
Parallelism in Contextual Processing

Paul Stephen Rehfuss

B.A., Reed College, 1975

M.A. University of Oregon, 1981

A dissertation submitted to the faculty of the

Oregon Graduate Institute of Science and Technology

in partial fulfillment of the

requirements for the degree

Doctor of Philosophy

in

Computer Science and Engineering

April 1999

The dissertation "Parallelism in Contextual Processing" by Steve Rehfuss has been

examined and approved by the following Examination Committee:

-- -
~ a i Hammerstrom
Professor
Thesis Research Adviser

Todd Leen
Associate Professor

Pieter vermeulen -
~ s s o c i a l e Professor

~ e l s b n Morgan
Professor
ICSI

Acknowledgements

Thanks t o Barak Pearlmutter for telling me about Rockoff's work, to T. Rockoff for

encouragement when it was needed, and t o Dan Hammerstrom, Todd Leen, John Moody,

and Emilie Kroen for all their support and encouragement. Thanks t o Ellen and the entire

CSE department for getting fed up and making me finish this.

. 2.7 Future work / questions 48
. 2.8 Conclusions 50

Models . 51
. 3.1 Irregularity 51

3.2 Feature extraction and grouping . 53

3.3 Matching techniques . 57

. 3.3.1 Ordered Input (Markov models) 58

. 3.3.2 Unordered Input (Graph Models) 62

. 3.4 Parallelism and Communication in Matching 76

. 3.5 Summary 78

. 4 Hardware 79

4.1 Introduction . 79

4.2 Simple processors . 80

4.3 VLSI measures . 82

4.3.1 VLSI trends . 82

. 4.3.2 Chip Architecture 84

. 4.4 Processors per chip 89

. 4.5 Processor-memory tradeoffs: exhaustive model matching 94

4.6 Microarchitectural trends . 95

. 4.6.1 Superscalar Architectures 98

4.6.2 VLIW and Vector Processing architectures 100

4.6.3 Implications of trends . 102

4.6.4 Competing design plans . 105

4.7 IRAM and Embedded DRAM . 110

4.8 Power and size issues . 113

4.9 Conclusions . 114

5 SFMD . 117

5.1 Overview of SIMD Architecture and Programming 118

5.2 The SPMD and SFMD Computation Models 119

5.3 Implementing the SFMD Programming Model 122

5.4 The SFMD Programming Environment ; 123

5.4.1 Translating SIMD t o SFMD . 123

5.5 Hardware Implementation and Hardware Cost 126

5.5.1 -4n alternative implementation of SFMD 128

5.6 Performance Improvement of SFMD versus SIMD 130

~

III

5.6.1 Analysis: sum-of-max vs max-of-sum. 132
5.6.2 Code Transformations for sum-of-maxversus max-of-sum 136

5.6.3 Summary 143
5.7 The Price of "No Communication" . 144

5.7.1 Communication Simulation. 145

5.7.2 Analysis 149

5.8 MiscellaneousDesign Issues. 155
5.9 Related Work. 156

5.9.1 Instruction Caching. 156
5.9.2 Other SIMD-MIMDhybrids. 157

5.9.3 Vision-specificDesigns. 159
5.10 Future Work. 159

5.11 Summary. 160

6 Conclusion .162
. .162
. . 165
~. . 165

. .165

. . 167

. .169

. .169

6.1 What Has Been Done. .
6.2 What Remains To Be Done. .

6.2.1 Practicalities.............................

6.2.2 The AsynchronousAutonomous Network.
6.2.3 Variance Reduction and Virtualization

6.2.4 Some Speculations on Cortical Models.
6.3 Final Words. .

Bibliography. .170

A SIMD HOVS pseudo-code. .186

B Exhaustive Search: The Effect of Bandwidth on Parallelism.192

B.1 Modeling. 193
B.1.1 Two forms of model matching. 194
B.1.2 Effects of preloading tasks. 196

B.2 Effects of DMA . 200

B.3 Asymptotic behavior of random. 202
B.4 Task Distributions. 204
B.5 Area Tradeoffs . 206

B.6 Speedup: some simplifications. 207
B.7 Simulations. 208
B.8 Discussion. 224

VI

B.9 Conclusions . -225

vii

List of Tables

2.1

2.2

2.3

PIN notation. .. 22

Forward recursions for HMM-likePINs. 25
Product formulae for HMM-likePINs. 26

3.1 Some systems using tree search matching. 70

4.1 VLSI Technology Trends - Description of fields. 85

4.2 VLSI Technology Trends. .. 86

4.3 Architectural Component Area. .. 87

4.4 Memory device size: "standard" processes. 88

4.5 Memory device size: advanced processes. 88

4.6 Nominal component sizes. .. 89

4.7 Chip pin limits on number of processors. 90

4.8 Minimum chip size for 16 processors with individual I/O 93
4.9 Minimum chip size for 32 processors with individual I/O 93

5.1

5.2
Expected maximum of sample from a normal parent. 134

Definitions for "no-communication" simulation. 148

B.1 Free parameters of the analysis, their types and constraints. 211

VllI

List of Figures

. 1.1 Recognizing an " R" 3

1.2 Range of parallel architectures, organized by increasing processor autonomy.

i.e., decreasing global control over the computation . The various terms are
. defined in the text 11

. 2.1 HMM-like PINS 23
. 2.2 Comparison of HOVS, stack decoding and exhaustive match 41

. 2.3 Performance of HOVS on training and test sets 43
. 2.4 Performance of HOVS and stack decode on training set 44

2.5 Average number of state sequence extensions per word, for stack decoding . 46

. 3.1 . Stages of visual recognition systems 63

. 4.1 Processors per chip versus memory per processor 91
. 4.2 Maximum processors per chip with SRAM 96

4.3 Examples of speedup a s a function of the number of on-chip processors . . . 97

4.4 Effectiveness of superscalar execution: integer 100

4.5 Effectiveness of superscalar execution: floating point 101

. 5.1 Example SFMD implementation 127
. 5.2 Sparse matrices: speedup vs . sparsity 133

5.3 Representative graphs of (S U M M A X) / (M A X S U M) for normal and uniform
. distribution 136

5.4 Graph of lower bound for (S U M M A X) / (M A X S U M) for gamma distribution 137

. 5.5 van Hanxleden's loop flattening transformation 137

. 5.6 Loop flattening: sparse matrix . dense vector code 140

. 5.7 Loop flattening: sparse matrix . sparse vector code 141

. 5.8 speedup of Interpretation Tree Search 143
. 5.9 message passing 147

. 5.10 # (p) in two regimes 153
5.11 Simulation results compared to analytic lower bounds 153

A.1 SIMD HOVS pseudo-code, IHI = P. 188

A.2 SIMD HOVS pseudo-code, IHI 2::P. 189
A.3 SIMD HOVS pseudo-code, IHI < P. 190

A.4 SIMD HOVS pseudo-code, IHI2recursion variables. 191

B.1 Pall for some nominal architectural values. 209

B.2 Pnonefor some nominal architectural values. 210

B.3 "Generic" and quantized speedup curves. 213

B.4 speedup curves for default parameter values. 214

B.5 speedup curves for large computation/model ratio, k 215
B.6 speedup curves for s = 9, c = 70 217

B.7 speedup curves for s = 9, c = 70 and b = 2 218

B.8 speedup curves for s = 25,c = 500 . 219
B.9 speedup curves for s = 19,c = 500 . 220
B.10 speedup curves for s = 42 and c = 500 . 221
B.ll speedup curves for s = 19 and N = 100 222

B.12 speedup curves for s = 19, d = 5 . . 223

B.13 tradeoff of speedup with instruction memory size. -. 224

x

~

Abstract

Parallelism in Contextual Processing

Paul Stephen Rehfuss

Supervising Professor: Dan Hammerstrom

In this dissertation, I study the use of context in sensory processing, and specifically,

cost-effective parallel implementations of contextual processing. Taking contextual infor-

mation t o be represented in the form of discrete, compact models, application of contextual

knowledge then occurs as models are matched t o input. Model-matching occurs a t the in-

terface between bottom-up classification and feature extraction and topdown modeling

and interpretation. Bottom-up classification and feature extraction can be well supported

by cost-effective parallel hardware. The central thrust of this dissertation is t o show how

such parallel hardware can be inexpensively modified t o support model-matching, thus

extending its range of applicability.

For contextual processing of ordered input, I derive "Higher Order Viterbi Search

(HOVS)", a Markov approximation t o Viterbi search using higher-order source models.

Simulations show HOVS captures most of the benefit of using higher order source models,

while being more time and space efficient. I give an SIMD implementation of HOVS, and

discuss some restrictions on the source model required for a practical implementation.

r

From analysis of algorithm requirements and VLSI trends, with area as cost measure,

I derive a cost-performance model for on-chip parallelism. I conclude that for the applica-

tions considered, there are only two viable architectural alternatives: if the required system

memory fits on-chip, using many simple processors may be preferred. Otherwise, off-chip

bandwidth limitations imply an architecture of a few complex processors.

I introduce the SFMD class of parallel architectures, extending SIMD processing to

better handle the irregular, data-dependent computation typical of contextual processing.

SFMD extends SIMD processing by giving each processing element separate control within

small loop bodies. The extra processor complexity is modest. To prese~ve SIMD semantics

and programming simplicity, interprocessor communications may complete only after all

processors have synchronized at a barrier.

When area cost is not considered, SFMD is outperformed by an SPMD architecture

on tasks with sparse communication and highly varying computation times. When com-

munication is not too sparse, the ability of SFMD to allow more processors on a chip may

compensate. Variance reduction techniques may also decrease the performance gap.

XII

l

Chapter 1

Introduction

"contezt: The whole structure of a connected passage regarded in its bearing

upon any of the parts which constitute i tn ... Oxford English Dictionary

The overall topic of this dissertation is cost-effective hardware for the recognition of

objects from sensory data, for such tasks as speech recognition, handwriting recognition,

and image understanding. The specific problems addressed are how to perform contextual

processing on current cost-effective parallel hardware designs for sensory processing, and

how to extend these designs to better support contextual processing.

Sensory processing involves multiple stages of processing, moving from the data itself

to "higher level" constructs of a more symbolic nature, such as individual pixels to a set of

strokes comprising an "R". Processing in the stages closest to data may depend only on the

data itself, but a t some later stage, contextual effects come into play. Hardware suitable

for the earliest stages of processing, those closest to data, already exists [Hamgo, AJ97,

WAKf 961 but, I will argue, processing that involves context can make use of additional

capabilities not found in these designs. Specifically, contextual processing will benefit from

better support for data-dependent control pow. Analysis of current technology trends

indicates that the needed support can be provided for a reasonable cost, around one

percent of the area of a modest sized chip.

Examination of algorithms with data-dependent control flow, both for sensory pro-

cessing, such as Interpretation Tree Search [GriSO], and of a more general nature, such

as sparse mat rix-vector multiplication, shows a substantial benefit from the additional

support i n many cases, frequently giving a performance boost by a factor of 1.5 - 2 over

an otherwise equivalent design using current techniques.

In order to elaborate on the suggested solution, I must formalize contextual process-

ing, determine the computational requirements of such processing, and see how to cost-

effectively extend existing parallel hardware to support such processing. So what is context

and how is it used in recognition?

1.0.1 Example

As an example of the kind of tasks of interest, consider figure 1.1, illustrating the process

of recognizing a hand printed "R". Data (pixels) are organized into features (st.rokes) via

edge recognition, construction of connected components, and so on. These operations

take place bottom-up, the assignment of a given pixel to a feature object involving only

operations on pixel values in a local neighborhood of that pixel. Features such as strokes

have attributes, such as direction, length and curvature. Features are grouped into sets

hypothesized to belong to a single superobject (corresponding, say, to an "R", or some

other letter). This may be driven bottom-up, by grouping, say, adjacent features, or top-

down, by using information contained in a model of the superobject. While they may

be hierarchical, in general, a t some level, models correspond to symbolic interpretations

of the data (e.g., "R"). Structural models, as shown in the example, have a number of

parts or components; in the illustrative model for "R" shown in the figure, these are

"stem", "bowl" and "descender". When the model is related to the data, each of these

components is matched to some feature (or submodel). Components have attributes (slots)

that correspond to attributes of the features to which they are matched. For example,

the "stemn component might have a "length" attribute, giving the length of the matching

stoke feature. Models contain information about the inter-relationships of components and

about the values of components' attributes, in the form of constraints on allowable values,

for example, that "descender" is angled at about 45 degrees with respect to "stem". Models

can be hierarchical, so that components can correspond either to sub-models or to features.

Models

Features

Pixels

model for "P" model for "R"

Figure 1.1: Recognizing an "R".

The process of putting a group of features into correspondence with the components of a

model, and checking feature attributes against model constraints is referred to as model

matching. As features are put into correspondence with components, attributes of the

features determine attributes of the components and the model, thus (partially) "filling

in" or instantiating the model by setting or constraining some of its parameters. These

other, hypothesized, features can then be sought in an associative lookup process, finding

features based on their location and on other attributes, such as angle of the stroke from

vertical. When features corresponding to those suggested by the model are found, other

inter-feature relationships and constraints specified by the model can be checked to verify

the interpretation. This may again involve finding features by associative lookup.

With respect to figure 1.1, this topdown model-matching might proceed as follows:

when a given feature is hypothesized to belong to an " R , a model for "R" is be used

to make predictions about the relative location and shape of other features belonging to

that "R". Perhaps the "stem" stroke is processed first: a stroke feature is hypothesized

to correspond to the "stem" component of an "R". Information in the model for "R"

then might suggest ranges of values for the size, orientation and location attributes of the

"bowl" so that the top ends of the "bowl" and "stem" are close, and the lower end of

the "bowl" is near the midpoint of the "stem". A stroke having these properties is then

sought. If a satisfactory candidate is found, the meeting point of the "bowl" and "stem"

stroke then suggests ranges for attributes of the "descender", and so on.

Of course, there are likely to be competing hypotheses about the grouping and inter-

pretation of a set of features: "does this stroke come from an 'R' or a 'P' ? " Here further

context can come into play from higher level word and language models: perhaps the word

"Rent" makes more sense in the current passage than does "Pent", and so "R" is a more

likely interpretation than "P". Thus the matching process may be hierarchical. Finally,

note that there are models without a geometric character, for example, Hidden Markov

Models (HMMs) and pronunciation models in speech recognition.

1.0.2 Recognition: the interplay of data and models

In the view exemplified above, recognition is an interplay between da ta and interpreta-

tions, mediated by the constraints contained in models. Bottom-up. recognition involves

extraction of (possibly hierarchical) features from the data. Top-down, it is a process

of hypothesis construction, refinement (instantiation) and verification, driven by current

(hypothetical, partial) interpretations, including prior knowledge, and constraints imposed

by a (hypothesized) model. In the interplay between bottom-up and topdown processing.

data may suggest groupings and possible models, while hypothesized models may suggest

both possible groupings of existing features, and also other features t o be sought. Based on

this view, context can be formalized as the implications of a partially instantiated model

about the values of the model's components' attributes, these implications being derived

from the model's constraints. Thus both data and existing interpretations give rise t o an

hypothesis about a particular model being in correspondence with that data, the data also

refining or partially instantiating the model. This partially instantiated model then is the

context within which further interpretation of data occurs.

Features

Some examples of feature extraction techniques are: one- and two-dimensional convolu-

tional filtering, extraction of spectral coefficients, thinning and edge finding, and construc-

tion of hyperpixels [GW92]. From these, we see that features are generally constructed

from data in a neighborhood that is local in time or space. Also, t o construct a given

feature, typically the same processing is done on each neighborhood, and independently

of other neighborhoods, t o that features for different neighborhoods can be constructed

in parallel. The main point, though, is that feature extraction proceeds bottom-up from

the data, independently of any interpretation of that data, and so independently of any

context.

Models

Models represent hypotheses about the interpretation and generation of data, for example.

"this set of pixels comes from someone writing an 'R"'. In this dissertation, I am concerned

with structural models, that describe an object in terms of parts or components, and in

terms of relationships between attributes of its components, or constraints. For example,

the model for "R" shown in figure 1.1 has three components, describing strokes for the

bowl, stem and descender, and (not shown) would also specify constraints about the

relative size and position of the three components.

I am interested in structural models for several reasons: structural models decompose

the relations between objects into manageable and efficiently computable pieces, structural

models are commonly used both in speech and vision recognition, and, most importantly,

structural models embody the notion of context.

Structural models provide a topdown conditioning influence on the interpretation of

the da ta corresponding t o their components. A pa.rtial!y matched model can have impli-

cations for the existence, class, temporal or geometric location, or other attributes of its

unmatched components. The model may thus influence the grouping of components; it

may be used t o improve the classification of components, especially when the implications

are probabilistic; or, when implications involve location, the model may be used in orga-

nizing search and selecting data neighborhoods for attempting t o match any unmatched

components. Models used t o organize search in this way are sometimes referred t o as

active models in the vision literature [BCKMSO].

There are several uses for the knowledge contained in structural models: In recogni-

tion, models are matched t o find the type (or label) of an object. Models may be passive,

so that the algorithm directs the matching process, or active, where the model contains

information t o direct the search, such as a search order for components In correction,

models provide context for classification of their components. The set of all models, or

model library, is used to generate a source model for components. A source model is

useful when the library is incomplete (e.g., when novel words may be encountered in text

or speech recognition). In grouping or segmentation, one determines which features be-

long t o the same object. Segmentation happens more or less implicitly in the matching

process. Object boundaries may be derived explicitly from the da ta as certain kinds of

features, feature-based segmentation, or may be determined implicitly as the matching

process groups features as parts of the same object, recognition-based segmentation. Fi-

nally, in registration, once an object is matched t o a model, the model may be used to find

various parts of the object. I will look only a t recognition and correction and grouping,

viewing registration as involving only a single model.

As processes, model matching is distinguished from simple labeling or classification.

The latter just gives a probability distribution over model labels (classes), it does not use

implications about components for any purpose, and hence it does not involve contex-

tual processing. As an example, consider classification by nearest-neighbor feature vector

matching t o a set of classes prototypes, for example, when the features are pixel values,

template (correlation) matching of images. Prototypes are not usually thought of as mod-

els in the sense of this thesis: the result of matching is simply the winning prototype or

its class label, and any implications for the values of components is ignored. One could,

however, get something like our notion of model matching behavior from prototypes. Con-

sider the set of vectors, Sp, "belonging" t o a given prototype, P, i.e., the vectors which

are closest to that prototype. This set of vectors defines a joint density, Dp, over the

values of the vector elements. Each prototype corresponds t o a model, Mp: the models

have identical structures, with one component for each dimension of the space. Each com-

ponent has a single attribute, its value. The models, M p , differ in having different joint

densities, D p , over the values of their components' attributes (i.e., over the values of the

elements of vectors in Sp). With this setup, one could get model matching behavior, for

example, by projecting a vector, u, onto the subspace of components with "adequately

determined" values, find the nearest (projected) prototype, P , and using the probability

model, D p , associated with the prototype's class t o estimate or correct the values of the

inadequately determined components of v.

Model matching and grouping are ubiquitous processes that occur a t the meeting place

of topdown and bottom-up sensory processing. Models modularize a priori knowledge

and its topdown application. It is possible that , even with a "cortical?? processing model,

involving activation within a uniform matrix of neuron-like elements, models may reap-

pear as recurring patterns of activation, and computational support for simulation of the

cortical model may also need to support model-matching and grouping kinds of tasks.

The conclusion is tha t support for grouping and model matching is of great importance

for machines for sensory processing.

1.0.3 Computation

Feature extraction typically involves regular computation: the control flow for processing

each data element is the same. Feature extraction occurs bottom-up, so any "context"

used is other data, not (partial, data-dependent) interpretations. Furthermore, which

other data elements (if any) t o use is known in advance: generally these are adjacent

data in one or more dimensions. Some examples of features involving adjacent da ta are

differences or rates of change, filters computed over neighborhoods, and hyperpixels. These

examples, and feature extraction in general, involve performing the same computation for

each data element, over data whose location is typically known in advance and can be

incorporated into the code for the algorithm. Thus, in feature extraction, the control flow

for processing each da ta element is typically the same, and the computation is regular.

A second point is that the processing for feature extraction can frequently be performed

independently on each da ta element.

Conversely, model matching typically involves data-dependent control flow. At a given

point in processing, only some of the components of the model may have been matched

t o the data. The model's relations between these (hypothesized) components, and yet

unmatched ones, may suggest features to be sought and processed. Thus the flow of

processing of the model depends on the results of processing and matching so far, and on

the structure of the model itself, and hence is data-dependent. Further, the features are

sought according t o values of their attributes, in an associative lookup process. typically

involving indexes of various kinds, and traversing such da ta structures also involves data-

dependent control flow. In the processing illustrated in figure 1.1, after, say, the stem

stroke is hypothesized to be part of an "R", the next step might be t o search for the

descender, by seeking a stroke with approximately the right location, length and angle.

Satisfying such queries for objects with features in some specified range typically involves

traversal of a tree-based index. Thus an important difference between computation in the

topdown, model-matching part of recognition, and computation in the bottom-up part,

is data-dependent control flow. However, like bottom-up feature extraction, the matching

of one model to a group of features typically proceeds independently of the matching of

other models to that group. Model-matching thus involves multiple independent irregular

computations, each with control flow determined by its model, the da ta it has seen so far,

and the interpretations that have been made of that data.

I have noted that features extracted from different neighborhoods can typically be

constructed independently of one another. Similarly, matching different models t o the

same group of features is also independent (prior t o any intermodel competition). As

well, associative lookup of different features, or the same feature by different attributes

(in different indexes) occurs independently. Thus feature extraction, associative lookup,

and model matching are potentially parallelizable.

The fundamental computational requirements of the feature extraction, grouping, and

model matching stages of sensory processing must be isolated, in order t o design machines

for sensory processing that are as simple and general purpose as possible. The preceding

discussion has highlighted the fact that executing the code for a given processing task is

typically performed many times. Extracting a given feature from a neighborhood is done

for many neighborhoods, looking up a feature by its attributes can be done independently

for all indexes used in the lookup, and matching models t o groups of features can be

done for many models and many groups. So a large amount of computation is needed.

Furthermore, the multiple computations are independent, and so parallel execution is a

natural way of meeting the computational demand.

However, while extracting a feature typically proceeds with predetermined flow of

control through the code for the task, both associative lookup and model matching involve

data-dependent execution. Current parallel architectural designs for sensory processing

[Hamgo, AJ97, WAK+96] typically are optimized for feature extraction, and hence for

executing codes without data-dependent control flow. To extend these designs to support

a wider range of sensory processing tasks, including model matching, support is needed

for data-dependent execution. I therefore take cost-effective support for parallel data-

dependent execution as my key goal in extending current parallel sensory data processing

designs.

1.1 Parallelism

To proceed, we need some background about types of parallelism and parallel architectures.

1.1.1 Types of parallelism

The notion of parallelism is that of concurrent execution: different pieces of a task being

performed simultaneously by distinct entities. From the entire set of instructions for a

task, some can be done simultaneously: two instructions can be executed a t the same

time if the data used by one is unaffected by the other, and vice versa, that is, if the two

instructions have no dependencies.

Several types of parallelism can be distinguished: In inter-task parallelism, such as

pipelining or communicating sequential processes, instruction dependencies are managed

by explicit communication between distinct sequential tasks. In instruction level p a d -

lelism (ILP), the technique used by contemporary processors, a stream of instructions is

analyzed to find non-dependencies allowing some instructions in the stream to be per-

formed simultaneously. More specialized, but still very common, especially for sensory

processing, are data parallelism, where a single program operates on multiple independent

data partitions, and knowledge pamllelism, where multiple pieces of knowledge (models)

are applied t o a single piece of data1. Here non-dependence of instructions is inferred from

the fact that they are acting on entirely separate sets of data. Model matching algorit,hms

are typically either data- or knowledge- parallel. or both, and these are the forms of paral-

lelism on which I will concentrate. The utility of da ta parallelism for the earlier stages of

sensory processing is well established. I will examine the potential for extending parallel

hardware t o knowledge parallelism and the model matching stage.

partitioned ALU

VP / SIMD

processor
autonomy

SFMD

local conditional execution

local addressing

local branching

SPMD / MlMD local control of IPC

V

Figure 1.2: Range of parallel architectures, organized by increasing processor autonomy,
i.e., decreasing global control over the computation. The various terms are defined in the
text.

1.1.2 Parallelism: feature extraction, grouping and models

Let us relate these types of parallelism t o the tasks discussed previously, in more detail. In

feature extraction there is generally regular computation and communication, and inde-

pendent and identical control flow, thus current architectures targeted a t da ta parallelism

provide cost-effective support for these computations.

For grouping, the main task is associative lookup, and potential parallelism comes

from traversing multiple indexes for one or more feature. When extending a data-parallel

'There is a sort of "duality" between knowledge and d a t a parallelism: if one views multiple models as
instantiating multiple "algorithms", then knowledge parallelism applies multiple algorithms to single data,
while da ta parallelism applies a single algorithm to multiple data .

architecture to handle grouping, an important point is that the data may be distributed

among the multiple processors. This is the reason there may be multiple indexes t o be

traversed for a given lookup - there may be an index local t o each processor. indexing the

da ta of that processor. Traversal of, say, a tree-based index involves evaluating conditions

a t the nodes of the tree and using the result t o either stop or t o select the next node

to examine. This implies data-dependent control flow, choosing between stopping and

continuing t o traverse the tree. However, traversing the indexes on separate processors

can be done independently, in parallel, requiring communication only when a satisfactory

solution is found. Also, the same computational kernel is executed on each processor in

processing each node. So support for parallel execution of data-dependent computational

kernels, as will be seen t o be needed for model matching, will also benefit grouping.

There are three ways one might parallelize matching a structural model. In model

pamllelism, (some set of) entire models are matched in parallel, independently of one

another. This gives a coarse-grain, "trivial" parallelism. Evaluating a model on a processor

proceeds independently of the evaluation of an alternative model on another processor,

and model evaluation involves data-dependent control flow based on the data seen and the

model structure, so, as for grouping, what is needed is support for parallel execution of

data-dependent computational kernels. Discussion of this form of parallelism, and support

for it make up the bulk of this work, chapters 3, 4 and 5, and appendix B.

In node parallelism the individual nodes of a single model are matched or evaluated

in parallel, and then the interrelations between them are computed or propagated. The

irregular interrelation between nodes makes this problematic: there is a high communica-

tion t o computation ratio, and likely an irregular assignment of da ta to processors, both

of which tend t o diminish the advantages of the parallel evaluation. "Clumping" multiple

nodes t o a single PE may convert this to something like model-parallelism, but problems

of irregular communication and data assignment remain. I do not examine this form of

parallelism in this work.

Finally, in state pamllelism all nodes have the same set of states (attributes). Parallel

execution occurs by evaluating states (determining attribute probabilities) in parallel. This

appears an unusual case, but gives a fine-grained parallel approach to recursive. Hhlhl-like

models. I discuss this in chapter 2.

1.1.3 Parallel architectures

Somewhat loosely related t o the varieties of parallelism listed above are the various types of

parallel architectures. In Single Instruction Multiple Data (SIMD) architectures. multiple

processing elements (PEs) execute a single shared stream of instructions to process indi-

vidual streams of data. Each instruction is executed simultaneously on all PEs, so-called

lockstep execution. To accommodate branching and conditional execution, instructions

are distributed first for one branch of an "if" statement, and then the other branch, with

PEs only performing the instructions for one branch, and being turned off or otherwise

ignored for the other. SIMD architectures are optimized for da ta (and, dually, knowledge)

parallelism, with lockstep execution providing a substantial cost savings in that instruc-

tion handling is shared between all processors, allowing the individual processors t o be less

complex and so less expensive. A Vector Processor (VP) is a kind of SIMD architecture,

where the lockstep execution of a single instruction on multiple da ta streams is formulated

as a single operation on a vector of data. A very simple form of vector processing is used

in a number of contemporary microprocessors (e.g., [Lee95]), where, say, a 32-bit adder

can be partitioned t o add a pair of 32-bit words, 2 pairs of 16-bit words, or 4 pairs of 8-bit

words.

Multiple Instruction Multiple Data (MIMD) architectures have multiple PEs executing

individual streams of instructions to process individual streams of data. This embodies

general inter-task parallelism, although, due t o its generality, it can be used for data

and knowledge parallelism as well. The typical application of MIMD architectures t o

da ta and knowledge parallelism is by Single Program Multiple Data (SPMD) execution,

where a single program executes on all PEs, each with different data. Due to branching,

different PEs see different instruction streams, and there is no requirement of lockstep

execution. Current superscalar microarchitectures embody instruction level parallelism.

These microarchitectures contain multiple functional units (FlTs), such as multiple in-

teger adders or multiple floating point multipliers. In operation, multiple instructions

from a single instruction stream are dispatched simultaneously t o the multiple functional

units, depending on compile time and run time detection of non-dependencies between

the instructions. A recently developed variant of superscalar execution, Simultaneozrs

Multi-Threading (SMT), allows the instructions dispatched a t a given time t o come from

multiple instruction threads TEE^^^]. The processor maintains multiple program coun-

ters, sharing other resources between the executing threads. This flexible and cost-effective

strategy rather blurs the line between a single processor with multiple functional units,

and a multiprocessor.

