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Abstract 

Parallelism in Contextual Processing 

Paul Stephen Rehfuss 

Supervising Professor: Dan Hammerstrom 

In this dissertation, I study the use of context in sensory processing, and specifically, 

cost-effective parallel implementations of contextual processing. Taking contextual infor- 

mation t o  be represented in the form of discrete, compact models, application of contextual 

knowledge then occurs as models are matched t o  input. Model-matching occurs a t  the in- 

terface between bottom-up classification and feature extraction and topdown modeling 

and interpretation. Bottom-up classification and feature extraction can be well supported 

by cost-effective parallel hardware. The central thrust of this dissertation is t o  show how 

such parallel hardware can be inexpensively modified t o  support model-matching, thus 

extending its range of applicability. 

For contextual processing of ordered input, I derive "Higher Order Viterbi Search 

(HOVS)", a Markov approximation t o  Viterbi search using higher-order source models. 

Simulations show HOVS captures most of the benefit of using higher order source models, 

while being more time and space efficient. I give an SIMD implementation of HOVS, and 

discuss some restrictions on the source model required for a practical implementation. 



r

From analysis of algorithm requirements and VLSI trends, with area as cost measure,

I derive a cost-performance model for on-chip parallelism. I conclude that for the applica-

tions considered, there are only two viable architectural alternatives: if the required system

memory fits on-chip, using many simple processors may be preferred. Otherwise, off-chip

bandwidth limitations imply an architecture of a few complex processors.

I introduce the SFMD class of parallel architectures, extending SIMD processing to

better handle the irregular, data-dependent computation typical of contextual processing.

SFMD extends SIMD processing by giving each processing element separate control within

small loop bodies. The extra processor complexity is modest. To prese~ve SIMD semantics

and programming simplicity, interprocessor communications may complete only after all

processors have synchronized at a barrier.

When area cost is not considered, SFMD is outperformed by an SPMD architecture

on tasks with sparse communication and highly varying computation times. When com-

munication is not too sparse, the ability of SFMD to allow more processors on a chip may

compensate. Variance reduction techniques may also decrease the performance gap.

XII
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Chapter 1 

Introduction 

"contezt: The whole structure of a connected passage regarded in its bearing 

upon any of the parts which constitute i tn ... Oxford English Dictionary 

The overall topic of this dissertation is cost-effective hardware for the recognition of 

objects from sensory data, for such tasks as speech recognition, handwriting recognition, 

and image understanding. The specific problems addressed are how to perform contextual 

processing on current cost-effective parallel hardware designs for sensory processing, and 

how to extend these designs to better support contextual processing. 

Sensory processing involves multiple stages of processing, moving from the data itself 

to "higher level" constructs of a more symbolic nature, such as individual pixels to a set of 

strokes comprising an "R". Processing in the stages closest to data may depend only on the 

data itself, but a t  some later stage, contextual effects come into play. Hardware suitable 

for the earliest stages of processing, those closest to data, already exists [Hamgo, AJ97, 

WAKf 961 but, I will argue, processing that involves context can make use of additional 

capabilities not found in these designs. Specifically, contextual processing will benefit from 

better support for data-dependent control pow. Analysis of current technology trends 

indicates that the needed support can be provided for a reasonable cost, around one 

percent of the area of a modest sized chip. 

Examination of algorithms with data-dependent control flow, both for sensory pro- 

cessing, such as Interpretation Tree Search [GriSO], and of a more general nature, such 

as sparse mat rix-vector multiplication, shows a substantial benefit from the additional 



support i n  many cases, frequently giving a performance boost by a factor of 1.5 - 2 over 

an otherwise equivalent design using current techniques. 

In order to elaborate on the suggested solution, I must formalize contextual process- 

ing, determine the computational requirements of such processing, and see how to cost- 

effectively extend existing parallel hardware to support such processing. So what is context 

and how is it used in recognition? 

1.0.1 Example 

As an example of the kind of tasks of interest, consider figure 1.1, illustrating the process 

of recognizing a hand printed "R". Data (pixels) are organized into features (st.rokes) via 

edge recognition, construction of connected components, and so on. These operations 

take place bottom-up, the assignment of a given pixel to  a feature object involving only 

operations on pixel values in a local neighborhood of that pixel. Features such as strokes 

have attributes, such as direction, length and curvature. Features are grouped into sets 

hypothesized to belong to a single superobject (corresponding, say, to an "R", or some 

other letter). This may be driven bottom-up, by grouping, say, adjacent features, or top- 

down, by using information contained in a model of the superobject. While they may 

be hierarchical, in general, a t  some level, models correspond to  symbolic interpretations 

of the data (e.g., "R"). Structural models, as shown in the example, have a number of 

parts or components; in the illustrative model for "R" shown in the figure, these are 

"stem", "bowl" and "descender". When the model is related to  the data, each of these 

components is matched to some feature (or submodel). Components have attributes (slots) 

that correspond to  attributes of the features to  which they are matched. For example, 

the "stemn component might have a "length" attribute, giving the length of the matching 

stoke feature. Models contain information about the inter-relationships of components and 

about the values of components' attributes, in the form of constraints on allowable values, 

for example, that "descender" is angled at about 45 degrees with respect to "stem". Models 

can be hierarchical, so that components can correspond either to sub-models or to features. 



Models 

Features 

Pixels 

model for "P" model for "R" 

Figure 1.1: Recognizing an "R". 



The process of putting a group of features into correspondence with the components of a 

model, and checking feature attributes against model constraints is referred to as model 

matching. As features are put into correspondence with components, attributes of the 

features determine attributes of the components and the model, thus (partially) "filling 

in" or instantiating the model by setting or constraining some of its parameters. These 

other, hypothesized, features can then be sought in an associative lookup process, finding 

features based on their location and on other attributes, such as angle of the stroke from 

vertical. When features corresponding to those suggested by the model are found, other 

inter-feature relationships and constraints specified by the model can be checked to verify 

the interpretation. This may again involve finding features by associative lookup. 

With respect to figure 1.1, this topdown model-matching might proceed as follows: 

when a given feature is hypothesized to belong to an " R ,  a model for "R" is be used 

to make predictions about the relative location and shape of other features belonging to 

that "R". Perhaps the "stem" stroke is processed first: a stroke feature is hypothesized 

to correspond to the "stem" component of an "R". Information in the model for "R" 

then might suggest ranges of values for the size, orientation and location attributes of the 

"bowl" so that the top ends of the "bowl" and "stem" are close, and the lower end of 

the "bowl" is near the midpoint of the "stem". A stroke having these properties is then 

sought. If a satisfactory candidate is found, the meeting point of the "bowl" and "stem" 

stroke then suggests ranges for attributes of the "descender", and so on. 

Of course, there are likely to be competing hypotheses about the grouping and inter- 

pretation of a set of features: "does this stroke come from an 'R' or a 'P' ? " Here further 

context can come into play from higher level word and language models: perhaps the word 

"Rent" makes more sense in the current passage than does "Pent", and so "R" is a more 

likely interpretation than "P". Thus the matching process may be hierarchical. Finally, 

note that there are models without a geometric character, for example, Hidden Markov 

Models (HMMs) and pronunciation models in speech recognition. 



1.0.2 Recognition: the interplay of data and models 

In the view exemplified above, recognition is an interplay between da ta  and interpreta- 

tions, mediated by the constraints contained in models. Bottom-up. recognition involves 

extraction of (possibly hierarchical) features from the data. Top-down, it is a process 

of hypothesis construction, refinement (instantiation) and verification, driven by current 

(hypothetical, partial) interpretations, including prior knowledge, and constraints imposed 

by a (hypothesized) model. In the interplay between bottom-up and topdown processing. 

data  may suggest groupings and possible models, while hypothesized models may suggest 

both possible groupings of existing features, and also other features t o  be sought. Based on 

this view, context can be formalized as the implications of a partially instantiated model 

about the values of the model's components' attributes, these implications being derived 

from the model's constraints. Thus both data  and existing interpretations give rise t o  an 

hypothesis about a particular model being in correspondence with that  data, the data also 

refining or partially instantiating the model. This partially instantiated model then is the 

context within which further interpretation of data  occurs. 

Features 

Some examples of feature extraction techniques are: one- and two-dimensional convolu- 

tional filtering, extraction of spectral coefficients, thinning and edge finding, and construc- 

tion of hyperpixels [GW92]. From these, we see that  features are generally constructed 

from data  in a neighborhood that  is local in time or space. Also, t o  construct a given 

feature, typically the same processing is done on each neighborhood, and independently 

of other neighborhoods, t o  that  features for different neighborhoods can be constructed 

in parallel. The main point, though, is that  feature extraction proceeds bottom-up from 

the data,  independently of any interpretation of that  data, and so independently of any 

context. 



Models 

Models represent hypotheses about the interpretation and generation of data,  for example. 

"this set of pixels comes from someone writing an 'R"'. In this dissertation, I am concerned 

with structural models, that  describe an object in terms of parts or components, and in 

terms of relationships between attributes of its components, or constraints. For example, 

the model for "R" shown in figure 1.1 has three components, describing strokes for the 

bowl, stem and descender, and (not shown) would also specify constraints about the 

relative size and position of the three components. 

I am interested in structural models for several reasons: structural models decompose 

the relations between objects into manageable and efficiently computable pieces, structural 

models are commonly used both in speech and vision recognition, and, most importantly, 

structural models embody the notion of context. 

Structural models provide a topdown conditioning influence on the interpretation of 

the da ta  corresponding t o  their components. A pa.rtial!y matched model can have impli- 

cations for the existence, class, temporal or geometric location, or other attributes of its 

unmatched components. The model may thus influence the grouping of components; it 

may be used t o  improve the classification of components, especially when the implications 

are probabilistic; or, when implications involve location, the model may be used in orga- 

nizing search and selecting data  neighborhoods for attempting t o  match any unmatched 

components. Models used t o  organize search in this way are sometimes referred t o  as 

active models in the vision literature [BCKMSO]. 

There are several uses for the  knowledge contained in structural models: In recogni- 

tion, models are matched t o  find the type (or label) of an object. Models may be passive, 

so that  the algorithm directs the matching process, or active, where the model contains 

information t o  direct the search, such as a search order for components In correction, 

models provide context for classification of their components. The set of all models, or 

model library, is used to  generate a source model for components. A source model is 

useful when the library is incomplete (e.g., when novel words may be encountered in text 



or speech recognition). In grouping or segmentation, one determines which features be- 

long t o  the same object. Segmentation happens more or less implicitly in the matching 

process. Object boundaries may be derived explicitly from the da ta  as certain kinds of 

features, feature-based segmentation, or may be determined implicitly as the matching 

process groups features as parts of the same object, recognition-based segmentation. Fi- 

nally, in registration, once an object is matched t o  a model, the model may be used to  find 

various parts of the object. I will look only a t  recognition and correction and grouping, 

viewing registration as involving only a single model. 

As processes, model matching is distinguished from simple labeling or classification. 

The latter just gives a probability distribution over model labels (classes), it does not use 

implications about components for any purpose, and hence it does not involve contex- 

tual processing. As an example, consider classification by nearest-neighbor feature vector 

matching t o  a set of classes prototypes, for example, when the features are pixel values, 

template (correlation) matching of images. Prototypes are not usually thought of as mod- 

els in the sense of this thesis: the result of matching is simply the winning prototype or 

its class label, and any implications for the values of components is ignored. One could, 

however, get something like our notion of model matching behavior from prototypes. Con- 

sider the set of vectors, Sp, "belonging" t o  a given prototype, P, i.e., the vectors which 

are closest to  that  prototype. This set of vectors defines a joint density, Dp, over the 

values of the vector elements. Each prototype corresponds t o  a model, Mp: the models 

have identical structures, with one component for each dimension of the space. Each com- 

ponent has a single attribute, its value. The models, M p ,  differ in having different joint 

densities, D p ,  over the values of their components' attributes (i.e., over the values of the 

elements of vectors in Sp). With this setup, one could get model matching behavior, for 

example, by projecting a vector, u,  onto the subspace of components with "adequately 

determined" values, find the nearest (projected) prototype, P ,  and using the probability 

model, D p ,  associated with the prototype's class t o  estimate or correct the values of the 

inadequately determined components of v. 



Model matching and grouping are ubiquitous processes that  occur a t  the meeting place 

of topdown and bottom-up sensory processing. Models modularize a priori knowledge 

and its topdown application. It is possible that ,  even with a "cortical?? processing model, 

involving activation within a uniform matrix of neuron-like elements, models may reap- 

pear as recurring patterns of activation, and computational support for simulation of the 

cortical model may also need to  support model-matching and grouping kinds of tasks. 

The conclusion is tha t  support for grouping and model matching is of great importance 

for machines for sensory processing. 

1.0.3 Computation 

Feature extraction typically involves regular computation: the control flow for processing 

each data  element is the same. Feature extraction occurs bottom-up, so any "context" 

used is other data,  not (partial, data-dependent) interpretations. Furthermore, which 

other data  elements (if any) t o  use is known in advance: generally these are adjacent 

data  in one or more dimensions. Some examples of features involving adjacent da ta  are 

differences or rates of change, filters computed over neighborhoods, and hyperpixels. These 

examples, and feature extraction in general, involve performing the same computation for 

each data element, over data  whose location is typically known in advance and can be 

incorporated into the code for the algorithm. Thus, in feature extraction, the control flow 

for processing each da ta  element is typically the same, and the computation is regular. 

A second point is that  the processing for feature extraction can frequently be performed 

independently on each da ta  element. 

Conversely, model matching typically involves data-dependent control flow. At a given 

point in processing, only some of the components of the model may have been matched 

t o  the data. The model's relations between these (hypothesized) components, and yet 

unmatched ones, may suggest features to  be sought and processed. Thus the flow of 

processing of the model depends on the results of processing and matching so far, and on 

the structure of the model itself, and hence is data-dependent. Further, the features are 



sought according t o  values of their attributes, in an associative lookup process. typically 

involving indexes of various kinds, and traversing such da ta  structures also involves data- 

dependent control flow. In the processing illustrated in figure 1.1, after, say, the stem 

stroke is hypothesized to  be part of an "R", the next step might be t o  search for the 

descender, by seeking a stroke with approximately the right location, length and angle. 

Satisfying such queries for objects with features in some specified range typically involves 

traversal of a tree-based index. Thus an important difference between computation in the 

topdown, model-matching part of recognition, and computation in the bottom-up part, 

is data-dependent control flow. However, like bottom-up feature extraction, the matching 

of one model to  a group of features typically proceeds independently of the matching of 

other models to  that  group. Model-matching thus involves multiple independent irregular 

computations, each with control flow determined by its model, the da ta  it has seen so far, 

and the interpretations that  have been made of that  data. 

I have noted that  features extracted from different neighborhoods can typically be 

constructed independently of one another. Similarly, matching different models t o  the 

same group of features is also independent (prior t o  any intermodel competition). As 

well, associative lookup of different features, or the same feature by different attributes 

(in different indexes) occurs independently. Thus feature extraction, associative lookup, 

and model matching are potentially parallelizable. 

The fundamental computational requirements of the feature extraction, grouping, and 

model matching stages of sensory processing must be isolated, in order t o  design machines 

for sensory processing that  are as simple and general purpose as possible. The preceding 

discussion has highlighted the fact that  executing the code for a given processing task is 

typically performed many times. Extracting a given feature from a neighborhood is done 

for many neighborhoods, looking up a feature by its attributes can be done independently 

for all indexes used in the lookup, and matching models t o  groups of features can be 

done for many models and many groups. So a large amount of computation is needed. 

Furthermore, the multiple computations are independent, and so parallel execution is a 



natural way of meeting the computational demand. 

However, while extracting a feature typically proceeds with predetermined flow of 

control through the code for the task, both associative lookup and model matching involve 

data-dependent execution. Current parallel architectural designs for sensory processing 

[Hamgo, AJ97, WAK+96] typically are optimized for feature extraction, and hence for 

executing codes without data-dependent control flow. To extend these designs to support 

a wider range of sensory processing tasks, including model matching, support is needed 

for data-dependent execution. I therefore take cost-effective support for parallel data- 

dependent execution as my key goal in extending current parallel sensory data processing 

designs. 

1.1 Parallelism 

To proceed, we need some background about types of parallelism and parallel architectures. 

1.1.1 Types of parallelism 

The notion of parallelism is that of concurrent execution: different pieces of a task being 

performed simultaneously by distinct entities. From the entire set of instructions for a 

task, some can be done simultaneously: two instructions can be executed a t  the same 

time if the data used by one is unaffected by the other, and vice versa, that is, if the two 

instructions have no dependencies. 

Several types of parallelism can be distinguished: In inter-task parallelism, such as 

pipelining or communicating sequential processes, instruction dependencies are managed 

by explicit communication between distinct sequential tasks. In instruction level p a d -  

lelism (ILP), the technique used by contemporary processors, a stream of instructions is 

analyzed to find non-dependencies allowing some instructions in the stream to be per- 

formed simultaneously. More specialized, but still very common, especially for sensory 

processing, are data parallelism, where a single program operates on multiple independent 

data partitions, and knowledge pamllelism, where multiple pieces of knowledge (models) 



are applied t o  a single piece of data1. Here non-dependence of instructions is inferred from 

the fact that  they are acting on entirely separate sets of data. Model matching algorit,hms 

are typically either data- or knowledge- parallel. or both, and these are the forms of paral- 

lelism on which I will concentrate. The utility of da ta  parallelism for the earlier stages of 

sensory processing is well established. I will examine the potential for extending parallel 

hardware t o  knowledge parallelism and the model matching stage. 

partitioned ALU 

VP / SIMD 

processor 
autonomy 

SFMD 

local conditional execution 

local addressing 

local branching 

SPMD / MlMD local control of IPC 

V 

Figure 1.2: Range of parallel architectures, organized by increasing processor autonomy, 
i.e., decreasing global control over the computation. The various terms are defined in the 
text. 

1.1.2 Parallelism: feature extraction, grouping and models 

Let us relate these types of parallelism t o  the tasks discussed previously, in more detail. In 

feature extraction there is generally regular computation and communication, and inde- 

pendent and identical control flow, thus current architectures targeted a t  da ta  parallelism 

provide cost-effective support for these computations. 

For grouping, the main task is associative lookup, and potential parallelism comes 

from traversing multiple indexes for one or more feature. When extending a data-parallel 

'There is a sort of "duality" between knowledge and d a t a  parallelism: if one views multiple models as 
instantiating multiple "algorithms", then knowledge parallelism applies multiple algorithms to single data, 
while da ta  parallelism applies a single algorithm to multiple data .  



architecture to  handle grouping, an important point is that the data  may be distributed 

among the multiple processors. This is the reason there may be multiple indexes t o  be 

traversed for a given lookup - there may be an index local t o  each processor. indexing the 

da ta  of that  processor. Traversal of, say, a tree-based index involves evaluating conditions 

a t  the nodes of the tree and using the result t o  either stop or t o  select the next node 

to  examine. This implies data-dependent control flow, choosing between stopping and 

continuing t o  traverse the tree. However, traversing the indexes on separate processors 

can be done independently, in parallel, requiring communication only when a satisfactory 

solution is found. Also, the same computational kernel is executed on each processor in 

processing each node. So support for parallel execution of data-dependent computational 

kernels, as will be seen t o  be needed for model matching, will also benefit grouping. 

There are three ways one might parallelize matching a structural model. In model 

pamllelism, (some set of) entire models are matched in parallel, independently of one 

another. This gives a coarse-grain, "trivial" parallelism. Evaluating a model on a processor 

proceeds independently of the evaluation of an alternative model on another processor, 

and model evaluation involves data-dependent control flow based on the data  seen and the 

model structure, so, as for grouping, what is needed is support for parallel execution of 

data-dependent computational kernels. Discussion of this form of parallelism, and support 

for it make up the bulk of this work, chapters 3, 4 and 5, and appendix B. 

In node parallelism the individual nodes of a single model are matched or evaluated 

in parallel, and then the interrelations between them are computed or propagated. The 

irregular interrelation between nodes makes this problematic: there is a high communica- 

tion t o  computation ratio, and likely an irregular assignment of da ta  to  processors, both 

of which tend t o  diminish the advantages of the parallel evaluation. "Clumping" multiple 

nodes t o  a single PE may convert this to  something like model-parallelism, but problems 

of irregular communication and data  assignment remain. I do not examine this form of 

parallelism in this work. 

Finally, in state pamllelism all nodes have the same set of states (attributes). Parallel 



execution occurs by evaluating states (determining attribute probabilities) in parallel. This 

appears an unusual case, but gives a fine-grained parallel approach to  recursive. Hhlhl-like 

models. I discuss this in chapter 2. 

1.1.3 Parallel architectures 

Somewhat loosely related t o  the varieties of parallelism listed above are the various types of 

parallel architectures. In Single Instruction Multiple Data (SIMD) architectures. multiple 

processing elements (PEs) execute a single shared stream of instructions to process indi- 

vidual streams of data. Each instruction is executed simultaneously on all PEs, so-called 

lockstep execution. To accommodate branching and conditional execution, instructions 

are distributed first for one branch of an "if" statement, and then the other branch, with 

PEs only performing the instructions for one branch, and being turned off or otherwise 

ignored for the other. SIMD architectures are optimized for da ta  (and, dually, knowledge) 

parallelism, with lockstep execution providing a substantial cost savings in that  instruc- 

tion handling is shared between all processors, allowing the individual processors t o  be less 

complex and so less expensive. A Vector Processor (VP) is a kind of SIMD architecture, 

where the lockstep execution of a single instruction on multiple da ta  streams is formulated 

as a single operation on a vector of data. A very simple form of vector processing is used 

in a number of contemporary microprocessors (e.g., [Lee95]), where, say, a 32-bit adder 

can be partitioned t o  add a pair of 32-bit words, 2 pairs of 16-bit words, or 4 pairs of 8-bit 

words. 

Multiple Instruction Multiple Data (MIMD) architectures have multiple PEs executing 

individual streams of instructions to  process individual streams of data. This embodies 

general inter-task parallelism, although, due t o  its generality, it can be used for data  

and knowledge parallelism as well. The typical application of MIMD architectures t o  

da ta  and knowledge parallelism is by Single Program Multiple Data (SPMD) execution, 

where a single program executes on all PEs, each with different data. Due to  branching, 

different PEs see different instruction streams, and there is no requirement of lockstep 



execution. Current superscalar microarchitectures embody instruction level parallelism. 

These microarchitectures contain multiple functional units (FlTs), such as multiple in- 

teger adders or multiple floating point multipliers. In operation, multiple instructions 

from a single instruction stream are dispatched simultaneously t o  the multiple functional 

units, depending on compile time and run time detection of non-dependencies between 

the instructions. A recently developed variant of superscalar execution, Simultaneozrs 

Multi-Threading (SMT), allows the instructions dispatched a t  a given time t o  come from 

multiple instruction threads   TEE^^^]. The processor maintains multiple program coun- 

ters, sharing other resources between the executing threads. This flexible and cost-effective 

strategy rather blurs the line between a single processor with multiple functional units, 

and a multiprocessor. 

In this thesis, I introduce the Single Function Multiple Data (SFMD) architecture 

class, intermediate between SIMD and MIMD processing. SFMD architectures extend 

SIMD processing to  better support tasks with data-dependent control flow, by relaxing 

the SIMD architectural requirement for lockstep execution. Figure 1.2 arranges some of 

these architectural alternatives along a spectrum of increasing processor autonomy. In an 

SIMD-like parallel architecture, some things are done globally, such as the distribution of 

instructions t o  the individual processors, by a host or control processor. Other things are 

done locally by the individual PEs. "Processor autonomy" refers t o  this global / local 

distinction, and specifically to  how much is done locally. With local conditional execution, 

individual PEs determine which branch of an if statement they will execute; without it, the 

global processor determines this and sets or distributes a global mask vector to  suspend 

execution for PEs not performing a given branch. With local addressing, individual PEs 

compute the memory addresses they will use, while without it this is done by the global 

processor. SFMD processing increases processor autonomy and decreases global control 

by breaking lockstep execution and letting individual PEs have control over some of the 

branching within their individual instruction streams. However, in order to  keep the 

simple semantics of SIMD execution, communication between processors is restricted t o  



only occur during phases of global lockstep execution. Full-fledged SPMD or MIMD 

relaxes this last notion of global execution by allowing individual PEs t o  communicate a t  

any time, with local control of interprocessor communication (IPC). 

We will see that  the added cost of adding SFMD execution t o  an SIMD design is 

minor: the hardware cost will be perhaps one percent of chip area in the near future. 

while programming complexity remains the same. Moving t o  full-scale SPMDIMIMD es- 

ecution, however, introduces the full range of parallel programming complexities. As to  

performance, I will show SFMD execution giving a substantial (1.5 - 2X) performance im- 

provement over SIMD execution on several tasks exhibiting data-dependent control flow. 

SPMD execution will outperform SFhiID execution on tasks with highly variable inter- 

processor communication, but this can sometimes be ameliorated by averaging out the 

communication variability, arranging the SFMD computation so that  many communica- 

tions are saved up during a "computation phase" and then executed in a "communication 

phase". 

As t o  actual hardware for sensory processing, the CNAPS processor [Ham901 is an 

archetype for the type of parallel hardware I am thinking about. CNAPS is a highly 

cost-efficient SIMD architecture that  puts 16 small DSP-like PEs on a single chip. These 

PEs each have a small (4KB) private memory they can address independent of each other. 

Instructions are fed t o  the PEs from off-chip. The PEs can individually decide not to  

participate in an instruction, depending on their private data. Access t o  external memory 

is shared among the PEs through a bus. There is hardware support for finding the P E  

holding the maximum value of a particular register ("parallel max7'). 

1.2 Overview of the dissertation 

Chapter 2 discusses the case of "ordered" input, where there is a natural ordering on the 

matching of model components with data. The archetypal example is matching Hidden 

Markov Models (HMMs) in optical character or speech recognition. The natural ordering 

gives rise t o  efficient dynamic programming implementations of the matching process. A 



reasonable view of context is then t o  condition probability estimates of the current input on 

previously classified inputs. These conditional probability estimates may be constructed 

using source modeling techniques. 

It has recently been shown that  HMMs are special cases of "probabilistic independence 

networks" (PINS) [SHJ97]. Using the PIN framework, I discuss how to  integrate classifier 

outputs, viewed as probability estimates, with source models derived from sets of word 

models. I derive Higher Order Viterbi Search (HOVS), a first-order Markov approxima- 

tion t o  (the PIN generalization of) Viterbi search using higher-order source models. By 

simulation, I show that HOVS captures most of the benefit of using higher order source 

models, while being more time and space efficient than some reasonable competitors. 

The PIN models are recursive, with each node having the same set of states, and one 

can make use of state parallelism. I give an SIMD implementation of HOVS, and discuss 

some restrictions on the source model required for a practical implementation. 

Chapter 3 overviews the use of models for unordered input, specifically in vision al- 

gorithms. It looks a t  a variety of model-matching and grouping algorithms, and extracts 

some general characteristics relevant t o  parallelization: 

1. feature grouping (object hypothesis generation) involves construction and traversal 

of irregular data structures such as lists and trees, 

2. model matching algorithms exhibit irregular control flow mediated by the data  

and/or model, 

3. most model matching and feature grouping algorithms are simple, with computa- 

tional complexity coming from applying a small code "kernel" many times, and 

4. model search and indexing techniques are "imperfect", in the sense that  they gen- 

erally restrict the number of models t o  be matched, but not to  a single candidate. 

The implications of these characteristics are (i) SIMD execution will sustain substantial 

performance degradation on these algorithms due to  data  dependent execution, ( i i )  only 



branching within a small kernel is important for performance, and (iii) there is model- 

parallelism to  be exploited. 

Chapter 4 reviews current technology trends with respect t o  VLSI, microprocessor 

architectures, and parallelism. The purpose is t o  describe the relevant factors and provide 

some reasonable numbers for measuring cost and performance. One conclusion of the 

chapter is that ,  with decreasing process size and concomitant increase in the number 

of objects that can be put on chip, adding complexity and functionality t o  processors 

is relatively inexpensive in terms of silicon area used. However, the more important 

conclusion from this review is that  off-chip I/O bandwidth will be the most limiting 

technological factor in future microarchitectures. 

Using area as the measure of cost, I derive a cost-performance model for on-chip 

parallelism for a class of architectures consisting of multiple processing elements per chip, 

each with some amount of private memory. The task for the architecture is assumed t o  

be decomposable into a large number of independent subtasks, each of which first fetches 

some data  and then processes it. The da ta  may be fetched either from the processing 

element's private memory, or from off-chip. The subtasks are independent in that  they 

can be executed without interprocessor communication. This task generalizes that  of 

independently matching a large number of models t o  the data. The essential result of 

the chapter is that  on-chip parallelism is fundamentally limited by the I/O bandwidth 

across the chip boundary. Effective parallelism degrades quickly as off-chip I/O is needed, 

unless the off-chip I/O bandwidth scales with the number of processors on the chip. One 

implication is that  increasing chip area will result in not in adding more processors t o  

the chip, but in making the individual processors more complicated, or in adding more 

per-processor memory. 

The important conclusion is that ,  for the applications I consider, there are only two 

viable alternatives: for on-chip parallelism in the near future, if the range of target appli- 

cations allows each model set t o  fit entirely on-chip, then an architecture of many small 



processors may be preferred, for its increased parallelism. This could be a vector proces- 

sor or another SIMD architecture. where the simpIicity of the individual processors allow 

many t o  be put on a single chip. In all other cases, bandwidth limitations imply bhat a 

few complex PEs will be preferred. In particular, a "middle ground" of many processors 

on a chip, each with external rather than on-chip memory, will not be viable, due to  mem- 

ory bandwidth limitations. With the coming practicality of embedding logic in a DRAM 

process, a design with all models on-chip is feasible and I henceforth concentrate on such 

designs, feeling that  a design with a few complex PEs will be too close to a mainstream 

processor for economic viability. 

Chapter 5 introduces and evaluates the Single Function hilultiple Data (SFhlD) class 

of parallel architectures, targeted toward extending SIMD processing to  better support 

irregular computation and sparse communication, as is shown t o  be typical of model 

matching and feature grouping algorithms in chapter 3, and targeted toward designs with 

many relatively simple processing elements, as suggested by chapter 4. 

SFMD extends the SIMD class by giving each processing element its own program 

counter and a small instruction memory, allowing separate control for within small loop 

bodies. The extra processor complexity is quite modest, on the order of one percent 

additional chip area, so that  many processors will still fit on-chip. To preserve SIMD 

semantics, interprocessor communication is allowed t o  complete only after all PEs have 

synchronized. Preserving SIMD semantics keeps the programming and debugging simplic- 

ity of SIMD code given by its lack of race and deadlock conditions. However, compared t o  

SIMD execution, the independent branching allowed by SFMD gives better performance 

on tasks with data-dependent execution, such as model matching, index traversal and 

sparse matrix computations. 

Conversely, SFMD is outperformed by an SPMD architecture on tasks with sparse com- 

munication and highly varying computation and communication times. I derive a s y m p  

totic formulae bounding the speedup of SPMD over SFMD in a fairly general setting. 

Simulations show that  the formulae give reasonable approximations in non-asymptotic 



domains. The analysis implies that  when communication times are not too sparse, the 

performance gap between SFMD and SPMD may be counteracted by averaging out task 

and communication time variation, by performing multiple tasks between phases of multi- 

ple communications. In any case, SFMD outperforms SIMD on these kinds of tasks, and 

can extend the range of an existing SIMD design into the realm of tasks with irregular 

control flow a t  small cost, either in hardware, programming, or programming environment. 



Chapter 2 

Context for ordered input 

2.1 Introduction and Goals 

In this chapter I look at applying contextual information within a single "large" model. 

As always, the "context" used is the set of current interpretations of other components 

of the model. I assume that components of the model are interpreted sequentially, as 

for the interpretation of ordered input such as text or speech. Thus I wish to  use the 

interpretations of previously evaluated components t o  better the interpretation of the 

current one. As interpretations are probabilistic, this leads t o  the use of a variable-order 

Markov source coding model for the sequence of component states. 

As there is a single model, we are not interested in inter-model comparisons, but 

rather the interpretations of the components themselves. Thus, the task I examine is that  

of finding the most likely states of the components of the network, given some observations. 

For speech, this would correspond t o  finding the most likely phoneme or word string within 

a single HMM. 

My definition of context implies that  we look a t  situations where components' states 

are context-dependent, not where observations are. Context-dependent observations are 

appropriate for situations involving observation process phenomena analogous to  coar- 

ticulation in speech (even though the HMM formalism used in speech assumes context- 

independent observations). The assumption of context-independent observations is rea- 

sonable for such domains as OCR and genome sequence modeling. The use of state-based 

context t o  improve classifier performance is appropriate, as we shall see, for constructing 



"unknown word" models and for improving classifier performance on novel (or unmodeled) 

words. 

A further goal is to  combine contextual information with a classifier, such as an MLP, 

t o  improve the classifier results. I take the usual interpretation of classifier outputs as 

conditional probabilities (e.g., [HPgO]). We can then look a t  the single large model as 

a mechanism for integrating contextual information about likely state sequences with 

probabilistic information given by a classifier about the state values implied by the classifier 

inputs. 

Given a single large model, parallelism is over evaluation of either nodes or states. Here, 

the ordered evaluation of the components precludes node parallelism, and we look a t  fine- 

grained parallelism over states. The fine-grained nature of the parallelism leads us t o  look 

for low-overhead "regular" algorithms; in particular I develop a dynamic programming 

recurrence, Higher Order Viterbi Search (HOVS), suitable for SIMD implementation. 

This chapter first reviews Probabilistic Independence Networks and their relation t o  

HMMs as background for the definition of HOVS. I then define HOVS and talk about the 

relation t o  source modeling. Next, an SIMD implementation is given and its space and time 

complexity shown. Finally, I discuss the results of simulations comparing HOVS, simple 

Viterbi search, the more exact "stack decoding", and exhaustive per-model evaluation. 

2.2 Background 

The HOVS algorithm was originally developed independently of the Bayesian Networks, 

or Probabilistic Independence Networks (PINs) as they are now known [SHJ97]. However, 

HOVS is clearly related t o  Hidden Markov Models (HMMs), which are now known t o  be 

special cases of PINs [SHJ97], and the PIN formalism is a useful formalism for discussing 

HMM-type algorithms. Table 2.1 gives some notation that  will be used in discussing PINs. 



Table 2.1: PIN notation 

number of values of a discrete random variable 
hidden state variable 
observable state variable 
value of a hidden state variable 
value of an observable state variable 
conjunction or "path" of values, x: {x,, . . . x,) 

I concatenation of paths x, - X Y + ~  = x: 
"mutual likelihood" of between x and y, 

4 2 ;  Y) = P ( x ~ Y ) / P ( ~ )  = P ( Y ~ x ) / P ( Y ~  

2.2.1 Probabilistic Independence Networks 

PINs provide a graphical formalism for expressing conditional independence assumptions 

about a set of variables, allowing the joint distribution t o  be factored into a product 

of conditional distributions1. Graphically, there are two formalisms for PINs, based on 

either undirected graphs (UPINS) or on DAGs (DPINs). I will use the directed graph 

formalism as it is somewhat simpler to  describe; traditional Bayesian Networks use the 

DAG formalism. In a PIN graph, nodes correspond t o  variables, and arcs to  conditional 

dependence assumptions. Arcs in a DPIN represent dependence in the following way: a 

node is conditionally independent of its ancestors given its parents. Thus, for example, in 

figure 2.1 (a) each Ot is conditionally independent of all other variables, given Ht. This 

turns out t o  imply that  the joint distribution over all variables can be written as a product 

of "local" distributions: 

where pa(xi)  denotes the parents of node xi, and xi denotes the conjunction of variables 

{xi, x;+1, . . . , xj), for any (time-indexed) variable xt. This factorization implies that  only 

the local distributions need be estimated; these, of course, are typically much lower- 

dimensional than the entire joint distribution. 

- - 

'This section reviews existing theory; see [SHJ97] for further details. 



Figure 2.1: HMM-like PINs 

As well as providing a formalism for factorizing joint distributions, the PIN frame- 

work also provides algorithms for incorporating new evidence about the states of nodes, 

computing the joint distribution of the variables, conditioned on the new evidence. The 

fundamental form is the "JLO" algorithm, which computes the MAP estimate of the joint 

distribution. A variant, the "Dawidn algorithm, computes the most likely set of states 

given the evidence; this is sometimes called the most probable explanation (MPE) in the 

Bayesian Network literature [Pea88]. 

2.2.2 HMM-like PINs 

HMMs are special cases of PINs, where the ordering of the observations leads to  a re- 

cursive network structure. In an HMM there are two types of nodes, corresponding to  



observations, Ot ,  and hidden states, Ht ,  a t  particular point,s in time t. The graphical 

form is shown in figure 2.1 (a), where it can be seen that  observations depend only on 

the contemporaneous state, and states depend only on their neighboring states3. In this 

setup, the most general notion of context in our sense is the current probability distribu- 

tion over the values (interpretations) of the Ht and Ot.  As above, the directed arcs of the 

PIN describe conditional dependencies. However, viewed as undirected arcs, they describe 

context dependencies: the interpretation (value) of a node is determined only by the con- 

text consisting of the interpretations of all nodes to  which it is connected. Of course, the 

interpretation of the nodes t o  which it is connected depends on the interpretat,ions of all 

nodes t o  which they are connected, and so on, so that  the full context is the distribution 

of values over all states. However, only the distribution of values of the states connected 

t o  a node are' used in computing the distribution of values for that  node. 

For figure 2.1 (a), each observation, Ot is context dependent only on the hidden state 

Ht, while each Ht is context dependent on Ot ,  and Ht+1. However, each Ht is 

conditionally dependent only on the previous HtFl. Figure 2.1 also shows two HMM-like 

PINs that  use context in different ways. The graph in figure 2.1 (b) gives a model where 

the state Ht a t  a given time is context-dependent on some number of previous states 

(two in this case), as well as on the corresponding Ot. This is the form of context I will 

be concerned with: as nodes are processed in temporal order, previous interpretations 

affect the current one. Henceforth in this chapter, the context of a node will be the set of 

previous nodes with which it is context dependent, so in figure 2.1 (b), the context (for the 

interpretation) of Ht is {Ht-z, Ht-1). Figure 2.1 (c) shows a model where observations 

2HMMs that explicitly model duration as described in [RabSO] are equivalent to averages of HMMs 
of the type described. Given a maximum duration, D, consider the set of HMM PINS where each state 
node is connected to between 1 and D observation nodes. The algorithm in [RabSO] is equivalent to model 
averaging over this set of PINs, although more efficiently implemented than by explicit construction and 
evaluation of all the models. 

3This is different from the usual graphical representation of an HMM as a probabilistic automaton, 
where nodes refer to states, not states at  a particular time, and time is implicit. For example, the 
automaton formalism allows self-loops corresponding to the probability of remaining in the same state at 
the next timestep. In a PIN, the same information would be carried as part of the conditional distribution 
~ ( H t + l  lHt 1. 



are context dependent on the previous, current, and following sta,tes (although they are 

conditionally dependent only on previous and current state) .  This might be a reasonable 

model for coarticulation-like situations, and has been proposed as such by Saul and Jordan 

[SHJ97]. 

For HMM PINs, the JLO algorithm reduces t o  the usual forward-backward algorithm, 

and the Dawid algorithm reduces t o  Viterbi search. The forward recursions of the Dawid 

algorithm for the structures in figure 2.1 is given in table 2.2. The corresponding formulae 

for the JLO algorithm are obtained by replacing the maximizations by summations over 

the same variables. Here, lowercase ot and ht refer t o  specific (discrete) values for the 

variables Ot  and Ht, respectively. 

Table 2.2: Forward recursions for HMM-like PINs, from the Dawid algorithm. The recur- 
sion variable is marked with an asterisk. 

structure forward recursion 

At the last observation, t = N, these recursions give us a value for P(hE-k,of), 

for some k. Summing over the possible state k-tuples gives the joint probability of the 

observations and the model (the model index has been omitted in the formulae given). 

Practically, the recursions for (b) and (c) are problematic. First, the recursions for 

structures (b) and (c) are both over hi+', i.e. there are IHI2 values t o  be computed a t  

each step, where [HI is the number of states. For general structures like (b) and (c), but 

with more context, the number of values grows as [HIn,  where n is the amount of context. 

This becomes impractical for all but very small n. 

Another useful way to  look a t  the model described by HMM-like PIN structures is 

through product formula. PINs model the joint density of their variables; for HMM-like 



PINs this is p(ofY, h r ) .  Using the chain rule for probabilities. one can write 

lJsing the independence assumptions given by the graphical structures gives the product 

formulae in table 2.3. 

Table 2.3: Product formulae for HMM-like PINs. 

model product formula 

2.2.3 Classifiers and Likelihoods 

Recall that  1 am interested in integrating contextual information with classifier outputs. 

