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ABSTRACT

Implementation Limits for Artificial

Neural Networks

Thomas Baker

Oregon Graduate Institute of Science and Technology, 1990

Supervising Professor: Daniel Hammerstrom

Before artificial neural network applications become common there must be

inexpensive hardware that will allow large networks to be run in real time.

It is uncertain how large networks will do when constrained to implementa-

tions on architectures of current technology. Some tradeoffs must be made

when the network models are implemented efficiently. Three popular

artificial neural network models are analysed. This paper discusses the

effects on performance when the models are modified for efficient hardware

implementation.

This research supported in part by SRC grant 86-10-097.
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CHAPTER 1

Introd uction

Recent research has shown that artificial neural networks (ANNs) are a

promising solution to many applications that are difficult for conventional

algorithms. The parallel distributed processing models are a radical depar-

ture from previous artificial intelligence solutions. Instead of processing

symbolic data, the A1l\fNalgorithms use highly parallel computation to pro-

vide problem solutions. Because the ANN models are based on biologically

inspired models, they promise to do tasks that are natural for humans but

difficult for current computers.

Although the ANN models are biologically inspired, most are not accu-

rate simulations of real neural processes. Simulating the bio-electrical

responses of neurons takes a prohibitive amount of CPU time. Compromises

must be made for ANN simulators that run on digital computers. Instead of

reverse engineering the brain, the ANN models try to achieve similar results

with current computational technology.
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The ANN research community needs computer hardware that allows

faster implementation of ANN models than is currently available. Simulat-

ing ANN's on current hardware is slow because of the large number of com-

putations involved. Research is bound by the time limits that current com-

puters place on ANN simulations. Researchers currently cannot simulate

more than a few thousand neurons because the execution time of larger net-

works is too long. Many authorities believe that the models will not be use-

ful until large networks are implemented ( > 104 neurons)[l]. Hardware

must be created that will execute ANN models in real time before many use-

ful applications can be developed.

This thesis analyzes whether ANN models can be implemented

efficiently with current digital technology. Analog processors are not con-

sidered because the precision of memory storage is currently insufficient for

the learning algorithms. However, many of the issues that are discussed

apply to both analog and digital computers.

There are many tradeoffs that must be made when an algorithm is

mapped to a hardware architecture. Some changes that make ANN models

run faster on digital hardware negatively affect the behavior of the net-

works. The tradeoffs should be considered before ANN architectures are
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designed. This thesis describes what important concessions must be made,

and what the performance effects are.

Most ANN models were not desi,gned for efficient hardware implementa-

tion. The mathematical models are created by researchers that are not fam-

iliar with architecture design problems. Many simulations use double preci-

sion calculations that are expensive to implement in a highly parallel archi-

tecture. Architectures that use limited precision calculations can be made

smaller and faster.

To have fast execution of the ANN models, the algorithms must be

mapped to a more efficient architecture. Current technology cannot emulate

fully connected communication and high precision computation at the speeds

required for real time execution. With fully connected communication, every

neuron in one group sends a message to every neuron in another group. The

planar nature of current silicon technology limits the number of dedicated

connections a parallel processing architecture can have [1]. The use of high

precision computation requires relatively large and expensive processors.

Simpler processors can be made smaller, so that more processors can be

implemented within the same silicon area.
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The research that this thesis describes answers the question of how

some of the ANN models can be changed to allow hardware implementation.

The models are analyzed, and some of the areas that prevent the models

from being implem"ented are discussed. Some possible solutions to the prob-

lerns that inhibit fast execution are also presented. For each possible solu-

tion, a simulation has been made to determine the effects on the perfor-

mance and effectiveness of the resulting ANN. From the simulation results,

decisions can be made whether the solutions are effective or not.

There are many tradeoffs that must be made when deviating from the

theoretical basis of most ANN models. The main emphasis of this research

is how the algorithm's performance is affected when modifications are made.

The models sometimes cease to work effectively, but usually there are

changes that will allow hardware implementation. Not all of the

modification results are successful. Sometimes there is some degree of

improvement by one measure, and a loss of performance by another meas-

ure. This thesis should help a computer architect make intelligent decisions

about what features must be included in an ANN hardware implementation.
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CHAPTER 2

ANN Basics

Before specific models can be analyzed, one should have an understand-

ing of ANN computation. Without an understanding of the basics of ANN

problem solving, the analysis of the models will be difficult to follow. Some

of the abstract ideas behind the mathematics of the ANN algorithms will be

explained in this chapter.

In order to discuss what functions the networks perform, the internal

workings of the network will be initially ignored. Instead, the external

events will be examined. Think of the network as a function that takes an

input, and produces an output. The set of possible input values is called the

domain, and the output values are the range. If the domain is larger than

the range, then there is a gain of information. In other words, the function

has categorized a collection of input values to a smaller set of output values.

The function that is performed by the network is called a mapping from the

domain to the range.
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The strong points of ANNs are parallelism, generalization, and fault

tolerance. The mapping is performed by a collection of many simple proces-

sors. The advantage of using many simple processors is that much of the

computation can be done simultaneously by the separate processors. In con-

ventional computer systems, the program must have a specific response to

every input in the domain. If an unexpected input occurs, the results may

be undesirable. ANN networks are able to produce a mapping of inputs

that were not explicitly provided by the programmer. The network will pro-

duce a 'best match' solution based on the information available. Producing

a good result from previously unseen inputs is called generalization. The

networks are also fault tolerant because they perform well if a few of the

processors are lost. Some quality of the mapping is lost, but the loss is

small compared to a conventional architecture. Conventional architectures

are not fault tolerant because a loss of functionality of one of its com-

ponents usually results in a complete failure of the device.

2.1. High Dimensional Spaces

In order to describe the mappings that the ANNs do, we must discuss

the characteristics of the individual components. Many features of an ANN

can be defined as high dimensional spaces. The best way to describe the
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workings of a high dimensional space is to explain the analogy in a low

dimensional space, and then extend the model to higher dimensions.

Consider an equation with two variables x and y, where each variable

is bounded by finite limits. If a rectangle is drawn on a sheet of graph paper

with the sides of the rectangle drawn on the upper and lower limits of the

variables, then the area inside the rectangle is the space of the variables.

The space of a set of variables is the region that can be defined by all the

possible values of the variables within the specified bounds. We say that the

space of these particular variables has two dimensions. The number of

different variables defines the dimension of the space. If we add another

variable z that indicates the height above the paper, then the space has

three dimensions. We can imagine a box that surrounds the bounds of the

three dimensional space.

.As more variables are put into an equation, the higher the dimensional-

ity will be. A space with a large number of dimensions is often called a

hyperspace. The prefix hyper refers to mathematical objects that have an

arbitrary dimension, often the dimensions are greater than three. A system

with n variables is called an n-space. It is difficult to visualize spaces with

more than three dimensions, but many of the spaces that we will examine
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have many more dimensions than three. The best way to understand how

an equation affects a hyperspace is to reduce the dimensionality of the space

so that the effects can be visualized. Even if we can not visualize a hyper-

space, we can understand the effects of an equation by extrapolating an

understanding of a low dimensional space. In the explanation of the ANN

models that follow, the algorithms are described in a small dimensional

space so that the effects of the equations can be better understood.

In this thesis two types of dimensions are used in a space, binary and

continuous. A binary dimension (or variable) only has two possible values

(x E R), and theoretically there are an infinite number of values that the

dimension can have. Of course, the computer representation of a continuous

space must be quantified to a finite number of values.

N Dimensional Objects

The shape of a space is defined by the values that describe the space.

Many mathematical objects that are defined in 3-space (our Cartesian

(x E {a,,B}). The values of a binary variable are usually zero and one

(x E {O,l}), but some binary variables have different val ues (ex.

x E {-l,+l}). A continuous dimension (or variable) has a real value
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world) can be extrapolated for a hyperspace. For example, a hypercube has

all of the properties of a normal cube except that it can have any number of

dimensions. All of the edges of a hypercube have the same length, and all of

the dimensions are orthogonal to each other. Consider a three dimensional

binary space, and each dimension can have the values of zero and one. The

shape of the space is a 3-cube with each edge having a length of one. The

space is only on the corners of the cube, because the dimensions cannot have

values between zero and one. Adding another dimension to the space

creates a 4-cube. It is difficult to visualize a 4-cube, but one can imagine its

properties by thinking in terms of a 3-cube.

A hypersphere is a space with an arbitrary number of dimensions that

has the same properties as a sphere. All of the points on the surface of a

hypersphere are the same distance from the origin. The surface of a hyper-

sphere is called a hypersurface. A hypersurface usually has one less dimen-

sion than the space that it is in. For example, the surface of a sphere has

two dimensions. Consider the surface of a globe, the dimensions are

north/south and east/west. One can not go in or out of the surface of the

globe, even though the surface is curved in 3-space. An important type of

hypersurface is a hyperplane. A hyperplane is a hypersurface that is fiat or

linear. The sides of a hypercube are hyperplanes.
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Vectors

A point in a space is defined by a vector. A vector that defines a point

in an n-space has n components, one component for each dimension in the

space (X = {xo,x 1"..,xn-1}). The values in the vector describe the position

along each coordinate of the space. In the above example of the two dimen-

sional space, a two valued vector would define a point on the graph paper

within the rectangle. One value of the vector would indicate the distance in

the x dimension, and the other value would indicate the distance in the y

dimension. Vectors can be either absolute or relative. An absolute vector

refers to the position with respect to the origin of the space. A relative vec-

tor uses another position as a starting point. Relative vectors often are used

when describing how much to change the current position in the space.

The ANN algorithms map an input vector to an output vector. In other

words, the mapping done by an ANN is from a point in the input space to a

point in the output space. For example, consider trying to map the problem:

{

o if xO*xl < 10

f(xO,Xl) = 1 if Xo*x1> 10'

Where 0 < Xo'X1 <10. The input space has two dimensions and is continu-

(2.1)

ous, and the output space has one dimension and is binary. vVe can
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visualize this mapping if we have a two dimensional graph with the axes of

the graph being the input vector and a line drawn on the graph being the

dividing line between the binary values of the output.

Many AL~N algorithms do not initially perform the desired function.

Some problems are too complex to analytically define the mapping. Quite

often there is an algorithm that allows the network to learn the correct

mapping. In order to learn the proper mapping there must be a measure of

correctness, or an indication of the amount of error in the output vector.

