
A Formal Semantics of Teamwork and

Multi-agent Conversations as the Basis of

a Language for Programming Teams of

Autonomous Agents

Sanjeev Kumar

B.Tech., Electrical Engineering, Indian Institute of Technology, Kanpur (1995)

M.S., Computer Science and Engineering, OGI School of Science & Engineering at

Oregon Health & Science University (2002)

A dissertation submitted to the faculty of the

OGI School of Science & Engineering at

Oregon Health & Science University

in partial fulfillment of the

requirements for the degree

Doctor of Philosophy

in

Computer Science and Engineering

June 2006

c© Copyright 2006 by Sanjeev Kumar

All Rights Reserved

ii

The dissertation “A Formal Semantics of Teamwork and Multi-agent Conversations

as the Basis of a Language for Programming Teams of Autonomous Agents” by Sanjeev

Kumar has been examined and approved by the following Examination Committee:

Philp R. Cohen
Professor
Oregon Health & Science University
Thesis Research Adviser

Milind Tambe
Associate Professor
University of Southern California

James Hook
Associate Professor
Portland State University

Mark P. Jones
Associate Professor
Portland State University

Peter Heeman
Assistant Professor
Oregon Health & Science University

iii

Dedication

To my parents.

iv

Acknowledgements

I would like to express my deep sense of gratitude towards my advisor, Phil Cohen, without

whose unfailing help this thesis would not have existed. I feel grateful and privileged to

have him as an invaluable mentor, colleague, and friend in this long journey. It has been

a great learning experience, both as a researcher and as a person. Thank you Phil.

I would especially like to thank Milind Tambe for taking time to be the external

examiner on my committee and for providing invaluable feedback through discussions,

especially, during the early years of this research. I am extremely grateful to Mark Jones

and Jim Hook for remaining on my committee even after moving to a different university,

and for providing feedback from a programming languages perspective during the later

part of my research. I would like to express my sincere gratitude towards Peter Heeman

for agreeing to join my committee and read through this thesis at a very short notice.

There are many researchers with whom I have worked closely at various stages during

my research and to whom I am indebted for shaping up my thinking. I would like to

thank Hector Levesque for collaborating on group communication and extensions to joint

intention theory. I would like to thank my friends and former colleagues Marcus Huber

and David McGee for all the fun times we had brainstorming on different aspects of

multiagent systems. I would like to thank Cynthia Breazeal and her team for sharing

the internals of Leonardo, the robot, that provided the inspiration for the Lights World

domain used in this thesis. I have benefitted immensely from discussions with Mike

Wooldridge, Ray Perrault, David Israel, Tim Finin, James Allen, George Ferguson, Katia

Sycara, Frank Dignum, Mark Greaves, Jeff Bradshaw, Yves Lesperance, Jeremy Pitt, Tim

Norman, Karen Myers, David Pynadath, Amy Unruh, Paolo Busetta, Peter McBurney,

Gal Kaminka and many other AI researchers who I have met at conferences and project

meetings. Thank you all.

v

I have had the pleasure of being associated with the Center for Human Computer

Communication (CHCC) during my years as a PhD student. CHCC provided a very

stimulating research environment and I have had the privilege of working with some of

the best researchers in the world. Thank you folks at CHCC and Natural Interaction

Systems LLC, especially, Sharon Oviatt, Ed Kaiser, Matt Wesson, Ira Smith, Rachel

Coulston, Courtney Darves, Paulo Barthelmess, Andrea Corradini, Rebecca Lunsford,

Rajah Subramanian, Silvia Rossi and everybody else who has been part of the CHCC

family at various times when I was there. You guys rock! And to my fellow students Ed,

Rebecca, and Rajah, I would like to wish all the best for their forthcoming theses.

I am grateful to the Defense Advanced Research Projects Agency (DARPA) for finan-

cially supporting my thesis research through the CoABS Program (Contract No. F30602-

98-2-0098, A0 G352), and through the Department of Interior, NBC, Acquisition Services

(Contract No. NBCHD030010). I would also like to thank SRI for letting me work on

parts of my thesis as part of the CALO project.

Finally, I am thankful to my parents for always being supportive and trusting my

decisions. Their vision and sacrifice was the biggest inspiration that made it all possible.

vi

Contents

Dedication . iv

Acknowledgements . v

Abstract . xv

1 Introduction . 1
1.1 MOTIVATION . 1
1.2 THE PROBLEM . 3
1.3 HYPOTHESIS . 4
1.4 APPROACH . 5

1.4.1 Problems to be addressed . 5
1.4.2 Proposed solution . 7

1.5 OVERVIEW . 10
1.5.1 A Formal Semantics for an Agent Communication Language 10
1.5.2 A Formalism for Conversation Protocols 12
1.5.3 A Formal Semantics of Group Communication 14
1.5.4 A Formalism for Persistent and Dynamic Teams 15
1.5.5 A Fault-tolerant Multi-agent System Architecture 16
1.5.6 STAPLE: A Declarative Agent Programming Language 19

1.6 SUMMARY AND OUTLINE . 22

2 A Logic of Teamwork and Communication 24
2.1 SYNTAX . 25
2.2 MODEL THEORY . 26

2.2.1 Satisfaction and Validity . 26
2.2.2 Satisfaction of Primary Modal Operators 27
2.2.3 Occurrence of Events and Actions 28
2.2.4 Abbreviations . 29
2.2.5 Constraints on the Model . 31

2.3 JOINT INTENTION THEORY . 32

vii

2.3.1 Individual Commitment and Intention 33
2.3.2 Joint Commitment and Joint Intention 36
2.3.3 Social Commitment (Persistent Weak Achievement Goal) 41

2.4 MUTUAL BELIEF . 47
2.4.1 Model-Theoretic Definition of BMB 48
2.4.2 Establishing Mutual Belief by Communication 50

2.5 COMMUNICATIVE ACTS AS ATTEMPTS 56
2.5.1 Basic communicative acts . 57
2.5.2 Composed communicative acts . 62

2.6 SUMMARY . 64

3 Using STAPLE for Programming Teamwork and Communication . . . 66
3.1 OVERVIEW OF STAPLE PROGRAMS . 67

3.1.1 Representing the Terms and Constructs 67
3.1.2 A STAPLE Agent . 70
3.1.3 Communicative acts in STAPLE . 72
3.1.4 Other Aspects of the STAPLE Interpreter 73

3.2 LIGHTS DOMAIN AND THE EXPERIMENT SETUP 74
3.3 SINGLE AGENT EXAMPLES . 76

3.3.1 Committed goal is achieved . 77
3.3.2 Interfering with the committed goal 80
3.3.3 Committed goal is impossible . 81
3.3.4 Committed goal is irrelevant . 83
3.3.5 Reactive rule to adopt a new commitment 83

3.4 TEAMWORK AND COMMUNICATION EXAMPLES 84
3.4.1 Jointly Executing an Action Expression 84
3.4.2 Modifying what the agents can see 89
3.4.3 Oops! Never Mind . 92

3.5 SUMMARY . 93

4 Implementation of a STAPLE Interpreter 94
4.1 THE STAPLE INTERPRETER . 95

4.1.1 Overview . 95
4.1.2 Action and Plan Library . 97
4.1.3 Belief Base and Belief Base Maintenance System 98
4.1.4 Belief Reasoner and Consistency Checker 99
4.1.5 Trigger Manager, Rule Base, and Rule Manager 101
4.1.6 Observers and Actuators . 102

viii

4.1.7 Thread Pool and Prolog Engine Pool 103
4.2 EXECUTING INDIVIDUAL COMMITMENTS AND INTENTIONS . . . 104

4.2.1 Main Interpreter . 105
4.2.2 PGOAL Interpreter . 109
4.2.3 Intend Interpreter . 112

4.3 ESTABLISHING AND EXECUTING JOINT
COMMITMENTS . 113
4.3.1 PWAG Interpreter . 115
4.3.2 Implementing Communicative Acts in STAPLE 117
4.3.3 Executing Action Expressions Jointly 123

4.4 SUMMARY . 125

5 Extending the Theory of Teamwork and Communication to Support
Groups .126
5.1 PERSISTENT AND DYNAMIC TEAMS 126

5.1.1 Representing Groups . 127
5.1.2 Mutual belief and mutual goal in a group 128
5.1.3 Joint Commitment Revisited . 129
5.1.4 Maintenance Goal . 131

5.2 GROUP COMMUNICATION . 134
5.2.1 Constraints on Communication Languages 136
5.2.2 Adding Scope Rules to Group Notation 137
5.2.3 Group Beliefs . 138
5.2.4 Group Action . 140
5.2.5 Group Extension of Basic Concepts 141
5.2.6 Discussion . 146

5.3 GROUPS IN STAPLE . 147
5.3.1 Group beliefs . 148
5.3.2 Group PWAG and JPG . 149

5.4 SUMMARY . 152

6 Adaptive Agent Architecture .154
6.1 INTRODUCTION . 154
6.2 REVIEW OF FAULT TOLERANCE TECHNIQUES 156

6.2.1 Fault Handling in Multi-agent systems 156
6.2.2 Traditional Fault-Tolerance Techniques 158

6.3 OVERVIEW OF THE ADAPTIVE AGENT ARCHITECTURE 160
6.4 RECOVERY FROM BROKER FAILURE 161

ix

6.4.1 Formal Characterization . 161
6.4.2 Establishing the Formal Properties 163
6.4.3 Recovery Scheme . 164
6.4.4 A Recovery Scenario . 165

6.5 MAINTAINING A SPECIFIED NUMBER OF BROKERS 167
6.5.1 Formal Characterization . 168
6.5.2 Establishing the Formal Properties 169
6.5.3 A Recovery Scenario . 170

6.6 CONCLUSION . 170

7 Implementing Fault-Tolerance of AAA Brokers in STAPLE172
7.1 IMPLEMENTING BROKERING BEHAVIOR 172

7.1.1 Implementing a Broker . 172
7.1.2 Changes to Agents . 174
7.1.3 Walking Through a Brokering Example 176
7.1.4 The AAA Fault-tolerance Setup . 185

7.2 IMPLEMENTING AAA FAULT TOLERANCE 188
7.2.1 Mission statement of AAA Brokers 188
7.2.2 Implementing the AAA Mission Statement in STAPLE 189
7.2.3 The AAA Fault-tolerance Example in STAPLE 195
7.2.4 Modifying the AAA fault-tolerance behavior 202

7.3 Conclusion . 203

8 Conversations for Teamwork .204
8.1 OVERVIEW . 205
8.2 PROTOCOLS AS PARTIALLY ORDERED

LANDMARKS . 207
8.2.1 Visual and Logical Representation 208
8.2.2 Specializing, Generalizing, Realizing, and Instantiating Protocols . . 212

8.3 A WELL-KNOWN PROTOCOL FAMILY 214
8.3.1 Request Conversation Protocol . 214
8.3.2 Standing Offer Conversation Protocol 220
8.3.3 Contract-Net Conversation Protocol 225

8.4 APPLYING JOINT INTENTION THEORY TO PROTOCOLS 228
8.4.1 Joint Commitment Towards a Protocol Family 229
8.4.2 Jointly Intending a Conversation Protocol 232

8.5 COMPOSING PROTOCOLS . 234
8.5.1 Representing Concrete Protocols . 235

x

8.5.2 Compositions . 236
8.5.3 Request Protocol as a Composition 239

8.6 CONVERSATION PROTOCOLS IN STAPLE 243
8.7 SUMMARY . 245

9 Related Work .248
9.1 THEORIES OF AGENCY AND TEAMWORK 248

9.1.1 Philosophical Theories . 249
9.1.2 Logical Theories . 249
9.1.3 Real Time and Statistical Theories 252

9.2 SINGLE AGENT INFRASTRUCTURES 252
9.2.1 The Procedural Reasoning Systems (PRS) 253
9.2.2 Intelligent Resource-bounded Machine Architecture (IRMA) 254

9.3 AGENT INFRASTRUCTURES FOR TEAMWORK
AND COMMUNICATION . 254
9.3.1 STEAM and TEAMCORE . 255
9.3.2 GRATE* . 256
9.3.3 Collagen . 257
9.3.4 ARTEMIS . 257

9.4 AGENT PROGRAMMING LANGUAGES 258
9.5 AGENT COMMUNICATION LANGUAGES AND

CONVERSATION PROTOCOLS . 259
9.5.1 Semantics of Communicative Acts 260
9.5.2 Semantics of Group Communication 260
9.5.3 Semantics of Conversation Protocols 261

9.6 SUMMARY . 263

10 Concluding Remarks and Future Work .264
10.1 OVERVIEW . 264
10.2 RECAP OF MOTIVATIONS FOR THE PRESENT RESEARCH 265
10.3 SUMMARY OF STAPLE AND ITS RELATIONSHIP TO LOGIC 267

10.3.1 The STAPLE Interpreter . 267
10.3.2 Integrating Communicative Actions 268
10.3.3 Integrating Belief Reasoner . 269
10.3.4 Relationship to logic . 270

10.4 SUMMARY OF ACCOMPLISHMENTS . 271
10.5 FUTURE WORK . 273
10.6 SUMMARY . 275

xi

Bibliography .276

A STAPLE: The Language and its Operational Semantics288
A.1 OVERVIEW . 288
A.2 LANGUAGE DEFINITION . 289
A.3 OPERATIONAL SEMANTICS . 294
A.4 BASIC ACTIONS THEORY . 299
A.5 TEAMWORK IN STAPLE . 300

A.5.1 Modifying the Language . 301
A.5.2 Modifying the Operational Semantics 303
A.5.3 Modifying the Action Theory . 305

A.6 REAL WORLD OPTIMIZATIONS . 306
A.7 DISCUSSION . 308

Biographical Note .310

xii

List of Tables

2.1 Theorems on Intending Action Expressions 35
2.2 Theorems on Commitment to do Action Expressions 36

3.1 Example of a STAPLE Agent Program . 71
3.2 STAPLE Agent with Reactive Rule . 85
3.3 Setup where Bob is Observer and Harry is Actor 87

4.1 Sample Deduction Rules for Belief Reasoner 100
4.2 Main Interpreter Loop . 108
4.3 Rules for Interpreting Action Expressions 111
4.4 Sample Deduction Rules for Mutual Belief 116
4.5 Definitions of Basic Communicative Acts in STAPLE 119
4.6 Definitions of Composed Communicative Acts in STAPLE 121
4.7 Other Composed Communicative Acts in STAPLE 122

6.1 Traditional Fault-Tolerance Techniques . 158

7.1 Implementing a Broker in STAPLE . 173
7.2 Modifying STAPLE agents to use brokers 175
7.3 Distance agent in STAPLE . 177
7.4 Client agent in STAPLE . 178
7.5 Plan to Establish Mutual Belief . 181
7.6 First Mission Statement of AAA Brokers . 188
7.7 Mission Statement of AAA Brokers in STAPLE - Version 1 190
7.8 Mission Statement of AAA Brokers in STAPLE - Version 2 191
7.9 Mission Statement of AAA Brokers in STAPLE - Version 3 192
7.10 STAPLE Encoding of AAA Broker Fault-Tolerance - Part 1 194
7.11 STAPLE Encoding of AAA Broker Fault Tolerance - Part 2 196

xiii

List of Figures

1.1 Summary of the approach . 10

3.1 The Robot and Lights in Breazeal et. al. [13] 75
3.2 A snapshot of Lights World simulator . 76

4.1 Main Components of STAPLE Interpreter 96
4.2 Rules for Interpreting Action Expressions 113

6.1 Initial Setup . 165
6.2 After Recovery . 167

7.1 Commitment stack of broker2 as a result of AAA mission statement 198

8.1 A Sample Conversation Protocol . 205
8.2 Partially Ordered Landmarks . 209
8.3 Specializing a protocol family . 212
8.4 Generalizing a protocol family . 212
8.5 Realizing a protocol from a protocol family 213
8.6 A Request Conversation Protocol as a Finite State Machine 215
8.7 Protocol Family For Request Protocol . 215
8.8 Realizing a Request Conversation Protocol From a Request Protocol Family 218
8.9 Family of Protocols for getting an action done by establishing JPG 220
8.10 Protocol Family for the Standing Offer Conversation Protocol 221
8.11 A Standing Offer Conversation Protocol . 223
8.12 Protocol Family for the Contract-Net Protocol 226
8.13 A Contract-Net Conversation Protocol . 228

xiv

Abstract

A Formal Semantics of Teamwork and Multi-agent Conversations as the

Basis of a Language for Programming Teams of Autonomous Agents

Sanjeev Kumar

Supervising Professor: Philp R. Cohen

This dissertation demonstrates the feasibility of a logic-based declarative language for

programming teams of autonomous agents that exhibit correct team and communicative

behavior without having to program that behavior explicitly.

Teams tend to outperform any loose collection of individuals and are more robust to

failures because team members coordinate as required and they communicate with each

other appropriately for the success of the team as a whole. As such, the metaphor of team-

work is increasingly being employed to build intelligent systems consisting of distributed

software entities (agents) that co-operate, coordinate, and communicate effectively as a

team. However, teams of software agents are currently constructed by implementing

predictions of teamwork theories in a very limited way due to the lack of a sound, com-

prehensive, and easily programmable approach for building such systems. Therefore, an

important problem in multi-agent systems is the creation of a programming framework

that enables teamwork and communication in a manner that bridges the gap between the

theory and practice of these concepts.

This dissertation extends an existing formal theory of teamwork (Joint Intention The-

ory) by providing a comprehensive formal semantics of multi-agent communication based

xv

on that theory along with support for a wider variety of teams. Thereafter, it presents

a domain independent agent programming language called STAPLE with built-in sup-

port for teamwork and multi-agent conversations based on these theoretical contributions.

STAPLE agents are programmed using a subset of modal logic, dynamic logic of actions,

and temporal logic along with teamwork constructs and communication primitives that

have a well-founded formal semantics.

The usefulness of STAPLE for programming teams of autonomous agents is demon-

strated by showing that correct team and communicative behaviors follow from agent

specifications in two different domains without having to program those behaviors ex-

plicitly in every possible situation. Firstly, the fault-tolerance specification of an agent

architecture that is robust to sudden broker unavailability is provided to brokers written

in STAPLE and the resulting STAPLE-based multi-agent system is shown to duplicate

that fault-tolerant behavior. Secondly, STAPLE agents are shown to exhibit correct col-

laborative behavior in a simulated game that involves human-agent collaboration.

xvi

Chapter 1

Introduction

1.1 MOTIVATION

The growth of the Internet, the rapid explosion of connected mobile devices, the increas-

ing acceptance of electronic commerce, and a software marketplace in which not one

vendor develops all the required software components makes the problem of robust inter-

action, correct coordination, and well-understood, unambiguous communication between

disparate software entities more important than ever before. Multi-agent systems are

an important class of distributed systems consisting of multiple communicating software

entities, or agents, that exhibit autonomous and goal directed behavior. One promising

approach towards addressing the problem of robustness, coordination, and communica-

tion in multi-agent systems is to make the constituent agents work together as a close-knit

team.

A team is more than a just a collection of individuals having a common, coordinated,

and shared goal. For example, consider a group of motorists driving to the airport at

any time. All of them have the common goal of reaching the airport in time for their

respective flights. They share the goals of safely reaching their destination, they coordinate

by properly following the traffic signals, and they may even help each other out, say, by

making room for a motorist who wants to change lanes. However, one would hardly say

that these motorists form a team. The reason is that even though the motorists have

a common goal, they do not have a shared mental state. This difference is immediately

obvious when one considers what happens when something goes wrong. For instance, if

one of the motorists pulls over to the side of the road then we would not expect other

1

2

motorists to do the same. This behavior contrasts with that of a convoy which happens to

be one of the most well known examples of teamwork [70]. Consider a convoy consisting of

Bob and Harry. Assume that Bob knows the way to the airport and is leading the convoy

but Harry does not know his way there and is following Bob. Convoys such as this are

robust to various kinds of misunderstandings. For example, if Bob pulls over then Harry

cannot assume that Bob no longer knows the way and continue on his own. Similarly, if

Harry pulls over due to a problem in his car, then Bob cannot assume that Harry now

knows his way and simply go away. Detailed discussions on the convoy example can be

found in [70, 29].

We know from everyday experience that teams have several desirable properties – team

members try their best to coordinate as required and to communicate with each other

appropriately for the success of the team as a whole. As such, several formal theories of

teamwork have been developed in the multi-agent systems literature [70, 91, 104, 45, 46]

that constrain the behavior of individual teammates and address questions such as what

to communicate, when to communicate, and with whom to communicate. One often used

theory of team behavior in multi-agent systems is joint intention theory [70, 29], which

prescribes a way to execute actions jointly by a team of agents. It requires that the team

members be committed not only to their part of the joint action but also to the entire joint

action. Therefore, they will not intentionally do something to render the performance of

actions by other teammates impossible so as not to make the execution of the joint action

impossible. In fact, each agent’s commitment towards other agents’ actions may lead to

the agents helping each other in performance of their respective part of the joint action.

Executing actions jointly in an uncertain environment, for instance a team of unmanned

aerial vehicles jointly taking photograph of unfriendly territory in the presence of hostile

fire and unsafe communication channels, is a situation where this behavior predicted by

joint intention is very important. It follows from joint intention theory that two agents

who are jointly committed towards bringing about a certain state of affairs will each

have an individual commitment either to bring about that state of affairs, or to bring

about mutual belief regarding the achievement, impossibility, or irrelevance of the jointly

committed goal in accordance with the agent’s private beliefs.

3

The specification provided by joint intention theory has been implemented in real

world software applications demonstrating that teams as a whole waste less resources than

a group of self-interested agents as the world gets more complex and unpredictable [52].

It has also been shown that a team tends to be more robust to failure than a collection of

individual uncoordinated agents [109]. Furthermore, it has been shown that joint intention

theory can be the basis of an agent communication language with a provably correct formal

semantics [106, 107], and therefore it may provide a framework for communication and

interoperation between disparate agents. These prior works on joint intention theory

provide strong motivations for employing the teamwork metaphor towards addressing the

problems of robustness, coordination, and communication in multi-agent systems.

However, the creation of teams of software agents currently requires the implementa-

tions of predictions of teamwork theories in a very limited way due to the lack of a sound,

comprehensive, and easily programmable approach for building such systems. Therefore,

an important problem in multi-agent systems is the creation of a programming framework

that enables teamwork and communication in a manner that bridges the gap between the

theory and practice of these concepts.

1.2 THE PROBLEM

The main problem addressed in this dissertation is the following: Is it possible to achieve

team and communicative behaviors in collaborative software systems without programming

these behaviors explicitly, and if yes, how can we obtain these behaviors automatically? In

other words, we seek to investigate the feasibility of building a programming framework

where one can declaratively specify joint action to get automatic team behavior along

with correct task and team oriented communication. This framework should allow one

to change the action specification declaratively to change the team behavior, and should

enable one to predict team and communicative behavior offline and verify it by running

the actual system.

4

1.3 HYPOTHESIS

We aim to provide a novel solution to the above problem by demonstrating the feasibil-

ity of a logic-based declarative language for programming teams of autonomous agents

that exhibit correct team and communicative behavior without having to program that

behavior explicitly.

The notion of an agent programming language is not new to the multi-agent systems

literature [103]. Several agent programming languages [3, 36, 42, 44, 49, 50, 89] have been

proposed in recent years that attempt to bridge the gap between logical theory of agency

and agent implementations. However, most of these languages focus on individual agents

and the support for agent teams and multi-agent communication is either non-existent

or is at best ad-hoc. The early languages in this category did not have any support

for communication, and they did not have agent modalities as independent declarative

concepts. Formulas such as ♦p (eventually p) represented an agent’s goal, and actions

(or action expressions) represented an agent’s commitment. The recent modifications of

some of those languages do add a few declarative concepts like goal, as well as support

for multi-agent communication. However, communication in these languages is usually

an add-on feature not inherently related to the theory of agency behind the language.

Moreover, none of these languages has built-in support for teamwork, at least not in the

sense of formal connection to any teamwork theory.

On the other hand, joint intention (JI) theory [70, 29, 25] has successfully been used

to implement several teamwork based applications and agent-development infrastructures

[52, 63, 111]. It has also been used to provide formal semantics of communicative acts

and multi-agent conversations [106, 107, 65]. However, the theory and the communication

semantics have so far been used only for specification purposes. The rule-based team

infrastructures implement the specifications of joint intention theory in a comprehensive

and reusable manner demonstrating the usefulness of this theory, but a formal connection

between the theory and its implementation is still missing.

We hypothesize that, by appropriately extending the logical theories of teamwork and

communication, and by borrowing from research on planning and programming languages,

5

it should be possible to design and implement a domain independent language that pro-

vides teamwork and communication primitives such that the behavior of agents written

in this language conforms to that predicted by the underlying theory. We present an

agent programming language called STAPLE based on an extension of the joint intention

theory and show that STAPLE supports teamwork and communication in a unified frame-

work. Next, we outline the approach taken in this dissertation to investigate the above

hypothesis.

1.4 APPROACH

We propose to follow a three phase approach in our investigation: theoretical, implementa-

tion, and validation. (1) First, we describe the basic teamwork theory (JI theory) and use

it to specify semantics of speech acts and multi-agent conversations, showing how they can

be used to create and discharge teams. This step includes enhancements to the JI theory

itself to support groups of agents and a wider variety of teams. (2) Thereafter, we specify

an agent programming language whose formal semantics derives from these theoretical

contributions. We develop an interpreter for the single agent constructs of this language

and then modify it to handle commitments of one agent towards another. (3) Finally, we

argue that teams of agents written in this language coordinate and communicate as per

the theory, without our having to program these behaviors explicitly. This claim is then

verified by our using this interpreter to execute agents written in this language for two

different domains.

The conceptual three phase process outlined above requires solving several problems

that we discuss next.

1.4.1 Problems to be addressed

The prospect of supporting teamwork in a declarative programming language faces the

following challenges.

1. Reasoning about teamwork & communication: The agents in a team created us-

ing existing methods of team creation respond using a fixed set of preprogrammed

6

messages, and hence are unable to act upon, reason with, and communicate about

new messages and situations. The reason for this drawback is that there is no for-

mal connection between the semantics of teamwork and that of the communicative

acts. Therefore, agents cannot automatically start using a new communicative act

simply by declaratively specifying the semantics of that communicative act. Further-

more, the agents in the earlier framework need to have their communicative behavior

programmed explicitly because appropriate communication does not automatically

follow from reasoning about teamwork.

2. Interpreting logical constructs: The constructs of teamwork theory and the commu-

nicative actions are defined in a logical language. However, there is no well known

method of arriving at a programming language from the logical constructs and no

established method of interpreting those constructs.

3. Group communication: The communication in a team inherently involves group

communication. However, there is no formal semantics of group communication in

the literature, especially one tied to the teamwork theory.

4. Persistent teams: The existing teamwork theories are concerned with one-time static

teams that cease to exist once the team achieves it purpose. However, many team-

work applications require teams that persist but whose members may change dy-

namically with time.

5. Multi-agent conversations: Inter-agent communication is usually an extended con-

versation to achieve something rather then just a one-time communication that

terminates with the exchange of a single message. However, there is no formal se-

mantics for multi-agent conversations in the literature, especially within the context

of teamwork, thereby making it impossible to prove the correctness of a conversation

with respect to the current task.

6. Testing & verification: The teamwork theories provide specifications of agent behav-

ior that can be hard-coded into an agent program. However, it is difficult to foresee

all possible situations that agents will encounter and hence, it is difficult to predict a

7

complete behavior specification that works correctly in all possible agent interactions

and situations. Implementing a new team specification in this old approach usually

requires predicting the behaviors of agents using the teamwork theory and then

implementing those predicted behaviors in the agent programs. As such, there is

usually no quick way to test and verify a team behavior from its logical specification.

We need implementations of useful teamwork and communicative behavior using the

old approach to demonstrate that the same behaviors can be re-implemented easily

and its variations can be tried out quickly in the new declarative language.

1.4.2 Proposed solution

This dissertation addresses the above problems by way of the following contributions.

1. Reasoning about teamwork & communication: It extends the prior work on agent

communication languages based on the joint intention theory by redefining the formal

semantics of communicative acts and showing that these communicative acts do

result in creation and discharge of team commitments under appropriate conditions.

2. Interpreting logical constructs: It presents an agent programming language called

STAPLE with built-in support for teamwork and multi-agent conversations by build-

ing upon a subset of the above theoretical contributions. It presents an implemented

interpreter for STAPLE that directly executes agent specifications in a subset of

modal logic, dynamic logic of actions, and temporal logic along with abstractions

from the formal theory of teamwork and multi-agent conversations. The result is a

domain-independent agent programming language formally connected with a logical

theory of agency, whose constructs, including the communication primitives, have a

well-founded formal semantics.

3. Group communication: It provides a formal semantics of group communication such

that the individual communicative acts are a special case of the group communicative

acts, and specifies the group communicative actions that are predefined in STAPLE.

4. Persistent teams: It extends the joint intention theory to include teams that continue

8

to exist even when the team membership changes. It provides a formal semantics

for maintenance goals and a definition of teamwork based on maintenance goals that

allows for teams that can continue to exist beyond one-time achievement goals.

5. Acceptance test case: It demonstrates the usefulness of persistent but dynamic teams

by developing an agent architecture (called the Adaptive Agent Architecture or

AAA) that implements a fault-tolerance specification based on this theory. It shows

that multi-agent systems based on this architecture are robust with respect to certain

kinds of broker failures without incurring undue teamwork overhead in the normal

working conditions. The AAA provides a test case for the programming language

proposed in this dissertation. AAA implements its fault-tolerant behavior using the

old technique of team creation (by implementing the team specification). However,

agents in the proposed language must easily replicate that fault-tolerant behavior

upon providing them with its declarative specification.

6. Testing & Verification: It verifies that STAPLE does in fact satisfy the require-

ments mentioned earlier. It demonstrates the usefulness of STAPLE for program-

ming teams of autonomous agents by showing that correct team and communicative

behaviors follow from agent specifications in two different domains without explicitly

programming those behaviors in every possible situation. First, the specification of

a fault-tolerant agent architecture (AAA) that is robust to sudden broker unavail-

ability is provided to brokers written in STAPLE. The resulting STAPLE-based

multi-agent system is shown to duplicate that fault-tolerant behavior. Second, STA-

PLE agents are shown to exhibit correct collaborative behavior in a simulated game

that involves human-agent collaboration.

7. Multi-agent conversations: It introduces a technique to specify formal semantics

of conversation protocols within the framework of the joint intention theory by in-

troducing a notion of landmarks. This technique allows treatment of conversation

protocols as joint actions similar to that in natural language dialogue, and enables

formal proofs about correctness of a conversation protocol with respect to its design

goals. Finally, it demonstrates specification and direct execution of fully specified

9

conversation protocols in STAPLE programs.

Figure 1.1 illustrates the approach discussed above. In this figure, “subset” refers to the

subset of aforementioned theoretical contributions that have been implemented in the

STAPLE interpreter developed for this dissertation as follows:

1. JI Theory extensions: The implemented subset includes persistent but dynamic

teams (i.e., teams whose membership can change and named teams). It excludes

maintenance goals and teams jointly committed towards a maintenance goal.

2. Semantics of communicative actions: The implemented subset includes only those

communicative actions that are actually used in the examples and test cases. It

excludes other communicative actions such as “standing offer” whose semantics is

presented in this dissertation.

3. Semantics of group communication: The implemented subset includes communica-

tive actions required to establish and discharge joint commitments between persistent

but dynamic teams whose membership is known at the time of performance of the

communicative action. It excludes full-fledged group communication semantics in

terms of “whoever” where senders and recipients are potentially unknown (as in a

radio broadcast communication).

4. Semantics of conversation protocols: The implemented subset includes fully specified

concrete conversation protocols (i.e., protocols in which all agents and all actions

are known a priori). It excludes the treatment of conversation protocols in terms of

landmark expressions and partially specified, concrete protocols.

To summarize, this dissertation extends an existing formal theory of teamwork (Joint

Intention Theory) by providing a comprehensive formal semantics of multi-agent commu-

nication based on that theory along with support for a wider variety of teams. There-

after, it presents a domain independent agent programming language called STAPLE with

built-in support for teamwork and multi-agent conversations based on these theoretical

contributions. The usefulness of STAPLE for programming teams of autonomous agents

10

����������������
	
����

��������	�
�
���
���

��������
����
�����������������

��������
����������
�����

��������
����������
�����
��������

���������������������������������

	����

�
�
�
�
�
�

����� ��������!���������
�������������

����������������
	
����

��������	�
�
���
���

��������
����
�����������������

��������
����������
�����

��������
����������
�����
��������

���������������������������������

	����

�
�
�
�
�
�

����� ��������!���������
�������������

Figure 1.1: Summary of the approach

is demonstrated by showing that correct team and communicative behaviors follow from

agent specifications in two different domains without explicitly programming those behav-

iors in every possible situation. Next, we provide an overview of the research undertaken

to address the various problems and their proposed solution mentioned above.

1.5 OVERVIEW

The following sections provide an overview of the space of problems that we investigate

as per the above outline. The discussions that follow form the basis of the remaining

chapters in this dissertation.

1.5.1 A Formal Semantics for an Agent Communication Language

The philosophy of language argues that the illocutionary effect of a speech act consists of

the hearer’s recognition of the speaker’s communicative intention [100]. A communicative

(i.e., speech) act succeeds when the hearer successfully recognizes the speaker’s intention

and it is satisfied when the hearer successfully acts on the speaker’s intention. We must

characterize communicative acts as attempts because there is a possibility that the act may

not succeed. For example, suppose that I sincerely request you to open the door. The goal

of my request is that you open the door and the intention of my request is to bring about

11

mutual belief between us that I want you to open the door. My request is successful if

you recognize that I want you to open the door and my request is satisfied if you actually

open the door in response to my request. The best I can do is to make my intention

known to you and it is up to you whether you actually open the door. If I have reason to

believe that you have not properly understood my intention then I may repeat my request,

that is, I may attempt again to make my intention known to you. Based on this premise,

researchers working on joint intention theory first defined an attempt as having a goal and

an intention, and then defined communicative acts in terms of attempt [26, 27, 30]. They

argued that communicative acts defined in this manner lead to creation and discharge of

commitments. Smith and Cohen [106, 107] took this a step further and showed that the

joint intention theory could provide the formal framework for an agent communication

language based on speech acts. They also argued that communicative acts performed

in certain sequences could lead to the creation and discharge of joint commitments and

therefore, one could create and disband teams based on the joint intention theory by

using proper communicative acts (assuming that the agent programs respected the formal

communication semantics).

This dissertation builds upon and extends the prior work of Smith and Cohen in

the following manner: It formally lays down the defeasible rules of communication that

are critical for establishing mutual beliefs in this framework, redefines the semantics of

communicative acts to be closer to the speech act theory, and formally establishes the

properties regarding mutual belief establishment as well as those concerned with the cre-

ation and discharge of joint commitments. The redefined communicative act semantics

and the accompanying formal results enable first principles reasoning about inter-agent

communication based on the joint intention theory; enable analysis of conversation pro-

tocols for their correctness; and are critical to the development of an agent programming

language where logical specifications of agents are executed directly to get the correct

behavior automatically.

Agents in a team rarely use the communicative acts in isolation but rather they use

them in the context of a larger conversation. Conversation protocols specify the sequence

of communicative acts that constitute a conversation, and therefore, agents must be able

12

to understand and reason about conversation protocols. Next, we discuss the problem of

providing a formal semantics to conversation protocols.

1.5.2 A Formalism for Conversation Protocols

Inter-agent communication is usually an extended conversation to achieve something

rather then just a one-shot communication that terminates with the exchange of a single

message. If agents were always to reason about communication using first principles then

the formal semantics of communicative acts would be sufficient for all agent interactions.

However, a large number of interactions in the real world follow explicit or implicit pro-

tocols that are either defined by an institution (such as auction protocols used by auction

houses), or are generally accepted social conventions. For example, when someone asks

you a question, you are expected to either tell the answer, or tell them that you don’t

know the answer and optionally point them to someone who might know the answer. Con-

straining a multi-agent conversation to proceed according to the protocol being followed

would be far more efficient than full-blown reasoning from first principles every time a

message is received or sent. Furthermore, agents that do not have reasoning capabilities

need to follow well-defined protocols whose correctness has been proven offline. However,

there is no framework for formal semantics of multi-agent conversations in the literature,

within the context of teamwork, thereby making it impossible to prove the correctness of

a conversation with respect to the task at hand.

Traditionally, conversation protocols are specified as finite state machines in which

the transition arcs specify the communicative actions to be used by the various agents

involved in a conversation. Protocols are executed by performing these communicative

actions and, therefore, the communicative actions have come to be regarded as the central

concept around which analyses of protocols are based. However, we believe that it is the

states and not the state transitions that are key to the correctness and completeness of

a protocol. This dissertation proposes a landmark-based approach for formal analysis of

conversation protocols wherein the most important aspect of a conversation protocol is not

the set of communicative actions involved in that protocol but the effects or the states that

these actions bring about. The basic idea is that since protocols are used to do certain tasks

13

or to bring about certain state of affairs in the world, one should identify the important

landmarks or state of affairs that are brought about by and during the execution of a

protocol. Conversation protocols can then be expressed at an abstract level as partially

ordered landmarks where each landmark is characterized by the propositions that are true

in the state represented by that landmark. The partially ordered landmarks represent a

family of protocols. Communicative actions are then the tools to realize concrete protocols

from a landmark-based representation. Besides contributing to formal analyses of protocol

families, the landmark-based representation facilitates the system’s dynamically choosing

the most appropriate action to use next in a conversation, allows compact handling of

protocol exceptions, and in some cases, even allows short-cutting a protocol execution by

opportunistically skipping some intermediate landmarks (Chapter 8).

The landmark expressions can be thought of as protocol specifications and they form

the basis for design and correctness of concrete protocols. However, it is the concrete pro-

tocols that eventually get executed, and therefore, we need a proper formalism for concrete

protocols that is suitable for automated reasoning. This dissertation suggests such a for-

malism using the very definition of conversation protocols as a pattern of communicative

actions. It proposes that concrete protocols be represented along with their precondition

and goal as action expressions using dynamic logic constructs. These communicative ac-

tion expressions involve multiple cooperating agents and henceforth will be called joint

action expressions. The motivation for joint action expressions also comes by analogy with

natural language wherein dialogues are treated as joint actions [46, 31, 28]. The commu-

nicative actions in the joint action expression for a protocol must achieve the landmarks

of the protocol family of that protocol in the required order. This requirement provides a

correctness criterion for concrete conversation protocols – a protocol must be correct with

respect to the landmark expression of its protocol family. The proposed formalism also

provides a means to represent and reason about protocol compositions. Furthermore, it

provides other correctness and completeness criterion for protocols as well as for protocol

compositions. Finally, this dissertation explores the possibility of applying existing formal

theories of dialogue and teamwork, such as joint intention theory, to protocols represented

as joint action expressions. Conversation protocols within this framework can thus be

14

executed in the same way as any other joint action. Therefore, we can directly execute

such protocols by agent programming languages such as STAPLE.

We note that communication between team members invariably requires group com-

munication as discussed next.

1.5.3 A Formal Semantics of Group Communication

Artificial as well as human agents not only interact with individual agents, but they also

need to communicate with groups of agents. We humans post messages to mailing lists

and notice boards; participate in teleconferences and videoconferences; publish web pages

and books; speak in meetings and classrooms; talk on radio and television; and advertise

on pamphlets and banners. Agents will be assuming some of these responsibilities from

humans, and will therefore need to be able to reason and communicate about group con-

cepts. Moreover, in open multi-agent systems, where agents come and go dynamically,

it will become ever more prevalent that agents will not know exactly to whom they are

sending information or from whom they are requesting aid. These are compelling reasons

to investigate support for group communication in multi-agent systems. It is no surprise,

therefore, that a large number of distributed software systems inevitably use some in-

carnation of broadcasting and multicasting. However, we observe that the major agent

communication languages (such as FIPA [41] and KQML [67]) have either no provision

or no well-defined semantics for group communication. The problem is to develop a for-

mal semantics for group communication such that group communicative acts reduce to

individual communicative acts for the special case of groups containing a single agent.

This dissertation presents a formal semantics for group communicative acts and shows

that they satisfy numerous desirable constraints. In particular, we present the semantics

of group communicative acts as used in the declarative agent programming language called

STAPLE that is discussed later in this dissertation. A consequence of our group commu-

nication semantics is that it allows reasoning about communication even if one does not

know all the agents that are involved in a communication. Finally, another important

consequence is that it allows creation and discharge of persistent teams as described in

the next section.

15

1.5.4 A Formalism for Persistent and Dynamic Teams

A team of agents, though robust to various kinds of failures and uncertainties, is still vul-

nerable to the sudden unavailability of a teammate. Unavailability of an agent may result

from the termination of the agent process due to unexpected conditions, crashing of the

machine on which the agent process is running, and network partitioning for unforeseen

periods. Robustness from such failures typically requires teams that persist but whose

members may change dynamically with time. This is so because new agents can join ex-

isting teams to take over the role of incapacitated or unavailable teammates. Furthermore,

once a team has recovered from failure, the team needs to continue to exist so as to be

able to handle future failures. The importance of persistent and dynamic teams for the

purpose of robustness has long been recognized in the multi-agent system literature. For

instance, Tambe and Zhang [111] point out the need for a formalism that explains the

maintenance of a team identity in the face of changing membership and the persistence of

a team beyond specific temporary objectives.

This dissertation departs from our earlier teamwork theory by allowing a team to

exist independently of the identity of its members. There are numerous examples of such

teams in everyday life. For example, the New York Yankees are a team even if all the

players are traded or it is sold to new owners. The earlier work characterized a team in

terms of joint commitment between the individuals that originally constituted the team.

This dissertation formally defines a notion of team commitment wherein the agents are

committed towards “whoever” are members of the team at any time, thus enabling the

team to continue even when the team membership changes dynamically.

Further, the earlier characterization of teamwork in terms of joint persistent goal results

in the team being dissolved once the jointly committed goal is achieved and is mutually

believed. This dissertation presents a semantics for restorative maintenance goals along

with a characterization of team commitment based on restorative maintenance goals. This

team commitment results in teams that continue beyond one-time joint persistent goals.

Whenever a team committed to maintaining a proposition comes to mutually believe that

the proposition is not true, it adopts a joint persistent goal to achieve that proposition.

16

This joint persistent goal is discharged once the required proposition is achieved and

mutually believed but the original maintenance commitment remains valid and the team

continues to exist.

We believe that the concept of team commitment and maintenance goals introduced in

this dissertation provides a formalism that can be gainfully employed in building robust

agent teams. In fact, a team specification using these concepts has been implemented

in a multi-agent system architecture thereby making systems based on this architecture

robust to certain kinds of broker failures. A discussion on this fault-tolerant architecture

called the Adaptive Agent Architecture (AAA) follows. This agent architecture provides a

validation criterion that must be met by the agent programming language proposed later

in this dissertation.

1.5.5 A Fault-tolerant Multi-agent System Architecture

Multi-agent systems are prone to the failures that can occur in any distributed software

system. Bugs and improperly handled exceptions in the agent program or in the support-

ing environment, machine crashes, network partitioning, and numerous other hardware

and software faults can make agents unavailable suddenly for unforeseen periods. The

traditional distributed systems literature provides various fault-tolerance techniques to

recover from these failures. This dissertation argues that most of these techniques are

meant for specific failure situations and that they require special infrastructural support.

For example, the techniques of hot backups, object group replication, virtual synchrony,

and N-version voting need specific mechanisms for communication and synchronization

among the replicas. It may not be possible to use these techniques in multi-agent systems

without extensive modifications to the underlying agent infrastructure. On the other hand,

a technique based on a multi-agent system concept may be amenable to implementation

with minimal modifications, for example, by adding a plan to the plan library of agents.

Multi-agent systems often require brokers (or middle agents) for many reasons includ-

ing: accepting requests, locating capable agents, routing requests and responses, sharing

of information, managing the system, registering agent capabilities, and for various other

facilitation tasks [116]. However, brokered systems are brittle because the facilitator is a

17

single point of failure. Our experience with Quickset [24], a multi-agent system based on

the facilitated Open Agent Architecture [23, 72], reinforces the need for an agent archi-

tecture that can recover quickly from broker failures.

We observe that, in a large multi-agent system, there will typically be more than one

middle agent and that these middle agents may be able to substitute for one another when

needed. Therefore, JI theory argues that, if these middle agents form a team with appro-

priate joint commitments, then they will compensate for any middle agent that becomes

unavailable. As a result, the multi-agent system will continue to work as long as there is

at least one middle agent remaining in the broker team. However, the performance may

degrade as a result of having fewer middle agents in the system. We further hypothesize

that a broker team with a commitment to maintain a specified minimum number of bro-

kers in the broker team will attempt to restore the population of the team. This may

result in a recovered system with similar performance as the original system.

This dissertation presents the Adaptive Agent Architecture (AAA), a robust multi-

brokered multi-agent system architecture, to show the feasibility of our approach. The

AAA uses teamwork (1) to recover a multi-agent system broker failures, and (2) to main-

tain a specified minimum number of functional brokers in the system even when some

of the brokers become inaccessible. The AAA agent library has been developed in Java

and it provides an agent shell for developing AAA agents. The library also provides a

facilitator agent that serves both as a broker and a matchmaker. Henceforth, in this

dissertation, we will refer to the AAA facilitator as the AAA broker. The AAA brokers

can be interconnected with each other and the agent library supports both facilitated

and direct inter-agent communication. The AAA agents advertise their capabilities as

well as an address for connection requests with a broker during registration. TCP/IP is

used for network transport and the TCP mechanisms and timeouts are used for detection

of connection failures. The brokers as well as other agents can dynamically enter and

leave AAA-based multi-agent systems. The AAA brokers form a team for the purpose of

fault-tolerance and they share knowledge about who is connected to whom with the team

members.

The AAA brokers form a persistent broker team when they register with each other.

18

This broker team establishes a team intention and a team maintenance goal for the purpose

of fault-tolerance as specified in the following mission statements.

AAA Mission Statement 1: Whenever an agent registers with the broker team,

the brokers have a team intention of connecting with that agent, if it ever disconnects, as

long as it remains registered with the team.

AAA Mission Statement 2: The AAA broker team has a team maintenance goal

of having at least N brokers in the team at all times where N is specified during the team

formation.

The design of the AAA brokers implements the specification of teamwork that fol-

lows from the mission statements. Using the mission statements, along with other logical

properties of the AAA, we establish the commitments of the brokers in the team. These

commitments result in fault tolerant behavior when the brokers act rationally and take

appropriate actions to honor them. This dissertation presents the logical characteriza-

tion of brokers in the AAA and formally establishes the design specifications that are

implemented in the AAA brokers.

The fault-tolerance of AAA brokers demonstrates the usefulness of teamwork. How-

ever, there is no straightforward way to change that specification to get a different team

behavior without having to re-implement the new behavior predicted by the changed spec-

ification. Furthermore, there is no way to guarantee that all predications that follow from

the specification have been accounted for, leaving open the possibility that their might

exist (currently unknown) situations in which the team behavior of AAA brokers will

cease to function correctly. This drawback provides a strong motivation for a declarative

agent programming language whose interpreter directly executes the team specifications.

Furthermore, the AAA research provides a validation criterion for this programming lan-

guage – brokers written in this language must be able to replicate the behavior of AAA

brokers upon providing them with the declarative specification of that behavior. A brief

discussion on this programming language called STAPLE follows.

19

1.5.6 STAPLE: A Declarative Agent Programming Language

Many implementations of teamwork use joint intention theory only for specification pur-

poses and thereby hard-code the team behavior predicted by the joint intention theory

[52, 63]. However, in these cases implementing a different team behavior requires repro-

gramming the new behavior according to the theory. On the other hand, the benefits of

directly interpreting a team specification are apparent from the experiences of the STEAM

researchers (Tambe and colleagues [109, 110, 111]). STEAM (Shell for TEAMwork) is

a set of SOAR [69] rules that attempts to execute joint commitments faithfully. Tambe

and colleagues have demonstrated successful reuse of the same STEAM code base for a

number of applications. We take this concept of directly executing team specifications to

the next step by offering interpretation of agent specifications in a logic that is used for

formal specification of the joint intention theory.

STAPLE (Social and Team Agents Programming Language) is a multi-agent program-

ming language with built in support for teamwork and multi-agent conversations. It en-

ables programming multi-agent systems by directly executing the specification of agents

in a subset of modal logic, dynamic logic of actions, and temporal logic along with ab-

stractions from the joint intention theory as well as from a formal semantics of multi-agent

conversations based on the joint intention theory. As such, STAPLE is a domain inde-

pendent agent programming language that is formally connected with a logical theory

of agency, and whose constructs, including the communication primitives, have a well-

founded formal semantics. The benefits of this approach include the ability to modify

agent and team behaviors just by modifying a single sentence in the logical language, and

a potential for verification – for instance, one may be able to predict a team behavior

offline using the logical specification of agents involved and verify it by running the actual

system.

Beliefs, goals, commitments, and intentions are represented explicitly in STAPLE. Ac-

tions are required to have a logical representation that can be used for reasoning, and plans

as well as conversation protocols are treated as complex action expressions consisting of

action sequences, non-deterministic OR, concurrent actions, repetitions, and test actions.

20

The axioms of rational behavior are specified as rules, which agent programmers can over-

ride. STAPLE agents can have multiple simultaneous commitments and intentions, with a

notion of importance used to order everything from commitments and intentions to plans

and rules. The syntax of STAPLE is presently an extension of the usual Prolog syntax

with the exception that certain constructs such as primitive actions and plans can also be

written in Java. Most of the STAPLE interpreter, including a multi-threaded Prolog sub-

system, has been implemented in Java but a few components such as the belief reasoner

and the default rules have been written in Prolog.

The approach of directly executing formal specifications offers a potential for verifi-

cation as mentioned earlier, and also has the benefits of code reuse at a very high level

by virtue of the ability to alter the behavior of a system by modifications to its formal

specification. The ability to modify team behavior at a high level enables quick prototyp-

ing of teamwork. The support for persistent teams in STAPLE allows interesting team

behaviors to be implemented using few logical sentences. This dissertation implements

and discusses two such examples. First, the fault-tolerance specification of AAA brokers

is declaratively given to brokers written in STAPLE and it is shown that these brokers

exhibit the same fault-tolerance behavior as that of AAA brokers by virtue of interpreting

the declarative logical sentence. Second, STAPLE agents are shown to exhibit correct

team and communicative behavior in a simulated game that involves human-agent collab-

oration. Furthermore, direct execution of specifications may enable one either to prove

that the operating specifications of a system are not violated (i.e., that the system always

behaves according to a required set of properties), or to identify the properties of the

system that cannot be proven to obey the specification. It also offers the advantages of

dynamic program synthesis and execution: Legacy code accompanied by its description

in the formal language can be treated as an “action” by an agent. The agent then reasons

about those actions using their formal description, decides upon and executes the best

course of action(s) at any given time, and even switches between intentions (and there-

fore, between the legacy codes being executed) as the priorities of the agent change. One

can argue that this approach not only lets one “agentify” any system but also prove that

the modified system does in fact have the required agent-like properties. For instance, it

21

should be possible to treat a non-team aware agent as part of a team by using a proxy

agent that reasons using the formal representation of actions of the non-team aware agent,

and be able to prove formally the conditions under which the non-team aware agent does

in fact appear to behave as a team member. The concept of team-proxies has been suc-

cessfully employed by other researchers such as Pynadath et. al. [88] and the STAPLE

approach would not only justify those prior efforts but also provide a theoretically sound

way of achieving similar end. These arguments are powerful motivations that make the

direct execution approach in STAPLE worth pursuing.

The STAPLE interpreter needs logical reasoning capabilities along with the ability to

handle procedural tasks such as control flow and stack manipulation. Logic programming

languages such as Prolog are good for logical reasoning but procedural tasks can quickly get

quite complex and unwieldy in such languages. It was quite clear from our early experience

[62] with STAPLE that completely implementing a STAPLE interpreter in Prolog was not

a viable option because a large portion of the interpreter dealt with procedural control,

and the commercially available multi-threaded Prolog implementations were too buggy and

quickly broke down when used with STAPLE. Similarly, imperative languages such as Java

are good for procedural tasks but are ill-suited for logical reasoning. As such, we take a

hybrid approach for the current STAPLE development by choosing to use both Prolog and

Java, and using each language for tasks that they do best – Java is used for procedural

control and Prolog is used for logical reasoning. This dissertation presents an actual

implementation of a STAPLE interpreter. A formal operational semantics of STAPLE

based on joint intention theory (that forms the basis of the implemented interpreter) is

presented in the appendix.

The usefulness of STAPLE for programming teams of autonomous agents is demon-

strated by showing that correct team and communicative behavior follows from the spec-

ification of an agent in STAPLE without having to program the team behavior explicitly

in every possible situation by (1) directly executing the AAA fault-tolerance specification

to get the same behavior as that of AAA based multi-agent systems, and (2) showing that

STAPLE agents exhibit conversational behavior by virtue of reasoning about communica-

tive acts and teamwork using first principles. In short, this dissertation demonstrates the

22

feasibility of a logic-based interpreted language for programming teams of autonomous

agents that automatically exhibit correct team and communicative behavior, and that can

handle certain unforeseen situations by virtue of first principles reasoning over a formal

theory of teamwork and multi-agent communication.

1.6 SUMMARY AND OUTLINE

To summarize, this dissertation demonstrates the feasibility of a logic-based declarative

language for programming teams of autonomous agents that exhibit correct team and com-

municative behavior without having to program that behavior explicitly. It extends an

existing formal theory of teamwork (Joint Intention Theory) by providing a comprehensive

formal semantics of multi-agent communication based on that theory along with support

for a wider variety of teams. Thereafter, it presents a domain independent agent pro-

gramming language called STAPLE with built-in support for teamwork and multi-agent

conversations based on these theoretical contributions. STAPLE agents are programmed

using a subset of modal logic, dynamic logic of actions, and temporal logic along with

teamwork constructs and communication primitives that have a well-founded formal se-

mantics. The usefulness of STAPLE for programming teams of autonomous agents is

demonstrated by showing that correct team and communicative behaviors follow from

agent specifications in two different domains without having to explicitly program those

behaviors in every possible situation.

The remainder of this dissertation is organized according to the approach outlined ear-

lier for establishing the hypothesis that it is possible to design and implemented a declara-

tive agent programming language with built-in support for teamwork and communication.

Chapter 2 provides the formal background by introducing the logic of joint intentions and

the semantics of communicative acts. Chapter 3 introduces STAPLE by means of concrete

examples of agent programs written in STAPLE, and Chapter 4 presents the implemen-

tation of one possible STAPLE interpreter that is used to execute the examples and test

cases in this dissertation. Chapter 5 presents a generalized theory of teamwork and com-

munication to support groups. The Adaptive Agent Architecture (AAA) is discussed in

23

Chapter 6, and Chapter 7 presents the implementation of AAA fault tolerant behavior

in STAPLE, thereby showing that STAPLE validates the above hypothesis. Chapter 8

discusses multi-agent conversations and shows how STAPLE executes fully specified pro-

tocols. This dissertation concludes with a discussion of related work in Chapter 9, and

future work and summary in Chapter 10. A formal definition of the programming lan-

guage STAPLE and its operational semantics based on joint intention theory is presented

in the appendix.

Chapter 2

A Logic of Teamwork and

Communication

Joint intention theory provides a formal model of teamwork as well as a framework for

formal semantics of multi-agent communication. This theory is expressed in a modal

language that has the usual connectives of a first order logic with equality and operators

for propositional attitudes and event sequences. The primitive mental states in this theory

are an agent’s beliefs and goals, expressed as (BEL x p) and (GOAL x p) respectively,

where x is an agent and p is a proposition that follows from x’s beliefs or goals. BEL has

Kripke’s weak S5 semantics and GOAL has system K semantics. Knowledge (KNOW x p)

is defined as true belief in the standard manner. The goals of an agent are constrained to be

compatible with its beliefs. An agent is competent1 with respect to these primitive mental

states. (AGT x a) says that x is the only agent for the sequence of events represented by

a. Temporal properties are expressed in a linear time temporal logic. ♦p says that the

proposition p will eventually be true and ¤p, defined as ¬♦¬p, says that p will always

be true. (HAPPENS a) and (DONE a) say that a sequence of actions described by the

action expression a will happen next or has just happened, respectively. (HAPPENS x a)

and (DONE x a) also specify the agent for the action sequence that is going to happen

or has just happened. EARLIER, BEFORE, AFTER, UNTIL, and DOING are defined

using HAPPENS and DONE. An action expression is built from variables ranging over

1From Cohen & Levesque [25], an agent is competent with respect to a proposition if that proposition
is true whenever the agent believes it to be so, that is, (COMPETENT x p) , (BEL x p) ⊃ (KNOW x p).

24

25

sequences of events using constructs of dynamic logic: a;b is action sequence, a|b is non-

deterministic choice, a||b represents concurrent actions, a∗ is indefinite repetition, and

p |= is a test action. Details of this modal language and its model theory can be found in

Cohen & Levesque [25].

We first review the syntax and the model theory of basic concepts in this logical

framework from [70, 106, 25] followed by a brief overview of the joint intention theory.

Thereafter, we establish some useful results that are needed in later chapters, provide a

formal semantics of communicative acts, and show that these communicative acts can be

used to create and discharge teams as per this theory.

2.1 SYNTAX

The syntax of the logical language behind the joint intention theory is specified as follows.

〈Action-var〉 =:: a,b,a1,a2,. . . ,b1,b2,. . . ,e,e1,e2,. . .

〈Agent-var〉 =:: x,y,x1,x2,. . . ,y1,y2,. . .

〈Group-var〉 =:: τ ,α, τ1, τ2,. . . , α1, α2,. . .

〈Regular-var〉 =:: i,j,i1,i2,. . . ,j1,j2,. . .

〈Variable〉 =:: 〈Action-var〉 | 〈Agent-var〉 | 〈Group-var〉 | 〈Regular-var〉
〈Pred〉 =:: (〈Pred-symbol〉〈Variable1〉 . . . 〈Variablen〉)
〈Time-proposition〉 =:: 〈Numeral〉
〈Action-expression〉 =:: 〈Action-var〉| one of the following:

〈Action-expression〉;〈Action-expression〉 /*Sequential Action*/

〈Action-expression〉|〈Action-expression〉 /*Non-Deterministic Choice Action*/

〈Action-expression〉||〈Action-expression〉 /*Concurrent Action*/

〈Wff〉 |= /*Test Action*/

〈Action-expression〉* /*Iterative Action*/

〈Wff〉 =:: 〈Pred〉 | ¬〈Wff〉 | 〈Wff〉 ∨ 〈Wff〉 |
∃〈Variable〉〈Wff〉 where 〈Variable〉 is free in 〈Wff〉 | one of the following:

〈Variable〉 = 〈Variable〉,
(HAPPENS 〈Action-expression〉), /∗Action-expression happens next */

26

(DONE 〈Action-expression〉), /∗Action-expression has just happened */

(AGT 〈Agent-var〉〈Action-var〉), /* Agent-var is the only agent of Action-var */

(BEL 〈Agent-var〉〈Wff〉), /∗Wff follows from Agent-var’s beliefs */

(GOAL 〈Agent-var〉〈Wff〉), /∗Wff follows from Agent-var’s goals */

〈Time-Proposition〉,
〈Action-var 〉 6 〈Action-var〉

The syntax (and the semantics) of any new concepts will be presented as and when

they are introduced.

2.2 MODEL THEORY

The model theory of the above language interpreted by abstract STAPLE interpreter is

based on a possible-worlds semantics where worlds are modeled as a linear sequence of

primitive event types. Formulas are evaluated with respect to some possible course of

events (possible worlds) and an index into that possible world. The possible worlds can

be related to each other via belief and goal accessibility relations.

A model M is a structure 〈Θ, P, E , Agt, T , B, G, Φ〉 where Θ is a set of things, P is a

set of people, E is a set of primitive event types, Agt ∈ [E → P] specifies the agent of an

event, T ⊆ [Z→ E] is a set of possible courses of events (worlds), B ⊆ T × P × Z × T is

the belief accessibility relation, G ⊆ T × P × Z × T is the goal accessibility relation, and

Φ interprets predicates. The domain of quantification (D) is given by D = Θ ∪ P ∪ E∗

meaning that one can quantify over things, people, and sequences of primitive event types.

The predicate interpreter is specified by Φ ⊆ [Predk × T × Z×Dk], where Pred represents

predicates. AGT specifies the partial agents of a sequence of events and is given by AGT

⊆ E∗×P where x ∈ AGT [e1,. . . ,en] iff ∃i such that x = Agt(ei). The notions of satisfaction

and validity in this model are defined next.

2.2.1 Satisfaction and Validity

The satisfaction and validity of a well-formed formula (wff) is defined as follows. Let M

be a model, σ be a sequence of events (i.e., a world), ν be a variable assignment, and

27

n ∈ Z be a temporal index into the world. Let ν ∈ [Vars→ D]. Let νd
x be the function

that yields d for x and is the same as ν everywhere else. Let n[[a]]m denote that a occurs

between time points n and m.

Satisfaction: A wff α is satisfiable if there is at least one model M, world σ, index n,

and value assignment ν such that M,σ,ν,n |= α.

Validity: A wff α is valid (denoted by |= α) iff for every model M, world σ, index n,

and value assignment ν, we have M,σ,ν,n |= α.

Interpretation of predicates depends on the world σ and index n. For a k-place predi-

cate P, we have

M, σ,ν,n |= P(x1,. . . ,xk) iff 〈ν(x1). . . ν(xk)〉 |= Φ[P,σ,n]

The satisfaction of the basic operators (negation, disjunction, existential quantifier,

and equality) and propositions is defined as follows.

1. M, σ,ν,n |= ¬α iff M,σ,ν,n |= α

2. M, σ,ν,n |= α ∨ β iff M,σ,ν,n |= α or M,σ,ν,n |= β

3. M, σ,ν,n |= ∃x α iff M,σ,νd
x,n |= α for some d ∈ D

4. M, σ,ν,n |= (x1 = x2) iff ν(x1) = ν(x2)

5. M, σ,ν,n |= 〈Time-proposition〉 iff ν(〈Time-proposition〉) = n

6. M, σ,ν,n |= (AGT x e) iff AGT [ν(e)] = {ν(x)} where AGT specifies the only agent

of e.

7. M, σ,ν,n |= (e1 6 e2) iff ν(e1) is an initial subsequence of ν(e2)

Next, we define satisfaction of the primary modal operators in this logic.

2.2.2 Satisfaction of Primary Modal Operators

The satisfaction of the primary modal operators is defined as follows.

1. (BEL x p) says that p follows from the agent’s beliefs iff p is true in all possible

worlds accessible via B at index n. Formally,

M, σ,ν,n |= (BEL x p) iff ∀σ* such that 〈σ,n〉B[v(x)]σ*, M,σ*,ν,n |= p

28

2. (GOAL x p) says that p follows from the agent’s goals iff p is true in all possible

words accessible via G, at index n. Formally,

M, σ,ν,n |= (GOAL x p) iff ∀σ* such that 〈σ,n〉G[v(x)]σ*, M,σ*,ν,n |= p

3. (HAPPENS a) says that a describes a sequence of events that happens next. For-

mally,

M, σ,ν,n |= (HAPPENS a) iff ∃m, m>n, such that M,σ,ν,n[[a]]m

4. (DONE a) says that a describes a sequence of events that just happened. Formally,

M,σ,ν,n |= (DONE a) iff ∃m, m6n, such that M,σ,ν,m[[a]]n

(HAPPENS x a), (DONE x a), (HAPPENS x y a) and (DONE x y a) also specify

the agent(s) for the sequence of events that constitute a. For example, if a is a singleton

event, then

(DONE x a) , (DONE a) ∧ (x = Agt(a))

Next, we define what it means for events and actions to occur in this model.

2.2.3 Occurrence of Events and Actions

The occurrence of events and actions in this model is specified in the following manner.

Event variable e denotes a sequence of events of length m starting at time n. In other

words,

M, σ,ν,n[[e]]n+m iff ν(e) = e1e2. . . em and σ(n+i) = ei, 16 i 6m.

1. Action Sequence: The sequence a;b says that the action described by a and then

that described by b occurs. Formally,

M, σ,ν,n[[a;b]]m iff ∃k, n6k6m, such that M,σ,ν,n[[a]]k and M,σ,ν,k[[b]]m

2. Non Deterministic Choice: The non-deterministic OR a|b says that either the action

described by a or that described by b occurs. Formally,

M, σ,ν,n[[a|b]]m iff M,σ,ν,n[[a]]m or M,σ,ν,n[[b]]m

3. Concurrent Action: The concurrent action a||b says that both the actions described

by a and b occur. Formally,

29

M, σ,ν,n[[a||b]]m iff ∃m1, m2 where n6m16m and n6m2 6m such thatM,σ,ν,n[[a]]m1

and M,σ,ν,n[[b]]m2

4. Test Action: The test action p? occurs if p holds or blocks (fails) when p is false.

Formally,

M, σ,ν,n[[p?]]m iff M,σ,ν,n |= p

5. Indefinite repetition: The indefinite repetition a* describes the iterative action a;a*

Formally,

M, σ,ν,n[[a*]]m iff ∃n1, . . . ,nk where n1=n and nk=m and for every i such that

16 i 6k, M,σ,ν,ni [[a]]ni+1

The basic logical operators, the primary modal operators, and the action expression

operators can be combined to define several useful and more commonly recognized con-

cepts. The next section shows examples of some of these common concepts.

2.2.4 Abbreviations

1. Empty sequence: As a test action, the empty sequence nil always succeeds. Formally,

nil , (∀ x (x = x))?

2. Event subsequence: As an event sequence, NIL is a subsequence of every other event.

Formally,

a = NIL , ∀b (a 6 b)

3. Conditional action & while loop: The conditional action and the while loop are

defined using action expressions as follows:

[IF p THEN a ELSE b] , (p?;a)|(¬p;b)

[WHILE p DO a] , (p?;a)*|¬p?

4. Eventually: Eventually p denoted by (♦p) is true in a given possible world if there

is some sequence of events after which p will hold, that is if p is true at some point

in the future. Formally,

30

♦p , ∃x (HAPPENS x;p?)

5. Always: Always p denoted by (¤p) means that p is hence forth true in the course

of events. Formally,

¤p , ¬♦¬p

6. Before & After2: The temporal relation (BEFORE a p) says that proposition p was

true before action a was done. Similarly, (AFTER a p) says that p will be true after

a happens. Formally,

(BEFORE a p) , (DONE p?;a)

(AFTER a p) , (HAPPENS a;p?)

7. Until: The temporal relation (UNTIL p q) says that q remains true at least until

p becomes true, that is, for every event c such that q becomes false right after c

happens, there exists an event a which is an initial subsequence of c such that p

becomes true right after a happens. Formally,

(UNTIL p q) , ∀c (HAPPENS q?;c;¬q?) ⊃ ∃a (a 6 c) ∧ (HAPPENS ¬p?;a;p?)

8. Earlier: The temporal relation (EARLIER p) says that p was true in the past but

it is currently not true. Formally,

(EARLIER p) , ¬p ∧ ∃e(DONE p?;e;¬p?)

9. Doing: An agent is DOING an action a if the agent is the actor of that action and

if one of the following is true (i) a has just been done, or (ii) a is going to happen

next (i.e., a is just starting), or (iii) there exists some initial subsequence of a that

has just been done but a has not just been done (i.e., a has started but not yet

completed). Formally,

(DOING a) , (DONE a)∨ (HAPPENS a)∨ [∃e (e 6 a) ∧ (DONE e) ∧ ¬(DONE

a)]

2In this dissertation, we use the definitions of BEFORE and AFTER from [26].

31

10. Know: Knowledge is defined as true belief in the usual manner. Formally,

(KNOW x p) , p ∧ (BEL x p)

Next, we discuss the constraints imposed on the above model to account for the basic

axioms involving modal operators in this logic.

2.2.5 Constraints on the Model

Realism: An agent cannot have a goal that is incompatible with its belief, for example,

that it believes to be impossible. Therefore, G ⊆ B (i.e., the goal accessible worlds are a

subset of the belief accessible worlds). In other words,

|= (BEL x p) ⊃ (GOAL x p)

Note that this is true relative to a given time as agents can want to change things in

the future.

Necessitation: If p is a theorem (i.e., is valid), then it follows from the agent’s beliefs

at all times. In other words,

if |= p, then |= (BEL x ¤p)

In this model, the belief accessibility relation B is constrained to be Euclidean, tran-

sitive, and serial. Therefore, BEL has weak-S5 (i.e., KD45) semantics and that gives us

the following belief axioms.

1. Distribution Axiom (or Axiom K): It follows from the possible worlds approach itself

regardless of any constraints we might place on the accessibility relation. It says that

if an agent believes p and if it believes that p implies q, then it also believes q.

(BEL x p)∧ (BEL x (p ⊃ q)) ⊃ (BEL x q)

It is also written in the following equivalent form:

(BEL x (p ⊃ q)) ⊃ (BEL x p) ⊃ (BEL x q)

2. Consistency Axiom (or Axiom D): It follows when the accessibility relation is con-

strained to be serial (that is there are no trap states in which no world is accessible).

It says that, if an agent believes p, then it cannot also believe ¬p, that is,

(BEL x p) ⊃ ¬(BEL x ¬p)

32

3. Positive Introspection Axiom (or Axiom 4): It follows when the accessibility relation

is constrained to be transitive. It says that, if an agent believes p, then it believes

that it believes p.

(BEL x p) ⊃ (BEL x (BEL x p))

4. Negative Introspection Axiom (or Axiom 5): It follows if the accessibility relation

is constrained to be Euclidean. It says that an agent is aware of what it does not

believe.

¬(BEL x p) ⊃ (BEL x ¬(BEL x p))

We also assume that the converse of the positive introspection axiom holds in our

model.

5. Converse of positive introspection axiom: It says that if an agent believes that it

believes p, then it does in fact believe p.

(BEL x (BEL x p)) ⊃ (BEL x p)

In this model, the goal accessibility relation G is constrained to be serial. Therefore,

GOAL has system-K (i.e., KD) semantics where axioms K and D are similar to those for

BEL. Note that because of the consistency axioms (Axiom D), an agent’s beliefs and goals

must be separately consistent with each other.

We now provide an overview of Joint Intention theory using the logic framework de-

scribed so far and establish some of the important results that will be needed subsequently.

2.3 JOINT INTENTION THEORY

Joint Intention theory is expressed in the modal language whose syntax and model theory

were presented above. Here, we first discuss the definitions of individual commitment and

intention in this theory followed by definitions of joint commitment, joint intention, and

related concepts.

33

2.3.1 Individual Commitment and Intention

In joint intention theory, the notion of an agent’s commitment to achieving some state in

the world is expressed as a persistent goal or PGOAL [25].

Definition 2.1. Persistent Goal

(PGOAL x p q) , (BEL x ¬p) ∧ (GOAL x ♦p)∧
(UNTIL [(BEL x p) ∨ (BEL x ¤¬p) ∨ (BEL x ¬q)](GOAL x ♦p))

An agent x has a persistent goal (PGOAL x p q) if x wants p to become true and

cannot give up the goal that p is true in the future, at least until it believes that p is

accomplished, or is impossible, or is irrelevant (i.e., the relativizing condition q is untrue).

The usual convention is to omit the relativizing condition q if it is always the constant

true. This dissertation assumes that agents are competent with respect to their individual

commitments, that is, if an agent believes that it has a PGOAL, then it does in fact have

that PGOAL. A consequence of this assumption is that an agent knows that it cannot

drop its PGOAL at least until one of the conditions in the UNTIL clause becomes true.

Formally,

Assumption 2.1. Agents are competent with respect to their commitments.

|= (BEL x (PGOAL x p)) ⊃ (KNOW x (PGOAL x p)) ⊃ (PGOAL x p)

An intention to do an action a relative to q is represented by (INTEND x a q) and it

is defined as a persistent goal in which the agent x is committed to performing the action

a believing throughout that it is doing the action.

Definition 2.2. Intention

(INTEND x a q) ,

(PGOAL x (DONE x (BEL x (DOING x a))?; a) q)

The consequences of intending different kinds of action expressions have been analyzed

in detail in [29, 25, 28]. For instance, (INTEND x p? q) reduces to (PGOAL x (KNOW

x p) q), that is, an intention to do a test action p? results in the agent being committed

to coming to know p (and it does not know p now). However, the agent is not committed

to bringing about p itself.

34

Stepwise Execution Strategy: Even though an agent may know that it is executing

a sequential action, the definition of intention does not require it to know where it is in

the action sequence. As such, an agent who intends to do a sequential action does not

necessarily intend to perform the first step in the sequence, even relative to the larger

intention. It is consistent with the definition of intention that an agent can intend to

do the sequence without expecting to know when the first part of that sequence is over.

Moreover, the agent need not intend to do the remainder of the sequence either because

it might not know when the first part has been completed and it might not know that

it is doing the second part. Therefore, it is possible to execute a sequence of actions

without knowingly executing the individual steps because an agent may not know when

sub-actions start and stop. However, we can require an agent to believe after each step

both that the step was just done and that she is doing the remainder. This execution

strategy is called stepwise execution [29]. In the stepwise execution of an action sequence,

each step becomes a contextual action because it must be performed in a context where

the agent has certain beliefs. It follows that, if an agent intends to do a sequential action

in a stepwise fashion, then the agent also intends to do each of the steps relative to the

larger intention.

Assuming stepwise execution, it has been shown that intending an action sequence a;b,

that is, (INTEND x a;b q) first results in the agent intending to do the action a. However,

the agent does not intend to do b in the beginning, rather, it intends to do (DONE x

a)?;b meaning that the agent intends to do b in the context of having done a but it does

not intend to do b in isolation. However, once the agent believes that it has just done

a while executing a;b then it intends to do b. Furthermore, the agent has the intention

to do a;b all along so that the agent is committed to retrying a;b in case of any failure.

Therefore, intentions to do a complex action expression (such as action sequence) result

in the intentions at the right times to do the component actions.

Similarly, intention to do an iterative action, that is, (INTEND x (WHILE p DO

a) q) implies that the agent is committed to executing the action a until the condition

p is false. As such, when the agent believes that it has done the iterative action, it

will believe that the condition p is false. Intention to do a conditional action, that is,

35

(INTEND x (IF p THEN a ELSE b) q) implies that the agent cannot be ignorant about

the condition p forever. This is because the agent cannot believe that it is about to do a

conditional without believing that the condition is true or believing that the condition is

false. However, an agent need not know the truth value of a condition on an if-then-else

action if the two branches share an initial sequence of events. Only at the point at which

those execution paths diverge will it be necessary for the agent to have a belief about

the truth of the past condition. These results from the literature on intending action

expressions are summarized in Table 2.1. Intention is defined in terms of PGOAL and

Table 2.1: Theorems on Intending Action Expressions

Action Sequences

|= (INTEND x a1;a2;. . . ;an q) ∧ ¬(BEL x (EARLIER (DONE a1)))

⊃ (INTEND x a1 (INTEND x a1;a2;. . . ;an q))

|= (INTEND x a1;a2;. . . ;an q) ∧ (BEL x (DONE a1;a2;. . . ;ai))

⊃ (INTEND x ai+1;. . . ;an (INTEND x a1;a2;. . . ;an q))

Repetition

|= (INTEND x a* q) ⊃ (INTEND x a;(a)* q)

Concurrent Actions

|= (INTEND x a1||a2||. . . ||an q) ⊃
(INTEND x a1 (INTEND x a1||a2||. . . ||an) q)) ∧
(INTEND x a2 (INTEND x a1||a2||. . . ||an q)) ∧
...

