

1) A real-time observation system that included a network of fixed stations and 

research cruises. Fixed stations utilized in our experiments in sections 5.4 and 5.5 

are shown in Figure 29. At each station, an array of sensors measured a variable 

combination of parameters, including water level, salinity, temperature, velocity, 

air temperature, and wind velocity. Stations risen, risec, and rises in Figure 29 

were operated by the RISE project (Hickey 2004), and stations tpoint and wauna 

in Figure 29 were operated by National Atmospheric and Oceanic Administration. 

2) A modeling system for simulating 3D baroclinic circulation of the CR estuary, 

plume, and adjacent coastal ocean. The model simulations used in our 

experiments were generated using an Eulerian-Lagrangian model SELFE (Zhang, 
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et al. submitted) and were forced with a combination of realistic atmospheric, 

ocean, and river forcings.  

3) A data assimilation system (Chapter 2 of this thesis), which was based on a 

recently developed, reduced-dimension Kalman filter (Lu, et al. 2007)—a fast, 

nonlinear extension to the classical Kalman filter.  

 

Results of recent hindcast simulations (Baptista, et al. 2005, Baptista 2006) 

showed good predictive skill in both the CR estuary and the plume, even under such 

challenging conditions as high river discharge and quickly changing winds. Specifically, 

water levels and salinities were represented robustly in the estuary across wide spatial 

(from channels to tidal flats) and time (from tidal to inter-annual) scales. In the plume, 

models showed reliable skill in representing fronts and direction of the plume (as 

compared to remote sensing and field data). Recent research on the application of data 

assimilation to the CR estuary and plume (Chapters 2 and 3 of this thesis) showed that 

data assimilation was able to further improve simulated water levels, salinity, and 

temperature in the CR estuary and plume.  

5.3 Optimal experiment design methods 
In the existing oceanographic and meteorological literature, the methods of 

optimal experiment design fall into two large categories: (1) methods based on a 

framework of statistical experiment design (Fedorov 1972, Silvey 1980, Pukelsheim 

1993) and (2) methods based on a framework of adjoint sensitivity fields (Langland, et al. 

1996, Baker, et al. 2000). The seminal article by Berliner (Berliner, et al. 1999) 

reconciled the two frameworks and identified some theoretical limitations to using the 

adjoint sensitivity fields for guiding placement of adaptive measurements. From the two 

methodological frameworks, we used the framework of statistical experiment design to 

find optimal placement of sensors in the CR estuary and plume, since the statistical 

framework is closely aligned with the framework of Kalman filter, the data assimilation 

scheme of choice in the CORIE observatory. An additional consideration for choosing 

the statistical framework was the ease with which it can be applied to other computational 

domains and variables, and the independence of the framework from many details of a 

forward model and a data assimilation system.  
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To implement the framework of statistical experiment design in the CR estuary 

and plume, we used the following methodological choices and approximations: 

• To evaluate how the location of a potential measurement contributed to reducing 

the uncertainty about the field of interest (e.g. salinity or errors in salinity), we 

employed the statistical machinery of the BLUE estimator (Ripley 1987).  

• To characterize the covariance structure for the field of interest, required by the 

BLUE estimator, we used a realistic, stationary, low-rank approximation to the 

covariance of state and error fields. These covariance approximations were 

computed based on the output of non-assimilative (Baptista, et al. 2005, Baptista 

2006) and assimilative (Chapters 2 and 3 of this thesis) models of the CR estuary 

and plume. 

• To compare alternative designs of observational arrays, we used two different cost 

functions: the trace (mean square error) and the determinant (volume) of the 

posterior covariance (Fedorov 1994).  

• To find optimal array configuration, we used several modified versions of the 

exchange-type optimization algorithm (Fedorov 1994). 

• To quantify the statistical redundancy of the existing observational array, we 

analyzed the eigen-spectrum of the observation covariance matrix, using analysis 

similar to the array modes of (Bennett 1985, 1992). 

5.3.1 Best Linear Unbiased Estimator 

To evaluate how the location of a potential measurement contributed to reducing 

the uncertainty about the field of interest (e.g. salinity or errors in simulated salinity), we 

employed the statistical machinery of the BLUE estimator (Ripley 1987). The BLUE 

estimator—also know as a Gauss-Markov theorem, kriging, and an objective analysis 

method—was introduced as early as 1963 (Gandin 1963) in meteorology and 1976 

(Bretherton, et al. 1976) in oceanography. In the following description of the BLUE 

estimator, we adopted the exposition of the method from (Fedorov 1994). 
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Consider a discretized random field ( , )x x kξ=  where ξ  is the spatial index on 

the computational grid and k is the index of the discrete time. The statistics of the field x 

are approximated using a stationary mean ( ) [ ( , )]x E x kξ ξ=  and a stationary covariance 

matrix ( , ') cov( ( ), ( '))x xξ ξ ξ ξ=C . In geosciences, we are often interested in predicting 

the field values: 

( ) ( , )p px k x kξ= H   (25) 
at spatial locations pξ ξ∈ , defined by the selection operator Hp, given sparse, noisy 

observations of the field:  

( ) ( , )yy k x kξ ε= +H  , (26)  

defined by the selection operator Hy and the Gaussian noise 2~ (0, )Nε σ I . For example 

in the CR estuary, we are interested in predicting the values of salinity inside of the 

estuary ( )px k , given sparse in situ measurements of salinity ( )y k .  

 

The solution to this prediction (interpolation) problem Eq. (25) is the well-known 

BLUE estimator, which is defined as: 
1( ) ( ( ) )p p py yyx k x y k Hx−= + −C C  (27) 

1
pp pp py yy yp

−= −D C C C C   (28) 
where x  is the mean state, Cpp is the prior covariance, and Dpp is the posterior 

covariance. The cross covariance Cpy and the observations covariance Cyy in (Eqs. 27-28) 

are defined as: 

2( )

T
py p y

T
yy y y σ

=

= +

C H CH

C H CH I
. (29) 

The diagonal elements of the prior and posterior covariance matrices Cpp(ξ, ξ) and Dpp(ξ, 

ξ) in Eq. (28) are the prior and the posterior variance of the field xp, which characterize 

our uncertainty about the field values before and after the measurements are taken, e.g., 

the lower variance indicates a higher certainty about the field. The off-diagonal elements 

of the covariance matrices Cpp(ξ, ξ’) and Dpp(ξ, ξ’) indicate how strongly the field values 

are correlated for any two spatial locations ξ and ξ’. For example, the stronger the cross 

correlations, the fewer measurements will be required to achieve small posterior 

uncertainty Dpp. 
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Eq. (28) of the BLUE estimator shows that additional information from 

observations reduces the posterior uncertainty Dpp, as compared to the initial (prior) 

uncertainty Cpp. Eqs. (4 and 29) also show that, for linear selection operators Hy and Hp, 

the posterior uncertainty Dpp only depends on the locations of observation and prediction 

points and does not depend on the value of the field at these locations. 

5.3.2 Optimization criteria 

In optimal experiment design, we are interested in selecting, based on some 

criterion of optimality, the best observation strategy from a set of all possible strategies. 

One such criterion of optimality is the size of the posterior covariance Dpp (Eq. 28), i.e., 

the smaller posterior covariance indicates a higher certainty about the field. However, the 

set of covariance matrices does not possess a natural order; hence, a cost function 

( )ppJ D  needs to be defined in order to map a set of posterior covariance matrices to the 

ordered set of real numbers. In our experiments, we used two such cost functions: the 

minimum mean square error (MSE) and the minimum determinant (DET) of the posterior 

covariance Dpp. 

 

The first cost function that we used was the MSE, which for a fixed number of 

predictions points xp is measured by the trace of the posterior covariance Dpp: 

( ) trace( )pp pp iJ λ= =∑D D , (30) 
where trace(.)  is the trace of a matrix, and λi is the ith eigenvalue of the covariance matrix 

Dpp. The trace of the matrix Dpp is defined as a summation of the diagonal elements of 

the matrix Dpp, which is equivalent to the sum of the posterior variances (posterior 

uncertainties) at all prediction points xp. Eq. (30) shows that minimizing for the trace 

(MSE) criterion is the same as minimizing for the smallest average eigen-value of the 

matrix Dpp. The advantage of using the MSE criterion is that it is the same criterion as 

used by the Kalman filter and the variational data assimilation (Bennett 2002). The 

drawback of the MSE criterion is the high computational cost of computing Eq. (30), 

since it is computed in the space of prediction points xp, which is usually larger than the 

space of observations y. 