The difference between the desired mapping and the actual mapping is

called the error space. The error space has the same dimension as the out-

put space. An objective of the ANN learning algorithms is to find the lowest

point in the error space. If the algorithm can find the origin of the error

space, then a perfect mapping has been found.

2.2. ANN Computation

Now that we have an idea what ANNs do, we can look at how they do

it. Most ANN algorithms are variations of one simple computational model.

The calculations of the system are distributed across a network of many

independent artificial neurons. The artificial neurons, or connection nodes

(CNs), are connected to each other with variable connection strengths. The
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mapping of the network is contained in the connections between the nodes,

not in the control flow of the processors. The discussion of general ANN

models will begin with a description of the computation of the individual

CNs, followed by a description of how .the interconnections between the

nodes affect the network, and how groups of nodes work together. Finally,

different ways in which the connection strengths can be modified will be

explained.

A Single Node

The calculation of the output of an ANN processor is known as the

activation function. A good way to explain the functionality of the proces-

sors is to describe it in the terms of some adaptive signal processing theories.

The ANN models have used much of the signal processing computation as a

theoretical foundation. The signal processing analogy for the ANN node is

the linear combiner[2]. The linear combiner is a simple sum of products pro-

cessor. The processor has an input vector (X), and a weight vector (W).

The weights define the connection strength between the inputs and the pro-

cessing node. The calculation of the output of a linear combiner with k

inputs is



13

k-l

o = ~X.W..~ I I (2.2)
i-O

Where x. is the value of input i, and w. is the connection strength betweenI I

input i and the linear combiner. As with the linear combiner, the sum of

the inputs times the weights is the basis for the computation of most ANN

processors.

The linear combiner is used to define a hyperplane that divides the

input space into two regions. The hyperplane is the surface where the out-

put of the linear combiner equals zero. The weight of each connection con-

trois the slope of the hyperplane along the dimension of the corresponding

input. If the weight is large then the input has a big affect on the output of

the node, and if the weight is small then the input is less significant. If the

weight is negative, then the input will inhibit the output of the node.

The function that the linear combiner executes is a linear function. A

linear function can only create a hyperplane. Sometimes it is desirable to

have a node execute a non-linear function. A non-linear function is more

complex than the linear function and can define a hypersurface that curves

through the input space.
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Threshold Function (B=O)

Figure 2.1 - Figure 2.1 A non-linear threshold function.

The most common way to make an ANN node activation function non-

linear is to add a function to the output of the linear combiner. One simple

way is to add a threshold function. A threshold function is often used to

make the output of a node a binary value. If the result of the summation is

above a given value (or threshold) then the output has a value of one. If the

result is lower than the threshold, then the output has a value of zero. We

will call this type of node a threshold element. One disadvantage of the

threshold element is that the error space is not continuous. The output of

the node is either right or wrong, there is no way of determining the amount

of error because a sum that is close to the threshold has the same output as

1.5

1-

f(x) 0.5 -

0

-0.5
3-3
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'One that is far away from the threshold.

In order to have a continuous error space, a continuous non-linear func-

tion is used. One common continuous non-linear function is

1
o =

(2.3)

l+e -c
where C is the result of the linear combiner. Figure 2.2 shows the shape of

t'he non-linear sigmoid function in equation 2.3. In addition to being non-

linear, equation 2.3 has several other useful properties. The upper limit of 0

as C approaches infinity is 1 and the lower limit is 0, although the output

Figure 2.2 - A non-linear squishing function.
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never reaches the limits. Having limits on the output of a node is desirable

because then there are bounds on the space, and bounds on the input space

of the nodes that are connected to it. If the inputs of a node are not

bounded, then a very large value for an input caonsaturate the summation

and cancel out the effect of the other inputs. Another property of equation

2.3 is that it is almost linear when C is close to 0, which provides an almost

linear error space for nodes that have low values for C. So when C is low

then a small variation in the linear combiner output has a large effect on

the output, and when C is large (either positive or negative) then a small

variation of the linear combiner output has little effect on the output of the

node. Equation 2.3 is sometimes called a squishing or sigmoid function

because it makes an infinite input fit into a bounded output space.

There are many types of activation functions that are used with ANN

models, but most of them are based on the linear combiner. Which function

to use depends on the desired properties of the ANN nodes and the network

in general. The specific activation function for each ANN algorithm that is

examined in this thesis will be discussed later. A general understanding of

the computation of the individual nodes is sufficient for understanding how

networks perform their mappings.
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Layers

ANN models often group the nodes into layers. The simplest network

that we will describe has only two layers, an input layer and an output

layer. The nodes of the input layer do not do any computation, they

present the input vector to the network unchanged. The output nodes of

the ANN models examined in this thesis calculate the activation function by

connecting each node in the input layer to each node in the output layer.

The result is a mapping onto the output space. The complexity of the map-

ping done by one layer of a network is limited, because each output activa-

tion function can only define one hypersurface in the input space. A single

hypersurface may not be able to map disconnected regions into the same

classification.

For complex mappings, more than two layers are required. Additional

layers are called hidden layers because they are not accessible to the exter-

nal world. In a three layer network, the hidden layer is connected to the

input layer and the output layer is connected to the hidden layer. The pur-

pose of the hidden layer is to do a partial mapping of the input vector. The

hidden layer reduces the complexity of the input vector by dividing the

input space into regions. Each node in the hidden layer defines a
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hypersurface that splits the input space into two regions. The combination

of all the hypersurfaces defined by the nodes in a hidden layer can be used

to simplify the input space. Theoretically, most mappings can be done by a

network with only one hidden layer[3]. However, in practice it is often use-

ful to use more than one hidden layer. Each hidden layer reduces the com-

plexity of its input space until the space is simple enough to map with the

final output layer.

ANN Learning

The most difficult aspect of making an ANN application is determining

what the weights should be, because the weights contain the mapping of the

network. Each ANN model has a different type of learning algorithm, all of

which try to reduce the error space. The difficulty of the learning functions

are that they must solve the credit assignment problem, which has been a

problem for as long as researchers have tried to make computers learn. In

terms of ANNs, the credit assignment problem concerns determining which

weights contribute to successful solutions and which weights inhibit the net-

work from performing correctly. A learning algorithm modifies the weights,

and may not be modifying the right ones. Determining the credit for hid-

den nodes is particularly difficult, because there is usually no explicit infor-
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mation about what the intermediate activation values should be. The

specific learning algorithms will be discussed later. The discussion in this

section will cover what is learned and the different categories of learning

algorithms.

The ANN algorithms can only learn what is presented to the networks.

A network simulation is presented a set of training data. The learning alga-

rithm then modifies the weights of the network to best map the training

data. Different sets of training data produce different results. If the train-

ing data are chosen improperly, then the network may not learn the desired

mapping. For this reason it is important that the training data be chosen

carefully. The mapping that is learned will usually be a representation of

the input distribution of the training set, and may not extrapolate well to

new data that are not in the training set.

Some ANN learning algorithms require that a training vector is

presented along with the input vector. If the training vector is the desired

output, then the weight modification function is a supervised learning alga-

rithm. With supervised learning there is a well defined error space. One of

the problems with supervised learning is that the correct mapping for a

problem might not be known. Other learning algorithms just have a global
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value for correctness, which is called reinforced learning. vVhile reinforced

learning has a simpler error space (right and wrong), the learning algorithms

are more complex. We do not examine any reinforced learning models in

this thesis.

The last type of ANN learning does not have any training input at all,

these algorithms are called unsupervised. Each layer of a network that

implements unsupervised learning attempts to distinguish features of its

input space. The learning algorithm uses an internally generated error

measure to modify the weights. A network that is not supervised must have

an external algorithm if a specific input-output mapping is desired. Without

a training signal, the network has no concept of what the desired output

space is. Unsupervised and supervised learning algorithms are sometimes

used together[4]. The unsupervised layer can be used to reduce the complex-

ity of the input space, and the supervised layers use the output of the unsu-

pervised layer to make the final mapping to the output space.



21

CHAPTER 3

An Artificial Neural Network Architecture

The goal of the Cognitive Architecture Project (CAP) at the Oregon

Graduate Institute is to create wafer scale neurocomputers[S]. There are

many architectural issues that must be resolved before our goal can be real-

ized. Some of the research by other members of the CAP group involve

exploring the problems of building a massively parallel system. The research

in this thesis is concerned with some of the performance tradeoffs that occur

when ANN algorithms are approximated with silicon implementations. This

chapter will discuss the relationship between architecture issues and ANN

algorithm issues.

It is not the purpose of this thesis to design a computer architecture

that will run ANN models. However, there must be a general target archi-

tecture to simulate. The model architecture must be general enough to emu-

late different types of ANN algorithms. The architectural design issues must

be examined carefully or the simulation results will have little meaning.
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The main focus of this chapter is to discuss which computer architec-

tures are best suited for executing ANN models. Several factors suggest that

some type of parallel architecture is a good solution. Many of the ANN

models simulate distributed nodes, with each node executing independently

of the other nodes. The ANN nodes can operate in parallel. Although the

individual activation functions are usually simple, there is a large number of

computations required to simulate an entire network because of the number

of nodes in a network. Because of the need for a large number of computa-

tions to execute the algorithms, and the ability to execute in parallel, a

parallel architecture is a natural solution for an ANN system.

CNs vs. PNs

The distinction must be made between Connection Nodes (CNs) and

Processor Nodes (PNs). A CN refers to an artificial neuron as discussed in

the previous chapter. The information used to define the mapping per-

formed by an ANN is contained in the connections between the CNs. A PN

is a single processor in a computer system. A PN is normally one of many

cooperating processors. The relationship between CNs and PNs depends on

the ANN network structure and the computer architecture. At one extreme,

all CNs can be processed by a single PN, which is the way most ANN simu-
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lators are implemented. If there are more CNs in the ANN than there are

available PNs, then the PNs must multiplex the CNs. At the other extreme,

multiple PNs can process the output of a single CN[6]. The latter extreme is

used by systems that have very simple PNs. Theoretically, complete paral-

lelism can be obtained by using one PN per connection. However, implemen-

tation issues restrict the amount of parallelism that is practical. Real neu-

rons are able to have three dimensional connectivity, while current silicon

implementations are limited to two dimensions.

When considering the individual PNs that will make up the parallel

architecture, a major concern is the size of each PN. Any PN architecture

requires a finite amount of space. There is a tradeoff that must be made

between the size of the individual PNs and the number of PNs that can fit

into the system. For example, floating point adders and multipliers are gen-

erally large compared to equivalent integer units, but a particular applica-

tion may require the dynamic range of values that only a floating point

representation can provide. So the architect must use care when deciding

what capabilities should be provided by the PNs.

