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Genome-wide studies are sensitive to the quality of annotation data included for analyses 

and they often involve overlaying both computationally derived and experimentally 

generated data onto a genomic scaffold.  A framework for successful integration of data 

from diverse sources needs to address, at a minimum, the conceptualization of the 

biological identity in the data sources, the relationship between the sources in terms of 

the data present, the independence of the sources and, any discrepancies in the data.  The 

outcome of the process should either resolve or incorporate these discrepancies into 

downstream analyses. In this thesis we identify factors that are important in detecting 

errors within and between sources and present a generalized framework to detect 

discrepancies.  An implementation of our workflow is used to demonstrate the utility of 

the approach in the construction of a genome-wide mouse transcription factor binding 

map and in the classification of Single nucleotide polymorphisms.  We also present the 

impact of these discrepancies on downstream analyses.  The framework is extensible and 

we discuss future directions including summarization of the discrepancies in a biological 

relevant manner
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Chapter 1 Introduction 
1.1 Data Cleaning and Discrepancy Detection 
 
Data cleaning, also known as data scrubbing, is defined as the process of detecting and 

removing errors and inconsistencies present in data sources [1].  Typically, the data 

cleaning process involves working with pre-existing data sources, the aim being to 

provide a reconciled view of high quality data.  This involves detection of errors that 

occur within individual sources and those that arise due to discrepancies between the 

different sources.  Errors that occur within an individual source are primarily due to 

missing information, invalid data and typographical errors.  Discrepancies present 

between sources can be due to contradictory data in the sources, semantic mismatches 

between the data models, different naming conventions for the sources [2] and, the 

granularity of the data present in the sources.  The types of discrepancies detected are 

dependent on the data sources being integrated and resolving the discrepancy or 

classifying it as an error will require meta-information about the data source, the 

relationships between the sources.   

The data cleaning process is a multi-step process and is the first step in integrating 

data from diverse sources.  Any errors missed at this step have the potential to affect the 

quality of the integrated data, and subsequently, any analyses that are based on the 

integrated data. Data cleaning, in a conventional sense, results in the resolution of 

discrepancies detected. However, in the biological domain, sometimes it is not possible to 

resolve a discrepancy with the existing or available information.  For this reason, instead 

of making a decision with missing or insufficient information, it becomes imperative to 

carry forward the possible outcomes, each with an associated confidence measure.  A 

confidence measure is a synthesis of a number of factors – including weighting a piece of 

information based on its source, the reliability of the source, etc.  A systematic manner of 
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identifying discrepancies and either resolving them with some measure of confidence or 

flagging them for the user and tools that use the data is an important step in the 

integration process.   

 

1.2 The Need to Detect Discrepancies in Genome Annotations 

Genome annotation refers to information about a sequence, its biological function 

and role. Genome annotation refers both to the process, and the end product, by which the 

structural and functional class of a sequence is assigned.   A sequence, in this context, 

refers to a string of nucleotides or amino acids.  This raw data is further processed to 

identify sub-sequences that have biological relevance – such as CpG islands, gene 

boundaries in the case of DNA, and motifs such as the leucine zipper, in the case of 

protein sequences. This processing step can be via manual curation, computational 

predictions or a combination of both.  Once a sequence is annotated with its role and 

function, it is also referred to a genomic feature or simply a feature.  Annotations form an 

important component of the genome databases.  With the proliferation of scientific 

databases and data warehouses, the issue of data provenance (i.e., where a piece of data 

came from and the process by which it arrived in the database) is crucial to ensure the 

accuracy of  data [3, 4].  An estimated lower limit of errors in functional annotation of the 

large-scale sequencing projects is 8% [5].  This lower limit includes the annotation of 

known features in the genome. In general, it is estimated that 70% of the annotation 

predictions are correct which means that approximately 30% of the features are 

incorrectly predicted  or assigned [6, 7].  Additionally, these annotations are used as the 

starting point for more complex features such as computational predictions of genes.   By 

not including the uncertainty present in the input, the confidence in these models maybe 

inflated artificially.  Using these gene predictions in annotation pipelines leads to 

propagation of these errors.  If dubious functional assignments and annotations are used 

for subsequent predictions, errors will proliferate and lead to a “database explosion” [7], 

i.e., the integrity of the data is seriously compromised and cannot be relied upon. 

 The effect of poor data quality on subsequent analyses becomes 

apparent immediately.  Structurally, a gene (Fig.1) is an ordered sequence of nucleotide 
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bases that encodes a product (this product could be just RNA, such as rRNA, or a 

protein). The gene includes, however, regions preceding and following the start of the 

coding region, the 5' untranslated region (UTR) and 3' UTR respectively, as well as (in 

eukaryotes) intervening sequences (introns) between individual coding segments (exons). 

The gene start includes the 5' UTR and the transcription start site (TSS) in some 

definitions.  In others, the start of the transcript (not including the TSS) is defined as the 

start site.  A similar discrepancy in definition arises in definition for the end of the gene.  

The end of the longest transcript is one candidate. Other definitions extend beyond the 

transcript and include the 3' UTR of the gene.  In addition to the differences in 

definitions, the uncertainty in the experimental methods to identify and locate the 

transcripts and the UTRs adds an extra layer of complexity.    Such differences in 

definitions result in discrepancies between sources.  Not including these discrepancies in 

predictions and the inherent biases of the experimental techniques reduces the confidence 

in the prediction of gene locations.    Now consider the case of life scientist who is 

interested only in Single Nucleotide Polymorphisms (SNP) that are located in the coding 

region of a gene. If there is no consistency across the annotation sources regarding the 

start and stop locations of a gene, the scientist may come up with different answers of 

whether the location of a given SNP is within the gene or external to it. If the existing 

data gives inconsistent answers, it becomes important to present the discrepancy to the 

user.  To understand how pervasive this problem is, we carried out a PubMed search for 

the very specific term “Genome annotation”.  The number of articles published in the last 

ten years is around 2224, with 392 articles published in the last year.   
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Figure 1. Schematic representation of the structure of a eukaryotic gene and the role of the different 
portions in coding the protein product.   
The structure of the gene is defined at the level of a DNA sequence and is described from the 5' to the 3' 
end.  This orientation is based on the physical orientation of the DNA bases.  A eukaryotic gene consists of  
portions that code for a product (exons) interspersed with portions that do not code for any product 
(introns).  The DNA sequence is coded into an RNA sequence by the process of transcription and in some 
cases into protein by the process of translation.  The process of transcription is dependent on the binding of 
transcription factors upstream of a gene and other factors.  The 5' vicinity of the gene is known as its 
promoter region. The 3' UTR is the portion of an mRNA from the 3' end of the mRNA to the position of the 
last codon used in translation. 5' UTR is the portion of an mRNA from the 5' end to the position of the first 
codon used in translation.  

 

1.3 Current approaches to representing discrepancies and errors in 
the data 

 There have been a number of frameworks proposed  for data cleaning [2, 8-10].  

In the larger data-cleaning community, the actual representation of errors or discrepancies 

is a peripheral problem. The focus, however, in all these approaches has been towards 

reconciling any discrepancies present in the data.  Workflows and transformations are 
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designed to help transform the data from the ‘dirty” to the clean state.  It is important to 

note the underlying assumption that the true nature of the entity being cleaned is known 

thereby helping the transformation into clean data possible.  In contrast, in the biological 

domain, it is not always possible to obtain true state of an identity.  The reason for this is 

primarily because the context in which the entity is being measured or observed is 

important.  Often, this vital piece of information is not recorded or incomplete.  For this 

reason, simple transformations for data cleaning are insufficient. 

Domain-specific solutions, however, have been presented.  In the biological domain, one 

approach  classifies the errors based on the data production process [11]. The different 

classes of errors are i) experimental  errors which arise from experimental setup failure or 

systematic errors, ii) analysis errors that arise due to misrepresentation of information, iii) 

transformation errors which arises when transforming data from one format to another, 

iv) propagated errors that arise when erroneous data is used for generating new data, and 

v) stale data when changes to the base data are made. 

In a second approach, the authors have defined classes of discrepancies between 

two versions of a data source and have ranked the discrepancies based on their level of 

impact [12].  

