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Abstract 

Designs for a 
Cortically-Inspired 

Neurocomputer Architecture 

Eric Means, M.S. 

Oregon Graduate Institute of Science & Technology, 1991 

Supervising Professor: Dan Hammerstrom 

Artificial neural networks constitute attempts to put computer systems on the road to 

natural intelligence. Promising applications await even limited progress in this direction, 

as challenging problems in perception, control, and reasoning resist traditional computa- 

tional approaches. Unfortunately, the capabilities and organizations of today's artificial 

neural networks are far removed from those of their biological namesakes. This differ- 

ence will narrow, however, as increasing understanding of nervous system operation is 

incorporated into artificial neural network design. The hardware performance required 

by such networks will not be met by conventional computers; new architectures will be 

needed that support the processing requirements of nervous system organization. 

An investigation is described of neurocomputer architectures and circuit designs re- 

quired to  implement a neural network modeled directly from studies in mammalian 

cortex. Previous research in electronic neural network hardware has targeted neurons 

performing peripheral sensory roles, such as in the auditory and visual systems, or has 



viewed neural network operation as routine (albeit massively parallel) vector process- 

ing. The cortical model used here is the piriform model of olfactory/piriform cortex, 

developed by Richard Granger and Gary Lynch at the University of California, Irvine. 

The "piriform model" is actually a spectrum of models ranging from biochemically 

detailed descriptions to abstract signal processing versions divorced from biology. Two 

points in this range will be studied. The first is a high-level model description that has 

been shown to perform a useful signal processing function known as vector quantization. 

An implementation of this model on a commercial neurocomputer will be described. The 

second version of the model, containing more biological detail, is the primary focus of 

the architectural and circuit design effort. A neurocomputer architecture called "Super 

Sniff" (SS) is proposed, and two possible implementations are studied. One features 

analog processing and direct connections between neurons, and the other utilizes a shared 

communication structure and digital processing. The cost/performance tradeoffs of each 

are compared. 

Sparse temporal activity and connectivity, limited precision arithmetic, and a discrete- 

event style of operation are characteristics of the model that are compatible with VLSI 

processing. Mammalian olfactory cortex contains many millions of neurons; this thesis 

investigates networks containing more modest neuron counts numbering in the tens of 

thousands. 

Lessons learned about the suitability of VLSI processes for implementing biologicdy- 

faithful cortical structures are discussed in the conclusion. 

vii 



Chapter 1 

Introduction 

Neurocomputers are machines specialized for the rapid execution of neural network algo- 

rithms. Specialized hardware is essential for the practical application of neural networks 

because these algorithms are computationally intensive and impractically slow on gen- 

eral purpose platforms. The application domains where neural networks are expected to 

have their greatest practical application require real-time execution, meaning they must 

execute very quickly. 

Research on neurocomputer hardware has tended to split into two camps. One focus 

has been on the design of electronic neurons; that is, circuits that electronically perform 

the basic operations of individual biological neurons. The work of Graf and Jackel 

[GJ89], Hollis and Paulos [HPgOb], Meador [MWC+91], and Card [CM89b] is typical of 

this effort. Carver Mead at Cal Tech [Mea89] is particularly well known for his group's 

work in this area using sub-threshold CMOS processes as their electronic substrate. This 

research is generally aimed at developing specialized analog circuits, and in general has 

not emphasized the integration of these special-purpose circuits into entire systems that 

perform cortical-like associative processing. A good reason for this is the paucity of 

good cortical models; modeling the brain is an ambitious research undertaking. 

The other neurocomputer research path has aimed at producing machines akin to 

traditional vector processors. Here there is no attempt to create electronic analogs of 

biological structures; instead, neural network algorithms are viewed as simply being 

highly pipelined or parallel operations on massive amounts of data. The neural network 

algorithms that are the focus of these architectures are only loosely modeled on biological 



principles. Largely for that reason, the architectures that implement these models are 

referred to  here as first-generation neurocomputers. 

Recently, some neural models have emerged that model a wider range of neural net- 

work operation, from individual to entire assemblies of neurons. A prominent example is 

the olfactory/piriform cortex model (the piriform model) developed by Richard Granger 

and Gary Lynch of the University of California at Irvine [GAIL89][GAISL89][AIGL90]. 

Characteristics of this class of models make them sufficiently different from the artificial 

neural networks in widespread use today (e.g., backpropagation) to describe them as 

cortically-inspired models. The distinguishing elements of these models are their close 

adherence to biological nervous system organization, and their functional descriptions of 

neural assemblies (as opposed to simply .the operations of individual neurons). 

First-generation neurocomputers have performance problems with this class of neural 

models. This is largely a result of the latter's biological pedigree; these models feature 

the massive connectivity and computational characteristics of real biological nervous 

systems. These models will require new computer architectures if they are to be executed 

in critical real-time environments. 

The purpose of this thesis is twofold: first, to propose a computer architecture opti- 

mized for the execution of a neural algorithm derived from a cortical model, and second, 

to establish an approach for translating biological neural networks into practical neuro- 

computers. 

The piriform model will be the focus of examining how to integrate electronic neural 

components into a complete neurocomputer system. It offers a clean input/output in- 

terface; internal operations are well defined; and any implementation of it must address 

the salient points of neurocomputer architecture. 

The way that neurocomputer architectures are analyzed is an important part of this 

thesis. Any architecture, implementing any neural model, can be evaluated on how 

well it balances three key implementation issues: (1) inter-neural communication; (2) 

weight representation and modification (i.e., learning); and (3) neural computation and 

precision. These three issues frame the discussions in the following analyses. 



The thesis will begin with a detailed description of the piriform model. The model 

includes several novel biological features that combine for an interesting computation, 

but they complicate an understanding of the processing in traditional signal processing 

terms. A simplified version of the piriform model will then be described that performs 

hierarchical vector quantization. Simulations will show the operation of this analytically 

tractable model variant. 

After these descriptions, an implementation of the simplified network model on a 

commercial neurocomputer will be described. An analysis of two proposed implementa- 

tions of the full-scale piriform model will follow: an analog and a digital version. The 

strengths and weaknesses of these ,two approaches will be covered in some detail. 

This thesis represents one example of how a biological neural model can be translated 

into the language of computer architecture. It is hoped that the conclusions and method- 

ology will have application to the subsequent generations of models and architectures 

that are certain to  follow as these models attain more widespread usage. 



Chapter 2 

The Piriform Model 

The piriform model emerged from attempts to explain observed laboratory phenomena. 

Described here are successive stages in an ongoing evolution; early versions captured 

significantly more anatomical and biophysical detail than later ones, and with each suc- 

cessive generation, more of the fine points of operation were abstracted into higher-level . 
behavioral rules. That evolution will be reflected in two versions of the model discussed 

here. The first, called model I, is faithful to significantly more biological detail than its 

successor, model 11. 

Many of the novel features of model I are artifacts of the biology, and it is postu- 

lated that they are only peripherally related to the primary computation. Therefore the 

model's developers introduced model 11, which strips away much of the biological detail 

and introduces behavioral rules intended to capture the essential elements of the compu- 

tation. In its resulting form model 11, in combination with features of the surrounding 

cortical structures, can be recognized as a special case of a more general class of signal 

processing algorithms. 

This chapter discusses both versions of the piriform model. Model I performs an 

interesting computation, but its analysis is complicated by the many biological features 

it retains. The simplifications introduced in model I1 suggest an evaluation in terms of a 

traditional signal processing algorithm. It remains to be seen if model I can also be viewed 

in this way, or if what model 11 dismisses as "biological detail" is essential to the biological 

computation. In this thesis, both possibilities will be covered. Following its description in 

this chapter, an implementation of model I1 on a commercially available neurocomputer 



will be described. The remainder of the thesis will focus on neurocomputer designs that 

implement the biologically explicit model I in its entirety. 

2.1 The Complex Model - Model I 

2.1.1 Network Organization 

The piriform model is abstracted from piriform layer 11, and constitutes one portion of 

the entire mammalian olfactory system. Figure 2.1 shows a schematic diagram of piri- 

form layer I1 embedded within this system. The olfactory receptor sheet is the primary 

sensory surface for the olfactory system. While much of the nature of olfaction is not 

understood, it appears that neurons in the sheet respond with high-frequency oscillations 

when particular airborne molecules impinge on the sheet. Signals on the olfactory nerve 

are frequency-coded: stronger excitations elicit higher frequency pulse trains. 

These signals undergo significant modification within the olfactory bulb. An auto- 

matic gain control operation on input activity keeps bulb output (signals on the Lateral 

Olfactory Tract, or LOT) largely constant regardless of the intensity of olfactory nerve 

input. In addition, the bulb scrambles the spatial relationship of signals from olfactory 

- nerve to the LOT. While topography is preserved on the nerve, neighboring signals on 

the LOT bear no spatial relationship to one another. Finally, the frequency-coded infor- 

mation on the olfactory nerve is converted to time-locked, synchronous, binary (off/on) 

data on the LOT. 

LOT synchronization results from the interplay of excitation in mitral tufts and mitral 

cells (those cells whose axons form the LOT), and feedback from inhibitory granule cells. 

Figure 2.2 shows the postulated mechanism of how olfactory nerve input is converted 

into periodic pulsed LOT signals [She79]. Granule cells suppress the mitral cell pulses 

that activated them. This inhibition lasts for some unknown period of time. 

The LOT, which forms the inputs to layer 11, consists of mit ral cell axons originating 

in the olfactory bulb. These axons sparsely contact distal dendrites of layer I1 neurons. 

The neurons are arranged in a linear sequence of upatches", each composed of between 
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Figure 2.2: Olfactory input gives rise. t o  a constant excitatory post-synaptic potential (EPSP) 
within mitral cell tufts (MT) in the bulb: the resultant excitation in the mitral cells (MC) 
energizes inhibitory granule cells (Gr), which temporarily suppress all mitral cell activity. 
The resulting synchronous pulses within the mitral cells (MC) reflect the recharging rate o f  
the inhibitory granule cells. Mitral cell axons form the Lateral Olfactory Tract (LOT). The 
horizontal bar in the figure at top represents 50 milliseconds o f  time; the vertical bar in 
the middle figure measures 100 millivolts o f  depolarization. From Shepherd, The Synaptic 
Organization of the Brain, 1979, pg. 171. 



20 to 100 neurons. 

The axon from each layer I1 cell rejoins the LOT and propagates caudally, replacing 

a randomly chosen axon from a prior source. Figure 2.3 shows a small version of layer 

I1 (two patches, four cells each) and the nature of LOT to layer I1 connectivity. As 

recurrent collaterals randomly replace rostral (upstream) axons, LOT size remains con- 

stant during traversal of layer 11. As a result LOT composition changes as it progresses 

from the rostral portions of the network to caudal (downstream) regions. The effect is 

that dendrites of caudally-located neurons receive more highly-processed signals than 

do those of rostrdy-located neurons. 

Processing in the piriform model proceeds in distinct cycles, or sniffs. Olfactory input 

appears on LOT axons in the form of periodic samples, or pulse trains, one per sniff. 

On every such sample, each neuron forms a scalar product of its own synaptic weight 

vector with a sparse subset of the LOT. Local lateral inhibition causes each patch to 

perform a winner-take-all function; only the most strongly activated neuron(s) exceeding 

a minimum threshold is allowed to fire. The remainder of the patch is quiescent. 

Neurons that have won the competition within a patch on any sample respond with 

a pulse train on their own axonal output. In subsequent samples, however, a post- 

activation refractory period prevents those neurons from winning their patch again. Suc- 

cessive patch winners are selected from neurons whose dendrites sample a different region 

of the LOT input space. Model I1 describes enhancements that add an active feedback 

path from layer I1 to  the olfactory bulb via the anterior olfactory nucleus [GAISL89]. 

The function of this path is cycle-by-cycle inhibition of dominant components of the 

LOT input, based on input from patch winners. 

Feedback inhibition and post-activation refractory periods combine to  cause the net- 

work to  form different outputs on successive samples of a single LOT input. It is hy- 

pothesized that the resulting series of responses establishes a hierarchical categorization 

of inputs, corresponding to  a hierarchical structuring of the data. Similar inputs initially 

elicit similar network outputs, but with each successive sniff the elements common to 

each input are removed and the network responds to progressively dissimilar components. 



rostra1 end Lateral Olfactory Tract caudal end 

LOT 
input 

Recurrent collaterals 

Figure 2.3: An illustration of  the connectivity between layer II patches and the Lateral 
Olfactory Tract (LOT). Cell outputs rejoin' the LOT, randomly replacing a LOT signal. Not 
shown in this figure are inhibitory interneurons within each patch which enforce winner-take- 
all behavior. 



Hence, network outputs in later sniffs diverge. 

Neurons in the model have two distinct operating regimes: learning mode and perfor- 

mance mode. Inputs cause similar network responses in both modes, but only in learning 

mode can synaptic weights be changed. Only in performance mode do neurons use their 

"learned" synaptic weight values: in learning mode itself, when neurons are competing 

to win their patch, all neurons use a constant value for synaptic weights. (Different 

biochemical mechanisms are postulated to be acting in the two modes.) This feature 

removes prior learning effects from subsequent training episodes. 

2.1.2 Biological Basis of the Model 

The network model can be understood without recourse to biology, but a brief description 

of .the biological basis provides some justification for its characteristics. 

The learning mechanism is based on models of long term potentiation (LTP). In- 

creases in synaptic efficacy of approximately 50% have been brought on with remarkably 

little onset time, and have lasted for weeks in test cases. The increase commonly outlasts 

the lifespan of the monitoring equipment, and may be considered permanent [GAILSg]. 

The mechanism for LTP is presently unknown; some theories attribute it to  a change 

in synaptic biochemistry, while others suggest changes in the geometry of the synapse. 

While there is growing evidence for the characteristics of LTP described here (incremen- 

tal increase up to a ceiling value), there is at  present little evidence for its supposed 

counterpart, long term depression [GAILSS]. Hence, in this model, synaptic weights can 

only increase with learning. 

Laboratory evidence indicates that synaptic weights change only when inputs are 

coincident with a global low frequency oscillation in piriform cortex known as the "theta 

rhythm". This 4-7 Hz oscillation is apparently caused by signals arising from other corti- 

cal structures innervating piriform layer 11. Theta rhythm onset typically accompanies a 

heightened awareness level in actively exploring animals, evidently permitting the synap- 

tic modification that constitutes LTP learning. Theta rhythm oscillations combine with 

olfactory input to boost cellular activation beyond voltage depolarization thresholds. 



In active animals, the difference between learning and performance modes is observed 

in the cyclical pattern of network activity. In performance mode, LOT inputs appear as 

brief low-frequency ( x  40 Hz) voltage spikes. In learning mode, the identical input causes 

a flurry of high-frequency ( x  100 Hz) pulses on the LOT. Synaptic efficacy increases by 

an incremental amount when: (1) the network is in learning mode, (2) the neuron wins 

its patch and exceeds the learning threshold, and (3) the synapse has not yet reached its 

ceiling value. 

In the model, every neuron's learning mode synaptic weights differ from its perfor- 

mance mode synaptic weights. It is hypothesized that the higher-frequency learning- 

mode inputs utilize a different cellular synaptic transmitter than is used in lower- 

frequency performance mode. Experimental evidence suggests that the presence of this 

learning-mode transmitter acts to  induce LTP by opening calcium channels in the neu- 

ral membrane. The calcium influx alters the efficacy of performance-mode synaptic 

transmission without affecting learning-mode synaptic transmission (hence the bi-modal 

synaptic weight rule). 

Local interneurons provide the inhibition that is responsible for the winner-take- 

all behavior of the patches. A neuron that is sufficiently excited beyond an activation 

threshold by afferent inputs in turn energizes an inhibitory neuron, and the latter sup- 

presses all activity in the patch via strong shunting inhibition currents. The brief, high 

frequency output spiking of the excited neuron represents this patch's active output on 

one cycle, or one sniff. A lengthy refractory period follows the high frequency spiking, 

and during this period no further activity by that neuron can be observed. This process 

repeats for each successive sniff in performance mode. 

Input to  layer I1 pyramidal cells is delayed by LOT transmission time and the pro- 

cessing time of upstream layer I1 cells. Model I operation requires virtually coinciden- 

tal arrival times of inputs, and thus some synchronization between these two delays. 

Anatomical evidence indicates that transmission times within piriform cortex may sat- 

isfy this requirement. Noted piriform researcher Lewis Haberly describes the anatomical 

situation as follows: 



In the association fiber system there is an interesting trend in the organization 

of the projections to  the anterior piriform cortex. Longitudinally oriented 

strips of cortex at increasing distance from the LOT get associational inputs 

from olfactory cortical areas at  progressively more caudal locations. Since 

afferent volleys from the olfactory bulb propagate down the LOT, then spread 

medially and laterally via fine collaterals at  a much slower rate, one possible 

hypothesis concerning this organization is that it keeps the time of arrival of 

afferent and associationd inputs relatively constant. [Hab85] 

The sparse connectivity of the model is derived from known connectivity of LOT 

axons onto dendrites of neurons in piriform layer 11. Connectivity reportedly varies be- 

tween 5% and 25%; that is, any LOT &on has a 5% to 25% probability of contacting a 

dendrite of any given layer I1 piriform neuron. 

2.1.3 Summary of Model I Operation 

Learning mode: 

1. An input vector is presented to the network; this represents afferent signals on the 

Lateral Olfactory Tract (LOT). 

2. Neurons in each patch compute their activations from the subset of active LOT 

signals that each contacts. The first neuron in each patch whose activation exceeds 

the winning threshold is the winner of that patch. Its output signal, through a 

recurrent collateral, randomly replaces a previous LOT signal. 

3. Each patch continues to compute activations. Moving caudally, the LOT content 

changes as additional recurrent collaterals replace original input. Rostral patches 

generally produce the initial patch winners because the LOT population they con- 

tact contains a higher proportion of active inputs. Caudal patches see more re- 

current collaterals, whose activation is delayed by the processing time of rostral 

neurons. Most of the delay is due to neural response time (on the order of 10 



milliseconds) with some additional delay caused by the slower propagation time of 

the unmyelinated (i.e., slower) recurrent collaterals. Hence, the output of caudal 

portions of the network are delayed in time. 

4. If a winning neuron achieves an excitation level exceeding a learning threshold, 

that neuron increases the weight of each active synapse (an active synapse is one 

that had an active input on that cycle) by a standard increment. 

Performance mode: 

1. Repeat steps 1-2 above, this time using performance-mode synaptic weight values. 

2. Every neuron's output is combined to form the entire network's "first-sniff* re- 

sponse. 

3. Using the same LOT input, steps 1-2 above are repeated. This time, each previous 

winner is inactive, so every patch will produce a different winner than before. 

4. Again, every neuron's output is combined to form the network's "second-sniff" 

response. This process continues for four to six sniffs, with each patch producing 

a different winner on every sniff. 