Many ANN researchers find analog computation appealing[7]. Analog

arithmetic units can be made smaller and faster than digital hardware, but
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there are also disadvantages to using analog computation. Current analog

technology is limited by the precision that can be accurately represented.

Analog data storage is also unreliable for long periods of time due to the

thermal properties of silicon. Analog weights tend to decay when used in

the normal temperature ranges. For these reasons, digital integer calcula-

tions are used to simulate the ANN algorithms. However, the simulation

results should apply to analog calculations if the technology permits the pre-

cision specified in the results.

The PN Model

The PN architecture that is assumed in this thesis is a simple but fast

digital processor. Each PN will have an integer adder and a multiplier that

can execute in parallel. With parallel addition and multiplication the PNs

can sum the result of each connection every clock cycle. The execution of

multiply and accumulate (MAC) operations every clock cycle is common for

current digital signal processors. The MAC operation is the calculation per-

formed by the linear combiner (equation 2.2). The PN architecture can cal-

culate one connection (input times weight) per clock cycle. It is also

assumed that the simulated processor has the capability to perform other

operations. When estimating the execution of the hardware, every operation
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can occur in one clock cycle. For the simulations described in this thesis,

there is one PN for every CN, so that all the CNs in a particular layer can

be calculated simultaneously.

The proposed PN architecture is very similar to current Digital Signal

Processor (DSP) technology. One of the primary uses for modern DSP chips

are to execute parallel MAC operations. There is also enough functionality

on a DSP processor to perform most general purpose operations. It is

assumed that the proposed PN architecture has the functionality to perform

whatever simple digital operations are required by the ANN algorithm.

However, if an ANN algorithm requires an operation that is expensive to

implement in silicon, an attempt will be made to modify the algorithm so

that the PN architecture can remain simple. It is also assumed that the

arithmetic units have enough precision to perform the algorithms to be dis-

cussed. Attempts will be made to determine how much precision is required

by the arithmetic units of the PNs. Each PN will also have internal regis-

ters for storing intermediate calculations, and local memory for weight

storage.

The correct selection of which parallel architecture to use is a difficult

problem. The major drawback to silicon implementations of ANN models is
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that a processing node must send messages to many other nodes. Mapping

the highly connected networks to a planer representation is not practical

with one (or more) electrical circuit per connection [8]. Other members of

the CAP group have produced workable solutions to the connectivity prob-

lem by multiplexing the information passed between processors [9]. This

thesis is not concerned with the method of transferring the connection infor-

mation, rather it will be assumed that a suitable method is available. There

are many computer network topologies that can provide inter-PN communi-

cation.
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CHAPTER 4

The CAPsim Simulation Library

Until special hardware is created for ANNs, the algorithms must be

simulated on conventional architectures. The target architectures and

which ANN algorithms are implemented are important factors when select-

ing or designing a simulator. There are many types of ANN simulators that

have been designed by various researchers. Each simulator has advantages

and disadvantages. Some simulators were made to run specific ANN alga-

rithms, while other simulators were made to run on a particular computer

architecture. There are also simulators that are designed to run any ANN

algorithm on a wide variety of computers. The hardware or algorithm

specific simulators are usually faster because they are optimized for the par-

ticular implementation, however optimization limits the portability of the

simulators. General purpose simulators are more portable, but they are usu-

ally less efficient.

The research of this thesis requires a simulator that has flexibility and

speed. The simulator must be able to execute several different ANN
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~algorithms. However, the algorithms have similar characteristics. The algo-

rithms analyzed in this thesis have the nodes grouped in layers, and all of

the networks have at least two layers. Each node also receives input from

every node in the previous layer, and there are no connections between

nodes in the same layer. The above restrictions to ANN algorithms allow

some optimization of the simulator, while these optimizations may restrict

the simulator from efficiently executing algorithms that do not have the

.a.bove connectivity requirements.

The simulator must also be flexible in the type of computation that is

simulated. This thesis compares the affects of limited precision integer com-

:putation with floating point computation. The simulator must be able to

run the same applications using both types of computation, and it should

not be too difficult to switch between the two data types. The fact that the

integer precision must be adjustable adds complication. The integers must

represent decimal values in a fixed point representation. Every calculation

that is made must adjust the results so that the binary point is in the

proper location.

The simulator must be as fast as possible considering the restrictions

discussed above. Since the nodes are grouped in layers with full connectivity
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between layers, the activation values and weights can be stored as linear

arrays. With the data stored linearly, the calculation of the activation

values can be vector operations. Although the simulator does not run on a

vector processor, the code can be written to run faster than if the layers

were not fully connected.

CAPsim

At the time that the research for this thesis began there were no avail-

able simulators that met the above requirements, so the CAPsim library was

created. CAPsim is an ANN simulator library. CAPsim is not a single net-

work simulator, nor is it a program that allows one to dynamically create

networks and topologies. CAPsim is a library of simulator modules that can

be used to create an ANN application. The CAPsim library consists of

many useful building blocks for neural network simulators. The main pur-

pose of CAPsim is to study the effects of hardware implementation on neural

network algorithms. It can also be used to create and simulate ANN appli-

cations.

The two strongest considerations in the design of CAPsim are code

modularity and execution speed. The simulators that are implemented with
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the CAPsim library need to have many simple modules, so that they can be

easily constructed and interfaced cleanly and flexibly. The library should

help the programmer build networks with only a few definition statements.

However, the modularity of the library should not slow down the execution

of the simulations. Most of the execution time for the simulators are spent

in a few small computation loops. Although most of the CAPsim library is

programmed for readability, the computation loops are programmed for

speed.

The C++ programming language was chosen as an implementation

language because of the combination of object oriented language features

and efficient target code. The C++ language is a superset of the C pro-

gramming language. The features of C++ combine the fast execution of the

C language with object oriented paradigms.

One basic data object of the C++ language is the class. A class is a

data structure that has state (data) and a set of operations to be performed

(member functions) on the state. The class construct allows programs to be

built and tested modularly. Normally, the only way that a class's state can

be accessed is through its functions. The member functions of a class can be

programmed and tested independently from the rest of the program. Classes
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are separate software modules that can be used to quickly construct a simu-

lation.

The object feature of inheritance .makes the task of programming

modular code much easier. Inheritance is a way of defining hierarchies of

classes. New classes are derived from an existing class, and the new class

will inherit the same state variables and member functions as the class from

which it was derived. The class that originally defines the code is referred

to as the s'Uperclass, and the class that inherits the characteristics of the

superclass is known as the subclass. Inheritance lets a subclass reuse code

that has already been written for its superclass. The subclass can define

new state variables and member functions, or redefine the member functions

derived from the superclass. For example, a class can be written that will

define the interface protocol between two software modules. The communi-

cation functions can be written once, so that the interface functions do not

have to be rewritten for each new module that is programmed. All classes

that inherit the member functions can use the inherited code to communi-

cate.

A feature of C++ that helps produce fast programs are inline functions.

During the compilation of a program, the code that would normally be
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executed in a procedure is inserted directly into the code. \Nith inline code,

the time consuming task switch (and parameter passing) of a function call is

no longer present. Most of the execution time for the simulators occurs in

calculations in a few loops. lnline functions are used to keep function calls

within these loops to a minimum. The use of inline functions helps make the

code within the calculation loops readable, modular and fast.

The execution time for many of the simulations is from several hours to

several days, so the user interface has been designed for both interactive

execution and batch processing. The emphasis for the user interface is to

provide functions for setting key simulation variables, tracing intermediate

values, and running the simulator. The simulation variables define the alga-

rithm modifications that are to be simulated without the need to recompile

the code. While the simulation executes, trace values are printed periodi-

cally to show the performance of the ANN algorithm. The CAPsim library

makes custom menus and user input functions easy to program so that the

user interface can be tailored to the ANN application.

The class vector is the superclass of all ANN objects in the CAPsim

library. A vector represents one layer in an ANN network. Vector defines

the interface to the values of the nodes in each layer of the network. The
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vector class is really only an interface specification. The member functions

specify how the data which is defined in subclasses of vector are accessed.

The vector class interface is designed as a one-dimensional array that con-

tains the activation values of the nodes in the layer. The member functions

in the vector class define the operations that can be performed on the array.

All ANN application classes inherit the vector class member functions. All

values that are sent between layers of an ANN application use the member

functions that are defined in the vector class. Each application class reads

the values of the layers that it is connected to by using the vector member

functions. Although vector is defined as a one dimension layer, higher dimen-

sion layers can easily be implemented.

Although the vector class defines the interface between the ~l\IN

modules of the simulator, the actual data structures are not defined in vec-

tor. The activation values of the layers are defined in the subclasses

floatVector and integerVector. These classes contain the arrays of values

for the vector. The class floatVector defines an array of type float.

FloatVector is used for most general ANN applications. The class integer-

Vector defines an array of type int, and is used for simulating a hardware

architecture that uses integer arithmetic. The values contained in integer-

Vector are integer representations of fixed point values. When an ANN
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algorithm class is created, it is defined as a subclass of floatVector or

integer Vector.
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CHAPTER 5

Back Propagation

One of the most popular ANN models is the back propagation learning

algorithm. Back propagation was conceived by several different people

independently [10] [11] [12]. The algorithm implements supervised learning

for multilayer networks. The network can have an arbitrary number of

layers, although most applications use three layers. For an N layer net-

work, the first layer is the input layer and layer N is the output layer.

Layers 2 to N-I are the hidden layers, which are not visible to the external

environment. A node in layer n (1 < n < N) receives inputs from every

node in layer n-l. The hidden layers develop internal representations of

the training data. The power of the back propagation algorithm is that it

has a solution to the credit assignment problem discussed in Chapter 2, so

that it can learn complex mappings by using more than one layer.

Each layer produces its output by using the non-linear squishing func-

tion in equation 2.3. Since back propagation is a supervised learning algo-

rithm, the desired outputs must be known for every input vector that is used
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in training the network. The results of layer N (the output layer) are com-

pared with the desired outputs and the weights are modified. Weight

modification is achieved by using the least mean square (LMS)[2] algorithm.

LMS was developed in the 1960's for digital signal processing applications.

LMS was originally used with the linear combiner activation function (equa-

tion 2.2).