1.4 Drawbacks in the current approach in determining errors and 
representing them 

Note that the process of classifying discrepancies based on the level of impact in 

the second  approach [12] compared re-annotated data with the original annotation.  The 

primary motivation for the re-annotation of genome data is to include up-to-date 

information on genes and proteins.  It also provides new information to users by using 

improved techniques and algorithms.  It may be more difficult to apply this system of 

classification to different annotation sources.  The first approach is based on the data 

production methods and versioning information. When integrating multiple sources of 

pre-existing information, the exact process of generating a piece of data may not always 

be available, especially in the case of manual curation, where certain publications that do 

not support the data are examined but not included as being part of the decision-making 

process. We believe that it is imperative to include other meta-information about a source 
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in classifying discrepancies.  In particular, the level of dependence between data sources 

is an important piece of information.  A discrepancy only identifies that there is a 

difference in two sources.  An error identifies which of the sources contains the correct 

information.  An error provides more information to the user.  If the data in two sources 

is dependent (the definition of a dependent source is presented later), a discrepancy can 

be classified as an error.   Additionally, if one source is a primary source and the second 

source derives from it, the source of the discrepancy can be pinpointed more accurately, 

although the classification as an error may require more information. 

Also, the provenance of a piece of data is useful in discrepancy resolution.  

Information, such as the lineage, of a data source is referred to the meta-data of a source 

in this thesis.  The term “annotation” is used to refer to the data pertaining to a biological 

sequence. The basis for an annotation is often not clear and computational annotations 

versus experimental evidence must be distinguished. However, it is not enough to store 

whether the assignment is experimental or computational. It is also critical to store the 

store the source of the annotation as well. For experimental assignments, one needs to 

store the appropriate references. For computational assignments, the source of the 

functional assignment would include the group or individual who made the annotation, as 

well as the method and parameters used for the algorithm. Recording the provenance will 

allow individuals to update records annotated by that source or based on that annotation if 

it turns out to be erroneous (i.e., allow propagation of corrections). The STRING 

database, a precomputed resource of protein-protein interactions, provides relevant meta-

information [13]. In addition to the results of functional links of a protein (presented with 

its associated confidence measures), users can navigate and explore the evidence that 

contributes to the results presented.  As our knowledge domains become more composite 

in nature, with analyses being conducted on processed or computed data types, data 

lineage tracking is vital for error correction and data cleaning. As seen with STRING, 

annotation and meta-data add additional layers of complexity for genome-wide studies.   

In cases when it is not possible to resolve discrepancies, the issue reduces to 

handling conflicts in the data (i.e., which one to choose). Deciding which piece of data to 

use is often seen as political and controversial. However, if a confidence measure is 

assigned to a gene’s annotation and pointers to alternate annotations are stored, it should 
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be possible to handle multiple sources of annotation. Just as quality measures are 

suggested for sequence data [8], similarly there should be quality assessments of 

annotation. Suppose three groups annotate the same genomic region on Chromosome 12 

in humans. If all three annotations agree, the annotation could be given a confidence 

measure of 100%.  If none of the annotations agree, the confidence for each annotation 

could be 33%.  Pointers to all three annotations would be stored, as well as how the 

annotations were generated.  As seen with the STRING resource, more sophisticated 

algorithms for calculating the confidence in each result can be computed and presented to 

the user. 

1.5 Problem Statement 

These problems in data integration, lineage tracking, and annotation were the 

motivation for this work. At the heart of this approach is integrating the distributed 

information relevant for the analysis in a meaningful fashion and identifying errors in the 

data that may potentially affect any downstream analysis.  The aims are to identify the 

factors that are useful in detecting discrepancies between sources, to identify the subset of 

discrepancies that will impact downstream analyses, and finally to classify the 

discrepancies as errors.  The work presented in this thesis addresses the first two 

components.  We identify the main components necessary for Heuristically Identifying 

Discrepancies/Errors (HIDE) affecting analyses.   

The issue of integrating data from multiple annotation sources is crucial for a 

number of problems within the biological domain.  In this thesis, we examine 

discrepancies in data sources critical for the positioning of experimental data, generated 

by high-throughput (HT) mapping of transcription factor (TF) binding sites, on the 

genome scaffold.  The placement of these features relative to known genomic landmarks, 

such as genes, is critical both for validating the data and for the identification of new 

regulatory sites.  Errors in the data sources that describe the location of the landmarks can 

affect the validation and discovery of such sites.  Hence it is important to identify any 

discrepancies present and identify the subset that can affect downstream analyses.   

The data integration scenario for this use case deviates slightly from the 

traditional scenario.  Firstly, the data to be integrated is not from a single organization, 
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but is drawn from a number of possibly independent sources.  The data present in the 

majority of these sources is updated frequently.  Because of the nature of the data being 

integrated (biological), there is no consistent definition of an entity across the sources, 

making it difficult to isolate one source as being incorrect.  The task of integration is 

further exacerbated by the differences in the experimental methods used to generate the 

data.  Different techniques provide data of varying granularity and have varying 

confidence levels associated with the data.   Also, since the data is being used in a HT 

scenario, there is a lack of intimate knowledge of a large percentage of the regions of the 

genome being examined.  For this reason, the traditional approach of creating a clean data 

set is not practical as the entire process will need to be repeated with every new update. It 

becomes imperative to flag the discrepancies so that they can be incorporated in the 

downstream analyses.  To obtain a quick manner of identifying discrepancies, we chose 

to use the factors that are relatively invariant between the sources, primarily the 

relationship between the different sources, to create links between the sources.  

Additionally, we introduce the concept of consequential discrepancies that will help the 

user identify and focus on the discrepancies that will impact downstream analyses.   

The assumption is that the type of relationship between the sources limits the 

kinds of discrepancies between them.  HIDE attempts to exploit this assumption by 

directing the types of tests that are needed to detect discrepancies, by identifying the 

relationships between the sources, i.e., by determining their context. The context is 

determined by the lineage relationship of the sources and the relationship of the data 

present in each data source. A series of definitions essential for defining HIDE, followed 

by a description of the essential elements of the framework is presented in the next 

section. A data integration scenario, derived from the genomic domain, to demonstrate 

the coverage of errors provided by the framework is presented. We then map back the 

errors detected during the data integration onto the framework.  The following chapters 

describe the framework, a preliminary implementation of the workflow and possible 

extensions. 
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Chapter 2 A Primer on Molecular Biology for Computer 
Scientists 

 
This chapter further elaborates on the topics that were introduced briefly in Chapter 1.   

Although not comprehensive, it emphasizes the concepts that are relevant for the use 

case, presented in subsequent chapters. 

2.1 DNA, RNA and Proteins – Elements of biological function 
 
The biological identity of a cell is determined by the presence of proteins and gene 

products at specific amounts, specific locations and at specific times during the life of the 

cell.  The genetic information is contained in the sequence of de-oxy ribonucleic acid 

(DNA).  DNA is then “transcribed” to form ribonucleic acid (RNA), which in turn is 

translated into the protein product.  Transcription is the process by which the portions of 

a gene (Fig. 1) that code for product (but not the regulatory portions) are synthesized 

using the DNA as template.   The process of translation refers to the formation of a 

functional protein product using the RNA as template.  This process of information flow 

(from DNA to protein) is known as the Central Dogma (Fig. 2). As a result, the formation 

of these products at the appropriate times, locations and quantities is regulated and the 

control at the different stages in the lifecycle of a cell is diverse but coordinated.        

The type of regulation is often described by the immediate process that it regulates or 

facilitates.  For example, regulation of the RNA is controlled by transcriptional regulators 

and formation of protein is controlled by translational regulators.  One such regulator of 

transcription is a transcription factor (TF).  A TF is a specialized protein complex that 

binds to the DNA sequence at a specific location and recruits other proteins that help 

form the RNA from the neighboring DNA sequence.   
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Figure 2 Simplistic depiction of the Central Dogma.   

 
There are a number of TFs, each of which regulates a subset of the total genes in a cell.  

To understand regulation at the transcriptional level, it is important to identify the subset 

of genes that can be regulated by a particular TF.  One way in which transcriptional 

regulation can be studied is by locating all possible binding sites and looking for genes 

near these binding sites.  The potential binding site for the TF under study can also be 

extracted from these sequences.  It becomes important to obtain unbiased data on TF 

binding prior to identifying the binding site and identifying genes regulated by the TF.  

One such technique is the Serial Analysis of Chromatin Occupancy (SACO).   Unlike 

other techniques (e.g.,ChIP on chip, computational predictions) it does not use any 

previously known information about the site of TF binding.  It also decouples the 

generation of the TF-binding data from the location on the genome until later in the 

analysis stage.  For the reasons above, it is unique in providing an unbiased view of the 

TF binding sites.  Other techniques used for TF binding studies, such as ChIP on chip, 

make assumptions about the length and or composition of the transcription factor binding 

site.  The process for generating the TF map is described in detail in the next chapter.   