141 

 

 

The second cost function that we used was the determinant (DET) of the posterior 

covariance: 

( ) det( )pp pp iJ λ= =∏D D  , (31) 
where det(.)  is the determinant of the matrix and λi is the ith eigenvalue of the covariance 

matrix Dpp. The DET criterion is equivalent to the product of the eigen values, hence 

minimizing for the DET criterion is equivalent to minimizing for the smallest volume of 

the covariance Dpp. The advantage of using the DET criterion is due to computational 

efficiency that comes from evaluating Eq. (31) in the space of observations y. For 

example, Fedorov (Fedorov 1994) showed that the minimum of det( )ppD  is equivalent to 

the maximum of det( )yyC . That is, the minimum volume of Dpp (the posterior 

uncertainty) is achieved at the maximum volume of Cyy (the observation covariance). 

Computing det( )yyC  is usually computationally more efficient than computing det( )ppD .  

5.3.3 Optimization algorithm 

To find the minimum of the cost function in Eqs. (30 and 31), we defined the 

following optimization problem:  

arg min ( )
o f

o ppJ
∈

⎡ ⎤= ⎣ ⎦
Y Y

Y D , (32) 

where 1{ ,..., }f ny y=Y  is the set of all possible observations and o f∈Y Y  is the set of 

optimal observations that minimizes cost function ( )ppJ D . To search for the minimum of 

the optimization problem in Eq. (32), we used several variants of the exchange-type 

algorithm. The basic exchange-type algorithm, as described in (Fedorov 1994), iterates 

over the following two steps:  

1) Delete observation oy− , chosen from the set of set of candidate stations, that 

contributes the least to minimizing the optimization criteria ( )ppJ D :  

arg min ( )
o o

o pp
y

y J
−

−

∈

⎡ ⎤= ⎣ ⎦
Y

D  (33). 

2) Add observation ly+ , chosen from the set of all feasible observations, that 

contributes the most to minimizing the optimization criteria ( )ppJ D : 
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{ }
arg min ( )
o f o

o pp
y

y J
+

+

∈ −

⎡ ⎤= ⎣ ⎦
Y Y

D  (34). 

Iterating over the delete and add steps continues until ( )ppJ D  decreases. After each 

successful iteration, the active set of optimal observations is updated as following: 

o o o oy y− += − +Y Y . 

 

In practice, we implemented the delete and the add steps (Eqs. 33-34) differently 

for the MSE and the DET criteria. For the MSE criteria, we implemented the 

optimization algorithm as a direct search through the set of all active observations oY  

(delete step) and through the set of all feasible observations f o−Y Y  (add step). For the 

DET criteria, we used a computationally more efficient algorithm (Fedorov 1994) that 

operates in a smaller space of observations y. The modified algorithm uses the following 

delete and add steps to find a minimum of the det( )ppJ = D : 

Delete: 1arg max
o o

o yy
y

y c
−

− −

∈

⎡ ⎤= ⎣ ⎦
Y

 (35) 

Add: 1

{ }
arg min
o f o

o yy
y

y c
+

+ −

∈ −

⎡ ⎤= ⎣ ⎦
Y Y

 (36) 

where 1
yyc−  are the diagonal elements of matrix 1

yy
−C , and oy−  and oy+  are the 

observations that correspond to the largest ( oy− ) and the smallest ( oy+ ) value in the vector 

1
yyc− .  

 

Although the exchange-type algorithm (Eqs. 33-34) is guaranteed to converge to a 

fixed point, this fixed point is not guaranteed to be the global minimum of the 

optimization problem (Eq. 32) (Fedorov 1994). To limit the likelihood of convergence to 

a suboptimal local minimum, we restarted the optimization algorithm using multiple 

random configurations of the initial observation network. Alternatively, we often reduced 

the exchange-type algorithm to the pure add- or delete-algorithm, both of which have a 

unique, but suboptimal minimum. In section 5.1, we compare the optimization results 

using all three modifications of the exchange algorithm. 
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5.3.4 Choices of the prior covariance 

To define our prior knowledge about the field of interest, we used two distinct 

choices of the prior covariance: the state and the error covariance. The state covariance 

characterizes the uncertainty about the current state of the system with respect to the 

mean state. The error covariance characterizes the uncertainty about the accuracy of the 

model prediction. The observation locations optimized using the state covariance are 

optimal for reconstructing the state of the system without the aid of a numerical model; 

that is for monitoring of the system state. The observation locations that are optimized 

using the error covariance are optimal for reconstructing the error field of the model; that 

is, for improving the model simulation through a data assimilation procedure. 

 

The state covariance: To characterize the covariance structure for the state 

variables, such as salinity and temperature in the CR estuary, we used an empirical 

covariance: 

( )( )state TE x x x x⎡ ⎤= − −⎣ ⎦C , (37) 
where the samples of states x were approximated by model states extracted from a long 

hindcast database. The primary choice for computing the state covariance matrix 
pp

stateC  

was the CORIE hindcast database DB14 that included both the CR estuary and plume and 

that did not use data assimilation. For sensitivity experiments in section 5.5.1, we 

computed the state covariance based on two additional datasets: the non-assimilated 

DB16 and the assimilated DB14. The design of DB16 was similar to DB14; however, the 

numerical grid of DB16 had a higher resolution and was restricted to the CR estuary. The 

data assimilation method was described in Chapter 2 of this thesis. 

 

The error covariance: To characterize the covariance structure of model errors, 

such as errors in simulated salinity and temperature, we used a scaled time-average of the 

forecast error covariance matrices: 

1

1 ( )
n

error
xx

k
k

n
α −

=

= ∑C P  (38) 

where ( )xx k−P  is a forecast error covariance computed by the data assimilation system 

described in Chapter 2 of this thesis, n is the number of averaged time steps, and α is the 
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inflation factor that accounts for a possible inconsistency between the predicted and the 

true size of the forecast error covariance. The inflation factor α, which establishes a 

correct balance between the model error and the observation error in the Eq. (29), was 

computed using the following formula: 

1

( ) ( ) ( )

1 ( )

observed predicted
yy yy

n
predicted T
yy xx

k

trace trace trace

k
n

α

−

=

⎡ ⎤= −⎣ ⎦
⎡ ⎤

= ⎢ ⎥⎣ ⎦
∑y y

C R C

C H P H
, (39) 

where observed
yyC  and predicted

yyC  are the observed and the predicted error covariance at the 

locations of existing observation stations, and R is the covariance of observation errors.  

 

Since the size of the state and error covariance (Eqs. 37-38) can be quite large 

(~106x106), we operated with a factorized form of these covariance matrixes:  
T T T

pp = =p p p pC H CH H LSL H ,  (40) 
where Hp is the selection operator for the prediction points, L is the matrix of leading 

eigen-vectors for a covariance matrix C, and S is the diagonal matrix of the eigen-values. 

The eigen-spectrum S was truncated to improve computational performance. Typically, 

we retained more than ~95% of the variance, with the exact truncation value determined 

through a series of sensitivity studies (not presented here). The efficient implementation 

of the BLUE formulas (Eq. 27) with the factorized covariance matrix (Eq. 40) is detailed 

in Appendix 1.  

5.3.5 Advantages and limitations of the proposed method 

There are several advantages to using the optimal experiment design method 

described in sections 5.3.1-5.3.4. The method is generic, e.g., we used it for placing 

salinity sensors in the CR estuary and plume, but similar methods were also used for 

finding optimal sensor-locations in many open ocean (Bretherton, et al. 1976, Hackert, et 

al. 1998, Oke, et al. 2007) and meteorological (Berliner, et al. 1999, Bishop, et al. 2000) 

applications. The method does not require development of an adjoint model; in fact, it 

can be used without any model input, in cases were high resolution observational data are 

available. The method is closely related to the theory of data assimilation, since the MSE 
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cost function (Eq. 30) that we used in our experiments is the same cost function as used 

by most sequential and variational data assimilation algorithms (Bennett 2002). 