2.2 Model I1 

The simplified version of the piriform model is completely described in [AIGLSO]. Model 

I1 takes a step back from model 1's detailed representation of piriform layer I1 and encodes 

many of the first model's details into a simpler set of rules. At the same time, model 

I1 attempts to  incorporate portions of the olfactory system that lie outside the scope of 

the detailed model. In particular, the second version models feedback from layer I1 via 

the Anterior Olfactory Nucleus (AON) to the network input, the olfactory bulb (refer to 



2.2.1 Network Organization 

Model I1 changes many of the spatial and temporal characteristics of model I. In the 

latter, hierarchy is developed over time with successive responses from the entire network. 

The hierarchical outputs of model I1 are instead attributed to subnets, roughly analogous 

to model I patches. Each subnet is responsible for one level of hierarchy, and the LOT is 

presented to  only one subnet at  a time. Model I1 may be considered to be transforming 

model 1's temporal representations into spatial representations; each subnet in model 

I1 corresponds to  temporal response in layer I. Connectivity is altered in model I1 also. 

Previously, recurrent collaterals from each patch replaced random LOT elements in the 

propagating LOT bundle; in this way, each subsequent layer sees a slightly different LOT 

input. Instead of altering the LOT composition, model I1 adjusts the value of each LOT 

element between successive patches. This is done by subtracting the weight vector of 

each subnet's winning cell from the LOT vector prior to submitting the LOT vector to 

the next subnet (see figure 2.4). 

Model I1 is further simplified by substituting complete LOT-to-patch connectivity 

for the sparse connectivity of model I. That is, in this version, each LOT element contacts 

every neuron in each layer. 

2.2.2 Patch Organization 

Subnets in model I1 behave similarly to patches in the detailed model, with some inter- 

esting differences. Each cell calculates the Euclidean distance between its weight vector 

and the afferent input vector instead of computing the inner product, as is done in model 

I. The Euclidean distance d between weight vector x and LOT vector y (each of length 

n) is defined as: 

(The distance measure was substituted because it produced slightly superior performance 

than the scalar product in network simulations. This is a departure from the biological 

basis of model I [LRWSl].) The cell with the smallest distance is the patch winner. 



Figure 2.4: Schematic view of  a two-layer piriform model II with four cells per layer. The 
network input vector x is modulated by feedback from each layer's winning cell prior to  
presentation to  the next layer. H1 and Ha represent the first and second network layers, or 
subnets. GI through d8 represent the weight vectors of  the eight cells. 



The winner's weight vector is then subtracted from the LOT vector prior to presenting 

the LOT to the next subnet. Learning in model I1 occurs only when the network is in 

learning mode, just as in model I. At those times, each subnet's winning cell adjusts its 

weights according to the following equation: 

The result is to move the weight vector w' closer to the input vector 5 by an amount 

proportional to the learning rate y. 

In model I, the network forms a series of outputs as winning cells from multiple 

patches are simultaneously activated on each sniff. In contrast, in model 11, an individual 

subnet is responsible for each output in the series. A three-subnet network will form a 

series of three outputs to each input vector, for example. The hierarchical response that 

previously resulted from the refractory periods of firing cells is, in the simple model, a 

result of a simplification: the LOT input vector is presented to a single subnet at a time, 

and each subnet's response forms a stage in the network's overall hierarchical response. 

2.2.3 Signal Processing Using Model I1 

When viewing the operations of the simple model from a signal processing perspective, 

the piriform model can be considered to be a multistage vector quantizer. This is the sta- 

tistical encoding of input vectors in order to quantize and compress them [AKCMSO]. In 

this formulation, the piriform model resembles vector quantization algorithms described 

in [Gra84]. A LOT input vector is encoded as a signature composed of the unique identi- 

fiers of the cells in each subnet that &won" the competition for that input. For example, 

consider a three-layer network composed of three subnets, each with 5 cells. Cell number 

2 (out of 5) wins the first subnet's competition: cell number 1 wins the second, and cell 

number 4 wins the third. The network encodes the input with a signature of 2-1-4. A 

decoder storing the weight vectors of every network cell eventually translates 2-1-4 into 

three weight vectors, which are summed to yield an estimate of the original LOT input 

vector. 



Figure 2.5: Optimal partitioning of a twedimensional input space by an unsupervised clas- . 
sification network. Dotted lines represent partitions that reflect the clustering shown by a set 
of 11 input vectors, each of which is represented by an x. Each o is located at the centroid 
of a partition. From Gray, Vector Quantization, IEEE ASSP Magazine, 1984. 

Vector quantization algorithms map continuous inputs onto a discrete space; they 

effectively classify inputs as belonging to one member of a non-overlapping set. The 

challenge is to  develop a mapping that preserves the fidelity of the data within some 

error rate at  an acceptable computational cost. The simplified piriform model resembles 

algorithms for optimal encodings [Gra84]; that is, minimum distortion encodings. The 

idea of an optimum encoding is to let the statistics of the input ensemble determine the 

partitions of the input space. Networks that perform this type of encoding are also known 

as unsupervised classification algorithms. Figure 2.5 shows a near-optimal partitioning 

of a two-dimensional input space. Each input vector falling within the space of figure 

2.5 would be quantized into one of four signatures that represent the four partitions. 

Optimal encodings adjust the partitions to represent the clustering of the input vector 

ensemble. 

The simplified piriform model adds a hierarchical twist to this basic algorithm. Nor- 

mally, each subnet forms its own division of the input space; a three-layer network would 
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perform three consecutive partitions like the one shown in figure 2.5. As an example of 

the operation of the piriform model in a vector quantization role, figure 2.6 shows how a 

sample network partitioned 32-element input vectors representing vowel data from the 

phonemes A, E, F, 0, and R. This is a three-dimensional figure, with each dimension 

representing one of the three principal components of the data. (These components con- 

tain most of the information in this 32-dimensional data set) The length of the sides of 

the cube are proportional to the magnitudes of the three principal components. Dots of 

four different sizes are shown in the figure. The smallest dots show the spread of LOT 

data. The other three dot sizes represent weight vectors; the largest is the weight vector 

of the single cell in the first layer; note that is has moved to the centroid of the input 

data. The four second-largest dots represent the weight vectors of the four second-layer 

cells. Each of these are surrounded by a four-cell constellation of weight vectors from the 

third layer. Although there are only four cells in the third layer, they move their weight 

vectors to  different positions corresponding to different second-layer winners. Knowing 

the identity of each layer's winning cell and the weight vectors of each allows classification 

and estimation of the LOT input vector. 

Performance of model I1 

Extensive classification experiments .using spectral data from human speech were done 

in [LRW91] using piriform model 11. The experiments were intended to measure the 

performance of several variations of the basic model. Spectral data from the phonemes 

A, E, F, 0, and R was used. Each LOT input vector was generated by first digitizing an 

utterance a t  a 16 kHz sampling rate using 16-bit accuracy. Following a discrete Fourier 

transform, the spectral coefficients of the lowest 32 DFT coefficients were used as the 

LOT input. 

The vowel phoneme data is naturally clustered, and for that reason makes a good 

target for an unsupervised classification algorithm like the piriform model. Results of 

simple experiments using small model I1 networks (typically three subnets, each com- 

posed of from one to  five cells) showed classification accuracy ranging from 86% to 90.6%. 



Figure 2.6: A plot of  weight vectors as they track spectral components from human vowel 
utterances. The smallest dots represent speech data components plotted against the three 
principal components of  the input data. The large dots represent the weight vectors of cells 
in a 1-4-4 model II piriform network. See text for additional explanation. From Webb, 
Hierarchical Competitive Learning, 1991. 



This compares to the approximate 97% accuracy of supervised perceptron networks per- 

forming the same task. Unsupervised algorithms like model I1 classify strictly according 

to the statistics of the input ensemble. They do not require the global learning signals 

required by perceptron networks. 

2.3 Summary 

Model I1 emphasizes the hierarchical clustering characteristics of model I and discards 

most of the latter's biological detail. Features of model I1 that make it analytically 

tractable are primarily the complete connectivity between the LOT and each subnet, and 

the fact that only a single subnet at  a time is exposed to the LOT. The resulting behavior 

of model I1 can be likened to well-known multistage vector quantization algorithms. 

Model I1 discards many of the features that make model I unique. It remains to  be 

seen if these features are crucial elements in the processing of piriform cortex. In any 

event, the purpose here is to propose a neurocomputer architecture for the execution 

of the piriform model. The existence of two versions of the model, one less exotic than 

the other, argues for discussing two separate architectures. That is the approach to be 

followed in the remainder of this thesis. Following an excursion into general neurocom- 

puter principles, an implementation of model I1 (the simpler model) will be described on 

a commercial neurocomputer. I will refer to  the neurocomputer as an example of a "first 

generation neurocomputern because it is designed to support neural network algorithms 

loosely modeled on biology. 

The commercial neurocomputer presents a good starting point for exploring imple- 

mentations of an architecture to  implement model I. It will be seen that particular 

features of model I such as  precision requirements and connectivity have a crucial bear- 

ing on the design of the hardware. The purpose of this chapter was to  introduce the 

piriform model in both its flavors, to provide some biological background, and to suggest 

the nature of the computation that it performs. The remainder of this thesis focuses on 

architectural and implementation issues of both piriform model versions. 



Chapter 3 

Architectural Issues 

The piriform model dispenses with most of the transient complexity of real neurobio- 

logical systems, and involves mostly large numbers of simple scalar products. Scalar 

products are familiar elements in computational models of many physical processes, and 

computers that excel at  their rapid computation have existed for many years. Before 
. 

proposing a new architecture, it is worth examining why traditional computers are insuf- 

ficient platforms for executing this model. This chapter begins with a brief discussion of 

the strengths and weaknesses of some common vector processing architectures. A sum- 

mary of architectural attributes necessary for rapid execution of piriform-like models 

follows. 

3.1 Traditional Architectures 

Vector Supercomputers 

Formally, the scalar product operation at the heart of the piriform model can be described 

as: 

where: 

aj + activation level a of neuron j ,  0 < j < P 
N G number of connections that each neuron forms to the LOT 

zk i input value of LOT signal k 



wj; G synaptic weight of connection i, 0 < i < N, on neuron j 

Rapid scalar product computation requires a fast CPU for multiply-accumulate opera- 

tions. The best vector processors achieve between one and three arithmetic operations 

in one machine cycle. In addition to a fast CPU, a large memory is required to store 

the state of an entire network of neurons and synaptic weights. The third and most 

critical architectural element required is a very high bandwidth from main memory to 

the CPU to  support the many interconnections between neurons in a piriform network. 

This final requirement poses the most difficulty for traditional vector architectures, be- 

cause the sparse, random pattern of connections in a network degrades most traditional 

approaches to  achieving the requisite memory bandwidth. 

To illustrate the need for a large memory, consider that piriform cortex in small 

mammals contains over 60,000 LOT axons (input signals) and layer I1 neurons numbering . 

in the millions. A reasonable size estimate for artificial networks based on this model 

could have from 1000 to  100,000 neurons, and LOT signal populations numbering up to 

10,000. The matrices describing connectivity between the LOT and patches in piriform 

layer I1 are largely empty; connectivity on the order of 5% [GAIL891 would imply that 

each neuron in a network of 10,000 neurons and 1,000 LOT lines would have 100 inputs, 

requiring a total of 10,000 x (0.05 x 1,000) = 500 thousand synaptic weights to  be stored 

in memory. Precision requirements would determine the size of each synaptic weight, 

but a t  a minimum of one byte per weight, two megabytes would be required to store 

the weights in such a network. Networks that approximate actual biological dimensions 

of piriform cortex could easily require a gigabyte of memory simply for synaptic weight 

storage. 

A two megabyte memory capacity is not a problem for networks of the size discussed 

in this thesis, but CPU cycle time can be. Typical LOT inputs contain on the order of 

10% active signal lines: a network of 10,000 neurons, each with 100 connections, would 

need to  compute 10,000 x 100 x 0.1 = 100,000 connections on every sniff; given that 

four or more sniffs are required to process a single LOT input, approximately 500,000 

multiply-accumulate operations would be needed for every LOT input vector. A vector 



supercomputer capable of a sustained processing rate of 100 megaflops could theoretically 

process 200 LOT vectors per second. While this rate would be sufficient for real-time 

processing of audio frequencies, the cost of such a machine would preclude its use in most 

useful real-time applications. In addition, signals in many application domains (video, 

for example) require significantly higher processing rates than even a supercomputer can 

currently provide. 

Another serious concern is the memory bandwidth. Numerous techniques have been 

successfully used to provide high bandwidth to large memories, and these generally 

require subdividing the main memory into banks that are accessed in parallel. In this 

way, the high latency penalty of access to individual banks is paid only once in each 

parallel access. This technique requires that program memory references be consistent 

with the physical structure of memory; fortunately, most vector operations are highly . 

regular, and map well to such a structure. 

Connectivity from piriform layer I1 to the LOT is relatively sparse in the piriform 

model, varying between 1% and 20%. The connectivity matrix between the LOT and 

layer I1 will be correspondingly sparse. Sparse matrix operations are a traditional chal- 

lenge to  such memory organizations. To prevent the memory access time from degrading 

to that of a single scalar access, scat ter/gather operations are used to compress a sparse 

vector into a dense one prior to  processing. While not as fast as pure parallel memory 

accesses, scatterlgather mechanisms offer an improvement over the alternative of slow 

scalar access [HPSOa]. Unfortunately, because of their cost, scatterlgather mechanisms 

are usna.lly restricted to  multi-million dollar supercomputers. 

Killer Micros 

The gap between execution times of programs running on supercomputers and desktop 

workstations (dubbed "killer microsn by their enthusiasts) has been closing rapidly in 

recent years. Memory organization is an important reason for this. Smaller, cheaper 

machines have been able to leverage the spatial and temporal locality characteristics of 

most programs to keep a portion of main memory in small, high-speed caches, effectively 



boosting bandwidth of the entire memory to that of the cache. Programs with a large 

degree of non-local memory references, however, are effective "cache-bustersn. A ma- 

chine with a cycle time of 20 nanoseconds can have its performance degraded by a factor 

of six to  ten if data accesses regularly require memory references beyond the limits of 

the small cache. Modern caches typically range from 32 Kbytes to 256 Kbytes. In the 

10,000 neuron network described above, typically the state of only ten to twenty patches 

could be resident in a data cache at one time. Inputs to each neuron's 100 synapses 

could come from neurons in any of 200 to 400 random patches, a domain 10 to 40 times 

larger than the cache capacity. A low hit rate on cache accesses would result due to the 

unlikelihood that the cache would contain the required data. 

Memory bandwidth would then be limited by the access time of a single main memory 

location. Modern DRAM access times are on the order of 100 nanoseconds, and this . 

parameter has traditibnally lagged by a substantial margin the improvement rate of 

CPU cycle times1. Architectures limited by memory access times of 100 nanoseconds 

would be limited to  performances under 10 megaflops. A killer micro executing the 

piriform model on the 10,000 neuron network described above could process a single 

LOT input in 50 milliseconds, or perhaps 20 input vectors per second. This is orders of 

magnitude longer than the time required for real-time execution of the piriform model 

in an application such as speech recognition. 

3.1.1 Summary of Traditional Architectures 

CPU processing speed is the primary problem for traditional computer architectures; 

real-time processing of large networks requires significant compute power. Memory 

bandwidth considerations pose an additional problem for both vector supercomputer 

architectures and killer micros. The two techniques used to escape the bandwidth prob- 

lem require certain program traits for their success: vector machines thrive on regular 

stride-length memory accesses, and killer micros rely on spatial and temporal locality of 

'Since 1980, memory access time has improved by an average of 7% per year; CPU performance has 
improved between 50% and 100% annually since 1985 [HPgOa]. 
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memory references. The piriform model algorit hm conforms to neither requirement. 

3.2 Neurocomputer Architecture 

The essense of the bandwidth problem is that as memories get larger, their access time 

increases. Another way to view each memory access is as a communication between 

two neurons. In both architectures described above, every inter-neuron communication 

must transit the same physical path over the main memory bus. Alternative architec- 

tures designed specifically for piriform-like neural network models focus primarily on 

alleviating this communication bottleneck. A straightforward solution is to distribute 

synaptic weight memory among multiple processors so that multiple communications 

can occur in parallel. Each processor would access a smaller, and thus a faster, memory. 

As in all distributed computation environments, inter-processor communication then 
. 

becomes a primary architectural concern. 

An additional architectural refinement concerns the precision of neural computation. 

Most machines today emphasize 32-bit floating point operations, yet it has been shown 

[BH89] [BakgO] [HB91] that most neural network computations using the backpropaga- 

tion algorithm require significantly less precision. Research on model I1 has indicated 

that following training, classification performance can be reduced to between 4 and 8 

bits before a measurable falloff is observed [Web]. Piriform-like networks that conform 

closer yet to  biological models can be expected to  require even less numerical precision 

than do current generation network algorithms. It is unlikely that noisy, faulty biologi- 

cal neurons are capable of significant precision; precise results instead emerge from the 

collective efforts of the entire network. 

Neurocomputer architectures offer numerous opportunities to take advantage of re- 

duced precision. Foremost among these are the near linear reductions possible in proces- 

sor and synaptic weight memory storage area, increasing the number of processors that 

can be built in the same area. However, when precision requirements are sufficiently low, 

analog computation becomes a viable alternative to digital computation because analog 



ii arithmetic circuits can be packed more densely than equivalent digital circuits. Recent 

advances in the technology of analog memory may enable analog processors to inter- 

face directly with analog memories, obviating the need for area-expensive digitallanalog 

conversion circuitry. Despite these hypothetical advantages, the integration of analog 

elements into a complete neurocomputer system offers challenging problems. 

Neurocomputers must also provide support for the fundamental network operation of 

learning, or modification of synaptic weights. This requirement especially influences the 

design of the synaptic memory system. Some early generation neurocomputers provide 

little or no support for weight modification, but practical applications will require a rapid 

learning ability. 

3.3 Conclusion 

These, then, are the three key elements of neurocomputer architecture: 

Inter-processor communication 

Neural computation and precision 

r Synaptic weight storage and modification 

The remaining chapters alternately focus on architectures to support piriform model I1 

and model I. It begins with an analysis of model I1 executing on a commercial neuro- 

computer. This general purpose SIMD (Single Instruction, Multiple Data) machine has 

characteristics similar to the architecture that will be introduced to support execution 

of the detailed version of the piriform model. The evolution from the commercial neu- 

rocomputer to  the architecture targeted at model I parallels the transition from first to 

second-generation neural models. Analyzing the execution of model I1 on the commercial 

machine will provide some insight into the execution of model I on the proposed design. 

Two different implementations of this latter design will be described, and each approach 

will be analyzed on how it addresses the three issues above. 