2.2 Elements of Variation in DNA – SNPs 
 

SNPs (single nucleotide polymorphisms) are a variation in a single base of DNA, 

compared to the expected base at that location [14].  They form one of the most common 

variations in DNA sequences and are typically detected by comparing sequences of DNA 

obtained from multiple individuals.  On average there is about 1 SNP present in every 

300 base pairs of the genome, at the population level.  The majority of SNPs are located 

in areas that do not code for protein products, since the protein coding regions typically 

form 3-5 % of the entire genome.   
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A number of researchers believe that the common variants in the genome are 

important for explaining the risk of disease in populations.  If this common-variant theory 

is true [15], SNPs - being  the most common variant - are important to characterize and 

locate.  SNPs that are located in the coding region of the genome are of particular interest 

as they may play a role in changing the functional role of the gene product by 

mechanisms such as changing the function of the protein.  Determining functional roles 

for SNPs will also impact the drug discovery process. If a SNP impacts the role of a 

protein, and by extension the underlying biological process, it serves as a starting point 

for drug discovery by helping to understand the biological roles and identifying potential 

drug targets.  Incorporation of SNP data will also be important for determining the 

efficacy of drugs, especially if they target the products affected by SNPs.    
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Chapter 3 Problem Addressed - SACO 
 

3.1 The Biological Context for Discrepancy Detection 
 

SACO is a novel, high throughput technique that generates a genome-wide map 

of TF binding sites [16].  The placement of the experimental data on the genome requires 

a complete sequence of the organism.  Definitions for biological terms introduced in this 

section are provided in the Glossary.  It uses a combination of chromatin 

immunoprecipitation (ChIP) and long Serial Analysis of Gene Expression (SAGE) to 

generate this comprehensive map (Fig. 2).  

 Briefly, the process is as follows. Genomic DNA is bound to the transcription 

factor (TF) of interest and these binding sequences are obtained via experimental 

techniques [16]. The bound sequences are screened and sequenced and used to form a 

Genomic Signature Tag (GST) library. A GST is a sequence of nucleotides and is 

approximately 21 base pairs in length.  A computationally derived library of potential 

GSTs and their locations in the genome is generated by an in silico digest of the genomic 

sequence.  This process entails treating the entire genome as a string, looking for a 

particular motif in this sequence and extracting 16 bases flanking the motif sequence.  

These flanking sequences form the library of potential GSTs.  The motif is determined by 

the restriction enzyme (RE) cutting site (a pattern of CATG).  GSTs which are located 

within a 1000 bps of one another are clustered based on the assumption that they are 

functionally related.   

 GST clusters in the experimentally derived library are compared to the 

computationally derived library and their locations on the genome mapped.  The relative 

position of these tags with respect to genomic landmarks - mRNAs, CpG islands, etc. - is 

then examined. The overlay of annotations, drawn from a number of sources, on the 
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genome is critical to the success of this technique.   Any discrepancies in the annotations 

will correlate with the uncertainty both in the placement of the transcription factor 

binding sites and in the characterization of the TF.  Because a windowing approach is 

used with a size of 1000 bps 5’ to the start of a gene, any discrepancies in the start of a 

gene can impact the area of the genome under study.  Additionally, discrepancies in the 

start position can impact the classification of the GST as internal or 5’ to a gene.  

Discrepancies between annotation sources need to be identified and reconciled in a 

systematic fashion.  Such systematic identification of errors between sources will help in 

streamlining and standardizing the annotation process and in the process improve the 

quality of data.  The aim of the data integration process was to identify discrepancies 

present between the sources and see what impact these discrepancies had on classification 

of GST clusters. 
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Figure 3.  Current Bioinformatics pipeline for SACO.   
Computational phases are highlighted in green and the experimental phases in yellow.  Genomic Sequence 
tags (GSTs) generated experimentally are matched with in-silico generated tags and placed on the genomic 
scaffold.  The GSTs are anchored by sequence features such as the start and stop of genes and placement of 
EST tags, which are derived from the annotation sources.   The last step is the experimental verification of 
the GST locations.  

 

3.2 Data sources used for SACO analysis  
 
 Five sources, critical to providing information about the location of landmarks on 

the mouse genome (mm5), were used as the sources for data integration.  These were the 

UCSC repository [17] for mRNAs, ESTs, CpG islands and miRNAs, RNAdb [18] for 

noncoding RNA (ncRNAs) , ECGene [19] and Ensembl [20] for genes and the list of 

ultraconserved elements from UCSC [21].  The definitions for these terms are provided in 

the Glossary.  The rationale for including these annotations is because each of them helps 

to identify the position of genes and location of regulatory elements.  ESTs, genes and 
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mRNAs can help localize the presence of the genes.  CpG islands, miRNAs and ncRNAs 

can help determine regulatory regions.  By using these sources we aim to understand the 

TF of interest, specifically, which genes it regulates, whether it regulates other regulators 

and, if so, can the mechanism of regulation be determined. 

 The UCSC repository is a data warehouse that provides information on a number 

of genome landmarks. The primary annotations used for this study included the mRNA, 

EST, CpG island and miRNA features. The repository essentially provides the position(s) 

of these elements, for a given build of a genome and the species.  Sequence information 

for each of these features is pulled from GenBank and the sequences aligned against the 

current genome build using the Basic Alignment Tool (BLAT). When a feature maps to 

multiple locations, the alignment with the highest base identity is determined.  

Alignments within 1% of the best alignment are retained.  The data is available in the 

form of flat files and is derived from the MySQL database that houses all the annotation 

data on UCSC servers.  SQL statements for the original data tables are also available with 

the flat files. 

 RNAdb contains information on 800 experimentally studied non-coding RNAs 

and includes miRNAS and small nucleolar RNAs (snoRNAs).  There are three datasets 

within this repository. Fantom2 contains more than 15,000 unique, putative ncRNAs 

from the Functional Annotation of Mouse (FANTOM) project.  Information on these 

sequences includes their sequence, GenBank accession, chromosomal location, transcript 

length, splicing status, EST hits, antisense relationship and the experimental library from 

which the entity originated.  The sequence is a representative for the entire set of related 

sequences and is chosen by the Fantom2 team.  We found that to obtain the actual 

information about the other members in the group, we had to check the parent source, 

Riken.  RNAdb data is available in XML format with its associated schema.  The XML 

data is from a Microsoft SQL2000 database running on a .NET platform. 

ECGene is a data source that contains predicted gene models. Using mRNA, EST 

and protein sequences as inputs to the BLAT algorithms and using it in combination with 

graph theoretic analysis, gene predictions with varying confidence measures are made. 

The confidence measures for the different models are based on experimental evidence 

such as Refseq sequences associated with the model, the number of clones, mRNAs and 
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ESTs etc. The data is available in the form of flat files, which are derived from a 

relational database in the backend. 

Ensembl is an integrated resource that uses a combination of automatic and 

manual techniques in its pipeline to generate genome annotations. For this project we 

used the list of known genes (experimentally verified genes) from Ensembl to provide us 

with information on the gene boundaries as well as the intron-exon boundaries.  Ensembl 

data was pulled out from the core database using the BioMart data mining tool.  The data 

was exported as a tab-delimited file prior to its being used for analyses. 

The source for ultraconserved contained nucleotide sequences at least 200 bases 

in length that are conserved between orthologous regions of human, rat and mouse 

genomes.  Nearly all of the segments are also conserved in chicken and dog genomes.  In 

humans these sequences typically overlap exons of genes involved RNA processing or 

are present in introns or nearby genes involved in regulation of transcription and 

development.  These are genetic elements whose function is yet to be determined.  The 

raw sequence data (in the form of a text file) was available for download. 
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Chapter 4 Methods 
 
In this chapter we propose a series of definitions that are necessary for describing HIDE.  

We then list factors that we identified as being important for detection of discrepancies.  

The final sections describe how we propose to help identify discrepancies in data, 

followed by a description of the implementation. 

4.1 Definitions proposed for describing the data workspace 
 
We use the following terms in describing and designing the HIDE 

Expectation: Conceptual model of an entity with respect to its behavior and properties, 

based on the physical world and the existing knowledge base.  An entity can be modeled 

formally in a number of ways such as using an ontology or within the schema of a 

database. 