Consider a classifier with input vector x and trained with target vector t ,  where the i'th 

output corresponds t o  membership of x in the i'th class, y;. It is well known (see, for 

example, [HPSO]) for a variety of cost functions including mean squared error (MSE) 

and cross-entropy (CE), using targets in t; E { O , l ) ,  that  network outputs converge t o  

posterior probabilities, the i'th output approximating p(y;lx), The specific assumptions 

are sufficiently many training examples, convergence t o  a global minimum, and adequate 

network representational capability t o  approximate the posterior function. 

In the HMM PIN case, the posteriors are p(htlot). However, the terms in the recursions 

involve likelihoods like p(otlht), so an application of Bayes rule is suggested: p(otlht) = 

p(htlot)p(ot)/p(ht). This involves a term, p(ot), that  is constant across models, and can 

generally be ignored. Denote the remaining term as m(ot; ht) = p(htlot)/p(ht). Refer t o  

m(x; y) as the mutual likelihood of x and y, noting that m(x;  y) = m(y; x). Note also 

that  the normal mutual information is Jp(x ,  y) logm(x; y). One may estimate m(ot; hi) 

by taking the classifier estimate of p(ht]ot) and dividing by ~ ( h , ~ ) ,  estimated, say, over the 



training set. Experimentally, I find this problematic for low-probability states: these tend 

t o  be less well estimated, due t o  fewer training examples, and subsequent division by small 

p(ht )  exacerbates the mis-estimation. 

An alternative is t o  use the classifier to  estimate m(ot;  ht) directly. From results of 

[HP90], or by trivial modification of the proofs therein, one has the following, under the 

same assumptions as for classifier outputs t o  approximate posterior probabilities. If a 

classifier is trained using MSE with the targets of the i'th output being either 0 or a;, 

where a; > 0, then the i'th classifier output will approximate a; times the posterior. 

The same result holds for the cross-entropy cost function, modified t o  be of the form 

- C;[t; log y; + (ai - ti) log(a; - y;)]. Thus by taking a; = l/p(y,), where y; is the i'th 

class, the i'th classifier output will approximate m(x;  y;). Again, p(y;) can be estimated 

from the training set. A straightforward gradient calculation shows that  exactly the same 

computation may be achieved for a network with 0/1 outputs by using a weighted error 

measure, for example, MSE; L Ca;(t ;  - y;)2, and then multiplying the outputs by a; 

: y; += a;y; (but this is not the same as training with the usual error function and then 

multiplying the outputs). 

The basic advantage of direct estimation of m(ot;  ht) is tha t  it is the quantity which 

will actually be used in the recursions, and whose estimation should be optimized. If 

our classifiers closely approximated posteriors, there would be no difference between the 

two methods. However, the assumptions above cannot be expected t o  hold in practice, 

so the methods can be expected t o  differ: they apply differing costs t o  mis-estimation of 

the  posterior for each class, leading t o  different estimates. It seems likely to  be better t o  

minimize the mis-estimation of the m(ot; ht) rather than compound any mis-estimation of 

p(ht  lot) by division by p(ht)  . 

2.2.4 Context-dependent Observations 

Although not my direct goal, it is of some interest to  consider the case of context-dependent 

observations. as this is another form of contextual influence and as it one of the simplest 



alternative HMM PIN structures. Consider the structure given in figure 2.1 (c) ,  with 

corresponding recursion from table 2.2 (c) and product formula from table 2.3 (c). .4s 

well as the fact that  the recursion is over IH21 variables, a second problem with the 

recursion lies in the terms p(ot7 ht+l [hi-,). Use of Bayes rule gives p(ot, ht+l 1 h i - , )  = 

p(h:+; lot)p(ot)/p(h:_l). The term t o  be estimated by the classifier is p(h:'-: lot), which 

requires IH31 classifier outputs. In general, such a model is prohibitively large, requiring 

an impractically large amount of da ta  t o  train. 

A possible approach is as follows. We are interested in terms of the form hi?;, for some 

n and m. Assume there are equivalence classes of context, C(h:+;), so that  p(otlh:f;) = - - 
p(ot1hif;) for all ot, whenever hi?: and hi?: are in the same equivalence class. A 

plausible example of possible equivalence classes would be those of the form C(hi2;) = 
- 

( 1 )  - (r) { h z  h t h z l l  ht-1 E ct-, , ht+l E ct+,}, where c!') and elr) are classes of equivalent left and 

right contexts; for example, for speech, all bursts might be taken t o  be the same right 

context. An efficient approach t o  training a classifier for such "L-R context7' equivalence 

classes is given by the CDNN network of [BM94]. 

Let c and E be two members of the same equivalence class, C ,  and let 

be the error of approximating one probability by the other. Then 

P ( q  P ( q  P ( q  
p(+t) = -[p(otlc) + €(E7 c)] = -p(clot) + -e(Z, c), 

P(0t) P(C) P(0t) 

and 

= c P(%) (independence given the observation) 
C 



where E(c) is the average error over the class, with respect t o  c, 

and p(C)  = CzeC p ( 3 .  SO, for any c E C, we have 

or, in terms of the mutual likelihood, m(x;  y) A p(xl y)/p(x), 

Thus classifier estimates of p(C1o) or m(C;  o) may be converted t o  estimates of p(c1o) or 

m(c; o ) ,  respectively. Conversion to  p(c1o) requires multiplication by p(c)/p(C), which can 

be estimated from the training set. The advantage of this equivalence class formulation 

is that  the number of classifier outputs equals the number of classes, rather than the 

number of hi?:, IHlrn+"+', and hence may be a practicable number. Note, however, that  

conversion may have poor error properties for low probability observations (p(ot) small). 

So if there are equivalence classes, one may be able t o  implement this efficiently, otherwise, 

however, even this simple alternative structure may be computationally intractable. 

2.3 HOVS Algorithm 

The Higher Order Viterbi Search (HOVS) algorithm can be seen as a variant of the Dawid 

algorithm that  allows the cost-efficient use of more state-context information, by using 

a variable amount of context from the most likely path to  a state, rather than a fixed 

number of previous states. 

2.3.1 PIN, recursion, product form 

The HOVS algorithm assumes a PIN model like that  of figure 2.1 (b),  but where the 

state-to-state arcs go arbitrarily far back in time. More formally, in equation (2.1) the 



parents of a state Ht are pa(Ht )  = H I - ' ,  and those of a state O t  are pa(Ot)  = H t .  To 

derive the HOVS recursion from first principles, write 

where the second equality is from the conditional independence assumptions of the PIN 

graph. 

For each state, h t ,  let 

w (h,) G ht . argmax p(h i ,  0;) 
/&;-I 

denote the state sequence ending in ht having the largest joint probability with the obser- 

vations. Let 

then (2.4) implies 

The HOVS approximation t o  the optimal state sequence uses (2.4) t o  forcibly construct 

a dynamic programming recursion: 

The last line makes the HOVS approximation by replacing the argmax over the entire 

preceding path hi-' by one over the preceding single sta.te h t - l .  Context deeper than 1 is 



assumed t o  be from the single best path t o  the preceding state rather than maximization 

over all paths t o  that  state. 

Clearly, the argmax of the last line can be viewed as being over ~ ( h ~ - ~ ) ,  and can be 

replaced by an argmax over multiple paths t o  each ht-1, rather than the single best path. 

Of course, if n such paths are used, then the recursion must maintain 2n state variables for 

each ht ,  rather than 2 (namely, n copies of r ( h t )  and fi(n(ht), 0;-l)) However, in situations 

where the classifier tends t o  give the correct class a high score, even if not the highest, 

this technique should be useful. 

The HOVS recursion is on the IHI possible values of H. It can easily be extended 

to  a recursion on (n  + 1)-tuples of values, {h:-,), allowing a potentially more accurate 

estimation, a t  the cost of more computation: 

A recursion on longer tuples should be more accurate as it allows the argmaz for each 

tuple to  be based on a longer lookahead. 

Comparison shows that  HOVS is essentially the Dawid algorithm for the assumed 

PIN model, derived in a different way, and allowing for the introduction of further state 

context. From table 2.2 (c), the Dawid algorithm for context depth 2 gives the probability 

recursion 

The optimal path is determined by recording the maximizing value of ht-2 a t  each step. 

This implies the path recursion 

ht-1 ot-l 
~ ( h : - ~ )  = ht - ~ ( h t - 1  argmaxp(htlh:~;)p( t-2, 1)- 

ht-2 
(2.7) 

This is essentially the same as (2.6) for n = 1, except that  HOVS uses p ( h t l ~ ( h f ~ ; ) )  rather 

than p(htlh::;). Similar equivalences hold for all n > 0, so HOVS can be seen as a variant 



of the Da.wid algorithm that  allows the use of more state-context information when the 

modeling assumptions of the Dawid algorithm are inexact, i.e., when the Markov property 

does not hold strictly and there is dependence between variables further apart in time 

than the Dawid algorithm assumes. As the Dawid algorithm for n = 0 is the usual Viterbi 

search in an HMM, the same statement holds for that  situation. 

2.3.2 Relation to speech language modeling: A* search and stack de- 

coding 

As the PIN independence assumptions are the same, the product form for HOVS is that 

of table 2.3 (b). Ignoring initial conditions (t < n) ,  where n is the context depth, 

which in the speech recognition domain is the usual decomposition into acoustic and 

language models. So the variable-order aspect of HOVS is clearly related t o  the use of 

n-gram language models in speech. However, the algorithm is not that  which is usually 

used in speech processing. Speech processing, both for isolated and continuous speech, 

requires time alignment of acoustic frames with the word sequence [RL90]. This leads 

to  the use of "stack decode" or A* algorithms that  evaluate and compare entire aligned 

word sequences [Paugl]. As (some approximation to) all preceding word sequences are 

available for each new word, rather than simply the last word, the HOVS approximation 

(2.5) need not be made: there is no need t o  enforce a Markovian assumption. Thus stack 

decode algorithms should be more accurate. The disadvantages are (i) the number of 

paths grows exponentially over time, thus some approximation is needed to  keep the set 

of paths within reason, and (ii) these A* algorithms do not appear t o  parallelize in any 

useful way, and are much more space and computation intensive. 



2.3.3 Variable order models 

I have discussed estimating m(ot; ht) in the HOVS recursion; i t  remains t o  discuss the 

term p(htlh;-'). I will assume that  the influence of a previous state only extends so far, 

so that  

P ( H t l ~ 4 - l )  = p ( ~ t l H : ~ : ) ,  (2.8) 

for some fixed n. Even so, the latter term is a distribution on ]HIn-' state tuples, and 

hence becomes prohibitively large, both t o  estimate and t o  store, for relatively small n. I 

reduce the space needs by using variable-order models: the term p(htlh:~A) in the recursion 

is replaced by a term p ( h t l h t ~ i ) ,  where a is a function of hi::, 0 < cr < n,  and hi-' is 

interpreted as the empty set (the null context). The function a is constructed to  trade off 

the accuracy of the approximation p(ht~h::;) z p(htlh:I;) against the complexity of the 

model M, = {hi-,lh E H ) ,  i.e., the number of contexts used (I use h E H t o  indicate 

that h is one of the possible values of H). 

Optimal methods for constructing models M ,  have been developed in the da ta  com- 

pression literature [WRF95], under the assumption of a finite-state source, as given by 

equation 2.8. "Optimal" in this case means that  the probabilities p(ht(hi1;) of the 

"learned" model M a  converge t o  those of the true source, p(htlh:I:) a t  the fastest possible 

rate, as a function of the amount of training da ta  [WRF95, Ris861. 

Context trees 

For a variable H with states, h(4, 1 < i < IHI, consider the full [HI-ary tree where 

each node is identified with a state sequence, or context as follows: the root corresponds 

t o  the null state sequence, and the i'th child of a node corresponds t o  appending h(i) 

to  that  node's state sequence. Thus, if the context for a node is h(jk) . . -h(j l) ,  then the 

context for its i-th child is h(i) . h(jk). . . h(j1). Given an information source generating a 

state sequence, t o  each node, attach a set of probability estimates. If the context for a 

node is h(jk) . . - h(jl) ,  then the estimates are for the occurrence of a state as the next state 

after the context: { ~ ( h ( ~ )  - h(jk) . - - h(jl)lh(jk) - - - h(jl)) ,  or written temporally, as previously, 



{ p ( h ~ i ) l h ! ~ ~  - . - hFb}. When no confusion will arise, I also refer to the combination of a 

state sequence and a set of probability estimates as a "contest". 

Call a tree of state sequences with such a set of probability estimates a context tree 

for the information source. Define a fringe of a tree to be a set of nodes such that all 

sufficiently long paths starting a t  the root of the tree pass through exactly one element of 

the fringe. Given a context tree for the source, each such fringe defines an a function as 

described above, and hence a model for the source. Algorithms for constructing context 

tree models differ in how they select the fringe of "active" contexts to use (and to some 

extent in how they estimate the probabilities). The essential idea of these algorithms is to 

expand the fringe by replacing a node on the fringe by its children whenever the resulting 

improvement in the probability model outweighs the increase in model complexity. 

As used in data compression, context trees are constructed in an online fashion. In this 

case, I use a context tree constructed for a training set to capture state context statistics 

for use with a classifier. Of course, such a context tree can be continuously adapted to 

the state sequence so generated. However, there are two implementation issues in using a 

context tree for HOVS. 

One simple point is that, both for starting up the recursion, and for dealing with 

state-sequences that were not seen during the construction of the tree, all ancestors of the 

active fringe must be included as potential contexts. The second issue is more complex. 

Traversing a sequence of states defines a map y from the set of active contexts into 

itself by 

~h(Q(h7))  = Q(h .  h;). (2.9) 

In implementing HOVS, one needs to implement something like yh to compute the active 

context for the next state ht+l from the context for the current state. The difficulty is 

that, in general, computing yh requires not just the current context and the next state, 

but also that part of hy not in the current context. The preceding states, h;, are needed 

when the next active context is longer than the current active context by more than one. 

Suppose the current context is ht ,  the next state is h(*), a.nd the active contexts ending 



in h(O) are {h(0)h(1)h(i)lh(2) E H). Computing the next active contest requires knowing 

which h(" occurs in the appropriate place in n(h2). 

So if context lengths can differ by more than 1, computing yh generally requires back- 

tracing through ~ ( h ; ) ,  which may be computatio~lally expensive, especially in a parallel 

implementation where the back-tracing information may be distributed. An alternative 

is t o  use a finite state machine approximation t o  yh. Define Th(a(h;)) t o  be the shorter 

of a ( h  hz) and h . o(h;). Since a() computes a (non-strict) prefix of its argument, one 

of o ( h  hy) and he  cr(h;) is a prefix of the other, so ;lh(o(hy)) is a prefix of yh(a(h;))  

and is a reasonable, if not optimal, context for h. Also, Th and yh agree whenever the 

next active context can be computed from only the next state and the current context, 

i.e., without back-tracing. The advantage of -7, of course, is that  it admits a finite state 

machine implementation4. 

2.4 SIMD HOVS 

In this section, I examine SIMD implementations of the HOVS algorithm. Equations (2.5) 

and (2.5) suggest either 

1. parallelizing over the max when computing the recursion for each n(ht) ,  or 

2. computing several n(ht) in parallel. 

Both implementations are possible, the choice being determined by such factors as number 

of PEs, P, the number of states, IHI, the amount of contextual information used (available 

storage for M a ) ,  and architectural features such as the amount of local memory per P E  

and whether one can compute the maximum over two sets of PEs simultaneously. Given 

an algorithm for ( I ) ,  assuming the algorithm that  can be executed in parallel on the 

41n the data compression literature, there is a notion of a finite state machine source model [WRFgS]. 
Constructing j from the active contexts in a context tree, as above, does build a finite state machine model, 
but not necessarily an optimal one, as the active contexts have not been chosen with the FSM restriction 
in mind. In particular, it may be better to choose a deeper context at  some point so that deeper successor 
contexts can be used. 



architecture, (2) is unproblematic, so 1 will concentrate on the first approach. The basic 

algorithm is straightforward, with minor variants for (i) IHI z P. (ii) [HI << P. (iii) 

I H 1 >> P and (iv) recursion on n-tuples, rather than single states (equation (2.6)). 

2.4.1 Algorithm 

I sketch SIMD implementations of the HOVS algorithm, for simplicity ignoring starting 

and ending conditions. Pseudo-code for the algorithms is in Appendix A. 

The assumed machine model is like the Adaptive Solutions' CNAPS [Ham901 : there 

is a separate host and processor element (PE) array; values can be broadcast from either 

the host or a P E  and received by both the host and all PEs; PEs have local memory, 

local memory addressing, and local conditional execution; and there is a fast parallel max 

where each P E  emits a value and the identifier of some P E  that  emitted the maximum 

value is determined in constant time. 

Recall equation (2.5): 

~ ( h t )  = ht - n(argmax[~(htln(ht-l))13(R(ht-1), oE--l)l). 
ht-1 

In the algorithm for the case [HI = P, each state h is associated with a particular PE, 

qh, which qh stores the context probabilities {p(hlln(h))lh' E H). At time t, qh holds the 

current value of @(n(h), 0:-I), uses it t o  compute f h  (h') G p(h1l~(h))l j(n(h),  otl-I), and 

stores the new value of lj(n(h), 0;). 

At the t-th iteration, the algorithm loops over the recursion variable ht. For each ht, 

fh,-, (h t )  is evaluated in parallel on qh,-, , and a parallel max operation over all PEs gives 

the desired argmaxht-, . This resides on q,,, 2 qq,,gm,,,t-l ; point-to-point communication 

transfers the new P(n(ht), 0;) from q,,, t o  qht , as well as the new active context for qh,, for 

use in the next iteration. The host maintains a back-pointer from ht to  argmaxht-, ; after 

the last iteration a serial back-trace from the final state gives the sequence of maximal 

states. Pseudo-code for this case is in figure A.1. Time complexity of one step of the 

algorithm is O(IH1) = O(IHI2/P),  for a speedup of O ( P )  over the serial version. 



Minor variations need to  be made when IH I > P ,  IHI << P ,  or when the recursion is 

over n-tuples rather than single states. 

When I H I > P, the same algorithm can be used, except that  each state ht-l is as- 

sociated with a virtual P E  (VPE) s, vh,-,. Each real PE contains K f [HIP] VPEs 

and an inner loop over the VPEs is added when calculating the max. Pseudo-code for 

this case is in figure A.2. Time complexity of the algorithm is O(IHIK) for a speedup of 

~ ~ l ~ l / ~ l ~ l / ~ l ~ ~  
When (HI << P, the basic algorithm uses only (HI of the PEs, which is inefficient. One 

possibility is t o  simultaneously compute the recursion for L 5 [P/IH(] variables ht. The 

P E  array is partitioned into L sets of [HI PEs and the loop body of the basic algorithm 

is executed on each, [IHIIL] times. Broadcasting variables requires a loop over the L 

sets, as does the parallel max, and the point-to-point communication. Time complexity is 

max(L, [IHIILl). Speedup depends on L; ignoring integrality constraints, L = gives 

the maximum speedup, H ~ / ~ ,  using H ~ / ~  PEs. . 

Another possibility when 1HI << P is t o  use the "extra" PEs t o  store more context 

nodes. This gives only (H (-fold parallelism, but allows more con textual information t o  

be used, potentially increasing accuracy. Rather than all contexts ending in some par- 

ticular state, each VPE holds the contexts ending in a particular state sequence. More 

formally, the set of contexts for a V P E  is the intersection of the active fringe with some 

complete subtree of the context tree, where the subtree's root need not be an immedi- 

ate descendent of the root of the tree. In this case, a compatibility condition is needed 

t o  determine which VPEs contribute t o  the argmaxh,-,, since not all contexts can pre- 

cede all others (for example, the context h(1)h(2)  can only precede contexts of the form 

h ( i ) h ( l ) ) .  This reduces the potential parallelism to  JHJ. Pseudo-code for this case is in 

figure A.3. Let S be the number of contexts, then K - [SIP] is the maximum number 

of VPEs (or context subtrees) associated with any PE. Time complexity of the algorithm 

'Note that I am not assuming any hardware support for virtualization; it is purely an algorithmic 
construct. 



is O(IH1[S/IHll [S/P]) = S2/p = (IHI2/P) * (S/IH1)2. Speedup is O(P/(S/IH1)2), less 

than P due to  computation of the compatibility condition. 

Finally, one may vary these algorithms slightly to  implement a recursion on. say. pairs 

h:-l, as in equation (2.6). The problem here is that  the PE for h(') must contain a t  

least the IH l 2  context probabilities {p(hlh(1)h(2)) )h,  h(2) E H), which may be prohibitive 

in terms of storage. Pseudecode for this case, when IHI = P is in figure A.4. Time 

complexity of the algorithm is O ( I H ~ ~ )  = O ( I H I 3 / ~ ) ,  for a speedup of P. 

2.4.2 Discussion 

The maximum speedup possible for the recursions (2.5) and (2.6) is [HI, so the optimal 

speedup with P processors is min(lH1, P) .  When P divides IHI, one can get the maximal 

speedup of P. When P does not divide JHI, one can get a speedup of O ( / H J / [ J H J / P ] ) ,  

which is bounded below by P/2, the worst case being I HI == P+ 1. Even when I H I << P ,  

one can get a speedup of I H ~ ~ / ~  by computing multiple recursions in parallel. So one can 

generally make good use of parallelism. 

As to  the space complexity, each context requires IHj probabilities and JH 1 "next 

context" identifiers. In a space-restricted implementation, the probabilities can likely be 

represented in 16 bits, as can the "next context" identifiers, for a context size of 41 HI bytes. 

Thus, for example, with IHI = 27, P = 16, and 2KB context memory per processor, one 

could use about 300 contexts, and achieve a speedup of O(13.5). For JHJ = 53, P = 16 and 

4KB context memory per processor, one would have 300 contexts and O(12.25) speedup. 

For I H I = 53, P = 32 and 4KB context memory per processor, one would have 300 contexts 

and O(26.5) speedup. As will be seen from simulations, a few hundred contexts should 

provide most of the performance gain, so one can conclude that  the storage requirements 

of the algorithm are practical. 



2.5 Simulations 

I address a number of issues via simulation, seeking some general idea of the performance 

of these algorithms. The specific issues are as follows. How does performance vary with 

the amount of context used (correctness versus size)? How much does performance de- 

grade when context is restricted to  allow a finite state machine algorithm for the SIMD 

implementation? How much does performance degrade due t o  the HOVS approximation 

(2.5) How well can one model a source before it is "over-trained", and does not represent 

well another text? 

My setup for these experiments simulates an OCR system. I use output vectors from 

any of several ANN classifiers trained for printed character recognition on the NIST 

database. The system is simulated by reading some text character by character and 

replacing the character by a randomly chosen classifier output vector for that  character. 

The output vectors are normalized t o  sum t o  one. The stream of classifier outputs is used 

in the HOVS recursion, together with a source model previously generated from another 

text, t o  generate a stream of "corrected" characters. Performance is measured as the 

percent correctness of the output stream. 

A variety of source models were used. Straightforward n-gram models, n = 1. .  .5, 

were constructed using all the n-grams of that  length occurring in the text used for source 

modeling. A "nc+contextV model was built, for which p(characterlcontext) is the a priori 

probability of the character. I constructed two "word-based" source models, in which a 

single context is a word prefix together with a fixed number (1 or 2) of characters from the 

preceding word. The source model consists of all such contexts found in the training text. 

Finally, the remaining models were constructed using variants of the Rissanen algorithm 

[Ris86]. This algorithm has parameters that  affect its finite-sample behavior; by varying 

these I constructed a number of models with differing numbers of contexts. From these 

models more were constructed by trimming their context trees in two ways. In the basic 

algorithm, contexts that  were not marked as active, but who have an active sibling, are 



made part of the active fringe. In one variant. such contests are replaced by their parent. 

In the second variant, while growing the context tree, contests were not allowed to  cross 

word boundaries. Both these variants turn out to  reduce the number of contexts, while 

tending t o  slightly improve performance on the test sets. 

Unless stated otherwise, results are the average over five different classifiers and three 

test sets. The first 5000 lines of Moby Dick [Me1961 are used for source modeling. A 

"training set" consisting of lines 4900 t o  5000 of Moby Dick (65044 words, 357745 char- 

acters) was used t o  evaluate performance when the source modeling process has "seen" 

the actual source. The three test sets are lines 10000 t o  10100 of Moby Dick (124.5 words, 

71'79 characters), lines 4900 t o  5000 of Lord Jim [Con831 (1209 words, 6612 characters), 

and lines 10000 t o  10100 of Lord Jim (1232 words, 6353 characters). The training and test 

sets have been chosen t o  represent "general English", one expects contextual information 

t o  be more valuable in more restricted domains, where the source is more constrained. 

In stack decoding, paths are explored incrementally; a t  each step of the algorithm, the 

best path to  pursue next is popped off the stack, and its one character extensions then 

pushed back on. For stack decoding, the total stack size allowed 32K paths; when this 

was exceeded, the stack was trimmed t o  the top scoring 3200 paths. 

For exhaustive matching, the N most common words from all of Moby Dick were used, 

where N = 4096,8192,16384,18004 (18004 is the total number of distinct words in Moby 

Dick). Results are averages over all five classifiers and over the training and all three test 

sets. 

Figure 2.2 shows the results of a number of such experiments comparing HOVS, stack 

decoding and exhaustive matching for a variety of source models. The figure does not 

include any results from using the FSM approximation t o  the source model, these were 

found t o  vary very little (less than 0.5% reduction in error) from their original model. The 

x-axis is the number of contexts used in the source model, or, in the case of exhaustive 

matching, the number of "context equivalents". For these experiments. only lowercase 

and space characters were used, so an implementation of a context minimally contains 
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27 probabilities p(char1context) and 27 context identifiers for the next context given the 

next character; allotting 4 bytes for each implies 108 bytes per contest. For exhaustive 

matching, the number of bytes needed to  store all the models was divided by 108 t o  give the 

number of context equivalents needed to  store them. The y-axis is the percent reduction in 

error from using only the classifier output scores, with no context information, computed 

as 100 * (correctcontezt - correct,,)/(l - correct,,,), where correctcontezt and correct,, give 

the fraction correct with and without the use of context. Use of this metric normalizes for 

the variation in correct,, among the different classifiers. In these experiments correc&,, 

was typically around 80%, so an error reduction of 40% corresponds t o  88% correct; an 

error reduction of 70% corresponds to  94% correct. 

Certain points on the graph require discussion. For no contexts and for about 30 con- 

texts, HOVS outperforms stack decoding. In part, this is due to  extensive stack trimming 

which takes place for these less context-restricted searches. Also, the source model for no 

contexts uses the a priori probability of the character as its prediction for p(char1context). 

As the prior may underestimate the contextual probability, this is not an admissible heuris- 

tic for the stack decode (A*) algorithm [Ni186], further compounding its poor performance. 

At the other end of the graph, the source models for the two largest numbers of contexts 

have good performance relative t o  the third largest source model. The last two points 

correspond t o  the "word-based" source models described above, with one and two charac- 

ters of pre-word context allowed, while the third largest corresponds to  a 5-gram source 

model. The latter allows much inter-word context t o  be captured, and it appears that  this 

does not generalize well. This is corroborated by figure 2.3 which shows that  the 5-gram 

model has extremely good performance on the training set, and that  among the largest 

models, better performance on the training set "mirrors" poorer performance on the test 

sets. In figure 2.2, the da ta  points for exhaustive match, corresponding t o  4096, 8192, 

16384 and 18004 word models, or from about 80 to 500 context equivalents, show that  

the performance of exhaustive matching is quite sensitive t o  the number of words in the 

source that  are missing from the source model. We also see that  something like 10,000 
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Figure 2.3: Performance of HOVS on training and test sets. Here "Lord Jim 1" and 
"Lord Jim 2" are test sets consisting of lines 4900-5000 and lines 10000-10100 of Lord 
Jim, respectively. 

t o  14,000 word models are needed t o  duplicate the performance of correspondingly sized 

HOVS or stack decode algorithms. 

Figures 2.2, 2.3, and 2.4 show that ,  unlike stack decoding, the HOVS algorithm cannot 

make much use of larger amounts of context. Figure 2.4 compares the performance of 

HOVS and stack decode on the training set, where generalization is not an issue, and 

shows little performance gain for HOVS after a few hundred contexts, corresponding t o  

an average context length of two t o  three. 

This can be explained as follows. The effect of differing context probabilities is felt 

in the argmax operation; when the best predecessor t o  a given state is being determined, 



- stack decode rzr l  

Figure 2.4: Performance of HOVS and stack decode on training set 



Suppose two possible predecessor states, h: and h: of a given state, ht+l  are being con- 

sidered, each with a best path to  it, and that  two source models, MShort and Mlong are 

being compared, one of which is shorter, in that  its contexts are suffixes of the contexts 

of the other. Assume that  the best path t o  each node is the same for both source models, 

when HOVS is used. The model with longer contexts will provide improved performance 

for this comparison only if the differences in the context probabilities for h: and h; differ 

sufficiently between the two models t o  outweigh the difference in observation probabilities 

between the two states. 

For stack decoding, all possible previous paths t o  a state are "in use", so the current 

observation may, via longer contexts, affect which is the best path t o  the next state. The 

best path may change back in time, up t o  the length of the context. Conversely, for 

HOVS, the previous path to  a state is fixed, and longer contexts can only affect outcomes 

better than short contexts to  the extent that  they give better probability estimates than 

the short contexts, and estimates that  are sufficiently different t o  overcome the difference 

in observation probabilities for the two states. 

So the inability of HOVS t o  take advantage of longer contexts corresponds to  the 

notion that ,  for the texts and classifiers considered, contexts longer than about 3 characters 

provide probability estimates that  differ from those of their 3 character suffixes by amounts 

that  are small compared to  the typical difference between observation probabilities a t  a 

given time. This suggests two methods of helping HOVS take advantage of longer contexts: 

(i) rather than just one, keep track of several "best" paths to  a state, and take the argmax 

over all of these, and (ii) dampen the dynamic range of the classifier outputs. I discuss 

these further in the section on future work. 

2.5.1 Discussion 

Figure 2.2 shows that ,  for my simulations, HOVS, exhaustive matching, and stack de- 

coding give approximately equivalent performance for about 300 contexts (or 10,000 to  

14,000 word models). This is about the same context storage size for HOVS and exhaustive 



Figure 2.5: Average number of state sequence extensions per word, for stack decoding. 
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matching; stack decoding also requires a substantial stack (128 KB in my simulations). 

In terms of per-word time complexity, let W be the length of the word. then HOVS 

is O ( W  - IH 12), and has parallel versions that  are O(M7 . [HI).  Exhaustive matching is 

O(W . (number of words of that length)), and is trivially parallelizable. The complexity 

of stack decoding is more difficult t o  determine. Figure 2.5 shows the a17erage number 

of state sequence extensions explored by stack decoding per word for the various models. 

averaged over classifiers and test sets. For around 300 contexts we see that an average of 

about 1500 extensions were explored. Other experiments with very accurate heuristics, 

using the Huang-Soong algorithm [SH91] obtained a t  best an average of about 300 exten- 

sions per word. The heuristic is constructed by a full forward pass through the Viterbi 

algorithm, with complexity O(W - [HI2). In the following stack decode, each extension 

requires insertion of the new score into a priority queue, an expensive operation that is 

a t  least O(log IHI), with a substantial constant factor. I conclude that  stack decoding 

is substantially slower that  HOVS; further, it does not parallelize6. Although not simu- 

lated, the nth-order version of the Dawid algorithm is O(W - /HIn+') and so much more 

expensive than HOVS for n > 1. I conclude that  HOVS is fastest a t  the accuracy and 

storage equalized point of about 300 contexts (context equivalents). Figure 2.2 also shows 

HOVS has superior performance for smaller numbers of contexts. For larger numbers of 

contexts, stack decoding outperforms HOVS, and the tradeoff between increased accuracy 

and decreased speed must be made on an application-specific basis. The same is true for 

HOVS compared t o  exhaustive matching with more than 10,000 t o  14,000 word models. 

2.6 Related work 

I have already mentioned the relation t o  the acoustic mode / language model decomposi- 

tion used in speech recognition. 

6 0 n e  can parallelize the computation of the heuristic, but then the computed heuristic, which is es- 
sentially the entire Viterbi lattice, must be  communicated t o  the stack decoder, and this wipes out any 
performance gain. 



In their work on "connectionist speech recognition", Bourlard and Morgan [BM9-2] 

have done extensive work on using classifier outputs a s  HMM observation probabilities. 

Hovever, their formalisms have not included higher- or variable-order methods like HOVS. 

Ron, Singer and Tishby [RST94] have explored the use of variable order models in 

classification, but their formulation assumed no classification error. 

Typical work in OCR uses dictionary lookup, i.e. exhaustive matching, for contex- 

tual information. However, He [He911 has looked a t  HMM-based methods for handling 

segmentation issues. 

2.7 Future work / questions 

It would be of interest t o  implement the higher-order Dawid algorithm (2.7) and its HOVS 

version (2.6), t o  look at how much performance is lost by use of the simpler model. For the 

parallelized version, the simpler model involves recursions and storage that  are O(I H I), 
whereas for the 2nd-order one, the complexity is O ( I H ~ ~ ) .  It seems unlikely that  the 

performance increase of using the higher-order versions would warrant the extra comp1exit.y 

for most applications, but some idea of the performance gain would be helpful. 

The classifiers used were trained for classification performance, and hence their outputs 

are interpreted as probabilities. It would be of interest t o  determine t o  what extent training 

the classifiers t o  estimate the mutual likelihood, m(x; y), helps. I have not done so as 

initial experiments indicated that  this is unlikely to  make much difference. Specifically, 

initial experiments showed that  mis-estimating the class probabilities p(h)  used t o  convert 

classifier outputs p(h1x) t o  m(x;  h) = p(hlx)/p(h) had only a small effect on the total 

performance. 

As mentioned, the HOVS recursion (2.5) is easily extended t o  one where some fixed 

number, n, of best paths are used, rather than the single best. Also, the SIMD implemen- 

tations can easily be extended to  this case. The time complexity and number of recursion 

variables will increase by a factor of n ,  while the space for context memory remains the 

same. It would be of interest to  implement this, see its performance, and, in particular, 



to  see t o  what extent it allows the HOVS algorithm to  make better use of longer contexts: 

as described above. 

The HOVS recursion (2.5) combines the classifier outputs and context probabilities by 

multiplying them. Thus if the classifier outputs erroneously give a very small value to  the 

correct state, it is hard for the context probabilities to  counteract this; they must give 

equally small values t o  the incorrect states that  the classifier prefers. There is thus an 

"impedance matching" problem between the classifier outputs and the conbext probabili- 

ties. It would be of interest t o  experiment with a tuning parameter that  smoothed one of 

these, say the classifier outputs, p(hlx) perhaps along the lines of 

However, there is evidence that  smoothing the classifier outputs does not help performance 

[Mor]. .Another possibility is t o  train the classifier either t o  p(h1x) or m(h; x) using a 

smoothing regularizer [MR97]. As mentioned above, decreasing the dynamic range of the 

classifier outputs also might allow HOVS t o  better use longer contexts. 

The effects of context will be stronger in a more constrained domain; it would be good 

t o  see experimentally if any of the qualitative behaviors change. 

My notion of context is that  of a source model, and is unrelated t o  error model notions 

such as handling insertions, deletions, and segmentation errors. Incorporating such error 

model information is important t o  any real system, but it seems completely separate from 

the present framework. 

Another notion of "context" is a more semantic or discourse-level one, where a context 

is something like a probability distribution over the set of word models giving the current 

likelihood of seeing a model. Finding a way of computing and updating that  distribution 

would might allow many models t o  be disregarded, allowing either better performance 

exhaustive matching, or construction (or lookup) of a more constraining source model. 



2.8 Conclusions 

HOVS provides a fast, practical, close t o  optimal approach to  using the contest provided 

by a single, large recursive model t o  constrain the interpretation of sequences of obser- 

vations, as given by a probabilistic classifier. Alternative approaches based on the P I N  

formalism quickly become expensive as more contextual information is used. HOVS is 

an efficient principled approximation t o  PIN approaches that  might otherwise be com- 

putationally intractable. For even better performance, HOVS allows an efficient SIMD 

implementation requiring only limited resources. The HOVS approximation framework 

is flexible, t o  accommodate differing computational resources , application characteristics 

and application requirements; one can "tune" the number of previous paths providing 

contest, the (variable) length of context used, or the length of the state-tuple over which 

the recursion is performed. While much if not all of the underlying theory is already 

in literature, tying everything together into the P IN  framework is novel, as is the SIMD 

implementation. 

We thus see that ,  for ordered input, contextual information from a single large recursive 

model can usefully be used t o  constrain the interpretation of sequence of components. 

This form of contextual processing may be useful, for example, in recognizing novel words, 

however, when it exists, a known vocabulary will better constrain the allowable sequences. 

I turn next t o  this problem, of using the context provides by a known vocabulary of many 

(small) models, and to  the matching models paradigm of contextual analysis. 



Chapter 3 

Models 

In this chapter I discuss the feature grouping and model matching operations that  form 

the stages subsequent t o  feature extraction, emphasizing the model matching stage. I wish 

to  demonstrate a number of "stylized facts" about the algorithms used in these stages: 

F1 feature grouping (object hypothesis generation) involves construction and traversal of 

irregular da ta  structures such as lists and trees. 

F2 model matching algorithms exhibit irregular control flow mediated by the data  and/or 

model 

F3 most model matching and feature grouping algorithms are simple, with computational 

complexity coming from applying a small code "kernel" many times 

F4 model search and indexing techniques are "imperfect7', in the sense that  they generally 

restrict the number of models t o  be matched, but not t o  a single candidate. 

3.1 Irregularity 

Essentially, irregularity is inefficiency due t o  data  dependent execution. Operationally, for 

parallel algorithms, it can be viewed as a problem of load balancing: ensuring that  work is 

apportioned between processors so that  all are kept busy. For algorithms such as branch 

and bound that  cycle between stages of computation and scheduling (load balancing), 

one can formalize irregularity as the ratio of computational work to  task scheduling work 

[GRV95]. 



At a more detailed level, suppose the workload consists of a set of indivisible tasks, each 

task consisting of applying identical code t o  some task-specific data. Processors may take 

variable amounts of time to  accomplish such tasks, leading to  load balancing problems, 

for several reasons: 

1. most simply, the processors may have been allocated different numbers of tasks 

(workload irregularity) ; 

2. a task may involve construction or traversal of data  structures whose size and/or 

"shape" is task dependent, for example, lists and trees, leading t o  data dependent 

control flow (data structure irregularity); 

3. processing in a task may involve a variable, data  dependent, number of iterations, 

even for data  of the same size and "shape", for example, in relasation and search 

algorithms (convergence irregularity); 

4. as opposed t o  irregularity due t o  the task, as in the preceding, there may be irreg- 

ularity due t o  the implementation on a particular machine: variability in commu- 

nication times t o  other processors, t o  memory, or t o  110 devices (communication 

irregularity). 

Irregularity is important insofar as it impacts cost-performance. Using a task scheduler 

requires writing and executing more code, as well as relocating tasks among processors, 

affecting implementation cost and runtime performance. For performance, tasks must not 

be too small, lest the scheduling and relocation overhead dominate. Hiding communica- 

tion irregularity by multi-threading requires more (and more complex) code, and perhaps 

more hardware for fast context switching. At the processor level, hiding variable memory 

latencies, variable instruction execution times, and branches (or branch mispredictions) 

by out-of-order and speculative execution can be quite expensive in terms of chip area and 

complexity; I discuss this in chapter 4. 



Irregularity is especially pernicious for SIMD execution, as  lockstep esecution gener- 

ally implies that  whenever one processor experiences inefficiency due t o  workload. conver- 

gence, or data structure irregularity, all processors do. SIMD esecution disallows using 

multi-threading to  hide communication irregularity, in fact, it generally requires that com- 

munication irregularity be avoided altogether. This forces every communication to allow 

for worst-case timing, and t o  take the  worst-case time. 

I will consider the subjects of irregularity and parallelism as I examining the algorithms 

of the feature grouping and model matching stages. 

3.2 Feature extraction and grouping 

In this section I restrict myself t o  vision. Feature grouping, per se refers t o  construct- 

ing sets of features hypothesized t o  belong t o  the same object. In speech, due t o  its 

one-dimensional nature, this consists of hypothesizing temporal boundary points between 

objects (phonemes, words, sentences, and so on). The bour~daries tend t o  have distinctive 

acoustics, and hence can be modeled as different kinds of components (e.g. "silence"). 

Thus the boundary determination can be made part of the model matching process, and 

a separate grouping stage is unneeded. 

In vision, however, determination of which components (may) belong to  the same 

object is a central problem, sufficiently complex and distinct t o  require its own processing 

stage1. In fact, the general model of this perceptual grouping [Low851 stage is a hierarchical 

construction of increasingly complex features formed from sets of more primitive ones: 

pixels form "edgels", which are linked into lines, which make up parallel line pairs, which 

form rectangles, and so on. As this suggests, processing involves a series of stages, with 

changes in representation between stages [ReiSl , Ger921. Further, groups may contain 

features that  are widely separated in the image: consider grouping edgels into lines or 

lines into parallel pairs. Thus when the image is distributed over multiple processors, 

'Integrating the feature extraction, grouping and matching phases into a single (recursive) phase has 
been proposed, see, for example, [BCKS?]. 



there may be significant data movement between stages as well [Reigl]. 