Since the linear combiner is a linear function, the error surface is also

linear. The LMS algorithm uses the square of the estimated error surface to

find the direction that the weight should be changed. When the error of a

linear function is squared, the error surface (with respect to the weights)

becomes a hyperparabola. The minimum error (Le. the best mapping) is at

the bottom of the hyperparabola, so the gradient of the squared error sur-

face always indicates the direction of the least error. The weights are itera-

tively modified by using the gradient of the square of the estimated error.

The key insight of the LMS algorithm is that the error of the linear

combiner at any point in input space is a good estimate of the error surface

(E). The gradient of the squared error of the linear combiner (equation 2.2)

is
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oE2
VE2 = - = 0iXj (5.1)

Ow..
I}

where 0i is the error for a node in layer n, wij is the weight between node i

in layer n and node j in layer n-1, and x. is the activation value of node j. }

in layer n-l. For the linear combiner, the error is calculated by the equa-

tion

0. = d. - o. (5.2)I I I

where d. is the desired output and o. is the actual output of a node.I I

To get the gradient of the non-linear function of equation 2.3 which is

used by the back propagation algorithm, the derivative of the squishing

function must also be calculated. The derivative of equation 2.3 is:

1'(0 )=0(1 - 0) (5.3)

where 0 is the output value of a node. By using the calculus chain rule, the

error for a node in the top layer of a back propagation network is found by

OJ = 0j(l - 0j)( dj - OJ) (5.4)

The error for a hidden layer (n) is calculated by multiplying the errors of

the nodes in the layer directly above it (n+1) times the value of the weights

connecting the two layers.

OJ= oj(l-oj)Eok wik. (5.5)

So if there is a strong connection between a hidden node and an output
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node, then the 8 of the output node contributes significantly to the error of

the hidden node.

The weights are iteratively modified in the direction of the error gra-

dient. The weight update equation is:

~wi/ t) = 178ixj+a~wij( t-1) (5.6)

where 17 is a constant that determines the learning rate. The term

a~wij(t-1) is called the momentum, and a is the constant for varying the

amount of momentum that the learning equation uses. The momentum

allows the weight change to accumulate over several input vectors so the

weights that are constantly updated in the same direction can change faster

than if just the gradient is used.

A detailed proof of the back propagation algorithm is given in [12],

where the authors show that the algorithm will always attempt to decrease

the error. However, it is possible for a network to get trapped in local

minima. Local minima are valleys in the error space that have lower values

than neighboring regions, but the local error measure is not the absolute

minimum of the error surface. The gradient of the error surface at a local

minimum is always in the direction of increasing error, so the network would

be drawn towards the bottom of the valley. For high dimension non-linear
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error spaces that occur in a back propagation network, a local mInImUm

could prevent the network from learning the desired mapping. The momen-

tmn term of equation 5.6 helps prevent the network from being trapped in a

local minimum by acting like a low pass filter. Imagine a marble rolling

down the error surface. The marble would be constantly drawn toward the

path of least resistance, but the momentum of the marble would allow it to

escape from small valleys.

There has been a lot written about methods for improving the learning

speed of the back propagation algorithm. Learning is perceived to be slow

because of the iterative nature of the weight updates. For complex prob-

lems, a back propagation network may take a large number of input presen-

tations before a solution is reached. Several modifications use complicated

equations for adaptively modifying the learning rate[13]. Other

modifications attempt to determine the second order derivative to decrease

the number of input presentations required for finding the solution[14] [15].

Although the modifications have improved the learning rate, they have also

burdened the network with extra computation. If the algorithm

modifications decrease the number of input presentations by an order of

magnitude (which is seldom the case) but increase the number of calcula-

tions by an order of magnitude, then there may be a net loss. The actual
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real time execution may be the same, but these modifications often require

functions that would increase the size of the processor that is executing the

algorithm. As discussed previously, our goal is to have many simple proces-

sors instead of a few large processors. The back propagation simulations

used as a reference for this thesis used the standard algorithm as defined in

[12].

Application: Character Recognition

There are two applications that were used for testing the modifications

that were made to the back propagation algorithm. One application was a

character recognition problem. The training set was a set of characters

from eleven different alphabetical fonts taken from the Apple MacIntosh

font set (286 training pairs). The characters are shown in figure 5.1. The

inputs were a twelve by twelve array forming a pixel representation of a sin-

gle character. The position of the character was justified to the top left.

There were twenty-six outputs, one output for each character in the alpha-

bet. The network was required to match the bit map of a character to the

correct output category. There was one hidden layer with thirty nodes.

This application is a non-trivial problem that tests the networks' learning

capacity and the ability to extract the high order features of the input
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space. The network was required to memorize the learning set, generaliza-

tion was not tested. The mapping required of the network was from a

binary input space to a binary output space. Supervised networks of this

type are "normally trained until the maximum error of any single node is

within a given E, for all training vectors. The criteria for convergence of this

problem set was with E equal to 0.4. If a network converges to an Eof 0.4, it

will normally converge to a smaller E if the network is allowed to run longer.

Application: Coordinate Transformation

The second application was a coordinate transformation problem. A

two axis robot arm was simulated. The inputs to the network were the

desired position in Cartesian coordinates, and the outputs were the

corresponding axis positions of the robot arm. Figure 5.2 shows a diagram

of the simualated arm. This simulation mapped a continuous input space in

Cartesian coordinates to a continuous output space in polar coordinates.

The representation of each axis was a problem for this simulation, because

representing a continuous vector with limited precision values restricts the

resolution of the input and output spaces. Even if the nodes had infinite

precision, assigning a single node to each axis would create difficulties that

were not dependent on the problem. Due to the fact that the output nodes
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Figure 5.1 - The character recognition training set

till IJ C D f F H I I K L m n o p Q It S T U U W x y z

A B C 0 E F G H I J K L M N 0 P Q R S T IJVWXYZ

w II S C 0 f F G H I J K L 11 N 0 P Q R $ i U V W X y Z

R B C D E f G H I J K L M N 0 P Q R S T U U W H Y Z

ABC 0 E F G H I J K L M N 0 P Q R S T U V W X Y Z

A8CDEFGHI JKLMNOPQRSTUVWXYZ

A B C 0 E F G H I J " L n H 0 p Q R S T U U U x y Z

ABCD!FGHI J ILMNOPQRS TUVWXYZ

ABCD!FGHI J KL MN9P QRS TUVWXYZ
;i;

AS CDEF GHI 1 KLMNOP <lRS TUVWXYZ

'" , c S Y f 1 , K '< 0 ft q, $ l' U '" WX '1 z
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Figure 5.2 - The coordinate transformation robot arm.

are non-linear, equal amounts of change in the activation value would

require the network to compensate for the non-linearities inherent in the

squishing function. When the output of a CN is near 0.5, a small change in

the weights will cause a large change in the output when that input vector is

presented again. However, when the output of a CN is near 0 or 1, a small

change in the weights will cause almost no change in the output value. For

this reason, the input and output space was distributed among several
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nodes.

The representation that was used for the simulation of the input and

output space of the coordinate transform problem had several nodes for each

axis. The value of each node corresponded to a limited range of the axis it

was assigned to. There were sixteen nodes per axis for the output vector.

The output nodes were grouped so that a cluster of four nodes represented

the full range of one arm axis (360 .). There were four clusters of nodes,

each cluster was rotated so that the range of a node did not correspond

exactly to any other node. The input nodes were similarly distributed for

the Cartesian coordinates, except that there were twenty nodes per axis.

This representation allowed a higher resolution for the axis than any single

node could have. and for any particular point on the axis, there were four

nodes that had ranges that overlapped.

For the coordinate transformation problem, there were a total of forty

input nodes, twenty hidden nodes and thirty-two output nodes. Although the

robot arm simulation allowed full rotation of each axis, the training set was

restricted to a smaller area of the input space. The area restriction was

made so that the network would converge within a reasonable amount of

time. Trying to learn the coordinate transformation for the entire reach of
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the robot arm would take too many training cycles. The problem was con-

strained so that a solution could be found within several hours. The orien-

tation of the arm was also restricted because there may be two possible

robot axis configurations that will put the end of the arm at a point within

the input space. If the arm positions were selected randomly, there could be

two correct output vectors for each input vector. The restriction of having

the elbow axis being always greater that 180 · solved the problem of having

multiple solutions for each input vector. The training set used a random

position for each input presentation. Randomly selecting the training set is

a good test of the generalization characteristics of the network, since the

network cannot memorize the training set. The convergence criteria for this

problem was c < 0.15 for ten consecutive input presentations.

5.1. Limited Precision

Floating point processing units require more silicon area than is feasible

for a highly parallel architecture. For a cost effective solution, the PNs

should have a limited precision integer multiplier and adder. The PNs could

also be an analog processor if the technology provides adequate precision.

As discussed in Chapter 3, many researchers believe that analog processors

are a good architecture for ANN implementations. The important issue is

how much information the back propagation algorithm requires for the
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activation values and weights.

Fixed point computation can be used for limited precision architectures.

The f!.ctivation value of equation 2.3 can be computed by summing the pro-

ducts of the inputs OJ and the weights wij with the parallel multiply accu-

mulate (MAC), and a table lookup can be used for the squishing function.

By using a table lookup, the binary point of the results can be automatically

justified. Because the activation value of each node is always positive and

IE-sSthan one, the binary point will always be to the left of the significant

bits. Our simulations have shown that eight bits of precision are enough for

the activation values of the outputs.

The weights however, commonly grow larger than one, and can have

both positive and negative values. So the binary point for the weights must

be placed within the significant bits. There must also be one bit to

represent the sign of the value. Three bits to the left of the binary point

were used, which limits the weight values to less than eight. The weights of

the floating point simulations sometimes grow larger than eight, but weights

greater than eight do not seem to be required. Examining the weight values

after the successful floating point simulations runs indicates that few

weights actually grow larger that eight, but many weights have values
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between one and eight. In fact, observing the weights of networks that

failed to converge show that some of the weights grew to be very large. In

the limited precision simulations, if a value overflowed it was set to the max-

imum (or minimum) value allowed by the precision.

All of the results presented in this thesis are empirical. There are many

researchers studying the analytical behavior of ANNs, but most of the pub-

lished results have been restricted to linear systems. Non-linear systems are

more difficult to characterize. Although an attempt was made to find the

reason behind the simulation results, a formal analysis is beyond the scope

of this thesis.

Limited Precision Results

The simulation results of limited precision calculations for the character

recognition problem is shown in Table 5.1. Table 5.2 shows the results of

the coordinate transformation problem. In the tables, each value represents

the average number of input presentations for the application to converge.