Error: Any deviation in behavior or properties from our expectation(s) about the entity. 

Primary data source: Data that is the result of an experiment or computational 

prediction and that cannot be traced back to another source.  

Secondary data source: A data source that is not a primary repository.  A subset of the 

data in this repository is derived (obtained) from one or more primary source(s).   

Direct mapping: Data elements that are common to the two sources being compared, 

i.e., the same data is present in both sources.  

Indirect mapping: Different data are present in two sources; one source can support or 

contradict data in the other source. 

Independent data sources: Two data sources are said to be independent if there exists 

no evidence to indicate a common lineage or in the case of shared ancestry, if a change in 

the data in one source does not affect the data present in the other source [22]. 
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Consequential discrepancies: A subset of all discrepancies present between data 

sources.  Defined relative to an analysis, it is the subset of discrepancies that may impact 

the result of the analysis. 

 

 To illustrate these definitions, consider the following example.  Data on a 

particular business is obtained from an advertisement in the yellow pages and from the 

company website.  Both can be considered as being derived sources, obtaining the 

information from the business (which is now the primary data source).  The business 

(entity) in the two sources is linked by its name.  If both sources provide the telephone 

numbers and addresses, these attributes can be directly mapped in the two sources.  Our 

expectation is that these attributes are equal in value.  If they are different, we state that 

there is a discrepancy and we need more information (meta-data) to resolve this 

discrepancy.  One way of resolving the discrepancy and identifying the incorrect source 

(the error) can be done by contacting the primary source.  Now consider the case where 

the advertisement states the business is open for seven days a week and the website 

provides hours only for Monday through Saturday.  This is an example of an indirect 

mapping.  The two sources in this example are not independent and are related through 

shared ancestry.  Consider the case where the business changes its hours and this is 

reflected only in the website.  This impacts the data in the advertisement, if it is not 

updated.   

 

 4.2 Various factors included for discrepancy detection 
 

Independence and the mapping relationship between two sources are concepts that 

are important and have an effect on discrepancy detection.  As defined above, 

independence of two sources exists in the absence of common lineage and also in certain 

cases in sources with shared ancestry.  When two sources are not independent and share a 

common lineage, the expectation is that the sources share a common model of an entity 

i.e., it is valid to expect that both sources represent the entity of interest using the same 

data model.  Hence any discrepancies present between the sources can be attributed to 

errors or deliberate changes, as opposed to differences in the underlying models. 
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The second concept that affects discrepancy detection is the mapping relationship that 

exists between two sources.  When two sources present the same information, i.e., a 

direct map exists, we expect that the data will be the same for an entity. When the 

information is indirectly mapped, tests for criteria other than equality are required to 

check for discrepancies.  Defining the relationship between the two sources is important 

for identifying the test to be used. 

 

4.3 Detecting errors within data sources 
 

To detect errors within sources, it is necessary to carry out both semantic and 

syntactic checks.  These tests are typically carried out by using a combination of queries 

to capture the semantics embedded in the data and the use of data cleaning tools.  These 

queries used in this step were designed using the possible list of queries described for 

within sources (described in Appendix A). As there were no errors detected within each 

source, a mapping was generated between the different sources as a two-step process – 

identifying the entities (and their associated properties) common to sources and by 

tracing the lineage of each source with respect to the other sources (Fig. 4).  Based on the 

sources (and data therein) that we are integrating, we generated 2-way mappings.  But it 

is obvious that such a mapping can include more than two sources.  For the sake of 

simplicity, we do not include any circular (when a derived source serves to feed 

information back to the primary source) and transitive lineages in this data.  

Independence and lineage of sources are with respect to a particular set of attributes that 

are of interest to the user.  It is not hard to imagine a derived source where the origin of 

subsets of attributes varies. 
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Figure 4 Relationships between the different data sources.  
 Data sources in the highlighted area were used for the preliminary data analyses and to design the 
workflow.  The two sources (GenBank and Riken) outside the highlighted area were used to resolve 
discrepancies detected.  Data sources colored blue are primary sources and the ones colored yellow are 
secondary sources.  Three types of relationships are defined between pairs of data sources (for the attributes 
of interest) – derives from, direct mapped and indirect mapped.  Information for creating these mappings 
were obtained from the documentation provided for each source[17-21, 23-26].  The websites were viewed 
in June 2005.   

 

4.4 Description of HIDE proposed for discrepancy detection between 
sources 
 

Our workflow for discrepancy detection is a process to help identify errors that 

can arise during data integration by directing testing.  It is modeled as a series of steps to 

follow to identify the context in which two data sources are integrated.  The context then 

determines the types of tests to be carried out, and in turn helps identify discrepancies. 

Given two or more data sources, the first step is to make sure each is internally consistent 

– syntactically and semantically.  This check is typically achieved by using data cleaning 

tools or queries designed to detect errors, or both. Any errors that are detected at this 

stage will affect the results of the data integration process and hence need to be flagged.   

The next step is to determine if the sources share a common ancestry.  This 

condition includes the case when one source is a parent (or ancestor) of another source. 

When this status is unknown, or if there are no obvious relationships between the data 

sources, a test for hidden dependencies is required. This situation is detected by 
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answering the question “If the data were different in one source, would it have resulted in 

the data being in different state in the other source” [22].   One way to answer the above 

question would be to start at one source, envision a change in the data and trace the effect 

to the other source.  If yes, then we can conclude there are hidden dependencies between 

the sources.  The series of steps to identify the relationship between sources helps 

determine the context in which the queries will be formulated (Fig. 5). 

 

 

 

 

Q1: Are the two sources dependent? 

Yes    No 

Q2: Do they share attributes? 

Yes No 

Q3: Do these have  
equal values? 

No 

Error ! 

  Yes 

No 
error 

 

Q5:Do relationships* 
between other attributes 
exist? 

Yes 

Q4: Queries based on 
other relationships (see 
 Appendix  A) 

No 

Cannot test 
for 
discrepancies

Q6: Can a bridging source or ontology be 
identified? 

Yes 

Start at Q2  

No 

Q7: Can relationships* be defined 
based on knowledgebase? 

No Yes 

Start at Q2  Cannot test 
for 
discrepancies  

*Relationships include  location/proximity, membership in, codes for, 
complementarity etc. 

Figure 5. Schematic of the workflow to detect discrepancies and errors present between data sources.  The 
workflow specifies the actions and the order in which they need to be executed to identify the relationships 
between sources and based on these relationships, helps identify sample queries that can be generated. 

4.5 Role of the context in detecting discrepancies 

  4.5.1 Dependent data sources 

If dependence is confirmed, the next step is to determine if the two data sources 

can be directly mapped.  If common attributes are identified in both sources, for the same 
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instance of an entity, we expect the common attribute (present in both sources) to have 

the same value both places, that is, the equality condition is true.  A violation of this 

condition in a small percentage of cases implies that there is an error in at least one of the 

sources.  If the majority of data is incorrect, this would suggest either an incorrect 

mapping or a misunderstanding of the data organization in at least one of the sources. 

If the data in two sources can be indirectly mapped, it is necessary to determine 

how the individual pairs of attributes in the two sources are related, if such a relationship 

exists.  The following are possible relationships that might exist between pairs of 

attributes: complement, not equal, subsequence (part of), co-localization or proximity 

with, codes for (derives from), member of (membership in).  If one or more of these 

expectations hold, queries need to be designed to test for deviations from the 

expectation(s).  The expectations could be a composition of these relationships.  Errors 

are detected if an expectation is violated.   

 

4.5.2 Independent data sources 

Prior to defining the mapping between sources, the first step in integrating 

independent sources is to determine if the concept of an entity in the two cases is actually 

the same.  Although this determination appears to be intuitive, we have found that 

integrating sources based on common and well defined identifiers (which are proxies for 

entities and their associated semantics) fails when the associated semantics are modified 

by individual data sources.  Such modification invalidates the expectation that the entities 

are the same in both sources.  It is important to resolve this “identity crisis”, for the 

identification of a discrepancy is dependent on the conceptualization of an entity being 

similar across data sources. 

 Once the definition of an entity is resolved, the steps that follow are similar to the 

case of the dependent sources.  Relationships between pairs of attributes are either tagged 

as directly mapped, indirectly mapped or are non-existent, and the appropriate tests 

carried out to detect errors. 