(INTEND x an (INTEND x a1||a2||. . . ||an q)) ∧
[∀k, 16 k 6 n (HAPPENS ak) ⊃ (HAPPENS a1) ∧...∧ (HAPPENS an))]

Non-Deterministic OR

|= (INTEND x a1|a2|. . . |an q) ⊃
(INTEND x a1 (INTEND x a1|a2|. . . |an q)) ∨
(INTEND x a2 (INTEND x a1|a2|. . . |an q)) ∨
...

(INTEND x an (INTEND x a1|a2|. . . |an q))

therefore, the above results apply to PGOAL as well. For sake of completeness, the results

36

on commitment for doing an action expression are summarized in Table 2.2. The above

Table 2.2: Theorems on Commitment to do Action Expressions

Action Sequences

|= (PGOAL x (DONE a1;a2;. . . ;an) q) ∧ ¬(BEL x (EARLIER (DONE a1)))

⊃ (PGOAL x (DONE a1 (PGOAL x a1;a2;. . . ;an) q))

|= (PGOAL x (DONE a1;a2;. . . ;an) q) ∧ (BEL x (DONE a1;a2;. . . ;ai))

⊃ (PGOAL x (DONE ai+1;. . . ;an) (PGOAL x (DONE a1;a2;. . . ;an) q))

Repetition

|= (PGOAL x (DONE a*) q) ⊃ (PGOAL x (DONE a;(a)*) q)

Concurrent Actions

|= (PGOAL x (DONE a1||a2||. . . ||an) q) ⊃
(PGOAL x (DONE a1) (PGOAL x (DONE a1||a2||. . . ||an) q)) ∧
(PGOAL x (DONE a2) (PGOAL x (DONE a1||a2||. . . ||an) q)) ∧
...

(PGOAL x (DONE an) (PGOAL x (DONE a1||a2||. . . ||an) q)) ∧
[∀k, 16 k 6 n (HAPPENS ak) ⊃ (HAPPENS a1) ∧...∧ (HAPPENS an))]

Non-Deterministic OR

|= (PGOAL x (DONE a1|a2|. . . |an) q) ⊃
(PGOAL x (DONE a1) (PGOAL x (DONE a1|a2|. . . |an) q)) ∨
(PGOAL x (DONE a2) (PGOAL x (DONE a1|a2|. . . |an) q)) ∨
...

(PGOAL x (DONE an) (PGOAL x (DONE a1|a2|. . . |an) q))

analysis of individual commitment and intention has been extended to multiple agents. An

agent team is characterized as having joint commitment and joint intention as discussed

next.

2.3.2 Joint Commitment and Joint Intention

The joint commitment between two agents is expressed formally by a joint persistent goal

(JPG), and the one-sided commitment of an agent towards another agent is represented

by a persistent weak achievement goal (PWAG). These terms are defined in terms of

37

mutual belief (MB), mutual goal (MG), and weak mutual goal (WMG). Mutual belief is

expressed using unilateral mutual belief (BMB) that is treated as a semantic primitive

[66]. A unilateral mutual belief (BMB x y p) says that agent x believes that there is

mutual belief between itself and agent y about proposition p. The fixed-point definition

of BMB is given in Definition 2.3 and a model-theoretic definition of BMB appears in

Section 2.4.1. Mutual belief is discussed further in the next section. Mutual knowledge

(MK) is defined as true mutual belief. Two agents have a mutual goal (MG) that p if they

mutually believe that both agents have the goal that eventually p.

Definition 2.3. Unilateral Mutual Belief, Mutual Belief, Mutual Knowledge, and Mutual

Goal

a. (BMB x y p) , (BEL x p∧(BMB y x p))

b. (MB x y p) , (BMB x y p) ∧ (BMB y x p)

c. (MK x y p) , p ∧ (MB x y p)

d. (MG x y p) , (MB x y (GOAL x ♦p)∧(GOAL y ♦p))

A weak mutual goal (WMG) is a mutual belief that each agent has a weak achievement

goal (WAG) towards the other for achieving p relative to q.

Definition 2.4. Weak Mutual Goal

(WMG x y p q) , (MB x y (WAG x y p q) ∧ (WAG y x p q))

An agent x has a WAG towards another agent y when the following holds: if agent x

believes that p is not currently true then it will have a goal to achieve p, and if it believes

p to be either true, or to be impossible, or if it believes the relativizing condition q to be

false, then it will have a goal to bring about the corresponding mutual belief with agent

y.

Definition 2.5. Weak Achievement Goal

(WAG x y p q) , [¬(BEL x p) ∧ (GOAL x ♦p)]∨
[(BEL x p) ∧ (GOAL x ♦(MB x y p))]∨
[(BEL x ¤¬p) ∧ (GOAL x ♦(MB x y ¤¬p))]∨
[(BEL x ¬q) ∧ (GOAL x ♦(MB x y ¬q))]

38

The joint commitment between two agents to achieve p is formally expressed as a joint

persistent goal between those agents.

Definition 2.6. Joint Persistent Goal

(JPG x y p q) , (MB x y ¬p) ∧ (MG x y p)∧
(UNTIL [(MB x y p) ∨ (MB x y ¤¬p) ∨ (MB x y ¬q)](WMG x y p q))

Two agents x and y have a joint persistent goal that p with respect to q when precisely

the following conditions hold: there is a mutual belief that p is not currently true, it is a

mutual goal to bring about p, and p will remain a weak mutual goal at least until there

is a mutual belief that p is either true, or will never be true, or the relativizing condition

q is no longer true. The agents can be jointly committed to doing an action (or actions)

a because p can be of the form (DONE a). Note, that this applies even if the entire

action (or actions) a is to be done by just one agent, say, by agent y as in (DONE y

a). From [70], a joint commitment between two agents implies individual commitment by

each agent, assuming the relativizing condition to be the true, that is,

Proposition 2.1. |= (JPG x y p) ⊃ (PGOAL x p) ∧ (PGOAL y p)

Therefore, a JPG between x and y for (DONE y a) also commits agent x to agent y’s

doing the action a. Agent x can then act on its individual commitment (PGOAL x (DONE

y a)) by being co-operative, helpful, or in any other suitable manner. For example, if the

joint commitment is for agent y to move a chair out of the room, then agent x can act

proactively to help agent y and open the door if the door is closed. This behavior is in

addition to the mutual belief establishment by both parties in the event of private belief

regarding achievement, impossibility, or irrelevance of the jointly committed goal. Two

agents having a JPG to do an action are said to form a team to do that action [70]. Joint

commitment defined above is not a social commitment – in a social commitment [105], an

agent (called the debtor) may have a one-way commitment towards another agent (called

the creditor) for doing an action but the creditor need not have the same commitment

towards the debtor. If two agents are jointly committed to one of them doing a certain

action, the commitment binds both agents towards each other for doing that action and it

prescribes similar response from both agents in the event that one agent privately comes

39

to believe that the jointly committed action has already been achieved or is impossible or

irrelevant.

Joint Intention (JI) between two agents is defined in terms of the joint persistent goal

and the definition of JI makes the jointly committed action explicit.

Definition 2.7. Joint Intention

(JI x y a q) ,

(JPG x y (DONE x y [UNTIL (DONE x y a)(MB x y (DOING x y a))]?; a) q)

Two3 agents x and y jointly intend to do an action (or actions) a if they have a joint

commitment to doing the action a mutually believing throughout the action execution that

they are jointly doing that action as a team [70]. Joint intention requires a starting mutual

belief that the agents are about to start the jointly intended action. JI is defined in terms

of JPG and therefore, a JI has the same property as a JPG regarding the establishment of

appropriate mutual beliefs in the event of private beliefs about achievement, impossibility,

or irrelevance of the jointly intended action. Also, as with JPG, the jointly intended

action does not necessarily have to be a joint action4, that is, it can be an action requiring

only one agent to act, in which case the non-acting agent has commitments towards the

other agent’s actions. For example, in the analysis of protocols in Chapter 8, we treat

a conversation protocol as a joint action expression represented by the action a in the

definition of joint intention and we assume that the participants of a conversation protocol

jointly intend to execute that conversation protocol.

The consequences of jointly intending an action expression has been analyzed in detail

in [70, 29, 28]. It has been shown that if a team jointly intends to do an action and if one

member of the team believes that he is the only agent of that action then that member

privately intends to do the action. This is because joint commitment entails individual

commitment and mutual belief entails individual belief. Furthermore, the agent must

believe that he is the only agent of that action because an agent is not allowed to intend

3Joint intention is defined here for two agents. For multiple agents, a generalized version of joint
intention that uses a schema variable for teams in place of individual agents in the above definition is
defined in Chapter 4.

4Joint action refers to an action that requires both agents to act, for instance, an action expression
involving both agents is referred to as a joint action expression.

40

to perform other agent’s actions (although they can be committed to actions of other

agents as discussed earlier).

Similarly, if a team jointly intends to do a concurrent action that consists of the

team members concurrently doing individual sub-actions, then the individual members

will privately intend to do their parts relative to the overall joint intention. As such, these

individual intentions persist as long as the joint intention persists. The definition of joint

intention requires that agents jointly intending an action mutually believe throughout that

they are doing the jointly intended action. Therefore, it follows that even when the agents

are performing their respective individual actions as part of the jointly intended action,

they also believe throughout that they are performing the group action together.

Similar to that for individual intention, the joint execution of more complex action

expressions such as action sequences and repetitive actions offers individual agents lots

of flexibility in executing the action expression. For instance, agents jointly intending an

action sequence are not required to mutually believe when each action in the sequence has

been done. As in the case of individual intention, this flexibility can be restricted using

various execution strategies.

Joint Stepwise Execution Strategy: A joint stepwise execution strategy (also

called lockstep) requires attainment of mutual belief after each step that the step had

been accomplished and that the agents were embarking on the remainder. However, we

do not require a team to always execute complex actions in lockstep as there are many

types of joint actions where such a team overhead is undesirable. In fact, the formalism

allows for individuals to contribute privately to a sequence when that is compatible with

the performance of the overall activity. If a team jointly intends to do a sequential action,

then the agent of any part will intend to do that part relative to the larger intention

provided that she will always know when the antecedent part is over, when she is doing

her share, and when she has done it. Therefore, if a team jointly intends to do a sequence

of actions in a joint stepwise fashion, the agents of any of the steps will jointly intend to

do the step relative to the larger intention.

Joint commitments and joint intentions are typically established using communication

wherein each agent communicates to the other agent that it has a one-way commitment

41

towards the other agent. This one-way commitment of one agent towards another agent

is called persistent weak achievement goal and is discussed next.

2.3.3 Social Commitment (Persistent Weak Achievement Goal)

A persistent weak achievement goal or PWAG represents the one-way commitment of one

agent towards another. As such, PWAG is the building block for joint commitment in

multi-agent communication – two agents will be jointly committed to achieving a goal (i.e.,

they will have a JPG) if they mutually believe that both the agents have an appropriate

PWAG, with respect to each other to achieve that goal (Theorem 2.1).

Definition 2.8. Persistent Weak Achievement Goal

(PWAG x y p q) , [¬(BEL x p) ∧ (PGOAL x p q)]∨
[(BEL x p) ∧ (PGOAL x (MB x y p) q)]∨
[(BEL x ¤¬p) ∧ (PGOAL x (MB x y ¤¬p) q)]∨
[(BEL x ¬q) ∧ (PGOAL x (MB x y ¬q))]

This definition, modified from Smith & Cohen [106], states that an agent x has a

PWAG towards another agent y when the following holds: if agent x believes that p is

not currently true then it will have a persistent goal to achieve p, and if it believes p to

be either true, or to be impossible, or if it believes the relativizing condition q to be false,

then it will have a persistent goal to bring about the corresponding mutual belief with

agent y. Note that the PGOAL in the first three disjuncts are relative to q and therefore,

establishing a mutual belief that ¬q allows the PWAG to be dropped. A PWAG is more

than a commitment to performing an action and more than the commitment to perform

an action in concert with another agent — not only is the agent committed to achieving

p but, once p is achieved or dropped, the agent will acquire a persistent goal to achieve

mutual belief that the goal has been achieved (or is impossible or no longer relevant).

Two agents having inter-locking PWAGs towards each other form a joint commitment

with each other. We state this in the following theorem and use the result in the rest of

this dissertation.

Theorem 2.1. Mutual belief in each other’s PWAG towards the other to achieve a goal p

is sufficient to establish a joint commitment to achieve p provided that (1) there is mutual

42

belief that p has not already been achieved, and (2) the PWAGs are interlocking, that is,

one PWAG is relative to the other. Formally,

|= [(MB x y (PWAG x y p q)) ∧ (MB x y (PWAG y x p r∧q)) ∧ (MB x y ¬p)]

⊃ (JPG x y p r∧q)

where r = (PWAG x y p q)

Proof. We need to show that all three conjuncts in the definition of (JPG x y p r∧q)

follow from the premise. Using the definition of JPG (Definition 2.6), we see that (JPG x

y p r∧q) requires the following conjuncts:

• (MB x y ¬p)

• (MG x y p)

• (UNTIL [(MB x y p) ∨ (MB x y ¤¬p) ∨ (MB x y ¬(r∧q))] (WMG x y p r∧q))

We need to show that all these three conjuncts are satisfied by the premise of this theorem.

(1) (MB x y ¬p) is the assumed initial condition. Hence this condition is trivially

satisfied.

(2) In order to show that (MG x y p) is satisfied, using definition of MG (Defini-

tion 2.3d), we need to show that the following conjunction is satisfied:

(MB x y (GOAL x ♦p)) ∧ (MB x y (GOAL y ♦p))

First note the following property of mutual belief:

(2a) |= (MB x y ¬p) ⊃ (MB x y (BEL x ¬p)) ∧ (MB x y (BEL y ¬p))

Now consider the first and last conjunct in the premise of this theorem:

(2b) (MB x y (PWAG x y p q)) ∧ (MB x y ¬p)

⊃ (MB x y (PWAG x y p q) ∧ (BEL x ¬p)) [By (2a) & distrib. of MB over conj.]

⊃ (MB x y (PGOAL x p)) [By Defn. 2.8 of PWAG]

⊃ (MB x y (GOAL x ♦p)) [By Defn. 2.1 of PGOAL]

43

Similarly, from the second and the last conjunct in the premise,

(2c) (MB x y (PWAG y x p r∧q)) ∧ (MB x y ¬p) ⊃ (MB x y (GOAL y ♦p))

Therefore, from (2b), (2c), and (Definition 2.3d) of mutual goal, (MG x y p) is satisfied.

(3) In order to establish the last conjunct (the UNTIL clause), we first show that (WMG

x y p r∧q) is satisfied by the given premise. Using definition of WMG (Definition 2.4), we

want to show that the following conjunction is satisfied:

(3a) (MB x y (WAG x y p r∧q)) ∧ (MB x y (WAG y x p r∧q))

An agent having a persistent goal that p has a goal that eventually p, that is,

|= (PGOAL x p) ⊃ (GOAL x ♦p) [From Definition 2.1 of PGOAL](3b)

Therefore, from the definition of WMG (Definition 2.4) and the definition of PWAG

(Definition 2.8), we see that

|= (PWAG x y p q) ⊃ (WAG x y p q) [Using (3b) & definitions of PWAG and WMG]

(3c)

We immediately see that the second conjunct in (3a) follows from the second conjunct

in the premise

(3d) (MB x y (PWAG y x p r∧q)) ⊃ (MB x y (WAG y x p r∧q)) [Using (3c)]

Similarly, in order to show that the first conjunct in (3a) follows from the first conjunct

in the premise, we need to establish that the following holds:

(3e) (MB x y (PWAG x y p q)) ⊃ (MB x y (PWAG x y p r∧q))

From the definition of PWAG (Definition 2.8), we see that the first three disjuncts are

common to the PWAG in the LHS and the RHS of (3e). The only difference is in the last

disjunct involving the relativizing condition. The last disjunct of the PWAG in the LHS

of (3e) is

(BEL x ¬q) ∧ (PGOAL x (MB x y ¬q))

The last disjunct of the PWAG in the RHS of (3e) is

(BEL x ¬(r∧q)) ∧ (PGOAL x (MB x y ¬(r∧q)))

Therefore, (3e) can be established if we can show that

(3f) (BEL x ¬q) ∧ (PGOAL x (MB x y ¬q))

⊃ (BEL x ¬(r∧q))∧ (PGOAL x (MB x y ¬(r∧q)))

44

We can conclude (3f) by applying OR-introduction5 to both the conjuncts in LHS of

(3f). Therefore, we can conclude (3e), that is,

(MB x y (PWAG x y p q)) ⊃ (MB x y (PWAG x y p r∧q))

From the premise of this theorem, we have

(MB x y (PWAG x y p q)) ∧ (MB x y (PWAG y x p r∧q))

⊃ (MB x y (PWAG x y p r∧q)) ∧ (MB x y (PWAG y x p r∧q)) [Using (3e)]

⊃ (MB x y (WAG x y p r∧ q)) ∧ (MB x y (WAG y x p r∧q)) [Using (3d)]

= (WMG x y p r∧q)) [Using Definition 2.4 of WMG]

Now this WMG persists at least until the mutual belief in PWAGs that it is derived

from persist. Therefore, it persists at least until

(MB x y (PWAG x y p q)) and (MB x y (PWAG y x p r∧q)) persist.

Using the implication (3d) established above, WMG persists at least until

(MB x y (PWAG x y p r∧q)) and (MB x y (PWAG y x p r∧q)) persists.

That is, WMG persists at least until

(MB x y p) ∨ (MB x y ¤¬p) ∨ (MB x y ¬(r∧q)) persists.

[Using Definition 2.8 of PWAG]

Therefore, we can conclude that

(MB x y (PWAG x y p q)) ∧ (MB x y (PWAG y x p r∧q)) ∧ (MB x y ¬p)

⊃ (UNTIL [(MB x y p) ∨ (MB x y ¤¬p) ∨ (MB x y ¬(r∧q))]

(WMG x y p r∧q)))

This establishes the final conjunct (the UNTIL clause) in the definition of JPG to be

proved.

A consequence of this theorem is that it is possible to establish joint commitment

between two agents by using communicative acts to establish mutual belief in each other’s

PWAG towards the other. We will see later in this dissertation that it is possible to

establish mutual belief by default about one’s PWAG using a single communicative act

(i.e., without confirmation from the other agent). However, in order to establish that

result, we need to first show that agents are competent with respect to their PWAG as

stated formally in the following lemma.

5Without loss of generality, we will assume throughout this paper that all agents have access to the
same inference rules as we do. For non-reasoning agents, this would mean that the agent designer has
access to the same inference rules as we do.

45

Lemma 2.1. If an agent believes that it has a PWAG towards another agent, then it does

have that PWAG towards that agent. Formally,

|= (BEL x (PWAG x y p q)) ⊃ (PWAG x y p q)

Proof. This lemma follows from the definition of PWAG and the assumption that agents

are competent with respect to their individual commitment (Assumption 2.1). First, recall

that an agent is competent with respect to its individual commitment, that is,

(1) (BEL x (PGOAL x p)) ⊃ (PGOAL x p) [Assumption 2.1]

We want to show that the LHS and RHS lead to the same mental attitudes whenever any

disjunct in the definition of PWAG (Definition 2.8) is true. We need to consider four cases

– one for each disjunct in the definition of PWAG.

Case 1: ¬(BEL x p)

In this case,

(BEL x (PWAG x y p q)) ∧ ¬(BEL x p)

⊃ (BEL x (PWAG x y p q)) ∧ (BEL x ¬(BEL x p)) [Negative introspection]

⊃ (BEL x (PWAG x y p q) ∧ ¬(BEL x p)) [Belief distributes

over conjunction]

⊃ (BEL x (PGOAL x p q)) [From definition of PWAG]

⊃ (PGOAL x p q) [From (1)]

∴ (PWAG x y p q) ∧ ¬(BEL x p) ⊃ (PGOAL x p q) [Using definition of PWAG]

Case 2: (BEL x p)

In this case,

(BEL x (PWAG x y p q)) ∧ (BEL x p)

⊃ (BEL x (PWAG x y p q)) ∧ (BEL x (BEL x p)) [Positive introspection]

⊃ (BEL x (PWAG x y p q) ∧ (BEL x p)) [Belief distributes

over conjunction]

⊃ (BEL x (PGOAL x (MB x y p) q)) [From definition of PWAG]

⊃ (PGOAL x (MB x y p) q) [From (1)]

∴ (PWAG x y p q) ∧ (BEL x p) ⊃ (PGOAL x (MB x y p) q) [Using definition of PWAG]

Case 3: (BEL x ¤¬p)

46

In this case,

(BEL x (PWAG x y p q)) ∧ (BEL x ¤¬p)

⊃ (BEL x (PWAG x y p q)) ∧ (BEL x (BEL x ¤¬p)) [Positive introspection]

⊃ (BEL x (PWAG x y p q) ∧ (BEL x ¤¬p)) [Belief distributes

over conjunction]

⊃ (BEL x (PGOAL x (MB x y ¤¬p) q)) [From definition of PWAG]

⊃ (PGOAL x (MB x y ¤¬p) q) [From (1)]

∴ (PWAG x y p q) ∧ (BEL x ¤¬p) ⊃ (PGOAL x (MB x y ¤¬p) q)

[Using definition of PWAG]

Case 4: (BEL x ¬q)

In this case,

(BEL x (PWAG x y p q)) ∧ (BEL x ¬q)

⊃ (BEL x (PWAG x y p q)) ∧ (BEL x (BEL x ¬q)) [Positive introspection]

⊃ (BEL x (PWAG x y p q) ∧ (BEL x ¬q)) [Belief distributes

over conjunction]

⊃ (BEL x (PGOAL x (MB x y ¬q))) [From definition of PWAG]

⊃ (PGOAL x (MB x y ¬q)) [From(1)]

∴ (PWAG x y p q) ∧ (BEL x ¬q) ⊃ (PGOAL x (MB x y ¬q))

[Using definition of PWAG]

These four cases exhaustively cover all situations relevant for a PWAG. We see that in

each of these cases,

(BEL x (PWAG x y p q)) results in the same mental attitude as (PWAG x y p q).

Hence, we can conclude that

(BEL x (PWAG x y p q)) ⊃ (PWAG x y p q)

PWAG is a central concept in the Joint Intention theory and is used in the definition of

the various communicative acts, in particular, the request communicative act. A PWAG

defines a commitment of one agent towards another and therefore it represents a social

commitment, provided that it is made public6. As such, a PWAG reflects an agent’s social

6Making a PWAG public means making it observable by others. In the simplest case, it means estab-
lishing a mutual belief between the agent who has the PWAG and the agent towards whom the PWAG
is directed. In general, however, it requires group communication (Chapter 5) where the senders, the
listeners, and the over-hearers can be groups of agents.

47

commitment or obligation towards other parties, even though it is a commitment defined

using mental attitudes. The PWAG of an agent towards other agents can be inferred by

listening to its observable communication (i.e., if the communication is not private and

encrypted). Furthermore, one can verify to a certain extent whether or not an agent acts

according to its PWAG by setting up test cases where the test agents establish mutual

beliefs to satisfy the different conditions of the PWAG and then observing the agent’s

communicative as well as other external actions. Commitments and intentions can be

made public by establishing appropriate mutual beliefs. Mutual belief can be established

by either co-presence7 or by explicit communication. However, explicit communication

by message passing is the most prevalent way of establishing mutual belief in multi-agent

systems. Next, we take a detailed look at the concept of mutual belief and how it can be

established by message passing.

2.4 MUTUAL BELIEF

Mutual belief is defined in terms of unilateral mutual belief. Two agents x and y are said

to mutually believe that p if both agents believe that they mutually believe that p. That

is,

(MB x y p) , (BMB x y p) ∧ (BMB y x p)

This definition is symmetric so we will just discuss (BMB x y p) in what follows. We used

the following fixed-point definition of BMB in this chapter (Definition 2.3a),

(BMB x y p) , (BEL x p∧(BMB y x p))

This fixed point definition encodes the following well-known property of mutual belief: An

agent x believes that it is mutually believed between itself and another agent y that p iff

agent x believes p, and believes that agent y believes p, and believes that y believes that

x believes p, and so on, ad infinitum. By expanding the fixed-point definition using belief

distribution over conjunction, one can readily verify the following proposition.

7One may treat co-presence as a form of communication without explicit message passing.

48

Proposition 2.2. Unilateral mutual belief as an infinite conjunction

(BMB x y p) ⊃ (BEL x p) ∧ (BEL x (BEL y p)) ∧ (BEL x (BEL y (BEL x p)))

∧. . . and so on

We first give a model theoretic definition of BMB and show that the fixed-point prop-

erty of BMB follows from this definition. The model theoretic definition allows finite

models of mutual belief that can be represented and reasoned about in software systems.

2.4.1 Model-Theoretic Definition of BMB

We assume a model structureM from Section 2.2 that includes an accessibility relation Ba

for every agent a. We use the usual possible worlds representation where ω1Baω2 means

that world ω2 is belief accessible by agent a from world ω1 As mentioned earlier, the

belief accessibility relation Ba is constrained to be Euclidean, transitive, and serial in our

model from [25]. In this model, an agent x has unilateral mutual belief (BMB) with agent

y about proposition p if and only if ∀ω1, ω2. . .ωn such that ω1Bxω2, ω2Byω3, ω3Bxω4,

ω4Byω5,.. . .ωn−1Baωn (where Ba is Bx if n is even or By if n is odd), p is valid in the model

M in world ωn. More formally,

M, ω |= (BMB x y p) , ∀n ∀(ω, ω′) ε B[x, y, n] M, ω′ |= p

where, B[x, y, n] is defined inductively by

B[x, y, 1] = Bx

B[x, y, n + 1] = B[y, x, n] ◦ Bx

This semantics of BMB is similar to the semantics of common knowledge given in [48].

To show that the fixed-point property of BMB follows from this model-theoretic definition,

consider a world ω1 that is belief accessible from ω by agent x (i.e., ωBxω1). From the

definition of the above model, we have,

∀n ∀(ω,ω′) ε B[x, y, n] M,ω′ |= p

Now, consider all worlds ω′ that are belief accessible by agent y from world ω1, that

is, ω1Byω
′.

Let m = n+1

49

We can conclude that,

∀m ∀(ω1, ω
′) ε B[x, y, m]M, ω′ |= p

where,

(1) B[y, x, 1] = By

(2) B[y, x, m + 1] = B[x, y, n] ◦ By

This is nothing but the model definition of (BMB y x p). Since this is true in any

arbitrary ω1 that is belief accessible by x from ω, therefore, (BMB y x p) is true in all

worlds that are belief accessible from ω by agent x. Hence, from the model, we can

conclude that (BEL x (BMB y x p)).

Moreover, from the above definition we see that the following holds,

∀(ω, ω′) ε B[x, y, 1]M, ω′ |= p

That is, we can conclude (BEL x p) from this model. Therefore, from the above model,

we can conclude that

(BEL x (BMB y x p)) ∧ (BEL x p)

This is the fixed-point definition of (BMB x y p).

A model for (MB x y p) can be obtained by combining the models for (BMB x y p) and

(BMB y x p). Note that the above model for (BMB x y p) is an infinite model. However,

it is possible to give finite models for (BMB x y p) by suitably modifying the above infinite

model such that the fixed-point property is retained. One such model can be obtained by

constraining the belief accessibility relation such that

(1) It is reflexive, that is,

∀ω, ω1 ωBxω1 ⊃ ω1Bxω1

(2) It “loops-back” in the following manner:

∀ ω, ω1, ω2, ω3 ωBxω1 ∧ ω1Byω2 ∧ ω2Bxω3 ⊃ ω3Byω2

Any number of such models can be obtained depending on how many levels of private

beliefs agent x needs to have. If ω is the real world, then there is only one level of

private belief. If ω is directly belief accessible from the real world ω0, that is, ω0Bxω

50

then agent x has two levels of private belief, and so on. Such finite models of BMB can

be readily translated into finite data-structures that can be used to represent and reason

about mutual belief. One such circular data-structure due to Cohen [22] demonstrates

the feasibility of representing and reasoning about mutual beliefs. The next step is to

establish mutual belief between agents by explicit message passing as well as by other

communication modalities such as by observation.

2.4.2 Establishing Mutual Belief by Communication

Mutual belief is sometimes thought of as an infinite conjunction of beliefs as in Propo-

sition 2.2. This view of mutual belief has led some researchers [104, 105] to argue that

mutual belief can never be established via message passing. However, the basic assumption

of these researchers that each of the conjuncts in Proposition 2.2 has to be established one

by one in order to establish mutual belief, is incorrect. For example, Cohen [22] argued

that, rather than attain (BMB x y p) incrementally, the infinite number of levels can be

assumed to hold at once, provided there is no (finite) level of belief embedding that p is

false. In that work, a circular data structure of databases encoded the infinite repetition

of alternating beliefs in Proposition 2.2. Brainov and Sandholm [9] have independently

proposed a similar technique to represent and reason about infinite belief hierarchies using

finite data-structures. As such, mutual belief can be represented using finite data struc-

tures, and there exist finite algorithms to reason about mutual belief using those data

structures.

It has been shown in the literature that mutual belief can be established in several

different ways by default [22, 83, 56, 76, 77], even if the communication channel is fallible.

In this dissertation, we assume that mutual belief is established by default. Establishing

mutual belief by default means that agents make certain defeasible assumptions if they

have no information to the contrary. For example, in certain situations, an agent can

send a message and assume that the message was delivered to the recipient. Mutual belief

is, then, established quite easily based on such defeasible beliefs. These beliefs can be

false but belief (as opposed to knowledge) is allowed to be incorrect. If, at a later time,

the agent who has a defeasible belief discovers that its belief was incorrect, then it needs

51

to revise that belief. But until that happens, an agent can assume the defeasible belief

and make inferences based on that belief. We will formally state the defeasible rules of

communication that an agent may use to establish mutual belief by default using terms

that we define next.

Definition 2.9. Sincere

An agent x is sincere towards another agent y with respect to a proposition p if, whenever

x wants y to come to believe p, it wants y to come to know p. Formally,

(SINCERE x y p) , ∀ e (GOAL x (HAPPENS e; (BEL y p)?))

⊃ (GOAL x (HAPPENS e; (KNOW y p)?))

Therefore, a sincere agent only communicates information that it believes to be true at

the time of communication. In defeasible reasoning about communication, an agent may

believe something by default if it has no belief to the contrary. This concept is explicated

precisely using unilateral mutual ignorance (BMI).

Definition 2.10. Unilateral Mutual Ignorance

An agent x believes that there is mutual ignorance8 between itself and another agent y

about a proposition p iff it does not believe that p, and does not believe that y believes p,

and does not believe that y believes that x believes p, and so on, ad infinitum. Formally,

(BMI x y p) , ¬(BEL x p) ∧ ¬(BEL x (BEL y p))

∧ ¬(BEL x (BEL y (BEL x p))) ∧ . . . and so on

Even though BMI is defined above as an infinite conjunction, it can be reasoned about

and represented using finite data structures, and can be given a model theoretic definition

using finite models (as in the case of BMB). We have shown in the previous section how to

create finite models that satisfy BMB. Presence of a proposition p in the possible worlds

at all levels in such a finite model implies (BMB x y p) and its absence (i.e., if it cannot

be inferred) from the possible worlds at all levels in that model implies (BMI x y p). An

agent x has no information to the contrary about a proposition p if, for every agent y that

x has beliefs about, agent x believes that x and y are mutually ignorant that ¬p, that is,

8Our usage of the term “mutual ignorance” differs slightly from Johnson-Laird [54] where it refers to
absence of mutual knowledge.

52

if ∀y (BMI x y ¬p) holds. In this chapter, we only consider communication between two

agents x and y, and so, (BMI x y ¬p) is sufficient to conclude that agent x has no belief

to the contrary about p.

Defeasible Rules about Communication

Here we introduce the notation and specify the defeasible rules of communication that are

used to establish results about communicative acts later in this dissertation.

Definition 2.11. Defeasible Implication (⇒)

We use the double arrow notation (ϕ ⇒ ψ) to denote defeasible rules about communica-

tion. The satisfaction relation |= (ϕ ⇒ ψ) then denotes that ψ can always be concluded

from ϕ in our model using the defeasible rules that we state next.

We will see in the next section that every communicative act has an associated goal

and an intention. In what follows, let α(x,y,e,φ,ψ) be a communicative act where x is the

sender (speaker), y is the recipient (hearer), e is the event of performing that act, φ is the

associated goal, and ψ is the associated intention of the act. We assume that the sender

and the recipient mutually believe that both the agents use the following defeasible rules

(Propositions 2.3-2.8).

The performer of a communicative act believes after sending the message that it is

mutually believed between the sender and the recipient that the communicative act has

been done successfully. A communicative act is successful if the hearer recognizes the

speaker’s goal and intention associated with performing that communicative act [100, 19].

In the present work, however, we do not formally distinguish between the performance and

the success9 of communicative acts, that is, the term (DONE a) where a is a communicative

act, denotes not only that a has just been done but also that it has been successful. In other

words, the speaker assumes perfect communication. We will model this as a defeasible

assumption formally stated as,

(a) (DONE α(x,y,e, φ,ψ)) ⇒ (BMB x y (DONE α(x,y,e, φ,ψ)))

9Separating these two concepts would require formally defining “success” and recognizing that there is
possibly a time lag between the receipt of a message by a hearer and his actual processing of that message.

53

If the hearer y receives (and processes) the message, then it believes that the commu-

nicative act has been done, that is, (BEL y (DONE α(x,y,e, φ, ψ)) holds. From mutual

belief that each agent uses these default rules, the recipient believes that the sender believes

that it is mutually believed between the sender and the recipient that the communicative

act has been done, that is, (BEL y (BMB x y (DONE α(x,y,e, φ, ψ)))) holds. Therefore,

we have

(b) (DONE α(x,y,e, φ,ψ)) ⇒ (BMB y x (DONE α(x,y,e, φ,ψ))) [From definition of

BMB]

Hence, we can defeasibly conclude that, if a communicative act has been done (i.e., the

message has been received), then mutual belief occurs by default that the communicative

act has been done. Formally,

Proposition 2.3.

(DONE α(x,y,e, φ,ψ)) ⇒ (MB x y (DONE α(x,y, e, φ,ψ))) [From (a) and (b)]

We assume that the speaker of a communicative act does not change its mind, immedi-

ately after performing the communicative act, about any proposition whose truth-value is

not affected by performance of that communicative act. For example, if a sender informs

that p then p is the proposition of interest whose truth value is assumed to be unaffected

by the act of informing. In order to state this assumption precisely, we need to address the

Frame problem [92]. However, without worrying about whether or not the agent changed

its mind while the communicative act was being performed, we state the following useful

consequence of this assumption: If the recipient believes it is mutually believed that the

sender believed p just before performing the communicative act and if the truth value of

the sender’s belief is not affected by performance of that communicative act, then after the

communicative act is performed, it believes that it is mutually believed that the sender

believes p. Formally,

Proposition 2.4.

|= ∀e (DONE α(x,y,e, φ, ψ)) ∧ (BMB y x (BEFORE e (BEL x p)))

∧ ¬(DONE (BEL x p)?; e;¬(BEL x p)?)

⇒ (BMB y x (BEL x p))

54

The sender of a communicative act is sincere towards the recipient of that act about

any mental attitude θ of the sender (for example, θ can be a PWAG of the sender). If

the communicative intention ψ of a sender is to bring about mutual belief that before

performing the communicative act, it had the goal that after the act is done, the recipient

will believe θ, then the sender is assumed to be sincere towards the recipient with respect

to θ. From the definitions of communicative acts in the next section, we will see that θ is

either a belief or a PWAG of the sender.

Proposition 2.5. (DONE α(x,y, e, φ,ψ)) ⇒ (SINCERE x y θ)

where, ψ = (BMB y x [BEFORE e (GOAL x (AFTER e (BEL y θ)))])

If the communicative intention of the performer of a communicative act is that the

recipient believe that it is mutually believed that before performing the communicative

act, the sender had the goal that after the act is performed, the recipient believes θ (where

θ is a mental attitude of the sender as above), then after the act is performed, the recipient

believes that it is mutually believed that θ, provided that (1) the recipient has no belief

to the contrary about θ, and (2) the sender is sincere towards the recipient with respect

to θ. The recipient has no belief to the contrary about θ if it believes that the sender and

the recipient are mutually ignorant about ¬θ. Formally,

Proposition 2.6. (DONE α(x,y,e, φ,ψ)) ∧ (BMI y x ¬θ) ⇒ (BMB y x θ)

where, ψ = (BMB y x [BEFORE e (GOAL x (AFTER e (BEL y θ)))])

The sincerity condition is implicit in Proposition 2.6 because the premise of Proposi-

tion 2.5 is satisfied by the premise of this proposition. We assumed that the sender and

the recipient mutually believe that both agents use these defeasible rules. Therefore, if

the sender believes that the recipient does not have any belief to the contrary about the

sender’s mental attitude θ, then the sender will believe that the recipient believes that it

is mutually believed that θ.

Proposition 2.7.

(DONE α(x,y, e,φ,ψ)) ∧ (BEL x (BMI y x ¬θ)) ⇒ (BEL x (BMB y x θ))

where, ψ = (BMB y x [BEFORE e (GOAL x (AFTER e (BEL y θ)))])

55

A sender of a communicative act can assume that the recipient does not have any belief

to the contrary about the sender’s mental attitude θ that has just been communicated to

the recipient by the communicative act. From the definitions of communicative acts in the

next section, we will see that θ is always either the sender’s belief or his PWAG towards

the recipient. The equality (=) in the next proposition refers to propositional equality.

Proposition 2.8. (DONE α (x,y,e, φ,ψ)) ∧ [(θ = (BEL x γ)) ∨ (θ = (PWAG x λ q))]

⇒ (BEL x (BMI y x ¬θ))

where, ψ = (BMB y x [BEFORE e (GOAL x (AFTER e (BEL y θ)))]), and

γ, λ, and q denote some propositions

We will use these defeasible rules for the subsequent chapters. One consequence of

these rules is that it may take only two messages to establish mutual belief in each other’s

PWAG, and thus to create a joint commitment due to the interlocking PWAG (Theo-

rem 2.1). For all the theorems about communication that we establish in this disserta-

tion, we will assume that the recipient does not have any belief to the contrary and that

the truth-value of the proposition being communicated is not altered by the very act of

communication.

Assumption 2.2. We will assume that the following conditions hold for each commu-

nicative act α(x, y,e,φ,ψ), where

ψ = (BMB y x [BEFORE e (GOAL x (AFTER e (BEL y θ)))])), and

the mental attitude θ of the sender x is of the form (PWAG x y p q) or (BEL x p)

(a) The recipient has no belief to the contrary about the proposition θ, that is,

(BMI y x ¬θ)

(b) The communicative act does not change the truth value of the proposition θ, that is,

¬(HAPPENS θ?; e;¬θ?), and

¬(DONE θ?; e;¬θ?)

Assumptions 2.2a and 2.2b are not defeasible rules as in Propositions (2.3-2.8), rather

they are conditions that we assume throughout this dissertation in order to avoid re-stating

them in the premise of every theorem. Mutual belief about PWAGs as well as about any

56

other attitude or proposition is established using an appropriate communicative act with

appropriate content. Next, we introduce communicative acts and define those acts that

are used in the Request protocol in the next chapter.

2.5 COMMUNICATIVE ACTS AS ATTEMPTS

In the philosophy of language, it is argued that the illocutionary effect of a speech act

consists of the hearer’s recognition of the speaker’s communicative intention [100]. A com-

municative act succeeds when the hearer successfully recognizes the speaker’s intention

and it is satisfied when the hearer successfully acts on the speaker’s intention. Commu-

nicative acts must be characterized as attempts because there is a possibility that the act

may not succeed. For example, suppose that I sincerely request you to open the door.

The goal of my request is that you open the door and the intention of my request is that

it be mutually believed that I want you to open the door. My request is successful if you

recognize that I want you to open the door and my request is satisfied if you actually open

the door in response to my request. The best I can do is to make my intention known to

you and it is up to you whether or not you actually open the door. If I have reason to

believe that you have not properly understood my intention then I may repeat my request,

that is, I may attempt again to make my intention known to you. Accordingly, attempt

is defined as having a goal and an intention.

Definition 2.12. Attempt

(ATTEMPT x e p q t) , t?; [(BEL x ¬p) ∧ (GOAL x (HAPPENS e;♦p?)) ∧
(INTEND x t?; e; q? (GOAL x (HAPPENS e;♦p?)))]?; e

An attempt at time t to achieve p via q is a complex action expression in which the

agent x is the actor of event e and just prior to e, the actor chooses that p should eventually

become true, and intends that e should produce q relative to that choice. So, p represents

some ultimate goal that may or may not be achieved by the attempt, while q represents

what it takes to make an honest effort. If the attempt does not achieve the goal p, the

agent may retry the attempt, or try some other strategy or even drop the goal. However,

57

if the attempt does not succeed in achieving the intended effect q, the agent is committed

to retrying until it is either achieved or impossible or irrelevant [107, 26, 27].

Compositionality is one of the basic characteristics of speech acts [26, 30, 4, 33, 97].

Accordingly, communicative acts based on a speech-act theory must have a composable

semantics. We define two primitive communicative acts, REQUEST and INFORM, and

all other communicative acts that we need are composed using these basic communicative

acts by either specializing their content or by composing them in a sequential fashion.

The technique of composing new communicative acts from an existing set of well-defined

primitive acts leads to a consistent and well-defined semantics and also offers the possibility

that agents can create a new performative by composing primitive ones and understand a

new performative by decomposing them into their primitive components. We define our

primitive communicative acts as attempts and their definitions that follow are derived

from [106, 107].

2.5.1 Basic communicative acts

We consider REQUEST and INFORM to be the basic primitive acts and we define all

other communicative acts using these two communicative acts.

Definition 2.13. Request

(REQUEST x y e a q t) , (ATTEMPT x e φ ψ t)

where φ = (DONE y a) ∧ [PWAG y x (DONE y a) (PWAG x y (DONE y a) q)∧q]

and ψ = (BMB y x (BEFORE e [GOAL x (AFTER e (BEL y [PWAG x y φ q]))]))

This definition of REQUEST requires the requesting agent to notify the other agent

should he change his mind or discover a problem with the REQUEST. This requirement

follows from the persistent weak achievement goal (PWAG x y φ q) that the requestee

will have after performing the request. By communicating this PWAG, the requester is

already treating the requestee as a teammate [106]. The goal of a REQUEST is that

the requestee y eventually does the action a and also has a PWAG with respect to the

requester x to do a. The requester’s PWAG is relative to some higher-level goal q. The

requestee’s PWAG is not only with respect to the requester’s PWAG towards her that she

does the action a but also relative to the requester’s higher-level goal q. The intention of

58

the request is that the requestee y comes to believe there is a mutual belief between the

requestee and the requester that before performing the request, the requester had a goal

that after performing the request, the requestee will believe that he (the requester) has a

PWAG towards requestee to achieve the goal φ of the request.

Theorem 2.2. Successful performance of the REQUEST communicative act establishes

a mutual belief by default between the requester and the requestee about the requester’s

PWAG towards the requestee for doing the requested action. Formally,

|= (DONE (REQUEST x y e a q t)) ⇒ (MB x y (PWAG x y φ q))

where, φ = (DONE y a) ∧ [PWAG y x (DONE y a) (PWAG x y (DONE y a) q)∧ q]

Proof. The intention of a REQUEST is to bring about ψ in Definition 2.13. It is given

that the REQUEST was successful. Therefore, the intention part of the REQUEST must

have been achieved, that is,

(1) (BMB y x (BEFORE e [GOAL x (AFTER e (BEL y [PWAG x y φ q]))]))

The requester is assumed to be sincere, that is,

(2) (SINCERE x y (PWAG x y φ q)) [Proposition 2.5]

Therefore, we can conclude that

(3) (BMB y x (BEFORE e [GOAL x (AFTER e (KNOW y [PWAG x y φ q]))]))

[(1) & Definition 2.9]

That is, requester x had a goal that y come to know that [PWAG x y φ q]. Therefore,

after e, agent x must have that PWAG himself. Consequently, x must believe it himself.

(4) (BEL x (PWAG x y φ q))

It is given that y does not have any belief to the contrary, that is,

(5) (BMI y x ¬(PWAG x y φ q)) [Assumption 2.2(a)]

Therefore, we can conclude that

(6) (BMB y x (PWAG x y φ q)) [Proposition 2.6]

59

The sender believes that the recipient does not have any belief to the contrary. That is,

(7) (BEL x (BMI y x ¬(PWAG x y φ q))) [Proposition 2.8]

Therefore, the sender believes that the recipient believes that it is mutually believed that

(PWAG x y φ q).

(8) (BEL x (BMB y x (PWAG x y φ q))) [(7)&Proposition 2.7]

From (4), (8), (6) and Definition 2.3 of BMB and MB, we can conclude that,

(MB x y (PWAG x y φ q))

Definition 2.14. Inform

(INFORM x y e p t) , (ATTEMPT x e φ ψ t)

where φ = (BMB y x p) and

ψ = (BMB y x (BEFORE e [GOAL x (AFTER e [BEL y (BEFORE e (BEL x p))])]))

The goal of an INFORM is that the listening agent y come to believe that there is

mutual belief between him and the informing agent x that the proposition p is true. The

intention of the INFORM is that the listening agent come to believe that there is mutual

belief between him and the informing agent that, before performing the INFORM, the

informing agent had the goal that after the INFORM is performed, the listening agent

will believe that the informing agent believed p before performing the INFORM.

Theorem 2.3. Successful performance of the INFORM communicative act establishes a

mutual belief by default between the sender and the listener, that the sender believes the

informed proposition. Formally,

|= (DONE (INFORM x y e p t)) ⇒ (MB x y (BEL x p))

Proof. The INFORM was successful. Therefore, the intention part of the INFORM must

have been achieved, that is,

(1) (BMB y x (BEFORE e [GOAL x (AFTER e [BEL y (BEFORE e (BEL x p))])]))

The requester is assumed to be sincere, that is,

(2) (SINCERE x y (BEFORE e (BEL x p))) [Proposition 2.5]

60

Therefore, using (1) and Definition 2.9 we can conclude that

(3)

(BMB y x (BEFORE e [GOAL x (AFTER e [KNOW y (BEFORE e (BEL x p))])]))

That is, sender x had a goal that y come to know that (BEFORE e (BEL x p)). Therefore,

x must believe it himself.

(4) (BEL x (BEFORE e (BEL x p)))

The performance of the INFORM communicative act does not change the truth-value of

(BEL x p).

(5) ¬(DONE (BEL x p)?; e;¬(BEL x p)?) [Assumption 2.2(b)]

Therefore, if x believed p before the communicative act was done, it must still believe p.

(6) (BEL x (BEL x p)) [(4) and (5)]

It is given that y does not have any belief to the contrary, that is,

(7) (BMI y x ¬(BEFORE e (BEL x p))) [Assumption 2.2(a)]

Therefore, we can conclude that

(8) (BMB y x (BEFORE e (BEL x p))) [Proposition 2.6]

The communicative act does not change the truth-value of (BEL x p). Therefore, we can

conclude that

(9) (BMB y x (BEL x p)) [(8), (5), & Proposition 2.4]

The sender believes that the recipient does not have any belief to the contrary, that is,

(10) (BEL x (BMI y x ¬(BEL x p))) [Proposition 2.8]

Therefore, the sender believes that the recipient believes that it is mutually believed that

(BEL x p).

(11) (BEL x (BMB y x (BEL x p))) [(10), & Proposition 2.7]

From (6), (11), (9) and Definition 2.3 of BMB and MB, we can conclude that,

(MB x y (BEL x p))

61

From the above theorem, we can conclude that a single INFORM from agent x to

agent y that p is not sufficient to establish mutual belief that p, rather the mutual belief

that x believes p. However, in the special case when it is mutually believed that agent x

is competent about p, a single inform will establish the mutual belief that p. In general,

it takes an INFORM followed by a confirmation by the other agent that the informed

proposition was believed, to establish mutual belief that p. We state these in the following

lemmas.

Lemma 2.2. Successful performance of an INFORM communicative act that p establishes

mutual belief that p by default if it is mutually believed that the sender is competent with

respect to p, that is, if (MB x y ((BEL x p) ⊃ p)). Formally,

|= (DONE (INFORM x y e p t)) ∧ (MB x y ((BEL x p) ⊃ p)) ⇒ (MB x y p)

Proof. From the premise, we can conclude that

(MB x y (BEL x p)) ∧ (MB x y ((BEL x p) ⊃ p)) [By Theorem 2.3]

⊃ (MB x y (BEL x p) ∧ ((BEL x p) ⊃ p)) [|= (MB x y p) ∧ (MB x y q) ⊃
(MB x y p ∧ q)]

⊃ (MB x y p) [Application of Modus-Ponens]

If φ is valid in our model (i.e., if φ is a theorem), then it is mutually believed that φ. As

such, Lemma 2.2 is particularly useful for those propositions p that have the competence

property that

|= (BEL x p) ⊃ p

From Lemma 2.1, PWAG is one such proposition, because

|= (BEL x (PWAG x y p q)) ⊃ (PWAG x y p q)

Therefore, an INFORM that the sender has a PWAG towards the recipient establishes mu-

tual belief that the recipient has that PWAG, without the need for a separate confirmation

from the recipient.

Lemma 2.3. Successful performance of an INFORM that p followed by a successful con-

firmation by the recipient of the INFORM that it believes p establishes mutual belief that

p, by default. Formally,

62

|= (DONE (INFORM x y e p t);(INFORM y x e1 (BEL y p) t1)) ⇒ (MB x y p)

Proof. By applying Theorem 2.3 to each INFORM in the premise, we can conclude that

(MB x y (BEL x p)) ∧ (MB x y (BEL y (BEL y p)))

⊃ (MB x y (BEL x p)) ∧ (MB x y (BEL y p)) [Belief introspection]

⊃ (MB x y p)

[Re-writing MB in terms of BMB and re-arranging terms using Definition 2.3]

Next, we define the composed communicative acts AGREE, REFUSE, and CANCEL.

2.5.2 Composed communicative acts

AGREE and REFUSE are composed primitive acts defined from INFORM with special-

ized content. These communicative acts are used in the Request and the Standing Offer

conversation protocols. We will show in Theorem 2.5 that a REQUEST followed by an

appropriate AGREE is sufficient to create the inter-locking PWAGs, and hence the JPG

required to form a team.

Definition 2.15. Agree

(AGREE10 x y e a q t) , (INFORM x y e φ t)

where φ = (PWAG x y (DONE x a) (PWAG y x (DONE x a) q) ∧ q)

An agreeing agent x informs the listening agent y that he has a PWAG with respect

to y to perform action a with respect to both y’s PWAG that x do a relative to q, and q.

Theorem 2.4. Successful performance of an AGREE communicative act establishes mu-

tual belief by default that the sender x has the specified PWAG towards the recipient y.

Formally,

|= (DONE (AGREE x y e a q t))

⇒ (MB x y (PWAG x y (DONE x a) (PWAG y x (DONE x a) q)∧q))

10AGREE was previously called CONFIRM in [106, 107]

63

Proof. It is given that

(DONE (INFORM x y e φ t))(1)

where, φ = (PWAG x y (DONE x a) (PWAG y x (DONE x a) q)∧q)

Recall that, for this φ

(2) |= (BEL x φ) ⊃ φ [From Lemma 2.1]

Therefore, we have

(3) (MB x y ((BEL x φ) ⊃ φ))

[If φ is valid in our model, then it is mutually believed that φ]

Hence, we can conclude that

(MB x y φ) [From (1), (3), and Lemma 2.2]

The agreeing agent x believes that it has a PWAG towards agent y, and therefore,

from Lemma 2.1, it in fact has that PWAG. A PWAG cannot be dropped unless there is

appropriate mutual belief between the agent who has the PWAG and the agent towards

whom the PWAG is directed. Therefore, if the agreeing agent x ever changes its mind

about its PWAG towards agent y, then it needs to first establish a mutual belief with

agent y.

Theorem 2.5. A REQUEST immediately followed by AGREE in response to the request

establishes a joint persistent goal (JPG) between the initiator and the participant, assuming

instantaneous communication. Formally,

|= (DONE (REQUEST x y e a q t);(AGREE y x e1 a q t1))

⇒ (JPG x y (DONE y a) (PWAG x y (DONE y a) q)∧q)

Proof. This is a restatement of Theorem 8.2 that appears later in this dissertation. See

Theorem 8.2 for a detailed proof.

Definition 2.16. Refuse

(REFUSE x y e a q t) , (INFORM x y e φ t)

where φ = ¤¬(PWAG x y (DONE x a) (PWAG y x (DONE x a) q)∧q)

64

A refusing agent informs the listening agent that he will never11 have the PWAG to

perform action a with respect q and with respect to y’s PWAG that x do a relative to q.

The effect of a REFUSE is opposite to that of the AGREE. A CANCEL communicative

act is the counterpart of REFUSE that allows a requester to withdraw its PWAG towards

the requestee. However, a CANCEL is permitted only if the requestee has not already

communicated his PWAG towards the requester (for example, if the requestee has not yet

agreed the requester’s request).

Definition 2.17. Cancel

(CANCEL x y e a q t) , η?; (INFORM x y e φ t)

where φ = ¬(PWAG x y (DONE y a) q),

and η = (EARLIER (PWAG x y (DONE y a) q)) ∧
¬(PWAG y x (DONE y a) (PWAG x y (DONE y a) q)∧q)

A CANCEL communicative act is an INFORM that the initiator does not have a

PWAG towards the participant to do a relative to q in the context of an earlier PWAG

(whose cancellation is being informed). The canceling of a request by the initiator (if

the initiator was the requester in an earlier interaction) allows the participant to drop

his PWAG towards the initiator if the participant’s PWAG is relative to the initiator’s

PWAG. However, as mentioned earlier, a request cannot be cancelled by the initiator if the

requestee has already agreed to it – in this case, the resulting JPG needs to be discharged

properly.

2.6 SUMMARY

We reviewed the logical framework of joint intention theory, presented definitions of basic

concepts, and established some important results that will be needed in the remaining

chapters. The notion of PGOAL represents individual commitment of an agent, and

PWAG represents the commitment of an agent directed towards another agent. Two

agents have interlocking PWAGs towards each other are bound together by a JPG (or

joint commitment). Regarding communication, REQUEST and INFORM are the basic

11This is a simplification for the propose of this dissertation.

65

communicative acts in this framework. They are used to establish mutual beliefs and

joint commitments (via establishment of mutual belief about interlocking PWAG). Next,

we introduce STAPLE as a language for programming teamwork and communication based

on the joint intention theory discussed in this chapter.

Chapter 3

Using STAPLE for Programming

Teamwork and Communication

We introduce a declarative agent programming language called STAPLE (Social and Team

Agents Programming Language) and use it to program multi-agent systems that exhibit

automatic team and communicative behavior. In some aspects, STAPLE is similar to

collaboration infrastructures such as Collagen [93] that support collaboration as well as

dialogue based on a formal theory of teamwork. Theoretical differences apart, STAPLE

is a more declarative general purpose agent programming language in that it supports

first principles reasoning about teamwork and communicative acts, whereas Collagen gets

its collaborative and dialogue behavior by implementing the algorithms and discourse

structures of the Shared Plans theory [46]. Similarly, STAPLE shares its planning termi-

nology and constructs as well as stack-based tracking of commitments and intentions with

PRS [43]. However, PRS is intrinsically a single agent system with no built-in support

for teamwork. As such, the support for first principles reasoning about teamwork and

communication in STAPLE distinguishes it from PRS.

The basic logical constructs of joint intention theory are built into STAPLE and these

constructs are directly interpreted by the STAPLE interpreter. The usual agent program-

ming constructs such as strategies, policies, rules of rational action, and action definitions

are independent declarative concepts. An agent specification in STAPLE consists of ini-

tial mental state (beliefs, goals, commitments, and intentions), capabilities (actions and

plans that the agent is capable of performing), inference rules, and domain encoding (ini-

tial state of the world, domain specific inference rules, etc.). We present an overview of

66

67

STAPLE in Section 3.1, and describe a “Lights World” domain in Section 3.2 that is used

for examples in this chapter. In Section 3.3, we discuss how to program single agents in

STAPLE and in Section 3.4 we illustrate team and communicative behavior using a series

of examples. We will revisit these examples later chapters to show why the agents behaved

as per predictions of joint intention theory.

3.1 OVERVIEW OF STAPLE PROGRAMS

We first review the actual syntax of the language and then present an example of a

STAPLE agent. The language elements presented here are concrete representations of the

terms and constructs from joint intention theory described in the previous chapter.

3.1.1 Representing the Terms and Constructs

Agents in STAPLE are programmed using a Prolog syntax extended by operators for dy-

namic logic of actions (concurrent actions, test, repetition, etc.), temporal logic (eventually

and always), and for negation, implication, conjunction, and some other miscellaneous con-

structs. These operators are chosen to resemble operators in the logical language of Joint

Intentions as far as possible without having to redefine Prolog’s built-in operators. For

instance, ♦(BEL x ¤¬p) is written as <>bel(x,’[]’∼p) and (INTEND x a|b* p∧q) as

intend(x,(a;b..),p/\q). Variables in STAPLE start with upper case letter similar to

Prolog variables. There are three constructs in STAPLE that warrant special mention:

actions, plans, and rules.

Actions

In logic, it suffices to abstract away from details of an action by representing them by

letters such as “a” and defining functions to give the preconditions that must be true

before the action can be executed, and post-conditions that must be true after successful

execution of the action. These functions can then be incorporated into the logic itself

using some notion of causality1, for instance, by saying that, if it is always the case that

1There is no notion of causality in this logic per se. Also, the suggested definition of effect that follows
gets into the frame problem – it requires that no other event should happen concurrently with action a that

68

a certain proposition p becomes true whenever action a has just been done, then it is

reasonable to treat p as an effect of the action a.

p = effect(a) iff |= ¤[(DONE ¬p?; a) ⊃ (DONE ¬p?; a; p?)]

The actions in an actual program, however, have to be executable, and suitable for

reasoning. As such, STAPLE requires all primitive actions to have at least two components

- an executable component or the “code”, and an “effect” that must be a proposition2. The

effect of an action is defined as a proposition that always becomes true after performance

of the action. Primitive actions may optionally specify a precondition (that must be true

before the action can be executed), a context (that must be true in the beginning and

must remain true throughout the action execution), and a list of desired effects (that may

eventually become true as a result of the action being performed but there is no guarantee

that they will ever become true).

Agent programmers have the flexibility to define actions in either Prolog or Java. In

either case, there is no restriction on the code for an action – it can be any arbitrary piece

of program but the corresponding effect for that action must express in logic what becomes

true when the code for the action is executed (other than the fact that the given action

was just done). So, from the point of view of the STAPLE interpreter, primitive actions

are at the lowest level of reasoning granularity and can be treated as atomic actions for

most purposes. Execution of these actions can either succeed or fail, and their effect is

assumed to be true when they succeed.

No assumption is made about the time that a primitive action takes to complete.

As mentioned before, it should be possible to “agentify” any legacy program using this

representation of actions – agent programmers need only to specify the effects for legacy

programs at a level at which they want the STAPLE interpreter to reason about them,

and tell the STAPLE interpreter how to execute the code associated with those effects. In

may affect the truth value of the proposition that is being considered to be the effect of a. Nevertheless,
this example is still a useful approximation of causality for the purpose of this dissertation.

2More accurately, actions in STAPLE can have a list of alternative effects whose probabilities add up to
one. This representation provides another place to integrate statistical reasoning methods into the current
logical framework (the importance value associated with commitments, rules, etc. is the other location).
However, we will assume actions to have just a single effect with a probability of 1.0 in this dissertation.

69

fact, it is conceivable even to treat non-team aware agents as part of teams by using proxy

agents that reason using this representation of actions, and to be able to prove offline

that the non-team aware agents do in fact appear to behave as team members. STAPLE

actions can have a few other optional convenience components that we will ignore in this

dissertation.

Plans

Plans in STAPLE are named action expressions. The action expression of a plan is hi-

erarchically composed from primitive actions and other existing plans using the action

formation operators for sequence, non-deterministic OR, concurrent action, test action,

and indefinite repetition. Further, because plans are also actions (though not singleton

actions), they are required to specify the effects that must be true after a successful exe-

cution of the action expression for that plan. The STAPLE interpreter presented in this

dissertation does not compute the overall effect of a plan from its constituent actions, and

therefore, it must be computed offline by the agent programmer using techniques such as

those of [94]. Note that there can be more than one way to execute a plan successfully,

for instance, when the action expression for the plan consists of a non-deterministic OR.

However, plans do not have a code, rather they have a “body” which is the complex ac-

tion expression for the plan. Just like primitive actions, plans may optionally specify a

precondition, a context, and some other convenience terms.

Rules

The declarative rules3 in STAPLE can either be inference rules, or reactive rules, or

rules for rational action, and are specified as P==>Q where both the antecedent P and

consequent Q can be a conjunction of propositions. These rules tell a STAPLE agent

what to do when a certain condition is satisfied but the joint intention theory leaves room

for the agents to decide upon the best course of action consistent with the theory. For

3Note that these are rules in a STAPLE program as opposed to the defeasible rules of communication
discussed in the previous chapter on logical background. One way to implement the defeasible rules of
communication is to encode them as STAPLE rules.

70

example, one of the rules in STAPLE specifies that if an agent is committed to achieving a

proposition, and it believes that there are actions that it can do to achieve that proposition,

then the agent will intend to perform a non-deterministic OR expression of those actions

with respect to the original commitment [98]. Rules are ordered according to a notion

of importance and this makes it possible for agent programmers to override the default

STAPLE rules using their own rules.

We now present a concrete example of a STAPLE agent, along with examples of

actions, plans and rules.

3.1.2 A STAPLE Agent

An agent specification in STAPLE consists of the agent meta-information (such as the

name and address of the agent), and its beliefs, goals, and commitments along with any

plans, actions, and rules specific to that agent. The STAPLE default rules, the action

library, the plan library, and the protocol library are accessible to all agents. Table 3.1

shows the example of a STAPLE agent using the actual syntax. This example agent is

based on a “Lights World” domain similar to that used by [13] to demonstrate human-

robot collaboration. In this domain, there are three lights that the human and a robot

are to turn on or off collaboratively. Breazeal’s domain is discussed further in Section 3.2.

The agent in Table 3.1 believes that there are three lights in the world (redlight,

bluelight, and greenlight) and that none of these lights are initially switched on. This

agent has a commitment (PGOAL) for achieving a state lights are on and this PGOAL

is with respect to its belief that it is dark outside. This agent program defines a plan

called turn lights on that takes no argument and does not define any precondition. The

effect of this plan is that eventually all the lights will be on, that is, <>lights are on

and its body is the action expression (p?;a)*|¬p?, that is, test proposition p and perform

action a if the test succeeds and do this indefinitely until the test for p fails. This is

the same as saying “while p do a” in a traditional programming language where p is the

proposition bel(self,∼switched on(X)) and a is the action switch on(X). The test for

¬p is slightly different from the test for p – specifically, it is the test for (BEL self ∃x
¬switched on(x)) where we have used the existential quantifier so that the variable x in

71

Table 3.1: Example of a STAPLE Agent Program
% Agent meta-information

agent name(self, simagentx).

observes(world sim(lightdomain,all)).

% Agent’s beliefs, Domain encoding, Initial state of the world

bel(self,light(redlight)).

bel(self,light(bluelight)).

bel(self,light(greenlight)).

bel(self,∼switched on(redlight)).

bel(self,∼switched on(bluelight)).

bel(self,∼switched on(greenlight)).

bel(self,dark(outside)).

% Agent’s commitments and intentions

% The number 8.0 specifies the importance of the pgoal

pgoal(self, lights are on, bel(self,dark(outside)), 8.0).

action definition(switch on,1) :-

[args: [Light],

precondition: {bel(self, light(Light)∧(∼switched on(Light)))},
code: {world sim(do action(lightdomain,switch on(Light)))},
effects: [(switched on(Light),1.0)]

].

% Body of this plan is the following action expression in logic:

% WHILE(bel(self,∼switched on(X))) DO (switch on(X))

% Also, its effect is that eventually lights are on.

plan(turn lights on, 0) :-

[body: {((bel(self,∼switched on(X))?, switch on(X))..) ;

∼bel(self,exists(X,∼switched on(X)))?

},
effects: [(<>lights are on,1.0)]

].

% Effects of the above plan depends on the effects of its component actions

bel(self,lights are on) :- istrue(∼bel(self,exists(X,∼switched on(X)))).

% Rational rules available to this agent

rule(rational1, pgoal(self, P, Context, Imp), 5, StackId) :-

findall(Action,bel(self,can achieve(P,Action)),Actions),

\+ Actions = [],

NewContext = pgoal(self, P, Context, Imp),

==>
subgoal(pgoal(self,done(self,or(ActionList)),NewContext,Imp),StackId).

72

¬p does not get bound by tests for p. The action switch on is defined in Table 3.1 as an

action that takes a light as an argument and whose precondition is that the agent believes

that argument of the action is in fact a light and that it is not switched on. The code for

this action executes an instruction to switch on the light and its effect is that the light is

switched on, that is, switched on(Light) with probability 1.0.

The rule rational1 at the bottom of Table 3.1 has an importance 5 and it is applicable

only when the agent has a PGOAL to achieve a proposition – it says that if the agent

has a commitment to achieve a proposition p and the agent can find a non-empty list of

actions that it believes can achieve p then the agent will have a new commitment for doing

the non-deterministic OR of those actions relative to the original commitment. Note that

the first conjunct of the rule’s antecedent is treated as a precondition of the rule, and

is specified as part of the rule preamble to help quickly narrow down the list of rules

applicable in a give situation.

3.1.3 Communicative acts in STAPLE

STAPLE treats communicative actions just like any other action. As such, they must

have at least code and an effect. The code of a communicative action for artificial agents

simply creates a message and sends it off to the recipient over the network. The effect of a

communicative action is set to be the intention part in the semantics of the communicative

act defined as an attempt (Section 2.5). As mentioned earlier, STAPLE actions may

optionally have a list of desired effects. The desired effect of a communicative action is

set to be the goal part in the semantics of that communicative act and it is used by the

STAPLE interpreter for action selection during means-end reasoning.

We assume that the performance of communicative actions does not change the propo-

sition being communicated (Assumption 2.2b). Therefore, if an agent believed p right be-

fore performing a communicative act that p then it also believes p right after performing

that communicative act. We also assume that agents are sincere in their communication

(Proposition 2.5). Its consequence is that if an agent performs a communicative act in-

tending that the recipient come to believe p as a result of the communicative act then

that agent must itself believe p. As a result of these assumptions, we can get rid of the

73

“BEFORE” and “AFTER” predicates in the intended and desired effects of the commu-

nicative acts in Section 2.5. Another simplification is that all facts in an agent’s belief

base are interpreted as if the agent believes those facts. Therefore, unilateral mutual belief

(BMB – meaning that an agent believes there is mutual belief) predicate in the effect and

desired effect attributes can be re-written as mutual belief (MB). The precondition of the

request communicative act is that the requestee does not already believe the propositions

about which the requester intends to establish mutual belief via the request. With these

changes, the definition of REQUEST in Definition 2.13 translates to the following action

definition in STAPLE (with four arguments).

Definition of Request:

action definition(request,4) :-

[args: [X,Y,A,Q],

code: {% code to compose and send message },
precondition: {∼bel(X,done(A))∧

∼bel(X, pwag(Y,X,done(A),pwag(X,Y,done(A),Q)∧ Q))∧
∼bel(X, bel(Y,pwag(X,Y, done(A)∧pwag(Y,X,done(A),

pwag(X,Y,done(A),Q)∧Q),Q)))
}

desired effects: [<>done(A),

<>pwag(Y,X,done(A),pwag(X,Y,done(A),Q)∧Q)],

intended effects: mb(X,Y, pwag(X,Y, done(A)∧pwag(Y,X,done(A),
pwag(X,Y,done(A),Q)∧Q),Q))

].

In the above definition, X is the actor of the request communicative act, Y is the re-

cipient as well as the intended actor of the requested action A, and Q is the relativizing

condition of the request. The other communicative acts in Section 2.5 are similarly sim-

plified and defined in STAPLE programs. We will revisit these definitions in Chapter 4.

3.1.4 Other Aspects of the STAPLE Interpreter

The STAPLE interpreter decomposes action expressions by following their definition in

dynamic logic. For instance, the intention to do an action sequence is interpreted as fol-

lows: If the agent believes that the first action of the sequence as not been done then it

intends the first action relative to the original intention, and if it believes that an initial

74

subsequence of the action expression has been done then it intends the remainder of the

sequence relative to the original intention. Recall that this consequence of intending an

action sequence is a theorem of the logic discussed earlier (Section 2.3.1). The interpre-

tation of joint action expression is also similar except that agents may need to coordinate

their actions using communicative acts, may need to decide the next action in a joint OR,

and may need to decide the actor(s) of the next action(s).

The STAPLE interpreter includes a Horn-clause belief reasoner that implements weak

S5 semantics and is capable of reasoning with quantified beliefs. For tractability reasons,

it uses a controlled search space, imposes syntactic limitations on the structure of terms in

the belief base, and requires belief terms to be reduced to a simpler form before asserting

into the belief base. A discussion on the belief reasoner as well as other components of

the STAPLE interpreter appears in Chapter 4. An interesting behavior of the STAPLE

interpreter is when it discovers an unbound variable in the action that it is committed to

doing. It adopts a commitment for finding the value of that variable, that is, a PGOAL

for KNOW-REF [1]. This behavior is governed by a declarative rule and an example of

its usage is discussed in the following sections.

Next, we discuss the domain and setup for the examples that follow. The simulator

for this domain is not part of STAPLE. It simply provides a programmatic interface to

test STAPLE and to demonstrate its capabilities.

3.2 LIGHTS DOMAIN AND THE EXPERIMENT SETUP

The examples presented in this dissertation are based on a “Lights World” domain similar

to that used by Breazeal et. al. [13] to demonstrate human-robot collaboration using joint

intention theory. In this domain, there are three lights that the human and a robot are to

turn on or off collaboratively (Figure 3.1). The teammates engage in turn-taking, recover

from problems, and communicate via gestures such as head nods and facial expressions.

Breazeal and colleagues use a goal-driven hierarchical task representation where the task

at each level in the hierarchy is associated with a goal. The goals may be state-change goals

or “just-do-it” goals that are not concerned with achieving state changes. In accordance

with joint intention theory, the robot maintains a shared mental state with the human,

demonstrates a commitment to doing its own part of the joint action as well as the action

to be done by its teammate, and communicates to establish the required mutual beliefs

for the jointly committed goal.

75

Figure 3.1: The Robot and Lights in Breazeal et. al. [13]

This domain is particularly interesting for our experiments because it has already been

programmed successfully using joint intention theory, and because it allows several vari-

ations such as what a robot can observe, what are the mutual beliefs of the teammates,

and what the collaborative joint action is that the team is supposed to jointly execute.

Compared to Breazeal’s implementation, STAPLE does not distinguish explicitly between

achievement goals and goals to do an action as separate types because they are expressed

directly in the dynamic logic that is part of joint intention theory. Instead of simple hier-

archical task representation, STAPLE uses plans that can be arbitrarily complex action

expressions. Breazeal’s implementation does consider timing of actions, which STAPLE

agents do not reason about yet. One benefit of STAPLE is that it allows a user to specify

and/or modify team behavior declaratively, thereby significantly short-cutting develop-

ment time. This approach contrasts with Breazeal’s framework where a new algorithm

has to be programmed into the robot to get the new collaborative behavior.

For our experiments, we use the “Lights World” simulator shown in Table 3.2 that

simulates Breazeal’s button pressing task setup [13]. The simulator has three lights (red,

blue, and green) and supports two actions: switch on, and switch off each of which

take the name of the light as an argument. The simulator can be configured so that an

agent can observe everything that is going on in the world such as what is the current

state of the lights, who switched on or off various lights, and whether or not an action was

successful. It can also be set up so that an agent can only observe the effects of its own

actions and cannot see anything else. The simulator allows external agents (such as the

experimenter) to manipulate the lights manually, a feature that can be used to introduce

unexpected problems into any jointly intended task.

The STAPLE agents in our experiment are attached to the simulator (i.e., they can

observe the simulated world via their sensors and perform actions on it via their effectors).

76

Figure 3.2: A snapshot of Lights World simulator

The agents communicate directly with each other using messages based on the communica-

tive actions that we define. A template based natural language generator is connected to

the agents in order to translate communicative act representations into natural language.

Each STAPLE agent is also connected to a separate Microsoft animated agent character

for the purpose of demonstration. Although not used for the current experiments, it is

possible to have the animated characters use gestures and facial expressions, as done in

[13] to deliver non-linguistic communication instead of natural language dialogue. Further,

each STAPLE agent in our experiment has a GUI console that gives us direct access to

its belief base through a Prolog interface and enables us to pause and resume the agent.

Next, we will use STAPLE agents for the experimental setup discussed above under

different initial conditions.

3.3 SINGLE AGENT EXAMPLES

We will use the agent program in Table 3.1 to illustrate that the STAPLE agent simagentx

behaves according to joint intention theory. When we run the program in Table 3.1, the

agent registers with the lights world simulator to observe all the lights in the world as per

the instruction in the agent meta-information. From this point onwards, the simulator

77

will act as a sensor and notify the agent of any action performed on the lights, the agent

who performed the action, and the new state of the light upon which the action was

performed. As a result of registering with the simulator, the agent also gets access to

certain instructions that can be used to define actions accessible to the agent. For example,

we have used one such instruction to define the action switch on. This action sends an

instruction to the simulator to turn on a specified light. We add another action switch off

(not shown in Table 3.1) similar to the action switch on to the agent program before

running it.

After the initial setup, the agent acts on its commitment (PGOAL) to achieve a state

where lights are on. Recall from Definition 2.1 that an agent having a PGOAL to achieve

p will keep that PGOAL at least until it believes that p has been achieved or is impossible

to achieve or is irrelevant. Next, we will explore the behavior of the agent under these

different discharge conditions for an individual commitment.

3.3.1 Committed goal is achieved

The agent is committed to achieving a state lights are on relative to its belief that there

exists some light that is not switched on. We observe that all the three lights in the Lights

World simulator turn on one by one. Again, this behavior is as predicted by the JI theory

when used with the following rule of rational action (taken from Table 3.1).

rule(rational1, pgoal(self, P, Context, Imp), 5, StackId) :-

findall(Action,bel(self,can achieve(P,Action)),Actions),

\+ Actions = [],

NewContext = pgoal(self, P, Context, Imp),

==>

subgoal(pgoal(self,done(self,or(ActionList)),NewContext,Imp),StackId).