The representation of features may be complex. At the lowest, iconic, level of the 

hierarchy, features are associated with individual pixels, being properties of the pixel or 

of its neighborhood. Examples are pixel properties such as grayscale value, and neigh- 

borhood properties such as values of 2-D linear or nonlinear filters, or correlation with 

a small template. Feature extraction involves mostly neighborhood operations that  can 

be performed in an SIMD fashion, what complexity there is coming from the treatment 

of pixels lying a t  the boundaries of the sub-images alloted t o  individual processors. At 

higher, symbolic levels of the hierarchy, features are complex representations of boundaries 

or regions, such as chain codes, Fourier descriptors, and quad-trees or are properties of 

these, such as curvature of a boundary or moments of a region [GW92]. 

The process of grouping involves finding sets of features having common or related 

properties, and amounts t o  associative lookup by attribute-value predicates [BDBH89, 

CEJK92, Ger92, Reigl]. The allocation of features among processors changes as more 

complex features are constructed, so doing associative lookup in parallel requires first re- 

distributing the features among the processors, t o  balance the workload. Since the alloca- 

tion of features t o  processors, and hence the necessary rearrangement, is input-dependent, 

this redistribution must be done a t  runtime, generally as a separate, intermediate, stage 

[CEJK92, G092,  ReiSl] . 
I study example algorithms for this stage, t o  understand the forms of irregularity 

involved. I exclude communication irregularity for now, as it is more a property of the 

processing architecture than of the specific algorithm. 

One basic grouping operation finds the connected components of the image - maximal 

contiguous areas of pixels all having some specified property. A refinement of this is re- 

gion growing, which finds contiguous areas of pixels that  have "close" values of a property. 

There are a variety of algorithms for this (see [AP92] for a recent review). One class of 

algorithms involves only pixel-local operations, and are easily done in an SIMD fashion, 

however it requires multiple passes over the image, and storage of multiple copies of the 



image. The second major class of connected component algorithms is of the divide and 

conquer form, where images are recursively subdivided, the components of the sub-images 

are found, and then components intersecting a boundary of a given sub-image are merged 

with those on the matching boundary of the adjacent sub-image. The latter step is done 

by merging graphs representing the boundary connectivity information, and then finding 

connected components of the merged graphs. The third class involves finding boundaries 

explicitly, then "filling in" the enclosed regions. This technique uses traversal over bound- 

ary lists, together with local pixel operations. We see that  the latter two classes involve 

both data  structure and workload irregularity. Workload balancing by redistributing fea- 

tures among processors is problematic as, in any case, the labels determined from features 

must be propagated back t o  the pixels, which presumably have not been redistributed. 

Another major grouping task is constructing edges from "edgels", the results of prim- 

itive edge finders such as the Canny [Can861 or Sobel [GW92] operators. Again, a large 

number of algorithms have been proposed; I look at some examples. Wang and Bin- 

ford [WB94] use a highly accurate edgel finder, then link edges into "inner curves" based 

on a fixed, quadratic, curvature hypothesis, together with an error model of the edgel 

finder. Branches are treated by terminating inner curves a t  the branching, then, in a sec- 

ond phase, linking conjoint inner curves that  have similar measured curvatures. Fischler 

[Fis94] deals with noisier images by a multistage procedure involving clustering, represen- 

tation of hypothesized groups by minimal spanning trees, and resolution of the hypotheses 

by dynamic programming. Farag and Delp [FD91] use a general A* algorithm, with a spe- 

cific evaluation function for linking in a new edgel. We see a spectrum of irregularity here, 

the Wang-Binford algorithm involving workload irregularity, the Fishler algorithm hav- 

ing both workload and da ta  structure irregularity, and the Farang-Delp algorithm having 

convergence irregularity as well. 

As mentioned above, a t  higher levels of the feature hierarchy, where the location of 

individual pixels plays no part, grouping can be viewed as associative lookup by attribute- 

value relationships. The example given was finding rectangular structure by first grouping 



into parallel lines, then into U-shaped structures, then into rectangles, using values of the 

attribute "angle". The associative lookup can be implemented by exhaustive search for 

features satisfying a given predicate, or by first building indices. In either case, workload 

can be balanced by reallocating features equally among processors and broadcasting the 

request. Data structure irregularity occurs from list and index traversal. 

Finally, both for the consistency checking of hypothesized groups, and for calculation 

of further properties such as line curvature and moments of functions over regions, various 

functions must be mapped over representations such as lists and quad-trees. Workload 

can be balanced by reallocating features, but data structure irregularity remains. 

In summary, we see mainly workload and data  structure irregularity a t  the feature 

grouping stage. Time spent reallocating features between stages of the grouping pro- 

cess can be hidden by use of an asynchronous autonomous network, where features are 

redistributed for the next stage as they are computed, with computation and redistri- 

bution being overlapped [CEJK92]. Optimally, such a network should support 2D-local 

(nearest-neighbor), tree-structured, butterfly (permutation) and broadcast communica- 

tion. [G092, CEJK921. 

Further, data  structure irregularity can be hidden by balancing workload among pro- 

cessors based on estimated per-feature processing time rather than simply the number of 

features. Note that  this is difficult for SIMD architectures, as task execution time depends 

both on the task and on which tasks are done simultaneously. All forms of irregularity 

can be ameliorated by averaging out variation: assigning more features per processor (and 

hence using fewer processors). Sub-image boundary effects require ad hoc, data-dependent 

communication; this may be hard t o  hide, but allocating larger sub-images per processor 

will tend t o  reduce the problem. As a final point, we see that  once features are allo- 

cated, the basic algorithmic structure is that  of mapping a small kernel, identical between 

processors, over a list or tree-like da ta  structure. 

Another point is that many feature construction algorithms are amenable t o  a split and  

merge technique [Web92], wherein the image is blindly split into tiles according to location, 



the tiles are processed independently, without communication, and then the results are 

merged. Communication occurs in phases: partial features are computed independently 

on each processor, then the partial features are recursively merged wit,h those of other 

processors into larger and larger parts until the entire feature is assembled. This phasing 

of communication will be relevant for the SFMD computation model introduced later. 

Here, note that  one characteristic of the split and merge technique is the need for relatively 

large processor memories t o  hold and combine final results [Web92]. 

So the algorithms of the feature extraction stage suggest the utility of certain hardware 

resources. An asynchronous autonomous network helps manage workload irregularity, by 

allowing overlapped computation and communication when load balancing. Fewer PEs, 

with large memories per PE, reduce da ta  partitioning boundary effects, allow averaging out 

of variation and permit use of split-and-merge techniques. Non-lockstep (non-SIMD) exe- 

cution more efficiently processes irregular data  structures and allows better load-balancing 

and averaging out of variation. 

3.3 Matching techniques 

I examine some model matching techniques in detail. A fundamental division exists, based 

on the dimensionality of the input. 

In what might be called "zero-dimensional" input, there is no context because there 

is no relation between inputs. An approximate example is olfactory perception, although 

even here there may be "priming" effects based on temporal ordering. 

One-dimensional input is ordered, generally temporally. Examples include speech and 

text recognition. Ordering leads to  use of a Markovian prefix-based source model, and 

path-discriminatory model matching based on a tree of prefixes (see below). Context is 

provided mainly by the immediate predecessors of the current input, possibly a t  several 



levels of .granularity2. Although I discussed one-dimensional input in chapter 2, my con- 

cerns here are different. There, a set of models was used t o  construct a single source 

model, which was applied to  improve the classification of individual components. There 

the issue is matching the individual models, the goal being selection of the most likely 

model. 

Higher-dimensional input has no natural ordering, so Markovian source modeling is 

difficult, as determining or even defining the current state is hard: there is no distinguished 

set of already identified features (like immediate predecessors, for l-D input). In vision, 

the basic example of higher-dimensional input, geometric, topological, and other forms of 

relations between features give rise t o  context defined by inter-component relations on a 

model-by-model basis. 

3.3.1 Ordered Input (Markov models) 

With ordered input, as in speech or text processing, the ordering of the input leads t o  an 

ordered match, hence to  an implicit or explicit ordering on a graph model. In practice, 

this leads t o  the use of Markov models, where nodes represent states, arcs represent tran- 

sition probabilities between states, and the match score can be calculated using dynamic 

programming (Viterbi or trellis search). The matching of separate models is synchronized 

by all models receiving the t'th input a t  the same time. 

Markov models can be recursively combined by adding artificial source and sink nodes 

t o  the graph, and then pasting together models by identifying the source of one with the 

sink of the other. Frequently, a t  the lowest level of model, phonemes or characters, the 

graph structure of the model is the same for all, thus facilitating SIMD execution with 

individual processors matching different, but identically structured, models. Higher level 

models generally do not have identical structures. 

20cclusion may be a problem, but is usually not part of the formalism of the recognition process 



Hidden Markov Models 

In the most common case? Hidden Markov Models[RabSO, He911, the models a,re genera- 

tive, and matching finds the model most likely t o  have generated the observed sequence 

of inputs. If a;j is the transition probability from state i to  state j, and b j (0 )  is the 

probability of observation 0 having been generated by state j ,  then 

where 

at+l ( j )  = [C at(i)aij] . bj(Ot+l) 
i 

can be defined as the joint probability of the state a t  time t + 1 and the observations up 

t o  that  time, 

( j )  = Pr(statej, 01, . . . , Ot+l). 

This calculation involves computing bj(Ot) for each node a t  each time, and propagating 

values over arcs. (The formula above gives the trellis algorithm, replacing Cj in the a 

recursion by maxj gives the Viterbi formulation.) The essential point is that  the recursive 

nature of the equation for at means that  an efficient dynamic programming implementation 

is possible. 

Model-discriminant versus Path-discriminant Matching 

In some common cases, there is a natural way t o  combine a set of Markov models into a 

larger one. Assume that  no two models contain identical paths from source(s) to  sink(s), 

so that  no two models have identical scores when some path of components occurs in the 

data,  and hence that  models are always distinguishable. Then models can be combined 

t o  form a lexical tree as follows: add an artificial root node to  the start  of each model, 

replace each model by the set of paths through it, and then form the tree by merging 

common prefixes of paths. A path from root to  leaf in the tree corresponds to  that  same 



path in some model, and a Viterbi match will give the same score. By labeling the leaf 

with the model name, finding the best matching path in the tree is equivalent to  finding 

the best matching model. Following He [He911 I refer t o  matching a path in the tree 

as path-discriminant search, and to  matching models individually as model-discriminant 

search, the basic vision paradigm. 

Reducing matching complexity 

The construction and use of a lexical tree greatly reduces average model matching complex- 

ity, as the prefixes of many models are evaluated simultaneously. Ney [NHUT092] reports 

that  for a vocabulary of 10000 German words, the use of a tree reduces size by a factor of 

2.5, and reduces search complexity by a factor of 7. The large latter reduction comes from 

the fact that  most of the search complexity occurs in the prefixes of the words, which are 

only evaluated once in the tree implementation. By viewing the problem of finding the 

highest scoring model as one of search, using a lexical tree may avoid matching most mod- 

els except for some small initial prefix. The tree search is typically formulated as either 

a beam search [Lowgo, NHUT0921 or as an A* search [Je169, BJM90, SH90, KHG+91]. 

Beam searches maintain a "beam" of current candidates, pruning out those that  fall below 

some threshold. A* searches operate in a "best-firstn manner, using an evaluation function 

for choosing what path t o  extend next. If the evaluation function overestimates the score 

of the path to  be extended (when the search is for the largest score), then it is said to  

be admissible, and the search is guaranteed t o  find the highest scoring path through the 

tree [Ni186]. A* searches must thus maintain a search frontier that  includes some prefix of 

every path, t o  allow that  path t o  be followed if all others prove inferior. Beam searches, 

by pruning paths once and for all, are not guaranteed t o  produce the optimal path. 

These search methods are generally good a t  rapidly eliminating most models from 

consideration. For a large vocabulary problem (typically, thousands of models) the tree 

3A trellis match will not generally give the same result, as alternate paths through the same model will 
support one another in trellis search, but be independent in the Viterbi and lexical tree methods. 



is large, hence it is built dynamically as part of the search process. However, even with 

sophisticated pruning, the dynamically constructed tree is large. For example, the beam 

search in [NHUT092] keeps 50000 current states (tree nodes) out of a possible 650000, 

while A* searches generally require an exponential amount of state. 

Much work has been done t o  reduce matching complexity by initially screening out 

unlikely candidates using a coarse fast match. Bahl, et all [BGKN89] provide a vectorizable 

algorithm that  is admissible as an A* heuristic. In an experiment using the non-vectorized 

form, it provided a 2x speed improvement. Kenny, et all [KLL+93] give an admissible fast 

match based on Viterbi search through graph representing triphone constraints implied 

by the lexicon, rather than the entire lexicon itself. Gillick and Roth [GR90] g' ive an 

inadmissible algorithm that  does hard pruning based on whether a given prefix passes a 

threshold; this is applied to  a small (z IIC) vocabulary giving a 25x speed improvement. 

Alternatively, for word-spotting tasks which typically have smaller vocabularies, and 

may have the words in their vocab~ilary chosen t o  be easily distinguished, thus having 

fewer shared prefixes, it makes sense t o  match models individually. This also allows the 

use of the somewhat more accurate trellis matching. 

Use of parallelism 

In large vocabulary tasks, the various search methods rapidly eliminate models. So, at- 

tempts t o  parallelize the matching process by matching all models in parallel, rather than 

using a search technique, will probably not be cost effective. Conversely, the use of a large, 

dynamically constructed, global tree is difficult t o  implement effectively using parallelism. 

A static partitioning of the tree among the processors makes it likely that  after a few 

steps, most processors will have only pruned parts of the tree, and hence have no work t o  

do (see [St0871 and [SB88] for interesting examples of this phenomenon in text searches). 

Using a "master-slave" approach by having one processor control the search process, ex- 

panding the search frontier a t  multiple places in parallel by distributing the expansion 

task t o  other processors, is unlikely t o  succeed as the amount. of work in expanding a 



frontier node is small compared to  the amount of information that  must be communicated 

for that  work t o  be possible. Dynamically repartitioning the tree suffers from the same 

problem: because of the unpredictability of the part of the tree examined by the search 

process, repartitioning is frequent, hence little work is done in proportion t o  the amount of 

communication necessary. So large vocabulary tasks probably cannot make cost-effective 

use of parallelism in the model-matching (i.e., decoding) stage4 . 

For a small vocabulary application like word-spotting, parallelizing is possible, but 

may not be needed as the task is small. So the actual model matching process for ordered 

input is an unlikely candidate for parallelism. As mentioned above, however, ancillary 

processes like a fast match may be parallelizable. However, in this case Amdahl's law 

[Amd67] implies that ,  as the central search part of the algorithms requires substantial 

computation, the speedup obtained by parallelizing ancillary processes will be slight. So, 

in general, I see little opportunity for useful parallelism in model matching one-dimensional 

input. 

3.3.2 Unordered Input (Graph Models) 

With unordered input, as in vision tasks, models are undirected (hyper)graphs, where 

nodes are features and arcs are relations or constraints between feature values. Models 

are thus constraint networks. Typical arcs are geometric and topological constraints relat- 

ing features7 adjacency, locations, angles, distances, and so forth. Geometric constraints 

depend on a rigidity assumption, that  the object is rigid and the geometric relations re- 

main the  same over time. This is appropriate for a large class of machine vision tasks such 

as industrial part recognition. Bolle [BCKMSO] gives examples of some non-geometric, 

non-rigid, constraints such as mutual visibility. Matching proceeds by positing a partial 

correspondence between input features and model components, and then checking con- 

straints. There are typically more features in the input than components in the model, 

and features correctly associated with model components may be occluded or otherwise 

4 0 f  course, there is plenty of opportunity for parallelism in the feature extraction stage. 



image + select ROI + group + match + verify 

Figure 3.1: Stages of visual recognition systems 

missing in the image. Thus, when the arc relations are viewed as binary, yes/no relations, 

the matching procedure is a double subgraph isomorphism problem, and hence, in general. 

of exponential complexity. 

Visual recognition systems generally have the sequence of stages shown in figure 3.3.2. 

A region of interest (ROI) is selected from an image, features within the ROI are grouped 

t o  form object hypotheses, the groups are matched against models t o  establish correspon- 

dence between image features and model components, and t o  establish the pose of the 

object, and then the match is verified. 

Verification 

Verification of a match is usually done by using the model and pose t o  predict the points 

of the corresponding object within the image (back-projection). The back-projected model 

points are then compared with the actual points of the image in some way. For example, 

using range images, Wheeler [WI95] matches each back-projected point t o  the nearest 

point in the image, using a k-d tree. Matched model and image points whose mutual 

distance lies within a tolerance are then used to  compute some simple statistics such as 

the proportion of matched points t o  visible points, and if these statistics all are within 

tolerance, the model match is taken t o  be correct. A matched model may also be verified 

by predicting features and feature attributes, rather than points, see [FH86]. 

Global Interpretation 

A further stage in processing is t o  form a global interpretation of the ROI. The simplest 

and most common form of this is to  ensure that image points are matched to  only a single 



model, so that  objects are not allowed t o  inter-penetrate. This is typically done in a 

sequential system by removing image points from further consideration as soon as they 

participate in a verified match. This, of course, also reduces the complexity of further 

matching. I t  does require a small amount of communication in a parallel implementation. 

More elaborate interpretations involve the mutual likelihoods of observing objects with 

certain properties in the same scene. One formalism for this is Bayesian networks: see 

[USA94]. Although it is intimately related to  contest a t  the level of the semantics of 

objects, I do not consider global interpretation formation further, both for lack of time, 

and, as mentioned before, as it seems unsuitable for parallelization. 

For unordered input, there are five general classes of matching techniques: template 

matching, the (Generalized) Hough Transform, tree search, relasation labeling, and elastic 

matching. 

Template Matching 

In template matching, also called correlation matching, the template consists of a small 

image which is shifted over the image and matched pixel-by-pixel. The correlation between 

the template and the image a t  a given location forms the metric by which the match is 

judged. The correlation is the (squared) Euclidean distance between the template and 

the corresponding block of the image, so this can be viewed as a form of nearest neighbor 

matching. This form of matching is clearly susceptible t o  noise and occlusion in the image, 

rotation or scaling of the object, and for 2-D images of 3-D scenes, perspective distortions. 

It is thus mainly suitable for controlled viewpoint applications (2-D industrial). Template 

matching may be easily parallelized, in a SIMD fashion, and is also easily implemented 

in hardware (see, for example, [RV94]). The regularity of the algorithm, in fact, offers 

good performance on conventional machines, together with its suitability for controlled 

viewpoint and illumination situations as in industrial and medical applications, make it 

the most common form of object recognition. As its implementation is unproblematic, and 

as the model (template) makes no use of context, I will not discuss template matching 



further. 

Generalized Hough Transform (GHT) 

The Hough Transform was originally devised as a method of extracting lines from an 

image that  is robust to  noise and occlusion. As such, it forms groups of (disjoint) edge 

segments that  potentially belong t o  the same line, and may be viewed as a mechanism 

for grouping pieces of an image that  may be parts of the same object. The GHT [Ba l~g]  

is an elaboration of the Hough Transform that  extracts arbitrary rigid 2D curves rather 

than lines, and may thus also be viewed as an object recognition, as well as grouping. 

technique. 

Briefly, the basic Hough algorithm is as follows. Suppose we have N input features. 

s;, and M m  total model components, m j ,  where M  is the number of models, each with 

m  components. For each pair of features and components, (s, m) ,  there is a transforma- 

tion mapping one t o  the other. This transformation (typically) consists of a translation, 

parameterized by (a,  b), a rotation. Re, and possibly a scaling, s. The entire transform 

is then parameterized (a, b, 8, s). This is viewed as a point in R4, and corresponds to  a 

cell in a 4-D array constructed by quantizing the four transform dimensions, the Hough 

accumulator. In the recognition process, the transform is computed for each pair of scene 

and model features, and the corresponding cell of the accumulator is incremented (and 

the model noted). Finally, the cells are tallied. Large peaks in the histogram for the same 

model correspond t o  many scene features having (nearly) the same transform for that  

model, and hence t o  a likely occurrence of that  model in the image. The location of the 

histogram peak gives the alignment of the model with the image, and the entries give the 

correspondence. 

All features are matched with all components, so complexity is O ( N M m ) .  Space is 

qd, where q is number of quantization levels of the parameters and d is the dimension 

of the parameter space. Above, d = 4; other common transformations have d = 2 . .  .6. 

GHT is known t o  be sensitive t o  sensor noise, scene clutter, and occlusion, generating 



many false positives [GriSO, BS92, SG931. Grimson [GriSO] suggests its use as a filter, to 

select a smaller set of models for further verification. The 2-D Hough transform is widely 

used for line finding, and has an efficient SIMD implementation [FH89]: other forms, 

including GHT, do not seem to  be much used, probably due to  computation, storage 

and communication complexity. I will not pursue the GHT further, as it seems to  be 

impractical. 

Relaxation Labeling 

Another class of models are graphs where the nodes represent features and the arcs con- 

ditional probabilities. Christmas [CKP95] gives a recent variant. The algorithm is a 

somewhat more complicated version of a trellis Viterbi search, where time measures re- 

laxation iterations rather than input ordering. Let 0 be an input feature label, and w be 

a model component label, then the probability a t  step n that  input feature i has the same 

label (is matched with) model feature j is given by 

where 

Here, Z is a normalization factor, and Aij is a binary inter-component compatibility 

constraint, providing "model context". The quantity p(Aij) is computed from comparison 

of measured values with model values, using an error model. Initial node probability 

values are determined by the measured values of unary attributes together with an error 

model. Note that  in so far as the binary constraints Aij have probability zero for features 

Oi,Oj belonging to different models, the expression for Q ( ~ )  may be evaluated on a model- 

by-model basis. 

The relaxation process combines evidence from measurements with prior model con- 

text. The use of measurement information throughout the relaxation process is intended t o  

avoid the common criticism that  relaxation methods are over-sensitive to  the assignment 



of initial node probabilities (see, for example, [FH86]). In the examples given. components 

are line segments, the sole unary constraint is absolute orientation, and the four binary 

constraint types are metric relations such as angle and distance. One problem with the 

relaxation formalism is that  all possible measurements must be made before the process 

starts, t o  relax over. Thus, the model does not direct the search process. Complexity for a 

single model and single iteration is thus O(n2m2); where n is the number of input features, 

and m is the number of model features. In the implementation described, precomputing 

the binary constraint probabilities dominates time, requiring about five times longer than 

the relaxation process, per se. Also, the stored binary probability values use O(n2m2) 

space. The relaxation process takes a variable number of iterations to  converge. generally 

less than 5, but as many as 30, thus convergence irregularity is pronounced. 

Other relaxation formalisms such as Highest Confidence First (HCF) relaxation over 

Markov Random Fields [CB90] have the same property that  all possible model-scene pair- 

ings must be initially evaluated before relaxation takes place. HCF, however, is based on 

use of a priority queue. Initially, all nodes, each with all possible pairings, are entered in 

the priority queue, ordered by a measure of "stability". Relaxation takes place by chang- 

ing the least stable pairing t o  be be more consistent with its neighbors, and reentering 

changed nodes in the priority queue. This typically leads t o  a consistent relaxed state by 

changing very few nodes, so that  initially loading the queue is the dominant time. 

Tree Search 

This class of model matching techniques, consists of various elaborations of Interpretation 

Tree Search ( ITS) ,  due to  Grimson [GrigO]. Interpretation Tree Search consists essentially 

of depth first tree search ( D F S ) ,  where a node on level d of the tree corresponds t o  pairings 

of image features with the first d model features. The search is limited by a variety of 

unary and binary geometric constraints on the allowed pairings. Grimson shows that  for 

a single isolated 2D object the (worst-case) search complexity is quadratic in the model 

size, while for a 2D object in a cluttered scene with possible occiusion, the complexity is 



exponent,ial in the number of visible features: 

o(m2' + m n )  < complexity < O(m22n + m n ) ,  

where m is the number of model components, n is the number of input features, and c is 

the number of non-spurious input features, ones that  correctly belong t o  some model. The 

complexity of determining that  an object is not present in the scene is also exponential. 

One form of elaboration on ITS is exemplified by Local Feature Focus (LFF) search, 

which adds model-based search control [BC82]. LFF is based on finding maximal cliques in 

a graph, and hence also relies on a constrained DFS. The name "feature focus" comes from 

the technique of identifying certain features as most search-constraining, and matching 

them first. The algorithm proceeds by first matching the focal features, then using the 

model to  predict nearby features, and matching them using unary constraints. Thus in 

LFF the model has an active role in directing the search, while in ITS, it is used only to  

prune inconsistent interpretations, The model-ima.ge feature pairings generated are used 

t o  construct a graph of consistent pairings, and a maximal clique in this graph gives 

a possible model-image correspondence t o  be verified. Although worst-case complexity 

remains exponential, experimentally, the average case complexity is much reduced over 

ITS. 

For rigid models, current versions of tree-structured matching use alignment. An 

alignment of an object model with image points is an estimate of the pose of the object. 

[Hugo] show how t o  quickly compute an alignment given two oriented model points and 

two oriented image points, using linear, quadratic and square root functions. 

Alignment may be used by itself as a matching algorithm, as follows: 

for each model do the following: 

- for each pair of model points, and each pair of image points, compute the 

alignment 

- verify the alignment by using it t o  predict image features corresponding t o  the 

aligned model 



- (optionally) if verification succeeds, remove the matched image points from 

further consideration 

Given M models, each with m points, and an image with n points, this has com- 

plexity O(Mm2n2v) ,  where v is the complexity of the verification phase. In [HU90], 

verification complexity is worst-case v = m log n, giving an overall worst-case complex- 

ity of O(Mm3n2 log n). This a large overestimate of actual time: when an alignment is 

verified, no more pairs need be aligned for that  model, and the image points may be re- 

moved from further consideration. [Ols93] gives simple lookup-based indexing techniques 

t o  avoid some unlikely or uninformative verifications, and gives results showing speedups 

of 20-150x when the model is not present in the image, and 5-lox when it is. 

Alignment, or more generally, pose estimation, combines with tree search in an obvious 

way: after enough model-feature pairs are established by search, the pose of the object can 

be estimated, after which the location of the remaining input features can be predicted. 

The prediction of the feature locations is known as back-projection of the model onto the 

input; its noise sensitivity is analyzed in [TH91]. 

For alignment, per se, model size is small: for the basic form, storage for a model is 

just m oriented points. The techniques in [Ols93] also require a 2-D index table per model, 

its size depends on a quantization parameter, no example is given, but it's likely small. 

It is necessary t o  identify "interesting" points (features) t o  use; [Hugo] uses corners and 

inflection points as features, and report that  feature extraction is as expensive as matching. 

For tree-search as a whole, [BCKMSO] gives further examples of constraints and their 

use t o  prune and control search. [RB93] apply ITS t o  match complicated models having 

repeated parameterized subparts, with non-uniform stretching and scaling. A real-valued 

constraint network is used in conjunction with ITS to  determine values of model parameter 

values as well as satisfaction of geometric constraints. As well as pruning via constraints, 

tree search may be done using a branch and bound formalism [CHS91]. Table 3.3.2 shows 

some characteristics of several systems using tree search. 

These tree-matching algorithms exhibit data  structure irregularity in the (pruned) tree 



Table 3.1: Some systems using tree search matching. 

traversal, as well as convergence irregularity in the pose refinement phase. 

Elastic matching (deformable models) 

Elastic matching is a technique used for non-rigid models. Matching occurs by minimiza- 

tion of an energy function, measuring the amount of deformation of the model required 

t o  match the object. Object classification can be done by viewing energy as a metric, 

and selecting the class with model "closest" to  the object [Hin92]. Deformation matching 

builds a correspondence between model and object, so it can be used for segmentation and 

registration. The model does not direct search for a correspondence, as there is generally 

little predictability for non-rigid objects. 

The definition of deformation energy varies, but is usually a function of Euclidean 

distance between object and model points, and sometimes also relative edge angle. These 

require scale, rotation and translation invariance, so pose must be estimated before mea- 

suring deformation. This is usually an iterative process, slightly deforming the model to  

agree with the input; estimating pose, which redefines the deformation energy potential; 



re-deforming the model: and so on until some convergence criterion is reached. So we see 

convergence irregularity. 

Matching is usually done pixel-by-pixel, and so is computationally intensive. When 

models describe 1-dimensional contours, dynamic programming techniques can be used to  

reduce the computation [Gei95]. Another technique for reducing complexity is a coarse-to- 

fine, multi-grid matching, where an initial rough match t o  subsampled input is iteratively 

refined [JZL96]. The techniques here tend t o  be regular. 

The computational complexity of elastic matching may also be reduced by matching 

a model graph t o  features in the input data. Amit [AI<96] defines features by local 

neighborhood operations on the input data, and then matches a model graph t o  them by 

a correspondence search. By requiring the model graph to  be decomposable the search 

is reduced t o  dynamic programming, using the deformation energy as a cost function. 

Essentially, use of decomposable model graphs enforces an ordering on the matching of 

model components so that  later matches have no constraining effect on previous ones5. In 

the completely non-rigid case, no prediction of feature location is possible, and each new 

feature is hypothesized, in turn, to  be a member of all possible triples of model points, 

where the other two points have already been matched (the restriction t o  decomposable 

graphs makes this sufficient). The deformation energy for a particular triple is a simple 

function of the comparative lengths and angles of the associated triangle between the 

image and the model. 

While the model is not active in the sense of directing search, the current partial 

match provides context for the matching of the next point via the deformation energy 

cost function. In general, we see convergence irregularity for these techniques, possibly 

with data  structure irregularity from model traversal and feature lookup. 

'Part of the constraining power of an arbitrary graph model can sometimes be recovered by simultane- 
ously matching multiple decomposable subgraphs of it. 



Combining techniques 

These techniques can, of course, be combined. Wheeler [WI95] uses relaxation (MRF) t o  

"pre-prune" search, tree search to establish correspondences, robust LMS pose estimation, 

and 3-D template matching for verification of the back-projected model. Pre-pruning trees 

with relaxation reduces the number of hypotheses verified by a factor of four for realistic 

images. 

Reducing model matching complexity 

A number of techniques have been developed t o  avoid having t o  match all models in the 

model base. 

Basri [Bas931 gives a 2-stage approximate alignment scheme t o  avoid having t o  aIign 

all models. An image set is first (inexactly) aligned with each of a set of prototypes by 

minimization of a particular objective function. The set of possible prototypes is then 

reduced t o  a few best fitting ones, and for each of these, the previously constructed align- 

ment is used t o  put into correspondence the image set and each model in the prototype's 

class. The class corresponding t o  a prototype is defined by clustering with respect t o  the 

objective function. Note that  the prototypes may be matched in parallel. 

Sengupta and Boyer [SB95] gives a hierarchical indexing scheme for libraries of graph 

models. Only the  root of the index tree need be matched, this sets up the correspondence 

between scene and model features; the subsequent tree traversal requires only simple tests. 

The essential point is that  the root model is now a somewhat reduced representation of the 

entire model base: it contains all primitives found in the model base, together with much 

weaker constraints, leading t o  less use of context in the search process. The match t o  the 

root is still exponential, but now on a much larger model than any found in the model 

base. Nonetheless, they report impressive speedups when models can be preclassified into 

types (for example, "chair") for which all models of this type are not too different. In this 

case, the root of the sub-modelbase searched does not differ too much from the individual 

models, so that  little time is wasted matching the root model. Also, a set of subroots for 



the different types can be matched in parallel. 

The primary search reduction technique for rigid models has. however, been the use 

of indexing techniques. 

Geometric hashing [LW88] and related techniques [Rei93, Wei93, Ch4911, work by 

extracting a number of model-based pose-invariant features as pieces of evidence for the 

various models, and then choosing several best-supported models for further verification. 

Again, we see "imperfect" indexing, that  can be followed by parallel model matching. 

Invariants, 1 0 ,  take a vector of features, T a n d  produce a vector of some dimension 

as output. They are invariant t o  a class of transformations: the output vector does 

not change when the input vector is transformed by an element of the class; i.e., if g 

is an element of the class, ~ ( f )  = ~ ( ~ ( f i ) .  Suppose the invariant t o  be used requires 

N features, and produces a vector of dimension k. For example, following Lamdan's 

original construction [LWSS], given N = 4 points in R2, three of them can be used t o  

form a translation-independent coordinate system in which the k = 2 coordinates of the 

other point form an affine invariant, one that  is unchanged by translations, rotations and 

scaling. For a k-dimensional invariant, a k-dimensional hash table is constructed like the 

GHT accumulator array by quantizing the k dimensions and viewing each resulting cell 

in R k  as a hash bin. 

Suppose there are M models, Mi, where each model consists of m features, Mi = 

{ fijlj = 1 . .  .n). The set of models is used t o  create table entries (Z, Mk, 3, where i E R~ 

is the vector of invariants computed on the (ordered) feature set {qkili E 3, and Z E  .ZN-' 

is a vector of integer indices. The table entry is stored in the cell in Rk  containing Z. The 

table is filled as follows: 

1. for each model, Mi 

2. for all combinations of N - 1 basis feat.ures chosen from the m model features, 

(f i , l ,  - . . f i , ~ - l )  

3. for all permutations of those basis features, (fivj1, ... f,$,-,) 



4. for all remaining m - N + 1 model features, fi,o 

5 .  enter (I(fiYj, , ..- fijN-, , fi,o), hf;, (jl, ...j N-I}) in the table. 

The redundancy in the table is t o  allow matching when some features are occluded or 

incorrect due t o  noise. The table is constructed entirely off-line, so its computational 

complexity need not concern us; it contains O(MmN-l)  entries. Each entry has 1 model 

index and (N-1) model-feature indices, totaling log M + (N - 1) log m bits. If weighted 

voting is used, entries also contain a vector of k real numbers. 

At runtime, the steps are: 

1. given scene features {pl, . . . , p,), choose a basis set, (p,, , . . . p  ,,-, ) There are O(sN-') 

such bases. 

2 . fo r  all the remaining scene points, po, compute the invariant 

I,,o = I(p, , ,  . . .p,,-,,po) and record a vote for each pair (Mk,p i )  with an entry 

(., Mk,,fi;) lying in the same bin as I,,o. 

3. if any pair (Mk, ,fii) gets enough votes, verify the match 

4. if the match fails, go t o  (1) 

In the worst case, this requires O(sN)  calculations of the invariant. Lamdan [LSW88] has 

shown that  if there are a "reasonablen proportion of features in the image that  belong 

t o  a single model, then the complexity is O(s). Voting may consist of incrementing a 

counter, or may involve more complicated weighted voting, perhaps including interaction 

with nearby entries [RH93]. 

However, invariants are not a panacea t o  the problem of rigid object recognition: Grim- 

son [GriSO] has shown geometric hashing, like GHT, tends t o  give many false positives in 

the presence of sensor noise. In the presence of sensor noise, speedup is limited, essentially 

t o  a constant (rather than being linear in the model base size, as it would be if hashing 

always found a single potential model) [C.J91, Gri90, 01~951. Invariants for general 3-D 



models do not exist [CJ91], rather, instead of a model corresponding to  a 0-dimensional 

manifold (point) in the "index space" generated by values of a presumed invariant. a model 

corresponds t o  a 2 or 3 dimensional manifold instead (orthographic projection giving rise 

to  a 2-D manifold [CJ91] and perspective projection t o  a 3-D one [Jac96]). However, the 

"probabilistic peaking effect" [BA90] implies that  the probability of observing points on 

these manifolds has a highly peaked distribution. Olson [Ols95, 01~931 shows how to  use 

this peaking to  find alignment matches with high probability of being correct, and reports 

speedups on real images of 20x when the model occurs in the image, and lOOx when it does 

not (the common case, for large model bases). Olson also gives methods for eliminating 

from consideration model groups that  are unlikely t o  give useful alignments; in this sense 

the model can then be said t o  direct search. 

Thus, especially in the presence of sensor noise, indexing techniques are "imperfect7', 

in the sense that  they reduce the number of possible models matches that must be verified, 

but not t o  a singleton. 

Summary of matching techniques 

Let us review the "stylized facts" from the beginning of the chapter. 

F1 Feature grouping (object hypothesis generation) involves construction and traversal 

of irregular data  structures such as lists and trees. 

This was discussed in section 3.2. Lists and trees serve either as representations of com- 

ponents (regions and boundaries) or as indexing structures for associative lookup. In the 

former case, traversal operations are used t o  compute features such as moments. The 

construction of the lists and trees may or may not be complex, but once constructed, 

the main algorithmic form is a simple data-dependent loop, with a small loop body of 

attribute comparisons and accumulations. A particular point is that  the loop conditional, 

either checking for the end of the list, or for terminal tree nodes, forms a substantial part 

of the computation. 



F4 Model search and indexing techniques are "imperfect", in the sense that  they generally 

restrict the number of models t o  be matched, but not t o  a single candidate. 

This was discussed in the section of reducing match complexity for graph models. The 

point is that ,  as indexing is "imperfect", matching and verification of multiple candidate 

graph models in parallel is still of interest. For ordered models, the lexical tree provides an 

indexing method that  seems unlikely to  benefit from parallelism. For smaller vocabularies, 

where model-discriminant matching makes sense, indexing is not so useful, and parallel 

matching is again reasonable. 

The sections on matching of graph models have tried t o  demonstrate 

F2 model matching algorithms exhibit irregular control flow mediated by the data  and/or 

model, and 

F3 most model matching and feature grouping algorithms are simple, with computational 

complexity coming from applying a small code "kernel" many times 

Descriptions of the algorithms have shown these trends for model-discriminant matching of 

HMMs; tree search, with its use of algorithms based on depth-first search; elastic matching 

of decomposable models; relaxation matching using either a dynamic programming type 

of algorithm or a priority queue based one; and model match verification, based on least 

squares pose refinement and location of closest points based on spatial data  structures. 

In all these cases, we again have the phenomenon of simple kernels either iterated a 

data-dependent number of times, leading t o  convergence irregularity, or mapped over an 

irregular da ta  structure, leading t o  da ta  structure irregularity. 

3.4 Parallelism and Communication in Matching 

Consideration of parallelism brings up the issue of the distribution of input data, features, 

and models among the processors. Due to  its small size, this is generally unproblematic for 

ordered input, text and speech, which may be broadcast and replicated a t  each processor. 

I will therefore speak in terms of visual data. 



Matching a single model against a large distributed region of interest (ROI) leads to  

matching being handled globally. Parallelism is then used for associative lookup on the 

distributed data. The implication of Amdahl's law is then the need for a fast global pro- 

cessor. It is far from clear that  significant parallelism can be achieved, compared to  having 

the global processor also handle the associative lookup, but if, as is likely, the features have 

been computed in a distributed, bottom-up fashion, it may be preferable t o  leave them 

where they are, rather than moving them all t o  the memory of the global processor. Also, 

the use of an asynchronous communication network may allow the distributed features to  

be moved t o  the global processor as they are computed, in parallel with the computation 

of other features. So here, we see a role for parallelism in the form a special-purpose 

coprocessor for bottom-up processing. 

In situations where the set of features in the ROI is not too large and where there are 

multiple models t o  match against, it makes sense t o  act as for speech and text and replicate 

the ROI on each processor [ND92], distributing the models among the processors. In this 

case, no interprocessor communication is needed during matching, except t o  construct the 

global interpretation; especially, to  ensure that  features are not interpreted as belonging t o  

more than one object. However, if features have been computed in a distributed fashion, 

then those belonging t o  the  ROI must be replicated on each processor. As for the previous 

case, an asynchronous communication network may allow this communication time to  be 

mostly overlapped with other useful computation. 

The remaining alternative is t o  distribute the ROI features among the processors, in 

"tiles", and then have each processor match one or more models on its tile in parallel. 

This is problematic in so far as the features belonging t o  a single object may be located on 

separate tiles. If the maximum diameter of an object is known, it may be possible to  allow 

tiles t o  overlap, so that  any object may be found entirely within a single tile. In the case 

of relaxation matching and geometric hashing where all scene features must be accessed 

a t  the start of processing, having an object lie in a single tile is the only option. If a scene 

object may not lie entirely in a single tile, interprocessor communication will be required 



during the match process. The communication pattern will be irregular, being determined 

by the particular models in question, the (scene-dependent) distribution of objects among 

tiles, and on how features are distributed and accessed. The la.tter two situations occur 

even if only a single model, possibly encoded in the algorithm, is being matched. 

In the following, I will view the communication issues raised by this third alternative as 

outside the scope of the thesis. As a larger P E  memory allows a larger replicated ROI, the 

communication difficulties of the third alternative are an argument for larger memories. 

The first alternative is unproblematic when parallelism on the coprocessor is bottom-up 

and SIMD, and subsumed into the second alternative when i t  is not. I will concentrate 

henceforth on the second alternative of a replicated ROT with parallel matching of multiple 

models. 