In this thesis, I introduce the Single Function Multiple Data (SFMD) architecture

class, intermediate between SIMD and MIMD processing. SFMD architectures extend

SIMD processing to better support tasks with data-dependent control flow, by relaxing

the SIMD architectural requirement for lockstep execution. Figure 1.2 arranges some of

these architectural alternatives along a spectrum of increasing processor autonomy. In an

SIMD-like parallel architecture, some things are done globally, such as the distribution of

instructions t o the individual processors, by a host or control processor. Other things are

done locally by the individual PEs. "Processor autonomy" refers t o this global / local

distinction, and specifically to how much is done locally. With local conditional execution,

individual PEs determine which branch of an if statement they will execute; without it, the

global processor determines this and sets or distributes a global mask vector to suspend

execution for PEs not performing a given branch. With local addressing, individual PEs

compute the memory addresses they will use, while without it this is done by the global

processor. SFMD processing increases processor autonomy and decreases global control

by breaking lockstep execution and letting individual PEs have control over some of the

branching within their individual instruction streams. However, in order to keep the

simple semantics of SIMD execution, communication between processors is restricted t o

only occur during phases of global lockstep execution. Full-fledged SPMD or MIMD

relaxes this last notion of global execution by allowing individual PEs t o communicate a t

any time, with local control of interprocessor communication (IPC).

We will see that the added cost of adding SFMD execution t o an SIMD design is

minor: the hardware cost will be perhaps one percent of chip area in the near future.

while programming complexity remains the same. Moving t o full-scale SPMDIMIMD es-

ecution, however, introduces the full range of parallel programming complexities. As to

performance, I will show SFMD execution giving a substantial (1.5 - 2X) performance im-

provement over SIMD execution on several tasks exhibiting data-dependent control flow.

SPMD execution will outperform SFhiID execution on tasks with highly variable inter-

processor communication, but this can sometimes be ameliorated by averaging out the

communication variability, arranging the SFMD computation so that many communica-

tions are saved up during a "computation phase" and then executed in a "communication

phase".

As t o actual hardware for sensory processing, the CNAPS processor [Ham901 is an

archetype for the type of parallel hardware I am thinking about. CNAPS is a highly

cost-efficient SIMD architecture that puts 16 small DSP-like PEs on a single chip. These

PEs each have a small (4KB) private memory they can address independent of each other.

Instructions are fed t o the PEs from off-chip. The PEs can individually decide not to

participate in an instruction, depending on their private data. Access t o external memory

is shared among the PEs through a bus. There is hardware support for finding the P E

holding the maximum value of a particular register ("parallel max7').

1.2 Overview of the dissertation

Chapter 2 discusses the case of "ordered" input, where there is a natural ordering on the

matching of model components with data. The archetypal example is matching Hidden

Markov Models (HMMs) in optical character or speech recognition. The natural ordering

gives rise t o efficient dynamic programming implementations of the matching process. A

reasonable view of context is then t o condition probability estimates of the current input on

previously classified inputs. These conditional probability estimates may be constructed

using source modeling techniques.

It has recently been shown that HMMs are special cases of "probabilistic independence

networks" (PINS) [SHJ97]. Using the PIN framework, I discuss how to integrate classifier

outputs, viewed as probability estimates, with source models derived from sets of word

models. I derive Higher Order Viterbi Search (HOVS), a first-order Markov approxima-

tion t o (the PIN generalization of) Viterbi search using higher-order source models. By

simulation, I show that HOVS captures most of the benefit of using higher order source

models, while being more time and space efficient than some reasonable competitors.

The PIN models are recursive, with each node having the same set of states, and one

can make use of state parallelism. I give an SIMD implementation of HOVS, and discuss

some restrictions on the source model required for a practical implementation.

Chapter 3 overviews the use of models for unordered input, specifically in vision al-

gorithms. It looks a t a variety of model-matching and grouping algorithms, and extracts

some general characteristics relevant t o parallelization:

1. feature grouping (object hypothesis generation) involves construction and traversal

of irregular data structures such as lists and trees,

2. model matching algorithms exhibit irregular control flow mediated by the data

and/or model,

3. most model matching and feature grouping algorithms are simple, with computa-

tional complexity coming from applying a small code "kernel" many times, and

4. model search and indexing techniques are "imperfect", in the sense that they gen-

erally restrict the number of models t o be matched, but not to a single candidate.

The implications of these characteristics are (i) SIMD execution will sustain substantial

performance degradation on these algorithms due to data dependent execution, (i i) only

branching within a small kernel is important for performance, and (iii) there is model-

parallelism to be exploited.

Chapter 4 reviews current technology trends with respect t o VLSI, microprocessor

architectures, and parallelism. The purpose is t o describe the relevant factors and provide

some reasonable numbers for measuring cost and performance. One conclusion of the

chapter is that , with decreasing process size and concomitant increase in the number

of objects that can be put on chip, adding complexity and functionality t o processors

is relatively inexpensive in terms of silicon area used. However, the more important

conclusion from this review is that off-chip I/O bandwidth will be the most limiting

technological factor in future microarchitectures.

Using area as the measure of cost, I derive a cost-performance model for on-chip

parallelism for a class of architectures consisting of multiple processing elements per chip,

each with some amount of private memory. The task for the architecture is assumed t o

be decomposable into a large number of independent subtasks, each of which first fetches

some data and then processes it. The da ta may be fetched either from the processing

element's private memory, or from off-chip. The subtasks are independent in that they

can be executed without interprocessor communication. This task generalizes that of

independently matching a large number of models t o the data. The essential result of

the chapter is that on-chip parallelism is fundamentally limited by the I/O bandwidth

across the chip boundary. Effective parallelism degrades quickly as off-chip I/O is needed,

unless the off-chip I/O bandwidth scales with the number of processors on the chip. One

implication is that increasing chip area will result in not in adding more processors t o

the chip, but in making the individual processors more complicated, or in adding more

per-processor memory.

The important conclusion is that , for the applications I consider, there are only two

viable alternatives: for on-chip parallelism in the near future, if the range of target appli-

cations allows each model set t o fit entirely on-chip, then an architecture of many small

processors may be preferred, for its increased parallelism. This could be a vector proces-

sor or another SIMD architecture. where the simpIicity of the individual processors allow

many t o be put on a single chip. In all other cases, bandwidth limitations imply bhat a

few complex PEs will be preferred. In particular, a "middle ground" of many processors

on a chip, each with external rather than on-chip memory, will not be viable, due to mem-

ory bandwidth limitations. With the coming practicality of embedding logic in a DRAM

process, a design with all models on-chip is feasible and I henceforth concentrate on such

designs, feeling that a design with a few complex PEs will be too close to a mainstream

processor for economic viability.

Chapter 5 introduces and evaluates the Single Function hilultiple Data (SFhlD) class

of parallel architectures, targeted toward extending SIMD processing to better support

irregular computation and sparse communication, as is shown t o be typical of model

matching and feature grouping algorithms in chapter 3, and targeted toward designs with

many relatively simple processing elements, as suggested by chapter 4.

SFMD extends the SIMD class by giving each processing element its own program

counter and a small instruction memory, allowing separate control for within small loop

bodies. The extra processor complexity is quite modest, on the order of one percent

additional chip area, so that many processors will still fit on-chip. To preserve SIMD

semantics, interprocessor communication is allowed t o complete only after all PEs have

synchronized. Preserving SIMD semantics keeps the programming and debugging simplic-

ity of SIMD code given by its lack of race and deadlock conditions. However, compared t o

SIMD execution, the independent branching allowed by SFMD gives better performance

on tasks with data-dependent execution, such as model matching, index traversal and

sparse matrix computations.

Conversely, SFMD is outperformed by an SPMD architecture on tasks with sparse com-

munication and highly varying computation and communication times. I derive a s y m p

totic formulae bounding the speedup of SPMD over SFMD in a fairly general setting.

Simulations show that the formulae give reasonable approximations in non-asymptotic

domains. The analysis implies that when communication times are not too sparse, the

performance gap between SFMD and SPMD may be counteracted by averaging out task

and communication time variation, by performing multiple tasks between phases of multi-

ple communications. In any case, SFMD outperforms SIMD on these kinds of tasks, and

can extend the range of an existing SIMD design into the realm of tasks with irregular

control flow a t small cost, either in hardware, programming, or programming environment.

Chapter 2

Context for ordered input

2.1 Introduction and Goals

In this chapter I look at applying contextual information within a single "large" model.

As always, the "context" used is the set of current interpretations of other components

of the model. I assume that components of the model are interpreted sequentially, as

for the interpretation of ordered input such as text or speech. Thus I wish to use the

interpretations of previously evaluated components t o better the interpretation of the

current one. As interpretations are probabilistic, this leads t o the use of a variable-order

Markov source coding model for the sequence of component states.

As there is a single model, we are not interested in inter-model comparisons, but

rather the interpretations of the components themselves. Thus, the task I examine is that

of finding the most likely states of the components of the network, given some observations.

For speech, this would correspond t o finding the most likely phoneme or word string within

a single HMM.

My definition of context implies that we look a t situations where components' states

are context-dependent, not where observations are. Context-dependent observations are

appropriate for situations involving observation process phenomena analogous to coar-

ticulation in speech (even though the HMM formalism used in speech assumes context-

independent observations). The assumption of context-independent observations is rea-

sonable for such domains as OCR and genome sequence modeling. The use of state-based

context t o improve classifier performance is appropriate, as we shall see, for constructing

"unknown word" models and for improving classifier performance on novel (or unmodeled)

words.

A further goal is to combine contextual information with a classifier, such as an MLP,

t o improve the classifier results. I take the usual interpretation of classifier outputs as

conditional probabilities (e.g., [HPgO]). We can then look a t the single large model as

a mechanism for integrating contextual information about likely state sequences with

probabilistic information given by a classifier about the state values implied by the classifier

inputs.

Given a single large model, parallelism is over evaluation of either nodes or states. Here,

the ordered evaluation of the components precludes node parallelism, and we look a t fine-

grained parallelism over states. The fine-grained nature of the parallelism leads us t o look

for low-overhead "regular" algorithms; in particular I develop a dynamic programming

recurrence, Higher Order Viterbi Search (HOVS), suitable for SIMD implementation.

This chapter first reviews Probabilistic Independence Networks and their relation t o

HMMs as background for the definition of HOVS. I then define HOVS and talk about the

relation t o source modeling. Next, an SIMD implementation is given and its space and time

complexity shown. Finally, I discuss the results of simulations comparing HOVS, simple

Viterbi search, the more exact "stack decoding", and exhaustive per-model evaluation.

2.2 Background

The HOVS algorithm was originally developed independently of the Bayesian Networks,

or Probabilistic Independence Networks (PINs) as they are now known [SHJ97]. However,

HOVS is clearly related t o Hidden Markov Models (HMMs), which are now known t o be

special cases of PINs [SHJ97], and the PIN formalism is a useful formalism for discussing

HMM-type algorithms. Table 2.1 gives some notation that will be used in discussing PINs.

Table 2.1: PIN notation

number of values of a discrete random variable
hidden state variable
observable state variable
value of a hidden state variable
value of an observable state variable
conjunction or "path" of values, x: {x,, . . . x,)

I concatenation of paths x, - X Y + ~ = x:
"mutual likelihood" of between x and y,

4 2 ; Y) = P (x ~ Y) / P (~) = P (Y ~ x) / P (Y ~

2.2.1 Probabilistic Independence Networks

PINs provide a graphical formalism for expressing conditional independence assumptions

about a set of variables, allowing the joint distribution t o be factored into a product

of conditional distributions1. Graphically, there are two formalisms for PINs, based on

either undirected graphs (UPINS) or on DAGs (DPINs). I will use the directed graph

formalism as it is somewhat simpler to describe; traditional Bayesian Networks use the

DAG formalism. In a PIN graph, nodes correspond t o variables, and arcs to conditional

dependence assumptions. Arcs in a DPIN represent dependence in the following way: a

node is conditionally independent of its ancestors given its parents. Thus, for example, in

figure 2.1 (a) each Ot is conditionally independent of all other variables, given Ht. This

turns out t o imply that the joint distribution over all variables can be written as a product

of "local" distributions:

where pa(xi) denotes the parents of node xi, and xi denotes the conjunction of variables

{xi, x;+1, . . . , xj), for any (time-indexed) variable xt. This factorization implies that only

the local distributions need be estimated; these, of course, are typically much lower-

dimensional than the entire joint distribution.

- -

'This section reviews existing theory; see [SHJ97] for further details.

Figure 2.1: HMM-like PINs

As well as providing a formalism for factorizing joint distributions, the PIN frame-

work also provides algorithms for incorporating new evidence about the states of nodes,

computing the joint distribution of the variables, conditioned on the new evidence. The

fundamental form is the "JLO" algorithm, which computes the MAP estimate of the joint

distribution. A variant, the "Dawidn algorithm, computes the most likely set of states

given the evidence; this is sometimes called the most probable explanation (MPE) in the

Bayesian Network literature [Pea88].

2.2.2 HMM-like PINs

HMMs are special cases of PINs, where the ordering of the observations leads to a re-

cursive network structure. In an HMM there are two types of nodes, corresponding to

observations, Ot , and hidden states, Ht , a t particular point,s in time t. The graphical

form is shown in figure 2.1 (a), where it can be seen that observations depend only on

the contemporaneous state, and states depend only on their neighboring states3. In this

setup, the most general notion of context in our sense is the current probability distribu-

tion over the values (interpretations) of the Ht and Ot. As above, the directed arcs of the

PIN describe conditional dependencies. However, viewed as undirected arcs, they describe

context dependencies: the interpretation (value) of a node is determined only by the con-

text consisting of the interpretations of all nodes to which it is connected. Of course, the

interpretation of the nodes t o which it is connected depends on the interpretat,ions of all

nodes t o which they are connected, and so on, so that the full context is the distribution

of values over all states. However, only the distribution of values of the states connected

t o a node are' used in computing the distribution of values for that node.

For figure 2.1 (a), each observation, Ot is context dependent only on the hidden state

Ht, while each Ht is context dependent on Ot , and Ht+1. However, each Ht is

conditionally dependent only on the previous HtFl. Figure 2.1 also shows two HMM-like

PINs that use context in different ways. The graph in figure 2.1 (b) gives a model where

the state Ht a t a given time is context-dependent on some number of previous states

(two in this case), as well as on the corresponding Ot. This is the form of context I will

be concerned with: as nodes are processed in temporal order, previous interpretations

affect the current one. Henceforth in this chapter, the context of a node will be the set of

previous nodes with which it is context dependent, so in figure 2.1 (b), the context (for the

interpretation) of Ht is {Ht-z, Ht-1). Figure 2.1 (c) shows a model where observations

2HMMs that explicitly model duration as described in [RabSO] are equivalent to averages of HMMs
of the type described. Given a maximum duration, D, consider the set of HMM PINS where each state
node is connected to between 1 and D observation nodes. The algorithm in [RabSO] is equivalent to model
averaging over this set of PINs, although more efficiently implemented than by explicit construction and
evaluation of all the models.

3This is different from the usual graphical representation of an HMM as a probabilistic automaton,
where nodes refer to states, not states at a particular time, and time is implicit. For example, the
automaton formalism allows self-loops corresponding to the probability of remaining in the same state at
the next timestep. In a PIN, the same information would be carried as part of the conditional distribution
~ (H t + l lHt 1.

are context dependent on the previous, current, and following sta,tes (although they are

conditionally dependent only on previous and current state) . This might be a reasonable

model for coarticulation-like situations, and has been proposed as such by Saul and Jordan

[SHJ97].

For HMM PINs, the JLO algorithm reduces t o the usual forward-backward algorithm,

and the Dawid algorithm reduces t o Viterbi search. The forward recursions of the Dawid

algorithm for the structures in figure 2.1 is given in table 2.2. The corresponding formulae

for the JLO algorithm are obtained by replacing the maximizations by summations over

the same variables. Here, lowercase ot and ht refer t o specific (discrete) values for the

variables Ot and Ht, respectively.

Table 2.2: Forward recursions for HMM-like PINs, from the Dawid algorithm. The recur-
sion variable is marked with an asterisk.

structure forward recursion

At the last observation, t = N, these recursions give us a value for P(hE-k,of),

for some k. Summing over the possible state k-tuples gives the joint probability of the

observations and the model (the model index has been omitted in the formulae given).

Practically, the recursions for (b) and (c) are problematic. First, the recursions for

structures (b) and (c) are both over hi+', i.e. there are IHI2 values t o be computed a t

each step, where [HI is the number of states. For general structures like (b) and (c), but

with more context, the number of values grows as [HIn, where n is the amount of context.

This becomes impractical for all but very small n.

Another useful way to look a t the model described by HMM-like PIN structures is

through product formula. PINs model the joint density of their variables; for HMM-like

PINs this is p(ofY, h r) . Using the chain rule for probabilities. one can write

lJsing the independence assumptions given by the graphical structures gives the product

formulae in table 2.3.

Table 2.3: Product formulae for HMM-like PINs.

model product formula

2.2.3 Classifiers and Likelihoods

Recall that 1 am interested in integrating contextual information with classifier outputs.

Consider a classifier with input vector x and trained with target vector t , where the i'th

output corresponds t o membership of x in the i'th class, y;. It is well known (see, for

example, [HPSO]) for a variety of cost functions including mean squared error (MSE)

and cross-entropy (CE), using targets in t; E { O , l) , that network outputs converge t o

posterior probabilities, the i'th output approximating p(y;lx), The specific assumptions

are sufficiently many training examples, convergence t o a global minimum, and adequate

network representational capability t o approximate the posterior function.

In the HMM PIN case, the posteriors are p(htlot). However, the terms in the recursions

involve likelihoods like p(otlht), so an application of Bayes rule is suggested: p(otlht) =

p(htlot)p(ot)/p(ht). This involves a term, p(ot), that is constant across models, and can

generally be ignored. Denote the remaining term as m(ot; ht) = p(htlot)/p(ht). Refer t o

m(x; y) as the mutual likelihood of x and y, noting that m(x; y) = m(y; x). Note also

that the normal mutual information is Jp(x , y) logm(x; y). One may estimate m(ot; hi)

by taking the classifier estimate of p(ht]ot) and dividing by ~ (h , ~) , estimated, say, over the

training set. Experimentally, I find this problematic for low-probability states: these tend

t o be less well estimated, due t o fewer training examples, and subsequent division by small

p(ht) exacerbates the mis-estimation.

An alternative is t o use the classifier to estimate m(ot; ht) directly. From results of

[HP90], or by trivial modification of the proofs therein, one has the following, under the

same assumptions as for classifier outputs t o approximate posterior probabilities. If a

classifier is trained using MSE with the targets of the i'th output being either 0 or a;,

where a; > 0, then the i'th classifier output will approximate a; times the posterior.

The same result holds for the cross-entropy cost function, modified t o be of the form

- C;[t; log y; + (ai - ti) log(a; - y;)]. Thus by taking a; = l/p(y,), where y; is the i'th

class, the i'th classifier output will approximate m(x; y;). Again, p(y;) can be estimated

from the training set. A straightforward gradient calculation shows that exactly the same

computation may be achieved for a network with 0/1 outputs by using a weighted error

measure, for example, MSE; L Ca;(t ; - y;)2, and then multiplying the outputs by a;

: y; += a;y; (but this is not the same as training with the usual error function and then

multiplying the outputs).

The basic advantage of direct estimation of m(ot; ht) is tha t it is the quantity which

will actually be used in the recursions, and whose estimation should be optimized. If

our classifiers closely approximated posteriors, there would be no difference between the

two methods. However, the assumptions above cannot be expected t o hold in practice,

so the methods can be expected t o differ: they apply differing costs t o mis-estimation of

the posterior for each class, leading t o different estimates. It seems likely to be better t o

minimize the mis-estimation of the m(ot; ht) rather than compound any mis-estimation of

p(ht lot) by division by p(ht) .

2.2.4 Context-dependent Observations

Although not my direct goal, it is of some interest to consider the case of context-dependent

observations. as this is another form of contextual influence and as it one of the simplest

alternative HMM PIN structures. Consider the structure given in figure 2.1 (c) , with

corresponding recursion from table 2.2 (c) and product formula from table 2.3 (c). .4s

well as the fact that the recursion is over IH21 variables, a second problem with the

recursion lies in the terms p(ot7 ht+l [hi-,). Use of Bayes rule gives p(ot, ht+l 1 h i - ,) =

p(h:+; lot)p(ot)/p(h:_l). The term t o be estimated by the classifier is p(h:'-: lot), which

requires IH31 classifier outputs. In general, such a model is prohibitively large, requiring

an impractically large amount of da ta t o train.

A possible approach is as follows. We are interested in terms of the form hi?;, for some

n and m. Assume there are equivalence classes of context, C(h:+;), so that p(otlh:f;) = - -
p(ot1hif;) for all ot, whenever hi?: and hi?: are in the same equivalence class. A

plausible example of possible equivalence classes would be those of the form C(hi2;) =
-

(1) - (r) { h z h t h z l l ht-1 E ct-, , ht+l E ct+,}, where c!') and elr) are classes of equivalent left and

right contexts; for example, for speech, all bursts might be taken t o be the same right

context. An efficient approach t o training a classifier for such "L-R context7' equivalence

classes is given by the CDNN network of [BM94].

Let c and E be two members of the same equivalence class, C , and let

be the error of approximating one probability by the other. Then

P (q P (q P (q
p(+t) = -[p(otlc) + €(E7 c)] = -p(clot) + -e(Z, c),

P(0t) P(C) P(0t)

and

= c P(%) (independence given the observation)
C

where E(c) is the average error over the class, with respect t o c,

and p(C) = CzeC p (3 . SO, for any c E C, we have

or, in terms of the mutual likelihood, m(x; y) A p(xl y)/p(x),

Thus classifier estimates of p(C1o) or m(C; o) may be converted t o estimates of p(c1o) or

m(c; o) , respectively. Conversion to p(c1o) requires multiplication by p(c)/p(C), which can

be estimated from the training set. The advantage of this equivalence class formulation

is that the number of classifier outputs equals the number of classes, rather than the

number of hi?:, IHlrn+"+', and hence may be a practicable number. Note, however, that

conversion may have poor error properties for low probability observations (p(ot) small).

So if there are equivalence classes, one may be able t o implement this efficiently, otherwise,

however, even this simple alternative structure may be computationally intractable.

2.3 HOVS Algorithm

The Higher Order Viterbi Search (HOVS) algorithm can be seen as a variant of the Dawid

algorithm that allows the cost-efficient use of more state-context information, by using

a variable amount of context from the most likely path to a state, rather than a fixed

number of previous states.

2.3.1 PIN, recursion, product form

The HOVS algorithm assumes a PIN model like that of figure 2.1 (b), but where the

state-to-state arcs go arbitrarily far back in time. More formally, in equation (2.1) the

parents of a state Ht are pa(Ht) = H I - ' , and those of a state O t are pa(Ot) = H t . To

derive the HOVS recursion from first principles, write

where the second equality is from the conditional independence assumptions of the PIN

graph.

For each state, h t , let

w (h,) G ht . argmax p(h i , 0;)
/&;-I

denote the state sequence ending in ht having the largest joint probability with the obser-

vations. Let

then (2.4) implies

The HOVS approximation t o the optimal state sequence uses (2.4) t o forcibly construct

a dynamic programming recursion:

The last line makes the HOVS approximation by replacing the argmax over the entire

preceding path hi-' by one over the preceding single sta.te h t - l . Context deeper than 1 is

assumed t o be from the single best path t o the preceding state rather than maximization

over all paths t o that state.

Clearly, the argmax of the last line can be viewed as being over ~ (h ~ - ~) , and can be

replaced by an argmax over multiple paths t o each ht-1, rather than the single best path.

Of course, if n such paths are used, then the recursion must maintain 2n state variables for

each ht , rather than 2 (namely, n copies of r (h t) and fi(n(ht), 0;-l)) However, in situations

where the classifier tends t o give the correct class a high score, even if not the highest,

this technique should be useful.

The HOVS recursion is on the IHI possible values of H. It can easily be extended

to a recursion on (n + 1)-tuples of values, {h:-,), allowing a potentially more accurate

estimation, a t the cost of more computation:

A recursion on longer tuples should be more accurate as it allows the argmaz for each

tuple to be based on a longer lookahead.

Comparison shows that HOVS is essentially the Dawid algorithm for the assumed

PIN model, derived in a different way, and allowing for the introduction of further state

context. From table 2.2 (c), the Dawid algorithm for context depth 2 gives the probability

recursion

The optimal path is determined by recording the maximizing value of ht-2 a t each step.

This implies the path recursion

ht-1 ot-l
~ (h : - ~) = ht - ~ (h t - 1 argmaxp(htlh:~;)p(t-2, 1)-

ht-2
(2.7)

This is essentially the same as (2.6) for n = 1, except that HOVS uses p (h t l ~ (h f ~ ;)) rather

than p(htlh::;). Similar equivalences hold for all n > 0, so HOVS can be seen as a variant

of the Da.wid algorithm that allows the use of more state-context information when the

modeling assumptions of the Dawid algorithm are inexact, i.e., when the Markov property

does not hold strictly and there is dependence between variables further apart in time

than the Dawid algorithm assumes. As the Dawid algorithm for n = 0 is the usual Viterbi

search in an HMM, the same statement holds for that situation.

2.3.2 Relation to speech language modeling: A* search and stack de-

coding

As the PIN independence assumptions are the same, the product form for HOVS is that

of table 2.3 (b). Ignoring initial conditions (t < n) , where n is the context depth,

which in the speech recognition domain is the usual decomposition into acoustic and

language models. So the variable-order aspect of HOVS is clearly related t o the use of

n-gram language models in speech. However, the algorithm is not that which is usually

used in speech processing. Speech processing, both for isolated and continuous speech,

requires time alignment of acoustic frames with the word sequence [RL90]. This leads

to the use of "stack decode" or A* algorithms that evaluate and compare entire aligned

word sequences [Paugl]. As (some approximation to) all preceding word sequences are

available for each new word, rather than simply the last word, the HOVS approximation

(2.5) need not be made: there is no need t o enforce a Markovian assumption. Thus stack

decode algorithms should be more accurate. The disadvantages are (i) the number of

paths grows exponentially over time, thus some approximation is needed to keep the set

of paths within reason, and (ii) these A* algorithms do not appear t o parallelize in any

useful way, and are much more space and computation intensive.

2.3.3 Variable order models

I have discussed estimating m(ot; ht) in the HOVS recursion; i t remains t o discuss the

term p(htlh;-'). I will assume that the influence of a previous state only extends so far,

so that

P (H t l ~ 4 - l) = p (~ t l H : ~ :) , (2.8)

for some fixed n. Even so, the latter term is a distribution on]HIn-' state tuples, and

hence becomes prohibitively large, both t o estimate and t o store, for relatively small n. I

reduce the space needs by using variable-order models: the term p(htlh:~A) in the recursion

is replaced by a term p (h t l h t ~ i) , where a is a function of hi::, 0 < cr < n, and hi-' is

interpreted as the empty set (the null context). The function a is constructed to trade off

the accuracy of the approximation p(ht~h::;) z p(htlh:I;) against the complexity of the

model M, = {hi-,lh E H) , i.e., the number of contexts used (I use h E H t o indicate

that h is one of the possible values of H).

Optimal methods for constructing models M , have been developed in the da ta com-

pression literature [WRF95], under the assumption of a finite-state source, as given by

equation 2.8. "Optimal" in this case means that the probabilities p(ht(hi1;) of the

"learned" model M a converge t o those of the true source, p(htlh:I:) a t the fastest possible

rate, as a function of the amount of training da ta [WRF95, Ris861.

Context trees

For a variable H with states, h(4, 1 < i < IHI, consider the full [HI-ary tree where

each node is identified with a state sequence, or context as follows: the root corresponds

t o the null state sequence, and the i'th child of a node corresponds t o appending h(i)

to that node's state sequence. Thus, if the context for a node is h(jk) . . -h(j l) , then the

context for its i-th child is h(i) . h(jk). . . h(j1). Given an information source generating a

state sequence, t o each node, attach a set of probability estimates. If the context for a

node is h(jk) . . - h(jl) , then the estimates are for the occurrence of a state as the next state

after the context: { ~ (h (~) - h(jk) . - - h(jl)lh(jk) - - - h(jl)) , or written temporally, as previously,

{ p (h ~ i) l h ! ~ ~ - . - hFb}. When no confusion will arise, I also refer to the combination of a

state sequence and a set of probability estimates as a "contest".

Call a tree of state sequences with such a set of probability estimates a context tree

for the information source. Define a fringe of a tree to be a set of nodes such that all

sufficiently long paths starting a t the root of the tree pass through exactly one element of

the fringe. Given a context tree for the source, each such fringe defines an a function as

described above, and hence a model for the source. Algorithms for constructing context

tree models differ in how they select the fringe of "active" contexts to use (and to some

extent in how they estimate the probabilities). The essential idea of these algorithms is to

expand the fringe by replacing a node on the fringe by its children whenever the resulting

improvement in the probability model outweighs the increase in model complexity.

As used in data compression, context trees are constructed in an online fashion. In this

case, I use a context tree constructed for a training set to capture state context statistics

for use with a classifier. Of course, such a context tree can be continuously adapted to

the state sequence so generated. However, there are two implementation issues in using a

context tree for HOVS.

One simple point is that, both for starting up the recursion, and for dealing with

state-sequences that were not seen during the construction of the tree, all ancestors of the

active fringe must be included as potential contexts. The second issue is more complex.

Traversing a sequence of states defines a map y from the set of active contexts into

itself by

~h(Q(h7)) = Q(h . h;). (2.9)

In implementing HOVS, one needs to implement something like yh to compute the active

context for the next state ht+l from the context for the current state. The difficulty is

that, in general, computing yh requires not just the current context and the next state,

but also that part of hy not in the current context. The preceding states, h;, are needed

when the next active context is longer than the current active context by more than one.

Suppose the current context is ht , the next state is h(*), a.nd the active contexts ending

in h(O) are {h(0)h(1)h(i)lh(2) E H). Computing the next active contest requires knowing

which h(" occurs in the appropriate place in n(h2).