Each simulation was run with five different sets of initial weights. A floating

point simulation is given for comparison.
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Character Recognition
Floating Point vs. Integer

, Algorithm
Modification

Floating Point
16 Bit Weights

t,

Input
Presentations

36,490
21,340

Table 5.1

The limited precision simulation results show that sixteen total bits of

precision (one sign bit, three bits to the left of the binary point and twelve

bits to the right) does not significantly degrade the performance of the net-

work. The simulations have shown that there is a limit of twelve bits of

weight precision required by the algorithm. The twelve bit limit results from

the fact that individual weight updates in equation 5.6 are small quantities.

Coordinate Transformation Problem

. Floating Point vs. Integer

Algorithm
Modification

Floating Point
16 Bit Weights

Input
Presentations

26,900
14,960

Table 5.2
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The 6. W. can be thought of as a relative vector in the weight space. With aI

limited precision weight space, there is a finite number of quantities that

each weight value can have. The distance between the quantities of a vec-

tor define the precision of the space. If the 6. W;. is smaller than the preci-

sion of the space, then the weights will not change. The network will stop

learning when the weight updates are smaller than the precision of the

weights.

For the back propagation learning algorithm, the small quantities are

created because all of the values that are multiplied to get the 6.wjj are

values less than 1. In fact many of them are small fractions, which creates

a very small 6.w'F The algorithm produces weight updates that are smaller

than can be represented with eight bits to the right of the binary point

(6.wjj < 0.004). Using fewer than eight bits to the right of the binary point

would inhibit learning. The dynamic range of the weights is the cause of the

limit for the number of total bits needed for learning. The learning equation

uses values that require more than eight bits to the right of the binary

point, and the values of weights after the network converges often require

bits to the left of the binary point to drive the outputs of the nodes through

the full range.
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The limited precision simulations required fewer input presentations to

learn the training set than the floating point simulations. It is doubtful that

limited precision simulations learn faster for all training sets. However, exa-

mining the reason that using limited precision simulations improved the per-

formance of these training sets reveals some interesting information about

the learning algorithm. One of the problems with the back propagation

learning rule is that it tends to overlearn the training set. Overlearning

occurs at the end of the training session when the weights are modified even

though the network produces an output that is very close to the desired out-

put. The learning algorithm will continue to reinforce the weights. When

the desired outputs are 0 and 1, the output of the network will never reach

the goals because the sigmoid function (eq. 2.3) never reaches these limits.

So the learning algorithm will continue to increase the weights because the

outputs can never reach the targets. One solution is to set the desired out-

puts at 0.1 and 0.9, which will keep the weights from growing infinitely but

will not prevent the learning algorithm from reinforcing small errors.

A method for preventing the network from overlearning is to stop modi-

fying the weights when the error for a particular input vector is below a cer-

tain value. Then the weights are only changed for input vectors that the

network has not learned correctly. Several researchers have used this
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technique to improve learning time [16]. For the implementation of the lim-

ited precision simulations presented here, the behavior of not updating the

weights in the event of a small error happens automatically. The OjS of

equation 5.4 were stored' as eight bit values. The OjS were stored with the

same precision as the outputs of the hidden layer, because the OjSare sent

on the same communication channel.

0.1
~eSiredU~.9

-0.1
desired = 0.1

0. 0
I

o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Floating point outputs

Figure 5.3 - Floating Point Error
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-0.1
desired = 0.1

o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Integer outputs

Figure 5.4 - Limited Precision error.

Figure 5.3 shows the floating point value for OJ over the range of output

values with targets at 0.1 and 0.9, and figure 5.4 shows how the limited pre-

cision implementation affects the OJ equation. The limited precision network

stops learning when the output value is close to the desired value. To show

that limiting the OJ values when the error is low improves the performance of

a network, the floating point simulations were run with the same constraints

on the error calculation (as shown in figure 5.5). Tables 5.3 and 5.4 indicate
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that limiting the 0i values allows the network to learn with fewer input

presentations. Limiting the 0is caused the floating point implementation of

the network to learn the character recognition problem faster than the lim-

ited precision implementation. However, the limited precision implementa-

tion still learned the coordinate transformation problem faster than the

floating point simulation, indicating that there are other side effects of the

0.1
.................... ." "" "." .. "

desired = 0.9

O.
I

o '.

-0.1

..............

desired = 0.1

o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Floating point outputs with minimum error limits

Figure 5.5 - Floating point error with limits.



54

limited precision implementation that can improve network learning.

One must take care when analyzing the side effects caused by using lim-

ited precision calculations. The results presented here ~how that using lim-

ited precision values can increase the performance of the back propagation

learning algorithm, but the network will not learn faster for all training sets.

If the application requires a small error for convergence, then more precision

must be used in the error calculations. Another factor that must be con-

sidered is that the free parameters of the simulations were optimized for the

limited precision calculations. The learning rate (1]), momentum rate (a),

target values (d=O.l or d=O.9), and number of hidden nodes were adjusted

for minimum convergence time of the limited precision implementation. This

was done because most of the simulations presented in this chapter used lim-

ited precision calculations, and an effort was made to reduce the amount of

simulation time. The floating point simulations may have converged faster

with different parameter values. However, time did not permit exploring the

optimal values for each implementation of the algorithm.
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Character Recognition
Regular Floating Point Ys.
Floating point with 0 limits

Algorithm .
Modification

Input
Presentations

Regular Floating Point
16 Bit Weights
Floating Point with limits

36,490
21,340
20,300

Table 5.3

Coordinate Transformation
Regular Floating Point Ys.
Floating point with 0 limits

Algorithm
Modification

Input
Presentations

Regular Floating Point
16 Bit Weights
Floating Point with limits

26,900
14,960
24,350

Table 5.4

5.2. Sign/Threshold Propagation

Another problem that would make hardware implementation of the

back propagation algorithm difficult is the interprocessor communication

required to execute equation 5.5. The information that must be sent

between processors in all of the other equations can be broadcast (O(n)
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communication complexity) from the originating node to all of the other

nodes. The hidden nodes, however, must receive a unique weight value from

each of the output nodes, which requires point to point messages (O(n2)

communication complexity). The high communication requirements are

because the back propagated error accumulation uses the transpose of the

weight matrix. Each PN has the fan-in weights in its local memory for fast

activation value calculation, and the calculation for the error of a hidden

node (equation 5.5) requires the fan-out weights.

Anderson [17] discovered that the network learning performance can

increase when the sign of the weight was used in equation 5.5 instead of the

actual weight value. Using Anderson's results leads to a useful modification

of the basic algorithm. If the sign of the weights for the connections

between the hidden nodes and the output nodes are kept in the local

memory of the hidden nodes, as well as the output nodes, then the value

only has to be propagated when the sign of the weight changes. The output

nodes can then broadcast their 0 values, and send a point to point message

when the sign of a weight changes. The communication overhead of equa-

tion 5.5 is reduced when this modification is used.
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Character Recognition
Propagation of Sign of the Weights

Algorithm
Modification

Input
Presentations

Execution

Cycles

Limited Precision Standard

Use Sign of Weight
21,340
27,510

60.82M
56.26M

Table 5.5

Table 5.5 shows that there is a performance increase for the character

recognition problem when the propagation of weights is reduced. An esti-

mate has been made of how many clock cycles the target architecture

requires to learn the application. The estimate is based on one clock cycle

per parallel MAC operation, and one clock cycle for all other operations.

Even though the network takes more input presentations to learn the data

when only propagating the sign, there is less execution time. The reduction

in execution time is caused by the fact that there are a lot of cycles required

to back propagate the bjWjj terms. As Table 5.6 indicates, the results for

the coordinate transformation problem are not as good as the character

recognition results.

Anderson's reasoning was that when the weights are small the error

values for the hidden nodes will also be small. At the beginning of the train-
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ing session the weights are normally set to small random values, so learning

will be slow until the weights become large enough to have large error values

for the hidden nodes. If the signs of the weights are used, the error values

for the hidden nodes will be larger. This reasoning may be va:Iid for simple

problems, but more complex problems may require more resolution of the

backward connection. The sign of the weight does not provide very much

resolution for the hidden node error calculation. The magnitude of the

weight is important when determining the contribution of one hidden node

to an output node. If a hidden node is strongly connected to an output node

that has a large error, then it should be reinforced more than a hidden node

that has a weak connection to the same output node. If just the sign of the

weights are used, then the hidden nodes will be reinforced equally if the sign

of the weights are the same.

Coordinate Transformation

Propagation of Sign of the Weights

Algorithm
Modification

Input
Presentations

Execution

Cycles

Limited Precision Standard

Use Sign of Weight
14,960

209,900

45.75M
499.00M

Table 5.6
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As the simulation results in tables 5.5 and 5.6 suggest, Anderson's

modification did not use fewer input presentations to learn the problems. In

fact the learning time for the coordinate transformation simulation was

much worse. The poor performance of the coordinate transformation simu-

lation was due to the fact that the network was required to learn a continu-

ous mapping. Using just the sign of the weight in equation 5.5 restricts the

precision of the OJ calculation. Because the coordinate transformation prob-

lern maps a continuous input space to a continuous output space, it needs

more precision than the character recognition simulation. The algorithm

seems to require more weight resolution than simply using the sign of the

weight. If we use the entire value of the weight and propagate the weight

only when it changes by a certain limit, then we can use greater weight pre-

cision and also use reduced communication. Tables 5.5 and 5.6 show the

reswts of simulations that propagate the weights only when the weight

differed by a certain threshold from the weight that is stored in the hidden

nodes' local memories.

Only propagating weights that have changed by 0.1 has a significant

increase in performance, and the coordinate transformation problem was

also faster with a threshold of 0.3. Generally as the threshold increased, the

number of input presentations required to learn the training set increased.
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Character Recognition
Propagation of Weight After Threshold Change

Algorithm
Modification

Input
Presentations

Execution
Cycles

Limited Precision Standard
Threshold 0.1
Threshold 0.3

21,340
21,050
38,780

60.82M
43.06M
79.31M

Table 5.7

The execution savings of reduced communication was lost when the higher

threshold simulations required too many input presentations. The perfor-

mance increase of using reduced weight propagation is application specific,

and may not be beneficial in all circumstances. The additional cost of

requiring more local memory for the hidden nodes must also be considered.