Chapter 4 

Execution of the piriform model on the 

CNAPs neurocomputer 

4.1 The CNAPS Architecture 

The CNAPS1 architecture features a linear array of homogenous processors (figure 4.1) 

in an SIMD configuration. Each processor, or physical, node (PN) receives input data 

through an eight-bit input bus (IN bus) and provides output through another eight-bit 

output bus (OUT bus). The single IN bus and OUT bus are common to the entire proces- 

sor array; broadcast communication over these is the primary mode of inter-processor 

communication. Each processor is controlled via a single 32-bit global command bus 

(PNCMD bus), sourced by an external sequencer. CNAPS is designed to process a sin- 

gle layer a t  a time in a feed-forward neural network, with each PN emulating a single cell 

in each layer. All PNs process IN bus data in parallel, then sequentially transmit this 

processed output over the OUT bus. OUT bus data can be routed back to the IN bus, 

where it is treated by the processor array as input to the next layer in the feed-forward 

network. Execution proceeds layer-by-layer in this fashion through the entire network. 

The architecture is flexible enough to execute virtually any net work configuration. 

In addition to  feedforward broadcast communication, each PN can communicate with 

its immediate neighbors via two pairs of local of two-bit inter-PN busses (a total of four 

'CNAPS stands for Connected Network of Adaptive  processor^ and is a trademark of Adaptive 
Solutions, Inc. 
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Figure 4.1: Top-level view of the CNAPS architecture. All processors are controlled by 
a single instruction stream on the 32-bit PNCMD bus (31 bits are shown here; one bit is 
reserved for future expansion). A single input and a single output bus serve the entire array. 
This figure shows portions of two chips containing 64 processors each, although chip-to-chip 
boundaries are transparent to the programmer. 



Figure 4.2: Organization of a single PN. A pair of 16-bit internal busses connect the eight 
functional units. 

bits to  each neighbor). This feature allows efficient implementation of nearest-neighbor 

communication and winner-take-all competition; the latter is a useful feature in the 

implementation of the piriform model. 

4.1.1 Processor Organization 

Every PN in the CNAPS array is a 16-bit fixed point signal processor. A PN is organized 

around eight functional units and two 16-bit internal busses (Abus, Bbus). The units 

are briefly described below. Refer to figure 4.2 for overall organization of a PN. 

Input Unit - places data from IN bus and Inter PN bus onto the A and B busses. 

Output Unit - places data onto OUT bus and Inter PN bus. 8-bit operands go onto 

the OUT bus in a single cycle; 16-bit operands require two cycles. 
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Shifter/Logic - performs shifting and logical operations on 16-bit data. Singlecycle 

operation. 

Adder - adds two 16-bit operands in a single cycle, or two 32-bit operands in two 

cycles. Addition is two's complement. 

Mu1 - performs 8x16, 9x16 (single cycle), or 16x16 (two cycle) two's complement mul- 

tiplication. A dedicated bus directly connects multiplier output to an adder input, 

enabling fast pipelined multiply/adds. 

Registers - singleported file of 32 16-bit registers. 

Local Memory - 4K bytes of weight memory. 

Local Memory Address Unit - weight memory address unit: includes dedicated 12- 

bit adder for fast memory address computation. 

The arithmetic units allow complex signal processing operations to execute in parallel 

across the entire array. Each processor's 4 kilobytes of local memory permit rapid access 

to a large number of synaptic weights. Broadcast communication over the OUT bus 

to the IN bus is the primary medium of inter-processor communication. Data placed 

on the OUT bus by one processor can be read by every other processor on the IN bus 

one clock cycle later. In this way, n2 inter-processor connections can be completed in n 

clock cycles; this provides an efficient solution to the connectivity problem encountered 

in large neural networks. 

Adaptive Solutions is building a neurocomputer system based on the CNAPS ar- 

chitecture that features a linear array of 256 processors, permitting rapid execution of 

networks with up to 256 cells per layer. CNAPS is an all-digital architecture that per- 

mits the programming of an unlimited number of network models. Programming is done 

using Adaptive Solutions' proprietary CNAPS Programming Language (CPL), a hybrid 

of assembly language and microprogramming. Like all low-level languages, program- 

ming at the CPL level offers superior performance at the cost of increased complexity; 

the programmer can explicitly control all processing units. 



4.1.2 Mapping the piriform model onto CNAPS 

In CNAPS, a single layer is processed by first distributing the layer's neurons (or cells) 

across the array of PNs. Each PN processes its cell in parallel with all other PNs in the 

array. Maximum performance is attained when every PN has a cell mapped to it for 

every network layer; this mapping is specified by the CNAPS programmer. When a cell 

is mapped to  a PN, all of its synaptic weights are stored as a vector in the PN's weight 

memory. The number of cells that can be mapped to a single PN is limited by the size of 

PN memory, and this ultimately limits the number of network layers that CNAPS can 

support. 

Layer dimensions in piriform 'model I1 can vary between layers, meaning that the 

number of PNs executing code will vary with the index of the current layer. Similarly, 

each PN's memory organization depends on the number of cells assigned to  it. It is 

the programmer's responsibility to construct the data structures in each PN's weight 

memory and to control the range of the processors that execute for each layer. Figure 

4.3 shows an example of mapping cells to processors. This two-dimensional portrait 

of memory organization across the array of PNs illustrates how successive layers map 

onto processors, and how each cells' synaptic weight vectors are mapped into each PN's 

weight memory. In the figure, the processor array index is shown on the horizontal 

(x) dimension, and the linear address of processor memory is shown on the vertical 

(y) dimension. The figure shows a six-layer network with a variable number of cells 

per layer. The only PNs that execute are those corresponding to the width of the bar 

representing each layer. For example, only PNs with indices from 0 to  119 execute 

during the processing of layer 1; PNs 120-255 are idle during this time. During layer 2 

processing, only PNs numbering from 121 to 240 are active. Layer 3 through 6 are larger 

layers, and correspondingly more PNs execute during the successive processing of those 

layers. The degree of parallelism, and therefore overall performance, is determined by 

the number of active vs. idle processors in every layer. 

Memory mapping is also illustrated in figure 4.3. A weight vector must be stored 
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Figure 4.3: An example of  mapping a piriform network onto the physical array of  processors 
in the CNAPS architecture. The horizontal axis represents the index of  the linear array of 
PNs, ranging from 0 to  255; the vertical axis represents each PNss memory array, from 0 to 
4K bytes. 



for every cell mapped to a PN. Note that because low-numbered PNs execute in almost 

every layer, more of their memory is utilized than high-numbered PNs. Note also that 

the total number of cells in layers 1 and 2 is less than the width of the processor array 

size of 256. In this case, weight memory storage is spread across a larger portion of the 

array. 

The task of mapping each unique piriform network to the processor array is a burden 

to a human programmer, and is best performed automatically. A program named Mapper 

was written to  accomplish this. Mapper has three functions: to assign each network 

layer to a subset of PNs, to separately configure each PN's weight memory, and to create 

data structures in each PN with pointers to its weight vectors and computational data 

structures. All PNs use these data structures in network computations. The input 

to Mapper is a file describing the number of layers in the network, the size of each 

layer, and the dimension of the input vector (the LOT). The program then performs 

a straightforward assignment of network cells to PNs. Three constraints define this 

mapping: (1) layers cannot exceed 256 cells in size; (2) layers must be mapped to an 

unbroken string of consecutive PNs (i.e., no wrap-arounds from PN255 to PNO); (3) 

no PN can be assigned cells that would force it to exceed its weight vector storage 

capacity. Mapper allows the CNAPS programmer to conceptualize network operation in 

terms of layers, and to freely vary network parameters without requiring manual program 
I 

modification. 

4.1.3 The Piriform Algorithm on CNAPS 

Allocating cells and synaptic weight vectors to processors and memory is essentially a 

geometrical exercise. A different sort of challenge is that of coercing the serial elements 

of the piriform algorithm into parallel execution. The following sequence describes the 

inner loop operations that dominate execution time of the model: 



for every input vector 

for  every subnet 

(1) present input t o  subnet, calculate Euclidean distances 

(2) se lect  subnet winner, identify winner t o  system 

(3) subtract winner's wt. vector from the modulated input vector 

(4) renormalize modulated input vector 

When the network is in learning mode, the winner's synaptic weight vector is also mod- 

ified in (3). The weight vector closest to the modulated input vector, determined by the 

Euclidean distance calculated in (I) ,  will be chosen as the winner in (2). The Euclidean 

distance calculation is performed simultaneously by every PN. (2) is also performed in 

parallel using CN APS ' patented "maxn operation, where every PN compares its com- 

puted distance to every other PN in a bit-serial manner, beginning with the most and 
I 

ending with the least significant bit. Performance is high during these operations because 

of the parallel activity and because the synaptic weight data needed by each processor 

is locally stored in that processor's own weight memory. Each PN can access a 16-bit 

operand from memory on every cycle; across the entire array, memory bandwidth exceeds 

12 Gbytes/sec. 

Loop operation (3)' however, requires that synaptic weight data stored locally on 

the winning PN be communicated~across the entire processor array, because the modu- 

lated input vector target is globally distributed. Transmission over the 8-bit OUT bus 

requires 2n machine cycles to  communicate n 16-bit data elements. Alternative imple- 

mentations could greatly increase the pardelism of this operation, but at the cost of 

using proportionately greater weight memory. As it turned out this operation was not 

one of the primary consumers of execution cycle time (using approximately 10% of the 

time required per layer), so the effort required to speed it up was not justified. 

Step (4), LOT renormalization, was added to the algorithm for those applications that 

required all of CNAPS' 16 bits of precision. Experiments using model I1 as a classifier 

of spectral speech required the full 16-bit dynamic range. Without renormalization, the 

feedback mechanism (a simple subtraction of the winning cell's weight vector from the 
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modulated LOT vector) reduces the magnitude of the LOT vector such that greater 

than 16 bits are required for accurate resolution. N-element vectors were renormalized 

by mapping them onto the n-1 dimensional surface of a sphere of unit magnitude. The 

mapping function entailed the loss of one dimension, but for large dimensional vectors 

this loss was felt justified by the simplicity of the renormalization scheme. Modulated 

input vector elements x;  for layer k  + 1 were renormalized by: 

x i ( k  + 1) = ~ i ( k )  

Jm 
A serial successive-approximation technique was used for calculation of the square root. 

This proved to  be a relatively expensive operation for large networks. 

4.2 Model Performance 

The test bed selected for model I1 classification experiments used spectral data from 

human speech. Speech classification was chosen because of the challenging nature of 

the task, and because of the proximity of available expertise and data (an active speech 

recognition research effort is underway at the Oregon Graduate Institute). Experiments 

for speech classification were conducted using relatively small networks for classifying 

small data sets [LRWgl]. Large scale classifiers for real time, real speech applications will 

doubtless consist of larger networks, and the example networks studied here are scaled 

to sizes that attempt to  approximate the requirements of industrial strength speech 

processing. The dimensions of input vectors in this study were taken from experiments 

using smaller networks: each input vector consists of spectral components taken from a 

discrete Fourier transform, computed every 3 milliseconds, using a 10 millisecond time 

window. The first example studied was a five-layer network with 120, 140, 160, 180, 

and 200 cells per layer, respectively. Total cell count is 800, and requires over 25,000 

connections. Such a network can classify a 32-element input vector (representing 32 

spectral coefficients) in approximately 9,500 machine cycles. At CNAPS' rated speed 

of 25 Mhz, 9,500 cycles require less than 400 microseconds. Classification thus would 

require only 12% of a typical 3 millisecond sampling period. 
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Figure 4.4: Single-layer execution time distribution. The example is for a 160-cell layer, 
with LOT  dimension (N) of 32. The network spends 45% of its processing time performing 
renormalization of the LOT input vector. 

Model execution largely consists of loops. Each input vector is processed by each 

subnet in sequence. The time for each subnet to process an input vector therefore forms 

the critical execution path. Figure 4.4 shows a breakdown of execution time during this 

Renormalization of the modified input vector is the most expensive operation, re- 

quiring 45% of the time required to process a single layer. The next three most lengthy 

operations in each layer are finding the winner (27%), calculating the distance from each 

cell's weight vector to the input (16%), and modifying the input vector (9%). Miscella- 

neous layer operations take up the remaining 3% of processing time. Different network 

dimensions will change these proportions to some degree. Execution time for distance 
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calculation scales linearly with input dimension, but is independent of layer size. The 

time required to find the winner scales sub-linearly, and vector modification time scales 

linearly, with layer size. The renormalization algorithm requires a constant number of 

machine cycles, independent of vector length, so its relative share of execution time 

shrinks as network size grows. 

One way to  reveal the serial and parallel nature of the algorithm is to  estimate the 

speedup, the relative reduction in execution time, of network execution on CNAPS com- 

pared to  execution on an single idealized processor. The processor model used for com- 

parative purposes was a single PN executing with unlimited amounts of weight memory. 

For speedup estimation purposes a PN was used because each PN is similar to com- 

mercial fixed-point signal processors. Figure 4.5 graphs the estimated speedup for five 

example networks using a varying-length input vector. Each example network consisted 

of five layers, with the same number of cells in each layer. The smallest network had 50 

cells per layer, the largest 250. The LOT input dimension was varied from 4 elements to 

128. These network dimensions are realistic estimates of the requirements of large-scale 

spectral classifiers. 

Figure 4.5 clearly shows that speedup increases with layer size. This is not surpris- 

ing, because larger layers permit correspondingly larger degrees of parallelism. Note, 

however, that speedup lags the increase in layer size; e.g., 100 processors buy a speedup 

of between 3 and 30, not 100. Coordinating and communicating between multiple pro- 

cessors requires processing overhead that a single-processor implementation can ignore. 

Broadcast communication and SIMD control are efficient mechanisms, but they do have 

a cost. This overhead is especially evident in networks with small input vector dimen- 

sions; note that when this dimension is 4, 250 processors only buy a speedup of 10 

over the uniprocessor implementation. With larger input dimensions, the control and 

communication overhead is amortized over more processors and cycles. 

An important difference between model I and model I1 is that the latter dispenses 

with sparse connectivity and instead fully connects adjacent network layers. CNAPS is 

well-suited to such networks, because full connectivity permits the maximum utilization 
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Figure 4.5: Plots of CNAPS speedup over idealized single-processor execution. LOT input 
size (N) was varied from 4 to 128, and used as input to five different networks. Each network 
was five layers deep, and layer size varied from 50 to 250 cells per layer. 
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of the processor array. More biologically realistic networks featuring sparse connectivity 

will pose problems for architectures like CNAPS. Architectures that handle the sparse 

connectivity of model I are addressed in the chapters that follow. 

4.3 Conclusion 

For networks with high-dimensional inputs and many large layers, the most computa- 

tionally expensive elements of the simplified piriform algorithm are the calculation of 

each subnet's Euclidean distance and determination of a winner. CNAPS7s 256 parallel 

processors, high local memory bandwidth, and hardware-assisted maximization tech- 

nique significantly reduce the execution time required for these operations. However, 

those portions of the piriform algorithm that require serial execution or global commu- 

nication of locally-stored data remain execution bottlenecks. This is reflected in overall 

network performance, because while large networks show significant speedup, small net- 

works do not exhibit enough parde l  activity to offset the performance penalty of the 

serial portions. This is simply an example of "Amdahl's Law" [HPgOa] in action. Am- 

dahl's Law effectively limits the benefits of pardelizing code because serial code (that 

resists parallel execution) eventually dominates overall execution time. In other words, 

the incremental benefits accrued from speeding up one portion of an algorithm lessen 

with successive improvements. On CNAPS, the traditional computational bottlenecks 

of vector quantization have been addressed via SIMD parallelism, but the serial tasks 

Renormalization was required in this study because piriform model I1 required 16 bits 

of precision in speech recognition applications. Successive feedback to the LOT input 

vector reduces its resolution to less than this. The renormalization algorithm described 

in section 4.2 executes serially on a single processor, which is why it is the slowest part 

of the computation. The basic successive-approximation algorithm can be parallelized, 

however, greatly reducing the computational penalty. The easiest change to make would 

be to compute blocks of bits simultaneously, using the otherwise idle processors. Each 



of 256 PNs could simultaneously compute a different eight-bit value, and compare it to 

1 a target. That PN matching the target would broadcast its value to the entire array, 

k which would then use it as the starting point for computing the next eight-bit value. A 

! renormalized 16-bit value could be computed in this way in approximately one-fifth the 

k number of cycles required by a serial approach. 

/Renormalization is important in piriform model I also, but it is implemented differ- 

1. ently. One of the many functions of the olfactory bulb is to perform automatic gain 

1 control (AGC) on olfactory input. AGC is a form of renormalization, and it is presumed 

1 to operate on every sniff [GAISL89]. The AGC function of the bulb is performed in other 

i brain regions that operate primarily on sensory input, such as the retina and cochlea 

[Mea89]. Renormalization is only required in model I1 because this simpler model has 

no sensory preprocessor. Any complete system based on piriform model I will require a 

bulb-like pre-processor for implementing AGC; for that reason piriform model I has no 

renormalization mechanism. 

The exercise of implementing piriform model I1 on CNAPS has illustrated the benefits 

of SIMD architectures for data parallel applications. The remainder of this thesis focuses 

on piriform model I and a proposed neurocomputer architecture targeted for it called 

Super Sniff (or SS). SS retains the SIMD flavor of CNAPS but is described in sufficiently 

high level terms t o  permit numerous alternative implementations of the architecture. 

Following a brief description of the SS architecture, two designs for its implementation 

are presented and compared on a cost/performance basis. 



Chapter 5 

The SS Architecture 

This brief chapter begins with an analysis of the inherent parallel and serial character- 

istics of the piriform model and ends by proposing an architecture that borrows ideas 

from CNAPS, yet is optimized for the key features of networks like model I. 

5.1 Parallelism in the Piriform Model 

A key difference between the two versions of the piriform model is the broader scope of 

parallel activity in model I. Layers in model I1 must execute sequentially because the 

LOT is modified by feedback from each previous layer. This strict temporal segmentation 

of activity is an abstraction from the biological model (model I), and it prevents taking 

advantage of significant parallelism occurring in model I. 

Shepherd reports that layer I1 is characterized by a wave of activity proceeding from 

the rostral to  the caudal regions of the network [She79]. LOT transmission times from 

the olfactory bulb and rostrally-located layer I1 cells largely account for these delays; as 

stated in chapter 2, there is evidence that each layer I1 cell sees its afferent LOT input 

and associative recurrent collaterals simultaneously, albeit delayed in time from cells 

elsewhere in layer 11. Inputs to  rostral neurons are the first to arrive; delays in forming 

associative signals account for subsequent delays to caudal cells. 

Model I can be described, then, by a combination of serial and parallel processing. 

Rostrally located patches process their inputs first. All cells in a given patch receive 

their inputs more or less simultaneously. Cells within each patch compete (in parallel) 



to be the first to cross an activation threshold. Active axons from winning cells rejoin 

and propagate down the LOT, and caudally located cells combine these signals with the 

original LOT input from the bulb in their own intra-patch competition. This LOT delay 

time can be used to  advantage by an artificial piriform processor. Signals representing 

, afferent input from the bulb can be computed by every patch simultaneously, upon 

arrival, and later combined with the delayed recurrent collaterals to compute overall 

patch activation. 