 

The two main limitations of the method stem from the assumption of stationary 

statistics and from the choice of the optimization criteria. It is likely that the stationary 

(averaged in time) covariance matrix is well-suited for optimizing fixed observational 

assets, since averaging in time is likely to provide an adequate proxy for large-scale 

correlations of persistent features that can be monitored well with a fixed observational 

array. However, it is also likely that the stationary covariance matrix may not suffice for 

adaptive sampling of a fast-moving feature like a plume front. In the case of adaptive 

measurements, the fine-scale correlations associated with fronts are likely to be non-

stationary and will require an accurate prediction of their structure, for example using a 

data assimilation system. For more references on adaptive measurements see (Berliner, et 

al. 1999, Daescu, et al. 2003, Ogren, et al. 2004, Bertozzi, et al. 2005, Leonard, et al. 

2006). 

 

The second limitation is rooted in the optimization criteria. Both the MSE and the 

DET criteria are designed to find measurements that are optimal for state estimation; that 

is, for reconstructing the field given sparse measurements. However, the observations can 

be targeted for applications other than the state estimation, for example for detecting 

extreme events or for tracking the location of a maximum concentration. In these cases, 

observations optimized using the MSE and the DET criteria may not be optimal, and 

using alternative optimization criteria can be prudent (Fedorov 1994, Berliner, et al. 

1999, Chang, et al. 1999). 

5.4 Design of the observational array in the CR estuary 
and plume 

To design an optimal array for the CR estuary and plume, we applied optimal 

experiment design methods from section 5.3, to answer three questions regarding the 

optimality of the existing observational array in the CR estuary and plume and regarding 

the optimality of future sensor-placements: 

1) How informative is the existing CORIE array, described in section 5.2? 
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2) Which CORIE stations provided redundant information, and hence, can be 

removed from the existing array without a significant loss in the collected 

information? 

3) Where in the CR estuary and plume should new salinity sensors be placed? 

In most of our experiments, we compared the array designs based on two choices 

of the covariance matrix: the state and the error covariance, hence optimizing sensor 

placements towards monitoring of the CR estuary and plume or towards data 

assimilation. The suggested array designs were validated using data assimilation 

experiments, presented in section 5.5. 

5.4.1 Quality of the existing array 

To characterize the quality of the existing observational array in the CR estuary, 

we estimated the information content and the redundancy of the existing array. The 

information content was estimated using the R2 statistic and the redundancy, using the 

eigen-spectrum of the observation covariance matrix. From our experiments, we found 

that the existing array was too sparse to adequately represent the statistics of salinity 

errors (R2 of ~62%). The array was also redundant; however, this redundancy was not 

sufficient to account for gaps in observations of salinity that occurred due to bio-fouling 

of salinity sensors. The details of the experiments are presented below. 

 

Information content: To determine whether the existing array was representative 

of state and error variability in the CR estuary, we computed the R2 statistic using the 

following formula:  

2 ( )
100* 1

( )
pp

pp

trace
R

trace
⎛ ⎞

= −⎜ ⎟⎜ ⎟
⎝ ⎠

D
C

, (41) 

where Cpp and Dpp are the prior and the posterior covariance matrixes, and trace(.) is the 

trace of the matrix. The R2 statistic measures the percentage of the prior variance 

(uncertainty), explained by the observations. For example, an R2 of 0% indicates 

uninformative measurements that cannot reduce the prior uncertainty about the field of 

interest. An R2 of 100% indicates highly informative measurements that can be used to 
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reconstruct the field of interest in its entirety, short of inaccuracies in the prior covariance 

Cpp.  

 

From our experiments in the CR estuary, we found that the salinity, temperature, 

and water level arrays were highly informative of the state variability (R2 of >90%). 

However, the arrays were less informative of the error variability in the estuary; R2 was 

as low as ~62% for salinity errors, and between 80% and 90% for temperature and water 

level errors. The results of the experiments are presented in Figure 30, where the R2 

values for the state (panel 1) and the error (panel 2) covariance are plotted against the 

number of sensors retained in the array. Sensors in Figure 30 are ordered from the most 

important (first sensor) to the least important (last sensor). The order of sensors was 

determined using the sensor-reduction sequences discussed in section 5.4.2.  Results in 

Figure 30 suggest that investing in additional salinity sensors in the CR estuary is likely 

to yield the most informative array, since the current array can explain only ~62% of the 

salinity error variance, but more than 80% of the temperature and water level error 

variance. 

 

Redundancy: To determine whether the existing salinity array in the CR estuary 

provided redundant information, we analyzed the eigen-spectrum of the observation 

covariance matrix22 Cyy (Eq. 29), using the analysis method similar to the array modes of 

Bennett (Bennett 1985, 1992). From our experiments, we found that the existing salinity 

array was slightly redundant and could be further optimized at the cost of decreased 

robustness to data dropouts. For example, Figure 31 shows the truncation error ei (Eq. 42) 

plotted against the number of retained eigen-values λk. From a total of 14 salinity sensors, 

99% of the variance was captured by 8 modes for the state covariance and by 10 modes 

for the error covariance. The comparison of the truncation errors between the state and 

the error covariance in Figure 31 shows that more sensors were required for data 

assimilation than for monitoring of the CR estuary, suggesting that the error covariance 

had shorter correlations scales than the state covariance.  

                                                 
22 The state covariance was computed based on observations of salinity. The error covariance was 
computed based on model-data misfits for DB14.  
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The truncation error ei in Figure 31 was computed using the following formula: 
max

1 1
1

ki

i k k
k k

e λ λ
= =

= −∑ ∑ , (42) 

where λk is the kth eigen-value of the observation covariance matrix Cyy, kmax is the 

number of all eigen-values, and i is the number of retained eigen-values. 

 

Robustness of the CORIE array to data dropouts: To study the robustness of 

the existing CORIE array to data dropouts, we plotted in Figure 32 the time series of the 

R2 values (Eq. 41) for salinity, temperature, and water level arrays. Figure 32.a shows the 

number of active sensors in May-October 2004. Figure 32.b shows how the change in the 

number of sensors affected the R2 statistic, which measured the ability of the CORIE 

array to represent salinity, temperature, and water level errors in the CR estuary. The 

results in Figure 32 show that the information content of the salinity array was most 

sensitive to data dropouts, with the R2 values varying between 20% and 60%.  

5.4.2 Removing redundant sensors from the network 

To determine which salinity sensors in the CORIE network provided redundant 

information, and hence, can be removed from the existing array without a significant loss 

in the collected information, we applied the deleting procedure (Eq. 33) together with the 

MSE criterion (Eq. 30) to sequentially remove redundant sensors from the salinity array 

in the CR estuary. Table 2 presents the order in which the salinity sensors were removed 

and the corresponding R2 values for the truncated arrays. In general, the suggested order 

in Table 2 was logical. For example, sensors that were removed first, such as marsh, 

eliot, and cbnc3, were located upriver and saw salt only occasionally. In contrast, sensors 

that were removed last, such as sandi, dsdma, and jetta, were located in the mouth of the 

CR estuary and saw large variation in salinity at each tidal cycle.  

 

Analysis of R2 values for the truncated arrays in Table 2 suggests that many 

sensors in the array were equally important. For example, it took removing four sensors 

in the error-based array (Table 2 columns IV and V) to change the value of R2 from 62% 

to 61%, which suggests that these four sensors had equally small effect on the value of 
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R2, and hence, the order in which this sensors were removed can be easily altered. To 

determine whether there was a single most important or least important salinity sensor in 

the CR estuary, we conducted two additional experiments described below.   

 

Most important sensor: To determine which single salinity sensor was most 

important, we computed R2 (Eq. 41) values for arrays that had only one active salinity 

sensor in the CR estuary. Based on our experiments, shown in Table 3 columns II and III, 

we could not locate a single most important salinity sensor. Instead, we found that most 

salinity sensors were equally important in the CR estuary, since each had similar value of 

R2. For example, there were at least seven sensors, each of which was able to explain 

between 70% and 80% of the state variability. We also found that a single sensor can 

explain a much higher percentage of the state variance (as much as 79%) than the error 

variance (no more than 14%).  

 

Least important sensor: To determine which single salinity sensor was least 

important, we computed the R2 (Eq. 41) values for arrays with one of the salinity sensors 

in Table 3 removed. The results of the experiment, columns IV and V, show that, while 

the impact of an individual sensor varied, removing a single sensor had very little impact 

on the R2 of the remaining sensors. For example, removing a single salinity sensor led to 

a decrease in R2 of no more than 1.1% for the state and 4.6% for the error variance.  