 

 

 

                                                                        22



4.5.3 Navigating the HIDE workflow utilizing the example of SACO 

The first task in utilizing HIDE is to determine if the sources are direct mapped, which is 

a proxy for determining if there are common entities between the two sources. This 

determination is by using a combination of several factors and utilizes meta-data about 

the sources.  The factors include the lineage of the sources, the level of overlap in the 

data between the sources, and use of common identifiers.  For the SACO use case, the 

mapping was achieved by all three factors mentioned above.  We examined the data 

described in each source, the lineage of the sources and the degree of overlap in terms of 

data between the sources.  We found evidence for dependent and independent sources.  

For example consider the following dependent sources, UCSC and Ensembl.  The sources 

are determined to be dependent and found to contain common attributes.  This can be 

traced back to Q1 and Q2 being true in Fig.5.  Both contain information about genes and 

utilize data from GenBank to create their repositories.  Common identifiers, or - in their 

absence - bridging sources, were also available to answer Q5 in Fig. 5.  In this case we 

utilized UCSC’s mapping for linking to Ensembl (bridging source).  We were able to 

identify common entities between the two sources.   

In the case of ECGene and Ensembl, we could not establish any direct 

relationships (answer to Q5 in Fig. 5) between the dependent sources as there were no 

bridging ontologies or sources.  This arose in part because data in ECGene was generated 

computationally and the results of the predictions were not linked to any experimentally 

verified genes.  This mapping presented a case of hidden dependencies because if the 

mRNA and EST data were different in UCSC, it could affect certain categories of data 

confidence models in ECGene.  For example, the medium confidence model requires 

evidence of at least 4 clones for a single exon gene (per ECGene website, June 2007).  

Even if one of those clones was not present in UCSC or contained different information, 

it could affect the confidence model in ECGene.  This is because ECGene utilizes data 

from UCSC in its prediction of genes.  Once the links were established and some 

dependency detected, we estimated the degree of overlap between the sources.  The 

examination of sources for their level of overlap was done at the attribute level in the 

SACO sources.  If the attributes were common, the values were tested for equality 

between sources.  If there was a discrepancy between sources it was flagged.  Other 
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relationships between pairs of attributes were tested.  For example, UCSC provides all 

possible locations for a transcript.  RNAdb, however, provides only one location for the 

same transcript.  The constraint is that the one location specified by RNAdb has to be a 

member of the set of locations reported by UCSC.  We found that for a subset of the data, 

the expectation did not hold.  Results are presented in Chapter 5.   

4.6 Implementation of HIDE in a discrepancy detection tool 
 

To help a user detect discrepancies in data, we have implemented the workflow as 

a user-driven application using a MySQL back end.  Data, in tab-delimited format, and 

meta-data in a specified format are used as initial inputs to the program.  The user is then 

guided through a series of steps to create mappings between data sources.  The initial data 

and the user’s input are used to detect discrepancies, both within and between sources.  

Summaries of the discrepancies and the actual details of the discrepancies are available to 

the user in a text file that can be visualized within the genome browser.  The discrepancy 

detection tool is implemented as a Java application. User interfaces were designed with 

Java Swing and the output, depending on the user’s requirements, is either a summary of 

the discrepancies or a text file that can be visualized using the UCSC genome browser 

and allows the user to drill down into the details of the discrepancy. 

 

4.7 Description of the tool: Implementation details and Current 
Functionality 
 

The functionality of the tool can be divided into three broad components.  The 

first deals with checking for deviations in data within each source, specifically the type 

and the length of fields, and is based on the meta-data provided. The second component 

consists of creating mappings between sources, based on user input, and creating queries 

to detect discrepancies between sources. A possible extension will allow the automatic 

generation of mappings and allow user to edit the mappings as opposed to creating the 

mappings. Queries will be customized based on these mappings.  The final component is 

the visualization of the discrepancies.  Again, based on user input, a domain-specific, 

detail-oriented view or a summary of discrepancies is available to the user.    
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4.7.1. Assumptions 

In the preliminary implementation of the workflow, we assume that all the 

information needed to define the relational model of the entity and the data to create the 

mappings between sources will be provided by the user.  This assumption is not 

unreasonable for the current use case as the data used is well-curated and the minimal 

information required is easily accessible to the end user of the system.  Additionally, we 

do not incorporate independence criteria of the sources in our implementation as we 

currently don’t distinguish between a discrepancy and an error.  The independence 

information is required for the distinction.  In the current implementation we restrict the 

output to detecting discrepancies between data sources, regardless of the level of 

independence between pairs of data sources. 

 

4.7.2 Initial Inputs 

There are two initial inputs that are required to start the discrepancy-detection process.  

The first file is a meta–data file.  The file currently has to include information about the 

data source, the type of entity it describes, the date the file was created/downloaded, the 

version of the data source and each attribute of the entity present in the file – including 

the name of the attribute, the data type of the attribute, information about allowing null 

values.  The meta-data file can also be used to specify keys – both simple and composite 

for a particular data source (Fig. 6).  The second input file is the data file.  Currently, the 

accepted format for the data file is a tab-delimited file with one row describing each 

instance of an entity.  The order of attributes specified in the meta-data file needs to be 

preserved in the data file.   

 

4.7.3 Process used 

Data is loaded into temporary files and checked for discrepancies related to the data type, 

the length of the fields and, null values (when they are not allowed).  Rows that deviate 

from the specifications provided in the meta-data file are written out into a separate log 

file and error messages indicating the columns with the errors are provided for the user 

with-in the workflow prototype.  Currently, checks for simple data types are implemented 

within the tool.  
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After the check for errors within each source is completed, data is loaded into 

final tables that have been created, based on the meta-data provided. The user is allowed 

to create mappings between attributes in the different data sources.  These mappings are 

then used to create custom queries to detect discrepancies between the different sources. 

For the current implementation, the types of relationships between pairs of attributes that 

can be checked are simple relations.  These details of the discrepancies can be visualized 

within the UCSC genome browser which is a domain-specific solution that allows the 

user to visualize the discrepancies in the position of different genomic features in the 

context of a common scaffold.  In addition, the discrepancies are summarized by the data 

source and the location on the chromosome.  The discrepancies are presented to the user 

graphically.  

 
NAME UCSCmRNA 
VERSION may2004 
DATE DOWNLOADED 5/12/2004 
entityType mrna 
# `bin` smallint(5)  
# `matches` int(10)  
# `misMatches` int(10)  
# `repMatches` int(10)  
# `nCount` int(10)  
# `qNumInsert` int(10)  
# `qBaseInsert` int(10)  
# `tNumInsert` int(10)  
# `tBaseInsert` int(10)  
# `strand` char(2) NOT NULL  
# `qName` varchar(255) NOT NULL default '' 
# `qSize` int(10) unsigned  
# `qStart` int(10) unsigned  
# `qEnd` int(10) 
# `tName` varchar(255)  
# `tSize` int(10)  
# `tStart` int(10)  
# `tEnd` int(10)  
# `blockCount` int(10)  
# `blockSizes` longblob 
# `qStarts` longblob  
# `tStarts` longblob  

Figure 6 Sample meta-data file.  The meta-data information should include the name of the source, the 
version number and the date of the download.  In addition, each attribute of the entity present in the file – 
including the name of the attribute, the data type of the attribute (these are restricted to SQL data types), 
any restrictions on the length of the field, allowing null values and any default values need to be specified.  
The order of attributes has to be the same as the data.  The names of the columns are defined by the user 
and are used by the tool to report errors. 
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4.7.4 Output of tool 

 The output of the tool consists of text files and summary graphs.  Within source 

errors related to errors in the data type are flagged in log file (Fig. 7).  Incorrect records, 

determined by deviations from the data description provided by the user, are flagged in 

an error log (Fig. 8).  Discrepancies detected in the position of the genome annotations 

are visualized within the UCSC genome browser (Figs. 9 and 10). 

 
 
 
 
misMatches has rows with incorrect format for an int  
tBaseInsert has rows with incorrect format for an int 
Please refer to log file C:\tmpUCSCmRNAlog.txt with incorrect data 
 

Figure 7 Sample error messages displayed within the tool to indicate that there are problems with the data 
types within one data source.  This is part of the process to detect data errors within a source. 

 
 
 
611 2468 0 abc 0 
613 2468 0 abc 0 
614 2468 0 abc 0 
615 2468 0 abc 0 
 

Figure 8 Sample error log containing all rows with data errors.  Typically these are flagged for the user 
when there is a mismatch between the data type in the meta data file and the actual data. 