3.5 Summary 

In summary, examination of feature grouping and model matching algorithms leads t o  

the conclusion that  parallelism is unlikely t o  be valuable for feature grouping and model 

matching in applications with ordered input. Algorithmic characteristics for unordered 

input, particularly vision applications, suggest a hybrid architecture with a fast uniproces- 

sor coupled t o  a parallel coprocessor. PEs of the coprocessor should have large memories 

and communicate via a asynchronous autonomous network. The PEs should support a l p  

rithms having small computational kernels that exhibit irregular, data-dependent control 

flow. 



Chapter 4 

Hardware 

4.1 Introduction 

To analyze the potential for parallelism in sensory processing we need t o  understand 

the technology available for implementation. I will therefore look a t  Very Large Scale 

Integrated (VLSI) semiconductor circuit technology, likely t o  be available in the near 

term, as it affects the performance of the algorithms used. 

My philosophy of hardware analysis is that  both detailed and simplified models of 

non-existent architectures are unconvincing with respect t o  ultimate performance, but 

that  abstract, simplified models have more potential for giving insight into design and 

algorithm tradeoffs. I therefore do analysis a t  a high level - variables include: number 

of processors, fraction of chip area used by a given feature, frequency, power dissipation, 

off-chip bandwidth, granularity of computation (computation per memory access), size of 

model, and so on. 

I am interested in relatively general-purpose, cost-effective systems for contextual sen- 

sory processing, and so will look a t  extending existing systems t o  cover a wider range of 

tasks, especially irregular tasks like model matching. I will focus as well on delivery sys- 

tems, that is, systems designed for efficient delivery of specific functionality t o  end users, 

rather than, say, on general purpose workstation clusters, or research systems. I study 

such systems, involving small numbers of chips, both for economic reasons, and because 

many of the issues of large scalable systems are already well studied. A small systems 

focus leads us t o  assess the potential for on-chip parallelism, and multiple processors per 



chip. 

Section 4.2 provides the qualitative background for the relevant architectural ideas. 

Section 4.3 describes current VLSI technology trends for the next 12 years. Using these 

VLSI trends, section 4.4 develops a quantitative model for the number of processors per 

chip. Section 4.5 then uses this model t o  examine the effect of limited off-chip bandwidth 

on the task of exhaustive model matching. Even for a highly parallelizable application, 

limited memory bandwidth and the tradeoff between the limited area for data-path and the 

limited area for on-chip memory constrains the useful number of PEs on a chip to  be around 

16-32, unless (essentially) all model parameters fit in on-chip memory. Finally, section 4.6 

reviews current ideas about how VLSI trends will influence computer microarchitecture, 

and indicates how the SFMD architecture t o  be assessed in chapter 5 relates t o  these ideas. 

4.2 Simple processors 

Putting multiple processors on a chip requires that  they use less area and hence be "sim- 

pler" than a single commodity RISC microprocessor on the same chip. Assuming the same 

VLSI process across comparisons, simple processors can save area by: 

limiting functionality: One can restrict the operations done in hardware, possibly em- 

ulating them in software, or using slower, less area-intensive implementations. For 

"sensory7' processing and context analysis, some reasonable possibilities are elimi- 

nating hardware floating point; limiting word size, perhaps t o  16 bits; or eliminating 

integer division hardware. Later, I will show how projected VLSI process trends 

imply that  these forms of simplification will be of lesser importance, except for the 

restriction on word size, which has implications for off-chip memory bandwidth. 

limiting instruction-level parallelism: A simple processor may reduce the number of 

functional units (FUs) of a given type, and execute fewer instructions a t  a given time. 

Thus superscalar and speculative execution is reduced or eliminated. Even with only 

one FIJ of each type, it may still be possible to  overlap loads, stores, and operations 



on the separate functional units. If this overlapping gives an average of 1.5 instruc- 

tions per cycle (IPC), taking into account memory delays, then the degradation 

in performance compared t o  a quad-issue commodity microprocessor is a t  around 

two (figures 4.4 and 4.5). A commodity microprocessor implementing more than 

quad-issue will likely have small increased performance for the increased area, due 

t o  diminishing returns in trying t o  leverage concurrency within a single instruction 

stream. Even the most optimistic projections for billion transistor uniprocessors give 

a maximum IPC of about 12 [PPEf 971. Nonetheless, the projected VLSI trends in- 

dicate that  after one or two more process generations, chip area constraints will not 

be a compelling reason for simplifying processors in this way. However, achieving 

greater ILP trades off against factors such as design complexity, manufacturing and 

test costs, power dissipation and chip size. A design must weigh these tradeoffs in 

terms of its intended application. 

sharing instruction processing hardware: Here, shared hardware is used for produc- 

ing an instruction stream used by all the simple processors. If the simple processors 

have no instruction memory, we have the familiar SIMD architecture. Later, I in- 

troduce the Single Function Multiple Data (SFMD) architecture, where each simple 

processor has a small instruction cache. 

sharing chip pins: In this simplification, a given simple processor has only addressing 

into its local memory, with off-chip I/O and memory hardware shared among the 

simple processors. As for the previous methods, VLSI trends indicate that  sharing 

resources that  require only chip area will not be a significant factor unless the area 

required is quite large. For example, sharing large caches may be useful. However, 

pin (rather than area) limitations will force sharing off-chip 110 pins if there are 

more than about 32 processors per chip. Independent of the sharing issue, the 

growing disparity between computational performance and bandwidth indicates that  

maximizing data  pin bandwidth will be important. 



sharing functional units This is a recent idea due to  Tullsen [TEE+95] in which mul- 

tiple threads share multiple functional units. Introduced as a way of increasing 

effective superscalarity, it can also be viewed as a way of sharing functional units 

among separate (virtual) "processors". This necessarily decreases maximum poten- 

tial parallelism, but the effect on realized parallelism is unclear, due t o  improved 

resource utilization and latency hiding. The same trends indicate that  the area 

saved by sharing functional units will not be significant in the long run. Also, the 

complexity of implementation, based on current superscalar design, grows quadrat- 

ically with the number of processors, and may be prohibitive for larger numbers of 

processors (e.9.  16) due t o  design complexity and interconnect restrictions [SS95]. 

reduced or shared memory: Memory will constitute a dominant portion of chip area, 

and significant area may be saved by reducing the amount of cache or local memory 

needed by a processor. Sharing (L2) instruction cache is probably not difficult, but 

sharing data  cache is more problematic due to  coherence issues. On-chip shared or 

coherent cache systems may be a useful concept for multiplexing data  pins among 

processors [NO941 but elaboration of this idea is outside the scope of the thesis. 

4.3 VLSI measures 

To construct a framework for discussing chip cost, I review some VLSI facts, and then 

look at projected trends over the next few years. 

4.3.1 VLSI trends 

The main driving force in the increased power of microprocessors has been, and will 

continue t o  be for some time, VLSI process improvements that  allow smaller and smaller 

devices t o  be built on larger and larger chips, allowing increasingly complex designs to  

be fabricated cost effectively. While processes differ in many architecturally important 



respects ', the basic scale measure, A,  defined as one half the gate length that  can be 

built using the process, provides a useful way of comparing different processes2. A process 

having 1/2 the X of another process will, roughly, be able to  put 4 times as many devices 

in the same area, and will also be able t o  be run a t  higher speeds due to  the reduced 

distances and loads between points and reduced capacitances due t o  smaller (charge x 

area). 

An exception t o  scaling the number of devices, and increasing consequent chip "com- 

plexity", with X is in the 1 / 0  interface of the chip with the off-chip system. Both electrical 

and mechanical effects limit the degree to  which the number of 1 /0  pins scales with A.  

Electrically, on-chip components forming the interface to  a pin cannot shrink arbitrarily, 

but must be large enough, for example, t o  drive a signal across the off-chip wire. Mechan- 

ically, the need t o  bond chip pins t o  the package limits their density, and hence, for given 

chip dimensions, their number. Packaging can greatly impact the scaling of 1 /0  pins: the 

more inexpensive packaging forms only allow chip pads at the periphery of the chip, forcing 

the number of pads t o  scale a t  most linearly with chip and feature size, while the number 

of chip features scales quadratically. 1 / 0  speeds are even more limited in their scaling 

with A, as they are determined by the circuit board bus speeds, which typically do not 

exceed 100 MHz. The chip interface is thus a major barrier t o  the scaling of performance 

with process improvements. 

Current trends in chip area, feature size, number and cost of pins, and general design 

cost, have been summarized by the Semiconductor Industry Association [AssD7]. These 

represent research goals and extrapolated trends, rather than forecasts, but probably 

represent the current best estimates of future performance. Tables 4.1 and 4.2 show some 

relevant trends for the next 7 generations, up t o  the year 2012. The table starts  with the 

0 . 2 5 ~  process as the current generation, even though chips are now being manufactured 

'For example, in the number of layers of interconnect. 
2The use of X can be misleading as not all features scale at  the same rate; in particular the pitch of 

metal layers tends to scale more slowly than lambda. None the less, it is probably the most agreed on and 
reasonable single number to use for comparison purposes. Whenever possible, we use actual projections 
rather than extrapolations based solely on scaling with A. 



using the 0 . 1 8 ~  process, as it will be a few years before the 0 . 1 8 ~  process is generally 

available. 

I will refer t o  this table more later on. For now, the salient points are the enormous 

rate of increase in the functionality that  may be integrated into a single chip, and the 

degree t o  which off-chip 1 / 0  bandwidth becomes increasingly limited over time, as shown 

by the number of pads per million transistors and by the 1 / 0  rate per million transistors. 

The response t o  this problem for general purpose machines has, and will probably continue 

t o  be, the movement of memory onto the chip [SPN96, Bur971. The DEC 21164, with 

on-chip 96KB L2 cache t o  support its 625+ MHz clock rate, is a recent good example of 

this. There is thus increased pressure for "advanced" VLSI processes combining space- 

efficient RAM and logic on the same chip [Ass97]. Traditional processes optimized for 

DRAM use few metal layers and suffer a serious loss in efficiency in implementing logic, 

while processes optimized for logic are inefficient a t  implementing SRAM [Fos96]. The 

trend t o  more efficient combination of logic and memory on the same chip can be seen in 

table 4.5, and is discussed further in 4.7. 

4.3.2 Chip Architecture 

To understand the effects of tradeoffs a t  an architectural level, we need some idea of the 

silicon costs of the various functional components of a chip, such as registers, floating 

point units, and so on. Table 4.3 gives component sizes for three contemporary chips, as 

measured from chip micrographs [ERB+95, BBB+95, SDC94, LLNK96, GBI<Q96]. These 

area numbers are rough, in that  micrograph overlays are somewhat ambiguous as t o  the 

exact functionality contained in a given area. As indicated above, the current and future 

trend is toward moving more memory on-chip. Thus, memory device size is of particular 

importance. Table 4.4 shows sizes for a variety of current designs, from [Fos96]. Table 4.6 

shows sizes for a variety of current and future "advanced" mixed ASIC-RAM designs. 

For modeling, tables 4.3 and 4.5 can be distilled into table 4.6 of nominal component 

sizes. For now, I will look only a t  SRAM-based designs, and will discuss DRAM-based 



Table 4.1: Description of fields for table 4.2. $"Mx" is a million transistors. 

description 
Year of first DRAM introduction a t  given feature size. 
DRAM and logic in volume a t  that  size available about 
2 years later. 
minimum feature size (2X) 
packed transistors per unit area for logic and embedded 
SRAM process 
total chip area 
number of chip pads; this exceeds number of package pins 
under the assumption that  the package will be used to  dis- 
tribute power and ground t o  chip, or will contain multiple 
chips 
number of package pins 

field 

year 

process size 
logic/SRAM 
density 
chip size 
chip pads 

package ' 

pinslballs 

(BGA) 
I /O bus width 

units 
- 

P 
~ x / c m ~  

mm2 
- 

- 

chip speed 
off-chip speed 

logic chip 

bits 

capacity 
SRAM chip 
capacity 

bus width t o  system memory and peripherals (not cache) 
MHz 
MHz 

Mx/chip 

110 ra$o 
110 bus 
bandwidth 
I/O bandwidth 
ratio 

on-chip clock rate 
chipto-board clock rate for peripheral busses 

packed logic or embedded SRAM transistors per chip 

MB/chip maximum embedded SRAM per chip (logic process) 

pins/Mx 
GB/s 

(MB/s)/Mx 

possible off-chip signals per million transistors of logic 
maximum bandwidth over system bus 

maximum bandwidth per million transistors 



Table 4.2: VLSI Technology Trends, from [Ass97]. Columns give process generations, 
with minimum feature size (A)  in row 2. Where applicable, values given are for the 
"cost/performance" market, targeting < $3000 desktop machines and laptops. I: Goal is 
problematic, but solutions are currently being pursued. $: There is no way yet known to  
reach this goal. 

year 
process size 

logic/SRAM 
density 
(Mx/cm2) 
chip size 
(mm2) 
chip pads 
package 
pinslballs 
110 bus 
width (bits) 
chip speed 
(MHz) 
off-chip 
speed 
(MHz) 
package cost 
(centslpin) 
chip size 
( 1 0 ~ ~ 2 )  
logic chip 
capacity 
(Mx/chip) 
SRAM chip 
capacity 
(Mblchip) 
110 ratio 
(pins/Mx) 
110 bus 
bandwidth 
(GBIs) 
I/O band- 
width ratio 
((MB/s)/Mx) 

$ 
0.13,~ 

18 

430f 

413-1458t 
413-10931 

128 

9251 

1251464 

1.05-2.05 

101 

77.4 

12.9 

5-14 

2.017.4 

26/96 

0 .15 ,~  

10 

385t 

352-1193 
352-895 

128 

727t 

1001362 

1.15-2.30 

68 

38.5 

6.4 

9-23 

1.615.8 

421151 

2006 
0 .10 ,~  

39 

520: 

524-1968t 
524-14765 

128 

1 1081 

1251554 

0.90-1.75 

208 

202.8 

33.8 

2.6-7 

2.018.9 

10144 

1997 
0.25,~ 

3.7 

300 

256-800 
256-600 

64 

350 

751175 

1.4-2.8 

19 

11.1 

1.8 

23-54 

0.611.4 

541126 

1999 
0.18,~ 

6.2 

340 

300-976 
300-732 

64 

526t 

1001263 

1.25-2.5 

42 

21.1 

3.5 

14-35 

0.812.1 

381100 

2009 
0 .07 ,~  

84 

620: 

666-2656t 
666-19925 

256 

1468t 

1501734 

0.75-1.50 

506 

520.8 

86.8 

1.3-4 

4.8123.5 

9/45 

2012 
0 .05 ,~  

180 

7504 

846-3587t 
846-26901 

256 

1827t 

150/913 

0.65-1.30 

1200 

1350 

225 

0.6-2 

4.8129.2 

4/22 



Table 4.3: Areas of various architectural components, in units of 106X2,measured from mi- 
crographs with overlays. 'ALU' includes shifter and multiplier; the number in parentheses 
is the number of adders. The PA8000 has no on-chip caches, its load/store area includes 
28 entry address reorder buffer and 2 address adders and it has 32 general purpose + 56 
rename registers, each 13-ported (4 write + 9 read ports). The 21164 has a 96k-B on-chip 
L2 cache, leading t o  the large number of transistors, the bus interface area includes L2 
cache controller. The 21164 D cache is larger than its I-cache since it is dual read-ported. 
The 21164 G P  registers are 6-ported (4 read, 2 write), its FP registers are 9-ported (5 
read, 4 write), and each functional unit has 3 9-ported registers, 2 read + 1 write. The 
21164 area also includes 52 x 106X2 for clock drivers. For the PPC604, registers have 8 
read ports and there are 20 rename registers. 

G P  registers 
ALU 
F P  registers 
FP F U  
pad area 
die 

signals 
transistors 

62 

77 (2) 

225 (2) 
230 
1350 

701 
3.8M 

17 (16b) 

4063 

75 
14M 

48 

82 (3) 
33 
83 
120 
784 

171 
3.6M 

67 

98 

220 
1200 

? 
9.3M 



Table 4.4: Memory device sizes for various designs. using current (1995) processes opti- 
mized for either SRAM or logic, but not both, from [Fos96]. The 'logic' process used is a 
3-metal 0.511 ASIC process, the "standard" SRAM process is 2-metal 0 . 5 ~ ~  the "CNAPS" 
process is 2-metal, 0 . 4 ~ ~  and the "standard" DRAM process is 2-metal, stacked cell, 0 . 5 ~ .  
"Actual density'' takes into account reduced space utilization due t o  number of metal 
layers and peripheral process rules. Area for sense amps and decoder logic is not included. 
"Logic scalingn gives the factor by which the area of logic devices increases for an SRAM 
or DRAM process, compared t o  the 3-metal ASIC process; this not known for the CN.4PS 
process. 

Table 4.5: Various reported, measured and forecast SRAM densities, for 0.35 - 0 . 4 ~  
processes. The area reported includes ancillary circuitry such as decoders, cache tags 
and write buffers, except for values marked with t. Except for "SIA", processes are mixed 
SRAM and logic. "SIA" is from [Ass94]; "micrographs" from table 4.3; "NO" from [N094]; 
and "KD" from [KD92]. For comparison, the CNAPS density (commercial 2-metal 0.4p 
SRAM process) is 0.19, showing the increasing density for "advanced" mixed logic and 
memory, small X processes. 

tY Pe 

embedded 6T SRAM 
standard 6 T  SRAM 
embedded DRAM 
CNAPS 4T SRAM 
standard DRAM 

density 
(maximum) 
I i ' ~ l ( 1 0 ~ X ~ )  
0.12 
0.18 
0.34 
0.43 
2.45 

process 

logic 
SRAM 
logic 
SRAM 
DRAM 

density 
(actual) 
KB/(106X2) 
0.08 
0.12 
0.20 
0.35 
1.22 

device 
size 
X2/bit 
1072 
688 
368 
294 
51 

logic 
scaling 

1 
2.3 
1 
1 
3.9 



Table 4.6: Nominal component s zes, in units of 106X2. The SRAM and DRAM numbers 
include ancillary circuitry such as sense amps and decoder logic. The smaller SRAIvI 
number is for single-ported mem ry, the larger is for triple-ported. The DRAM numbers 
are for single-ported memory. A I 1 sizes are for a logic process, escept as noted. 

designs later. I include a nomin 1 size for DRAM in a merged logic / DRAM process, as 

that  giving a 20-fold decrease in ensity (including ancillary circuitry such as sense amps) 

over SRAM [PAC+97, FPC+97] I also include a nominal size for DRAM embedded in a I 
purely logic process, from table 4.5, assuming that  for a single-ported DRAM, the sense 

amps and decoders take up 112 the area and are the same size as for SRAM, and that  the 

cell size for embedded DRAM is 113 that  of embedded SRAM, as given in the table. 

4.4 Processors per chip 

30 
40 
5-10 
3 
0.25 

IU (32b) 
FPU (31b) 

Based on the nominal sizes from table 4.6 and the da ta  from table 4.2, one can make some 

statements about the number of processors it will be possible t o  put on a chip, assuming 

each processor has its own path t o  external memory. 

First, consider pin limitations. Suppose each processor requires d E (32,641 pins for 

data, a E (0,321 pins for data  addresses, i E (0,321 pins for instructions, and r E (0,321 

pins for instruction addresses. Here a = 0 represents multiplexing the data  pins with 

the address pins. Similarly, r = 0 represents multiplexing the instruction pins with the 

instruction address pins. Finally, i = 0 represents the situation where processors do 

not have their own instruction pins, as for an SIMD architecture where the pins are 

shared between the PEs. Pin counts are multiples of 32 as (i) this allows the use of 

Rambus technology [Cri97], which requires 31 pins and multiplexes address and da ta  

SRAM 
DRAM 
DRAM 

11 KB) 
(1 KB) 
(DRAM process) (1 KB) 



Table 4.7: Pin limitations on number of processors per chip. 

I d  l a  l w p  ( p i n s (  
vins < 600 (19971 

1 I 

895 < pins < 1093 (2003) 

I I I I I I I 

1476 < pins 5 1992 (2009) 

signals, and (ii) when addresses are not multiplexed, either 24 or 16 pins are needed (for 

data and instructions, respectively) to provide sufficient address space, and more pins will 

be required for various control purposes. 

Table 4.7 gives solutions for (d, a, i, r ,p) that satisfy the high-end pin count goals for 

the various process generations in table 4.2, assuming p E {16,32,64). The low-end 

pin count goals given allow no solutions for the (dl a ,  i ,  r, p) within our limits, except for 

(d, a,  i, r,p) = (32,0,0,0,16) in 2006. 

Based on the numbers from table 4.3, and on numbers from the current CNAPS, one 

can reasonably take the amount of chip area, both inter- and intra-processor, not including 

SRAM, IU, and FPU, to  be about 20%. Together with table 4.6, this gives the number 

of processors that can be put on a chip a s  

I I I I I I I 

1992 < pins 5 2690 (2012) 

size 
processors = 0.8 

logic + cell. 2mernoT3 

1 32 1 I 1 64 1 2048 1 



(a) simple PE with SRAM complex PE w i t h  SRAM 
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(c) s-le PE w i t h  DRAM 
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Figure 4.1: Plots for equation 4.1, the maximum number of processors per chip, as a 
function of the amount of memory per processor, for the next 7 process generations. The 
abscissa is the logz of the amount of memory in KB. The ordinate is the maximum number 
of processors per chip, each having the given amount of memory. In the labels for the 
graphs, "simple PE" corresponds t o  logic = 70, "complex PE" corresponds t o  logic = 500, 
"SRAM" corresponds t o  cell = 5, and "DRAM" corresponds t o  cell = 0.25. 

where size is the chip area in 106X2, memory is the number of kilobytes of memory, logic is 

the area devoted t o  logic, and cell is the size of 1 KB of memory, from table 4.63 For a simple 

processor having only SRAM, a single IU and a single FPU,  from table 4.6, logic = 70. For 

comparison, if we simplify processors only by sharing system bus interface and chip pads 

we can estimate from the numbers for the PPC604 that  a reasonable "complexn processor 

size, not including on-chip caches, might be logic = 500. Figure 4.1 plots equation 4.1 for 

SRAM and DRAM processes and for simple and complex processors. 

Table 4.7 shows that  a 16 processor chip, with 32 1 / 0  pins per processor, 32 pins 

(total) for instructions, and power and ground pins, is a viable option in the near term. 

3This equation does not include a logic scaling factor, which will be 1 for the cases we consider. I assume 
that the logic scaling factor will be 1 for future merged logic-DRAM processes, tailored to implementing 
logic in a DRAM process. 



Having 32 pins per processor would allow the use of Rambus memory technology. which 

can deliver 16 bits per 450MHz clock using 31 pins [Cri97]. Note that such a design uses 

much power: in general, t o  achieve a specified bandwidth, one trades off frequency against 

number of pins, and higher frequency translates into higher power. 

An interesting option t o  take advantage of the increasing feature density is t o  look 

a t  the capabilities of the smallest chip in a given generation having this many pads, or 

the smallest package having enough pins. From table 49 of [Ass971 one can compute 

the minimum size flip chip having 700 pads, allowing 100 pads for power and ground in 

addition to  the 600 for signals4. If w is the chip width in mm and p is the pad pitch 

in pm, then A = 1000(w/p) leads may be placed along a side of the chip. If there are 

R rows of leads around the perimeter of the chip in which A then the total number of 

leads is 4R(A - R )  = 4000R(w/p - R). Solving 700 = 4R(1000w/p - R )  for w gives the 

values shown in table 4.8. The values for R and p are from table 49 of [Ass97]. The last 

column gives the number of transistors in such a chip of the given generation, using the 

logic/SRAM density values from table 4.2. The table clearly shows the trend of pin and 

pad restrictions limiting the possible on-chip parallelism, and hence leading to  increased 

processor complexity (Mx/PE) .  

Table 4.7 and figure 4.1 show that  pin limitations, rather than area limitations, will 

define the possible solutions for situations with 16 or more processors per chip, assuming 

da ta  pins are not shared. In table 4.7, for the first two generations, only instruction pin 

sharing allows non-shared da ta  pins at all, and for the next two generations, it allows 

a doubling of the maximum possible number of processors per chip. In the final two 

generations, the possibilities are more complex, but the general point holds that  freeing 

pins by instruction pin sharing may be very valuable. Both table 4.8 and 4.1 coupled to  

the limits of about 32 processors (with individual paths t o  off-chip memory) per chip given 

by table 4.7, show that  simplifying processors by reducing the complexity or number of 

4The assumption that 100 extra leads for power and ground is consonant with the numbers given in 
[Ass97]. which, for inst.ance, gives a 1997 "cost-performance" target of 600 signal (non-power / ground) 
pins together with a target of 704 total leads. 



Table 4.8: Minimum chip size for 16 processors with individual I/O 

Table 4.9: Minimum chip size for 32 processors with individual 110. Computed as for 16 
processors (table 4.8), but assuming 1200 pins needed rather than 700. 

transistors 

( Mx) 
year 

1997 
1999 
2001 
2003 
2006 
2009 
2012 

( R = 3 )  
8.7 
7.6 
8.5 
11.4 
14.7 
15.5 
16.9 

chip size 
(109x2) 

pitch p 

( ~ m )  

250 
180 
150 
130 
100 
70 
50 

generation 

( 2 4  

0 . 2 5 ~  
0 . 1 8 ~  
0.1.5~ 
0 . 1 3 ~  
0 . 1 0 ~  
0 . 0 7 ~  
0 . 0 5 ~  

( R = 4 )  
5.3 
4.6 
5.1 
6.9 
8.9 
9.4 
10.3 

( R = 3 )  
14.8 
14.9 
14.9 
15.0 
15.4 
15.1 
15.4 

( R = 4 )  
9.0 
9.1 
9.2 
9.0 
9.2 
8.9 
9.2 

chip width w 

( mm) 
( R = 3 )  

15.3 
11 .O 
9.2 
8.0 
6.2 
4.3 
3.1 

( R = 4 )  
11.9 
8.6 
7.2 
6.2 
4.8 
3.3 
2.4 



their functional units (other than cache), will diminish in importance. 

The case examined here is when data  pins are not shared (each PE has its own path 

t o  external memory), intimating some form of distributed or NUMA memory model. The 

next section addresses architectures that  share data  pins. 

4.5 Processor-memory tradeoffs: exhaustive model match- 

ing 

Appendix B examines the effect of off-chip da ta  bandwidth limitations on achievable 

parallelism. For the task of exhaustive matching of a set of models, it looks a t  the effects 

on potential parallel speedup of factors such as data-path / chipmemory area tradeoffs, 

model base size, amount of computation per model, comparative speed of simple PEs 

versus complex microprocessors, and preloading or caching of models most likely to  match. 

These factors are studied under the assumption that  off-chip da ta  bandwidth is the same 

for both the sequential and the parallel architectures, using the technology parameter 

values from this chapter, and under assumptions favoring on-chip parallelism. 

The dominant condition turns out t o  be whether all models can be stored on-chip; 

more precisely, whether essentially all the algorithm's working set of models fits on-chip. 

If so, linear speedup is possible, if not, then parallel speedup is limited to  k ,  the ratio of 

the computation time spent matching a model t o  the time taken t o  load the model. Figure 

4.2 plots, for various chip size and processor complexity assumptions, the largest number 

of PEs for which the entire model-base fits on-chip, as a function of the model-base size. 

It shows, for 16 or 32 simple PEs per chip, assuming an SRAM size of 5 x 106X2 per KB, 

that  model-bases in the 2-3 megabyte range will fit on-chip in the current generation, and 

model-bases of size 5-7 MB in the next generation. 

In comparison, consider a merged logic-DRAM process with DRAM memory of size 

0.25 x 106X2 per KB, and allowing for the same amounts of SRAM (0, 2, 4, 8, or 16 KB 

a t  5 x 106X2 per KB). The SRAM may be used for instruction memory, cache, register file 

or a second LLfast random access" memory. Here. the 20-fold increase in density translates 



directly into a 20-fold increase in allowable model-base size. The increased density of 

DRAM has shifted the balance, so that  area for data-path and SRAM is now probably 

more limiting for most designs than area for the model-base. 

As the number of processors increases, memory available for storing the models de- 

creases as silicon area previously devoted t o  memory is used for data-path. Figure 4.3 

shows how, in a typical case, as the number of processors increases past the point where 

all models fit on-chip, the speedup of the parallel implementation over the sequential on 

rapidly decays t o  near k, the ratio of compute time per model to  the time t o  load a model 

from off-chip. 

Thus there are basically two regimes, one where the working set of models fits on-chip, 

and one where parallel speedup is limited t o  k independently of the number of processors, 

P > k. The important conclusion is that ,  for the applications I consider, there are only 

two viable architectural alternatives: if the range of target applications allows each model 

set t o  fit entirely on-chip, then an architecture of many small processors may be preferred, 

leading t o  a vector, SIMD or SFMD architecture. In all other cases, a few (slightly more 

than k, depending on distributional assumptions) complex PEs will be preferred, leading 

t o  an MIMD architecture. 

4.6 Microarchitectural trends 

Another way t o  see the impact of current VLSI trends on microarchitecture is t o  look a t  

current ideas about what architecture(s) will be appropriate for later process generations. 

After reviewing how a current state of the art  superscalar uniprocessor works, and briefly 

discussing Very Long Instruction Word ( V L I W )  and vector processing architectures, I 

will look a t  a number of extrapolations on how architectures could make use of the huge 

number of transistors available in later generations. 



la )  s = 9 ,  c = 70 
l2ol--------.--.------.-.----------------.--.--.----. 

Figure 4.2: The maximum number of processors for which all models fit on-chip, a s  a 
function of the total model-base size in megabytes, assuming an SRAM size of 5 x 106X2 
per KB. The different lines on each set of axes correspond to  different amounts of per-PE 
instruction memory; 0, 4, 8,  16 and 32 kB. Horizontal lines are drawn a t  16, 32, 64 and 
128 processors, for comparison. The different axes show the graphs for differing chip size 
and processor complexity assumptions. The parameter s (see table 4.1 and 4.2) gives 
chip size in units of 109X2 and to  a certain extent indicates the process generation: s = 19 
corresponds to  a "commodity" chip of the 0 . 2 5 ~  generation, s = 42 to  a commodity chip of 
the 0 . 1 8 ~  generation, and s = 9 and s = 25 t o  minimal chips of the same two generations 
having sufficient pins t o  allow per-processor external memory for 16 and 32, respectively. 
The parameter c gives a measure of processor complexity and area requirements, c = 7'0 
corresponds t o  a simple floating point processor, while c = 500 corresponds to  a complex 
superscalar processor. 
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Figure 4.3: Speedup as a function of the number of processors, for varying (k,  d), where 
k is the ratio of computation time per model t o  the time t o  load a model from off-chip 
memory, and d = 1 corresponds t o  a model base size of 1 MB, d = 0.2 to  a size of 5 
MB (both sizes of model bases are assumed to  have 1000 models). Different curves on 
the same graph give speedups for different task distribution and modeling assumptions, 
as described in the appendix. The gray line on the x-axis marks the interval for which 
some, but not all, models fit in on-chip memory. For numbers of processors to  the left of 
the interval, all models fit on-chip. For numbers t o  the right of the interval, the per-PE 
memory is too small to  hold a single model. 



4.6.1 Superscalar Architectures 

Superscalar architectures attempt t o  extract as much parallelism as possible from a single 

instruction stream. The goal is higher performance while maintaining binary compati- 

bility with previous software. The 1998 state of the art is a maximum issue rate of five 

instructions per cycle. There seems t o  be no generally acknowledged limit to  what is 

possible, with estimates from an issue width of eight [TEE+95] t o  sixteen [LS97] and even 

thirty two [PPE+97]. 

Superscalar execution has the following features [SS95]. First, a set of instructions 

is fetched. With branches, there is uncertainty about what instructions will be needed; 

because of pipelining, it substantially degrades performance t o  not fetch instructions before 

it is known which branch will be taken. Branch prediction guesses the most likely branch, 

so that  its instructions can be fetched while the branch condition is still uncertain. Based 

on static or dynamically acquired information, branch prediction can be quite accurate, but 

mispredictions still occur. To provide a larger window of instructions in which to  discover 

ILP, branch prediction may be elaborated into speculative execution, where instructions in 
f 

the predicted branch are not only fetched, but may be executed before the branch direction 

is finally known. Misprediction may then require undoing changes t o  registers and other 

state. Speculative computation is wasted when the branch is mispredicted, which is a 

particular problem when branching is data-dependent, as it is for most of the algorithms 

of chapter 3. A secondary point is that  branch prediction based on runtime information 

requires a substantial amount of area t o  store statistics. 

The ability to  undo changes t o  state is provided by having instructions affect tem- 

porary rename registers, which can be copied to  real "logical" registers once the branch 

direction is known t o  be correct. In addition t o  the area for the extra registers, this also 

requires hardware and state for mapping rename registers t o  logical ones. Besides specula- 

tive execution, a superscalar architecture usually supports out of order execution, in which 

parallelism is increased by allowing instructions t o  be executed out of sequential order, 



typically as soon as the necessary data  and functional units are available. In order t o  pre- 

serve sequential semantics, this generally means that  instructions are retired in sequential 

order, a t  which time their associated rename registers are written to  the corresponding 

logical ones. 

With out-of-order execution, the task of determining which instructions may execute 

when is complicated, requiring that  an instruction's data  dependencies be determined, and 

that  the needed data  be found. If, as is typically the case, the needed da ta  is the result of a 

recent computation, it may be in a rename register rather than a logical one. The da ta  may 

or may not be available yet, depending on the execution status of the instruction producing 

it. The determination and tracking of da ta  dependencies and availability is usually done 

by means of a reorder buffer which maintains a window of instructions, removing them as 

they are retired. A reorder buffer consumes a lot of area, both for the buffer itself and for 

interconnect between it and the functional units and registers (cf. table 4.3). 

Up t o  this point, I have ignored the issue of accessing memory. This is state that  

may have t o  be restored after a failed speculation, and something like rename registers 

are used, however the resolution of da ta  dependencies requires that  address comparisons 

be used t o  determine the mapping t o  memory locations. For speed, an associative lookup 

table of active memory locations is needed. From the point of view of implementing 

the reorder buffer, accessing memory is more complicated than other functional units 

due t o  the unpredictable latencies involved. Executing multiple instructions per cycle 

means that  state, both registers and memory, must be multi-ported t o  allow multiple 

accesses per cycle, with concomitant expense - for n-fold multi-porting, the area increase 

is approximately n-fold, and the access speed is reduced by a factor of log(n) [ZA92]. 

With this background, we can see why superscalar architectures can provide only a 

small amount of parallelism cost-effectively, especially for the applications I am interested 

in. First, superscalar execution is expensive in terms of area. both for multi-porting and 

for control. In fact, the area required for monitoring dependencies and resource availability 

is quadratic in the issue width [SS95]. Superscalar designs are also extremely comples, 



Figure 4.4: Scaling of integer performance with simultaneous instruction issue width. 

and have a high design and test cost. Second, a large set of studies essentially conclude, 

for common codes such as the Spec benchmarks, that  imperfect branch prediction and 

resultant wasted speculation severely limit the achievable parallelism t o  small factors (2- 

4) [SJH89, JW89, BYP+91, LW92, TGH92, Wa191, ME93, EG95J. These estimates are 

borne out by the performance of contemporary superscalar processors, as shown in figures 

4.4 and 4.5, where performance normalized by processor speed is seen t o  be sublinear in 

the issue width. One estimate for maximal achievable parallelism for billion transistor 

designs issuing 16 or 32 instructions per cycle puts the achievable instructions per cycle 

a t  about 12 in both cases [PPE+97]. Another estimate for a 16-wide issue design gives an 

IPC of about 9 [LS97]. 

4.6.2 VLIW and Vector Processing architectures 

Very Long Instruction Word (VLIW)  architectures attempt to  exploit instruction level 

parallelism without all of the hardware complexity of a superscalar design. Rather than 

using hardware to  find ILP, in a VLIW design the compiler determines parallelism and 

issues a long instruction word that  directly controls multiple functional units on the chip. 

This avoids much of the design complexity and various hardware difficulties of a superscalar 

design, for example, highly multiported registers, bypass interconnect area, cost and speed 



Figure 4.5: Scaling of floating point performance with simultaneous instruction issue 
width. 
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limitations, and design complexity. We will see that  superscalar designs have problems 

with data-dependent control flow, due t o  increased branch misprediction, that  limit the 

amount of parallelism they can exploit. While a VLIW design has the advantage that  

the compiler can search for ILP over a larger window of instructions, that  should help 

little when control flow is data-dependent. So a VLIW design should have little advantage 

over a superscalar one for the problems we consider, and VLIW architectures will not be 

discussed further. 

As mentioned earlier, vector (micro)processors (VP) embed parallelism a t  the assembly 

language level as operations on vectors of elements. Such a design has a number of good 

characteristics (see [Asa98]). Some of the advantages are: different implementations of 

the same design can provide different numbers of PEs, hidden from the programmer by 

the vector abstraction; computation is naturally partitioned in a way allowing a fast 

scalar processor t o  work together with the array of PEs; compilation for such designs is 

well understood; and the regularity of the parallel computation allows for a variety of 

hardware optimizations. The major disadvantage is a lack of flexibility, stemming from 

the use of the single vector datatype for all parallel constructions. 

However, from the point of view of this thesis, vector processing is a type of SIMD 

processing. The memory bandwidth argument of 4.5 is the same as for SIMD designs, 

5 
r i m u l r . u r r o u r  ir-ur w i d t h  



with the same implications: either few complex PEs or many simple ones with onchip 

memory. Also, the performance comparisons of SIMD and SFMD in chapter 5 apply to  

vector processing as well. The point is that ,  in this thesis the analysis is a t  broa,d enough 

level that  V P  and SIMD are hard t o  distinguish. However, it is not clear how t o  extend a 

V P  design t o  include SFMD functionality, whereas extending a more general SIMD design 

like CNAPS t o  SFMD is simple. 

4.6.3 Implications of trends 

Implications of the VLSI trends I have outlined were elaborated by a number of architec- 

ture teams in a discussion of design options for a chip containing a billion transistors, as 

will probably be buildable5 within the next 10 years [BG97]. This discussion brought out 

a number of common themes and issues (with differing emphases by different authors): 

generality of use, design complexity and design cost; cost and complexity of instruction 

delivery; interconnect and timing effects; hiding memory and functional unit latency; and 

memory bandwidth issues. 

For complicated designs, generality of use is critical t o  offset design time and cost. The 

alternative t o  a complicated design is t o  reduce design time and cost by reusing a single 

(simpler) design, by replicating a part many times. 

As we have seen in the description of superscalar architectures, much if not most 

design complication comes from issues of instruction delivery: handling branching and 

discovering instruction level parallelism (ILP). Designs focus on discovering ILP for rea- 

sons of both compatibility with existing code, and because of the importance of speeding 

up (apparently) sequential code, as expressed by Amdahl's law. Discovering ILP is the 

motivation for superscalar designs, and we have seen above that the cost, in terms of 

reorder buffers and the like, is high, while relative increases in performance are slowing 

down, leading t o  a point of diminishing returns. The major difficulty in finding additional 

ILP is due t o  the unpredictability of branches and hence of what code will actually be 

'However, the question of whether it will be cost-effective to design such a chip is still open. 



executed. Without speculative execution, the latter limits the region of code within which 

non-dependent instructions must be found, and hence the available ILP. With specula.tive 

execution, short cycle times lead t o  deep pipelines, implying large penalty for mispredicted 

branches when the pipeline must be flushed. There are two complementary solutions t o  

the branch prediction problem: One is speculative execution of the most probable branch, 

or even redundant computation of both branches, the  former of which occasionally wastes 

computation, and the latter of which always does. The second solution is better branch 

prediction, which requires substantial area for tables t o  accumulate branch prediction 

statistics. Also, as ILP is found, multiple instructions must be issued in a single cycle, 

which becomes expensive for wide (4-8) issue designs, due t o  the need for a multi-ported 

instruction cache and complicated instruction mergelalign logic for simultaneous issue of 

non-contiguous instructions. 

A number of unobvious issues about interconnect and timing arise in later VLSI gen- 

erations. Smaller feature sizes lead t o  higher clock frequencies; in later generations, with 

larger chips as well, an across-chip signal may take up t o  20 clock cycles [Mat97]. Even 

without the effect of larger chips, wire delays scale linearly, rather than quadratically. For 

small X wire delays soon dominate gate delays [SV97]. One analysis of superscalar designs 

[PJS97] shows that  delays in the bypass wires that  move results from one execution unit 

t o  another become a major limiting factor for wide-issue superscalar designs. One impli- 

cation of these effects is tha t  chip architectures will be partitioned into modules with most 

communication local t o  a module. A second implication is that  very wide-issue superscalar 

may be difficult to  achieve; this is also implied by the quadratic growth with issue width 

of the area used for instruction delivery [SS95], and the possible unavailability in any case 

of sufficient usable ILP. 