This rule says that, if the agent has a PGOAL for achieving p and if it believes

that there are certain actions that can achieve p, then it will commit to perform a non-

deterministic OR of those actions. A trace of the agent program shows that the agent

acts on its commitment by looking for an action or action expression (i.e., a plan) that

can potentially achieve the committed goal. It finds one such action – the plan called

turn lights on and commits to doing that action. Specifically, the agent executes the

rule rational1 in Table 3.1 and this rule results in the agent having a new PGOAL

78

relative to the earlier one for doing an OR action expression that has only one action (the

action turn lights on). This PGOAL is relative to the earlier PGOAL as shown by the

NewContext in rule rational1. The agent acts upon this new commitment by picking

up one action from the OR expression and committing to doing that action relative to

the larger commitment for doing the entire OR expression. In this case, since the OR

expression has only one action, the agent commits to achieving that action relative to the

larger commitment. This action itself happens to be a complex action expression (i.e., the

body of the plan turn lights on) so the agent commits to doing this action expression

relative to the commitment for doing the OR action expression.

The new action expression4 that the agent is committed to doing is of the form

(p?;a)*|¬q? where p? is the test action bel(self,∼switched on(X))?, a is the action

switch on(X), and q is the test action ∼bel(self,exists(X,∼switched on(X)))?. The

agent acts on this PGOAL by choosing one action from the OR expression and committing

to doing that action relative to the PGOAL for doing (p?;a)*|¬q?. If it picks up the test

action ∼bel(self, exists(X, ∼switched on(X)))? and commits to doing it, then it

also intends to do that test action (due to another rule for rational action not shown in

Table 3.1 which says that if the agent is committed to doing an action then it will intend

to do that action if the new intention does not conflict with any existing commitment or

intention). The agent executes that test action which fails because there are three lights

that the agent believes are not switched on. At this point, the agent can keep performing

the test action until it believes that it is impossible to do the test action. One of the

STAPLE rules (modifiable by the agent programmer) says that an intention to do a test

action is impossible to achieve if the test action fails. Using this rule, the agent decides

that its intention for performing the test action is impossible and therefore, it drops that

intention. By the same token, it drops the commitment for doing that test action because

it is impossible. At this point, the agent is back to the larger PGOAL of doing the action

expression (p?;a)*|¬q? with the knowledge that the second action (¬q?) has failed once.

So it picks one action from the remaining actions in the OR expression. In this case, the

4Recall from Section 2.2.4 that (WHILE p DO a) is defined as (p?;a)*|¬p? and therefore, this action
expression is basically the following while loop:

WHILE bel(self,exists(X,∼switched on(X))) DO switch on(X)

However, instead of (p?;a)*|¬p? we use a variation (q?;a)*|¬p? where q is same as p but without the
existential quantifier, that is, q is bel(self,∼switched on(X)). The reason for this is that the variable
X in p is not a free variable as it is existentially quantified but we want to use a free variable in the test
condition of the while loop so that this variable gets bound when the test is performed. The value that X
gets bound to is used in the action switch on(X).

79

only action remaining is (p?;a)* so the agent commits to doing this action (expression)

relative to the commitment for doing (p?;a)*|¬q?. Note that the formal semantics of non-

deterministic OR in Chapter 2 says that the system knows somehow as to which branch

to pick when it comes to an OR expression (as if it is told by an Oracle which branch to

choose). In this case, the Oracle would have told the system to pick the branch (p?;a)*

instead of the branch ¬q?. So the knowledge that the test action ¬q? has failed once

should not prevent the agent from re-trying it in the future. However, the agent would

need to decide at some point whether it is impossible to do the OR action expression.

Therefore, STAPLE agents are provided with a programmer modifiable rule such as “if

every choice in an OR action expression fails n times (say, twice) then assume that that

it is impossible to perform that OR action expression”.

As an aside, if we run the agent again and again, we see that in some runs, the

agent picks up the action expression (p?;a)* first and commits to doing it relative to the

commitment for doing (p?;a)*|¬q?. This behavior is an approximation to the semantics

of non-deterministic OR – the agent randomly picks up one action from an OR action

expression and, if that action fails, then it picks up another action from the remaining

actions in the OR expression. However, the agent is free to retry a failed action in the

future.

The agent acts upon its commitment for doing the indefinite repetition (p?;a)* by

committing to do p?;a relative to the larger commitment. Furthermore, the agent acts

upon the new commitment for doing the action sequence p?;a by committing to the first

action in the sequence relative to the commitment for doing the entire sequence. As such,

the agent now has a commitment for doing the test action bel(self,∼switched on(X))?.

The agent acts on this commitment by intending to do this test action and then actually

doing this action. This test action succeeds and binds the variable X with one of the

lights that is not switched on (say, redlight). The intention to perform the test action

and the commitment to do the test action are successfully discharged. So the agent now

commits to doing the next action in the action sequence and similar to earlier reasoning,

it intends to do the action switch on(X) where X is bound to redlight. The agent acts

on this intention by executing the action switch on(redlight) that turns on the red

light. Therefore, this intention and the commitment to do switch on(X) are successfully

discharged. The agent is back to the state where it has a commitment to do the indefinite

repetition (p?;a)*. The entire process from that point onwards is repeated until the agent

has turned on all the three lights.

80

After all lights have been turned on, the agent again has a commitment to do the

indefinite repetition (p?;a)* relative to its commitment for doing the action expression

(p?;a)*|¬q?. Similar to earlier steps, the agent ends up with an intention to do the test

action bel(self,∼switched on(X))?. However, this time the test action fails because

there is no light that is not switched on. As above, the agent decides that its intention to do

the test action is impossible to achieve and therefore, it drops that intention. Similarly, it

drops the commitment for doing the test action. The agent reasons that, if it is impossible

to do the first action in an action sequence then it is impossible to do the entire action

sequence. Therefore, it drops the commitment for doing (p?;a). From Chapter 2, the

indefinite repetition (p?;a)* is simply the sequence (p?;a);(p?;a)*. As such, the agent

reasons that it is impossible to do (p?;a)* and therefore, it drops the commitment for

doing (p?;a)*. At this point, the agent is left with a commitment for doing (p?;a)*|¬q?

with the knowledge that the choice (p?;a)* has just failed. So the agent commits to do the

action ¬q? relative to the commitment for doing (p?;a)*|¬q?. It intends the test action

∼bel(self,exists(X,∼switched on(X)))? and executes it. The test succeeds because

there is no light that is not switched on. As such, the intention to do that test action has

been achieved and therefore, the agent drops that intention. Similarly, the commitment

for doing ∼bel(self,exists(X,∼switched on(X)))? has been achieved and therefore,

the agent drops that commitment as well. Now, the agent reasons that an OR action

expression has been done if at least one action in the OR expression has been done.

Therefore, the agent has successfully discharged its commitment for doing (p?;a)*|¬q?

and so it drops this commitment. Similarly, the agent drops all other commitments that

lead to this commitment (such as the commitment for doing turn lights on and the

commitment for achieving lights are on) as they have all been successfully discharged.

At this point all the lights are switched on and the agent has no undischarged commitment

or intention.

3.3.2 Interfering with the committed goal

Our experimental setup enables us to pause and resume a running agent and to query and

update its belief base using a graphical user interface that accepts Prolog commands. We

use this facility to interfere with the agent’s commitment and observe that its behavior is

consistent with that predicted by the JI theory.

Case 1: When the agent has switched on one of the lights, we manually switch on the

remaining two lights using the on/off button on the simulator for each light. The agent

81

is notified by the simulator that those two lights are switched on. The agent uses the

reasoning rule

bel(self,lights are on) :- istrue(∼bel(self,exists(X,∼switched on(X)))).

in Table 3.1 to infer that its committed goal lights are on is already achieved and

therefore it drops this commitment. A trace of the agent program shows that any commit-

ment that is relative to this original commitment is also dropped. This chain is followed

until all commitments and intentions that eventually resulted from the commitment to

achieve lights are on are dropped.

Case 2: When the agent has switched on two lights, we manually switch off one of

those two lights. The agent eventually switches that light back on. We keep switching off

one or two lights that the agent has turned on and the agent goes back and turns them on

until it successfully turns on all the lights. A program trace shows that if we interfere with

the agent in the above manner after it has committed to doing the indefinite repetition

(p?;a)*, the agent eventually finds the light(s) that we manually switched off via the test

action bel(self,∼switched on(X))? and then switches it back on. The agent does not

give up its commitment to turn all lights on until it believes that the committed goal has

been achieved, that is, lights are on becomes true.

3.3.3 Committed goal is impossible

According to the definition of PGOAL, an agent can drop its commitment if it believes

that the committed goal is impossible to achieve. We test the behavior of the agent

program in Table 3.1 after making it impossible to turn on all the lights.

Case 1: We configure the lights world simulator to simulate a faulty switch for one

of the lights. So whenever the agent sends the command to turn on the green light, the

simulator notifies that the action failed and that the green light is still switched off. We also

add a rule to Table 3.1 that if the agent fails to do an action twice then it concludes that it

is impossible to do that action. On running the program in Table 3.1, the agent turns on

the red light and the blue light. However, it fails to turn on the green light and eventually

prints that it is impossible to achieve the state lights are on. As discussed earlier, a stack

trace shows that, after the test action bel(self,∼switched on(X))? binds variable X to

greenlight, the agent commits to doing the action switch on(greenlight). Thereafter,

it intends to do that action and executes that action. However, the action fails. The agent

retries the action twice (as per the rule that we specified) and concludes that it is impossible

to do the action switch on(greenlight). Therefore, it drops its intention to switch on

82

the green light and reconsiders its commitment to do the action switch on(greenlight).

It has already concluded that it is impossible to perform that action and it does not know

of any other way to do that action. So it concludes that it is impossible to achieve that

commitment and so drops this commitment as well. Similarly, the agent concludes that it

is impossible to do indefinite repetition (p?;a)* and drops that commitment. At this point,

the agent reconsiders its commitment for the OR expression (p?;a)*|¬q? and decides to

try the other choice in the OR expression. It adopts a commitment to do the test action

∼bel(self,exists(X,∼switched on(X))), and then intends and executes that action.

The test action fails because there does exist one light (the green light) that is not switched

on. The agent concludes that the test action is impossible and drops its intention and

commitment for performing that action. At this point, the agent again reconsiders its

commitment for the OR expression (p?;a)*|¬q? with the knowledge that both branches of

the OR expression have failed once. It then applies any rules that will lead it to conclude

that it is impossible to perform this OR action expression. As mentioned earlier, we have

given the agent a rule that says “if every choice in an OR action expression fails twice5

then assume that that it is impossible to perform that OR action expression”. So the agent

cannot conclude that the OR action is impossible and it again chooses one branch of the

OR expression and commits to that action. The process is repeated all over again until

both branches of the OR expression have failed twice at which point the agent concludes

that it is impossible to perform that action expression and drops the commitment to

do it. The agent finally reconsiders its highest level commitment to achieve the state

lights are on and infers that it is impossible to achieve that state because it knows of

only one action (the plan turn lights on) that can achieve this state but it has already

found that it is impossible to perform that action. So it decides that it is impossible to

achieve its committed goal lights are on and therefore, drops that commitment.

Case 2: We pause the agent when it is in the middle of switching on the lights and add

the following rule and fact to its belief base that enables it to conclude that it is impossible

to achieve its committed goal:

bel(self,[]∼lights are on) :- istrue(bel(self,exists(X,faulty(X)))).

faulty(greenlight).

5Two is just a number that we chose for demonstration purposes. An agent programmer may choose
any number, say 5 times, etc. Furthermore, that number doesn’t have to be a fixed number, rather it can
potentially be computed depending on the application, the context, and other factors.

83

Upon resuming the agent, it concludes that it is impossible to achieve lights are on

(i.e., ¤¬lights are on) and therefore, it drops its commitment to achieve lights are on.

It also drops all other commitments and intentions that it had adopted relative to this

high level commitment because they become irrelevant when the high level commitment

is dropped.

3.3.4 Committed goal is irrelevant

Recall from Table 3.1 that the agent’s PGOAL is relative to its belief that it is dark

outside (i.e., bel(self,dark(outside))). We pause the agent as it is in the middle of

switching on the lights and retract the statement bel(self,dark(outside)) from its

belief base. Thereafter, we add ∼bel(self,dark(outside)) to the agent’s belief base

and then resume the agent. The agent immediately concludes that its commitment to

achieve lights are on is irrelevant and drops that commitment. It also drops all other

commitments and intentions that it had adopted relative to this high level commitment

because they also become irrelevant when the high level commitment is dropped. This

behavior is as predicted from JI theory.

3.3.5 Reactive rule to adopt a new commitment

This example illustrates that STAPLE agent programs need not specify any initial inten-

tion or commitment. The agent will adopt commitments and intentions as necessary as

long as it does not conflict with any existing commitment or intentions.

Case 1: We modify the program in Table 3.1 by removing the lines with pgoal and

intend. We also remove the initial belief bel(self,dark(outside)) and add a rule to

the program that tells it to adopt a new high level commitment to achieve lights are on

if the agent comes to believe that it is dark outside. The modified agent program is listed

in Table 3.2 and it has the new reactive rule towards the end.

After we start the agent, it does nothing. Then we add bel(self,dark(outside)) to

the agent’s belief base (using its GUI console) and observe that the lights turn on one by

one. A program trace shows that as soon as we add the new belief to the agent’s belief

base, its reactive rule fires and the agent adopts a PGOAL to achieve lights are on.

From this point onwards, its behavior is same as if we had specified that commitment

initially to the agent as in Section 3.3.4.

84

Case 2: We modify the agent program in Table 3.1 to add an initial intention to save

electricity. We also add an inference rule that the agent is not saving electricity if the

lights are on. When we run the agent program and add bel(self,dark(outside)) to

the agent’s belief base as in the first case, the agent does not adopt the commitment to

achieve lights are on. A trace of the agent program shows that the reactive rule fired as

in the first case but the agent believed that the effect of the new commitment conflicts with

an existing intention with a higher importance and so it does not adopt the conflicting

commitment.

However, joint intention theory does not prevent an agent from adopting conflicting

commitments as long as the commitments are for different times. For example, if the

agent has an intention to save electricity for today then it can adopt a commitment to

turn lights on for tomorrow. The current implementation of the STAPLE interpreter

does not automatically reason about temporal dependencies if the dependency is not

explicitly specified. So the temporal dependencies would have to be explicitly specified in

the committed goal or action and the corresponding inference rule would need to be given

to the agent to enable it to infer that the apparently conflicting commitments are actually

not in conflict because they apply to different days.

3.4 TEAMWORK AND COMMUNICATION EXAMPLES

The examples that follow demonstrate the feasibility of obtaining team-oriented dialogue

without having to program it explicitly. The most interesting part of these experiments is

that we get a large range of dialogue behavior from the STAPLE interpreter under different

initial conditions. For the experiment, we create two STAPLE agents Bob and Harry, and

give Bob an initial individual commitment (PGOAL) to establish a joint commitment

(JPG) with Harry to jointly turn lights on. These two agents are executed in separate

copies of the interpreter at the same time. The action expression for the composite action

(or plan) jointly turn lights on can be modified to obtain different joint behavior from

the agents as we see next. In all the examples that follow, we set the agents to follow the

policy of executing joint action expressions in lockstep (Section 2.3.2).

3.4.1 Jointly Executing an Action Expression

We set a scenario that roughly models a situation where both agents are talking on a

cellphone with one agent standing outside observing the lights on a tower and another

85

Table 3.2: STAPLE Agent with Reactive Rule
% Agent meta-information

agent name(self, simagentx).

observes(world sim(lightdomain,all)).

% Agent’s beliefs, Domain encoding, Initial state of the world

bel(self,light(redlight)).

bel(self,light(bluelight)).

bel(self,light(greenlight)).

bel(self,∼switched on(redlight)).

bel(self,∼switched on(bluelight)).

bel(self,∼switched on(greenlight)).

action definition(switch on,1) :-

[args: [Light],

precondition: {bel(self, light(Light)∧(∼switched on(Light)))},
code: {world sim(do action(lightdomain,switch on(Light)))},
effects: [(switched on(Light),1.0)]

].

% Body of next plan is the following action expression in logic:

% WHILE(bel(self,∼switched on(X))) DO (switch on(X))

plan(turn lights on, 0) :-

[body: {((bel(self,∼switched on(X))?, switch on(X))..) ;

∼bel(self,exists(X,∼switched on(X)))?

},
effects: [(<>lights are on,1.0)]

].

% Effects of the above plan depends on the effects of its component actions

bel(self,lights are on) :- istrue(∼bel(self,exists(X,∼switched on(X)))).

% Rational rules available to this agent

rule(rational1, pgoal(self, P, Context, Imp), 5, StackId) :-

findall(Action,bel(self,can achieve(P,Action)),Actions),

\+ Actions = [],

NewContext = pgoal(self, P, Context, Imp),

==>
subgoal(pgoal(self,done(self,or(ActionList)),NewContext,Imp),StackId).

% Reactive rule to adopt a new high level commitment if the agent believes

% that it is dark outside

rule(rational2, true, 8, StackId) :-

istrue(bel(self,dark(outside))),

Context = bel(self,dark(outside)),

==>
adopt(pgoal(self, lights are on, Context, 8.0)).

86

agent inside the control room with controls to manipulate lights. We setup the agents

initially as follows: (i) Bob knows the initial state of the world that there are three lights

(Redlight, Bluelight, and Greenlight), and that none of the three lights are switched on.

Harry does not know about the initial state of the world. (ii) Bob can observe the state

of the world including any changes in its state (such as a light being switched on or off).

However, Harry can only observe the effects of its own actions. For instance, if Harry

switched on the Redlight then it can see whether or not Redlight turned on but it cannot

see the state of the other lights. (iii) Harry is the only agent capable of performing actions

switch on/1 and switch off/1 that take the name of a light as parameter. (iv) We

set the body of the plan to jointly turn lights on so that one agent does the test action

∼switched on(Light)? to find a light that has not been switched on followed by another

agent turning on that light. This sequence is repeated indefinitely until the first agent

fails to find any light that is not turned on and is represented by the following action

expression where variable X is bound to ‘Bob’ and Y is bound to ‘Harry’:

WHILE bel(X,∼switched on(L)) DOES(Y, switch on(L))

Table 3.3 summarizes the above settings and shows the plan to jointly turn lights on.

Given its initial mental state, Bob is committed to establishing a joint commitment

with Harry to jointly execute the above action expression where Bob does the test action

and Harry does the action of switching on the light. As a result, Bob and Harry engage

in a dialogue that has at least two interesting aspects. First, it follows directly from

joint intention theory as discussed below. Second, it illustrates the range of dialogue

behaviors that follow by declaratively changing the initial conditions. This rich and varied

range of dialogues is apparent by comparing it with the dialogue in the next experiment

(Section 3.4.2). The transcript of an actual dialogue between Bob and Harry follows.

Dialogue 1:

1. Bob: Let us jointly turn lights on.

2. Harry: I agree to jointly turn lights on.

3. Bob: Redlight is not switched on.

4. Harry: Ok.

5. <action: Harry pushes button; Redlight turns on>

87

Table 3.3: Setup where Bob is Observer and Harry is Actor
Bob:
(i) Initial state:

- There are three lights (redlight, bluelight, and greenlight)
- None of these lights are switched on.

(ii) Observation:
- Can see state of the entire world
- Can see all changes in the state of the world

(iii) Actions:
- Cannot perform actions switch on and switch off

Harry:
(i) Initial state:

- Does not know this initial state of the world
(ii) Observation:

- Cannot see state of the entire world
- Can only see effects of its own actions
- Cannot see other changes in the world

(iii) Actions:
- Can perform actions switch on and switch off

% Both agents have this plan. Its body is the following action expression:

% WHILE bel(X,∼switched on(L)) DOES(Y, switch on(L))

plan(jointly turn lights on,5) :-

[description: ‘Plan for turning lights on jointly’,

args: [X,Y,E1,E2,E3],

body: { ((action(test(bel(X,∼switched on(L))),X,E1),

action(switch on(L),Y,E2))..) ;

action(test(∼bel(X,exists(L,∼switched on(L)))),X,E3)

},
effects: [(lights on,1.0)]

].

88

6. Harry: I have switched on Redlight.

7. Bob: Ok.

The utterances from (3) – (7) are then repeated for Bluelight and Greenlight. Just before

the agents discharge their joint commitment (right after Harry informs Bob that he has

turned on the Greenlight but Bob hasn’t confirmed it yet), we interfere with the joint

action by manually switching off Redlight that had previously been switched on by the

agents. Bob notices the change and the following conversation ensues that establishes

mutual belief about the discovered problem.

(18) Bob: Redlight is not switched on.

(19) Harry: Ok.

The agents recover from the unexpected problem, continue working on their joint

action, and finally discharge their joint commitment. The joint commitment is discharged

when all the lights are turned on and Bob established mutual belief about the final test

action.

(23) Bob: All lights are switched on.

(24) Harry: Ok.

One can see that the above dialogue follows directly from joint intention theory. Ut-

terance (1) is a REQUEST from Bob to Harry to jointly execute an action expression.

Utterance (2) is an AGREE from Harry to Bob. At this point each agent has made its

PWAG public and they are thus bound together by a joint commitment to have done the

action “jointly turn lights on”. Recall that the expression (While p Do a) is actually a

shorthand for the action expression (p?;a)*|∼p? which is an OR expression consisting of an

indefinite repetition and a test action. As such, there is a sub-dialogue that the agents en-

gage in to decide which component of the OR expression6 to execute first. We have omitted

this sub-dialog from the above dialogue transcript for clarity. The agents eventually decide

to execute the indefinite repetition of the OR expression and Bob does its part of the action

sequence in the indefinite repetition. The agents are following the lockstep policy for joint

action execution so Bob INFORMs Harry via utterance (3) that its test action succeeded

6JI theory does not specify which action in an OR action expression to execute first. It assumes that the
agents somehow end up choosing the right branch in the OR expression. We will see in the next chapter
that one implementation strategy is to have the agents decide among themselves which action to execute
first. It is important to note that this is just one possible approximation (or execution strategy) for joint
OR action expression and this strategy is implemented in the current STAPLE interpreter.

89

because of its commitment to establishing mutual belief that it has done the test action.

Our natural language generator translates done(Bob,test(∼switched on(redlight)))

as “Redlight is not switched on”. Thereafter, Harry turns on the Redlight, and informs

Bob that it has turned on the Redlight (because of its commitment to establish mutual

belief about this fact). Bob helps the mutual belief establishment by confirming the in-

formed proposition (via “Ok”) and the agents then move on to the next step in the action

expression (finding another light that is not switched on, switching it on, and establishing

mutual belief along the way).

Next, we explore how the agents behave when we modify the “observability conditions”

in the world.

3.4.2 Modifying what the agents can see

We modify the above example as follows: (i) Both Bob and Harry know the initial state

of the world. (ii) Both agents can only observe the effects of their own actions so that

Bob cannot see what Harry did and vice-versa. (iii) The agents do not have a mutual

belief that they can observe each other. (iv) Both agents are capable of performing action

switch on/1. (v) We modify the plan “jointly turn lights on” to consist of an action se-

quence in which the first action specifies that “Some Agent” turns on the redlight, after

which Bob turns on the bluelight, which is followed by Harry turning on the greenlight.

This action expression is specified in STAPLE by the sentence:

action(switch on(redlight),SomeAgent),

action(switch on(bluelight),bob),

action(switch on(greenlight),harry)

“SomeAgent” is a capitalized atom, which indicates a variable in STAPLE (as in

Prolog.) Bob, who establishes the joint commitment to execute the action expression,

knows the actors for each action in the sequence. Harry does not know the identity of

“Some Agent” and treats it as an unbound variable whose value is to be found later.

However, Harry believes that Bob knows who will switch on the red light, that is, that

there exists some K that Bob believes is the actor of the first action switch on(redlight).

This is specified in STAPLE via the following sentence.

bel(harry,exists(K,bel(bob,equals(K,i(Z,

actor(switch on(redlight),Z)))))).

90

Here the functor ‘i’ is the Russellian quantifier ‘iota’. We define two more communica-

tive acts to use with this example. First we define an INFORM-REF to be an inform of the

referent of an expression [1], and then we declaratively define ASK-REF as a REQUEST

to do an INFORM-REF. In STAPLE, it is specified as a plan (the STAPLE construct to

define named action expressions) whose body consists of the following composed action:

request(X,Y, action(informref(Y,X,C,i(Z,P)),Y),Q)

The above action specifies a request from agent X to agent Y that agent Y inform agent X

the referent C of the expression i(Z,P). The precondition of the ASK-REF communicative

act is that the agent performing ASK-REF knows the referent it, that is, believes that

there exists some K that the recipient of ASK-REF believes is the referent of the expres-

sion i(Z,P), that is, in STAPLE:

bel(self,exists(K,bel(Y,equals(K,i(Z,P)))))

The following actual dialogue between agents Bob and Harry continues.

Dialogue 2:

1. Bob: Let us jointly turn lights on.

2. Harry: I agree to jointly turn lights on.

3. Harry: Who will switch on Redlight?

4. Bob: I will tell you who will switch on Redlight.

5. Bob: You will switch on Redlight.

6. Harry: Ok, I will switch on Redlight.

7. <action: Harry pushes button; Redlight turns on>

8. Harry: I have switched on Redlight.

9. Bob: Ok.

As discussed earlier, the REQUEST from Bob to Harry in (1) and AGREE from Harry

to Bob in (2) establishes the joint commitment between them for jointly executing the

action expression. Utterance (8) onwards is similar to Section 3.4.1 where an agent who is

specified to do an action as part of the joint commitment does that action and establishes

91

mutual belief that it has been done. Utterances (3)-(6) comprise a sub-dialogue to find

out the actor of the first action in the joint action expression. This behavior contrasts

with Breazeal’s implementation [13] where the robot does the action if it can do it, and if

not, looks towards the human for the human to do it7.

In continuing to interpret the joint action expression, Harry discovers that it does not

know the actor of the action switch on(redlight) that it is committed to getting done.

Therefore, it adopts an individual commitment for finding the agent who is the actor of

action switch on(redlight). In STAPLE, this translates to Harry adopting a PGOAL

to achieve the following proposition.

exists(K,bel(harry,equals(K, i(Z,actor(switch on(redlight),Z)))))

Means-ends reasoning leads Harry to infer that it can achieve this committed goal by

performing the ASK-REF communicative act8. It intends to perform ASK-REF, and then

goes ahead and acts on its intention that results in utterance (3). Bob interprets (3) as

a REQUEST for an action (according to the definition of ASK) and AGREES to that

REQUEST by way of utterance (4). Utterance (4) can be considered superfluous though

its effect is exactly what is predicted by the JI theory. The reasoning in STAPLE about

communicative acts can be optimized using techniques similar to that used by Appelt [2]

to enable Bob to figure out that it does not have to first AGREE to Harry’s request for

INFORM-REF rather, it can discharge Harry’s PWAG resulting from utterance (3) by

simply performing the requested INFORM-REF.

We have mentioned before that there are two widely used agent communication lan-

guages – KQML [68] and FIPA [41]. It has been pointed out in the literature [30, 66]

that the semantics of these agent communication languages lacks several useful features.

For example, the REQUEST communicative act in these languages does not commit the

requester towards the requestee. Therefore, the requester is off the hook if he changes

his mind (say, if he discovers something that makes his requested action impossible) af-

ter making the request. On the other hand, the semantics of REQUEST presented in

the previous chapter ensures that the requester has a PWAG towards the requestee as

soon as the REQUEST is done. As such, if the requester changes his mind after making

the request, he will discharge his PWAG by establishing mutual belief with the requestee

about this fact. So our semantics of REQUEST predicts that there will be communication

7Our animated characters can be customized to use pointing gestures thereby, enabling another modality
for delivering communicative acts.

8There could be other acts as well that achieve this effect, such as perceptual ones.

92

if the requester changes his mind whereas this communication does not follow from the

semantics of REQUEST in FIPA and KQML. The next example illustrates this specific

scenario.

3.4.3 Oops! Never Mind

We repeat the example in Section 3.4.2 with the exception that (i) the sentence bel(self,

dark(outside)) is asserted into Bob’s belief base before starting the experiment, and (ii)

Bob establishes joint commitment with Harry relative to its belief that it is dark outside.

We pause both agents (using pause buttons on each agent’s console) right after Harry

switches on the red light. Thereafter, we retract bel(self,dark(outside)) from Bob’s

belief base and assert bel(self,∼dark(outside)) using the Prolog interface that is

exposed by each STAPLE agent through its agent console. On resuming both agents, Bob

discovers that its reason for establishing the joint commitment is no longer true, that is,

its joint commitment is irrelevant (in JI terminology, the relativizing condition Q is false).

This discovery is achieved by means of triggers that the STAPLE interpreter sets on the

agent’s belief base to monitor the discharge conditions of PGOAL, INTEND, and PWAG.

The interpretation of Bob’s PWAG by the STAPLE interpreter leads to Bob’s adopting an

individual commitment (PGOAL) to achieve mutual belief with Harry that the relativizing

condition of its PWAG towards Harry is false. The following actual dialogue is observed9.

(15) Bob: It is not dark outside.

(16) Harry: Ok.

This mutual belief discharges the commitment of each agent towards each other as

per the definition of PWAG, and hence discharges the joint commitment between Bob

and Harry. The main point here is that first principles reasoning achieved this effect only

because the semantics of Bob’s request to Harry to switch on the lights resulted in the

right commitments as per JI theory. As discussed earlier, if the agents had been reasoning

using FIPA’s semantics of REQUEST, then this communicative behavior would not have

been possible without additional inference rules. Next, we summarize the main points of

the chapter.

9Recall that at present, agents exchange speech act representations. The natural language generator
translates speech act formulae for the human.

93

3.5 SUMMARY

This chapter demonstrates the feasibility of using a logic-based declarative language to

obtain team and communicative behavior automatically without having to program this

behavior explicitly. The examples in Section 3.4 were created by merely encoding the

initial conditions and stipulating the joint plan, from which team and communicative

behavior followed automatically. The STAPLE agents exhibited team-oriented dialogue

by interpreting the constructs of joint intention theory along with first principles reasoning

over a formal semantics of communicative acts based on that theory. This research shows

that formal semantics of communicative acts can be fruitfully employed for inter-agent

dialogue.

STAPLE supports several other interesting team and dialogue behavior not discussed

here, including dialogue in teams of more than two agents. Future work includes using

gesture and facial expression to deliver a communicative act, plan recognition for full-

fledged dialogue, and expression of turn-taking constraints as a joint execution strategy

(akin to the lockstep one described in [70]). To conclude, the examples presented show that

it is possible to obtain team-oriented dialogue by using formal semantics of communicative

acts and joint intention theory without having to program that behavior explicitly.

Next, we discuss the implementation of the STAPLE interpreter employed for the

examples illustrated in this chapter.

Chapter 4

Implementation of a STAPLE Interpreter

An operational semantics of STAPLE is presented in the appendix. This chapter presents

an implementation of a STAPLE interpreter according to that operational semantics. We

have seen that STAPLE constructs include a subset of modal logic, dynamic logic of

actions, and temporal logic, as well as abstractions from joint intention theory and its

extensions. Beliefs, goals, commitments, and intentions are represented explicitly in STA-

PLE, actions are required to have a logical representation that can be used for reasoning,

and plans as well as conversation protocols are treated as complex action expressions con-

sisting of action sequences, non-deterministic OR, concurrent actions, repetitions, and test

actions. These STAPLE constructs have the same model theoretic semantics as that of

the underlying logic from where they are borrowed and the STAPLE interpreter attempts

to faithfully execute the logic directly.

The axioms of rational behavior are specified as STAPLE rules, and agent program-

mers can either provide new rules or override existing ones. We will see that these rules

cannot affect the semantics of the basic constructs from JI theory (such as commitments

and intentions) because of the way the basic theoretical constructs are interpreted1. STA-

PLE agents can have multiple simultaneous commitments and intentions, and a notion

of importance is used to order everything from commitments and intentions to plans and

rules. The syntax of STAPLE is presently an extension of the usual Prolog syntax with

the exception that certain constructs such as primitive actions and plans can be written

in both Prolog and Java.

The remainder of this chapter is organized in the following manner. An overview of

the STAPLE interpreter is presented in the next section. The interpretation of individual

1For example, there is no way to modify the behavior of a PGOAL solely by modifying the declarative
rules of rational behavior. One would have to modify the PGOAL interpreter (discussed later in this
chapter) and recompile the STAPLE interpreter in order to modify the implemented semantics of PGOAL.

94

95

commitments and intentions is discussed in Section 4.2, and that of joint commitment be-

tween two agents, including the communication between them, is discussed in Section 4.3.

Finally, we conclude in Section 4.4 with a summary of this chapter.

4.1 THE STAPLE INTERPRETER

The STAPLE interpreter needs logical reasoning capabilities along with the ability to

handle procedural tasks such as control flow and stack manipulation. Logic programming

languages such as Prolog are good for logical reasoning but procedural tasks can quickly

get quite complex and unwieldy in such languages. It was quite clear from our expe-

rience [62] with early versions of STAPLE that completely implementing the STAPLE

interpreter in Prolog was not a viable option because a large portion of the interpreter

dealt with procedural control, and the commercially available multi-threaded Prolog im-

plementations were too buggy and quickly broke down when used with STAPLE. The

support for multi-threading was needed in the interpreter development platform to enable

concurrent actions, asynchronous update of the belief base via multiple sensors (or ob-

servers in STAPLE terminology), and other functionality such as pausing and resuming

an agent, asynchronously interacting with its belief base, and providing a responsive user

interface. Similarly, imperative languages such as Java are good for procedural tasks but

are ill-suited for logical reasoning. As such, we take a hybrid approach for the current

STAPLE development by choosing to use both Prolog and Java, and using each language

for tasks that they do best – Java is used for procedural control and Prolog is used for

logical reasoning. We implemented a multi-threaded Prolog interpreter2 in Java, thereby

closely integrating these two disparate languages for use in the development of the STA-

PLE interpreter. Here, we present an overview of the STAPLE interpreter and its main

components irrespective of their implementation language.

4.1.1 Overview

As in any interpreted language, a STAPLE program is first parsed and the appropriate

data-structures are initialized. The agent’s beliefs, actions, plans, and rules are placed

2A recent enhancement to the STAPLE interpreter by Natural Language Interaction LLC replaced this
multi-threaded Prolog interpreter with single threaded Sicstus Prolog by embedding Sicstus within the
STAPLE interpreter. As a result, the calls to the Prolog subsystem got serialized but the sheer speed of
Sicstus has resulted in a two orders of magnitude overall speed-up in STAPLE programs and more speed-
ups are expected upon further optimizations. Such embedding was not possible when STAPLE interpreter
was being implemented for this dissertation.

96

in the appropriate databases (described next), its commitments and intentions initialize

the stacks that are used to interpret and keep track of the progress of commitments

and intentions, and any observers (abstraction of sensors), and actuators (abstraction of

effectors) required by the agent at startup are activated. Thereafter, the main interpreter

loop is started and execution of the agent proceeds so as to achieve its commitments and

intentions. Figure 4.1 shows the main components of the STAPLE interpreter that make

this execution of STAPLE agents possible.

Network
Observe

O
b
s
e
r
v
e
r
s

Comm.
Manager

A
c
t
u
a
t
o
r
s

External World

Belief
Reasoner

Main Interpreter

PGOAL
Interpreter

PWAG
Interpreter

INTEND
Interpreter

Belief Base
(BB)

Rule
Base

Action
Library

Plan
Library

Consistency
Checker

BB Maint.
System

Thread Pool
Prolog

Engine Pool

Trigger
Manager

Rule
Manager

Figure 4.1: Main Components of STAPLE Interpreter

The directed arrows in Figure 4.1 show the dependency of the components – they

indicate which components invoke or use which other components. The type of the arrows

just indicates visual grouping of components. For instance, the bold arrows show the

components that depend on the belief base, and the dotted arrows show the components

that the main as well as the various modal interpreters depend on for their functioning.

The components shown with notched corners (trigger manager and rule manager) have

their own dedicated Prolog engines, and all other components that need access to a Prolog

engine get it from a pool of reusable Prolog engines. All Prolog engines share the same

thread-safe knowledge base that has a very fine-grained locking granularity to allow highly

97

concurrent access [60]. The belief reasoner and the belief base maintenance systems are

written entirely in Prolog, the consistency checker and the rule manager are written partly

in Java and partly in Prolog, and everything else is written entirely in Java. The main

interpreter, and the INTEND and PGOAL interpreters are discussed in Section 4.2, the

PWAG interpreter is discussed in Section 4.3, and all other components shown in Figure 4.1

are discussed next.

4.1.2 Action and Plan Library

All primitive actions accessible to an agent are instantiated using a data-structure that is

treated as a Prolog term by the Prolog subsystem for the purpose of unification and also

has an executable component. These actions include the actions common to all agents that

are defined in the STAPLE library as well as the actions specific to that agent. Further,

as mentioned earlier, these actions may have been written in either Prolog or Java. The

action library keeps track of the action instances using the name of the action and its

arity (i.e., the number of arguments that the action requires). This method of indexing

actions may be viewed as a limitation in the current STAPLE implementation – no two

actions can have exactly the same name and number of arguments3. The action library

provides several ways to query for actions that meet a certain requirement. For instance,

one can ask the action library for an action with a given name and arity, or for a list of

actions whose intended or desired effect unifies with a given proposition. The action library

returns a copy of the action instances that satisfy a given query. Each action instance

may be queried for its attributes such as effects, precondition, and context among others.

Therefore, the query for actions may also include additional criterion such as restricting

the query to include only those actions whose precondition is satisfied in addition to the

main criterion. Though not indicated in Figure 4.1, such additional criterion requires

invoking the belief reasoner using a Prolog engine over the agent’s belief base. Hence, the

action library can be thought of as a “smart database”.

The plan library is similar to the action library except that the data structure used

to instantiate plans represents a complex action expression that is not executable (the

constituent actions of a plan, however, may be executable primitive actions). The action

expressions are treated as Prolog terms by the Prolog subsystem for unification purposes.

The plan library can be queried in the same manner as the action library, and it returns

3However, it is not a serious limitation – actions can always be renamed to avoid any name conflicts
that are reported as errors when the agent program is loaded.

98

copies of plans that match the query criteria.

4.1.3 Belief Base and Belief Base Maintenance System

The beliefs of a STAPLE agent are stored in a blackboard data structure that is treated

by our Prolog engines as the “Prolog knowledge base”. These beliefs include both the

beliefs common to all STAPLE agents as well as those specified in the agent specification.

Multiple Prolog engines, each running in a separate thread of execution, may access the

same belief base concurrently. As such the belief base (BB) is designed to be thread-safe

and has a fine-grained locking granularity (at the level of predicates with same arity). It

is possible for one Prolog engine to update the belief base while another Prolog engine is

executing the belief reasoner. As such, our Prolog engines have an execution semantics

that is reasonable in multi-agent systems in the face of concurrent updates. For instance, it

is possible that the belief reasoner decides that (BEL x p) is false even though (BEL x p) is

asserted into the belief base while the belief reasoner is being executed. This may happen

when (BEL x p) is asserted just after the Prolog engine executing the belief reasoner has

read the possible candidates for SLD resolution from the BB. However, subsequent tests

for (BEL x p) will return the correct expected answer. One can rationalize this behavior

as the agent not being momentarily “aware” of a fact in its belief base during concurrent

updates4. Similarly, each belief read from the BB is checked, just before using it for the

SLD resolution, in a thread-safe manner to make sure that it has not been deleted from

the BB after it was read. The belief base is usually updated through the BB maintenance

system instead of asserting beliefs directly to it.

A belief base maintenance system complements the belief reasoner and is primarily

needed to help it avoid circular loops and infinite recursions by making sure that all

information asserted to the knowledge base is of a certain form. In particular, using the

positive introspection property of beliefs in our logic, it reduces all facts of the form (BEL

x (BEL x...(BEL x p). . .)) to the equivalent fact (BEL x p) before asserting them in the

knowledge base. Similarly, facts like (BEL x ¬¬. . .¬p) are reduced using the equivalence

(BEL x ¬¬p) ≡ (BEL x p). It also combines beliefs into their reduced form, for instance,

if the belief base already has (BMB x y p) then when asserting (BMB y x p), the BB

maintenance system retracts (BMB x y p) and asserts (MB x y p) using the equivalence

4It is possible to imagine alternate execution semantics where a Prolog engine restarts its reasoning
process whenever the belief base is updated by another Prolog engine. However, there are several issues
with such a semantics that are not very clear. The current execution semantics is cleaner and easier to
implement.

99

(BMB x y p) ∧ (BMB y x p) ≡ (MB x y p) in our logic. The belief reasoner can deduce

both the original facts from the asserted fact. We use the convention that an agent believes

everything in its belief base. So p and (BEL self p) in the BB mean the same thing to

the belief reasoner. However, the BB maintenance system asserts p instead of (BEL self

p) to enable the Prolog engine to take advantage of first argument indexing. Similarly,

the BB maintenance system asserts (MB self y p) irrespective of whether (MB self y p)

or (MB y self p) is being asserted using the equality (MB x y p) ≡ (MB y x p). This

convention of always keeping “self” as the first argument of mutual belief terms simplifies

the belief reasoner and makes it more efficient as there need not be any deduction rules for

the equality (MB self y p) ≡ (MB y self p). This is particularly so because most queries

about mutual beliefs inquire whether or not there is mutual belief between this agent

and another agent about some proposition. A belief base maintenance system should also

keep the BB in a consistent state at all times. However, we have yet to implement a

comprehensive consistency maintenance capability in our BB maintenance system. This

is known to be a hard problem and we do not address this problem at present other than

checking for contradictory terms such as p and ¬p.

4.1.4 Belief Reasoner and Consistency Checker

The language being interpreted uses a subset of modal logic, temporal logic and dynamic

logic of actions so an agent’s belief base consists of statements in these logics. We need a

belief reasoner equipped with the axioms and inference rules from these logics to be able

to prove whether or not a formula is true by reasoning over an agent’s belief base. It is

important to note that this belief reasoner does not infer all possible formulae that follow

from the belief base, rather, its task is the following: Given a proposition p, it decides

whether or not p follows from the belief base using the provided inference rules. Table 4.1

lists a subset of the inference rules that the modal reasoner currently uses. These rules

are shown for right to left provability – for instance, prove (bel α p) in order to prove (bel

α (bel α p)).

As mentioned earlier, we use the convention that an agent believes everything in its

belief base. So p and (bel self p) in the BB mean the same thing to the belief reasoner.

Beliefs about other agents are represented just like any other fact in the BB. For instance,

“I believe that x believes p” will be asserted into the agent’s BB as (bel x p) that is a

simplified form of (bel self (bel x p)). Certain extra-logical checks5 as well as support from

5For instance, the rule (bel α p):- (bel α ¤p) is used only if p is not of the form ¤q where q is some

100

Table 4.1: Sample Deduction Rules for Belief Reasoner
(BEL self p) :- p
(BEL α p) :- (BEL α ¤p)
(BEL α ♦p) :- (BEL α p)
(BEL α (BEL α p)) :- (BEL α p)
¬(BEL α p) :- (BEL α ¬p)
¬(BEL α p) :- \+ (BEL α p)

(BEL α ¬¬p) :- (BEL α p)
(BEL α ¤¤p) :- (BEL α ¤p)
(BEL α ♦♦p) :- (BEL α ♦p)
(BEL α p) :- (BEL α q =>p) ∧ (BEL α q)
(BEL α p∧q) :- (BEL α p) ∧ (BEL α q)
(BEL α ¤¬(p∧q)) :- (BEL α ¤¬p) ∨ (BEL α ¤¬q)

the belief base maintenance system are used to avoid circular and infinite reasoning by

the modal reasoner.

The consistency checker uses the belief reasoner to ensure that an agent does not

adopt any commitment or intention that conflicts with any existing commitment or in-

tention of that agent. For instance, the agent cannot adopt an intention to achieve ¬p

if it already has an intention to achieve p (ideally speaking, it can have the intention to

achieve ¬p and p at different times6). An agent cannot adopt an intention or commitment

to achieve p if it believes that the new commitment or intention makes an already existing

commitment or intention impossible, that is, if (BEL x p) ⊃ (BEL x ¤¬q) where the

agent has an existing commitment or intention to achieve q. Similarly, an agent cannot

adopt an intention or commitment to achieve p if it believes that the new commitment

or intention is rendered impossible by an existing commitment or intention. An intention

to perform an action a (or a commitment towards being in a state where that action has

been done) is inconsistent with an intention or commitment to achieve a proposition p

if at least one of the following holds: (1) the proposition p is contradictory with either

the effect, or the precondition, or the context of the action7, (2) the proposition p makes

either the precondition or the context of the action impossible, or (3) the effect of the

action makes achieving the proposition p impossible, that is, effect(a) ⊃ ¤¬p. Similarly,

an intention or commitment for performing an action is inconsistent with the intention or

commitment for performing another action if one of the following holds: (1) the effect of

proposition. Similarly, checks for logical variables (Prolog var/nonvar) are used where needed.
6The current implementation of consistency checker ignores this timing subtlety. Future versions of

STAPLE will include a check for timing inconsistencies to a certain extent using predicates to specify
timing constraints on achievement of commitment propositions.

7Some of these inconsistencies may be resolved by reordering the timings, for example, the start time of
actions that need to be done or timing of when the agent works towards achieving a commitment. STAPLE
does not currently support ordering constraints between independent commitments and intentions and so
is unable to resolve such inconsistencies.

101

one of the actions is contradictory with either the effect8, or precondition, or the context

of the other action, or (2) the effect of one of the actions makes either the precondition

or the context of the other action impossible. An intention or a commitment for per-

forming either a sequence, or a concurrent action expression, or a repetition of singleton

actions is inconsistent with another commitment or intention if either (1) the intention

or commitment for even one action in the action expression is inconsistent with the other

commitment or intention as per the above discussion, or (2) the intention or commitment

for the entire action expression treated as a single action (such as the action expression

of a plan wherein the entire action expression may have an effect, a precondition, and a

context) is inconsistent with the other commitment or intention. Similarly, an intention or

a commitment for performing a non-deterministic OR of singleton actions is inconsistent

with another commitment or intention if either (1) the intention or commitment for every

action in the action expression is inconsistent with the other commitment or intention as

per the discussion earlier, or (2) the intention or commitment for the entire action expres-

sion treated as a single action is inconsistent with the other commitment or intention. The

inconsistency of an intention or a commitment for performing a complex action expression

involving any combination of the action formation operators is similarly determined by

recursively decomposing the action expression, and using appropriate tests as discussed

above.

4.1.5 Trigger Manager, Rule Base, and Rule Manager

The trigger manager supports triggering on propositions (setting, checking, firing, and

removing triggers) in the agent’s belief base. The trigger manager maintains an internal

database of triggers. The triggers are not checked on every update of the belief base but

are checked only when the trigger manager is explicitly asked to check triggers (usually by

the main interpreter). Every trigger has an associated action that is executed when the

trigger fires. The trigger action typically informs the trigger setter about the firing of the

trigger so that it can take the appropriate action. Triggers also include some convenient

fields that allow the trigger setter to quickly determine the conditions that became true

resulting in the firing of that trigger instead of having to invoke the belief reasoner all over

8This is a simplification due to ignoring the timing subtlety as mentioned earlier. For example, the
present STAPLE interpreter will not allow an agent to have an intention to open the door and another
intention to close the door at the same time (although opening the door and then closing it can be part
of an action sequence because the agent will have the intentions for these individual actions at different
times as per the semantics of intending action sequences).

102

again.

We distinguish between the declarative rules interpreted by the rule interpreter and the

inference rules9 used by the main as well as the modal (INTEND, PGOAL, and PWAG)

interpreters. The rules interpreted by the rule interpreter tell what to do when certain

facts can be inferred from the agent’s belief base. For example, the rule to intend the

highest utility action or plan that can achieve a committed goal is one such rule. An

agent programmer can provide the rules that are interpreted by the rule interpreter and

can even override the default rules provided by the STAPLE library. The importance

associated with each rule is used to select one applicable rule when multiple rules are

applicable to a situation. The STAPLE default rules (the rules in the STAPLE library

that are accessible to all agents) can be overridden by providing rules with higher impor-

tance. The antecedents and the consequents are in conjunctive normal form. The rule

interpreter can be used (1) to repeatedly select rules applicable to the current state of

the knowledge base (rules whose precondition is the constant “true”) and fire the selected

rules until no more applicable rules are found, and (2) to select rules applicable under a

specified precondition, and fire the most important rule among those selected. The rule

interpreter uses a dedicated Prolog engine for its use (such as finding applicable rules,

testing antecedents, and executing the consequents) and it invokes the belief reasoner to

evaluate the applicability criterion as well as the other antecedents of a rule. At present,

the STAPLE rule base is stored in a Prolog knowledge base in a similar fashion as the

belief base. The rules are fairly static but new rules may be inserted and existing ones

may be removed from the rule base at run time.

4.1.6 Observers and Actuators

Observers are high-level abstractions for interfaces that monitor the external world via

sensors, sockets etc. It is desirable that observers be active components executing concur-

rently with the main interpreter because they monitor the world in real time. Otherwise,

the main interpreter will have to poll all the observers for relevant information during every

cycle and execute their associated code. Delegating these procedural tasks to the observers

9The declarative rules interpreted by the rule interpreter are accessible to the agent programmer.
However, the inference rules used by modal interpreters are built into the interpreter itself (i.e., hard-
coded). They implement the semantics of the modal constructs as per the theory and they cannot be
modified by the agent programmer. Further, the inference rules used by the main interpreter (such as
when to perform intention reconsideration) are currently built into the main interpreter but it can be made
declarative and accessible to the agent programmer in future implementations of the STAPLE interpreter.

103

also allows the main interpreter to be dedicated to logical interpretation. Therefore, ob-

servers in STAPLE are active components, each observer being executed in a separate

thread. A typical observer receives data from the sensors it is monitoring in real time,

extracts the relevant information, and asserts the new information in the agent’s belief

base as a logical formula that the STAPLE interpreter can reason about. An observer

can also be used for reflex actions such as automatic acknowledgement upon receipt of

a message. It can also be used for peripheral processing, for example, when an observer

monitoring a TCP socket connection receives an INFORM, it need not assert only this

fact but also the inferred goal and intention of the sender (using the speech act definition

of INFORM). An observer that performs logical inference as part of peripheral processing

may need to use a Prolog engine from the common pool of Prolog engines. Figure 4.1

represents observers as hexagons, and shows the network observer that is common to all

STAPLE agents. The network observer performs three tasks – it listens on a server socket

(the advertised network address of the agent) for connection requests, reads messages from

existing network connections (and asserts a logical representation of the messages into the

agent’s belief base), and watches for existing connections that close abnormally (in which

case, it asserts that information into the belief base). The STAPLE interpreter starts the

observers during agent start-up.

Actuators are also high-level abstractions that are used to control and monitor physical

effectors. They may run in separate threads, and possibly perform physical actions that

may extend over time. Actuators are typically invoked from the “code” of an action when

that action is executed. An actuator may report on the progress, completion, and success

of its task by asserting appropriate facts into the agent’s belief base. Figure 4.1 represents

actuator as hexagons, and shows the communication manager that is an actuator common

to all STAPLE agents. The communication manager can be tasked to send messages to

other agents, and to connect to those agents if not already connected (in which case, it

will inform the network observer to add the new connection to its list of connections being

observed).

4.1.7 Thread Pool and Prolog Engine Pool

The STAPLE interpreter includes shared pools of reusable execution threads and reusable

Prolog engines. As such, most components of the STAPLE interpreter that need to access

the Prolog engine only occasionally can use engines from the shared pool when needed.

The threads from the thread pool are used: (i) by the main interpreter to execute actions

104

concurrently, (ii) by active components such as the observers and actuators that run asyn-

chronously, and (iii) by the user interface components such as the Prolog console exposed

by each agent. Actions whose code is in Prolog are executed by the main interpreter in

a thread from the thread pool using a Prolog engine from the engine pool. We will see

in the next section that the main interpreter concurrently executes the most important

actions of the agent.

We now present the main STAPLE interpreter along with the modal interpreters for ex-

ecuting individual commitments (PGOAL) and intentions (INTEND). These interpreters

make use of the components discussed above for their functioning.

4.2 EXECUTING INDIVIDUAL COMMITMENTS AND

INTENTIONS

The heart of the STAPLE interpreter for executing single agents consists of the main in-

terpreter and the modal interpreters for executing individual commitment (PGOAL) and

individual intention (INTEND). The main interpreter corresponds to the central inter-

preter in traditional agent language interpreters and agent architectures. It runs in an

infinite loop driving the agent towards achieving its goals and discharging its commitments

and intentions. It also invokes the modal interpreters for PGOAL and INTEND to inter-

pret these terms as per their definition in our logic. These interpreters use a stack-based

data structure to keep track of progress, to interpret action expressions, and to follow the

definitions of the modal terms. STAPLE agents can have multiple simultaneous commit-

ments and intentions. Each high level commitment and intention is assigned a separate

stack. The built-in actions adopt and subgoal can be used from within rules as well as

from other actions and plans to manipulate those stacks. The adopt action refers to the

creation of a new high-level commitment or intention by creating a new stack and pushing

the adopted term on it. The subgoal action refers to the creation of a sub-commitment or

sub-intention with respect to another commitment or intention by pushing the subgoaled

term on the stack that had the higher-level commitment or intention on top of it. In the

remainder of the dissertation, we will use the term “intend stack” or “intention stack” to

indicate that a stack has an INTEND term on top of it, and use the term “commitment

stack” to indicate all other stacks. We now first present the main interpreter and then

discuss the modal interpreters for executing PGOAL and INTEND.

105

4.2.1 Main Interpreter

The main interpreter uses a simple mechanism based on utility and penalty to incorporate

multiple simultaneous commitments and intentions. A rational agent will give more im-

portance to a commitment or intention having higher utility. Such an agent will also give

more importance to a commitment with higher penalty [99]. We assume an importance

function that combines the utility and the penalty of a commitment to compute its overall

importance to the agent. As mentioned earlier, we syntactically augment PGOAL and

INTEND to specify their importance as an extra argument. Importance can be a function

in general but a numeric value (constant function) will suffice for now. The present ver-

sion of STAPLE does not allow utility and penalty to be specified separately10. We give a

meaning to the notion of importance by relating it to the axiom of rational behavior that

is used by the main interpreter to act on intentions. This meaning11 is consistent with

the definitions of PGOAL and INTEND in Chapter 2 and is specified as Axiom 4.1.

Axiom 4.1. Axiom of Rational Behavior: A rational agent will act on its most important

executable intentions at all times.

Let Intend(t) = {Intend1, Intend2,. . . , IntendN} be the set of executable intentions

of an agent at time t and let ik ε I be the importance function of Intendk where 16 k 6
N, and I is the set of importance functions. Also, let eval: I → R, where R is the set of

real numbers. The set of most important actions at time t for this agent is given by the

intended actions in the set rational(t), where

rational(t) ≡ {Intendm ∈ Intend(t) | eval(im) = max [eval(ik)]16k6N}
Given this axiom, in each cycle the interpreter executes only the most important inten-

tions and switches among intentions as their importance changes. Also, note that multiple

intentions can simultaneously be most important and hence they will be executed con-

currently (assuming that these actions do not interfere12 with each other). In fact, this

is how concurrent actions get executed at the same time. The definitions of PGOAL and

10However, the STAPLE interpreter may support separate specifications of both utility and penalty at
a later time.

11One can think of various other methods to incorporate the notion of importance into the logic. For
instance, the importance condition may be included as a conjunct in the relativizing condition of the
PGOAL.

12It is the agent programmer’s responsibility to specify the precondition, context, and effect of actions in
such a way that two actions that interfere with each other will be found to be inconsistent by the STAPLE
interpreter. Therefore, an agent will never have two intentions at the same time for doing these conflicting
actions as discussed earlier. Hence, the assumption that actions executed simultaneously will not interfere
with each other is valid.

106

INTEND do not preclude an agent from having multiple simultaneous PGOALs and IN-

TENDs that are consistent with each other. The notion of importance as used above will

be consistent with the modal logic definitions of PGOAL and INTEND if (1) the compu-

tation of importance does not have the side effect of making inconsistent the PGOALs and

INTENDs of the agent that were previously consistent with each other, and (2) the axiom

of rational behavior does not make any PGOAL or INTEND of the agent impossible. The

first condition is trivially satisfied if the importance is specified as a constant function that

returns a numeric value (as in the current version of STAPLE). In all other cases, it is the

agent programmer’s responsibility to ensure that this constraint is satisfied. The second

condition essentially relates to timing constraints. For instance, STAPLE’s executing the

most important intentions at time t may make an intention with a lower importance im-

possible if that intention is for performing an action at time t. This problematic condition

may be taken care of in the STAPLE interpreter by suitably increasing the importance of

time critical commitments and intentions as their deadline approaches. Our implementing

such an algorithm would require supporting predicates such as “at” and “by” to specify

timing constraints on actions13. However, the second condition is trivially satisfied at

present because STAPLE does not currently support actions with timing constraints. The

main interpreter implements the above axiom of rational behavior.

Table 4.2 shows the main interpreter loop after the agent program has been initialized.

Compared to the standard agent control loops (Wooldridge [118]), conspicuously absent

from this figure are the steps to fetch a percept, to do belief revision depending on the

percept, to get the next action of a plan for execution, and to test for soundness of the

plan. The step of fetching the next percept is absent because the observers in a STAPLE

program run continuously in a separate execution thread and update the belief base asyn-

chronously. Belief revision is performed whenever the belief base is updated through the

BB maintenance system. The belief base is usually updated when the observers receive

new information, and also when an action has been successfully executed (in which case

the effect of that action is asserted). The step of getting the next action to be executed is

absent because the modal interpreters for PGOAL and INTEND initialize each stack ap-

propriately for the next action to be executed for that stack, and multiple actions (those

associated with the agent’s most important intentions) are executed concurrently. The

execution of multiple simultaneous actions contrasts with other BDI agent infrastructures

such as IRMA [12] that execute only one action at a time. The IRMA architecture is

13As noted earlier, this feature is one of the future enhancements of the STAPLE interpreter.

107

discussed further in Chapter 9. A STAPLE plan is applicable when the context of the

plan is true and the plan has not been achieved, and it is not impossible or irrelevant. The

applicability of plans is checked not in every cycle of the main interpreter but via triggers

on the belief base. In each cycle, the main interpreter checks to see if any triggers have

fired. Firing of triggers is one of the conditions for intention reconsideration in a STAPLE

agent.

Lines 2 and 3 in Table 4.2 implement intention reconsideration in the STAPLE in-

terpreter. First, all applicable non-specific rules (i.e., rules with precondition “true”) are

fired repeatedly until no more rules are applicable. This may result in several new com-

mitments and intentions being adopted. Thereafter, the modal reasoner for PGOAL is

invoked to interpret the PGOAL stacks, and to fire any rules that may lead to the agent

adopting or subgoaling intentions to achieve the various commitments. Lines 5-18 inter-

pret and execute intentions repeatedly in a loop until one of the conditions for intention

reconsideration becomes true. Note that breaking out of this inner loop eventually leads

to intention reconsideration at the beginning of the next cycle of the outer infinite loop.

As mentioned earlier, the firing of triggers is one of the conditions for intention recon-

sideration (line 15). Intention reconsideration is also performed when there are no more

executable intentions. This is the case when either there is no intention stack (line 5 and

7), or when the status is “waiting” for all the intention stacks (line 15), that is, the terms

on top of all stacks have set triggers on the belief base and are waiting for some proposition

to become true, false, or impossible. There is also an explicit reconsider function as an

OR condition in line 15 that returns false by default but that may be overridden by agent

programmers to provide any additional criterion for intention reconsideration. Line 6 in-

vokes the modal interpreter for INTEND to interpret all intend stacks as per the logical

definition of INTEND, and to interpret action expressions. The main interpreter executes

the most important intentions in line 11 as per Axiom 4.1. Here, all those actions are

executed concurrently in a separate thread from the thread pool, and the main interpreter

waits for all actions to finish executing before continuing further. Thereafter the trigger

manager is invoked on line 13 to check if any triggers have fired. In our logic, (DONE

a) means that the action a has just been done. So a natural question is when should an

action that was “just done” be not considered as “just done” but as something that was

“done earlier”? This transition happens in line 14 where all terms of the form (DONE

a) in the belief base are replaced by (EARLIER (DONE a)). Lines 20-25 invokes the

modal reasoner for PGOAL and INTEND to take any necessary actions due to firing of

108

Table 4.2: Main Interpreter Loop

1: WHILE (TRUE) DO
2: fireApplicablerules();
3: interpretPGOALs();
4:
5: WHILE(there exists at least one intention stack) DO
6: interpretIntentions();
7: IF (there is no intention stack) THEN
8: break from inner while loop;
9: END-IF
10:
11: executeMostImportantIntentions();
12:
13: checkTriggers();
14: moveDoneToEarlier();
15: IF (triggerFired || all intend stacks waiting ||

reconsider())
THEN

16: break from inner while loop;
17: END-IF
18: END-WHILE
19:
20: IF (triggerFired) THEN
21: interpretPGOALs();
22: interpretIntentions();
23: reset triggerFired to FALSE;
24: continue to the next loop of the outer while loop;
25: END-IF
26:
27: IF (there is no stack || all stacks waiting) THEN
28: wait to be notified of new information by observers;
29: END-IF
30: END-WHILE

109

triggers. In lines 27-29, the main interpreter waits for new information to arrive because

either there are no more stacks or the status of all stacks is waiting (i.e., the status is

“waiting” for the terms on top of all stacks). In this case, there is nothing else to do so

the main interpreter essentially goes to sleep and is woken up when an observer receives

any new information. We now discuss the specifics of the modal interpreters for PGOAL

and INTEND invoked by the main interpreter.

4.2.2 PGOAL Interpreter

The notion of an agent’s commitment towards achieving some state in the world is ex-

pressed as a persistent goal or PGOAL, and the modal interpreter for PGOAL attempts

to faithfully follow the formal definition of PGOAL. Recall that we assume that agents

are competent with respect to their individual commitments, that is, if an agent believes

that it has a PGOAL, then it does in fact have that PGOAL. Formally, we restate the

assumption from Chapter 2:

Assumption 4.1.

|= (BEL x (PGOAL x p q)) ⊃ (KNOW x (PGOAL x p q)) ⊃ (PGOAL x p q)

We treat everything in an agent’s belief base as being specified with respect to the

agent’s cognition. Therefore, a PGOAL specified in the agent specification file, or created

by execution of a rule means that the agent believes that it has that PGOAL. Therefore,

Assumption 4.1 enables the modal interpreter to interpret PGOAL as per Definition 2.1 by

moving the PGOAL outside of the belief modality. A consequence of the above assumption

is that an agent knows that it cannot drop its PGOAL at least until one of the conditions

in the UNTIL clause becomes true. The conditions in the UNTIL clause are enforced

using triggers and stack manipulation. They are checked before a PGOAL is pushed

onto a stack, and then triggers are set on them for subsequent monitoring. One of the

first things that the modal interpreter for PGOAL does is to check if any triggers have

fired for commitments that already exist. When a trigger fires, the relevant stack is

manipulated appropriately. For example, when a trigger fires due to a committed goal

becoming impossible, then all stack items above the relevant PGOAL are discarded (after

appropriate cleanup) and that PGOAL is re-evaluated. When a PGOAL is being adopted

or subgoaled, the modal interpreter first checks for its achievement, impossibility, and

irrelevance by executing the belief reasoner in a Prolog engine over the agent’s belief base.

For instance, to check for impossibility, the belief reasoner is invoked to check if ¤¬p can

110

be concluded from the belief base (this reasoning will make use of any domain dependent

applicable rules of the form ¤¬p:- q). Thereafter, the consistency checker is invoked to

make sure that the PGOAL is consistent with the existing commitments and intentions

of this agent, and triggers are set for any new commitments to monitor escape conditions

in the definition of PGOAL as mentioned earlier.

A commitment to execute a complex action expression is interpreted by breaking it

down into commitments for individual actions as per the rules in Table 4.3. These rules

(reproduced here from Table 2.2 for convenience) are theorems in the logic and were

discussed earlier in Section 2.3.1. They describe the encoded behavior of the PGOAL

interpreter. These rules implement the semantics of PGOAL for executing action expres-

sion and therefore, they are not declaratively specified and are not modifiable by an agent

programmer.

Each action for an agent is considered a separate event and is given a unique event

identifier that distinguishes it from any other action ever intended or committed to by that

agent, even if they are of the same event type. The event identifier includes a loop identifier

that distinguishes the different instances of an action being performed in a repetitive loop

as being separate events. The test action p? is treated as a single action that causes the

belief reasoner to try to prove p, and this action may bind any logical variables in p in

the process. The rule for action sequences in Table 4.3 essentially requires an agent to

decompose the action sequence, committing to each of the actions one by one relative to

the larger commitment. The action sequence is achieved if all the actions in the sequence

are achieved – failure (or impossibility) of even one sub-action amounts to failure (or

impossibility) of the entire action sequence. Two or more actions are concurrent if the

agent has a commitment to do each action relative to the larger commitment, and when one

of the actions is about to happen next, all the other actions are also about to happen next.

The condition for achievement, failure, or impossibility of a concurrent action expression

is the same as that of an action sequence. Non-deterministic OR is approximated by

repeatedly selecting one of the actions at random out of the untried actions until either

one action succeeds or all actions are found to be impossible. The commitment to wait

for a proposition to become true, i.e PGOAL for the action wait for(p), is interpreted by

first checking if p is true or false, failing which, triggers are set for p and ¬p and the status

of the PGOAL is set as “waiting”14. These rules translate into stack manipulation by the

14One possible enhancement to this scheme is to wait for a prespecified time and decide that p is
impossible if that time elapses and the agent does not yet believe p or ¬p.

111

main modal interpreter similar to that illustrated for intention in Figure 4.2.

Table 4.3: Rules for Interpreting Action Expressions

Action Sequences
|= (PGOAL x (DONE a1;a2;. . . ;an) q)∧¬(BEL x (EARLIER (DONE a1)))
⊃ (PGOAL x (DONE a1) (PGOAL x (DONE a1;a2;. . . ;an) q))

|= (PGOAL x (DONE a1;a2;. . . ;an) q)∧ (BEL x (DONE a1;a2;. . . ;ai))
⊃ (PGOAL x (DONE ai+1;. . . ;an) (PGOAL x (DONE a1;a2;. . . ;an) q))

Repetition

|= (PGOAL x (DONE a*) q) ⊃ (PGOAL x (DONE a;(a)*) q)

Concurrent Actions

|= (PGOAL x (DONE a1||a2||. . . ||an) q) ⊃
(PGOAL x (DONE a1) (PGOAL x (DONE a1||a2||. . . ||an) q)) ∧
(PGOAL x (DONE a2) (PGOAL x (DONE a1||a2||. . . ||an) q)) ∧
...
(PGOAL x (DONE an) (PGOAL x (DONE a1||a2||. . . ||an) q)) ∧
[∀k, 16 k 6 n (HAPPENS ak) ⊃ (HAPPENS a1)∧...∧ (HAPPENS an))

Non-Deterministic OR

|= (PGOAL x (DONE a1|a2|. . . |an)q) ⊃
(PGOAL x (DONE a1) (PGOAL x (DONE a1|a2|. . . |an) q)) ∨
(PGOAL x (DONE a2) (PGOAL x (DONE a1|a2|. . . |an) q)) ∨
...
(PGOAL x (DONE an) (PGOAL x (DONE a1|a2|. . . |an) q))

Finally, the rule interpreter is invoked once for each commitment in an attempt to

find an intention that might achieve the committed goal. For instance, if it is believed

that there are actions (including plans) that can achieve the committed goal, then a non-

deterministic OR of all those actions is intended. Similarly, a belief that another agent

can perform an action that can achieve a committed goal may result in an intention to

request that agent to achieve it. If there are no more actions that can achieve a committed

goal, and no agent is known that can achieve that goal, then the attempt to achieve that

112

goal is assumed to be have failed at that time. On subsequent invocation of the modal

interpreter, a rule may reinstate the status of a failed commitment so that it can be

tried again, or a rule may conclude that commitment to be impossible to achieve, say,

if it has failed a given number of times. As per Definition 2.1 of PGOAL, an agent can

drop a commitment that has been achieved or impossible or irrelevant, and this is done by

removing such a commitment from the stack, and notifying the status of that commitment

to its higher-level commitment or intention.

Next, we briefly discuss the modal interpreter for interpreting an agent’s intentions.

4.2.3 Intend Interpreter

An intention to do an action a relative to q is represented by (INTEND x a q) and it is

defined as a persistent goal in which the agent x is committed to performing the action

a believing throughout that it is doing the action [25]. As such, the interpretation of

INTEND is similar to that of PGOAL. Also, recall that the intending agent must be the

actor of the intended action, and therefore, an agent cannot have an intention that some

other agent does an action (though it can have commitment that the other agent does

that action).

As in the case of PGOAL, the modal interpreter for INTEND first checks for fired

triggers, and then re-evaluates any intentions that have either been achieved, or are be-

lieved to be impossible or irrelevant. Before pushing any new INTEND on the stack, the

modal interpreter first checks to see if the intended action has been done, or is impossi-

ble or irrelevant, and then invokes consistency checker to ensure that the new intention

is consistent with the existing commitments and intentions of this agent. An action is

believed to be impossible if the context of the action is false, or if its precondition is false,

of if the proposition ¤¬(DONE self a) is true. As in the case of PGOAL, complex action

expressions are believed to be impossible if any required action in the action expression

is impossible – for instance, if any action in an action sequence, or concurrent action is

impossible, or if all actions in a non-deterministic OR-expression are impossible. Also,

triggers are set to monitor the escape conditions for any new intentions.

Intentions for complex action expressions are interpreted by marching through the

action expression as in the case of PGOAL using rules similar to that in Table 4.3. These

rules translate into stack manipulation by the main modal interpreter as illustrated in

the examples in Figure 4.2. The agent in the Figure 4.2 has two simultaneous high level

intentions for action expressions (p?;a)|b and ((c;d)||(e;f))* resulting in two independent

113

(Intend p?;a)

(Intend a)

 (Intend (p?;a)|b)

(Intend (p?;a)|b)
(Intend b)

test
succeeded

test failed

(Intend (p?;a)|b)

(Intend p?;a)

(Intend p?)

(Intend (p?;a)|b)

achieved

(Intend ((c;d)||(e;f))*)

(Intend ((c;d)||(e;f))*)

 (Intend e)

(Intend (c;d)||(e;f))

 (Intend c)

 (Intend c;d) (Intend e;f)

 (Intend (c;d)||(e;f))*)
achieved

 impossible

at least one
stack

impossible

both stacks
achieved

Figure 4.2: Rules for Interpreting Action Expressions

stacks. The arrows show how the stacks change with time. In the first example, we

assume that the random selector for non-deterministic OR chooses (p?;a) to be executed

first. The alternative action (b) is tried if (p?;a) fails. The second example starts with

one item (Intend ((c;d)||(e;f))*) on the stack. The sub-stacks for concurrent actions (c;d)

and (e;f) are treated as equally important independent stacks.

Next, we extend the single agent interpreter discussed so far to joint commitment by

agent teams.

4.3 ESTABLISHING AND EXECUTING JOINT

COMMITMENTS

Recall that the joint intention theory provides a formal model of teamwork – agents

having a joint commitment to do an action are said to form a team to do that action.

The joint commitment between two agents x and y to achieve a proposition p with respect

to q is formally expressed as a joint persistent goal (JPG x y p q) between those agents

(Definition 2.6). From [70], a joint commitment between two agents implies individual

commitment by each agent. Therefore, a JPG between x and y for the proposition (DONE

114

y a) also commits agent x to agent y’s doing the action a. Agent x can then act on its

individual commitment (PGOAL x (DONE y a)) by being co-operative, helpful, or in any

other suitable manner. For example, if the joint commitment is for agent y to move a chair

out of the room, then agent x can act proactively to help agent y and open the door if the

door is closed. The definition of JPG also requires establishment of mutual belief by both

parties in the event of private belief regarding achievement, impossibility, or irrelevance of

the jointly committed goal. A persistent weak achievement goal (PWAG) is the building

block of joint commitment between two agents.

Also, recall that the persistent weak achievement goal of an agent x towards another

agent y to achieve p relative to q, denoted by (PWAG x y p q), is another central concept

in the teamwork theory and is used in the definition of the various communicative acts.

A PWAG defines the one-way commitment of one agent towards another and represents

a social commitment, provided that it is made public. We showed in Theorem 2.1 that

mutual belief in each other’s PWAG towards the other to achieve a goal p is sufficient to

establish a joint commitment to achieve p provided that (1) there is mutual belief that p

has not already been achieved, and (2) the PWAGs are interlocking, that is, one PWAG

is relative to the other. Formally, we showed that

|= (MB x y (PWAG x y p q)) ∧ (MB x y (PWAG y x p r∧q)) ∧ (MB x y ¬p)

⊃ (JPG x y p r∧q), where r = (PWAG x y p q)

A consequence of this property is that it is possible to establish joint commitment

between two agents by using communicative acts to establish mutual belief in each other’s

PWAG towards the other agent. As such, we have two choices for supporting joint com-

mitment in STAPLE – we can either interpret JPG and JI directly, or we can instead chose

to interpret PWAG. Recall that in any STAPLE program, we consider all explicitly rep-

resented terms to be with respect the agent’s cognition. Therefore, the interpreter would

need to implement whatever follows from (BEL x (JPG x y p q)) or (BEL x (PWAG x y

p q)). Choosing to use (BEL x (JPG x y p q)) requires that we either make appropriate

assumptions to move the JPG out of the belief modality so that the interpreter can just

follow the definition of JPG, or we need to add suitable axioms to our logic that tells what

to do when the agent concludes something from its belief about its joint committment

with another agent. However, it turns out that we don’t have to make any additional

assumptions or changes to the logic if we use (BEL x (PWAG x y p q)). We showed in

Lemma 2.1 that if an agent believes that it has a PWAG towards another agent, then it

115

does have that PWAG towards that agent. Formally,

|= (BEL x (PWAG x y p q)) ⊃ (PWAG x y p q)

This property follows from the definition of PWAG and the Assumption 2.1 that

agents are competent with respect to their individual commitment, and it allows the

modal interpreter to interpret PWAG by simply following the logical definition of PWAG

(Definition 2.8). As such, teamwork is supported in the current15 STAPLE implementation

by the interpretation of PWAG. Also, the above property is explicitly specified as a mutual

belief of all STAPLE agents so that the belief reasoner can use it.

4.3.1 PWAG Interpreter

The modal interpreter for PWAG is similar to the interpreter for PGOAL and INTEND,

and it works by following the formal definition of PWAG (Definition 2.8) that we restate

here for convenience.