So if context lengths can differ by more than 1, computing yh generally requires back-

tracing through ~ (h ;) , which may be computatio~lally expensive, especially in a parallel

implementation where the back-tracing information may be distributed. An alternative

is t o use a finite state machine approximation t o yh. Define Th(a(h;)) t o be the shorter

of a (h hz) and h . o(h;). Since a() computes a (non-strict) prefix of its argument, one

of o (h hy) and he cr(h;) is a prefix of the other, so ;lh(o(hy)) is a prefix of yh(a(h;))

and is a reasonable, if not optimal, context for h. Also, Th and yh agree whenever the

next active context can be computed from only the next state and the current context,

i.e., without back-tracing. The advantage of -7, of course, is that it admits a finite state

machine implementation4.

2.4 SIMD HOVS

In this section, I examine SIMD implementations of the HOVS algorithm. Equations (2.5)

and (2.5) suggest either

1. parallelizing over the max when computing the recursion for each n(ht) , or

2. computing several n(ht) in parallel.

Both implementations are possible, the choice being determined by such factors as number

of PEs, P, the number of states, IHI, the amount of contextual information used (available

storage for M a) , and architectural features such as the amount of local memory per P E

and whether one can compute the maximum over two sets of PEs simultaneously. Given

an algorithm for (I) , assuming the algorithm that can be executed in parallel on the

41n the data compression literature, there is a notion of a finite state machine source model [WRFgS].
Constructing j from the active contexts in a context tree, as above, does build a finite state machine model,
but not necessarily an optimal one, as the active contexts have not been chosen with the FSM restriction
in mind. In particular, it may be better to choose a deeper context at some point so that deeper successor
contexts can be used.

architecture, (2) is unproblematic, so 1 will concentrate on the first approach. The basic

algorithm is straightforward, with minor variants for (i) IHI z P. (ii) [HI << P. (iii)

I H 1 >> P and (iv) recursion on n-tuples, rather than single states (equation (2.6)).

2.4.1 Algorithm

I sketch SIMD implementations of the HOVS algorithm, for simplicity ignoring starting

and ending conditions. Pseudo-code for the algorithms is in Appendix A.

The assumed machine model is like the Adaptive Solutions' CNAPS [Ham901 : there

is a separate host and processor element (PE) array; values can be broadcast from either

the host or a P E and received by both the host and all PEs; PEs have local memory,

local memory addressing, and local conditional execution; and there is a fast parallel max

where each P E emits a value and the identifier of some P E that emitted the maximum

value is determined in constant time.

Recall equation (2.5):

~ (h t) = ht - n(argmax[~(htln(ht-l))13(R(ht-1), oE--l)l).
ht-1

In the algorithm for the case [HI = P, each state h is associated with a particular PE,

qh, which qh stores the context probabilities {p(hlln(h))lh' E H). At time t, qh holds the

current value of @(n(h), 0:-I), uses it t o compute f h (h') G p(h1l~(h))l j(n(h), otl-I), and

stores the new value of lj(n(h), 0;).

At the t-th iteration, the algorithm loops over the recursion variable ht. For each ht,

fh,-, (h t) is evaluated in parallel on qh,-, , and a parallel max operation over all PEs gives

the desired argmaxht-, . This resides on q,,, 2 qq,,gm,,,t-l ; point-to-point communication

transfers the new P(n(ht), 0;) from q,,, t o qht , as well as the new active context for qh,, for

use in the next iteration. The host maintains a back-pointer from ht to argmaxht-, ; after

the last iteration a serial back-trace from the final state gives the sequence of maximal

states. Pseudo-code for this case is in figure A.1. Time complexity of one step of the

algorithm is O(IH1) = O(IHI2/P), for a speedup of O (P) over the serial version.

Minor variations need to be made when IH I > P , IHI << P , or when the recursion is

over n-tuples rather than single states.

When I H I > P, the same algorithm can be used, except that each state ht-l is as-

sociated with a virtual P E (VPE) s, vh,-,. Each real PE contains K f [HIP] VPEs

and an inner loop over the VPEs is added when calculating the max. Pseudo-code for

this case is in figure A.2. Time complexity of the algorithm is O(IHIK) for a speedup of

~ ~ l ~ l / ~ l ~ l / ~ l ~ ~
When (HI << P, the basic algorithm uses only (HI of the PEs, which is inefficient. One

possibility is t o simultaneously compute the recursion for L 5 [P/IH(] variables ht. The

P E array is partitioned into L sets of [HI PEs and the loop body of the basic algorithm

is executed on each, [IHIIL] times. Broadcasting variables requires a loop over the L

sets, as does the parallel max, and the point-to-point communication. Time complexity is

max(L, [IHIILl). Speedup depends on L; ignoring integrality constraints, L = gives

the maximum speedup, H ~ / ~ , using H ~ / ~ PEs. .

Another possibility when 1HI << P is t o use the "extra" PEs t o store more context

nodes. This gives only (H (-fold parallelism, but allows more con textual information t o

be used, potentially increasing accuracy. Rather than all contexts ending in some par-

ticular state, each VPE holds the contexts ending in a particular state sequence. More

formally, the set of contexts for a V P E is the intersection of the active fringe with some

complete subtree of the context tree, where the subtree's root need not be an immedi-

ate descendent of the root of the tree. In this case, a compatibility condition is needed

t o determine which VPEs contribute t o the argmaxh,-,, since not all contexts can pre-

cede all others (for example, the context h(1)h(2) can only precede contexts of the form

h (i) h (l)) . This reduces the potential parallelism to JHJ. Pseudo-code for this case is in

figure A.3. Let S be the number of contexts, then K - [SIP] is the maximum number

of VPEs (or context subtrees) associated with any PE. Time complexity of the algorithm

'Note that I am not assuming any hardware support for virtualization; it is purely an algorithmic
construct.

is O(IH1[S/IHll [S/P]) = S2/p = (IHI2/P) * (S/IH1)2. Speedup is O(P/(S/IH1)2), less

than P due to computation of the compatibility condition.

Finally, one may vary these algorithms slightly to implement a recursion on. say. pairs

h:-l, as in equation (2.6). The problem here is that the PE for h(') must contain a t

least the IH l 2 context probabilities {p(hlh(1)h(2)))h, h(2) E H), which may be prohibitive

in terms of storage. Pseudecode for this case, when IHI = P is in figure A.4. Time

complexity of the algorithm is O (I H ~ ~) = O (I H I 3 / ~) , for a speedup of P.

2.4.2 Discussion

The maximum speedup possible for the recursions (2.5) and (2.6) is [HI, so the optimal

speedup with P processors is min(lH1, P) . When P divides IHI, one can get the maximal

speedup of P. When P does not divide JHI, one can get a speedup of O (/ H J / [J H J / P]) ,

which is bounded below by P/2, the worst case being I HI == P+ 1. Even when I H I << P ,

one can get a speedup of I H ~ ~ / ~ by computing multiple recursions in parallel. So one can

generally make good use of parallelism.

As to the space complexity, each context requires IHj probabilities and JH 1 "next

context" identifiers. In a space-restricted implementation, the probabilities can likely be

represented in 16 bits, as can the "next context" identifiers, for a context size of 41 HI bytes.

Thus, for example, with IHI = 27, P = 16, and 2KB context memory per processor, one

could use about 300 contexts, and achieve a speedup of O(13.5). For JHJ = 53, P = 16 and

4KB context memory per processor, one would have 300 contexts and O(12.25) speedup.

For I H I = 53, P = 32 and 4KB context memory per processor, one would have 300 contexts

and O(26.5) speedup. As will be seen from simulations, a few hundred contexts should

provide most of the performance gain, so one can conclude that the storage requirements

of the algorithm are practical.

2.5 Simulations

I address a number of issues via simulation, seeking some general idea of the performance

of these algorithms. The specific issues are as follows. How does performance vary with

the amount of context used (correctness versus size)? How much does performance de-

grade when context is restricted to allow a finite state machine algorithm for the SIMD

implementation? How much does performance degrade due t o the HOVS approximation

(2.5) How well can one model a source before it is "over-trained", and does not represent

well another text?

My setup for these experiments simulates an OCR system. I use output vectors from

any of several ANN classifiers trained for printed character recognition on the NIST

database. The system is simulated by reading some text character by character and

replacing the character by a randomly chosen classifier output vector for that character.

The output vectors are normalized t o sum t o one. The stream of classifier outputs is used

in the HOVS recursion, together with a source model previously generated from another

text, t o generate a stream of "corrected" characters. Performance is measured as the

percent correctness of the output stream.

A variety of source models were used. Straightforward n-gram models, n = 1. . .5,

were constructed using all the n-grams of that length occurring in the text used for source

modeling. A "nc+contextV model was built, for which p(characterlcontext) is the a priori

probability of the character. I constructed two "word-based" source models, in which a

single context is a word prefix together with a fixed number (1 or 2) of characters from the

preceding word. The source model consists of all such contexts found in the training text.

Finally, the remaining models were constructed using variants of the Rissanen algorithm

[Ris86]. This algorithm has parameters that affect its finite-sample behavior; by varying

these I constructed a number of models with differing numbers of contexts. From these

models more were constructed by trimming their context trees in two ways. In the basic

algorithm, contexts that were not marked as active, but who have an active sibling, are

made part of the active fringe. In one variant. such contests are replaced by their parent.

In the second variant, while growing the context tree, contests were not allowed to cross

word boundaries. Both these variants turn out to reduce the number of contexts, while

tending t o slightly improve performance on the test sets.

Unless stated otherwise, results are the average over five different classifiers and three

test sets. The first 5000 lines of Moby Dick [Me1961 are used for source modeling. A

"training set" consisting of lines 4900 t o 5000 of Moby Dick (65044 words, 357745 char-

acters) was used t o evaluate performance when the source modeling process has "seen"

the actual source. The three test sets are lines 10000 t o 10100 of Moby Dick (124.5 words,

71'79 characters), lines 4900 t o 5000 of Lord Jim [Con831 (1209 words, 6612 characters),

and lines 10000 t o 10100 of Lord Jim (1232 words, 6353 characters). The training and test

sets have been chosen t o represent "general English", one expects contextual information

t o be more valuable in more restricted domains, where the source is more constrained.

In stack decoding, paths are explored incrementally; a t each step of the algorithm, the

best path to pursue next is popped off the stack, and its one character extensions then

pushed back on. For stack decoding, the total stack size allowed 32K paths; when this

was exceeded, the stack was trimmed t o the top scoring 3200 paths.

For exhaustive matching, the N most common words from all of Moby Dick were used,

where N = 4096,8192,16384,18004 (18004 is the total number of distinct words in Moby

Dick). Results are averages over all five classifiers and over the training and all three test

sets.

Figure 2.2 shows the results of a number of such experiments comparing HOVS, stack

decoding and exhaustive matching for a variety of source models. The figure does not

include any results from using the FSM approximation t o the source model, these were

found t o vary very little (less than 0.5% reduction in error) from their original model. The

x-axis is the number of contexts used in the source model, or, in the case of exhaustive

matching, the number of "context equivalents". For these experiments. only lowercase

and space characters were used, so an implementation of a context minimally contains

HOVS, stack decoding, and exhaustive match on Moby test set
. . ' . ' . . ' I . . ' I '.., I ' I

+-. - .+ stack decode
. exhaustive match

Figure 2.2: Comparison of HOVS, stack decoding and exhaustive match

/. 6
/

/ '

-
. ,

/ '

-20-I

4 0

-60

/.
/ '

-
8

' """" ' """" ' " " " ' I ' " """ ' . . " " " ' ' . . ' . . -
1 0" 10' lo2 1 o3 1 0' 1 o5 1 o6

number of contexts (context equivalent = 108 bytes)

27 probabilities p(char1context) and 27 context identifiers for the next context given the

next character; allotting 4 bytes for each implies 108 bytes per contest. For exhaustive

matching, the number of bytes needed to store all the models was divided by 108 t o give the

number of context equivalents needed to store them. The y-axis is the percent reduction in

error from using only the classifier output scores, with no context information, computed

as 100 * (correctcontezt - correct,,)/(l - correct,,,), where correctcontezt and correct,, give

the fraction correct with and without the use of context. Use of this metric normalizes for

the variation in correct,, among the different classifiers. In these experiments correc&,,

was typically around 80%, so an error reduction of 40% corresponds t o 88% correct; an

error reduction of 70% corresponds to 94% correct.

Certain points on the graph require discussion. For no contexts and for about 30 con-

texts, HOVS outperforms stack decoding. In part, this is due to extensive stack trimming

which takes place for these less context-restricted searches. Also, the source model for no

contexts uses the a priori probability of the character as its prediction for p(char1context).

As the prior may underestimate the contextual probability, this is not an admissible heuris-

tic for the stack decode (A*) algorithm [Ni186], further compounding its poor performance.

At the other end of the graph, the source models for the two largest numbers of contexts

have good performance relative t o the third largest source model. The last two points

correspond t o the "word-based" source models described above, with one and two charac-

ters of pre-word context allowed, while the third largest corresponds to a 5-gram source

model. The latter allows much inter-word context t o be captured, and it appears that this

does not generalize well. This is corroborated by figure 2.3 which shows that the 5-gram

model has extremely good performance on the training set, and that among the largest

models, better performance on the training set "mirrors" poorer performance on the test

sets. In figure 2.2, the da ta points for exhaustive match, corresponding t o 4096, 8192,

16384 and 18004 word models, or from about 80 to 500 context equivalents, show that

the performance of exhaustive matching is quite sensitive t o the number of words in the

source that are missing from the source model. We also see that something like 10,000

HOVS

+- - -* Moby - test
Lord Jim 1

-.v Lord Jim 2

I I I I I I I I I
0 2 4 6 8 10 12 14 16 18

log2 (number of contexts)

Figure 2.3: Performance of HOVS on training and test sets. Here "Lord Jim 1" and
"Lord Jim 2" are test sets consisting of lines 4900-5000 and lines 10000-10100 of Lord
Jim, respectively.

t o 14,000 word models are needed t o duplicate the performance of correspondingly sized

HOVS or stack decode algorithms.

Figures 2.2, 2.3, and 2.4 show that , unlike stack decoding, the HOVS algorithm cannot

make much use of larger amounts of context. Figure 2.4 compares the performance of

HOVS and stack decode on the training set, where generalization is not an issue, and

shows little performance gain for HOVS after a few hundred contexts, corresponding t o

an average context length of two t o three.

This can be explained as follows. The effect of differing context probabilities is felt

in the argmax operation; when the best predecessor t o a given state is being determined,

- stack decode rzr l

Figure 2.4: Performance of HOVS and stack decode on training set

Suppose two possible predecessor states, h: and h: of a given state, ht+l are being con-

sidered, each with a best path to it, and that two source models, MShort and Mlong are

being compared, one of which is shorter, in that its contexts are suffixes of the contexts

of the other. Assume that the best path t o each node is the same for both source models,

when HOVS is used. The model with longer contexts will provide improved performance

for this comparison only if the differences in the context probabilities for h: and h; differ

sufficiently between the two models t o outweigh the difference in observation probabilities

between the two states.

For stack decoding, all possible previous paths t o a state are "in use", so the current

observation may, via longer contexts, affect which is the best path t o the next state. The

best path may change back in time, up t o the length of the context. Conversely, for

HOVS, the previous path to a state is fixed, and longer contexts can only affect outcomes

better than short contexts to the extent that they give better probability estimates than

the short contexts, and estimates that are sufficiently different t o overcome the difference

in observation probabilities for the two states.

So the inability of HOVS t o take advantage of longer contexts corresponds to the

notion that , for the texts and classifiers considered, contexts longer than about 3 characters

provide probability estimates that differ from those of their 3 character suffixes by amounts

that are small compared to the typical difference between observation probabilities a t a

given time. This suggests two methods of helping HOVS take advantage of longer contexts:

(i) rather than just one, keep track of several "best" paths to a state, and take the argmax

over all of these, and (ii) dampen the dynamic range of the classifier outputs. I discuss

these further in the section on future work.

2.5.1 Discussion

Figure 2.2 shows that , for my simulations, HOVS, exhaustive matching, and stack de-

coding give approximately equivalent performance for about 300 contexts (or 10,000 to

14,000 word models). This is about the same context storage size for HOVS and exhaustive

Figure 2.5: Average number of state sequence extensions per word, for stack decoding.

9000

8000

7000

6000

U)

.$5000
C

0

5 4000-
0

3000

2000

1000

1

Stack Decoding: number of path extensions
. I I I . . , I . . . , I ,-

\

-.\

\.

- \.
\.
\

\ -
\.
\

- '.
\

\

\

\

\

- \+++
' . ' . ' .

- '. '"* + +c\.p. +
*S$ \+ - .+

- f s . + . - . - +\,+ +
0 0 -

o" 1 0' 1 0' 1 o3 1 0' 1 o5 lo6
number of contexts

matching; stack decoding also requires a substantial stack (128 KB in my simulations).

In terms of per-word time complexity, let W be the length of the word. then HOVS

is O (W - IH 12), and has parallel versions that are O(M7 . [HI). Exhaustive matching is

O(W . (number of words of that length)), and is trivially parallelizable. The complexity

of stack decoding is more difficult t o determine. Figure 2.5 shows the a17erage number

of state sequence extensions explored by stack decoding per word for the various models.

averaged over classifiers and test sets. For around 300 contexts we see that an average of

about 1500 extensions were explored. Other experiments with very accurate heuristics,

using the Huang-Soong algorithm [SH91] obtained a t best an average of about 300 exten-

sions per word. The heuristic is constructed by a full forward pass through the Viterbi

algorithm, with complexity O(W - [HI2). In the following stack decode, each extension

requires insertion of the new score into a priority queue, an expensive operation that is

a t least O(log IHI), with a substantial constant factor. I conclude that stack decoding

is substantially slower that HOVS; further, it does not parallelize6. Although not simu-

lated, the nth-order version of the Dawid algorithm is O(W - /HIn+') and so much more

expensive than HOVS for n > 1. I conclude that HOVS is fastest a t the accuracy and

storage equalized point of about 300 contexts (context equivalents). Figure 2.2 also shows

HOVS has superior performance for smaller numbers of contexts. For larger numbers of

contexts, stack decoding outperforms HOVS, and the tradeoff between increased accuracy

and decreased speed must be made on an application-specific basis. The same is true for

HOVS compared t o exhaustive matching with more than 10,000 t o 14,000 word models.

2.6 Related work

I have already mentioned the relation t o the acoustic mode / language model decomposi-

tion used in speech recognition.

6 0 n e can parallelize the computation of the heuristic, but then the computed heuristic, which is es-
sentially the entire Viterbi lattice, must be communicated t o the stack decoder, and this wipes out any
performance gain.

In their work on "connectionist speech recognition", Bourlard and Morgan [BM9-2]

have done extensive work on using classifier outputs a s HMM observation probabilities.

Hovever, their formalisms have not included higher- or variable-order methods like HOVS.

Ron, Singer and Tishby [RST94] have explored the use of variable order models in

classification, but their formulation assumed no classification error.

Typical work in OCR uses dictionary lookup, i.e. exhaustive matching, for contex-

tual information. However, He [He911 has looked a t HMM-based methods for handling

segmentation issues.

2.7 Future work / questions

It would be of interest t o implement the higher-order Dawid algorithm (2.7) and its HOVS

version (2.6), t o look at how much performance is lost by use of the simpler model. For the

parallelized version, the simpler model involves recursions and storage that are O(I H I),
whereas for the 2nd-order one, the complexity is O (I H ~ ~) . It seems unlikely that the

performance increase of using the higher-order versions would warrant the extra comp1exit.y

for most applications, but some idea of the performance gain would be helpful.

The classifiers used were trained for classification performance, and hence their outputs

are interpreted as probabilities. It would be of interest t o determine t o what extent training

the classifiers t o estimate the mutual likelihood, m(x; y), helps. I have not done so as

initial experiments indicated that this is unlikely to make much difference. Specifically,

initial experiments showed that mis-estimating the class probabilities p(h) used t o convert

classifier outputs p(h1x) t o m(x; h) = p(hlx)/p(h) had only a small effect on the total

performance.

As mentioned, the HOVS recursion (2.5) is easily extended t o one where some fixed

number, n, of best paths are used, rather than the single best. Also, the SIMD implemen-

tations can easily be extended to this case. The time complexity and number of recursion

variables will increase by a factor of n , while the space for context memory remains the

same. It would be of interest to implement this, see its performance, and, in particular,

to see t o what extent it allows the HOVS algorithm to make better use of longer contexts:

as described above.

The HOVS recursion (2.5) combines the classifier outputs and context probabilities by

multiplying them. Thus if the classifier outputs erroneously give a very small value to the

correct state, it is hard for the context probabilities to counteract this; they must give

equally small values t o the incorrect states that the classifier prefers. There is thus an

"impedance matching" problem between the classifier outputs and the conbext probabili-

ties. It would be of interest t o experiment with a tuning parameter that smoothed one of

these, say the classifier outputs, p(hlx) perhaps along the lines of

However, there is evidence that smoothing the classifier outputs does not help performance

[Mor]. .Another possibility is t o train the classifier either t o p(h1x) or m(h; x) using a

smoothing regularizer [MR97]. As mentioned above, decreasing the dynamic range of the

classifier outputs also might allow HOVS t o better use longer contexts.

The effects of context will be stronger in a more constrained domain; it would be good

t o see experimentally if any of the qualitative behaviors change.

My notion of context is that of a source model, and is unrelated t o error model notions

such as handling insertions, deletions, and segmentation errors. Incorporating such error

model information is important t o any real system, but it seems completely separate from

the present framework.

Another notion of "context" is a more semantic or discourse-level one, where a context

is something like a probability distribution over the set of word models giving the current

likelihood of seeing a model. Finding a way of computing and updating that distribution

would might allow many models t o be disregarded, allowing either better performance

exhaustive matching, or construction (or lookup) of a more constraining source model.

2.8 Conclusions

HOVS provides a fast, practical, close t o optimal approach to using the contest provided

by a single, large recursive model t o constrain the interpretation of sequences of obser-

vations, as given by a probabilistic classifier. Alternative approaches based on the P I N

formalism quickly become expensive as more contextual information is used. HOVS is

an efficient principled approximation t o PIN approaches that might otherwise be com-

putationally intractable. For even better performance, HOVS allows an efficient SIMD

implementation requiring only limited resources. The HOVS approximation framework

is flexible, t o accommodate differing computational resources , application characteristics

and application requirements; one can "tune" the number of previous paths providing

contest, the (variable) length of context used, or the length of the state-tuple over which

the recursion is performed. While much if not all of the underlying theory is already

in literature, tying everything together into the P IN framework is novel, as is the SIMD

implementation.

We thus see that , for ordered input, contextual information from a single large recursive

model can usefully be used t o constrain the interpretation of sequence of components.

This form of contextual processing may be useful, for example, in recognizing novel words,

however, when it exists, a known vocabulary will better constrain the allowable sequences.

I turn next t o this problem, of using the context provides by a known vocabulary of many

(small) models, and to the matching models paradigm of contextual analysis.

Chapter 3

Models

In this chapter I discuss the feature grouping and model matching operations that form

the stages subsequent t o feature extraction, emphasizing the model matching stage. I wish

to demonstrate a number of "stylized facts" about the algorithms used in these stages:

F1 feature grouping (object hypothesis generation) involves construction and traversal of

irregular da ta structures such as lists and trees.

F2 model matching algorithms exhibit irregular control flow mediated by the data and/or

model

F3 most model matching and feature grouping algorithms are simple, with computational

complexity coming from applying a small code "kernel" many times

F4 model search and indexing techniques are "imperfect7', in the sense that they generally

restrict the number of models t o be matched, but not t o a single candidate.

3.1 Irregularity

Essentially, irregularity is inefficiency due t o data dependent execution. Operationally, for

parallel algorithms, it can be viewed as a problem of load balancing: ensuring that work is

apportioned between processors so that all are kept busy. For algorithms such as branch

and bound that cycle between stages of computation and scheduling (load balancing),

one can formalize irregularity as the ratio of computational work to task scheduling work

[GRV95].

At a more detailed level, suppose the workload consists of a set of indivisible tasks, each

task consisting of applying identical code t o some task-specific data. Processors may take

variable amounts of time to accomplish such tasks, leading to load balancing problems,

for several reasons:

1. most simply, the processors may have been allocated different numbers of tasks

(workload irregularity) ;

2. a task may involve construction or traversal of data structures whose size and/or

"shape" is task dependent, for example, lists and trees, leading t o data dependent

control flow (data structure irregularity);

3. processing in a task may involve a variable, data dependent, number of iterations,

even for data of the same size and "shape", for example, in relasation and search

algorithms (convergence irregularity);

4. as opposed t o irregularity due t o the task, as in the preceding, there may be irreg-

ularity due t o the implementation on a particular machine: variability in commu-

nication times t o other processors, t o memory, or t o 110 devices (communication

irregularity).

Irregularity is important insofar as it impacts cost-performance. Using a task scheduler

requires writing and executing more code, as well as relocating tasks among processors,

affecting implementation cost and runtime performance. For performance, tasks must not

be too small, lest the scheduling and relocation overhead dominate. Hiding communica-

tion irregularity by multi-threading requires more (and more complex) code, and perhaps

more hardware for fast context switching. At the processor level, hiding variable memory

latencies, variable instruction execution times, and branches (or branch mispredictions)

by out-of-order and speculative execution can be quite expensive in terms of chip area and

complexity; I discuss this in chapter 4.

Irregularity is especially pernicious for SIMD execution, as lockstep esecution gener-

ally implies that whenever one processor experiences inefficiency due t o workload. conver-

gence, or data structure irregularity, all processors do. SIMD esecution disallows using

multi-threading to hide communication irregularity, in fact, it generally requires that com-

munication irregularity be avoided altogether. This forces every communication to allow

for worst-case timing, and t o take the worst-case time.

I will consider the subjects of irregularity and parallelism as I examining the algorithms

of the feature grouping and model matching stages.

3.2 Feature extraction and grouping

In this section I restrict myself t o vision. Feature grouping, per se refers t o construct-

ing sets of features hypothesized t o belong t o the same object. In speech, due t o its

one-dimensional nature, this consists of hypothesizing temporal boundary points between

objects (phonemes, words, sentences, and so on). The bour~daries tend t o have distinctive

acoustics, and hence can be modeled as different kinds of components (e.g. "silence").

Thus the boundary determination can be made part of the model matching process, and

a separate grouping stage is unneeded.

In vision, however, determination of which components (may) belong to the same

object is a central problem, sufficiently complex and distinct t o require its own processing

stage1. In fact, the general model of this perceptual grouping [Low851 stage is a hierarchical

construction of increasingly complex features formed from sets of more primitive ones:

pixels form "edgels", which are linked into lines, which make up parallel line pairs, which

form rectangles, and so on. As this suggests, processing involves a series of stages, with

changes in representation between stages [ReiSl , Ger921. Further, groups may contain

features that are widely separated in the image: consider grouping edgels into lines or

lines into parallel pairs. Thus when the image is distributed over multiple processors,

'Integrating the feature extraction, grouping and matching phases into a single (recursive) phase has
been proposed, see, for example, [BCKS?].

there may be significant data movement between stages as well [Reigl].

The representation of features may be complex. At the lowest, iconic, level of the

hierarchy, features are associated with individual pixels, being properties of the pixel or

of its neighborhood. Examples are pixel properties such as grayscale value, and neigh-

borhood properties such as values of 2-D linear or nonlinear filters, or correlation with

a small template. Feature extraction involves mostly neighborhood operations that can

be performed in an SIMD fashion, what complexity there is coming from the treatment

of pixels lying a t the boundaries of the sub-images alloted t o individual processors. At

higher, symbolic levels of the hierarchy, features are complex representations of boundaries

or regions, such as chain codes, Fourier descriptors, and quad-trees or are properties of

these, such as curvature of a boundary or moments of a region [GW92].

The process of grouping involves finding sets of features having common or related

properties, and amounts t o associative lookup by attribute-value predicates [BDBH89,

CEJK92, Ger92, Reigl]. The allocation of features among processors changes as more

complex features are constructed, so doing associative lookup in parallel requires first re-

distributing the features among the processors, t o balance the workload. Since the alloca-

tion of features t o processors, and hence the necessary rearrangement, is input-dependent,

this redistribution must be done a t runtime, generally as a separate, intermediate, stage

[CEJK92, G092, ReiSl] .
I study example algorithms for this stage, t o understand the forms of irregularity

involved. I exclude communication irregularity for now, as it is more a property of the

processing architecture than of the specific algorithm.

One basic grouping operation finds the connected components of the image - maximal

contiguous areas of pixels all having some specified property. A refinement of this is re-

gion growing, which finds contiguous areas of pixels that have "close" values of a property.

There are a variety of algorithms for this (see [AP92] for a recent review). One class of

algorithms involves only pixel-local operations, and are easily done in an SIMD fashion,

however it requires multiple passes over the image, and storage of multiple copies of the

image. The second major class of connected component algorithms is of the divide and

conquer form, where images are recursively subdivided, the components of the sub-images

are found, and then components intersecting a boundary of a given sub-image are merged

with those on the matching boundary of the adjacent sub-image. The latter step is done

by merging graphs representing the boundary connectivity information, and then finding

connected components of the merged graphs. The third class involves finding boundaries

explicitly, then "filling in" the enclosed regions. This technique uses traversal over bound-

ary lists, together with local pixel operations. We see that the latter two classes involve

both data structure and workload irregularity. Workload balancing by redistributing fea-

tures among processors is problematic as, in any case, the labels determined from features

must be propagated back t o the pixels, which presumably have not been redistributed.