Memory accesses (and some operations such as division) require multiple cycles t o  

execute, introducing a latency problem. As the disparity between memory and CPU 

speeds grows, it will become increasingly difficult t o  keep the processor busy while a 

memory request is serviced. Latency is tolerated by executing other instructions while the 



request is serviced, requiring out-of-order execution and substantial hardware support. as 

described above for superscalar architectures. Tolerating the larger delays t o  be expected 

with upcoming generations will require the discovery of even more ILP, making further 

hardware demands. For tasks with much data-dependent execution, it is unclear whether 

sufficient ILP can be discovered. Rather than tolerating it,  latency can be reduced by 

various techniques such as prefetching, use of larger cache blocks, and other forms of 

speculative loads; by multi-threading; and by intelligent cache management of lockupfree 

caches. Unfortunately, these all tend t o  increase traffic to  memory [BGK96], exacerbating 

memory bandwidth requirements, and all substantially increase design complexity. 

Perhaps the largest problem in future generations will be in providing adequate band- 

width to  off-chip memory. Current microprocessors already spend a large fraction of time 

idle, waiting for memory. This could be due either t o  memory latency or t o  raw mem- 

ory bandwidth limitations due to  pin count. Simulations of aggressive latency-tolerating 

designs for a number of common benchmarks show the processor idle 10 t o  30% of the 

time purely because of memory bandwidth constraints [BGK96]. The key point is that 

any improvements in finding ILP make this worse, since such improvements imply more 

instructions, and hence more data, processed each cycle. The same is true for other forms 

of on-chip multiprocessing: more instructions processed means more da ta  is needed. One 

current estimate is that  a wide superscalar architecture issuing 16 instructions per cycle 

will require a bandwidth of 8 loads or stores per cycle [PPE+97]. Coupling this with the 

fact tha t  off-chip accesses will be serviced using a system clock that  is a t  least 4 times 

slower than the  on-chip clock, we see the reason for the current trend of moving as much 

memory on-chip as possible, as large on-chip level one and level two caches. For modular- 

ity reasons, this trend is likely t o  lead t o  multiple multi-ported on-chip caches. Another 

possibility is the use of on-chip DRAM for greater density (see the discussion of IRAM 

technology below, see also [SPN96]). The problem is exacerbated in chips designed for a 

low price-point, due to  the high cost for packages with large numbers of pins. I examine 

the memory bandwidth problems specifically for model-matching type tasks in Appendix 



4.6.4 Competing design plans 

The teams in [BG97], mentioned a t  the beginning of the previous section, presented six 

basic architectures, dealing with the implications of these issues in various ways. I will omit 

one of the plans [WTS+97] as tangential t o  this discussion, and add the  simultaneous multi- 

threading design, which was omitted from the issue due t o  lack of space and availability 

elsewhere. The first three designs presented were for uniprocessors, emphasizing that  

general utility and code compatibility are paramount for recovering the design, test, and 

fabrication costs of complicated designs and large chips. 

The first plan [PPE+97] is, essentially, for more of the same: a wide-issue (e.g. 16) 

superscalar design with out-of-order execution t o  tolerate latency, out-of-order fetch for 

both instructions and data,  speculative loads, a large on-chip cache t o  provide adequate 

memory bandwidth, and much area devoted t o  better branch prediction. Simulations of 

this design on contemporary (SPEC 95) benchmarks show an execution rate of over 12 

instructions per cycle (IPC). The designers point out the following advantages: this design 

uses only known techniques; simultaneous multi-threading (SMT) (see below) and multiple 

processors on a chip (CMP) designs are too memory bandwidth bound t o  achieve better 

performance even if they theoretically have a better IPC rate - the designers believing 

that ,  for parallelism, it is better t o  use multiple chips and chip hardware to  tolerate 

latency. The other teams point out the corresponding disadvantages: the design does not 

deal with interconnect issues, and modularity of the architecture is unclear; the design is 

extremely complex; it has lower computational density than an SMT or CMP design; and 

data-dependent branching will be a problem. 

The second uniprocessor plan [SV97] emphasizes the need for modularity and signal 

locality. A trace processor design consists of multiple superscalar modules together with 

higher-level control and instruction dispatch. The individual modules are complete, but 

simple, superscalar CPUs except that  instruction delivery is handled globally. A trace is 



a sequence of (8-32) instructions giving the code to  be executed assuming certain (zero 

or more) branch conditions hold. Global instruction dispatch predicts traces to  be exe- 

cuted (rather than single branches) and sends them t o  the CPU modules for speculative 

execution. The design target is an IPC rate of 16. The advantages of a trace processor 

are modularity of design, locality of (most) signaling, and sharing of all the complexity 

of instruction handling, in a uniprocessor framework, with its advantage of being gen- 

eral purpose. The design again has problems with data-dependent branching, and wasted 

speculation, also the interface between the several CPU modules and memory requires a 

complex distributed system of multi-ported caches with a coherence protocol: different 

modules are executing code from the same thread, so there is no notion of distributed 

memory with some memory "belonging" t o  a given processor. 

The third uniprocessor plan [LS97] emphasizes the problem of data-dependent branch- 

ing, arguing that  current techniques are approaching a limit, and that  further progress 

along this line requires speculation of da ta  values. Simulations show that  speculating 

da ta  values is possible for current benchmark codes. The advantages of this design are in 

improving branch prediction and IPC in a general purpose uniprocessor design. The prob- 

lem is that  it depends on value predictability; other work by the same authors [LWS96] 

shows that  sensory processing tasks, for example, MPEG coding, may have little such 

predictability. 

A simultaneous multi-threading (SMT) design is somewhere in between a uniprocessor 

and a chip multiprocessor. The goal of the design is for better resource usage with only 

small changes t o  conventional superscalar design. SMT uses multiple program counters 

t o  execute instructions from multiple threads of control on a single chip, using the same 

mechanisms a superscalar architecture does t o  support out-of-order execution and ILP. 

Although the goal is better performance on multi-threaded code, SMT performs well 

on more standard parallel codes well, too [LEE+97]. The advantages of the design are 

better use of hardware resources because of the ability to  utilize both instruction-level and 

thread-level parallelism, and the use of known technology. Its disadvantages are the same 



as that  of a wide superscalar design: lack of modularity, interconnect issues, especially 

for bypass circuitry, complexity of the instruction logic, difficulties with data-dependent 

execution, and smaller computational density than CMP due t o  substantial instruction 

handling logic. In addition, the unified data cache may be problematic for multiple threads 

[HN097, LEE+97]. 

The final design considered is a Chip Multiprocessor (CMP), which puts a small num- 

ber (8) of shared-memory MIMD processors on a single chip [HN097]. The processors are 

relatively simple: dual-issue superscalar with in-order execution, each having its own L1 

instruction and data  caches. In simulations that  compared such a CMP with a 12-wide 

issue SMT design, performance was similar, with the SMT design somewhat more flexible. 

An important exception was in the simulation of codes with high data  bandwidth require- 

ments, where the increased da ta  cache bandwidth of the CMP design gave substantially 

better performance. It was also argued that  the SMT design will not scale with decreas- 

ing process feature size due t o  interconnect effects and the lack of locality in wide-issue 

superscalar designs. The advantages of CMP are thus argued t o  be its design modular- 

ity and locality of interconnection, the computational density of multiple processors, the 

design simplicity of simple processors with (mostly) local interconnections, and the data  

bandwidth of individual L1 caches. 

Conversely, other design teams found several possible problems with a CMP design. 

In chapter 5 I propose the SFMD architecture, designed for model-matching tasks, which 

has multiple processors per chip; here I indicate my responses t o  the objections. 

For use as a general-purpose chip, a CMP requires either that  a single application be 

multi-threaded or that  separate applications be run on the individual processors (multipro- 

gramming). It was argued that  coding multi-threaded applications is hard, and therefore 

a CMP will be used mainly for multiprogramming, the point then being that ,  as a general- 

purpose chip, the chip will have no "killer app" and no significant market, and so will not 

be built. In our domain, admittedly not general-purpose, the primary form of parallelism 

is data  or knowledge parallelism. This suggests (and my architecture supports) an SIMD 



style of programming that  is not difficult. 

It was argued that ,  even for multi-threaded applications, limited inter-PE interconnect 

and synchronization overhead imply that  partitioning a single application into multiple 

threads (1 per PE)  with significant inter-thread communication will not scale [LS97]. My 

point of view: we have already seen that  an autonomous asynchronous inter-PE network 

is needed. Synchronization in SFMD is global and fast. As it is global, it introduces delays 

as some PEs wait for others; I analyze this in the next chapter. 

Amdahl's law [Amd67] implies that  performance of single, multi-threaded applications 

will suffer disproportionately from the poorer sequential performance of the simpler PEs 

of a CMP. My point of view: processors should not be too simple. We have seen that  

in many cases, memory bandwidth limitations argue for fewer, more complex processors. 

Suppose we are comparing the execution of a code on two architectures, one parallel 

and one sequential, and that  the individual PEs of the parallel design are slower than 

the sequential design, say by a factor of q,  Amdahl's law notes that  if a fraction, say 

l / n ,  of a code cannot be parallelized (is "sequential"), then the maximum speedup factor 

from parallelizing the code is at most n. If, when parallelized, the sequential section is 

executed on a single PE, then the maximum speedup is nlq.  The implication is that  

q should be made as small as possible for a t  least one P E  of the parallel design. The 

typical solution is to  add a fast sequential processor t o  the design, separate from the 

array of parallel PEs [WAK+96, KPP+97]. This processor can use an off-the-shelf design 

optimized for sequential processing, and execute in parallel with the P E  array. Due t o  

diminishing returns from increasing issue width in superscalar designs, a simpler, say dual- 

issue, superscalar processor can be used, which should not perform too much worse than 

wider-issue ones. While this is probably the best solution, since the  processor is optimized 

for sequential tasks, note that  some implementations of SFMD allow for one P E  to  be 

made more complex than the rest, and t o  be used for sequential parts of the code, but 

also execute as part of the P E  array. 

The use of simple processors implies that  tolerating memory latency will be a problem. 



My point of view: I have not analyzed the issue of tolerating latency, but as relative 

memory latency gets worse it becomes harder to  hide with the available ILP, especially 

when data-dependent execution makes branch prediction difficult. Conventional designs 

also avoid memory latency by using on-chip caches. But caching depends on locality, and 

may not perform well with some kinds of data-dependent tasks, such as indexing using 

pointer-based structures such as trees. Some of these problems may be ameliorated by 

software techniques like compiler-directed prefetching, but these apply equally to  simple 

and complex processors. So simple processors may not be a t  such a disadvantage compared 

t o  complex ones for data-dependent accesses. 

The increased computational density of CMP exacerbates the off-chip memory band- 

width problem. My point of view: in fact, as we have seen, for exhaustive model-matching 

type tasks, off-chip memory bandwidth limits speedup t o  k, the ratio of the model compu- 

tation time t o  model load time. With SFMD, instruction pins are shared, which may allow 

more pins t o  be devoted t o  da ta  bandwidth. However, consider a CMP where the PEs 

have individual L1 I-caches and share an on-chip L2 I-cache. Running an SPMD program, 

such a system may have virtually all instruction requests satisfied on-chip. The aggregate 

off-chip instruction bandwidth may then be only slightly more than for a single processor 

design, and may be satisfied using the same number of instruction pins. Reducing the 

instruction bandwidth by use of SIMD or SFMD techniques then has little benefit. 

For example, for 32 PEs each with 16KB L1 I-cache and shared L2 I-cache, the per-PE 

L1 miss rate is around 0.003% t o  1.3% for a variety of benchmarks [HP96, FPC+97], with 

the benchmarks similar t o  sensory processing algorithms having smaller miss rates, 0.003% 

t o  0.02%. With these numbers, the L2 cache is accessed only 0.1% to 0.6% of the time, 

for the tasks similar t o  sensory processing. Running an SPMD program, all processors 

access the same code set, so, many L2 accesses may be expected to  be hits, finding code 

previously accessed by another processor (see [Lun87, MM931 for related work). Thus 

multiple on-chip PEs may not require a substantially higher aggregate off-chip instruction 

bandwidth than a single PE. 



Note that  use of SIMD/SFMD techniques may reduce the needed size of the L2 I-cache, 

as they guarantee that  different PEs will be accessing (nearly) the same set of instructions. 

4.7 IRAM and Embedded DRAM 

Clearly, the "all models on chip" design benefits from as much on-chip memory as possi- 

ble. The basic idea of an Intelligent RAM (IRAM) design [KPP+97] is t o  avoid memory 

bandwidth limitations by moving the system memory onto the chip, or, more precisely, by 

moving the data-path logic onto the memory chip. This is accomplished by using DRAM 

rather than SRAM t o  implement the memory, and implementing the chip in a DRAM 

process. Mostly for speed reasons, I have been assuming the use of SRAM in the designs, 

rather than DRAM. SRAM allows single cycle memory access, and is several times faster 

than embedded DRAM. Also, in a logic process, embedded DRAM is not much denser, 

perhaps a factor of 2-4, based on table 4.5. However, merged logic and DRAM processes 

are becoming available [TMH+98]. For future versions of these, the density of embedded 

DRAM may be around 16-32 times that  of SRAM, taking into account interconnect and 

associated circuitry as well as just the memory cells themselves [FPC+97]. DRAM then 

becomes an attractive alternative or complement t o  SRAM for on-chip memory. 

As on-chip memory, DRAM has significant latency, but very high bandwidth. When 

a row address is decoded, and the corresponding word line driven, the entire row of data 

is delivered t o  the sense amplifiers. Along the lines of fast page mode DRAM [Sha97], the 

da ta  in the sense amplifiers may be moved in parallel t o  a cache, where individual data 

may be accessed in a single cycle. Thus in a few clock cycles, maybe 4, a large number 

of bits become available t o  the PE. The exact number of bits is a design decision; in a 

commercial DRAM chip, a row might contain 256 or 512 bytes. In a commercial design, 

where processing the da ta  occurs on another chip, the data in the sense amplifier cache 

must be selected to  be sent off-chip through an interface that  is much smaller than 256 

bytes wide. Thus most of the potential bandwidth is lost. However, if the processor is on 

the same chip, this need not occur, rather the processor can access the data  in the sense 



amplifier cache directly, and the access latency may be amortized over all data  accessed 

from a single row decode. Latency may also be hidden along the lines of an SDRAM 

design [Sha97]. In this case two sense amplifier caches are used: after delivery t o  the 

sense amplifiers, the da ta  is moved en masse t o  one of the caches where it can be accessed 

while another row is decoded and delivered t o  the other cache, thus hiding the latency 

of accessing the second row. For data  access with high sequential locality, such as vector 

processing, most or all of a row may be accessed before fetching the next row, amortizing 

the latency; further, if the next row may be predictably prefetched, the latency may be 

hidden entirely. 

For non-sequentially accessed data, the latency of DRAM exacts a significant perfor- 

mance penalty. To alleviate this, a likely scenario is t o  use some of the allotted per-PE 

memory area for DRAM, and some for SRAM. The  SRAM might be used as a separate 

memory, a large register file, or as a cache. In either case, if, say, half the area is used for 

DRAM, and half for SRAM, used of embedded DRAM stiI1 improves on-chip memory den- 

sity over SRAM by an order of magnitude, depending on factors such as size of the arrays 

and the relative overhead of ancillary circuitry such as cache management hardware. 

There are penalties for implementing logic in a current DRAM process, due t o  fewer 

metal layers and the need t o  tailor a DRAM process for density and minimal current leak- 

age rather than for switching quickly [PAC+97]. However, recent opinion is that  a DRAM 

process allowing fast logic is possible for a 20-30% increase in cost per wafer[FPC+97]. An- 

other issue is the  sensitivity of DRAM t o  heat: due t o  increased leakage, a small increase 

in operating temperature necessitates a greatly increased refresh rate [PAC+97]. Thus 

embedded DRAM chips may only be suitable for low power applications. With present 

trends, putting system memory on chip in DRAM limits the memory to  around 128 MB 

in the next (gigabit DRAM) generation [KPP+97]. This number results when the entire 

chip consists of DRAM; since we want some logic, the actual limit is less. The Berkeley 

IRAM chip has about one fourth the chip area devoted t o  logic, giving 96 MB of DRAM. 

This may be limiting in image understanding where a great deal of derived information, 



such as extracted features, is kept [BDBH89] or where algorithms require a large amount 

of memory per P E  [Web92]. However, this is a substantial amount of working space for, 

say, a 3 megabyte image (1K by 1K pixels in 24 bit color). As well as increasing the 

amount of on-chip memory, IRAM also increases memory bandwidth, both from having 

the PE(s) and memory communicate at the chip clock rate, and from having the P E  

data-paths access the entire sense amp array in parallel. A single CPU cannot utilize the 

large IRAM bandwidth [YH097, BCK+97], so the sense amp cache must be accessed in 

parallel by some number of processors. A vector processing model has been suggested 

[KPP+97], which can utilize a relatively wide array per vector processor, say 64 bytes. 

However, as I have argued, contextual processing requires data-dependent execution, and, 

as I will show later, a vector or other SIMD model suffers a large performance loss on 

such tasks. Instead of a vector model, with a few wide per-PE memories, for contextual 

processing tasks it may be better t o  have more PEs, each with a narrower memory. Such 

a design may require more area for replicated decode circuitry, but can decrease power 

requirements because of its shorter word line lengths 

Consider the following "back of the envelopen example. For a 64 P E  system with 1 

MB of DRAM per PE,  a 16 byte-wide per-PE interface puts 4 32-bit words of da ta  in the 

sense amp cache, amortizing latency by 4, assuming a 32-bit PE architecture accessing one 

32-bit word a t  a time. The per-PE memory is then 128 bits wide by 512K bits deep. At 1 

GHz, and assuming latency is entirely hidden by the various techniques I have mentioned, 

such a system delivers an aggregate bandwidth of 64 * 4 = 256 GB/sec. For comparison, 

an off-chip interface t o  16 Concurrent Rambus memories will require 16 * 31 = 496 pins, 

perhaps two orders of magnitude more power, and deliver 16 * 1.6 = 25.6 GB/sec. If we 

allow for improvement in Rambus technology by arbitrarily doubling the bandwidth, the 

aggregate bandwidth is still a factor of 10 less than the embedded DRAM design. As 

another comparison, if we imagine a future 10 GHz sequential processor with a 64-bit 

architecture, its bandwidth t o  on-chip L1 cache is (64bits x 10GHz) = 80GB/s , a factor 

of 6 less. The last two designs will also use much more power. 



Embedded DRAM is a promising approach for a low power "all models on chip" design, 

both for its density and bandwidth. Of course, much of this is speculation, and depends 

on the actual processes available in the future. In particular, real implementations are 

likely t o  use pre-designed DRAM "macro-cells" (e.g., [DBKK98]), and will be constrained 

by the characteristics of the designs available. 

4.8 Power and size issues 

I have not looked a t  power or  die size issues in any depth, although they are clearly 

important in the economics of a chip targeted at embedded applications. Here are some 

observations and speculations. 

The largest effect on power dissipation from an SIMD or SFMD design is likely t o  

come from sharing of instruction processing hardware. For a desired hit ratio, the area 

requirements of a single shared global I-cache for an SIMD or SFMD design may be 

substantially less than the  combined area of the per-PE caches in an MIMD CMP. On-chip 

cache uses a significant percentage of the total power used by a microprocessor [PACf 971. 

The same advantage from sharing applies t o  other instruction fetch and dispatch hardware. 

Also, t o  the extent that  sharing instruction pins or use of large on-chip memories decrease 

the number of pins needed, they allow a smaller die size, and reduce the power requirements 

for driving off-chip lines. Driving off-chip lines has a high power cost, two orders of 

magnitude greater than on-chip memory accesses t o  either DRAM or SRAM [FPC+97]. 

[Asa98] discusses other ways a vector processing or SIMD design may have an ad- 

vantage in power dissipation, compared t o  a non-vector microprocessor. These include 

less expensive register files, reduced datapath switching energy, less switching of datapath 

control lines, and more regular access t o  the memory system. Possible disadvantages of a 

vector or SIMD design come from broadcasting control data  and interprocessor communi- 

cation. All these points apply directly t o  an SFMD design when operating in SIMD mode, 

but not when in SFMD mode, due t o  desynchonization of instruction execution between 

separate threads when in SFMD mode [AGWFH94, WHAG+92]. 



Finally, the improved computational density of a CMP may allow adequate perfor- 

mance with slower clocking. If so, tolerating memory latency also becomes less of a 

problem, assuming (off-chip) memory is not also clocked more slowly. The improved com- 

putational density of CMP may also allow a smaller die size for equivalent performance. 

4.9 Conclusions 

In section 4.4 we saw that  for a design that  does not share da ta  pins, giving each P E  

its own path to  external memory, simple pin restrictions limit parallelism. Section 4.5 

showed, for a large class of highly parallelizable applications like model matching, that  

when da ta  pins are shared, area tradeoffs imply two cases. Either (essentially) all models 

(task parameters) fit on-chip, or  parallelism limited to  k, the ratio of the time to  match 

a model (execute a task) t o  the time t o  load the parameters for that  model (task). In 

the latter case, it is not cost-effective t o  have many more than k PEs. Due t o  bandwidth 

limitations and the difference between on- and off-chip clocks, the  load time for a single 

parameter may be several on-chip clocks, so that  t o  achieve a ratio k will require a multiple 

of k number of operations per parameter. This implies that  a small number of PEs, around 

16, is probably maximal for all but the most special-purpose architectures. So designs that  

rely on off-chip memory are limited t o  a t  most a small degree of parallelism. There are 

thus two viable architectuml possibilities. One uses many simple processors and puts as 

much memory on-chip as possible, so that  all models can be kept on-chip. The processors 

could be architected as a vector processor, or as an SIMD or SFMD array, perhaps as part 

of a hybrid architecture with a fast scalar processor in addition t o  the parallel array. The 

other possibility is t o  use a few complex processors and external memory. In this case, 

chip resources should be sufficiently abundant that the individual processors need not be 

substantially simplified from a commercial microprocessor, and an MIMD architecture 

seems most likely. 

In section 4.6: I responded t o  objections t o  a general-purpose CMP as follows: 

"Multi-threaded programming is hard": Perhaps, but an SIMD programming model is not, 



and is appropriate for tasks with data/knowledge parallelism, such as model matching. 

"Computational density aggravates memory bandwidth problem ": The results from A p  

pendix B bear this out: for model matching tasks, either all models must fit in on-chip 

memory, or parallel speedup is strictly limited by the ratio of computation time t o  load 

time. 

'(Synchronization is expensive": The SFMD model introduced in the next chapter uses 

fast (global) synchronization. I will analyze the expense of this technique in the next 

chapter. 

"Amdahl's Law tends to favor a single fast processor over several slower processors acting 

in parallel": The typical, and probably best, solution t o  this is t o  use part of the chip area 

for a conventional microprocessor core, t o  execute non-parallelizable parts of code. The 

microprocessor is programmed essentially independently of the parallel P E  array. However, 

a t  least conceptually, SFMD allows PEs in a CMP t o  be of different speeds, so that  a design 

could have a single fast P E  and numerous simpler, slower ones. Programming of all PEs 

would be identical, with the fast PE(s) being distinguished by a testable identifier. 

In conclusion, for our application domain, we see that  if (essentially) all models do not 

fit on-chip, parallel speedup is strictly limited, and one is left with a design using a few 

fast processors with external memory. Such a design requires much power, for fast access 

to  the external memory, and has the added system expense of the external memory. I feel 

that  such a design will not outperform conventional designs sufficiently t o  economically 

justify its construction. For example, a 16 P E  design, with each P E  being a somewhat 

aggressive quad-issue superscalar architecture with an IPC of 3, has a maximum IPC of 48. 

This is only 4 times that  projected for an advanced 16-issue superscalar. Assuming that  

something of equivalent performance to  the wide-issue design will be built as a general 

purpose chip, and given the design and test cost for these chips, I expect a four-fold 

performance increase (at  most) t o  be insufficient justification for building the design with 

a few fast processors. 



Instead I will concentrate on the "all models on chip" niche, using many simple pro- 

cessors. The discussion of IRAM suggests that  model matching and image understanding 

algorithms may be possible with the amount of on-chip memory available in the future. 

Simple processors are then desirable t o  leave as much area for memory as possible. Use of 

an SIMD/SFMD architecture simplifies processors by avoiding (most) per-PE instruction 

hardware, it offers a simple programming model, and SFMD improves performance over 

SlMD for data-dependent tasks. 



Chapter 5 

SFMD 

In this chapter, I introduce the Single Function Multiple Data (SF'MD) architecture, as 

an extension of SIMD, and discuss its implementation and cost. In an SFMD design, each 

simple processor has a small instruction buffer, so that  repetitive, data-driven computa- 

tions such as model-matching can be done in parallel with less load imbalance than if done 

in SIMD mode. The silicon cost of SFMD execution is essentially tha t  of the  instruction 

buffer; from the VLSI trend numbers reported in chapter 4, I conclude that  this cost is 

not too great, perhaps requiring reducing the  on-chip memory size by 3-6%. I discuss the 

relation t o  existing SIMD compilers and programming environments and illustrate that  

SFMD functionality can be made use of transparently t o  the programmer, as a compiler 

optimization, and that  debugging SFMD is as easy as debugging SIMD. Thus, there is no 

additional programming cost t o  using SFMD compared t o  SIMD. I compare the perfor- 

mance of SFMD t o  that  of an SIMD system, and show for a wide range of model-matching 

type tasks with data-dependent execution that  SFMD should provide a 1.5 t o  2-fold im- 

provement in performance. In SFMD, processor synchronization is global, and I discuss 

the potential penalty incurred compared t o  an SPMD multiprocessor with point-to-point 

synchronization. I show that  if message sending is not too infrequent and if the variance in 

the computation time between processors is not too large, that  SFMD can be competitive 

with an SPMD design. 



5.1 Overview of SIMD Architecture and Programming 

As background, I first review SIMD parallelism. In SIMD, multiple processing elements, 

or PEs, simultaneously execute identical instruction sequences. Typically, each processes 

different data. For example, an image may be partitioned among the PEs, and each P E  

convolve the pixels of its part of the image with a specified mask. Alternatively, depending 

on how we wish t o  interpret the term "data", each P E  may process the same data  using 

different sets of parameters, making use of knowledge parallelism as discussed in chapter 

3. For example, in vector quantization, codebook vectors may be partitioned among the 

PEs, and then data  may be quantized by each P E  finding the nearest codebook vector in 

its set, and then comparing among the best vectors found by each individual PE. Here I 

am viewing the codebook vectors as parameters of the algorithm. 

Architecturally, the shared instruction stream is produced by a controller, or sequencer. 

Generally, each P E  has a certain amount of local memory, which only it can access directly. 

All PEs execute a given instruction in the stream a t  the same time, so are synchronized a t  

each instruction1. This means synchronization is implicit, the hardware need not support 

it ,  and the programmer need (can) not manage it. It also means that  instruction man- 

agement hardware and bandwidth is shared among the PEs, leading t o  simpler processors 

and reduced off-chip bandwidth. 

SIMD architectures differ in the functionality of their PEs. If PEs can independently 

address local memory at differing locations, rather than all having t o  access the same 

address a t  a given step, the architecture is said t o  have local addressing. If PEs can 

independently determine whether t o  execute a given instruction, rather than having this 

determined by the sequencer, the architecture has local conditional execution. Branching, 

per se, is done only on the sequencer, since PEs have no control over the instruction stream 

they read. All PEs see the same instruction stream, yet a given P E  executes the code in 

'Such synchronization of many processors occupying more than one chip is becoming more difficult as 
feature size diminishes, chip size increases, and clock rates increase, as discussed in chapter 4.  For this 
reason. SIMD architectures which tolerate slight de-synchronization are being introduced [Wee97]. These 
architectures behave in a strictly SIMD fashion, and do not add SFMD extensions. 



only one branch of any if-then-else, and so must idle while other PEs execute the code in 

the other branch. This is the cost of synchronizing at each instruction, in lock step. It 

implies that  when execution is data-dependent, some PEs may idle while others complete 

their work. Minimizing this idle time by balancing the work done by the individual PEs? 

load balancing, is the major issue in programming SIMD machines for applications with 

data-dependent execution. 

5.2 The SPMD and SFMD Computation Models 

The notion, introduced above, of partitioning the data  and operating on the different 

parts in parallel, is called data parallelism. Data parallelism has been described as a 

parallel programming model "with much t o  commend it" vis a vis a variety of other 

models for practical portable parallel programming, where the dimensions of comparison 

include architectural independence, reduction of descriptive complexity, and the ability of 

a programmer t o  form some estimate of the performance of the executing computation 

[SkiSl]. Da ta  parallelism allows programmers t o  think in terms of familiar matrix and 

vector abstractions, which have a simple mapping t o  the architecture and execution model. 

One early large study of applications in science and engineering found that  da ta  parallelism 

was nearly always the source of parallelism in execution [Fox88, Fox891. Since the advent 

of superscalar processors, instruction level parallelism would have to  be added as a major 

source; as well, the use of special purpose hardware for handling messages or for DMA 

provides another. None the less, a t  least anecdotally, da ta  parallelism is still the dominant 

form of explicitly programmed parallelism. 

For SIMD execution of data parallelism, the  parallel operations use identical instruc- 

tion streams. Instead, one can require only that  the parallel operations use the same 

program, with potentially different instruction streams due to data-dependent branching. 

This is called Single Program Multiple Data (SPMD) computation. SPMD is the natural 

way t o  implement data  parallelism on a machine built from multiple general-purpose pro- 

cessors, and is the dominant model for programming such machines [HQ90]. In SPMD 



programs, processors are free t o  communicate with each other a t  any time, t o  the extent 

that  this is permitted by the architecture and programming language. This introduces se- 

mantic complexities in the form of explicit synchronization and the possibility of deadlock 

and race conditions. I t  also introduces performance issues in dealing with the expense 

of synchronization using either interrupt code and handlers, or spin locks, and with con- 

tention for shared variables. Debugging becomes extremely complex, due t o  uncertainties 

about the order in which events occur and difficulty in reproducing events dependent on 

race conditions. 

I introduce the Single Function Multiple Data (SFMD) computation model as inter- 

mediate between the SIMD and SPMD models. As an extension of SIMD, SFMD allows 

different processors t o  be executing different instructions (of the same program) at dif- 

ferent times. A program is divided into sections of SIMD code interspersed with SFMD 

blocks. SFMD blocks, which generally are small nested loops, are executed independently 

on each processor. As a restriction of SPMD, SFMD does not allow processors t o  com- 

municate a t  arbitrary times. Rather, for processors t o  communicate, all processors must 

synchronize in a barrier synchronization before any communication takes place. Thus 

no communication between processors occurs within an SFMD block. Also, processors 

cannot communicate with the sequencer during SFMD blocks. In particular, the "no- 

communication" rule implies that  multiple processors cannot access the same variable in 

shared memory from within an SFMD block, as this is a form of communication. Thus, 

a t  least for memory references within an SFMD block, a distributed memory architecture 

must used. 

As intermediate between SIMD and SPMD, two immediate questions are the compar- 

ative efficiency of SFMD versus SIMD, and of SFMD versus SPMD. I examine these in 

detail later on. 

An essential point is that  from a programmer's perspective, SFMD and SIMD are both 

very similar to  conventional, non-parallel programming in that  there is effectively a single 



thread of control 2 .  This, in turn, implies that  debugging, a major problem for more 

general parallelism models, is for SIMD and SFMD equivalent to  debugging a, non-parallel 

program. To see that  SFMD and SIMD are equivalent in this regard, note that  an SFMD 

program can be debugged as an SIMD program as follows: each SFMD block is executed 

on a single processor a t  a time, leaving the other processors disabled, and iterating through 

all processors in some order. As there is no communication between processors during the 

SFMD block, the sequentialized execution is equivalent t o  the parallel one. 

A second essential point is that  programming for a SFMD architecture is virtually the 

same as programming for a SIMD architecture with local conditional execution. From a 

high-level language, e.g., 'C' with SIMD extensions, the compiler can make the needed 

changes. Even for assembly language programming, only slight additions are needed t o  

SIMD code t o  take advantage of SFMD operation. 

Support for SFMD functionality can be added t o  an existing SIMD machine t o  increase 

its flexibility, scope, and power; in particular, as an optimization for highly data-dependent 

code such a s  indexing, model matching, and other forms of knowledge parallelism. An 

SFMD architecture retains two key advantages of an SIMD one: simplicity of programming 

and debugging, and the use of a single instruction stream. The latter means that  a VLSI 

implementation of an SFMD architecture can share instruction processing hardware and 

cache among the PEs, and need only have pins for a single instruction interface. As 

discussed in chapter 4 smaller instruction bandwidth can be used t o  reduce the number of 

package pins, reduce cost, or can be used t o  increase da ta  bandwidth by freeing up pins 

for da ta  I/O. Shared instruction hardware allows PEs t o  be simpler, smaller and easier t o  

design. 

It remains for us t o  show the viability of the SFMD concept: what is the cost of 

implementation and what is the comparative performance of SFMD versus SIMD, and 

versus SFMD? 

'Deadlock, race conditions and lack of fairness are still possible for both SFMD and SIMD, so some 
care must be taken in handling interprocessor communication. But the programmer's problem is much 
simpler due to the explicit order in which events are known to occur. 



5.3 Implementing the SFMD Programming Model 

Given a SIMD architecture with the local addressing and local conditional execution, 

SFMD programming can be made available at the assembly language level by adding 

three constructs: 

distribute n start tells the sequencer that the next n instructions are to be distributed 

for independent execution on the PEs. Call these next n instructions an SFMD block. 

There is a similar instruction that tells the PEs to store the next a instructions for 

independent execution; I will use the same name for both. As the n'th instruction is 

distributed, control passes to the individual PEs, with the program counter starting 

at start. 

sync tells the individual PEs to suspend execution and signal the controller (barrier syn- 

chronization). Control passes from the individual PEs back to the sequencer for 

further SIMD execution. It is not necessary, but may be convenient, to allow sync 

to return a value, indicating the exit state of the PE and allowing the sequencer to 

take action immediately in case of certain exceptions. sync is ignored if not within 

an SFMD block. 

branch-local encompasses one or more local branch instruction(s), including a loop con- 

struct; the branch target must lie within the enclosing SFMD block. These are 

ignored if not within an SFMD block. 

Most importantly, I further require that code within an SFMD block contain only references 

to PE-local memory; none to global (sequencer) variables, to external memory or to the 

local memory of another PE. It must also contain no inter-PE communication. Note that a 

message may be sent from within an SFMD block, and routed through any interconnection 

network, as long as they are not acted upon within an SFMD block3 . This is important 

31t should be noted that race conditions, unfairness and starvation are possible if the the behavior of 
the program is dependent on the order in which messages are received. However, this is as true for SIMD 
execution as it is for SFMD. 



and allows overlapping computation with communication. 

When the PEs are independently executing an SFMD block, the system is in SFMD 

mode, and normal execution is then referred t o  as SIMD mode. 

5.4 The SFMD Programming Environment 

When programming in a data-parallel 'C'-like language designed for a SIMD architec- 

ture, the use of SFMD functionality may be an optimization performed by the compiler, 

completely hidden from the user. This optimization is possible when the architecture's 

instruction set distinguishes references t o  PE-local memory from references t o  non-local 

memory4. In this case, variable type and usage analysis can determine for any given block 

of code whether the constraints on non-local references are met, and emit code for SFMD 

execution if so. 

Reads of global variables may be allowed, by copying the value into local memory 

before starting distributed execution. No new problems are introduced for debugging, as 

SFMD execution is semantically equivalent t o  executing on each PE sequentially, and can 

be executed this way during debugging. 

To the programmer, SFMD ameliorates two annoyances of SIMD programming: (i) in 

conditionals, a P E  need not be idle while other PEs execute the branch it did not take, 

and thus, (ii) loops and recursions may execute a processor-dependent number of times. 

Of course, due t o  the barrier synchronization, the latter is only useful for nested loops, 

where the inner is da ta  dependent: for a single loop, the time is in any case the maximum 

of the  times of the loop executing on each processor. 

5.4.1 Translating SIMD to SFMD 

In this section I give examples of how t o  translate SIMD code t o  SFMD code. Formalizing 

the translation would require specifying an SIMD instruction set architecture in detail, 

4For example, in a shared memory architecture the hardware may completely hide the difference between 
local and non-local references, providing a transparent non-uniform memory access (NUMA) model. In 
such an architecture, automatic conversion of SIMD to SFMD code cannot be done. 



which would take us too far afield. The examples are intended to clarify what is involved. 

and to further clarify the SFMD idea. 

In a conventional SIMD machine, there are two instruction streams, one for the se- 

quencer, and one for the array of PEs. Each PE sees all instructions in the instruction 

stream going to the PE array. There are generally a number of reduction operations for 

computing functions of results produced on the individual PEs. Let v ( p )  be some value 

output by each PE p as part of the computation. Reduction operations include AND-ing, 

OR-ing, summing, or taking the maximum or minimum of the v(p) .  For our purposes, 

we can ignore reduction operations other than OR and AND as they are done in SIMD 

mode. 

Local conditional execution is implemented by predicating instructions on various log- 

ical conditions occurring locally to the PE, for example, the contents of a condition code 

register, or the output of the adder being zero. A given PE ignores instructions whose 

predicates are false for it. In a minimalist implementation, the predicate can simply test 

a condition code register for being zero. This allows predicating the instruction to be 

encoded in a single bit of the instruction word. Denote an instruction, Ik predicated on a 

condition, C, by I!'). 

Program control flow constructs such as for and while loops are done on the sequencer. 

SFMD allows moving such loops from the sequencer to the PEs (if space allows). Loop 

termination criteria may or may not depend on results from the computation done on 

the PEs in the body of the loop. When the criterion does not depend on PE results, for 

example, in a for loop of fixed length, the loop may be moved entirely to the PEs. This 

leads us to consider OR and AND reductions which derive the termination condition on the 

sequencer from the termination conditions on the PEs, done(p). 

Consider a loop on the sequencer with body B(p) computed on the PE array, 

while not (AND done (p) ) B (p) endwhile. 

Such a loop corresponds to looping until all PEs finish some set of tasks. When control is 

moved to the PEs, each PE executes 



while not(done(p)) B(p) endwhile; sync; 

and the sequencer waits for all PEs to sync. A loop, 

while not (OR done (p) ) B (p) endwhile, 

corresponds to looping until the first PE finishes its set of tasks, as might be done in 

searching or model matching until an adequate example is found. When control is moved 

to the PEs, each PE executes 

while not(done(p)) B(p) endwhile; sync; 

and the sequencer waits for any PE to sync. After the first PE sync's, the sequencer may 

interrupt the others. 

The above examples illustrate how to map control flow constructs from the sequencer 

to the PE array. This involves the addition of branch and sync instructions. There is 

also the issue of transforming a stream of possibly conditionally executing PE instructions 

into a stream that makes use of local branching. 

Consider a stream of PE instructions containing a block of conditionally executing 

code: 

Suppose this code corresponds to A; if C then B which is a SIMD idiom for if C then 

B else A,  when code blocks A and B side-effect the same set of variables5. Then I1 ; . . . In 

(C) (C) computes A and C and In+1;. . . InSk computes B. 

By reachability and usage analysis, [Wo196] and by code movement to separate A from 

the computation of C, 

becomes 

5This is a sensible idiom in the SIMD case: since all PEs must see the instructions in block A anyway, 
it does no harm to execute them and then overwrite the results. Also, with a 1-bit conditional execution 
predicate as described above, the A ;  i f  C then B formulation avoids having to compute 1 C. 



where instructions I;;'') . . compute A and the instructions I;, ; . . .Ii, compute the 

condition C. Insertion of branch and sync instructions then gives 

We now have a block of code containing branches. Break this code into maximal 

segments each containing no non-local communication. Any segment all of whose branches 

have targets lying in the same segment can be executed in SFMD mode. We can place 

the distribute instructions for each such segment by finding the minimal sub-segment 

containing all branches and branch targets of the full segment. 

These examples should illustrate how both high level and assembly code may be tra.ns- 

lated t o  make use of SFMD functionality. Of course, this is intended simply t o  illustrate, 

there will be many details pertaining t o  a particular SIMD instruction set architecture. 

5.5 Hardware Implementation and Hardware Cost 

I am interested in high volume, low cost, low power, embedded, "delivery system" appli- 

cations. Such systems must have few chips; scalability t o  100's or 1000's of chips is not 

an issue. Parallelism is thus achieved with multiple PEs per chip. As we saw in chapter 

4, current VLSI trends lead us t o  consider an architecture with many (e.g., 64 or 128) 

small PEs and on-chip system memory. While chips can contain many transistors, area 

for P E  logic is a t  a premium since most area will be used for memory, and since use of 

area translates into higher power requirements. Nonetheless, as we saw, there will be area 

available for making PEs substantially complex; in particular there will be area available 

for implementing SFMD functionality. 

Adding SFMD functionality t o  an architecture whose PEs have local addressing and 

local conditional execution is straightforward. Here I outline an example implementation. 

Hardware for branch tests and decoding sequencer instructions in the instruction register 

(IR) already exists. Local memory is suitable for local addressing. 