 
 
##Example  
browser position chr1:1-100250 
browser hide all 
track name=regulatory description="Regulatory Regions" visibility=2 
chr1 demo GST 3345 8745 . . . . 
chr1 demo GST 4345 9745 . . . . 
 

Figure 9 The sample .gff file to be loaded into the UCSC browser.  Here the discrepancy in a feature is the 
custom track that is to be loaded into the browser. 
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Figure 10 GFF file visualized in the genome browser.  The discrepancy track is magnified and presented 
above the screen shot.  Each discrepancy in a feature is represented as a tick mark along the chromosome.
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Chapter 5 Results 
5.1 Discrepancies detected in SACO using the workflow 
 

The first category of discrepancies we detected was related to direct mappings 

between data sources, in particular mismatches in the length of mRNAs.  We compared 

the sequences from RNAdb and UCSC, identified by their accession numbers.  An 

accession number is a unique identifier that is associated with a sequence record.  A 

sequence record includes information about the sequence, in addition to other information 

such as the date of submission, the name of the submitter, etc.  The assumption is that the 

sequence associated with the accession number is the same across multiple sources.  The 

first source, RNAdb, derives from the Riken source and the second source, UCSC, is 

derived from GenBank.  We found that in UCSC, accession numbers are unique, are 

associated with sequences of a unique length and map to multiple locations.  In RNAdb, 

each accession number was found to have only one location and sequence length.  We 

found 23 (< 1% of RNAdb records) accession numbers, which were assumed to represent 

one sequence each, were discordant in the length of the mRNA with data for the same 

accessions from UCSC. This number may be an under-representation of the discrepancies 

as there could be sequences with the same length but different base composition. 

It was also noted that twelve accession numbers in RNAdb have locations that are 

discordant with UCSC’s predicted set of locations. The same discrepancies were detected 

between RNAdb and Riken (the primary source) (Fig. 11).  On further examination, it 

was determined that for RNAdb the accession number is a representative accession for a 

number of clones.  Each entry has a consensus length and sequence location. It then 

becomes clear that the number of sequences actually discordant can be much higher than 

detected as the representation of the sequence is not the same in the two sources. In 

particular, same length is not a guarantee that the same sequences are being compared.   
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Because RNAdb contains information only on the representative sequence, it is not 

possible to compile a list of all sequences associated with each representative and then 

compare this larger set to the sequences from UCSC. 
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RNAdb
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Figure 11 Discrepancies in the chromosomal location of clones in mouse based on pair wise direct 
mapping between data sources.  
The chromosomal position for the GenBank Accession ID AK048823 in the three sources – Riken (top 
panel), RNAdb(middle panel) and UCSC (bottom panel).  The curated location in RNAdb is not consistent 
with its parent source, Riken, or with UCSC.  
 
A second category of discrepancies we detected were related to indirect mappings.  We 

had lists of predicted (with high confidence) and known genes from ECGene and 

Ensembl respectively.  In the absence of common identifiers, we were interested in 

seeing the degree of overlap between the genes in the two sources.  We examined the 

number of genes with the same starts and stops.  We used two very simple metrics, the 

number of genes in each source and the overlap of genes (based on the start and stop).  

We observe a very low concordance between the sources for both metrics (Table 1), 

which is expected since the underlying gene models are different.  Also, we note that the 

exact matching of gene boundaries is not useful metric in this case because discrepancies 

arise due to differences in lengths of introns, repeat sequences, etc.  Without mapping the 

                                                                        30



predicted genes in ECGene to an experimentally verified gene, it is not possible to obtain 

a better mapping of the two sources. 

 We propose more flexibility in designing the mapping parameter is required. For 

example, gene boundaries need to be compared within a sequence window and not 

exactly at boundaries. 

Table 1 Discrepancies in gene number and overlapping gene boundaries when comparing and 
ECGene’ s high confidence model  with all genes from ENSEMBL.     
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3370 
3718 
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1180 
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1329 
1921 
1170 
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1797 
817 
923 
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910 
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1249 
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2 
1 
1 
1 
3 
1 
2 
0 
0 
0 
1 
1 
0 
1 
3 
2 
1 
0 
0 
0 
0 

 
5.2 Impact of discrepancies on downstream analyses for SACO 

 
Of critical interest in the analysis of SACO data is the localization of the GSTs 

relative to annotations in order to categorize binding sites (i.e., upstream 5´, internal or 

3´). Therefore, we examined discrepancies in the start position between two data sources: 

Ensembl (Release 41, using build 36) and UCSC’s known gene tracks (using NCBI build 

36). 
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To carry out the comparison, the same entities needed to be identified in both 

sources.  At issue is the lack of a common identifier between the two sources and the fact 

that UCSC chooses only one reference transcript to represent the gene. For simplicity in 

this use case, UCSC’s mapping to ENSEMBL was utilized. It should be noted that having 

a mapping to the other data source is potentially the best-case scenario. 

With the mapping between the two sources provided, we examined the start and 

stop locations for the same genes from both sources. We expect that the attributes have 

the same values for both start and stop.  Using the mapping conditions and check 

conditions specified above, we were able to identify a total of 4498 genes which had 

different start positions in the two sources (Fig 12).  The absolute difference in the start 

position ranged from 1 to 8.4 x 107 base pairs (bps).  The largest category (38.6 %) was 

genes that differed by less than 5 bps (of which 80% were only different by 1 bp, most 

likely due to differences in index notation). Most striking was the observation that 19% 

differed by more than 5kb. Because the positioning of SACO tags relative to annotation 

is critical, we examined the number of tags that would be classified as internal or 5´ 

upstream. For this simple example, 5´ was defined as 1kb upstream of the TSS. 
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Figure 12. Histogram of the mapped genes categorized by the differences in the start position obtained 
from the two sources (Ensembl and UCSC knowngene).   
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Category 1 corresponds to differences less than 5 bps, Category 2 consists of genes with differences 
between 5 and less than 100 bps, Category 3 – between 100 and 1000 bps. Category 4 – greater than 1000 
bps and less than 5000 bps. Category 5 – greater than 5000 bps. 

 

To assess the effect of the discrepancies on experimental data, the NeuroD GST 

library generated by the SACO process (described previously) was used. NeuroD is a 

transcription factor that controls molecules that are involved in cell survival and 

differentiation in multiple tissues.  Also known as BETA2, it is involved in a number of 

diseases, including diabetes, ataxia and deafness [27].   Because the discrepancies are 

highly correlated with the confidence both in the location and characterization of the tags, 

we examined the number of tags that could be located within genes and the number that 

could be located 1000 bps before the start of a gene.  

Based on our definition of consequential discrepancies, a subset of these 

discrepancies has the potential to change the state of a GST – from being a potential TF 

binding site located near a gene to one that is not near a gene start. The threshold for an 

annotation impacting a GST depends on two factors.  The first is the difference in the 

start position (delta) between the two annotations and the second is the distance of the 

GST to the nearest annotation start (start pos). 
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For this simple analysis, we can define a threshold value such that the sum should 

be less than 1000, that is  

delta + start pos ≤ 1000 bps 

Any discrepancy that fails to satisfy this condition can potentially impact the 

status of a GST. 

Using Ensembl as the reference source, we found that of a total of 26124 

experimental tags, 10158 unique GSTs (38.8%) were located within the gene boundaries.  

1880 (7.2%) were identified as being located within 1000 bps of the start of a gene.  

Using UCSC’s known genes as the reference, we found 9800 GST tags (37.5%) were 

located within a gene. 376(1%) GSTs were identified as being located 1000 bps before a 

gene.  One reason for the higher placement of GSTs with Ensembl (38.8% v/s 37.5% for 

UCSC’s known genes) is because all the transcripts from a gene are included in the data 

set.  In the case of UCSC known genes, only one transcript per gene is represented.  We 

found that a total of 1304 GSTs were impacted by consequential discrepancies that we 

identified using the definition above. As mentioned previously, this has the impact to 

change the sequences that we use for downstream analyses such as motif finding.   