Another major grouping task is constructing edges from "edgels", the results of prim-

itive edge finders such as the Canny [Can861 or Sobel [GW92] operators. Again, a large

number of algorithms have been proposed; I look at some examples. Wang and Bin-

ford [WB94] use a highly accurate edgel finder, then link edges into "inner curves" based

on a fixed, quadratic, curvature hypothesis, together with an error model of the edgel

finder. Branches are treated by terminating inner curves a t the branching, then, in a sec-

ond phase, linking conjoint inner curves that have similar measured curvatures. Fischler

[Fis94] deals with noisier images by a multistage procedure involving clustering, represen-

tation of hypothesized groups by minimal spanning trees, and resolution of the hypotheses

by dynamic programming. Farag and Delp [FD91] use a general A* algorithm, with a spe-

cific evaluation function for linking in a new edgel. We see a spectrum of irregularity here,

the Wang-Binford algorithm involving workload irregularity, the Fishler algorithm hav-

ing both workload and da ta structure irregularity, and the Farang-Delp algorithm having

convergence irregularity as well.

As mentioned above, a t higher levels of the feature hierarchy, where the location of

individual pixels plays no part, grouping can be viewed as associative lookup by attribute-

value relationships. The example given was finding rectangular structure by first grouping

into parallel lines, then into U-shaped structures, then into rectangles, using values of the

attribute "angle". The associative lookup can be implemented by exhaustive search for

features satisfying a given predicate, or by first building indices. In either case, workload

can be balanced by reallocating features equally among processors and broadcasting the

request. Data structure irregularity occurs from list and index traversal.

Finally, both for the consistency checking of hypothesized groups, and for calculation

of further properties such as line curvature and moments of functions over regions, various

functions must be mapped over representations such as lists and quad-trees. Workload

can be balanced by reallocating features, but data structure irregularity remains.

In summary, we see mainly workload and data structure irregularity a t the feature

grouping stage. Time spent reallocating features between stages of the grouping pro-

cess can be hidden by use of an asynchronous autonomous network, where features are

redistributed for the next stage as they are computed, with computation and redistri-

bution being overlapped [CEJK92]. Optimally, such a network should support 2D-local

(nearest-neighbor), tree-structured, butterfly (permutation) and broadcast communica-

tion. [G092, CEJK921.

Further, data structure irregularity can be hidden by balancing workload among pro-

cessors based on estimated per-feature processing time rather than simply the number of

features. Note that this is difficult for SIMD architectures, as task execution time depends

both on the task and on which tasks are done simultaneously. All forms of irregularity

can be ameliorated by averaging out variation: assigning more features per processor (and

hence using fewer processors). Sub-image boundary effects require ad hoc, data-dependent

communication; this may be hard t o hide, but allocating larger sub-images per processor

will tend t o reduce the problem. As a final point, we see that once features are allo-

cated, the basic algorithmic structure is that of mapping a small kernel, identical between

processors, over a list or tree-like da ta structure.

Another point is that many feature construction algorithms are amenable t o a split and

merge technique [Web92], wherein the image is blindly split into tiles according to location,

the tiles are processed independently, without communication, and then the results are

merged. Communication occurs in phases: partial features are computed independently

on each processor, then the partial features are recursively merged wit,h those of other

processors into larger and larger parts until the entire feature is assembled. This phasing

of communication will be relevant for the SFMD computation model introduced later.

Here, note that one characteristic of the split and merge technique is the need for relatively

large processor memories t o hold and combine final results [Web92].

So the algorithms of the feature extraction stage suggest the utility of certain hardware

resources. An asynchronous autonomous network helps manage workload irregularity, by

allowing overlapped computation and communication when load balancing. Fewer PEs,

with large memories per PE, reduce da ta partitioning boundary effects, allow averaging out

of variation and permit use of split-and-merge techniques. Non-lockstep (non-SIMD) exe-

cution more efficiently processes irregular data structures and allows better load-balancing

and averaging out of variation.

3.3 Matching techniques

I examine some model matching techniques in detail. A fundamental division exists, based

on the dimensionality of the input.

In what might be called "zero-dimensional" input, there is no context because there

is no relation between inputs. An approximate example is olfactory perception, although

even here there may be "priming" effects based on temporal ordering.

One-dimensional input is ordered, generally temporally. Examples include speech and

text recognition. Ordering leads to use of a Markovian prefix-based source model, and

path-discriminatory model matching based on a tree of prefixes (see below). Context is

provided mainly by the immediate predecessors of the current input, possibly a t several

levels of .granularity2. Although I discussed one-dimensional input in chapter 2, my con-

cerns here are different. There, a set of models was used t o construct a single source

model, which was applied to improve the classification of individual components. There

the issue is matching the individual models, the goal being selection of the most likely

model.

Higher-dimensional input has no natural ordering, so Markovian source modeling is

difficult, as determining or even defining the current state is hard: there is no distinguished

set of already identified features (like immediate predecessors, for l-D input). In vision,

the basic example of higher-dimensional input, geometric, topological, and other forms of

relations between features give rise t o context defined by inter-component relations on a

model-by-model basis.

3.3.1 Ordered Input (Markov models)

With ordered input, as in speech or text processing, the ordering of the input leads t o an

ordered match, hence to an implicit or explicit ordering on a graph model. In practice,

this leads t o the use of Markov models, where nodes represent states, arcs represent tran-

sition probabilities between states, and the match score can be calculated using dynamic

programming (Viterbi or trellis search). The matching of separate models is synchronized

by all models receiving the t'th input a t the same time.

Markov models can be recursively combined by adding artificial source and sink nodes

t o the graph, and then pasting together models by identifying the source of one with the

sink of the other. Frequently, a t the lowest level of model, phonemes or characters, the

graph structure of the model is the same for all, thus facilitating SIMD execution with

individual processors matching different, but identically structured, models. Higher level

models generally do not have identical structures.

20cclusion may be a problem, but is usually not part of the formalism of the recognition process

Hidden Markov Models

In the most common case? Hidden Markov Models[RabSO, He911, the models a,re genera-

tive, and matching finds the model most likely t o have generated the observed sequence

of inputs. If a;j is the transition probability from state i to state j, and b j (0) is the

probability of observation 0 having been generated by state j , then

where

at+l (j) = [C at(i)aij] . bj(Ot+l)
i

can be defined as the joint probability of the state a t time t + 1 and the observations up

t o that time,

(j) = Pr(statej, 01, . . . , Ot+l).

This calculation involves computing bj(Ot) for each node a t each time, and propagating

values over arcs. (The formula above gives the trellis algorithm, replacing Cj in the a

recursion by maxj gives the Viterbi formulation.) The essential point is that the recursive

nature of the equation for at means that an efficient dynamic programming implementation

is possible.

Model-discriminant versus Path-discriminant Matching

In some common cases, there is a natural way t o combine a set of Markov models into a

larger one. Assume that no two models contain identical paths from source(s) to sink(s),

so that no two models have identical scores when some path of components occurs in the

data, and hence that models are always distinguishable. Then models can be combined

t o form a lexical tree as follows: add an artificial root node to the start of each model,

replace each model by the set of paths through it, and then form the tree by merging

common prefixes of paths. A path from root to leaf in the tree corresponds to that same

path in some model, and a Viterbi match will give the same score. By labeling the leaf

with the model name, finding the best matching path in the tree is equivalent to finding

the best matching model. Following He [He911 I refer t o matching a path in the tree

as path-discriminant search, and to matching models individually as model-discriminant

search, the basic vision paradigm.

Reducing matching complexity

The construction and use of a lexical tree greatly reduces average model matching complex-

ity, as the prefixes of many models are evaluated simultaneously. Ney [NHUT092] reports

that for a vocabulary of 10000 German words, the use of a tree reduces size by a factor of

2.5, and reduces search complexity by a factor of 7. The large latter reduction comes from

the fact that most of the search complexity occurs in the prefixes of the words, which are

only evaluated once in the tree implementation. By viewing the problem of finding the

highest scoring model as one of search, using a lexical tree may avoid matching most mod-

els except for some small initial prefix. The tree search is typically formulated as either

a beam search [Lowgo, NHUT0921 or as an A* search [Je169, BJM90, SH90, KHG+91].

Beam searches maintain a "beam" of current candidates, pruning out those that fall below

some threshold. A* searches operate in a "best-firstn manner, using an evaluation function

for choosing what path t o extend next. If the evaluation function overestimates the score

of the path to be extended (when the search is for the largest score), then it is said to

be admissible, and the search is guaranteed t o find the highest scoring path through the

tree [Ni186]. A* searches must thus maintain a search frontier that includes some prefix of

every path, t o allow that path t o be followed if all others prove inferior. Beam searches,

by pruning paths once and for all, are not guaranteed t o produce the optimal path.

These search methods are generally good a t rapidly eliminating most models from

consideration. For a large vocabulary problem (typically, thousands of models) the tree

3A trellis match will not generally give the same result, as alternate paths through the same model will
support one another in trellis search, but be independent in the Viterbi and lexical tree methods.

is large, hence it is built dynamically as part of the search process. However, even with

sophisticated pruning, the dynamically constructed tree is large. For example, the beam

search in [NHUT092] keeps 50000 current states (tree nodes) out of a possible 650000,

while A* searches generally require an exponential amount of state.

Much work has been done t o reduce matching complexity by initially screening out

unlikely candidates using a coarse fast match. Bahl, et all [BGKN89] provide a vectorizable

algorithm that is admissible as an A* heuristic. In an experiment using the non-vectorized

form, it provided a 2x speed improvement. Kenny, et all [KLL+93] give an admissible fast

match based on Viterbi search through graph representing triphone constraints implied

by the lexicon, rather than the entire lexicon itself. Gillick and Roth [GR90] g' ive an

inadmissible algorithm that does hard pruning based on whether a given prefix passes a

threshold; this is applied to a small (z IIC) vocabulary giving a 25x speed improvement.

Alternatively, for word-spotting tasks which typically have smaller vocabularies, and

may have the words in their vocab~ilary chosen t o be easily distinguished, thus having

fewer shared prefixes, it makes sense t o match models individually. This also allows the

use of the somewhat more accurate trellis matching.

Use of parallelism

In large vocabulary tasks, the various search methods rapidly eliminate models. So, at-

tempts t o parallelize the matching process by matching all models in parallel, rather than

using a search technique, will probably not be cost effective. Conversely, the use of a large,

dynamically constructed, global tree is difficult t o implement effectively using parallelism.

A static partitioning of the tree among the processors makes it likely that after a few

steps, most processors will have only pruned parts of the tree, and hence have no work t o

do (see [St0871 and [SB88] for interesting examples of this phenomenon in text searches).

Using a "master-slave" approach by having one processor control the search process, ex-

panding the search frontier a t multiple places in parallel by distributing the expansion

task t o other processors, is unlikely t o succeed as the amount. of work in expanding a

frontier node is small compared to the amount of information that must be communicated

for that work t o be possible. Dynamically repartitioning the tree suffers from the same

problem: because of the unpredictability of the part of the tree examined by the search

process, repartitioning is frequent, hence little work is done in proportion t o the amount of

communication necessary. So large vocabulary tasks probably cannot make cost-effective

use of parallelism in the model-matching (i.e., decoding) stage4 .

For a small vocabulary application like word-spotting, parallelizing is possible, but

may not be needed as the task is small. So the actual model matching process for ordered

input is an unlikely candidate for parallelism. As mentioned above, however, ancillary

processes like a fast match may be parallelizable. However, in this case Amdahl's law

[Amd67] implies that , as the central search part of the algorithms requires substantial

computation, the speedup obtained by parallelizing ancillary processes will be slight. So,

in general, I see little opportunity for useful parallelism in model matching one-dimensional

input.

3.3.2 Unordered Input (Graph Models)

With unordered input, as in vision tasks, models are undirected (hyper)graphs, where

nodes are features and arcs are relations or constraints between feature values. Models

are thus constraint networks. Typical arcs are geometric and topological constraints relat-

ing features7 adjacency, locations, angles, distances, and so forth. Geometric constraints

depend on a rigidity assumption, that the object is rigid and the geometric relations re-

main the same over time. This is appropriate for a large class of machine vision tasks such

as industrial part recognition. Bolle [BCKMSO] gives examples of some non-geometric,

non-rigid, constraints such as mutual visibility. Matching proceeds by positing a partial

correspondence between input features and model components, and then checking con-

straints. There are typically more features in the input than components in the model,

and features correctly associated with model components may be occluded or otherwise

4 0 f course, there is plenty of opportunity for parallelism in the feature extraction stage.

image + select ROI + group + match + verify

Figure 3.1: Stages of visual recognition systems

missing in the image. Thus, when the arc relations are viewed as binary, yes/no relations,

the matching procedure is a double subgraph isomorphism problem, and hence, in general.

of exponential complexity.

Visual recognition systems generally have the sequence of stages shown in figure 3.3.2.

A region of interest (ROI) is selected from an image, features within the ROI are grouped

t o form object hypotheses, the groups are matched against models t o establish correspon-

dence between image features and model components, and t o establish the pose of the

object, and then the match is verified.

Verification

Verification of a match is usually done by using the model and pose t o predict the points

of the corresponding object within the image (back-projection). The back-projected model

points are then compared with the actual points of the image in some way. For example,

using range images, Wheeler [WI95] matches each back-projected point t o the nearest

point in the image, using a k-d tree. Matched model and image points whose mutual

distance lies within a tolerance are then used to compute some simple statistics such as

the proportion of matched points t o visible points, and if these statistics all are within

tolerance, the model match is taken t o be correct. A matched model may also be verified

by predicting features and feature attributes, rather than points, see [FH86].

Global Interpretation

A further stage in processing is t o form a global interpretation of the ROI. The simplest

and most common form of this is to ensure that image points are matched to only a single

model, so that objects are not allowed t o inter-penetrate. This is typically done in a

sequential system by removing image points from further consideration as soon as they

participate in a verified match. This, of course, also reduces the complexity of further

matching. I t does require a small amount of communication in a parallel implementation.

More elaborate interpretations involve the mutual likelihoods of observing objects with

certain properties in the same scene. One formalism for this is Bayesian networks: see

[USA94]. Although it is intimately related to contest a t the level of the semantics of

objects, I do not consider global interpretation formation further, both for lack of time,

and, as mentioned before, as it seems unsuitable for parallelization.

For unordered input, there are five general classes of matching techniques: template

matching, the (Generalized) Hough Transform, tree search, relasation labeling, and elastic

matching.

Template Matching

In template matching, also called correlation matching, the template consists of a small

image which is shifted over the image and matched pixel-by-pixel. The correlation between

the template and the image a t a given location forms the metric by which the match is

judged. The correlation is the (squared) Euclidean distance between the template and

the corresponding block of the image, so this can be viewed as a form of nearest neighbor

matching. This form of matching is clearly susceptible t o noise and occlusion in the image,

rotation or scaling of the object, and for 2-D images of 3-D scenes, perspective distortions.

It is thus mainly suitable for controlled viewpoint applications (2-D industrial). Template

matching may be easily parallelized, in a SIMD fashion, and is also easily implemented

in hardware (see, for example, [RV94]). The regularity of the algorithm, in fact, offers

good performance on conventional machines, together with its suitability for controlled

viewpoint and illumination situations as in industrial and medical applications, make it

the most common form of object recognition. As its implementation is unproblematic, and

as the model (template) makes no use of context, I will not discuss template matching

further.

Generalized Hough Transform (GHT)

The Hough Transform was originally devised as a method of extracting lines from an

image that is robust to noise and occlusion. As such, it forms groups of (disjoint) edge

segments that potentially belong t o the same line, and may be viewed as a mechanism

for grouping pieces of an image that may be parts of the same object. The GHT [Ba l~g]

is an elaboration of the Hough Transform that extracts arbitrary rigid 2D curves rather

than lines, and may thus also be viewed as an object recognition, as well as grouping.

technique.

Briefly, the basic Hough algorithm is as follows. Suppose we have N input features.

s;, and M m total model components, m j , where M is the number of models, each with

m components. For each pair of features and components, (s, m) , there is a transforma-

tion mapping one t o the other. This transformation (typically) consists of a translation,

parameterized by (a, b), a rotation. Re, and possibly a scaling, s. The entire transform

is then parameterized (a, b, 8, s). This is viewed as a point in R4, and corresponds to a

cell in a 4-D array constructed by quantizing the four transform dimensions, the Hough

accumulator. In the recognition process, the transform is computed for each pair of scene

and model features, and the corresponding cell of the accumulator is incremented (and

the model noted). Finally, the cells are tallied. Large peaks in the histogram for the same

model correspond t o many scene features having (nearly) the same transform for that

model, and hence t o a likely occurrence of that model in the image. The location of the

histogram peak gives the alignment of the model with the image, and the entries give the

correspondence.

All features are matched with all components, so complexity is O (N M m) . Space is

qd, where q is number of quantization levels of the parameters and d is the dimension

of the parameter space. Above, d = 4; other common transformations have d = 2 . . .6.

GHT is known t o be sensitive t o sensor noise, scene clutter, and occlusion, generating

many false positives [GriSO, BS92, SG931. Grimson [GriSO] suggests its use as a filter, to

select a smaller set of models for further verification. The 2-D Hough transform is widely

used for line finding, and has an efficient SIMD implementation [FH89]: other forms,

including GHT, do not seem to be much used, probably due to computation, storage

and communication complexity. I will not pursue the GHT further, as it seems to be

impractical.

Relaxation Labeling

Another class of models are graphs where the nodes represent features and the arcs con-

ditional probabilities. Christmas [CKP95] gives a recent variant. The algorithm is a

somewhat more complicated version of a trellis Viterbi search, where time measures re-

laxation iterations rather than input ordering. Let 0 be an input feature label, and w be

a model component label, then the probability a t step n that input feature i has the same

label (is matched with) model feature j is given by

where

Here, Z is a normalization factor, and Aij is a binary inter-component compatibility

constraint, providing "model context". The quantity p(Aij) is computed from comparison

of measured values with model values, using an error model. Initial node probability

values are determined by the measured values of unary attributes together with an error

model. Note that in so far as the binary constraints Aij have probability zero for features

Oi,Oj belonging to different models, the expression for Q (~) may be evaluated on a model-

by-model basis.

The relaxation process combines evidence from measurements with prior model con-

text. The use of measurement information throughout the relaxation process is intended t o

avoid the common criticism that relaxation methods are over-sensitive to the assignment

of initial node probabilities (see, for example, [FH86]). In the examples given. components

are line segments, the sole unary constraint is absolute orientation, and the four binary

constraint types are metric relations such as angle and distance. One problem with the

relaxation formalism is that all possible measurements must be made before the process

starts, t o relax over. Thus, the model does not direct the search process. Complexity for a

single model and single iteration is thus O(n2m2); where n is the number of input features,

and m is the number of model features. In the implementation described, precomputing

the binary constraint probabilities dominates time, requiring about five times longer than

the relaxation process, per se. Also, the stored binary probability values use O(n2m2)

space. The relaxation process takes a variable number of iterations to converge. generally

less than 5, but as many as 30, thus convergence irregularity is pronounced.

Other relaxation formalisms such as Highest Confidence First (HCF) relaxation over

Markov Random Fields [CB90] have the same property that all possible model-scene pair-

ings must be initially evaluated before relaxation takes place. HCF, however, is based on

use of a priority queue. Initially, all nodes, each with all possible pairings, are entered in

the priority queue, ordered by a measure of "stability". Relaxation takes place by chang-

ing the least stable pairing t o be be more consistent with its neighbors, and reentering

changed nodes in the priority queue. This typically leads t o a consistent relaxed state by

changing very few nodes, so that initially loading the queue is the dominant time.

Tree Search

This class of model matching techniques, consists of various elaborations of Interpretation

Tree Search (ITS) , due to Grimson [GrigO]. Interpretation Tree Search consists essentially

of depth first tree search (D F S) , where a node on level d of the tree corresponds t o pairings

of image features with the first d model features. The search is limited by a variety of

unary and binary geometric constraints on the allowed pairings. Grimson shows that for

a single isolated 2D object the (worst-case) search complexity is quadratic in the model

size, while for a 2D object in a cluttered scene with possible occiusion, the complexity is

exponent,ial in the number of visible features:

o(m2' + m n) < complexity < O(m22n + m n) ,

where m is the number of model components, n is the number of input features, and c is

the number of non-spurious input features, ones that correctly belong t o some model. The

complexity of determining that an object is not present in the scene is also exponential.

One form of elaboration on ITS is exemplified by Local Feature Focus (LFF) search,

which adds model-based search control [BC82]. LFF is based on finding maximal cliques in

a graph, and hence also relies on a constrained DFS. The name "feature focus" comes from

the technique of identifying certain features as most search-constraining, and matching

them first. The algorithm proceeds by first matching the focal features, then using the

model to predict nearby features, and matching them using unary constraints. Thus in

LFF the model has an active role in directing the search, while in ITS, it is used only to

prune inconsistent interpretations, The model-ima.ge feature pairings generated are used

t o construct a graph of consistent pairings, and a maximal clique in this graph gives

a possible model-image correspondence t o be verified. Although worst-case complexity

remains exponential, experimentally, the average case complexity is much reduced over

ITS.

For rigid models, current versions of tree-structured matching use alignment. An

alignment of an object model with image points is an estimate of the pose of the object.

[Hugo] show how t o quickly compute an alignment given two oriented model points and

two oriented image points, using linear, quadratic and square root functions.

Alignment may be used by itself as a matching algorithm, as follows:

for each model do the following:

- for each pair of model points, and each pair of image points, compute the

alignment

- verify the alignment by using it t o predict image features corresponding t o the

aligned model

- (optionally) if verification succeeds, remove the matched image points from

further consideration

Given M models, each with m points, and an image with n points, this has com-

plexity O(Mm2n2v) , where v is the complexity of the verification phase. In [HU90],

verification complexity is worst-case v = m log n, giving an overall worst-case complex-

ity of O(Mm3n2 log n). This a large overestimate of actual time: when an alignment is

verified, no more pairs need be aligned for that model, and the image points may be re-

moved from further consideration. [Ols93] gives simple lookup-based indexing techniques

t o avoid some unlikely or uninformative verifications, and gives results showing speedups

of 20-150x when the model is not present in the image, and 5-lox when it is.

Alignment, or more generally, pose estimation, combines with tree search in an obvious

way: after enough model-feature pairs are established by search, the pose of the object can

be estimated, after which the location of the remaining input features can be predicted.

The prediction of the feature locations is known as back-projection of the model onto the

input; its noise sensitivity is analyzed in [TH91].

For alignment, per se, model size is small: for the basic form, storage for a model is

just m oriented points. The techniques in [Ols93] also require a 2-D index table per model,

its size depends on a quantization parameter, no example is given, but it's likely small.

It is necessary t o identify "interesting" points (features) t o use; [Hugo] uses corners and

inflection points as features, and report that feature extraction is as expensive as matching.

For tree-search as a whole, [BCKMSO] gives further examples of constraints and their

use t o prune and control search. [RB93] apply ITS t o match complicated models having

repeated parameterized subparts, with non-uniform stretching and scaling. A real-valued

constraint network is used in conjunction with ITS to determine values of model parameter

values as well as satisfaction of geometric constraints. As well as pruning via constraints,

tree search may be done using a branch and bound formalism [CHS91]. Table 3.3.2 shows

some characteristics of several systems using tree search.

These tree-matching algorithms exhibit data structure irregularity in the (pruned) tree

Table 3.1: Some systems using tree search matching.

traversal, as well as convergence irregularity in the pose refinement phase.

Elastic matching (deformable models)

Elastic matching is a technique used for non-rigid models. Matching occurs by minimiza-

tion of an energy function, measuring the amount of deformation of the model required

t o match the object. Object classification can be done by viewing energy as a metric,

and selecting the class with model "closest" to the object [Hin92]. Deformation matching

builds a correspondence between model and object, so it can be used for segmentation and

registration. The model does not direct search for a correspondence, as there is generally

little predictability for non-rigid objects.

The definition of deformation energy varies, but is usually a function of Euclidean

distance between object and model points, and sometimes also relative edge angle. These

require scale, rotation and translation invariance, so pose must be estimated before mea-

suring deformation. This is usually an iterative process, slightly deforming the model to

agree with the input; estimating pose, which redefines the deformation energy potential;

re-deforming the model: and so on until some convergence criterion is reached. So we see

convergence irregularity.

Matching is usually done pixel-by-pixel, and so is computationally intensive. When

models describe 1-dimensional contours, dynamic programming techniques can be used to

reduce the computation [Gei95]. Another technique for reducing complexity is a coarse-to-

fine, multi-grid matching, where an initial rough match t o subsampled input is iteratively

refined [JZL96]. The techniques here tend t o be regular.

The computational complexity of elastic matching may also be reduced by matching

a model graph t o features in the input data. Amit [AI<96] defines features by local

neighborhood operations on the input data, and then matches a model graph t o them by

a correspondence search. By requiring the model graph to be decomposable the search

is reduced t o dynamic programming, using the deformation energy as a cost function.

Essentially, use of decomposable model graphs enforces an ordering on the matching of

model components so that later matches have no constraining effect on previous ones5. In

the completely non-rigid case, no prediction of feature location is possible, and each new

feature is hypothesized, in turn, to be a member of all possible triples of model points,

where the other two points have already been matched (the restriction t o decomposable

graphs makes this sufficient). The deformation energy for a particular triple is a simple

function of the comparative lengths and angles of the associated triangle between the

image and the model.

While the model is not active in the sense of directing search, the current partial

match provides context for the matching of the next point via the deformation energy

cost function. In general, we see convergence irregularity for these techniques, possibly

with data structure irregularity from model traversal and feature lookup.

'Part of the constraining power of an arbitrary graph model can sometimes be recovered by simultane-
ously matching multiple decomposable subgraphs of it.

Combining techniques

These techniques can, of course, be combined. Wheeler [WI95] uses relaxation (MRF) t o

"pre-prune" search, tree search to establish correspondences, robust LMS pose estimation,

and 3-D template matching for verification of the back-projected model. Pre-pruning trees

with relaxation reduces the number of hypotheses verified by a factor of four for realistic

images.

Reducing model matching complexity

A number of techniques have been developed t o avoid having t o match all models in the

model base.

Basri [Bas931 gives a 2-stage approximate alignment scheme t o avoid having t o aIign

all models. An image set is first (inexactly) aligned with each of a set of prototypes by

minimization of a particular objective function. The set of possible prototypes is then

reduced t o a few best fitting ones, and for each of these, the previously constructed align-

ment is used t o put into correspondence the image set and each model in the prototype's

class. The class corresponding t o a prototype is defined by clustering with respect t o the

objective function. Note that the prototypes may be matched in parallel.

Sengupta and Boyer [SB95] gives a hierarchical indexing scheme for libraries of graph

models. Only the root of the index tree need be matched, this sets up the correspondence

between scene and model features; the subsequent tree traversal requires only simple tests.

The essential point is that the root model is now a somewhat reduced representation of the

entire model base: it contains all primitives found in the model base, together with much

weaker constraints, leading t o less use of context in the search process. The match t o the

root is still exponential, but now on a much larger model than any found in the model

base. Nonetheless, they report impressive speedups when models can be preclassified into

types (for example, "chair") for which all models of this type are not too different. In this

case, the root of the sub-modelbase searched does not differ too much from the individual

models, so that little time is wasted matching the root model. Also, a set of subroots for

the different types can be matched in parallel.

The primary search reduction technique for rigid models has. however, been the use

of indexing techniques.

Geometric hashing [LW88] and related techniques [Rei93, Wei93, Ch4911, work by

extracting a number of model-based pose-invariant features as pieces of evidence for the

various models, and then choosing several best-supported models for further verification.

Again, we see "imperfect" indexing, that can be followed by parallel model matching.

Invariants, 1 0 , take a vector of features, T a n d produce a vector of some dimension

as output. They are invariant t o a class of transformations: the output vector does

not change when the input vector is transformed by an element of the class; i.e., if g

is an element of the class, ~ (f) = ~ (~ (f i) . Suppose the invariant t o be used requires

N features, and produces a vector of dimension k. For example, following Lamdan's

original construction [LWSS], given N = 4 points in R2, three of them can be used t o

form a translation-independent coordinate system in which the k = 2 coordinates of the

other point form an affine invariant, one that is unchanged by translations, rotations and

scaling. For a k-dimensional invariant, a k-dimensional hash table is constructed like the

GHT accumulator array by quantizing the k dimensions and viewing each resulting cell

in R k as a hash bin.

Suppose there are M models, Mi, where each model consists of m features, Mi =

{ fijlj = 1 . . .n). The set of models is used t o create table entries (Z, Mk, 3, where i E R~

is the vector of invariants computed on the (ordered) feature set {qkili E 3, and Z E .ZN-'

is a vector of integer indices. The table entry is stored in the cell in Rk containing Z. The

table is filled as follows:

1. for each model, Mi

2. for all combinations of N - 1 basis feat.ures chosen from the m model features,

(f i , l , - . . f i , ~ - l)

3. for all permutations of those basis features, (fivj1, ... f,$,-,)

4. for all remaining m - N + 1 model features, fi,o

5 . enter (I(fiYj, , ..- fijN-, , fi,o), hf;, (jl, ...j N-I}) in the table.

The redundancy in the table is t o allow matching when some features are occluded or

incorrect due t o noise. The table is constructed entirely off-line, so its computational

complexity need not concern us; it contains O(MmN-l) entries. Each entry has 1 model

index and (N-1) model-feature indices, totaling log M + (N - 1) log m bits. If weighted

voting is used, entries also contain a vector of k real numbers.

At runtime, the steps are:

1. given scene features {pl, . . . , p,), choose a basis set, (p,, , . . . p ,,-,) There are O(sN-')

such bases.

2 . fo r all the remaining scene points, po, compute the invariant

I,,o = I(p, , , . . .p,,-,,po) and record a vote for each pair (Mk,p i) with an entry

(., Mk,,fi;) lying in the same bin as I,,o.

3. if any pair (Mk, ,fii) gets enough votes, verify the match

4. if the match fails, go t o (1)

In the worst case, this requires O(sN) calculations of the invariant. Lamdan [LSW88] has

shown that if there are a "reasonablen proportion of features in the image that belong

t o a single model, then the complexity is O(s). Voting may consist of incrementing a

counter, or may involve more complicated weighted voting, perhaps including interaction

with nearby entries [RH93].