5.2 The SS Architecture 

The architecture proposed here is called SS, for Super Snifland its key feature is a linear 

array of processors where entire patches rather than simple cells are mapped to individual 

processors. Patches are arranged in a manner analogous to the layout of piriform layer 

11: a linear array receives input from and broadcasts output to a single data bus, the 

LOT bus. Control of each processor is via a global command bus, akin to the PNCMD 

bus in CNAPS. Figure 5.1 provides a global view of the SS architecture. In the following 

sections the salient characteristics of the architecture are presented and briefly described. 

5.2.1 Connectivity 

The LOT bus emulates the lateral olfactory tract in the piriform model. All distal 

connectivity between neurons (i.e., processors) is made through this medium. Local 

connectivity is implicit in the mapping of patch cells to processors. The purpose of local 

connectivity in this model is to enforce the winner-take-all paradigm, and that function 

is implemented by the patch operating rules rather than explicitly through connections 

between neurons in the same patch (i.e., each processor permits only the most strongly 

activated cell to win the patch competition). 

Connections in model I indicate only the presence or absence of activity in the source 

neuron, not the strength of that activity. Data on the LOT bus is therefore binary 
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Figure 5.1: Overview of the linear array of processors in the SS architecture. Inter-processor 
communication is via the LOT bus, and all processor control is over the command bus. 

valued. Greater input precision can be provided by using multiple LOT lines to encode 

a single analog-valued input via a "thermometer scalen. In a thermometer scale, a single 

analog-valued input is encoded as the activation of binary-valued signals whose number 

is linearly proportional to the magnitude of the analog input. 

The SS architecture does not specify how connectivity is encoded on the LOT bus. 

In the two implementations to be studied, one uses a physical wire for every connection 

in the network, while the other encodes this information as a binary address. The only 

requirement is that all connectivity information is completely contained within the LOT, 

so that a PN can monitor all network communication by watching the LOT bus. 

5.2.2 Neural computation 

Each processor, or PN,  performs the arithmetic operations for all cells in a patch. The 

traditional scalar product computation reduces to simple repeated additions in model I 

due to the binary-valued character of LOT signals, so there is no need for the arithmetic 

operation of multiplication. Numerous cells in each patch can be simultaneously active, 



so each PN must be capable of supporting parallel internal operations on different cells. 

In addition, PNs must support the bi-modal operation of model I cells: they must be 

capable of operating in either learning or performance modes. 

Each PN in the SS architecture must continually monitor all signals on the LOT bus. 

When active inputs from LOT lines connected to any cell in that patch are detected, the 

active input is communicated to the relevant patch cell(s) and cell activation is modified 

according to  the strength of the synaptic connection. SS permits multiple encodings of 

connectivity information and different computation schemes, including both digital and 

analog. Each processor must determine which of its cells, if any, is the winner of the 

patch competition, and must communicate this information back to the LOT bus and 

to  the rest of the network. 

5.2.3 Weight storage & modification 

A large part of each processor's task is to store the synaptic weights of every cell in the 

patch. All weights must be modifiable in learning mode, and control over modification 

must be controlled locally. That is, each PN must have independent control over its 

weight changes, and cannot require the intervention of a central controller. The SS 

architecture does not define the storage mechanism. In the two implementations of the 

architecture to  be described, two radically different storage techniques are proposed. 

5.3 Summary 

The SS architecture owes much of its heritage to CNAPS: the single input data path, its 

SIMD organization, the linear array of processors. It is a natural successor to CNAPS be- 

cause it supports parallel execution of neuron assemblies, not simply individual neurons. 

SS is consistent with the evolution of second-generation neural models, which describe 

a higher level of cortical organization than models in wide use today. This architecture 

is described in sufficiently abstract terms to consider widely different implementation 

options. Two such options are presented in the following chapters. 



These two options exemplify the two different approaches to neural network hardware 

design described in chapter 1. The first implementation features analog processing in 

a manner reminiscent of biological neurons. The second does not attempt to emulate 

analog neurons but utilizes simple DSP-like processors to carry out their operations. 

Each method has its strengths and weaknesses, as the following chapters will illustrate. 
L 



Chapter 6 

Analog Implementation of the SS 

Architecture 

6.1 The Analog Appeal 

Research in analog circuit design for neural networks has been motivated primarily be- 

cause analog "neuronsn can be fabricated using a few standard VLSI components. A full 

blown signal processor would be required to implement equivalent neural behavior in a 

digital circuit. There has also been in the research community a widespread assumption 

that because biological neural networks utilize analog hardware, their artificial counter- 

parts should do the same. An important theme of this thesis, however, is that analog 

artificial neural networks have serious practical engineering problems to overcome, and 

because of this they will offer only peripheral utility for some time to come. In addition, 

analog computation has characteristics unsuitable to this computational model. 

This chapter will begin with a brief review of proposed analog processor designs 

that are potential candidates for SSA, an analog implementation of the SS architecture. 

' The focus will then be narrowed to a single approach, and an implementation will be 

proposed. This will be followed by a summary of the advantages and disadvantages of 
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Figure 6.1: Analog behavior of a CMOS n-channel transistor in strong inversion. (left) 
VGS is applied to the gate, which modulates the current ID through the device. (right) V-l 
curves for a typical device, shown for a variety of applied gate voltages. From Gray & Meyer, 
Analysis and Design of Analog Integrated Circuits, 1984, pg. 67. 

6.2 Analog Processor Designs 

The goal of analog neural network design is to build every synapse out of small analog 

I circuits. Ideally, the synaptic circuits would be constructed from very few devices, per- 

haps even a single transistor. The analog behavior of a CMOS transistor is shown in 

figure 6.1. Current through the device ID is modulated by the applied gate voltage VGS 

and the voltage across the device VDs. As figure 6.1 shows, for most of its operating 

regime the device current and the modulating input voltage have a decidedly non-linear 

relationship that bears little resemblance to models of synaptic operation proposed in 

the literature. The current-voltage relationship shown in fig 6.1 is for devices in strong 

inversion, where nearly all modern MOS circuits are designed to operate. Recently, re- 

searchers have designed MOS circuits that operate in the sub-threshold region, where 

currents are reduced by orders of magnitude and device response times approximate 



Figure 6.2: (left) Schematic diagram of the basic transconductance amplifier. (right) Typ- 
ical output current of this circuit, which can be interpreted as performing a two-quadrant 
multiplication between the bias current ib and the difference between two input voltages vl 
and vz. From Mead, Analog VLSI and Neural Systems, 1989, pg. 70-71. 

those of biological neurons [Mea89]. Such techniques have considerable potential, but 

until designers have a better handle on sub-threshold operation, their use will remain 

limited. 

Analog circuits are routinely designed with a linear output, which is more suitable 

for most neural network models. Figure 6.2 shows a schematic diagram of a transcon- 

ductance amplifier, which produces an output current proportional to the product of a 

bias current and the difference between two applied voltages. Numerous neural network 

research programs have produced analog processor designs containing derivatives of this 

basic circuit. While considerably larger than a single transistor, this circuit performs 

the desired operation of two-quadrant multiplication, so named for the quadrants of 

the Cartesian plane where it is defined. More sophisticated circuits employing multiple 

transconductance amplifiers achieve four-quadrant multiplication, where both inputs 

can take on positive and negative values [GM84] [Mea89]. Such circuits typically require 

three to four times as many devices as the simple transconductance amplifier shown in 

figure 6.2. An analog neurocomputer could require one such circuit at every synapse in 



the network. 

a Many neural models require linear multiplication over a wide range of input values. 

Simple analog multipliers such as this one restrict inputs to a narrow range of values. It 

also suffers from a systematic offset produced when both inputs are at zero, an artifact 

of the imprecise device matching that is inherent in CMOS processing. These and other 

deviations from ideal behavior combine to limit simple analog multipliers such as this 

one to approximately four to eight bits of precision, depending on the circuit complexity. 

[HTCB89]. 

Piriform model I differs from most neural models in that pure multiplication is not 

required, considerably simplifying the design of a synapse. LOT signals are binary rather 

than real valued, indicating whether each source is active or inactive. Rather than com- 

puting a scalar product between the LOT input and each weight vector, each processor 

need only sum the values of synaptic weights at sites with active inputs. Addition thus 

becomes the critical arithmetic operation. Analog addition is easier using currents rather 

than voltages, because multiple inputs can be summed using a simple wire. Figure 6.3 

illustrates one such technique. 

The biggest problem with the design shown in figure 6.3 is the accurate storage and 

generation of the synaptic weight values. Charge storage is the form most commonly 

employed in a CMOS circuit, either on a capacitive node or on the floating gate of 

, an active device. The weight in its stored form must be converted to current prior to 

summation. Conversions are usually expensive in terms of silicon real estate and should 

be avoided whenever possible, but two common techniques for converting a stored charge 

into a current are shown in figure 6.4. The precision of the digital-to-analog converter 

(DAC) is, to a first approximation, limited by the number of bits used. Storage density 

declines with increased precision. Storage as a continuous range of voltages offers greater 

densities than digital storage, but precision is limited by the poor control of capacitance 

values attainable with current VLSI processes (capacitor values can vary up to 20% 

across a chip). Feedback using additional amplifiers can partidy compensate for process 

deviations, but the extensive area required by the compensation circuits eclipses by a 
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Figure 6.3: One method o f  performing analog current-mode addition. A single wire sums 
currents from multiple sources, each representing a synaptic weight. The summed current 
is mirrored to  a second transistor and converted to  a voltage. Storage of  the analog valued 
weights presents the primary difficulty with this technique. 



Figure 6.4: Two common techniques for converting a stored analog value for use as an input 
into a current-mode adder. (left) ~ i ~ i t a l  storage: each stored bit (Isb on right) controls twice 

* as many numbers of a unit current source, a single p-channel transistor, as its predecessor. 
(right) Analog storage: the stored capacitor voltage forces a current that is mirrored to the 
adder input. 
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Figure 6.5: Cross-section of an EEPROM transistor. The second, or floating, gate captures 
charge from the drain (when programming) or releases charge (when erasing). High voltage 
is applied to the control gate when programming the device, or to the drain when erasing. 

wide margin the area required for actual charge storage. Substrate leakage currents 

will degrade capacitive voltages significantly over time, so additional amplifiers are also 

required for periodic refresh of the stored values. Analog refresh requires large numbers 

of relatively large voltage comparator circuits, further adding to the overhead burden. 

6.2.1 Analog EEPROM 

Analog EEPROM (Electrically Eraseable Programmable Read Only Memory) has been 

a proposed as an alternate form of analog storage particularly suitable for neural network 

applications [CM89a][HTCB89][OKH89]. In an EEPROM device, the single polysilicon 

gate of a conventional transistor is augmented with a second layer of polysilicon that is 

electrically isolated by surrounding layers of oxide. The transistor threshold voltage & 

can be altered by storing charge on this 'floatingn gate. Figure 6.5 shows a cross-section 

of a standard EEPROM device. Charge is stored on the floating gate by grounding the 

source and drain and applying a high voltage to the control gate. The resulting electric 

field is sufficient to  induce electron tunneling from the drain to the floating gate across 

an extremely thin (- 10081) layer of oxide; given sufficient programming time, enough 

electrons are trapped on the floating gate to raise its & by several volts. 
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EEPROMs are typically used to store digital values in a non-volatile manner. The 

amount of charge on the floating gate can be varied to allow the storage of analog 

information. The amount of charge is a function of both the programming voltage Vpp 

and the programming time; typical values are 20 volts and 10 milliseconds. An analog 

EEPROM synaptic weight memory would be compatible with the analog adder circuit 

shown in figure 6.3 because the memory output and the adder input would both be in 

the form of current. Figure 6.6 shows how weights could be stored in such a scheme. 

Every LOT input line would function in a role similar to  a "word" line in a conventional 

DRAM. There is one memory column in the array for every cell in a patch. Multiple 

LOT inputs arrive and cause a Ureadn of every synaptic site to which they are connected. 

Each addressed site sources an amount of current programmed by its Vt value onto its 

cell's summing wire, effectively performing analog addition. 

EEPROM programming is usually a two-step process: first erase the old stored value, 

then store the new one. Erasure entails grounding the control gate while applying Vpp 

(the 20 volt programming voltage) to the drain (via the bit line). In an array composed 

of single-transistor storage cells as shown in figure 6.6, every storage cell in a column 

is erased simultaneously, a procedure known as flash erase. The control gate and drain 

voltages are then reversed when storing: the drain is grounded and Vpp is applied to  the 

gate (via the LOT, or word, line). Table 6.1 describes the configuration of the EEPROM 
t 

weight memory inputs during reading, programming, and erasing. Characteristics of 

piriform model I make a good fit with this programming model, and would simplify 

programming in normal circumstances. 

Recall that piriform weight modification is based on the mechanics of LTP, Long 

Term Potentiation. Synaptic weights in LTP can only be increased in efficacy, meaning 

that the magnitude of each weight can only increase, up to a ceiling value. Programming 

each EEPROM synapse thus need not begin by erasing the previous value before storing 

the new value. A synapse has its weight changed by simply adding more charge onto 

the floating gate by applying Vpp for additional time and grounding the bit line. The 

all-or-none character of flash erasure (every device in a column is erased when Vpp is 
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Figure 6.6: An array of  EEPROM cells storing synaptic weight memory values; a single 
memory cell is shown below. Active LOT inputs cause each cell to  source its programmed 
current onto a bit line, which sums the output of every active cell in the column. 



memory mode bit line word line gnd line 

Programming if winner Vaa VPP vas 

else V,, rr 1 
Erasing v~~ VS, VS, 
Reading to adder input Vread Vdd - 

Table 6.1: Configuration of the three terminals of the EEPROM memory array. V,, is the 20 
volt programming voltage, Vdd is the standard 5 volt power supply, Vread is the control gate 
read voltage, and V,, is ground. Vread and Vpp are independently generated by each PN. 

applied to  the drain, or bit line) is therefore not a liability in normal operation, because 

weight cells are only erased when resetting the entire system. 

Ideally, only the devices corresponding to  the winning neuron would feel the effect 

of applying V,, to  word lines, because only the winner's weights should be adjusted. 

Columns corresponding to non-winning cells can be prevented from storing additional 

charge by also driving their bit lines with V,, during programming. The target column 

would have its bit line grounded, as per normal programming operation. Programming 

would occur by varying the programming time rather than by varying the Vpp voltage 

level because incremental timing control is easier than modulating the output of the 

complex charge pump circuits that generate V,,. Each synapse is modified independently 

of all others in a patch because the EEPROM programming time is a function of the 

target & level, and this will vary from synapse to synapse. 

A proposed analog EEPROM-based implementation of a PN in the SS architecture 

is shown in figure 6.7. The LOT drives a large weight memory array composed of analog 

EEPROM devices. An analog adder is assigned to every weight memory column; each 

performs the additions for one patch cell. The voltage outputs of each adder feed an 

analog winner-take-all circuit similar to that described in [LRMM89], which selects 

the most strongly activated patch cell. LOT outputs of all but the winning cell are 

logical zeros, and the winner's LOT output is logic 1. If the system is in learning mode, 
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Figure 6.7: Architecture of a proposed analog EEPROM-based PN that processes n neurons. 
An m-bit-wide bus controls the PN. 



the identity of the winning cell is stored and used to select high-voltage inputs in the 

subsequent programming of the winner's active synaptic weight sites. 

6.2.2 Practical Drawbacks of Analog EEPROM 

Despite numerous attractive aspects, serious problems prevent this proposed implemen- 

tation from being a practical proposition. While the most serious deficiencies concern 

communication between PNs (more will be said on that later), the circuit design issues 

alone are sufficient to  give pause. Some of these challenging issues are: 

Limited adder precision. The factors contributing to this are legion, but the key 

culprits are imperfectly matched K's and non-uniform resistance along each cur- 

rent summation path. The current from each device is also strongly dependent on 

temperature, so a programmed synaptic weight value may differ from the value that 

is later read if programming and reading are performed at different temperatures. 

Poor programming control. Each device will have a different "native" Vt, so each 

will require different amounts of charge to store a desired value. The proposed 

design contains extensive compensation circuitry to lessen, but not eliminate, this 

effect. Making many small, incremental changes to Vt is the only practical pro- 

gramming method. 

Non-linear relationship between current and programming time. The storage de- 

vices are saturated CMOS transistors, where the relationship between the applied 

gate voltage V,, and device current Id, is given, to a first order, by: 

W 
Ids = kT(bs - VtI2 

k, W, L are process parameters and device geometries. Adjustments in a device's 

K should result in a constant increase in Id, to be consistent with model 1's weight 

adjustment rule. Note that Id, increases in proportion to the square root of &, 

so all & adjustments, and therefore the length of programming time, will vary 

depending on the target Id, level. Short Vpp pulses are .required at higher K targets. 



On the other hand, EEPROM programming is self-limiting, because the charge 

accumulating on the floating gate counteracts the motive electric field seen by 

additional electrons, reducing their accumulation rate. It therefore takes longer to 

deposit the same increment of charge at higher Vt levels than it does at lower levels. 

These two effects work in opposite ways to simultaneously shorten and lengthen 

the incremental programming time; balancing their interaction requires a complex 

control structure in each PN. It is unlikely that such a powerful controller can be 

economically built within each PN. The single commercial product in existence 

today using analog EEPROM devices requires an off-chip computer for program 

control [HTCB89]. 

Longevity. Tunneling electrons can be trapped in the oxide between the floating 

gate and the drain. After repeated programming episodes, enough electrons are 

trapped to  induce a field that counteracts the field of the applied Vpp. Eventually 

the induced field effectively prohibits programming altogether. Extending the life- 

time of programming episodes significantly beyond lo4 to lo6 programming events, 

the current limits of commercial EEPROMs [SSK+87], is an area of active research. 

This is a significant restriction in the lifetime of a neurocomputer that may have 

to  undergo many millions of learning cycles. 

Analog EEPROM offers a potential medium for dense analog storage, but the exten- 

sive compensation circuitry means that global control (in the best case, at  the PN level) 

is required t o  achieve reasonable levels of programming precision. Without an effective 

analog storage mechanism, the promise of analog neural networks will be restricted to 

applications where continuous learning is not required (even then, analog storage remains 

a problem). Variance between individual transistors mandates that even in applications 

requiring only a single learning episode, networks must undergo repeated training cycles 

as the central learning algorithm "adaptsn to the peculiarities of the network. Such 

requirements severely restrict the range of applications that have been envisioned for 

neural network technology. 