5.4.3 Adding salinity sensors to the existing CORIE network 

To find optimal placement of new salinity sensors in the CR estuary and plume, 

we reduced the exchange-type algorithm to several sequential add-steps (Eq. 34). We 

considered two realistic scenarios: adding one salinity sensor in the CR estuary and re-

organizing the existing salinity sensors in the CR plume. In the estuary, our optimization 

procedure placed the new salinity sensor in the North Channel, leading to an improved R2 

for the salinity errors (from 62% to 69%). In the plume, the optimization procedure 

placed two sensors north and one station south of the CR mouth. The three optimally 

placed salinity sensor in the CR plume were more informative (R2 of 23% for salinity 

errors) than the five historical sensor; the R2 value for the historical plume sensors risen, 
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risec, rises, ogi01, and ogi02, shown in Figure 29, was 18%. The comparisons of the 

arrays optimized using the error and the state covariance showed that both arrays had 

similar configuration in the estuary and plume. The detailed description of the logistical 

constraints and the experimental results follow.   

 

Logistical constraints on the placement of sensors: To characterize some of the 

logistical constraints that are likely to arise in the deployment of new salinity sensors in 

the CR estuary and plume, we added the following constraints to the optimization 

problem (Eq. 32). We constrained the locations of feasible salinity sensors to areas 

deeper than 10 m in the plume and deeper than 4 m in the estuary. We constrained the 

domain of interest, defined by the operator Hp in Eq. (25), to the CR plume for placing 

the plume sensors, and to the CR estuary for placing the estuarine sensors. We further 

constrained our search by deploying candidate sensors at the depth of the highest 

variability at each horizontal location, hence reducing the three-dimensional optimization 

problem to a two-dimensional one. The experiments in this section were for May-

September 2004.  

 

Adding salinity sensor in the CR estuary: The results of the array-optimization 

in the CR estuary are presented in Figure 33. The configurations for both the state (panels 

s.1, s.2, and s.3) and the error covariance (panels e.1, e.2, and e.3) are presented. The top 

and the middle panels depict the local uncertainty reduction 2
localR  (from Eq. 43 below) 

before (panels s.1 and e.1) and after (panels s.2 and e.2) the new salinity sensor was 

added. The bottom panels (s.3 and e.3) depict the map of the cost function that shows the 

added value of placing the next salinity sensor at one of the logistically feasible locations 

that satisfy logistical constraints described above. The added value was characterized by 

an increase in the global R2 value (Eq. 41).  

 

The local uncertainty reduction values 2
localR  on panels e.1-2 and s.1-2 were 

computed for each spatial location x(i) using the following formula: 
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where 2
localR  is the local uncertainty reduction, and Cpp(i,i) and Dpp(i,i) are the prior and 

the posterior variances at the spatial location with the index i. Figure 33 plots the 

maximum over depth 2
localR , hence showing the maximum extent of horizontal 

correlations between the observation sensors and the rest of the estuary. The correlation 

length scales in the CR estuary, shown in Figure 33, were spatially dependant, with 

longer correlation length scales along the channels of the estuary. 

 

Results in Figure 33 show that both the state- and the error-based configurations 

agreed on placing the next salinity sensor in the CR estuary close to the river end of the 

North Channel. Both optimal locations were in the shallower water (4.9 m depth), ~300 

m away from each other. The maps of the cost function in panels s.3 and e.3 showed that 

most of the location in the North Channel of the CR estuary were equally beneficial, 

hence provided additional information for the operational staff of the CORIE 

observatory. Placing the next salinity sensor in the North Channel of the CR estuary 

contributed slightly to uncertainty reduction for the state-based array, improving R2 from 

96% to 97%. However, the new salinity sensor had a higher impact on the error-based 

array, improving R2 from 62% to 69%. Although these increases in the average R2 were 

modest, the local R2 in the North Channel of the estuary increased substantially, from 

~50% to >80% in Figure 33, panel e.2. 

 

Adding salinity sensors in the CR plume: The results of the array-optimization 

in the CR plume are presented in Figure 34 for the state covariance and in Figure 35 for 

the error covariance. The panels in a top row on both figures display the prior salinity 

variance (panel 1) and the local uncertainty reduction 2
localR  (panel 2) before any salinity 

sensors were added in the CR plume. The panels below the top row display the added 

value of placing new salinity sensors in the CR plume. Panel 3 depicts the map of the cost 

function that shows the added value of placing the next salinity sensor at one of the 

feasible sensor-locations in the CR plume. The added value was characterized by the 
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increase in the global R2 value (Eq. 41).  Panel 4 shows the increase in local uncertainty 

reduction 2
localR  (Eq. 43) after the new sensor was added in the CR plume. Panels 3 and 4 

show three consecutive iterations of the algorithm, each sequentially adding another new 

salinity sensor in the CR plume.  

 

Comparison of the optimal designs in Figures 34 and 35 shows a remarkable 

agreement between the state- and the error-based design. Both designs place two salinity 

sensors north and one salinity sensor south of the CR mouth. These configurations 

contrast the historic array designs in the CR plume that favored sampling in southern and 

central plume; for an example of historical array, see three RISE and two OGI sensor on 

Figure 29.2. A possible explanation for this difference is that historic arrays were biased 

towards sampling of the plume’s southern branch—the dominant orientation of the CR 

plume in summer. In contrast to the historic designs, the proposed optimal designs in 

Figures  34 and 35 stress the importance of placing multiple sensors in the northern 

plume in order to determine the extent of the plume’s northern propagation.   

 

To compare the optimality of the proposed salinity-array designs in the CR plume 

with that of the historic arrays, we list the computed R2 values (Eq. 41) for the historic 

and the proposed arrays in Table 4. Table 4 shows that the proposed arrays had 

consistently higher R2 values than the historic arrays with comparable number of 

moorings. For example, the error-based array with three optimally placed moorings had 

higher R2 value (23%) than the RISE array with three moorings (15%) and the combined 

RISE+OGI array with five moorings (18.7%).  

 

As we mentioned earlier, it is likely that the ogi01 and ogi02 sensors will be 

redeployed in the CR plume. An optimal design shown in Figures 34 and 35 places both 

moorings north of the CR mouth. However, given only two moorings, it may seem 

beneficial to deploy one mooring north and one south of the CR mouth. It turns out that 

the modified design, with one mooring north and one south, is only marginally 

suboptimal in comparison to the suggested optimal design in Figures 34 and 35. For 

example, the map of the cost function (Figures 34 and 35, panel 3, iteration 2) shows that 
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the second location in the northern plume is only marginally better than the location in 

the southern plume: R2 of 17.9% vs. 16.6% for the error array and 71.0% vs. 71.2% for 

the state array. Hence, we suggest that it is best to redeploy OGI moorings north and 

south of the CR mouth, in contrast to the existing, less informative configuration of the 

OGI array, displayed in Figure 29.2. 

5.5 Verification of the proposed array designs 
To verify the optimality of the arrays designed for CR estuary and plume in 

section 5.4, we answered the following four questions about the validity of our array-

design methods: 

1) What were the theoretical limitations of our design algorithm? In section 

5.3.5, we identify the limitations of our design algorithm, which suggested that 

the arrays that we designed using the MSE criterion are likely to be optimal for 

data assimilation and for monitoring the variability of the CR estuary and plume. 

However, these arrays may not be optimal for detecting occurrence of extreme 

events, such as an event of unusually high salinity intrusion.  

2) Was the model that we used to compute the prior statistics representative of 

the physical variability in the CR estuary and plume? From the past studies 

(Baptista, et al. 2005, Baptista 2006) and Chapters 2 and 3 of this thesis, we know 

that, at the time of our experiments, assimilated and non-assimilated models were 

capable of realistically representing variability of salinity, temperature, and water 

levels in the CR estuary and plume. To determine how differences among these 

models influenced the optimal placement of sensors, we conducted a sensitivity 

study described in section 5.5.1, which used four different datasets and three 

different lengths of the dataset. 

3) How sensitive was the optimal sensor placement to changes in the 

optimization criteria and the optimization algorithm? To determine the 

sensitivity of optimal sensor placement, we conducted two studies in section 5.5.1 

that examined the sensitivity to the choice of the optimization criteria, MSE vs. 