However, invariants are not a panacea t o the problem of rigid object recognition: Grim-

son [GriSO] has shown geometric hashing, like GHT, tends t o give many false positives in

the presence of sensor noise. In the presence of sensor noise, speedup is limited, essentially

t o a constant (rather than being linear in the model base size, as it would be if hashing

always found a single potential model) [C.J91, Gri90, 01~951. Invariants for general 3-D

models do not exist [CJ91], rather, instead of a model corresponding to a 0-dimensional

manifold (point) in the "index space" generated by values of a presumed invariant. a model

corresponds t o a 2 or 3 dimensional manifold instead (orthographic projection giving rise

to a 2-D manifold [CJ91] and perspective projection t o a 3-D one [Jac96]). However, the

"probabilistic peaking effect" [BA90] implies that the probability of observing points on

these manifolds has a highly peaked distribution. Olson [Ols95, 01~931 shows how to use

this peaking to find alignment matches with high probability of being correct, and reports

speedups on real images of 20x when the model occurs in the image, and lOOx when it does

not (the common case, for large model bases). Olson also gives methods for eliminating

from consideration model groups that are unlikely t o give useful alignments; in this sense

the model can then be said t o direct search.

Thus, especially in the presence of sensor noise, indexing techniques are "imperfect7',

in the sense that they reduce the number of possible models matches that must be verified,

but not t o a singleton.

Summary of matching techniques

Let us review the "stylized facts" from the beginning of the chapter.

F1 Feature grouping (object hypothesis generation) involves construction and traversal

of irregular data structures such as lists and trees.

This was discussed in section 3.2. Lists and trees serve either as representations of com-

ponents (regions and boundaries) or as indexing structures for associative lookup. In the

former case, traversal operations are used t o compute features such as moments. The

construction of the lists and trees may or may not be complex, but once constructed,

the main algorithmic form is a simple data-dependent loop, with a small loop body of

attribute comparisons and accumulations. A particular point is that the loop conditional,

either checking for the end of the list, or for terminal tree nodes, forms a substantial part

of the computation.

F4 Model search and indexing techniques are "imperfect", in the sense that they generally

restrict the number of models t o be matched, but not t o a single candidate.

This was discussed in the section of reducing match complexity for graph models. The

point is that , as indexing is "imperfect", matching and verification of multiple candidate

graph models in parallel is still of interest. For ordered models, the lexical tree provides an

indexing method that seems unlikely to benefit from parallelism. For smaller vocabularies,

where model-discriminant matching makes sense, indexing is not so useful, and parallel

matching is again reasonable.

The sections on matching of graph models have tried t o demonstrate

F2 model matching algorithms exhibit irregular control flow mediated by the data and/or

model, and

F3 most model matching and feature grouping algorithms are simple, with computational

complexity coming from applying a small code "kernel" many times

Descriptions of the algorithms have shown these trends for model-discriminant matching of

HMMs; tree search, with its use of algorithms based on depth-first search; elastic matching

of decomposable models; relaxation matching using either a dynamic programming type

of algorithm or a priority queue based one; and model match verification, based on least

squares pose refinement and location of closest points based on spatial data structures.

In all these cases, we again have the phenomenon of simple kernels either iterated a

data-dependent number of times, leading t o convergence irregularity, or mapped over an

irregular da ta structure, leading t o da ta structure irregularity.

3.4 Parallelism and Communication in Matching

Consideration of parallelism brings up the issue of the distribution of input data, features,

and models among the processors. Due to its small size, this is generally unproblematic for

ordered input, text and speech, which may be broadcast and replicated a t each processor.

I will therefore speak in terms of visual data.

Matching a single model against a large distributed region of interest (ROI) leads to

matching being handled globally. Parallelism is then used for associative lookup on the

distributed data. The implication of Amdahl's law is then the need for a fast global pro-

cessor. It is far from clear that significant parallelism can be achieved, compared to having

the global processor also handle the associative lookup, but if, as is likely, the features have

been computed in a distributed, bottom-up fashion, it may be preferable t o leave them

where they are, rather than moving them all t o the memory of the global processor. Also,

the use of an asynchronous communication network may allow the distributed features to

be moved t o the global processor as they are computed, in parallel with the computation

of other features. So here, we see a role for parallelism in the form a special-purpose

coprocessor for bottom-up processing.

In situations where the set of features in the ROI is not too large and where there are

multiple models t o match against, it makes sense t o act as for speech and text and replicate

the ROI on each processor [ND92], distributing the models among the processors. In this

case, no interprocessor communication is needed during matching, except t o construct the

global interpretation; especially, to ensure that features are not interpreted as belonging t o

more than one object. However, if features have been computed in a distributed fashion,

then those belonging t o the ROI must be replicated on each processor. As for the previous

case, an asynchronous communication network may allow this communication time to be

mostly overlapped with other useful computation.

The remaining alternative is t o distribute the ROI features among the processors, in

"tiles", and then have each processor match one or more models on its tile in parallel.

This is problematic in so far as the features belonging t o a single object may be located on

separate tiles. If the maximum diameter of an object is known, it may be possible to allow

tiles t o overlap, so that any object may be found entirely within a single tile. In the case

of relaxation matching and geometric hashing where all scene features must be accessed

a t the start of processing, having an object lie in a single tile is the only option. If a scene

object may not lie entirely in a single tile, interprocessor communication will be required

during the match process. The communication pattern will be irregular, being determined

by the particular models in question, the (scene-dependent) distribution of objects among

tiles, and on how features are distributed and accessed. The la.tter two situations occur

even if only a single model, possibly encoded in the algorithm, is being matched.

In the following, I will view the communication issues raised by this third alternative as

outside the scope of the thesis. As a larger P E memory allows a larger replicated ROI, the

communication difficulties of the third alternative are an argument for larger memories.

The first alternative is unproblematic when parallelism on the coprocessor is bottom-up

and SIMD, and subsumed into the second alternative when i t is not. I will concentrate

henceforth on the second alternative of a replicated ROT with parallel matching of multiple

models.

3.5 Summary

In summary, examination of feature grouping and model matching algorithms leads t o

the conclusion that parallelism is unlikely t o be valuable for feature grouping and model

matching in applications with ordered input. Algorithmic characteristics for unordered

input, particularly vision applications, suggest a hybrid architecture with a fast uniproces-

sor coupled t o a parallel coprocessor. PEs of the coprocessor should have large memories

and communicate via a asynchronous autonomous network. The PEs should support a l p

rithms having small computational kernels that exhibit irregular, data-dependent control

flow.

Chapter 4

Hardware

4.1 Introduction

To analyze the potential for parallelism in sensory processing we need t o understand

the technology available for implementation. I will therefore look a t Very Large Scale

Integrated (VLSI) semiconductor circuit technology, likely t o be available in the near

term, as it affects the performance of the algorithms used.

My philosophy of hardware analysis is that both detailed and simplified models of

non-existent architectures are unconvincing with respect t o ultimate performance, but

that abstract, simplified models have more potential for giving insight into design and

algorithm tradeoffs. I therefore do analysis a t a high level - variables include: number

of processors, fraction of chip area used by a given feature, frequency, power dissipation,

off-chip bandwidth, granularity of computation (computation per memory access), size of

model, and so on.

I am interested in relatively general-purpose, cost-effective systems for contextual sen-

sory processing, and so will look a t extending existing systems t o cover a wider range of

tasks, especially irregular tasks like model matching. I will focus as well on delivery sys-

tems, that is, systems designed for efficient delivery of specific functionality t o end users,

rather than, say, on general purpose workstation clusters, or research systems. I study

such systems, involving small numbers of chips, both for economic reasons, and because

many of the issues of large scalable systems are already well studied. A small systems

focus leads us t o assess the potential for on-chip parallelism, and multiple processors per

chip.

Section 4.2 provides the qualitative background for the relevant architectural ideas.

Section 4.3 describes current VLSI technology trends for the next 12 years. Using these

VLSI trends, section 4.4 develops a quantitative model for the number of processors per

chip. Section 4.5 then uses this model t o examine the effect of limited off-chip bandwidth

on the task of exhaustive model matching. Even for a highly parallelizable application,

limited memory bandwidth and the tradeoff between the limited area for data-path and the

limited area for on-chip memory constrains the useful number of PEs on a chip to be around

16-32, unless (essentially) all model parameters fit in on-chip memory. Finally, section 4.6

reviews current ideas about how VLSI trends will influence computer microarchitecture,

and indicates how the SFMD architecture t o be assessed in chapter 5 relates t o these ideas.

4.2 Simple processors

Putting multiple processors on a chip requires that they use less area and hence be "sim-

pler" than a single commodity RISC microprocessor on the same chip. Assuming the same

VLSI process across comparisons, simple processors can save area by:

limiting functionality: One can restrict the operations done in hardware, possibly em-

ulating them in software, or using slower, less area-intensive implementations. For

"sensory7' processing and context analysis, some reasonable possibilities are elimi-

nating hardware floating point; limiting word size, perhaps t o 16 bits; or eliminating

integer division hardware. Later, I will show how projected VLSI process trends

imply that these forms of simplification will be of lesser importance, except for the

restriction on word size, which has implications for off-chip memory bandwidth.

limiting instruction-level parallelism: A simple processor may reduce the number of

functional units (FUs) of a given type, and execute fewer instructions a t a given time.

Thus superscalar and speculative execution is reduced or eliminated. Even with only

one FIJ of each type, it may still be possible to overlap loads, stores, and operations

on the separate functional units. If this overlapping gives an average of 1.5 instruc-

tions per cycle (IPC), taking into account memory delays, then the degradation

in performance compared t o a quad-issue commodity microprocessor is a t around

two (figures 4.4 and 4.5). A commodity microprocessor implementing more than

quad-issue will likely have small increased performance for the increased area, due

t o diminishing returns in trying t o leverage concurrency within a single instruction

stream. Even the most optimistic projections for billion transistor uniprocessors give

a maximum IPC of about 12 [PPEf 971. Nonetheless, the projected VLSI trends in-

dicate that after one or two more process generations, chip area constraints will not

be a compelling reason for simplifying processors in this way. However, achieving

greater ILP trades off against factors such as design complexity, manufacturing and

test costs, power dissipation and chip size. A design must weigh these tradeoffs in

terms of its intended application.

sharing instruction processing hardware: Here, shared hardware is used for produc-

ing an instruction stream used by all the simple processors. If the simple processors

have no instruction memory, we have the familiar SIMD architecture. Later, I in-

troduce the Single Function Multiple Data (SFMD) architecture, where each simple

processor has a small instruction cache.

sharing chip pins: In this simplification, a given simple processor has only addressing

into its local memory, with off-chip I/O and memory hardware shared among the

simple processors. As for the previous methods, VLSI trends indicate that sharing

resources that require only chip area will not be a significant factor unless the area

required is quite large. For example, sharing large caches may be useful. However,

pin (rather than area) limitations will force sharing off-chip 110 pins if there are

more than about 32 processors per chip. Independent of the sharing issue, the

growing disparity between computational performance and bandwidth indicates that

maximizing data pin bandwidth will be important.

sharing functional units This is a recent idea due to Tullsen [TEE+95] in which mul-

tiple threads share multiple functional units. Introduced as a way of increasing

effective superscalarity, it can also be viewed as a way of sharing functional units

among separate (virtual) "processors". This necessarily decreases maximum poten-

tial parallelism, but the effect on realized parallelism is unclear, due t o improved

resource utilization and latency hiding. The same trends indicate that the area

saved by sharing functional units will not be significant in the long run. Also, the

complexity of implementation, based on current superscalar design, grows quadrat-

ically with the number of processors, and may be prohibitive for larger numbers of

processors (e.9. 16) due t o design complexity and interconnect restrictions [SS95].

reduced or shared memory: Memory will constitute a dominant portion of chip area,

and significant area may be saved by reducing the amount of cache or local memory

needed by a processor. Sharing (L2) instruction cache is probably not difficult, but

sharing data cache is more problematic due to coherence issues. On-chip shared or

coherent cache systems may be a useful concept for multiplexing data pins among

processors [NO941 but elaboration of this idea is outside the scope of the thesis.

4.3 VLSI measures

To construct a framework for discussing chip cost, I review some VLSI facts, and then

look at projected trends over the next few years.

4.3.1 VLSI trends

The main driving force in the increased power of microprocessors has been, and will

continue t o be for some time, VLSI process improvements that allow smaller and smaller

devices t o be built on larger and larger chips, allowing increasingly complex designs to

be fabricated cost effectively. While processes differ in many architecturally important

respects ', the basic scale measure, A, defined as one half the gate length that can be

built using the process, provides a useful way of comparing different processes2. A process

having 1/2 the X of another process will, roughly, be able to put 4 times as many devices

in the same area, and will also be able t o be run a t higher speeds due to the reduced

distances and loads between points and reduced capacitances due t o smaller (charge x

area).

An exception t o scaling the number of devices, and increasing consequent chip "com-

plexity", with X is in the 1 / 0 interface of the chip with the off-chip system. Both electrical

and mechanical effects limit the degree to which the number of 1 /0 pins scales with A.

Electrically, on-chip components forming the interface to a pin cannot shrink arbitrarily,

but must be large enough, for example, t o drive a signal across the off-chip wire. Mechan-

ically, the need t o bond chip pins t o the package limits their density, and hence, for given

chip dimensions, their number. Packaging can greatly impact the scaling of 1 /0 pins: the

more inexpensive packaging forms only allow chip pads at the periphery of the chip, forcing

the number of pads t o scale a t most linearly with chip and feature size, while the number

of chip features scales quadratically. 1 / 0 speeds are even more limited in their scaling

with A, as they are determined by the circuit board bus speeds, which typically do not

exceed 100 MHz. The chip interface is thus a major barrier t o the scaling of performance

with process improvements.

Current trends in chip area, feature size, number and cost of pins, and general design

cost, have been summarized by the Semiconductor Industry Association [AssD7]. These

represent research goals and extrapolated trends, rather than forecasts, but probably

represent the current best estimates of future performance. Tables 4.1 and 4.2 show some

relevant trends for the next 7 generations, up t o the year 2012. The table starts with the

0 . 2 5 ~ process as the current generation, even though chips are now being manufactured

'For example, in the number of layers of interconnect.
2The use of X can be misleading as not all features scale at the same rate; in particular the pitch of

metal layers tends to scale more slowly than lambda. None the less, it is probably the most agreed on and
reasonable single number to use for comparison purposes. Whenever possible, we use actual projections
rather than extrapolations based solely on scaling with A.

using the 0 . 1 8 ~ process, as it will be a few years before the 0 . 1 8 ~ process is generally

available.

I will refer t o this table more later on. For now, the salient points are the enormous

rate of increase in the functionality that may be integrated into a single chip, and the

degree t o which off-chip 1 / 0 bandwidth becomes increasingly limited over time, as shown

by the number of pads per million transistors and by the 1 / 0 rate per million transistors.

The response t o this problem for general purpose machines has, and will probably continue

t o be, the movement of memory onto the chip [SPN96, Bur971. The DEC 21164, with

on-chip 96KB L2 cache t o support its 625+ MHz clock rate, is a recent good example of

this. There is thus increased pressure for "advanced" VLSI processes combining space-

efficient RAM and logic on the same chip [Ass97]. Traditional processes optimized for

DRAM use few metal layers and suffer a serious loss in efficiency in implementing logic,

while processes optimized for logic are inefficient a t implementing SRAM [Fos96]. The

trend t o more efficient combination of logic and memory on the same chip can be seen in

table 4.5, and is discussed further in 4.7.

4.3.2 Chip Architecture

To understand the effects of tradeoffs a t an architectural level, we need some idea of the

silicon costs of the various functional components of a chip, such as registers, floating

point units, and so on. Table 4.3 gives component sizes for three contemporary chips, as

measured from chip micrographs [ERB+95, BBB+95, SDC94, LLNK96, GBI<Q96]. These

area numbers are rough, in that micrograph overlays are somewhat ambiguous as t o the

exact functionality contained in a given area. As indicated above, the current and future

trend is toward moving more memory on-chip. Thus, memory device size is of particular

importance. Table 4.4 shows sizes for a variety of current designs, from [Fos96]. Table 4.6

shows sizes for a variety of current and future "advanced" mixed ASIC-RAM designs.

For modeling, tables 4.3 and 4.5 can be distilled into table 4.6 of nominal component

sizes. For now, I will look only a t SRAM-based designs, and will discuss DRAM-based

Table 4.1: Description of fields for table 4.2. $"Mx" is a million transistors.

description
Year of first DRAM introduction a t given feature size.
DRAM and logic in volume a t that size available about
2 years later.
minimum feature size (2X)
packed transistors per unit area for logic and embedded
SRAM process
total chip area
number of chip pads; this exceeds number of package pins
under the assumption that the package will be used to dis-
tribute power and ground t o chip, or will contain multiple
chips
number of package pins

field

year

process size
logic/SRAM
density
chip size
chip pads

package '

pinslballs

(BGA)
I /O bus width

units
-

P
~ x / c m ~

mm2
-

-

chip speed
off-chip speed

logic chip

bits

capacity
SRAM chip
capacity

bus width t o system memory and peripherals (not cache)
MHz
MHz

Mx/chip

110 ra$o
110 bus
bandwidth
I/O bandwidth
ratio

on-chip clock rate
chipto-board clock rate for peripheral busses

packed logic or embedded SRAM transistors per chip

MB/chip maximum embedded SRAM per chip (logic process)

pins/Mx
GB/s

(MB/s)/Mx

possible off-chip signals per million transistors of logic
maximum bandwidth over system bus

maximum bandwidth per million transistors

Table 4.2: VLSI Technology Trends, from [Ass97]. Columns give process generations,
with minimum feature size (A) in row 2. Where applicable, values given are for the
"cost/performance" market, targeting < $3000 desktop machines and laptops. I: Goal is
problematic, but solutions are currently being pursued. $: There is no way yet known to
reach this goal.

year
process size

logic/SRAM
density
(Mx/cm2)
chip size
(mm2)
chip pads
package
pinslballs
110 bus
width (bits)
chip speed
(MHz)
off-chip
speed
(MHz)
package cost
(centslpin)
chip size
(1 0 ~ ~ 2)
logic chip
capacity
(Mx/chip)
SRAM chip
capacity
(Mblchip)
110 ratio
(pins/Mx)
110 bus
bandwidth
(GBIs)
I/O band-
width ratio
((MB/s)/Mx)

$
0.13,~

18

430f

413-1458t
413-10931

128

9251

1251464

1.05-2.05

101

77.4

12.9

5-14

2.017.4

26/96

0 .15 ,~

10

385t

352-1193
352-895

128

727t

1001362

1.15-2.30

68

38.5

6.4

9-23

1.615.8

421151

2006
0 .10 ,~

39

520:

524-1968t
524-14765

128

1 1081

1251554

0.90-1.75

208

202.8

33.8

2.6-7

2.018.9

10144

1997
0.25,~

3.7

300

256-800
256-600

64

350

751175

1.4-2.8

19

11.1

1.8

23-54

0.611.4

541126

1999
0.18,~

6.2

340

300-976
300-732

64

526t

1001263

1.25-2.5

42

21.1

3.5

14-35

0.812.1

381100

2009
0 .07 ,~

84

620:

666-2656t
666-19925

256

1468t

1501734

0.75-1.50

506

520.8

86.8

1.3-4

4.8123.5

9/45

2012
0 .05 ,~

180

7504

846-3587t
846-26901

256

1827t

150/913

0.65-1.30

1200

1350

225

0.6-2

4.8129.2

4/22

Table 4.3: Areas of various architectural components, in units of 106X2,measured from mi-
crographs with overlays. 'ALU' includes shifter and multiplier; the number in parentheses
is the number of adders. The PA8000 has no on-chip caches, its load/store area includes
28 entry address reorder buffer and 2 address adders and it has 32 general purpose + 56
rename registers, each 13-ported (4 write + 9 read ports). The 21164 has a 96k-B on-chip
L2 cache, leading t o the large number of transistors, the bus interface area includes L2
cache controller. The 21164 D cache is larger than its I-cache since it is dual read-ported.
The 21164 G P registers are 6-ported (4 read, 2 write), its FP registers are 9-ported (5
read, 4 write), and each functional unit has 3 9-ported registers, 2 read + 1 write. The
21164 area also includes 52 x 106X2 for clock drivers. For the PPC604, registers have 8
read ports and there are 20 rename registers.

G P registers
ALU
F P registers
FP F U
pad area
die

signals
transistors

62

77 (2)

225 (2)
230
1350

701
3.8M

17 (16b)

4063

75
14M

48

82 (3)
33
83
120
784

171
3.6M

67

98

220
1200

?
9.3M

Table 4.4: Memory device sizes for various designs. using current (1995) processes opti-
mized for either SRAM or logic, but not both, from [Fos96]. The 'logic' process used is a
3-metal 0.511 ASIC process, the "standard" SRAM process is 2-metal 0 . 5 ~ ~ the "CNAPS"
process is 2-metal, 0 . 4 ~ ~ and the "standard" DRAM process is 2-metal, stacked cell, 0 . 5 ~ .
"Actual density'' takes into account reduced space utilization due t o number of metal
layers and peripheral process rules. Area for sense amps and decoder logic is not included.
"Logic scalingn gives the factor by which the area of logic devices increases for an SRAM
or DRAM process, compared t o the 3-metal ASIC process; this not known for the CN.4PS
process.

Table 4.5: Various reported, measured and forecast SRAM densities, for 0.35 - 0 . 4 ~
processes. The area reported includes ancillary circuitry such as decoders, cache tags
and write buffers, except for values marked with t. Except for "SIA", processes are mixed
SRAM and logic. "SIA" is from [Ass94]; "micrographs" from table 4.3; "NO" from [N094];
and "KD" from [KD92]. For comparison, the CNAPS density (commercial 2-metal 0.4p
SRAM process) is 0.19, showing the increasing density for "advanced" mixed logic and
memory, small X processes.

tY Pe

embedded 6T SRAM
standard 6 T SRAM
embedded DRAM
CNAPS 4T SRAM
standard DRAM

density
(maximum)
I i ' ~ l (1 0 ~ X ~)
0.12
0.18
0.34
0.43
2.45

process

logic
SRAM
logic
SRAM
DRAM

density
(actual)
KB/(106X2)
0.08
0.12
0.20
0.35
1.22

device
size
X2/bit
1072
688
368
294
51

logic
scaling

1
2.3
1
1
3.9

Table 4.6: Nominal component s zes, in units of 106X2. The SRAM and DRAM numbers
include ancillary circuitry such as sense amps and decoder logic. The smaller SRAIvI
number is for single-ported mem ry, the larger is for triple-ported. The DRAM numbers
are for single-ported memory. A I 1 sizes are for a logic process, escept as noted.

designs later. I include a nomin 1 size for DRAM in a merged logic / DRAM process, as

that giving a 20-fold decrease in ensity (including ancillary circuitry such as sense amps)

over SRAM [PAC+97, FPC+97] I also include a nominal size for DRAM embedded in a I
purely logic process, from table 4.5, assuming that for a single-ported DRAM, the sense

amps and decoders take up 112 the area and are the same size as for SRAM, and that the

cell size for embedded DRAM is 113 that of embedded SRAM, as given in the table.

4.4 Processors per chip

30
40
5-10
3
0.25

IU (32b)
FPU (31b)

Based on the nominal sizes from table 4.6 and the da ta from table 4.2, one can make some

statements about the number of processors it will be possible t o put on a chip, assuming

each processor has its own path t o external memory.

First, consider pin limitations. Suppose each processor requires d E (32,641 pins for

data, a E (0,321 pins for data addresses, i E (0,321 pins for instructions, and r E (0,321

pins for instruction addresses. Here a = 0 represents multiplexing the data pins with

the address pins. Similarly, r = 0 represents multiplexing the instruction pins with the

instruction address pins. Finally, i = 0 represents the situation where processors do

not have their own instruction pins, as for an SIMD architecture where the pins are

shared between the PEs. Pin counts are multiples of 32 as (i) this allows the use of

Rambus technology [Cri97], which requires 31 pins and multiplexes address and da ta

SRAM
DRAM
DRAM

11 KB)
(1 KB)
(DRAM process) (1 KB)

Table 4.7: Pin limitations on number of processors per chip.

I d l a l w p (p i n s (
vins < 600 (19971

1 I

895 < pins < 1093 (2003)

I I I I I I I

1476 < pins 5 1992 (2009)

signals, and (ii) when addresses are not multiplexed, either 24 or 16 pins are needed (for

data and instructions, respectively) to provide sufficient address space, and more pins will

be required for various control purposes.

Table 4.7 gives solutions for (d, a, i, r ,p) that satisfy the high-end pin count goals for

the various process generations in table 4.2, assuming p E {16,32,64). The low-end

pin count goals given allow no solutions for the (dl a , i , r, p) within our limits, except for

(d, a, i, r,p) = (32,0,0,0,16) in 2006.

Based on the numbers from table 4.3, and on numbers from the current CNAPS, one

can reasonably take the amount of chip area, both inter- and intra-processor, not including

SRAM, IU, and FPU, to be about 20%. Together with table 4.6, this gives the number

of processors that can be put on a chip a s

I I I I I I I

1992 < pins 5 2690 (2012)

size
processors = 0.8

logic + cell. 2mernoT3

1 32 1 I 1 64 1 2048 1

(a) simple PE with SRAM complex PE w i t h SRAM

40
20 ~i!.3bL 5 1 0 1 5 20

(c) s-le PE w i t h DRAM

6 0
4 0
20

5 1 0 15 20 5 1 0 15 20

Figure 4.1: Plots for equation 4.1, the maximum number of processors per chip, as a
function of the amount of memory per processor, for the next 7 process generations. The
abscissa is the logz of the amount of memory in KB. The ordinate is the maximum number
of processors per chip, each having the given amount of memory. In the labels for the
graphs, "simple PE" corresponds t o logic = 70, "complex PE" corresponds t o logic = 500,
"SRAM" corresponds t o cell = 5, and "DRAM" corresponds t o cell = 0.25.

where size is the chip area in 106X2, memory is the number of kilobytes of memory, logic is

the area devoted t o logic, and cell is the size of 1 KB of memory, from table 4.63 For a simple

processor having only SRAM, a single IU and a single FPU, from table 4.6, logic = 70. For

comparison, if we simplify processors only by sharing system bus interface and chip pads

we can estimate from the numbers for the PPC604 that a reasonable "complexn processor

size, not including on-chip caches, might be logic = 500. Figure 4.1 plots equation 4.1 for

SRAM and DRAM processes and for simple and complex processors.

Table 4.7 shows that a 16 processor chip, with 32 1 / 0 pins per processor, 32 pins

(total) for instructions, and power and ground pins, is a viable option in the near term.

3This equation does not include a logic scaling factor, which will be 1 for the cases we consider. I assume
that the logic scaling factor will be 1 for future merged logic-DRAM processes, tailored to implementing
logic in a DRAM process.

Having 32 pins per processor would allow the use of Rambus memory technology. which

can deliver 16 bits per 450MHz clock using 31 pins [Cri97]. Note that such a design uses

much power: in general, t o achieve a specified bandwidth, one trades off frequency against

number of pins, and higher frequency translates into higher power.

An interesting option t o take advantage of the increasing feature density is t o look

a t the capabilities of the smallest chip in a given generation having this many pads, or

the smallest package having enough pins. From table 49 of [Ass971 one can compute

the minimum size flip chip having 700 pads, allowing 100 pads for power and ground in

addition to the 600 for signals4. If w is the chip width in mm and p is the pad pitch

in pm, then A = 1000(w/p) leads may be placed along a side of the chip. If there are

R rows of leads around the perimeter of the chip in which A then the total number of

leads is 4R(A - R) = 4000R(w/p - R). Solving 700 = 4R(1000w/p - R) for w gives the

values shown in table 4.8. The values for R and p are from table 49 of [Ass97]. The last

column gives the number of transistors in such a chip of the given generation, using the

logic/SRAM density values from table 4.2. The table clearly shows the trend of pin and

pad restrictions limiting the possible on-chip parallelism, and hence leading to increased

processor complexity (Mx/PE) .

Table 4.7 and figure 4.1 show that pin limitations, rather than area limitations, will

define the possible solutions for situations with 16 or more processors per chip, assuming

da ta pins are not shared. In table 4.7, for the first two generations, only instruction pin

sharing allows non-shared da ta pins at all, and for the next two generations, it allows

a doubling of the maximum possible number of processors per chip. In the final two

generations, the possibilities are more complex, but the general point holds that freeing

pins by instruction pin sharing may be very valuable. Both table 4.8 and 4.1 coupled to

the limits of about 32 processors (with individual paths t o off-chip memory) per chip given

by table 4.7, show that simplifying processors by reducing the complexity or number of

4The assumption that 100 extra leads for power and ground is consonant with the numbers given in
[Ass97]. which, for inst.ance, gives a 1997 "cost-performance" target of 600 signal (non-power / ground)
pins together with a target of 704 total leads.

Table 4.8: Minimum chip size for 16 processors with individual I/O

Table 4.9: Minimum chip size for 32 processors with individual 110. Computed as for 16
processors (table 4.8), but assuming 1200 pins needed rather than 700.

transistors

(Mx)
year

1997
1999
2001
2003
2006
2009
2012

(R = 3)
8.7
7.6
8.5
11.4
14.7
15.5
16.9

chip size
(109x2)

pitch p

(~ m)

250
180
150
130
100
70
50

generation

(2 4

0 . 2 5 ~
0 . 1 8 ~
0.1.5~
0 . 1 3 ~
0 . 1 0 ~
0 . 0 7 ~
0 . 0 5 ~

(R = 4)
5.3
4.6
5.1
6.9
8.9
9.4
10.3

(R = 3)
14.8
14.9
14.9
15.0
15.4
15.1
15.4

(R = 4)
9.0
9.1
9.2
9.0
9.2
8.9
9.2

chip width w

(mm)
(R = 3)

15.3
11 .O
9.2
8.0
6.2
4.3
3.1

(R = 4)
11.9
8.6
7.2
6.2
4.8
3.3
2.4

their functional units (other than cache), will diminish in importance.