The problem is that the circuits and devices that have historically pushed the develop- 

ment of VLSI technology are inappropriate for analog storage. This has been previously 

noted by many researchers in the field, among them industry pioneer John Hopfield, who 

summarizes here the dilemma: 

If there is a single place where the clever exploitation of analog electronic 

device physics is likely to  have a high pay-off, it is in making connections 

which are continuously adjustable, capable of learning with a local learning 

rule (perhaps involving a global enable signal), and not requiring many tran- 

sistors for'implementation and control. Neurobiology solves this problem by 

using chemical modifications of ionic conductances, constructing a synapse 

which is a complex device with history-dependent properties. Equivalent 

cleverness in the device physics of artificial neural network connections could 

have great impact on the comparative effectiveness of analog and digital im- 

plementations of neural networks [Hopgo]. 

Additional active circuitry in the form of feedback amplifiers can partially compensate 

for the many precision problems, but these efforts drastically increase the silicon area 

and complexity required for each analog function. 

Recently another approach has been taken to reduce the precision error of uncompen- 

sated analog circuits without resorting to additional circuitry. Kerns reports (KTSL911 

using unfocused ultraviolet light to store relatively precise levels of charge on floating 

gate devices, without requiring high voltage programming. Their primary objective was 

to  compensate for amplifier input offset voltage, but as the authors point out, similar 

techniques could also be used to store analog-valued weights. This technology is new 

and unproven outside laboratory conditions, but if it can be made workable its potential 

is considerable, both for improving analog precision and analog storage. 

Barring significant advances in UV-modulated analog storage, the conclusion is that 

a dense array of analog processors is only possible in CMOS processes if precision re- 

quirements are relaxed to the level of four or five bits (and even then, only if program 



control is possible locally at  the PN level). Beyond that, the area requirements of the 

additional compensation circuitry reduce the density advantage that analog enjoys over 

digital implementations. 

6.2.3 Int er-processor communication 

Most research in the design of analog neural processors has focused on the computation. 

This chapter has addressed some of the synaptic weight storage issues. Yet the problem 

of interconnecting the thousands of neurons that practical systems would require is the 

most serious issue in extending neurocomputer architectures to emulating very large 

networks. 

It has been shown that, for a general computational model, the required chip area 

increases cubically with node fan-in, or connectivity [BH88]. Piriform model I has a bus- 

based connectivity model, limiting t he area scaling factor to t he square of the connection 

count; nevertheless, as the analysis below will show, the area devoted to routing the metal 

interconnections between PNs would be prohibitive. 

6.3 Analysis of analog implement at ion 

It is worthwhile to examine the performance potential of the proposed design and the 

cost in silicon area that it would require. It will be assumed in this analysis that six- 

to eight-bit storage and computational precision is attainable using methods described 

earlier in this chapter. 

6.3.1 Analog performance 

The attraction of analog neural networks is that simple multiplication and current sum- 

mation for addition allow massive parallel computation per synapse. Given nearly coin- 

cident LOT arrival times, each column in an EEPROM array can compute its activation 

concurrently. A reasonably-sized piriform network containing 10,000 neurons would typ- 

ically have a 1000-element LOT, 10% connectivity between the LOT and patch neurons, 



and a patch size of 32. (This will be the baseline network used for performance analysis.) 

Each of the 32 neurons in a patch would have 1000 LOT lines x 10% connectivity = 100 

synapses. Add time for each column would be comparable to the access time of a con- 

ventional DRAM chip, on the order of 50 nanoseconds. The WTA circuit could resolve 

a single winner in approximately another 30 nanoseconds (ns). Approximately six to 

eight levels of logic propagation delay within the EEPROM controller would be required 

before the LOT outputs are driven to their proper levels; this could take an additional 

20 ns. Thus in approximately 100 ns, a PN could process 3200 inputs, compute the 

activation of every cell and select a winner. Except for the inherent rostral-caudal delay 

of recurrent collateral LOT signals, every patch would be performing these computations 

in parallel. 

The Uwave of activation" in piriform layer I1 is due to the delay of input signals 

arriving at layer 11 cells, in turn delaying the activation of each cell. Primary and 

recurrent collateral LOT inputs arrive at  each cell nearly simultaneously. LOT signals are 

gradually replaced by recurrent collaterals, so the total network delay can be estimated 

from the number of times each LOT signal is replaced. This delay is easily estimated 

from the network dimensions given above. 

Each signal from a LOT of dimension L  has a probability p / L  of being replaced by 

a recurrent collateral from a patch of dimension p. The total number of patches P in a 

network of N neurons is P = Nip. The probability of a LOT line encountering n delays 

As figure 6.8 shows, the delays are statistically distributed according to the binomial 

distribution. 

Figure 6.8 indicates that for the 10,000 neuron network described above, 99% of the 

LOT lines will encounter less than 20 delays while passing through the network. At 100 

ns per delay, total network delay would equal approximately 2 microseconds (ps). This 

is the estimated time that an analog implementation of piriform model I would require 



LOT delay 

40:O 60.0 80.0 

delays 

Figure 6.8: Probability distribution of LOT delays in piriform model I. 



to  process one Usniffn, i.e. one sample, of an input. Recall that multiple (approximately 

four to six) such samples are required for the network to fully resolve each LOT input 

vector. At this rate the network could resolve a new LOT input vector in approximately 

10 ps. Thus inputs could be presented to the network at a rate of roughly 100,000 every 

second. 

This performance rate is not strongly dependent on the network dimensions. For 

example, reducing the network size 50% from 10,000 to 5000 neurons would reduce the 

probabilistic delays by only 10%. The per-PN delay is mostly due to the EEPROM 

access time, and this delay will increase slowly as patch size grows. And a significant 

increase in network size need not equate to an equivalent increase in patch size; the 

number of patches, rather than their size, is more likely to increase in larger networks. 

Learning mode performance is a different story. Learning entails individually pro- 

gramming every synapse in each patch's winning cell. Each PN would contain its own 

high-voltage programming and control circuitry, so all patches could be programmed in 

parallel. In a commercial digital EEPROM circuit, where the values to be stored are 

either fully UonU or uoff", programming pulses vary between 0.1 and 10 milliseconds. Pro- 

gramming smaller, incremental analog values requires pulses of shorter duration. Eight 

bits of dynamic range would probably be the minimum for weight precisions of six bits. 

Assuming a full-scale pulse length of 1 millisecond (ms), each pulse increment would be 

11256th of this, on the order of 4 ps. Accurate programming would probably require 

multiple iterations of program, sense, program, sense, etc (as is the practice in the only 

such commercial device, Intel's ETANN [HTCB89]). For that reason, each programming 

episode would require on the order of 20 ps. All of the winner's active synapses require 

updating; in the baseline network described above, updating 100 synapses could easily 

require 2 ms. Four or more successive passes through each input vector are required 

for learning, just as for categorization. Therefore a reasonable estimate for the time 

required for this network to learn a new input vector is 10 ms, or a presentation rate of 

approximately 100 vectors per second. This is approximately 1000 times longer than the 

time required to  classify the same vector. Because of the need for each synapse to  be 



updated independently, learning time is linearly dependent on the number of synapses 

to be modified. Larger networks require proportionately more connections on each cell, 

and therefore more synapses needing modification for each learning episode. Therefore, 

learning time will increase in direct proportion to  any change in network size. 

6.3.2 Analog cost 

The best determinant of VLSI circuit cost is silicon area (there are many additional indi- 

rect determinants, e.g. layout density and process complexity). An accurate area analysis 

requires a fairly low-level description of the required circuit components. Appendix A 

describes the area assumptions and algorithm used here. The key assumptions concern 

the density of EEPROM weight memory elements and the pitch between adjacent metal 

lines; the former largely determines the size of a PN, and the latter limits the number 

of interconnections that can be placed on a circuit. For this analysis, an EEPROM 

density of 15 pm2/cell was assumed. This is comparable to current state-of-the-art 

commercial EEPROM devices. A metal pitch of 1.4pm was used, which is representative 

of metal pitch in sub-micron geometry CMOS processes. Area estimates for common 

analog components such as ADC, DAC, and comparator circuits are more problemati- 

cal. These circuit areas can vary greatly depending on their required performance, and 

only performance estimates can be made at this level of analysis. Fortunately, they are 

relatively minor players in the architecture of this PN, so precise area estimates are not 

critical. 

Figure 6.9 illustrates the dominant role of interconnect in a direct analog implemen- 

tation. It effectively prevents the fabrication of networks containing more than a few 

thousand neurons. The key reason for the interconnect problem is the nature of connec- 

tivity between each piriform patch and the LOT; although individual neurons sparsely 

contact LOT lines, even if just one neuron in a patch contacts a LOT line, that LOT 

wire must be routed to  the PN's weight memory. There is a high probability that even 

small patches ( ~ 3 2  neurons) will manage to contact most of the LOT at least once. Thus 

most of the LOT must be routed to each patch. The result is that interconnect area 
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Figure 6.9: TOP: estimated silicon area, in cm2, required for networks consisting of  neurons 
numbering on the X-axis. (For purposes of comparison, a large commercial microprocessor 
such as the Intel 80486 requires approximately 1.6 cm2). The near-full connectivity from each 
patch to  the LOT is responsible for the square-law relationship. BOTTOM: the percentage 
of  chip area devoted to  interconnect and weight memory. 



scales roughly with the square of the number of neurons. 

Manufacturing defects occur in the fabrication of integrated circuits, so VLSI cir- 

cuits beyond a certain die size cannot be built economically without including extensive 

fault-tolerance features in their design. An analog neural network such as described 

here, however, would naturally possess extensive fault tolerance. This is partially due to 

the distributed nature of neural network processing and because the analog design min- 

imizes the number of potential point-source catastrophic failures. That is, the network 

could conceivably operate even with the loss of individual LOT lines or patches, albeit 

with degraded performance. This feature could permit the construction of analog VLSI 

circuits far larger than traditional digital die sizes. Fault tolerance is a complex issue, 

however. While ever larger die sizes may tolerate occasional functional faults, large die 

are increasingly vulnerable to  gross electrical faults that cause catastrophic failure (dead 

shorts bet ween power and ground, for example). 

6.4 Summary 

Analog neurocomputation is attractive because it appears to be a way to achieve the 

massive parallel processing that artificial neural networks will require. As it is currently 

practiced, analog VLSI does have some valuable attributes. Some computational circuits 

have clear application: obvious candidates would be derivatives of analog multipliers and 

current-mode adders. However, computation is only one of the three key requirements 

that any implementation must deal with. Connectivity and the need for modifiable 

synaptic memory are two areas where analog processing is weak. This chapter has 

focused on these latter two areas in the context of the piriform model to explore some 

of the practical aspects of building an analog neurocomputer. 

A reliable technology for building an analog weight memory is elusive. EEPROM 

technologies have been proposed, and this chapter examined the prospect in some detail. 

Certainly analog EEPROM memories can be (and have been) built; at  issue is their 

workability in this application. A neurocomputer to execute piriform model I will have 
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to support rapid, repeated weight modification. Assuming that EEPROM devices of 

sufficient longevity can be made, the real challenge is how to accurately program them 

in continually varying operating environments. At present there is no alternative to 

extensive central control over the programming of every synaptic weight. Until a supe- 

rior method is developed, analog EEPROM will be limited to applications that do not 

require real-time adaptation. This chapter assumed that programming control could 

be decentralized down to the level of individual PNs. In fact this assumption is quite 

a technological leap of faith, and practically speaking it may be unjustified. The crux 

of the problem is that, as John Hopfield pointed out, silicon VLSI has produced noth- 

ing remotely equivalent to the biological synapse in its programmable aspects. Perhaps 

the potential of widespread application in neurocomputation will help spur solid-state 

research in this area. 

Connectivity has traditionally been the weak link in VLSI processing, and that short- 

coming would be exaggerated in any proposed analog neurocomputer. This chapter has 

focused on the problems of routing neural connections within a single integrated circuit, 

but the problems do not end at the package pins. It is also a critical problem where the 

analog system has to interface with the external world. The LOT in piriform model I 

may contain thousands of signals, and each must be accessible to the surrounding sys- 

tem. Alan Murray of the University of Edinburgh, another early researcher in analog 

neurocomputation, puts the problem in this light: 

Red  applications of neural networks require larger arrays of neurons and 

synapses than can be integrated on a single chip. It is therefore crucial 

t o  the effective realization of large, truly concurrent VLSI neural systems 

that the problem of interchip communication be tackled and solved now. 

This problem has not yet been addressed directly by any group working in 

analog VLSI. Earlier work has demonstrated that over 10,000 synapses can 

be included on a single chip . . . However, this implies that large numbers of 

interneural signals have to cross chip boundaries, and allocating one or more 

pins to  each neuron is grossly impractical. Constraints of chip pin-out (even 



with exotic packaging technology) and wiring, both on- and off- chip, render 

interneural communication the main impediment to the implementation of 

large artificial neural systems. [MCTSl] 

This chapter has addressed some but certainly not all of the practical issues involved 

in constructing an analog neurocomputer. Perhaps the most important point to be 

taken away from this is that innovative neural computation or weight storage designs 

are of marginal utility unless they also ease interconnect requirements, for the cost of 

additional interconnect will negate the benefits of ever-denser synapse designs. Neural 

processors and weight memories should therefore be designed first and foremost for their 

interconnect-ability. Direct routing of a metal line for every network connection is an 

inefficient way to construct large networks; fortunately, numerous alternatives are pos- 

sible. The most obvious one is commonly employed in digital systems: that is, to share, 

or multiplex, several virtual connections on a single physical interconnection medium. 

An implementation of the SS architecture featuring this technique is described in the 

following chapter. 



Chapter 7 

Digital Implementation of the SS 

Architecture 

This chapter describes in some detail a digital version of the SS architecture, known as 

SSD. The most significant advantage that a digital implementation has over analog is its 

realizability: in most cases, a digital circuit is easier to design, build, and test than its 

analog equivalent. In addition, some aspects of the piriform model naturally suggest a 

digital approach. This chapter begins with a description of these characteristics. The key 

components of SSD are then covered in detail, followed by a cost/performance analysis 

of the proposed design. The chapter concludes with a summary of the strengths and 

weaknesses of a digital implementation of the piriform model. 

7.1 An analog model in the digital domain 

The key problems with SSA in particular, and with any analog neural network imple- 

mentation in 'general, are: 

Expensive and inefficient interconnections between neurons. Interconnect domi- 

nates silicon area, yet the winner-take-all behavior of patches suppresses most 

neural activity. Very few cells simultaneously utilize the available interconnection 

bandwidth. 

Precise, reliable integration of analog weight storage and computation are unsolved 

problems in current VLSI technologies. 



The piriform model's sparsely activated, physically sparse interconnect argues for a 

shared communication resource. Also, because the neurons that contact a LOT line 

may be dispersed widely throughout the network, the communication mechanism must 

ensure that when a neuron sends a pulse down the LOT, it is heard by the widest possible 

audience of listening neurons. Broadcast communication over a central bus is the simple, 

multiplexed communication technique used to address these requirements in SSD. LOT 

signals are encoded and sent sequentially over a single shared LOT bus rather than via 

parallel transmission over signal lines dedicated to each unique LOT line. 

Imposing a sequential order on LOT transmissions preserves the model's critical 

temporal information. All that matters temporally is the strict rostral -+ caudal sequence 

of neural activation within a single sniff. This serial ordering guarantees that every 

neuron receives its relevant inputs before forming its output. SSD takes advantage of 

sequential processing to achieve significant economies in silicon area. While the resulting 

performance penalty is substantial, the cost/performance ratio of large-scale systems 

using this approach is favorable. 

7.2 SSD 

7.2.1 Overview 

From a high level, SSD is identical to SSA. As shown in figure 5.1, a linear array of 

processors communicate via a global interconnection medium, the LOT bus. Each pro- 

cessor, or PN, stores all the synaptic weights and performs all neural computation for 

neurons in a single patch of piriform layer 11. In this case, the LOT bus is truly global: 

it is a single communication medium, visible to all PNs at all times. The LOT bus is no 

longer a bundle of individual connections between neurons but rather consists of a small 

number of signal lines. These lines contain the binary address of a single transmitting 

neuron, and this address is broadcast to the entire network. 

A diagram of a single PN is shown in figure 7.1. The I 0  area contains the interface 

circuits necessary for communication with the bidirectional LOT (and input commands 
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Figure 7.1: Block diagram of a single PN in SSD. Internal buses interconnect weight mem- 
ory and the three datapath elements: the adder, register file, and the threshold/compare 
unit. Weight memory blocks are accessed from decoded LOT inputs or through the memory 
sequencer. 1/0 is via the binary encoded LOT bus. 



from the command bus). The four element data path consists of an adder, a thresh- 

old/compare unit for evaluating cell activation levels, a register file containing interme- 

diate cell activations, and a memory data register for communicating with the synaptic 

weight memory. This single data path is shared by all cells in one patch. Data path 

control and PN sequencing is accomplished in the PN control block. Finally, each PN 

contains one LOT decoder and weight memory for every cell in the patch. 

A PN operates on a broadcast LOT address by presenting the address to  each decoder 

in parallel. Those cells programmed with a connection to the sending cell respond with an 

active signal on a decoder output. This signal acts as a word line into each cells' unique 

weight memory. The addressed memory word is the current value of that synaptic 

connection. Each PN emulates the activity of many cells, and decoding and memory 

access for each cell is performed concurrently within each PN. Multiple cells may have 

active connections to  the broadcast address. After the parallel memory access, parallel 

activity ceases, and each PN processes each active connection in series. 

Following the processing of each connection a single cell may cross a pre-set activation 

threshold; if more than one do, the first is arbitrarily declared the patch "winner". 

The PN then arbitrates with other PNs for access to the LOT so it can broadcast the 

unique binary address of the winning cell. The arbitration mechanism is a simple daisy- 

chain, where upstream (rostral) PNs always have transmission priority over downstream 

(caudal) PNs. The transmitted address is decoded and processed by PNs elsewhere in 

the network. 

Details of the main functional blocks of the PN are provided below. 

7.2.2 Communication 

The network's response to  a single input is to send a flurry of messages over the LOT 

bus. Each message consists of a sending neuron's unique binary address, announcing 

itself as an active output (and therefore a patch winner). To permit each neuron to 

uniquely identify itself in a single transmission, the LOT bus must be a t  least Pog2 n] 

lines wide, where n equals the total number of neurons in the network. 



Encoding LOT activity in this manner requires a fraction of the physical interconnect 

area required by encoding each connection directly in metal. Of course, decoding the 

LOT transmissions in the receiving neurons entails additional circuit complexity, and 

therefore, some cost in additional area. 

LOT decoding in SSD is accomplished by dense programmed logic arrays (PLAs). 

Every PN contains multiple PLA decoders, one for every cell in the PN. Each decoder 

is programmed with the binary addresses of every sending neuron in the network to 

which that cell is connected. All decoders in each PN simultaneously decode every LOT 

transmission. When a transmission is recognized by a receiving cell, the decoded address 

selects an address in the PN's local weight memory corresponding to the synaptic weight 

of that cell's connection. 