 

5.3 Application of HIDE to other Biological Use Cases  
 

The identification of discrepancies can be critical for a number of different 

biological (and non-biological scenarios) and can have serious implications for any 

downstream or subsequent analysis of the integrated data.  Here we briefly consider 

another example of the utility of HIDE, the development of a SNP panel (a chip-based 

technique used for the simultaneous genotyping of a number of SNPs) for a disease 

association study.  SNPs or Single nucleotide polymorphisms, being a common variant 

(with the least frequent allele having an abundance of 1% or greater), can help localize 

regions of the genome that are important in disease, acting as a surrogate marker for the 

disease locus [27].  A SNP is classified as coding if it is located within the coding portion 

of a gene.  A non-coding SNP is one that does not lie in the coding portion of a gene.  A 

coding SNP may affect the biological function of the protein that a gene codes for if there 

is a change at the amino acid level. In these cases, the SNP itself may be a causal variant, 

                                                                        34



rather than just a marker associated with a causal variant (the variant that is responsible 

for the functional change).  Many researchers will design SNP panels to therefore 

maximize the number of coding SNPs.  This panel will be used to design a customized 

genotyping array for analyzing SNPs of interest in a case-control or population study. A 

SNP not included in the array cannot be included in the downstream analysis and hence it 

is important to ensure that the most accurate and complete information is available during 

construction of the panel. The panel is to be used as an analysis tool in population-based 

studies.  Not including a SNP in the panel will impact the effect of the SNP at the 

population level. 

 The classification of a SNP as either coding or non-coding is dependent upon the 

annotations for gene starts and stops.  Hence data sources that provide information on 

gene locations are of interest.  Any discrepancies between these sources may affect the 

classification of SNPs.  The problem is now reduced into one of discrepancy detection, 

which can now be handled by HIDE.  Additionally, the SNP study highlighted here is 

carried out in the human genome, as opposed to the mouse genome for SACO, indicating 

the generalizability of HIDE at the genomic level.  

5.3.1 Background for the SNP Use Case 
 With the advances in new technologies, researchers can design custom SNP 

arrays to interrogate specific regions or genes of the genome.  In our case, the SNP study 

was restricted to a specific region of the human genome implicated in Alzheimer’s 

disease via an association study.  The investigators at the OHSU Layton Aging and 

Alzheimer's Disease Center were interested in the genetic variation in the gene MCPH1 

(located on chromosome 8).  For genotyping the coding SNPs in the study population, it 

was important to identify the set of coding SNPs first.   

5.3.2 Detecting the Impact of discrepancies on SNP categories  
 
 Two data sources, UCSC’s known genes and Ensembl were identified by the 

investigator as being the source of annotations.  We utilized the two data sources 

identified by the investigator as the source for gene annotations.  Locations for the 

individual SNPs were obtained from the dbSNP [14] database.  The SNP repository, 

dbSNP, is a primary data source and contains information submitted by individual 
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researchers and consortiums.  Because our study focused in looking for discrepancies in 

one gene and the SNPs that were affected, we looked at the data at the transcript level.  

As both sources used the common gene identifier (MCPH1), we chose to use this 

identifier to create the mapping between the two sources.  There were multiple transcripts 

associated with the gene in each source.  We compared the equality of  the following 

aggregate scores to detect discrepancies.  For the start position, we calculated the 

aggregate score for each source across the transcripts and tested for equality of these 

aggregate scores.   

StartScoresource, gene =  min (transcriptstartgene)  where i is the number of transcripts  
                                                        i 
 
StopScoresource, gene =  max (transcriptstopgene)  where i is the number of transcripts  
                                                        i 
 
We found three transcripts annotated with the gene name in UCSC and two transcripts in 

Ensembl (Table 2).  This suggests that there are discrepancies in the start and end of the 

gene across the sources as the UCSC gene start (defined as the minimum of starts of all 

transcripts) is located before the Ensembl start.  The UCSC gene end (the maximum of all 

transcript ends) is located after the Ensembl gene end.  On examining the number of 

SNPs affected, we found that discrepancies in the start position did not impact the 

classification of any known SNPs.  However in the case of the end position, the 

classifications of 26 SNPs were affected by the discrepancies (Fig. 13). 

 
 
Table 2. Details of  the transcripts annotated with the gene identifier MCPH1 in the UCSC and 
Ensembl databases.  Discrepancies are present in both the start and end positions of the genes.  The 
gene start in a database is defined as the minimum of all transcript starts in the database.  The gene 
end is defined as the maximum of all the transcript ends.  This definition holds true because the gene 
is  positioned  on the + strand of the genome.  The +  or  forward strand, is the DNA strand where the 
base pairs increase when moving from the 5´ to 3´. 
 
Transcript ID Source Start Stop 
NM_024596 UCSC 6251529 6493434 
Uc003wqh.1 UCSC 6251529 6291496 
Uc003wqi.1 UCSC 6251529 6493434 
OTTHUMG00000139041 Ensembl 6251486 6489391 
ENSG00000147316 Ensembl 6251530 6488550 
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5.3.3  Results 
 
Discrepancies in the end positions can be seen in the  UCSC browser window (Fig. 9) 

and are overlaid with the set of SNPs affected.  The line representing the discrepancy 

track is at the top of the figure and is annotated with the source of the data (the 

annotations are currently not a feature of HIDE).  The SNP track, from dbSNP, is 

overlaid on the discrepancy track with all the details of the identifiers and their positions 

visible within the genome browser.  A total of 26 SNPs were now classified as coding 

SNPs based on the data from the two sources.  These SNPs would not have been included 

without the HIDE analysis and discrepancy detection. Given that there are only a total of 

96 SNPs that can be included as part of the array, this subset of SNPs that were missed 

form a significant portion (27%), if included in the analysis.  
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End position – per 
UCSF 

End position – per 
Ensembl 

 
 
 
 
 
 
SNPs impacted by  
discrepancies in 
end positions 

Figure 13. Impact of discrepancies visualized in the UCSC genome browser.   
The line at the top indicates the discrepancies in the end positions in the two data bases – UCSC and 
Ensembl.  The list of 26 SNPs and their locations, derived from dbSNP, are overlaid on the 
discrepancy track.   
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Chapter 6 Conclusions 

 6.1 Issues addressed in this study 
 
In this thesis, we propose a systematic workflow to detect errors that arise during 

integration of data using a combination of lineage information and independence of data 

sources.  The workflow we have proposed currently consists of a set of definitions and is 

modeled as a flowchart to help the user determine the queries that are necessary for data 

cleaning, given the data and the relationships that exist between the data.  Additionally, 

we prototyped computer tools to help with parts of the task.  We also propose how such a 

mapping can be extended and enumerate a number of challenges which will need to be 

addressed before achieving complete automation of such a framework. 

 Traditionally, the approach for data cleaning has been using data cleaning tools 

and carried out in a batch processing model [1].  Additionally, the incorrect information 

is “transformed” to remove the error.  This approach presents a major drawback for the 

biologist who may wish to know the actual error or discrepancy and is not interested in 

transformation of the data to enforce conformance between the sources.  Additionally, a 

large percentage of the data a biologist deals with are drawn from legacy sources and it 

may not be possible to incorporate changes back into the sources.  For the reasons above, 

it becomes important to have a mechanism of representing the errors to the biologist and 

in a manner that does not need to modify the underlying resources.  One solution to 

handle such legacy data, proposed by Lincoln Stein, was to allow annotations to be 

housed in multiple servers in a distributed manner (DAS).  The data would be integrated 

on a need-to basis by the client side machine (read the user). 

The errors that are detected between sources will be determined by the actual 

sources that are included in the integration process.  It is highly probable addition of new 
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sources will result in new errors being discovered.  To avoid re-mapping all the data, 

providing a generalized, superimposed framework [30] that models or captures the 

relationships between the sources will allow the biologist to include new resources in the 

analysis.  A generalized framework that directs testing will also allow the biologist to 

fashion queries to detect errors that will impact their analyses. The concept of the 

superimposed framework has been proposed by Delcambre and Maier [30]. 

6.2 Extensions to the framework  
 
 The current implementation of the workflow is limited in its ability to serve as a 

general purpose framework.  To extend its utility, we propose a number of extensions to 

the current implementation. 
  
6.2.1. Use of a mediator architecture for data integration 

In the workflow we have developed, we have identified factors – independence of 

data sources, status of a source (primary versus not), detecting invisible inputs, matching 

entities, etc. - as some of the challenges we faced in integrating the data.   

The scenario that we dealt with was a two-way mapping (mapping between two 

data sources for each entity). Although the challenges we identified are relevant for a 

multi-way mapping, it is not feasible to have 2-way maps for each pair of resources.  In 

addition to becoming infeasible computationally for a large number of sources, it fails to 

provide a consolidated picture of the data.  To generalize this notion of mapping, we 

propose the use of an ontology to serve as a global schema [27-29].    Individual data 

elements from the different sources are then mapped into the concepts of the ontology.  