The case examined here is when data pins are not shared (each PE has its own path

t o external memory), intimating some form of distributed or NUMA memory model. The

next section addresses architectures that share data pins.

4.5 Processor-memory tradeoffs: exhaustive model match-

ing

Appendix B examines the effect of off-chip da ta bandwidth limitations on achievable

parallelism. For the task of exhaustive matching of a set of models, it looks a t the effects

on potential parallel speedup of factors such as data-path / chipmemory area tradeoffs,

model base size, amount of computation per model, comparative speed of simple PEs

versus complex microprocessors, and preloading or caching of models most likely to match.

These factors are studied under the assumption that off-chip da ta bandwidth is the same

for both the sequential and the parallel architectures, using the technology parameter

values from this chapter, and under assumptions favoring on-chip parallelism.

The dominant condition turns out t o be whether all models can be stored on-chip;

more precisely, whether essentially all the algorithm's working set of models fits on-chip.

If so, linear speedup is possible, if not, then parallel speedup is limited to k , the ratio of

the computation time spent matching a model t o the time taken t o load the model. Figure

4.2 plots, for various chip size and processor complexity assumptions, the largest number

of PEs for which the entire model-base fits on-chip, as a function of the model-base size.

It shows, for 16 or 32 simple PEs per chip, assuming an SRAM size of 5 x 106X2 per KB,

that model-bases in the 2-3 megabyte range will fit on-chip in the current generation, and

model-bases of size 5-7 MB in the next generation.

In comparison, consider a merged logic-DRAM process with DRAM memory of size

0.25 x 106X2 per KB, and allowing for the same amounts of SRAM (0, 2, 4, 8, or 16 KB

a t 5 x 106X2 per KB). The SRAM may be used for instruction memory, cache, register file

or a second LLfast random access" memory. Here. the 20-fold increase in density translates

directly into a 20-fold increase in allowable model-base size. The increased density of

DRAM has shifted the balance, so that area for data-path and SRAM is now probably

more limiting for most designs than area for the model-base.

As the number of processors increases, memory available for storing the models de-

creases as silicon area previously devoted t o memory is used for data-path. Figure 4.3

shows how, in a typical case, as the number of processors increases past the point where

all models fit on-chip, the speedup of the parallel implementation over the sequential on

rapidly decays t o near k, the ratio of compute time per model to the time t o load a model

from off-chip.

Thus there are basically two regimes, one where the working set of models fits on-chip,

and one where parallel speedup is limited t o k independently of the number of processors,

P > k. The important conclusion is that , for the applications I consider, there are only

two viable architectural alternatives: if the range of target applications allows each model

set t o fit entirely on-chip, then an architecture of many small processors may be preferred,

leading t o a vector, SIMD or SFMD architecture. In all other cases, a few (slightly more

than k, depending on distributional assumptions) complex PEs will be preferred, leading

t o an MIMD architecture.

4.6 Microarchitectural trends

Another way t o see the impact of current VLSI trends on microarchitecture is t o look a t

current ideas about what architecture(s) will be appropriate for later process generations.

After reviewing how a current state of the art superscalar uniprocessor works, and briefly

discussing Very Long Instruction Word (V L I W) and vector processing architectures, I

will look a t a number of extrapolations on how architectures could make use of the huge

number of transistors available in later generations.

la) s = 9 , c = 70
l2ol--------.--.------.-.----------------.--.--.----.

Figure 4.2: The maximum number of processors for which all models fit on-chip, a s a
function of the total model-base size in megabytes, assuming an SRAM size of 5 x 106X2
per KB. The different lines on each set of axes correspond to different amounts of per-PE
instruction memory; 0, 4, 8, 16 and 32 kB. Horizontal lines are drawn a t 16, 32, 64 and
128 processors, for comparison. The different axes show the graphs for differing chip size
and processor complexity assumptions. The parameter s (see table 4.1 and 4.2) gives
chip size in units of 109X2 and to a certain extent indicates the process generation: s = 19
corresponds to a "commodity" chip of the 0 . 2 5 ~ generation, s = 42 to a commodity chip of
the 0 . 1 8 ~ generation, and s = 9 and s = 25 t o minimal chips of the same two generations
having sufficient pins t o allow per-processor external memory for 16 and 32, respectively.
The parameter c gives a measure of processor complexity and area requirements, c = 7'0
corresponds t o a simple floating point processor, while c = 500 corresponds to a complex
superscalar processor.

(a) k = l , dz0.2

*-

Figure 4.3: Speedup as a function of the number of processors, for varying (k, d), where
k is the ratio of computation time per model t o the time t o load a model from off-chip
memory, and d = 1 corresponds t o a model base size of 1 MB, d = 0.2 to a size of 5
MB (both sizes of model bases are assumed to have 1000 models). Different curves on
the same graph give speedups for different task distribution and modeling assumptions,
as described in the appendix. The gray line on the x-axis marks the interval for which
some, but not all, models fit in on-chip memory. For numbers of processors to the left of
the interval, all models fit on-chip. For numbers t o the right of the interval, the per-PE
memory is too small to hold a single model.

4.6.1 Superscalar Architectures

Superscalar architectures attempt t o extract as much parallelism as possible from a single

instruction stream. The goal is higher performance while maintaining binary compati-

bility with previous software. The 1998 state of the art is a maximum issue rate of five

instructions per cycle. There seems t o be no generally acknowledged limit to what is

possible, with estimates from an issue width of eight [TEE+95] t o sixteen [LS97] and even

thirty two [PPE+97].

Superscalar execution has the following features [SS95]. First, a set of instructions

is fetched. With branches, there is uncertainty about what instructions will be needed;

because of pipelining, it substantially degrades performance t o not fetch instructions before

it is known which branch will be taken. Branch prediction guesses the most likely branch,

so that its instructions can be fetched while the branch condition is still uncertain. Based

on static or dynamically acquired information, branch prediction can be quite accurate, but

mispredictions still occur. To provide a larger window of instructions in which to discover

ILP, branch prediction may be elaborated into speculative execution, where instructions in
f

the predicted branch are not only fetched, but may be executed before the branch direction

is finally known. Misprediction may then require undoing changes t o registers and other

state. Speculative computation is wasted when the branch is mispredicted, which is a

particular problem when branching is data-dependent, as it is for most of the algorithms

of chapter 3. A secondary point is that branch prediction based on runtime information

requires a substantial amount of area t o store statistics.

The ability to undo changes t o state is provided by having instructions affect tem-

porary rename registers, which can be copied to real "logical" registers once the branch

direction is known t o be correct. In addition t o the area for the extra registers, this also

requires hardware and state for mapping rename registers t o logical ones. Besides specula-

tive execution, a superscalar architecture usually supports out of order execution, in which

parallelism is increased by allowing instructions t o be executed out of sequential order,

typically as soon as the necessary data and functional units are available. In order t o pre-

serve sequential semantics, this generally means that instructions are retired in sequential

order, a t which time their associated rename registers are written to the corresponding

logical ones.

With out-of-order execution, the task of determining which instructions may execute

when is complicated, requiring that an instruction's data dependencies be determined, and

that the needed data be found. If, as is typically the case, the needed da ta is the result of a

recent computation, it may be in a rename register rather than a logical one. The da ta may

or may not be available yet, depending on the execution status of the instruction producing

it. The determination and tracking of da ta dependencies and availability is usually done

by means of a reorder buffer which maintains a window of instructions, removing them as

they are retired. A reorder buffer consumes a lot of area, both for the buffer itself and for

interconnect between it and the functional units and registers (cf. table 4.3).

Up t o this point, I have ignored the issue of accessing memory. This is state that

may have t o be restored after a failed speculation, and something like rename registers

are used, however the resolution of da ta dependencies requires that address comparisons

be used t o determine the mapping t o memory locations. For speed, an associative lookup

table of active memory locations is needed. From the point of view of implementing

the reorder buffer, accessing memory is more complicated than other functional units

due t o the unpredictable latencies involved. Executing multiple instructions per cycle

means that state, both registers and memory, must be multi-ported t o allow multiple

accesses per cycle, with concomitant expense - for n-fold multi-porting, the area increase

is approximately n-fold, and the access speed is reduced by a factor of log(n) [ZA92].

With this background, we can see why superscalar architectures can provide only a

small amount of parallelism cost-effectively, especially for the applications I am interested

in. First, superscalar execution is expensive in terms of area. both for multi-porting and

for control. In fact, the area required for monitoring dependencies and resource availability

is quadratic in the issue width [SS95]. Superscalar designs are also extremely comples,

Figure 4.4: Scaling of integer performance with simultaneous instruction issue width.

and have a high design and test cost. Second, a large set of studies essentially conclude,

for common codes such as the Spec benchmarks, that imperfect branch prediction and

resultant wasted speculation severely limit the achievable parallelism t o small factors (2-

4) [SJH89, JW89, BYP+91, LW92, TGH92, Wa191, ME93, EG95J. These estimates are

borne out by the performance of contemporary superscalar processors, as shown in figures

4.4 and 4.5, where performance normalized by processor speed is seen t o be sublinear in

the issue width. One estimate for maximal achievable parallelism for billion transistor

designs issuing 16 or 32 instructions per cycle puts the achievable instructions per cycle

a t about 12 in both cases [PPE+97]. Another estimate for a 16-wide issue design gives an

IPC of about 9 [LS97].

4.6.2 VLIW and Vector Processing architectures

Very Long Instruction Word (VLIW) architectures attempt to exploit instruction level

parallelism without all of the hardware complexity of a superscalar design. Rather than

using hardware to find ILP, in a VLIW design the compiler determines parallelism and

issues a long instruction word that directly controls multiple functional units on the chip.

This avoids much of the design complexity and various hardware difficulties of a superscalar

design, for example, highly multiported registers, bypass interconnect area, cost and speed

Figure 4.5: Scaling of floating point performance with simultaneous instruction issue
width.

f loat in= --in= P I T ~ O T ~ I I ~ C I VI . i m u l f - r % - ~ ~ ~ i s m u - width *
x -

- p - x r - f p - x e s ~ ~ . - n u - o

2 . 5 -
8

2 -
0 0

1 . 5 -

I a 3 4

limitations, and design complexity. We will see that superscalar designs have problems

with data-dependent control flow, due t o increased branch misprediction, that limit the

amount of parallelism they can exploit. While a VLIW design has the advantage that

the compiler can search for ILP over a larger window of instructions, that should help

little when control flow is data-dependent. So a VLIW design should have little advantage

over a superscalar one for the problems we consider, and VLIW architectures will not be

discussed further.

As mentioned earlier, vector (micro)processors (VP) embed parallelism a t the assembly

language level as operations on vectors of elements. Such a design has a number of good

characteristics (see [Asa98]). Some of the advantages are: different implementations of

the same design can provide different numbers of PEs, hidden from the programmer by

the vector abstraction; computation is naturally partitioned in a way allowing a fast

scalar processor t o work together with the array of PEs; compilation for such designs is

well understood; and the regularity of the parallel computation allows for a variety of

hardware optimizations. The major disadvantage is a lack of flexibility, stemming from

the use of the single vector datatype for all parallel constructions.

However, from the point of view of this thesis, vector processing is a type of SIMD

processing. The memory bandwidth argument of 4.5 is the same as for SIMD designs,

5
r i m u l r . u r r o u r ir-ur w i d t h

with the same implications: either few complex PEs or many simple ones with onchip

memory. Also, the performance comparisons of SIMD and SFMD in chapter 5 apply to

vector processing as well. The point is that , in this thesis the analysis is a t broa,d enough

level that V P and SIMD are hard t o distinguish. However, it is not clear how t o extend a

V P design t o include SFMD functionality, whereas extending a more general SIMD design

like CNAPS t o SFMD is simple.

4.6.3 Implications of trends

Implications of the VLSI trends I have outlined were elaborated by a number of architec-

ture teams in a discussion of design options for a chip containing a billion transistors, as

will probably be buildable5 within the next 10 years [BG97]. This discussion brought out

a number of common themes and issues (with differing emphases by different authors):

generality of use, design complexity and design cost; cost and complexity of instruction

delivery; interconnect and timing effects; hiding memory and functional unit latency; and

memory bandwidth issues.

For complicated designs, generality of use is critical t o offset design time and cost. The

alternative t o a complicated design is t o reduce design time and cost by reusing a single

(simpler) design, by replicating a part many times.

As we have seen in the description of superscalar architectures, much if not most

design complication comes from issues of instruction delivery: handling branching and

discovering instruction level parallelism (ILP). Designs focus on discovering ILP for rea-

sons of both compatibility with existing code, and because of the importance of speeding

up (apparently) sequential code, as expressed by Amdahl's law. Discovering ILP is the

motivation for superscalar designs, and we have seen above that the cost, in terms of

reorder buffers and the like, is high, while relative increases in performance are slowing

down, leading t o a point of diminishing returns. The major difficulty in finding additional

ILP is due t o the unpredictability of branches and hence of what code will actually be

'However, the question of whether it will be cost-effective to design such a chip is still open.

executed. Without speculative execution, the latter limits the region of code within which

non-dependent instructions must be found, and hence the available ILP. With specula.tive

execution, short cycle times lead t o deep pipelines, implying large penalty for mispredicted

branches when the pipeline must be flushed. There are two complementary solutions t o

the branch prediction problem: One is speculative execution of the most probable branch,

or even redundant computation of both branches, the former of which occasionally wastes

computation, and the latter of which always does. The second solution is better branch

prediction, which requires substantial area for tables t o accumulate branch prediction

statistics. Also, as ILP is found, multiple instructions must be issued in a single cycle,

which becomes expensive for wide (4-8) issue designs, due t o the need for a multi-ported

instruction cache and complicated instruction mergelalign logic for simultaneous issue of

non-contiguous instructions.

A number of unobvious issues about interconnect and timing arise in later VLSI gen-

erations. Smaller feature sizes lead t o higher clock frequencies; in later generations, with

larger chips as well, an across-chip signal may take up t o 20 clock cycles [Mat97]. Even

without the effect of larger chips, wire delays scale linearly, rather than quadratically. For

small X wire delays soon dominate gate delays [SV97]. One analysis of superscalar designs

[PJS97] shows that delays in the bypass wires that move results from one execution unit

t o another become a major limiting factor for wide-issue superscalar designs. One impli-

cation of these effects is tha t chip architectures will be partitioned into modules with most

communication local t o a module. A second implication is that very wide-issue superscalar

may be difficult to achieve; this is also implied by the quadratic growth with issue width

of the area used for instruction delivery [SS95], and the possible unavailability in any case

of sufficient usable ILP.

Memory accesses (and some operations such as division) require multiple cycles t o

execute, introducing a latency problem. As the disparity between memory and CPU

speeds grows, it will become increasingly difficult t o keep the processor busy while a

memory request is serviced. Latency is tolerated by executing other instructions while the

request is serviced, requiring out-of-order execution and substantial hardware support. as

described above for superscalar architectures. Tolerating the larger delays t o be expected

with upcoming generations will require the discovery of even more ILP, making further

hardware demands. For tasks with much data-dependent execution, it is unclear whether

sufficient ILP can be discovered. Rather than tolerating it, latency can be reduced by

various techniques such as prefetching, use of larger cache blocks, and other forms of

speculative loads; by multi-threading; and by intelligent cache management of lockupfree

caches. Unfortunately, these all tend t o increase traffic to memory [BGK96], exacerbating

memory bandwidth requirements, and all substantially increase design complexity.

Perhaps the largest problem in future generations will be in providing adequate band-

width to off-chip memory. Current microprocessors already spend a large fraction of time

idle, waiting for memory. This could be due either t o memory latency or t o raw mem-

ory bandwidth limitations due to pin count. Simulations of aggressive latency-tolerating

designs for a number of common benchmarks show the processor idle 10 t o 30% of the

time purely because of memory bandwidth constraints [BGK96]. The key point is that

any improvements in finding ILP make this worse, since such improvements imply more

instructions, and hence more data, processed each cycle. The same is true for other forms

of on-chip multiprocessing: more instructions processed means more da ta is needed. One

current estimate is that a wide superscalar architecture issuing 16 instructions per cycle

will require a bandwidth of 8 loads or stores per cycle [PPE+97]. Coupling this with the

fact tha t off-chip accesses will be serviced using a system clock that is a t least 4 times

slower than the on-chip clock, we see the reason for the current trend of moving as much

memory on-chip as possible, as large on-chip level one and level two caches. For modular-

ity reasons, this trend is likely t o lead t o multiple multi-ported on-chip caches. Another

possibility is the use of on-chip DRAM for greater density (see the discussion of IRAM

technology below, see also [SPN96]). The problem is exacerbated in chips designed for a

low price-point, due to the high cost for packages with large numbers of pins. I examine

the memory bandwidth problems specifically for model-matching type tasks in Appendix

4.6.4 Competing design plans

The teams in [BG97], mentioned a t the beginning of the previous section, presented six

basic architectures, dealing with the implications of these issues in various ways. I will omit

one of the plans [WTS+97] as tangential t o this discussion, and add the simultaneous multi-

threading design, which was omitted from the issue due t o lack of space and availability

elsewhere. The first three designs presented were for uniprocessors, emphasizing that

general utility and code compatibility are paramount for recovering the design, test, and

fabrication costs of complicated designs and large chips.

The first plan [PPE+97] is, essentially, for more of the same: a wide-issue (e.g. 16)

superscalar design with out-of-order execution t o tolerate latency, out-of-order fetch for

both instructions and data, speculative loads, a large on-chip cache t o provide adequate

memory bandwidth, and much area devoted t o better branch prediction. Simulations of

this design on contemporary (SPEC 95) benchmarks show an execution rate of over 12

instructions per cycle (IPC). The designers point out the following advantages: this design

uses only known techniques; simultaneous multi-threading (SMT) (see below) and multiple

processors on a chip (CMP) designs are too memory bandwidth bound t o achieve better

performance even if they theoretically have a better IPC rate - the designers believing

that , for parallelism, it is better t o use multiple chips and chip hardware to tolerate

latency. The other teams point out the corresponding disadvantages: the design does not

deal with interconnect issues, and modularity of the architecture is unclear; the design is

extremely complex; it has lower computational density than an SMT or CMP design; and

data-dependent branching will be a problem.

The second uniprocessor plan [SV97] emphasizes the need for modularity and signal

locality. A trace processor design consists of multiple superscalar modules together with

higher-level control and instruction dispatch. The individual modules are complete, but

simple, superscalar CPUs except that instruction delivery is handled globally. A trace is

a sequence of (8-32) instructions giving the code to be executed assuming certain (zero

or more) branch conditions hold. Global instruction dispatch predicts traces to be exe-

cuted (rather than single branches) and sends them t o the CPU modules for speculative

execution. The design target is an IPC rate of 16. The advantages of a trace processor

are modularity of design, locality of (most) signaling, and sharing of all the complexity

of instruction handling, in a uniprocessor framework, with its advantage of being gen-

eral purpose. The design again has problems with data-dependent branching, and wasted

speculation, also the interface between the several CPU modules and memory requires a

complex distributed system of multi-ported caches with a coherence protocol: different

modules are executing code from the same thread, so there is no notion of distributed

memory with some memory "belonging" t o a given processor.

The third uniprocessor plan [LS97] emphasizes the problem of data-dependent branch-

ing, arguing that current techniques are approaching a limit, and that further progress

along this line requires speculation of da ta values. Simulations show that speculating

da ta values is possible for current benchmark codes. The advantages of this design are in

improving branch prediction and IPC in a general purpose uniprocessor design. The prob-

lem is that it depends on value predictability; other work by the same authors [LWS96]

shows that sensory processing tasks, for example, MPEG coding, may have little such

predictability.

A simultaneous multi-threading (SMT) design is somewhere in between a uniprocessor

and a chip multiprocessor. The goal of the design is for better resource usage with only

small changes t o conventional superscalar design. SMT uses multiple program counters

t o execute instructions from multiple threads of control on a single chip, using the same

mechanisms a superscalar architecture does t o support out-of-order execution and ILP.

Although the goal is better performance on multi-threaded code, SMT performs well

on more standard parallel codes well, too [LEE+97]. The advantages of the design are

better use of hardware resources because of the ability to utilize both instruction-level and

thread-level parallelism, and the use of known technology. Its disadvantages are the same

as that of a wide superscalar design: lack of modularity, interconnect issues, especially

for bypass circuitry, complexity of the instruction logic, difficulties with data-dependent

execution, and smaller computational density than CMP due t o substantial instruction

handling logic. In addition, the unified data cache may be problematic for multiple threads

[HN097, LEE+97].

The final design considered is a Chip Multiprocessor (CMP), which puts a small num-

ber (8) of shared-memory MIMD processors on a single chip [HN097]. The processors are

relatively simple: dual-issue superscalar with in-order execution, each having its own L1

instruction and data caches. In simulations that compared such a CMP with a 12-wide

issue SMT design, performance was similar, with the SMT design somewhat more flexible.

An important exception was in the simulation of codes with high data bandwidth require-

ments, where the increased da ta cache bandwidth of the CMP design gave substantially

better performance. It was also argued that the SMT design will not scale with decreas-

ing process feature size due t o interconnect effects and the lack of locality in wide-issue

superscalar designs. The advantages of CMP are thus argued t o be its design modular-

ity and locality of interconnection, the computational density of multiple processors, the

design simplicity of simple processors with (mostly) local interconnections, and the data

bandwidth of individual L1 caches.

Conversely, other design teams found several possible problems with a CMP design.

In chapter 5 I propose the SFMD architecture, designed for model-matching tasks, which

has multiple processors per chip; here I indicate my responses t o the objections.

For use as a general-purpose chip, a CMP requires either that a single application be

multi-threaded or that separate applications be run on the individual processors (multipro-

gramming). It was argued that coding multi-threaded applications is hard, and therefore

a CMP will be used mainly for multiprogramming, the point then being that , as a general-

purpose chip, the chip will have no "killer app" and no significant market, and so will not

be built. In our domain, admittedly not general-purpose, the primary form of parallelism

is data or knowledge parallelism. This suggests (and my architecture supports) an SIMD

style of programming that is not difficult.

It was argued that , even for multi-threaded applications, limited inter-PE interconnect

and synchronization overhead imply that partitioning a single application into multiple

threads (1 per PE) with significant inter-thread communication will not scale [LS97]. My

point of view: we have already seen that an autonomous asynchronous inter-PE network

is needed. Synchronization in SFMD is global and fast. As it is global, it introduces delays

as some PEs wait for others; I analyze this in the next chapter.

Amdahl's law [Amd67] implies that performance of single, multi-threaded applications

will suffer disproportionately from the poorer sequential performance of the simpler PEs

of a CMP. My point of view: processors should not be too simple. We have seen that

in many cases, memory bandwidth limitations argue for fewer, more complex processors.

Suppose we are comparing the execution of a code on two architectures, one parallel

and one sequential, and that the individual PEs of the parallel design are slower than

the sequential design, say by a factor of q, Amdahl's law notes that if a fraction, say

l / n , of a code cannot be parallelized (is "sequential"), then the maximum speedup factor

from parallelizing the code is at most n. If, when parallelized, the sequential section is

executed on a single PE, then the maximum speedup is nlq. The implication is that

q should be made as small as possible for a t least one P E of the parallel design. The

typical solution is to add a fast sequential processor t o the design, separate from the

array of parallel PEs [WAK+96, KPP+97]. This processor can use an off-the-shelf design

optimized for sequential processing, and execute in parallel with the P E array. Due t o

diminishing returns from increasing issue width in superscalar designs, a simpler, say dual-

issue, superscalar processor can be used, which should not perform too much worse than

wider-issue ones. While this is probably the best solution, since the processor is optimized

for sequential tasks, note that some implementations of SFMD allow for one P E to be

made more complex than the rest, and t o be used for sequential parts of the code, but

also execute as part of the P E array.

The use of simple processors implies that tolerating memory latency will be a problem.

My point of view: I have not analyzed the issue of tolerating latency, but as relative

memory latency gets worse it becomes harder to hide with the available ILP, especially

when data-dependent execution makes branch prediction difficult. Conventional designs

also avoid memory latency by using on-chip caches. But caching depends on locality, and

may not perform well with some kinds of data-dependent tasks, such as indexing using

pointer-based structures such as trees. Some of these problems may be ameliorated by

software techniques like compiler-directed prefetching, but these apply equally to simple

and complex processors. So simple processors may not be a t such a disadvantage compared

t o complex ones for data-dependent accesses.

The increased computational density of CMP exacerbates the off-chip memory band-

width problem. My point of view: in fact, as we have seen, for exhaustive model-matching

type tasks, off-chip memory bandwidth limits speedup t o k, the ratio of the model compu-

tation time t o model load time. With SFMD, instruction pins are shared, which may allow

more pins t o be devoted t o da ta bandwidth. However, consider a CMP where the PEs

have individual L1 I-caches and share an on-chip L2 I-cache. Running an SPMD program,

such a system may have virtually all instruction requests satisfied on-chip. The aggregate

off-chip instruction bandwidth may then be only slightly more than for a single processor

design, and may be satisfied using the same number of instruction pins. Reducing the

instruction bandwidth by use of SIMD or SFMD techniques then has little benefit.

For example, for 32 PEs each with 16KB L1 I-cache and shared L2 I-cache, the per-PE

L1 miss rate is around 0.003% t o 1.3% for a variety of benchmarks [HP96, FPC+97], with

the benchmarks similar t o sensory processing algorithms having smaller miss rates, 0.003%

t o 0.02%. With these numbers, the L2 cache is accessed only 0.1% to 0.6% of the time,

for the tasks similar t o sensory processing. Running an SPMD program, all processors

access the same code set, so, many L2 accesses may be expected to be hits, finding code

previously accessed by another processor (see [Lun87, MM931 for related work). Thus

multiple on-chip PEs may not require a substantially higher aggregate off-chip instruction

bandwidth than a single PE.

Note that use of SIMD/SFMD techniques may reduce the needed size of the L2 I-cache,

as they guarantee that different PEs will be accessing (nearly) the same set of instructions.

4.7 IRAM and Embedded DRAM

Clearly, the "all models on chip" design benefits from as much on-chip memory as possi-

ble. The basic idea of an Intelligent RAM (IRAM) design [KPP+97] is t o avoid memory

bandwidth limitations by moving the system memory onto the chip, or, more precisely, by

moving the data-path logic onto the memory chip. This is accomplished by using DRAM

rather than SRAM t o implement the memory, and implementing the chip in a DRAM

process. Mostly for speed reasons, I have been assuming the use of SRAM in the designs,

rather than DRAM. SRAM allows single cycle memory access, and is several times faster

than embedded DRAM. Also, in a logic process, embedded DRAM is not much denser,

perhaps a factor of 2-4, based on table 4.5. However, merged logic and DRAM processes

are becoming available [TMH+98]. For future versions of these, the density of embedded

DRAM may be around 16-32 times that of SRAM, taking into account interconnect and

associated circuitry as well as just the memory cells themselves [FPC+97]. DRAM then

becomes an attractive alternative or complement t o SRAM for on-chip memory.

As on-chip memory, DRAM has significant latency, but very high bandwidth. When

a row address is decoded, and the corresponding word line driven, the entire row of data

is delivered t o the sense amplifiers. Along the lines of fast page mode DRAM [Sha97], the

da ta in the sense amplifiers may be moved in parallel t o a cache, where individual data

may be accessed in a single cycle. Thus in a few clock cycles, maybe 4, a large number

of bits become available t o the PE. The exact number of bits is a design decision; in a

commercial DRAM chip, a row might contain 256 or 512 bytes. In a commercial design,

where processing the da ta occurs on another chip, the data in the sense amplifier cache

must be selected to be sent off-chip through an interface that is much smaller than 256

bytes wide. Thus most of the potential bandwidth is lost. However, if the processor is on

the same chip, this need not occur, rather the processor can access the data in the sense

amplifier cache directly, and the access latency may be amortized over all data accessed

from a single row decode. Latency may also be hidden along the lines of an SDRAM

design [Sha97]. In this case two sense amplifier caches are used: after delivery t o the

sense amplifiers, the da ta is moved en masse t o one of the caches where it can be accessed

while another row is decoded and delivered t o the other cache, thus hiding the latency

of accessing the second row. For data access with high sequential locality, such as vector

processing, most or all of a row may be accessed before fetching the next row, amortizing

the latency; further, if the next row may be predictably prefetched, the latency may be

hidden entirely.

For non-sequentially accessed data, the latency of DRAM exacts a significant perfor-

mance penalty. To alleviate this, a likely scenario is t o use some of the allotted per-PE

memory area for DRAM, and some for SRAM. The SRAM might be used as a separate

memory, a large register file, or as a cache. In either case, if, say, half the area is used for

DRAM, and half for SRAM, used of embedded DRAM stiI1 improves on-chip memory den-

sity over SRAM by an order of magnitude, depending on factors such as size of the arrays

and the relative overhead of ancillary circuitry such as cache management hardware.

There are penalties for implementing logic in a current DRAM process, due t o fewer

metal layers and the need t o tailor a DRAM process for density and minimal current leak-

age rather than for switching quickly [PAC+97]. However, recent opinion is that a DRAM

process allowing fast logic is possible for a 20-30% increase in cost per wafer[FPC+97]. An-

other issue is the sensitivity of DRAM t o heat: due t o increased leakage, a small increase

in operating temperature necessitates a greatly increased refresh rate [PAC+97]. Thus

embedded DRAM chips may only be suitable for low power applications. With present

trends, putting system memory on chip in DRAM limits the memory to around 128 MB

in the next (gigabit DRAM) generation [KPP+97]. This number results when the entire

chip consists of DRAM; since we want some logic, the actual limit is less. The Berkeley

IRAM chip has about one fourth the chip area devoted t o logic, giving 96 MB of DRAM.