Thousands of PLA decoders occupy significant silicon area. Yet they are an eco- 

nomic alternative to  the cost of encoding network connectivity information directly in 

aluminum wire. The decoder area grows linearly with the number of input (LOT) lines 

to  be decoded, which in turn increases as the logz of the number of neurons in the net- 

work. By contrast, as pointed out in the previous chapter, the area devoted to direct 

metal interconnect increases with the square of the network size. Another advantage of 

PLA-encoded interconnection is the relative ease of changing connectivity. Simple PLA 

reprogramming (usually a single mask change) suffices to change connectivity for the 

entire network. 

The primary drawback in using encoded LOT communication is that interneural 

intercommunication is now sequential, only a single neuron can transmit on the LOT bus 

at  a time. Two characteristics of the piriform model partially alleviate the performance 

hit that this would otherwise imply. 

In the biological model, the wave of activation from rostral to caudal cells is due to  the 

sequential activity generated in recurrent collateral axons from the earlier-activated ros- 

tral cells. By strictly ordering SSD communication such that rostral neurons are always 

the first to transmit on the LOT bus, arbitration in the neurocomputer is straightfor- 

ward and consistent with this biological model. Output arbitration is accomplished via 



commands over the command bus. Raw LOT input has first priority to  transmit, fol- 

lowed by winning cells from the most rostrally-located PNs. Subsequent transmissions 

from progressively more caudally-located patches follow in sequence, until all patches in 

the network have transmitted once on the LOT bus. This constitutes a single cycle, or 

"sniff ", in the piriform model. 

The second key characteristic of the model is the fact that winner-take-all behav- 

ior suppresses most network activity; only a single cell in each patch reaches sufficient 

activition to  transmit. The patch sizes vary under current model simulations from 20 

to  100 cells, meaning that only 1% to 5% of the network's cells will use the LOT on 

each sniff. Systems with dedicated hardware communication paths between individual 

neurons that emulate winner-take& networks (a widespread characteristic of biological 

nervous systems) will under utilize these expensive communication resources. In SSD, 

minimum hardware is used to  send only the messages that are actually needed on each 

cycle. 

The piriform model describes a hybrid mixture of serial and parallel processing in 

biological nervous systems. SSD supports these operations. Coincident with the tempo- 

ral sequence of LOT transmissions described above is parallel processing of each LOT 

message by all the neurons in the network downstream. Every PN's decoders are simul- 

taneously decoding and operating on the received message. 

7.2.3 Weight storage and learning 

Dense PLAs (one for every cell in the network) decode the address on the LOT bus and 

select a memory location a t  the address transmitted. When a decoder produces a "hit" 

in response to  a LOT transmission, it selects a word line at  an address in weight memory. 

A portion of each PN's weight memory is assigned to each cell, where it stores the value 

of all the synaptic weights between the LOT and each neuron's receiving dendrites. In 

SSD, weight memory is implemented as static random access memory (SRAM). 

The data a t  the selected weight memory address is written to a register for access 

by the neural computation system, where it is used to alter the activation level of the 



receiving cell. 

Modification to weight memory is the essence of learning, and in SSD each PN mod- 

ifies the weights of its constituent cells independently. Individual PNs must be able to 

distinguish each sniff's active weight memory addresses from inactive ones, necessitating 

the inclusion of an additional bit in every weight memory location that serves as an 

activity flag, set upon selection from the decoder and cleared at the end of every sniff. 

After determining the patch winner and broadcasting its identity over the LOT, each 

PN must identify every active synaptic address in the the winning cell's weight memory. 

The value of each is increased by the weight increment value, and each sum is written 

back to the same memory location. A straightforward (but slow) way to accomplish this 

is for each PN to  sequentially read every address in the winning cell's weight memory, 

searching for those addresses flagged as "active" on that sniff. Faster methods exist 

at  the cost of additional circuit complexity. This lengthy sequential procedure is only 

performed when the network is in learning mode. Each patch performs this weight 

update operation independently, permitting the net work of PNs to update their weights 

essentially in parallel. The speed of the network when operating in learning mode is 

consequently slower than its speed in performance mode. 

For a neuron to learn in the piriform model, it must not only win its patch but also 

navigate through a complex set of activation thresholds. In a biological system, the 

mechanisms that change synaptic efficacy (i.e., the value of the synaptic weight) are hy- 

pothesized to  be sensitive to  voltage depolarization across the neuron membrane. Only 

strongly-activated neurons can exceed these thresholds and are modified. Different ver- 

sions of the piriform model show great variability in the value of the different activation 

thresholds, requiring the flexibility of a programmable threshold mechanism. The learn- 

ing system in SSD supports this function using registers in the threshold/compare (TIC) 

unit. These registers are programmed with the values of the various activation thresh- 

olds by which the activity of winning cells are measured. Programming is controlled 

by instructions on the command bus, broadcast to and executed by each PN in parallel 

during an initialization period. Upon evaluation of each patch's winning cell, circuits in 
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the T /C  unit indicate if the winner's activation level surpasses the target threshold. If 

the network is in learning mode, and if the winning cell exceeds the learning threshold, 

then the weight-update procedure is executed. 

7.2.4 Neural computation 

Arithmetic is performed by adding each cell's selected connection weight to the contents 

of accumulators containing the current activation levels of each cell. The accumulators 

(one for every cell, constituting the PN's register file) are then updated with the resulting 

sums. The weight memory access and accumulation for each cell must complete before 

the next LOT transmission. In most cases a decoded LOT address will select weight 

memory sites from only a few cells within the same PN. Nevertheless, every cell must 

be checked for activity. Even if only a single PN has active weight memory sites across 

every cell, the entire network must await the completion of its processing. 

Incremental accumulation of activity is consistent with SSD's serial communication 

design. Simultaneous messages cannot be sent over the LOT, so individual cells have 

no use for an ability to  compute massive inputs in parallel. The serial computation 

bottleneck slows the speed of communication, however. The rate that signals can appear 

on the LOT is dependent on the speed of digital addition. 

The fastest way to  perform digital addition is to use multiple hardware adders for 

those cases when weight memory sites from several different cells in a PN are addressed 

simultaneously by a single LOT transmission. Analysis of the area requirements of 

digital adders indicated that only a single hardware adder can be accomodated per PN, 

however. Therefore each PN contains only one adder, and access to it is sequential. 

The time to  process each cell's activation level using a single adder can be reduced 

by pipelining the datapath operations. The four-stage PN pipeline is shown in table 

7.1. Three internal buses (mbus for memory operands, rbus for register file operands, 

and dbus for adder output) are required to prevent resource conflicts during pipeline 

operations. These are shown in figure 7.1. Table 7.2 is a pipeline reservation table 

showing pipe status during the processing of four cell memory addresses from a single 
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Table 7.1: The four stages of  the PN processor pipeline in SSD. 

Table 7.2: A reservation table showing the status of  the PN processor pipeline during the 
processing of  four weight memory addresses. In the table, each horizontal step is equivalent 
t o  consecutive time steps; a vertical slice shows coincident events. Note that simultaneous 
read/write access to  the register file is required beginning at time step ts .  

LOT transmission. While serial access slows the processing of each LOT input, it should 

be possible for the adder and accumulator portion of each PN to run at cycle times 

considerably shorter than the LOT cycle time. The latter is determined primarily by 

the time required to  drive the long, highly capacitive LOT bus, and by the need to  

have enough "dead time" to ensure proper synchronization between widely-dispersed 

PNs. Local adders and register files within each PN will have inherently less capacitive 

loading and clock skew, and can operate at higher frequencies. A phase-locked loop clock 

generator is included as a part of each PN for the generation of the local high-frequency 

clocks and to ensure synchronization across an entire wafer. The sparse connectivity 

between each cell and the LOT means that numerous LOT transmissions will appear 

between consecutive accumulations for any particular cell. 

A key feature of the piriform model affecting computational density is its inherently 

low precision. Low precision makes massively parallel analog computation practical; it 

also reduces the cost of digital computation. (The area required by all of the processor 
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blocks in each SSD PN increases linearly with increased precision.) The adder, register 

file, and T/C unit are designed to  be twice as wide as the width of weight memory to 

allow sufficient overhead in the course of repeated additions (i.e. an eight bit adder to 

handle four bit weights). 

7.3 Cost /performance estimates 

7.3.1 Cost: silicon area estimate 

Appendix A contains the source code and input files of an area estimation program 

written for this analysis. Estimates of layout densities were based on known commercial 

integrated circuit layouts. 

The ideal area estimation technique would begin with a precise description of each 

PN component in terms of logic gates and transistor arrays. Integrated circuit layouts 

from several sources could then be used as references for estimating the required layout 

area. This proved to be a difficult task. Synthesizing a gate-level logical model of a 

PN would constitute an entire thesis in itself, even if the PN had been precisely defined 

beforehand. Given the wide scope of this architectural investigation, it was not possible 

to  generate a PN model for each implementation accurate down to the gate level. Had 

it been possible, it would have been unwise: ongoing changes in the model definition 

itself would have negated much of any such design effort. Instead, PN components were 

defined a t  the functional level in terms of conventional logic blocks whose area could be 

roughly estimated from schematics and layouts of similar circuits. While some blocks 

were defined down to the gate level, most areas were estimated by extrapolating from 

empi r id  area models drawn from the reference circuits. 

Estimation of the register file area offers an example of this technique. Transistor- 

level schematics and a detailed layout of a commercial VLSI product containing a similar 

register file formed the starting point; the next step was to decide how much the known 

and desired circuits had in common, and how much they differed. In this case, the 

reference circuit was a single ported register file while the PN requirement was for a 



dual ported design. It was assumed that this extra functionality could be gained a t  the 

cost of a 25% increase in the number of transistors from the reference design. For the 

known circuit, fabricated in a dual-leval metal, 0.8 micron CMOS process, the measured 

register file device density was just over 93 square microns per transistor. The density 

measure used in the PN's register file was the same, but 25% more transistors were 

required per cell than the 14 used in the reference design. The area of a single register 

was thus estimated to  be: 

(93p2/transistor) x 18 (transistors/bit) x m bits x 2 

where m = weight memory width, a model variable. 

Several factors complicated this estimation procedure. First of all, the degree of func- 

tional difference between the reference and target circuits can be significant. Adders, 

for example, come in many varieties, and the area of a carry-look-ahead adder can be 

considerably larger than, and therefore a misleading guide to, the area of a conditional- 

sum-adder layout. Each known layout had to be scrutinized for small functional differ- 

ences. The technology used in each reference layout is a major factor, because automated 

place-and-route programs can require three to four times as much area as a human- or 

machine-generated datapath layout. Additional variables complicating the task are the 

details of the fabrication processes: reference layouts could be drawn using either one, 

two, or three levels of metal interconnect, for example. Some circuitry (e. g., PLA, 

SRAM) is inherently regular, and can be reasonably well estimated from the area of 

individual cells; other circuits like adders and multiplexors are random, irregular, and 

prone t o  estimation error. Finally, layouts can be optimized for either speed or area, 

producing overly large or small estimates. These factors required that a conservative 

approach to  area estimation be taken. 

Eventually, area estimates of individual blocks were combined and used to answer 

the following questions: 

How much silicon would be required to contain a network consisting of approxi- 

mately 10,000 neurons? 
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Figure 7.2: Relative share of chip area consumed by the three primary components of the 
SSD implementation: the processor, synaptic weight memory, and LOT address decoders. 

What is the maximum size network that could be fit onto a single 6-inch wafer? 

Details will follow, but analysis indicates that a 10,000 node piriform network executing 

on SSD using six-bit synaptic weights would require approximately 11.2 cm2 of silicon. 

Each of the 10,000 neurons would be sparsely contacting a 1000-element-wide LOT, 

making a combined total of approximately lo6 connection weights stored on the chip. A 

scaled-up SSD executing the piriform model on a single 6-inch silicon wafer could support 

a 35,000 neuron network, containing more than 12 million six-bit synaptic weights. 

Figure 7.2 divides total circuit area into three components (weight memory, decoders, 

and processor area) and shows the relative area of each as the network dimension is 

varied. S m d  networks consisting of less than 2000 neurons devote most of their area to  

the processing functions, and relatively little to weight memory and interconnect (i.e., 

address decoders). Processor area increases in absolute terms as network size grows, 
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Figure 7.3: Relative share of chip area consumed by the primary components in the SSD 
implementation of a 35,000 neuron network. Synaptic weight memory and LOT address 
decoding together occupy more than 85% of the area of a single 6 inch wafer. 

but decreases relative to  the area required by weight memory. Figure 7.2 indicates the 

beginning of this trend, and figure 7.3 shows its culmination in a plot of the relative 

share of processor area for a large network consisting of approximately 35,000 neurons. 

A network of this size would occupy most of a six-inch wafer, of which 15% is devoted 

to processor area. Note that unlike SSA, interconnect costs (in the form of address 

decoders) do not dominate, and only become significant in networks with more than 

several thousand neurons. The large size required for the basic processor blocks becomes 

overshadowed by the ever-increasing need for more memory with very large networks. 

In SSD, interconnect costs do not get out of hand and effectively limit the ultimate size 

of the network, as they do in SSA. 



Details of the area estimation procedure can be seen in appendix A, but a few com- 

ments about the assumptions that were used are in order. Each PN's register file esti- 

mation has been described previously. The adder area was based on a conditional-sum 

adder design that provides a good compromise between performance demands and area 

efficiency. Its area estimate resulted from a gate-level design and precise layout ref- 

erences. The phase-locked loop was based on several commercial layouts and designs 

described in [JH88] and [JBHK87]. When functional blocks could be decomposed into 

gate-level descriptions, a standard device density of 125 square microns per transistor 

was used as the basis of area estimations. This density is consistent with a current 

generation, sub-micron, double-metal CMOS layout. 

The two large arrayed circuit elements, the PLA decoder and SRAM weight mem- 

ory, were derived from two different area models. The area of the SRAM memory was 

estimated from known commercial designs: the number of bits required in each PN is a 

simple function of the patch size, LOT dimension, and connectivity. Memory cell density 

was assumed to be 42 square microns per bit; while slightly beyond the density of most 

commercial 1 megabit SRAM designs, this is well within the scope of next generation 

devices. Memory support circuitry such as sense amplifiers were assumed to consume 

additional area equal to  50% of the area of the SRAM cell array [Di188]. 

Decoder area calculation is similar, but is based on a specific PLA layout model 

[WE85]. PLAs, like ROM and RAM, are dense arrays of transistors, but the sparse 

connectivity to the LOT gives PLA decoders a significant area advantage over a ROM- 

based decoder. The "andn plane of a PLA encodes only a subset of the possible minterms 

in a logical expression. This subset corresponds to the limited set of LOT addresses to 

which a particular cell is connected. There is no "orn plane in the decoder because all 

"andn terms select active weight memory addresses. Decoder size will scale linearly with 

the degree of network connectivity. A ROM decoder, on the other hand, would encode 

all possible logical combinations of the LOT address inputs, requiring a considerable 

increase in area. PLA area in this model is a function of network connectivity, cell size, 

metal pitch, and the number of inputs (encoded LOT width). The decoder arrays can 



get quite large, so area is allocated for periodic signal buffers to drive the line decoder 

inputs. 

7.3.2 Performance: input vector processing rate 

Summarizing the sequence of actions that occurs on each sniff in the piriform model: 

1. sequential broadcast of each LOT message 

2. each PN decodes source address, evaluates connectivity of its cells 

3. each PN performs incremental accumulation of activity of its cells 

Two principal delays mark this process: driving the LOT bus, and accumulating the 

cells' activity levels. 

The single LOT bus tying together the entire network presents a considerable capaci- 

tive load to  each patch's output drive circuits. Bus drivers with periodic signal repeaters 

should be able to drive the entire LOT bus in approximately 40 nanoseconds, establishing 

the period of a single LOT cycle. 

Each stage in the PN processor pipeline can be completed in approximately 10 ns. 

A PN clock cycle is thus one-fourth as long as a LOT cycle. The time for a PN to 

process n cells in response to a single LOT input is linearly proportional to n; that is, 

At(p + n - 1). In this case, p (pipeline depth) is four, and At (the PN clock period) is 

10 ns. The time to process a patch containing n = 32 cells is approximately 350 ns. 

Each PN could thus process a single LOT input in less than 400 ns. In a 10,000 

neuron network with a LOT dimension of 1000, approximately 10% of the LOT lines 

would be active on each sniff. Added to this raw input are the LOT broadcasts of the 

winners from each patch. A network of 10,000 neurons organized into 40-neuron patches 

would have 250 patches, each of which would also broadcast one message onto the LOT, 

for 350 LOT broadcasts in one sniff. In addition, multiple sniffs (e.g., 4) are required 

to process a single LOT input vector, so processing time for a network of this size is 

estimated to  be: 



This is approximately equal to  2,000 LOT input vectors per second, each containing 

1,000 input elements. 

When the system is actively learning, an additional weight modification step follows 

each sniff. Every activity bit in the winning cell's weight memory must be examined 

dong with the weight itself to see if that synapse was active. If so, the corresponding 

weight must be incremented and written back to the same address. Thus one or two 

weight memory accesses are required for each of the winner's synapses. Assuming 10% 

connectivity on a LOT composed of 2000 lines, with 5% activity, each winning cell would 

have 50 synaptic sites. On average it can be assumed that one-half of each winner's 

synapses will be active; each single read/modify/write cycle requires 30 ns, and a simple 

read/evaluate will take 20 ns. The entire weight update procedure would then add 

(25) x (30 ns + 20 ns) = 1.25 ps 

to  each sniff. 

This is only a small fraction of the time required to process a single vector in per- 

formance mode. It can be concluded that network performance during learning mode 

would differ little from its operation in performance mode. 

Comparison to SSA 

The 11.2 cm of silicon area required for a 10,000 neuron network executing on SSD would 

require approximately 60% of the area required for an SSA architecture of equivalent 

size. The digital implementation's area advantage relative to an analog implementation 

improves with larger networks. While an SSD architecture consisting of 35,000 neurons 

could fit onto a single 6-inch wafer, such a wafer could hold only 19,000 neurons in an 

SSA implementation. 

SSD's area advantage is directly related to the treatment of interconnect. Recall that 

the bus-based architecture of Super Sniff requires an increase in area proportional to  the 

square of the network size; even though an individual SSA PN is smaller than an SSD 
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PN, the area required to  route the entire LOT to ever more PNs easily compensates for 

it. In the hypothetical 19,000 neuron SSA network that would completely fill a six-inch 

wafer, 94% of the wafer area would be devoted to  routing wire. 

Balancing the area economy of SSD is the potential in SSA for far higher performance. 