This ontology is a superimposed layer [30] that is visualized and provides the user with 

summary statistics of discrepancies that exist between the sources.  This visualization 

layer also serves as the starting point for the user to drill down to the individual sources 

of data.  Additionally, a confidence measure for each entity in the ontology is calculated 

by weighting each source [31]. Initially, equal weights would be assigned to sources.   

The advantage of using the approach outlined above is that it provides the 

biologists with a mechanism of visualizing the errors in a context that is important to 

them, that of biological entities.  A second advantage is from the integration perspective.  
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By mapping to the concepts into the ontology, it becomes easier to match entities in the 

database.  However, there are challenges to this approach [19], which indicate that 

different sets of criteria will have to be addressed when integrating independent sources.  

Finally, by mapping the data into the ontology, it will be possible for the user to 

visualize the data coverage provided by the sources and provide some direction about 

entities that have insufficient or no coverage in the analysis.  Such a visualization of the 

coverage may provide the user in identifying new sources that need to be brought into the 

ontology.  For example in the case of SACO, suppose that genomic features are part of 

the ontology.  So in addition to a gene, there are entities such as mRNAs, ncRNAs, 

miRNAs, etc.  Each of these precursor entities are related to one another by their position 

of their precursors on the sequence.  One source (RNAdb) used in the analysis provides 

extensive annotation for groups of ncRNAs, identified by a representative sequence and 

position.  The information about each group’s members is hidden.  The use of 

representatives for a set is insufficient for the SACO process, since the location of every 

precursor in the group is important.  For this reason, the user may choose to include the 

primary source Riken in the analysis pipeline to obtain information about all the members 

in the group.  The use of an ontology will also help in alleviating the limitation of this 

approach – invalid expectations.  By mapping the data into the ontology, the 

identification of equivalent entities in the different databases becomes standardized and 

simpler, although a different set of challenges will need to be addressed to have a 

seamless integration of the entities. An implementation of this concept is presented in 

Biowarehouse[32], which serves as an integrated  repository for a number of biological 

data sources.  The mapping techniques presented in this thesis can be used to map the 

individual data sources into the Biowarehouse schema.  Additionally, by specifying the 

mapping rules at the level of the ontology, the process is decoupled from the data 

sources.  New data sources can be added easily and can utilize the mapping information 

already available.  By mapping data into an ontology, issues arising due to differences in 

naming conventions across data sources and the challenge of object identification are 

expected to be alleviated. 
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6.2.2 Learning from data 

 In the current implementation of the workflow, we use the user’s input for both 

the meta-data and creating mappings between sources.  One possible extension is to learn 

from the data and use the information obtained to both create tables and to flag deviations 

from the learned information.  This approach of learning from the data and flagging 

deviations has been implemented in a data integration tool, Potter’s wheel [10].  Tools 

such as Potter’s wheel can be implemented easily as a part of the workflow.  The 

advantage of Potter’s wheel is that it eliminates the need for the user’s input of data 

types.  The program is capable of learning the information by sampling the data.  

  

6.2.3 Classifying Discrepancies as Errors  

A certain level of minimum information is required to classify a discrepancy as an error.  

The first is related to the dependence between sources.  If two sources are dependent but 

present different information about a common entity, the discrepancy can be viewed as an 

error. Further information such as time the data was generated, expert inputs, etc. will be 

required to localize the error to one data source. A second piece of information is tracing 

the lineage of the data.  If the data in both sources can be traced back to the original 

source, it may be possible to determine if a discrepancy is truly an error.  Currently, the 

workflow does not attempt to classify a discrepancy as an error.  An extension would be 

to utilize more extensive meta-data to detect errors in data sources. Consider the 

previously introduced example of a business listing in the yellow pages and the company 

website.  If there is a discrepancy between the two sources related to hours of operation, 

it may be necessary to obtain more information to decide which source is incorrect.  

Without this extra piece of information, it is only possible to identify the discrepancy 

between the twos sources, not the incorrect source.   
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Appendix A  List of possible Queries 
Name of Query  Position in flowchart Description of Query Notes 
Test for Equality Q3 Checks that an entity has the 

same value for a property 
Need a minimum of two 
attributes that are common 
between sources – the entity 
identifier and the property. 
Caveat: make sure entities 
compared are the same. E.g. 
Accession nos. in Fantom2 
were not the same as 
accession numbers in UCSC 

   Test for 
Membership/ 
Test for 
Location 

Answer to Q5 identifies 
membership/sharing as property 
that exists between attributes. 

Pull out the set of possible 
values.  Check if the particular 
value is present in the set or 
check if locations overlap. 

Expect the parent source to 
contain the entire set.  

E.g. Riken chooses one 
representative location for a 
sequence (curated) which is 
selected from a list of possible 
locations in UCSC. 

Answer to Q5 identifies 
relationship as complement. 
E.g. non coding sequences cannot 
be in same location as coding 
sequences. 

Pull out possible values that are 
not allowed.  Check if the 
particular value is present 

Possible values can include 
exact values, range 
restrictions, etc. 

Test for 
Complement 

Test for 
proximity/ 
context 

Answer to Q5 identifies proximity 
of entities  

Check if the location of an entity 
lies within a window (specified 
by user) of the other entity 

Depending on the type of 
entity and the property being 
compared, this query can 
cover both temporal and 
spatial proximity and will be 
at different granularities – 
same compartment of cell, 
same chromosome, same cell 
cycle phase etc.  Can be 
thought of as variant of the 
test for membership where it 
is necessary to check if both 
entities belong to the same 
set. Similar to the test for 
dependence at data source 
level. 

Test for 
precursor of / 
Codes for  

Answer to Q5 identifies one entity 
is derived from another 

Check if the first entity can be 
translated to the second entity 
exactly 

May be time consuming and 
intensive.  There may be 
other proxy queries that can 
be used instead. (Issue of 
balancing the no. and cost of 
querying as opposed to 
complete coverage). 
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Glossary 
 
 3' UTR (untranslated region) is the portion of an mRNA from the 3' end of the mRNA 
to the position of the last codon used in translation. 
 
5' UTR is the portion of an mRNA from the 5' end to the position of the first codon used 
in translation.  
 
Association Study is a commonly used genetic tool that tests for the co-occurrence of a 
genetic trait and disease phenotype. 
 
ChIP or chromatin immunoprecipitation refers to the process by which proteins are 
bound to DNA, the bound sequences subsequently isolated and sequenced.  The aim of 
the process is to identify, characterize and localize the protein binding sites.  
 
Clone A section of DNA that has been inserted into a vector molecule, such as a plasmid 
or a phage chromosome, and then replicated to form many identical copies.  
 
CpG island They are regions with a high percentage of cytosine and guanine bases 
relative to the local background.  The “islands” range from a few hundred to a few 
thousand bases in length.  
 
EST An expressed sequence tag (EST) is a small part of the coding portion of a gene.  It 
is often used to localize the gene on the genome. 
 
Gene is a basic unit of inheritance. 
 
mRNA are messenger RNA molecules that are translated into protein.    
 
microRNAs (miRNA) are single-stranded RNA molecules of about 21-23 nucleotides in 
length thought to regulate the expression of other genes. 
 
ncRNA is RNA that is not translated to protein product.  It is believed to have a role in 
translational regulation.  
 
Restriction Enzymes are special proteins that cut  DNA strands at or near specialized 
motifs. 
 
rRNA A class of RNA molecules that are a component of the protein complex involved 
in translation. 

http://en.wikipedia.org/wiki/RNA
http://en.wikipedia.org/wiki/Nucleotide
http://en.wikipedia.org/wiki/Gene_expression
http://en.wikipedia.org/wiki/Gene
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SAGE (Serial Analysis of Gene Expression) is a technique that allows rapid, detailed 
analysis of thousands of transcripts in a cell. 
siRNA A class of RNA molecules that regulate gene expression by binding to and 
preventing the translation of MRNA to protein [25]. 
 
SNP (Single nucleotide polymorphism) is a change in a single base of DNA, compared 
to the expected base at that location [26]. 
 
TF (Transcription factor) A TF is a specialized protein complex that binds to the DNA 
sequence at a specific location and recruits other proteins that help form the RNA from 
the corresponding DNA sequence.   
 
Ultraconserved elements are nucleotide sequences at least 200 bases that are conserved 
between orthologous regions of human, rat and mouse genomes [19]. 
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