Another solution would be to calculate the weight changes for the fan-out

weights as well as the fan-in weights. Then the output nodes could broad-

cast the 0" values and the hidden nodes would be able to have an up to date

copy of the weights. The local memory would have to be large because

momentum accumulations of the fan-out weights would also be stored in the

hidden nodes' memories.
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Coordinate Transformation

Propagation of Weight Mter Threshold Change

Algorithm
Modification

Input
Presentations

Execution
Cycles

Limited Precision Standard
Threshold 0.1
Threshold 0.3
Threshold 0.5

14,960
16,820
16,570
20,880

Table 5.8

45.75M
40.14M
39.51M
50.08M

5.3. Sum Weight Changes

Accumulating the weight changes of equation 5.6 before updating the

weights is a common modification to the back propagation algorithm.

Weight change accumulation is similar to the data partitioning method used

by Pomerleau, et. at. [18] when they optimized the back propagation alga-

rithm for execution on the Warp system. Weight accumulation is also used

in the conjugate-gradient optimization technique[19]. Le Cun [20] has sug-

gested that adjusting the weights for every input presentation can create a

stochastic path through the error surface. The D.Wi for each input vector

will have a different vector angle in the weight space. When the weight

changes are accumulated, the path of the gradient descent algorithm tends

to be less efficient if there is redundant information in the training set.
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However, weight change accumulation can improve the execution time

of the algorithm. The only value that needs to be accumulated from equa-

tion 5.6 is the OjXj term. Multiplying the learning constant (17)and adding

the momentum (aD,wjj(t-1)) can be- delayed until the weights are actually

updated. The communication of the error propagation will also be reduced

because the o.w.. values in equation 5.5 are only sent when the weights are, '}

actually updated. The simulation results in Table 5.9 and 5.10 support Ie

Cun's intuition that the accumulation of weight changes requires more input

presentations for the networks to learn. Although, the savings in execution

time would be a motivation to use the weight accumulation modification.

When evaluating the tradeoff between input presentations and execution

time, it would be difficult to ignore the large savings in execution time that

weight accumulation provides.

5.4. Noise

As previously discussed, an effect of using integer computation is that

the weight space is quantized, and the weights can only be adjusted in

discrete increments. It is possible for a weight to get stuck on one value if

the weight changes are not big enough to bypass local minima. Adding ran-

dom noise to the weights can help smooth the weight space. Modifying the
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Character Recognition
Accumulated Weight Change

Algorithm
~fodification

Input
Presentations

Limited Precision Standard

Accumulate 2 Inputs
Accumulate 10 Inputs

21,340
22,650
24,540

Table 5.9

Execution

Cycles

60.82M
39.26M
20.75M

Coordinate Transformation

Accumulated Weight Change

Algorithm
Modification

Input
Presentations

Limited Precision Standard

Accumulate 2 Inputs
Accumulate 10 Inputs

14,960
15,390
18,080

Table 5.10

Execution

Cycles

45.57M
33.65M
26.96M

weights by a small random value, may cause the network to bounce out of a

local minima. Some applications of digital filters use noise to remove bias

from the calculations. This digital filtering technique is called dithering,

which randomly sets the least significant bit of a value. For the research

presented in this thesis noise was inserted into the weight space by randomly

setting the lower n (1<n <4) bits of each weight. It is counter-intuitive to

think that a computation can be improved by noise, but the simulation
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results in Tables 5.11 and 5.12 suggest that the number of input presenta-

tions can be reduced.

The networks were even able to learn with four bits of random noise,

which is less precision than the network needed without noise. The reason

that the network was able to tolerate so much noise is that the ~w.. values
I}

Character Recognition
Effect of Noise on Learning.

Algorithm
Modification

Limited Precision Standard
1 Random Bit
4 Random Bits

Table 5.11

Input
Presentations

21,340
18,250
25,800

Coordinate Transformation

Effect of Noise on Learning.

Algorithm
Modification

Limited Precision Standard
1 Random Bit
4 Random Bits

Table 5.12

Input
Presentations

14,960
10,890
12,100
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were accumulated without noise. The momentum would build up until the

weight change was greater than the noise. Even though the network con-

verges in fewer input presentations, the extra computation of adding the

noise may "increase the execution time of the algorithm:
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CHAPTER 6

Category Learning

There is a class of pattern recognition algorithms that attempt to

divide the input space into well defined regions. Each region will be

represented by a different output node. The ANN model that will be

analyzed in this chapter uses the algorithm that is described in [21]. The

term category learning will be used for the model discussed in this chapter.

Batchelor also published a very similar algorithm for pattern recognition[22].

Category learning is a supervised algorithm that maps an input space into a

binary output space. The output layer should only have one node (class) on

at any time. The output node that is on determines which region (category)

of the input space the input vector is in.

The networks in the category learning model have three layers of nodes.

The first layer presents the input vector to the network. For the category

learning model, the input vector must be normalized to a unit length

(IIXII= 1). For a normalized input vector, the input space is the unit

hypersphere (i.e. for a two dimensional input vector, all of the input points
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lie on a circle of radius 1). The middle layer contains nodes that detect

when an input vector is within a particular region of the input space. The

activation function of the prototype vector is a measure of how close the

input vector is to the values of the weights of the prototype vector. The

third layer has the output nodes that indicate which class (or category) the

input vector is in. The weights between the prototype layer and the output

layer only have the values of 1 and O. Each node in the prototype layer is

assigned to a class. The weight between a prototype and the output that

represents the corresponding class has a value of 1, all other weights are O.

Prototypes

The most important aspect of the category learning algorithm is the

training of the prototype nodes. The activation function for the prototype

gj = 8(Eljw,) (6.1)

where Ij is the value for input j and Wjj is the connection strength between

prototype i and input j. The linear thresholding function (8(x)) is defined

as
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8(x) = {

o if x <B

x-b if x>B
(6.2)

where B is a threshold constant that determines when the prototype will

have a output value greater than 0, and b is a constant that modifies the

output value.

The weights of the prototypes are modified when an incorrect

classification is made. There are two types of incorrect classification. The

first is when the output node that represents a category does not get

activated at the proper time, which occurs when none of the prototypes that

are assigned to the correct output node are activated. A new prototype is

then created with the initial weights

Woo = A.(O)p.., P.. = f. (6.3)Y I Y Y ~

The initial weights of a prototype are set to the value of the current input

vector times a scalar variable (AO( t )). The weights represent a region of the

hypersphere that is centered on the original input vector (J.), and with a}

radius that is determined by \( t) and B. The variable \( t) lengthens the

weight vector beyond the unit hypersphere, and determines the distance

where the activation value for the prototype is zero. The dot product of an

input and the weights of a prototype is equal to the cosine of the angle

between the two vectors times \( t), so adjusting \( t) will vary the radius
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of the activation region for the prototype.

The second type of incorrect classification occurs when a prototype for

the wrong class is activated. A prototype is activated incorrectly when the

input vector for a different class is within the activation radius. The length

variable is then modified by

1
\(t+l)- (6.4)Ep ..f .

11 1

where f. is the jth element of the input vector. The effect of modifying1

\( t) is that the incorrect input vector will lie on the radius of the

prototype's region. With B = 1 in equation 6.2, the prototype will be

activated for all input vectors that are closer than the last incorrectly

classified input vector.

To understand how the category learning algorithm works, consider a

network with three inputs. The normalized input space will lie on a three

dimensional sphere. The first input vector that is presented will define a

point on the surface of the sphere. Since no prototypes have been created, a

new prototype will be put at the location of the input vector. The initial

length variable (\(0)) will define a circle on the surface of the sphere with

the center at the prototype position. If the second input vector is assigned
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to the same category as the first prototype, and the position is within the

circle, then a correct classification has been made and there will be no

modification to the network. If the second input vector is inside the circle,

but it is in a different category, then confusion occ'urs and the length vari-

able of the first prototype will be reduced so that the second input does not

lie within the circle. A new prototype will be allocated for the second input

vector in this case of confusion. A new prototype will also be allocated if

the second input vector is outside the circle of the first prototype.

As new input vectors are presented to the network, new prototypes will

be created and old prototypes will be modified. Eventually the regions of

the prototypes will cover the input space in such a way that correct

classifications are made for all input vectors. One advantage of the

classification model is that learning is much quicker than with gradient

methods such as back propagation. A disadvantage is that it may take

many prototypes to accurately map the regions of the input space, especially

if the regions are close together. Another disadvantage of the category

learning algorithm is that it may not be fault tolerant if implemented in

hardware. Each prototype defines a distinct region of the input space. So if

one prototype fails, the network will not generalize well for the region that

was covered by the faulty prototype. The prototypes have a localized
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representation of the input space as opposed to the distributed representa-

tion of the back propagation network.

The training set used for the shnulations of the category learning model

was the character recognition problem that was described in the previous

chapter (figure 5.1). The inputs were a linear representation of the 12X12

characters, but for this simulation the input vector was normalized. There

were twenty six output classes, one class for each character. The input and

output layers are the same size as in the back propagation solution to the

character recognition problem. New prototypes were created until the net-

work could correctly classify all 286 characters. The simulations were con-

side red complete when a complete epoch was presented without creating a

new prototype and without confusion. A complete epoch must be run after

each network modification because a new prototype may have an input vec-

tor of another class within the default range (\.(0)). Conversely, if the

range of a prototype contains more th~n one input vector for the correct

class, and the range is reduced because of confusion, then the new range

may exclude a previously classified input vector.
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6.1. Limited Precision

The precision limit of the category learning algorithm is different for

each application. Quantization of the normalized inputs causes the unit

hypersphere to have discrete steps. The limit of quantization is due to the

resolution of the angle between vectors of different classes. If the angle

between two vectors is close enough so that the dot product between the

vectors is less than the angle resolution, then the two vectors cannot be

differentiated. The precision limit for an application is dependent on the

number of inputs, the distance between vectors of different classes, and the

distribution of the training set in the input space.

To visualize the quantization of a hypersphere, imagine a globe that

has a grid line for every degree of longitude and latitude, and cities on the

globe are positioned with the resolution of a single degree. If two cities are

closer together than the resolution of the grid, then they will both be

mapped to the same point on the grid. Perhaps Beaverton and Hillsboro

would be given the same position on the globe. If the precision of the map is

increased, then the two cities would be able to have unique locations. So in

this case, the precision required to map the problem is dependent on the dis-

tance between the two closest input vectors that are in different classes.
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To describe the effects of the input space on the precision limit the

character recognition problem will be used as an example. The input vec-

tors are binary vectors that have been normalized. Conceptually it is a

hypercube (the binary vector) that has been mapped onto a hypersphere

(the normalized vector). The resolution of the hypersphere may cause two

neighboring corners of the hypercube to be mapped to the same vector.