(PWAG x y p q) , [¬(BEL x p) ∧ (PGOAL x p q)] ∨
[(BEL x p) ∧ (PGOAL x (MB x y p) q)] ∨
[(BEL x ¤¬p) ∧ (PGOAL x (MB x y ¤¬p) q)] ∨
[(BEL x ¬q) ∧ (PGOAL x (MB x y ¬q))]

This definition states that an agent x has a PWAG towards another agent y when the

following holds: if agent x believes that p is not currently true then it will have a persistent

goal to achieve p, and if it believes p to be either true, or to be impossible, or if it believes

the relativizing condition q to be false, then it will have a persistent goal to bring about

the corresponding mutual belief with agent y. Note that the PGOAL in the first three

disjuncts are relative to q and therefore, establishing a mutual belief that ¬q allows the

PWAG to be dropped. From the above definition, we see that the PWAG interpreter needs

to reason about mutual beliefs. As such, we enhance the belief reasoner by adding rules

as in Table 4.4 to support mutual beliefs. Recall that the belief reasoner can only evaluate

what the agent believes. Therefore, the reasoning rules for mutual beliefs in Table 4.4 are

with respect to the agent’s belief modality. As noted earlier, the current research does not

explicitly focus on the complexity issues inherent in belief reasoning but rather chooses to

build upon existing literature on this topic [22, 9, 59].

15A previous implementation of STAPLE did interpret both JPG and JI directly rather than interpreting
PWAG.

116

We also modify the consistency checker to check if a given PWAG is inconsistent

with any existing PWAG, PGOAL or INTEND of the agent. First, the currently active

disjuncts in the definition of PWAG are found by invoking the belief reasoner in a Prolog

engine over the agent’s belief base to test whether ¬(BEL self p) or (BEL self p) or (BEL

self ¤¬p) or (BEL self ¬q) is true. Thereafter, the PGOAL conjunct of the currently active

disjunct is taken to be the active PGOAL, and the consistency checker tests whether this

active PGOAL is inconsistent with any existing PWAG, PGOAL, and INTEND of the

agent. A PWAG is assumed to be inconsistent with another PWAG at any given time if

the active PGOALs for each PWAG at that time are inconsistent with each other. If a

new PWAG is found to be inconsistent with existing PGOAL, INTEND, or PWAG then

the agent does not adopt the new PWAG, that is, it is not pushed onto the commitment

stacks.

Table 4.4: Sample Deduction Rules for Mutual Belief

(BEL self p) :- (MB self y p)
(BEL self (BEL y p)) :- (MB self y p)
(BMB self y p) :- (MB self y p)
(BMB y self p) :- (MB self y p)
(BEL self (MB self y (BEL self p))) :- (MB self y p)
(BEL self (MB self y (BEL y p))) :- (MB self y p)
(BEL self (MB self y p∧q)) :- (BEL self (MB self y p)) ∧ (BEL self (MB self y q))
(BEL self (MB self y ¤¬(p∧q))) :- (BEL self (MB self y ¤¬p)) ∨ (BEL self (MB self y ¤¬q))

As in the case of PGOAL and INTEND, the consistency check is done before pushing

a new PWAG on the stack. Thereafter, appropriate triggers are set depending on the

context for conditions that may result in switching the currently active disjunct as well

in discharging the PWAG itself. For instance, if the first disjunct is active, then triggers

are set for (BEL self p), (BEL self ¤¬p), and (BEL self ¬q) as well as for (MB self y

p), (MB self y ¤¬p), and (MB self y ¬q). When one of the first three triggers fires then

re-evaluating the PWAG results in a different active PGOAL that the agent then pursues.

The firing of any of the last three triggers results in discharge of the PWAG. Similarly, if

the second disjunct in the definition of PWAG is active then triggers are set only for the

last two disjuncts, that is, for (BEL self ¤¬p), (BEL self ¬q), (MB self y ¤¬p), and (MB

self y ¬q). Triggers are not set here for the achievement and impossibility of the currently

active PGOAL because that is taken care of during interpretation of that PGOAL. Note

117

that a trigger for (MB self y p) actually tests whether or not the term (BEL self (MB self

y p)) can be deduced from the agent’s belief base, that is, it is a test for (BMB self y p).

Once a PWAG is on the agent’s stack, the currently active PGOAL for that PWAG

is computed and subgoaled. When an active PGOAL of a PWAG is achieved, or is found

to be impossible, or irrelevant, the PWAG is re-evaluated, thereby, either discharging the

PWAG or leading to a different active disjunct, and consequently a different PGOAL to

be achieved as per Definition 2.8. Note that the execution of PWAG results in mutual

beliefs to be established as needed for the achievement, impossibility, and irrelevance of the

committed goal. As such, when two agents have PWAG towards each other for achieving

the same proposition, the resulting behavior is exactly the same as if the agents were

jointly committed to each other for achieving that goal.

4.3.2 Implementing Communicative Acts in STAPLE

The communicative actions in STAPLE are just like any other action and so they must

have at least a code and an effect. Additionally, STAPLE communicative actions may

have a list of desired effects. These three components of a communicative act have the

following functionality in STAPLE:

1. The code of a communicative action simply constructs a message and asks the com-

munication manager (Figure 4.1) to send it to the intended recipient over the net-

work. The communication manager encapsulates the low level details of transmitting

the message appropriately.

2. From the semantics of communicative acts defined in terms of attempt (Section 2.5),

recall that a communicative act has an associated intention and an associated goal.

The intention associated with a communicative act is the minimum outcome that

an agent intends to bring about via the performance of that communicative act.

If the agent has reasons to believe that his intention associated with performing a

communicative act was not achieved then he may retry that communicative act.

As such, the effect a communicative action is set to be the intention part in the

semantics of the communicative act. The (intended) effect of a communicative is

used by the STAPLE interpreter for action selection during means-end reasoning.

3. The desired effect of a communicative action is set to be the goal part in the semantics

of that communicative act. The desired effect is used by the STAPLE interpreter for

118

action selection during means-end reasoning only if it is unable to find any actions

whose effect unifies with the goal to be achieved.

To summarize, the intention associated with a communicative act is used to specify the

effect of the corresponding action in STAPLE, and its associated goal is used to specify

the desired effect of that action. Also, we assume that the performance of communicative

actions does not change the proposition being communicated (Assumption 2.2). There-

fore, if an agent believed p right before performing a communicative act that p then it also

believes p right after performing that communicative act. We also assume that agents are

sincere in their communication (Proposition 2.5). Its consequence is that if an agent per-

forms a communicative act intending that the recipient come to believe p as a result of the

communicative act then that agent must itself believe p. As a result of these assumptions,

we can get rid of the “BEFORE” and “AFTER” predicates in the intended and desired

effects of the communicative acts in Section 2.5. Another simplification is that all facts

in an agent’s belief base are interpreted as if the agent believes those facts. Therefore, a

unilateral mutual belief (BMB – meaning that an agent believes there is mutual belief)

predicate in the effect and desired effect attributes can be re-written as mutual belief

(MB). The precondition of the request communicative act is that the requestee does not

already believe the propositions about which the requester intends to establish mutual

belief via the request.

Basic communicative acts

Theorem 2.3 is used to define the INFORM action in STAPLE as an action whose effect is

(MB x y (BEL x p)). The executable code for that action first requests the communication

manager to connect to the agent being informed (if not already connected), after which

it constructs a message and asks the communication manager to send that message to

the intended recipient. The communicative action CONFIRM is defined similar to that

of an INFORM with a different precondition. Similarly, Theorem 2.2 is used to define

the REQUEST action in STAPLE to be an action whose effect is (MB x y (PWAG x y

φ q)) where φ is the goal of the REQUEST in Definition 2.13. The definitions of these

communicative acts are listed in Table 4.5.

119

Table 4.5: Definitions of Basic Communicative Acts in STAPLE
action definition(request,4) :-

[args: [X,Y,A,Q], %Requester, Requestee, Action, Relativizing Condition

code: {% code to compose and send message},
precondition: {(\+ Y=self) ∧ ∼bel(X,done(A))

∧ ∼bel(X,pwag(Y,X,done(A),pwag(X,Y,done(A),Q)∧Q))
∧ ∼bel(X,bel(Y,pwag(X,Y,done(A)∧pwag(Y,X,done(A),

pwag(X,Y,done(A),Q)∧Q),Q)))},
desired effects: [<>done(A),

<>pwag(Y,X,done(A),pwag(X,Y,done(A),Q)∧Q)],
effects: [(mb(X,Y,pwag(X,Y,done(A)∧pwag(Y,X,done(A),

pwag(X,Y,done(A),Q)∧Q),Q)),1.0)]
].

action definition(inform,3) :-

[args: [X,Y,P], %Informer, Informee, Informed Proposition

precondition: {bel(X,P) ∧ ∼bel(X,bel(Y,P)) ∧ (\+ P=bel(X, P))}
code: {% code to compose and send message},
desired effects:[<>mb(X,Y,P)]

effects: [(mb(X,Y,bel(X,P)),1.0)]

].

action definition(confirm,3) :-

[args: [X,Y,P], %Informer, Informee, Informed Proposition

precondition: {bel(X,P) ∧ (∼bel(X,bel(Y,bel(X,P))))},
code: {% code to compose and send message},
desired effects:[<>mb(X,Y,P)]

effects: [(mb(X,Y,bel(X,P)),1.0)]

].

120

Plans to establish mutual belief

The definitions of the communicative acts listed above are used to specify plans to es-

tablish mutual belief in STAPLE agents. For instance, the body of a STAPLE plan for

establishing mutual belief that p is an action expression consisting of an action to achieve

(MB self y (BEL self p)) followed by an OR expression that terminates if it is mutually

believed that this agent is competent with respect to p, else it waits for the other agent

to establish (MB self y (BEL y p)). Note that these actions and the plan are the same

as other STAPLE actions and plans, and the STAPLE interpreter reasons about them

just like any other actions and plans. However, now there can be actions whose success-

ful performance may lead to the agent acquiring a PWAG or a PGOAL. For instance,

a STAPLE agent must have the (PWAG x y φ q), where φ is from Definition 2.13 of

REQUEST, just after requesting another agent y to do an action a. This is implemented

by adding a declarative rule to the STAPLE rule base that is applicable only when an

action is successfully performed (recall that the INTEND interpreter executes applicable

rules whenever an intended action either succeeds or fails). This rule checks if the effect

of the action that was just performed leads to a commitment (either PGOAL or PWAG),

and if so, the agent adopts that commitment if it does not already have it.

Composed communicative acts

Any number of communicative actions may be defined as needed by composition from

the primitive communicative acts using action formation operators and using specialized

content. One particularly useful communicative act available to all STAPLE agents is

the AGREE communicative act (AGREE x y e a q t) where an agreeing agent x informs

the listening agent y that he has a PWAG with respect to y to perform action a with

respect to both y’s PWAG that x do a relative to q, and q. It is shown in Theorem 2.4,

that successful performance of an AGREE communicative act establishes mutual belief

by default that the sender x has the specified PWAG towards the recipient y. Therefore,

the AGREE action in STAPLE is defined as an action having the default effect (MB x

y (PWAG x y (DONE x a) (PWAG y x (DONE x a) q)∧q)). As such, when an agent

receives an AGREE in response to its REQUEST, the belief base maintenance system for

this agent asserts the JPG resulting from this exchange of messages using Theorem 2.1

on interlocking PWAGs. Similarly, the recipient of a REQUEST asserts the same JPG

in its belief base after performing an AGREE. In fact, the action expression consisting of

REQUEST followed by waiting for the effect of AGREE is the body of a STAPLE plan

121

to establish JPG.

Table 4.6: Definitions of Composed Communicative Acts in STAPLE
action definition(agree,3) :-

[args: [X,Y,P], %Informer, Informee, Informed Proposition

precondition: {bel(X,P) ∧ ∼bel(X,bel(Y,P)) ∧ (\+ P=bel(X, P))}
code: {% code to compose and send message},
effects: [(mb(X,Y, pwag(Y,X,done(A),pwag(X,Y,done(A),Q)∧Q)),1.0)]
].

action definition(refuse,3) :-

[args: [X,Y,P], %Informer, Informee, Informed Proposition

precondition: {bel(X,P) ∧ ∼bel(X,bel(Y,P)) ∧ (\+ P=bel(X, P))}
code: {% code to compose and send message},
effects: [(mb(X,Y, ‘[]’(∼pwag(X,Y,done(A),pwag(Y,X,done(A),Q)∧Q))),1.0)]
].

The REFUSE communicative act is defined similar to that of AGREE using Defi-

nition 2.16. The definitions of AGREE and REFUSE listed in Table 4.6 do not have

the desired effects because the effect and desired effect of these communicative acts are

logically equivalent.

Other composed communicative acts

STAPLE also defines several other composed communicative actions that were used in the

examples in Chapter 3. These communicative actions are listed in Table 4.7.

INFORM-IF is defined as an INFORM of p or INFORM of ∼p depending on whether

the informer believes p or ∼p. INFORM-REF is similar to inform except that what is

being informed is the referent c that makes p true. In this definition, the quantifier i

is the Russelian quantifier ‘iota’. ASK is defined as a REQUEST to do an INFORM-

REF and ASK-IF is defined as a REQUEST to do an INFORM-IF. Note that the above

definitions only illustrate various ways in which communicative acts can be composed in

STAPLE. They encode one possible definition of these composed communicative acts from

the multi-agent systems literature.

So far, we have focused only on singleton communicative actions. However, we need

to examine the issues involved in the joint execution of complex action expressions by the

agents involved before exploring action expressions consisting of multiple communicative

acts.

122

Table 4.7: Other Composed Communicative Acts in STAPLE
action definition(informif,3) :-

[args: [X,Y,P],

precondition: {nonvar(P) ∧ (bel(X,P) ∨ bel(X,∼P))},
code: {% code to compose and send appropriate inform message},
effects: [(mb(X,Y,bel(X,Q)),1.0)] %Q is either P or ∼P
].

mb(X,Y,done(informif(I,J,P))) :- mb(X,Y,done(inform(I,J,P)));

mb(X,Y,done(inform(I,J,∼P))).

action definition(informref,4) :-

[args: [X,Y,C,i(Z,P)],

precondition: bel(X,equals(C,i(Z,P))),

code: {% code to compose and send message},
effects: [(mb(X,Y,bel(X,equals(C,i(Z,P)))),1.0)]

].

plan(askref,3) :-

[args: [X,Y,i(Z,P)], %Sender, Recipient, i(Z,P(Z))

precondition: bel(self,exists(K,bel(Y,equals(K,i(Z,P))))),

body: {request(X,Y,action(informref(Y,X,C,i(Z,P)),Y),Q)},
effects: [(exists(J,bel(self,equals(J,i(W,P)))),1.0)]

].

plan(askif,3) :-

[args: [X,Y,P], %Sender, Recipient, Proposition to inquire

precondition: bel(X, bel(Y,P) ∨ bel(Y,∼P)),
body: {request(X,Y, action(informif(Y,X,P),Y), Q)},
effects: [(bel(X,P) ∨ bel(X,∼P),1.0)]
].

123

4.3.3 Executing Action Expressions Jointly

A joint action expression is an action expression that involves multiple cooperating agents

and therefore, each action in that action expression may have a different actor. A singleton

action can have only one actor in our framework. Hence, doing an action jointly, say, lifting

a table by two agents at the same time is considered to be composed of two different

actions, one by each agent, being done concurrently. Executing joint action expressions

by two agents reduces to each agent’s interpreting their individual PGOAL for that action

expression. As such, the theorems in Table 2.1 are still applicable but there are several

new issues that need to be accounted for in the joint case.

We modify the action representation to specify the agent of the action because action

expressions can now involve actions to be done by different agents in a team. An action

a should now be specified as action(actor, a) otherwise a default actor such as “any” or

“team” is added depending on the context when an action expression is parsed. The

event identifier for an action is also modified to take into account the actor of the action.

The default STAPLE rule is to intend a plan for task allocation among team members

when ‘team’ is specified as the actor for an action, provided that such a plan is available.

Otherwise, the actor ‘team’ is replaced by ‘all’ meaning that all team members have to

perform that action. An agent programmer can make use of the research on distributed

task allocation algorithms in multi-agent systems to provide appropriate plans.

The joint intention theory prescribes that mutual belief be established in the team for

achievement, impossibility or irrelevance of the entire jointly committed action expression.

Teams are free to devise their own policies to establish mutual belief while the joint action

expression is being executed. The default policy in STAPLE to execute joint actions in

lockstep [70] is implemented as a declarative rule to establish mutual belief in a team

about an action that the agent just did as part of the joint action.

As mentioned earlier, an agent x may end up with a term like (PGOAL x (DONE

action(y, a)) q) on top of one of its stacks meaning thereby that agent x is committed to

agent y’s doing the action a. Rules are used to decided what to do in such a situation.

The default rule searches for a plan for being helpful and cooperative towards agent y in

the present situation and instantiates it if such a plan is found. The plan to be helpful

and cooperative is domain dependent16 and must be provided by the agent programmer.

For example, if action(y, a) is the action of carrying a lamp outside the room by agent

16One domain independent way to be helpful is to look for a precondition that is false for the other
agent and adopt it as its own goal. However, this plan is not yet implemented in the current interpreter.

124

y then a plan for agent x to be helpful and cooperative may include agent x to open

the door proactively if the door is closed. If a plan to be helpful and cooperative is not

found, then agent x intends to wait for agent y to attempt to establish mutual belief that

(DONE action(y, a)). In order to prevent agent x from waiting forever, before adopting

the intention to wait for the mutual belief to be established, agent x must believe that

agent y has an individual commitment to do a, and will have a commitment to establish

mutual belief after doing a. This condition is trivially satisfied if it is mutually believed

that agent y has a PWAG towards agent x either for (DONE action(y, a)) or for a complex

action expression that consists of action(y, a). Otherwise, a joint commitment will need

to be established, say, by using a request protocol. Alternatively, agent x may be provided

with a plan that decides how long that agent should wait for agent y to finish doing the

action a.

Non-deterministic OR is inherently problematic when executed jointly because random

selection of one of the actions as in the case of single agents will not work as different agents

may end up selecting different actions. Possible solutions include negotiation among the

team members to decide which action to choose. The default STAPLE implementation

uses random selection of one of the actions by a team leader who then establishes mutual

belief about the chosen action. If the actor of the selected action establishes mutual belief

about impossibility of performing that action, then the leader chooses another action from

the remaining untried actions. This algorithm continues until either one of the actions

succeeds or all the actions in the OR expression are mutually believed to be impossible. In

the current STAPLE implementation, the agents mutually believe that the team leader is

the agent who initiated the joint commitment, for instance, the agent who performed the

initial request that resulted in establishing the joint commitment. This leadership-based

default algorithm is used only when the actors for the actions in the OR expression are

different agents – if the same agent is the actor for all the actions in the OR expression

that is being executed jointly, then that agent decides which action to choose as if it were

executing that OR expression just by itself.

As an aside, during execution of joint actions, there may be actions done that were

not specified in the original action expression (such as establishing mutual belief caused

by the lockstep policy, or executing a plan to achieve the preconditions of another plan

that performs a required action). Further, it is difficult to exactly time-align actions by

two different agents in a sequence. As such, the action sequence operator in STAPLE is

at best an approximation of the usual sequence operator in dynamic logic, and it may be

125

regarded as specifying only a partial ordering of actions. One way to address this difficulty

is to define a weak-sequence operator17, add its semantics to the model in [25], and use it

in place of the sequence operator to be faithful to the actual semantics of the operators.

The present dissertation treats multi-agent conversations as joint actions involving

multiple communicative acts between multiple agents. From this perspective, a conversa-

tion protocol is just like any other joint action expression and therefore, it can be executed

like other action expressions. We present a formalism for conversation protocols as joint

action expressions and discuss its implementation in STAPLE in Chapter 8.

4.4 SUMMARY

We have presented the implementation of an interpreter for directly executing agent spec-

ifications in the logical language of joint intentions. The STAPLE interpreter attempts

to satisfy a formula such as PGOAL using its definition in the JI theory. Thus, this di-

rect execution of specifications can be viewed as implicit construction of a model for the

logical formulae under reasonable assumptions. The assumptions are necessary because

logic as expressive as that used in STAPLE represents an ideal abstraction but the real

implementations invariably imposes various constraints. The question then is how do we

ensure that the interpreter is faithful towards the logic that it attempts to interpret? One

feasible strategy is to treat the model theory of the logic as specifying the denotational

semantics of the logical language, specify an operational semantics of the language based

on the denotational semantics, and use the operational semantics for the actual imple-

mentation. This strategy is the one that we have chosen to follow in this dissertation.

The operational semantics implemented by the STAPLE interpreter is presented in the

appendix.

17A model theoretic definition of the weak sequence a; b would be one in which the action b does not
necessarily occur immediately after action a. The intervening actions allowed to occur between a and b
may be further constrained to be those that lead to establishment of mutual beliefs.

Chapter 5

Extending the Theory of Teamwork and

Communication to Support Groups

Artificial as well as human agents not only interact with individual agents, but they also

need to coordinate and communicate with groups of agents. We have so far introduced

and analyzed teams consisting of just two agents. However, many teams in the real world

consist of multiple coordinating agents. Some of these teams even exist independent of

the identity of their members. For example, the ‘Yankees’ remain the same team even if

all its members are traded. Moreover, many of these teams do not get dissolved once their

current goal is achieved but are reused again and again to achieve other team goals. For

example, the same Marine team can be used for multiple reconnaissance missions. Our

supporting these resilient teams requires our extending the joint intention theory in Chap-

ter 2 to use groups and named teams instead of its constituent agents. Furthermore, the

communicative acts themselves need to be redefined for creating and discharging teams

of multiple agents. This chapter introduces the notion of dynamic but persistent teams,

provides a means to specify the formal semantics of group communication, and finally

it describes the communicative acts and accompanying results that are used in an im-

plemented version of STAPLE. These extensions to the teamwork theory are one of the

contributions of this dissertation.

5.1 PERSISTENT AND DYNAMIC TEAMS

We use the definitions of persistent and dynamic teams that follow to specify and im-

plement the fault-tolerance behavior of AAA brokers in the next chapter. Thereafter, we

declaratively specify the same fault-tolerance behavior (using these definitions) for brokers

written in STAPLE and observe that it results in the STAPLE brokers’ having the same

126

127

fault-tolerance behavior as that of the AAA brokers (Chapter 7).

We have seen in Chapter 2 that team activity is explained in terms of the theory of

joint intentions. This theory characterizes an agent’s behavior in a team in terms of its

internal state described in modal logic, linear time temporal logic, and dynamic logic of

action. Recall that a joint persistent goal (JPG) expressed in terms of weak mutual goal

(WMG) formalizes the notion of joint commitment. The existence of a JPG between two

agents is a sufficient condition for the formation of a team with respect to that JPG. From

Definition 2.6 of JPG, we have

(JPG x y p q) , (MB x y ¬p) ∧ (MG x y p) ∧
(UNTIL [(MB x y p) ∨ (MB x y ¤¬p) ∨ (MB x y ¬q)]

(WMG x y p q))

It is apparent from the above definition of JPG that the JPG becomes invalid when either

x or y is no longer available. Even the individual commitments implied by this JPG is

allowed to be dropped because it is now impossible to establish any of the mutual beliefs in

the until clause. Moreover, the JPG is no longer valid when the agents mutually believe

p and hence the team cannot exist after the mutual goal is achieved and is mutually

believed, even if there are residual commitments. However, teams in the real world may

be one-time teams that are disbanded after the team goal has been achieved, or they may

be persistent teams that continue to exist even when the team members change. Persistent

teams are especially desirable from a fault-tolerance perspective because agents that fail

will generally be replaced by other agents during the recovery process. Next, we introduce

a notation for representing groups, redefine the basic concepts along with JPG for groups,

and introduce a notion of team commitment based on maintenance goals.

5.1.1 Representing Groups

We consider a group to be a collection of entities, that are defined by a membership

property. This can be captured by a predicate consisting of a free variable that ranges

over individuals and, in general, ranges over subgroups as well. We use a special notation

to represent propositions that refer to a group whose members satisfy certain properties.

Let αz be a formula with free variable z and let π(z) be a one-place predicate with variable

z. We call αz(π(z)) a quasi-formula with respect to π(z) and use the notation ϕ to denote

a formula defined by the following rule:

1. If ϕ is a formula, then 〈ϕ〉 = ϕ

128

2. If ϕ is the quasi-formula αz(π(z)), and αz(π) is the formula that results by substi-

tuting z for π(z) in ϕ, then 〈ϕ〉 = ∀z. π(z) ⊃ αz(π)

For example,

〈BEL x p〉 = (BEL x p)

〈BEL λz.(member z τ) p〉 = ∀z (member z τ) ⊃ (BEL z p)

〈BEL λy.(member y τ) 〈BEL λx.(member x τ) p〉〉
= ∀y (member y τ) ⊃ (BEL y [∀x (member x τ) ⊃ (BEL x p)])

The last example says that everybody who is a member of τ believes that whoever

is a member of τ believes p. In these examples, note that this belief does not involve

quantifying-in. For the purpose of this dissertation, we can assume the existence of a

“member” predicate such that the proposition (member z τ) is true iff z is a member

of the group τ . Halpern and Moses [48] have an Ek operator for similar semantics but

since we are concerned with the group membership predicate and are treating groups as

individuals, we have chosen to extend the language explicitly.

5.1.2 Mutual belief and mutual goal in a group

It is possible to define mutual belief in several different ways corresponding to different

possible definitions of unilateral mutual belief or BMB. We explore various definitions of

group belief and unilateral group belief later in this chapter. Unless explicitly mentioned

otherwise, we will assume extensive unilateral belief in this dissertation – an agent be-

lieves p and believes that everybody believes p and believes that everybody believes that

everybody believes p and so on.

Definition 5.1. Group BMB

An agent z has (extensive) unilateral mutual belief with a group τ about a proposition p

when it has a BMB with every member of the group τ about the proposition that every

member of the group believes p.

(BMB z τ p) , 〈BMB z λy.(member y τ) 〈BEL λx.(member x τ) p〉〉

Definition 5.2. Group Mutual Belief

A group τ mutually believes p when all the members of the group have (extensive) uni-

lateral mutual belief with the group about p.

(MB τ p) , 〈BMB λz.(member z τ) τ p〉

129

Definition 5.3. Group Mutual Goal

A group τ has p as a group mutual goal if the group mutually believes that everybody in

the group has p as an individual goal

(MG τ p) , (MB τ 〈GOAL λz.(member z τ) ♦p〉)

We now use these concepts to define team commitments that result in persistent teams.

5.1.3 Joint Commitment Revisited

We overload the definitions of joint persistent goal (JPG) and its related concepts to use

a team as an entity instead of the individual agents in the team. Additionally, we will

assume that the team-members have beliefs about team membership at all times in order

to have correct group mutual beliefs.

Definition 5.4. Team Weak Achievement Goal

A member z of a team τ is said to have a weak achievement goal (WAG) with respect to

the team when the following conditions hold:

1. If the team member believes that the goal p is not yet achieved, it has an individual

goal to eventually bring about p.

2. If it believes that the goal has been achieved, is impossible to achieve, or is irrelevant

then it has an individual goal to bring about the corresponding group mutual belief.

(WAG z τ p q) , [¬(BEL z p) ∧ (GOAL z ♦p)]∨
[(BEL z p) ∧ (GOAL z ♦(MB τ p))]∨
[(BEL z ¤¬p) ∧ (GOAL z ♦(MB τ ¤¬p))]∨
[(BEL z ¬q) ∧ (GOAL z ♦(MB τ ¬q))]

Definition 5.5. Team Weak Mutual Goal

A team τ has p as a weak team mutual goal if the team mutually believes that everybody

in the team has p as a weak team goal.

(WMG τ p q) , (MB τ 〈WAG λz.(member z τ) τ p q〉)

Definition 5.6. Team Joint Persistent Goal

A team τ has a team persistent goal or team commitment when the following conditions

hold:

130

1. The team mutually believes that the goal p has not been achieved.

2. The team has a mutual goal to achieve the goal p.

3. The team has p as a weak team mutual goal until there is mutual belief about the

completion, feasibility or irrelevance of p.

(JPG τ p q) , (MB τ ¬p) ∧ (MG τ p)∧
(UNTIL [(MB τ p) ∨ (MB τ ¤¬p) ∨ (MB τ ¬q)] (WMG τ p q))

Given that the above JPG is defined in terms of “whoever is a member of the team”,

there will be instances when a team member does not know about the other team members.

However, this is not a problem as long as the team members are able to communicate with

“whoever” is in the team at a given instance irrespective of whether or not they know

all those members. In fact, this property is a characteristic of many real life examples of

teamwork such as remote collaboration on a project where not everybody at each location

knows everybody else at the other location. However, to simplify group communication

between team members and to make sure that there is appropriate mutual belief in the

team when agents are allowed to join and leave a team, we will assume that every team

member eventually knows every other team member.

Assumption 5.1. Dynamic Team Assumption

If a team member privately comes to believe that the group has a new member, or an

existing member is no longer in the team then it has an individual goal to bring about

the corresponding group mutual belief. Formally, we define the property (dynamic τ) as

follows.

(dynamic τ) ,
∀z (member z τ) ⊃ { [∀y Qz,y ⊃ (GOAL z ♦(MB τ¬(member y τ))] ∧

[∀y Pz,y ⊃ (GOAL z ♦(MB τ (member y τ))] }
where,

Qz,y = (BEL z ∃e{DONE (member y τ)?;e;¬(member y τ)?})
Pz,y = (BEL z ∃e{DONE ¬(member y τ)?;e;(member y τ)?})
and e is a singleton event.

Unless stated otherwise, we will assume the above property about team membership

in the remainder of this dissertation

Definition 5.7. Team Joint Intention

131

A team jointly intends an action a if there is a team commitment to do the action while

believing that the team is going to do the action next

(JI τ a q) , [TPG τ (DONE τ (MB τ (HAPPENS τ a))?;a) q]

Joint commitment and joint intention are defined above with respect to the team as

an entity. This allows a team having these commitments to continue as long as there is

no mutual belief about the completion, impossibility or irrelevance of the team goal even

if some of the team members leave and new members join the team. The achievement of

mutual belief among team members requires group communication that we explore later in

this chapter. Next, we use maintenance goals to characterize another important property

of a persistent team – the ability to continue beyond one-time achievement goals.

5.1.4 Maintenance Goal

Maintenance goals can be restorative or preventive. We will only be concerned with

restorative maintenance goals in the fault-tolerance examples in the next chapter. How-

ever, we note that preventive maintenance goals can also play an important role in achiev-

ing fault tolerance in multi-agent systems by attempting to prevent events that can po-

tentially cause failure.

Definition 5.8. Restorative Maintenance Goal

An agent has a (restorative) maintenance goal if the following is true of the agent: if the

agent does not believe p, it will adopt the goal that p be eventually true. The maintenance

goal is persistent (PMtG) if this fact remains true of the agent at least until the agent

either believes that it is impossible to maintain p or that the maintenance goal is irrelevant.

(PMtG x p q) , [¬(BEL x p) ⊃ (GOAL x ♦p)]∧
(UNTIL [(BEL x ¤¬p) ∨ (BEL x ¬q)] [¬(BEL x p) ⊃ (GOAL x ♦p)])

Theorem 5.1. If an agent who has a persistent maintenance goal for p comes to believe

¬p then it will adopt a persistent achievement goal (PGOAL) for p in addition to the

persistent maintenance goal. Formally,

|= (PMtG x p q) ∧ (BEL x ¬p) ⊃ (PGOAL x p q)

132

Proof. We need to show that all three conjuncts in the definition of PGOAL (Definition

2.1) follow from the premise of the theorem.

(1) (BEL x ¬p) [From premise]

(2) To establish that (GOAL x ♦p):

(a) ¬(BEL x p) [(BEL x ¬p) ⊃ ¬(BEL x p)]

(b)[¬(BEL x p) ⊃ (GOAL x♦p)] [From premise and Definition 5.8]

(c) (GOAL x♦p) [From (a) and (b) using Modus Ponens]

(3) To establish the UNTIL conjunct in the definition of PGOAL, we use the reasoning

that the consequent of an implication must remain true at least until either the antecedent

of the implication or the implication itself is no longer true.

(d) The implication [¬(BEL x p) ⊃ (GOAL x ♦p)] must remain true at least until

[(BEL x ¤¬p)∨(BEL x ¬q)] is true. [From Definition 5.8]

Therefore, the consequent (GOAL x ♦p) of this implication must remain true at

least until

[(BEL x ¤¬p)∨(BEL x ¬q)] is true. [The antecedent ¬(BEL x p) is true]

(e) The consequent (GOAL x ♦p) of the implication [¬(BEL x p) ⊃ (GOAL x ♦p)]

must remain true at least until the antecedent ¬(BEL x p) is no longer true.

[Assuming that the implication itself remains true]

Therefore, (GOAL x ♦p) must remain at least until [(BEL x p) ∨ (BEL x ¤¬p)∨(BEL

x ¬q)] is true. [From (d) and (e)]

This establishes the desired result.

Definition 5.9. Weak Team Maintenance Goal

Weak team maintenance goal (WTMtG) is defined analogous to weak team goal. If an

agent comes to believe p or ¬p or impossibility or irrelevance of p then it will adopt a

goal to bring about the corresponding mutual belief if that mutual belief does not already

exist.

(WTMtG x τ p q) , [¬(BEL x p) ⊃ (GOAL x ♦p)]∧
[(BEL x ¬p) ∧ ¬(MB τ ¬p) ⊃ (GOAL x ♦(MB τ ¬p))]∧
[(BEL x p) ∧ ¬(MB τ p) ⊃ (GOAL x ♦(MB τ p))]∧
[(BEL x ¬q) ∧ ¬(MB τ ¬q) ⊃ (GOAL x ♦(MB τ ¬q))]∧
[(BEL x ¤¬p) ∧ ¬(MB τ ¤¬p) ⊃ (GOAL x ♦(MB τ ¤¬p))]

133

Definition 5.10. Weak Team Mutual Maintenance Goal

A team has a weak team mutual maintenance goal (WTMMtG) of p iff the team mutually

believes that everybody who is a member of the team has a weak team maintenance goal

of p towards the team.

(WTMMtG τ p q) , (MB τ 〈WTMtG λz.(member z τ) τ p q〉)

Definition 5.11. Team Maintenance Goal

A team of agents has a team maintenance goal (TMG) for p iff it has a WTMMtG for p

and this WTMMtG persists at least until the team mutually believes the impossibility or

the irrelevance of maintaining p.

(TMtG τ p q) , (WTMMtG τ p q)∧
(UNTIL [(MB τ ¤¬p) ∨ (MB τ ¬q)] (WTMMtG τ p q))

The above definition of team maintenance goal leads to a team commitment to achieve

a proposition whenever the team mutually believes that the proposition committed to is

not true. The next theorem establishes this result.

Theorem 5.2. If a team having TMtG for p comes to mutually believe ¬p then it will

adopt a JPG for p. Formally,

|= [(TMtG τ p q)∧ (MB τ ¬p)] ⊃ (JPG τ p q)

Proof. We want to show that all the conditions for JPG follow from the premise of the

theorem.

(1) (MB τ ¬p) is true (assume that the antecedent is true).

(2) (MB τ ¬p) ⊃ ∀z (member z τ) ⊃ (BEL z ¬p)

⊃ ∀z (member z τ) ⊃ ¬(BEL z p)

Using the definition of WTMMtG,

(WTMMtG τ p q)∧ (MB τ ¬p)

⊃ (MB τ ∀z (member z τ) ⊃ (WTMtG z τ p q) ∧ ¬(BEL z ¬p))

⊃ (MB τ ∀z (member z τ) ⊃ (GOAL z ♦p))

= (MG τ ♦p)

(3) From the definition of TMtG, we see that WTMMtG must hold at least until

[(MB τ ¤¬p)∨ (MB τ ¬q)] becomes true.

Therefore, the implications in the definition of WTMtG must hold at least until

134

[(MB τ ¤¬p)∨(MB τ ¬q)] becomes true.

Hence, we can conclude the following where z is an arbitrary member of the group τ .

(a) If ¬(BEL z p) is true and remains true then [¬(BEL z p) ∧ (GOAL z ♦p)] must

remain true at least until [(MB τ ¤¬p) ∨(MB τ ¬q)] becomes true.

(b) If (BEL z p) is true and remains true then [(BEL z p) ∧ (GOAL z ♦(MB τ p))]

must remain true at least until (MB τ p) becomes true or [(MB τ ¤¬p)∨(MB τ ¬q)]

becomes true, that is, until [(MB τ p)∨(MB τ ¤¬p)∨ (MB τ ¬q)] becomes true.

(c) If (BEL z ¤¬p) is true and remains true then [(BEL z ¤¬p)∧ (GOAL z ♦(MB

τ ¤¬p))] must remain true at least until [(MB τ ¤¬p)∨(MB τ ¬q) becomes true.

(d) If (BEL z ¬q) is true and remains true then [(BEL z ¬q)∧(GOAL z ♦(MB τ ¬q))]

must remain true at least until [(MB τ ¤¬p)∨(MB τ ¬q)] becomes true.

From (a), (b), (c), and (d), and by the fact that at least one of the antecedents in the

corresponding implications must be true at any time, we can conclude that the disjunction

[¬(BEL z p)∧ (GOAL z ♦p)] ∨
[(BEL z p)∧ (GOAL z ♦(MB τ p))] ∨
[(BEL z ¤¬p)∧ (GOAL z ♦(MB τ ¤¬p))] ∨
[(BEL z ¬q)∧ (GOAL z ♦(MB τ ¬q))]

must be true at least until [(MB τ p)∨ (MB τ ¤¬p)∨ (MB τ ¬q)] becomes true.

The above disjunction is the definition of (WAG z τ p q) where z is an arbitrary

member of the group τ .

Therefore, we can conclude that (WMG τ p q) must be true at least until

[(MB τ p)∨(MB τ ¤¬p)∨(MBτ ¬q)] becomes true.

From (1), (2), and (3), (JPG τ p q) is true. This proves the desired result.

We use the above definitions and results to specify a fault-tolerance behavior of brokers

in the Adaptive Agent Architecture discussed in the next chapter. The modified definition

of JPG and the Dynamic Team Assumption are used in the STAPLE implementation in

this dissertation. Next, we explore the semantics of group communication.

5.2 GROUP COMMUNICATION

Artificial as well as human agents need to communicate with groups of agents. For in-

stance, we post messages to mailing lists and notice boards; participate in teleconferences

and videoconferences; publish web pages and books; speak in meetings and classrooms;

talk on radio and television; and advertise on pamphlets and banners. Agents will be

135

assuming some of these responsibilities from humans and will therefore, need to be able to

reason and communicate about group concepts. Moreover, in open multi-agent systems,

where agents come and go dynamically, it will become ever more likely that agents will not

know exactly to whom they are sending information or from whom they are requesting

aid. These are compelling reasons to investigate the development of support for group

communication in multi-agent systems. It is no surprise, therefore, that a large num-

ber of distributed software systems inevitably use some incarnation of broadcasting and

multicasting.

However, we observe that the major agent communication languages have either no

provision or no well-defined semantics for group communication. For instance, in the FIPA

ACL (Agent Communication Language), the only way to inform a set of agents is to inform

them individually, one at a time. Furthermore, semantics of the FIPA communicative acts

imposes the precondition that the sender has certain beliefs about the mental state of the

(known) addressee. Consequently, there is no way to send messages to unknown agents –

a typical scenario in broadcast communication.

KQML does offer several primitives, such as broadcast and recruit-all, that have group

flavor but these primitives are merely shorthand for a request to do a series of other

communicative acts. Proper semantics cannot be given to group requests such as “One of

you, please, get me a slice of that pie.” We may safely conclude that principled support for

group communication in the widely used agent communication languages does not exist.

Group communication is not just about sending a message to a large number of agents

at the same time. As mentioned earlier, sometimes the sender does not know the specific

recipients of a message. A person who posts the notice “Beware of dogs” may not know

who will read that message. So the semantics of a communication language should allow for

intentions with respect to “whoever gets this message,” while allowing for constraints on

the intended recipients and identification of this constraint for correct illocutionary effect.

Furthermore, the intended actor for a communication may be a subset of the recipients

or a completely different set. By sending an email to the CSE101 mailing list requesting

Becker to take the attendance in the next class, the instructor not only made a request

to Becker to take attendance but also let the whole class know that she requested Becker

to do it. Senders need not only be individuals but can also be groups. An invitation card

from John and Betty is actually a request to attend from “them”. Individuals may be

viewed as singleton groups. Therefore, the same communication primitives should work

both for individual and group communication. We believe that any general-purpose agent

136

communication language should be able to deal with these aspects of communication.

To summarize, we have argued that (1) Agent communication languages should sup-

port group communication where communication between individuals is a natural special

case; (2) An agent communication language that supports group communication should

account for the recipients being unknown, the sender being a group, and the intended

actors being different from the recipients.

5.2.1 Constraints on Communication Languages

We believe that the properties of communication in human society should be an essential

guiding principle in the design of agent communication languages. These properties are

requirements that an agent communication language should address.

• Addressee Constraint : An ACL should support communication addressed to individ-

uals as well as to groups. Moreover, a group may have a stable, known membership,

as in a mailing list, or its membership may be unknown, as in a radio broadcast

addressed to all listeners.

• Sender Constraint : An ACL should support communication sent by individuals as

well as by groups. Typically, an individual acts on behalf of a group when the sender

happens to be a group: for example, the invitation card from a couple, and an official

letter from a company.

• Recipient Constraint : An ACL should support unintended recipients or over-hearers

that are an inevitable part of group communication. For example, anybody may

happen to read a notice addressed to CSE101 students on the school notice board.

Similarly, an announcement on an airport public announcement system requesting

Alfred Hopkins to meet someone at the bookstall may include everybody else who

hears the announcement as an over-hearer.

• Actor Constraint : An ACL should support intended actors being wholly different

from either the intended or the unintended recipients of a message. In most cases,

however, the intended actors will be a subset of the intended recipients. For instance,

Alfred Hopkins is the only intended actor in the above example.

• Actor Awareness Constraint : An ACL should support a requester’s ignorance about

the intended actors of the request. For example, a teacher should be able to request

137

“all those who have done the homework” to raise their hands, without knowing in

advance which students have done the homework.

• Sender’s Awareness Constraint : An ACL should support a sender’s ignorance about

the individual members of a recipient group. This is typically the case with radio

and television broadcasts, notices and banners, and authoring web pages and journal

articles.

• Recipient’s Awareness Constraint : An ACL should support the ignorance of a recip-

ient about other recipients of the same message. The reader of a newspaper article

may not know who else read that article, yet she may be able to make certain in-

ferences about the mental state of others who have read or will be reading the same

article.

• Originator Constraint : An ACL should support a recipient’s potential ignorance of

the originator or sender of a message. A sign “Authorized Personnel Only” may not

indicate the author, but it does communicate the appropriate intentions to anybody

who reads the sign. Similarly, a note that I discover on the beach may let me make

inferences about the intentions of “whoever wrote the note” even if I don’t come to

know or deduce its author from it.

We note however, that the FIPA specification [41] supports the actor constraint to some

extent.

5.2.2 Adding Scope Rules to Group Notation

We extend the group notation of Section 5.1.1 by introducing scope of the variable in

the lambda expression, and further simplify the resulting notation by using the following

conventions. We will underline the entities that represent groups when we need to em-

phasize their group status, and use the same symbol without the underline in a functional

notation to denote the associated membership predicate. For example, τ is a group having

the membership predicate τ(z) where z is a free variable. An entity without underline can

be either an individual or a group.

With these changes, the notation α denotes a formula defined by the following rule:

1. If α is a formula without any term of the form τ , then 〈α〉 = α

138

2. If α is a formula with term τ , and z does not appear in α, and τ(z) is the property

predicate that corresponds to τ , and α(z) is a formula formed by replacing τ with z

in α, then 〈α〉 = ∀z. τ(z) ⊃ α(z)

For example,

〈BEL x p 〉 = (BEL x p), if x is an individual agent.

〈BEL τ p〉 = ∀z τ(z) ⊃ (BEL z p)

〈BEL τ p〉 cannot be further expanded until we know whether τ is an individual or a

group.

In case of ambiguity, we will mark the starting angle bracket, and the group term that

it applies to, with the free variable in the superscript. This defines the scope of the free

variable.

〈yBEL τy (BEL x 〈zBEL τ z p〉)〉 = ∀y τ(y) ⊃ (BEL y (BEL x ∀z.(τ(z) ⊃ (BEL z p))))

If τ represents an individual agent, say x, then the superscript is dropped in the

expansion.

〈yBEL τy p〉 = 〈BEL τ p〉 = (BEL τ p) = (BEL x p)

Sometimes, groups need to be treated as meta-agents with agent-like properties and

not as a list of individuals. This distinction is discussed in the section on group action.

In this case, the membership predicate will not be specified, the term representing this

group will not be underlined, and the group will be treated as an individual agent.

5.2.3 Group Beliefs

Our semantics of group communication primitives based on speech acts deals with group

beliefs. The simplest case is to consider the beliefs of all the members of a group when

talking about group beliefs. The beliefs of more complex groups such as hierarchically

composed organizations and institutions [114] can then be expressed in terms of the beliefs

of an abstract group consisting of certain roles in that organization or institution.

Group Belief

Group belief may be defined in several ways. This dissertation assumes inclusive belief

defined next unless explicitly stated otherwise.

Definition 5.12. Inclusive Belief

139

A group τ believes p if all the individuals or the sub-groups that constitute the group

believe p.

(BEL τ p) , 〈BEL τ p〉
= ∀z τ(z) ⊃ (BEL z p)

For example, “the students of CSE101 believe p” can be represented by

(BEL StudentsOfCSE101 p) ≡ ∀z (student z CSE101) ⊃ (BEL z p)

assuming that the domain membership predicate (student z CSE101) is defined.

Other possible definitions of group belief may include (1) extensive belief —mutual

belief among all the constituents (individuals or sub-groups) of a group, (2) existential

belief —belief by at least one constituent of a group, (3) majority belief —belief by a

majority in a group, and (4) extensive majority belief —mutual belief among a majority

in a group.

Group Mutual Belief

An entity τ1 has unilateral mutual belief about a proposition p with another entity τ2

when τ1 believes that there is mutual belief between itself and τ2 about p. It is possible

to define different variations of group BMB corresponding to the various types of group

beliefs mentioned above. For inclusive beliefs that we assume in this dissertation, we define

four different categories of BMB.

Definition 5.13. Unilateral Mutual belief between two individuals

This is the degenerate case in which the two groups happen to be singleton groups. The

semantics of (BMB x y p) has been given in a previous section. The semantics of all

other cases will be expressed in terms of the semantics of this base case.

Definition 5.14. Unilateral Mutual belief between an individual and a group

Agent x has unilateral mutual belief about proposition p with every member of group τ

separately. Note that x knows who are the group members.

(BMB x τ p) , 〈BMB x τ p〉
≡ ∀z τ(z) ⊃ (BMB x z p)

Definition 5.15. Unilateral Mutual belief between a group and an individual

140

Every individual in the group τ has unilateral mutual belief about proposition p with

agent x.

(BMB τ x p) , 〈BMB τ x p〉
≡ ∀z τ(z) ⊃ (BMB z x p)

Definition 5.16. Unilateral Mutual belief between two groups

A group τ1 has unilateral mutual belief about proposition p with another group τ2 when

everybody in group τ1 has unilateral mutual belief with every member of group τ2 sepa-

rately.

(BMB τ1 τ2 p) , 〈z〈wBMB τ z
1 τw

2 p〉〉
≡ ∀z τ1(z) ⊃ (BMB z τ2 p)

Definition 5.17. Group Mutual Belief

Given the above definitions of unilateral mutual belief, the entities τ1 and τ2 have mu-

tual belief about proposition p when both τ1 and τ2 have unilateral mutual beliefs about

proposition p with respect to the other entity.

(MB τ1 τ2 p) , (BMB τ1 τ2 p) ∧ (BMB τ2 τ1 p)

This is a straightforward generalization of the mutual belief defined for two agents

(Definition 2.3b).

5.2.4 Group Action

Researchers in multi-agent systems have attempted to answer questions such as what it

means for a group to do an action [45]. However, we are mainly interested in the meaning

of terms such as (HAPPENS τ a) and (DONE τ a) where a is an action expression and τ

is a group.

For the purpose of this dissertation, all we need is to be able to distinguish between

(1) a group doing an action as an entity (or meta-agent), and (2) everybody in a list of

individuals performing the action. For instance, a request to CSE101 students to move

the teacher’s desk is a request to the students as a whole. It may entail the CSE101

students deciding which students would do the action of moving the heavy desk and how

the individual actions of those students would be coordinated. On the other hand, a

141

request to everybody in CSE101 to submit the homework is a request to every student in

the class to submit their homework individually. An agent communication language should

be able to properly convey these nuances of a requester’s intentions about the performers

of an action. We distinguish between these two cases in our semantics by requiring that

the group be treated as a meta-agent in the first case – the membership predicate should

not be specified. Terms such as (HAPPENS τ a) do not decompose further and it is a

part of the problem solving process of the group to decide how the group does the action

a. The second case requires specification of a membership predicate and terms such as

(HAPPENS τ a) will be defined as 〈HAPPENS τ a〉. This term expands to ∀z τ(z) ⊃
(HAPPENS z a) requiring every member of the group τ to do the action a.

5.2.5 Group Extension of Basic Concepts

Here we extend the basic semantic concepts from Chapter 2 using the group formulation

developed in the previous sections. It is important to note that the definitions to follow

allow for both groups and individuals, as τ may either be an individual or a group.

Definition 5.18. Persistent Goal

(PGOAL τ p q) , (BEL τ ¬p) ∧ (GOAL τ ♦p)∧
(UNTIL [(BEL τ p) ∨ (BEL τ ¤¬p) ∨ (BEL τ ¬q)](GOAL τ ♦p))

An entity (agent or group) τ having a persistent goal p is committed to that goal.

The entity τ cannot give up the goal that p is true in the future, at least until it believes

that one of the following is true: p is accomplished, or is impossible, or the relativizing

condition q is untrue. The group PGOAL differs from JPG in that everyone in the group

has to have a belief about the end state instead of a mutual belief about the end state as

in the case of JPG.

Definition 5.19. Intention

(INTEND τ a q) , (PGOAL τ [HAPPENS τ (BEL τ (HAPPENS a))?;a] q)

Intention to do an action a is a commitment to do the action knowingly. The entity τ

is committed to being in a mental state in which it has done the action a and just prior

to which it believed that it was about to do the intended action next.

Definition 5.20. Attempt

(ATTEMPT τ e p q t) , t?; [(BEL τ ¬p) ∧
(GOAL τ (HAPPENS e;♦p?)) ∧
(INTEND τ t?; e; q? (GOAL τ (HAPPENS e;♦p?)))]?; e

142

An attempt to achieve p via q at time t is a complex action expression in which the entity

τ is the actor of event e and just prior to e, the actor chooses that p should eventually

become true, and intends that eshould produce q relative to that choice. So, p represents

some ultimate goal that may or may not be achieved by the attempt, while q represents

what it takes to make an honest effort.

Definition 5.21. Persistent Weak Achievement Goal

(PWAG τ1 τ2 p q) , [¬(BEL τ1 p) ∧ (PGOAL τ1 p q)]∨
[(BEL τ1 p) ∧ (PGOAL τ1 (MB τ1 τ2 p) q)]∨
[(BEL τ1 ¤¬ p) ∧ (PGOAL τ1 (MB τ1 τ2 ¤¬p) q)]∨
[(BEL τ1 ¬q) ∧ (PGOAL τ1 (MB τ1 τ2 ¬q))]

This definition states that an entity τ1 has a PWAG with respect to another entity τ2

when the following holds: (1) if entity τ1 believes that p is not currently true, it will have

a persistent goal to achieve p, (2) if it believes p to be either true, or to be impossible, or

if it believes the relativizing condition q to be false, then it will adopt a persistent goal to

bring about the corresponding mutual belief with entity τ2. As we have seen in Chapter

2, PWAG is a basic concept in joint intentions and is used in the definition of request.

A Generalized Communication Primitive

We now present a definition of the request performative with group semantics. This

definition is a generalized version of the individual communication performative in Defi-

nition 2.13. The terms α, β, and γ in the following definition can represent either groups

or individuals. Here, α is the entity performing the request, β is the recipient (including

the “over-hearers”) of the request message, and γ is the intended actor.

Definition 5.22. Request

(REQUEST α β γ e a q t) , (ATTEMPT α e φ ψ t)

where,

φ = 〈z(DONE γz a) ∧ [PWAG γz α (DONE γz a) (PWAG α γ 〈wDONE γw a 〉 q)]〉
and ψ = [BMB β α (BEFORE e [GOAL α (AFTER e [PWAG α γ φ q])])]

Substituting for φ and ψ in the definition of attempt (Definition 5.20), we get the

goal and the intention of the request respectively. The goal of the request is that the

intended actor γ eventually does the action a and also has a PWAG with respect to the

143

requester α to do a. The intended actor’s PWAG is with respect to the requester’s PWAG

(towards her) that she does the action a. The requester’s PWAG is itself relative to some

higher-level goal q. The intention of the request is that the recipient β believe there is

a mutual belief between the recipient and the requester that before sending the request,

the requester α had a goal that after sending the request he (the requester) will have a

PWAG with respect to the intended actor γ about the goal φ of the request. Next, we see

that our definition of request never requires a requester to know who the recipients (both

intended and unintended) or the intended actors are.

The recipient β and the intended actor γ never quantify into the beliefs of the requester

α - meaning thereby that the requester α does not need to know who β and γ are. Let us

consider the general case in which β and γ are groups with specified membership predicate

and α could be either a group or an individual, that is, consider (REQUEST α β γ e a q

t). The term 〈z(DONE γz a). . . 〉 in φ expands to (∀z γ(z) ⊃ . . .) with γz replaced

by z everywhere. After plugging φ into the definition of attempt (Definition 5.20) and

simplifying, we get (GOAL α . . . (∀z γ(z) ⊃ . . .)) which means that the requester does

not have to know about the members of the group γ. The PWAG conjunct of φ has

the requester’s PWAG as its relativizing condition (PWAG α γ. . .). However, the γ in

(PWAG α γ. . .) is not specified as γz so it does not get replaced by the z that appears in

〈z(DONE γz a). . . 〉 and hence γ does not quantify into the requester’s PWAG as a result

of expanding the angle brackets in φ. From Definition 5.21, the (PWAG α γ. . .) expands

to terms of the form [(BEL α p)∧ (PGOAL α (MB α γ p))]. Expanding the MB in

terms of BMB and between two groups, the only relevant term that we get is of the form

(PGOAL α (BMB γ α p) . . .). Using the definition of inclusive BMB given earlier, this

expression further simplifies to

(PGOAL α [∀z.γ(z) ⊃ (BMB z α p)).])

where z is a variable that has not been used anywhere else in the expansion of request.

Here also, γ does not quantify into the beliefs of the requester α. It is important to note,

however, that any other definition of group BMB (such as exclusive BMB) will also not

quantify γ into the beliefs of the requester α in the term (PGOAL α).

By plugging ψ into attempt, and with similar reasoning we find that the term (. . . [PWAG

α γ φ q]. . .) does not quantify the intended recipient γ into the beliefs and goals of the

requester α. Moreover, the term (INTEND. . . [BMB β α]. . .) in the expansion of at-

tempt after plugging ψ, never quantifies the recipient β into the beliefs and goals of the

requester α, as can be seen by similar expansion and reasoning. Hence, we see that our

144

definition of request never requires a requester to know who the recipients (both intended

and unintended) or the intended actors are.

We now illustrate examples of usage of this request.

Examples of Usage

Example 1. A request from one agent x to another agent y

This is the degenerate case in which each of the communicating groups consists of a

single agent. The recipient of the message and the intended actor will be the same agent.

Using the rules for expanding our macro notation, the above definition reduces to the

following:

(REQUEST x y y e a q t) ≡ (ATTEMPT x e φ ψ t)

where φ = [(DONE y a) ∧ [PWAG y x (DONE y a) (PWAG x y (DONE y a) q)]]

and ψ = [BMB y x (BEFORE e [GOAL x (AFTER e [PWAG x y φ q])])]

As expected, this expression is same as the definition of request between two agents in

(Definition 2.13).

Example 2. “All those who have done the homework raise their hands”.

Here, the requester α is a single agent – the teacher. The recipient β is a group—all

students in the class. The intended actor γ is also a group—all the students in the class

who have done their homework. The action a is “raise hand”. Formally, this request may

be expressed as

(REQUEST teacher

students in class

students done homework

e

raise hand

homework due(now)

t)

Let us assume that the membership predicate for γ ie. students done homework is

(doneHomework z).

The goal term φ in the definition of request expands to the following:

145

φ = ∀z.(doneHomework z) ⊃ [(DONE z raise hand) ∧
[PWAG z teacher (DONE z raise hand)

(PWAG teacher students done homework

〈DONE students done homework raise hand〉
homework due(now))

]]

The goal part of the request is that every student z that has done the homework

eventually does the action of raising her hand. Moreover, the student z should also have a

PWAG with respect to the teacher that she (the student z) does the action of raising her

hand. Furthermore, this PWAG should be with respect to the teacher’s PWAG with “the

students who have done their homework” that all students who have done their homework

do the action of raising their hands. The intention of the request is to have mutual belief

with all students (irrespective of whether or not they have done the homework) in the

class about this goal.

Meeting the requirements

What makes this definition of request uniquely powerful is that it satisfies all the con-

straints on agent communication languages identified earlier. The addressee and the

sender constraints are satisfied because α and β can be groups as well as individuals.

The recipient constraint is satisfied because β includes all the recipients – intended as well

as unintended. The actor constraint is satisfied because we have a separate term γ for the

intended actor. The only place where the recipient β is used in the definition of request

is in [BMB β α ...]. From the definition of inclusive BMB used in this dissertation, we

see that the members of β do not need to know who the other members of β are. There-

fore, the recipient’s awareness constraint is supported where it is needed. The originator

constraint is satisfied because the requester α does not quantify into the beliefs of the

recipient β in the term [BMB β α ...]. The most intriguing part of the request definition,

however, is that it even satisfies the actor awareness constraint and the sender’s awareness

constraints as seen by the following theorems.

Theorem 5.3. A request can be performed even when the requester does not know who

the intended actor is. Formally,

(Done α (REQUEST α β γ e a q t)) ∧ ¬∃z.(BEL α γ(z))

146

is satisfiable.

Proof. Construct a possible worlds model that satisfies both the conjuncts. We use the

situation in example 2 to construct such a model. Let the real world w0 be the world just

after the request event has taken place. Let w1 and w2 be the worlds that are both belief

and goal accessible by the teacher. Let the proposition (Done α (REQUEST α β γ e a q

t)) be true in w1 and w2. Let y1 and y2 be two students who have done their homework

and hence are the intended actors of the request. Suppose that w1 is belief accessible from

w0 by y1, and w2 be belief accessible from w0 by y2. The proposition (doneHomework

y1) is true in w1 and (doneHomework y2) is true in w2. However, it is not the case that

∃z.(BEL teacher (doneHomework z)) because the z in w1 and w2 differ. Since w1 is the

only accessible world for y1 and w2 is the only accessible world for y2, y1 believes that it

has done the homework in w1, and y2 believes it has done the homework in w2, because

both y1 and y2 know that they individually satisfy (doneHomework z). Therefore, it is

possible for the teacher to have the goal that whoever has done the homework be able

to evaluate the implication (∀z.(doneHomework z) ⊃ (DONE z raise hand) ∧ (PWAG z

teacher)). This is the goal part of the request that we get after plugging φ in the

attempt. Similarly, using a membership predicate for the class and constructing worlds in

which these propositions hold, the intention part of the request can be satisfied. Therefore,

(Done α (REQUEST α β γ e a q t)) ∧ ¬∃ z.(BEL α γ(z)) is satisfiable in this model.

Theorem 5.4. A request can be performed even when the requester does not know everyone

who will get the message. Formally,

(Done α (REQUEST α β γ e a q t)) ∧ ¬∃z.(BEL α β(z))

is satisfiable.

Proof. This follows from the proof of the above theorem when a model is constructed to

satisfy the intention part of the request.

5.2.6 Discussion

Although there has been considerable work in agent communication languages [41, 67], and

researchers, including us, have investigated group intentions and group action [104, 45],

group communication has not been addressed in a principled manner. We believe the

present work provides a first step in this direction. We identified a set of requirements for

agent communication languages, presented a generalized request performative that can

147

handle both group and individual communication, and showed that this performative is

novel in that it satisfied all the identified constraints.

The current STAPLE interpreter supports a simplified group communication seman-

tics where the group membership is known. Implementation of the full semantics of group

communication in terms of ”whoever” is left for future work. The simplified group commu-

nication is consistent with the dynamic team assumption (Assumption 5.1) because team

members in a dynamic but persistent team will eventually know all other team members.

As such, we are left with the problem of defining the simplified group communicative

acts and to show that these communicative acts do in fact create and discharge persistent

and dynamic teams defined earlier in this chapter. These group communicative acts and

the results that follow are used in an implemented STAPLE interpreter presented in this

dissertation.

5.3 GROUPS IN STAPLE

Groups in STAPLE can either be named groups such as “Yankees” or they can simply be

a collection of known individuals such as the set {Bob, Harry, Peter}. The evaluation of

the group membership predicate abstracts away from how groups are actually represented

and the discussion that follows is independent of any particular representation of groups.

As in the previous sections, the predicate (member x τ) is true if x is a member of the

group τ at the time of evaluation and false otherwise. Also, recall that we assume the

agents in a team eventually know the identity of the other team-mates (Assumption 5.1).

A consequence of this assumption is that under steady state if x is a member of group τ

then it is mutually believed by the group τ that x is member of that group. For simplicity,

STAPLE does not deal with authorized representative and similar semantic primitives and

therefore, communicating with a group involves communicating with every member of the

“known” group.

Axiom 5.1. Communicating with a group in STAPLE involves communicating with every

member of that group.

A consequence of this assumption is that communicative acts addressed to a group

must be delivered to each member of the group by the underlying infrastructure. Another

consequence is that the group communicative acts in STAPLE do not allow the actor (i.e.,

sender of the message) to be a group. Next, we discuss group beliefs, group commitments,

and group communicative acts in the context of STAPLE.

148

5.3.1 Group beliefs

We will use both formulations of group mutual belief: (MB τ p) represents that the group

τ mutually believes that p (Definition 5.2), and (MB τ1 τ2 p) denotes that there is mutual

belief between entities τ1 and τ2 that p where one or both of entities τ1 and τ2 can be

groups (Definition 5.17). The following useful properties are a direct consequence of these

definitions of group mutual belief.

Proposition 5.1. Properties of group mutual belief

a) (member x τ) ⊃ (MB τ p) ≡ (MB x τ p)

b) (member x τ) ∧ (member y τ) ∧ (MB τ p) ⊃ (MB x y p)

c) (BEL y (member x τ)) ∧ (BEL y (MB τ p)) ⊃ (BEL y (BEL x p))

These properties can be generalized to allow making inferences about group mutual

belief from the mutual belief about belief of each of its members. For example, we should

be able to make the following deduction assuming that τ is the group {x,y,z}:
(MB τ (BEL x p)) ∧ (MB τ (BEL y p)) ∧ (MB τ (BEL z p)) ⊃ (MB τ p)

We state this property in the following lemma.

Lemma 5.1. A group mutually believes that every member of the group believes p iff the

group mutually believes that p. Formally,

(MB τ 〈BEL λx.(member x τ) p〉) = (MB τ p)

Proof. : L.H.S.

= (MB τ 〈BEL λx.(member x τ) p〉)
= 〈BMB λz.(member z τ) τ 〈BEL λx.(member x τ) p〉〉 [From Defn. 5.2 of MB]

= 〈BMB λz.(member z τ) τ p〉 [From defn. 5.1 of (BMB z τ)]

= (MB τ p) [From Defn. 5.2 of MB]

= R.H.S.

Next, we analyze the commitments of a group of agents towards each other.

149

5.3.2 Group PWAG and JPG

The group version of PWAG in Definition 5.21 is built from the group version of its

constituent terms. Here we investigate how the PWAG of a group (or towards a group)

relates to the PWAG of (or towards) the individual members of the group. These results

are useful for establishing and reasoning about JPG in a group of agents and they are

encoded as STAPLE reasoning rules.

Lemma 5.2. If for every member y of a group τ there is mutual belief between an agent x

and the group τ that member y has a PWAG towards x then it is mutually believed between

them that the group has a PWAG towards x. In other words, PWAG of every member of

a group towards an agent implies PWAG of the group as a whole towards that agent using

the above definitions of group beliefs and group goal. Formally,

|= 〈MB x τ(PWAG λy.(member y τ) x p q)〉 ⊃ (MB x τ (PWAG τ x p q))

Note that the above formulation quantifies the team members y into the beliefs of x and

τ .

Proof. We want to show that the LHS leads to the same mental attitude that the RHS

is reduced into whenever any disjunct in the definition of PWAG is true. We need to

consider four exhaustive cases – one for each disjunct in the definition of PWAG.

Case 1: 〈¬(BEL τ p)〉
In this case,

〈MB x τ (PWAG λy.(member y τ) x p q)〉 ∧ 〈¬(BEL τ p)〉
⊃ [∀y (member y τ) ⊃ (MB x τ (PWAG y x p q))] ∧ [∀z (member z τ) ⊃ ¬(BEL z p)]

⊃ [∀y (member y τ) ⊃ (MB x τ (PGOAL y p q))]

⊃ (MB x τ (PGOAL τ p q)) [Using definitions group belief and group goal]

Note that the RHS is reduced to (MB x τ (PWAG τ x p q)) from the definition of group

PWAG when ¬(BEL τ p). The steps for the other three cases (BEL τ p), (BEL τ ¤¬p)

and (BEL τ ¬q) are similar. This establishes the desired result.

Lemma 5.3. If there is mutual belief between a group member x and the group τ that

some agent y has a PWAG towards the group then it is mutually believed between that

group member and the group that agent y has a PWAG towards group member x.

|= (member x τ) ∧ (MB x τ (PWAG y τ p q)) ⊃ (MB x τ (PWAG y x p q))

150

Proof. : As in the above lemma, we want to show that the LHS leads to the same mental

attitude that the RHS is reduced into whenever any disjunct in the definition of PWAG

is true.

Lets consider the case when (BEL τ p). From the definition of group belief, it follows

that (BEL x p). Therefore, the RHS reduces to (MB x τ (PGOAL y (MB y x p) q))

using the second disjunct in the definition of PWAG. From the LHS, using the definition

of PWAG, it follows that (MB x τ (PGOAL y (MB y τ p) q)). However, (MB y τ p) ⊃
(MB y x p) where (member x τ). Therefore, LHS leads to RHS in this case. The steps

for the other three cases 〈¬(BEL τ p)〉, (BEL τ ¤¬p) and (BEL τ ¬q) are similar. This

establishes the desired result.

The next theorem generalizes the interlocking PWAG theorem for establishing JPG in

a group of agents.

Theorem 5.5. Mutual belief in a group that every group member has a PWAG towards

the group to achieve a goal p is sufficient to establish a joint commitment in the group to

achieve p provided that (1) there is mutual belief in the group that p has not already been

achieved, and (2) the PWAGs are interlocking, that is, the PWAG of all but one group

member towards the group is relative to the PWAG of one of the group members towards

the group. Formally,

|= [(MB τ (PWAG x τ p q)) ∧ 〈MB τ (PWAG λz.(member z τ) τ p r∧q)〉 ∧ (MB τ ¬p)]

⊃ (JPG τ p r∧q)

where r = (PWAG x τ p q), and (member x τ) is true

Proof. W e need to show that all the three conjuncts in the definition of (JPG τ p r∧q)

follow from the antecedent. The proof is similar to that of Theorem 2.1 where the group

consists of two agents.

(a) (MB τ ¬p) is trivially follows from the antecedent.

(b) To show (MG τ p) follows from the antecedent:

(i) ∀z (member z τ) ⊃ (MB τ (PWAG z τ p r∧q)) [From antecedent]

(ii) ∀z (member z τ) ⊃ (MB z ¬p) [From antecedent]

(iii) ∀z (member z τ) ⊃ (MB τ (GOAL z ♦p)) [From (i), (ii) and definitions

of PWAG and PGOAL]

(iv) (MG τ p) [From (iii) using definition of group mutual goal]

151

(c) Similarly, to establish {UNTIL [(MB τ p) ∨ (MB τ ¤¬p) ∨ (MB τ ¬q)] (WMG τ

p q)}, we follow the same steps as in Theorem 2.1.

This establishes the desired result.

An important consequence of this theorem is that JPG can be established in a group

using group communication. The STAPLE versions of group communicative actions are

discussed next.

Group Communicative Acts in STAPLE

The definitions of REQUEST and INFORM defined in Table 4.5 remain unchanged even

after introducing group terms. The variables for sender and recipient in those definitions

when bound to a group term modify the definitions appropriately to support groups.

However, these definitions quantify the recipient into the sender’s beliefs and therefore,

the senders have to know the recipients of a communicative act. As such, these are

simplified definitions of group communicative acts and they do not support full-fledged

group semantics as discussed in the previous section. The support for complete semantics

of group communication in STAPLE is part of future work.

The following results derived from Theorem 2.3 is used in STAPLE for establishing

mutual belief in a group using the INFORM communicative act. These results are encoded

as STAPLE reasoning rules.

Theorem 5.6. An INFORM communicative act from an individual to a group establishes

mutual belief between the individual (sender) and the group (recipient) that the sender

believes the informed proposition. If the group mutual believes that the sender is a member

of that group then the aforesaid INFORM establishes mutual belief in the group that the

sender believes the informed proposition. Formally,

|= (DONE (INFORM x τ e p t)) ⇒ (MB x τ (BEL x p))

|= (DONE (INFORM x τ e p t)) ∧ (MB τ (member x τ)) ⇒ (MB τ (BEL x p))

|= (DONE (INFORM x τ e (BEL x p) t)) ∧ (MB τ (member x τ)) ⇒ (MB τ (BEL x p))

Proof. These results follow from the definition of INFORM by applying Theorem 2.3 and

using the definition of group mutual belief. Theorem 2.3 is still applicable because we are

treating groups as individuals in STAPLE.

Lemma 5.4. A group mutually believes that p when all members of the group have in-

formed the group that they believe p. Formally,

152

|= ∀z (member z τ) ⊃ [(DONE (INFORM z τ e (BEL z p) t)) ∧ (MB τ (member z τ))]

⇒ (MB τ (BEL x p))

Proof. When all group members have responded, assuming that on one has changed its

mind we have

∀z (member z τ) ⊃ (MB τ (BEL z p)) [From Theorem 5.6]

= (MB τ p) [From definition of group MB]

The definition of agree in Table 4.6 is modified to support groups because we need to

separate the notion of an addressee from that of a recipient. For convenience, we define an

action gagree(X,G,Y,action(Act,G,EId),Q) where X is the sender, G is the addressee

group and Y is the recipient whose effect is

mb(X,G,pwag(X,G,done(action(Act,G,EId)),pwag(Y,G,done(action(Act,G,EId)),Q)∧
Q))

Group AGREE is used in conjunction with the REQUEST communicative in STAPLE

to establish joint commitment in a group of agents as stated in the following lemma.

Lemma 5.5. A REQUEST to a group to do an action followed by group AGREE (gagree)

from every member of the group members establishes JPG in the group to do that action.

|= (MB τ (member x τ))∧ (DONE (REQUEST x τ a q))

∧ {∀z (member z τ) ⊃ (DONE (AGREE z τ (BEL z p)))}
⊃ (JPG τ p r∧q)

where r = (PWAG x τ p q)

Proof. This result follows directly from Theorem 5.5 using definitions of REQUEST and

AGREE.

Next, we summarize this chapter and then use the concepts developed here to specify

a fault-tolerant brokering behavior in the next chapter.

5.4 SUMMARY

This chapter extended the teamwork theory and group communication semantics for use

by groups. We found that the same basic concepts that underlie group communication

form the core of persistent but dynamic teams. We modified the definition of joint commit-

ment to use group as an entity and argued that the resulting teams continue to exist even

when the team membership changes. Maintenance goals add another dimension to team

153

persistence and we proposed a definition of teams based on maintenance goals that allows

teams to continue to exist beyond one time achievement goals. We proposed a framework

for representing the semantics of group interaction, used to define the semantics of group

REQUEST, and showed that it meets several desirable characteristics. Finally, we pro-

posed a simplified version of group communication that is currently used in the STAPLE

agent programming language, and showed that these group communicative acts can be

used to establish and discharge persistent teams consisting of groups of agents.

The semantics of group communication in terms of “whoever” as presented in this

chapter is not yet implemented in STAPLE. The support for this group communication

semantics as well as support for group protocols in STAPLE is left for future work. We also

believe that treatment of roles and responsibilities in teams, organizations, and institutions

is needed for a better understanding of what happens in group-communication in these

complex groups and is part of future work.

Chapter 6

Adaptive Agent Architecture

Brokered multi-agent systems can be incapacitated and rendered non-functional when the

brokers become inaccessible due to failures that can occur in any distributed software

system. We hypothesize that the theory of teamwork can be effectively combined with

basic fault-tolerance principles to specify robust brokered architectures that can recover

from broker failures. To show the feasibility of this approach, we present the Adaptive

Agent Architecture (AAA). In particular, we argue that (1) teamwork can be used to

create a robust brokered architecture that will recover a multi-agent system from broker

failures without incurring undue overheads, and (2) teamwork can be used to guarantee a

specified number of brokers in a large multi-agent system.

The motivation for the AAA is two-fold. First, it shows the applicability of teamwork

to one of the mainstream problems in computer science. Second, it provides a test case

for evaluation of STAPLE that we propose in the next chapter. Specifically, the fault-

tolerance of brokers in AAA is achieved by implementing a joint intention specification

of that fault-tolerant behavior. One of the test cases for STAPLE would be to give

this logical specification of fault-tolerance to brokers written in STAPLE and obtain the

same behavior as that of the AAA brokers without having to actually implement that

specification

6.1 INTRODUCTION

Multi-agent systems are prone to failures that can occur in any distributed software sys-

tem. Bugs and improperly handled exceptions in the agent program or in the supporting

environment, machine crashes, network partitioning, and numerous other hardware and

software faults can make agents unavailable suddenly for unforeseen periods. The tradi-

tional distributed systems literature provides various fault-tolerance techniques to recover

154

155

from these failures. We have argued in [61] that most of these techniques are meant for

specific failure situations and they require special infrastructural support. For example,

the techniques of hot backups [6], object group replication [7], virtual synchrony [7], and

N-version voting [20] need specific mechanisms for communication and synchronization

among the replicas. It may not be possible to use these techniques in multi-agent sys-

tems without extensive modifications to the underlying agent infrastructure. On the other

hand, a technique based on a multi-agent system concept may be amenable to implemen-

tation with minimal modifications, for example, by adding a plan to the plan library of

agents, or in the case of STAPLE agents, by simply specifying an appropriate joint action

expression. We note that earlier work on teamwork [70] has shown agent teams to be

more robust than a collection of agents in the face of adversity and unforeseen situations

[52, 111, 55]. The reason behind this robust behavior exhibited by teams is that the mem-

bers of a team are committed not only to the success of their portion of the joint action

but also to the success of the team as a whole. A team will try to recover from problems

and will abandon the joint goal only when it is mutually believed by the team members

that the goal is no longer possible. This discussion motivates us to investigate exploiting

teamwork to achieve fault-tolerance.