It is estimated that SSA could process a new input vector every 10 ps. Due to  numerous 

circuit design uncertainties, it would be wise to  assume a factor of two or three padding 

on this figure; assume one input vector every 25 ps. Even so, this is approximately 20 

times the performance of SSD in non-learning mode. SSA's performance advantage is 

not related to  the multiplexing of interconnect, however. The reason for the discrepancy 

is the processing bottleneck in SSD due to the need to multiplex a single adder within 

each PN. Digital adders are large, and PNs would be prohibitively expensive if each one 

contained multiple adders. 

Learning, or weight modification, would be more than 100 times faster in the dig- 

ital implementation than in SSA. The iterative high-voltage EEPROM programming 

required to  modify analog weights in SSA would be a significantly slower process than 

the sequential memory readlwrite required in SSD. 

On the basis of these figures, an initial cost/performance analysis of SSA vs. SSD 

would come down in favor of SSA. A 20x speedup would justify the 40% cost penalty. 

However, other issues enter to throw doubt on this conclusion. Most important is the 

scalability of the two architectural approaches. The largest SSA network envisioned 

here would contain 19,000 neurons. Doubling the available silicon area (by fabricating a 

single network on one 8-inch wafer) would permit only a 25% increase in network size, 

to  24,000 neurons. Successive increases would be even harder to attain, as interconnect 

requirements gobble up ever more circuit area. Combining multiple wafers to achieve 

larger networks exacerbates the problem, for inter-PN communication is vastly more 

difficult off-chip than on-chip. An SSD implementation cannot linearly increase network 

size with increasing circuit area, but it approaches that goal better than SSA would. For 

example, a similar doubling of silicon area would permit the construction of a network 

of 56,000 neurons on an 8-inch wafer, a 60% increase. 



The importance of scalability centers around another question: how large must a 

network be for a particular application? Piriform model I is itself a new network model, 

and applications for it are currently nonexistent. The only available guide is biology 

itself. Piriform cortex in the mammalian brain contains millions of neurons, and LOT 

lines numbering on the order of lo5. If these proportions are representative of real 

requirements, then scalability to large networks is indeed important. In that case, direct 

interconnect schemes like in SSA will not be practical. However, if networks containing 

neurons numbering in the low tens of thousands are sufficient, then SSA would most 

likely be the alternative of choice. 

If rapid, real-time learning were crucial in a particular application, then there is 

no alternative to  the digital SSD implementation: SSD would have a nearly 100-to-1 

advantage in learning speed over SSA. 



Chapter 8 

Conclusion 

The purpose of this thesis was not merely to  describe another neural network model but 

t o  explore ways that a biologically-faithful model could be implemented in electronic 

hardware. In addition, this thesis pointed out the three architectural issues that any 

neurocomputer architecture, implementing any neural model, must address. Focusing 

on these issues is as important as the architectures themselves. It is worthwhile to review 

the results achieved. 

As a prelude to  custom architecture investigations, a modified version of the piri- 

form model was implemented on CNAPS, a commercial neurocomputer. The results 

illustrated the suitability of the SIMD approach to neural computation. Speedup over 

uniprocessor implementations could be significant if the individual network layers were 

large enough. However, certain portions of the algorithm require reformulation from 

serial t o  parallel execution in order to  gain maximum benefit from the available par- 

allel hardware (for example, distributing the serial square root calculation among all 

processors). 

Focusing on the implementations of piriform model I, this thesis explored two quite 

different hardware strategies, SSA and SSD. While each version was analyzed in terms of 

cost/performance tradeoffs, it would be somewhat unfair to compare them purely on the 

merits of these results. This is because many of the core features of SSA, such as analog 

EEPROM weight storage and programmability, are unproven techniques in VLSI. It is 

entirely possible that attainment of the precision levels contemplated here would require 

additional compensation circuitry extensive enough to wipe out the area advantage that 



an analog PN enjoys over a digital PN. It would not be inaccurate to say that the analog 

implementation was presented here in its best possible light. 

This was done so as not to obscure the real problem with an analog implementation: 

the high cost of interconnect. The silicon area required for directly interconnecting 

thousands of analog neurons makes such a network prohibitively expensive. This does 

not mean that analog processing has no place in neurocomputation; it does suggest that 

analog is better suited for sensory, rather than associative processing, where connectivity 

is local in extent. VLSI processes routinely squeeze ever-greater numbers of components 

onto a given silicon area, but progress in interconnecting these components comes much 

more slowly. This trend can be expected to continue. 

Measured by its treatment of interconnect, SSD is a success, because interconnect 

structures in SSD (including address decoders) do not dominate silicon area even for 

networks containing millions of connections. SSD also utilizes digital weight storage and 

computation, however, and the latter has area penalties of its own. Digital processing 

requires too much silicon area to allow multiple adders on each PN. The activation of 

each cell in a PN must be computed serially. This creates a processing bottleneck, which 

is the reason that throughput of SSD is one-twentieth that of SSA. 

A second drawback of SSD is a result of the large die sizes required for large networks. 

It is unlikely that VLSI manufacturing can produce defect-free chips of the sizes contem- 

plated here; the circuits will have to have fault-tolerant properties built in. Fortunately, 

the modular nature of the SS architecture permits the use of fault tolerant mechanisms 

with relative ease. Redundant PNs could be fabricated and substituted (either electri- 

cally or via software) for PNs that fail under test. This technique is used today in large 

signal processing circuits (and in implementations of the CNAPS architecture described 

in chapter 4). One key to a fault tolerant architecture is to minimize the number of 

single-point failure modes; that is, nodes in the circuit where a failure would kill the 

entire network. The LOT and command buses are two such potential points. Periodic 

error-correcting circuitry located along each bus is typical of one technique that would 

minimize the effect of such failures. 
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A third drawback of SSD is that multiplexed communication does a poor job of rep- 

resenting the analog time domain. Fortunately, the piriform model is sensitive only to 

the rostral-caudal ordering of neural transmissions, and SSD preserves only this skele- 

tal ordering information. Time is not a factor in the computations themselves. Other 

biologically plausible neural models may require more precise continuous time represen- 

tations to  be effective: if so, the complexity of multiplexed communication would have to 

be increased significantly to accomodate more temporal information. Partly as a result 

of this, a common sentiment is that only analog computation can represent the analog 

temporal character of real nervous systems. However, the widespread commercial suc- 

cess of digital sighal processing in continous, real-time applications argues strongly for 

the merits of discrete-time digital afchitectures even in this domain. Unlike SSA, no ex- 

otic circuit techniques were proposed for SSD. All of the functional blocks described are 

routinely realized in commercial designs today. Nor does SSD depend on revolutionary 

advances in process technologies (the large die sizes notwithstanding). For realization 

of the largest networks discussed, containing some 35,000 neurons and several million 

connections, the analysis assumes only slight increases in memory density, a technology 

which has not yet approached its practical limits. The phase-locked loop clock circuits 

and pipelined processor architecture featured in each PN are common elements in today's 

state of the art  microprocessors. . 

Figure 7.2 in chapter 7 illustrates the dominant role that memory circuits will have 

in the largest versions of SSD. Processor area occupies less than 15% of the silicon, 

while SRAM consumes more than 60%. This observation reflects a trend evident in 

today's commercial RISC processors: to get top performance, ever-increasing portions 

of valuable chip area must be devoted to fast local memory. The front line of processor 

development today is defined by the integration of large amounts of local memory with 

a minimum amount of fast logic circuits. The key advantage of SSD is that it pushes 

the network capacity problem into this familiar arena, where progress has been rapid, 

and away from expensive interconnection solutions, where progress has historically been 



Figure 8.1 superimposes the area estimation curves shown earlier in chapters 6 and 

7. It directly compares the cost (i.e., chip area) of the two approaches. Two noteworthy 

facts can be gleaned from this figure. First is the enormous cost of implementing large 

analog networks directly; individual circuits may be arguably larger or smaller than 

what I have estimated here, but for large networks, all that matters is the interconnect 

cost. The second key point is the magnitude of the networks contemplated. Figure 8.1 

stops at  10,000 neurons, where the two approaches are roughly compatible in terms of 

area (beyond this, SSA's area requirements dwarf those of SSD). The largest network 

considered here contained 35,000 neurons and over 12 million synaptic connections. A 

network of that size would occupy most of a six-inch silicon wafer. Even the rapid 

process improvements that have traditionally accompanied VLSI technology are unlikely 

to produce the tremendous density increases that will have to occur to drastically change 

the maximum network dimensions. 35,000 neurons is a sizeable network, but a far cry 

from the millions of neurons and billions of connections in the piriform cortex of simple 

mammals. The complexity of a single digital PN, shown in figure 7.1, argues for slow 

change a t  best in these numbers in the near future. 

Given the relative strengths and weaknesses of SSA and SSD, one obvious suggestion 

is to combine the strength of the two approaches in a hybrid design. The efficiency of 

digital communication and storage combined with analog computation would potentially 

offer an efficient compromise. But as mentioned in chapter 6, the problem with a hybrid 

system is the need to  convert between digital and analog representations. DACs and 

ADCs are large, expensive circuits. Most current circuit research in the area of digi- 

tal/analog conversion is aimed at ever-higher precision or speed, and ignores the realm 

of area efficient, low-precision conversions. It is likely that research in this area could 

produce faster and cheaper converter designs than are currently available. Without sig- 

nificant improvements, large hybrid designs may require more conversion overhead than 

would justify their cost. 

How much is the piriform model itself responsible for these results, and how might 

these results change given a different model? The piriform model is a cortical model, and 
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Figure 8.1: Comparing the estimated silicon area, in cm2, required for implementing SSA 
and SSD. Network size (number of neurons) is shown on the X-axis. 



shares significant connectivity and processing characteristics with higher-level cortical 

structures. In those respects, the results found here should not be expected to change. 

It must be stressed that sensory structures such as artificial retinas and cochleas are 

different circuits, however. These typically exhibit local connectivity and neural activity 

characterized by continuously-valued (analog) outputs. An analog vs. digital comparison 

for such a sensory circuit would have drastically different results than what is described 

here. 

The second goal of this thesis was to introduce a methodology to  be used when 

designing neurocomputers. The idea is to boil neurocomputer analysis down to variations 

in three component areas: connectivity, neural computation, and weight storage and 

modification. This technique was followed in the analysis of CNAPS, SSA, and SSD. It is 

a useful approach because it provides a common language in which different architectures 

can be compared. It is important because it reveals the ways in which neurocomputer 

components will have to  interface with one another. For example, analog addition is an 

attractive implementation technique because it offers unparalleled layout density; a single 

wire can conceivably replace a digital adder circuit requiring hundreds of transistors. 

Unfortunately, analog addition requires current-mode inputs, which means that synaptic 

weights must be stored as currents, or in a manner that affords economic conversion to 

currents. As the discussion in chapter 6 emphasized, such designs for analog storage 

systems are only in their infancy. Practical neurocomputer systems must have efficient 

interfaces between the three critical systems. 

8.1 Future work 

There is no shortage of opportunities for future research in neurocomputer architecture. 

Topping the list is no doubt the most ambitious item: gaining a deeper, broader un- 

derstanding of the fundamental mechanisms of nervous system operation. The piriform 

network model in all of its variations is typical of the type of work required. This model 

is significant for many reasons, not least of which is that it makes a legitimate attempt 



to  translate the myriad, messy details of neurobiology into an information processing 

model that can be simulated and analyzed. Additional efforts to link neurobiology and 

computer science are needed. 

As this thesis has illustrated, precision requirements are a central issue in the design 

of neurocomputer systems. Large hardware arrays are possible only if the precision of 

individual processors can be relaxed. Most researchers suspect that biological neural 

networks achieve their prodigious processing power in spite of, not because of, the preci- 

sion of individual neurons. The high precision requirements of today's gradient descent 

algorithms most likely are due to our limited understanding of the true mechanisms of 

biological learning [Hopgo]. 

If these requirements are relaxed sufficiently, significantly denser digital computa- 

tional designs are conceivable. For example, a logical AND gate can perform a stochas- 

tic multiplication function, possibly substituting for an entire digital multiplier circuit 

[MCTSl]. Such a substitution can only be made if the neural model can tolerate the 

occasional inaccurate neural response. It underscores the close relationship that must 

be maintained between research in biological neural networks and neurocomputer imple- 

mentations. 

Research in this area has largely been concerned with the arithmetical precision of 

neural algorithms and has ignored temporal precision. Some neural models, however, 

have been proposed [ERADSO] that stress the phase relationship between the firings of 

neural clusters. I t  may be that most of the information in a network is to be found in 

the temporal relationships between neural firings, not in the relative strength of neuron 

activations. Certainly the piriform model goes some distance down this road in the 

learning mode synchronization between LOT inputs and the low frequency oscillations 

knows as the alpha rhythm. 

Research in computer hardware for neural networks also has several fertile options. 

Analog memory designs are one such area. EEPROM is the only viable candidate now, 

but the problems with programming analog EEPROM cells pointed out in chapter 7 

may resist practical solutions. Solid state materials research may someday produce an 



engineering material that approximates the learning capabilities of biological membranes, 

but this cannot be expected in the near term. 

Finally, the critical interconnection problem can certainly profit from further re- 

search. It is unlikely that VLSI processes will ever attain the ability to interconnect 

millions of widely separated neural elements. However, making large numbers of dis- 

tant interconnections is a problem for biology as well [Mea$9]. Biological structures 

have evolved that attain sufficient processing power using primarily local connectivity; 

artificial networks will doubtless require similar techniques eventually. Broadcast com- 

munication is used in the CNAPS and SS architectures for distal communication, but 

it may find its gfeatest application as a method for local communication in very large 

networks. 



Bibliography 

[AIGLSO] J6se Ambros-Ingerson, Richard Granger, and Gary Lynch. Simulation of 

paleocortex performs hierarchical clustering. Science, 247:1344-1348, 1990. 

[AKCMSO] Stanley C. Ahalt, Ashok K. Krishnamurthy, Prakoon Chen, and Douglas E. 

Melton. Competitive learning algorithms for vector quantization. Neural 

Networks, 3:277-290, 1990. 

[BakgO] Thomas E. Baker. Implementation limits for artificial neural networks. Mas- 

ter's thesis, Oregon Graduate Institute of Science and Technology, May 1990. 

OGI Dept . of Computer Science and Engineering Tech. -Report No. CS/E 

90-008. 

[BH88] Jim Bailey and Dan Hammerstrom. Why VLSI implementations of asso- 

ciative VLCNs require connection multiplexing. In Proceedings of the In- 

ternational Conference on Neural Networks, volume 2, pages 173-180, June 

1988. 

[BH89] Tom Baker and Dan Hammerstrom. Characteristics of artificial neural net- 

work algorithms. In 1989 IEEE International Symposium on Circuits and 

Systems, volume 1, pages 78-81, 1989. 

[CM89a] H. C. Card and W. R. Moore. EEPROM synapses exhibiting pseudo- 

Hebbian plasticity. Electronics Letters, 25(12):805-806, 1989. 

[CM89b] H. C. Card and W. R. Moore. VLSI devices and circuits for neural networks. 

International Journal of Neural Systems, 1(2):149-165, 1989. 



'. 
[Dil88] Thomas E. Dillinger. VLSI Engineering. Prentice Hall, Englewood Cliffs, 

New Jersey, 1988. 

[ERADSO] R. Eckhorn, H. J. Reitboeck, M. Arndt, and P. Dicke. Feature linking via 

synchronization among distributed assemblies: Simulations of results from 

cat visual cortex. Neural Computation, 2:293-307, 1990. 

[GAIL891 Richard Granger, J b e  Ambros-Ingerson, and Gary Lynch. Derivation of 

encoding characteristics of layer I1 cerebral cortex. Journal of Cognitive 

Neuroscience, 1(1):61-87, 1989. 

[GAISL89] Richard Granger, J6se Ambros-Ingerson, Ursula Staubli, and Gary Lynch. 

Memorial operation of multiple, interacting simulated brain structures. In 

M. Gluck and D. Rumelhart, editors, Neuroscience and Connectionist Mod- 

els, pages 95-129. Erlbaum Associates, 1989. 

[GJ89] Hans P. Graf and Lawrence D. Jackel. Analog electronic neural network 

circuits. IEEE Circuits and Devices Magazine, 5(1):44-49, July 1989. 

[GM84] Paul R. Gray and Robert G. Meyer. Analysis and Design of Analog Inte- 

grated Circuits. John Wiley and Sons, New York, 1984. 

[Gra84] Robert M. Gray. Vector quantization. IEEE ASSP Magazine, 1(2):4-29, 

April 1984. 

[Hab85] Lewis B. Haberly. Neuronal circuitry in olfactory cortex: anatomy and 

functional implications. Chemical Senses, 10(2):219-238, 1985. 

[HB91] Jordan L. Holt and Thomas E. Baker. Back propagation simulations us- 

ing limited precision calculations. In Proceedings of the International Joint 

Conference on Neural Networks, volume 2, pages 121-126, 1991. 

[Hop901 J. J. Hopfield. The effectiveness of analogue 'neural network' hardware. 

Network, 1:27-40, 1990. 



[HPSOa] John Hennessy and David Patterson. Computer Architecture: a Quantitative 

Approach. Morgan Kaufmann, San Mateo, California, 1990. 

[HPSOb] Paul W. Hollis and John J. Paulos. Artificial neural networks using MOS 

analog multipliers. IEEE Journal of Solid-State Circuits, 25(3):849-855, 

June 1990. 

[HTCB89] Mark Holler, Simon Tam, Hernan Castro, and Ronald Benson. An electri- 

cally trainable artificial neural network (ETANN) with 10,240 floating gate 

synapses. In Proceedings of the International Joint Conference on Neural 

Networks, volume 2, pages 191-196,1989. 

[JBHK87] Deog-Kyoon Jeong, Gaetano Borriello, David A. Hodges, and Randy H. 

Katz. Design of PLL-based clock generation circuits. IEEE Journal of 

Solid-State Networks, 22(2):255-261, April 1987. 

[JH88] Mark G. Johnson and Edwin L. Hudson. A variable delay line PLL for 

CPU-coprocessor synchronization. IEEE Journal of Solid-State Networks, 

23(5):1218-1223, October 1988. 

[KTSLgl] Douglas A. Kerns, John E. Tanner, Massimo A. Sivolotti, and Jin Luo. 

CMOS UV-writable non-volatile analog storage. In Advanced Research in 

VLSI: International Conference 1991, 1991. 

[LRMM89] J. Lazzaro, S. Ryckebusch, M.A. Mahowald, and C.A. Mead. Winner-take- 

all networks of O(n) complexity. In Proceedings of the Neural Information 

Processing Symposium, pages 703-71 1,1989. 

[LRW91] Todd Leen, Steve Rehfuss, and Max Webb. Encoding and classification 

in a model of olfactory cortex. In Proceedings of the International Joint 

Conference on Neural Networks, volume 2, pages 553-559, July 1991. 



[MCT91] Alan F. Murray, Dante Del Corso, and Lionel Tarassenko. Pulse-stream 

VLSI neural networks mixing analog and digital techniques. IEEE Tmnsac- 

tions on Neural Networks, 2(2):193-203, March 1991. 