Then the category learning algorithm can not tell the difference between two

characters that differ by a single pixel. The mapping of the hypercube to

the hypersphere is only incorrect if vectors of different classes are mapped to

the same location. If the two vectors belong to the same class, then there

will not be an incorrect categorization.

For applications that have a binary input space, the precision is also

dependent on the number of inputs that can be on in the input vector (on =

1, off = 0). So the resolution of the calculations is dependent on the domain

of the training set. To illustrate this point, consider a binary vector of arbi-

trary length. If only one bit is on at any time, then the normalized vector

will be identical to the binary vector. The input vector will be at the inter-

section of the axis of the input dimension on the hypersphere. Only one bit

of resolution is required, since the normalized inputs are binary. If up to

two bits of the binary vector can be on, then the normalized vector can be
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at the midpoint of an arc between two of the axes on the hypersphere.1 Two

bits are required to distinguish between vectors that can have up to two

input values on. The number of bits of precision required for an application

increases logarithmically with the number of input values that can be on.

Three bits of precision will be able to distinguish between vectors with up to

four bits on. If i is the number of bits that can be on in an input vector,

then the normalized vector requires [Iog2(i)l + 1 bits of precision.

Since the character recognition problem has 144 inputs, then the

category learning algorithm could conceivably need nine bits of precision.

However, there are no characters with more than 55 bits on, so six bits of

precision is sufficient. Although the worst case precision can be calculated,

more precision could allow better results because the category learning algo-

rithm would be able to set A with better resolution. A single prototype

would be able to contain more than one input vector of the appropriate

class. For this reason, eight bit weights were used for the simulations. For

real valued input vectors that are being normalized, the required precision is

completely dependent on the training set. As mentioned earlier, the distance

1 Note t.hat the input or a binary vector that is normalized is only in the positive quadrant or the hyper-
sphere. The zero vector is at the center or the hypersphere, and is not a legal input.
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between the two closest vectors that are in different classes will determine

the amount of resolution that is required for an application.

6.2. Threshold Adjustment

One potential problem with implementing an architecture for the

category learning algorithm is that equation 6.4 requires a divide operation.

The hardware for fast addition, subtraction, and multiplication operations

can be easily implemented. The divide operation, however, is relatively slow

in execution speed. Fast divisions may be possible, but not with the limited

silicon area of the target processors that are used in this research. Elimina-

tion of the division calculation in equation 6.4 would speed the prototype

learning. Fortunately, the division operation can be removed with a little

algebra.

In the calculation of the output values for the prototype layer (equa-

tions 6.2, 6.3, and 6.4), the threshold (8) is kept constaqt. If 8 is modified

during learning, instead of the weight variable (>.), then the radius of the

range of a prototype can be adjusted without using a division operation.

The >. term would be made a constant, and 8 would be the variable that is

modified for adjusting the radius of the prototype. With >.= 1, the weight

matrix can be fixed to the value of the input vector that was present when
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the prototype was created. So equation 6.3 is rewritten to be

w.. = p.. = f. (6 5)~ ~ ~ .
Each prototype is given a unique BJt) for modifying the radius of the region

categorized. When an input vector is incorrectly classified by a prototype,

then the radius is adjusted by the equation

Bj(t+l) = 'Ef jWjj (6.6)

When the incorrect input is presented again, the vector will be on the border

of the radius of the prototype and the output value of the prototype will be

o (equation 6.2). The result of removing the weight variable A and modify-

ing the threshold constant B is that the network performs the same as with

original equations, except that there is a potential for faster learning and

less silicon area required for the architecture.

6.3. Binary Input Vectors

One part of the category learning algorithm that makes hardware

implementation difficult is the requirement for normalized inputs. ANN

algorithms use normalized inputs to keep the input vector on the unit hyper-

sphere. All vectors that are on a hypersphere have the same length, which

is the distance between the origin and the surface of the hypersphere. The

advantage of having all input vectors the same length is that two vectors

can be compared by calculating the cosine of the angle between the two
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vectors. The calculation for normalizing a vector is

x.
I

1

[
fX;,

]

2

J-O

Where Ii is the normalized value of the original value xi. A disadvantage of

(6.7)

an algorithm that uses normalized inputs is that the normalization is compu-

tationally expensive, and it is not easily parallelizable.

It is not as effective to normalize binary vectors as it is to normalize

real vectors. It would be desirable to be able to compare binary vectors

without normalization. As discussed above, a binary input space defines a

hypercube. Each binary input vector is located at a corner of the hyper-

cube. For binary vectors, we are no longer comparing the angle between

two different vectors on a hypersphere. Instead we are measuring the dis-

tance between two corners on the hypercube by traversing the edges. The

distance between two vectors is equal to the number of values that are

different.

The distance between binary vectors is often called the hamming dis-

tance. However, if the inputs of the binary input vectors have the domain of

(0,1) equation 6.1 will not provide an accurate distance between two
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different vectors. Consider an unnormalized binary input space with three

inputs. If a prototype was created for the input (1,0,0), then the prototype

would not be able to distinguish between any other input vector that had a

value of 1 for the first element. The weights of the prototype that have a

value of 0 do not contribute to the activation value, so the prototype would

detect a perfect match for input vectors that have the values of

{(1,0,0),(1,1,0),(1,0,1),(1,1,1)}. Another example, taken from the character

recognition problem, is that in many of the fonts the only difference between

an 0 and a Q is the tail of the Q. When the Q is presented as an input, the

prototypes for the 0 will be incorrectly activated.

The category learning algorithm will work if the binary input vectors

(and prototype weights) have a value of (-1,+1). A binary vector with

values of (-1,+1) is called bipolar. The result of equation 6.1 using bipolar

vectors is equal to

(6.8)

where F is the input vector, W;. is the weight vector for prototype i, N is

the dimension of the input space, and H(F, W;) is the hamming distance

between the input vector and the weight vector. The output value of a pro-

totype that perfectly matches an input vector is equal to the number of

values (dimensions) in the input vector. For an input vector that is not a
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perfect match, the output value of the prototype is equal to the number of

values in the input vector minus two times the number of bits that differ.

Using bipolar vectors, the 0 and the Q characters can be distinguished

without normalizing the input vectors. The weights can be represented with

only one bit of precision by converting the 0 bits into a -1 before the calcu-

lation. The precision required for the output values is log2(N)+1, where N

is the number of bits in the input vector. The precision limit is caused by

the fact that the range of the ~:>utputof a prototype is (-N < gj < N). The

prototype will have a value of N for a perfect match, and a value of -N for

an input vector that has no elements in common. An advantage of using

binary vectors is that fast hardware can be small and inexpensive.

Table 6.1 shows the results of the category learning simulations using

floating point, eight bit integer, and bipolar representations. The simula-

tions were run until all input vectors were correctly classified, and there

were no incorrect classifications. The values shown are the number of proto-

types that the simulations used for each category (character). Some

categories, such as the categories for the letter C needed one prototype per

font, while the T category only needed five prototypes to perform correct

classification. The character recognition algorithm is a difficult problem for
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the category learning algorithm because some of the input vectors that are

not in the same class have only two pixels that are different. As Table 6.1

shows, the eight bit integer simulation only needed one more prototype, and

the unnormalized bipolar simulation needed seven extra prototypes to learn

the problem.
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Category Learning.
11 Font Character Recognition Problem.

Character Float Integer Bipolar
A 6 6 8
B 10 10 10
C 11 11 11
D 11 11 11
E 8 8 8
F 8 8 8
G 11 11 11
H 10 10 11
I 6 6 6
J 10 10 9
K 7 7 10
L 7 8 8
M 7 7 8
N 9 9 10
0 11 11 11
P 11 11 11

Q 11 11 11
R 11 11 11
S 8 8 6
T 5 5 5
U 9 9 - 9
V 8 8 8
W 10 10 10
X 8 8 9
Y 7 7 7
Z 6 6 6

Total 227 228 234
Table 6.1
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CHAPTER 7

Kohonen Maps

The last ANN algorithm that will be discussed is Kohonen maps.

Kohonen maps were originally proposed by Tuevo Kohonen [23]. The

Kohonen map is a type of unsupervised learning algorithm. Unsupervised

algorithms do not use a training input to modify the weights. Without any

training signal to use as a measure of correct performance, most unsuper-

vised algorithms minimize an internally generated error measure to extract

features of the input space. Unsupervised networks are often used to create

a representation of the the input vector that has a lower dimension than the

input space. The Kohonen maps' learning algorithm attempts to modify the

weights so that the weight space accurately represents the distribution of

the input training vectors in the input space.

For many applications, the correct input/output mapping may not be

known. In cases where a training signal is not present, unsupervised algo-

rithms may be desirable. An unsupervised algorithm can categorize input

vectors based on the position within the input space. However, an
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unsupervised algorithm can not detect features such as recognizing the the

difference between an 'a' and a 'b' with multiple fonts. For this reason,

unsupervised networks are sometimes used in the first layer of a multilayer

ANN system [4].

Kohonen networks typically have two layers, the input layer and the

output layer. The input layer presents the input vector unchanged, and the

output layer is fully connected to the input layer. The weights of a node in

the Kohonen network define a point in the input space. The calculation of

the activation values of a Kohonen map differs from most ANN models

because it is not based on the linear combiner. The output value of a node

is the Euclidean distance between the input vector and the weight vector.

1

[

N-I

]

2

OJ = ~ (Xj - w,)2
}-o

Where OJis the output value of node i, xj is a value in the input j, and wij

(7.1)

is the weight connecting input j and node i. Equation 7.1 is the geometric

equation that defines the distance between two points in Euclidean space, so

the node that is closest to the input vector will have the lowest output

value.
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The nodes in a Kohonen network have a fixed ordering. The ordering

of the nodes in a network can be defined by an undirected graph of arbi-

trary dimension. Edges between two nodes in a graph define immediate

neighbors. The organization of a layer can be any dimension. A one dimen-

sion layer has the nodes organized in a linear network, and each node {i}

that is not an endpoint has two neighbors {i-I}, and {i+I}. A two dimen-

sional layer has the nodes organized in a mesh, and each non-border node

{m,n} has four neighbors {m-I,n}, {m+l,n}, {m,n-I}, and {m,n+I}.

The learning rule iteratively moves the weights of a node closer to the

input vector. The equation for modifying the weights is given by the equa-

tion

~w.. = a(x. - w..)N (7.2)I] ] I] c.