A "micro-sequencer" must be added, consisting of an auto-incrementing program 
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Figure 5.1: Example SFMD implementation 

counter (PC), an instruction buffer (IM), decode logic for branch instructions, and state 

for determining mode and disabling inter-PE communication in SFMD mode. The in- 

struction buffer can be loaded from the existing instruction bus (IB); this requires a 1-2 

mux on the IB that allows instructions on the IB to be sent to  the IR, to both IM and 

IR, or to be ignored. SFMD blocks can be stored a t  known locations within (small) IM, 

so addresses are both small, requiring few bits, and absolute, so that no branch address 

computation is needed. 

By sending instructions to  the IM and IR simultaneously, it is possible to execute the 

instructions (in SIMD mode) while they are being loaded, hiding the overhead of loading 

IM. The existing P E  output path can be used for the barrier synchronization. A 1-bit 

path from the sequencer to each PE  is added for interrupting local execution. 

Execution of a distribute n instruction on a P E  causes the next n instructions to 

be both executed in normal mode and stored sequentially in IM, starting at the current 

address in the PC. The (n + 1)'st instruction is executed in SFMD mode, it is typically 

either a branch-local to start execution, or possibly a sync if the instructions are just 

being executed once and cached6. 

Almost the entire cost of providing SFMD functionality is silicon area used by the IM. 

'For example, if the distributed code is a subroutine that will be encountered again. 



The IM contains inner loop code, or model-driven conditional code, which is likely to  be 

small. For example, consider the cost of adding an IM of 512 4-byte instructions t o  each 

PE of a current generation ( 0 . 1 8 ~ )  64 P E  chip. Taking into account a 20-fold increase in 

density of DRAM over SRAM (table 4.6), panel (g) of figure 4.2 shows that  without IMs, 

such a chip could have over lOOMB of DRAM memory. Adding all the Ihls to  all the PEs 

then uses (64 x 20 x 2KB)/(100MB) = 2.56% of the DRAM memory. So adding 2 KB 

of IM to  each P E  of a 64 P E  chip reduces system memory for da ta  and models by less 

than 3%. This percentage grows linearly with the size of IM and decreases linearly with 

the number of PEs. If dual-ported SRAM is used, as in the following section, the number 

increases by about 50%, t o  4% of memory. In terms of chip area, using the numbers from 

chapter 4, for a 64 P E  chip, each KB of (single ported) IM uses 1.7% of chip area in the 

0 . 2 5 ~  generation, 0.76% in the 0 . 1 8 ~  generation, and 0.47% in the 0.13 generation. 

These numbers seem substantial, but not prohibitive. We will see that  SFMD execution 

can provide around a 1.5 t o  2-fold increase in performance over SIMD execution on tasks 

with data-dependent control flow. For our applications, this increase seems well worth the 

chip area cost of a small (1-4 KB) buffer. 

5.5.1 An alternative implementation of SFMD 

An alternate implementation of the SFMD model allows us t o  have SFMD blocks that  

are larger than would fit in a given amount of local instruction memory (IM). This im- 

plementation operates on an stream of predicated instructions, including sync's, but not 

including d i s t r i b u t e  and branch. The PE has a condition code register, and instructions 

can have one of two predicates, C or -C, allowing the instructions t o  execute when the 

condition code register is non-zero or zero, respectively. This requires two bits in each 

instruction word. The techniques mentioned previously may be used to  translate SIMD 

code t o  this form of SFMD code. 

The idea is t o  replace the IM by a FIFO instruction buffer, filled a t  2 instructions 

per clock by a double-wide bus, and emptied a t  1 instruction per clock. The appropriate 



instructions are flushed from the FIFO without being executed when it is known that  their 

predicate will fail. This requires two ancillary "branch" FIFOs of addresses within the 

instruction FIFO, pointing t o  the end of sequences of predicated instructions of the two 

types. More precisely, the branch FIFOs point t o  the instruction immediately following 

the last predicated instruction in the sequence. Call such a point a branch target, as that  

is what it effectively is, even though there are no actual branch instructions. When a 

predicated instruction reaches the end of the FIFO and the predicate fails, instructions 

up t o  next branch target are flushed without executing, effectively performing a branch. 

Effectively, the hardware "discovers" branches on the fly. 

For each PE,  this design needs the instruction and branch FIFOs as well as a small finite 

state machine for handling full and empty FIFO conditions, and for determining "flush" 

conditions based on predicate and P E  state. As the branch FIFO can be small, containing 

a small number of addresses, each of a t  most probably 16 bits, the instruction FIFO has 

the dominant area cost. As well as sync, this design requires simple global communication, 

much the same as barrier synchronization, for handling "full FIFO" conditions. 

On the downside, this implementation is somewhat complicated and there will be 

inefficiency when a full buffer condition on one P E  stalls the instruction distribution and 

perhaps stalls other PEs. There will probably be a 1 t o  2 cycle branch delay for flushing 

the FIFO, although this might sometimes be masked by an analog of a branch delay 

slot, possibly with multiple instructions, where the first 1 or 2 instructions preceding 

predicated instructions are guaranteed t o  not affect the condition code register, by use of 

no-ops, if necessary. For very small branch bodies, it may be preferable t o  use predicated 

instructions in the normal SIMD fashion. For example, two instruction word bits are 

used for predicates: 00 indicates a normal SIMD unpredicated instruction, 01 indicates 

a normal SIMD predicated instruction that  is executed if the condition code register is 

nonzero, but is ignored by the branching mechanism, 10 and 01 indicate the two SFMD 

predicates. 

Detection of full FIFO conditions can be done some number of instructions early, so 



that  delays in communicating with the central instruction distribution mechanism do not 

require killing and resending instructions sent before the "full FIFO" message is received 

and acted on. It is possible, if unlikely, that  a branch may extend past the end of the 

FIFO, that  is, all instructions in the FIFO have the same predicate. If this branch is 

taken, the entire FIFO is emptied, and further instructions with that  predicate will be 

processed (flushed) more slowly, as they are delivered. 

Finally, with this design, speedup over SIMD is limited t o  a t  most twofold, as that  is 

the instruction delivery rate, however, we will see that  SFMD generally can be expected 

to  give a t  most a 1.5 t o  Zfold improvement over SIMD. 

The advantage of this design is that  there is no limitation on block size, as there is 

when the entire block must fit in the local IM. Also, due t o  flushing of untaken branches, 

and continuous emptying of the FIFO, an instruction FIFO holding a given number, n, 

of instructions should generally support, without too much inefficiency due t o  empty or 

full FIFO conditions, SFMD blocks which are considerably longer than n. With the im- 

plementation described in the previous section, an IM holding n instructions is limited to  

SFMD blocks of length n. With respect t o  area, this advantage of the FIFO implemen- 

tation is reduced by the fact that  the FIFO uses dual-ported memory, and thus requires 

about 1.5 times as much area as an IM t o  implement the same number of instructions. 

As the hardware hides the FIFO management tasks, the programming complexity 

of both implementations of SFMD is the same, except that  the FIFO implementation 

may allow for more sophisticated performance tuning, t o  avoid "full FIFO" conditions. 

However, even this will be similar to  programming the non-FIFO implementation t o  fit 

SFMD blocks within the available instruction memory. 

5.6 Performance Improvement of SFMD versus SIMD 

What performance improvement may be expected by adding SFMD to  SIMD? There are 

two basic components, improvement on branches, and improvement on nested loops, where 

the inner loop count varies locally. 



Unnested (equiprobable) branches speed up most when the branch bodies have the 

same size, with a factor of 2 improvement. For nested branches of depth d, the factor is 

2d, but these are probably unusual for d > 3. An exception would be applying a decision 

tree classifier in a data-parallel way, as in [BD94]. 

To examine improvement on nested loops, suppose we have a set of N models (or any 

independent tasks) t o  be evaluated on an architecture with P processors. On an SFMD 

architecture, partition the set into P groups, assign each group t o  a processor, and have 

each processor evaluate all the models in its group. If evaluating the j7 th  model of the 

i'th group takes time t!:fmd), then the total time is 

where N; is the size of the i7th group, xE1 N; = N, and the (sfmd) superscript notes that  

individual models may take different times t o  execute on SIMD and SFMD machines due 

t o  data-dependent branching. 

On an SIMD architecture, partition the set into [ N I P ]  groups of size P and sequen- 

tially evaluate each group in parallel. Each group has a model that  takes the most time 

t o  evaluate; SIMD execution forces the whole group t o  have this time complexity. So, 
(simd) evaluating a single group, G;, takes time tij , where j indexes over the elements of the 

group, 1 5 j 5 P. The total time for SIMD execution is then 

[NIP1 
(simd) Tsimd = C maxtQ 

3=1 
i=l 

(ajmd) - (simd) Ignoring data-dependent branching and taking tij - tij - t;j, we see that  

optimal (i, j)-indexing of the N models for either case is a bin packing problem. As such, 

(i, j)-indexing will be heuristic, and I examine Tsimd/Tsjmd by simulation. It should be 

clear that  the expected improvement of SFMD over SIMD cannot be large unless the 

outer loop count is large or the variance in tij is large. Relaxation-based algorithms may 

have large variance (see, for example [CKP95]). When indexing is possible, one would not 



expect the outer loop count to  be large, but it may be for non-indexable models such as 

elastic ones. 

To examine the possible magnitude of the effect in general, I look instead a t  multi- 

plication of an input vector by a large sparse matrix. Rows are partitioned among the 

PEs, and each P E  computes all the row-vector inner products for i ts  set of rows7. Tsfmd 

is given by equation 5.1, with {t;jll 5 j 5 N ; )  the set of all rows for processor i. Tsimd is 

given by equation 5.2, with { t i j  11 5 j 5 P) the set of rows executed by all processors a t  

time i. Here t;j is the time t o  perform a row-vector inner product. Note that ,  t o  examine 

specifically the relationship of max-of-sum and sum-of-max, I am assuming t ; j  is the same 

for both SIMD and SFMD. In fact, t;j will differ between SIMD and SFMD execution, due 

t o  conditional execution depending on how many non-zero row elements a given P E  has. 

Later analysis and simulation will examine the effect of such data-dependent execution on 

Tsirnd/Tsfrnd- 

Under a variety of choices of matrix size (256 x 256 t o  2048 x 2048), number of processors 

(16,32,64), distribution of elements (uniform, clustered around the diagonal), and sparsity 

(fraction of nonzero elements from 0.001 t o  0.4) we get that  the ratio Tsirnd/Tsfmd decreases 

from around 2.2-2.7 for sparsities near 0.001, t o  1.2 for sparsities near 0.06, and t o  1.1 or 

less for more dense matrices (figure 5.2). The effect is thus significant but not dramatic. 

Note however that  handling sparse matrices is difficult for vector and superscalar designs, 

as pipelines are rendered useless. Thus even a small improvement may be significant. 

5.6.1 Analysis: sum-of-max vs max-of-sum 

To compare equations 5.2 and 5.1 analytically, 1 will take t$lrnd) = t!;lrnd) = t ; j  t o  be 

independent realizations of a random variable, T .  For a random variable, X,  denote its 

mean and variance by px and a;, respectively. Assume p~ < oo and a$ < oo, and define 

7I assume the assignment of rows to PEs is independent of the number of nonzero elements in the rows. 
If not, then for N >> P, simply sorting rows by number of elements and then assigning row i to processor 
i mod P can be a good enough packing heuristic to make Ts,,,,d o Tsfmd Permuting the rows this way 
may require the outputs to be reverse permuted, which will be too costly for some applications. 
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Figure 5.2: Sparse matrices: speedup vs. sparsity 

S = (T - P ) / U  t o  be the normalized version of T. For a distribution, X,  and fixed sample 

size, n, one may consider the distribution, X(,) ,  of the largest value in a random sample 

of size n. I assume that  T(,) is well defined. For simplicity, assume N is a multiple of P, 

N = M P  in equations 5.2 and 5.1. Let MAXSUMbe the random variable m a x c l  xg1 T;j 

and SUMMAX be the random variable ~g~ m a x c ,  Tij. 

For large M ,  by the  central limit theorem, 

where G, - N(pT,  u T / d M ) )  and Z; - N(0, l )  are normally distributed. 

Similarly, 

M P  
SUMMAX - C m a x ~ ,  

t = l  
j=1 



Table 5.1: Representative values of pz(,), the expected value of the maximum of a random 
sample of size P from a standard normal distribution. Values marked with (t) have been 
approximated using equation 5.8. 

where Y - N(pT(,), a ~ ( ~ ) / d % )  and Z .- N ( 0 , l )  are normally distributed. 

Evaluating the expected value (sf) seems difficult. One approximation is 

(SUMMAX) (z",::) ;s: (MAXSUM) 

This gives the obvious approximation 

expected maximum value (g",::) ;s: expected (average) value ' (5.5) 

asymptotically for large M. If T is normally distributed, T - N(p,  a ) ,  then p ~ ( , )  = 

P + aPz(,) , and 
(SUMMAX) - P + P ~ P )  0 

(MAXSUM) - P + Pz(,) old% 

If T is uniformly distributed, T - Uniflm - s/2, m +s/2], then p~ = m and CTT = d m .  
Let V - UniflO,l]; it is known that pr.(,, = P / ( P  + l)[Dav70]. Using maxT = (m - 

s/2) + s max V, one obtains 

(SUMMAX) s P-1 
- m + 5(-) 

(MAXSUM) - m + PZ{,, dm' 

There is no known closed form for pz(,,; Table 5.1 gives some representative val- 

ues. Although closed forms are not known for most distributions, there are a variety of 



approximations and bounds. I use the approximation 

([Dav7O] p. 67), where @ is the cumulative distribution function (cdfl of the standard 

normal distribution, in the construction of table 5.6.1. 

As the t ; j  represent times, they should be positive, hence I wish t o  consider distri- 

butions with positive support, such as the exponential, or, more generally, the gamma 

distribution. Let I',(x) denote the cdf of the gamma distribution with parameter a ,  so 

I",(x) = ( l / l ? ( a ) ) ~ l - ~ e - ~ .  If T - ra1 then p~ = a, UT = ,/6, and it is known ([DaviO]) 

that  

Thus 

where 

I';l(&) when a j 1 
M(P) 

I'i1(9) when a > 1. 

Figures 5.3 and 5.4 show some representative graphs of equations 5.6, 5.7, and 5.10. 

Examination of these equations show that  they are relatively insensitive t o  the number 

of processors varying from P = 16 to  P = 128. The most sensitive is for the normal 

distribution where the ratio varies from about 1.7 for P = 16 t o  2.0 for P = 128. So use 

of P = 16 provides a reasonable approximation in this range. 

Since the T;j should be positive, UT has been restricted so that  this is true for the 

uniform case (m > s/2), and almost always true for the normal case (pT > 2 0 ~ ) .  Simula- 

tions indicate that ,  for the normal and uniform distributions and these parameter values, 

the approximation 5.3 is very close. For the gamma distribution, I graph the lower bound 

on (SITMh4AX)/(MAXSUM) given by equation 5.10, and the difference between it and 

( S U M M A X I M A X S U M ) ,  estimated over 30 simulation runs. 



Figure 5.3: Representative graphs of (SUMMAX)/(MAXSUM) for the normal distribu- 
tion, N ( l ,  a ) ,  and the uniform distribution, Unif(1 - s /2 ,1+  s/2). Here, the number of 
processors, P, is 16, and a (respectively, s) varies. For the normal distribution, a has been 
chosen so that  the probability of a negative t ; j  is small. Different curves are for different 
values of M, the number of loop bodies per processor; M E {8,16,32,64,128,256), in 
order from bottom curve to  top curve. Simulation results show these are good approxi- 
mations for (SUMMAXIMAXSUM); the simulation results are not shown. 

We see that  the ratio is not too large; generally 1.3 - 2 for not too small a and M, 

except for the rl (exponential) distribution, where it is substantially larger. 

5.6.2 Code Transformations for sum-of-max versus max-of-sum 

There is a code transformation due to  van Hanxleden [vHK92] for dealing with the "max- 

sum versus. sum-max" problem. The idea is that  a pair of nested loops can be converted 

into a single loop, so that  the processors execute the body of the code together in lockstep, 

but using different values for the loop variables, effectively executing different steps of the 

iteration. A simple version of the  transformation is shown in figure 5.5. 

This transformation applies generally t o  nested loops, being of interest t o  us when one 

or both loops execute a data  dependent number of iterations. Some examples are sparse 

matrix computations, and matching a set of structured models by having the outer loop 

be over the set of models, while the inner loop traverses the model. Another alternative, 

for graph or tree-structured models matched by some version of depth-first search, would 



Figure 5.4: Left panel shows graph of lower bound of ( S U M M A X ) / ( M A X S U M )  for gamma 
distribution, I?,. Here p~ = a, P = 16, and a = f i  varies. Right panel gives difference 
(mean - lower bound), where mean is the mean of SUMMAX/MAXSZrM over 30 trials. 
Different curves are for different values of M, the number of loop bodies per processor, 
M E {8,16,32,64,128,256), in order from bottom t o  top.. 
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while test-1 
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while test-2 
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init-2 
while test-1 

C 
<BODY> 
increment-2 
i f  ! test-2 

C 
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init-2 # 
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Figure 5.5: van Hanxleden's loop flattening transformation, from figure 11 of [vHK92]. 
The original code is on the left, and the flattened code is on the right. This is a simplified 
version of the transformation that  assumes test-1, t e s t 2 ,  and i n i t 2  have no side 
effects, and, for each outer loop iteration, the inner loop is executed a t  least once. The 
code on the right marked with "#", is the conditional block that .  in  SIMD execution will 
be traversed by all PEs, but executed only by some, while in SFMD execution will be 
traversed only if executed. 



be t o  have the outer loop iterate over possible root t o  leaf paths, and have the inner loop 

build and traverse the individual paths. 

Clearly, from the point of view of SIMD execution, the transform converts the varia- 

tion between inner loop counts into conditional execution of parts of the new loop body. 

For such transformed code, the Tsimd/Tsfmd is determined by the time spent in the con- 

ditional code, marked with a "#" in the figure. If Tcond is the number of instructions in 

the conditional code, increment-1 and i n i t 2 ,  Tcomm,n is the number of instructions in 

common, and pcond is the probability of executing the conditional code ( t e s t 2  fails), then 

In situations where the expected time spent executing <BODY> is the same for both 

SIMD and SFMD and also dominates the expected time for executing the conditional 

block, the transform should give results as in section 5.6.1. Indeed, experimental results 

from the original paper [vHK92], where the conditional code is a simple loop variable 

increment and initialize, and the body is the call t o  a comparatively large subroutine, 

show performance improvements in the 1.2 - 2 . 4 ~  range. 

On the other hand, as we saw in chapter 3 (as stylized fact F3), model matching and 

many other irregular computations require very simple and compact <BODY%. Examples 

of this were bodies consisting of probability lookup and accumulate, mapped over a graph 

traversal (HMMs and relaxation networks), nearest neighbor calculations using a k-d tree 

(back-projection and verification), and attribute comparisons mapped over a list or tree 

of features or over an object model (interpretation tree search, grouping). Also, tree and 

graph searches, where the <BODY> performs the per-node computation, must have <BODY>'s 

that  include data-conditional computation, based on the type of node, for example, interior 

or leaf node. Here one expects SFMD t o  significantly outperform SIMD as the time saved 

by ignoring the conditional code is significant. 

To make these ideas about the effectiveness of the transformation in more irregular 



situations more concrete, I look in detail a t  two versions of sparse matris - vector multipli- 

cation. Figure 5.6 shows code for multiplication of a dense vector by a sparse matrix, both 

already stored in the individual PEs local memory. Parallelism is obtained by partition- 

ing the matrix rows among the PEs and computing row-vector products simultaneously. 

Analysis of the corresponding assembly language code produced by an optimizing com- 

piler for the flattened version gives TcOmmon = 12 and Tcond = 5, where the value given for 

the time is the number of assembly instructions comprising the appropriate part of the 

code. The conditional part of the code is entered once per row, so pCond is the number 

of rows per P E  divided by the number of nonzero elements per PE;  under assumptions 

of uniform distribution of elements and rows among the PEs, pcond is thus one over the 

average number of nonzero elements per row, (row length), and 

The expected speedup is about 1.5 for all but the sparsest matrices. 

Figure 5.7 shows code for multiplication of a sparse vector by a sparse matrix, where 

the matrix rows are stored in the individual PEs local memory, and the vector elements 

are being broadcast one by one. Here, a more elaborate version of the flattening trans- 

formation is required, and there are two separate pcond7s, for the while(mi > vi) and 

i f  (mi == vi) conditions. The first of this succeeds exactly once per row, giving a pCond 

of l/(row length), while the second succeeds whenever a row contains a nonzero element 

a t  the desired column. Under uniform distribution assumptions, this gives a pcond of 

l/(number of columns). Counting assembly language instructions a s  before gives 

Tsimd -- - 28 
7 8 

Tsfmd l3 + (row length) + (number of columns) 

So the expected speedup is about 2 for all but the smallest, sparsest matrices. So, together 

with the results shown in figure 5.2, we see that  either with or without loop flattening, 

SFMD gives about a 1.5 - 2 -fold speedup. 

As an example of the potential utility of SFMD functioliality for model matching, I 

consider interpretation tree search (ITS), a technique used in vision, described in chapter 



void unflattenedDenseV0 
I 
int r, i, sum, imax, nr; 

/* init-1 */ 
nr = NumberOfRows; 
r=O ; 

/* test-1 */ 
while(r < nr) 

I 
/* init-2 */ 
i = RowStart Cr] ; 
imax = RowStart Cr+ll; 
sum = 0; 

/* test-2 */ 
while(i<imax) 

I 
/* <BODY> */ 
sum += MatrixValue [i] 

* Vector [Column [ill ; 
/* increment-2 */ 
i++ ; 

3 
/* increment-1 */ 
RowSum[r] = sum; 
r++ ; 

3 

void flattenedDenseV() 
I 
int r, sum, i, imax, ms; 

nr = NumberOfRows; 
r = 0; 
imax = RowStart [r+ll; 
sum = 0; 
i = 0; 

while(r < nr) 

sum += MatrixValue Cil 
* Vector [Column Cil I ; 

i++ ; 

if (i >= imax) 
< 
RowSumCr] = sum; 
sum = 0; 

Figure 5.6: Loop flattening transformation applied to multiplication of a dense vector 
by a sparse matrix. Assembly listings for unf 1attenedDenseV have 29 instructions com- 
prising the nested while Ioops, not including one-time setup and cleanup code, while 
flattenedDenseV has 17 (including loop overhead). For the latter, TcOmmon = 12 and 

Tcond = 5 -  



void unflattenedSparseV(int vi, int vv) 
C 
int r, ri, mi, nr; 
nr = NumberOfRows; 
r = 0; 
while(r < nr) 
.I 
ri = ~owIndex [rl ; 
mi = MatrixIndex hi]; 
#hile(mi <= vi 8% ri < RIdxCr+ll) 

C 
if (mi == vi) 

 ows sum [ri] += Matrixvalue Cril * vv ; 
ri++; 
mi = MatrixIndex Cril ; 

void flattenedSparseVOpt(int vi, int vv) 
C 
int r, ri, mi, nr; 
nr = NumberOfRows; 
r = 0; 
mi = Matrix~ndex [ri = RowIndex [r] 1 ; 
while(r < nr) 

C 
while(mi > vi) 

C 
r++ ; 
if (r == nr) 
return ; 

mi = MatrixIndexCri = ~ow~ndexCr]] ; 
3 

if (mi == vi) 
RowSumCr] += Matrixvalue [ril * vv; 

mi = UatrixIndex [++ri] ; 

> 

Figure 5.7: Loop flattening transformation applied t o  multiplication of an element of a 
sparse vector by appropriate elements of a sparse matrix. The flattened version requires 
a more complicated version of the transformation, and has been slightly hand optimized. 
Assembly listings for unflattenedsparsev have 30 instructions comprising the nested 
while loops, not including one-time setup and cleanup code, while f 1attenedSparseVOpt 
has 28 (including loop overhead). For the latter, TcOmmon = 13 and Tcond = 15. 



3. To review, ITS is a technique for establishing a correspondence between image and 

model features. It consists essentially of depth-first search (DFS'), where a node on level d 

of the tree corresponds t o  a pairing of image features with the first d model features. The 

search is limited by a variety of unary and binary geometric constraints on the allowed 

pairings. Search complexity implies small models are matched t o  small numbers of data 

features, so distributing models and data  t o  local memories is practical. 

To examine the effect of SFMD on this form of model matching, I performed some 

simple simulations. To match a model with D features t o  a set of B da ta  points, we attempt 

t o  match the first model feature with each da ta  point in order, with some probability of 

success, pmatch. If we succeed, we attempt t o  match the second model feature with one of 

the remaining B - 1 da ta  points, and so on. If we match all D features, we then check for 

global consistency of the correspondence, with some probability of success, pcheck. This 

procedure is equivalent t o  DFS in a tree with branching factor B - d a t  level d of the 

tree, 1 5 d 5 D ,  where the probability of expanding any given node is pmatCh, and the 

probability of stopping the  search a t  any given leaf is 1 - Pcheck. 

By writing the search as an iteration managing an explicit stack, one obtains a loop 

with some common code and some code conditional on whether the current node has 

any child nodes left t o  be expanded. The bulk of the "no-child" code deals with leaf 

nodes, consisting of testing for global consistency and recording solutions. The relative 

performance of SIMD and SFMD thus depends mainly on the probability, ple,j, that  the 

node being traversed is a leaf. If, for each iteration, the time for the leaf code is taken t o  

be 1, that  for common code is t ,  and that  for the non-leaf code is k, then 

Panel 1 of figure 5.8 shows values of p from a variety of simulations of ITS, with 

B, D E {8,10,12,14,16),pmatch E {0.1,0.2,1/B}, pcheck E {0,1). Grimson [GriSO] reports 

searches on realistic data  of around 5000-10000 expansions; this corresponds t o  pleaf = 

'See [GriSO] for a complete description of ITS and for the complexity results alluded to here. 



Figure 5.8: Interpretation Tree Search speedup. Panel 1 shows the probability, ple,f, of 
traversing a leaf. Panel 2 plots equation 5.12 for realistic values of psaf and k,  with t = 0.1. 
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0.2 - 0.4. Panel 2 of figure 5.8 shows how equation 5.12 behaves for preaf in this regime 

and for realistic values of k. We see speedups in the range 2-4 unless the leaf code is very 

small. In fact, the code for global consistency checking is typically larger than that  for 

local consistency, corresponding t o  log2 k < 0. 

I..D' 

5.6.3 Summary 

tor., 0ub.Z ot  4. L..rn.d 

We see that  SFMD can provide substantial, about 1.5 t o  2 -fold, performance improve- 

ments over SIMD for model-matching type tasks. For large nested data-dependent loops, 

this can be given by the reduction from sum-of-max to  max-of-sum. When the inter-loop 

variability is suppressed, as by the van Hanxleden flattening transformation, intra-loop 

body conditionality appears in order t o  handle end-of-loop (or leaf node) situations. In this 

case, for small loop bodies, or, more generally, for loop bodies where the code for handling 

the end-of-loop case is substantial compared t o  normal case, SFMD gives a performance 

improvement over SIMD by bypassing the conditional code. As we saw in chapter 3, 

this latter case, of pieces of code which are both executed conditionally on the da ta  and 

relatively large compared t o  the non-conditional part of the loop body, is typical of both 

model-matching and IL\' tasks. 



5.7 The Price of "No Communications' 

SFMD extends the SIMD model by allowing independent conditional execution. Con- 

versely, it restricts the usual SPMD model by allowing communication t o  occur only after 

a barrier synchronization. It makes the latter restriction in order t o  preserve SIMD se- 

mantics and ease of programming and debugging. 

SFMD is a natural approach t o  model-matching tasks, which tend t o  have restricted 

and predictable communication patterns, suitable for this "bulk-synchronous" execution 

style. Exhaustive model matching, for example word-spotting or vector quantization, only 

requires communication after each model is matched, to  determine the maximum or min- 

imum. Branch-and-bound scenarios, such as matching of deformable models, only require 

communication after each evaluation, t o  propagate the new bound. Both of these can be 

done with a simple broadcast or "global max7' communication, and do not need sophisti- 

cated networks or message-passing systems. However, many "tiled7' ILV algorithms have a 

permutation communication pattern, where each PE simultaneously talks t o  its neighbor 

in a particular direction, known in advance as part of the algorithm. Unlike SIMD, in 

the SFMD model the times of these communications may be unpredictable. Other ILV 

algorithms, in particular feature grouping, involve even more random communication pat- 

terns: many-to-many a t  unpredictable times with unpredictable targets for the messages 

from a given source. 

Even with unpredictable communication, there is a performance tradeoff between do- 

ing pairwise synchronization a t  arbitrary points and delaying synchronization t o  the end 

of a block and then communicating "in bulk" . There are a number of effects involved 

in this tradeoff. With communication a t  predictable times, and with predictable network 

latencies, the compiler can sometimes reduce the number of synchronizations that  would 

be needed by a pure MIMD implementation [DZ092, BCJSO]. With predictable commu- 

nications the compiler may also be able t o  move code so as t o  overlap more computation 

with communication. The main effect, however, is that  synchronization a t  unpredictable 



points has an additional cost, for either polling or handling interrupts. The interrupt. 

handling involves some mechanism to  detect interrupts, branching t o  code for handling 

the interrupt, as well as saving and restoring the state of the computation. In our realm 

of small, tightly coded loops, and limited per-PE code memory, this is a lot of overhead, 

and it makes more sense t o  use a polling scheme incorporated into the code. The nest 

section describes a simple model, analyzed and simulated t o  compare the tradeoff between 

bulk synchronization and synchronization a t  random points done with polling. 

5.7.1 Communication Simulation 

I examine the effect of limiting communication t o  be "bulk-synchronous" by use of the 

following model. Suppose a number of processors are iteratively executing the same block 

of code. At some point in each block, the processor executing the block conditionally sends 

a message t o  some processor chosen at random according t o  some probability distribution. 

The chosen receiver may be the same as the sender, in which case a message is not sent, but 

the computation requested by the message is still performed. This model is reasonable for 

model-matching and ILV-type tasks where the data  (image) needed t o  evaluate a model 

is distributed among the  processors in a way not known in advance, for example, feature 

grouping. Refer t o  this as the mndom case. 

Another reasonable case is where the communication pattern is such that  no processor 

receives more than one message originating from a given iteration, including itself. This 

pattern occurs, for example, when processors partition two-dimensional da ta  and, in a 

given block, all request da ta  from a neighboring processor in the same direction. Although 

all processors need not participate, refer t o  this as the permutation case. 

In both these cases, the requesting processor may proceed after submitting the message, 

the asynchronous case, or it may block, waiting for the reply, the synchronous case. I 

will only look a t  the asynchronous case, as it allows more overlap of computation with 

communication, and is the less favorable t o  SFMD. Processors may send messages a t  most 

once per block, a t  a time given by a random variable. In the SPMD case, things proceed 



as follows (see left panel of figure 5.9): 

t o  send a message, the message is put on the processor's send queue after which an 

autonomous asynchronous network routes the message to  another processor's receiue 

queue 

processors poll with some frequency, looking for messages on their receive queue 

a as soon a message is received, current processing is interrupted and a reply is com- 

puted and sent 

no polling or interruption occurs while the reply is being calculated 

I will assume for simplicity that  the processor sending a message can perform other useful 

work until either the reply is received or the end of the current block is reached. Of 

course, it continues polling in any case, and can be interrupted a t  any time t o  reply to  

a message. This model is appropriate, for example, when, as for two-dimensionally tiled 

data, the message and receiver are known statically, and a message can be sent in advance, 

requesting the da ta  that  will be needed for a future iteration. 

In the SFMD case, things proceed similarly (right panel of figure 5.9), except that  

barrier synchronizations must be introduced before any messages are read. In particular, 

the SFMD model will also send the message before the barrier synchronization; the "no 

communication" restriction only requires that  all processors must wait a t  the barrier 

before receiving and acting on the message. If multiple messages are sent t o  the same 

processor in a given block, all replies may be sent before synchronizing a t  the barrier. 

Assume that ,  immediately after the barrier, the processors check whether any messages 

have been posted, and if not, the computation proceeds without a reply phase. This 

can be determined quickly using the barrier synchronization hardware. If the target of 

a message is the same processor that  sent it ,  the reply is computed after the barrier, in 

the reply phase. This would be the probable coding, especially for the permutation case, 

unless messages were very infrequent, as the reply phase usually occurs. 
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Figure 5.9: Message-passing model for SPMD (left) and SFMD (right) 

As mentioned above, messages are dequeued, routed, and enqueued by a DMA-like 

"autonomous asynchronous network". Discussion of this network is outside the scope of 

the thesis. I treat the network as a black box, assuming only that there are no network 

congestion problems, and that messages of the same length take the same time to deliver. 

Also, the network must participate in the barrier, signaling that all outstanding messages 

have been delivered, to ensure correct semantics. 

Using the notation in table 5.2, suppressing the b and p parameters for clarity, the 

time for a single block on a single processor under the SPMD model (left panel of figure 



Table 5.2: Definitions for "no-communication" simulation 

constants 
P number of processors 
N number of iterations 
Psnd probability of sending a message in a given block 
dsnd time to construct a message and put in send queue 
~ K V  time to remove message from receive queue and 

I interpret it I 
1 d;nt time spent savinglrestoring registers and so on, I 

beforelafter computing reply 
dmsg time to deliver a message (assumed constant) 
dbsynch time to perform barrier synchronization 
dbsnd time for send-transfer-receive when doing bulk- 

I synchronous transfer I 
dbsnd = dsnd + max(dint, dnmsg) + drcv 1 

variables 
Sp,(b,p) time in block b executed by processor p before 1 

I point where message may be sent I 
SpOst(b,p) time in block b executed by processor p after point 

where message may be sent 
Srep(b, r,p) time to compute the reply to the r'th message re- 

ceived by processor p that was sent during block 
b 

6s (b, P) 0 or 1 according to whether processor p sent a 
message during iteration b. 

6, (b, P) 0 or 1 according to whether processor p received a 
I message during iteration b. I 

~5,,~(b,p) 0 or 1 according to whether processor p sent a 
message during iteration b whose target was itself 

6; (b)  0 or 1 according to whether any processor received 
P a message during iteration b, 6; = (1 - np,l(l - 

6,)) 
targ(b, p) destination (if any) of message sent by processor 

p during block b 
number of messages received by processor p during 
iteration b 

I AP delay between when a message is received by pro- I . . 

cessor p and when it is processed, due to process- 
ing of previously received messages 



5.9) can be written 

bspmd(b7 P) + S p m  + (1 - 6s) (Spost + C ( d m  + dint + Smp(r )  + dsnd + dint)) 
rER 

+Js max[(Spost + C ( d m  + dint + SmP(r) + dsnd + dint)), 
rER 

(1 - 6selj)(dmsg + At,, + srep(targ) + dsnd + dmsg + dreu)]. (5.13) 

where the summation is over the set R(p) of all message replies performed by the processor 

in the block. The time for a single block under the SFMD model is 

bsfmd(b) max[Sp, + dsnd + max(Spost + dint, bserfdnmsg)] + dbsynch 
P 

The maxk following bf is over the time t o  compute the first k replies and then deliver 

the k'th and following replies sequentially. Note that  assuming the network delivers the 

messages sequentially is a worst case scenario for SFMD. 

5.7.2 Analysis 

I give a rough analysis of the permutation case. The random case has two natural execution 

models, one where each processor replies to  all the messages it has received before it 

synchronizes with the other processors, and one where each processor replies only to  a 

single message (or some fixed number of messages) before synchronizing. Under the first 

model, the random case has the same qualitative behavior as the permutation case, with 

the possible multiple replies in the random case acting like a larger, more variable, reply 

in the permutation case. I have not yet addressed the second case. For either case, strong 

assumptions are needed about the network's performance delivering multiple messages for 

reasonable modeling. 

In general, the constants dsnd, d,,, and dint will be small, and I ignore them for purposes 

of analysis. Assume that  the network has sufficient bandwidth that  dm,, = d,,,,. The 



overhead of polling may be quite small, especially with hardware assistance from the 

autonomous network (it could be just checking a register periodically). However, even 

a single-cycle poll, if done a t  every instruction, doubles the time. So polling would be 

done at some slower frequency, which then has the effect of delaying when a message is 

processed. I will ignore polling in the analysis (which penalizes the SFMD case) and give 

some simulation results. 

Take all S,,, SpOst, and S,, for all processors to be mutually independent. This 

is reasonable for the scenario where execution of the code after the message depends 

on the message result, and the time to compute a reply, e.g. by indexing into a data 

structure, is independent of the content of the reply. Let ppm = (Spre), ppost = (Spost), and 

pblk = (Spre + Spost) = pPm + pPost. Assume that message destinations are equiprobable 

and independent, so (5,) = (6,) = q, and (6,ev) = q/P. 

Even for the permutation case, the delay A,,, for SPMD may be nonzero. The reason 

is that the threads on the separate processors rapidly become desynchronized [AGWFH94, 

WHAG+92], so that when the message is received, the target processor may be processing a 

message from another processor sent during a previous block. Processing the new message 

is delayed until all previously received messages have been processed. To estimate (A,,,), 

note that the probability that a message is being processed at a given point is the average 

time spent processing messages, qPrep'y, divided by the average total time per block, 

pblk + qpmply. The expected time to finish processing the message is pWp1y/2. We get 

a lower bound by ignoring the case where there is one or more previous messages to  be 

processed after the current one and before the just-received one: 

Taking expectations over max operators is difficult; instead I examine the equations in 

regimes where one term sufficiently dominates the other that one can substitute its value 

for the appropriate max. Denote this dominates relation by ">". 
Under these assumptions, for the SPMD case, I get 



where Cedenotes the condition 

SpoSt + drSmp K ( 1  - Ssev)(Smp(targ) + At,,, + 2dmsg) 

and CB denotes the reverse. The total time for all N iterations is max, CY b s p m d ,  and, 

as in section 5.6.1, the central limit theorem implies 

for large N ,  where Z ( p )  is distributed as the maximum of P standard normal variates. 

For the SFMD case, and the permutation communication pattern, we have 

where p = p p ( q )  & (6;)  = (1 - ( 1  - q ) P ) ,  DB denotes the condition 

and Dg its reverse. 
spmd spmd 

We have ( tsfmd) = N ( b S j m d ) ,  so the speedup is = j+; asymptotically in N 

As CBimplies D<, there are three regimes. In regime R1, defined by CB, the time 

t o  complete the block dominates the times t o  compute and send the reply. In this case, 

for large N ,  
spmd spmd 

( t  ) , ( b  ) + q P m ~ l ~  
- ,-- 

=ply ' 
( t s f m d )  ( b S j m 9  B ~ F )  + P P ( P )  (dmsg + /J ) 

In regime R2, defined by C<and Da, the time to  compute the reply dominates, as 

might be the case for small computations requires small pieces of information that  require 



extensive indexing to  find. In this regime, for large N, 

Regime R3, is defined by large message times, DB,  implying C<. This might correspond 

t o  the situation where large latency inter-chip messages are sent. One has 

2P-1 reply + 2d reply 

(tsprnd) pblk + B ( ~ P  msg - pPost) - q 2 p m ~ l ~ ( l  - ~.-&-) 2P p +.#P Y - - 
(t "md) reply) + dmsg + P P ( ~ )  (dmsg + ~ ( p )  

Lower bounds for the speedup in these regimes, asymptotic in the number of itera- 

tions, N, are given by the ratio (bspmd)/(bsfmd) of (5.15) and (5.17) in the three regimes. 

Comparison of these bounds with simulations are given in figure 5.11. 

Both analysis and simulation of the lower bounds show that ,  as a function of q, the 

qualitative form of the speedup has a single minimum a t  about 1/P and reaches a max- 

imum a t  either q = 0 or q near 1. This is intuitive, as SFMD is most penalized for 

bulk-synchronous communication when the expected number of messages per block is 1 

: P processors each with a 1/P probability of sending a message in a given block. Con- 

versely, SFMD is least penalized when there is no communication or when all processors 

must compute a reply. 

I wish t o  examine these equations as functions of the message send probability, q. Let 

4(p) = (tspmd)/(tSjmd). Using (maxMX) = ~ . J x ~ ( x ) ~ - l d ~ ( x )  < M . S z d P ( s )  = M ( X )  

for any random variable X with cdf P ( x ) ,  it is routine t o  show that  4(q) behaves as 

illustrated in figure 5.10. In particular, if we construct &(q) by replacing the pp(q) term 

in the denominator by Pep ,  and construct #l(q) by replacing the same term by oneg, then 

4 is bounded below by 4o and for all q E [0, I], and is well approximated by them near 

0 and 1, respectively. In particular, for the values of P of interest, P 2 8, and for q > 0.5, 

pp(q) is essentially 1. Intuitively, the minimum of 4(q) should be near q = 1/P, as this 

corresponds t o  an expected one message per block, which will incur the maximum penalty 

'This comes from expansion in a Taylor series about q = 0 and q = 1. respectively. 



Figure 5.10: d ( p )  in two regimes: the left panel illustrates regime R 1 ,  while the right 
panel illustrates regime R 2 .  Regime R3 is like R 2  except that  the local maximum near 
1 is not reached for p < 1. 