[Meal391 Carver Mead. Analog VLSI and Neural Systems. Addison Wesley, Reading, 

Massachusetts, 1989. 

[MWC+91] Jack L. Meador, Angus Wu, Clint Cole, Novat Nintunze, and Pichet Chin- 

trakulchai. Programmable impulse neural circuits, IEEE Transactions on 

Neural Networks, 2(1):101-109, January 1991. 

[OKH89] Tong-Chern Ong, Ping K. KO, and Chenming Hu. The EEPROM as an 

analog memory device. IEEE Tmnsactions on Electron Devices, 36(9):184& 

1841,1989. 

[She791 Gordon M. Shepherd. The Synaptic Organization of the Bmin. Oxford 

University Press, New York, 1979. 

[SSK+87] Gheorghe Samachisa, Chien-Sheng Su, Yu-Sheng Kao, George Smarandoiu, 

Cheng-Yuan Michael Wang, Ting Wong, and Chenming Hu. A 128k flash 

EEPROM using double-polysilicon technology. IEEE Journal of Solid-State 

Circuits, SC-22(5):676-683, 1987. 

[WE851 Neil Weste and Kamran Eshraghian. Principles of CMOS VLSI Design. 

Addison-Wesley, Reading, Massachusetts, 1985. 

[web] Max Webb. Hierarchical competitive learning. Oregon Graduate Institute 



Appendix A 

Area Estimation Program 

....................................................................... 
* * 
* STANDARD area parameters fo r  implementation of the  piriform model. * 
* * 
....................................................................... 

#define CHIP 1e8 /* area ( in  sq microns) of a chip 1 cm per s ide  */ 
#define WAFER 12.67e9 /* area ( in  sq. microns) of the  use-able 5 inches 

of a 6-inch wafer */ 
#define metalpitch 1.4 /* separation (microns) of two adjacent metal 

wires*/ 

#define IOCell 2000 /* area of an interface c e l l  t o  a bi-directional I0 

bus signal  */ 
#define WTA 150 /* area (per input) of a winner-take-all c i rcu i t  */ 
#define DAC 3500 /*  area of a 4-bit current-mode DAC */ 
#define comparator 750 I* area of an analog comparator c i rcu i t  */ 
#define cnState 4000 /* area of latches,  gates,  and drivers t o  enable 

a single cn */ 
#define decoder 200 /* area per input of address decoding logic */ 
#define DRAMcell 10 /* area ( in  sq. microns) of a single DRAM c e l l  */ 
#define SRAMcell 42 /* area ( in  sq. microns) of a single SRAM c e l l  */ 
#define WROMcell 15 /* area of a single EEPROM synapse */ 
#define EEPROMcontroller 20000 /* area of EEPROM program control 

c i rcui t ry .  */ 
#define twoBitcsa 64 /* t r ans i s to r  count of a 2-bit conditional-sum 



adder */ 
#define DFF 20 /* transistor count of a master-slave flip-flop */ 
#define reg 14 /* transistor count of a register in the reg file */ 
#define mux 10 /* transistor count of a 2x1 multiplexor */ 
#define LATCH 10 /* transistor count of a D-latch */ 
#define repeater 1500 /* area of one repeater for a digital signal */ 
#define obCellArea 2000 /* area of one digital output cell */ 
#define deviceDensity 125 /* area (sq. u) per random device */ 
#define PLL 2000 /* area (sq. u) of a pll clock generator */ 

float ssa0, ssd0, PLAO , addr~ecoder0 ; 
float power (1 ; 
int logz (1 ; 

int lotsize, patchsize, cellcount, cellsynapsecount, bits, lotBus; 

int adderRegion, patchcount, initLotSize, initCnCount, addercount; 

int lotstubcount, cs~uxCount, wtMemWidth, adderwidth; 

float PNArea, thresholdcompare, connectivity, hiVcktArea, miscRegArea; 

float memArrayWidth, memArrayHeight, wtMemArea, PNoutput, kbits; 

float compensationArea, wtaArea, repeaterArea, patchlength, lotlength; 

float SUBWAFER, IOArea, patchBusArea, lotwidth, lotArea, areaused; 

float patchBusWidth, PNcontrolArea, xComectArea, ADC, ADCarea, PLLarea; 

float regFileArea, adderArea, dataPathArea, decoderlrea; 

float memSequencerArea; 

FILE *fpl, *fp2, *fp3, *fopen(); 

main ( 1 

/* Program to determine the dimensions (# of LOT lines, # of neurons) 

* of a wafer-scale-implementation of the piriform model. */ 



{ 

/* Most of the  program's variables are external because both the  

main program and the  principal subroutine must have access t o  them; 

there are  too many variables t o  pass via parameters in  function 

ca l l s .  */ 

f l o a t  area, mult iplier ,  cei l ing,  f loor ,  slop; 
i n t  archnodel, i n i t l o t s i ze ,  initCnCount; 

char areaOK; 

/* Open input and output f i l e s  */ 

i f  ( ( fp i  = fopen("area.inf ileI1, l l r l l ) )  == NULL) { 

print f  (I1  f i l e  open f a i l u r e  on area. inf i l e \nM)  ; 

e x i t 0  ; 

3 

i f  ((fp2 = f ~ p e n ( ~ ~ a r e a . o u t f i l e " ,  llwu)) == NULL) C 
printf  ( I 1  f i l e  open f a i l u r e  on area. outf i l e \nU)  ; 

ex i t  () ; 

3 

if ((fp3 = fopen("debugf i l e u ,  "wll)) == NULL) { 

printf(I1 f i l e  open f a i l u r e  on debugfile\nU); 

- ex i t ( ) ;  

3 

...................................................................... 
* * 
* READ NETWORK PARAMETERS * 
* * 

f  scanf ( fp l  , I 4 % * s  %*a %dn , barchModel) ; 
f  scanf ( fp l ,  "%*s X*s %*s Xdtl, k ini t lo ts ize)  ; 



fscanf(fp1, "X*s X*s X*s Xdu, &initCnCount); 

fscanf(fp1, I1X*s X*s X*s Xdu, &patchsize); 

f scanf (fpi , "X*s X*s Xfu , &connectivity) ; 
f scanf (fpl , "X*s X*s X*s Xdu , kadderRegion) ; 
f scanf (fpi , "X*s X*s X*s %dl1, &bits) ; 
f scanf (fpl , "X*s X*s Xfu , &SUBWAFER) ; 
f scanf (fpl, "X*s X*s X*s Xf" , &slop) ; 

/ * Set up the control parameters for the iterative loop */ 

ceiling = 1.0; 
floor = 0.0; 
multiplier = (ceiling + floor) / 2; 
areaOK = 'n'; 

/* Iteratively calculate the size of the largest network that can 

be fit on a wafer. */ 

while (areaOK == 'n') i 
lotsize = initLotSize * multiplier; 
cellcount = initCnCount * multiplier; 
if (archnodel == 1) 
area = ssa0 ; 

else if (archnodel == 2) 
area = ssd0 ; 

printf ("another pass . . .\nM) ; 
if (area > SUBWAFER) ( 
ceiling = multiplier; 
if ((multiplier / 2) <= floor) 

multiplier = (multiplier + floor) / 2; 
else 

multiplier = multiplier / 2; 
1 
else 

if (area < (SUBWAFER * slop) i 



floor = multiplier; 
if ((multiplier * 2) >= ceiling) 
multiplier = (multiplier + ceiling) / 2; 

else 

multiplier = multiplier * 2; 

else 

areaOK = 'yJ; 
1 

...................................................................... 
* * 
* PROGRAM OUTPUT * 
* * 
...................................................................... 

fprintf (fp2, "\dumber of LOT lines = %4d\nu, lotsize) ; 
fprintf (fp2, "Number of neurons = %4d\nN, cellcount ; 
fprintf(fp2,"Number of PNs = %4d\nu, patchcount); 
fprintf(fp2,"Number of connections = %4d\nt1, 

(int)(lotSize * cellcount * connectivity)); 

if (archnodel == 1) ( 

/* Write summary to area.outfile */ 

fprintf (fp2,"\n SSA implementation\nN) ; 
fprintf(fp2,u----------------------------------------- \nu) ; 

fprintf(fp2,"LOT stub count = %4d\nU, lotstubcount); 

fprintf(fp2,"Memory array width = %4.2f\nu, memArrayWidth); 
fprintf(fp2,"Memory array height = %4.2f\nu, memArrayHeight); 
fprintf(fp2,"Interconnect area as pct. of total = %4.2f%%\nU, 

(lotArea / areaused) * 100); 
fprintf (fp2, "Repeater area as a pct . of total = %4.2f %%\nu, 
(repeaterArea / areaused) * 100) ; 



fprintf (fp2, "Area of a single patch = %4.2e sq. microns\nu , 
PNArea) ; 

fprintf (fp2, I1\nPct. of patch area occupied by subsystems : \nu) ; 
fprintf(fp2,fl----------------------------------------- \nu> ; 
fprintf(fp2," - weight memory: X4.2f%X\nU, 
wtHemArea * 100 / PNArea); 
fprintf(fp2," - Compensation circuitry: %4.2fX%\nu, 
compensationArea * 100 / PNArea); 
fprintf (f p2, " - EEPROH controller : X4.2f %%\nl1, 
EEPROMcontroller * 100 / PNArea); 
fprintf(fp2," - WTA circuit: X4.2f%%\nu, 
wtaArea * a00 / PNArea); 
fprintf (fp2, " - PN output : X4. 2fXX\nu, 
PNoutput * 100 / PNArea); 

/* Write summary to area.outf ile */ 

fprintf (fp2,I1\n SSD implementation\nN); 
fprintf(fp2,"----------------------------------------- \nu 1 ; 

fprintf(fp2,"PN area as pct. of total = %4.2f%%\nI1, 
(patchcount * PNArea / areausedl * 100); 
fprintf (f p2, "Interconnect area as pct . of total = %4.2f %%\nll, 
(xConnectArea / areausedl * 100) ; 
fprintf (fp2,I1Side dimension of a single square PN = %4.2f 
milli..meters\nll, PNArea / 1e6) ; 
fprintf(fp2,"Width of encoded LOT bus: X3d bits\nu, lotBus); 

fprintf(fp2,I1\nPct. of PN area occupied by subsystems:\nu); 
fprintf(fp2,"----------------------------------------- \n" 1 ; 

kbits = cellSynapseCount * patchsize / 1024.0; 
fprintf(fp2," synapses: X4.2fXX (X4.2f kbits)\n1I, 

wtMemArea * 100 / PNArea, kbits); 
fprintf (fp2, " - address decoders : X4.2f %X\ntb , 
decoderArea * 100 / PNArea); 



fprintf (f p2, " - memory sequencer : %4.2f %%\nu, 
memSequencerArea * 100 / PNArea) ; 
fprintf (fp2 ,I' - register file: %4.2f%%\na1, 
regFileArea * 100 / PNArea); 
fprintf (fp2, - adders : X4. 2fXX\n1*, 
adderArea * addercount * 100 / PNArea); 
fprintf (fp2," - LOT bus I/O area: X4.2f%X\n1l, 
IOArea * 100 / PNArea); 
fprintf(fp2,I1 - threshold/compare unit: %4.2f%%\nMJ 
thresholdcompare * 100 / PNArea); 
fprintf (fp2 ," - PLL: X4.2f%X\nH, 
PLLarea * 100 / PNArea); 
f printf (fp2, la - PN control : X4.2f XX\nal, 
PNcontrolArea * 100 / PNArea) ; 
fprintf (fp2, la Patch Bus : X4.2f %%\nu, 

patchBusArea * 100 / PNArea); 
j 

fprintf (f p2, I1\nPercentage of SUBWAFER occupied = X4.2f %%\nI1, 
(areaused / SUBWAFER) * 100); 

float ssa0 

/* Function to calculate and return the area required for the ssa 

architecture (i. e. , a fully analog implementation of the SS 
architecture, based on analog EEPROH weight memory and analog 

computation). 

Last revision: 5 April 1991 */ 

/* Calculate area of each of the blocks that compose an analog PN: 



- EEPROM weight memory array, including hi-voltage generation 
for programming and erasing 

- analog array compensation 
- WTA circuit 
- PN control, learning, PN state 
- PN output unit */ 

/* The width of each PN is set by the width of the memory array. 
The inter-cell pitch set to be equal to the width of a single 

cell (which is equal to the square root of the area of a single 

cell). The memory array is very sparse, so most of this area 

is empty. */ 

/* 8810tStubCount" is the number of LOT lines that are contacted by 
the cells in the patch. This is a function of the patch 

connectivity and the number of cells in the patch. */ 

lotstubcount = 
lotsize * (1.0 - power((1.0 - connectivity), (f1oat)patchSize)); 

memArrayWidth = lotstubcount * sqrt ( (doub1e)EEPROMcell) ; 
memArrayHeight = patchsize * sqrt((double)EEPROHcell);. 

/* Calculate area of each PN's EEPROU weight memory and hi-V generation 

circuit. Hi-voltage circuit area model (20% of synapse area) is based 

on die photographs of commercial flash EEPROM chips. */  

hiVcktArea = lotsize * connectivity * patchsize * EEPROHcell * 0.2; 
utMemArea = mdrrayWidth * memArrayHeight + hiVcktArea; 

/* The compensation circuitry required by each patch is assumed to be 
the following: a dummy synapse column, an ADC, and a DAC. 
The sum of their areas constitutes the compensation area. */ 

compensationArea = memArrayWidth * sqrt(EEPROUcel1) + DAC + ADC; 

wtaArea = WTA * patchsize; /*  winner-take-all circuit */ 
PNoutput = obCellArea * patchsize; 



PNArea = utMemArea + compensationArea + wtaArea + EEPROMcontroller 

+ PNoutput; 

/* Chip interconnect area is equal t o  the  product of LOT length and 

width. The length is the  product of the  number of patches (every 

patch must be reached by the  LOT) and t h e  width of each patch. 

Width is  simply the  product of LOT s i z e  and metal p i tch .  */ 

/* A s ignal  repeater  is used every 10 patches t o  boost the  LOT. */ 

repeaterArea = patchcount / 10 * l o t s i z e  * repeater;  

areaused = lotArea + repeaterArea + (PNArea * patchcount); 

return(areaUsed); 

> 

f l o a t  s a d 0  

/* Function t o  ca lcula te  and re turn  the  area  required f o r  implementing 

the  SSD archi tec ture  ( d i g i t a l  implementation of the  SS archi tec ture) .  

*/ 
< 
/* A PI is composed of:  

- SRM weight memory & support c i r c u i t r y  (sense amps, buffers ,  e t c . )  

- LOT address decoders (big PLAs) 

- Memory sequencer 

- Digi ta l  adder(s) 

- Register f i l e  (an accumulator f o r  every c e l l )  

- Threshold compare un i t  



patchcount = cellcount / patchsize; 
lotBus = logz(2.0, (f1oat)cellCount); /* Width of the encoded LOT */ 
addercount = patchsize / adderRegion; /* adders per PN */ 
cellSynapseCount = lotsize * connectivity; 

- niscellaneous registers in the data path 
- PN controller (includes learning state machine) 
- PLL clock generator 

First, compute network--wide information: the size of the LOT, the 

number of PNs, the number of adders required per PN, and the number 

of weight memory sites (synapses) per cell. */ 

/* Calculate the area of weight memory, LOT decoders, and 

support circuits */ 

wtMemWidth = bits + 1; 
wtHemArea = cellsynapsecount * wtMemWidth * SRAMcell * patchsize 

* 1.5; 

decoderArea = patchsize * addrDecoder(logz(2.0, (float)lotBus), 

cellSynapseCount, 0.8); 

/* The memory sequencer is composed of a shift register for 

sequentially addressing each memory location. The shift 

register's length is equal to the number of connections per 

cell (cellSynapseCount). Device density for the registers 

is slightly higher than for other circuits. */ 

memSequencerArea = cellSynapseCount * DFF * 0.75 * deviceDensity; 

/* Calculate the area of the processor OUTSIDE the weight 

memory */ 

IOArea = IOCell * lotBus; /* One I/O cell per LOT line */ 

/* Assume each adder is twice as wide as a synaptic wt. */ 



adderwidth = 2 * bits; 
csaMuxCount = 3.5 * bits; 
adderArea = ((twoBitcsa * adderwidth / 2) + (csaHuxCount * mux) + 

(2 * DFF * adderwidth)) * deviceDensity; 

/* The register file contains a register for every cell in the 

PI. Dual-ported register file, which wipes out the density 

advantage of the very-regular registers. */ 

regFileArea = (wtMemWidth * 2) * reg * deviceDensity * patchsize; 
miscRegArea = (wtMemWidth * 2) * reg * deviceDensity * 3; 

/* The threshold compare unit contains logic to compare a 

binary value against various threshold values, and to 

compute the winner-take-all selection. Assume it is as large 

as a single adder. */ 

thresholdcompare = adderArea; 
dataPaturea = IOArea + (addercount * adderArea) + thresholdcompare 

+ regFileArea + miscRegArea; 

/* Each phase--locked loop (one per PN) requires approximately 

220 transistors to implement. */ 

PLLarea = 220 * deviceDensity; 

/* Assume that the area of the PN controller is equal to 1/8th 

the area of the PNJ s data path. */ 

PNcontrolArea = dataPathArea / 8.0 ; 
PNArea = wtMemArea + decoderArea + memSequencerArea + dataPaturea 

+ PNcontrolArea + PLLarea; 

xConnectArea = lotBur * metalpitch * aqrt (PNArea) * patchcount ; 



float PLA(inputs, outputs, width) 

/*  Return an estimate of silicon area (in square microns) of a PLA */ 

int inputs, outputs, width; 

C 
float area; 

area = (45 + (8 * width) * (inputs) + (5 * width) * (outputs)) * 
((58 * width) + (5.3 * width) * inputs) * 0.85; 

return(area) ; 

3 

float addrDecoder(LOTinputs, synapsesPerCn, linewidth) 

/* Procedure to estimate the area of a PLA-like address decoder */ 

int LOTinputs, synapsesPerCn; 

float linewidth ; 

float height, width, area, buffersize, perimeter; 

perimeter = 10.0 * linewidth; 
buffersize = 27.0 * linewidth; 
height = perimeter + buffersize + synapsesPerCn * 4 * linewidth; 
width = perimeter + buffersize + LOTinputs * 7.0 * linewidth; 
area = height * width; 
return(area1; 



int logz(z, x) 

/* Return the (ceiling) value of the logarithm to the base z of x */ 

6 f loat  z ,  x; 

C 
double y; 

y = log(x) / log(z) ; 
i f  ((y - ( intly) < 0.0001) /* i . e . ,  i f  y i s  an integer */ 

e lse  

f loat  power(x, y) 

/* Raise x to  the power y; x and y must be floating point 
numbers. */ 

f loat  x,  y;  
C 

f loat  2; 
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