This may be limiting in image understanding where a great deal of derived information,

such as extracted features, is kept [BDBH89] or where algorithms require a large amount

of memory per P E [Web92]. However, this is a substantial amount of working space for,

say, a 3 megabyte image (1K by 1K pixels in 24 bit color). As well as increasing the

amount of on-chip memory, IRAM also increases memory bandwidth, both from having

the PE(s) and memory communicate at the chip clock rate, and from having the P E

data-paths access the entire sense amp array in parallel. A single CPU cannot utilize the

large IRAM bandwidth [YH097, BCK+97], so the sense amp cache must be accessed in

parallel by some number of processors. A vector processing model has been suggested

[KPP+97], which can utilize a relatively wide array per vector processor, say 64 bytes.

However, as I have argued, contextual processing requires data-dependent execution, and,

as I will show later, a vector or other SIMD model suffers a large performance loss on

such tasks. Instead of a vector model, with a few wide per-PE memories, for contextual

processing tasks it may be better t o have more PEs, each with a narrower memory. Such

a design may require more area for replicated decode circuitry, but can decrease power

requirements because of its shorter word line lengths

Consider the following "back of the envelopen example. For a 64 P E system with 1

MB of DRAM per PE, a 16 byte-wide per-PE interface puts 4 32-bit words of da ta in the

sense amp cache, amortizing latency by 4, assuming a 32-bit PE architecture accessing one

32-bit word a t a time. The per-PE memory is then 128 bits wide by 512K bits deep. At 1

GHz, and assuming latency is entirely hidden by the various techniques I have mentioned,

such a system delivers an aggregate bandwidth of 64 * 4 = 256 GB/sec. For comparison,

an off-chip interface t o 16 Concurrent Rambus memories will require 16 * 31 = 496 pins,

perhaps two orders of magnitude more power, and deliver 16 * 1.6 = 25.6 GB/sec. If we

allow for improvement in Rambus technology by arbitrarily doubling the bandwidth, the

aggregate bandwidth is still a factor of 10 less than the embedded DRAM design. As

another comparison, if we imagine a future 10 GHz sequential processor with a 64-bit

architecture, its bandwidth t o on-chip L1 cache is (64bits x 10GHz) = 80GB/s , a factor

of 6 less. The last two designs will also use much more power.

Embedded DRAM is a promising approach for a low power "all models on chip" design,

both for its density and bandwidth. Of course, much of this is speculation, and depends

on the actual processes available in the future. In particular, real implementations are

likely t o use pre-designed DRAM "macro-cells" (e.g., [DBKK98]), and will be constrained

by the characteristics of the designs available.

4.8 Power and size issues

I have not looked a t power or die size issues in any depth, although they are clearly

important in the economics of a chip targeted at embedded applications. Here are some

observations and speculations.

The largest effect on power dissipation from an SIMD or SFMD design is likely t o

come from sharing of instruction processing hardware. For a desired hit ratio, the area

requirements of a single shared global I-cache for an SIMD or SFMD design may be

substantially less than the combined area of the per-PE caches in an MIMD CMP. On-chip

cache uses a significant percentage of the total power used by a microprocessor [PACf 971.

The same advantage from sharing applies t o other instruction fetch and dispatch hardware.

Also, t o the extent that sharing instruction pins or use of large on-chip memories decrease

the number of pins needed, they allow a smaller die size, and reduce the power requirements

for driving off-chip lines. Driving off-chip lines has a high power cost, two orders of

magnitude greater than on-chip memory accesses t o either DRAM or SRAM [FPC+97].

[Asa98] discusses other ways a vector processing or SIMD design may have an ad-

vantage in power dissipation, compared t o a non-vector microprocessor. These include

less expensive register files, reduced datapath switching energy, less switching of datapath

control lines, and more regular access t o the memory system. Possible disadvantages of a

vector or SIMD design come from broadcasting control data and interprocessor communi-

cation. All these points apply directly t o an SFMD design when operating in SIMD mode,

but not when in SFMD mode, due t o desynchonization of instruction execution between

separate threads when in SFMD mode [AGWFH94, WHAG+92].

Finally, the improved computational density of a CMP may allow adequate perfor-

mance with slower clocking. If so, tolerating memory latency also becomes less of a

problem, assuming (off-chip) memory is not also clocked more slowly. The improved com-

putational density of CMP may also allow a smaller die size for equivalent performance.

4.9 Conclusions

In section 4.4 we saw that for a design that does not share da ta pins, giving each P E

its own path to external memory, simple pin restrictions limit parallelism. Section 4.5

showed, for a large class of highly parallelizable applications like model matching, that

when da ta pins are shared, area tradeoffs imply two cases. Either (essentially) all models

(task parameters) fit on-chip, or parallelism limited to k, the ratio of the time to match

a model (execute a task) t o the time t o load the parameters for that model (task). In

the latter case, it is not cost-effective t o have many more than k PEs. Due t o bandwidth

limitations and the difference between on- and off-chip clocks, the load time for a single

parameter may be several on-chip clocks, so that t o achieve a ratio k will require a multiple

of k number of operations per parameter. This implies that a small number of PEs, around

16, is probably maximal for all but the most special-purpose architectures. So designs that

rely on off-chip memory are limited t o a t most a small degree of parallelism. There are

thus two viable architectuml possibilities. One uses many simple processors and puts as

much memory on-chip as possible, so that all models can be kept on-chip. The processors

could be architected as a vector processor, or as an SIMD or SFMD array, perhaps as part

of a hybrid architecture with a fast scalar processor in addition t o the parallel array. The

other possibility is t o use a few complex processors and external memory. In this case,

chip resources should be sufficiently abundant that the individual processors need not be

substantially simplified from a commercial microprocessor, and an MIMD architecture

seems most likely.

In section 4.6: I responded t o objections t o a general-purpose CMP as follows:

"Multi-threaded programming is hard": Perhaps, but an SIMD programming model is not,

and is appropriate for tasks with data/knowledge parallelism, such as model matching.

"Computational density aggravates memory bandwidth problem ": The results from A p

pendix B bear this out: for model matching tasks, either all models must fit in on-chip

memory, or parallel speedup is strictly limited by the ratio of computation time t o load

time.

'(Synchronization is expensive": The SFMD model introduced in the next chapter uses

fast (global) synchronization. I will analyze the expense of this technique in the next

chapter.

"Amdahl's Law tends to favor a single fast processor over several slower processors acting

in parallel": The typical, and probably best, solution t o this is t o use part of the chip area

for a conventional microprocessor core, t o execute non-parallelizable parts of code. The

microprocessor is programmed essentially independently of the parallel P E array. However,

a t least conceptually, SFMD allows PEs in a CMP t o be of different speeds, so that a design

could have a single fast P E and numerous simpler, slower ones. Programming of all PEs

would be identical, with the fast PE(s) being distinguished by a testable identifier.

In conclusion, for our application domain, we see that if (essentially) all models do not

fit on-chip, parallel speedup is strictly limited, and one is left with a design using a few

fast processors with external memory. Such a design requires much power, for fast access

to the external memory, and has the added system expense of the external memory. I feel

that such a design will not outperform conventional designs sufficiently t o economically

justify its construction. For example, a 16 P E design, with each P E being a somewhat

aggressive quad-issue superscalar architecture with an IPC of 3, has a maximum IPC of 48.

This is only 4 times that projected for an advanced 16-issue superscalar. Assuming that

something of equivalent performance to the wide-issue design will be built as a general

purpose chip, and given the design and test cost for these chips, I expect a four-fold

performance increase (at most) t o be insufficient justification for building the design with

a few fast processors.

Instead I will concentrate on the "all models on chip" niche, using many simple pro-

cessors. The discussion of IRAM suggests that model matching and image understanding

algorithms may be possible with the amount of on-chip memory available in the future.

Simple processors are then desirable t o leave as much area for memory as possible. Use of

an SIMD/SFMD architecture simplifies processors by avoiding (most) per-PE instruction

hardware, it offers a simple programming model, and SFMD improves performance over

SlMD for data-dependent tasks.

Chapter 5

SFMD

In this chapter, I introduce the Single Function Multiple Data (SF'MD) architecture, as

an extension of SIMD, and discuss its implementation and cost. In an SFMD design, each

simple processor has a small instruction buffer, so that repetitive, data-driven computa-

tions such as model-matching can be done in parallel with less load imbalance than if done

in SIMD mode. The silicon cost of SFMD execution is essentially tha t of the instruction

buffer; from the VLSI trend numbers reported in chapter 4, I conclude that this cost is

not too great, perhaps requiring reducing the on-chip memory size by 3-6%. I discuss the

relation t o existing SIMD compilers and programming environments and illustrate that

SFMD functionality can be made use of transparently t o the programmer, as a compiler

optimization, and that debugging SFMD is as easy as debugging SIMD. Thus, there is no

additional programming cost t o using SFMD compared t o SIMD. I compare the perfor-

mance of SFMD t o that of an SIMD system, and show for a wide range of model-matching

type tasks with data-dependent execution that SFMD should provide a 1.5 t o 2-fold im-

provement in performance. In SFMD, processor synchronization is global, and I discuss

the potential penalty incurred compared t o an SPMD multiprocessor with point-to-point

synchronization. I show that if message sending is not too infrequent and if the variance in

the computation time between processors is not too large, that SFMD can be competitive

with an SPMD design.

5.1 Overview of SIMD Architecture and Programming

As background, I first review SIMD parallelism. In SIMD, multiple processing elements,

or PEs, simultaneously execute identical instruction sequences. Typically, each processes

different data. For example, an image may be partitioned among the PEs, and each P E

convolve the pixels of its part of the image with a specified mask. Alternatively, depending

on how we wish t o interpret the term "data", each P E may process the same data using

different sets of parameters, making use of knowledge parallelism as discussed in chapter

3. For example, in vector quantization, codebook vectors may be partitioned among the

PEs, and then data may be quantized by each P E finding the nearest codebook vector in

its set, and then comparing among the best vectors found by each individual PE. Here I

am viewing the codebook vectors as parameters of the algorithm.

Architecturally, the shared instruction stream is produced by a controller, or sequencer.

Generally, each P E has a certain amount of local memory, which only it can access directly.

All PEs execute a given instruction in the stream a t the same time, so are synchronized a t

each instruction1. This means synchronization is implicit, the hardware need not support

it , and the programmer need (can) not manage it. It also means that instruction man-

agement hardware and bandwidth is shared among the PEs, leading t o simpler processors

and reduced off-chip bandwidth.

SIMD architectures differ in the functionality of their PEs. If PEs can independently

address local memory at differing locations, rather than all having t o access the same

address a t a given step, the architecture is said t o have local addressing. If PEs can

independently determine whether t o execute a given instruction, rather than having this

determined by the sequencer, the architecture has local conditional execution. Branching,

per se, is done only on the sequencer, since PEs have no control over the instruction stream

they read. All PEs see the same instruction stream, yet a given P E executes the code in

'Such synchronization of many processors occupying more than one chip is becoming more difficult as
feature size diminishes, chip size increases, and clock rates increase, as discussed in chapter 4. For this
reason. SIMD architectures which tolerate slight de-synchronization are being introduced [Wee97]. These
architectures behave in a strictly SIMD fashion, and do not add SFMD extensions.

only one branch of any if-then-else, and so must idle while other PEs execute the code in

the other branch. This is the cost of synchronizing at each instruction, in lock step. It

implies that when execution is data-dependent, some PEs may idle while others complete

their work. Minimizing this idle time by balancing the work done by the individual PEs?

load balancing, is the major issue in programming SIMD machines for applications with

data-dependent execution.

5.2 The SPMD and SFMD Computation Models

The notion, introduced above, of partitioning the data and operating on the different

parts in parallel, is called data parallelism. Data parallelism has been described as a

parallel programming model "with much t o commend it" vis a vis a variety of other

models for practical portable parallel programming, where the dimensions of comparison

include architectural independence, reduction of descriptive complexity, and the ability of

a programmer t o form some estimate of the performance of the executing computation

[SkiSl]. Da ta parallelism allows programmers t o think in terms of familiar matrix and

vector abstractions, which have a simple mapping t o the architecture and execution model.

One early large study of applications in science and engineering found that da ta parallelism

was nearly always the source of parallelism in execution [Fox88, Fox891. Since the advent

of superscalar processors, instruction level parallelism would have to be added as a major

source; as well, the use of special purpose hardware for handling messages or for DMA

provides another. None the less, a t least anecdotally, da ta parallelism is still the dominant

form of explicitly programmed parallelism.

For SIMD execution of data parallelism, the parallel operations use identical instruc-

tion streams. Instead, one can require only that the parallel operations use the same

program, with potentially different instruction streams due to data-dependent branching.

This is called Single Program Multiple Data (SPMD) computation. SPMD is the natural

way t o implement data parallelism on a machine built from multiple general-purpose pro-

cessors, and is the dominant model for programming such machines [HQ90]. In SPMD

programs, processors are free t o communicate with each other a t any time, t o the extent

that this is permitted by the architecture and programming language. This introduces se-

mantic complexities in the form of explicit synchronization and the possibility of deadlock

and race conditions. I t also introduces performance issues in dealing with the expense

of synchronization using either interrupt code and handlers, or spin locks, and with con-

tention for shared variables. Debugging becomes extremely complex, due t o uncertainties

about the order in which events occur and difficulty in reproducing events dependent on

race conditions.

I introduce the Single Function Multiple Data (SFMD) computation model as inter-

mediate between the SIMD and SPMD models. As an extension of SIMD, SFMD allows

different processors t o be executing different instructions (of the same program) at dif-

ferent times. A program is divided into sections of SIMD code interspersed with SFMD

blocks. SFMD blocks, which generally are small nested loops, are executed independently

on each processor. As a restriction of SPMD, SFMD does not allow processors t o com-

municate a t arbitrary times. Rather, for processors t o communicate, all processors must

synchronize in a barrier synchronization before any communication takes place. Thus

no communication between processors occurs within an SFMD block. Also, processors

cannot communicate with the sequencer during SFMD blocks. In particular, the "no-

communication" rule implies that multiple processors cannot access the same variable in

shared memory from within an SFMD block, as this is a form of communication. Thus,

a t least for memory references within an SFMD block, a distributed memory architecture

must used.

As intermediate between SIMD and SPMD, two immediate questions are the compar-

ative efficiency of SFMD versus SIMD, and of SFMD versus SPMD. I examine these in

detail later on.

An essential point is that from a programmer's perspective, SFMD and SIMD are both

very similar to conventional, non-parallel programming in that there is effectively a single

thread of control 2 . This, in turn, implies that debugging, a major problem for more

general parallelism models, is for SIMD and SFMD equivalent to debugging a, non-parallel

program. To see that SFMD and SIMD are equivalent in this regard, note that an SFMD

program can be debugged as an SIMD program as follows: each SFMD block is executed

on a single processor a t a time, leaving the other processors disabled, and iterating through

all processors in some order. As there is no communication between processors during the

SFMD block, the sequentialized execution is equivalent t o the parallel one.

A second essential point is that programming for a SFMD architecture is virtually the

same as programming for a SIMD architecture with local conditional execution. From a

high-level language, e.g., 'C' with SIMD extensions, the compiler can make the needed

changes. Even for assembly language programming, only slight additions are needed t o

SIMD code t o take advantage of SFMD operation.

Support for SFMD functionality can be added t o an existing SIMD machine t o increase

its flexibility, scope, and power; in particular, as an optimization for highly data-dependent

code such a s indexing, model matching, and other forms of knowledge parallelism. An

SFMD architecture retains two key advantages of an SIMD one: simplicity of programming

and debugging, and the use of a single instruction stream. The latter means that a VLSI

implementation of an SFMD architecture can share instruction processing hardware and

cache among the PEs, and need only have pins for a single instruction interface. As

discussed in chapter 4 smaller instruction bandwidth can be used t o reduce the number of

package pins, reduce cost, or can be used t o increase da ta bandwidth by freeing up pins

for da ta I/O. Shared instruction hardware allows PEs t o be simpler, smaller and easier t o

design.

It remains for us t o show the viability of the SFMD concept: what is the cost of

implementation and what is the comparative performance of SFMD versus SIMD, and

versus SFMD?

'Deadlock, race conditions and lack of fairness are still possible for both SFMD and SIMD, so some
care must be taken in handling interprocessor communication. But the programmer's problem is much
simpler due to the explicit order in which events are known to occur.

5.3 Implementing the SFMD Programming Model

Given a SIMD architecture with the local addressing and local conditional execution,

SFMD programming can be made available at the assembly language level by adding

three constructs:

distribute n start tells the sequencer that the next n instructions are to be distributed

for independent execution on the PEs. Call these next n instructions an SFMD block.

There is a similar instruction that tells the PEs to store the next a instructions for

independent execution; I will use the same name for both. As the n'th instruction is

distributed, control passes to the individual PEs, with the program counter starting

at start.

sync tells the individual PEs to suspend execution and signal the controller (barrier syn-

chronization). Control passes from the individual PEs back to the sequencer for

further SIMD execution. It is not necessary, but may be convenient, to allow sync

to return a value, indicating the exit state of the PE and allowing the sequencer to

take action immediately in case of certain exceptions. sync is ignored if not within

an SFMD block.

branch-local encompasses one or more local branch instruction(s), including a loop con-

struct; the branch target must lie within the enclosing SFMD block. These are

ignored if not within an SFMD block.

Most importantly, I further require that code within an SFMD block contain only references

to PE-local memory; none to global (sequencer) variables, to external memory or to the

local memory of another PE. It must also contain no inter-PE communication. Note that a

message may be sent from within an SFMD block, and routed through any interconnection

network, as long as they are not acted upon within an SFMD block3 . This is important

31t should be noted that race conditions, unfairness and starvation are possible if the the behavior of
the program is dependent on the order in which messages are received. However, this is as true for SIMD
execution as it is for SFMD.

and allows overlapping computation with communication.

When the PEs are independently executing an SFMD block, the system is in SFMD

mode, and normal execution is then referred t o as SIMD mode.

5.4 The SFMD Programming Environment

When programming in a data-parallel 'C'-like language designed for a SIMD architec-

ture, the use of SFMD functionality may be an optimization performed by the compiler,

completely hidden from the user. This optimization is possible when the architecture's

instruction set distinguishes references t o PE-local memory from references t o non-local

memory4. In this case, variable type and usage analysis can determine for any given block

of code whether the constraints on non-local references are met, and emit code for SFMD

execution if so.

Reads of global variables may be allowed, by copying the value into local memory

before starting distributed execution. No new problems are introduced for debugging, as

SFMD execution is semantically equivalent t o executing on each PE sequentially, and can

be executed this way during debugging.

To the programmer, SFMD ameliorates two annoyances of SIMD programming: (i) in

conditionals, a P E need not be idle while other PEs execute the branch it did not take,

and thus, (ii) loops and recursions may execute a processor-dependent number of times.

Of course, due t o the barrier synchronization, the latter is only useful for nested loops,

where the inner is da ta dependent: for a single loop, the time is in any case the maximum

of the times of the loop executing on each processor.

5.4.1 Translating SIMD to SFMD

In this section I give examples of how t o translate SIMD code t o SFMD code. Formalizing

the translation would require specifying an SIMD instruction set architecture in detail,

4For example, in a shared memory architecture the hardware may completely hide the difference between
local and non-local references, providing a transparent non-uniform memory access (NUMA) model. In
such an architecture, automatic conversion of SIMD to SFMD code cannot be done.

which would take us too far afield. The examples are intended to clarify what is involved.

and to further clarify the SFMD idea.

In a conventional SIMD machine, there are two instruction streams, one for the se-

quencer, and one for the array of PEs. Each PE sees all instructions in the instruction

stream going to the PE array. There are generally a number of reduction operations for

computing functions of results produced on the individual PEs. Let v (p) be some value

output by each PE p as part of the computation. Reduction operations include AND-ing,

OR-ing, summing, or taking the maximum or minimum of the v(p) . For our purposes,

we can ignore reduction operations other than OR and AND as they are done in SIMD

mode.

Local conditional execution is implemented by predicating instructions on various log-

ical conditions occurring locally to the PE, for example, the contents of a condition code

register, or the output of the adder being zero. A given PE ignores instructions whose

predicates are false for it. In a minimalist implementation, the predicate can simply test

a condition code register for being zero. This allows predicating the instruction to be

encoded in a single bit of the instruction word. Denote an instruction, Ik predicated on a

condition, C, by I!').

Program control flow constructs such as for and while loops are done on the sequencer.

SFMD allows moving such loops from the sequencer to the PEs (if space allows). Loop

termination criteria may or may not depend on results from the computation done on

the PEs in the body of the loop. When the criterion does not depend on PE results, for

example, in a for loop of fixed length, the loop may be moved entirely to the PEs. This

leads us to consider OR and AND reductions which derive the termination condition on the

sequencer from the termination conditions on the PEs, done(p).

Consider a loop on the sequencer with body B(p) computed on the PE array,

while not (AND done (p)) B (p) endwhile.

Such a loop corresponds to looping until all PEs finish some set of tasks. When control is

moved to the PEs, each PE executes

while not(done(p)) B(p) endwhile; sync;

and the sequencer waits for all PEs to sync. A loop,

while not (OR done (p)) B (p) endwhile,

corresponds to looping until the first PE finishes its set of tasks, as might be done in

searching or model matching until an adequate example is found. When control is moved

to the PEs, each PE executes

while not(done(p)) B(p) endwhile; sync;

and the sequencer waits for any PE to sync. After the first PE sync's, the sequencer may

interrupt the others.

The above examples illustrate how to map control flow constructs from the sequencer

to the PE array. This involves the addition of branch and sync instructions. There is

also the issue of transforming a stream of possibly conditionally executing PE instructions

into a stream that makes use of local branching.

Consider a stream of PE instructions containing a block of conditionally executing

code:

Suppose this code corresponds to A; if C then B which is a SIMD idiom for if C then

B else A, when code blocks A and B side-effect the same set of variables5. Then I1 ; . . . In

(C) (C) computes A and C and In+1;. . . InSk computes B.

By reachability and usage analysis, [Wo196] and by code movement to separate A from

the computation of C,

becomes

5This is a sensible idiom in the SIMD case: since all PEs must see the instructions in block A anyway,
it does no harm to execute them and then overwrite the results. Also, with a 1-bit conditional execution
predicate as described above, the A ; i f C then B formulation avoids having to compute 1 C.

where instructions I;;'') . . compute A and the instructions I;, ; . . .Ii, compute the

condition C. Insertion of branch and sync instructions then gives

We now have a block of code containing branches. Break this code into maximal

segments each containing no non-local communication. Any segment all of whose branches

have targets lying in the same segment can be executed in SFMD mode. We can place

the distribute instructions for each such segment by finding the minimal sub-segment

containing all branches and branch targets of the full segment.

These examples should illustrate how both high level and assembly code may be tra.ns-

lated t o make use of SFMD functionality. Of course, this is intended simply t o illustrate,

there will be many details pertaining t o a particular SIMD instruction set architecture.

5.5 Hardware Implementation and Hardware Cost

I am interested in high volume, low cost, low power, embedded, "delivery system" appli-

cations. Such systems must have few chips; scalability t o 100's or 1000's of chips is not

an issue. Parallelism is thus achieved with multiple PEs per chip. As we saw in chapter

4, current VLSI trends lead us t o consider an architecture with many (e.g., 64 or 128)

small PEs and on-chip system memory. While chips can contain many transistors, area

for P E logic is a t a premium since most area will be used for memory, and since use of

area translates into higher power requirements. Nonetheless, as we saw, there will be area

available for making PEs substantially complex; in particular there will be area available

for implementing SFMD functionality.

Adding SFMD functionality t o an architecture whose PEs have local addressing and

local conditional execution is straightforward. Here I outline an example implementation.

Hardware for branch tests and decoding sequencer instructions in the instruction register

(IR) already exists. Local memory is suitable for local addressing.

A "micro-sequencer" must be added, consisting of an auto-incrementing program

1 i - - - h memory

conditions

instructions + < n i I
PE boundary

Figure 5.1: Example SFMD implementation

counter (PC), an instruction buffer (IM), decode logic for branch instructions, and state

for determining mode and disabling inter-PE communication in SFMD mode. The in-

struction buffer can be loaded from the existing instruction bus (IB); this requires a 1-2

mux on the IB that allows instructions on the IB to be sent to the IR, to both IM and

IR, or to be ignored. SFMD blocks can be stored a t known locations within (small) IM,

so addresses are both small, requiring few bits, and absolute, so that no branch address

computation is needed.

By sending instructions to the IM and IR simultaneously, it is possible to execute the

instructions (in SIMD mode) while they are being loaded, hiding the overhead of loading

IM. The existing P E output path can be used for the barrier synchronization. A 1-bit

path from the sequencer to each PE is added for interrupting local execution.

Execution of a distribute n instruction on a P E causes the next n instructions to

be both executed in normal mode and stored sequentially in IM, starting at the current

address in the PC. The (n + 1)'st instruction is executed in SFMD mode, it is typically

either a branch-local to start execution, or possibly a sync if the instructions are just

being executed once and cached6.

Almost the entire cost of providing SFMD functionality is silicon area used by the IM.

'For example, if the distributed code is a subroutine that will be encountered again.

The IM contains inner loop code, or model-driven conditional code, which is likely to be

small. For example, consider the cost of adding an IM of 512 4-byte instructions t o each

PE of a current generation (0 . 1 8 ~) 64 P E chip. Taking into account a 20-fold increase in

density of DRAM over SRAM (table 4.6), panel (g) of figure 4.2 shows that without IMs,

such a chip could have over lOOMB of DRAM memory. Adding all the Ihls to all the PEs

then uses (64 x 20 x 2KB)/(100MB) = 2.56% of the DRAM memory. So adding 2 KB

of IM to each P E of a 64 P E chip reduces system memory for da ta and models by less

than 3%. This percentage grows linearly with the size of IM and decreases linearly with

the number of PEs. If dual-ported SRAM is used, as in the following section, the number

increases by about 50%, t o 4% of memory. In terms of chip area, using the numbers from

chapter 4, for a 64 P E chip, each KB of (single ported) IM uses 1.7% of chip area in the

0 . 2 5 ~ generation, 0.76% in the 0 . 1 8 ~ generation, and 0.47% in the 0.13 generation.

These numbers seem substantial, but not prohibitive. We will see that SFMD execution

can provide around a 1.5 t o 2-fold increase in performance over SIMD execution on tasks

with data-dependent control flow. For our applications, this increase seems well worth the

chip area cost of a small (1-4 KB) buffer.

5.5.1 An alternative implementation of SFMD

An alternate implementation of the SFMD model allows us t o have SFMD blocks that

are larger than would fit in a given amount of local instruction memory (IM). This im-

plementation operates on an stream of predicated instructions, including sync's, but not

including d i s t r i b u t e and branch. The PE has a condition code register, and instructions

can have one of two predicates, C or -C, allowing the instructions t o execute when the

condition code register is non-zero or zero, respectively. This requires two bits in each

instruction word. The techniques mentioned previously may be used to translate SIMD

code t o this form of SFMD code.

The idea is t o replace the IM by a FIFO instruction buffer, filled a t 2 instructions

per clock by a double-wide bus, and emptied a t 1 instruction per clock. The appropriate

instructions are flushed from the FIFO without being executed when it is known that their

predicate will fail. This requires two ancillary "branch" FIFOs of addresses within the

instruction FIFO, pointing t o the end of sequences of predicated instructions of the two

types. More precisely, the branch FIFOs point t o the instruction immediately following

the last predicated instruction in the sequence. Call such a point a branch target, as that

is what it effectively is, even though there are no actual branch instructions. When a

predicated instruction reaches the end of the FIFO and the predicate fails, instructions

up t o next branch target are flushed without executing, effectively performing a branch.

Effectively, the hardware "discovers" branches on the fly.

For each PE, this design needs the instruction and branch FIFOs as well as a small finite

state machine for handling full and empty FIFO conditions, and for determining "flush"

conditions based on predicate and P E state. As the branch FIFO can be small, containing

a small number of addresses, each of a t most probably 16 bits, the instruction FIFO has

the dominant area cost. As well as sync, this design requires simple global communication,

much the same as barrier synchronization, for handling "full FIFO" conditions.

On the downside, this implementation is somewhat complicated and there will be

inefficiency when a full buffer condition on one P E stalls the instruction distribution and

perhaps stalls other PEs. There will probably be a 1 t o 2 cycle branch delay for flushing

the FIFO, although this might sometimes be masked by an analog of a branch delay

slot, possibly with multiple instructions, where the first 1 or 2 instructions preceding

predicated instructions are guaranteed t o not affect the condition code register, by use of

no-ops, if necessary. For very small branch bodies, it may be preferable t o use predicated

instructions in the normal SIMD fashion. For example, two instruction word bits are

used for predicates: 00 indicates a normal SIMD unpredicated instruction, 01 indicates

a normal SIMD predicated instruction that is executed if the condition code register is

nonzero, but is ignored by the branching mechanism, 10 and 01 indicate the two SFMD

predicates.

Detection of full FIFO conditions can be done some number of instructions early, so

that delays in communicating with the central instruction distribution mechanism do not

require killing and resending instructions sent before the "full FIFO" message is received

and acted on. It is possible, if unlikely, that a branch may extend past the end of the

FIFO, that is, all instructions in the FIFO have the same predicate. If this branch is

taken, the entire FIFO is emptied, and further instructions with that predicate will be

processed (flushed) more slowly, as they are delivered.

Finally, with this design, speedup over SIMD is limited t o a t most twofold, as that is

the instruction delivery rate, however, we will see that SFMD generally can be expected

to give a t most a 1.5 t o Zfold improvement over SIMD.