Multi-agent systems often require brokers for accepting requests, locating capable

agents, routing requests and responses, sharing of information, managing the system,

registering agent capabilities, and for various other facilitation tasks [37]. As a result,

a large number of multi-agent infrastructures such as Open Agent Architecture (OAA)

[72, 23], RETSINA [116], JATLITE [53], and Infosleuth [78] provide some kind of middle

agents or at least some form of facilitation and routing service. However, brokered systems

are brittle because the broker is a single point of failure. Our experience with Quickset

[24], a multi-agent system based on the brokered OAA, reinforces the need for an agent

architecture that can recover quickly from broker failures.

As a multi-agent system with brokers becomes more complex and as the number of

agents in the system increases, it will typically use more brokers (or middle agents) to

achieve an optimum between redundancy, resource utilization, efficiency, and load bal-

ancing. Moreover, when a number of independent multi-agent communities are intercon-

nected, it is generally desirable for each local agent community to have its own middle

agents. As such, there will typically be more than one middle agent in the system that

may be able to substitute for each other when needed. Therefore, if these middle agents

form a team with appropriate joint commitments, they will substitute for any middle

156

agent that becomes unavailable. As a result, the multi-agent system will continue to work

as long as there is at least one middle agent remaining in the broker team. However, the

performance may degrade as a result of having fewer middle agents in the system.

This teamwork-based recovery scheme can be extended to have at least N brokers in

the system at all times. A broker team with a joint commitment to maintain a specified

minimum number of brokers in the team will attempt to restore the population of the

team when brokers fail or become inaccessible. One way to achieve this end is by starting

new brokers in the system. This approach will result in a recovered system that may

have similar performance as the original system. However, support is required from the

agent library to enable the agents (including the brokers) to start other brokers. Proper

coordination is required among the brokers to ensure correct mutual beliefs, to track the

progress of a recovery process, and to reorganize the agents after recovery.

The remainder of this chapter is organized as follows. We review the work done in the

area of fault tolerance in multi-agent systems as well as traditional distributed systems in

the next section, and introduce the Adaptive Agent Architecture in Section 6.3. We show

in Section 6.4 that a multi-agent system can recover from broker failures if the brokers

form a team with certain commitments and the agent architecture enables the brokers to

honor those commitments. In Section 6.5, we show that an AAA-based multi-agent system

can maintain a specified number of brokers in the system due to the joint commitment

towards a maintenance goal. Finally, we conclude in Section 6.6 with a summary of the

AAA experience and set up a test case that brokers in STAPLE must be able to exhibit.

Next, we review the main fault-tolerance techniques used in literature.

6.2 REVIEW OF FAULT TOLERANCE TECHNIQUES

Here we review some of the main approaches to fault-tolerance in multi-agent systems as

well as in the traditional distributed and database systems.

6.2.1 Fault Handling in Multi-agent systems

Two divergent approaches that have been used to diagnose failures and attempt recovery

are (1) using sentinels external to the agents that monitor inter-agent communication, and

(2) using introspection to monitor an agent’s own run time behavior.

Jennings showed that as the world becomes more complex and variable and plans tend

157

to fail more often, teams as a whole waste fewer resources and are more robust than self-

interested agents [52]. This approach is similar to ours in that both approaches are based

on the theory of teamwork. However, we explicitly address the problem of fault-tolerance

whereas Jennings work is more focused towards cooperative problem solving.

Hägg uses external sentinel agents to monitor inter-agent communication, build models

of other agents, and take corrective actions [47]. The sentinel agents listen to all broadcast

communication, interact with other agents, and use timers to detect agent crashes and

communication link failures. A sentinel agent copies the world model of other agents

and detects inconsistencies by observing the behavior of other agents as well as its own

internal state. In our teamwork-based approach, the problem solving agents themselves

participate in fault-tolerance as opposed to the external sentinel agents used in this work.

The sentinels in Hägg’s approach analyze the entire communication going on in the multi-

agent system to detect state inconsistencies. However, this approach is not realistic for

systems such as Quickset [24] due to the high volume and frequency of messages in these

systems. Furthermore, the sentinel-based approach may not work if the agents do not

make their communication and world model publicly accessible.

Klein proposes to use exception-handling service to monitor the overall progress of a

multi-agent system [58]. Agents register a model of their normative behavior with the

exceptional-handling service that generates sentinels to guard the possible error modes.

The exceptional-handling services use a query and action language to interact with the

problem solving agents to detect and diagnose faults and take corrective actions. The

exception-handling service is a centralized approach whereas our teamwork-based approach

is essentially a decentralized approach. Moreover, Klein’s approach relies on being able to

communicate with the agents whereas the current work attempts to restore connectivity

when communication with a broker is not possible.

Kaminka and Tambe use a social diagnosis approach wherein socially similar agents

compare their own state with the state of other agents for detecting possible failures

[55]. An explicit teamwork model is used for failure diagnosis wherein agents use plan

recognition from observable actions as well as communication with other agents to infer

and construct a model of the other agents. This work is similar to the current work in that

the teamwork model is used in both cases. However, we mainly concentrate on middle

agents whereas Kaminka’s work is related to a system that is not based on middle agents.

Decker, Sycara, and Williamson advocate the use of caching information (returned by

matchmakers) by individual agents in systems that use matchmakers to improve robustness

158

in the face of matchmaker failures [37]. Their approach could be applied in the AAA by

enabling agents to query brokers for agent capabilities and caching that information for

directly contacting other agents in the event of broker failures. They have also shown that

using load balancing by brokers in brokered systems improves performance and hence

provides a degree of robustness from aggressive agents. These approaches compliment our

work and they can be used along with our teamwork-based techniques.

6.2.2 Traditional Fault-Tolerance Techniques

A large number of techniques for fault-tolerance can be found in the traditional database

and distributed systems literature. Table 6.1 lists some of the techniques that have been

developed for database recovery, for application recovery and recovery of distributed sys-

tems. We also briefly review some of the important fault-tolerance techniques used in the

database and traditional distributed systems literature and observe that redundancy is

the basic principle behind most of those methods. Most of these recovery methods pri-

Table 6.1: Traditional Fault-Tolerance Techniques
Database Recovery:
Redo-undo Logs, Fuzzy and Basic Checkpointing, Database Replication

TP Monitors, Application Servers, Resource Managers:
Recoverable Queues, Pseudo-conversations, Fault-tolerant Input Logging, Checkpointing
based Recovery, Transaction based Recovery, Stateless Servers, Warm Backups and Hot
Backups, Regenerative Processes

Fault-Tolerant Distributed Systems:
Object Group Replication + Virtual Synchrony, Message Logging, N-Version Voting

marily focus on replication techniques that permit critical system data and services to be

duplicated as a way to increase reliability [7]. Active replication is also used for processes

wherein the inputs are duplicated and the outputs produced are consolidated. Most of the

methods used for application recovery advocate either logging the application messages

or frequently saving the application state and therefore, require either a database or a re-

coverable queue [71] The current work attempts to recover a multi-agent system without

recovering an inaccessible broker process and so does not require the brokers to save their

state to persistent storage.

Considering the specific problem of recovering a multi-agent system from broker failure,

159

the closest traditional techniques that may be applicable are the techniques of warm and

hot backups and the object group replication technique used in conjunction with virtual

synchrony. In the warm backup technique, a process is replicated and when the main

process goes down, the replica immediately starts recovering to the last known state of

the dead process. A hot backup is similar to a warm backup except that the input and

output of the main process as well as the replica are synchronized at all times and so the

replica can immediately take over without having to first bring itself to the state of the

dead process [6].

The object group replication used with virtual synchrony is essentially the same as the

hot backup technique except that here objects are replicated instead of active processes [7].

Groups of objects are treated as a single object and all objects in a group receive the same

messages in the same sequence. Therefore, if we form a group of similar objects, there is

a high probability that the different objects in a group will be in possibly different but

correct states. So if one object fails or gets into some unforeseen problem, another object

can take over the responsibility of responding to messages. This is the technique typically

used to design fault-tolerant multi-ORB applications in the CORBA world [7, 34]. A

slightly different technique is that of N-version voting in which N independently developed

modules from the same specification run in parallel and the result is decided by voting

[20].

The above three categories of fault-tolerance require explicit replication for the purpose

of fault-tolerance. These replicas are overheads in the sense that they exist only as backups

and perform no useful task. These techniques also require infrastructural support to keep

the process replicas synchronized or to implement object groups and virtual synchrony.

The technique that we propose uses the brokers that are already present in the system

and it uses teamwork to achieve an effect similar to warm backups and object groups plus

virtual synchrony. Moreover, generic agents that already have reasoning and planning

capabilities may be able to implement a technique based on multi-agent system concepts

with minimal support (for example, by adding a plan and the corresponding actions to

the plan and action libraries respectively) as opposed to the aforementioned techniques

that require specific infrastructural support.

Next, we introduce AAA and its fault-tolerant features.

160

6.3 OVERVIEW OF THE ADAPTIVE AGENT ARCHI-

TECTURE

The Adaptive Agent Architecture (AAA) is a brokered multi-agent system architecture

under development that provides an infrastructure for building fault-tolerant brokered

multi-agent systems. It interoperates with the Open Agent Architecture [72, 23] and it is

currently used in multi-agent systems, such as Quickset [24], that place heavy demand on

inter-agent communication and yet need to provide acceptable real time response.

The AAA agent library has been developed in Java and it provides an agent shell for

developing AAA agents. The library also provides a facilitator agent that serves both as

a broker and a matchmaker. Henceforth, in this dissertation, we will refer to the AAA

facilitator as the AAA broker. The AAA brokers can be interconnected with each other

and the agent library supports both facilitated and direct inter-agent communication.

The AAA agents advertise their capabilities as well as an address for connection requests

with a broker during registration. TCP/IP is used for network transport and the TCP

mechanisms and timeouts are used for detection of connection failures. The brokers as

well as other agents can dynamically enter and leave AAA-based multi-agent systems. The

AAA brokers form a team for the purpose of fault-tolerance and they share knowledge

about who is connected to whom with the team members.

The AAA brokers form a persistent broker team, which we call T, when they register

with each other. This broker team satisfies the specifications of a joint intention (JI) and

a team maintenance goal (TMtG) for the purpose of fault-tolerance as specified in the

following mission statements.

AAA Mission Statement 1: Whenever an agent registers with the broker team,

the brokers have a team intention of connecting with that agent, if it ever disconnects

from its broker, as long as it remains registered with the team.

AAA Mission Statement 2: The AAA broker team has a team maintenance goal

of having at least N brokers in the team at all times where N is specified during the team

formation.

The design of the AAA brokers implements the specification of teamwork that follows

from the mission statements. Using the mission statements, along with other logical

properties of the AAA, we can establish the commitments of the brokers in the team.

These commitments result in fault tolerant behavior when the brokers act rationally and

take appropriate actions to honor them. Note that the above commitments are in addition

161

to any brokering commitments that the broker team may have.

Next, we discuss in detail the specific technique of recovering an AAA-based multi-

agent system from broker inaccessibility.

6.4 RECOVERY FROM BROKER FAILURE

Here we discuss the teamwork-based technique used by the AAA brokers (AAA facilitators

being used as brokers) for automatically recovering a multi-brokered multi-agent system

from sudden broker unavailability. The broker under consideration may be inaccessible

due to machine crash, network breakdown, or death of the broker process. We also make

the simplifying assumption that the brokers in the system are fully connected. We first

present the logical characterization of our teamwork model and briefly describe our recov-

ery scheme. Thereafter, we walk through a recovery scenario describing the commitments

involved and the actions taken by the agents.

6.4.1 Formal Characterization

Recall that team activity has been explained in terms of the theory of joint intentions. A

joint persistent goal (JPG) formalizes the notion of joint commitment. The existence of

a JPG between groups of agents is a sufficient condition for the formation of a team with

respect to that JPG. Two agents have a joint intention (JI) to do an action a if they have

a JPG to do a while being in a particular mental state. Joint intention can also be defined

in terms of team as an entity rather than the individual agents that constitute a team.

This extended definition allows for teams whose members may change dynamically.

We argue that the recovery of an AAA-based multi-agent system from broker failures

is a consequence of Mission Statement 1 under the dynamic team assumption (Assump-

tion 5.1). The specification of teamwork prescribed by this mission statement is imple-

mented by the AAA brokers. Next, we formally restate Mission Statement 1 of AAA

broker team.

AAA Mission Statement 1:

|= ∀y [(agent y) ∧ (DONE (registered y T)?) ∧ (dynamic T) ⊃ (JI T a(y) (registered

y T))]

where,

a(y) = WHILE (registered y T) DO

[IF¬(connected y T) THEN (connect y T)]

162

T = team of brokers

This statement means that whenever an agent registers with the broker team, the

brokers have the joint intention of connecting to the agent, if it ever disconnects, as long

as it remains registered with the team. It assumes that registration is property of the

broker team rather than of a single broker. One of the properties of AAA is that an agent

is considered to be registered with the broker team when it registers with any broker

teammate. Another logical property of AAA is that when an agent is registered with the

broker team then there is mutual belief in the team about this fact. Using the above

specification of Mission Statement 1, along with other logical properties of the AAA, we

can establish the commitments of the brokers in the team. These commitments result in

fault tolerant behavior when the brokers act rationally and take appropriate actions to

act on the commitments.

The individual commitments of team members arising as a result of their joint intention

have been established in [70] and the joint intention theory has been applied to action

sequences in [28]. Applying the properties of joint intention to the action expression a(y),

and using similar reasoning as in [70, 28], we establish the following theorems about the

commitments of AAA brokers.

The commitments derived from Mission Statement 1 require the brokers in the broker

team to locate and connect with any stranded agents that were connected to a broker

teammate that is no longer accessible. As a result, the AAA-based agents, which cannot

function without a broker, have access to brokers at all times, even when the broker

serving them becomes suddenly unavailable. The following theorems follow from Mission

Statement 1 and we show how to establish them in the next section.

Theorem 6.1. Whenever an agent registers with a broker, the broker has a commitment

to make this fact mutually believed by the broker team.

Theorem 6.2. When an agent unregisters with a broker, the broker has a commitment

to make this fact mutually believed by the broker team.

Theorem 6.3. When a broker discovers that an agent that is registered with the team is

not connected, it has a commitment to make this fact mutually believed.

Theorem 6.4. When an agent that is registered with the broker team gets disconnected,

the brokers have a team commitment to connect to that agent.

Theorem 6.5. When an agent that is registered with the broker team gets disconnected,

all the brokers in the broker team have an individual commitment to connect to that agent.

163

Theorem 6.6. When a broker successfully connects to an agent that is registered with the

broker team but got disconnected, it has a commitment to bring about mutual belief about

this fact.

Theorem 6.7. When a broker that was committed to the disconnected agent’s being re-

connected to the team, learns that the agent has been reconnected to the broker team, it

gives up its commitment to connect to that agent.

Next, we show how to establish these theorems.

6.4.2 Establishing the Formal Properties

We now formally restate and prove Theorem 6.4, which is one of the main theorems that

follow from Mission Statement 1.

Theorem 6.4. This theorem says that when an agent that is registered with the broker

team gets disconnected, the brokers have a team commitment to connect to that agent.

It can be restated formally in terms of team joint persistent goal.

|= ∀y [(agent y) ∧ (MB T (registered y T)) ∧ (MB T ¬(connected y T)) ⊃ (JPG T

(DONE (connect y T)) q]

where, q is some escape condition.

Proof. Assuming that the antecedent is true, we want to show that the consequent follows

from the AAA mission statement 1. Expanding mission statement 1 using the definition

of JI for a group of agents, we get the following team JPG.

ξ = [JPG T {DONE γ?;a(y)} (registered y T)] where,

γ = [MB T (HAPPENS T a(y))], and

a(y) = (WHILE (registered y T) DO [if ¬(connected y T) THEN (connect y T)])

Let, a(y) = d(y);(registered y T)?;[¬(connected y T)?;(connect y T)|(connected y T)?];e(y)

where, d(y) denotes the previous iterations, and

e(y) denotes the remaining iterations.

Substituting for a(y), we get

ξ = [JPG T {DONE γ?;d(y);(registered y T)?;¬(connected y T)?;(connect y T);e(y)}
(registered y T)]

We are interested in the iteration in which the antecedent becomes true. Without loss

of generality, assume that the action subsequence γ?;d(y);(registered y T)?;¬(connected

164

y T)? has just been done. Using similar lines of reasoning to Theorem 2 in [28], we can

establish the following lemma.

Lemma 6.1. Joint commitment to an action sequence

|= (JPG T (DONE a;b)) ∧ (MB T (DONE a)) ∧ (MB T ¬(DONE b))

⊃ (JPG T (DONE b) [JPG T (DONE a;b)])

Applying this lemma to a(y) in the mission statement, we get

ξ ⊃ χ where,

χ = [JPG T {DONE (connect y T); e(y)} ξ]

By assumption, (MB T¬(connected y T)) is true. It follows that the present members of

the broker team mutually believe that the action ¬(connected y T)? has been done and

so they know when the next action (connect y T) is to start. Hence, the brokers in the

team now have a team commitment to do (connect y T) with respect to the rest of the

overall team commitment.

∴ χ ⊃ (JPG T [DONE (connect y T)] χ)

This proves the desired result.

The other theorems that follow from Mission Statement 1 can be proved similarly.

Next, we use the theorems in the previous section to explain a typical recovery process.

6.4.3 Recovery Scheme

The recovery scheme that follows from the above commitments can be summarized as

follows:

1. Each facilitator joins a recoverable broker team consisting of the adjacent brokers.

The entire multi-agent system may consist of such teams with overlapping members.

2. Normally, an agent contacts some broker on startup. The broker to be contacted on

startup may be specified by the person (or another agent) starting this agent.

3. Each broker informs the following properties to its adjacent brokers:

(a) The address for direct connection (lets call it dc-addr) of agents that register

with it.

(b) The address of the agent that unregisters with it.

165

4. Agents listen for request from brokers at address dc-addr and they inform a broker

about this address at the time of their registration with that broker. Brokers can

initiate connection with agents for which they know the direct connection address.

5. When a broker disconnects from its teammates, all the brokers on its team attempt

to directly contact the agents that were registered with the now disconnected broker.

Contacting an agent involves requesting the agent to connect again with a member

of the broker team (the requesting broker).

6. After successfully contacting an agent in this manner, a broker informs this fact

to its teammates. The other brokers give up their attempts to contact this agent

directly.

The multi-agent system has recovered from failure of the disconnected broker when all

the agents registered with that broker have been contacted in this manner. The requests

that were in progress at the time of the failure, and hence could not be completed, may

be sent again by the requesting agent.

6.4.4 A Recovery Scenario

To demonstrate the fault-tolerant behavior of AAA brokers, we set up a scenario consist-

ing of three brokers and two agents. The brokers are interconnected and each agent is

connected to one of the brokers. Figure 6.1 illustrates the initial system setup. A client

agent periodically sends requests for which the distance agent is the only capable agent.

The three brokers form a robust team as described earlier. This system can function only

if both the client and the distance agents are registered with a broker.

Broker1

Broker2 Broker3

Client
Agent

Distance
Agent

Figure 6.1: Initial Setup

Figure 6.1 illustrates a multi-agent system with three brokers and two other agents.

166

The client agent periodically sends requests for which the distance agent is the only capable

agent. The three brokers form a robust team characterized by the mission statements 1

and 2. This system can function only if both the client and the distance agents are

registered with a broker. It has been specified that this multi-agent system should have

at least three brokers at all times.

From Theorem 6.1, the brokers have an individual commitment to bring about mutual

belief when an agent registers with a broker. Therefore, when the client agent registers

with Broker2, Broker2 informs this fact along with the name and address of the distance

agent to Broker1 and Broker3. Similarly, when the distance agent registers with Broker3,

Broker3 informs this fact to Broker1 and Broker2.

After some time, we kill Broker3. When a broker teammate is no longer accessible,

the other brokers believe that all the agents registered with that broker are disconnected

(This belief results from an inference rule used by the AAA brokers). When Broker3 is

killed, the underlying TCP/IP functionality results in at least one of the remaining brokers

discovering that Broker3 is no longer accessible to it and hence, believing that the distance

agent is not connected to the broker team. Therefore, from Theorem 6.3, this broker has

an individual commitment to bring about a mutual belief about its discovery. As a result,

communication is predicted to take place among the brokers in the team.

From Theorem 6.4, the broker team has a joint commitment to connect to the agent

that it mutually believes is disconnected from the team. Moreover, from Theorem 6.5,

each of the remaining brokers has an individual commitment to contact the disconnected

agent. The two brokers act rationally by attempting to contact the distance agent at

the address given to them earlier by Broker3. If the distance agent accepts registration

request from one of the brokers, it refuses subsequent registration requests from other

brokers. Figure 6.2 illustrates the situation when broker1 has successfully contacted the

distance agent.

From Theorem 6.6, Broker1 now has an individual commitment to inform the successful

connection of the distance agent to its teammates. As a result, Broker1 will act rationally

by communicating this information to Broker2, and from Theorem 6.7, Broker2 will give

up its attempt if it was still trying to contact the distance agent because the mutual

goal has already been achieved. Moreover, from Theorem 6.1, Broker1 needs to inform

Broker2 of the registration and address information of the distance agent. In the current

implementation of AAA brokers, these two communication attempts are combined into

one and just one message is sent from Broker1 to Broker2.

167

Broker1

Broker2

Client
Agent

Distance
Agent

Figure 6.2: After Recovery

After successfully contacting the distance agent, Broker1 requests it for agent-specific

information such as its capabilities. Any pending request from the client agent that could

not be completed due to the failure of Broker3 may be sent again to the distance agent

and the system continues to work.

Next, we discuss the fault-tolerance behavior that arises out of implementing the spec-

ification of team maintenance commitment.

6.5 MAINTAINING A SPECIFIED NUMBER OF BRO-

KERS

The current implementation of AAA brokers can maintain at least a specified number

of brokers, say N, at all times despite broker failures. The AAA agents commit to the

AAA broker, with which they are registered, to honor its requests for starting broker

processes. Whenever an agent registers or a broker teammate disconnects from an AAA

broker, it checks to see if there are at least N brokers in the team. If not, it searches for

an AAA agent on a different machine. If it finds such an agent, it requests that agent to

start a broker and request the newly started broker to join the broker team of which the

requesting broker is a member1. If the AAA broker fails to find an agent on a different

machine, it picks up an agent on the local machine at random and repeats the process.

Further, an AAA broker started as a result of this process is committed to connect to (and

form a team with) the broker that initiated its birth. The AAA broker also keeps track

1Note that this algorithm will result in a maximally connected broker graph if (1) the brokers are
started one at a time, and (2) a new broker is started after a previously started broker has joined the
broker team.

168

of pending requests to start brokers and may request another agent to start a broker if

needed.

This technique resembles the technique of regenerative processes in the traditional

fault-tolerance literature wherein a critical process can be restarted by a monitoring pro-

cess upon failure. However, there are a few major differences between the two techniques.

(1) If the monitoring process fails, there needs to be another level of monitoring process

to restart the first monitoring process. This can go up to any level but all these levels have

to be explicitly designed and configured for each machine. In the AAA scheme, no separate

configuration is needed for each machine. Moreover, all of the requisite N-1 brokers can be

started even if there is just one broker left in the system, thereby automatically providing

N-1 levels of monitoring.

(2) Special monitoring infrastructure is required to be able to start processes on differ-

ent machines. A convenient way would be to have separate monitoring processes on each

machine that are coordinated using a special distributed algorithm. However, any such

algorithm needs a proof of correctness before it can be relied upon. In the AAA scheme,

no separate monitoring infrastructure is required as the problem solving agents them-

selves participate in the fault-tolerance process. The specification of teamwork provides a

distributed coordination protocol that we logically prove to work in Section 6.5.2.

6.5.1 Formal Characterization

We now formally restate Mission Statement 2 of the broker team in terms of team main-

tenance commitment.

AAA Mission Statement 2:

|= (TMtG T [(numberOfBrokers T) >= N])

This mission statement requires the broker team to always have at least a certain number

of brokers in the team despite broker failures. The broker team achieves this by getting

new brokers started, on possibly different machines, and recruiting them into the broker

team. AAA agents can start additional brokers when requested by the broker that is

serving them. The end result is that new brokers get started on different machines on the

network and the multi-agent system continues to function. The following theorems follow

from Mission Statement 2.

Theorem 6.8. When a broker believes that the number of brokers in the broker team is less

than the required number of brokers, and believes that it is not already mutually believed

169

and it is not impossible to establish that mutual belief, then it will have an individual

commitment to bring about mutual belief of this fact.

Theorem 6.9. When a broker team mutually believes that the number of brokers in the

team is less than the required number of brokers, it adopts a team commitment to have the

required number of brokers in the broker team.

Theorem 6.10. When a broker team mutually believes that the number of brokers in the

team is less than the required number of brokers, the brokers in the team adopt individual

commitments to have the required number of brokers in the broker team.

Theorem 6.11. When a broker successfully recruits a new broker into the broker team,

it has an individual commitment to make this fact mutually believed by the broker team.

Next, we show how to prove these theorems.

6.5.2 Establishing the Formal Properties

We now formally restate AAA Mission Statement 2 in terms of team persistent goal and

prove Theorem 6.8. The other theorems that follow from Mission Statement 2 can be

proved on similar lines.

Theorem 6.8. This theorem can be restated formally in terms of team maintenance

goal.

|= (TMtG τ p q) ⊃ {∀x (member x τ) ⊃
[(BEL x ¬p∧¬(MB τ ¬p)) ∧ ¬(BEL x ¤¬(MB τ ¬p)) ⊃

(PGOAL x (MB τ ¬p) (BEL x ¬p))]}
where, p is ((numberOfBrokers T) >= N)

Proof. : Let x be a member of team τ and assume that the antecedent (BEL x ¬p∧¬(MB

τ ¬p)) ∧ ¬(BEL x ¤¬(MB τ ¬p)) is true. From the implication [(BEL x ¬p) ∧ ¬(MB

τ ¬p) ⊃ (GOAL x ♦(MB τ ¬p))] in the definition of WTMtG, we see that (GOAL x

♦(MB τ ¬p)) is satisfied because if one of the team members does not believe there is

mutual belief, there is no mutual belief either. Since the consequent of an implication

must remain true at least until the antecedent or the implication itself becomes invalid,

(GOAL x ♦(MB τ ¬p)) persists until [¬(BEL x ¬p) ∨ (MB τ ¬p) ∨ (BEL x ¤¬(MB

τ ¬p))] becomes true. Hence, all conjuncts in the definition of (PGOAL x (MB τ ¬p)

(BEL x ¬p)) are satisfied. This proves the desired result.

170

Next, we use the theorems from the previous section to explain a typical recovery

scenario due to Mission Statement 2.

6.5.3 A Recovery Scenario

Recall that the broker team had a team maintenance goal of having three brokers in the

system. Therefore, when a surviving broker discovers that Broker3 is no longer accessible,

Theorem 6.8 predicts that it will have a commitment to bring about mutual belief about

this fact, and hence, communication will be attempted between the surviving brokers.

From Theorem 6.9, the broker team has a team commitment to recruit a new broker

to the team and from Theorem 6.10, each of the surviving brokers adopts an individual

commitment to have three brokers in the broker team. Broker2 knows of an agent (the

client agent) that can spawn a new broker and requests it to do so. After the new broker

comes up, it contacts the broker on whose request it was started. Theorem 6.11 predicts

that Broker2 will now have an individual commitment to bring about a mutual belief that

the broker team has the required number of brokers and therefore, communication will

take place among the brokers. At the end of this process, a configuration similar to that

in Figure 6.1 will have been restored and hence the multi-agent system has recovered from

broker failure.

6.6 CONCLUSION

To summarize, in a large multi-agent system with multiple middle agents the middle agents

could potentially serve as backups for each other, thus achieving a high level of fault-

tolerance. However, instead of using warm and hot backups, N-version voting and other

traditional techniques that build upon explicit redundancy, we propose a scheme that uses

teamwork to exploit this inherent redundancy of middle agents to achieve opportunistic

service replication. In other words, the recovery scheme based on teamwork avoids the

overhead of using redundant brokers just for the purpose of fault-tolerance. We presented

the Adaptive Agent Architecture (AAA), a robust brokered architecture, in support of

our hypothesis. The AAA is motivated by the theory of teamwork to: (1) recover a multi-

agent system broker failures, and (2) maintain a specified minimum number of functional

brokers in the system even when some of the brokers become inaccessible.

However, the teamwork based techniques will be most useful when the team specifica-

tion can be modified easily to get change the team behavior or to introduce a new behavior

171

without having to implement the modified/new specification by hand as was done in AAA.

Recall that STAPLE is an agent programming language where agent and team behaviors

can be declaratively specified to get the desired behavior without having to implement

those behaviors by hand. If the premise of this chapter is true, we should in principle, be

able to give the AAA Mission Statements to brokers written in STAPLE and these brokers

should exhibit the same fault-tolerance behavior as that exhibited by AAA brokers. We

will see in the next chapter that this is in fact the case and the fault-tolerance behavior

of AAA agents due to Mission Statement 1 can be programmed in STAPLE using a few

logical sentences.

Chapter 7

Implementing Fault-Tolerance of AAA

Brokers in STAPLE

One of the hypotheses for this dissertation is the ability to reproduce the fault-tolerance

behavior of AAA brokers in STAPLE just by providing high level specification of that

behavior in a few logical sentences. The present chapter seeks to validate this hypothesis

by implementing brokers in STAPLE that demonstrate the same fault-tolerance behavior

as that of AAA brokers. We will see that it takes only a fraction of programming to

implement the AAA fault-tolerant brokers in STAPLE. We will also explore how slightly

modifying logical sentences leads to different behavior by agents as well as by broker team.

The next section describes implementation of brokers in STAPLE. Section 7.2 discusses

the fault-tolerant behavior of these brokers that follows from “Mission Statement 1” of

AAA brokers from the previous chapter. Finally, we conclude in Section 7.3 with a brief

summary.

7.1 IMPLEMENTING BROKERING BEHAVIOR

STAPLE as a language does not define any brokering behavior or any broker agent. So we

need to first implement brokers in STAPLE before we can use those brokers to demonstrate

the AAA type fault-tolerance.

7.1.1 Implementing a Broker

A broker is just like any other agent. If the commitments, intentions, and capabilities of

an agent lead to a behavior that we understand as brokering behavior then we refer to

that agent as a broker. The AAA brokers were implemented as AAA agents that had

specialized brokering behavior. It took more than 2500 lines of Java code to implement

172

173

the brokering functionality (along with support for fault-tolerance) in an AAA agent.

The advantage of a language like STAPLE becomes apparent when trying to implement

a broker wherein a broker can be implemented in only two logical sentences. This can be

done in STAPLE by simply defining a register action in order to register agents, and a

brokering action that results in the broker adopting a commitment for getting the brokered

action done. These actions are defined in Table 7.1.

Table 7.1: Implementing a Broker in STAPLE

% Action to register an agent

action definition(register,2) :-

[args: [agent(Agent,Host,Port),CapabilityList],

code: {reduce assert(agent address(Agent,Host,Port)),

for(Capability, CapabilityList,

reduce assert(can do(Capability,Agent))

},
effects: [(registered(Agent,self),1.0)]

].

% Action to ‘‘broker’’ the action requested by a registered agent

action definition(broker action,1) :-

[args: [Action],

code: {subgoal(pgoal(done(Action)), StackId)},
stack id: StackId,

effects: [(brokered(Action),1.0)]

].

The register action defined in a broker program calls the belief base maintenance system

(via reduce assert) to add the address of the agent, who is registering with this broker,

to the broker’s belief base. Similarly, it adds each capability of the agent to its belief base

using the can do/2 predicate. Recall that this STAPLE predicate is used by the rule

of rational action to find agents capable of doing a given action. The brokering action

(broker action) takes as an argument the action that this broker has been requested

to “broker” and it results in the broker having a commitment to get that action done.

So when an agent requests a broker agent to “broker” an action and if the broker agent

agrees to do that action, it will end up having a commitment to get that action done.

From this point onwards, the broker will act on its individual commitment just like any

other STAPLE agent by searching for ways to get that committed action done. If the

broker can do the action itself, then it will intend and do that action. However, this will

174

usually not be the case and the broker will look for an agent who is capable of doing that

action. If it finds such an agent (say, another agent has registered with this broker and

can do the action requested by the first agent) then it will request that agent to do this

action similar to the example of using Request communicative action in Chapter 3. We

walk through a complete scenario of a brokering behavior in Section 7.1.3.

One advantage of STAPLE is shown by the fact that just adding the above two action

definitions to any STAPLE agent program will make that agent behave as a broker! Next,

we need to add the corresponding functionality to other STAPLE agents so that they can

register with brokers and make use of the brokering service when needed.

7.1.2 Changes to Agents

The STAPLE rule of rational action specifies that if an agent who is committed to achiev-

ing p (or for getting an action a done) knows of actions that can achieve p (or get a done)

then it will intend to do a non-deterministic OR of those actions. As an example, if an

agent x has a commitment to find the distance between two given cities and if it knows of

an agent y that is capable of doing the action find distance then one of the actions in

the OR expression that agent x intends as a result of the rule of rational action will be a

request to agent y do the action find distance.

In order to support usage of brokers, we need to modify the rule of rational action to

include the action broker action as a way of getting an action done. More specifically, if

an agent is registered with a broker and if it has a commitment to get an action a done then

requesting the broker to do the action broker action(a) is another possible way of getting

the action a done. In this case, the non-deterministic OR action expression that the agent

intends as a result of the rule of rational action will include one or more broker action

as choices. Alternatively, we can add another rule having a lower importance than the

rule of rational action that says that if an agent who is committed to getting an action a

done cannot do the action itself and if it does not know of any other agent who can do

that action then and if it is registered with a broker then it will request that broker agent

to “broker” the action a, i.e, to do the action broker action(a). Giving this new rule

a lower importance than the main rule of rational action ensures that this rule fires only

when the main rule of rational action does not find any actions that the agent can intend

in order to achieve its committed goal(s). Both these options will work for us and we will

use the second option (adding a second rule with lower importance) for the examples in

the remainder of this chapter. This rule is shown in Table 7.2.

175

The rule in Table 7.2 says that if an agent has a PGOAL that action A be done relative

to Context and with an importance Imp, and if the agent believes that it is registered

with a broker agent Broker then if it finds a non-empty set of actions that can result

in eventually getting the broker to do the action broker action(A) then it will intend

a non-deterministic OR of those actions. The findall predicate finds a list of actions

that this agent believes that it can do, that is, bel(self,can do(Action,self)) such

that each Action can achieve a proposition P which says that eventually the broker agent

brokers the action A, that is, the broker agent does the action broker action(A).

Table 7.2: Modifying STAPLE agents to use brokers

% Rule to use a broker that this agent is registered with

rule(rational2, pgoal(self, done(A), Context, Imp), 2, StackId) :-

istrue(bel(self, registered with broker(Broker))),

P = <>(done(action(broker action(A),Broker))),

findall(Action,(istrue(bel(self,can achieve(P, Action))),

istrue(bel(self,can do(Action,self)))),Actions0),

setof(Actions0,Actions),

\+ Actions = [],

NewCtxt = pgoal(self, done(A), Context, Imp),

NewImp is Imp + 5

==>
subgoal(pgoal(self, done(self,or(Actions)),NewCtxt,NewImp),StackId).

% Rule to register with a given Broker

action definition(register with broker,1) :-

[args: [Broker],

precondition: bel(self,∼intend(self,register with broker(), Q)),

code: {istrue(bel(self,agent address(Broker, Host, Port))),

findall(Capability,bel(self,capability(Capability)),

Capabilities),

istrue(bel(self,agent address(self,SHost,SPort))),

A = action(register(agent(self,SHost,SPort),Capabilities)),

subgoal(intend(request(self,Broker,A,true)),StackId)

},
stack id: StackId,

effects: [(registered with broker(Broker),1.0)]

].

In order to use the above rule successfully, an agent must be registered with a broker.

We provide the agents with a register with broker action as defined in Table 7.2. This

action takes a broker as an argument, makes sure that the agent knows the address of that

broker, creates a list of capabilities of the agent, and then results in the agent having an

176

intention to request the broker to register it, that is, to do the register action. The broker

executes the register action if it agrees to the agent’s request to do that action. Successful

execution of the register action by the broker registers this agent with the broker and

also results in the broker sending a confirmation to the agent that the register action has

been done. The register action used by the broker was discussed earlier and is defined

in Table 7.1. Also, the creation of the list of capabilities requires that the agent have

beliefs about its capabilities (capability/1) in its belief base. The STAPLE interpreter

could have created a list of capabilities from the actions that are defined for an agent but

the agent may not choose to expose all the actions that it knows how to execute as its

capability. So we choose to explicitly specify the capabilities of STAPLE agents.

7.1.3 Walking Through a Brokering Example

Recall from the AAA fault tolerance example that we had two agents – a distance agent

that could answer questions about distance between cities and a client agent that was

interested in finding out distance between cities. Table 7.3 shows the distance agent and

Table 7.4 shows the client agent written in STAPLE.

Client and Distance agents

The distance agent has beliefs and intention to register with broker1 and it chooses to

register its capability to do the action find distance/3. The action find distance/3

is defined to simply get the distance between two cities from the agent’s belief base. The

agent has a long list of predicates in its belief base that specify the distance between

two cities. The action find distance uses this list of to answer question about distance

between cities.

The client agent has beliefs and intention to register with broker1 similar to the distance

agent. This agent also has another intention to do an action sequence where the first action

is to wait until the agent registers with the broker followed by repeatedly getting a city pair

via a test action and asking distance between those two cities. The action ask distance1

is defined such that it results in the agent’s committing to do an action find distance

that it does not know how to do. The test for city pairs binds a different city pair to the

variables C1 and C2 in the test action bel(self,city pair(C1,C2))? in each repetition.

1Note that the action ask distance can be alternatively defined using ask-ref and inform-ref that were
discussed in the lights world examples. The present example pre-dates the implementation of ask-ref and
inform-ref communicative actions in STAPLE.

177

Table 7.3: Distance agent in STAPLE

% agent meta-information

agent name(self, distance agent).

agent version(demo, 2.0, beta).

agent address(self, localhost, 5045).

% agent’s bel, goals, intentions

bel(self, broker(broker1)).

bel(self, agent address(broker1,localhost, 9045)).

intend(self, register with broker(broker1),true,10.1).

% Capabilities that this agent chooses to advertise

bel(self,capability(find distance(City1,City2,Distance))).

% actions, plans, etc. specific to this agent

action definition(find distance,3) :-

[args: [City1,City2,Distance],

code: {istrue(bel(self,distance(City1,City2,Distance)))},
effects: [(found distance(City1,City2,Distance),1.0)]

].

% Prolog code, data, etc. for use by this agent’s actions, plans, etc.

distance(albany,albuquerque,miles(2040)).

distance(albany,atlanta,miles(1010)).

distance(albany,baltimore,miles(340)).

...

178

Table 7.4: Client agent in STAPLE

% agent meta-information

agent name(self, info agent).

agent version(demo, 2.0, beta).

agent address(self, localhost, 5055).

% agent’s bel, goals, intentions

bel(self, broker(broker1)).

bel(self, agent address(broker1, localhost, 9045)).

intend(self, register with broker(broker1), true, 10.0).

intend(self, (wait for(registered with broker(Broker)),

(bel(self,city pair(C1,C2))?,ask distance(C1,C2))..), true, 5.0).

% actions, plans, etc. specific to this agent

action definition(ask distance,2) :-

[args: [City1,City2],

code: {subgoal(pgoal(done(find distance(City1,City2,Distance))),

StackId)},
stack id: StackId,

effects: [(bel(self,distance(City1,City2,Distance)),1.0)]

].

% Prolog code, data, etc. for use by this agent’s actions, plans, etc.

city pair(C1,C2) :-

retract(cityindex(N0)),

N1 is N0+1,

max cityindex(Max),

(N1>Max ->N2=1; N2=N1),

assert(cityindex(N2)),

city pair(N2,C1,C2).

cityindex(0).

max cityindex(102).

city pair(1,albany,albuquerque).

city pair(2,albany,atlanta).

city pair(3,albany,baltimore).

...

179

We also add the rule and action in Table 7.2 to both distance and client agents to

enable them to register with a broker and use the brokering service. Note that the client

agent in the above example does not know about the distance agent, it cannot do the

action find distance, and it does not know of any agent capable of doing the action

find distance. However, if we modify the client agent so that it knows about the distance

agent (its name, address, and capability) then instead of going through the broker, it

will directly request the distance agent to do action find distance. In this case, the

communication that follows will be exactly same as that in the lights world examples.

Demonstrating interactions through a broker

We now illustrate the various interactions that occur when client agent and distance agent

communicate through a broker.

(a) Distance agent requests to be registered with the broker

We first start a broker agent named broker1 and then we start the distance agent. The

distance agent immediately adopts an intention to do the action register with broker

(broker1) and executes that action as defined in Table 7.2. As a result of executing this

action, the agent has an intention to request the broker to do action register(agent

(self,SHost,SPort),Capabilities) where SHost and SPort are bound to this agent’s

address and Capabilities is bound to this agent’s list of capabilities which happens to be

a list containing only one term find distance(City1,City2,Distance). This intention

is with respect to the earlier intention and it is pushed on the same stack on top of that

intention. As in the lights world example, the communication that follows is exactly the

same as what happens when one agent requests another agent to do an action. The agent

pops the intention to do the request action off the stack as it succeeded and replaces it with

the commitment that follows. Recall that this commitment is the PWAG that follows from

the definition of request. Meanwhile, the broker analyzes the request the action, asserts

in its belief base that it is mutually believed that the distance agent has a PWAG that the

broker does the action of registering the distance agent relative to distance agent’s PWAG

with respect to the broker to do that action. The broker decides to adopt that PWAG

and therefore, it adopts a commitment to establish mutual belief with the distance agent

that it will have this PWAG. This commitment results in the broker intending to perform

an AGREE communicative act. It performs the AGREE (that results in an agree message

180

sent to distance agent) and adopts the resulting PWAG. As a result of this PWAG, the

broker has an individual commitment to perform the register action that was requested by

the distance agent after which it intends to do the register action. Meanwhile, the AGREE

communicative act received by the distance agent is analyzed and the resulting mutual

belief is asserted into the distance agent’s belief base. This mutual belief discharges the

commitment of the distance agent that the broker have a PWAG towards the distance

agent for registering it (this is one of the commitments that follows from its PWAG as a

result of performing the REQUEST communicative act).

(b) Broker registers the distance agent and establishes mutual belief about this fact

The broker acts on its intention to register the distance agent by executing the register

action defined in Table 7.1. After discharging this intention and the commitment that lead

to this intention, the broker re-evaluates its PWAG that resulted from its performing the

AGREE communicative act. It results in the broker’s having a PGOAL to establish mu-

tual belief with the distance agent that the register action requested by it just got done.

This PGOAL results in an intention to perform an OR expression of actions each of which

can establish that mutual belief. One of the actions in the OR expression is a plan to

establish mutual belief that all STAPLE agents have access to and it is shown in Table 7.5.

The action expression of this plan consists of the agent first establishing a mutual belief

that it believes P followed by the agent testing whether it is mutually believed if that

this agent is competent with respect to the informed proposition. If such a mutual belief

exists, then just establishing the mutual belief that this agent believes P establishes the

mutual belief that P, otherwise the agent waits for the other agent to establish mutual

belief that it believes the informed proposition P.

In this case, the proposition P is (DONE register(Agent,CapabilityList)) and there is

no mutual belief between the distance agent and the broker that the broker is competent

with respect this proposition. The broker commits to the first action in the action sequence

that is the body of the plan and intends an OR expression to establish mutual belief that

bel(self,done(...)). The OR expression consists of alternative actions and plans each

of which can potentially establish the required mutual belief. This time the agent cannot

intend the same plan to establish this mutual belief because of the precondition of this

plan so it eventually ends up intending to perform an INFORM communicative act that is

181

Table 7.5: Plan to Establish Mutual Belief

plan(establish mb,2) :-

[description: ‘Plan to establish mutual belief’,

args: [Other,P],

precondition: {\+ P=bel(self,P1)}, %To avoid infinite loop

effects: [(mb(self,Other,P),1.0)],

body: {achieve(mb(self,Other,bel(self,P))),
(((∼bel(self,mb(self,Other,competent(self,P))))?,

wait for(mb(self,Other,bel(Other,P))))

;

bel(self,mb(self,Other,competent(self,P)))?

)

},
].

also part of the OR expression. It performs the INFORM2 and discharges the intention to

perform this communicative act along with the intention to perform the OR expression.

It then commits to the next part of the action sequence which is another OR expression

and then commits to one of the actions in the OR expression. Irrespective of which OR

branch it chooses first, it ends up discovering that there is no mutual belief about its

competence with respect to the proposition that it wants to be mutually believed and so

ends up having a commitment to wait for the distance agent to establish mutual belief

that it also believes the informed proposition (that the register action is done).

The distance agent gets the INFORM message, analyzes it, asserts the resulting mutual

belief that the broker believes that it has done the informed proposition. It infers that the

broker is trying to establish mutual belief and it checks that it does not have any private

beliefs to the contrary. As such, it tries to be cooperative by adopting a commitment

to establish mutual belief with the broker that it also believes the informed proposition.

Similar to the earlier reasoning, the leads the distance agent in performing an INFORM to

the broker that bel(distance agent,done(...)). This communicative act establishes

the mutual belief that the broker is waiting for, thereby, discharging its PWAG that had

resulted from the distance agent performing the initial REQUEST. At this point, distance

agent is registered with the broker and their commitments and intentions to register the

distance agent with the broker have been successfully discharged.

2Note that the term ‘self’ gets replaced by the name of the agent who is sending the INFORM.

182

(c) Client agent registers with broker and requests it to do the action find distance

We now start the client agent which registers with the broker in a similar fashion.

However, the client agent has two initial high level intentions so it creates two parallel

stacks – one for each intention. On the second stack, the client agent ends up with an

intention to wait until it is registered with the broker. Once this agent believes that it is

registered with the broker, it discharges its intention to wait and comes out of the wait

state.

Thereafter, it intends the next action in the intended action expression that happens to

be an indefinite repetition consisting of a test action followed by an action ask distance.

In each loop of the repetition, the agent intends to do the test action, does the test

action (that binds the variables C1 andC2 with a city pair), discharges the intention to

do the test action, and then intends to do the ask distance(C1,C2) where the vari-

ables are bound with the values from the prior test action. Executing this action defined

in Table 7.4 results in the client agent having a commitment to have done an action

find distance(City1,City2,Distance) where City1 and City2 are bound to the same

values as C1 and C2 in ask distance(C1,C2). The client agent acts on this PGOAL by

trying to execute applicable rules. It first executes the main rule of rational action, which

fails to give any actions that can achieve the committed goal. It then executes the sec-

ond rule of rational action defined in Table 7.2 that results in the client agent having a

new PGOAL (relative to the earlier PGOAL) to do an OR action expression whose every

branch consists of actions (or action expressions) that can potentially get the broker to do

the action find distance that the client agent is committed to getting done. One of the

actions in the OR expression is a REQUEST from the client agent to the broker to do the

action find distance. Another action in the OR expression is a plan to establish JPG

with the broker for doing the action find distance. In both cases, the communication

that follows will be the same because the plan consists of a request action followed by a

wait by the client agent for the broker to establish mutual belief that it has the interlock-

ing PWAG towards the client agent for establishing the joint commitment. The situation

is exactly same as that for registering with the broker except that in that case it was a

different action (register action) that the agent was committed to getting done. Similar

to that situation, the client agent requests the broker to do the action find distance

and the broker agrees to do that action. As earlier, the AGREE communicative act from

the broker discharges one of the commitments of the client agent that resulted from its

183

request to the broker. However, the client agent is still left with a commitment that the

broker does the action find distance with respect to client agent’s PWAG towards it to

do that action. The client agent acts on that commitment by finding a way to be helpful

to the broker and finding no way to do so, it waits for the broker to establish mutual belief

that the action find distance has been done.

(d) Broker requests distance agent to do action find distance

The broker acts on its PWAG that followed as a result of it performing the AGREE

communicative act for doing the action find distance. That PWAG results in the bro-

ker’s having a commitment to get the action find distance done. The situation now is

exactly similar to that when the client agent had that same commitment. The broker

executes the main rule of rational action as a way to act on that commitment. It finds

one agent (the distance agent) that is capable of doing that action and intends an OR

expression each of whose actions can potentially result in the distance agent’s eventually

doing the action find distance. We have already discussed how the communication and

reasoning progresses in this situation. The broker requests the distance agent to do the ac-

tion find distance(City1,City2,Distance) where City1 and City2 are bound to two

specific cities. If the distance agent agrees to do the request, the broker ends up having an

intention to wait for mutual belief to be established by the distance agent that the action

find distance has just been done.

(e) Distance agent does action find distance and establishes mutual belief with the bro-

ker

The distance agent is now exactly in the same situation as that of the broker after it had

sent an AGREE for doing the register action. The PWAG resulting from the AGREE re-

sults in the distance agent’s having a commitment to do the action find distance. It can

do the action find distance itself and so it intends and executes that action. Executing that

action binds the third parameter in the action find distance(City1,City2,Distance)

with the distance between the two cities from the agent’s belief base. Similar to what

the broker did after it had done the register action, the distance agent successfully

184

discharges its intention and commitment for doing the action find distance and re-

evaluates its PWAG that had resulted from the AGREE communicative action. It re-

sults in the distance agent’s having a commitment to establish mutual belief with the

broker that the action find distance has been done. The distance agent discharges

this commitment similar to how the broker discharged its commitment for establishing

mutual belief after it had done the register action. It informs the broker that action

find distance(City1,City2,Distance) has been done with the all the three parame-

ters of find distance bound to the appropriate values. The broker confirms by sending

an inform that it believes the informed proposition and this discharges the distance agent’s

PWAG that had resulted from it’s agreeing in the first place.

(f) Broker establishes mutual belief with client agent that action find distance has been

done

Recall that the broker was waiting for mutual belief to be established between it-

self and the distance agent that find distance(City1,City2,Distance) has been done.

When the broker confirms the distance agent that it believes the informed proposition

that done(find distance(...)), that mutual belief gets asserted into the broker’s belief

base. As a result, the original stack with intention to do wait for(...) comes out of

the wait state and in the process (testing the belief base for that mutual belief) binds the

third parameter of find distance with the distance that was found by the distance agent.

This also binds the third parameter of find distance wherever it occurs on the stack

below the intention to do wait for action. The broker successfully discharges the inten-

tion to do wait for(...) along with the commitment to do the action find distance

and re-evaluates its PWAG that had resulted from the broker’s originally agreeing to the

request from the client agent. It results in the broker’s having a commitment to establish-

ing mutual belief with the client agent that the action find distance(C1,C2,Distance)

has been done. As mentioned above, the Distance parameter is now bound to the distance

between the two cities that was found by the distance agent. The situation now is same as

that of the client agent’s having a commitment to establish the same mutual belief with

the broker. The broker intends and executes the plan to establish mutual belief shown

in Table 7.5. It sends an inform to the client agent followed by the client agent’s con-

firming that it believes the informed proposition. The resulting mutual belief successfully

discharges the broker’s PWAG. It also discharges the client agent’s intention to wait for

185

the broker to establish mutual belief that the action find distance has been done and

in the process binds the third parameter of find distance on the stack to the value that

was found by the distance agent. It also discharges the client agent’s commitment for do-

ing the action find distance along with the client agent’s intention for doing the action

ask distance(C1,C2) that had resulted in this agent committing to do find distance.

Thereafter the client agent intends the next loop of the indefinite repetition. The new

loop unbinds the variables C1 and C2 in that repeated action expression, the test action

returns a new city pair, and the agent intends to do the action ask distance for those

two city pairs and the entire process repeats as above.

(g) Case when there is no distance agent and the client agent requests broker to do

action find distance

One scenario is when the client agent is registered with the broker but there is no

distance agent in the system. In this case also the client agent requests the broker to do

the action find distance as in the above scenario. However, the broker cannot do this

action itself and it does not know of any agent who can do this action. Further, the broker

does not know of any other broker to whom it can request (as a result of rule second rule

of rational action) to do that action. So it will refuse to do the requested action and it will

not have any PWAG towards the client agent as a result of the REFUSE communicative

act. Furthermore, the REFUSE communicative act will discharge the client agent’s PWAG

that the broker does the action find distance and has a PWAG towards the client agent

with respect to the client agent’s PWAG towards it for doing the find distance action.

The client agent will retry to achieve its commitment to do the action find distance

and will eventually realize that it is impossible to do that action. Similarly, it will infer

that it is impossible to do the indefinite repetition (after being unable to achieve it in a

few attempts – default value is 3 attempts) and will drop that intention. Similarly, each

higher level intention further down the stack will be deemed impossible and will eventually

be dropped.

7.1.4 The AAA Fault-tolerance Setup

The AAA fault-tolerance scenario from the previous chapter requires that there be multiple

brokers in the system that be reused when one of the brokers becomes unavailable. Next,

we briefly examine how the above example of communication between client and distance

186

agents works when there are multiple brokers in the system.

Two Brokers

In this scenario, we have two broker agents: broker1 and broker2. We make each broker

believe that there are two brokers broker1 and broker2 by asserting bel(self,broker

(broker1)) and bel(self,broker(broker2)) in the STAPLE programs for both broker1

and broker2. Further, we make broker2 register with broker1 by giving it a high level

initial intention to register with broker1 similar to that of distance and client and agents.

We add a rule to the broker programs to make the registration symmetric, that is, when

a broker broker1 registers with another broker broker2 then both brokers believe that

broker2 has also registered with broker1. We modify the distance agent so that it regis-

ters with broker2 and leave the client agent unchanged so that it registers with broker1

as in the previous scenario.

We first start the distance agent followed by the client agent as earlier. The communica-

tion is the same as until the point when broker1 commits to do the action find distance.

In the earlier scenario, broker1 found an agent (the distance agent) that was capable of

doing that action and requested it to do the action find distance. However, in the present

scenario, broker1 does not find any agent capable of doing the action find distance and

it cannot do this action itself either. The situation now is exactly the same as that of

the client agent when it was working on its commitment to get the action find distance

done. The important thing to note is that brokers are just like any other agents and

they have access to the same common actions and reasoning rules as any other agents.

So broker1 also uses the second rule of rational action and decides to request the broker

that it is registered with (broker2) to broker the action find distance. From this point

onwards, the communication and reasoning is exactly the same as that which happened

when the client agent decided to request broker1 to do the action find distance except

that here broker1 is in place of the client agent and broker2 is in the place of broker1.

The request from broker1 goes to broker2 who agrees to do requested broker action.

In turn, broker2 finds distance agent as a capable of doing the action find distance

and requests it to do that action. Distance agent agrees, does that action, and establishes

mutual belief that it just did the action find distance as in the above scenario. Now,

broker2 is in the same situation as broker1 in the previous scenario after the distance

agent had established the mutual belief that the action find distance has just been

done. It establishes mutual belief with broker1 that the action find distance has just

187

been done. Thereafter, broker1 establishes mutual belief with the client agent that action

find distance has just been done. The variable bindings of find distance are propa-

gated back to the client agent as in the earlier scenario so that the client agent believes

what is the distance between those two particular cities. At this stage, both brokers and

the distance agent have discharged all their commitments and intentions and the client

agent moves on to the next step by intending the next loop of the indefinite repetition as

in the previous scenario.

Three brokers

This scenario is similar to the above scenario with two brokers. The setup is same as

that in Figure 6.1 where all the three brokers are registered with each other, the client

agent is registered with broker2 and the distance agent is registered with broker3. This

is achieved by modifying the programs of broker1, broker2, and broker3 so that they

each believe that they are three brokers – broker1, broker2, and broker3. We setup

broker2 so that it registers with broker1 as in the two broker scenario. We also setup

broker3 so that it registers with both broker1 and broker2. The rule for symmetric

registration of brokers ensures that all the three brokers are registered with each other.

In this case the behavior is exactly same as that explained in the two broker scenario.

When broker2 does not find an agent capable of doing the action find distance, it

decides to request one of the brokers with which it has registered to broker that action (by

requesting it do the action broker action). So it may request either broker1 or broker3

and the communication and reasoning follows as discussed above.

Alternatively, we could modify the second rule of rational action shown in Table 7.2

so that the OR expression that an agent ends up intending contains a request to all the

brokers with which it has registered. If so, broker2 will choose to request either broker1

or broker3 to broker the action find distance as a result of choosing one of the actions

in the OR expression and intending it. However, the resulting communication that follows

will remain unchanged. We choose to keep the simpler version of the second rule of rational

action shown in Table 7.2 for the discussions in the remainder of this chapter.

Next, we discuss what happens when one of the brokers with which an agent is regis-

tered in the three broker scenario becomes unavailable.

188

7.2 IMPLEMENTING AAA FAULT TOLERANCE

We briefly recap the main fault-tolerance behavior of AAA brokers from the last chapter

and then explore different ways of implementing the same behavior in the STAPLE brokers

discussed above.

7.2.1 Mission statement of AAA Brokers

Table 7.6 shows the first mission statement of the AAA broker team from Section 6.4.1.

It says that whenever an agent y registers with the broker team τ , the brokers have a

joint intention of reconnecting with that agent, if it ever disconnects, as long as it remains

registered with the broker team. An agent is registered with the broker team when is

registers with any member of the broker team and it remains registered with the broker

team until it explicitly requests a member of the broker team to unregister it. Using the

propositions p and q and the action c, the team intention due to that mission statement

is given compactly by (JI τ a q) where τ is the agent team and a is the action expression

in Table 7.6.

Table 7.6: First Mission Statement of AAA Brokers

|= ∀y [(agent y) ∧ (DONE (registered y τ)?) ∧ (dynamic τ)
⊃ (JI τ a (registered y τ))] where,

a = (WHILE (registered y τ) DO
[IF ¬(connected y τ) THEN (reconnect y τ)])

Let p = (connected y τ), q = (registered y τ), c = (reconnect y τ)
then,a = (q?;[(¬p?;c)|p?])*; ¬q?

The above mission statement only provided the specification of fault tolerance behavior

in AAA based multi-agent systems and the predictions of this specification had to be

implemented by hand in Java code for AAA brokers. Recall from Chapter 6 that when

an AAA broker disconnects from its teammates (say, when the broker process fails), all

the brokers on its team attempt to directly contact the agents that were registered with

the now disconnected broker. This behavior is one of the predictions that follow from the

above mission statement. Contacting an agent involved connecting with that agent and

189

requesting it to re-register (i.e., share its capabilities, etc.) with the broker that contacted

it. If the agent has already registered (or is in the process of registering) with another

broker teammate then it will decline the re-registration request otherwise it will register

with this broker. After successfully contacting an agent in this manner, a broker informs

this fact to its teammates who then give up their attempts to contact this agent directly.

Further, all the remaining brokers in the team are now aware that the agent is registered

with the team through that broker. The system configuration is now similar to that in the

original situation except that there is one less broker in the system. In contrast, a separate

mechanism had to be programmed into AAA agents to recover the communication that

was in progress at the time when the failed broker disconnected.

7.2.2 Implementing the AAA Mission Statement in STAPLE

In order to get the brokers written in STAPLE to exhibit the same fault-tolerant behavior

as that of the AAA brokers, all it takes is to specify the mutual belief about the team

membership of the broker team τ and the mission statement in Table 7.6. The facts

about team membership can either be provided as part of the broker specification or, in

general, the brokers can establish them by dynamically creating the broker team at run

time. The dynamic team assumption (dynamic τ) conjunct in the mission statement says

that the team will eventually have mutual belief about team membership at all times

(Assumption 5.1). It is specified as a separate rule in STAPLE because this assumption is

not built into the STAPLE definition of group JPG. The mission statement in Table 7.6

states that the broker team will have the given joint intention whenever an agent registers

with the broker team but it does not specify how that joint intention gets established. In

AAA, this was implemented (by the AAA programmer) by making sure that the brokers

get into a state where they will behave as if they had the above specified joint intention.

However, in STAPLE, the brokers will have to establishing any joint intention themselves.

Recall that joint intention is nothing but a joint commitment for doing an action mutually

believing throughout that the agents are doing the joint action (Definition 2.7 of JI). Also,

we have seen that joint commitment can be established using communicative acts, so we

will require that the STAPLE brokers establish the joint commitment that corresponds

to the joint intention in the AAA mission statement. The action athat the broker team

jointly intends involves a registered agent and therefore, the joint commitment for (DONE

a) must always be established whenever an agent registers with any broker of the broker

team. This can be achieved in STAPLE by providing the rule in Table 7.7 to each STAPLE

190

broker which says that for every agent y had registered with a broker x who is a member

of broker team τ , the broker x will have an individual commitment (PGOAL)3 to establish

a joint commitment with the broker team for doing the action of servicing the registered

agent as long as the agent y remains registered with the broker team. The action of

servicing registered agent as defined by action a is same as that in the AAA mission

statement. The action (reconnect y τ) is defined to result in the broker’s having an

intention to request the agent y to do the action of re-registering with the broker. We also

need to replicate the AAA behavior of an agent’s refusing to re-register with a broker if

it is in the process of re-registering with another broker. This is done in STAPLE simply

by specifying an inference rule that says that the agent cannot do the re-register action

for a broker if it has already re-registered with another broker or if it is in the process

of re-registering with another broker (i.e., if it has a PGOAL, INTEND, or PWAG for

re-registering with a broker).

Table 7.7: Mission Statement of AAA Brokers in STAPLE - Version 1

|= ∀y [(agent y) ∧ (DONE (registered y x)?) ∧ (member x τ)
⊃ (PGOAL x (JPG τ (DONE a(y)) q) q)] where,

p = (connected y τ), q = (registered y τ), c = (reconnect y τ)
a(y) = (q?;[(¬p?;c)|p?])*; ¬q?

that is,
a(y) = (WHILE (registered y τ) DO

[IF ¬(connected y τ) THEN (reconnect y τ)])

Strictly speaking, the test actions q? and ¬q? in the action expression for a(y) are

not needed in STAPLE brokers because q is also the relativizing condition for the joint

commitment (JPG) to do a(y) and therefore, the test q? will succeed when the brokers

jointly start executing the action expression and the test ¬q? will succeed when the joint

commitment is dropped as a result of an agent un-registering with the broker team. So we

3The original mission statement in Chapter 6 did not have the PGOAL. In the AAA, the specification
of the mission statement was implemented by the agent programmer who made sure that the brokers will
end up with a JPG as per the mission statement. However, in this case, the brokers have to establish the
JPG themselves. As such, we modified the mission statement slightly to get the brokers to establish the
JPG.

191

simplify the action expression further to that in Table 7.8. The behavior of the resulting

broker team will remain exactly the same except that the joint test action q? is no longer

executed and therefore, no mutual belief is established that the test action q? succeeded.

However, note that because the joint commitment is with respect to q, the team will

drop the joint commitment if it ever mutually believes that ¬q? is true. So the indefinite

repetition is not really indefinite – it continues only as long as the agent remains registered

with the broker team exactly as in Table 7.7.

Table 7.8: Mission Statement of AAA Brokers in STAPLE - Version 2

|= ∀y [(agent y) ∧ (DONE (registered y x)?) ∧ (member x τ)
⊃ (PGOAL x (JPG τ (DONE a(y)) q) q)] where,

a(y) = REPEAT INDEFINITELY
[IF ¬(connected y τ) THEN (reconnect y τ)]

The rule interpreter of the broker teammate with which an agent first registers will

fire the rule in Table 7.8 creating a new commitment to establish the given joint com-

mitment. The rule of rational action leads the broker to adopt an intention to establish

that joint commitment by executing an action expression (i.e., a plan) consisting of a

sequence of group communicative acts a discussed in Chapter 5. Once the joint commit-

ment to do action a is established, each member of the broker team executes the jointly

committed action expression as per the discussion in Chapter 6. The communication and

coordination, including the starting mutual belief, required to execute the joint action is

obtained automatically. It is to be noted that the action expression a does not specify the

actors of each constituent action and therefore, the default task allocation algorithm of

STAPLE requires all teammates to execute the actions in the action expression a. Also,

the STAPLE operational semantics of joint OR expression requires that the team should

decide which branch of the OR expression to execute. Again, the required communication

follows automatically as discussed earlier in this dissertation (Chapter 4). Once the team

decides upon an OR branch, all teammates execute the test action in that branch (which

will either be ¬(connected y τ)? or (connected y τ)?) and establish mutual belief about

its success or failure in accordance with the operational semantics of joint OR expression.

Furthermore, due to the lockstep policy, mutual belief is established when each action

in the action expression is done. From Table 7.8, the expression a involves an infinite

192

repetition and therefore, this mutual belief will be established after each action in every

loop indefinitely.

One of the benefits of a programming language such as STAPLE is that many times we

can obtain a different behavior just by changing the logical specification. The broker team

in this example is interested in finding out when ¬(connected y τ)? is true, that is, when

a registered agent is no longer connected with the broker team. As such, the indefinite

repetition of mutually deciding which OR branch to execute in the action expression in

Table 7.8 and then executing that action and establishing mutual belief about the findings

is really unnecessary and can be construed to be a communication and processing overhead.

We can modify this behavior and get rid of the unnecessary communication and processing

by replacing the action expression in Table 7.8 by an equivalent action expression shown

in Table 7.9 that uses the STAPLE defined no-op action wait for/1.

Table 7.9: Mission Statement of AAA Brokers in STAPLE - Version 3

|= ∀y [(agent y) ∧ (DONE (registered y x)?) ∧ (member x τ)
⊃ (PGOAL x (JPG τ (DONE a(y)) q) q)] where,

a(y) = REPEAT INDEFINITELY
[WAIT FOR ¬(connected y τ) THEN (reconnect y τ)]

The execution of STAPLE defined action wait for(p) takes an indefinite amount of

time – this action completes when p, i.e., (connected y τ) becomes true. The agent can

execute other actions and act on its other commitments and intentions while it is waiting

for (connected y τ) to become true meaning that the agent itself is not in a wait state. In

other words, only the stack which has the intention to execute wait for(p) goes into a

wait state until (connected y τ) becomes true. The agent sets a trigger on its belief base

for (connected y τ) to become true and that stack comes out of the wait state whenever

this trigger fires. The action expressions in Table 7.8 and Table 7.9 are equivalent in

the following sense. In the first case, the brokers will keep testing (connected y τ) and

finding that (connected y τ) is true indefinitely until the agent disconnects (in which case

(connected y τ) becomes false). They will reconnect with the disconnected agent and

then again indefinitely keep testing and finding that (connected y τ) is true, and so on.

However, in the second case, the brokers know that (connected y τ) is true to start with

and they don’t keep testing for it indefinitely, rather, they wait until they detect that

193

(connected y τ) is false, that is, until the agent disconnects. They will then reconnect

with the disconnected agent thereby making (connected y τ) true and then they will again

wait for p to be become false instead of continuously testing for it as team. In fact, the

test whether (connected y τ) is true or false happens in both cases. In the first case, the

broker team consciously decides to do the test, tests for it, and establishes mutual belief

about the result. In the second case, each agent’s belief base monitors p(connected y τ)

behind the scenes and there is no team decision making and communication about testing

(connected y τ) until at least one broker teammate detects that (connected y τ) is false.

We can further simply the action expression in Table 7.9 by specifying the actors of the

two actions wait for(p) and reconnect. Table 7.10 shows the translation of this specifi-

cation in STAPLE syntax where we have specified that every broker who intends the action

expression service registered agent does the actions wait for and reconnect. If we

replace “self” by one of the brokers (say, broker1) in the wait for action or reconnect

action then that broker (say, broker1) will end up doing that action as part of the joint ac-

tion service registered agent. Similarly, if we replace ‘self’ with ‘any’ or ‘all’ or

‘brokerteam’ then each of these will result in a potentially different behavior depending

on the team decision making process. The predicate assert once in this table prevents

duplicates when asserting a proposition into the agent’s belief base.

Table 7.10 first specifies the mutual beliefs about the broker team – it says, that

it is mutually believed that there are three brokers in the broker team viz broker1,

broker2, and broker3. Strictly speaking, it is not necessary to specify these mutual

beliefs. However, in that case, we would have to add a rule to deduce that there is a new

member in the broker team whenever a broker registers with another broker (and to update

the belief base accordingly). This deduction rule in conjunction with the dynamic team

assumption (that establishes mutual belief in the team whenever a new team member joins

the team or when an existing team member leaves the team) will establish these mutual

beliefs about broker team membership at run time. In this example, we will specify these

mutual beliefs in each broker program instead of the deduction rule (so any new brokers

other than those already specified cannot be added to the system).

Thereafter, Table 7.10 specifies a named action expression (a plan) for the AAA mission

statement as discussed above. The precondition of the plan service registered agent

illustrates another flexibility of STAPLE programs. Here the precondition is used for

making sure that a broker who is committing to service an agent registered with a broker

194

Table 7.10: STAPLE Encoding of AAA Broker Fault-Tolerance - Part 1

% Beliefs about broker team

bel(self,team name(brokerteam)).

bel(self,mb(brokerteam,team member(broker1,brokerteam))).

bel(self,mb(brokerteam,team member(broker2,brokerteam))).

bel(self,mb(brokerteam,team member(broker3,brokerteam))).

% The action expression for AAA Mission statement in Table 7.9

plan(service registered agent,6) :-

[description: ’Plan to service a registered agent’,

args: [Broker,Agent,Host,Port,E1,E2],

precondition: {(bel(self,team member(Broker,brokerteam)),

assert once(registered(Agent,Broker)),

assert once(servicing agent(Agent)))},
body: {(action(wait for(∼connected(Agent)),self,E1),

action(reconnect(Agent,Host,Port),self,E2))..

},
effects: [(serviced registered agent(Agent,Host,Port),1.0)]

].

% Mission statement of AAA brokers encoded as a rule to establish JPG

% to service registered agent when an agent registers with a broker

rule(rule1,done(action(register(agent(Agent,Host,Port)),self)),5) :-

\+ bel(self,team member(Agent,brokerteam)),

\+ bel(self,servicing agent(Agent)),

assert(servicing agent(Agent)),

Action = establish jpg(brokerteam,done(action(service registered agent(

self,Agent,Host,Port,A1,A2),brokerteam)),registered(Agent,brokerteam))

==>
adopt(intend(self, Action, true, 10.0)).

195

teammate believes that the agent is registered with that teammate. A better place for as-

serting the fact registered(Agent,Broker) is the belief base maintenance system where

we can define a rule to deduce that an agent is registered with a broker teammate who

has established a mutual belief with the broker team that it has a PWAG towards the

broker team that the team adopt a PWAG to service a registered agent. Another place

to add this assert statement is during the processing of a received message by adding a

rule to deduce that the agent is registered with a broker teammate who is attempting

to establish a JPG with the entire team to service a registered agent (say, via a RE-

QUEST communicative act). However, we assert this fact in the precondition of the plan

service registered agent just to demonstrate this flexibility.

The rule in Table 7.10 is the rule in AAA mission statement. It says that if a broker

has done the action of registering an agent and if it does not believe that the agent is

being serviced by the broker team then it adopts an intention to establish a JPG with the

broker team to service that registered agent. Again, this rule can be written in several

different ways, for instance, by checking that there is no JPG in the team yet for servicing

the registered agent (and there is no intention to establish that JPG either) instead of

checking whether or not it believes that the agent is being serviced. The reconnect action

used by the brokers to reconnect with a disconnected agent who is already registered with

the broker team is defined in Table 7.11. This action simply results in the broker having

an intention to request the disconnected agent to do the action register with broker

specifying itself as the broker with whom the agent should (re)register. Table 7.11 also

shows a belief base maintenance system rule (reduce assert/1) to deduce that agents

that were registered with a disconnected broker teammate are no longer connected and to

update the belief base accordingly.

The STAPLE code in Table 7.10 and Table 7.11 is added to the STAPLE programs for

each broker (i.e., broker1, broker2, and broker3). Just with these specification level

changes, the STAPLE brokers will now exhibit a fault-tolerance behavior similar to that

of the AAA broker team as discussed next.

7.2.3 The AAA Fault-tolerance Example in STAPLE

We first set up three brokers similar to that in Figure 6.1 as discussed in Section 7.1.4.

Then we setup the client agent so that it registers with broker3 and start it. The commu-

nication and reasoning for registering happens just as described in Section 7.1.3. However,

as soon as the broker does the register action, the reactive rule for mission statement of

196

Table 7.11: STAPLE Encoding of AAA Broker Fault Tolerance - Part 2

% The reconnect action used in the plan service registered agent

action definition(reconnect,3) :-

[args: [Agent,Host,Port],

code: { assert once(agent address(Agent,Host,Port)),

Action=request(self,Agent,

action(register with broker(self),Agent,Eid),true),

subgoal(intend(Action),StackId)

},
stack id: StackId,

effects: [(<>reconnected(Agent),1.0)]

].

% Belief base maintenance system rule to deduce that agents registered

% with a disconnected broker teammate are not connected

reduce assert(self,∼connected(Agent)) :-

assert once(∼connected(Agent)),
bel(self,team member(Agent,brokerteam)),

reduce assert(∼team member(Agent,brokerteam)), %fires dynamic

%team assumption rule

findall(X,(retract(registered(X,Agent))),ListOfDisconnectedAgents),

for(Y,ListOfDisconnectedAgents,assert(∼connected(Y))).

broker team (in Table 7.10) fires resulting in broker3 intending the following new high

level intention to establish JPG in the broker team to service the registered agent (the

distance agent) as long as this agent remains registered with the broker team.

intend(broker3,action(establish jpg(brokerteam, done(action(service registered agent (bro-

ker3,distance agent,localhost,5045,. . .), registered(distance agent, brokerteam)),. . .)

STAPLE agents have access to an action expression (i.e., to a plan) to establish JPG

in a team. This plan is an implementation of the interlocking PWAG theorem – its body

consists of a REQUEST from the agent to a team followed by the agent waiting for mutual

belief to be established in the team that the team has a PWAG towards the agent with

respect to the agent’s PWAG towards the team. As such, broker3 intends to request the

broker team to do the action service registered agent relative to the proposition that the

distance agent is registered with the broker team. Thereafter, it performs this request

communicative act resulting in the following message being sent to all members of the

broker team.

request(broker3,brokerteam,action(service registered agent(broker3, distance agent,

localhost,5045,. . .),registered(distance agent,brokerteam)).

Note that this request from broker3 is addressed to the brokerteam rather than to

197

any member of the broker team. The communication actuator of this broker evaluates

the team membership by checking its belief base and finds that there are three members

in the team – broker1, broker2, and broker3. As such, broker3 sends this request

message to all the team members other than itself. Both broker1 and broker2 receive

exactly the same physical request message shown above that corresponds to the request

communicative act. Both broker1 and broker2 decide to agree to the group request.