DET, and to the choice of the optimization algorithm, full exchange-type 

algorithm vs. add- and delete-only algorithms. 
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4) How accurately did the BLUE estimator predict the utility of alternative 

sensor placements? In section 5.5.2, we present the results of the cross-validation 

study, where we used data from existing salinity sensors to verify the predicted 

utility of several alternative designs. We verified the BLUE predictions of R2 

values using a data assimilated experiment that computed the true value of error 

reduction at the locations of validation sensors.  

5.5.1 Sensitivity studies 

To determine whether the proposed salinity arrays in section 5.4.3 were sensitive 

to changes in experimental procedures, we studied the sensitivity of these optimal arrays 

to changes in the optimization criteria, the optimization algorithm, and the length and the 

type of the dataset that was used for computing of the prior covariance. From our 

experiments, we found that the design of these salinity arrays was strongly sensitive to 

the choice of the optimization criteria, but was not very sensitive to the choice of the 

optimization algorithm or to the choice of the dataset. To select between the arrays 

designed using the MSE and the DET criteria, we used our scientific judgment and 

selected array configurations optimized using the MSE criterion, since the MSE is also 

the criterion used by data assimilation.  

 

Sensitivity to optimization criteria: To determine how the choice of the 

optimization criteria influences the optimal placement of salinity sensors in the CR 

estuary and plume, we reproduced sensor-placement experiments from section 5.4.3 

using two different optimization criteria: the MSE criterion (Eq. 30) and the DET 

criterion (Eq. 31). The reproduced experiments included adding new salinity sensor in the 

CR estuary, results shown in Figure 36.1, and adding three new sensors In the CR plume, 

results shown in Figure 36.2. Sensor locations optimized using the MSE criterion, 

marked with “o” in Figure 36, differed from sensor locations optimized using the DET 

criterion, marked with “+”. For example in the plume (Figure 36.2), the MSE criterion 

distributed the salinity sensor throughout the CR plume, while the DET criterion 

clustered the salinity sensors in the high-variance area, located close to the CR mouth. 

We speculate, based on the limited results from Figure 36 and more extensive 
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experiments not presented here, that locations selected by the DET criteria tend to cluster 

in the region of higher variance, while the MSE criteria tend to yield more distributed 

observation networks.  

 

Sensitivity to optimization algorithm: To determine how sensitive the optimized 

locations of salinity sensors were to changes in the optimization algorithm, we compared 

optimization results using the full exchange-type algorithm, described in section 5.3.3, 

with the results from the modified add-only algorithm, used in sections 5.4.2, and the 

delete-only algorithm, used in section 5.4.3. The sensitivity experiment compared the R2 

values from 1000 random initializations of the full exchange-type algorithm (displayed as 

frequency bars in Figure 37) with the deterministic results of the modified algorithms 

(marked with vertical lines in Figure 37). To enable this computationally expensive 

experiment, we considered a small optimization problem, where the vertical locations of 

five salinity sensors at station red26 were optimized to fully represent the vertical 

variability of the salinity error at the location of red26.  

 

Experimental results in Figure 37 show that the exchange-type algorithm 

produced array designs with a range of R2 values (from 91.5% to 92.4%), which in 

several occasions were somewhat higher than the R2 values computed by the 

deterministic add-only (R2=92.1%) and delete-only (R2=92.3%) algorithms. All three 

optimization algorithms produced arrays with the R2 higher than an average randomly 

initialized array (R2=89%). It is very likely that some of the arrays optimized using the 

exchange-type algorithm were at or close to the global optimum. These experimental 

results suggest that multiple initializations of the full exchange-type algorithm are likely 

to find better array designs. However, the add-only and the delete-only algorithms are 

also likely to find good approximations to the globally optimal array design.  

 

Sensitivity to the length and the type of the dataset: To determine how 

sensitive the location of the next salinity station in the CR estuary was to the type of the 

dataset that was used in computing of the prior covariance Cpp, we repeated the 

experiment from section 5.4.3 using four different datasets: assimilated DB14, non-
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assimilated DB14, non assimilated DB16, and a scaled time-average of prior error Cerror 

(Eq. 38). To determine the sensitivity to the length of the dataset, we repeated the same 

experiment using the following three lengths of the dataset: 1/2 year, 1 year, and 6 years. 

We found that the placement of the salinity sensor in the CR estuary was not very 

sensitive to the type or to the length of the dataset. At most, the locations of the new 

salinity sensor were ~1.5 km apart.  

5.5.2 Validation experiments 

To determine whether the BLUE estimator accurately predicted the utility of 

alternative observation strategies in the CR estuary, we used a validation procedure that 

leveraged existing observations of salinity in the CR estuary. From our experiments, we 

found that the BLUE estimator over predicted the R2 values by 10-20%. However, the 

BLUE estimator correctly predicted relative importance of alternative salinity sensor 

placements, suggesting that the optimal designs of salinity arrays in section 5.4 were 

likely correct, even though the BLUE estimates of their utility, the R2 values, were likely 

too optimistic. The details of the validation strategy and the detailed analysis of the 

experimental results follow. 

 

We used the following algorithm to validate the predicted utility of a candidate 

salinity array using a data assimilation experiment:  

1) We chose a validation station where the error reductions were computed using 

available observational data. We used two such stations—red26 and am169—

each of which had three vertically spaced salinity sensors. 

2) We predicted, using the BLUE estimator (Eqs. 27-28), how assimilating data from 

the existing salinity sensors can reduce salinity errors at the location of the 

validation station. To predict the performance of a data assimilation system, our 

BLUE estimator used the MSE criterion, the salinity error covariance matrix (Eq. 

38), and a two-week-long period in September of 2004. We also considered 

several alternative configurations of the observational network. In each network, 

one of the existing salinity sensors was removed from the assimilation. 
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3) We verified the BLUE predictions of salinity error reductions, computed in item 2 

above,  by assimilating salinity data from candidate arrays using the data 

assimilation method described in Chapter 2 of this thesis. 

 

The results of the experiments for the salinity validation stations red26 and am169 

are presented in Tables 5 and 6. The alternative arrays are ranked based on their predicted 

R2 values. The arrays with lower R2 values indicate salinity sensors with highly valuable 

observations, since removing them from the assimilation reduced the data assimilation 

accuracy at validation station significantly.  

 

The results in Tables 5 and 6 show that the BLUE estimator consistently over 

predicted the R2 values at both validation stations, by about 10-20%. For example, the 

BLUE estimator predicted that using all sensors (last line in Tables 5 and 6) the errors in 

models salinity will be reduced at the validation station red26 by 79% and for am169 by 

51%; however, the data assimilation experiment showed that actual errors were reduced 

only by 51% and 41% respectively. However, the results in Tables 5 and 6 also show that 

the predicted ranking of the alternative observation strategies was largely correct, 

suggesting that the salinity error covariance matrix used in the BLUE estimator captured 

the correlation scales in the CR estuary well. For example, the rankings agreed for all 

configurations at the validation station red26 (Table 5) and for most configurations at the 

validation station am169 (Table 6). The few candidate salinity arrays for which the 

rankings disagreed are marked in bold in Table 6. 

5.6 Summary and discussion 
Algorithms for evaluating and optimizing a fixed network of sensors were 

developed. The developed algorithms were based on the theory of optimal experiment 

design, were computationally inexpensive, and were application- and model-independent. 

The developed algorithms optimized placement of sensors for accurate reconstruction of 

the ocean state with or without the help of a data assimilation system. Alternative 

optimization goals, e.g., detection of extreme events, were not considered in this article 

and are subject of future research. 
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In applying the developed algorithms for optimal placement of sensors to the 

coastal observatory for the CR estuary and plume, we determined that: 

1) The existing salinity array in the CR estuary was too sparse to adequately 

represent the statistics of the salinity errors (R2 of 62%); 

2) The existing salinity, temperature, and water level arrays were also redundant. For 

example, 8 out of 14 eigen-modes of the salinity array captured 99% of the 

measured variance. However, this redundancy was not sufficient to account for 

data dropouts due to bio-fouling of salinity sensors; 

3) The correlation scales for model errors were shorter than the scales for model 

fields, suggesting that more sensors are required for data assimilation than for 

monitoring of the CR estuary and plume; 

4) The configuration of salinity arrays that were optimized using the state and the 

error covariance agreed, suggesting that an initial analysis of an observational 

array is possible even without access to an advanced data assimilation system; 

5) Multiple initialization of the exchange-type algorithm yielded the most optimal 

array configuration. However, the deterministic simplifications of the exchange-

type algorithm, such as the delete-only and the add-only algorithms, yielded 

equally optimal array designs.  