Figure 5.11: Simulation results compared t o  analytic lower bounds (dotted lines) in three 
regimes. The speedup ratio (tspmd)/(tsfmd) is plotted against the message send proba- 
bility, q. In the top panel, time in the sending block dominates (pPre = 100,pPoSt = 
400, ~ " P ' Y  = 30, dmSg = lo ) ,  in the middle panel, time to  compute the reply dominates 

Pre - 100, pPost = 301 preply = 400, dmSg = lo) ,  and in the bottom panel, message transfer (P - 
time dominates (ppre = 100, ppost = 30, preply = 30, dmSg = 200). In all cases, P = 16 and 
N = 100. Sp, was a constant 100, to  simulate a fixed block of pre-message code. Spost 
and S,, were uniformly distributed on either [lo, 501 or [200,600]. 



for SFhlD operation a t  the least penalty to SPMD operation. In fact, #o(l /P)  = (1/P) 

is a lower bound for +(q)  for q E [0, 11. We see that "small" q must be very close to zero if 

SFMD operation is to be not too unfavorable compared to SPMD; essentially, this is the 

"no communication" case. On the other hand, for "large" q E [1/2,1] the issue is not so 

clear. Suppose, henceforth, that q > 112. For each of the three regimes, ignoring small 

terms as defined by the dominance relation for that regime, 4(1/2) = min,E[,/2,,~4(q), 

and the condition 4(1/2) > 112 corresponds to 

blk > 1 blk 
-2P(p) in R1 

p b l k + z p r e ~ l y  > ~ ( p ~ ~ ) + p ~ ~ )  in R2 (5.18) 

P ~ m  + 3 q~ reply > - 1 2 7 + P in R3 

The distribution-free upper bound [DavTO] 

where p x  and ax are the mean and standard deviation is strict, in that there is a distri- 

bution for which the inequality is an equality. It is, however, a substantial overestimate 

for many distributions. Let u(P)  G ( P  - I ) / J ~  = m. If we substitute the upper 

bound in the conditions 5.18 we get stronger (perhaps overly strong) conditions 

For P 5 128, u(P)  5 8, and the above conditions hold in case 

So if the message probability is not too low (q 2 112) and the variances of the pre, post and 

post times are not too great compared to their means, then 4(q) > 112, i .e. ,  the slowdown 

of SFMD computation compared to SPMD computation is less than twofold. With a less 

than two-fold slowdown, a 128 PE  SFMD chip would have greater raw performance a 16 



PE SPMD chip whose (more complex) processors were each 4 times faster, even if the 16 

P E  chip were not memory bandwidth limited. In particular, much ILV computation falls 

into the "high message send probability, permutation communication pattern" regime. 

Of course, this is a much simplified model, and very rough bounds, but I believe it 

gives us some intuition. First, it suggests the importance of reducing variance in search 

and message passing. In this regard, note that  I have not yet looked a t  "averaging out" 

some of the variance by combining loop bodies so that  multiple blocks (S,, and SpOst) are 

done on a given PE before the barrier synchronization t o  begin the reply phase, and that  

multiple replies (S,,) are computed on a given PE before the synchronization t o  end the 

reply phase. Second, it allows us t o  conclude that  there are reasonable regimes involving 

substantial communication where SFMD architectures may be competitive with SPMD 

ones. Even if SFMD only gives the same performance as SPMD in some task, this extends 

the range of tasks an SFMD chip can usefully perform, making the chip more economically 

viable. From Amdahl's law, simply being (approximately) equivalent on some parts of the 

computation is important for allowing better performance on other parts of the task to  

translate into better overall performance on the entire task. 

5.8 Miscellaneous Design Issues 

One point about SFMD execution, compared t o  SIMD has not yet been made. There 

are really two sources of parallelism in a typical SIMD implementation. In addition t o  

parallelism from SIMD execution. there is parallelism between the host and the SIMD 

array. A common, and important, use overlaps testing and incrementing the outer loop 

index variable on the sequencer while the SIMD array computes the inner loop [ANSC94]. 

A superscalar processor normally overlaps these computations as they are independent 

instruction sequences. In an SFMD machine, many loops may still be data-independent, 

and executed in SIMD mode, and one expects that  it would be worth including shared 

functionality on each chip for loop variable computation on the sequencer. In SFMD, when 

loops are handled on a per-PE basis using a simple, non-superscalar PE, overlapping is 



not possible. If the loop count is data-dependent, but known before the loop is entered, a 

DSP "zero overhead loop" mechanism would suffice, as it would for loops that  are esited 

by a "break" construct, but have a maximum iteration count. A reasonable example of the 

latter would be a relaxation loop, but loops that  search tree structures can be constructed 

this way by giving an unreachably large iteration count. A final possibility is t o  include a 

small amount of hardware for this specific form of superscalar execution. The hardware 

requirements for this, especially if the overlapping is encoded in the instructions through 

a Very Long Instruction Word (VLIW) approach, may be minimal. 

5.9 Related Work 

5.9.1 Instruction Caching 

An SFMD architecture includes per-PE instruction memories for small, "inner loop" bod- 

ies of code. There are a couple of related ideas on using such instruction caches. 

Rockoff [Roc931 demonstrates that  for an SIMD system, distributing instructions from 

off-chip incurs too large a performance penalty due t o  lower off-chip speeds and bandwidth, 

and (for post-1993 VLSI processes) is generally inferior t o  the use of an on-chip instruction 

cache. 

Manning and Meyers [MM93] describe simulations of an instruction caching idea whose 

goal is massive asynchronous SPMD processing without the cost of separate instruction 

memories. Unlike SFMD, there is no notion of "virtual synchrony". The idea is t o  replace 

separate instruction memories by adding smaller instruction cache (I-cache) t o  each P E  

of a massively parallel O(1000) system. A data-parallel program is divided into "locales", 

and I-cache requests locales as necessary on a token-ring bus. All I-caches snoop the bus 

for other caches requesting the same locale. If the desired locale is seen on the bus, it 

need not be requested. They use a Markov model of program movement between locales 

derived from real programs in their analysis and presents results on PE utilization that  are 

favorable for massive systems where the number of PEs is much larger than the number 



of locales. For smaller number of PEs, this is unlikely to hold as simultaneous request for 

a locale unlikely [AGWFH94, WHAGf 921. Lundstrom [Lun87] presents much the same 

idea as part of the design for the never-completed Burroughs "Flow Model Processor". 

5.9.2 Other SIMD-MIMD hybrids 

There is a plethora of ideas for hybrid architectures somewhere between SIMD and MIMD. 

Contemporary processors aimed a t  multimedia applications are beginning to  include 

some SIMD-like functionality (see, for example [Lee95]). The idea is to partition the 32- 

or 64-bit ALU so that it can operate on, say, 1 64 bit, or 2 32-bit, or 4 16-bit, or 8 8- 

bit quantities. What is required is to disable carries over the boundaries of the smaller 

data. Operations on data smaller than 32 bits use fixed point arithmetic. Partitioning 

gives a very restricted form of SIMD, without either local addressing or local conditional 

execution, and provides an economical extension of uniprocessor designs to accommodate 

a moderate amount of very regular parallel execution. 

There are a number of vector processor hybrids, an example of which is [WAK+96], 

targeted at very regular sensory processing applications such a s  neural network processing 

of speech. These add fixed point vector processing hardware, suitable for very regular kinds 

of processing such as non-sparse matrix multiplication, to a standard microprocessor. 

Several researchers have looked at emulating MIMD execution on massively paral- 

lel SIMD machines, to increase the range of problems they can address [AGWFH94, 

WHAG+92, SW951. The emulation overhead generally negates any advantage from the 

massive parallelism. 

Conversely, and more successfully, SIMD execution can be emulated on an array of 

MIMD processors by coupling SPMD execution with barrier synchronization. The best 

known example is the CM-5 [Cor92], although the Cray T3D also has hardware support 

for fast barriers. The barrier synchronization in the CM-5 is "soft", in the sense that a PE 

indicates a desire to participate in a barrier, and may then perform other work until notified 

asynchronously that the other PEs participating in the barrier are ready. The barrier thus 



acts t o  enforce global ordering, but the penalties for asynchronous notification (interrupts 

or polling) are still incurred. This is reasonable for a system with potentially thousands of 

processors. like the CM-5, where waiting for all PEs to  reach the barrier may take a long 

time, and where individual PEs may execute multiple processes, and switch between them 

while waiting. It differs from the SFMD idea, targeted a t  comparatively small numbers 

of simple processors each running a single thread, where barriers are "hard". With the 

hard barriers of SFMD, no asynchronous overhead is incurred in communication while 

operating in SIMD mode after the  barrier. 

A number of experimental processors have both SIMD and MIMDISPMD modes, 

with the capability of quickly switching between them. This necessarily involves barrier 

synchronization of some sort a t  the transition from MIMD t o  SIMD. 

PASM [NSD93] is a research machine designed to  allow dynamic repartitioning of the 

PEs into number of independently operating sub-machines. Each of these sub-machines is 

a mixed SIMD/MIMD hybrid, allowing fast switching between SIMD and MIMD modes. 

Much PASM research has been targeted a t  the cost/performance of switching between 

the two modes [BKS91, WSA+94] and has led to  an understanding of the efficiency of 

the barrier MIMD mode of computations [DZ092, BCJSO]. Triton [PWTH93] is a similar 

SIMDIMIMD hybrid. EXECUBE [Kog94] is a similar hybrid, targeted a t  very massive 

systems, and designed for maximum performance per transistor, rather than per chip. As 

the goals of these machines is generality, no restrictions such as disallowing communication 

during SPMD mode are enforced. 

The OPSILA computer [DBAG88, AB861 is a vector processor with SPMD extensions. 

The basic vector processing model has neither local conditional execution nor local ad- 

dressing. These are enabled by the addition of small local instruction memories and an 

"SPMD mode". SPMD mode is used for calculations requiring local addressing, such as 

histogram computation, or local conditional execution, such as the body of a list traversal 

procedure. The available literature shows no use of loops within SPMD mode. Since OP- 

SILA is fundamentally a vector machine. interprocessor communication is only via bulk 



vector operations such as permutations or scatter-gathers. As such, IPC within SPMD 

mode is disallowed. The programming language for OPSILA distinguishes SIMD and 

SPMD execution and variables used by SIMD and SPMD modes. OPSILA is thus essen- 

tially an SFMD architecture, although not emphasizing that programming semantics are 

SIMD and not concerning itself with VLSI and chip microarchitecture issues. 

5.9.3 Vision-specific Designs 

Jonker [Jon93, JKK951 h a s  proposed a system targeted at low and intermediate level 

vision using hardware-supported "bucket queues" as  the representation for ILV data, cor- 

responding to use of arrays in low-level vision processing. The architecture is designed 

for pipelined processing, and is related to SFMD in that separate processors operate 

autonomously, controlled by individual state-machines downloaded into a reconfigurable 

logic array. 

Mention must be made of the Image Understanding Architecture (IUA), an ongo- 

ing research project targeted at low through high level vision processing [Wee93, Wee94, 

WLHS89]. The IUA has separate hardware for the three stages of low, intermediate, and 

high level vision. The low level hardware is SIMD, while the intermediate level is SPMD 

running on a collection of commercial DSPs with a high bandwidth interconnect. There is 

no special relationship, other than connectivity, between the SIMD and SPMD hardware 

or operation, so there is no notion of SFMD-like function. Weems provides a thorough 

discussion of the processing needs of the various levels in [Weegl]. 

5.10 Future Work 

Of course, experience with SFMD on real machines, for real applications is what is needed. 

Prior to building an SFMD machine, though, there are a number of useful analyses to do. 

It would be useful to examine the FIFO-based implementation of SFMD further, both 

analytically and through simulation. Preliminary simulations suggest the overhead of 

using a FIFO due to stalls on a "FIFO full" condition is not large. For understanding 



the coding implications of a given size FIFO, one would like some idea of an -equivalent 

buffer size": for a given IM size in the non-FIFO implementation of SFMD, what size 

FIFO gives a performance degradation of a t  most, say 5%. This, of course, will depend 

on the distribution of execution times for the code. Elucidating this dependence would be 

of interest, and having an idea of equivalent buffer size would be useful in designing code 

for a specific application. 

There are a number of reasons why i t  might be useful for a single SFMD P E  t o  emulate 

multiple virtual PEs. A single P E  switching between different virtual PEs might better 

tolerate memory latency, using multi-banked sense-ampcaches with different banks for 

the different virtual PEs. In my comparison with SPMD execution, each loop iteration 

caused a synchronization for replying to, and then receiving, messages. This breaks the 

loop body into three phases, "pre-reply", "reply" and "receive", separated by the two 

barrier synchronizations. Emulating multiple virtual PEs would provide a natural mech- 

anism for executing pre-reply phases for multiple loop iterations, then a single barrier 

synchronization, then the reply phases for the multiple loop iterations, a single barrier, 

and then multiple receives. Executing multiple loop operations in a single phase would 

have the effect of reducing the variance in the times of the phases, and so improving the 

performance of SFMD relative t o  SPMD. 

For the non-FIFO version of SFMD, one can pipeline results between PEs executing 

different functions. This would again potentially increase the range of applicability of an 

SFMD chip, but i t  is unclear how t o  model this in the programming language, or whether 

any special hardware support is needed. 

5.11 Summary 

In this chapter I introduced and analyzed the SFMD class of computer architectures. 

SFMD extends SIMD by allowing data-dependent control flow for the individual PEs. 

This extension t o  data-dependent execution is increasingly important as conventional ar- 

chitectures are including low-parallelism SIMD vector processing in their design, targeted 



at  multimedia processing (for example, [Leegj]). "Pure" SIMD and vector designs will 

thus have a harder time differentiating themselves from mainstream processors. As seen 

in chapter 3, support for algorithms having small computational kernels that  exhibit ir- 

regular, data-dependent control flow is essential in extending one of the traditional range 

of applications of SIMD designs, low level image processing, t o  intermediate level and con- 

textual processing. By extending SIMD designs into "neighboring" task domains, SFMD 

makes it more likely that  a given chip can do more of the processing necessary for a task 

without needing t o  have another chip do part of the work, possibly incurring the cost of 

da ta  transfer. 

SFMD adds little or no expense t o  SIMD in terms of programming complexity, tools, 

or environment. I t  is relatively inexpensive in terms of area, and fits well into designs that  

put all models or task parameters on-chip, avoiding memory bandwidth limitations, and 

reducin power dissipation, packaging, and system integration costs. An implementation 

of SFMD may require reducing the available on-chip memory by perhaps 5%, while over a 

wide range of tasks, SFMD provides a 1.5 t o  Zfold improvement in performance compared 

t o  SIMD. Compared t o  a multiprocessor running SPMD code, there is a performance 

degradation on code with infrequent messaging and on code having a large variance in its 

execution time. However, this performance degradation may be mitigated by an SPMD 

design having more processors, or possibly by virtualization techniques t o  reduce variance. 

Even in cases where an SFMD chip is only comparable in performance t o  an SPMD chip, 

it still extends the range of applicability of the SFMD chip and increases its economic 

viability. 



Chapter 6 

Conclusion 

6.1 What Has Been Done 

My interest in this work has been in the cost-effective parallel implementation of con- 

textual processing. The framework used was t o  view models as encapsulated pieces of 

contextual knowledge that  are applied "top down" in a model matching process. A large 

recursive model for ordered input provides context for the interpretation of sequences of its 

components through conditional probabilities of components given previously interpreted 

components. Smaller, individual object models, provide context for the interpretation 

of their components during the process of matching the model to  data. This context 

can be in the form of conditional probability statements, hard geometric constraints, or 

"soft" geometric constraints in the form of deformation energy. The "geometric context" 

can be used t o  direct search. The key point is that  use of context leads to  irregular, 

data-dependent control flow. 

For ordered input such as text and speech, we saw that  use of a large, recursive 

model based on n-gram probabilities could be useful for correcting the interpretations of 

sequences of components, and for dealing with novel words. The HOVS algorithm for 

making use of this probabilistic contextual information has a SIMD implementation that  

provides very fast processing for large vocabularies. However, for large vocabulary tasks 

where the goal is t o  identify the correct (non-novel) word from the vocabulary, I concluded 

that  effective use of parallel model matching was unlikely, due t o  the effectiveness of search 

mechanisms that  make use of the ordering. 



Conversely, for unordered input such as  vision, search seems hard t o  apply. In this 

case, identifying objects by matching structured models seems a reasonable approach. 

Doing so, however, leads t o  algorithms with pronounced data-dependent irregularity that  

is inefficient for SIMD-style computation. Examination of a variety of these algorithms, 

and related algorithms for feature grouping, led us to  a number of "stylized facts" that  

suggested certain architectural requirements for the support of these algorithms. The ar- 

chitecture should be a hybrid, with a fast uniprocessor coupled t o  a parallel array. The 

PEs of the parallel array should have large memories, and should communicate by an 

asynchronous autonomous network t o  allow overlapping computation with communica- 

tion. Finally, the PEs should support algorithms having small computational kernels that  

exhibit irregular, data-dependent control flow. 

Next I examined VLSI and microarchitectural trends to  quantify the tradeoffs in de- 

signing such a parallel array. The essential fact from current VLSI trends is that  the 

growth in the number of transistors tha t  can be put on a chip will substantially outpace 

growth in the off-chip bandwidth. I examined a highly parallelizable model-matching task 

being executed by such an on-chip parallel array. When off-chip bandwidth was assumed 

equal between a uniprocessor and a parallel array, off-chip bandwidth limitations limited 

parallel speedup t o  a modest amount unless the subtasks evaluated in parallel were very 

compute-intensive. This suggested that  a design using off-chip memory would have lim- 

ited parallelism and would be hard t o  differentiate from mainstream processors, making 

it difficult t o  justify its development. However, current interest in, and development of, 

so-called "embedded DRAM" processes suggest the feasibility of a design using on-chip 

rather than external memory. Such a design could have a high degree of parallelism, 

sidestepping limitations on parallel speedup due t o  off-chip bandwidth constraints. 

Examination of current microarchitectural trends delineated the techniques used in 

superscalar designs t o  improve performance and, in particular, t o  tolerate latency due t o  

off-chip memory bandwidth limitations. We saw that  these techniques were expensive in 

terms of area, power, and complexity, may have scaling problems due t o  quadratic growth 



and non-locality in required interconnect, and were unlikely to  function well for highly 

data-dependent execution with unpredictable branching and poor locality of reference. 

Designs based on these techniques, while tolerating memory latency t o  some degree, will 

also suffer from off-chip bandwidth limitations. This suggests that  a highly parallel design, 

with many simple processors per chip using on-chip memory, may have a niche. Such a 

design could be architected as a vector or SIMD processor. In such a design, sharing 

instruction processing hardware allows processors t o  be much simpler; simplicity being 

now much more important in terms of reduced area, due t o  the larger number of processors. 

However, conventional architectures that  share instruction processing hardware (SIMD or 

vector architectures) perform poorly on the computational kernels exhibiting irregular, 

data-dependent control flow that  we have seen are needed for model matching and feature 

grouping algorithms. 

I then introduced the SFMD architecture class, adapting SIMD execution and allow- 

ing the sharing of instruction hardware while significantly outperforming SIMD on small 

computational kernels with irregular data-dependent control flow. SFMD has the same 

semantics as SIMD, and can be implemented as an extension t o  an existing SIMD archi- 

tecture. SFMD has the low programming and debugging costs of SIMD, and requires little 

or no change in an existing SIMD programming environment. The architectural changes 

required have a moderate silicon cost, and a low design cost; in particular, as SFMD con- 

cerns itself solely with instruction delivery, little redesign of an existing simple SIMD P E  

is likely t o  be needed. 

While the raw performance of SFMD improves on SIMD by a factor of 1.5 to  2 on 

a variety of tasks with data-dependent control flow, it, in turn, is outperformed by an 

SPMD architecture on tasks with sparse communication and highly varying computation 

and communication times. I discuss below improving the relative performance by reducing 

variance in the communication and computation times. When communication times are 

not too sparse, the performance gap between SFMD and SPMD may be counteracted by 

the ability of SFMD t o  put more processors on a chip. In any case, SFMD outperforms 



SIMD on these kinds of tasks, and extends the range of an existing SIMD design into the 

realm of tasks with irregular control flow. 

6.2 What Remains To Be Done 

6.2.1 Practicalities 

Of course, I would like t o  examine the performance of SFMD on real examples, or a t  

least get better time distribution estimates for my analyses. Unfortunately, there is a 

problem. I have contacted a number of vision researchers, in order t o  obtain realistic 

uses of structural model matching. At present, there really are no realistic examples: 

structural models, while of great research interest, are too computationally expensive t o  

use in practice. There is a "chicken and egg" problem, between having an application 

for which to  develop a "context engine" and developing an application which requires a 

(not yet existent) context engine for useful performance. With increasing performance by 

mainstream processors, I can hope this issue becomes resolved. 

What is particularly needed is a "killer" application t o  drive development of the en- 

gine. MPEG-4, which may use a model-based representation t o  achieve extremely high 

compression rates is a possibility, as are other forms of video and multimedia processing. 

To justify development of a context engine chip, the application probably must require a 

low-cost, perhaps portable, solution. For example, interpretation of satellite images is an 

unlikely candidate, since this can probably be done cost-effectively by a large conventional 

parallel machine. (An system for interpreting satellite images might be able to  make use 

of a context engine if i t  existed, but is unlikely t o  drive its development, as conventional 

solutions are probably adequate.) 

6.2.2 The Asynchronous Autonomous Network 

I have been treating the asynchronous autonomous network as a black box. It is clear one 

needs t o  develop a model of the network that  can speak t o  issues of messaging latencies, 

throughput, silicon area and design cost. Generally, I am thinking in terms of each PE 



having a small DMA engine and some memory for storing messages. which may or may 

not be separate from the PE7s local memory. As a minimal implementation, one might 

have a bus, with one PE's DMA engine designated as "sender" in a round-robin schedule 

and all other PE's DMA engines snooping the bus t o  determine if the message is for that  

PE. This may be inadequate for a 128 P E  chip; on the other hand, a network capable 

of full permutation routing may not be needed unless it is felt necessary for the SIMD 

portion of the applications. 

The use of the network in SFMD mode has some special features. As messages are not 

"seen" by the P E  until the barrier is reached, regardless of when they were sent, the net- 

work message latency can perhaps be larger than otherwise. Sending messages in SFMD 

mode may also require less "instantaneous" bandwidth needed than normal SIMD execu- 

tion. If the code sending the messages contains loops, substantial conditional execution, 

or is substantially affected by memory and functional unit latencies, the different PEs 

will rapidly become desynchronized [AGWFH94] and so the injection of messages into the 

network will be spread out over time. (Note: this would argue against a fixed round-robin 

schedule in the bus-snooping implementation suggested above, and for a more dynamic 

arbitration scheme.) 

After the barrier, the set of received messages can be processed in SFMD mode; send- 

ing, receiving and processing multiple messages per barrier will improve performance by 

reducing variance. All messages must be sent (and received) before the barrier, and, sub- 

ject t o  that  constraint, the order and time of their receipt is irrelevant t o  their processing. 

Thus, when multiple messages are sent per barrier, there is no penalty (other than a larger 

message memory) in having each PE7s DMA engine store pending "send" messages until 

arbitration allows that  PE t o  send, and then inject all the pending messages into the 

network. This amortizes the arbitration cost over the set of messages sent a t  once, and 

should improve the effective bandwidth. 

Consequently, there are aspects of SFMD computation suggesting that ,  compared t o  

SIMD, a lower performance, less expensive network may be adequate, when combined 



with a technique of variance reduction by performing multiple (partial) loops per barrier 

(see below). Studying this in more detail would be of interest. 

6.2.3 Variance Reduction and Virtualization 

We saw in chapter 5 that  the culprit in the poor performance of SFMD compared t o  

SPMD is variance in execution and messaging times. Reducing variance by doing multiple 

(say, n) (partial) loop bodies barrier should improve performance by reducing variance 

by a factor of &. Consider a loop on a single PE, as in the comparison of SFMD with 

SPMD: 

for i=l:N 

pre(i) 

barrier 

reply(i1 

barrier 

endf or 

where previously received message are processed and new messages are sent during pre(i), 

and messages are replied t o  during reply(i) . SPMD outperforms SFMD due t o  sparseness 

of communication during pre and due t o  pre and reply execution times that  have large 

standard deviations compared t o  their means. Consider rewriting the above loop as 

for i=l:N 

pre(i> 

endf or 

barrier 

for i=l:N 

reply(i1 

endf or 

barrier 

where keeping track of which messages are for what loop iterations is taking place behind 

the scene. Of course, this transformation makes assumptions about non-dependence be- 

tween loop iterations. Rewriting loops in this way makes communication less sparse, and 



reduces the "mean / standard deviation" in execution times by a factor of 0 (assuming 

statistical independence in execution times). As we saw, rewriting loops this way may 

also provide benefits in allowing a simpler, less expensive interconnection network. 

One would like t o  relieve the programmer of the complexity of rewriting loops this way, 

either by compiler optimizations or by presenting a view of multiple virtual PEs (VPEs) for 

each hardware PE. Compiler optimizations for variance reduction perform transformations 

of the above type automatically, based on analysis of dependence between loop iterations, 

and are well understood [Wo196]. 

With virtualization, a single P E  would have a loop of the form 

f o r  vpe = l : v  

f o r  i=i:N/v 

pre(vpe, i )  

barrier 

reply (vpe , i )  

barrier 

endf or 

endf or  

Assuming non-dependence between processing on different VPEs, this is transformed into 

for  i=l:N/v 

f o r  vpe = l : v  

pre (vpe , i )  

endf or 

barrier 

f o r  vpe = 1:v 

reply(vpe, i )  

endf or 

barrier 

endf or 

It is clear these are the same transformations; the advantage of a virtualization perspective 

is in simplifying the programmer's view of things, allowing him or her to write code for 



some convenient number of VPEs without worrying about the exact number of actual 

PEs on the chip. Hardware support for virtualization could also be used t o  hide memory 

latency time, by fast switching between VPEs, and thus raise the IPC rate of the PEs. 

However, the cost of support for such virtualization and fast switching is unclear, especially 

in the presence of the highly pipelined PEs that  will be necessary for competitive clock 

speeds. 

6.2.4 Some Speculations on Cortical Models 

Large-scale cortical models may or may not ever be the appropriate approach t o  applying 

contextual knowledge in a computer, but it is certainly plausible, as the cortex is the seat 

of much of the processing I am interested in emulating. Cortical models are characterized 

by extremely large numbers of processors (neurons), with sparse connectivity and sparse 

activation. Bailey and Hammerstrom [BH88, Bai931 have shown that  multiplexed hierar- 

chical interconnect is a reasonable approach t o  implementing sparse connectivity. Sparse 

activation suggests, and probably demands, multiplexing of multiple neurons onto a single 

processor, but this becomes problematic due t o  load balancing issues. Of course, if pro- 

cessing time varies among neurons, SFMD is a natural candidate architecture. However, 

even if the processing time is the same, SFMD may have a role t o  play. At a higher level of 

granularity, something like the neuronal group of Edelman [Ede86], there are likely to  be 

reoccuring patterns of (sparse) activation. These begin t o  look like the structured models 

I have been considering, and for which SFMD was designed. 

6.3 Final Words 

Contextual processing involves irregular computation. The SFMD class of architectures 

provides a relatively cheap extension of SIMD processing for this purpose, suitable for 

on-chip multiprocessing and low-power, "delivery" applications. It allows averaging out 

irregularity, while keeping the other advantages of SIMD processing. 
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Appendix A 

SIMD HOVS pseudo-code 

This appendix gives pseudo-code for various SIMD implementations of the HOVS algo- 

rithm. For clarity and brevity, the pseudo-code focuses on the main loop, and omits 

initialization and the handling of starting and ending conditions. 

In these implementations, inputs from the classifier at  iteration t are log m(ht; ot ) ;  using 

logarithmic representations is needed to avoid underflow problems from repeated multi- 

plications. All context probabilities, p(ht(h:lt), are thus represented as log-probabilities, 

too. 

Notation: p . x is a variable local to  a particular PE  p, being accessed only on that PE. 

When such variables are accessed in parallel for all (active) PEs, the notation *. x is used. 

p . vp [I is the array of virtual PEs for p. v.  x refers to a variable local to a virtual PE, and 

is shorthand for p . vp [k] . x for some k; analogously, * . v . x is shorthand for * . vp [k] . x. 

hos t  . x  refers to a variable on the host. All unqualified variables are global: distributed to 

each PE, but with the same value on each PE. I use p and v to  refer both to the (virtual) 

PE, or its integer identifier, as convenient. 

Each (V)PE corresponds to a set of contexts, all having a common final state or state 

sequence, and maintains the information for that state (sequence) at  each timestep. This 

PE  (VPE) is denoted nxtp (nxtv) in the code, and its identity is broadcast from the 

host (when it cannot be determined trivially). Nodes of the context graph are numbered, 

context node n having number n.num, such that (V)PE p corresponds to the set of nodes, 

n for which *. lo[pl <= n-num <= * .h i[pl .  As the l o  and h i  information is global, it 



may be either stored locally, or broadcast. Each (V)PE p has local variables p.LO == 

*.loCpl and p.HI == *.hi[p]. 

Each (V)PE contains two arrays, holding the context information. prob Cnl [hl con- 

tains the context probabilities p(h1n) for the various contexts: n, in the (V)PE. nx tc tx t  [nl Chl 

contains the information to implement the jh(n)  function. As it is not done in parallel, 

computing the ;lh(n) function may also be done on the host. This is the likely implemen- 

tation in most cases, as the computation is small, and doing it on the host means that 

PEs need not store the nx tc tx t  array, which essentially halves the local storage used by 

the algorithm. Nonetheless, for completeness the pseudo-code will assume the yh(n) is 

computed on the PE array. For the nodes corresponding to a particular PE, the prob 

and nx tc tx t  arrays are laid out in PElocal memory so that the address of each array 

for context node n can be easily calcula.ted from n.num, p .  LO, and p .HI. Denote these 

calculations as probAddr (n . nun, p . LO, p .HI) and nxtAddr (n .nun, p . LO, p .HI). 

Finally, the local variable cScore holds the broadcast value of the current classifier 

output. 



while not end of string 
C 
for h in I..IHI // O(lHl) 

C 
// broadcast classifier output score for h at this time 
cScore = (broadcast score> 

// calculate score in context 
*.score = *.prob[h] + *.prevScore + cScore 

// find PE with maximum score 
maxp = PnAX{*. score) 

// point-to-point communication between nxtp and maxp 
nxtp = <PE for h> 
nxtp .nxtllode = maxp.nxtctxt[h] 
nxtp.nxtScore = maxp.score 

// record backppointer on host 
host .backptr [pl [tl = m a p  

1 
// update all PEs for next timestep 
*.prevScore = *.nxtScore 
. prob = . probAddr(* . nxtlode , * .LO, *.HI) 
.nxtctxt = * .nxtAddr(*.nxtlode, .LO, *.HI) 

t++ 
1 

Figure A. l :  SIMD HOVS pseudo-code for the basic case when (HI = P. Globally, there 
is one PE for each state of H,  and the PE for a state h contains all contexts ending in 
h. Computation of nxtp is trivial, as the PEs are 1:l with the states. Complexity is 

O(IHI) = O(IH121P)- 



while not end of string 
i: 

for h in 1..IHI 
C 

// broadcast classifier output score for h at this time 
cScore = <broadcast score> 

// find max score for the virtual PEs on each PE 
// score is for h in that vpe's active context 
*.localmax = minusInfinity 
for k in 1. .K 

C 
with *.v = *.vp[kl 
/ /  calculate score in context 
*.v.score = *.v.prob[h] + *.v.prevScore + cScore 
/ /  record max and vpe giving it 
if *.v.score > *.localmax 

// find PE with maximum score 
maxp = PnAX{p. localmax) 

// VPE with contexts ending in 'h' (exactly 1 such) 
(nxtp, nxtk, nxtv) = <virtual PE for h> 

// point-to-point colmnunication between nxtp and maxp 
with v = nxtp.vpCnxtk1 
v.nxtScore = maxp.localmax 
v . nxtlode = maxp . vp [localmaxvl .nxtctxt [hl 
host. backptr [h] [t] = maxp 

) 
f o r k  in l..K 

with *.v = *.vp[kI 
*.v.prevScore = *.v.nxtScore 
r.v.prob = *,~.~robAddr(*.v.nxtlode, *.v.LO, *.v-HI) 
+.v.nxtctxt = *.v.nxtAddr(*.v.nxtl~de, *.v.LO, *.v.HI) 

> 
t++ 

> 

Figure A.2: SIMD HOVS pseudo-code when IHI exceeds the number of PEs, P. Each 
PE contains I< = [lHI/Pl VPEs; globally, there is one VPE for each state of H ,  and the 
VPE for a state h contains all contexts ending in h. Complexity is IH 111 H I/P1 = 1 HI2/P. 



while not end of string 
C 
for h in 1.. IHI 

C 
/ /  broadcast classifier output score for h at this time 
cScore = (broadcast score> 

for nxtv with contexts ending in 'h' // O(KP/IHI) 
t 

// find max score for the VPEs on each VP 
// score is for h in that vp's active context 
*.localmax = minusInfinity 
for k in 1. .K 

t 
with *.v = *.vp[k] 
/ /  calculate score in context 
*.v.score = *.v.prob[h] + *.v.prevScore + cScore 
/ /  determine if context of *.v can precede those of nxtv 
* . v. canprecede = (loCnxtv] <= t .v .nxtctxt [hl .num <= hi [nxtv] ) 
/ /  record max and vp giving it 
if *.canprecede LL *.score > *.localmax 

// find PE with maximum score 
maxp = PHAXC* . localmax> 

// find PE and vpe index for nxtv 
(nxtp, nxtk) = <PE and vpe index for nxtv> 

// point-to-point communication between nxtp and maxp 
with v = nxtp.vp[nxtk] 
v.nxtScore = maxp.localmax 
v . nxtlode = maxp . vp Clocalnaxv] . nxtctxt [hl 
// record backpointer on host 
host .backptr[h] [tl = maxp 

> 
1 

f o r k  in 1..K 

pith *.v = *.vp[k] 
*.v.prevScore = *.v.nxtScore 
.v .prob * .v .probAddr(* .v.nxtloda , * .v.LO , .v.HI) 
.v .nxtctxt = * . v .nxtAddr(* .v .nxtIode . * .v .LO, * .V .HI) 

1 
t++ 

> 

Figure A.3: SIMD HOVS pseudo-code when I HI is less than the number of PEs, P. 
Each VPE contains the contexts in the intersection of the active fringe with a complete 
subtrees of the context tree; all contexts have the same final state. K is the maxi- 
mum number of VPEs (or context subtrees) associated with any PE. The canprecede 
compatibility condition is needed as only some contexts can precede a given context 
(e.g. h'h2 can only precede contexts of the form h'hl).  Complexity of the algorithm 
is K ~ P  = (nb. of c ~ n t e x t s ) ~ / P .  



while not end of string 
{ 
for hl in 1.. I H I  

C 
// broadcast classifier output score for hl at this time 
*.cScore = <broadcast score for hi> 

for h2 in 1.. IHI 
{ 
nxtp = <processor for h2> // p-{h2) 
nxtk = <vpe index for hl> 
nxtv = nxtp .vp[nxtk] // V-{hi. h2) 
thisk = <vpe index for h2> 

// calculate score in context 
with * .v = * .vp[thisk] // v-{h2. h-p) 
*.score = *.v.probChll + *.v.prevScore + *.cScore 

// find PE with maximum score 
maxp = PHAXC* .score) 

/ /  point-to-point communication between nxtp and maxp 
with v = nxtp.vpCnxtk3 // v-{hl.h2) 
v.nxtScore = maxp.score 
v . nxtlode = maxp . vp [thisk] . nxtctxt [hll 
host. backptr [hl] Ch21 [tl maxp 

> 
> 

for k in 1.. I H I  
C 

with *.v = *.vp[k] 
8.v.prevScore = *.v.nxtScore 
.v .prob = * .v .probAddr(* .v.nxtlode , .v .lo, * .v. hi) 

* .v .nxtctxt = * .v .nxtAddr(* .v .nxtlode, .v. lo. .v. hi) 
1 

t++ 
) 

Figure A.4: SIMD HOVS pseudo-code for recursion on 2-tuples of states, for IHI = P. 
Each PE, p is associated with a particular state, h; I write p = ph and h = h,, as 
convenient. Each PE has  IH I VPEs, each associated with a pair of states; for phi, the VPEs 
are {vhlh21h2 E H } .  The VPE vhlhz contains the context information {p(hlp(h'h2))). 



Appendix B 

Exhaustive Search: The Effect of 

Bandwidth on Parallelism 

In section 4.4 we saw that  for multiple on-chip processors with individual access t o  memory 

("per-PE external memory"), chip pin count limits the number of processors t o  16 or 32 

for near-term process generations. Another possible architecture is for PEs t o  have only 

on-chip individual memories, and t o  share off-chip da ta  110 hardware. In this case, take 

the off-chip memory bandwidth t o  be about the same as that  of a single microprocessor 

implemented on the same size chip. A parallel implementation may then outperform a 

single processor implementation due t o  both parallel computation and parallel access t o  

on-chip memory (per-PE local memories)'. I will examine these effects by looking a t  

exhaustive search of a set of models for ones that  match given data. I look a t  exhaustive 

search not only because it is occurs in some cases (for example, vector quantization in 

high dimensions and deformable models, but because it offers the greatest potential for 

parallelism. With restricted off-chip bandwidth and per-PE local memories, the natural 

way to  implement exhaustive search of a set of models is t o  preload the ones most likely 

t o  match into the local memories. 

In this appendix, I show that ,  even with preloading, memory/data-path area tradeoffs 

imply that  the potential parallelism is quite limited, unless the probability of accessing a 

'A  parallel implementation may be at a disadvantage due to the need to route requests from multiple 
on-chip processors to multiple external memory modules. I will ignore these effects since we will see that, 
even without them, potential parallelism is limited. 



non-preloaded model is small or the amount of computation per model is large. Except 

for situations when matching a model takes much longer than reading it from off-chip, 

essentially all models must be preloaded for substantial parallel speedup to  be realized. 

Although the degree of potential parallelism depends on many factors, especially the size 

of the model base, for "reasonable" large model base sizes (say, 1000 models, of 1-5 kB 

each), and "reasonable" amounts of work per model (say, computation time per model is a 

factor of 10 larger than the time t o  load it from off-chip), parallelism is limited t o  around 

16 or 32 for near term process generations. Larger numbers of processors substantially 

reduce the  allowed size of the model base. Essentially, there are three cases: First, if the 

entire model set fits on-chip, then linear speedup is obtained. This points in the direction 

of many small processors per chip. Second, if the model set does not fit on-chip, and there 

is little work per model, then parallelism is limited by bandwidth limitations and area 

tradeoffs, and having many PEs per chip is pointless. Third, independent of model set 

size, if there is much computation per model, then some parallelism is justified: if k is the 

ratio of the time model evaluation time t o  the time t o  load a model from off-chip memory, 

the parallelism up t o  k is achievable. Because of differences in clock rates on and off chip, 

factors of k > 32 may correspond t o  60-100 operations per (32 bit) datum; applications 

with this level of computational density may be rare. 

As exhaustive search allows the greatest possible parallelism, if it has limited potential 

parallelism due t o  bandwidth limitations, then so do all other potential applications. I 

conclude that  there are two viable architectural alternatives for on-chip parallelism: if 

the range of target applications allows the working set of models t o  fit entirely on-chip, 

then an architecture of many small processors may be preferred. In all other cases, a few 

(16-32) complex PEs will be preferred. 

B. l  Modeling 

My basic strategy is t o  assume off-chip memory technology is equivalent for both sequential 

and parallel architectures, so that  off-chip fetches have the same speed for both. I further 



assume off-chip bandwidth is the same for both, if nothing else because of similar pin 

limitations for both. I then optimistically assume that  the sequential architecture must 

make all fetches off-chip, while the parallel architecture may have some preloaded models 

on-chip. We are effectively assuming that ,  relative t o  on-chip data  cache size, model-base 

size is large and temporal locality in model access is small. We are also assuming that  the 

sequential architecture uses a general-purpose strategy for its on-chip da ta  cache, so that  

the caching of models is ineffective. The basic result is that ,  even with these optimistic 

assumptions and for the highly parallelizable task of model matching, the potential on- 

chip parallelism is quite limited unless either, essentially all models can be preloaded, or 

the amount of computation done per model is large. This implies that ,  given the external 

memory modeling assumptions, a relatively general purpose parallel architecture should 

have only a modest number of PE's per chip, and hence that  these PE's can afford to  be 

relatively complex. 

B. l . l  Two forms of model matching 

I look a t  two algorithmic forms for model-matching. In both, model matching is gen- 

eralized t o  execution of a set of "tasks" having the following properties: the tasks are 

completely independent of one another, and each have the form "fetch all data,  then pro- 

cess it all" (corresponding t o  getting the model parameters and then matching the model 

with the input). The set of possible tasks is known in advance, with some probability 

distribution over their occurrence The number of tasks t o  be done a t  any given time, n, 

has distribution N .  For simplicity, the analysis assumes tasks are all the same size. I do 

not model the pre- and post- matching processes of getting the input da ta  t o  be matched 

against, and communicating the results of the matching: both are assumed to  be either 

negligible as t o  time required, or independent of the algorithm and hardware architecture. 