Thereafter, broker2 sends the following group AGREE that is again addressed to the

brokerteam rather than to any specific member of the team.

gagree(broker2,brokerteam,broker3,action(service registered agent(. . .),. . .)

Also, the physical gagree message gets sent to all team members, other than broker2

itself, rather than to just the original requester (broker3). Similarly, broker1 sends a

group agree to the broker team. From Lemma 5.5, this is sufficient to establish JPG in

the broker team for doing the action service registered agent. This JPG discharges

broker3’s intention to wait for the team to have a PWAG towards it for doing the action

service registered agent because this PWAG follows from the group JPG. Each of the

three brokers adopts the PWAG that follows from the group JPG as a new high level social

commitment towards the brokerteam. For instance, broker2 has the following PWAG

on a new stack:

pwag(broker2,brokerteam,done(action(service registered agent(. . .)),jpg(brokerteam,done

(action(service registered agent(. . .))))

As in other STAPLE examples, the PWAG leads to individual commitment for doing

the jointly committed action. The action service registered agent is defined as an ac-

tion sequence in Table 7.10 consisting of waiting for the agent being serviced to disconnect

followed by reconnecting the disconnected agent. As such, each broker ends up having an

intention to wait for the distance agent to disconnect. Figure 7.1 shows the stack of one of

the brokers as a result of the group JPG. Recall that the relativizing condition for an item

on the stack is a conjunction of any explicit relativizing condition shown in that term with

the term on the stack immediately below it. For example, the arrows in Figure 7.1 indicate

that the explicit relativizing condition “true” means that the relativizing condition is the

item on stack item pointed to by the arrows.

The commitment stack of broker1 (and broker3) for servicing the distance agent is

similar to that in Figure 7.1 except that the commitments on the stack are for broker1

(and broker3) instead of broker2. Similarly, when we start the client agent, it registers

with broker1, which then establishes JPG in the broker team for servicing the client

198

intend(broker2,done(action(wait_for(bel(broker2,~(c onnected(distance_a
gent)))),broker2,e(broker2,48,0))),true,…)
--- -------------
pgoal(broker2,done(action(wait_for(bel(broker2,~(co nnected(distance_ag
ent)))),broker2,e(broker2,48,0))),true,…)
--- -------------
pgoal(broker2,done (sequence(action(wait_for(bel(broker2,~(connected(di
stance_agent)))),broker2,e(broker2,48,0)),action(re connect(distance_ag
ent,localhost,5045),broker2,e(broker2,49,0)),true,…)
--- -------------
pgoal(broker2,done (repeat(sequence(action(wait_for(bel(broker2,~(conne
cted(distance_agent)))),broker2,e(broker2,48,0)),ac tion(reconnect(dist
ance_agent,localhost,5045),broker2,e(broker2,49,0))),
 jpg(brokerteam,done(action(service_registe red_agent(…))))
--- -------------
pwag(broker2, done(action(service_registered_agent(…)),
 jpg(brokerteam,done(action(service_regis tered_agent(…))))
--- -------------
pwag(broker2,testteam,done(action(service_registere d_agent(…)),jpg(bro
kerteam,done(action(service_registered_agent(…))))

Figure 7.1: Commitment stack of broker2 as a result of AAA mission statement

agent. Each broker ends up with a stack for servicing the client agent similar to that for

the distance agent. This is the steady state in the AAA fault tolerance scenario. The

client agent repeatedly sends request for the action find distance to broker1 which

results in a request to the distance agent from broker3 and the answer from the distance

agent is routed back to the client agent (Section 7.1.3). The request from the client agent

and subsequent answer back to it results in separate set of stacks as commitments and

intentions get created and discharged as discussed earlier.

At this point, we terminate broker3 by killing the operating system process that

corresponds to this broker. Distance agent is now disconnected from the broker team and

there is no way for requests from the client agent to be routed (i.e., to be brokered) to the

distance agent. However, the system recovers from this failure in a similar manner to the

AAA brokers in virtue of the encoding of AAA mission statement as discussed so far.

Specifically, broker2 notices that broker3 has been disconnected because broker2’s

network observer detects the lost network connection with broker3 and adds bel(self,

∼connected(broker3)) to its belief base. The belief base maintenance system of broker2

retracts bel(self,group member(broker3,brokerteam)) from its belief base. The rule

for dynamic team assumption fires resulting in broker2 adopting a new high level intention

to establish mutual belief in the team that broker3 is no longer a member of the broker

team.

199

Further, using the belief base maintenance system rule (reduce assert) in Table 7.11

broker2 infers that all agents that were initially registered with broker3 are now discon-

nected and therefore, it asserts bel(self,∼connected(distance agent)) into its belief

base. This new belief fires a trigger set by the intention term on top of the stack in

Figure 7.1 and that stack comes out of wait state. The intention and commitment to

wait for ∼connected(distance agent) in Figure 7.1 are successfully discharged and the

broker re-evaluates the commitment for doing the action sequence in that figure. However,

before it can commit to the next action in the action sequence, it must establish a mutual

belief in the team (due to the lockstep policy adopted by the broker team) that the first

action in the joint action expression has just been done. As such, broker2 now adopts

a commitment to establish a mutual belief in the broker team that the action wait for

∼connected(distance agent) has been done.

Now, broker1 also detects that broker3 is disconnected and it reasons in a similar

manner as broker2. Therefore, at this point, both brokers (broker1 and broker2) have

individual commitments to establish two different mutual beliefs in the broker team. One

commitment is to establish mutual belief that broker3 is no longer a member of the

broker team. The other commitment is to establish mutual belief that the action wait

for ∼connected(distance agent) has been done. These mutual beliefs are established

in the usual manner as discussed earlier in this dissertation, say, by intending the plan

to establish mutual belief in Table 7.5. An interesting observation is that since both

agents are trying to establish mutual belief about the same fact at the same time, they

inform each other that p and there is no separate confirmation message that the informed

proposition is believed by the recipient. This is because (INFORM x y p) and (INFORM

y x p) establishes the same mutual belief as (INFORM x y p) followed by (INFORM y x

(BEL y p)).

As soon as the mutual belief that the “wait for” action has been done, the joint

execution of the action expression in Figure 7.1 moves to the next action in the action

sequence. At this point, both broker1 and broker2 have a commitment for doing the

action reconnect(distance agent, localhost,5045). From Table 7.10 and Figure 7.1, we see

that each broker (self) is the actor for the reconnect action. So each broker intends the

reconnect action and executes the definition of this action given in Table 7.11. From

Table 7.11, when broker2 executes the reconnect action, it ends up with an intention

to request the distance agent to (re)register with itself (as part of reconnecting with the

broker team). It performs this request communicative act that is then analyzed by the

200

distance agent. In the meanwhile, broker1 is doing exactly the same thing and so it also

requests the distance agent to register with itself. The exact communication and reasoning

that follows next depends on timings of the communication.

Let us assume that the distance agent gets the request from broker2 before it gets

the request from broker1. If so, it agrees to broker2’s request and it refuses broker1’s

request (because the precondition of the action register with broker in Table 7.2 fails

when it analyzes broker1’s request). This precondition checks that the agent does not

already have an intention to register with a broker. Thereafter, the distance agent acts

on the requested action that is has agreed to do and (re)registers with the broker2.

Due to the lockstep policy, broker2 intends to establish mutual belief that the action

of reconnecting with the distance agent has been done. As such, it informs broker1

that done(reconnect(distance agent,...)) to which broker1 responds that it believes

the informed proposition thereby, establishing the mutual belief required by the lockstep

policy. The execution of the joint action expression moves to the next step and both

broker1 and broker2 intend to wait for ∼connected(distance agent) as before. At this

point, the distance agent has been reconnected with the broker team and the requests of

the client agent can be routed to it once again. Next, we discuss what happens to the

requests that were in progress when a broker becomes unavailable.

Recovering ongoing requests

The recovery of an ongoing request is achieved by implementing a rule to reconsider com-

mitments with a disconnected agent. This rule fires whenever an agent believes that an-

other agent that was earlier connected with it is no longer connected. If the distance agent

was in the middle of responding to find distance when broker3 got disconnected, the dis-

tance agent will reconsider its PWAG towards broker3 for doing the action find distance

and drop that PWAG believing that it is impossible to establish any mutual belief with

broker3. Suppose that the request to broker the action find distance had come to

broker3 from broker1. In this case, broker1 will similarly reconsider its PWAG to-

wards broker3 for doing the action broker action and drop that PWAG believing that

it is impossible to establish any mutual belief with broker3. Thereafter, it will retry

to achieve its commitment for doing the action find distance and will ask broker2 to

“broker” that action. Eventually, broker2 will establish mutual belief with broker1 that

it is impossible to do broker the action find distance because it cannot do that action

find distance itself and it does not know of any agent capable of doing that action.

201

Thereafter, broker1 will establish mutual belief with client agent that it is impossible to

broker the action find distance. Basically, the interaction is the same as if the broker1

did not know of any capable agent or any other broker when the client agent was started.

On the other hand, if we had terminated the broker with which the client agent was

registered (broker1) then the request in progress when the broker1 became unavailable

can be recovered by the client agent simply by adding a rule to wait for connection with

a broker if the agent is currently not connected with a broker. In this case, the client

agent will drop its intention to request broker1 for brokering the action find distance

and it will reconsider its commitment that led to this intention. The new rule to wait for

connection with a broker will fire when the client agent is reconsidering its PGOAL for

the action find distance and that stack will end up waiting for the client agent to be

(re)connected with a broker. Eventually, when the client agent reconnects with a broker,

this stack will come out of the wait state and the client agent will request the newly

connected broker to “broker” the action find distance.

Next, we discuss a benefit of direct execution of logical specifications in STAPLE

wherein agents written in STAPLE were able to correctly handle a situation that was

unplanned for by the agent programmer.

Handling unplanned situations in STAPLE

There is one situation that we had not planned for during the design and implementation

of the AAA brokers. As such, the expected behavior of the AAA brokers in that situation

had not been predicated from the fault-tolerance specification and therefore, had not been

implemented into the AAA brokers. However, the STAPLE brokers logically reasoned

through that situation and handled it correctly.

This situation involved subtle timing of synchronization messages (to establish mutual

beliefs) in the broker team when a broker teammate discovers that a disconnected agent

has successfully re-registered with some broker teammate. In the AAA implementation,

the broker teammate with whom a disconnected agent successfully re-registered establishes

the mutual belief about that fact, thereby discharging the team commitment to reconnect

to the disconnected broker. All other teammates assume that the broker who established

that mutual belief is the one with whom the agent is reconnected. In almost all cases, this

is what would actually happen because the broker teammate with whom the disconnected

agent re-registered is the first one to learn that the disconnected agent is now reconnected.

However, it is possible (though not very frequent) that another broker teammate who

202

learns of the fact that the agent is reconnected with a broker teammate ends up establishing

mutual belief about this fact either before or at nearly the same time as the broker with

whom the agent actually reconnected.

As in the above example, we assume that the distance agent gets the request for doing

the action register with broker from broker2 before it gets the same request from

broker1. However, this time assume that the delay between the two requests is much

longer and that the distance agent is already registered with broker2 when it gets the

request from broker1. As such, the effect of the requested action is already true and

therefore, the distance agent informs broker1 that it is already registered with a broker.

This creates a situation in which both broker1 and broker2 try to establish mutual

belief in the broker team that the distance agent is registered with the broker team. It

leads to conflicting mutual beliefs because the brokers infer that an agent is connected

with the broker who establishes the mutual belief about that agent’s registration with the

broker team. The AAA brokers were not programmed to handle this situation, but the

STAPLE brokers correctly dealt with the situation – the conflicting mutual beliefs got

resolved when the broker with whom the agent reconnected (broker2 in this example)

established another mutual belief that it had done the action of reconnecting with distance

agent. It shows that direct execution frameworks like STAPLE can deal with a certain

category of surprise wherein a designer or programmer may not have foreseen a situation

while translating the specification into design and eventual implementation.

Next, we modify the mission statement of STAPLE brokers slightly to get a different

behavior.

7.2.4 Modifying the AAA fault-tolerance behavior

One problem with the above AAA type behavior is that the attempt by both broker1 and

broker2 to reconnect with the distance agent at the same time is not optimal. Further,

it can run into a different problem if broker1 fails to reconnect with the distance agent

several times and infers that it is impossible to reconnect with the distance agent. If so,

it will try to establish mutual belief in the broker team that it is impossible to reconnect

with the distance agent while broker2 will try to establish mutual belief in the broker

team that it has successfully reconnected with the distance agent. The STAPLE brokers

would need to be provided with inference rules to deal with this situation. As we have

seen before, the behavior of STAPLE agents can be changed by simply changing the joint

action expression.

203

We modify the action expression of the AAA mission statement encoded in Table 7.10

by changing the actor of the reconnect action from “self” to “any”. Now, the second

action in the joint action expression is to be done by any one member of the team and

therefore, it requires a team decision on who will do the reconnect action. Various team

decision making algorithms can be plugged in to enable the team to decide the actor of

the reconnect action. The default STAPLE algorithm is similar to that for the joint OR

action expression – a team leader (decided by convention from among the team members)

picks one of the team members as the actor and establishes mutual belief about that fact.

This team member then reconnects with the distance agent and establishes mutual belief

about when it is done. This behavior alleviates both of the problems with the original

behavior of AAA brokers as pointed above.

7.3 Conclusion

We implemented the fault-tolerance of AAA brokers in STAPLE agents and we reproduced

the behavior of AAA brokers simply by providing the high level specification of AAA

type fault-tolerance to STAPLE brokers. We showed that the automatic reasoning and

communication that occurs during steady state as well as during the recovery process is as

predicted by the JI theory. We also demonstrated how modifying the logical specification

of behavior at a high level results in very different agent and team behavior. We saw

one instance wherein a STAPLE based system were able to handle a situation that was

unaccounted for in AAA. To provide a rough statistics, the implementation of brokering

and fault-tolerance (due to Mission Statement 1) in AAA took more than 2500 lines of

Java code whereas the same behavior took less than 50 lines of STAPLE code (less than

20 logical sentences).

Chapter 8

Conversations for Teamwork

Teamwork and communication go hand in hand. Communication is required not only

for establishing and discharging teams but also for coordination and synchronization pur-

poses. Multi-agent communication seldom consists of a single communicative act, rather

agents engage in extended conversations consisting of several communicative acts in or-

der to achieve their communicative goals. For example, when an agent requests another

agent to do an action, the other agent either accepts or refuses, and upon accepting, it

eventually informs the first agent about the success or failure of the requested action. Con-

versation protocols specify the sequence of allowed communicative acts and are critical to

the interoperation of agents with different reasoning abilities. Some agents may have the

ability to reason using the formal semantics of communicative acts, and others may be

programmed to respond to communicative acts in an event-response fashion. However,

these two kinds of agents can still communicate with each other in a meaningful way if

they follow well-defined conversation protocols. For instance, in the above example, the

second agent knows that it has to respond to a REQUEST with either an AGREE or a

REFUSE and the first agent knows that it will receive either an AGREE or a REFUSE in

response to its request. Therefore, even if the two agents have different capabilities with

regard to reasoning about communicative acts, they can still communicate effectively with

each other as long as they follow this simple protocol and know how to respond to (and

with) these communicative acts. In this chapter, we lay out a framework for specification

and analysis of conversation protocols that will allow agent designers to specify correct

protocols on one hand, and on the other, will provide a means for STAPLE agents to

reason about conversation protocols.

204

205

8.1 OVERVIEW

Conversation protocols represent communication patterns in multi-agent interactions. These

protocols are traditionally specified as finite state machines in which the transition arcs

specify the communicative actions to be used by the various agents involved in a conver-

sation. Figure 8.1 shows a fragment of the request protocol mentioned above. In this

figure, ‘Start’ and ‘End’ represent the start state of the protocol and its possible final

states respectively, and S1 and S2 represent some intermediate states. The transition arcs

marked with REQUEST, AGREE, REFUSE, and INFORM specify the communicative

actions used in this protocol.

REQUEST from X
to Y to do action A

REFUSE from X to Y to
do action A

AGREE from Y to X

to do action A

INFORM from Y to
X: Failed to do A

INFORM from Y to X:
Successfully done A

 S1 S2 Start

End

End

 End

Figure 8.1: A Sample Conversation Protocol

Protocols are executed by performing the communicative actions and therefore, the

communicative actions have come to be regarded as the central concept around which

analyses of protocols are based. However, it is the states and not the state transitions

that are key to the correctness and completeness of a protocol [106, 123]. This disserta-

tion introduces a landmark-based approach for formal analysis of conversation protocols

wherein the most important aspect of a conversation protocol is not the communicative

actions involved in that protocol but the effects or the states that these actions bring

about. The basic idea is that, since protocols are used to achieve certain tasks or to bring

about a certain state of affairs in the world, one might identify the important landmarks

or states of affairs or subtasks that are brought about by and during the execution of a

protocol. Conversation protocols can then be expressed at an abstract level as partially

ordered landmarks where each landmark is characterized by propositions that are true

in the state represented by that landmark. Several different actions can bring about the

206

same state and therefore, the partially ordered landmarks represent a family of proto-

cols. Communicative actions are the tools to realize concrete protocols from a landmark-

based representation. Besides contributing to formal analyses of protocol families, the

landmark-based representation facilitates techniques similar to partial order planning [73]

for dynamically choosing the most appropriate action to use next in a conversation, allows

compact handling of protocol exceptions, and in some cases, even allows short-cutting a

protocol execution by opportunistically skipping some intermediate landmarks.

Limitations of the finite state machine representation for protocols have led agent

researchers to explore various other techniques such as Definite Clause Grammars [68],

Colored Petri-Nets [35], and enhanced Dooley graphs [82]. Each of these alternatives

attempts to remedy some shortcoming of the finite state machine representation for the

purpose of representing and reasoning about conversation protocols. For instance, the en-

hanced Dooley graphs of [82] are a directed graph similar to finite state machines with a

few significant differences: states are annotated with a “character”, or role, that an agent

plays within a conversation; transitions are represented such that the evolution of a con-

versation is modeled explicitly rather than simply indicating possible transitions at some

point during a conversation. However, these techniques have not been widely adopted by

the multi-agent community. Agent researchers need a formalism for protocols suitable for

automated reasoning and an easily understood visual representation of conversation proto-

cols. Recent efforts have been made to extend the Unified Modeling Language (UML) for

a visual representation of protocols that can be used by software developers. The resulting

specification called AUML (Agent UML) [5] is promising and will mature over time. But

the need for a proper formalism for conversation protocols still remains. A formalism

for concrete protocols is suggested by the very definition of conversation protocols as a

pattern of communicative actions. We represent concrete protocols along with their asso-

ciated precondition and goal as action expressions using dynamic logic constructs. These

communicative action expressions involve multiple cooperating agents and are joint action

expressions. The motivation for joint action expressions also comes by analogy with nat-

ural language wherein dialogues are treated as joint actions [45, 46, 27, 31, 21]. Recently,

other researchers have also started looking at conversation protocols as a joint activity

[40, 113] by analogy with natural dialogue. The communicative actions in the joint action

expression for a protocol achieve the landmarks of that protocol in the required order.

This chapter explores the application of joint intention theory [70, 28] to protocols rep-

resented as joint action expressions and presents a way to analyze conversation protocols

207

and their compositions.

We present the landmark-based approach for representing and analyzing families of

protocols in Section 8.2, and apply this technique to three different protocols in Section 8.3.

In Section 8.4, we apply the joint intention theory to protocols, and in Section 8.5, we

introduce the joint action expression based representation for protocols and present a

formal analysis of protocol compositions. Finally, we discuss execution of conversation

protocols in STAPLE in Section 8.6 and conclude in Section 8.7 with a summary of this

chapter.

8.2 PROTOCOLS AS PARTIALLY ORDERED

LANDMARKS

Conversation protocols are traditionally specified as finite state machines in which the

transition arcs are labeled by the communicative actions that cause those transitions.

One of the problems of this specification is that the communicative actions to be used in

a conversation are fixed by the protocol. However, there may be several (communicative

as well as non-communicative) actions that result in the same transition. Also, a specified

communicative action in a protocol may not be applicable in every situation due to factors

such as different prerequisites, side effects, costs, and time to completion. We want a way

of specifying conversation protocols that allows an intelligent agent to choose the best

applicable action dynamically in any situation. We propose a landmark-based approach

for formal analysis of conversation protocols wherein the most important aspect of a

conversation protocol is not the set of communicative actions involved in that protocol

but the effects or the states that these actions bring about. The proposed representation

looks similar to state machines but instead of specifying the state transitions, it specifies

a partially ordered set of states. The basic idea is that since protocols are used to perform

certain tasks or to bring about certain states in the world, one might identify the important

landmarks or states that are brought about by and during the execution of a protocol.

Conversation protocols can, then, be expressed at an abstract level as a set of partially

ordered landmarks, where each landmark is characterized by a conjunction of propositions

that are true in the state represented by that landmark. Several different actions can bring

about the same state and therefore, the partially ordered landmarks represent a family of

protocols. Communicative actions are, then, the tools to realize concrete protocols from

a landmark-based representation.

208

We do not specify transitions in landmark-based analysis and so an agent may use

any means to transition from one landmark to the next partially ordered landmark. It

will typically perform some actions and these actions may or may not be communicative

actions. In order to help the initiator, an agent may be able to opportunistically skip vari-

ous landmarks during protocol execution and try to reach a later landmark by performing

some action that can achieve it. A participating agent may also try to skip intermediate

landmarks during protocol execution to help the initiator if it knows the global intentions

from the goal of the protocol being used. The short-cutting of a protocol execution re-

quires that landmarks be labeled as either required or optional, and an agent may skip

only the optional landmarks. A landmark-based representation can also be specialized by

inserting additional landmarks, which further constrain the set of possible transitions. We

now illustrate these concepts in further detail.

8.2.1 Visual and Logical Representation

One can visualize a landmark-based representation of protocol families as a directed graph

whose nodes represent landmarks and whose directed edges represent partial ordering.

This representation looks similar to finite state machines except that the transition arcs

specify only the ordering of the states and not the communicative acts required for the

state transitions. Figure 8.2 shows a protocol family using partially ordered landmarks.

L1 is the initial landmark (the start state) represented by two concentric hexagons, L5 and

L6 are final landmarks represented by dark hexagons, L2 and L4 are important interme-

diate landmarks represented by solid hexagons, and L3 represented by a dotted hexagon

is specified as an optional intermediate landmark. The arrows indicate ordering of the

landmarks – L1 comes before L2 and L4, L2 comes before L3 and L3 comes before L5

and L6 and so on. We call this ordering partial because there are some landmarks (such

as L2 and L4) that do not have a hard ordering relationship between them, and further-

more, one may insert additional ordered landmarks between any two landmarks. The

landmark-based representation specifies the waypoints from the initial landmark to one of

the final landmarks. Optional landmarks in any path may be skipped opportunistically

during protocol execution but the important landmarks must be followed. Following a path

means performing actions from one landmark to reach either the next landmark or the

one after, skipping any number of optional landmarks. The allowed actions to transition

from one landmark to the next may be either a single action (communicative as well as

non communicative action) or a complex action expression consisting of several actions.

209

L1 L2 L3

L4

L5

L6

Figure 8.2: Partially Ordered Landmarks

A protocol family may or may not specify a landmark as optional depending on the

goal of the protocol. For instance, consider a request protocol that has an intermediate

landmark in which the requester and the requestee are jointly committed to doing the

requested task. Suppose that I request you to open the door using this request protocol.

Let us assume that you recognize the goal and intention of my request and decide to

be helpful. If the intermediate landmark requiring joint commitment is optional then

you may go ahead and open the door without further communication. However, if that

intermediate landmark was not specified as optional then you must first communicate

with me to establish joint commitment between us before you open the door.1 Also, note

that making a landmark of a protocol family optional may make all protocols based on

that family fragile if the optional landmark requires establishing joint commitment as in

this example. This is because there is no joint commitment between the agents, to take

care of exceptional situations, if an agent opportunistically skips that optional landmark

during protocol execution. So making landmarks optional has both advantages (speed)

and disadvantages (fragility). Therefore, if an agent prefers speed to resilience for some

task, then it may use a protocol with such an optional landmark for that task. But if

fault-tolerance is of utmost importance, then one should use a protocol based on a protocol

family in which the landmarks requiring team formation are not optional.

Protocol families expressed using landmarks can be represented logically in a dynamic

logic that can express the temporal ordering of propositions. Here, we introduce a simple

propositional dynamic logic sufficient for our purpose and use it to logically represent

the protocol family in Figure 8.2. We use temporal operators PRIOR, HAPPENS, and

eventually (♦), and operators for action sequences (a;b) and test action (p?), from the

logical language of joint intentions (Chapter 2), to define the operators for landmark

ordering.

1In either case, if the final landmark requires mutual belief that the requested task has been done, then
you are required to establish that mutual belief for protocol termination.

210

Let L be the domain of landmarks, let P be the set of atomic propositions, and let P
a function that gives the conjunction of atomic propositions comprising a landmark, that

is,

P : L½ P
Let L1, L2, and L3 be three landmarks. We define a partial order operator Â such

that L1Â L2 means that L1 comes prior to L2 but not necessarily immediately before

L2. Also, two landmarks can be ordered using the partial order operator only if they are

different landmarks. The partial order operator is defined inductively as follows.

Definition 8.1. Partial Order Operator

L1 Â L2 , (PRIOR P(L1) P(L2)) ∧ (P(L1) 6= P(L2))

L1 Â L2 Â L3 , (L1 Â L2) ∧ (L2 Â L3)

where, from [26]

(PRIOR2p q) , ∀c (HAPPENS c; q?) ⊃ ∃a (a 6 c)∧(HAPPENS a; p?)

That is, a proposition p occurs prior to proposition q if for all event sequences c such

that c occurs after which q is true, there exists an initial subsequence a of c such that a

occurs after which p is true. This definition does not say whether p or q will ever be true.

However, if q is ever true then there must be some earlier time when p was true. Formally,

|= (PRIOR p q) ∧ ♦q ⊃ ∃e (HAPPENS p?; e; q?)

Combining this proposition with Definition 8.1, we get the following property about

landmark ordering.

Proposition 8.1.

|= (L1 Â L2) ∧ ♦P(L2) ⊃ ∃e (HAPPENS P(L1)?; e;P(L2)?) ∧ (e 6= nil)

That is, if landmark L1 comes before landmark L2 and if propositions in landmark

L2 will eventually be true, then there exists a non-empty event sequence e of primitive

event types such that e occurs after propositions in L1 are true and after e occurs, the

propositions in L2 will be true. The empty event sequence nil is a subsequence of all event

sequences.

2PRIOR was called BEFORE in [25]. However, we use the term PRIOR here to avoid confusion with
a different usage of the term BEFORE in this paper.

211

From Definition 8.1, it follows that the partial order relation is transitive, that is, if

landmark L1 comes before landmark L2 and landmark L2 comes before landmark L3 then

landmark L1 comes before landmark L3.

Proposition 8.2. |= (L1 Â L2 Â L3) ⊃ (L1 Â L3)

An OR operator ⊥ over landmarks is similarly defined in terms of propositions that

are true in those landmarks.

Definition 8.2. OR Operator

L1 ⊥ L2 , P(L1) ∨ P(L2)

This definition says that the current landmark is either L1 or L2 means that the

propositions in landmark L1 or the propositions in landmark L2 are true. The following

properties are a consequence of Definition 8.1, Definition 8.2, and Proposition 8.1 above

and the definition of HAPPENS (Chapter 2).

Proposition 8.3.

|= (L1 Â (L2 ⊥ L3)) ∧ ♦(P(L2) ∨ P(L3)) ⊃
∃e [(HAPPENS P(L1)?; e;P(L2)?) ∨ (HAPPENS P(L1)?; e;P(L3)?)] ∧ (e 6= nil)

Proposition 8.4.

|= ((L1 ⊥ L2) Â L3) ∧ ♦P(L3) ⊃
∃e [(HAPPENS P(L1)?; e;P(L3)?) ∨ (HAPPENS P(L2)?; e;P(L3)?)] ∧ (e 6= nil)

Expressing a protocol family as a landmark expression. Using the definitions

of partial order operator and the ⊥ OR operator, the protocol family F in Figure 8.2 can

be expressed by the following partial order expressions

L1 Â (L2 ⊥ L4)

L2 Â L3 Â (L5 ⊥ L6)

L4 Â L6

or more compactly as

F = L1 Â ((L2 Â L3 Â (L5 ⊥ L6)) ⊥ (L4 Â L6))

This expression may be reduced to several equivalent forms, such as

F = (L1 Â L2 Â L3 Â (L5 ⊥ L6)) ⊥ (L1 Â L4 Â L6))

We now look at landmarks in further detail.

212

8.2.2 Specializing, Generalizing, Realizing, and Instantiating Protocols

The landmarks in a landmark expression represent the ‘way points’ that must be followed

(or the necessary states that must be achieved in the given order) to successfully execute

the protocols belonging to the protocol family represented by that landmark expression.

As such, the landmarks represent constraints on protocol execution. One can specialize

a protocol family by introducing additional ordered landmarks and thus constraining the

landmark-based representation further. Figure 8.3 represents a protocol family that is a

specialization of the protocol family in Figure 8.2. The original ordering L1 Â L2 is still

preserved by the new ordering L1 Â L7 Â L2 in the specialized protocol family.

L1 L2 L3

L4

L5

L6

L7

Figure 8.3: Specializing a protocol family

Similarly, one may generalize a protocol family by removing some of the landmarks and

thus relaxing the constraints. When the landmarks are removed, the ordering between

the remaining landmarks must be preserved. Figure 8.4 shows a protocol family that is

a generalization of the protocol families in Figure 8.2 and Figure 8.3. The landmark L2

comes before L5 and L6 in the original protocol families as well as in the generalized

protocol family.

L1 L2

L4

L5

L6

Figure 8.4: Generalizing a protocol family

The protocol families represented by landmarks can be reasoned about by intelligent

agents and can be used for planning the communicative actions that need to be performed

to successfully execute a protocol. But they are not of much use to agents who do not

213

possess reasoning and planning capabilities. The landmarks are used to represent protocol

families and not concrete protocols. A concrete protocol is realized from a landmark-based

representation of a protocol family by specifying action expressions for each landmark

transition such that performing the action expressions provably results in the landmark

transitions. Figure 8.5 represents a concrete protocol that is a realization of the protocol

family in Figure 8.2.

L1 L2 L3

L5

L4
L6

p?;a

c|d

g||h

¬p?;b

(q?;e)*;¬ q?

f

Figure 8.5: Realizing a protocol from a protocol family

We use circles to represent landmarks, and a different kind of arrows to represent

landmark transitions, in order to distinguish concrete protocols from protocol families.

In this figure, p and q are propositions and a, b, c, d, e, f , g, h are actions. These

actions do not necessarily have to be communicative actions such as REQUEST and

INFORM although we will analyze only communicative actions in this dissertation. Even

though this concrete protocol looks similar to a finite state machine, there are several

distinguishing features (1) the landmarks are precisely specified using propositions that

are true in a landmark; (2) the landmarks are task oriented, that is, they are the waypoints

towards achieving the goal of a protocol family and that goal must be achieved when the

protocol ends properly; and (3) the landmark transitions can be due to arbitrarily complex

action expressions consisting of communicative as well as other actions. One can represent

concurrent performance of actions in this representation that was not possible in the finite

state machine representation. Concrete protocols are represented logically as joint action

expressions in the next section.

Though not shown explicitly, the actions in Figure 8.5 involve agent roles3 such as

initiator and participant of a protocol instead of agent instances. However, these roles must

map to an agent or group instance in any actual execution of a conversation protocol. A

3A role refers to the abstract actor for a set of tasks, and an agent playing a role performs the tasks
associated with that role. For example, an agent that performs the tasks that a personal secretary normally
does, is said to be playing the role of a personal secretary.

214

concrete protocol is partially instantiated if there exists at least one agent role that is not

yet mapped to an agent instance. A protocol is fully instantiated when all agent roles in

that protocol map to some agent instantiation.

We want to apply the ideas introduced so far to well-known protocols. In order to

do that, we will first introduce the logic needed to formally express the propositions that

comprise landmarks and define the communicative actions that will be used to realize

concrete protocols.

8.3 A WELL-KNOWN PROTOCOL FAMILY

We show how to derive the protocol family for some well-known protocols that require

establishing a joint commitment to get an action done. We start with the classical state

machine representation of the Request protocol and work backwards to find a set of par-

tially ordered landmarks. Once we obtain the protocol family for the Request protocol,

we generalize it and then prove that the Request protocol, the Standing Offer protocol

and the Contract-Net protocol are realizations of this same family.

8.3.1 Request Conversation Protocol

Figure 8.6 shows a version of the popular “request for action” protocol adapted from the

FIPA Request Interaction Protocol [41] using a finite state machine representation. The

states are labeled as S1 to S6 and each state transition is labeled by the communicative

act that results in that transition. The states S2, S4, S5, and S6 with dark outlines are

possible final states of this protocol. An initiator x requests a participant y to do an

action a. Participant y either refuses or agrees to the request. If the participant agrees

to the request, the protocol terminates when either the initiator cancels its request or the

participant informs that the action has been done or that it is impossible to do the action.

Using the definitions of the communicative acts, it has been argued in [106, 107] that this

protocol is used to get an action done by establishing a joint commitment between the

initiator and the participant at S3.

We prove in Theorem 8.1 that our reformulation of this protocol does in fact establish

a joint commitment between the initiator and the participant. This joint commitment

can be discharged by establishing a mutual belief that either the action a is done, or is

impossible or irrelevant. Both the initiator and the participant should be able to establish

these mutual beliefs. However, there is no way in the state machine in Figure 8.1 for

215

S1

S2

S3

(REFUSE y x a q)

S4

(CANCEL x y a q)

S5

S6

(REQUEST x y a q) (AGREE y x a q) (INFORM y x (DONE a))

(INFORM y x �¬ (DONE a))

Figure 8.6: A Request Conversation Protocol as a Finite State Machine

the participant to establish mutual belief about irrelevance of the jointly committed goal.

Without getting into the details about correctness and completeness of this protocol, we

identify below the landmarks for the protocol family of this protocol (Figure 8.7). The

arrows in Figure 8.7 indicate the ordering of the landmarks rather than state transitions

as in Figure 8.6.

L1: ¬ (DONE y a) ∧ ¬ (JPG x y (DONE y a) (PWAG x y (DONE y a) q)�q)
L2: (GOAL x ����∧ �������	��
��
���	���q))
����������������	�a) � [PWAG y x (DONE y a) (PWAG x y (DONE y a) q)�q]
L3: (JPG x y (DONE y a) (PWAG x y (DONE y a) q)�q)
L4: (DONE y a) ∧ (MB x y (DONE y a))
L5: ¬ (DONE y a) ∧ [(MB x y �¬ (DONE y a)) ∨ (MB x y ¬ q)
 ∨ (MB x y ¬ (PWAG x y (DONE y a) q))]
L6: ¬ (DONE y a)
 ∧ [(MB x y �¬ (PWAG y x (DONE y a) (PWAG x y (DONE y a) q)�q))

 ∨ (MB x y ¬ (PWAG x y (DONE y a) q))]
�Request = L1� L2 � (L6 ⊥ (L3 � (L4 ⊥ L5)))

L1 L2 L3

L5

L4

L6

Figure 8.7: Protocol Family For Request Protocol

When the protocol starts, the requested action has not been done by the initiator and

the initiator and the participant do not have any joint commitment to do that action.

Accordingly, we specify the first landmark L1 of this protocol.

L1: ¬(DONE y a) ∧ ¬(JPG x y (DONE y a) (PWAG x y (DONE y a) q)∧q)

By performing the request (REQUEST x y e a q t), the initiator has made public its

goal and intention. The goal and intention are obtained using the definitions of REQUEST

and ATTEMPT (Section 2.5). Assuming mutual belief establishment by default, from

Theorem 2.2, the sender not only made its intention public by performing the request but

also established mutual belief about its PWAG towards the requestee. These can be used

216

as the second landmark.

L2: (GOAL x ♦ϕ) ∧ (MB x y (PWAG x y ϕ q))

where, ϕ = (DONE y a) ∧ [PWAG y x (DONE y a) (PWAG x y (DONE y a) q)∧q]

If the participant agrees to the request, the agents have an interlocking PWAG, resulting

in their having a joint commitment with each other (Theorem 2.1). This state gives us

another landmark.

L3: (JPG x y (DONE y a) (PWAG x y (DONE y a) q)∧q)

There are two possible ending landmarks in each of which the joint commitments have

been discharged. In one of the landmarks, the requested action will have been done, and

in the other, either it was found to be impossible or irrelevant. Furthermore, the requester

may cancel his request before the requested action has been done. These give the following

two landmarks.

L4: (DONE y a) ∧ (MB x y (DONE y a))

L5: ¬(DONE y a) ∧ [(MB x y ¤¬(DONE y a)) ∨ (MB x y ¬q)∨
(MB x y ¬(PWAG x y (DONE y a) q))]

There will be no joint commitment if the participant refuses the initiator’s request or

if he does not respond by a specified deadline. In fact, by refusing, the participant has

made it public that he will never have a commitment towards the initiator. Let us assume

that the effect of the participant’s not responding by the deadline is the same as that

of the participant’s performing the REFUSE communicative act. Moreover, the initiator

can cancel his request, thereby, establishing mutual belief that he does not have PWAG

towards the participant anymore. We can combine these to get another ending landmark.

L6 : ¬(DONE y a)∧
[(MB x y ¤¬(PWAG y x (DONE y a) (PWAG x y (DONE y a) q)∧q)) ∨
(MB x y ¬(PWAG x y (DONE y a) q))]

Exceptions may lead to various landmarks with possibly un-discharged commitments.

However, the exceptions are dealt with by an over-arching joint commitment, as we shall

argue in the next section. The following partially ordered landmarks completely specify

the protocol family of which the Request Conversation protocol is a concrete realization:

L1Â L2 Â L3 Â (L4 ⊥ L5)

217

L2 ÂL6

Or more compactly by

FRequest = L1Â L2 Â (L6 ⊥ (L3 Â (L4 ⊥ L5)))

This formula is represented visually in Figure 8.7.

Recall that a concrete protocol is realized from a landmark-based representation by

specifying the landmark transitions using action expressions such that performing the

actions provably results in the specified transitions. This yields the Request Conversation

protocol in Figure 8.8. Using definitions of the communicative actions and the test action

used in this protocol, one can prove that the action expressions do result in the appropriate

landmark transitions. We illustrate one such example in Theorem 8.1 wherein we show

that a REQUEST followed by an AGREE performed in landmark L1 results in transition

from landmark L1 to L3. Note that sometimes a single communicative action such as

CANCEL is sufficient to establish the mutual belief required by a landmark and sometimes

an INFORM followed by a confirmation, that the informed proposition was believed by

the receiver, is needed to achieve the same end. Whether or not a confirmation is required

to establish mutual belief depends on the content of the communicative act as predicted

by Lemma 2.2 and Lemma 2.3. The proposition deadline is defined as (tcurrent > tstart+

timeout) where tstart in this protocol is the time of performing the REQUEST action. The

protocol in Figure 8.8 is a concrete protocol specifying the actions that result in landmark

transitions and so it looks similar to the protocol specified using finite state machines in

Figure 8.6. However, it is more precise than the state machine representation because

the ‘states’ or the landmarks are formally defined, and therefore, can be used for logical

reasoning. The most important difference between the landmark based representation

in Figure 8.7 and the finite state machine based representation in Figure 8.6 is that the

landmarks specify the crucial properties of protocol without regard to how the landmarks

are reached. For example, informing that it is impossible to do the requested action

a, as well as canceling the request, leads to the same landmark L5 from landmark L3.

However, each of these actions may have very different consequences that the landmark-

based representation does not care about – for example, canceling a request may result

in the requester’s having to pay a penalty but informing that the requested action is

impossible may simply dissolve the ‘contract’. We establish below that the communicative

actions in the request protocol in Figure 8.8 do result in the specified landmark transitions.

We show this for two different transitions, and one can similarly establish this result for

all other landmark transitions in this protocol. The double turn-style arrow (⇒) in the

218

theorems in this chapter represents defeasible implication from Definition 2.11.

L1 L2 L3 L4

L6 L5

(REQUEST x y e a q t)

(AGREE y x e1 a q t1)

(INFORM y x e2 (DONE a) t2);
(INFORM x y e3 (BEL y (DONE a)) t3)

(REFUSE y x e4 a q t4) |
(CANCEL x y e5 a q t5) |
deadline ?

a1 = (INFORM y x e6 ¬q t6);(INFORM x y e7 (BEL x ¬q) t7)

a2 = (INFORM y x e8 �¬ (DONE a) t8);(INFORM x y e9 (BEL x �¬ (DONE a)) t9)

a3 = (CANCEL x y e10 a q t10)

a4 = (INFORM x y e11 ¬q t11);(INFORM y x e12 (BEL y ¬q) t12)

a5 = (INFORM x y e13 �¬ (DONE a) t13);(INFORM y x e14 (BEL y �¬ (DONE a)) t14)

a1 | a2 | a3 | a4 | a5

Figure 8.8: Realizing a Request Conversation Protocol From a Request Protocol Family

Theorem 8.1. A REQUEST performed in landmark L1 results in landmark L2 and an

AGREE performed in landmark L2 in response to the request results in landmark L3. The

AGREE communicative act need not immediately follow the REQUEST communicative

act provided that the propositions in landmark L2 are true when AGREE is performed and

remain true at least until AGREE is done. Formally, we need to show two parts,

|= (DONE P(L1)?;(REQUEST x y e a q t)) ⇒ P(L2)

|= (DONE [P(L2) ∧ (UNTIL (DONE (AGREE y x e1 a q t1)) P(L2))]?; e1) ⇒ P(L3)

where, P(Ln) is the conjunction of propositions true in landmark Ln

Proof. Part 1:

1. From Theorem 2.2, successful performance of the REQUEST communicative act

establishes mutual belief by default between the requester and the requestee about

the requester’s PWAG towards the requestee. Therefore, we have (MB x y (PWAG

x y ϕ q)), where

ϕ = (DONE y a) ∧ [PWAG y x (DONE y a) (PWAG x y (DONE y a) q)∧q]

2. By performing the request, the requester makes public its goal that ♦ϕ. This goal

is obtained by using the definitions of REQUEST and ATTEMPT. By the sincerity

assumption, the requester must have that goal, that is, (GOAL x ♦ϕ).

219

Therefore, successful performance of a REQUEST communicative act in landmark L1

results in landmark L2.

Part 2:

1. From Theorem 2.4, successful performance of an AGREE establishes mutual belief

by default between the sender and the recipient about the sender’s PWAG towards

the recipient. Therefore, we have

(MB x y (PWAG y x (DONE y a) (PWAG x y (DONE y a) q)∧q))

2. It is given that the propositions in landmark L2 are true when AGREE is performed.

Therefore, from L2, we have, (MB x y (PWAG x y ϕ q)) where ϕ is given above.

3. Note that, for any propositions α,β, and δ,

|= (MB x y (PWAG x y α∧β δ)) ∧ (MB x y β) ⊃ (MB x y (PWAG x y α δ))

4. Using the first conjunct in ϕ, we have

(MB x y (PWAG x y (DONE a) q)) [From 4, 5, and 3]

5. Therefore, using the theorem on inter-locking PWAGs (Theorem 2.1), we can con-

clude that

(JPG x y (DONE y a) (PWAG x y (DONE y a) q)∧ q) [From 3, 6, and Theorem 2.1]

This is P(L3).

Therefore, we can conclude that the landmark L3 is achieve immediately after AGREE

is performed.

A special case of this theorem is when REQUEST is immediately followed by an

AGREE.

Theorem 8.2. A REQUEST immediately followed by AGREE in response to the request

establishes a joint persistent goal (JPG) between the initiator and the participant, assuming

instantaneous communication. Formally,

|=(DONE (REQUEST x y e a q t);(AGREE y x e1 a q t1))

⇒ (JPG x y (DONE y a) (PWAG x y (DONE y a) q)∧q)

Proof. 1. AGREE immediately follows the REQUEST and therefore, P(L2) achieved

by the REQUEST still holds when AGREE is performed. Moreover, P(L2) must

220

remain true at least until AGREE is performed due to assumption of instantaneous

communication.

2. Therefore, all conditions for Theorem 8.1 are satisfied. Hence, we can conclude that

(JPG x y (DONE y a) (PWAG x y (DONE y a) q)∧q)

Next, generalize the request protocol family of Figure 8.7.

The protocol family in Figure 8.7 restricts the way in which joint commitment is es-

tablished because one has to pass through landmark L2 before a JPG can be established

and L2 requires that the JPG establishment process be initiated by the initiator role.

Removing this restriction will result in a protocol family that is a generalization of the

request protocol family. Landmark L2 provides an escape route from landmark L6 without

establishing the JPG. Removing landmarks L2 and L6 from Figure 8.7 gives a family of

protocols for getting an action done by establishing JPG between the initiator and the

participant. Note that this protocol family does not indicate which role initiates estab-

lishment of the JPG. Therefore, either participant may initiate the process of establishing

the JPG. This generalized family of protocol can be represented logically by the following

landmark expression L1Â L3 Â (L4 ⊥ L5) and is shown in Figure 8.9.

�JPG = L1� L3 � (L4 ⊥ L5)

L1: ¬ (DONE y a) ∧ ¬ (JPG x y (DONE y a) (PWAG x y (DONE y a) q)�q)

L3: (JPG x y (DONE y a) (PWAG x y (DONE y a) q)�q)

L4: (DONE y a) ∧ (MB x y (DONE y a))

L5: ¬ (DONE y a) ∧ [(MB x y �¬ (DONE y a)) ∨ (MB x y ¬ q)
 ∨ (MB x y ¬ (PWAG x y (DONE y a) q))]

L1 L3

L5

L4

Figure 8.9: Family of Protocols for getting an action done by establishing JPG

The protocol family in Figure 8.9 represents a large number of protocols that establish

and discharge a team while achieving a task. For instance, besides the Request Con-

versation protocol discussed above, it also represents the Standing Offer [107, 8], and

the Contract-Net Conversation protocol because the only difference between these three

protocols is the way in which a team is established.

8.3.2 Standing Offer Conversation Protocol

A Standing Offer conversation protocol belongs to the same family as the Request con-

versation protocol because both these protocols first establish a joint commitment and

221

then discharge it. We have seen that in a Request protocol, the JPG is established when

the initiator requests the participant to do an action and the participant agrees to the re-

quest. The Standing Offer protocol in Figure 8.6 establishes JPG when the initiator makes

a standing offer to do an action, and the other participant informs that he has the mental

state required to accept the standing offer. Note that in case of Request, the initiator

(i.e., the requester) is not the intended actor of the requested action, whereas in Standing

Offer, the initiator is the intended actor of the action being offered. The Standing Offer

conversation protocol family using landmark expressions is shown in Figure 8.10.

L1 L7 L3

L5

L4

L8

L1: ¬ (DONE y a) ∧ ¬ (JPG x y (DONE y a) (PWAG x y (DONE y a) q)�q)
L7:�����������������	

�������	����∀ e1 (DONE (INFORM x y e1 (PWAG x y (DONE y a) q))) �

 (DONE e1;(PWAG y x (DONE y a) (PWAG x y (DONE y a) q)�q)?)
L3: (JPG x y (DONE y a) (PWAG x y (DONE y a) q)�q)
L4: (DONE y a) ∧ (MB x y (DONE y a))
L5: ¬ (DONE y a) ∧ [(MB x y �¬ (DONE y a)) ∨ (MB x y ¬ q)
 ∨ (MB x y ¬ (PWAG x y (DONE y a) q))]
L8: ¬ (DONE y a)
 ∧ [(MB x y �¬ (PWAG x y (DONE y a) q)) ∨ (MB x y (BEL y ¬	

�SOffer = L1� L7 � (L8 ⊥ (L3 � (L4 ⊥ L5)))

Figure 8.10: Protocol Family for the Standing Offer Conversation Protocol

A concrete realization of the protocol family in Figure 8.10 is shown in Figure 8.11.

The concrete protocol uses SOFFER, ACCEPT, and REJECT communicative acts that

we define next. These communicative acts are defined as compositions of the basic commu-

nicative acts that happen to be INFORM and REQUEST in our framework. We show in

Theorem 8.3 that an SOFFER followed by an ACCEPT by the recipient of the SOFFER

is sufficient to establish a JPG between the two agents by default.

Definition 8.3. Standing Offer

(SOFFER x y e a q t) , (INFORM x y e ϕ t)

where, ϕ is

∀e1 (DONE (INFORM y x e1 (PWAG y x (DONE x a) q))) ⊃
(DONE e1;(PWAG x y (DONE x a) (PWAG y x (DONE x a) q)∧q)?)

A standing offer from x to y to do an action a relative to q is a conditional offer that

if ever y informs x that he has a PWAG that x does a then x will have a PWAG to do a

relative to y’s PWAG as well as relative to q. An SOFFER extends over time – the offering

agent is agreeing to perform the action if the listening agent ever makes it known that he

has the appropriate PWAG. An SOFFER does not commit the agent making the SOFFER

towards the recipient of the SOFFER. So even if the sender x discovers after making the

222

SOFFER that he is no longer able to honor the SOFFER, he is not required to inform the

agent y that the standing offer has been withdrawn. However, we show in Theorem 8.3

that acceptance of the SOFFER by agent y does establish mutual belief in interlocking

PWAGs towards each other, resulting in a joint commitment between the two agents.

Once the SOFFER JPG is established, it is immaterial if agent x withdraws the SOFFER

because it is now bound by its PWAG towards agent y. A variation of the standing offer

conversation protocol argues that simply accepting an SOFFER does not create a joint

commitment between the two agents because the SOFFER may have been withdrawn but

the other agent was not notified of the withdrawal. As such, a further confirmation is

required from the agent who made the SOFFER, using the AGREE communicative act,

for a joint commitment to be created. A discussion on this variation of the standing offer

conversation protocol can be found in [107].

Definition 8.4. Withdraw

(WITHDRAW x y e a q t) , (EARLIER ϕ)?;(INFORM x y e ¬ϕ t)

where, ϕ is

∀e1 (DONE (INFORM y x e1 (PWAG y x (DONE x a) q))) ⊃
(DONE e1;(PWAG x y (DONE x a) (PWAG y x (DONE x a) q)∧q)?)

A WITHDRAW is a way for the agent who made the SOFFER to get out of the

standing offer by saying that the implication in SOFFER no longer holds. It is defined as

an INFORM that is performed in the context of an earlier standing offer.

Definition 8.5. Accept

(ACCEPT x y e a q t) , (INFORM x y e ϕ t)

where ϕ = (PWAG x y (DONE y a) q)

An accepting agent x informs the listening agent y that he (the accepting agent) has

a PWAG with respect to y that y perform an action a and this PWAG is relative to some

higher-level condition q. The main difference between the ACCEPT and the AGREE

communicative acts is the relativizing condition of the sender’s PWAG - in AGREE, the

sender’s PWAG is relative to the listener’s PWAG (as well as relative to q) whereas in

ACCEPT, it is relative only to q.

Definition 8.6. Reject

(REJECT x y e a q t) , (INFORM x y e ϕ t)

where ϕ = (¤¬(PWAG x y (DONE y a) q))

223

The REJECT communicative act is the opposite of the ACCEPT communicative act

- the rejecting agent x informs the listening agent y that x will never have the PWAG

with respect to the listening agent that the listening agent does the specified action a.

As in the case of ACCEPT and AGREE, the main difference between the REJECT and

the REFUSE communicative act is the relativizing condition. The proposition deadline is

defined as (tcurrent > tstart+ timeout) where tstartin this protocol is the time of performing

the SOFFER action. We assume that the effect of the participant’s not responding by the

deadline is the same as that of the participant’s performing the REJECT communicative

act. Given these definitions, we are now in a position to prove that the communicative

acts in Figure 8.11 do actually result in the landmarks specified in Figure 8.11.

L1 L7 L3 L4

L8 L5

(SOFFER y x e a q t)

(ACCEPT x y e1 a q t1)

(INFORM y x e2 (DONE a) t2);
(INFORM x y e3 (BEL y (DONE a)) t3)

(REJECT x y e4 a q t4) |
(WITHDRAW y x e5 a q t5) |
deadline ?

a1 = (INFORM y x e6 ¬q t6);(INFORM x y e7 (BEL x ¬q) t7)

a2 = (INFORM y x e8 �¬ (DONE a) t8);(INFORM x y e9 (BEL x �¬ (DONE a)) t9)

a3 = (CANCEL x y e10 a q t10)

a4 = (INFORM x y e11 ¬q t11);(INFORM y x e12 (BEL y ¬q) t12)

a5 = (INFORM x y e13 �¬ (DONE a) t13);(INFORM y x e14 (BEL y �¬ (DONE a)) t14)

a1 | a2 | a3 | a4 | a5

Figure 8.11: A Standing Offer Conversation Protocol

As an example, we will prove that a joint commitment is created between the initiator

and the participant as required by landmark L3.

Theorem 8.3. An SOFFER performed in landmark L1 results in landmark L7 and an

ACCEPT performed in landmark L7 in response to the SOFFER results in landmark L3.

The ACCEPT communicative act need not immediately follow the SOFFER communica-

tive act provided that the propositions in landmark L7 are true when ACCEPT is performed

and remain true at least until the ACCEPT is done. Formally, we need to show two parts,

|= (DONE P(L1)?;(SOFFER y x e a q t)) ⇒ P(L7)

|= (DONE [P(L7) ∧ (UNTIL (DONE (ACCEPT x y e1 a q t1)) P(L7))]?;e1) ⇒ P(L3)

where, P(Ln) is the conjunction of propositions true in landmark Ln,

Proof. Part 1:

224

1. SOFFER is defined as an INFORM that ϕ. From Theorem 2.3, successful per-

formance of the INFORM communicative act establishes mutual belief by default

between the agents that the sender believes ϕ. Therefore, (MB x y (BEL y ϕ))

where,

ϕ = ∀ e1 (DONE (INFORM x y e1 (PWAG x y (DONE y a) q))) ⊃
(DONE e1;(PWAG y x (DONE y a) (PWAG x y (DONE y a) q)∧q)?)

This is P(L7) and therefore, successful performance of an SOFFER communicative

act in landmark L1 results in landmark L7.

Part 2:

2. ACCEPT is defined as an INFORM that (PWAG x y (DONE y a) q).

3. |= (BEL x (PWAG x y (DONE y a) q)) ⊃ (PWAG x y (DONE y a) q)

[From Lemma 2.1]

4. Therefore, from 3, we can conclude that

(MB x y (BEL x (PWAG x y (DONE y a) q)) ⊃ (PWAG x y (DONE y a) q))

[If ϕ is valid in our model, then it is mutually believed that ϕ]

5. Hence, we can conclude that

(MB x y (PWAG x y (DONE y a) q)) [From 2, 4, and Lemma 2.2]

6. After ACCEPT has been performed, using definition of ACCEPT as an INFORM,

we can conclude that

(MB x y (DONE (INFORM y x e1 (PWAG y x (DONE x a) q))))

[From Proposition 2.3]

7. From 6, we have

(MB x y (BEL y (DONE (INFORM y x e1 (PWAG y x (DONE x a) q)))))

[Using |= (MB x y p) ⊃ (MB x y (BEL y p))]

8. From 1 and 7, we can conclude that

(MB x y (BEL y (PWAG y x (DONE y a) (PWAG x y (DONE y a) q)∧q)))

[Using Modus Ponens]

225

9. Therefore, we can conclude that

(MB x y (PWAG y x (DONE y a) (PWAG x y (DONE y a) q)∧q))

[From 8 & Lemma 2.1]

10. From 5 and 9, and using Theorem 2.1 on inter-locking PWAGs, we can conclude

that

(JPG x y (DONE y a) (PWAG x y (DONE y a) q)∧q)

This is P(L3).

Therefore, we can conclude that the landmark L3 is achieve immediately after AC-

CEPT is performed.

The Contract-Net protocol is similar to and belongs to the same protocol family as the

Request and Standing Offer protocols in that it establishes a JPG between the initiator

and the participant to get a task done. We discuss the Contract-Net protocol next.

8.3.3 Contract-Net Conversation Protocol

The Contract-Net protocol usually starts by the initiator’s making a call-for-proposal,

followed by a proposal from the participant, which is then accepted by the initiator. The

Contract-Net protocol in Figure 8.13 is a simplified version of the FIPA Contract-Net

protocol involving only one participant. The simplification made here does not affect

the basic property of the Contract-Net protocol that a joint commitment is established

between the initiator(s) and the participant(s) using the sequence of speech acts described

here. The protocol family for this Contract-net protocol is shown in Figure 8.12. This

protocol family is specialized from the Request protocol family in Figure 8.9 by adding

additional landmarks L9, L10, and L11.

This Contract-Net protocol is based on the call for proposal (CFP), and the PROPOSE

communicative acts. A call for proposal (CFP x y e a ϕ q t) is a solicitation for proposal

from x to y that y propose to x a proposition ϕ such that if x has a commitment (PWAG)

towards y relative to ϕ for doing an action a, then y will have a matching commitment

towards x relative to x’s commitment. A CFP may be composed as a REQUEST to

INFORM the required proposition ϕ.

226

L1: ¬ (DONE y a) ∧ ¬ (JPG x y (DONE y a) (PWAG x y (DONE y a) �)��)

L10: (MB x y (PWAG x y (DONE (PROPOSE y x e a � q t)) Q))

L9: (MB x y (PWAG y x ψ q))

 ψ = ∃ e1 (DONE (INFORM x y e1 (PWAG x y (DONE y a) �))) �

 (DONE e1;(PWAG y x (DONE y a) (PWAG x y (DONE y a) �)��)?)

L3: (JPG x y (DONE y a) (PWAG x y (DONE y a) �)��)

L4: (DONE y a) ∧ (MB x y (DONE y a))

L5: ¬ (DONE y a) ∧ [(MB x y �¬ (DONE y a)) ∨ (MB x y ¬�) ∨ (MB x y ¬ (PWAG x y (DONE y a) �))]

L11: ¬ (DONE y a) ∧ [(MB x y �¬ (PWAG x y (DONE y a) �)) ∨ (MB x y ¬ (PWAG y x ψ q))]

�Contract-Net = L1� L10 � (L11 ⊥ (L9 � (L11 ⊥ (L3 � (L4 ⊥ L5)))))

L1 L1 L3

L5

L4

L1

L9

Figure 8.12: Protocol Family for the Contract-Net Protocol

According to this composed definition, a CFP is satisfied (i.e., the requested action

gets done) when a PROPOSE is performed in response to the CFP. Even though a CFP

can be used to elicit a PROPOSE, there is no reason why an agent cannot propose on

its own. The crucial part of a Contract-Net protocol is the PROPOSE communicative

act and not the call for proposal. We show in Theorem 8.4 that a PROPOSE followed

by an ACCEPT in response to the PROPOSE creates a joint commitment between the

proposer and the acceptor, and therefore, we need to formally define the PROPOSE

communicative act. Also, the proposition deadline1 in Figure 8.13 is defined as (tcurrent >

tstart + timeout1) where tstartin this protocol is the time when the CFP was performed,

and deadline2 is defined as (tcurrent > t1 + timeout2) where t1 is the time when the

PROPOSE communicative action was performed.

Definition 8.7. Propose

(PROPOSE x y e a ϕ q t) , (INFORM x y e ϕ t)

where,

ϕ = (PWAG x y ψ q), and

ψ = ∀e1 (DONE (INFORM y x e1 (PWAG y x (DONE x a) ϕ))) ⊃
(DONE e1;(PWAG x y (DONE x a) (PWAG y x (DONE x a) ϕ)∧ϕ)?)

A PROPOSE from x to y is an INFORM that the sender x has a PWAG with respect

227

to the recipient y about an implication ψ and this PWAG is relative to some higher-

level condition q. The implication says that if y informs x that he has a PWAG towards

x relative to a ϕ then x will also have the matching PWAG towards y relative to y’s

PWAG and relative to the condition ϕ. Assuming that the proposing agent is sincere,

this definition requires the proposing agent to have a PWAG towards an implication,

thus ensuring that if for some reason, the proposing agent decides that his proposal is

no longer valid then he is bound by the PWAG (towards the implication) to establish

mutual belief about this fact. A consequence of this fact is that a team is formed, that is,

a JPG is established between x and y when y accepts the proposal using the ACCEPT

communicative act. We state this result formally in Theorem 8.4.

Theorem 8.4. A PROPOSE followed by a subsequent ACCEPT of the proposal estab-

lishes a JPG between the initiator and the participant. Formally,

|= (DONE [P(L9) ∧ (UNTIL (DONE (ACCEPT x y e2 a q t2)) P(L9))]?;e2) ⇒ P(L3)

where, P(Ln) is the conjunction of propositions true in landmark Ln

Proof. 1. As in proof of Theorem 8.1 and Theorem 8.3, using the definitions of the

communicative acts PROPOSE and ACCEPT (Definitions 8.7 and 8.5), we first

establish that there is a mutual belief in each other’s PWAGs. The acceptor’s PWAG

is relative to the condition ϕ and the proposer’s PWAG is relative to the acceptor’s

PWAG and the condition ϕ.

2. Thereafter, the desired result follows by application of Theorem 2.1.

The Contract-Net protocol in Figure 8.13 specifies an optional landmark. There are

two ways to get from L1 to L9 – either through L10 or directly from L1 to L9. In one

case, the proposing agent proactively makes a proposal and in the other case, it proposes

in response to a call for proposal. Assuming, that a CFP is defined as a REQUEST, per-

forming a CFP makes public the PWAG of the agent x making the call for the proposal.

This PWAG is towards agent y for performing an INFORM and it gets discharged when

agent y performs a PROPOSE (which is an INFORM) in response to the CFP. Therefore,

the only relevant commitments in landmark L9 are those introduced by performing the

PROPOSE and hence landmark L10 is an optional landmark. A ‘proposer’ agent in a

community of intelligent agents all of whom plan their communicative actions using land-

marks, can skip landmark L10 at execution time by proactively performing a PROPOSE

228

without waiting for a CFP if unsolicited proposals are allowed.

b = (INFORM y x e3 (DONE a) t3);(INFORM x y e4 (BEL y (DONE a)) t4)

a1 = (INFORM y x e7 ¬� t7);(INFORM x y e8 (BEL x ¬�) t8)

a2 = (INFORM y x e9 �¬ (DONE a) t9);(INFORM x y e10 (BEL x �¬ (DONE a)) t10)

a3 = (CANCEL x y e11 a � t11)

a4 = (INFORM x y e12 ¬� t12);(INFORM y x e13 (BEL y ¬�) t13)

a5 = (INFORM x y e14 �¬ (DONE a) t14);(INFORM y x e15 (BEL y �¬ (DONE a)) t15)

a1 | a2 | a3 | a4 | a5

(CFP x y e a � Q t)

(PROPOSE y x e16 a � q t16)

(PROPOSE y x e1 a � q t1) (ACCEPT x y e2 a � t2)

deadline1? (REJECT x y e5 a � t5) |

deadline2? |
(INFORM y x e6 ¬� t6)
� from defn. of PROPOSE

b
 L1 L10 L3 L4

L11 L5

L9

Figure 8.13: A Contract-Net Conversation Protocol

Given the family of protocols L1Â L3 Â (L4 ⊥ L5) in Figure 8.9, one can systematically

derive the concrete protocols such as the Request, the Standing Offer, and the Contract-

Net protocols by first specializing this protocol family by inserting additional landmarks for

the way in which joint commitment is to be established, and then specifying communicative

and other action expressions that result in landmark transitions. An intelligent reasoning

and planning agent would need to know only the definitions of protocol families using

landmarks, definitions of allowed communicative acts, and whether or not there is joint

commitment towards a protocol family for it to be able to generate concrete conversation

protocols.

Next, we explore the consequences of applying the joint intention theory to protocol

families and concrete protocols.

8.4 APPLYING JOINT INTENTION THEORY TO PRO-

TOCOLS

We first argue for joint commitment towards a protocol family and explore the conse-

quences of such a joint commitment. Thereafter, we explore the consequences of jointly

229

intending the action expression representation of a protocol.

8.4.1 Joint Commitment Towards a Protocol Family

Human society has developed the equivalent of a set of commonly understood conversation

protocols for many common interactions. For example, if I ask you a question, you will

either answer the question, or let me know if you do not know the answer, or ask for

clarification if you did not properly understand my question, or direct me to who you

think might be able to answer my question or where I might be able to find an answer. In

fact, every person who abides by human social norms will do the same on realizing that

he is a participant of a question-answer protocol. Just the fact that the question-answer

protocol is common knowledge in our society is not sufficient to explain this conversation.

One can, of course, speculate that everybody in the society is helpful and this fact along

with common knowledge will explain the question-answer conversation. However, there is

a better and much more useful hypothesis – the assumption that it is a social norm that we

are jointly committed to the question-answer protocol offers a straightforward explanation

to the question-answer conversation. You recognize that the question-answer protocol is

being used and instantiate the initiator role with the person asking the question and the

participant role with yourself. You also realize that as a result of the social norm, there

is an over-arching joint commitment between the initiator and yourself and therefore, you

discharge the joint commitment by communicating to establish the appropriate mutual

beliefs.

One can identify several such instances where we find ourselves jointly committed to

a protocol because of the governing norms [18] of the society, the social institutions, and

other institutions that we might be part of. These joint commitments come into effect

when a protocol gets instantiated. However, pre-existing societal norms do not cover all

conversation protocols; there are also protocols to which we explicitly commit – for in-

stance, two businesses jointly commit to a particular bill-payment protocol when they sign

a trade agreement. Whether the joint commitment between the initiator and the partici-

pant of a protocol is provided by the governing social norms or by explicit contract, such

over-arching joint commitments lead to proper communication, robust protocol execu-

tion by handling of exceptional situations, correctness criteria for protocols, and possibly

dynamic realization of concrete protocols from protocol families. We express protocol

families precisely as landmark expressions in a propositional dynamic logic and therefore,

we can apply the joint commitment operator (JPG) directly to protocol families.

230

A number of important properties and behavior can be shown to hold when an over-

arching joint commitment exists. Consider the family of protocols F for getting a task

done by forming a joint commitment. From Section 8.3.1,

F = L1Â L3 Â (L4 ⊥ L5)

Suppose that there is an over-arching joint commitment towards this protocol family

(JPG x y F q) in the context of a particular social institution. The relativizing condition q

then refers to this social context which is the membership of the initiator x and participant

y in the social institution at hand. Using the definition of JPG (Definition 2.6) and the

landmark ordering and OR operators from Section 8.2.1, one can predict the following

behavior and properties.

• Appropriate Communication. JPG specifies that a jointly committed goal will per-

sist until there is mutual belief among the agents involved about its achievement,

impossibility or irrelevance. If an agent privately comes to believe that the jointly

committed goal has been achieved or is impossible or irrelevant then it will have

an individual commitment to bring mutual belief about the privately discovered

fact. Establishing mutual belief requires communication of some sort – either by

exchanging explicit messages or by mutually understood signaling or by some other

means. Therefore, joint commitment towards a protocol family predicts that there

will be appropriate communication to establish the required mutual beliefs among

the agents involved in any protocol that realizes a protocol family. The initiator

and the participant will eventually mutually believe that the protocol execution has

been successfully achieved or was impossible or irrelevant. The initiator and the

participant of a protocol get jointly committed to that protocol by (1) a mutual

belief that there is an over-arching joint commitment towards the protocol family

of which the protocol at hand is an instance, and (2) a mutual belief or recognition

that they (i.e., the agents) instantiate the roles involved in the protocol.

• Automatic Exception Handling. Joint commitment characterizes teamwork and agents

bound together by joint commitment form a robust team that can handle exceptions,

failures, and adverse situations. The persistence of the jointly committed goal and

the requirement to establish mutual belief ensures that agents can depend on each

other. If something goes wrong the agents will attempt to resolve it by commu-

nicating to establish mutual belief. For instance, if an agent does not understand

a message, it will communicate this fact to the sender of the message because of

231

the joint commitment. As such, performatives such as “not understood” and “re-

transmit” that tend to clutter traditional protocol diagrams are taken care of as a

consequence of jointly committing to a protocol. Therefore, such exceptions related

to execution of a protocol need not be specified as part of the protocol.

• Correctness Criterion. Landmarks are the waypoints towards achieving the goal that

a protocol or protocol family is meant for. Therefore, the main correctness criterion

for any protocol is whether or not successful execution of that protocol achieves its

goal. The goal of a protocol is specified as a proposition that is true only in the final

landmark. If there are multiple final landmarks, the goal is true in the ‘main’ final

landmark that represents the successful execution of all protocols in that protocol

family. For example, the goal of the protocol family F in our earlier examples is

(DONE y a) where y is the participant role. A protocol family specified using land-

marks might be used by an intelligent agent with reasoning and planning capabilities

to figure out the communicative acts required to achieve the goal of that protocol

family. However, most agents that lack these capabilities do not care about the land-

marks – they need to know the complete communicative action expression that can

achieve the required goal. These two cases represent the two possible extremes – on

one hand we have landmarks that may consist of mental states internal to an agent

and on the other hand we have observable and executable communicative actions.

One can think of landmark-based representation as a protocol design specification

and a concrete protocol as a protocol implementation. Given a concrete protocol

that is completely specified using communicative actions, the assumption of joint

commitment towards a protocol family gives a straightforward criterion to deter-

mine whether or not the protocol is correct – a joint intention towards the action

expression representation of a protocol must satisfy the joint commitment towards

the landmark expression for that protocol. Further, there can be several interme-

diate levels of protocol representation between the two extreme representations of

protocols, for instance, partially realized protocol families that specify a few land-

marks along with a few communicative acts. Each level of representation gives the

correctness criterion for the next more concrete level – the JPG towards a protocol

represented at a certain level must satisfy the JPG towards the same protocol repre-

sented at the previous level. Of course, an action expression for a protocol must also

satisfy the landmark constraints for the protocol family of that protocol in order for

the protocol to be correct with respect to its family.

232

We illustrate this idea with our running example of the protocol family F . We want to

determine whether an action expression a1;a2;a3;a4 where a1, a2, a3, a4 are communica-

tive acts, correctly specifies a concrete protocol belonging to this family. According to

our correctness criterion, we want to know whether satisfying the joint intention (JI x y

a1;a2;a3;a4 q) also counts as satisfying the joint commitment (JPG x y ϕ q) where ϕ is

a proposition involving landmarks defined earlier. The problem reduces to the following

two criterion.

1. It should be possible to execute the action expression a1;a2;a3;a4 in the starting

landmark Ls. Also, successful execution of this action expression in landmark L1

must result in a final landmark (L4 | L5). Combining these two cases, it should

be possible to successfully execute the action expression P(L1)?;a1;a2;a3;a4;(P(L4)

∨ P(L5))?

2. It should be possible to identify the intermediate landmark L3 after completion of

one of the actions in the action expression. In other words, it should be possible to

successfully execute one of the following action expressions:

P(L1)?;a1;P(L3)?;a2;a3;a4;(P(L4) ∨ P(L5))? or P(L1)?;a1;a2;P(L3)?;a3;a4;(P(L4)

∨ P(L5))? or P(L1)?;a1;a2;a3;P(L3)?;a4;(P(L4) ∨ P(L5))?

Concrete protocols are realized from a landmark-based representation of protocol families

using action expressions for landmark transitions. Conversation protocols are, therefore,

patterns of communicative action expressions. As such, they will be amenable to repre-

sentation as action expressions using constructs of dynamic logic. Next, we discuss the

consequences of jointly intending concrete protocols represented as action expressions.

8.4.2 Jointly Intending a Conversation Protocol

We can assume an over-arching joint intention (JI) towards concrete protocols by similar

arguments as for an over-arching JPG towards protocol families in the previous section.

The JI towards a protocol can result from either an institutional norm or an explicit

contract. Recall that agents x and y jointly intend to do an action (or actions) a if they

have a joint commitment to do the action a mutually believing throughout the action

execution that they are jointly doing that action (Definition 2.7).

A concrete conversation protocol can be represented as a joint action expression and

therefore, the joint intention operator can be applied to protocols. We analyze (JI x y Π q)

233

and predict at least the following consequences of jointly intending a protocol Π using the

analyses of JI in [70, 29]. These consequences are what can be expected when STAPLE

agents execute conversation protocols represented as joint actions.

• The definition of JI requires that there be a mutual belief throughout the protocol

execution that the agents are jointly executing the protocol Π. Therefore, commu-

nication of some sort is required to establish the starting mutual belief. The first

communicative act in a protocol may be used to signal the start of a protocol by

specifying the protocol being used as part of the relativizing condition of the com-

municative act. If so, then the starting mutual belief can be established by simply

performing the first communicative in a protocol. This may be implemented by indi-

cating the protocol being used as part of the first message being sent during protocol

execution. Furthermore, if there is any chance that the initial mutual belief may

dissipate over the duration of protocol execution, then the definition of JI predicts

intermediate “reassuring” communication to maintain the starting mutual belief. Of

course, this can again be opportunistically achieved to some extent by specifying the

protocol as part of the relativizing condition of the communicative acts.

• As a result of the joint intention, both agents are committed not only to their part

of the protocol but also to the entire protocol. Therefore, they will not intentionally

do something to render the performance of communicative acts by the other agent

impossible, thereby making the protocol execution impossible. In fact, each agent’s

commitment towards the other agent’s communicative acts may lead to the agent’s

helping each other in performance of their communicative acts. Executing a jointly

intended protocol in a noisy environment, for instance stock trading on the floor of

a stock exchange using jointly agreed upon trading protocols, is a situation where

this behavior predicted by joint intention is very important.

• A joint intention towards a protocol leads to the appropriate individual intentions

relative to the broader joint intention. For instance, if a protocol requires the agents

to concurrently perform their respective communicative acts, then each agent will

privately intend to perform its communicative act relative to the joint intention. If

the agents jointly intend to execute the sequential parts of a protocol in lockstep [29]

then they will have individual intentions to bring about appropriate mutual belief

after executing each sequential step of the protocol [29].

234

• JI is defined in terms of JPG. The definition of JPG requires that there be mu-

tual belief among the participants of a protocol about the completion, impossibility,

and irrelevance of executing that protocol in order to discharge the JPG. Therefore,

(JI x y Π q) predicts that there will be communication among the participants of

a jointly intended protocol to establish the appropriate mutual belief about com-

pletion, impossibility or irrelevance of a protocol execution. Furthermore, we will

represent protocols as joint action expressions in the next section. Since a protocol

Π is nothing but an action expression, one can capture the fact that certain actions

are being done as a result of jointly intending a protocol by using the term (DOING

x y Π) in the relativizing term qof a joint intention formula.