 

Based on the analysis of the existing observatory for the CR estuary and plume, 

we recommended several strategies for the future management of observation arrays in 

the CR estuary and plume: 

1) To improve the accuracy of salinity data assimilation in the CR estuary, we 

suggested placing the next observational sensor in the North Channel of the CR 

estuary, which would lead to an improvement in the R2 value for salinity errors 

from 62% to 69%; 

2) To improve the historical design of the observational array in the CR plume, we 

suggested deploying two sensors north and one sensor south of the CR mouth. 

This optimized array with three sensors was more informative of salinity errors 

(R2 of 22.7%) than the historic RISE and OGI arrays with five sensors (R2 of 

18.7%); 
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3) To reduce the maintenance costs for the salinity array in the CR estuary, we 

suggested a strategy for reducing the existing salinity array from 14 to 10 sensors, 

however only in the case the remaining salinity sensors can be continuously 

operated. In case the continuous operation is impractical, due to bio-fouling of 

salinity sensors, we suggested that an increased number of sensors may be 

required for a robust operation. 

 

In transitioning the developed array designs to operational staff of the CR 

observatory, we found that the suggested optimal observational strategies were only a 

part of considerations weighted by the science managers and the field staff. Alternative 

considerations included: logistical constraints, contractual obligations, and competing 

observational agendas—all of which would be impossible to express as a single cost 

function. However, the benefits of the proposed objective evaluation procedure were 

clear. Our objective procedure allowed scientists to prove or disprove their intuitions and 

to identify, otherwise overlooked, flaws in the design of the CORIE observatory. 

5.7 Conclusions 
In the research reported in this article, we demonstrated that it is possible to use 

an output from a circulation model and a data assimilation system to optimize the 

placement of sensors in such challenging dynamic environment as the CR estuary and 

plume. Our success with locating optimal sensors placements in the CR estuary and 

plume suggests that the developed algorithms can play a significant role in locating 

optimal placements of sensors in other observatories, such as regional coastal 

observatories, and national OOI and IOOS observatories. Our experience in the CR 

suggests that the developed algorithms for optimal sensor placement are most effective 

when used interactively, providing scientist, mangers, and field staff an opportunity to 

explore optimality of alternative sensor placements.  

Appendix 1: BLUE estimates with factorized covariance 
matrix 

To enable a fast computation of the BLUE estimate (Eq. 27), we used the 

factorized form of the prior covariance (Eq. 40). Following are the computational 
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procedures that we used to compute the factorized covariance (Eq. 40) and to compute 

the BLUE estimate (Eq. 27). 

 

Computing factorized covariance: To efficiently compute the eigen-

factorization of state and error covariance matrices, we used the empirical orthogonal 

functions (EOF) of the forward model, computed from a long, statistically representative 

simulation of the CR estuary and plume. The EOFs were computed using a memory-

efficient EOF algorithm described in Chapter 2 of this thesis. To compute the factorized 

state covariance matrix state T=C LSL  for a simulation database discussed in section 5.3.4, 

we first computed the orthonormal EOF operator Π , which describes the dominant 

spatial modes of this simulation database, and the time series of the EOF coefficients 

( )sx x x= −Π , which describe the temporal variability of this database in the EOF 

subspace. Given the time series of the EOF coefficients xs, we computed the eigen-

decomposition of their covariance matrix: 

cov( ) eig T
s s sx ⎯⎯→L SL , (44) 

where S is the diagonal matrix of eigen-values, and Ls is the matrix of eigen-vectors, both 

of which are defined in the EOF subspace. To compute the eigen-vectors L for the full-

space covariance, we reconstructed the reduced-space vectors Ls as the full-space vectors 

L using the EOF operator Π : 

s=L ΠL . (45) 
 

To compute the factorized error covariance error T=C LSL , we used a similar 

three-step procedure as for computing the state covariance.  First, we used Eq. (38) to 

compute a time-averaged prior covariance error
EOFC . Since each of the forecast error 

covariance matrices ( )xx k−P  in Eq. (38) was defined in the same low-dimensional EOF 

subspace, their time-average error
EOFC  was also defined in the same EOF subspace, 

characterized by the projection operator Π . In the second step, we computed the eigen-

decomposition of error
EOFC  as: 

eigerror T
EOF error error⎯⎯→C L SL . (46) 
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In the third step, we computed the eigen-vectors L of the full-space error covariance 
errorC  as: 

error=L ΠL . (47) 
 

Computing the prior variance: To compute the prior variance ( )ppcpp diag= C  

in Eqs. (30, 41, and 51), we used the following formula that avoided the unnecessary 

computation of cross-covariance terms: 

( )2

1
(:, ) ( , )

ns

i
cpp i S i i

=

⎡ ⎤= ⎣ ⎦∑ pH L   (48), 

where cpp is a vector of prior variances, (:, )iL  is the ith eigen-vector, ( , )S i i  is the ith 

eigen-value, […]2 is the element-wise squaring-operation, and ns is the number of 

retained eigen-vectors. 

 

Computing posterior variance: To compute the posterior variance 

( )ppdpp diag= D , without computing the unnecessary cross terms, we used the following 

two-step procedure. First, we computed the intermediate matrix product: 
1

py yy
−=A C C , (49) 

where, from Eqs. (29 and 40), the observation covariance yyC and the cross-covariance 

pyC  are: 

2

( ) ( )

( ) ( )

T T
py p y

T T
yy y y σ

=

= +

C H L S L H

C H L S L H I
. (50) 

In a case some of the observations were nonlinear, we linearized them around the mean 

state x . In the second step, we compute the posterior variance dpp as:  

( )
1

(:, ).* (:, )
ns

yp
i

dpp cpp i i
=

= −∑ A C  (51), 

where ‘.*’ is the element-wise multiplication of vectors, and (:,i) denotes the ith column of 

the matrix. 
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Figure 29: Map of the computational domain and observational stations. 
(1) The computational grid. (2 and 3) The map of observation stations in the CR plume 
(2) and estuary (3). The map of stations in panels 2 and 3 is overlaid over the bathymetry. 
Stations risen, risec, and rises were operated by the RISE project 
(www.ocean.washington.edu/rise/). Tide gages tpoint and wauna were operated by 
National Oceanographic and Atmospheric Agency. 
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Figure 30: The R2 values for the state (1) and the error (2) covariance as a function of the 
number of sensors retained in the existing observation array.  
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Figure 31: Eigen-spectrum of the observation covariance Cyy for the existing array of 
salinity sensors in the CR estuary.  
The truncation errors ei (Eq. 18) are plotted against the number of retained eigen-values 
λk. The observation covariance for the state (line marked with +) was computed using 
actual measurements and for the error (line marked with squares) was computed using 
errors for DB14 prediction.  
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Figure 32: Redundancy of sensors to data dropouts. 
(a) Number of available water level (red), salinity (blue), and temperature (green) 
sensors. (b) Time series of the R2 values for the same three categories of sensors. 
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Figure 33: Optimal location of the next estuarine sensor 
New sensor marked with ‘+’. Optimization was using the state (panels s.1, s.2, and s.3) 
and the error (panels e.1, e.2, and e.3) covariance. Top panels display local uncertainty 
reduction (R2

local in %) for the existing salinity sensors (marked with circles), middle 
panels display R2

local for augmented array (new sensor marked with +), and bottom panels 
display the added value of placing the next sensor in one of the feasible sensor-locations. 
All panels display maximum-over-depth quantities. 
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Figure 34: Optimal locations of sensors in CR plume. 
Optimization based on the state covariance. (1) Standard 
deviations (STD) of surface salinities (prior uncertainty). 
(2) Local uncertainty reduction R2

local (%) for the existing 
array; existing sensors are marked with circles. (3) Value 
of the cost function for sensors one through three; new 
sensors are marked with diamonds. (4) Local uncertainty 
reduction R2

local (%) for the augmented array. All 
quantities were computed on the surface, where the prior 
uncertainty was the largest. 