To avoid overuse of the word "model", I will speak instead of fetching and evaluating a 

task. 

In both algorithmic forms, the parallel architectures evaluate P tasks a t  once, taking 



(on average) k time per task, where a time unit is the time required (on average) for 

a sequential architecture to  fetch a single task. As parallel architectures maj7 have the 

potential for utilizing larger memory bandwidth than sequential architectures, I introduce 

a bandwidth factor, b 2 1, so that  the parallel architectures fetch b models from memory 

in one time unit. 

The sequential architectures evaluate one task a t  a time, taking (on average) k/q time 

units. The factor q measures the speed advantage of the sequential processor compared 

t o  a single PE. I assume 1 < q 5 P (if P < q, parallelism is pointless). This gives the 

following formula for the expected time on a simple sequential architecture that  does not 

overlap fetching with evaluation, for either algorithmic form: 

where (.)x denotes expectation with respect t o  distribution X. 

The two algorithmic forms differ in how the tasks t o  be done are selected. I assume 

there is a fixed set of tasks indexed by i, 1 5 i 5 N ,  with a probability structure, p;, 

such that  i > j + pi 2 pi. For the non-stochastic form, fied, the selection of tasks is 

deterministic: start  at the first task and continue until a satisfactory match is found or 

all tasks are complete. Evaluation of a task may result in an "satisfactory match" signal, 

indicating that  no more tasks need be done. Since pi is the probability that  i is the first 

satisfactory match, it is also the probability of evaluating i tasks. 

In random, the selection algorithm is viewed as data-dependent, and is modeled 

stochastically as follows. Add a "null" task, pol t o  the set of tasks (probably, but not 

necessarily, po 2 pl) .  Assuming N large, approximate task selection without replacement 

by selection with replacement, and view the selection process as having N + 1 independent 

trials, each determining if a particular task is t o  be selected, task i being selected with 

probability p;. This gives a multinomial distribution with parameters (N + 1, pol. .  . , p N ) .  

Selection of the "null" task corresponds t o  not executing a task, so if it is chosen Ii' times, 



the number of tasks t o  actually be evaluated is N - Ir'. Other tasks can a.ctua1ly be se- 

lected for evaluation only once, but if N is large and po is relatively large, the chance of 

a task being selected more than once is small. Note that  tasks are selected independently 

of one another; any correlation of tasks is not modeled. Note also that ,  for fixed, the 

computation time for the selection is trivial, for random it may not be. In the latter case, 

I take the selection time t o  be the same for both the sequential and parallel algorithms; 

this is plausible, but not certain. 

When there is DMA hardware it is reasonable t o  overlap fetching and evaluating models 

by prefetching the next set of tasks. For $xed, prefetch of the next tasks can be done with 

100% accuracy: the exact ones t o  fetch are known in advance; they are the next ones in 

the task order. For random, the selection process is stochastic, so what t o  prefetch is not 

known in advance. Instead, when estimating the effect of additional DMA hardware, I 

assume, optimistically, that  the next tasks t o  be fetched can be selected before the current 

tasks are evaluated, so that  overlap of fetch and evaluation can take place. Doing the 

selection early will presumably increase the expected number of tasks fetched, (n), but 

this increase will be about the same for both the parallel and sequential architectures, as 

the selection algorithm is assumed t o  be the same for both. It will actually be slightly 

more for the parallel architecture due t o  tasks being prefetched P at a time, but we will 

see P is necessarily relatively small, so this effect may be neglected. I model the time 

needed for selection as part of the task evaluation time, k. Thus, for comparisons between 

architectures, the selection cost is hidden in the k and (n) terms. For the sequential case, 

I get 

(timeSEQ-DMA > = max{-, k l l ( n ) ~  
4 

(B.2) 

B.1.2 Effects of preloading tasks 

Given a known distribution of the set of possible tasks, i t  makes sense t o  prefetch (preload) 

the most common ones. I wish t o  examine the effects of having prefetched some of the tasks 

into local memory. Let m be a random variable giving the number of models evaluated 



that  have not been preloaded. Let A be the number of preloaded tasks. For convenience? 

assume that  tasks are indexed so that  the "preload" contains the first A models; this is 

consistent with i > j p; 5 pj,  as the most probable models will be the ones that are 

preloaded. 

For an SIMD architecture, models are evaluated in parallel, P a t  a time, each "P- 

block" taking k time units. To evaluate n tasks, there are I;] blocks t o  be matched. The 

m tasks not preloaded must be fetched, each task taking l / b  time units. This gives 

where time(m, n)  is the time t o  evaluate n tasks, with m of the n outside the preload. 

This equation incorporates into k the time spent fetching from on-chip (local) memory2 

Thus, k ca not be too small; for simplicity I will limit k 2 1 in the simulations. 

Let W be some distribution over the task input data,  with realization w. Assume m 

and n are independent of w; this is admittedly unrealistic in that  common inputs w may 

correspond t o  common tasks, which are then more likely t o  be preloaded. Given this, one 

can then estimate the expected time spent per input as follows: 

(time per input)w ((time(m, n ) ) M l n ) ~  

Here 

N G Prob[N = n] is the distribution of the number of tasks t o  evaluate, n, 

'As k is the same for both the sequential and parallel implementations, any difference between the 
two implementations in time spent fetching from local memory is absorbed into q, the factor by which 
the sequential implementation outperforms a single PE in evaluating a task. This is appropriate, as 
a major reason memory accesses might be faster in the sequential implementation is from overlapping 
memory accesses with computation, using superscalar techniques and taking advantage of instruction level 
parallelism. 



( M J n )  = Prob[M = mln] is the conditional probability of having m of the n tasks 

be outside the preload, and 

q u a n t ~ ( n ,  P )  I (Pr?]  - n ) ~  measures quantization error when the number of tasks 

is not a multiple of the number of processors. Note that  0 5 quantx(n,  P )  < P, and 

that  quantN(n, P )  is approximately ( P  - 1)/2 if the density for N is smooth, and 

its support is large with respect t o  P (cf. equations B.26 - B.28 and discussion). 

Ignoring quantization, equation B.3 simply says that  the average time per input is the time 

per task, k, times the average number of tasks per processor, (n) /P ,  plus the expected 

time t o  load the tasks not in the preload, (m)MI,. 

To compute the expected number of tasks t o  fetch, (m)MIn,  let A be the number of 

preloaded tasks, N be the total number of possible tasks, and m be a realization of M l n ,  

the number of tasks not in the preload, given that  there are n tasks t o  be evaluated. Let 

p~ = 1 - c L ~  pI(i) be the total probability mass of the non-preload. 

For random, let Xi  be the random variable giving the number of times task i was 

selected, 0 5 i 5 N ,  then (Xo, . .  ., XN) - Mudtinornial(N+l,po, (1-po)pl . . . , ( 1 - p o ) p ~ )  

has a multinomial distribution. 

A Let Yo t Xo, YA t Xi, and YAc -- ~ z ~ + ~  X1' Yo is the number of times the 'null' 

task was selected, Yo = N + 1 - (number of tasks chosen), with realization N + 1 - n. YA is 

the number of chosen tasks in the preload, with realization n-m,  and YAc is the number of 

chosen tasks not in the preload, m. As exhaustive disjoint sums of multinomial components 

are multinomial, (Yo, YA, YAc) N Mult inomial(N+l ,  pol (1-po)(l-pA), (1-po)pA), and as 

marginal distributions of multinomial components are binomial, Yo N Binomial(N+l ,  po), 

YA - Binomial(N + 1, (1 - po)( l  - PA)), and YAc N Binomial(N + 1, (1  - po)pA). This 

gives 



So (B.3) becomes 

S I M D  PA ( t im.eranh)  = F ( ( n ) ~  + q u a n t ~  (n, P)) + b ( n ) ~ -  

Compared to  equation B.3, this says that, for random, the expected number of tasks to 

load is the expected total number of tasks times the probability that a random task is not 

preloaded. 

For fixed, if a task is evaluated, then all preceding tasks must have been done. This 

corresponds to  

pMln(m) = bm,rnax{O,n-A) = b m , ( n - ~ ) +  

which (of course) is deterministic, not stochastic. Here, 6 is Kronecker delta, and (x)+ = 

max(0, x}. This gives 

and 

S I M D  1 
(timetbed ) = p ( ( n ) ~  + quantN(n,P)) + i((n - A)+)N- (B.9) 

Compared to  equation B.3, this says that, for fixed, the expected number of tasks to load 

is the expected value of the number of tasks to be evaluated in excess of the number of 

tasks in the preload. 



B.2 Effects of DMA 

I consider also a "SIMD-DMA" architecture: SIMD with additional hardware for over- 

lapping evaluation with fetches from off-chip into local memory. To derive a formula for 

time(m, n)  for fixed on a SIMD-DMA architecture, first note that  there are n - m tasks 

in the preload. If m = 0, then the time is just 

DMA n 
timejixed (0, n)  = kr-1 

P 

If m > 0, first all the n -  m models in the preload are evaluated, and then the remaining m 

models outside the preload. Again, the density of M ( n  is Sm,(n-A)+, SO (time(m, n))MI, = 

time((n - A)+, n), and n - m = A. 

So, the first [$J P-blocks in the preload are evaluated, then, if A is not a multiple 

of P, another P - (A - PI$ J )  = P - (A mod P) tasks are fetched, and a P-block of 

them and the (A mod P) remaining unprocessed tasks in the preload are evaluated, and 

then the remaining [+(m - (P - A mod P) ) ]  or (depending on whether P divides 

A) P-blocks not in the preload are fetched and evaluated. This gives, for m > 0, 

DMA A timejixed (m, n) = kip] + max{k, 
( P  - (A mod P ) )  

b 1 * 6 0 , ~  mod P) 

P 1 + max{k, -1 * 1- (m - JO,A mod P(P - (A mod P ) ) ) l  
b P  

where S,,, = 1 - S,,, is 1 iff x # y. Notice that  I do not model overlapping fetching with 

the evaluation of the preloaded tasks: I am assuming that  many inputs will be processed, 

so that  I want the common, preloaded tasks t o  remain in the preload, and not be replaced 

by speculative fetching of less common tasks. 

This is messy, and any real implementation is likely t o  only keep an even multiple of P 

tasks in the preload3, anyway, for ease of implementation (this assumes tasks are relatively 

small compared t o  the preload size). 

3 ~ h i s  assumes equal sized tasks; for unequal size tasks, one might balance the estimated total task 
time, not simply the total count. 



So, assume that  P divides A, for the following estimate: 

DMA krF1  i f m = O  timeJized (m, n) = 
k[$ l+  max{k, g )  [ ~ l  if m > 0 

Recalling that  m = (n - A)+ and using 

this can be written 

DMA min{n, A) 
timeJized ( (n  - A)+, n) = Ic[ P P 

giving 

D M A  2 = (time Ji..d ((n - A)+. n ) ) ~  
k = -((min{n, A))N + quantM(min{n, A), P)) P 

k 1 
+max{j5, $ } ( ( ( n  - A)+)M + q u a n t ~ ( ( n  - A)+, P ) )  (B.10) 

I analyze random as follows: evaluation of a P-block takes time max{k, Flb) ,  where F 

is a random variable giving the number of fetches from off-chip, i.e. the number of preload 

misses. As tasks are selected independently, we may view the entire set of selected tasks 

as already constructed, using the pi's. For these selected tasks, the probability that  one 

chosen at random is not in the preload is PA. We can thus view selecting the next P tasks 

as a set of P independent trials, with probability of success (not being in the preload) 

equal t o  PA. So F - BinOmial(P,pA), and the expected time t o  evaluate a P-block is 

(max{k, f lb))3.  

Let 

be the  expected time for a single task, then h(k, P, PA, b) is concave monotone increasing 

in PA, and has the following properties: 



PA 
h(0, P1p.4, b) = - (B.13) 

b 
1 

h(k,  l,pA,b) = k ( l  - PA) + max{kl -}PA (B. 14) 
b 

k 1 
h(k, P, 1, b) = maxi- -) (B.15) 

P' b 

the latter bounds becoming tight for P >> k. To evaluate n models requires evaluating 

P-blocks, then a single (n  mod P )  block. This becomes messy, due t o  h() ,  so I adopt 

a slightly more pessimistic model, and say that  evaluating n models requires evaluating 

[Fl P-blocks. This gives 

DMA n 
(timerand,,) = ( ( P l p l ) h ( k l  P1 PA. b ) ) ~  

= h ( k , P , p ~ , b ) ( ( n ) n r +  q u a n t ~ ( n , P ) ) ,  (B.18) 

which is, ignoring quantization terms, the expected time t o  evaluate a task times the 

expected number of tasks. 

B.3 Asymptotic behavior of random 

To get some intuition, I look at the asymptotic behavior of the formulae for random , 

neglecting quant terms, which gives 

SIMD 
(timerandom) Z5 ( #' + 9) ( n ) ~  

(t'meE?im ) ~5 h(k, P,  PA 1 b) ( n ) ~  

The first equation says that  each model takes an average of t o  evaluate, and that  a 

fraction p~ of them must be fetched from outside the preload, each taking time i. Using 

the lower bound for h(k, P ,pAl  b) in the second equation gives a RHS of max{$, y } ( n ) , v  

which says that ,  on average, the time taken by the DMA version is the larger of the evalua- 

tion time and the time t o  load an average number of models from off-chip. Asymptotically, 

I get: 



k >> P : When task granularity is very large, h( )  = $, and PA is irrelevant, giving perfect 

parallelism;  time^^^^) = (timeDMA random) = B ( ~ )  k 

p~ = 0 : When everything is found in preload, h ( )  = $, and again we have perfect paral- 

lelism; (time S I M D  random ) = ( t imef , f im) = p(n) k 

p~ = 1 : There is no preload; h( )  = max{$, and 

S I M D  
(timerandom) = ($ + i ) ( n )  

D M A  
(timerandom) = $(n)  ( k  2 F) 

1 
(t'me,D,fLm ) = i; (n)  (k I $1 

The SIMD equation corresponds t o  always loading P models and then evaluating 

them. The first DMA equation occurs when evaluation takes longer than fetching, 

and corresponds t o  all fetches being 'hidden' by the evaluations. The second DMA 

equation is the converse, where all evaluation time is 'hidden7 by fetch time. 

k << P : For very small tasks, h()  = max{$-, y ) ,  and 

S I M D  
(timerandom) = ( $ + y)  (n) 

(timef,fLm) = max[$-, Eg](n) 

Note that  (time) 4 0 a s  k + 0 and p~ + 0, i.e. when no fetches need be done, and 

evaluations take no time. However, k is really limited away from 0 as it includes the 

load time from local memory. 

P = 1, k < : For a single processor with local memory, doing small tasks; h( )  = k ( 1  - 

PA) + y ,  and 

(times:,$k) = (k+ y ) ( n )  

(timeEf2,) = ( k ( l  - PA)  + y )  (n) 

Here DMA reduces average evaluation time by hiding it whenever an off-chip fetch 

is done. 



B .4 Task Distributions 

For speedup comparisons with sequential architectures I must make assumptions about 

the task distribution, p;. For both random and fixed, we may index the tasks so that 

i < j + pI(i) 2 pj. Realistic extreme cases for pi with respect to weighting of lower 

indexed tasks, are the hyperbolic and uniform distributions. The uniform distribution 

puts as little probability mass in the preload as possible, while the hyperbolic distribution 

puts a great deal. Besides illustrating situations where models are highly likely to be 

found in the preload, the hyperbolic distribution is realistic for word model matching, 

corresponding to Zipf's Law of work frequency distributions [Zip321 For random, I also 

vary pol determining the expected fraction of tasks selected, (n)rand = ( N  + 1)(1 - po), 

independently of the probability mass of the preload. 

If there are N total possible tasks, the uniform distribution gives mass 1/N to each 

task, while the hyperbolic distribution gives the i'th task mass l / ( iZ(N)),  where Z(N)  = 

~ f i  f = C + log N + & - O(NW2) and C 0.577 is Euler's constant. We have 

(B.19) 

(B. 20) 

(B.21) 

(B.22) 

4Actually, Zipf suggests a power law, Prob(n) = (l /Z)nr,  where n indexes the words in the vocabulary, 
n = 1 corresponding to the most common word, n = 2 to the second most common, and so on; Z is 
a normalizing constant; and r is a constant, r > 1. The hyperbolic distribution corresponds to r = 1. 
However, power laws, while having the correct qualitative properties, do not fit the observed distribution 
well, and other distributional forms have been suggested [Sic75]. For my purposes, the relevant property 
shared by all these distributions is that of putting a great deal of probability mass in the most common 
words (models). So the use of the hyperbolic distribution can be justified as a convenient example of such 
a distribution. 



and one can derive the following approximations, used in the simulations: 

where a = A/N E [O,1] gives the fraction of models contained in the preload, a > 0 as 

we are assuming A 2 P, and I adopt the usual convention that  a loga  = 0 when a = 0, 

E [O, 1/21, the error in the i.e., when A = 0. The error in the first approximation is 

1 second is + O ( r n )  E [-1/2.0] + 0(*). 

We can also approximate q u a n t ~ ( - ,  P) = ( P r $ l ) ~ .  Let p ~ ( n )  be the density for n, 

SO pN(n) = pI(n) for fixed and p ~ ( n )  = Binomial(N + 1 , l  -po) for random. Writing out 

the expectations for the terms in the various formulae, 

N min{n, A} 
q u a n t ~  (min{nl A), P )  = C P N ~ )  (PI 1 - min{n, A)) 

P-  1 
 PA + (A mod P ) ( l -  pa) 

P-  1 
M -  

2 PA 



where the approximations are made by 

i.e. assuming that the support of the density is wide, smooth and unrelated to P, and that 

N,  N - A and A are large relative to P. This holds for the distributions I will consider. 

Note also that formula (B.lO) using quant~(min{n, A}) already assumes (A mod P) = 0. 

For simulations, I will use a parameter Q E (0, $, 1) to give best,worst and "normal" case 

performance, replacing ( P  - 1)/2 in the above approximations by Q ( P  - 1). 

B.5 Area Tradeoffs 

To look at tradeoffs, note that finite chip area implies that the amount of local memory, 

and hence a and p ~ ,  decreases as  the number of PE's increases. From equations 4.1 one 

gets 

where c gives the area of the data path of a single PE, in 106X2, s gives the total chip area, 

in 109X2, z gives the size of 1 KB of memory, in 106X2, and M gives the size of a PE's 

local memory, in kB. Some typical values of c are c = 30 for a simple fixed point processor, 

c = 70 for a simple 32b floating-point processor, and c = 500 for a complex floating point 

processor, on the order of a PPC 604. To get estimates biased towards large numbers of 

PE7s per chip, I use the numbers for single-ported SRAM, with 1 KB of SRAM taking 

z = 5 x 106X2. From table 4.3.1, s E {19,42,68,101,208, 506,1200) for the next 7 process 

generations. We can thus remove M  as a free parameter: 

The total on-chip memory is P M .  I introduce another task parameter, d, giving the 

number of models storable in one kB. d can be used to replace A, the number of models 

in the preload, thus incorporating area constraints: A = dPAl  if all on-chip memory were 



used for the preload. For use later, I introduce a parameter, i,, measuring the amount of 

per-PE instruction memory, in kB: 

A = d ( P M  - Pi,). (B.31) 

One can then replace the p~ parameter: p~ = 1 - x f p 1 ( i )  is 1 - A/N in the uniform 

case, and 1 - Z(A)/Z(N) in the hyperbolic case. 

Two important special cases are when all tasks can fit in the preload, p~ = 0, and 

when none can, p~ = 1. The latter situation obtains when a single task exceeds the size of 

an individual PE's local memory, in which case my modeling assumptions and consequent 

speedup equations are incorrect. Define Pall t o  be the maximal P for which p~ = 0 (that  

is, A = N ) ,  and PnOne t o  be the maximal P for which p~ < 1. P,,,, then corresponds t o  

1 task per PE, or A = P. Using equations B.29, B.30, and B.31, we have 

and 

B.6 Speedup: some simplifications 

It should be clear that  the quantization term q u a n t ~ ( - ,  P )  = ( P  - 1)/2 (equations B.26 

- B.28) will be negligible compared t o  (n) for most model distributions. If we neglect 

quantization, then two regimes present themselves with simple formulae for speedup: P 5 

Paa (all models in preload) and P 2 PnOne (no models in preload). In these regimes the 

formulae for the various task distributions are the same, as are the times for both the 

SIMD and DMA cases. For either form of speedup5, ( t ~ r n e ~ ~ Q - ~ ~ ~ ) / ( t i r n e f M ~ ) ,  we 

have 

speedup= ~ m a x { i ,  i} if P < Pan (B.34) 

5I ignore the ( t imeSEQ)  case as it is unrealistic these days. Similar equations hold for 
( t imeSEQ-DMA)/( t imeS'MD).  



and 

speedup y t  min k,q if p = pnon,. 

where the latter equation is derived using A = 0 rather than A = P, which will be close 

if (n) >> P. These equations show that speedup is linear for P < Pall. 

For a particular architectural setup, defining s, c, and m, equation B.32 is linear in 

N l d ,  the size in kB of the set of all tasks. Figure B.l illustrates this for some reasonable 

values of s, c, and m, using an SRAM size of 5 x 106X2. For example, a current generation 

(s = 19) chip with 16 simple floating point processors (c = 70) can preload an entire task 

set of about 2.5 megabyte (B.l (c)), and this increases to  about 6.5 megabytes in the next 

generation (s = 42) (B.l (g)). For a current generation chip with more complex processors 

(c = 500), a task set of about 1.5 - 2.0 MB can be preloaded. Similar calculations assuming 

an SRAM size of 5 x 106X2 show that, in that case, using complex processors (c = 500) is 

not feasible until the next generation (s = 42). When simple (c = 70) processors are used, 

a current generation chip with 16 PEs can preload about 1 MB, increasing to 2-3 MB in 

the next generation. 

Similarly, figure B.2 shows some graphs of P,,,, from equation B.33. Both figure B.2 

and examination of equation B.33 show that Pnon, will be substantially greater than P = 
16 - 32 for non-minimal sized chips with simple floating point processors (B.2 (a),(c)), and 

hence that it will be possible to preload a substantial number of tasks in this case. However, 

preloading a large number of tasks will not be possible for a current or next generation chip 

with 32 very complex processors (B.2 (b), (d)), especially when processors have substantial 

amounts of instruction memory. For further generations ( s  2 42), substantial preloading 

will be possible, even with very complex processors (not shown). 

B.7 Simulations 

In the regime Pall < P 5 Pnon, the mutual effects of the various parameters are more 

complicated, and so they were studied via simulation. 
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Figure B.l: The maximum number of processors for which the entire task set can be 
preloaded, Pall, as a function of the total task set (modelbase) size in MB, ( 1 0 - ~ N / d ) .  
The horizontal axis is the task set size in MB, and the vertical axis is the maximal number 
of processors. The different lines on each set of axes correspond to different amounts of 
instruction memory, m E {0,4,8,16,32), with m = 0 the topmost line, and m = 32 
the bottommost. Horizontal lines are drawn at Pall E {16,32,64,128) for comparison 
purposes. 
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(f) s = 2 5 ,  c = 500 

Figure 8.2: The maximal number of processors for which a processor can contain an 
entire task, P,,.,, as a function of (10-~N/d) ,  the task set (modelbase) size in MB. The 
horizontal axis is the task set size in MB, and the vertical axis is the maximal number 
of processors. The different lines on each set of axes correspond t o  different amounts 
of instruction memory, m E {0,4,8,16,32), with m = 0 the topmost line, and rn = 32 
the bottommost. Horizontal lines are drawn a t  Pall E {16,32,64,128} for comparison 
purposes. 



Table B.l: Free parameters of the analysis, their types and constraints 
name description tY Pe bounds 
P number of processors architectural 1 F P  

comparative speed of sequential 
comparative memory bandwidth 
chip area (109X2) 
instruction memory (kB) 
size of PE datapath (106X2) 
speed of evaluating a model 
size of a task (tasks/kB) 
total number of tasks 
(n)rand = ( N  + 1)(1 - PO) 
best/avg/worst quantization effects 

architectural 
architectural 
architectural 
architectural 
architectural 
algorithmic 
application-specific 
application-specific 
application-specific 
simulation 

Table B.l lists the parameters I have introduced, together with constraints or reason- 

able bounds on their values. 

Panel (a) of figure B.3 shows the general shape of the speedup curves in the interval 

between Pall and Pnone. The topmost two curves show the lower and upper bounds for the 

rundom-hyperbolic case, the two lowest curves show the bounds for the random-uniform 

case, and the intermediate two curves show the fixed-uniform and fixed-hyperbolic cases, 

the latter being topmost. This ordering is preserved in all subsequent speedup figures, 

as is the association between model and the dashing used in the curve for that model. 

In subsequent speedup figures we see the same relationships, but the curves are distorted 

by (1) different values of Pall and P,,,, and (2) the different speedups at Pall and Pnone 

The speedup at Pall is approximately Pall, due to the linear growth for P E [I ,  Pall]; the 

speedup for Pnone is given by equation B.35, but is usually k. For clarity, the value at 

PnOne has been continued for P > P,,,, although I do not actually model speedup in that 

regime. 

Two features of the figure are of note: there is a nearly linear increase in speedup 

from P = 1 to Pall and there is an abrupt "cutoff" in the curves at P = P,,,,. The first 

effect holds for all curves for which Pall = 0, and is a simple consequence of the models: 

a speedup of k 5 P is always possible as that much work can be done while the next 



model is being loaded. The second, "cutoff", effect is due to  the quantization implied by 

requiring A = 0 (mod P) .  To make the curves easier t o  read, this assumption has been 

relaxed in the simulations by allowing fractional numbers of models t o  be preloaded. Panel 

(b) of the figure shows the effect of enforcing integral numbers of models. The behavior 

is quite similar, except for the large speedup random-hyperbolic case and for P z P,,,,. 

Subsequent figures do not show quantization effects except for the "cutoff" effect at P,,,,. 

Figure B.4 shows the speedup curves for the "default" configuration of a current gener- 

ation chip ( s  = 19) with simple floating point processors (c = 70), using a set of N = 1000 

tasks. We see for large tasks of 5 KB each (d = 0.2) that  one never has all tasks in the 

preload. The consequence is that  the computation is I/O bound and the speedup curves 

are relatively flat. The exception is the random-hyperbolic case, where the likelihood of 

finding the desired task preloaded is high even when few tasks fit in the preload. The 

figure also shows that ,  for this confignration, P = 16 or P = 32 are reasonably close t o  

the optimal P, especially for the smaller k, but that  a wide range of values give similar 

speedup, all close t o  k (for P 2 k). 

For smaller tasks of 1 KB each (d = I ) ,  there is a linear regime up t o  P = Pall z 150, 

followed by a reversal and decay t o  the P = k asymptote that  is more or less rapid, 

depending on k. For large k, values of P above Pall provide only a modest improvement 

in performance (except for the upper bound for the random-hyperbolic case). Essentially7 

for the Pall = 0 (d = 0.2) case, P = 16 performs about as well as the optimum P; 

for the Pall > 0 (d = 1)  case, P = Pall is close t o  optimal. The exception is for the 

random-hyperbolic model, where the effective size of the task set is much smaller. 

Figure B.5 shows the  effect of large k, the amount of computation per model. A larger 

k naturally decreases the effect of bandwidth limitations and allows more parallelism. In 

terms of the graphs, the effect is to  meliorate the rapid loss of parallelism as P increases 

from Pall t o  P,,,,. 

Using the information in table 4.8, s = 9 corresponds, for any generation, t o  the 

smallest chip capable of 16 processors, data  I/O pins, but sharing instruction pins. Figure 
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Figure B.3: Panel (a) shows the general shape of the speedup curves in the  [Pall, P,,,,] 
interval. The horizontal axis is number of processors, P, and the vertical axis is speedup. 
Speedup is defined as t S E Q - D M A / t f M A .  The topmost two curves show the lower and 
upper bounds for the mndom-hyperbolic case, the two lowest curves show the bounds for 
the random-uniform case, and the intermediate two curves show the fixed-uniform and 
fixed-hyperbolic cases, the latter being topmost. Panel (b) shows the effect of enforcing 
integral numbers of models ( A  = 0 (mod P)). Note the "cutoff" effect at P = P,,,,. 
The line on the x-axis marks the interval [Pall, Pno,,], the range of P where some, but not 
all, tasks can be preloaded. 
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Figure B.4: Speedup (y-axis) as a function of the number of processors (x-axis, for varying 
(k, d) and other parameters given their default values: N = 1000, s = 19, b = 1, m = 0, 
c = 70, po = 0.9, q = 1, Q = 112. This set of values corresponds t o  a current generation 
chip ( s  = 19) with simple floating point processors (c  = 70). The first column (a,c,e) 
shows potential parallelism is limited ( P  = 16 - 32) for larger model-bases (5 MB) that  
do not fit entirely on-chip. The second column (b,d,f) shows large potential parallelism 
(P 2 128) for smaller model-bases (1 MB). It also shows that  this potential parallelism 
quickly disappears when the model-base no longer fits on-chip, due to  use of chip area for 
additional data-paths (P > 150). 
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Figure B.5: Speedup versus number of processors, for varying (k, d) and other parameters 
given their default values: N = 1000, s = 19, b = 1, m = 0, c = 70, po = 0.9, q = 1, 
Q = 112. Compared t o  figure B.4, larger values of the computation/model ratio, k, are 
used. 



B.6 shows that  s = 9 needs k > 10 for effective parallelism with the large test set, even 

using small floating point processors ( c  = 70). Again, P = 32 is close t o  optimal for 

random-hyperbolic, otherwise P = 16 is as good as any. For comparison, figure B.7 

shows the speedup curves for the same chip, under the assumption that  the individual 

data  I/O provides a twofold improvement in bandwidth. We see that  the doubling of 

bandwidth essentially doubles the speedup for the large task set, and, for more work- 

intensive tasks ( I c  = 5, lo),  substantially increases the usable parallelism. For the smaller 

task set, doubling the bandwidth substantially increases available parallelism in the regime 

between Pall and P,,,,. 

Figures B.8 gives analogous results for the smallest chip capable of 32 processors, using 

the information in table 4.9 and assuming complex processors (c  = 500). 

Figures B.9 and B.10 examine the current and next generations (s = 19 and s = 42), 

assuming very complex processors (c  = 500). We see that  P = 16 is a reasonable choice 

for the current generation; while P = 32 or P = 48 are reasonable for the next one. 

The choice of N = 1000 is arbitrary, and is intended mainly to  reflect the notion of 

a large task set (large task set). For N = 1000, the task set size is 1 MB for d  = 1, 

and 5 MB for d  = 5. Figure B . l l  looks a t  the case N = 100. For this task set smaller 

by an order of magnitude, we see that  Pall has become much larger, so that  P = 128 

and even P = 192 give good performance. Of course, as processors do not evaluate 

fractional models, P = N = 100 is the real maximum. Similarly, figure B.12 illustrates 

the case where the task set is made smaller by making the individual tasks smaller (d  = 5, 

corresponding t o  200 bytes per task), as might be seen in nearest neighbor search (where, 

for example, a model might be a reference vector of 50 32-bit floating point numbers). 

The problem, of course, is that  these larger values of P are very poor in the large task set 

case, while smaller values of P give linear speedup even in the small task set case. 

Finally, figure B.13 shows how available parallelism diminishes with increasing per- 

PE instruction memory, for 16 and 32 processor chips, and 1 MB task set size. We see 

that  a minimal current generation 16 processor chip ( s  = 9, c = 70) can have around 



(a) k = l ,  d10.2 (b) k=l ,  d=l  

Figure B.6: Speedup versus number of processors, for s = 9, varying (k,d).  The case 
examined here, s = 9, is that  of the smallest chip (in any generation) having 700 pins, and 
so being capable of having 16 PEs, each with their own off-chip memory. Chip is assumed 
t o  have small floating-point processors (c = 70), with other parameters given their default 
values: N = 1000, m = 0, po = 0.9, q = 1, Q = 112. We see that the larger task set (a,c,e) 
needs about k = 10 t o  effectively use 16 processors, while the smaller task set (b,d,f) could 
utilize 32. 

(c )  k=5, dz0.2 (d)  k=5, d=l 

"', 

. * 

: 

5 
.. -. 40 

'- -. -. 

.. : . 
25 

20 

: 
4 

: p 

( 
I -. .. 60 .. -. 

' , -. .. 50 .. 
a. 

.. ....-..- -. .. -. .. .. .:. . .. .. . .: . -: 
I U,g.-".."-' -..- --..-.. 

1 5 '  

-.._ -----.._._.._ I -.-._ - - - - - - - - - -L  

10 20 30 40 50 60 70 80 

.. 
, .- ._ .. .. -- -- .. ._ -I 

a .' .-. 
, +' I 

io 20 30 40 50 60 70 80 40 50 60 70 80 90 100 



(a) k-1, d-0.2 
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Figure B.7: Speedup versus number of processors, for s = 9 and c = 70, varying (k, d). 
The case examined here is the same as that of figure B.6, except that use of per-PE 
data interfaces is assumed to give a twofold bandwidth improvement over the sequential 
processor ( b  = 2). This provides a modest improvement for the smaller task set (b,d,f), 
but, for the larger task set (a,c,e), allows effective use of 16 processors at k = 5, i.e., with 
half the compute/load time ratio. 
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(a)  k = l ,  d=0.2 (b) k = l ,  d = l  

Figure B.8: The case examined here, s = 25, is that  of the smallest chip (in any gen- 
eration) having 1200 pins, and so being capable of having 32 PEs, each with their own 
off-chip memory . The chip is assumed t o  have complex processors (c = 500), with other 
parameters given their default values: N = 1000, m = 0, po = 0.9, q = 1, Q = 112. We 
see the effects of limited on-chip memory caused by the the large size of the processors. 
With the larger task set, not even P = 16 processors can be effectively used. 



(a) k=l, d~0.2 (b) k=l, d=l 

Figure B.9: Speedup versus number of processors, for s = 19 and c = 500, varying (k,  d). 
The case examined here is that  of a large current generation chip with complex PEs. Other 
parameters given their default values: N = 1000, b = 1, m = 0, c = 70, pa = 0.9, q = 1, 
Q = 1/2. The graphs suggest that  P = 16 processors is about optimal. For the larger 
task set, k = 10 is needed to  effectively use 16 processors. 
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(a)  k = l ,  d=0.2 

Figure B.lO: Speedup versus number of processors, for s = 42, varying (k,  d). The case 
examined here, s = 42, is that  of a next generation chip (0.18p), with very complex 
processors ( c  = 500). Other parameters given their default values: N = 1000, b = 1, 
m = 0, po = 0.9, q = 1, Q = 112. We see that  P = 32 - 48 is reasonable except for the 
larger task set, and the smallest amount of work per model (panel (a)) .  



Figure B.ll: Speedup versus number of processors, for s = 19, varying (k, d). The case 
examined here is that  of the current generation chip, with an order of magnitude fewer 
models in the model base (100 rather than 1000). Other parameters given their default 
values: c =  70, b =  1, m = 0, po = 0.9, q = 1, Q = 1/2. 



(a)  k = l ,  d=5 

Figure B.12: Speedup versus number of processors, for s = 19, varying (k, d). The case 
examined here is that  of the current generation chip, with small models (d = 5, i.e., 200 
bytes per model). Other parameters given their default values: c = 70, b = 1, m = 0, 
po = 0.9, g = 1, Q = 112. 



Figure B.13: Tradeoff of speedup with instruction memory size for P = 16 and P = 32. 
Abscissa is instruction memory size, in kB; ordinate is speedup. Other parameters given 
their default values: b = 1, pO = 0.9, q = 1, Q = 1/2, N = 1000, d = 1. 

16 kB of instruction memory per PE without affecting speedup, while larger or later 

generation chips can have over 64 kB. Chips with 32 processors must be non-minimally 

sized (s = 19,42), but then may have over 48 kB of instructions. 

B.8 Discussion 

In the simulations, the graphs of speedup versus number of processors have two general 

shapes. When Pall > 0, the graphs for all task distributions are linear from (0,O) t o  

(Pall, Pall) and constant from (P,,,,, k) t o  (00, k). They differ between (Pall,  Pall) and 

(P,,,,, k), with k modifying the shape slightly. Conversely, when Pall 5 0, the graphs are 

close t o  constant y = k, with small P in the range P = 16 - 32 optimal. 

These and the other graphs show that  there are essentially two regimes, with dramati- 

cally different behavior: one where all tasks can be preloaded, and one where they cannot. 

These two regimes are determined by the size of the task set and the amount of on-chip 



memory available t o  hold preloaded tasks. The former is application-specific, while the 

latter is a function of the architecture, especially the number and complexity of the PEs. 

The actual speedup value, and t o  a lesser extent the shape of the curve, are affected 

as well by k,  the amount of computation per task.  The parameters q, the ratio by which 

a single large processor is faster than a single PE,  and b, the bandwidth ratio between the 

parallel and sequential architectures, have simple linear effects on the speedup. 

Unsurprisingly, the quantization assumption, A = 0 mod P, is important for P = 
P,,,,, i.e. when few models fit in a PE's local memory. Larger numbers of PEs make it 

harder t o  (approximately) satisfy this assumption, so it suggests that  small P designs will 

be more general-purpose. 

We see that ,  when not all tasks can be preloaded, preloading is helpful mainly for 

random-hyperbolic, but this may be an important case as it corresponds t o  Zipf's Law, 

which describes the distribution of word models, and t o  other power laws. The essen- 

tial point is that  effectively the  entire task set must be preloaded for good performance, 

and that  extremely non-uniform task distributions such as the hyperbolic are needed if 

preloading the entire model base is t o  be avoided. 

I have generally assumed model bases on the order of 1 t o  5 megabytes in size. Smaller 

model bases allow greater parallelism, as they fit on-chip with larger numbers of PEs. 

However, speedup is very sensitive t o  having all models fit on-chip. Thus, a given design 

must be careful in choosing P t o  allow for the largest model base in its range of target 

applications. 

B .9 Conclusions 

One can distinguish three cases: 

1. If the entire task set fits on-chip, then linear speedup is obtained. Because of the 

tradeoff between on-chip memory and P E  complexity, this points in the direction 

of many small processors per chip. Figure B.l shows that  task set sizes of 1 t o  3 



megabytes may be reasonable. 

2. If the task set does not fit on-chip, and there is little work per task, the small k 

generally implies small parallel speedup ( 5  k) due t o  bandwidth limitations and 

area tradeoffs. In this case having many PEs per chip ( P  > k) is pointless. 

3. For any task set, if k is large one has parallel speedup up to  P = k ,  independently 

of the amount of area for preloading, as long as each PE's local memory can hold at 

least one task. 

The implication is that  if the task set does not fit on-chip, then, in general, having P > k 

is pointless. Thus achieving significant (order-of-magnitude) speedup from the parallel 

architecture requires a substantial amount of work per task, say k > 10. 

Recall that  k is the ratio of a task's computation time t o  the time it takes t o  load 

it. If this is measured in clocks or operations, the fact that  the time t o  load, a value 

of a particular size is probably 2-4 times slower than the time t o  perform an arithmetic 

operation on it. Loading a task means loading some number of 'values' (component, data,  

parameters, ...) for the task, each of which takes, say, 1 system clocks t o  load, hence 

(2 - 4)1 on-chip clocks. If operations take a single on-chip clock, then achieving a given 

value of k requires computing (2 - 4)lk operations per value. For example, with 32 bit 

values, and a 16 bit Rambus memory interface [Cri97] running a t  chip speed, achieving 

k = 10 requires 20 operations per value6 . If the Rambus runs a t  112 chip speed (say a 1.6 

GHz chip clock and a 800 MHz Rambus clock), this becomes 40 operations per value. In 

reality, these memory da ta  rates are maxima, and apply only when memory accesses are 

local t o  a column decode buffer, but none the less, achieving k = 10 is even more difficult 

than it might seem. 

'Pin limitations suggest a 16 bit per-processor memory interface (requiring 31 data and control pins) 
for a 32 processor chip. For upward compatibility, the Rambus interface has been designed to support a 
31 pin interface, although the mass market parts using Direct RDRAM have a 76 pin interface and do 
not multiplex data with addressing [Cri97]. A 76 pin interface precludes a 32 processor chip where each 
processor has its own path to memory. 



Speedup also depends linearly on q, comparative speed of the sequential processor, so 

that  while achieving k = 10 may take 20-40 operations per datum, achieving a speedup of 

10 might take (20 - 40)q. So minimizing q is also of the essence; generally, this points in 

the direction of using more complex PEs. 

My conclusion is that  there are two viable architectural possibilities: if the range of 

target applications allows each task set t o  fit entirely on-chip, then an architecture of 

many small processors may be preferred (there are other factors, such as Amdahl's law, 

that  may still preclude using many PEs). In all other cases, a few complex PEs will be 

preferred. 
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