• Joint intention towards a protocol predicts robust execution of that protocol. Ex-

ceptions are handled automatically because of the requirement to establish mutual

belief due to the definition of JI as a JPG. If a participant of a protocol comes to

privately believe that the protocol has been completed, or that the protocol is im-

possible to complete, or it is irrelevant to execute the protocol then he is committed

to establishing the corresponding mutual belief. Communicative acts such as ‘not-

understood’ as in KQML [67] and FIPA [41] need not be specified as part of the

protocol because the agents will use the appropriate exception handling communica-

tive acts when needed. This is a consequence of the persistence of joint intentions –

if an agent doesn’t understand a communicative act (i.e., if it is unable to deduce the

effect, precondition, etc.) performed as part of a jointly intended protocol then it

will ask for clarification etc. and try all possible means at its disposable before it can

come to a conclusion that it is impossible to execute the jointly intended protocol.

Even then, the agent must first establish mutual belief that the protocol execution

is impossible before it can give up.

A consequence of using joint intention theory to analyze protocols is that it gives us

correctness and completeness criterion for protocols as well as for their compositions. Next,

we use the joint intention theory to first represent protocols as joint action expressions

and then define and analyze protocol compositions.

8.5 COMPOSING PROTOCOLS

Concrete protocols are realized from a landmark-based representation of protocol families

using action expressions for landmark transitions. Here, we propose an action expression

235

based representation for protocols, define different types of protocol compositions using

that same representation, propose criterion for meaningful compositions, and apply these

techniques by representing the Request protocol as an action expression composed of

protocols to form and discharge teams.

8.5.1 Representing Concrete Protocols

We use the dynamic logic operators for action sequences (a;b), concurrent actions (a||b),
non-deterministic OR (a|b), test action (p?), and indefinite repetitions (a*) where a and

b are actions and p is a proposition. We also define and use a rational choice operator

(a ↑ b) specifying that the agent selects and executes one of the actions using some rational

decision process.

We require an OR operator to represent that an agent must use its reasoning process

to determine which alternative action it chooses to execute. For example, when an agent

receives a request in a Request protocol, we want to say that the agent either refuses or

accepts but do not want to specify how the agent decides what to choose. ‘How to choose’

is something internal to the agent – it may use utility based or any other criteria such as

whether it has enough resources, whether it can commit, whether it conflicts with prior

commitments etc. to determine what to choose. We introduce a rational choice operator

↑ and give it a semantics using the non-deterministic OR operator.

Definition 8.8. Rational Choice.

Let a and b be two actions having the same agent, that is, (AGT a) = (AGT b) and

let ∆ be an operator that determines the utility of doing an action for that agent. The

rational choice for the agent of actions a and b is defined as

a ↑ b , (∆a > ∆b)?; a| ¬(∆a > ∆b)?; b

Pragmatically, ∆ represents some reasoning process internal to an agent. One may

use results from decision and game theory literature to define the ∆ operator.

Conversation protocols are applicable in certain contexts and are used to achieve cer-

tain goals. One can think of the starting landmark as specifying the precondition and the

main final landmark as specifying the goal associated with the protocol. We incorporate

the precondition and the goal associated with a conversation protocol in its representation

as a joint action expression such that executing that joint action expression amounts to

correct execution of the protocol using the main correctness criterion from Section 8.4.

Accordingly, we view a joint action expression as having three components – a test to

236

determine whether the precondition is true, an action expression to achieve the goal asso-

ciated with the protocol, and a test to know if that goal is achieved. For example, let p

be the precondition, a;(b|c) be the action expression, and let g be the goal of a protocol.

Further, assume that a;b is the main path in this protocol, that is, the path from the

starting landmark to the main final landmark in the landmark-based representation of the

protocol family to which this protocol belongs. Then this protocol Πexample is specified in

terms of joint action expressions as

Πexample = p?; a; ((b; g?)|c)
Just as a protocol family can have multiple final landmarks, a protocol may have

multiple goals. For example, if the goals of the protocol in this example were g1 and g2

corresponding to the two actions b and c, then this protocol would be represented as

Πexample = p?; a; ((b; g1?)|(c; g2?))

Using this technique, the request for action protocol in Figure 8.8 can be expressed as:

P(L1)?; c1; [(c4;P(L6)?) |(c2; [(c5;P(L5)?) |(c3;P(L4)?)])]

where,

c1 = (REQUEST x y e a q t)

c2 = (AGREE y x e1 a q t1)

c3 = (INFORM y x e2 (DONE a) t2);(INFORM x y e3 (BEL y (DONE a)) t3)

c4 = (REFUSE y x e4 a q t4) | (CANCEL x y e5 a q t5) | deadline?

c5 = ((INFORM y x e6 ¬q t6);(INFORM x y e7 (BEL x ¬q) t7))|
((INFORM y x e8 ¤¬(DONE a) t8);(INFORM x y e9 (BEL x ¤¬(DONE a)) t9))|
(CANCEL x y e10 a q t10) |
((INFORM x y e11 ¬q t11);(INFORM y x e12 (BEL y ¬q) t12))|
((INFORM x y e13 ¤¬(DONE a) t13);(INFORM y x e14 (BEL y ¤¬(DONE a)) t14))

Protocols are action expressions and therefore, (1) teams of agents can jointly intend

protocols represented as action expressions, and (2) protocols can themselves be composed

using the same operators used to compose action expressions. We first analyze the effects

of jointly intending a conversation protocol and then look into issues involved in protocol

composition.

8.5.2 Compositions

There are two main issues in composing protocols - what are the possible compositions of

protocols and what are the correctness criteria for protocol compositions.

237

We have argued that protocols, and therefore, composed protocols can be regarded as

action expressions. As such, protocols can be composed using the operators of dynamic

logic of actions. If Π1 and Π2 are two protocols and p is a proposition, then Π1;Π2 (se-

quence), Π1|Π2 (non-deterministic or), Π1||Π2 (concurrent execution), Π1* (repetition),

and p?;Π2 (conditional execution) and any combination of these is a possible syntactic

composition subject to certain semantic constraints. Actions in an action expression may

be high-level actions that can be replaced by the equivalent (sub)action expression. This

gives another composition operator – for embedding or replacing an action expression in

a protocol by another protocol. If Π and π are two protocols then Π[a/π] represents the

protocol obtained by substituting a (sub)action expression a in Π by the action expression

for protocol π. Recall that the joint action expression representation of a protocol consists

of a test for precondition, an action expression, and a test for goal achievement. The

composition operators are first applied only on the action expression part, that is, after

stripping off the precondition test and goal achievement tests for each protocol being com-

posed. The precondition and goal for the composed protocol are then combined with the

composed action expression to yield the complete composed joint action expression. The

precondition of the composed protocol is derived from the precondition of the constituent

actions.

Given the various possible ways to compose protocols, we want to determine which

of the compositions are meaningful. One can identify at the least following criteria for

correctness and legality of protocol compositions.

1. Completeness and Ending criteria. In the previous teamwork-based analysis of

protocols [106, 107], we have argued that a complete conversation should not leave

behind any un-discharged commitments. However, this completeness criterion is not

applicable to protocols (either individual or composed) that have the goal to bring

about certain commitments – for instance, a protocol to form a team is intended to

leave behind a joint commitment among the participants. At most, we can say that

any complete protocol of which the protocol to form a team is a component must have

another protocol as its component in a sequence that results in discharging the joint

commitment created by the previous (sub)protocol. Therefore, teamwork analysis

gives us a completeness criterion – a criterion to determine whether a protocol is

complete or partial and an ending criterion - a criterion to determine the acceptable

end-points of a protocol.

238

2. Enabling Criteria. Conversation protocols consist of communicative acts that are

themselves defined to bring about changes in states. Therefore, it seems intuitive

that there must be some relation between the states at the end-point of one protocol

and the starting point of another protocol. We call this the enabling criterion for

composing protocols. For instance, the precondition of the successor protocol must

be entailed by the effect of the prior protocol. Also, the commitments at the end

point of one protocol (the output commitments) and at the starting-point of another

protocol (the input commitments) must be related. The enabling criterion is best-

expressed using landmarks. Consider for example, two protocols Π1 and Π2. Let Lf1
be the final landmark of the protocol Π1 and Ls2 be the starting landmark of the

protocol Π2. The conjunction of propositions in the initial and the final landmarks

of Π1 are represented by P(Ls1) and P(Lf1) respectively and that of Π2 by P(Ls2)

and P(Lf2) respectively. A sequential composition Π1;Π2 is meaningful if the final

landmark of Π1 implies the starting landmark of Π2. Formally,

Π1; Π2 is meaningful iff |= P(Lf1) ⊃ P(Ls2)

Without this implication relationship, it is difficult to make guarantees about the

resulting composition. This same enabling criterion is applicable to substitution (or em-

bedding) composition Π1[a/Π2] at the point of composition. The non-deterministic OR

composition Π1|Π2 is meaningful if the starting landmarks of Π1 and Π2 entail each other.

Formally,

Π1|Π2 is meaningful iff |= P(Ls1) ≡ P(Ls2)

In other words, an OR composition of protocols is meaningful if the protocols being

composed have the ‘same’ starting landmark, that is, the protocols being composed should

be applicable in the same ‘state’. A concurrent composition Π1||Π2 is meaningful if the

starting and final landmarks of Π1 are consistent with the starting and final landmarks

respectively of Π2. Formally,

Π1||Π2 is meaningful iff (P(Ls1) ∧ P(Ls2)) and (P(Lf1) ∧ P(Lf2)) are each

jointly satisfiable.

Semantically, a concurrent composition of protocols has the same restrictions for the

starting landmarks as an OR composition. In addition, when the concurrent protocols

end, their end states should be consistent.

It is possible to define several other criterions for correctness and legality of protocol

compositions. For instance, consider a composition Π1;Π2;Π3 and assume that a certain

proposition p is specified in the final landmark of Π1 and in the starting landmark of Π3

239

but is neither specified in nor entailed by the starting and ending landmarks of Π2. If it

can be shown by analysis of all actions in all the paths from starting landmark to the final

landmark of Π2 that the protocol Π2 does not affect proposition p, then the composition

Π1;Π2;Π3 should be valid because all the propositions in the starting landmark of Π3 will

be entailed. However, we will not use any such criterion in the current work. We now

apply the ideas introduced here to view the Request protocol as a composition of three

different protocols and specify each (sub) protocol as well as their composition as joint

action expressions.

8.5.3 Request Protocol as a Composition

Here, we will consider the Request protocol derived from the protocol family L1Â L3 Â
(L4 ⊥ L5) in Figure 8.9, as a composition of three different protocols – one to form a team

between the initiator and the participant, and one each for the initiator and the participant

to discharge their respective team commitments by establishing the appropriate mutual

beliefs. We first formally specify each (sub) protocol as a joint action expression and

then compose them to yield the Request protocol discussed in the previous section. The

resulting composition is shown to be meaningful under the above composition criterion.

Protocol to establish a joint commitment to do an action.

The initiator x requests the participant y to do an action a with respect to some relativizing

condition q, that is, the following communicative act is performed:

(REQUEST x y e a q ts)

Before the deadline is over, the participant may either agree or refuse to do the re-

quested action. Alternatively, the requester may cancel his request. Therefore, (AGREE

y x e1 a q t1) or (REFUSE y x e2 a q t2) or (CANCEL x y e3 a q t3) may be performed.

This protocol ends when either the deadline is reached or the participant has accepted

or refused the request or the request has been cancelled. The goal or the purpose of this

protocol is to establish joint commitment between the initiator and the participant for

doing the requested action. Formally, this goal is given by

g = (JPG x y (DONE y a) (PWAG x y (DONE y a) q)∧q)

The precondition for this protocol is that the participant has not done the requested

action and there is no joint commitment between the initiator and the participant for

doing the requested action. Formally, the precondition p is given by

p = ¬(DONE y a) ∧ ¬(JPG x y (DONE y a) (PWAG x y (DONE y a) q)∧q)

240

The deadline is given by the proposition (tcurrent > ts + timeout) where ts is the time

at which the protocol was started which is the time at which the REQUEST communicative

act was performed. The participant must make a rational choice between agreeing to a

request and refusing it depending on its internal reasoning process. The entire protocol

can be represented as the following joint action expression.

Πform−team(x, y, a, q, timeout) =

p?; request;{(¬deadline?;[(agree;g? ↑ refuse) | cancel]) | deadline?}
where,

p, g are the precondition and goal of the protocol as given above,

request = (REQUEST x y e a q ts),

agree = (AGREE y x e1 a q t1),

refuse = (REFUSE y x e2 a q t2),

cancel = (CANCEL x y e3 a q t3), and

deadline = (tcurrent > ts + timeout)

The initiator x, the participant y, the action to be done a, the relativizing condition q,

and the timeout period are formal parameters to this protocol. If the initiator x does not

receive any AGREE or REFUSE by the deadline, or if the initiator cancels his request, then

the protocol ends (Figure 8.8). Otherwise, if the participant sends an AGREE then either

the initiator or the participant may discharge their team commitments by establishing

appropriate mutual beliefs.

Protocol to discharge team commitment by the initiator

The initiator either cancels the original request or establishes mutual belief that the action

has either been done, or is impossible, or irrelevant, thereby discharging his joint commit-

ment. The precondition for this protocol is that the initiator has a joint commitment with

the participant for doing an action and the goal is to discharge that joint commitment.

Formally, this protocol can be represented as

Πinitiator−discharge (x, y, a, q)

= p1?;((inform-achieved1;g2?)↑ cancel ↑ inform-impossible1 ↑ inform-irrelevant1);g1?

where,

p1 = (JPG x y (DONE y a) (PWAG x y (DONE y a) q)∧q)

g1 = ¬(JPG x y (DONE y a) (PWAG x y (DONE y a) q)∧q)

g2 = (MB x y (DONE y a))

inform-achieved1 = (INFORM x y e (DONE y a) t);

241

(INFORM y x e1 (BEL y (DONE y a)) t1)

inform-impossible1 = (INFORM x y e2 ¤¬(DONE y a) t2);

(INFORM y x e3 (BEL y ¤¬(DONE y a)) t3);

inform-irrelevant1 = (INFORM x y e4 ¬q t4);(INFORM y x e5 (BEL y ¬q) t5)

cancel = (CANCEL x y e6 a q t6)

Note that it requires an INFORM and a subsequent confirmation to establish mutual

belief about the achievement, impossibility, or irrelevance of the jointly intended action

a. However, a single message is sufficient to establish mutual belief that the request has

been cancelled, thereby dissolving the JPG. Lemma 2.2 and Lemma 2.3 state when two

messages are needed to establish mutual belief and when just one message suffices for this

purpose.

Protocol to discharge team commitment by the participant

A participant who agreed to the request discharges his commitment by establishing the

appropriate mutual belief. If the participant succeeds in doing the requested action then it

will inform that the requested action has been done. If the participant discovers that the

action is impossible or irrelevant, then it will establish mutual belief about the correspond-

ing fact. The successful execution of this protocol discharges the participant from the joint

commitment it had prior to executing this protocol. This protocol can be represented by

the following joint action expression.

Πparticipants−discharge(x, y, a, q)

= p2?;((inform-achieved2;g2?)↑ inform-irrelevant2 ↑ inform-impossible2);g3?

where,

p2 = (JPG x y (DONE y a) (PWAG x y (DONE y a) q)∧q)

g2 =(MB x y (DONE y a))

g3 = ¬(JPG x y (DONE y a)) (PWAG x y (DONE y a) q)∧q)

inform-achieved2 = (INFORM y x e (DONE y a) t);

(INFORM x y e1 (BEL x (DONE y a)) t1)

inform-irrelevant2 = (INFORM y x e2 ¬q t2);

(INFORM x y e3 (BEL x ¬q) t3)

inform-impossible2 =(INFORM y x e4 ¤¬(DONE y a) t4);

(INFORM x y e5 (BEL x ¤¬(DONE y a)) t5)

Here again, confirmation of the INFORM is required to establish mutual belief.

242

Composing the protocols

The above protocols can be composed to yield a complete request for action protocol. We

first compose the last two protocols Πinitiator−discharge and Πparticipants−discharge to get a

combined protocol Πteam−discharge to discharge team commitments. We repeat the action

expressions for the two protocols from above.

Πinitiator−discharge (x, y, a, q)

= p1?;((inform-achieved1;g2?)↑ cancel ↑ inform-impossible1 ↑ inform-irrelevant1);g1?

Πparticipants−discharge(x, y, a, q)

= p2?;((inform-achieved2;g2?)↑ inform-irrelevant2 ↑ inform-impossible2);g3?

We note that since both these protocols have the same precondition, that is, p1 = p2,

their starting landmarks satisfy the enabling criterion for OR composition. Therefore,

Πteam−discharge defined by the following composition is meaningful.

Πteam−discharge = Πinitiator−discharge | Πparticipants−discharge

Hence,

Πteam−discharge(x, y, a, q) = p1?;[A | B]

where,

A = (inform-achieved1↑ cancel ↑ inform-impossible1 ↑ inform-irrelevant1);g1?

B = ((inform-achieved2;g2?)↑ inform-irrelevant2 ↑ inform-impossible2);g3?

Next, we want to compose the protocol Πform−team to form a team with the protocol

Πteam−discharge to discharge the team commitments. From Section 8.5.3,

Πform−team(x, y, a, q, timeout)

= p?; request;{(¬deadline?;[(agree;g? ↑ refuse) | cancel]) | deadline?}
Now the precondition p1 of the protocol to discharge a team is same as the goal g

for the protocol to form a team. Therefore, by the “enabling criterion” for embedding a

protocol within another protocol (Section 8.5.2), the following composition is meaningful.

Πform−team[g?/ Πteam−discharge]

That is, we replace the action g? for testing whether the goal g has been achieved,

in the action expression for the protocol Πform−team, by the action expression for the

protocol Πteam−discharge.

The resulting protocol Πcomplete is then given by

Πcomplete(x, y, a, q, timeout) =

p?; request;{(¬deadline?;[(agree;C↑ refuse) | cancel]) | deadline?}
where,

243

C = p1?;[A | B] is the action expression for protocol Πteam−discharge derived

earlier.

The protocol Πcomplete starts and ends without any joint commitment for doing the

requested action between the initiator and the participant. All joint commitments created

during the execution of this protocol are discharged when the protocol terminates. There-

fore, this protocol is complete and consistent by the composition criteria in Section 8.5.2.

8.6 CONVERSATION PROTOCOLS IN STAPLE

We specify protocols as joint action expressions consisting of communicative as well as

other actions. As such, protocols in STAPLE can be viewed as joint plans with some

differences in how they are expressed and executed. The joint action expression of a

protocol can be executed directly by assuming an overarching joint commitment towards

protocol execution [65]. The overarching team commitment can be thought of as a social

norm specifying that all STAPLE agents be jointly committed to executing the common

protocols provided by the STAPLE protocol library. As such, the STAPLE interpreter

executes protocols just like any other joint action expression with some additional support.

For instance, the actions within the joint action expression for a protocol must be made

system-wide unique. This is achieved by modifying the event identifier of all actions

in an instantiated protocol to include a system-wide unique conversation identifier. This

identifier scheme also serves to distinguish an action expression for a conversation protocol

from any other joint action expression.

Conversation protocols, like other action expressions, do not exist independently on

the commitment stacks. The action expression for a protocol gets pushed onto an agent’s

commitment stack when the agent commits to executing that protocol. This commitment

may in turn be relative to the agent’s having a joint commitment for executing that

protocol. Also, STAPLE agents currently do not distinguish between plans (named action

expressions) and protocols during means-ends reasoning. Therefore, if the agent has a

plan as well as a protocol that can bring about the same state then the agent will end up

committing to an OR expression consisting of the plan and the protocol in order to bring

about the desired state. Protocols are annotated as such and a STAPLE agent does not

do first principles reasoning when executing communicative actions as part of executing a

conversation protocol.

As a result of the overarching policy on conversation protocols, the participants of

244

a conversation form a temporary team just for the purpose of that conversation. This

team has an ad-hoc name created using the list of the conversation participants. One

effect of the overarching joint commitment towards protocols is that there is no need to

explicitly request to jointly intend a particular protocol. Every message exchanged by

STAPLE agents contains information on the protocol being used as well as information

on instantiating that protocol. As such the first message of a conversation is taken to

indicate the sender’s implicit request for executing the protocol in the message (this first

message must also be the first communicative action of that protocol). For example, lets

consider a protocol π specified as follows.

π = (REQUEST x y a q);

{[(AGREE y x a q);action(y,a);(INFORM y x (DONE y a));

(INFORM x y (BEL x (DONE y a)))] | [REFUSE y x a q] }
This protocol is taken from a more general request for action protocol4. An agent x

requests another agent y to do an action a. Agent y either agrees or refuses to do the

action. Refusal by agent y terminates the protocol by discharging the PWAG of agent

x towards agent y created by performing the request. An agree from agent y creates a

joint commitment between the two agents that agent y does the action a as discussed in

the previous section. Thereafter, agent y does the action a, and establishes mutual belief

with agent x about that fact. Also, as discussed earlier, mutual belief is established by

an inform followed by a confirmation from the other agent. Lets assume that agent x

has a PGOAL that (DONE y a) and it chooses to use this protocol because one of the

endpoints5 of this protocol results in (DONE y a). As a result, agent x has a subgoal

(PWAG x y π q) as a means of achieving (PGOAL x (DONE y a)). Here q is the agent’s

original commitment (PGOAL x (DONE y a)). The (PWAG x y π q) leads to agent x’s

intending and executing the first action in π that happens to be the REQUEST action.

On receiving the request message, agent y may refuse to jointly execute the protocol π by

performing (REFUSE y x π q) that discharges agent x’s PWAG for executing the protocol

π. Alternatively, agent y may either AGREE or REFUSE to do the requested action a.

Refusal to do the action a terminates the protocol, and AGREE leads to further actions

on part of the agents as specified in the protocol.

4This protocol is incomplete, and it does not test for its landmarks ([64]). However, it is good enough
for illustrative purposes in this section.

5A protocol may have multiple endpoints ([64]) – this is one difference between a plan and a protocol.
However, for now, assume the endpoint to be same as the effect in a plan.

245

One of our defeasible rules in Section 2.4.2 says that performing a communicative ac-

tion establishes the mutual belief that the communicative action was just done. Therefore,

the agents will not attempt to establish mutual belief after performing every communica-

tive action in a protocol that the communicative action was done even when executing

the joint action expression for a protocol under lockstep policy. Also, recall that we have

rules to establish as a subgoal the commitment implied by the effects of an action that

has just been done. Such a rule is needed for reasoning by first principles. However, a

protocol designer creates protocols by using the same reasoning process offline. Therefore,

the agents executing a protocol should simply use the actions specified in the protocol,

and not attempt to find the next action to use by first principles reasoning. This re-

quirement is implemented by modifying the consistency checker, such that an agent will

not subgoal a commitment if that commitment is subsumed by an existing higher-level

commitment. Another problematic issue in protocol execution is when the protocol has

a non-deterministic OR expression of actions with different actors. The default STAPLE

rule of leadership-based determination may not be the behavior one expects in this case,

and so the agent programmer may need to override the default behavior and specify what

to do in this case. Also, the parameters for instantiating the action expression of a proto-

col are explicitly communicated as part of the messages in order to enable the recipients

to instantiate the same protocol properly at their end.

8.7 SUMMARY

The most important aspect of a protocol is its overall purpose, that is, the goal that

is achieved by the successful execution of a protocol. Therefore, a protocol should be

specified not simply as a pattern of communicative acts but as a sequence of waypoints

that must be followed in order to accomplish the goal associated with that protocol. This

approach leads to the idea of using partially ordered landmarks for analyzing protocols

where landmarks are characterized by the propositions true in them. It was discovered

that partially ordered landmarks do not represent just a single protocol, rather they rep-

resent a family of protocols, and an agent executing any of these protocols has to go

through the same waypoints in order to achieve the goal associated with that protocol. A

protocol family for getting tasks done by forming a team was specified, and three different

protocols were logically analyzed to show that they all belonged to the same protocol

family. The consequences of jointly intending a protocol were discussed and it was noticed

246

that protocols could be represented as a joint action expression using a rational choice

operator along with other operators from dynamic logic. It was also argued that syn-

tactically legal protocol compositions can be specified using the operators from dynamic

logic, and semantic criteria were given using landmarks to determine whether or not a

protocol composition is complete and meaningful. Finally, the action expression for the

Request conversation protocol was derived from the protocol family represented by the

landmark expression L1Â L3 Â (L4 ⊥ L5) in Figure 8.9. The following (sub) protocols

were specified – a protocol Πform−team to create a joint commitment between the ini-

tiator and the participant, a protocol Πinitiator−discharge to discharge the initiator’s team

commitments, and a protocol Πparticipants−discharge to discharge the participant’s team

commitment. The protocols Πinitiator−discharge and Πparticipants−discharge were composed

using the OR composition to create a protocol Πteam−discharge and it was shown that the

resulting composition is meaningful using the composition criterion mentioned earlier. Fi-

nally, the protocol Πteam−discharge was composed with the protocol Πform−team to get a

compact action expression representation of the Request protocol. The resulting compo-

sition Πcomplete is again complete and meaningful by the same composition criterion. The

actions such as inform-achieved1 were precisely defined earlier. Now the action expression

represented by Πcomplete gives a complete representation of the well-known “request for

action” protocol [41, 115] in one logical sentence and this protocol is now amenable to

analysis using joint intention theory and to execution by joint intention interpreters.

The STAPLE interpreter presented earlier in this dissertation has a built-in protocol

library and it can execute fully specified protocols (i.e., those without the rational choice

operator) represented as a joint action expression, thereby nearly eliminating the need

to implement a separate protocol handling system. All one needs to do is to represent

a protocol as a joint action expression and have the agents jointly intend that action

expression, say, by specifying (JI x y Π q) in the agent specification files and get the

protocol execution for free. The protocol behavior along with the robustness, the mutual

belief establishment, and other joint intention specific behavior are obtained automatically

subject to the limitations of the implemented interpreter.

To conclude, we have presented a formalism for conversation protocols within the

framework of joint intention theory [70, 25]. We regard conversation protocols as having

an associated goal that they are meant to achieve and we proposed a formalism for protocol

families using partially ordered landmarks that must be accomplished in order to achieve

the goal associated a protocol. A landmark is characterized by the propositions that

247

are true in the state represented by that landmark. We treat conversation protocols as

joint action expressions; define composition of protocols using action expression operators;

and give criterion for meaningful compositions. We discussed the consequences of jointly

intending protocols and argued that one can gainfully apply the joint intention theory

to protocols and their compositions. The contributions of this chapter have two main

impacts. First, they enable protocol and agent designers to specify and analyze protocols

for their correctness, and second, they enable direct execution of conversation protocols

just like any other joint action.

Chapter 9

Related Work

The present dissertation spans several research areas in multi-agent systems and there is a

large body of literature associated with each of them. We have already discussed some of

the related work in the previous chapters wherever it was necessary to provide background

for that chapter. For example, the related work on fault-tolerance in multi-agent systems

and in traditional distributed systems was discussed in the background for the Adaptive

Agent Architecture (Chapter 6). Similarly, the various techniques that have been pro-

posed for representing conversation protocols were discussed as part of background for the

chapter on multi-agent conversation (Chapter 8). This chapter points to a comprehensive

list of related research publications that have not yet been discussed and it comparatively

discusses a representative subset of that list in sufficient detail. We will limit ourselves

to the following broad research areas: (1) theories of agency and teamwork, (2) agent

development infrastructures, (3) architectures for collaboration and dialogue, (4) agent

programming languages, and (5) multi-agent communication and conversation protocols.

The first five sections of this chapter discuss related work in each of these five areas and

we conclude in the end with a brief summary.

9.1 THEORIES OF AGENCY AND TEAMWORK

The theories of agency and teamwork can be classified into three broad categories – philo-

sophical, logical, and statistical. These theories have been reviewed in great detail in

several papers, for example, [120, 121]; theses, for example [117]; and books, for example,

[118, 80, 32]. Here, we provide an overview from the point of view of this dissertation and

point to the appropriate references for further details.

248

249

9.1.1 Philosophical Theories

The notions of intentions, communication, collaboration, and joint actions have been

studied in social sciences for many years. Of particular interest is some of the more recent

work such as [12, 11, 10, 38, 101, 102, 112] that provide the motivation and criterion for

formalizing these concepts in computer science. According to these philosophers, agents

have limited resources and therefore, they cannot indefinitely keep weighing their desires,

beliefs, and pros and cons of their actions and at some point they must settle down on

some choices that they “commit” to doing.

Bratman postulates the following three main properties of intentions that are neces-

sary for resource bounded practical agents and these properties form the basis of most of

the theories of agency in computer science. First, intentions lead to means-ends reasoning

for agents because they must determine how to achieve their intentions. Second, inten-

tions provide a screen of admissibility for other intentions and an agent cannot adopt an

intention if it will make an existing intention impossible. Third, agents must be able to

track the success of their intentions and they should be able to retry achieving it if it does

not succeed that is, they must not give up their intentions so soon. Also, agents must

believe that it is possible to achieve their intentions, and an agent need not intend all the

expected side effects of their intentions. It has been shown in [25] that the definition of

intention (INTEND) in terms of commitment (PGOAL) in joint intention theory meets

these requirements of intention.

Different philosophers have proposed very different notions of collective intention for

a group of agents. For example, [112] proposes that an agent must intend to do its part

of the group action and believe that it is mutually believed that others will do their part

as well. On the other hand [102] proposes that collective intentions cannot be reduced

to individual intentions at all and gives examples of situations that tend to support his

theory. One of the strong points of the joint intention theory is that it not only explains

the examples posed by Searle but is also reducible to appropriate intentions of the agents

in a team.

9.1.2 Logical Theories

Several competing logical theories of intention as well as collaboration have been proposed

in the literature [91, 104, 45, 17, 90, 57, 119, 39] that aim to model the same artifacts.

However, the closest in terms of acceptability and implementations is the Shared Plans

[45] formalism for joint action by a group.

250

Shared Plans Theory

A shared plan for group action specifies beliefs about how to do an action and its sub-

actions, and its formal model captures intentions and commitments towards the perfor-

mance of individual and group actions. This theory distinguishes between (1) intention

to do an action, and (2) intention that a proposition hold. An agent intending to do some

action must be committed to doing that action, must have appropriate beliefs about its

ability to do that action, and it must either have knowledge about how to do that action

or how to figure out how to do it. An agent intending that a proposition hold must be

committed to doing whatever it can to bring about that proposition (however, it need

not necessarily be able to do anything). The components of a collaborative plan include

mutual belief of a (partial) recipe, individual intentions-to perform the actions, individual

intentions-that collaborators succeed in their sub-actions, and individual or collaborative

plans for sub-actions.

Intentions-that is the crucial aspect of this formalism in that it leads to collaborative

behavior. It is used to represent agents’ commitments to their group activity, to specify

the collaborative support that participants in a Shared Plan offer one another, and it

provides a basis for agents to form mutual belief necessary for collaboration. For example,

if a participant who is committed to a group activity A whose recipe requires doing action

a followed by action b comes to privately believe that a has been done, he will establish

mutual belief about this fact if the group mutually believes that mutual belief is required in

the group that action a has been done before the group can proceed to action b. However,

if the Shared Plan that the group is following does not specify that such a mutual belief is

required then the collaboration resulting from that Shared Plan will be fragile in the face

of changing private beliefs. Also, note that the concept of intentions-that is an additional

concept for capturing commitments whereas in the JI theory, commitment is part of the

definition of intention.

The Shared Plans theory distinguishes between a Full Shared Plan (FSP) and a Partial

Shared Plan (PSP). A FSP for doing an action a is a complete plan in that all aspects of

performing the action a have been completely determined. The group mutually believes

that every group member has intention that the group does the action a, the group mu-

tually believes the recipe to use for performing action a, and each step in the recipe has

been fully resolved (meaning that group mutually believes who are the actors for that step

and what is the full shared plan for that step).

A partial shared plan (PSP) specifies the minimal shared mental state that must exist

251

for collaboration to exist. The various aspects of the shared plan (such as recipe, actors,

etc.) can be partial but the group must mutually believe that (i) every group member

has commitment (intention-that) for doing the group activity, (ii) every group member

is committed (i.e., has intention-that) to identify the parameters necessary for doing the

group activity (such as missing steps in a recipe, the actors of various steps, etc.), and

(iii) every group member is committed (i.e., has intention that) to making sure that the

constraints for the group action will hold. Similar to PSP, recipes can be partial or

complete, and individual plans can be partial or complete. In case of PSP, the Shared

Plans formalism requires the group to mutually believe and be committed to the process

(i.e., be committed to a full shared plan) that the group will use for evolving a PSP into

a FSP (for example, how to assign subagents, how to select a recipe, etc.).

The shared plans formalism is recursive in nature in that each of the steps in a recipe

for a shared plan must have an associate shared plan for doing that step. This recursive

definition leads to collaboration between subgroups of agents for doing parts of a higher

level shared plan. In JI theory, there is no explicit recursive joint intention between sub-

teams for doing parts of the jointly committed action - it is left for the team to choose

the best possible course for doing a sub-action.

Team Formation

Joint intention theory provides a mechanism for team formation (for example, using

Request-Accept pair of communicative actions) and prescribes the behavior of a team

once it is formed. However, it is silent about the process of finding teammates, and when

agents should come together to form a team. The cooperative problem solving process

proposed by [119] attempts to address this issue. It proposes the following four stage

process: (1) recognizing the potential for cooperative action, (2) attempting the team for-

mation, (3) plan formation, and (4) team activity. These processes are formalized using

constructs similar to that of joint intention theory but the main differences are in the first

step (recognizing the need for team) and the third step (explicit plan formation by the

team).

BDI Model

The Belief, Desire, Intention (BDI) model of Rao and Georgeff [90] is closest to joint inten-

tion theory as far as the modeling of individual agents is concerned. JI theory has beliefs

and goals as the primary modal operators and it defines intention using these operators

252

whereas the BDI model adds intention as a primary modal operator at the same level

as beliefs and goals, and postulates axioms that relate intention to the other modalities.

The possible worlds semantics of joint intention theory uses linear time temporal logic

whereas the BDI theory uses a variant of branching time temporal logic called CTL*.

These differences in the underlying logical systems result in different properties of the

constructs in these two theories. The theoretical differences apart, the teamwork exten-

sion [91] of the BDI model has neither been widely accepted nor has it been implemented

in software systems. However, an agent development platform called PRS (Procedural

Reasoning System) based on this model has been one of the most popular ways to develop

BDI agents (meaning agent programs that use explicit representation of Beliefs, Desires,

and Intentions). PRS is discussed again in Section 9.2.1.

9.1.3 Real Time and Statistical Theories

Ortiz and colleagues [81, 122] have proposed techniques for real-time coalition formation

and cooperation between hundreds of mobile semi-intelligent, resource bounded sensors.

The real time issues addressed in this research are very useful but they are not the focus

of the present dissertation.

Tambe and colleagues [75, 87] have demonstrated the usefulness of POMDP (Partially

Observable Markov Decision Process) based models in statistical reasoning about commu-

nication, and in comparing the communication policies of various implementations inspired

by joint intention theory. This body of work can be construed to be complementary to

the STAPLE research. For instance, one can imagine using decision-theoretic analysis in

STAPLE for reasoning about communication costs in order to make decisions about issues

such as how to best establish a mutual belief, when to delay the establishment of mutual

belief, and how to select the best possible action from a non-deterministic OR expression

of candidate actions to achieve a particular goal.

Next, we look at some agent infrastructures used for developing single agents (as

opposed to collaborating and communicating multi-agent systems).

9.2 SINGLE AGENT INFRASTRUCTURES

There is a long list of agent development platforms and single agent architectures that

offer different capabilities. Some of them are BDI systems in that they have explicit rep-

resentation of beliefs, desires, and intentions whereas others simply provide a flexible way

253

of quickly putting together an autonomous agent. The most well known systems in this

list include the PRS from SRI, RETSINA from CMU, JATLite from Stanford, JACK (a

commercial agent development platform), and implementations of the FIPA agent plat-

form (a standard for agent development and communication). Most infrastructures in this

category can be used for developing multi-agent systems that communicate using a stan-

dard communication language such as FIPA and KQML. However, support for teamwork

and communication is not built into these systems but these are extra functionality added

by the agent programmer.

9.2.1 The Procedural Reasoning Systems (PRS)

The procedural reasoning system [43] developed at SRI played an important role in pop-

ularizing BDI agent architectures. Over the years, several competing implementations

based on PRS became available that attempt to either enhance PRS or to fix some of its

drawbacks. We collectively refer to the original PRS as well as its variants as the PRS

systems.

STAPLE owes its planning terminology and constructs, action execution methodol-

ogy, abstractions for sensors and effectors, and stack-based tracking of commitments and

intentions to the PRS systems. Specifically, it inherits from and significantly builds upon

the experiences from the PRS system called JAM [51]. Although the body of a STAPLE

plan is represented as a complex action expression that can be reasoned about by a joint

intention interpreter, it is conceivable to elaborate the plan representation language (for

example, by introducing a notion of cue or hint) to be more in line with recent PRS sys-

tems such as SPARK [74]. Actions in STAPLE are similar to procedures – they can be

defined in any language (currently only Java, and Prolog) but they must have at least an

effects part represented using the logical language used by STAPLE (actions may have

other optional components such as precondition). It enables the STAPLE interpreter to

abstract away from the otherwise procedural construct and reason about them logically.

One contribution of STAPLE to the PRS legacy is its close connection with a logical theory

of agency. Whereas the BDI logic provides the specification for a PRS implementation,

the agents in STAPLE are specified using the logical language of joint intentions and the

STAPLE interpreter attempts to faithfully execute the specification as per the theory.

A significant difference between STAPLE and PRS systems is the support for teamwork

and multi-agent communication. PRS systems such as JAM and SPARK are intrinsically

single agent systems with no built-in support for teamwork and in which communication

254

is usually an add-on feature with little connection to the underlying BDI theory. On

the other hand, the notion of teamwork and multi-agent conversation is at the core of

the underlying theory behind STAPLE such that STAPLE agents reason about their

joint intentions as well as about the ongoing conversations. Unlike KQML and FIPA, the

communication in STAPLE is based on a provably correct formal semantics of multi-agent

conversations presented in this dissertation.

9.2.2 Intelligent Resource-bounded Machine Architecture (IRMA)

The Intelligent Resource-bounded Machine Architecture [12] is similar to PRS in that

it has a plan library, and explicit representations of beliefs, desires, and intentions. Its

infrastructure has a reasoner for reasoning about the world, a means-ends analyzer for

determining plans to achieve the agent’s intentions, and an opportunity analyzer for mon-

itoring the environment and determining further options for the agent. It also has a

filtering process for determining the subset of the agent’s potential courses of action that

are consistent with the agent’s current intentions. A deliberation process makes the choice

between competing options. The various components of IRMA are already present in the

STAPLE implementation presented in this dissertation. IRMA supports execution of only

action at a time by the agent (as opposed to simultaneous execution of multiple actions

in STAPLE), and it does not have support for multi-agent conversations and teamwork.

Next, we look at some multi-agent infrastructures that support teamwork and com-

munication.

9.3 AGENT INFRASTRUCTURES FOR TEAMWORK

AND COMMUNICATION

As far as teamwork is concerned, STAPLE is related to STEAM [110] and GRATE* [52]

both of which are agent architectures with teamwork capabilities. As far as collaborative

dialogue is concerned, STAPLE is related to ARTEMIS [14] and Collagen [93]. STAPLE

is also related to Breazeal’s infrastructure for human-robot collaboration that builds upon

both joint intention and shared plans theory similar to that done by STEAM. Breazeal’s

system forms the motivation for the “Lights World” domain used in the present disserta-

tion and it was discussed in Chapter 3.

255

9.3.1 STEAM and TEAMCORE

The teamwork support in STAPLE is based on the same joint intention theory that in-

spired STEAM [109]. STEAM also addresses some other important aspects of teamwork

such as decision theoretic reasoning about communication that is complementary to the

logical reasoning performed by STAPLE agents.

STEAM has team operators, it supports rules, and is inspired by joint intention theory.

It also has explicit representation of team goals, plans and joint commitments. It intro-

duces a recursive method of forming sub-teams for doing parts of a group activity. A new

joint commitment is created between the sub-team for doing the sub-action. This results

in an explicit hierarchical joint intention similar to that in the Shared Plans technique.

Jointly intended actions are allowed to be partial and sub-teams are created to resolve

partially specified actions.

STEAM implements the joint commitment and other teamwork concepts as reusable

rules and the same STEAM codebase has been used for a many collaborative applications.

One difference between our work and STEAM is the language for teamwork specification.

STAPLE uses a logical language and can interpret complex logical statements of joint

intentions in contrast with STEAM, which does not use an explicit action interpretation

language. As such, the current work has the advantage of allowing one to modify team

behavior at a very high level by modifying a sentence in the logical specification of agents,

as well as the potential benefit of being able to logically prove the behavior of a system

from its specification. Importantly, this logical language can be the target representation

for a multimodal interface, thereby enabling a user to speak and draw (or use some other

interface modalities) in order to instruct a team. The focus of our current research is on

translating logical specifications of teamwork and a formal semantics of communication

into executable agents. On the other hand, STEAM attempts to incorporate joint inten-

tions on top of a very different cognitive agent architecture based on the SOAR model

[109], and STEAM agents do not logically reason about communication. As such, the

coupling between STEAM and joint intention theory is indirect. STEAM includes a com-

prehensive decision theoretic analysis of communication among team members that can

be used to give agents a flexibility to choose between different communication models. As

compared to STEAM, the main contribution of STAPLE to the teamwork research is in

taking the STEAM concept of directly executing team specifications to the next step by

offering interpretation of agent specifications in a logic that is used for formal specification

of joint intention theory.

256

STEAM is the infrastructure behind TEAMCORE that has been used for a number of

successful team-based applications. TEAMCORE provides proxy agents that wrap legacy

and non-team aware systems to make them behave as a team-member to the rest of the

agent team. It is a very interesting and useful concept but there are no formal guarantees

within TEAMCORE that the proxy agent does in fact makes a non-team aware agent

appear as a team member. On the other hand, STAPLE can be used to build upon this

TEAMCORE concept by providing the ability to prove that a non-team aware agent does

in fact behave as a team member. STAPLE offers the advantages of dynamic program

synthesis – legacy code accompanied by its description in the formal language can be

treated as an “action” by an agent. The agent then reasons about those actions using

their formal description, decides upon and executes the best course of action(s) at any

given time, and even switches between intentions (and therefore, between the legacy codes

being executed) as the priorities of the agent change. One can argue that this approach

not only lets one “agentify” any system but also prove that the modified system does in

fact have the required agent-like properties. In particular, it should be possible to treat a

non-team aware agent as part of a team by using a proxy agent written in STAPLE that

reasons using the formal representation of actions of the non-team aware agent, and be

able to prove that the non-team aware agent does in fact behave as a team member (and

establish conditions under which the proxy agent fails to behave as a team member).

9.3.2 GRATE*

The work by Jennings [52] on the GRATE* agent architecture demonstrated the useful-

ness of the joint intention theory in real world applications for the first time. It showed

that as the world gets more complex and unpredictable, the teams as a whole waste much

fewer resources than a group of uncoordinated or self-interested agents. This research dis-

tinguished between joint commitment to achieve a goal p, that is, (JPG x y p q), and the

joint commitment to do the actions a to achieve p, that is, (JPG x y (DONE a) p). The

combination of such joint commitment pairs was then called joint responsibility. How-

ever, from a logical viewpoint, this distinction is immaterial, as both joint commitments

will have identical behavior, per the definition of JPG. By faithfully interpreting joint in-

tentions, STAPLE implements what was termed joint responsibility in GRATE* without

needing any new constructs.

257

9.3.3 Collagen

Collagen [93] implements Grosz and Sidner’s collaborative discourse theory. This theory

has three components - linguistic, attentional, and intentional structures. The linguistic

structure is implemented via discourse segments purpose, the attentional structure is im-

plemented using focus stacks, and the intentional structure is implemented as a simplified

form of Shared Plans formalism for capturing beliefs and intentions. These intentions are

used on the focus stacks for tracking the progress of a discourse.

A collaboration manager keeps track of the linguistic and attentional state of discourse,

as well as the collaborative intentions of the participants. It recognizes intentions of

utterances and actions and tries to fit them into the current intentional state while also

allowing for digressions and sub-intentions. To successfully complete collaboration, two

agents must mutually believe that (a) they have a common goal, (b) they have agreed on a

plan or recipe, (c) they are each capable of their part, (d) they intend to do their actions,

and (e) they are committed to the overall success of the collaboration, not just each of

the parts. The objective is not about doing physical actions but about the attainment of

knowledge necessary to perform actions.

Theoretical differences apart, STAPLE is a more declarative general purpose agent pro-

gramming language in that it supports first principles reasoning about physical actions as

well as communicative acts, whereas Collagen gets its dialogue behavior by implementing

the algorithms and discourse structures of the Shared Plans theory [46] and it does not

do first principles reasoning about communication or teamwork.

9.3.4 ARTEMIS

This work by Bretier and Sadek [14] resembles the present research in as far as reasoning

about communication is concerned. ARTEMIS is based on a single agent variation of the

joint intention theory and therefore, the implementation reasons only about individual

commitments and intentions. STAPLE is based directly on joint intention that better

models the notion of dialogue as a joint activity, and reasons not only about internal

commitments and intentions but also about social commitments, and mutual beliefs of

agents. ARTEMIS defined communicative acts such as INFORM and logically reasoned

about communication in a similar fashion to that done by STAPLE. We will revisit the

communication language used by ARTEMIS (called ARCOL) in the next section.

Next, we look at some declarative agent programming languages similar to STAPLE.

258

9.4 AGENT PROGRAMMING LANGUAGES

STAPLE belongs to the same family of agent programming languages as Agent0 [103],

AgentSpeak(L) [89], Concurrent Metatem [42], ConGolog [44], 3APL [49], and IMPACT

[108]. The main distinguishing characteristic of STAPLE is the support for teamwork

and formal communication semantics that are directly connected with a logical theory of

agency. Most of the other aforementioned languages are essentially single agent program-

ming languages even though they may support communication to some extent using agent

communication languages such as KQML in an ad-hoc fashion. Some of these languages

provide the important first steps towards bridging the gap between agent theory and

practice in a comprehensive manner. However, a unified formal framework for theory of

agency, communication, and teamwork in an agent programming language is still missing,

and the current research is the beginning of an effort towards addressing this gap.

The language Agent0 uses modal constructs like belief and intention and has syntactic

support for these concepts but the formal link between the language and the modal logic

is not clear. AgentSpeak(L) is a rule-based language that provides an alternative formal-

ization of BDI agents in terms of operational and proof-theoretic semantics, and can be

viewed as an abstraction of BDI systems such as the PRS [43]. The beliefs of agents are

represented explicitly but intention is regarded as a stack of partially instantiated plans.

Compared to AgentSpeak(L), STAPLE provides a richer set of constructs, and a more

expressive action theory, along with reasoning about teamwork and communication. In

Concurrent Metatem, a set of rules in temporal logic is used to describe the behavior of

an agent and this logical specification is executed directly to obtain the desired agent be-

havior. The direct execution of a formula is an attempt to build a model for that formula

using iterative model generation techniques. Unlike STAPLE, the agent modalities such

as goal in Concurrent Metatem are not independent declarative concepts but are dynamic

logic formulas (for instance, eventualities such as ♦p can be taken to represent an agent’s

goal). An interesting feature of Concurrent Metatem is the support for groups. Groups

can be either named groups, or can be a set construction formula where any agent satis-

fying the formula is considered as a member of the group. However, unlike in STAPLE,

groups are not part of the logic, and there is no formal group communication semantics.

ConGolog [44] is also a direct execution logical language based on the situation cal-

culus. It has a richer set of action expression constructs than STAPLE, and it supports

imperative programming (via procedures). Agents are programmed by specifying a set

of axioms such as those describing the initial state, the precondition for each primitive

259

action, and the successor state axioms. Agent concepts such as beliefs and goals are not

independent concepts but are modeled within the situation calculus. For instance, the

situations of the situation calculus can be viewed as belief states of an agent, and a high-

level program can be considered to be the goal of an agent. Multi-agent interaction is

supported via abstract communicative acts defined as procedures but communication and

coordination (such as teamwork) is not part of the basic logic. The operational seman-

tics of ConGolog programs is specified using Plotkin-style transition systems within the

formalism of situation calculus. The agent programming language 3APL [49] is similar to

ConGolog in that it combines features of logic programming (proof as computation) and

imperative programming (procedural constructs). An agent in 3APL consists of a goal

base, a belief base, and a practical rules base. The operational semantics of the language

is specified using transition systems, and a variant of modal logic is used to specify its de-

notational semantics. 3APL is not a direct execution system like STAPLE, and teamwork

and groups are not part of the language or the logic.

The IMPACT framework [108] is a comprehensive agent platform, much like the FIPA

framework, with support ranging from yellow pages, and registration, to thesaurus, and

agent launchers. The semantics of IMPACT agents is based on deontic logic, and agent

programs consist of rules and actions. The rules may contain deontic modalities, and ac-

tions are specified using executable legacy code and a logical code-call condition. As such,

the action specification in IMPACT is similar to that in STAPLE and allows agentification

of arbitrary code. Teamwork and agent communication are not formally integrated into

the logical language behind IMPACT.

Thus, the main contribution of STAPLE lies in enabling direct execution of agent

specifications in a unified logical framework of teamwork, multi-agent communication,

and theory of agency. Next, we look at some research related to agent communication

languages and conversation protocols presented in Chapter 2, Chapter 5, and Chapter 8.

9.5 AGENT COMMUNICATION LANGUAGES AND

CONVERSATION PROTOCOLS

There are three issues related to multi-agent communication that concern us in the present

dissertation – semantics of communicative acts, semantics of group communication, and

semantics of conversation protocols.

260

9.5.1 Semantics of Communicative Acts

There has been substantial research on formal semantics of agent communication languages

over the past decade resulting in very rich and varied agent communication languages. The

two widely used agent communication languages are FIPA [41] and KQML [67], each of

which provides some form of formal semantics. These formal semantics provide scaffolding

for interoperability in that they convey to agent designers exactly the same meaning and

intended usage of a communicative act. As such, the role of formal semantics in most

implemented systems has been relegated to helping agent designers decide what messages

are to be exchanged during inter-agent conversation. However, one of the main benefits

of such formal semantics is the ability to reason about communication which, in principle,

should automatically result in dialogue behavior. In fact, ARCOL [14], the precursor

of FIPA, was the core of a spoken dialogue system called ARTIMIS [14]. This system

reasoned about agent communication using logical definitions that eventually found their

way into the formal semantics of the FIPA communicative acts. However, a drawback of

the formal semantics specified by FIPA is that it does not provide motivation for when to

communicate, what to communicate, how to handle failure, or how to conduct dialogue

(beyond fixed protocols). For example, suppose that agent x asks agent y to do something

to which agent y agrees. However, before y could do that task, agent x decides that it no

longer wants that task done. There is nothing in the FIPA semantics that forces agent x

to inform this fact to agent y, meaning that agent y may end up unnecessarily wasting

resources. So even if agents reason using the semantics specified by FIPA, they are still

subject to these limitations. On the other hand, a semantics of communicative acts based

on a theory of teamwork (such as joint intention theory [70]) will require agent x to inform

agent y that it has changed its mind.

9.5.2 Semantics of Group Communication

The major agent communication languages have either no provision or no well-defined

semantics for group communication. For instance, in the FIPA ACL, the only way to

inform a set of agents is to inform them individually, one at a time. Furthermore, semantics

of the FIPA communicative acts imposes the precondition that the sender has certain

beliefs about the mental state of the (known) addressee. Consequently, there is no way

to send messages to unknown agents – a typical scenario in broadcast communication.

KQML does offer several primitives, such as broadcast and recruit-all, that have group

flavor but these primitives are merely shorthand for a request to do a series of other

261

communicative acts. Proper semantics cannot be given to group requests such as “One

of you, please, get me a slice of that pie.” We can conclude that the semantics of group

communication presented in Chapter 5 is still missing from the agent communication

languages though some researchers have started to implement systems [16, 15, 95] based

on the semantics presented in this dissertation and to use group communication in areas

such as argumentation [79]. The research on group communication presented in this

dissertation has already been applied towards group protocols [96].

9.5.3 Semantics of Conversation Protocols

Even though researchers in natural languages have been claiming that dialogue is a joint

action for sometime, the multi-agent systems community has started to explore this issue

only recently. Vongkasem and Chaib-draa have argued that a conversation in the context

of an agent communication language is a joint activity that can be realized as sequences

of smaller actions [113]. They informally identify the various aspects of this approach and

propose to view conversation protocols in terms of joint commitment. The informal ideas

presented by Vonkasem and Chaib-draa is to some extent similar to our formal analysis

of joint commitment towards protocol families represented as landmark expressions and

joint intention towards concrete protocols represented as action expressions (Chapter 8).

A key idea in this dissertation is that protocols are meant to perform certain tasks,

that is, successful execution of a protocol achieves the goal associated with that protocol.

Some research that has touched upon this aspect of protocols can be found in [107, 40, 84],

but none of this prior work presents a complete or integrated approach. Work by Pitt and

others explicitly links “successful outcomes” (ostensibly, goals) to conversation protocols

but does so by annotating a syntactic framework with semantic summary expressions in

such a manner that the two are not directly connected (and, as such, may become semanti-

cally incongruous if anything in either the syntactic protocol or the semantic summary are

modified in isolation). Elio and Haddadi [40] discuss dialogues for joint tasks and about

jointly maintaining global coherence in a conversation. They informally explore their in-

sights that protocols are task oriented but have not provided a concrete formulation of

their research. Dignum and colleagues have analyzed the process of team formation using

structured dialogue in a modal logic [39]. We use a different modal logic than these re-

searchers but the basic idea of team-formation using conversations is not a new one. This

idea was formally demonstrated in [106, 107] wherein it was shown that joint commitments

are created using a sequence of speech acts.

262

The research community has not given much attention to the formal semantic ties be-

tween individual communicative acts and patterns of such acts. The present dissertation

extends the work started by Smith and colleagues [106, 107] towards formally integrating

protocols and individual communicative acts. Pitt and Mamdani [86] and Yolum and

Singh [123] have subsequently addressed this issue using a different approach than ours.

Most researchers, including us, regard communicative acts as the basic concept and view

protocols as a pattern of these acts. Our approach to analyzing correctness and com-

pleteness of protocols using the semantics of communicative acts reflects this relationship

between protocols and communicative acts.

Pitt and Mamdani [86, 85] differ from most researchers in taking conversation protocols

as the starting point for inter-agent communication, in which the semantics of single

utterances are defined within the context of a syntactic protocol definition (with some

semantic attachments). Specifically, protocols are defined using performatives that are

themselves given an ‘action-level’ semantics using the protocol that they are used to define.

The action-level semantics of a performative used in a protocol is simply an intention to

reply using a performative allowed by that protocol.

Singh [105] and subsequently Yolum [123] argue that finite state protocols for agent

communication are not sufficiently expressive and lack proper semantics. They provide

a formalism using finite state machines in which the states and actions are defined using

social commitments among the agents. Singh and Yolum associate a meaning with each

state by specifying which commitments are in force in that particular state, and give a

meaning to each action by defining how the commitments are affected by that action,

thereby leading to a state transition. The basic ideas in this approach are similar to those

described in this dissertation and in our previous work [106, 107], with the difference that

we use ‘joint commitments’ rather than ‘social commitments’. We believe that the social

and mental commitments are related and it might be possible to express one in terms of the

other. A PWAG relativized to another agent’s desires defines a commitment of one agent

towards another using a mentalist notion. Therefore, it represents a social commitment

provided that it is made public. PWAG is used in the definition of communicative acts

such as the REQUEST. An agent’s performing a communicative act makes its intentions

public, and therefore performing a communicative act involving PWAG leads to a social

commitment. Furthermore, the reasoning rules for ‘meta-commitment’ used by Singh and

Yolum are similar to discharging joint and individual commitments in our framework. In

both approaches, one can logically prove that a sequence of communicative actions does in

263

fact achieve the specified states (or landmarks). The most pronounced difference between

the two approaches is that Yolum and Singh do not integrate independently motivated

speech acts into their framework.

9.6 SUMMARY

This dissertation spans a large number of research areas in multi-agent systems and cor-

respondingly there is a huge list of related literature. We presented comparative overview

of some of the main related research in agent theories, agent architectures, agent pro-

gramming languages, and multi-agent communication. An interesting finding during the

survey of related is that researchers have started building upon the ideas presented in this

dissertation for their own research.

Chapter 10

Concluding Remarks and Future Work

The previous chapters presented the problems addressed in this dissertation and its con-

tributions in detail. Here we briefly review the main points of this dissertation and discuss

some of the future research.

10.1 OVERVIEW

This dissertation investigated the feasibility of building a logic-based declarative agent

programming framework that enables one to declaratively specify joint action resulting in

team behavior along with correct task and team-oriented communication. We hypothe-

sized that it may be possible to create such a framework by appropriately extending the

theories of teamwork and communication and by borrowing from research on planning

and programming languages. This framework would have teamwork and communication

primitives whose semantics conform to that predicated by the underlying theory. We also

saw that several agent programming languages have been proposed in recent years that

attempt to bridge the gap between logical theory of agency and agent implementations.

Most of these languages focus on individual agents and their support for agent teams

and multi-agent communication is either non-existent or is at best ad-hoc. On the other

hand, joint intention theory has successfully been used for rule-based creation of teams,

and to provide a formal semantics for communicative acts but, prior to this dissertation,

there were no agent programming languages linked to this theory. In order to validate

our hypothesis, we presented an agent programming language called STAPLE (Social and

Team Agents Programming Language) based on Joint Intention Theory and showed that

it supports teamwork and communication in a unified framework.

We used a three phase approach in our investigation – theory, implementation, and

validation. In the theoretical phase, we specified a formal semantics of speech acts and

264

265

multi-agent conversation showing how they can be used to create and discharge teams.

This phase included enhancements to the JI theory itself to support groups of agents

and a wider variety of teams such as persistent and dynamic teams. (2) Thereafter, we

presented STAPLE using concrete examples of STAPLE agent programs. We discussed an

implemented interpreter for the single agent constructs of this language and then modified

it to handle commitments of one agent towards another. The operational semantics of this

language implemented by the STAPLE interpreter is derived from its logical semantics

(JI theory) presented in this dissertation and is discussed in the appendix. (3) Finally, we

argued that teams of agents written in STAPLE coordinate and communicate as per the

theory, without our having to program these behaviors explicitly. We verified this claim

by using the above interpreter to execute agents written in this language for two different

domains.

The remainder of this chapter is organized as follows. We recapitulate the need for the

present research in the next section. Section 2 summarizes STAPLE and its relationship

to logic. The main accomplishments of this dissertation are summarized in Section 3 and

possible directions for future research are discussed in Section 4. Finally, we conclude in

Section 5 with a brief summary.

10.2 RECAP OF MOTIVATIONS FOR THE PRESENT

RESEARCH

The main motivation behind the present research is to build systems that exhibit collabo-

rative teamwork. However, instead of our explicitly programming team behavior, collab-

oration should automatically follow in virtue of our embedding the foundational concepts

of joint action/intention into a belief-desire-intention (BDI) architecture that is equipped

with a repertoire of communicative actions. Thus an agent built around this architecture

should engage in dialogues and exhibit characteristics of teams such as robustness as a

consequence of reasoning about joint action, intention, and belief.

One popular approach to the building of intelligent agents is via the Belief-Desire-

Intention (BDI) architecture [90]. This architecture models an agent’s acting based on

its intentions and commitments, subject to its beliefs. Numerous implementations of

this model have been developed, including SPARK [74], the Procedural Reasoning System

(PRS), etc. Although these models have often pointed out the need for actions that model

communication, prior to this dissertation, little research into the classical BDI architecture

266

had been directed at the integration of communication, collaboration, and action.

On the other hand, previous research guided by the plan-based theory of communi-

cation [1, 33, 29] has shown that communication can be generated through the planning

and execution of speech acts. This approach has motivated research both on dialogue

systems [14] and on inter-agent communication languages, such as FIPA [41] and KQML

[67]. In particular, ARCOL demonstrated that a rational agent implemented as a modal

logic theorem-prover could, in fact, participate in dialogues, including spoken language di-

alogues conducted over the telephone network. However, a major drawback of the formal

semantics specified for FIPA and KQML is the lack of motivation for when to commu-

nicate, what to communicate, how to handle failure, or more generally, how to conduct

dialogue (beyond fixed protocols). For example, suppose that agent x requests agent y

to do an action to which agent y agrees. However, before y can do that task, agent x

decides that it no longer wants it done. There is nothing in the plan-based theories of

communication, or in the semantics underlying FIPA, that causes agent x to inform this

fact to agent y.

In recent years, the BDI approach has been extended to model agents who need to

collaborate and communicate with others via concepts of shared plans [46] and joint inten-

tions (JI) [70]. JI theory specifies agents’ mental states as they execute joint actions and

it has been integrated with models of communicative acts to build multi-agent systems

[52, 109] that generate collaborative task-oriented behavior. In the example above, JI the-

ory would require agent x to inform agent y that it has changed its mind. This dissertation

shows that a JI interpreter should be able to serve as the basis for a collaborative dialog

engine. Furthermore, the aforementioned systems have demonstrated the robustness and

efficiency of teams of agents as a result of the collaborative behavior prescribed by the JI

theory. This dissertation shows that interesting and useful team behavior such as various

kinds of fault-tolerance follow when the declarative specification of that behavior is inter-

preted by a JI interpreter. The JI interpreter implemented as part of this dissertation is

summarized next.

267

10.3 SUMMARY OF STAPLE AND ITS RELATIONSHIP

TO LOGIC

The STAPLE language consists of constructs from the JI theory and the STAPLE inter-

preter attempts to implement the semantics of these constructs as described in this dis-

sertation. Programming constructs (such as details of action specification) are borrowed

from the prior work on BDI architectures for aspects of a concrete agent specification that

are not part of the theory. We first review the implementation of a STAPLE JI interpreter

along with its support for communicative actions and belief reasoning and then discuss its

relationship to the JI logic.

10.3.1 The STAPLE Interpreter

The STAPLE interpreter is a multi-stack BDI interpreter with built-in support for PGOAL

(commitment), INTEND (intention), and PWAG (directed social commitment). Using

these foundational concepts, this interpreter can model joint commitment and joint inten-

tion. During the execution of an individual or joint action, an Intention-Commitment (IC)

stack is built in a bottom-up manner, with the bottom element containing the original

commitment and the other commitments or subgoal used to achieve the original commit-

ment layered above it. When a PGOAL is being adopted or subgoaled, the interpreter first

checks for its achievement, impossibility, and irrelevance by executing the belief reasoner

in a Prolog engine over the agent’s belief base. For instance, to check for impossibility,

the belief reasoner is invoked to check if ¤¬p can be concluded from the belief base (this

reasoning will make use of any domain dependent applicable rules of the form ¤¬p:- q).

Thereafter, a consistency checker that employs the belief reasoner is invoked to make sure

that the content of the PGOAL is consistent with the existing commitments and intentions

of this agent, and triggers on the belief base are created to monitor the escape conditions

in the definition of PGOAL, and in the case of PWAGs, mutual belief of those condi-

tions. The appropriate trigger is fired when one of the above three cases becomes true.

The execution cycle is completed when one of the triggers for the original commitment

is fired. During the interpretation of INTEND, primitive actions are executed directly,

while complex actions are decomposed. It is possible to have multiple stacks because an

agent can have more than one commitment at a given time, such as when it is performing

concurrent tasks.

An agent specification in STAPLE consists of an initial mental state (beliefs, goals,

268

commitments, and intentions), capabilities (actions and plans that the agent is capable of

performing), inference rules, initial state of the world, domain specific inference rules, etc.

Agents in STAPLE are programmed using the usual Prolog syntax extended by opera-

tors for dynamic logic of actions (concurrent actions, test, repetition, etc.), temporal logic

(eventually and always), and for negation, implication, conjunction, and some other mis-

cellaneous constructs. Primitive actions may optionally specify a precondition that must

be true before the action can be executed and a list of desired effects that may eventually

become true as a result of the action being performed but there is no guarantee that they

will ever become true. These conditions are used in a standard backward-chaining rea-

soner. Plans in STAPLE are expressed as complex action expressions constructed using

the action formation operators for sequence, non-deterministic OR, concurrent action, test

action, and repetition. The interpreter recursively decomposes such expressions, executing

the self’s actions, interpreting the action combinators, and waiting for the execution of

other agents’ actions to which it has committed. All primitive actions in a plan must have

already been specified as mentioned above. Further, since plans are also actions (though

not singleton actions), they are required to specify the effects that must be true after a

successful execution of the action expression for that plan.

Joint intention theory leaves room for the agents to decide upon the best course of

action consistent with the theory. For example, one of the declarative rules in STAPLE

specifies that if an agent is committed to achieving a proposition p and it knows of actions

that it can do to achieve that proposition, then the agent will intend to perform a non-

deterministic OR expression of those actions with respect to the original commitment. We

leave open precisely which of these actions to choose, for example, by maximizing utility.

Similarly, there are several other rules defined in the rule base that characterizes rational

behavior in different situations.

10.3.2 Integrating Communicative Actions

The semantics of communicative acts based on joint intention theory characterizes them

as attempts having an associated goal and intention. The goal associated with perfor-

mance of a communicative act (i.e., its desired effect) is what the agent would like to

bring about by performing that act. The intention associated with attempting a commu-

nicative act (i.e., its intended effect) is what the agent is committed to bringing about via

performance of that act. The STAPLE constructs for defining actions and plans are used

to define the communicative actions and these actions are similar to any other action in

269

STAPLE. The semantics of communicative actions are used to specify the various parts of

an action definition, for example, the intention part in the semantics of a communicative

act specifies the effect of that communicative action when specified in STAPLE. Similarly,

the precondition of a communicative action in STAPLE is derived from and is consistent

with the semantics of the communicative act.

We defined two primitive communicative acts, REQUEST and INFORM. The goal of

a request (REQUEST x y e a q t) is that the requestee y eventually does the action a

and also come to have a PWAG with respect to the requester x to do a. The requester’s

and requestee’s PWAG’s are relative to some higher-level goal q. The goal of an inform

(INFORM x y e p t) is that the listening agent y comes to believe that there is mutual

belief between him and the informing agent x that the proposition p is true.

For the communicative act INFORM to be performed, the informing agent x has a

precondition that it believes the proposition p and x does not believe that informee agent

y believes p. These operator definitions are used in the usual backward-chaining fashion.

Other communicative acts such as CONFIRM, INFORM-REF, INFORM-IF, ASK REF,

ASK-IF, PROPOSE, AGREE, REFUSE are composed using the basic communicative acts

INFORM and REQUEST. Composed communicative actions are defined in STAPLE as

plans (i.e., as named action expressions). This dissertation showed that a REQUEST from

x to y followed by an AGREE from y to x establishes a JPG between the requester and the

requestee to do the requested action. Similarly, we showed that it requires an INFORM

from x to y followed by another INFORM from y to x that the informed proposition p

was believed in order to establish mutual belief about p. Results such as these are used

as reasoning rules by the STAPLE interpreter.

10.3.3 Integrating Belief Reasoner

The STAPLE interpreter includes a Horn-clause belief reasoner that implements weak S5

semantics and is capable of reasoning with quantified beliefs within the Horn subset of

first-order logic. The beliefs of a STAPLE agent, including those beliefs common to all

STAPLE agents, are stored in a knowledge base that supports concurrent access. The

belief reasoner is used in the STAPLE interpreter for querying the belief base instead of

deducing all possible consequences that can be inferred from the belief base. The system

properly reasons with disjunctive and “quantified-in” beliefs [1].

A belief base maintenance system complements the belief reasoner and is primarily

needed to help it avoid circular loops and infinite recursions For example, (BEL x (BEL

270

x... (BEL x p). . .))) is reduced to the equivalent fact (BEL x p). Beliefs about other agents

are represented just like any other fact in the belief base. For instance, “I believe that x

believes p” are asserted into the agent’s belief base as (BEL x p), which is a simplified

form of (BEL self (BEL x p)). The consistency checker uses the belief reasoner to attempt

to ensure that an agent does not adopt any commitment or intention that conflicts with

any existing commitment or intention of that agent. For instance, an agent cannot adopt

an intention or commitment if it believes that the new commitment or intention makes

an already existing commitment or intention impossible. There are other similar rules for

maintaining consistency in the system.

10.3.4 Relationship to logic

It is apparent from the above description that we chose to implement the semantics of

constructs from JI theory in a different way as compared to traditional theorem proving

techniques. The STAPLE interpreter attempts to satisfy a core modal formula such as

PGOAL using its definition in the JI theory. Thus, this direct execution of specifications

can be viewed as implicit construction of a model for the logical formulae. We treat the

model theory of the logic as specifying the denotational semantics of the logical language,

specify an operational semantics of the language based on the denotational semantics, and

use the operational semantics for the actual implementation.

The semantics of the modal concepts PGOAL, INTEND, and PWAG is built into the

interpreter by using the logical definition of these terms. For instance, the definition of

PGOAL in the logic says that an agent having a PGOAL that p relative to a higher level

goal q does not believe that p and has a goal that eventually p at least until it believes

that p has been achieved or is impossible to achieve or is irrelevant. This prescription

from the definition is explicated in the operational semantics of PGOAL (see appendix)

in a way that can be directly implemented.

Action expressions are not independent terms – rather, they are to be used within the

context of a modal operator. As such, the interpretation of action expressions within the

context of these terms is implemented by encoding the results of intending (or committing)

an action expression as part of the PGOAL and INTEND interpreters.

The belief reasoner is the only STAPLE component that uses theorem proving. It

encodes the belief axioms used in the JI theory using a horn clause logic to answer queries

such as whether or not the agent believes a given proposition. The interpretation of

PGOAL and other modal terms makes use of the belief reasoner for implementing the

271

definition of these terms. For instance, the belief reasoner is used by the PGOAL inter-

preter to find (and set trigger on) its belief that the committed goal has been achieved or

is impossible to achieve or is irrelevant.

Reasoning rules such as rules of rational action and rules for the domain of an applica-

tion are not prescribed by the JI theory and so are left as declarative concepts. These rules

are executed by a generic rule interpreter and it is the agent programmer’s responsibility to

ensure that the rule does not override the semantics of the terms from the JI theory. The

fact that the semantics of the main modal constructs is built into the interpreter alleviates

some of the potential problems. For instance, it is possible to come up with a rule that to

tell a STAPLE agent to adopt a new PGOAL to achieve p whenever it believes that p is

true. However, the agent will never end up adopting a new PGOAL in accordance with

that rule (even if that rules fires) because it will discover the inconsistency before actually

adopting the new commitment.

Communicative actions are declarative specified just like any other actions, and there-

fore, no special support is built into the interpreter for the communicative actions. The

defeasible rules of communication are declaratively specified as reasoning rules. The ef-

fects, preconditions, etc. of the communicative actions specified as logical formulae that

the STAPLE interpreter already knows how to handle.

Some aspects of the theory such as reasoning about intentions of other agents, main-

tenance goals, etc. have not yet been implemented and these are part of future research.

Next, we briefly review the main contributions of this dissertation.

10.4 SUMMARY OF ACCOMPLISHMENTS

The present dissertation has made the following contributions to the field of multi-agent

systems and dialogue.

1. Reasoning about teamwork & communication: It extended the prior work on agent

communication languages based on the joint intention.

2. Interpreting logical constructs: It presented an agent programming language called

STAPLE with built-in support for teamwork and multi-agent conversations and pre-

sented an implemented interpreter for STAPLE that directly executes agent specifi-

cations in a subset of modal logic, dynamic logic of actions, and temporal logic along

with abstractions from the formal theory of teamwork and multi-agent conversations.

272

3. Group communication: It provided a formal semantics of group communication such

that the individual communicative acts are a special case of the group communicative

acts.

4. Persistent teams: It extended the joint intention theory to include teams that con-

tinue to exist even when the team membership changes.

5. Fault-tolerant Agent Architecture: It demonstrated the usefulness of persistent but

dynamic teams by developing an agent architecture (called the Adaptive Agent Ar-

chitecture or AAA) that implements a fault-tolerance specification based on this

theory. AAA provided a test case for the STAPLE – brokers written in STAPLE

must be able to recreate the same fault tolerant behavior as that of AAA brokers

when the logical specification of that behavior is given to the STAPLE brokers.

6. Testing & Verification: It verified that STAPLE does in fact satisfy the above re-

quirements. First, the specification of a fault-tolerant agent architecture (AAA)

that is robust to sudden broker unavailability is provided to brokers written in STA-

PLE. The resulting STAPLE-based multi-agent system is shown to duplicate that

fault-tolerant behavior. Second, STAPLE agents are shown to exhibit correct col-

laborative behavior in a simulated game that involves human-agent collaboration.

7. Multi-agent conversations: It introduces a technique to specify formal semantics

of conversation protocols within the framework of the joint intention theory by in-

troducing a notion of landmarks. This technique allows treatment of conversation

protocols as joint actions similar to that in natural language dialogue, and enables

formal proofs about correctness of a conversation protocol with respect to what its

design goals.

8. Dialogue as joint action: The STAPLE agents presented in this dissertation demon-

strated the following interesting dialogue behavior as a result of treating dialogue as

joint actions:

- If agents do not mutually believe that each of them can observe the actions and

objects of interest in the world, then they communicate explicitly, otherwise

explicit communication is absent.

- If an agent has unbound variables, then it initiates the required dialogue to

resolve its value.

273

- If an agent believes that another agent knows an answer, then it engages into

a dialogue with that agent to find out the answer.

- If an agent believes that somebody else can do the action that it wanted done,

then it establishes a team for that purpose by way of communication.

- Dialogue to establish mutual belief that a joint action is done, is impossible, or

is irrelevant follows automatically.

- The above behavior can be chained to elicit even more interesting behavior.

- A sub-dialogue gets started in the middle of joint action execution to find the

truth value of a proposition if it is the precondition for doing a part of the

jointly committed action.

In short, dissertation demonstrates the feasibility of integrating the JI Theory, semantics

of communicative acts and belief reasoning using a logic-based declarative language to

obtain team and communicative behavior automatically, without having to program this

behavior explicitly. The examples in this dissertation were created by encoding the initial

conditions and stipulating the joint plan, from which team and communicative behavior

followed automatically. There was no necessity to indicate when a question should be

raised, when information should be shared etc. The plan and action library built into the

STAPLE interpreter enables the agents to exhibit team-oriented dialogue by interpreting

the constructs of joint intention theory along with first principles reasoning over a formal

semantics of communicative acts based on that theory. This research shows that formal

semantics of communicative acts can be fruitfully employed for inter-agent dialogue. Next,

we discuss some of the important future research in the direction of this dissertation.

10.5 FUTURE WORK

The semantics of group communication in terms of “whoever” as presented in Chapter 5

is not supported in the present version of STAPLE interpreter and its implementation is

an important future work in the direction of this dissertation. The research on semantics

of group conversation protocols and its support in STAPLE is also left for future work.

However, preliminary work on this topic can be found in [96].