Figure 35: Same as Figure 34 but 
computed for the error covariance. 
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Figure 36: Sensitivity of sensor placement to optimization criteria.  
Sensor locations that were located using the DET criterion are marked with (o) and using 
the MSE criterion, with (+). (1) Optimal placement of the next salinity sensor in the CR 
estuary. (2) Optimal placement of salinity sensors in the CR plume. The locations were 
computed using the state covariance and are overlaying the maximum-over-depth prior 
uncertainty.  
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Figure 37: Optimality of sensor placement as a function of the optimization algorithm 
used.  
The histogram shows frequency distribution of the R2 values from 1000 randomly-
initialized passes through the full exchange algorithm. Vertical lines mark the R2 values 
for the add-only (dashed line) and the delete-only (solid line) algorithms. Experiments 
were conducted for the MSE criterion, the error covariance, and a time period of ½ years. 
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List of Tables 
Table 2: Suggested order in which salinity sensors may be removed from the existing CR 
array.   
Order State Error 
 Salinity sensor R2(%) Salinity sensor R2(%)
I II II IV V 

1 eliot 94 marsh 62 
2 marsh 94 eliot 62 
3 cbnc3 94 cbnc3 62 
4 mottb 94 red26 (mid.) 62 
5 tansy 93 am169 (bot.) 61 
6 am169 (mid.) 93 tansy 60 
7 red26 (mid.) 93 am169 (mid.) 58 
8 dsdma 93 mottb 56 
9 am169 (top) 92 red26 (bot.) 53 
10 sandi 92 sandi 49 
11 red26 (bot.) 91 red26 (top) 45 
12 am169 (bot.) 89 grays 40 
13 grays 87 jetta 34 
14 jetta 85 dsdma 27 
15 red26 (top) 79 am169 (top) 14 

 
 
Table 3: Results of the most important and the least important salinity sensor experiment. 
 Most important (%) Least important (%)
Salinity sensor State Error State Error 

I II III IV V 
jetta 74.1 12.0 -0.7 -3.9 
Sandi 73.2 12.1 -1.1 -4.6 
red26 (top) 78.9 11.2 -0.6 -2.2 
red26 (mid) 74.4 8.7 -0.2 -0.5 
red26 (bot) 72.0 7.8 -0.3 -0.7 
Dsdma 77.5 13.5 -0.6 -4.0 
Tansy 74.4 9.4 -0.2 -2.1 
am169 (top) 64.3 13.7 -0.4 -3.6 
am169 (mid) 58.5 8.9 -0.2 -0.7 
am169 (bot) 51.3 7.8 -0.2 -0.7 
Mottb 15.9 6.9 -0.1 -1.7 
cbnc3 25.5 8.3 -0.1 -0.4 
Grays 27.4 9.1 -0.5 -1.6 
Eliot 0.0 0.2 0.0 0.0 
Marsh 0.0 0.1 0.0 0.0 
 
 



170 

 

Table 4: Comparison of the salinity array designs in the CR plume. 
R2 (%) Array 

name 
Number of 

plume sensors State Error 
Estuarine 
sensors 

0 29.0 3.1 

OGI 2 41.4 10.9 
RISE 3 46.5 15.1 
RISE+OGI 5 53.1 18.7 
Optimal 2 2 71.2 17.9 
Optimal 3 3 77.1 22.7 
Optimal 5 5 82.7 32.0 
 
Note: To make adequate comparison between the existing and the proposed optimal 
arrays, we only use information from the surface salinity sensors at OGI and RISE 
locations. 



171 

 

 
Table 5: Predicted and actual R2 (%) values at the validation station red26. 

R2 
Observation array predicted actual 
no stations 0 0
 — dsdma   53 43
 — tansy   68 48
 — jetta   78 49
 — am169 (top) 78 49
 — am169 (bot) 79 49
 — sandi   79 50
 — cbnc3   79 50
 — am169 (mid) 79 50
 — eliot   79 51
all stations 79 51
Note: Minus sign ‘—‘ in the first column indicates that the station was removed from the 
assimilation array. 
 
 
Table 6: Predicted and actual R2 (%) values at the validation station am169. 

R2 
Observation array predicted Actual 
no stations 0 0
 — tansy   34 00
 — cbnc3   44 40
 — jetta   49 40
 — red26 (top) 50 47
 — sandi   50 42
 — red26 (bot) 50 41
 — dsdma   51 40
 — eliot   51 41
 — red26 (mid) 51 41
all stations 51 41
Note: Minus sign ‘—‘ in the first column indicates that the station was removed from the 
assimilation array. Bold indicates stations for which the predicted and actual rankings 
disagree.  
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Chapter 6 

Conclusions 

6.1 Summary of findings 
In this dissertation, we demonstrated that, unlike previously thought, data 

assimilation (DA) does not need to be computationally challenging. Specifically, we 

developed and verified algorithms that enabled a fast ensemble DA that ran an estimate 

of 100-10,000 times faster than existing DA algorithms, and did not require development 

of hard-to-code adjoint models. We enabled this fast, adjoint-free DA by employing 

algorithms recently developed in the machine learning community, including algorithms 

for training neural-network model surrogates (van der Merwe, et al. 2007) and algorithms 

for nonlinear Kalman filtering (van der Merwe 2004, Lu, et al. 2007). The availability of 

these enabling algorithms allowed us to deploy our DA system with very limited 

personnel and computational resources, even in such a complex and nonlinear system as 

the Columbia River (CR) estuary and plume. As a result of this deployment, we were 

able to assimilate multiple years of observational data, to improve simulation of 

ecologically significant circulation features, to develop a real-time nowcast-forecast 

system, and to develop strategies for optimization of the existing and future observational 

arrays in coastal observatory for CR estuary and plume.  

 

The summaries of our findings are organized in six themes presented in 

subsections that follow. 



176 

 

6.1.1 Improved representation of salinity, temperature, and water 
level variability in the CR estuary and plume 

To verify our DA algorithms, we estimated the long-term variability of salinity, 

temperature, and water levels in the CR estuary and plume. Chapter 2-4 describe 

applications in the estuary; with chapter 3 also describing an application to the plume. 

The verification experiments included verifications against independent data from 

research cruises and leave-one-out cross-validation. These verification experiments 

showed that DA estimates were more accurate than a non-assimilated model in 

reproducing variability of water levels, salinity, and temperature in the CR estuary and 

plume. Our verification experiments also showed that assimilation of salinity, water 

levels, and temperature measurements had little effect on reducing errors in simulated 

velocities.  

 

In the CR estuary, DA was effective in two ways:  

1) Improving representation of episodic events, such as improving representation 

of water levels during periods of winter storms, salinity intrusion events 

during periods of low-river flow, and salinity and temperature during 

relaxation of upwelling events.  

2) Correcting persistent modeling biases, such as under prediction of the salinity 

intrusion length and seasonal biases in heating and cooling of tidal flats.  

In the CR plume, DA improved representation of transitions in the size and orientation of 

the plume, and improved the representation of vertical stratification.  

 
The success of our experiments in the CR estuary and plume verified the of the 

developed DA algorithms in such a challenging application as the baroclinic circulation 

in the CR estuary and plume. 

6.1.2 Verification of predicted uncertainty 

One output of our DA algorithm was the estimate of model uncertainty. In chapter 

2, we verified these uncertainty estimates against measurements of the model uncertainty. 

On average, our uncertainty estimates were slightly smaller (0.2 MSE units) than 
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measured uncertainty (0.3 MSE units), which indicated a slightly inconsistent filter. It is 

likely that future improvements to DA algorithms, detailed in section 6.2, will yield more 

accurate estimates of model uncertainty, which can be used as guidance in resource 

management decisions.  

6.1.3 Improved estimates of ecologically significant circulation 
features in the CR estuary and plume 

In chapters 2 and 3, we used independent data to establish that DA was more 

accurate in simulating the variability of salinity, temperature, and water levels in the CR 

estuary and plume. In chapter 3, we analyzed how these more accurate simulations 

represented the variability of three ecologically significant circulation features: the 

orientation and the size of the CR plume, and the length of the salinity intrusion in the CR 

estuary. Our analysis showed that: 

• DA played a significant role in controlling the magnitude and timing of dynamic 

events in the simulated CR estuary and plume, such as events of extreme salinity 

intrusion and events of regime transitions in the CR plume. 

• DA changed the response of the simulated salinity intrusion length to variations in 

the CR discharge, hence providing a different interpretation of the circulation in 

the CR estuary.  