Where a is the learning rate, and Nc defines which nodes will have the

weights modified. If node y is the node that is closest to the input vector

(min (0 i))' then the value of Nc is

{

I if Iy-ij < 1]
N=

cOif Iy-ij > 1]

Where 1]is the neighborhood variable. Only the nodes within a distance of 1]

(7.3)

from the node 0y modify their weights. The weight update equation (7.2)

moves the point defined by the weights of a node closer to the current input
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vector.

After a training session, the nodes in a Kohonen map should be spread

across the input space. Equatio~ 7.2 moves the weights of a node towards

the input vectors. Equation 7.3 allows the closest node to pull along the

neighboring nodes, while the nodes that are farther away remain in other

areas of the input space. The concentration of nodes on the input space

depends on the input distribution of the training set. If the input vectors

are evenly distributed, then the Kohonen map will be evenly spread across

the input space. If there is not an even distribution of input vectors, then

the Kohonen map will have a heavier concentration of nodes in the areas

where there are more input vectors.

To understand how a Kohonen map works, consider a network that has

a single node. Since there is only one node, it will always be the closest to

the input vector and it will always have its weights modified. Each weight

update will move the point in the input space that is defined by the weight

vector closer to the current input. The effect of equation 7.2 over time is to

move the node toward the mean of the input distribution (not the center of

the input space). However,. if the learning rate (a) is too large, then the

node will be disproportionately closer to the last input vectors presented. In
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fact, if (a = 1.0) then the weights of the node will be equal to the last input

vector presented to the network.

For a network, the behavior of each node is somewhat different than

with just a single node. Early in the training phase, the network will

expand rapidly. For each input presentation, the closest node and its neigh-

bors will move towards the input vector. With a high value for a and TJ,the

nodes will jump around in the input space. However, the topology of the

network will cause the network to take the rough shape of the input distri-

bution. As the learning variables are reduced, the node movement will slow

down, and each node in the network will move toward the mean of a region

in the input distribution. When TJis reduced to zero, each node will only be

influenced by a small subset of the input vectors, and the nodes will move to

the center of a subspace.

Figure 7.1 shows the position of the nodes in a Kohonen network at

different times during the training session. The input vectors have two

dimensions that are random values between 0 and 1. The network is two

dimensional and has sixty four nodes. The topology of the network is a

mesh that has eight nodes in each direction. Lines are drawn between

neighboring nodes. In a typical training session, the learning rate (a) and
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Figure 7.1 - Expansion of a Kohonen map.

the neighborhood (11) are kept relatively large so that the network will
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The neighborhood (17)is normally set to 0 near the end of the training ses-

sion so that each node will move towards the center of a small region of the

input space. The learning rate (a) is set to a small value (:=:::0.01) so that

the nodes will be at the mean of the local region, and not be unfairly

influenced by the last few inputs.

Figure 7.2 shows the network after it has been trained with different

input shapes. In 7.2(a) the input vectors are randomly distributed within a

Figure 7.2 - The Kohonen map network on different input spaces.
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circle, and in 7.2(b) the input vectors are randomly distributed within a

cross. In both simulations that are shown in 7.2, the network has spread out

in the input space.

Figure 7.3 shows a one dimension network that has been trained on

different input distributions. As in the first simulation, the domain of the

inputs is (0,1). Figure 7.3a shows a network that has been trained on an

even input distribution. Figure 7.3b shows a network that has been trained

1

0.8

0.6

0.4

0.2

o
o 0.2 0.4 0.6 0.8

NormalDistribution
1 0 0.2 0.4 0.6 0.8

Gaussian Distribution
1

Figure 7.3 - A Kohonen map network on different input distributions.
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on an input space that has the same domain, but the input vectors have a

higher probability of being in the center of the input space than on the out-

side. The network has learned the input distribution and is more concen-

trated towards. the center of the input space.

7.1. Activation Function

One part of the Kohonen map algorithm that would be hard to imple-

ment in silicon is the calculation of the output values (equation 7.1). As dis-

cussed in the previous chapter, it is difficult to design a fast and small

square root function. Fortunately, several researchers [24] [25] have found

that it is not necessary to actually do the square root calculation for the

Kohonen maps algorithm.

The purpose of the output values is to find the node with the weight

vector that is closest to the input vector. Since the square root function is a

monotonically increasing function, it does not affect the distance comparison

between nodes of a network. The node with the weight vector that is closest

to the input vector will have the lowest value before and after the square

root calculation is made. Equation 7.1 can be rewritten in vector form as

OJ = (X - Wj)2 = X2 - 2XWj + W/. (7.4)

Equation 7.4 can be further reduced by removing the X2 term since it is a
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constant for all outputs (oJ

2
OJ = Wj - 2XWi. (7.5)

A possible speedup in the implementation of equation 7.5 is to calculate the

( W/ ) term only when the weights are modified. This reduces the output

calculations to a constant ( Wi2) minus the two times the linear combiner

function (2~Y~.). However, with a perfectly parallel system (one CN per

PN), there is no speedup with the last optimization because the processors

that are not modifying weights will be idle while the other processors are

calculating the square of the weights.

7.2. Limited Precision

The limits of precision for Kohonen maps are dependent on the domain

of the inputs, the size of the network, and the weight modification calcula-

tion. If the dynamic range of the input values is large, then the weights of

the network may require a high precision to determine the shape of the

input distribution. However, if there are not very many nodes in the net-

work, then the calculations may do well with less precision. As an example,

consider again the degenerate case of a network with only one node. If the

input values are evenly distributed with thirty-two bits of precision, the

node should be able to find the approximate center of the input space with

only sixteen bits of precision. The sixteen significant bits can have zero
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padding to the right, or the size of the input values can be reduced. A net-

work that only has a few nodes should also be able to learn the shape of the

input distribution without requiring much precision. A large network will

require more precision, for reasons similar to that of the category learning

algorithm. If the region of input space that each node maps is small, then

the network will require more precision to distinguish between nodes. If the

resolution of the weight space is not enough to tell two nodes apart, then

the input space will not be correctly mapped.

Another important limit to the precision of the Kohonen map algorithm

is the weight modification algorithm (equation 7.2). If the learning rate (a)

is too high, then the last few input vectors may have too much of an

influence on the network. However, a small learning rate creates a small

weight modification. The distance value that the learning rate is multiplied

by in equation 7.2 (xj - Wjj) is usually small too, because the nodes that are

modified have weight vectors that are close to the input vector. So the

modifications that are made to the weights are normally small values. If

there is not enough precision then the weights will not change, because the

change in weights is a smaller value than the smallest quantity that can be

stored. For the example presented in this chapter, eight bits of precision for

the weights was not enough when 1]=0.01. The weight modifications are less
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Figure 7.1 - A Kohonen map using sixteen bit weights.

than the lowest quantity that an eight bit value can have (~.OO4).

Figure 7.4 indicates that sixteen bits of accuracy was adequate for this

example. With eight bit weights, the network would look like one of the

early frames of Figure 7.1. The weights would stop learning as the learning

rate (a) is reduced. Other input training sets may require more precision

depending on the range of the values, and the number of nodes in the net-

work.

-
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CHAPTER 8

Conclusions

This research has provided a look inside three artificial neural network

algorithms. An attempt was made to explore some of the implementation

limits of the algorithms, and the reasons for the limits. In most cases, suc-

cessful simulations showed that the algorithms could be implemented

efficiently. Even though there were some simulations that were not success-

ful, the knowledge gained from the failures was 'as valuable as the successes.

The results of the research described in this thesis indicate that:

(1) Limited precision calculations can be used for the three ANN algo-

rithms simulated.

(2) The communication overhead of the back propagation algorithm can

be reduced.

(3) The execution time of the back propagation algorithm can be reduced

by summing the weight changes over several input presentations,

even though more input presentations are required for convergence.
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(4) Introducing noise into the weight space can help decrease the number

of input presentations that is required for the back propagation alga-

rithm to converge.

(5) The category learning algorithm can be calculated without the divide

operation.

(6) If the category learning algorithm is given a binary input space, then

binary weights can be used.

(7) The calculations for the distance measure used for the Kohonen self

organizing maps algorithm can be significantly reduced.

Perhaps the most drastic (and the most important) behavior

modification, is the use of limited precision calculations. The simulations

showed that all of the algorithms used in this research could be implemented

with limited precision, fixed point integer calculations. The actual limits of

precision are not clearly defined. It is best to err on the side of too much

precision, rather than risking a failure to implement an application. How-

ever, for all of the algorithms, the simulations indicate that reasonable

hardware implementations can be made.
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Some of the difficulties in implementing the algorithms with hardware

were discussed. In most cases satisfactory solutions were found. Several of

the solutions had equivalent results to the original algorithms, these were

the most satisfactory because they promised a performance increase while

the original theory was preserved. Other solutions modified the behavior of

the algorithms in order to avoid difficulties. The benefits of the performance

increase of the latter modifications must be compared with the possible

negative effects of the behavior differences.

One of the least visible accomplishments of this research is the simula-

tor that has been programmed for ANN experiments. Without this simula-

tor, the amount of programming and computation time would have prohi-

bited the research. Publicly available ANN simulators are normally not

designed for fast execution and easy programming. In fact, many simulators

are not designed for algorithm modification. With the CAPsim simulators

almost all of the algorithm modifications are selectable from the user inter-

face, the only exception is the limited precision computation. Execution of

the simulation would be too slow if the data type was selectable at run time.

A compiler switch was used to determine the computation that was used in

the simulator. So all of the modifications to the simulators were selectable

without changing the source code.
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When considering the modifications presented in this thesis it is impor-

tant to consider the tradeoffs that must be made. The benefits of the alga-

rithm modifications are dependent on how they are applied. For all of the

algorithms, applications can be found that require extreme precision for suc-

cess. However, knowledge of the limits of the algorithm will help the

designer to create working applications.

Although the results are promising, the real test will come when the

algorithms are used for real applications on actual hardware. This research

should be beneficial to hardware architects that are designing ANN systems.

The analysis should also be a help to those who want to create working

applications based on the ANN algorithms given adequate hardware.

There is much research left to be done. The work presented in this

thesis is in no way a comprehensive analysis of ANN algorithms. There are

many more algorithms that deserve similar treatment. In fact, there are

many more modifications that may be useful for the algorithms that are

presented in this paper. The simulations were designed to stay as close to

the original algorithms as possible when modifications were made. Some of

the algorithms may benefit from more drastic modifications. Other simula-

tions could test the behavior of the algorithms when implemented with
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analog computation. And finally, the ultimate research that must be done is

to implement the algorithms on parallel hardware that is designed to exe-

cute ANN algorithms.
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