This dissertation presented a formal semantics of maintenance goal and teams based on

joint maintenance commitments. These concepts were used in AAA to specify a different

kind of robust behavior wherein a broker team is able to maintain a specified number of

274

brokers for load balancing, fault-tolerance and other reasons. Implementation of constructs

for maintenance goals and the corresponding joint maintenance commitments in STAPLE

is another important future work.

As discussed in Chapter 8, the current version of STAPLE only supports fully specified

conversation protocols. The support for full fledged conversation protocols in terms of joint

action expressions as well as support for protocol families in terms of landmark expressions

is another future enhancement to STAPLE.

The STAPLE interpreter needs to be enhanced and streamlined to support deadlines,

and to optimize goals and tasks via scheduling. One of the important future works is to

enhance STAPLE to enable its use as a generic dialogue engine. By virtue of implement-

ing joint intention theory, we have seen that STAPLE agents automatically demonstrate

confirmations, dialogue about referring, and other interesting aspects of dialogue. The

implementation for PRS style planning techniques in STAPLE enables STAPLE agents

to plan speech acts automatically to a certain extent. The main missing elements in STA-

PLE for supporting full-fledged dialogue are components for plan recognition, reasoning

about intentions of other agents, and explicit default reasoning. Other enhancements for

the dialogue engine include support for stochastic reasoning and multi-modal dialogue in

the STAPLE interpreter. The programming language itself needs to be modified to add

the supporting constructs for these enhancements.

We believe that treatment of roles and responsibilities in teams, organizations, and

institutions is needed for a better understanding of what happens in group-communication

in these complex groups and is part of future work. The concept of roles and responsibilities

needs to be an integral part of the logic at the level of primitives. Ultimately, it is the

agents that instantiate a role that make commitments and honor those commitments on

behalf of the role. So there is a level of indirection – the commitments of a role have to

be discharged by whoever is filling in that role. Moreover, instead of looking for agents

with a particular capability, one may want to look for roles that have the capability,

authority, and permission for doing a certain task. This would continue to work if the

agent(s) instantiating a role change with time. Furthermore, roles are also important from

a robustness perspective (along with groups that are required for persistent and dynamic

teams) by allowing other capable agent(s) to fulfill the role(s) occupied by an agent that

is no longer available. This dissertation does not explicitly address the notion of roles in

the framework of teamwork and communication and it is left as an important direction

for future work.

275

10.6 SUMMARY

The present dissertation demonstrated the feasibility of using a logic-based declarative in-

terpreted language to program teams of autonomous agents. These agents exhibit correct

team and communicative behavior without having to program explicitly. This dissertation

extended an existing formal theory of teamwork (Joint Intention Theory) by specifying

a formal semantics of multi-agent communication based on that theory along with other

aspects of teamwork such as support for persistent and dynamic teams. Thereafter, it pre-

sented a domain independent agent programming language called STAPLE with built-in

support for teamwork and multi-agent conversations based on these theoretical contribu-

tions. The usefulness of a declarative language such as STAPLE for programming teams

of autonomous agents was demonstrated by showing that correct team and communicative

behavior follow from agent specifications in two different domains without programming

those behaviors in every possible situation. First, it was shown that brokers written in

STAPLE demonstrate the same fault-tolerance behavior as that of brokers in a fault tol-

erant agent architecture (the AAA) by giving the logical specification of that behavior

to STAPLE brokers. It was further demonstrated that STAPLE agents automatically

engage in useful dialogue behavior required for the task at hand under different condi-

tions of initial beliefs and agent capabilities in a simulated game that involved human

agent collaboration. Future work in the direction of this dissertation includes full sup-

port for the theoretical concepts introduced in this dissertation into STAPLE, support for

hybrid statistical-logical belief reasoning, explicit support for temporal concepts such as

deadlines, and support for roles, responsibilities and organizations.

Bibliography

[1] Allen, J. F., and Perrault, C. R. Analyzing intention in dialogues. Artificial
Intelligence 15, 3 (1980), 143–178.

[2] Appelt, D. E. Planning english referring expressions. In Lecture Notes In Computer
Science, vol. 178. Elsevier Science, Essex, UK, 1985, pp. 1–33.

[3] Arisha, K., Eiter, T., Kraus, S., Ozcan, F., Ross, R., and Subrahmanian,

V. Impact: Interactive maryland platform for agents collaborating together. IEEE
Intelligent Systems 14, 2 (1998), 64–72.

[4] Bach, K., and Harnish, R. M. Linguistic Communication and Speech Acts. MIT
Press, 1979.

[5] Bauer, B., Mller, J. P., and Odell, J. An extension of UML by protocols for
multiagent interaction. In Proceedings of the Fourth International Conference on
MultiAgent Systems (Boston, MA, USA, 2000), IEEE Press, pp. 207–214.

[6] Bernstein, P. A., and Newcomer, E. High availability, Chapter 7. In Principles
of Transaction Processing. Morgan Kaufmann Publishers, Inc., San Francisco, CA,
USA, 1997.

[7] Birman, K. P. Part III: Reliable distributed computing, Chapters 12-26.

[8] Bradshaw, J. M., Dutfield, S., Benoit, P., and Wooley, J. D. Kaos: To-
ward an industrial-strength open distributed agent architecture. In Software Agents,
J. M. Bradshaw, Ed. AAAI/MIT Press, 1997.

[9] Brainov, S., and Sandholm, T. Reasoning about others: Representing and
processing infinite belief hierarchies. In Proceedings of the Fourth International
Conference on Multi-Agent Systems (Boston, MA, USA, 2000), IEEE Press, pp. 71–
78.

[10] Bratman, M. Intentions, Plans, and Practical Reason. Harvard University Press,
Cambridge, MA, 1987.

276

277

[11] Bratman, M. E. What is intention? In Intentions in Communication, P. R.
Cohen, J. Morgan, and M. E. Pollack, Eds. MIT Press, 1990, pp. 15–33.

[12] Bratman, M. E., Israel, D. J., and Pollack, M. E. Plan and resource
bounded practical reasoning. Computational Intelligence 4, 4 (1988), 349–355.

[13] Breazeal, C., Hoffman, G., and Lockerd, A. Teaching and working with
robots as a collaboration. In Proceedings of the Third International Joint Conference
on Autonomous Agents and Multi-Agent Systems (New York, 2004), ACM Press,
pp. 1030–1037.

[14] Bretier, P., and Sadek, M. D. A rational agent as the kernel of a cooperative
spoken dialogue system: Implementing a logical theory of interaction. In Intelligent
agents III - ECAI ’96: Proceedings of the Third International Workshop on Agent
Theories, Architectures, and Languages (ATAL), J. P. Muller, M. J. Wooldridge,
and N. R. Jennings, Eds., Lecture Notes In Artificial Intelligence. Springer-Verlag,
London, UK, 1996, pp. 189–203.

[15] Busetta, P., Dona, A., and Nori, M. Channeled multicast for group communi-
cations. In Proceedings of the First International Joint Conference on Autonomous
Agents and Multiagent Systems (Bologna, Italy, 2002), pp. 1280–1287.

[16] Busetta, P., Merzi, M., Ross, R., and Legras, F. Intra-role coordination
using group communication: A preliminary report. In Advances in Agent Com-
munication, F. Dignum, Ed., vol. 2922 of Lecture Notes In Artificial Intelligence.
Springer Verlag, 2004, pp. 231–253.

[17] Castelfranchi, C. Commitments: from individual intentions to groups and or-
ganizations. In Proceedings of the First International Conference on Multi-Agent
Systems (1995), pp. 41–48.

[18] Castelfranchi, C. Understanding the functions of norms in social groups through
simulation. In Artificial Societies, N. Gilbert and R. Conte, Eds. UCL Press, London,
1995.

[19] Chaib-draa, B., and Vanderveken, D. Agent communication language: To-
wards a semantic based on success, satisfaction and recursion. In Intelligent Agents
V (ATAL-98), A. Rao, M. P. Singh, and J. P. Mueller, Eds., vol. 1555 of Lecture
Notes In Artificial Intelligence. Springer-Verlag, Berlin, 1999, pp. 362–378.

278

[20] Chen, L., and Avizienis, A. N-version programming: A fault-tolerance approach
to reliablity of software operation. In Proceedings of the 8th Annual International
Conference on Fault-Tolerant Computing (Toulouse, France, 1978), pp. 3–9.

[21] Clark, H. H., and Wilkes-Gibbs, D. Referring as a collaborative process.
Cognition 22 (1986), 1–39.

[22] Cohen, P. R. On Knowing What to Say: Planning Speech Acts. PhD thesis,
University of Toronto, 1978.

[23] Cohen, P. R., Cheyer, A., Wang, M., and Baeg, S. C. An open agent archi-
tecture. In Proceedings of the AAAI Spring Symposium: Software Agents (Menlo
Park, CA, 1994), pp. 1–8.

[24] Cohen, P. R., Johnston, M., McGee, D. R., Oviatt, S. L., Pittman, J.,

Smith, I. A., Chen, L., and Clow, J. Quickset: Multimodal interaction for
distributed applications. In Proceedings of the Fifth International Multimedia Con-
ference (1997), ACM Press, pp. 31–40.

[25] Cohen, P. R., and Levesque, H. J. Intention is choice with commitment. Arti-
ficial Intelligence 42, 2-3 (1990), 213–261.

[26] Cohen, P. R., and Levesque, H. J. Performatives in a rationally based speech
act theory. In Proceedings of the 28th Annual Meeting of the Association for Com-
putational Linguistics (1990), pp. 79–88.

[27] Cohen, P. R., and Levesque, H. J. Rational interaction as the basis for com-
munication. In Intentions in Communication, P. R. Cohen, J. Morgan, and M. E.
Pollack, Eds., System Development Foundation Benchmark Series. MIT Press, Cam-
bridge, MA, 1990, pp. 221–256.

[28] Cohen, P. R., and Levesque, H. J. Confirmations and joint action. In Proceed-
ings of the 12th International Joint Conference on Artificial Intelligence (Sydney,
Australia, 1991), Morgan Kaufmann Publishers, San Francisco, USA, pp. 951–957.

[29] Cohen, P. R., and Levesque, H. J. Teamwork. Nous 25, 4 (1991), 487–512.

[30] Cohen, P. R., and Levesque, H. J. Communicative actions for artificial agents.
In Proceedings of the First International Conference on Multi-Agent Systems (San
Francisco, USA, 1995), V. Lesser, Ed., AAAI Press, pp. 65–72.

279

[31] Cohen, P. R., Levesque, H. J., Nunes, J. H. T., and Oviatt, S. L. Task-
oriented dialogue as a consequence of joint activity. In Proceedings of the Pacific Rim
International Conference on Artificial Intelligence (Nagoya, Japan, 1990), Morgan
Kaufmann Publishers, Inc., pp. 203–208.

[32] Cohen, P. R., Morgan, J., and Pollack, M. E. Intentions in Communication.
System Development Foundation Benchmark Series. MIT Press, 1990.

[33] Cohen, P. R., and Perrault, C. R. Elements of a plan-based theory of speech
acts. Cognitive Science 3, 3 (1979), 177–212.

[34] CORBA. Common object request broker architecture. http://www.omg.org, 1997.

[35] Cost, R. S., Chen, Y., Finin, T., Labrou, Y., and Peng, Y. Modeling agent
conversations with colored petri nets. In Proceedings of the Workshop on Agent
Conversation Policies at Third International Conference on Autonomous Agents
(Agents-99) (Seattle, WA, USA, 1999), pp. 59–66.

[36] Dastani, M., Riemsdijk, B. v., Dignum, F., and Meyer, J. J. A programming
language for cognitive agents: Goal directed 3APL. In Proceedings of the First Work-
shop on Programming Multiagent Systems: Languages, frameworks, techniques, and
tools (ProMAS-03) (Melbourne, Australia, 2003), pp. 111–130.

[37] Decker, K., Williamson, M., and Sycara, K. Matchmaking and brokering. In
Proceedings of the Second International Conference on Multi-agent Systems (Kyoto,
Japan, 1996), AAAI Press.

[38] Dennett, D. C. The Intentional Stance. Bradford Books / MIT Press, 1987.

[39] Dignum, F., Dunin-Keplicz, B., and Verbrugge, R. Dialogue in team forma-
tion. In Issues in Agent Communication, F. Dignum and M. Greaves, Eds., vol. 1916.
Springer Verlag, 2000, pp. 264–280.

[40] Elio, R., and Haddadi, A. On abstract models and conversation policies. In Is-
sues in Agent Communication, F. Dignum and M. Greaves, Eds., vol. 1916. Springer
Verlag, 2000, pp. 301–313.

[41] FIPA. Agent communication language specifications. http://www.fipa.org, 2000.

[42] Fisher, M. Representing and executing agent-based systems. In Proceedings of
the First International Workshop on Agent Theories, Architectures, and Languages
(Amsterdam, The Netherlands, 1994), pp. 307–323.

280

[43] Georgeff, M. P., and Lansky, A. L. Procedural knowledge. IEEE Special Issue
on Knowledge Representation 74, 10 (1986), 1383–1398.

[44] Giacomo, G. D., Lesprance, Y., and Levesque, H. J. Congolog, a concurrent
programming language based on the situation calculus. Artificial Intelligence 121,
1-2 (2000), 109–169.

[45] Grosz, B., and Kraus, S. Collaborative plans for group activities. In Proceedings
of the 23rd International Joint Conference on Artificial Intelligence (Chambery,
France, 1993), vol. 1, pp. 367–373.

[46] Grosz, B. J., and Sidner, C. L. Plans for discourse. In Intentions in Commu-
nication, P. R. Cohen, J. Morgan, and M. E. Pollack, Eds. MIT Press, Cambridge,
MA, 1990, pp. 417–444.

[47] Hägg, S. A sentinel approach to fault handling in multi-agent systems. In Revised
Papers from the Second Australian Workshop on Distributed Artificial Intelligence:
Multi-Agent Systems: Methodologies and Applications, vol. 1286 of Lecture Notes In
Computer Science. Springer-Verlag, London, UK, 1997, pp. 181–195.

[48] Halpern, J. Y., and Moses, Y. Knowldege and common knowledge in a dis-
tributed environment. Journal of the ACM 37, 3 (1990), 549–587.

[49] Hindriks, K. V., Boer, F. S. d., Hoek, W. v. d., and Meyer, J.-J. C. Agent
programming in 3APL. Autonomous Agents and Multi-Agent Systems 2, 4 (1999),
357–401.

[50] Hindriks, K. V., Boer, F. S. d., Hoek, W. v. d., and Meyer, J.-J. C.

Agent programming with declarative goals. In Proceedings of the 7th International
Workshop on Intelligent Agents VII. Agent Theories Architectures and Languages,
vol. 1986 of Lecture Notes In Computer Science. Springer-Verlag, London, UK, 2000,
pp. 228–243.

[51] Huber, M. J. JAM: A BDI-theoretic mobile agent architecture. In Proceedings of
the Third International Conference on Autonomous Agents (Agents ’99) (Seattle,
WA, USA, 1999), pp. 236–243.

[52] Jennings, N. R. Controlling cooperative problem solving in industrial multi-agent
systems using joint intentions. Artificial Intelligence 75, 2 (1995), 195–240.

[53] Jeon, H., Petrie, C., and Cutkosky, M. R. Jatlite: A java agent infrastructure
with message routing. IEEE Internet Computing 4, 2 (2000), 87–96.

281

[54] Johnson-Laird, P. N. Mutual ignorance: Comments on clark and carlson’s paper.
In Mutual Knowledge, N. V. Smith, Ed. Academic Press, London, 1982, pp. 40–45.

[55] Kaminka, G. A., and Tambe, M. What is wrong with us? improving robustness
through social diagnosis. In Proceedings of the 15th National Conference on Artificial
Intelligence (Madison, Wisconsin, 1998), AAAI Press, pp. 97–104.

[56] Katagiri, Y. Belief coordination by default. In Proceedings of the Second In-
ternational Conference on Multiagent Systems (Kyoto, Japan, 1996), MIT Press,
pp. 142–149.

[57] Kinny, D., Ljungberg, M., Rao, A. S., Sonenberg, E. A., Tidhar, G.,

and Werner, E. Planned team activity. In MAAMAW-92: Selected papers from
the 4th European Workshop on on Modelling Autonomous Agents in a Multi-Agent
World, Artificial Social Systems, vol. 830 of Lecture Notes In Computer Science.
Springer-Verlag, London, UK, 1994, pp. 227–256.

[58] Klein, M., and Dellarocas, C. Exception handling in agent systems. In Pro-
ceedings of the Third International Conference on Autonomous Agents (Agents-99)
(Seattle, USA, 1999), pp. 62–68.

[59] Konolige, K. A Deduction Model of Belief. Research Notes in Artificial Intelli-
gence. Morgan Kaufmann, San Mateo, California, 1986.

[60] Kumar, S. CHCC-Prolog. http://www.cse.ogi.edu/CHCC/Agents/prolog.html,
2002.

[61] Kumar, S., and Cohen, P. R. Towards a fault-tolerant multi-agent system ar-
chitecture. In Proceedings of the Fourth International Conference on Autonomous
Agents (Agents 2000) (Barcelona, Spain, 2000), ACM Press, pp. 459–466.

[62] Kumar, S., Cohen, P. R., and Huber, M. J. Direct execution of team spec-
ification in staple (short paper). In Proceedings of the First International Joint
Conference on Autonomous Agents and Multi-Agent Systems (Bologna, Italy, 2002),
pp. 567–568.

[63] Kumar, S., Cohen, P. R., and Levesque, H. J. The adaptive agent architecture:
Achieving fault-tolerance using persistent broker teams. In Proceedings of the Fourth
International Conference on Multi-Agent Systems (Boston, MA, USA, 2000), IEEE
Press, pp. 159–166.

282

[64] Kumar, S., Huber, M. J., and Cohen, P. R. Representing and executing
protocols as joint actions. In Proceedings of the First International Joint Conference
on Autonomous Agents and Multi-Agent Systems (Bologna, Italy, 2002), pp. 543–
550.

[65] Kumar, S., Huber, M. J., Cohen, P. R., and McGee, D. R. Toward a
formalism for conversation protocols using joint intention theory. Computational
Intelligence (Special Issue on Agent Communication Language) 18, 2 (2002), 174–
228.

[66] Kumar, S., Huber, M. J., McGee, D. R., Cohen, P. R., and Levesque, H. J.

Semantics of agent communication languages for group interaction. In Proceedings
of the Seventeenth National Conference on Artificial Intelligence (Austin, Texas,
USA, 2000), AAAI Press, pp. 42–47.

[67] Labrou, Y., and Finin, T. A proposal for a new kqml specification. Technical
Report TR CS-97-03, Computer Science and Electrical Engineering Department,
UMBC, 1997.

[68] Labrou, Y., and Finin, T. Semantics and conversations for an agent communi-
cation language. In Proceedings of the Fifteenth International Joint Conference on
Artificial Intelligence (Nagoya, Japan, 1997), pp. 584–591.

[69] Laird, J. E., Newell, A., and Rosenbloom, P. S. Soar: an architecture for
general intelligence. Artificial Intelligence 33, 1 (1987), 1–64.

[70] Levesque, H. J., Cohen, P. R., and Nunes, J. H. T. On acting together.
In Proceedings of the Eighth National Conference on Artificial Intelligence (Boston,
MA, USA, 1990), pp. 94–99.

[71] Lomet, D., and Weikum, G. Efficient transparent application recovery in client-
server information systems. In Proceedings of the SIGMOD ’98: Proceedings of the
1998 ACM SIGMOD International Conference on Management of Data (Seattle,
USA, 1998), ACM Press, pp. 460–471.

[72] Martin, D. L., Cheyer, A. J., and Moran, D. B. The open agent architecture:
A framework for building distributed software systems. Applied Artificial Intelligence
13, 1-2 (1999), 91–128.

[73] Minton, S., Bresina, J., and Drummond, M. Total order and partial order plan-
ning: a comparative analysis. Journal of Artificial Intelligence Research 2 (1994),
227–262.

283

[74] Morley, D., and Myers, K. L. The SPARK agent framework. In Proceedings of
the Third International Joint Conference on Autonomous Agents and Multi-Agent
Systems (New York, USA, 2004), ACM Press, pp. 714–721.

[75] Nair, R., and Tambe, M. Hybrid BDI-POMDP framework for multiagent team-
ing. Journal of Artificial Intelligence Research (JAIR) 23 (2005), 367–420.

[76] Neiger, G. Knowledge consistency: A useful suspension of disbelief. In Proceed-
ings of the Second Conference on Theoretical Aspects of Reasoning about Knowledge
(1988), M. Y. Vardi, Ed., Morgan Kaufmann, San Francisco, USA, pp. 295–308.

[77] Neiger, G. Simplifying the design of knowledge-based algorithms using knowledge
consistency. Information and Computation 119, 2 (1995), 283–293.

[78] Nodine, M., Perry, B., and Unruh, A. Experience with the infosleuth agent
architecture. In Proceedings of the AAAI-98 Workshop on Software Tools for De-
veloping Agents (1998).

[79] Norman, T. J., and Reed, C. A. Group delegation and responsibility. In Pro-
ceedings of the First International Joint Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS’02) (Bologna, Italy, 2002), pp. 491–498.

[80] O’Hare, G. M. P., and Jennings, N. R. Foundations of Distributed Artificial
Intelligence. John Wiley and Sons, New York, 1996.

[81] Ortiz, C., and Vincent, R. Realtime dynamic coalition formation. In Pro-
ceedings of the AAAI Workshop on Coalition Formation in Dynamic Multiagent
Environments (2002).

[82] Parunak, H. V. D. Visualizing agent conversations: Using enhanced dooley graphs
for agent design and analysis. In Proceedings of the Second International Conference
on Multi-agent Systems (1996), pp. 275–282.

[83] Perrault, C. R. An application of default logic to speech act theory. In Intentions
in Communication, P. R. Cohen, J. Morgan, and M. E. Pollack, Eds. MIT Press,
Cambridge, MA, 1990, pp. 161–185.

[84] Pitt, J., Kamara, L., and Artikis, A. Interaction patterns and observable
commitments in a mutli-agent trading scenario. In Proceedings of the Fifth In-
ternational Conference on Autonomous Agents (Agents 2001) (Montreal, Quebec,
Canada, 2001), ACM Press, pp. 481–488.

284

[85] Pitt, J., and Mamdani, A. Designing agent communication languages for multi-
agent systems. In Proceedings of the Modeling Autonomous Agents in a Multi-Agent
World (MAAMAW) (Valencia, Spain, 1999), pp. 102–114.

[86] Pitt, J., and Mamdani, A. A protocol-based semantics for an agent communi-
cation language. In Proceedings of the Sixteenth International Joint Conference on
Articial Intelligence (Stockholm, Sweden, 1999), pp. 486–491.

[87] Pynadath, D. V., and Tambe, M. The communicative multiagent team decision
problem: Analyzing teamwork theories and models. Journal of Artificial Intelligence
Research (JAIR) 16 (2002), 389–423.

[88] Pynadath, D. V., Tambe, M., Chauvat, N., and Cavedon, L. Toward team-
oriented programming. In Proceedings of the 6th International Workshop on Intel-
ligent Agents VI, Agent Theories, Architectures, and Languages (ATAL’99) (1999),
pp. 233–247.

[89] Rao, A. S. Agentspeak(L): BDI agents speak out in a logical computable language.
In Lecture Notes In Artificial Intelligence, vol. 1038. Springer-Verlag, 1996, pp. 42–
55.

[90] Rao, A. S., and Georgeff, M. P. Modeling rational agents within a BDI ar-
chitecture. In Proceedings of the Second International Conference on Knowledge
Representation and Reasoning (1991), pp. 473–484.

[91] Rao, A. S., Georgeff, M. P., and Sonenberg, E. A. Social plans: A pre-
liminary report. In Decentralized AI 3, E. Werner and Y. Demazeau, Eds. Elsevier
Science Publishers, Amsterdam, 1992, pp. 57–76.

[92] Reiter, R. The frame problem in the situation calculus: A simple solution (some-
times) and a completeness result for goal regression. In Artificial Intelligence and
Mathematical Theory of Computation: Papers in Honor of John McCarthy, V. Lif-
schitz, Ed. Academic Press, San Diego, CA, 1991, pp. 359–380.

[93] Rich, C., Sidner, C. L., and Lesh, N. B. Collagen: Applying collaborative
discourse theory to human-computer interaction. Artificial Intelligence Magazine
22, 4 (2001), 15–25.

[94] Rosenschein, S. Plan synthesis: a logical approach. In Proceedings of the 8th
International Joint Conference on Artificial Intelligence (1981), Academic Press,
pp. 359–380.

285

[95] Rossi, S., and Busetta, P. Towards monitoring of group interactions and so-
cial roles via overhearing. In Proceedings of the Eight International Workshop on
“Cooperative Information Agents (CIA-04), vol. 3191 of Lecture Notes in Computer
Science. Erfurt, Germany, 2004, pp. 47–61.

[96] Rossi, S., Kumar, S., and Cohen, P. R. Distributive and collective readings
in group protocols. In Proceedings of the Nineteenth International Joint Conference
on Artificial Intelligence (Edinburgh, Scotland, 2005), pp. 971–976.

[97] Sadek, M. D. Dialogue acts are rational plans. In Proceedings of the ESCA/ETRW
Workshop on the structure of multimodal dialogue (Maratea, Italy, 1991), pp. 1–29.

[98] Sadek, M. D., Bretier, P., and Panaget, F. ARTIMIS: Natural language
meets rational agency. In Proceedings of the Fifteenth International Joint Conference
on Artificial Intelligence (Nagoya, Japan, 1997), pp. 1030–1035.

[99] Sandholm, T. W., and Lesser, V. R. Advantages of a leveled commitment con-
tracting protocol. In Proceedings of the Thirteenth National Conference on Artificial
Intelligence (Portland, OR, 1996), pp. 126–133.

[100] Searle, J. Speech Acts. Cambridge University Press, 1969.

[101] Searle, J. R. Intentionality: An Essay in the Philosophy of Mind. Cambridge
University Press, 1983.

[102] Searle, J. R. Collective intentions and actions. In Intentions in Communication.,
P. R. Cohen, J. Morgan, and M. E. Pollack, Eds. MIT Press, Cambridge, Ma., 1990,
pp. 401–416.

[103] Shoham, Y. Agent-oriented programming. Artificial Intelligence 60, 1 (1993),
51–92.

[104] Singh, M. P. The intentions of teams: Team structure, endodeixis, and exodeixis.
In Proceedings of the 13th European Conference on Artificial Intelligence (Brighton,
UK, 1998), Wiley, pp. 303–307.

[105] Singh, M. P. A social semantics for agent communication languages. In ssues in
Agent Communication, F. Dignum and M. Greaves, Eds., vol. 1916. Springer Verlag,
2000, pp. 31–45.

[106] Smith, I. A., and Cohen, P. R. Toward a semantics for an agent communications
language based on speech-acts. In Proceedings of the Thirteenth National Conference
on Artificial Intelligence (Portland, Oregon, 1996), AAAI Press, pp. 24–31.

286

[107] Smith, I. A., Cohen, P. R., Bradshaw, J. M., Greaves, M., and Holmback,

H. Designing conversation policies using joint intention theory. In Proceedings of
the Third International Conference on Multi Agent Systems (Paris, France, 1998),
IEEE Press, pp. 269–276.

[108] Subrahmanian, V., Dix, J., Eiter, T., Bonatti, P., Kraus, S., Ozcan, F.,

and Ross, R. Heterogeneous Agent Systems. MIT Press, 2000.

[109] Tambe, M. Agent architectures for flexible, practical teamwork. In Proceedings of
the 14th National Conference on Aritificial Intelligence (Providence, Rhode Island,
1997), AAAI Press, pp. 22–28.

[110] Tambe, M. Towards flexible teamwork. Journal of Artificial Intelligence Research
7 (1997), 83–124.

[111] Tambe, M., and Zhang, W. Towards flexible teamwork in persistent teams:
Extended report. Journal of Autonomous Agents and Multi-agent Systems 3 (2000),
159–183.

[112] Tuomela, R., and Miller, K. We-intentions. Philosophical Studies 53 (1988),
367–389.

[113] Vongkasem, L., and Chaib-draa, B. ACL as a joint project between partici-
pants: A preliminary report. In Issues in Agent Communication, F. Dignum and
M. Greaves, Eds., vol. 1916 of Lecture Notes In Artificial Intelligence. Springer Ver-
lag, 2000, pp. 235–248.

[114] Werner, E. Cooperating agents: A unified theory of communication and social
structure. In Distributed Artificial Intelligence, L. Gasser and M. Huhns, Eds., vol. 2.
Morgan Kaufmann, Publishers, Inc., 1990, pp. 3–36.

[115] Winograd, T., and Flores, F. Understanding Computers and Cognition: A
New Foundation for Design. Addison-Wesley, Reading, MA, 1987.

[116] Wong, H. C., and Sycara, K. A taxonomy of middle-agents for the internet. In
Proceedings of the Fourth International Conference on MultiAgent Systems (Boston,
MA, USA, 2000), pp. 465–466.

[117] Wooldridge, M. J. The Logical Modelling of Computational Multi-Agent Systems.
PhD thesis, UMIST, 1992.

[118] Wooldridge, M. J. Reasoning About Rational Agents. MIT Press, 2000.

287

[119] Wooldridge, M. J., and Jennings, N. R. Formalizing the cooperative prob-
lem solving process. In Proceedings of the Thirteenth International Workshop on
Distributed Artificial Intelligence (Lake Quinalt, WA, 1994), pp. 403–417.

[120] Wooldridge, M. J., and Jennings, N. R. Ecai-94: Agent theories, architectures,
and languages: A survey. In Proceedings of the ECAI Workshop on Agent, Theories,
Architectures, and Languages (Amsterdam, The Netherlands, 1995), pp. 1–39.

[121] Wooldridge, M. J., and Jennings, N. R. Intelligent agents: Theory and prac-
tice. Knowledge Engineering Review 10, 2 (1995), 115–152.

[122] Yadgar, O., Kraus, S., and Ortiz, C. Scaling up distributed sensor networks:
cooperative large-scale mobile-agent organizations. In Distributed Sensor Networks:
a multiagent perspective. Kluwer publishing, 2003, pp. 185–218.

[123] Yolum, P., and Singh, M. P. Commitment-based enhancement of e-commerce
protocols. In Proceedings of the IEEE 9th International Workshops on Enabling
Technologies: Infrastructure for Collaborative Enterprises (National Institute of
Standards and Technology (NIST), Gaithersburg, Maryland, USA, 2000), IEEE
Press, pp. 278–283.

Appendix A

STAPLE: The Language and its

Operational Semantics

A.1 OVERVIEW

This dissertation introduced an agent programming language called STAPLE using con-

crete examples of agent programs written in STAPLE (Chapter 3) and it presented an

implemented STAPLE interpreter (Chapter 4). The standard practice in literature [49, 89]

is to present an agent programming language at a sufficiently high level along with its for-

mal operational semantics by abstracting away from the myriad implementation choices

and practical compromises inevitable in such endeavors. Joint intention theory provides

the axiomatic/logical semantics of STAPLE, and an agent written in STAPLE achieves

team and communicative behavior according to JI theory. An operational semantics of

STAPLE would enable showing its formal connection to the joint intention theory, and

at the same time would allow one to see how an implementation of the language deviates

from its formal specification.

We present a formal account of a subset of STAPLE and its operational semantics in

this appendix in a manner that will be useful for specifying its operational semantics. As

such, the language definition may appear to be a repetition of the constructs from joint

intention theory using a different formalism. For most part, the operational semantics itself

formalizes the results that follow from the definitions and theorems in this dissertation in

a way that can be implemented in a STAPLE interpreter. An interpreter for STAPLE has

been implemented based on the language definition and its operational semantics presented

in this appendix. It is important to note that the formal properties and connection to JI

theory discussed in this appendix refer to the language itself, and not to any particular

implementation.

288

289

We first present a simplified version of STAPLE that supports programming single

agents and then progressively modify it to get the final version of STAPLE that supports

joint activity as per the JI theory. The simplified language and its (single agent) constructs

are presented in Section A.2, relevant parts of its operational semantics are discussed in

Section A.3, and the theory of basic actions in STAPLE is presented in Section A.4. The

language presented thus far is modified in Section A.5 to support joint actions, groups,

and communicative acts. Section A.6 presents practical optimizations in STAPLE, and we

conclude in Section A.7 with a discussion on relationship between operational semantics

presented in this appendix and the joint intention theory.

A.2 LANGUAGE DEFINITION

The mental state of STAPLE agents consists of formulae in a first order modal language

L with equality as well as operators for propositional attitudes, temporal properties, and

event sequences. We first introduce the first order version of this language, define actions

and action expressions, and then add the modal operators before formally defining the

mental state of a STAPLE agent.

Definition A.1. The first order language L

Let Var be a set of countably infinite variables consisting of action variables ActionVar

(elements a,b,· · · ,a1,a2,· · · ,b1,b2 · · ·), agent variables AgtVar (elements x,y,· · · , x1,x2,

· · · ,y1,y2,· · ·), and regular variables (elements i,j,· · · ,i1,i2,· · · ,j1,j2,· · ·). Let Const be the

set of constants (names) in the domain including the symbols true, false, and self. Let Agt

⊆ Const be the set of agents in the domain.

Let Pred be the set of n-ary predicate symbols, Func be the set of function symbols,

and let Term be the set of terms built from Const, Func, and Var. The language L is then

defined as follows.

1. if p ∈ Pred and t1,· · · ,tn ∈ Term, then p(t1,· · · ,tn) ∈ L

2. if t1, t2 ∈ Term, then t1=t2 ∈ L

3. if ϕ ∈ L, then ¬ϕ ∈ L

4. if ϕ ∈ L and ψ ∈ L, then ϕ ∧ ψ ∈ L, and ϕ ∨ ψ ∈ L

5. if ϕ ∈ L and x ∈ Var, then ∀ x ϕ(x) ∈ L, and ∃x ϕ(x) ∈ L

290

Definition A.2. Singleton Action

Let ActSym ⊆ Func be the set of action symbols.

A singleton action act(t1,· · · ,tn) is defined by the tuple 〈x,ϕ,ψ,σ,χ〉
where act ∈ ActSym is the name of the action,

t1,· · · ,tn ∈ Term are the parameters to the action,

x ∈ AgtVar is the actor of the action,

ϕ, ψ, σ ∈ L, and specify the precondition, the post-condition, and the context of the

action.

χ ∈ L is the “executable code” for the action

The context is a frame condition in that it is not changed by the action but it is also

an enabling condition for the action - it must be true right before action execution and

remain true throughout the execution of the action. We define three functions pre(a),

post(a), and context(a) that return ϕ, ψ, and σ respectively for the singleton action a.

Definition A.3. Action Expression

Let SAct be the set of singleton actions. An action expression AExp is then defined as

follows.

1. if a ∈ ActionVar, then a ∈ AExp

2. if a ∈ SAct, then a ∈ AExp

3. if a1 ∈ AExp and a2 ∈ AExp, then

(a) a1;a2 ∈ AExp (action sequence)

(b) a1|a2 ∈ AExp (non-deterministic OR)

(c) a1||a2 ∈ AExp (concurrent actions)

(d) a* ∈ AExp (Infinite repetition)

4. if ϕ ∈ L then ϕ? ∈ AExp (Test action)

We augment the language L by adding modal operators pertaining to action expressions,

commitments, and intentions.

Definition A.4. Modal Language L

291

Let Agt be the set of agents, and let Actor = AgtVar ∪ Agt. The modal language L is

then defined as follows.

1. if ϕ ∈ L, then ♦ϕ ∈ L, and ¤ϕ ∈ L

2. if a ∈ AExp, then done(a) ∈ L

3. if a ∈ AExp and x ∈ Actor, then done(x,a) ∈ L

4. if ϕ ∈ L and x ∈ Actor, then bel(x, ϕ) ∈ L

5. if ϕ ∈ L and x ∈ Actor, then goal(x, ϕ) ∈ L

6. if ϕ,q ∈ L and x ∈ Actor, then pgoal(x,ϕ,q) ∈ L

7. if q ∈ L, a ∈ AExp, and x ∈ Actor, then intend(x,a,q) ∈ L

The ground language LG is a subset of the language that is used in the definition of

an agents mental state.

Definition A.5. The Ground Language LG

Let Free(ϕ) denote the set of free variables in the formula ϕ ∈ L. We first define

a language LG as consisting of ground formulae (i.e., sentences) from the language L.

LG ⊆ L s.t. if ϕ ∈ L, and Free(ϕ) = ∅, then ϕ ∈ LG

Now, we are in a position to define the various components of an agent’s mental state.

Definition A.6. Semantic Entailment (|=)

The definition of mental state that follows uses semantic entailment over sentences

from LG. This entailment relationship is based on the logical semantics of the various

mental state constructs (or modalities). This logical semantics is the same as the logic

of joint intentions (Chapter 2). Any implementation of an interpreter for the language,

however, is likely to use provability (`) instead of semantic entailment. For example, a

belief reasoner of such an interpreter would use the usual inference rules of first order logic

along with axioms describing the properties of each modality and their relationship with

each other. However, like other researchers [49, 50], we choose to use semantic entailment

for the purpose of formally describing the abstract language. The implementation of

STAPLE presented in the Chapter 4 uses provability instead of semantic entailment.

292

Definition A.7. Mental State

The mental state M of a STAPLE agent is defined by the tuple 〈B,G, C, I〉 where, B is the

agent’s belief base, G is goal base, C is the set of its internal commitments, and I contains

the intentions of the agent. The details of each component of the mental state follow.

Beliefs (B): An agent’s belief base consists of sentences from LG, that is, B ∈ ℘(LG)

where ℘(LG) denotes the power set of LG.

Goals (G): An agent’s goal base consists of sentences from LG, that is, G ∈ ℘(LG).

Commitments (C): An agent’s commitment base consists of tuples 〈ϕ,q〉 denoting that

ϕ is the proposition that the agent is committed to achieving and this commitment is

relative to some higher-level goal or context q. In other words,

C ⊆ {〈ϕ,q〉|ϕ ∈ L, q ∈ L} with the following constraints:

1. B ∪ {¬ϕ}2 false, that is, ϕ must be consistent with the belief base.

2. B 2 ϕ, that is, ϕ must not be entailed by the belief base.

3. B 2 ¤¬ϕ, that is, the impossibility of ϕ must not be entailed by the agent’s belief

base.

4. B 2 ¬q, that is, the belief base must not entail that the commitment is irrelevant1.

5. C 2 false, that is, the commitments must be consistent.

6. I ∪ {pgoal(self,ϕ,q)} 2 false, that is, this commitment must be consistent with the

agent’s intentions.

Intentions (I): An agent’s intention base I consists of tuples 〈a,q〉 denoting that the

agent intends to do action a relative to some higher-level goal or context q. The action

a is either an action expression or a plan. Let ϕ,ψ,σ be the precondition, post-condition,

and the context of the action.

I ⊆ {〈a,q〉| a ∈ AExp or a ∈ Plan , and q ∈ L} with the following constraints:

1. B 2 ψ, that is, the effects of the action must not be entailed by the belief base.

2. B 2 σ, that is, the belief base must not entail that the context of the action is false.

1Strictly speaking, from the definition of PGOAL, an agent need not drop an irrelevant commitment.
However, we make this simplifying assumption in STAPLE

293

3. B 2 ¤¬done(a) and B 2 ¤¬ϕ and B 2 ¤¬σ, that is, the impossibility of doing a

must not be entailed by the agent’s belief base.

4. B 2 ¬q, that is, the belief base must not entail that the intention is irrelevant.

5. I 2 false, that is, the intentions must be consistent.

6. C ∪ {intend(self,a,q)} 2 false, that is, this intention must be consistent with the

agent’s internal commitments.

From the above definition of the components of an agent’s mental state, we see that the

type of mental state TM is given by ℘(LG)×℘(LG)×℘(LG×LG)×℘(AExp× LG), that is,

it consists of a set of beliefs, a set of goals, a set of commitments, and a set of intentions.

Definition A.8. Introspection / Effective Belief Base

STAPLE agents are introspective about their mental attitudes. A consequence of this

property is that the effective belief base used to test beliefs is larger than the actual belief

base. The effective belief base BE of STAPLE agents is defined as follows:

• if ϕ ∈ B, then ϕ ∈ BE

• if 〈ϕ,q〉 ∈ C, then pgoal(self, ϕ,q) ∈ BE

• if 〈a,q〉 ∈ I, then intend(self, a,q) ∈ BE

Definition A.9. Basic Actions

These are primitive actions that are defined within STAPLE, form a part of every agent’s

capability, and they cannot be redefined or overridden by an agent programmer. Exam-

ple of basic actions include assert, retract, adopt, subgoal, drop, and execute rule. The

semantics of some of these actions is discussed in the next section.

Definition A.10. Rules for Rational Action

Rules in a STAPLE program have two components: the premise and the action to

execute if the premise is true. As such rules can be thought of as a special kind of

conditional action and are represented as

ψ → a

where, ψ ∈ L is the premise of the rule, and

a ∈ AExp is an expression such that every component of a is a basic action

according to (A.9)

294

STAPLE defines a primitive action to execute rules. The semantics of rule execution

is specified in A.13.

Next, we present the operational semantics of the language presented in this section.

A.3 OPERATIONAL SEMANTICS

As is customary in this field, we specify the operational semantics of STAPLE by means

of a transition system. A transition system consists of a set of derivation rules that

specify how to derive new possible computation steps from the computation steps and

the conditions listed in their premise. We will use derivation rules of the form C1,C2,··· ,Cn
S

where C1, C2, .., Cn are the conditions in the premise and S is the resulting computation

step. Each computation step S changes the mental state of an agent and is specified as a

transition from the current mental state to the next. The substitution that results from a

computation step is explicitly specified as part of that step.

Definition A.11. Substitution

A substitution θ is a finite set of pairs (xi,ti) where xi ∈ Var and ti ∈ Term, and xi 6=
xj for i 6= j, and xi /∈ Free(tj) for all i and j. The domain of the substitution dom(θ) is the

set {xi| (xi,ti) ∈ θ). The substitution θ is said to be ground if Free(t)=∅ for every (x,t)

∈ θ.

Let η be an expression (a formula or an action exp.) and θ be a substitution. Then ηθ

denotes the expression obtained by simultaneously replacing all free variables x in η for

which (x,t) ∈ θ by the corresponding term t.

Definition A.12. Semantics of Action Execution

Actions transform the mental state of agents besides possibly changing the state of the

external world. Successful performance of an action not only satisfies the intention for that

action but may also either satisfy or make impossible or irrelevant the other commitments

and intentions of the agent. As such, the transformation of mental state by a singleton

action a that is represented by act(x1,· · · ,xn) is expressed by a function M defined as

follows.

M(a, 〈B,G,C,I〉) = 〈B′,G,C′,I ′〉 where,

B′ = B ∪ {post(a), done(a)}
C′ = C - {〈φ,q〉 ∈ C| B′ |= φ or B′ |= ¤¬φ or B′ |= ¬q}
I ′ = I - {〈b,p〉 ∈ I| B′ |= post(b) or B′ |= ¤¬post(b) or B′ |= ¤¬done(b) or B′ |= ¬p}

295

Note that, 〈a,q〉 /∈ I ′ because the post condition of the action that was just performed is

entailed by the new belief base.

Definition A.13. Semantics of Rule execution

From Definition A.10, a rule ρ is a structure of the form ψ → a where a is a basic

action. For the purpose of describing the operational semantics, it is frequently useful to

talk about executing rules applicable to a given condition. This applicability condition

φ ∈ L is one of the conjuncts (usually the first conjunct) of the premise ψ and can be

thought of as the “main premise” of the rule. The predefined basic action execute rule(φ)

combines both rule selection and rule execution. It first finds a rule ρ that has a conjunct

ϕ in its premise such that ϕ unifies with φ, thereafter it unifies ϕ and φ and tests if the

premise ψ is entailed by the effective belief base BE and finally executes the rule action

a if the test succeeds. Therefore, the exact transformation of mental state due to rule

execution depends on the specifics of the rule that was executed. The semantics of rule

execution is described by a function R of type: LG × LG × AExp × TM → TM where,

TM is the type of 〈B,G,C,I〉. The result of rule execution is specified by the following

derivation step where ϕ is the applicability criterion for the rule ϕ ∧ ψ′ → a.

(A.1)

(ψ → a) ∈ Rules, ψ = ϕ ∧ ψ′,

φ ² ϕθ′, dom(θ′) = Free(ϕ),BE ² ψθ′θ, dom(θ) = Free(ψθ′),

M(aθ′θ, 〈B,G, C, I〉) = 〈B′,G, C′, I ′〉
R(φ,ψ, a, 〈B,G, C, I〉) = 〈B′,G′, C′, I ′〉

The above rule says that execute rule(φ) works as follows: (i) if there is a rule ψ → a where

ψ = ϕ ∧ ψ′ and (ii) if there exists a substitution θ′ such that ϕθ′ (obtained by applying

θ′ to the first conjunct ϕ of the rule) is entailed by φ and the domain of the substitution

θ′ consists of the free variables in ϕ and (iii) if there exists a substitution θ that when

applied to ψθ′ (obtained by applying the earlier substitution θ′ to the premise ψ of the

rule) such that ψθ′θ is entailed by the effective belief base and the domain of θ consists

of free variables in ψθ′, and (iv) if M(aθ′θ, 〈B,G,C,I〉) = 〈B′,G,C′,I ′〉 that is, executing

the action aθ′θ (obtained by successively applying substitutions θ′ and θ′ to the action

a of the rule ψ → a) in mental state 〈B,G,C,I〉 results in the mental state 〈B′,G,C′,I ′〉
then executing the rule ψ → a in the mental state 〈B,G,C,I〉 results in the mental state

〈B′,G,C′,I ′〉 where 〈B′,G,C′,I ′〉 is specified in A.12. In the remainder of this appendix,

we will use R(φ,ψ,a,〈B,G,C,I〉) to denote the effect of executing a rule with applicability

condition φ, premise ψ, and rule action a. Most of the time, we may not care what the

premise and action of a rule are and we will denote its execution by R(φ, , ,〈B,G,C,I〉).

296

Definition A.14. Interpreting Intention

Intentions result in execution of two types of actions in STAPLE – test actions and

singleton actions. A test action ϕ? is always executed when an agent has the intention to

do ϕ?. A test action checks whether an instance of ϕ is entailed by the agent’s effective

belief base BE , and if so, it returns a set of variable bindings θ such that dom(θ) = Free(ϕ).

The substitution θ is empty if the test fails and non-empty otherwise. The execution of

test actions is expressed by the following two computation steps – one for success and one

for failure of the test action.

(A.2)
〈ϕ?, q〉 ∈ I,BE ² qθ′,BE ² ϕθ′θ, dom(θ) = Free(ϕθ′)
〈ϕ?, 〈B,G, C, I〉〉 →θ 〈nil, 〈B,G, C, I − {〈ϕ?, q〉}〉〉

(A.3)
〈ϕ?, q〉 ∈ I,BE ² qθ′,BE 2 ϕθ′θ; for any θ

〈ϕ?, 〈B,G, C, I〉〉 →∅ 〈nil, 〈B,G, C, I〉〉
The derivation rule A.2 states that (i) if the agent has an intention to do the test action

ϕ? relative to q and (ii) if there is a substitution θ′ such that qθ′ is entailed by the

agent’s effective belief base BE and (iii) if there is a substitution θ such that ϕθ′θ (the

proposition obtained by successively applying substitutions θ′ and θ to propostion ϕ to

be tested) is entailed by the agent’s effective belief base and domain of θ consists of free

variables in ϕθ′ then executing the test action ϕ? in the mental state 〈B,G,C,I〉 returns the

substitution θ and results in a new mental state where it does not have the intention to do

the test action ϕ?. Furthermore, the agent does not have any more actions to execute in

this execution step (i.e., nil action remains to be executed after executing the action ϕ?).

The substitution θ returned by this execution step is indicated in the derivation rule as

a subscript on the arrow denoting the mental state transition. The derivation rule A.3 is

similar to rule A.2 except that there is no substitution θ for which ϕθ′θ is entailed by the

agent’s effective belief base. As such, an empty substitution is returned and the agent’s

mental state remains unchanged2 after executing this step.

A singleton action a is executed when the agent has an intention to do a, and the

precondition and context of that action are entailed by the agent’s belief base. No vari-

able bindings are returned when a singleton action is executed, and it is followed by the

agent immediately executing a rule for the success or failure of that intention depending

on whether the agent believes that action to have succeeded or failed. We say that an

2More accurately, the agent now believes that it failed to execute this test action and so its belief base
is augmented by adding this new fact. However, we ignore this subtlety for the present purpose.

297

intention succeeded when the agent successfully achieves the intended proposition (or gets

the intended action done). Therefore, (INTEND self achieve(p)) succeeds if the agent be-

lieves p after it has persued this intention. On the other hand (INTEND self a) succeeds

if (DONE a) is true. Similarly, we say that an intention failed if the agent did not achieve

its intention. The next two rules denote the computation step one each for success and

failure respectively of the intended singleton action.

(A.4)

〈a,q〉 ∈ I, a ∈ SAct

M(a, 〈B,G, C, I〉) = 〈B′,G, C′, I ′〉,
φ = succeded(intend(a,q))

R(φ, 〈B′,G, C′, I ′〉) = 〈B′′,G′′, C′′, I ′′〉
〈a, 〈B,G, C, I〉〉 →∅ 〈nil, 〈B′′,G′′, C′′, I ′′〉〉

(A.5)

〈a,q〉 ∈ I, a ∈ SAct

φ = failed(intend(a,q)),

R(φ, 〈B,G, C, I〉) = 〈B′′,G′′, C′′, I ′′〉
〈a, 〈B,G, C, I〉〉 →∅ 〈a, 〈B′′ ∪ {φ},G′′, C′′, I ′′〉〉

An intention to execute a sequence has two possible computation steps depending on

whether or not the first action in the sequence has been done. If the first action has been

done then the substitution computed from the execution of the first action of the sequence

is applied to the remaining actions and then the remaining actions are intended.

(A.6)

〈a1;a2;...;ak,q〉 ∈ I,B 2 done(a1),

φ = 〈a1,intend(a1;a2;...;ak,q)〉, φ /∈ I
〈B,G, C, I〉 →∅ 〈B,G, C, I ∪ {φ}〉

(A.7)

〈a1;a2;...;ak,q〉 ∈ I,B ² done(a1;a2;...;ai),

〈a1;a2;...;ai, 〈B,G,C,I〉〉 →θ 〈nil, 〈B′,G′,C′,I ′〉〉
φ = 〈ai+1;a2;...;ak,intend(a1;a2;...;ak,q)〉, φθ /∈ I

〈B,G,C,I〉 →θ′ 〈B′,G′,C′,I ′ ∪ {φθ}〉
The computation steps for intention to execute an indefinite repetition a* is derived by

using the transition rules for intention to execute the sequence a;(a)*

The operational semantics of intention to execute a non-deterministic choice of actions

is described by two sets of transition rules. The first set of rules specifies the possible

computation steps, one for each choice. The second set of rules specifies choosing an

298

action from the remaining actions upon failure of the chosen action. Here, we specify one

rule from each set of transition rules.

(A.8)

〈a1|a2| · · · |ak, q〉 ∈ I
φj = 〈aj, intend(a1|a2| · · · |ak, q)〉 /∈ I for every 1 6 j 6 k,

φi = 〈ai, intend(a1|a2| · · · |ak, q)〉 for some 1 6 i 6 k,

〈ai,〈B,G,C,I ∪ {φi}〉〉 →θ 〈nil, 〈B′,G′,C′,I ′〉〉
〈B,G,C,I〉 →∅ 〈B,G,C,I ∪ {φi}〉

(A.9)

〈a1|a2| · · · |ak, q〉 ∈ I, B ² failed(intend(am,intend(a1|a2| · · · |ak,q)))

φj = 〈aj,intend(a1|a2| · · · |ak,q)〉 /∈ I for every 1 6 j 6 k,j 6= m,

φi = 〈ai,intend(a1|a2| · · · |ak,q)〉 for some 1 6 i 6 k, i 6= m,

〈ai,〈B,G,C,I ∪ {φi}〉〉 →θ 〈nil, 〈B′,G′,C′,I ′〉〉
〈B,G,C,I〉 →∅ 〈B,G,C,I ∪ {φi}〉

An intention is dropped if it has been found to be impossible to achieve or is irrelevant.

(A.10)

〈a,q〉 ∈ I,BE ² ¤¬done(a) or BE ² ¤¬pre(a)

or BE ² ¤¬context(a) or BE ² ¬q

〈B,G,C,I〉 →∅ 〈B,G,C,I-{〈a,q〉}〉
Definition A.15. Interpreting Internal Commitment

The goal of a computation step for an internal commitment is to arrive at an intention

using one of rational action rules (for example, a rule to intend non-deterministic OR of

all actions that can achieve the given commitment).

(A.11)

〈ϕ, q〉 ∈ C,BE 2 ϕ, BE 2 ¤¬ϕ, BE 2 ¬q,

R(pgoal(ϕ,q), 〈B,G,C,I〉) = 〈B′,G′,C′,I ′〉
〈B,G,C,I〉 →∅ 〈B′,G′,C′,I ′〉

An internal commitment is dropped when the committed goal is either believed to be

achieved, or impossible to achieve, or is believed to be irrelevant.

(A.12)
〈ϕ,q〉 ∈ C,BE ² ϕ or BE ² ¤¬ϕ or BE ² ¬q

〈B,G,C,I〉 →∅ 〈B,G,C-{〈ϕ,q〉},I〉
There may also be rules that decide that a commitment is impossible to achieve if it

doesn’t result in an intention after a certain number of attempts in which case the above

transition rule will allow dropping the commitment.

299

If the commitment is for being in a state where an action expression has been done,

that is, commitments of the form 〈done(a),q〉 where a ∈ AExp but a /∈ SAct are inter-

preted using transition rules similar to that for intention to march through the actions in

the action expression.

Definition A.16. Reverse Introspection

If an agent believes that it has a commitment or an intention but that commitment

or intention is not in its commitment or intention base, then it is added to the appropri-

ate mental component. The transition rule for internal commitment is described in the

following rule.

(A.13)

BE ² pgoal(self,p,q), 〈ϕ,q〉 /∈ C,
BE 2 bel(self,p) ∨ bel(self,¤¬p) ∨ bel(self,¬q)

〈B,G,C,I〉 →∅ 〈B,G,C ∪ {〈ϕ,q〉},I〉
Note that since pgoal(self,p,q) is entailed by the effective belief base, it must be consis-

tent with the existing commitments and intentions of this agent. The transition rule for

intention is similar.

A.4 BASIC ACTIONS THEORY

Each STAPLE agent has a number of basic as well as communicative actions in its reper-

toire. Recall that each singleton action act(t1,..,tn) in STAPLE is defined by the tuple

〈x,ϕ,ψ,σ,χ〉 where x is the actor, ϕ is the precondition, ψ is the post condition, σ is the

context, and χ is the “code” of the action. Execution of an action modifies the mental

state of an agent. Here, we specify the operational semantics of some of the main basic

actions by specifying how they modify the mental state of the agent.

Definition A.17. Assert, Retract

The action assert(φ) where φ ∈ LG modifies the belief base of the agent but leaves

other parts of the mental state unchanged. Assert reduces the formula φ using a set of

axioms and the effective belief base (recall that the effective belief base consists of the

belief base plus the contents of the commitment stacks), and adds the reduced formulae to

the belief base. The consequence of this is that the belief base is in the form as required

by the belief reasoner but retains the property that whatever could be inferred from B ∪

300

{ϕ} can also be inferred from B ∪ {ψ} where ψ ∈ LG is the reduced form of ϕ. Let reduce

be a function of type LG × ℘(LG) → LG. The state transformation by assert can then be

described in the following rule.

(A.14)
φ ∈ LG, BE ∪ {φ} 2 false, ψ=reduce(φ,BE)

〈assert(φ), 〈B,G,C,I〉〉 →∅ 〈nil, 〈B ∪ {ψ},G,C,I〉〉
The axioms used by reduce correspond to the axioms used by the belief reasoner and were

discussed in Chapter 4. The action retract is the opposite of assert and removes a formula

from the belief base.

(A.15)
φθ ∈ B

〈retract(φ), 〈B,G,C,I〉〉 →θ 〈nil, 〈B-{φθ},G,C,I〉〉
Definition A.18. Adopt, Subgoal, Drop

The actions adopt, subgoal, and drop correspond to assert and retract except that

they act on commitments and intentions instead of the belief base. These actions are

typically used from within rules and plans. Adopt adds a new high-level commitment,

social commitment, or intention to the agent’s mental state. The following rule gives the

operational semantics for adopting a new intention.

(A.16)

BE 2 ¤¬pre(a),BE 2 ¤¬context(a),2 BE ² ¬q,

I ∪ {〈a,q〉} 2 false, C ∪ {intend(self,a,q)} 2 false

〈adopt(〈a,q〉), 〈B,G,C,I〉〉 →∅ 〈nil, 〈B,G,C,I ∪ {〈a,q〉}〉〉
The operational semantics for adopting a commitment or social commitment are similar

to the above rule and are derived from the definition of those mental attitudes. The basic

singleton action subgoal is similar to adopt except that the new intention, commitment,

or social commitment is added to the mental state relative to an existing intention, com-

mitment, or social commitment. Drop is the converse of adopt and subgoal actions. It

removes an existing commitment, social commitment, or intention from the agent’s mental

state.

Next, we modify the language presented in the previous sections to support joint actions,

groups, and communicative actions.

A.5 TEAMWORK IN STAPLE

We first modify the language definition and then its operational semantics to support

teamwork and communication.

301

A.5.1 Modifying the Language

Let GVar be the set of group variables having elements (τ ,α,. . . , τ1,τ2 ,. . . , α1,α2,. . .).

We modify the modal language L from A.4 by adding formulas for the modal operators

mutual belief (mb), and social commitment or persistent weak achievement goal (pwag).

Definition A.19. The Teamwork Language L

1. If ϕ ∈ L and τ ∈ GVar or τ ∈ Agt, then mb(τ ,ϕ) ∈ L

2. If ϕ ∈ L and x,y ∈ Actor, then mb(x,y,ϕ) ∈ L

3. If ϕ,q ∈ L and x,y ∈ Actor, then pwag(x,y,ϕ,q) ∈ L

The mental state of a STAPLE agent now includes a set of social commitments and is

denoted by 〈B,G,C,SC,I〉 where SC represents the social commitments of this agent.

Definition A.20. Social Commitments (SC):

An agent’s social commitments store SC consists of tuples 〈ϕ,y,q〉 denoting that this

agent is committed towards another agent y for achieving ϕ relative to some higher-level

goal (or context) q. Formally,

SC ⊆ {〈ϕ,y,q〉 | ϕ ∈ L, y ∈ Agt, q ∈ L} with one of the following constraints:

1. The agent does not believe ϕ

(a) B 2 ϕ, that is, ϕ is not entailed by the belief base.

(b) B ∪ {¬ϕ} 2 false, that is, ϕ is consistent with the belief base.

(c) B 2 ¤¬ϕ, that is, the impossibility of ϕ must not be entailed by the agent’s

belief base.

(d) B 2 ¬q, that is, the belief base must not entail that the commitment is irrele-

vant.

(e) C ∪ {〈ϕ,q〉} 2 false, that is, SC is consistent with C
(f) I ∪ {pgoal(self,ϕ,q)} 2 false, that is, this social commitment must be consistent

with the agent’s current intentions.

2. The agent believes ϕ

Let p = mb(self,y,ϕ), then

302

(a) B |= ϕ, that is, ϕ is entailed by the agent’s belief base.

(b) B 2 p, that is, p is not entailed by the belief base.

(c) B ∪ {¬p}2 false, that is, p is consistent with the belief base.

(d) B 2 ¤¬p, that is, the impossibility of p must not be entailed by the agent’s

belief base.

(e) B 2 ¬q, that is, the belief base must not entail that the commitment is irrele-

vant.

(f) C ∪ {〈p,q〉} 2 false, that is, SC is consistent with C
(g) I ∪ {pgoal(self,p,q)} 2 false, that is, this social commitment must be consistent

with the agent’s current intentions.

3. The agent believes ϕ is impossible to achieve

Let p = mb(self,y, ¤¬ϕ), then

(a) B |= ¤¬ϕ, that is, ¤¬ϕ is entailed by the agent’s belief base.

(b) B 2 p, that is, p is not entailed by the belief base.

(c) B ∪ {¬p} 2 false, that is, p is consistent with the belief base.

(d) B 2 ¤¬p, that is, the impossibility of p must not be entailed by the agent’s

belief base.

(e) B 2 ¬q, that is, the belief base must not entail that the commitment is irrele-

vant.

(f) C ∪ {〈p,q〉} 2 false, that is, SC is consistent with C
(g) I ∪ {pgoal(self,p,q)} 2 false, that is, this social commitment must be consistent

with the agent’s current intentions.

4. The agent believes that the social commitment is irrelevant

Let p = mb(self,y, ¬q), then

(a) B |= ¬q, that is, ¬q is entailed by the agent’s belief base.

(b) B 2 p, that is, p is not entailed by the belief base.

(c) B ∪ {¬p} 2 false, that is, p is consistent with the belief base.

(d) B 2 ¤¬p, that is, the impossibility of p must not be entailed by the agent’s

belief base.

303

(e) C ∪ {〈p,true〉} 2 false, that is, SC is consistent with C
(f) I ∪ {pgoal(self,p,true)} 2 false, that is, this social commitment must be con-

sistent with the agent’s current intentions.

Definition A.21. Effect of social commitment on other mental state components

The internal commitments and intentions of an agent must be consistent with its

social commitments. As such, we add the following constraints to A.7 of these mental

state components.

• SC ∪ {pgoal(self,ϕ,q)} 2 false, that is, this commitment must be consistent with the

agent’s social commitments.

• SC ∪ {intend(self,a,q)} 2 false, that is, this intention must be consistent with the

agent’s social commitments.

After including social commitment to the mental state of an agent, the type of mental

state TM is now given by ℘(LG) ×℘(LG)×℘(LG×LG)×℘(LG× Agt×LG)×℘(AExp×LG).

Definition A.22. Introspection

STAPLE agents are introspective with respect to their social commitments (along

with internal commitments and intentions). Therefore, the definition of effective belief

base (A.8) is modified to include the social commitments of the agent. Formally, we add

the following statement to that definition:

• if 〈ϕ,y,q〉 ∈ SC, then pwag(self, y,ϕ,q) ∈ BE

Next we discuss the effects on operational semantics of STAPLE due to introduction of

the social commitment.

A.5.2 Modifying the Operational Semantics

The reference to mental state in all the transition rules for the operational semantics listed

in Section A.3 must be modified to include the social commitment, that is, they must be

replaced by 〈B,G,C,SC,I〉. Moreover, the operational semantics in Section A.3 must be

augmented to include the transition rules for interpreting social commitments.

Definition A.23. Interpreting Social Commitments

304

Social commitments always lead to internal commitments. The following four transi-

tion rules specify the computation steps to arrive at an internal commitment from a social

commitment. The next rule says to add an internal commitment if the agent does not

believe the socially committed goal, and if it is reasonable to add that commitment.

(A.17)
〈ϕ,y,q〉 ∈ SC, BE 2 ϕ, BE 2 ¤¬ϕ, BE 2 ¬q, C 2 〈ϕ,q〉

〈B,G,C,SC,I〉 →∅ 〈B,G,C ∪ {〈ϕ,q〉},SC,I〉
The next three rules require adding an internal commitment to establish mutual belief

with the agent towards whom this agent is socially committed about the achievement,

impossibility, or irrelevance of the socially committed goal.

(A.18)

〈ϕ,y,q〉 ∈ SC, BE ² ϕ, p=mb(self,y,ϕ),

BE 2 p, BE 2 ¤¬p, BE 2 ¬q, C 2 〈p,q〉
〈B,G,C,SC,I〉 →∅ 〈B,G,C ∪ {〈p,q〉},SC,I〉

(A.19)

〈ϕ,y,q〉 ∈ SC, BE ² ¤¬ϕ, p=mb(self,y,¤¬ϕ),

BE 2 p, BE 2 ¤¬p, BE 2 ¬q, C 2 〈p,q〉
〈B,G,C,SC,I〉 →∅ 〈B,G,C ∪ {〈p,q〉},SC,I〉

(A.20)

〈ϕ,y,q〉 ∈ SC, BE ² ¬q, p=mb(self,y,¬q),

BE 2 p, BE 2 ¤¬p, C 2 〈p,true〉
〈B,G,C,SC,I〉 →∅ 〈B,G,C ∪ {〈p,true〉},SC,I〉

Definition A.24. Reverse Introspection

STAPLE agents are also capable of reverse introspection (A.16) with respect to their

social commitments. If an agent’s belief that it has a social commitment is not in its social

commitment store, then it is added to the appropriate mental component. The transition

rule for social commitment is described in the following rule.

(A.21)

BE ² pwag(self,y,p,q), 〈ϕ,y,q〉 /∈ SC,
BE 2 mb(self,y,p) ∨mb(self,y,¤¬p) ∨mb(self,y,¬q)

〈B,G,C,SC,I〉 →∅ 〈B,G,C,SC ∪ {〈ϕ,y,q〉},I〉
Note that since pwag(self,y,p,q) is entailed by the effective belief base, it must be consistent

with the existing commitments, social commitments, and intentions of this agent. Also,

when mb is entailed by the belief base, it effectively represents a bmb.

We now discuss changes to the action theory as a result of introducing social commit-

ments.

305

A.5.3 Modifying the Action Theory

The reference to mental state in all the transition rules for the basic actions theory in

Section A.3 must be modified to include the social commitment, that is, they must be

replaced by 〈B,G,C,SC,I〉.
The support for multiple agents and the social commitment of one agent directed

towards another requires that agents be able to communicate with each other. Com-

municative acts are similar to the basic actions and they affect the mental state of the

communicating agents (including that of over-hearers). The transition rules for the main

communicative actions in STAPLE for communication between two agents are defined

next.

Definition A.25. Communicative Actions

The operational semantics of the communicative actions request, inform, agree, and

refuse is derived from their logical definitions in [106, 65]. The next transition step specifies

change of mental state for both the actor (sender) and the recipient of the request action.

(A.22)

ψ = done(y,a) ∧ pwag(y,x,done(y,a),pwag(x,y,done(y,a),q)∧q)

ϕ = pwag(x,y,ψ,q),BE ∪ {mb(x,y,ϕ)} 2 false

〈request(x,y,a,q), 〈B,G,C,SC,I〉〉 →∅ 〈nil, 〈B ∪ {mb(x,y,ϕ)},G,C,SC,I〉〉
Note that the reverse introspection step will result in the sender’s adopting a social com-

mitment towards the recipient if it does not yet have that social commitment. The inform

action establishes mutual belief that the sender believes the informed proposition (assum-

ing that nothing has changed since the inform was performed, and the act of informing

did not change that proposition).

(A.23)
ϕ = bel(x,p), BE ∪ {mb(x,y,ϕ)} 2 false

〈inform(x,y,p), 〈B,G,C,SC,I〉〉 →∅ 〈nil, 〈B ∪ {mb(x,y,ϕ)},G,C,SC,I〉〉
Note (for later use) that in the complete action theory of inform, we would also specify

the enabling invariant (context) for performing an inform that the sender x must believe

the proposition being informed. The transition rules for agree is similar to that of inform

except for a different proposition ϕ.

(A.24)

ϕ= pwag(x,y,done(x,a),pwag(y,x,done(x,a),q)∧q),

BE ∪ {mb(x,y,ϕ)} 2 false

〈agree(x,y,a,q), 〈B,G,C,SC,I〉〉 →∅ 〈nil, 〈B ∪ {mb(x,y,ϕ)},G,C,SC,I〉〉
Next, we discuss the support in STAPLE for convenience constructs such as plans.

306

A.6 REAL WORLD OPTIMIZATIONS

Plans are well known construct in agent programming. A plan consists of an action

expression that is designed to achieve a particular goal. Similar to actions, plans have an

effect, a precondition, and a context. However, instead of “code”, STAPLE plans have a

body consisting of either singleton actions or other plans.

Definition A.26. Plan

A STAPLE plan is a named action expression. In general, the precondition, context,

etc. for a plan can be derived from the corresponding formulae of the constituent actions.

However, we require these terms to be explicitly specified. A STAPLE plan act(t1,..,tn)

is defined by a tuple 〈ϕ,ψ,σ,β〉
where, act ∈ ActSym is the name of the plan,

t1,. . . ,tn ∈ Term are the parameters to the plan,

ϕ,ψ,σ ∈ L, and specify the precondition, the post-condition, and the context of the

plan

β ∈ AExp and β /∈ ActionVar is the plan body

Note that the constituent actions of a plan may define different agents as actors and

therefore, a plan may have multiple actors in which case it is considered a joint action.

Recall that STAPLE rules for rational action (A.10) have a premise and a consequent

that is a basic action (or action expression). Also, recall that the semantics of rule exe-

cution (A.13) uses one of the conjuncts in the premise as an applicability criterion. For

reasons of efficiency, STAPLE requires explicit specification of the applicability condition

of a rule. STAPLE interpreters can then use the applicability criterion to quickly narrow

down the set of rules applicable to a given situation. As such, we modify rule A.10 as

follows.

Definition A.27. Rules for Rational Action

Rules in a STAPLE program have three components: an applicability condition, the

premise, and the action to execute if the premise is true. As such rules can be thought of

as a conditional action and are represented as

〈ϕ, ψ〉 → a

where, ϕ ∈ L is the applicability condition,

ψ ∈ L is the premise of the rule, and

a ∈ AExp is an expression such that every component of a is a basic action.

307

STAPLE defines a primitive action to execute rules whose semantics remains un-

changed from that specified in A.13.

In the real world, agents may have multiple commitments and intentions competing for

resources and attention. Furthermore, several rules may be applicable to a given situation

and multiple actions and plans that can be achieve a given goal. One way to prioritize

these competing means and ends is to use an importance function.

Definition A.28. Importance

The rules, plans, commitments, social commitments, and intentions have an impor-

tance rating that is used to prioritize them when needed. So we modify the definition of

the relevant language constructs we have seen so far to add a function that returns the

importance. For simplicity (and what is actually implemented in the interpreter discussed

in Chapter 4), let it be the constant function n for now. The definitions of the following

language constructs get modified as specified below:

• Plan: 〈ϕ,ψ,σ,β,n〉

• Rule: 〈ϕ, ψ, n〉 → a

• Commitment: 〈p,q,n〉

• Social Commitment: 〈p,y,q,n〉

• Intention: 〈a,q,n〉

One impact of the notion of importance is that all references to plans, rules, commit-

ments, intentions, and social commitments in the operational semantics and elsewhere are

modified as per the A.28. Its most pronounced impact is on the operational semantics of

intention to execute an action.

Definition A.29. Intention to execute a singleton action

A singleton action a is executed when the agent has an intention to do a, the precon-

dition and context of that action are entailed by the agent’s belief base, and this intention

happens to be one of the most important intentions of the agent. The next two rules de-

note the computation step one each for success and failure respectively of the intended

308

singleton action and are modified from rules A.4 and A.5.

(A.25)

〈a,q,n〉 ∈ I, a ∈ SAct, n = max i s.t.〈a,q,i〉 ∈ I,

M(a,〈B,G,C,SC,I〉) = 〈B′,G,C′,SC′,I ′〉,
φ = succeded(intend(a,q,n))

R(φ,〈B′,G,C′,SC′,I ′〉) = 〈B′′,G′′,C′′,SC′′,I ′′〉
〈a, 〈B,G,C,SC,I〉〉 →∅ 〈nil, 〈B′′,G′′,C′′,SC′′,I ′′〉〉

(A.26)

〈a,q,n〉 ∈ I, a ∈ SAct, n = max is.t.〈a,q,i〉 ∈ I,

φ = failed(intend(a,q,n)),

R(φ,〈B,G,C,SC,I〉) = 〈B′′,G′′,C′′,SC′′,I ′′〉
〈a,〈B,G,C,SC,I〉〉 →∅ 〈a,〈B′′ ∪ {φ},G′′,C′′,SC′′,I ′′〉〉

Next, we conclude with a discussion on the relationship between the operational semantics

and JI theory.

A.7 DISCUSSION

STAPLE and JI theory are connected in at least two different ways. First, the joint inten-

tion theory provides the axiomatic/logical semantics of STAPLE. As such, the formulas

in the agent’s belief base have Kripke’s weak S5 semantics and those in its goal base have

system K semantics. Further, the formulas in the goal base are constrained to be compat-

ible with the agent’s belief base. The logical semantics of internal commitment is given

by PGOAL, that of intention by INTEND, and that of social commitment by PWAG.

The entailment relationship used in the previous sections comes from this JI based logical

semantics. In fact, the axioms describing the logical semantics of each modality and their

relationship with each other are needed by the belief reasoner behind implementations of

STAPLE.

Second, the model theory for the logic of joint intentions provides the denotational

semantics for the corresponding terms in STAPLE. As such, the terms in STAPLE have

the same possible world semantics as the corresponding terms in its logical semantics.

The communicative acts within the framework of JI theory are defined as attempts

having an associated goal and an intention. As such, the transition rules A.22 to A.24

are derived from the intention part of the logical semantics of the corresponding com-

municative acts assuming that the intent behind the communication was successful. The

definitions of intention, commitment and social commitment in this appendix follow di-

rectly from the definitions of INTEND, PGOAL, and PWAG in the JI logic. Similarly, the

309

derivation rules for intending various action expressions (Definition A.14) and for commit-

ment for getting different action expressions done (Definition A.15) correspond directly to

results in the logic (Table 2.1 and Table 2.2).

The language definition and its operational semantics presented in this appendix oper-

ationalize the definitions of modal constructs such as PGOAL in a way that can be directly

implemented in software. Recall that the semantics of the modal concepts PGOAL, IN-

TEND, and PWAG is built into the interpreter by using the logical definition of these

terms. For instance, the definition of PGOAL in the logic says that an agent having a

PGOAL that p relative to a higher level goal q does not believe p, and has a goal that

eventually p, and it must keep this goal at least until it believes that p has been achieved

or is impossible to achieve or is irrelevant. The operational semantics of PGOAL on the

the other hand goes into explicit details about how the various belief and commitment

data structures are updated, what consistency checks must be done, etc. that is needed

for encoding support for PGOAL into a JI interpreter.

Biographical Note

Sanjeev Kumar was born in August, 1974 in Patna, India. He received his B.Tech. degree

in Electrical Engineering from the Indian Institute of Technology, Kanpur, India in 1995

and his M.S. degree in Computer Science from the Oregon Health & Science University,

USA in 2002. Thereafter, he worked as a staff scientist for three years at the Center

for Human-Computer Communication in the Department of Computer Science and En-

gineering at the Oregon Health & Science University. Mr. Kumar has received several

scholarships including the academic proficiency prize for the best undergraduate project at

the Indian Institute of Technology, Kanpur, India. His research interests include natural

language dialogue, multiagent systems, theories of collaboration and communication, and

multimodal interaction. He has published more than a dozen scientific papers in peer-

reviewed international conferences and journals and has more than 25 patents pending at

the US Patent and Trademark Office.

310