• DA changed the simulated size and orientation of the CR plume, usually in 

response to correcting for episodes of large errors in the non-assimilated model.  

• DA corrected, with a limited success, for the underestimation of the salinity 

intrusion length in the CR estuary.  

 

The observed improvements in representation of ecologically significant 

circulation features in the CR estuary and plume are encouraging. As a next step in our 

research, we plan to evaluate the impact of the improved state estimates on the ecological 

indicators of salmon survival described in (Bottom, et al. 2005, Burla, et al. 2007). 
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6.1.4 Real-time nowcast and forecast of the CR estuary 

In the research reported in chapters 2 and 4, we studied the applicability of our 

DA and model surrogate algorithms to real-time nowcast and forecast of the CR estuary. 

In chapter 2, we showed that in the CR estuary the model surrogate, the EOF subspace, 

and the reduced-dimension KF were equally accurate on the data that was used for 

training of the model surrogate and of the EOF subspace, as on the new, unseen data. 

This equal accuracy on unseen data suggested that the developed DA methods can be 

successfully used in a real-time nowcast of the CR estuary without the need to retrain the 

model surrogate and the EOF subspace in real-time. In research reported in chapter 4, we 

verified this suggestion by implementing a real-time nowcast-forecast system for the CR 

estuary. 

 

Validation of the developed real-time nowcast-forecast system showed that non-

assimilated model-surrogate forecast was as accurate as non-assimilated forecast with a 

traditional circulation model SELFE, however only at a fraction of the computational 

effort (~10,000 faster). When observational data were assimilated, the accuracy of the CR 

estuary simulation was substantially improved, while the computational cost remained 

very low, ~100 faster than the non-assimilated forecast with SELFE. However, when a 

model-surrogate forecast was initialized with these DA estimates, the forecast skill of this 

model-surrogate forecast did not differ substantially from that of the non-assimilated 

forecast. 

6.1.5 Computational efficiency of the developed DA methods 

Our application of the developed DA algorithms in the CR estuary and plume 

showed that both the model surrogate and the DA algorithms computationally were 

highly efficient. In case of the CR estuary, model surrogates were ~10,000 faster than the 

traditional circulation code, which was ~100,000 faster than the real-time. Training of the 

model surrogate and the EOF basis was ~1/10 of the computational time that was 

required to generate the hindcast database, from which the training samples were drawn. 

The complete DA system was ~100 faster than non-assimilated model and ~100-10,000 

faster than other ensemble-based DA methods.  
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6.1.6 Optimal placement of sensors in the CR estuary and plume 

In chapter 5, we developed and verified algorithms for evaluating the efficiency 

of existing observational networks and for optimizing the placement of new observational 

sensors. In applying these algorithms to finding optimal placement of sensors in the CR 

estuary and plume, we determined that simulated fields predicted by a non-assimilated 

model and model error estimates predicted by a DA system can be effectively used for 

evaluation and optimization of observation arrays. For example, we found that the 

existing water level network in the CR estuary was very informative and robust, unlike 

the salinity network that was too sparse and too prone to data dropouts to reliably 

measure errors in the simulated salinity. To improve upon the existing network, we made 

a series of recommendations on placement of future sensors in the estuary and the plume. 

For example, we found that it is possible to deploy a more informative observational 

array in the CR plume than the historic observational array.  

6.2 Conclusions and future work 
Our successful verification of the developed algorithms for fast, model-

independent DA and for evaluation and optimization of observational arrays suggests that 

these algorithms can be applied in other integrated ocean observatories. Such 

implementations can significantly reduce the technological and financial barriers for 

implementing the modeling component of an integrated ocean observatory. A successful 

implementation in other observatories will require training of an accurate model 

surrogate and a representative EOF space. It is likely that it will be possible to train such 

accurate model surrogates and EOF subspaces in observatories where a forward model 

already has high skill in representing the statistics of the modeled system, hence 

providing good samples for training of the model surrogate and the EOF subspace.  

 

In verifying the developed algorithms for DA and array optimization, we 

identified a number of directions for future research, which may become important in 

future applications of the developed methods.  

 

Further extensions to model surrogate methods: 
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• To enable more accurate training of very large networks, such as our network for 

the joint CR estuary and plume that had more than 2*106 unknown weights, we 

suggest exploring two alternative strategies: reducing the size of the network and 

exploring algorithms for robust training of very large networks. To reduce the size 

of the network, we suggest optimizing the number of time embeddings and 

applying a dimension reduction postprocessor on the output of the neural network. 

To improve training of large networks, we suggest developing model surrogates 

based on the mixture of experts framework (Jacobs, et al. 1991), which are 

usually easier to train than a single global neural network.  

• To achieve more parsimonious dimensions reduction for the forward model state, 

we suggest substituting linear EOF dimension reduction algorithm with nonlinear 

dimension reduction algorithms, such as algorithms by (Kambhatla, et al. 1997, 

Roweis, et al. 2000, Brand 2003). 

 

Further extension to DA methods: 

• To strictly enforce conservation laws in state estimates, we suggest incorporating 

conservation laws as a constraint either in the KF algorithm or in the dimension 

reduction algorithm. 

• To estimate the dynamics that were not captured by the EOF subspace, we 

suggest developing a hybrid filter that will benefit from a fast model surrogate, 

which operates in the reduced space of the EOF functions, and from a slower 

forward model, which operates in the full space. One such hybridization, using an 

extended KF is described in (Hoteit, et al. 2003); however, a hybridization 

suitable for highly nonlinear systems is yet to be developed. 

• To estimate poorly known model parameters, such as parameters in ecological 

models, we suggest extending the current model surrogate training software. At 

present, model surrogates are trained for a fixed choice of model parameters, 

which precludes their application for exploring sensitivities to changes in values 

of these parameters. Hence, and extension of the model surrogate software is 

needed that will accurately approximate the response of the model output to 

changes in the model parameters. 
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• To further improve accuracy of DA estimates in systems with very strong 

nonlinearity in  dynamics and observations, a particle filter algorithm 

(Arulampalam, et al. 2002) may need to be implemented. Algorithms for several 

particle filters are already available in ReBel (van der Merwe 2002-2006)—the 

software that was used in our experiments. However, as our preliminary research 

showed (Lu, et al. 2007), care should be taken in adopting these algorithms to DA 

in high-dimensional spaces. 

• To facilitate comparisons between sequential and variational methods, a model-

surrogate-enabled variational DA needs to be developed. Model surrogates are 

well positioned to enable such comparisons at low computational and personnel 

cost since an adjoint and tangent linear models are always available for a model 

surrogate, even in cases were the original circulation model lacks tangent linear 

and adjoint models.  

 

Further extension to observation network optimization methods: 

• To better understand the synergies between observations with fixed, mobile, and 

satellite platforms, the developed algorithms for evaluation of fixed observational 

networks need to be extended.  

• To enable targeting of adaptive observations, such as gliders, the ensemble 

transform KF (Bishop, et al. 2000) needs to be implemented. It is likely that 

model surrogates can enable fast computation of the ensemble forecasts that are 

required by the ensemble transform KF.  

 

Future work with DA in the CR estuary and plume: 

• To further improve accuracy of DA in the CR plume, an extension to DA 

software is required that will enable assimilation of data from gliders, research 

cruises, and coastal radars. 

• To better diagnose sources of errors in the modeling systems and to improve the 

accuracy of model forecasts, a joint estimation of model state and model forcing 

may be required. Our preliminary research (Lu, et al. 2007) suggested that the 

developed DA algorithm is well suited for such joint estimation. 
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• To further improve the estimates of model uncertainty, further improvement to 

model error and forcing error statistics are necessary. One such suggested 

improvement will include adaptive tuning of the error statistics.  

• To better represent the variability of velocities in the CR estuary and plume, DA 

of velocity measurements will be necessary. 

 

Further verification of developed methods: 

• To better characterize strength and limitations of developed algorithms, additional 

verification in other coastal and coastal-margin observatories will be needed. 

• To facilitate application of the developed methods in other observatories, the high 

algorithmic complexity of the developed methods needs to be encapsulated in a 

well-designed software package, similar to IOM (Chua, et al. 2001), EnKF 

(Evensen 2004-2007), and ReBel (van der Merwe 2002-2006)—the existing 

packages for DA and sequential Bayesian estimation. 
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