The advantage of this design is that there is no limitation on block size, as there is

when the entire block must fit in the local IM. Also, due t o flushing of untaken branches,

and continuous emptying of the FIFO, an instruction FIFO holding a given number, n,

of instructions should generally support, without too much inefficiency due t o empty or

full FIFO conditions, SFMD blocks which are considerably longer than n. With the im-

plementation described in the previous section, an IM holding n instructions is limited to

SFMD blocks of length n. With respect t o area, this advantage of the FIFO implemen-

tation is reduced by the fact that the FIFO uses dual-ported memory, and thus requires

about 1.5 times as much area as an IM t o implement the same number of instructions.

As the hardware hides the FIFO management tasks, the programming complexity

of both implementations of SFMD is the same, except that the FIFO implementation

may allow for more sophisticated performance tuning, t o avoid "full FIFO" conditions.

However, even this will be similar to programming the non-FIFO implementation t o fit

SFMD blocks within the available instruction memory.

5.6 Performance Improvement of SFMD versus SIMD

What performance improvement may be expected by adding SFMD to SIMD? There are

two basic components, improvement on branches, and improvement on nested loops, where

the inner loop count varies locally.

Unnested (equiprobable) branches speed up most when the branch bodies have the

same size, with a factor of 2 improvement. For nested branches of depth d, the factor is

2d, but these are probably unusual for d > 3. An exception would be applying a decision

tree classifier in a data-parallel way, as in [BD94].

To examine improvement on nested loops, suppose we have a set of N models (or any

independent tasks) t o be evaluated on an architecture with P processors. On an SFMD

architecture, partition the set into P groups, assign each group t o a processor, and have

each processor evaluate all the models in its group. If evaluating the j7 th model of the

i'th group takes time t!:fmd), then the total time is

where N; is the size of the i7th group, xE1 N; = N, and the (sfmd) superscript notes that

individual models may take different times t o execute on SIMD and SFMD machines due

t o data-dependent branching.

On an SIMD architecture, partition the set into [N I P] groups of size P and sequen-

tially evaluate each group in parallel. Each group has a model that takes the most time

t o evaluate; SIMD execution forces the whole group t o have this time complexity. So,
(simd) evaluating a single group, G;, takes time tij , where j indexes over the elements of the

group, 1 5 j 5 P. The total time for SIMD execution is then

[NIP1
(simd) Tsimd = C maxtQ

3=1
i=l

(ajmd) - (simd) Ignoring data-dependent branching and taking tij - tij - t;j, we see that

optimal (i, j)-indexing of the N models for either case is a bin packing problem. As such,

(i, j)-indexing will be heuristic, and I examine Tsimd/Tsjmd by simulation. It should be

clear that the expected improvement of SFMD over SIMD cannot be large unless the

outer loop count is large or the variance in tij is large. Relaxation-based algorithms may

have large variance (see, for example [CKP95]). When indexing is possible, one would not

expect the outer loop count to be large, but it may be for non-indexable models such as

elastic ones.

To examine the possible magnitude of the effect in general, I look instead a t multi-

plication of an input vector by a large sparse matrix. Rows are partitioned among the

PEs, and each P E computes all the row-vector inner products for i ts set of rows7. Tsfmd

is given by equation 5.1, with {t;jll 5 j 5 N ;) the set of all rows for processor i. Tsimd is

given by equation 5.2, with { t i j 11 5 j 5 P) the set of rows executed by all processors a t

time i. Here t;j is the time t o perform a row-vector inner product. Note that , t o examine

specifically the relationship of max-of-sum and sum-of-max, I am assuming t ; j is the same

for both SIMD and SFMD. In fact, t;j will differ between SIMD and SFMD execution, due

t o conditional execution depending on how many non-zero row elements a given P E has.

Later analysis and simulation will examine the effect of such data-dependent execution on

Tsirnd/Tsfrnd-

Under a variety of choices of matrix size (256 x 256 t o 2048 x 2048), number of processors

(16,32,64), distribution of elements (uniform, clustered around the diagonal), and sparsity

(fraction of nonzero elements from 0.001 t o 0.4) we get that the ratio Tsirnd/Tsfmd decreases

from around 2.2-2.7 for sparsities near 0.001, t o 1.2 for sparsities near 0.06, and t o 1.1 or

less for more dense matrices (figure 5.2). The effect is thus significant but not dramatic.

Note however that handling sparse matrices is difficult for vector and superscalar designs,

as pipelines are rendered useless. Thus even a small improvement may be significant.

5.6.1 Analysis: sum-of-max vs max-of-sum

To compare equations 5.2 and 5.1 analytically, 1 will take t$lrnd) = t!;lrnd) = t ; j t o be

independent realizations of a random variable, T . For a random variable, X, denote its

mean and variance by px and a;, respectively. Assume p~ < oo and a$ < oo, and define

7I assume the assignment of rows to PEs is independent of the number of nonzero elements in the rows.
If not, then for N >> P, simply sorting rows by number of elements and then assigning row i to processor
i mod P can be a good enough packing heuristic to make Ts,,,,d o Tsfmd Permuting the rows this way
may require the outputs to be reverse permuted, which will be too costly for some applications.

Sparse Matrices
2.8 r,

oToooi 0.001 0.01 0 . 1 1
sparsity

Figure 5.2: Sparse matrices: speedup vs. sparsity

S = (T - P) / U t o be the normalized version of T. For a distribution, X, and fixed sample

size, n, one may consider the distribution, X(,) , of the largest value in a random sample

of size n. I assume that T(,) is well defined. For simplicity, assume N is a multiple of P,

N = M P in equations 5.2 and 5.1. Let MAXSUMbe the random variable m a x c l xg1 T;j

and SUMMAX be the random variable ~g~ m a x c , Tij.

For large M , by the central limit theorem,

where G, - N(pT, u T / d M)) and Z; - N(0, l) are normally distributed.

Similarly,

M P
SUMMAX - C m a x ~ ,

t = l
j=1

Table 5.1: Representative values of pz(,), the expected value of the maximum of a random
sample of size P from a standard normal distribution. Values marked with (t) have been
approximated using equation 5.8.

where Y - N(pT(,), a ~ (~) / d %) and Z .- N (0 , l) are normally distributed.

Evaluating the expected value (sf) seems difficult. One approximation is

(SUMMAX) (z",::) ;s: (MAXSUM)

This gives the obvious approximation

expected maximum value (g",::) ;s: expected (average) value ' (5.5)

asymptotically for large M. If T is normally distributed, T - N(p, a) , then p ~ (,) =

P + aPz(,) , and
(SUMMAX) - P + P ~ P) 0

(MAXSUM) - P + Pz(,) old%

If T is uniformly distributed, T - Uniflm - s/2, m +s/2], then p~ = m and CTT = d m .
Let V - UniflO,l]; it is known that pr.(,, = P / (P + l)[Dav70]. Using maxT = (m -

s/2) + s max V, one obtains

(SUMMAX) s P-1
- m + 5(-)

(MAXSUM) - m + PZ{,, dm'

There is no known closed form for pz(,,; Table 5.1 gives some representative val-

ues. Although closed forms are not known for most distributions, there are a variety of

approximations and bounds. I use the approximation

([Dav7O] p. 67), where @ is the cumulative distribution function (cdfl of the standard

normal distribution, in the construction of table 5.6.1.

As the t ; j represent times, they should be positive, hence I wish t o consider distri-

butions with positive support, such as the exponential, or, more generally, the gamma

distribution. Let I',(x) denote the cdf of the gamma distribution with parameter a , so

I",(x) = (l / l ? (a)) ~ l - ~ e - ~ . If T - ra1 then p~ = a, UT = ,/6, and it is known ([DaviO])

that

Thus

where

I';l(&) when a j 1
M(P)

I'i1(9) when a > 1.

Figures 5.3 and 5.4 show some representative graphs of equations 5.6, 5.7, and 5.10.

Examination of these equations show that they are relatively insensitive t o the number

of processors varying from P = 16 to P = 128. The most sensitive is for the normal

distribution where the ratio varies from about 1.7 for P = 16 t o 2.0 for P = 128. So use

of P = 16 provides a reasonable approximation in this range.

Since the T;j should be positive, UT has been restricted so that this is true for the

uniform case (m > s/2), and almost always true for the normal case (pT > 2 0 ~) . Simula-

tions indicate that , for the normal and uniform distributions and these parameter values,

the approximation 5.3 is very close. For the gamma distribution, I graph the lower bound

on (SITMh4AX)/(MAXSUM) given by equation 5.10, and the difference between it and

(S U M M A X I M A X S U M) , estimated over 30 simulation runs.

Figure 5.3: Representative graphs of (SUMMAX)/(MAXSUM) for the normal distribu-
tion, N (l , a) , and the uniform distribution, Unif(1 - s /2 ,1+ s/2). Here, the number of
processors, P, is 16, and a (respectively, s) varies. For the normal distribution, a has been
chosen so that the probability of a negative t ; j is small. Different curves are for different
values of M, the number of loop bodies per processor; M E {8,16,32,64,128,256), in
order from bottom curve to top curve. Simulation results show these are good approxi-
mations for (SUMMAXIMAXSUM); the simulation results are not shown.

We see that the ratio is not too large; generally 1.3 - 2 for not too small a and M,

except for the rl (exponential) distribution, where it is substantially larger.

5.6.2 Code Transformations for sum-of-max versus max-of-sum

There is a code transformation due to van Hanxleden [vHK92] for dealing with the "max-

sum versus. sum-max" problem. The idea is that a pair of nested loops can be converted

into a single loop, so that the processors execute the body of the code together in lockstep,

but using different values for the loop variables, effectively executing different steps of the

iteration. A simple version of the transformation is shown in figure 5.5.

This transformation applies generally t o nested loops, being of interest t o us when one

or both loops execute a data dependent number of iterations. Some examples are sparse

matrix computations, and matching a set of structured models by having the outer loop

be over the set of models, while the inner loop traverses the model. Another alternative,

for graph or tree-structured models matched by some version of depth-first search, would

Figure 5.4: Left panel shows graph of lower bound of (S U M M A X) / (M A X S U M) for gamma
distribution, I?,. Here p~ = a, P = 16, and a = f i varies. Right panel gives difference
(mean - lower bound), where mean is the mean of SUMMAX/MAXSZrM over 30 trials.
Different curves are for different values of M, the number of loop bodies per processor,
M E {8,16,32,64,128,256), in order from bottom t o top..

mean - lower bound , lower bound 0 . 5 -

(original 1

0 . 4

0.3

0.2

0.1
0.5 .

0 J

while test-1
C

in i t -2
while test-2

C
<BODY>
increment-2

-

-

-

-

(flattened)
........................

1 2 3 4 5 6 1 2 3 4 5 6 0

(T (T

init-1
init-2
while test-1

C
<BODY>
increment-2
i f ! test-2

C
increment-1 #

init-2 #

3
3

Figure 5.5: van Hanxleden's loop flattening transformation, from figure 11 of [vHK92].
The original code is on the left, and the flattened code is on the right. This is a simplified
version of the transformation that assumes test-1, t e s t 2 , and i n i t 2 have no side
effects, and, for each outer loop iteration, the inner loop is executed a t least once. The
code on the right marked with "#", is the conditional block that . in SIMD execution will
be traversed by all PEs, but executed only by some, while in SFMD execution will be
traversed only if executed.

be t o have the outer loop iterate over possible root t o leaf paths, and have the inner loop

build and traverse the individual paths.

Clearly, from the point of view of SIMD execution, the transform converts the varia-

tion between inner loop counts into conditional execution of parts of the new loop body.

For such transformed code, the Tsimd/Tsfmd is determined by the time spent in the con-

ditional code, marked with a "#" in the figure. If Tcond is the number of instructions in

the conditional code, increment-1 and i n i t 2 , Tcomm,n is the number of instructions in

common, and pcond is the probability of executing the conditional code (t e s t 2 fails), then

In situations where the expected time spent executing <BODY> is the same for both

SIMD and SFMD and also dominates the expected time for executing the conditional

block, the transform should give results as in section 5.6.1. Indeed, experimental results

from the original paper [vHK92], where the conditional code is a simple loop variable

increment and initialize, and the body is the call t o a comparatively large subroutine,

show performance improvements in the 1.2 - 2 . 4 ~ range.

On the other hand, as we saw in chapter 3 (as stylized fact F3), model matching and

many other irregular computations require very simple and compact <BODY%. Examples

of this were bodies consisting of probability lookup and accumulate, mapped over a graph

traversal (HMMs and relaxation networks), nearest neighbor calculations using a k-d tree

(back-projection and verification), and attribute comparisons mapped over a list or tree

of features or over an object model (interpretation tree search, grouping). Also, tree and

graph searches, where the <BODY> performs the per-node computation, must have <BODY>'s

that include data-conditional computation, based on the type of node, for example, interior

or leaf node. Here one expects SFMD t o significantly outperform SIMD as the time saved

by ignoring the conditional code is significant.

To make these ideas about the effectiveness of the transformation in more irregular

situations more concrete, I look in detail a t two versions of sparse matris - vector multipli-

cation. Figure 5.6 shows code for multiplication of a dense vector by a sparse matrix, both

already stored in the individual PEs local memory. Parallelism is obtained by partition-

ing the matrix rows among the PEs and computing row-vector products simultaneously.

Analysis of the corresponding assembly language code produced by an optimizing com-

piler for the flattened version gives TcOmmon = 12 and Tcond = 5, where the value given for

the time is the number of assembly instructions comprising the appropriate part of the

code. The conditional part of the code is entered once per row, so pCond is the number

of rows per P E divided by the number of nonzero elements per PE; under assumptions

of uniform distribution of elements and rows among the PEs, pcond is thus one over the

average number of nonzero elements per row, (row length), and

The expected speedup is about 1.5 for all but the sparsest matrices.

Figure 5.7 shows code for multiplication of a sparse vector by a sparse matrix, where

the matrix rows are stored in the individual PEs local memory, and the vector elements

are being broadcast one by one. Here, a more elaborate version of the flattening trans-

formation is required, and there are two separate pcond7s, for the while(mi > vi) and

i f (mi == vi) conditions. The first of this succeeds exactly once per row, giving a pCond

of l/(row length), while the second succeeds whenever a row contains a nonzero element

a t the desired column. Under uniform distribution assumptions, this gives a pcond of

l/(number of columns). Counting assembly language instructions a s before gives

Tsimd -- - 28
7 8

Tsfmd l3 + (row length) + (number of columns)

So the expected speedup is about 2 for all but the smallest, sparsest matrices. So, together

with the results shown in figure 5.2, we see that either with or without loop flattening,

SFMD gives about a 1.5 - 2 -fold speedup.

As an example of the potential utility of SFMD functioliality for model matching, I

consider interpretation tree search (ITS), a technique used in vision, described in chapter

void unflattenedDenseV0
I
int r, i, sum, imax, nr;

/* init-1 */
nr = NumberOfRows;
r=O ;

/* test-1 */
while(r < nr)

I
/* init-2 */
i = RowStart Cr] ;
imax = RowStart Cr+ll;
sum = 0;

/* test-2 */
while(i<imax)

I
/* <BODY> */
sum += MatrixValue [i]

* Vector [Column [ill ;
/* increment-2 */
i++ ;

3
/* increment-1 */
RowSum[r] = sum;
r++ ;

3

void flattenedDenseV()
I
int r, sum, i, imax, ms;

nr = NumberOfRows;
r = 0;
imax = RowStart [r+ll;
sum = 0;
i = 0;

while(r < nr)

sum += MatrixValue Cil
* Vector [Column Cil I ;

i++ ;

if (i >= imax)
<
RowSumCr] = sum;
sum = 0;

Figure 5.6: Loop flattening transformation applied to multiplication of a dense vector
by a sparse matrix. Assembly listings for unf 1attenedDenseV have 29 instructions com-
prising the nested while Ioops, not including one-time setup and cleanup code, while
flattenedDenseV has 17 (including loop overhead). For the latter, TcOmmon = 12 and

Tcond = 5 -

void unflattenedSparseV(int vi, int vv)
C
int r, ri, mi, nr;
nr = NumberOfRows;
r = 0;
while(r < nr)
.I
ri = ~owIndex [rl ;
mi = MatrixIndex hi];
#hile(mi <= vi 8% ri < RIdxCr+ll)

C
if (mi == vi)

 ows sum [ri] += Matrixvalue Cril * vv ;
ri++;
mi = MatrixIndex Cril ;

void flattenedSparseVOpt(int vi, int vv)
C
int r, ri, mi, nr;
nr = NumberOfRows;
r = 0;
mi = Matrix~ndex [ri = RowIndex [r] 1 ;
while(r < nr)

C
while(mi > vi)

C
r++ ;
if (r == nr)
return ;

mi = MatrixIndexCri = ~ow~ndexCr]] ;
3

if (mi == vi)
RowSumCr] += Matrixvalue [ril * vv;

mi = UatrixIndex [++ri] ;

>

Figure 5.7: Loop flattening transformation applied t o multiplication of an element of a
sparse vector by appropriate elements of a sparse matrix. The flattened version requires
a more complicated version of the transformation, and has been slightly hand optimized.
Assembly listings for unflattenedsparsev have 30 instructions comprising the nested
while loops, not including one-time setup and cleanup code, while f 1attenedSparseVOpt
has 28 (including loop overhead). For the latter, TcOmmon = 13 and Tcond = 15.

3. To review, ITS is a technique for establishing a correspondence between image and

model features. It consists essentially of depth-first search (DFS'), where a node on level d

of the tree corresponds t o a pairing of image features with the first d model features. The

search is limited by a variety of unary and binary geometric constraints on the allowed

pairings. Search complexity implies small models are matched t o small numbers of data

features, so distributing models and data t o local memories is practical.

To examine the effect of SFMD on this form of model matching, I performed some

simple simulations. To match a model with D features t o a set of B da ta points, we attempt

t o match the first model feature with each da ta point in order, with some probability of

success, pmatch. If we succeed, we attempt t o match the second model feature with one of

the remaining B - 1 da ta points, and so on. If we match all D features, we then check for

global consistency of the correspondence, with some probability of success, pcheck. This

procedure is equivalent t o DFS in a tree with branching factor B - d a t level d of the

tree, 1 5 d 5 D , where the probability of expanding any given node is pmatCh, and the

probability of stopping the search a t any given leaf is 1 - Pcheck.

By writing the search as an iteration managing an explicit stack, one obtains a loop

with some common code and some code conditional on whether the current node has

any child nodes left t o be expanded. The bulk of the "no-child" code deals with leaf

nodes, consisting of testing for global consistency and recording solutions. The relative

performance of SIMD and SFMD thus depends mainly on the probability, ple,j, that the

node being traversed is a leaf. If, for each iteration, the time for the leaf code is taken t o

be 1, that for common code is t , and that for the non-leaf code is k, then

Panel 1 of figure 5.8 shows values of p from a variety of simulations of ITS, with

B, D E {8,10,12,14,16),pmatch E {0.1,0.2,1/B}, pcheck E {0,1). Grimson [GriSO] reports

searches on realistic data of around 5000-10000 expansions; this corresponds t o pleaf =

'See [GriSO] for a complete description of ITS and for the complexity results alluded to here.

Figure 5.8: Interpretation Tree Search speedup. Panel 1 shows the probability, ple,f, of
traversing a leaf. Panel 2 plots equation 5.12 for realistic values of psaf and k, with t = 0.1.

0 I
pr-.,icy o t t..r.r.in. . 1°C in m ---. .

0 . 7 - * a

0 6 - . .
0 3 .

. .
"

0 , -
.. . .. r

- "
0 , . .. -
a . 2 - " . *.*.
0 1 - -

roe 1000 o 100000

0.2 - 0.4. Panel 2 of figure 5.8 shows how equation 5.12 behaves for preaf in this regime

and for realistic values of k. We see speedups in the range 2-4 unless the leaf code is very

small. In fact, the code for global consistency checking is typically larger than that for

local consistency, corresponding t o log2 k < 0.

I..D'

5.6.3 Summary

tor., 0ub.Z ot 4. L..rn.d

We see that SFMD can provide substantial, about 1.5 t o 2 -fold, performance improve-

ments over SIMD for model-matching type tasks. For large nested data-dependent loops,

this can be given by the reduction from sum-of-max to max-of-sum. When the inter-loop

variability is suppressed, as by the van Hanxleden flattening transformation, intra-loop

body conditionality appears in order t o handle end-of-loop (or leaf node) situations. In this

case, for small loop bodies, or, more generally, for loop bodies where the code for handling

the end-of-loop case is substantial compared t o normal case, SFMD gives a performance

improvement over SIMD by bypassing the conditional code. As we saw in chapter 3,

this latter case, of pieces of code which are both executed conditionally on the da ta and

relatively large compared t o the non-conditional part of the loop body, is typical of both

model-matching and IL\' tasks.

5.7 The Price of "No Communications'

SFMD extends the SIMD model by allowing independent conditional execution. Con-

versely, it restricts the usual SPMD model by allowing communication t o occur only after

a barrier synchronization. It makes the latter restriction in order t o preserve SIMD se-

mantics and ease of programming and debugging.

SFMD is a natural approach t o model-matching tasks, which tend t o have restricted

and predictable communication patterns, suitable for this "bulk-synchronous" execution

style. Exhaustive model matching, for example word-spotting or vector quantization, only

requires communication after each model is matched, to determine the maximum or min-

imum. Branch-and-bound scenarios, such as matching of deformable models, only require

communication after each evaluation, t o propagate the new bound. Both of these can be

done with a simple broadcast or "global max7' communication, and do not need sophisti-

cated networks or message-passing systems. However, many "tiled7' ILV algorithms have a

permutation communication pattern, where each PE simultaneously talks t o its neighbor

in a particular direction, known in advance as part of the algorithm. Unlike SIMD, in

the SFMD model the times of these communications may be unpredictable. Other ILV

algorithms, in particular feature grouping, involve even more random communication pat-

terns: many-to-many a t unpredictable times with unpredictable targets for the messages

from a given source.

Even with unpredictable communication, there is a performance tradeoff between do-

ing pairwise synchronization a t arbitrary points and delaying synchronization t o the end

of a block and then communicating "in bulk" . There are a number of effects involved

in this tradeoff. With communication a t predictable times, and with predictable network

latencies, the compiler can sometimes reduce the number of synchronizations that would

be needed by a pure MIMD implementation [DZ092, BCJSO]. With predictable commu-

nications the compiler may also be able t o move code so as t o overlap more computation

with communication. The main effect, however, is that synchronization a t unpredictable

points has an additional cost, for either polling or handling interrupts. The interrupt.

handling involves some mechanism to detect interrupts, branching t o code for handling

the interrupt, as well as saving and restoring the state of the computation. In our realm

of small, tightly coded loops, and limited per-PE code memory, this is a lot of overhead,

and it makes more sense t o use a polling scheme incorporated into the code. The nest

section describes a simple model, analyzed and simulated t o compare the tradeoff between

bulk synchronization and synchronization a t random points done with polling.

5.7.1 Communication Simulation

I examine the effect of limiting communication t o be "bulk-synchronous" by use of the

following model. Suppose a number of processors are iteratively executing the same block

of code. At some point in each block, the processor executing the block conditionally sends

a message t o some processor chosen at random according t o some probability distribution.

The chosen receiver may be the same as the sender, in which case a message is not sent, but

the computation requested by the message is still performed. This model is reasonable for

model-matching and ILV-type tasks where the data (image) needed t o evaluate a model

is distributed among the processors in a way not known in advance, for example, feature

grouping. Refer t o this as the mndom case.

Another reasonable case is where the communication pattern is such that no processor

receives more than one message originating from a given iteration, including itself. This

pattern occurs, for example, when processors partition two-dimensional da ta and, in a

given block, all request da ta from a neighboring processor in the same direction. Although

all processors need not participate, refer t o this as the permutation case.

In both these cases, the requesting processor may proceed after submitting the message,

the asynchronous case, or it may block, waiting for the reply, the synchronous case. I

will only look a t the asynchronous case, as it allows more overlap of computation with

communication, and is the less favorable t o SFMD. Processors may send messages a t most

once per block, a t a time given by a random variable. In the SPMD case, things proceed

as follows (see left panel of figure 5.9):

t o send a message, the message is put on the processor's send queue after which an

autonomous asynchronous network routes the message to another processor's receiue

queue

processors poll with some frequency, looking for messages on their receive queue

a as soon a message is received, current processing is interrupted and a reply is com-

puted and sent

no polling or interruption occurs while the reply is being calculated

I will assume for simplicity that the processor sending a message can perform other useful

work until either the reply is received or the end of the current block is reached. Of

course, it continues polling in any case, and can be interrupted a t any time t o reply to

a message. This model is appropriate, for example, when, as for two-dimensionally tiled

data, the message and receiver are known statically, and a message can be sent in advance,

requesting the da ta that will be needed for a future iteration.

In the SFMD case, things proceed similarly (right panel of figure 5.9), except that

barrier synchronizations must be introduced before any messages are read. In particular,

the SFMD model will also send the message before the barrier synchronization; the "no

communication" restriction only requires that all processors must wait a t the barrier

before receiving and acting on the message. If multiple messages are sent t o the same

processor in a given block, all replies may be sent before synchronizing a t the barrier.

Assume that , immediately after the barrier, the processors check whether any messages

have been posted, and if not, the computation proceeds without a reply phase. This

can be determined quickly using the barrier synchronization hardware. If the target of

a message is the same processor that sent it , the reply is computed after the barrier, in

the reply phase. This would be the probable coding, especially for the permutation case,

unless messages were very infrequent, as the reply phase usually occurs.

sender : network : receiver

I

snd

sender network : receiver

d
snd

I barrier

'/ ;$ rcv

I J'rd snd

I barrier I

Figure 5.9: Message-passing model for SPMD (left) and SFMD (right)

As mentioned above, messages are dequeued, routed, and enqueued by a DMA-like

"autonomous asynchronous network". Discussion of this network is outside the scope of

the thesis. I treat the network as a black box, assuming only that there are no network

congestion problems, and that messages of the same length take the same time to deliver.

Also, the network must participate in the barrier, signaling that all outstanding messages

have been delivered, to ensure correct semantics.

Using the notation in table 5.2, suppressing the b and p parameters for clarity, the

time for a single block on a single processor under the SPMD model (left panel of figure

Table 5.2: Definitions for "no-communication" simulation

constants
P number of processors
N number of iterations
Psnd probability of sending a message in a given block
dsnd time to construct a message and put in send queue
~ K V time to remove message from receive queue and

I interpret it I
1 d;nt time spent savinglrestoring registers and so on, I

beforelafter computing reply
dmsg time to deliver a message (assumed constant)
dbsynch time to perform barrier synchronization
dbsnd time for send-transfer-receive when doing bulk-

I synchronous transfer I
dbsnd = dsnd + max(dint, dnmsg) + drcv 1

variables
Sp,(b,p) time in block b executed by processor p before 1

I point where message may be sent I
SpOst(b,p) time in block b executed by processor p after point

where message may be sent
Srep(b, r,p) time to compute the reply to the r'th message re-

ceived by processor p that was sent during block
b

6s (b, P) 0 or 1 according to whether processor p sent a
message during iteration b.

6, (b, P) 0 or 1 according to whether processor p received a
I message during iteration b. I

~5,,~(b,p) 0 or 1 according to whether processor p sent a
message during iteration b whose target was itself

6; (b) 0 or 1 according to whether any processor received
P a message during iteration b, 6; = (1 - np,l(l -

6,))
targ(b, p) destination (if any) of message sent by processor

p during block b
number of messages received by processor p during
iteration b

I AP delay between when a message is received by pro- I . .

cessor p and when it is processed, due to process-
ing of previously received messages

5.9) can be written

bspmd(b7 P) + S p m + (1 - 6s) (Spost + C (d m + dint + Smp(r) + dsnd + dint))
rER

+Js max[(Spost + C (d m + dint + SmP(r) + dsnd + dint)),
rER

(1 - 6selj)(dmsg + At,, + srep(targ) + dsnd + dmsg + dreu)]. (5.13)

where the summation is over the set R(p) of all message replies performed by the processor

in the block. The time for a single block under the SFMD model is

bsfmd(b) max[Sp, + dsnd + max(Spost + dint, bserfdnmsg)] + dbsynch
P

The maxk following bf is over the time t o compute the first k replies and then deliver

the k'th and following replies sequentially. Note that assuming the network delivers the

messages sequentially is a worst case scenario for SFMD.

5.7.2 Analysis

I give a rough analysis of the permutation case. The random case has two natural execution

models, one where each processor replies to all the messages it has received before it

synchronizes with the other processors, and one where each processor replies only to a

single message (or some fixed number of messages) before synchronizing. Under the first

model, the random case has the same qualitative behavior as the permutation case, with

the possible multiple replies in the random case acting like a larger, more variable, reply

in the permutation case. I have not yet addressed the second case. For either case, strong

assumptions are needed about the network's performance delivering multiple messages for

reasonable modeling.

In general, the constants dsnd, d,,, and dint will be small, and I ignore them for purposes

of analysis. Assume that the network has sufficient bandwidth that dm,, = d,,,,. The

overhead of polling may be quite small, especially with hardware assistance from the

autonomous network (it could be just checking a register periodically). However, even

a single-cycle poll, if done a t every instruction, doubles the time. So polling would be

done at some slower frequency, which then has the effect of delaying when a message is

processed. I will ignore polling in the analysis (which penalizes the SFMD case) and give

some simulation results.

Take all S,,, SpOst, and S,, for all processors to be mutually independent. This

is reasonable for the scenario where execution of the code after the message depends

on the message result, and the time to compute a reply, e.g. by indexing into a data

structure, is independent of the content of the reply. Let ppm = (Spre), ppost = (Spost), and

pblk = (Spre + Spost) = pPm + pPost. Assume that message destinations are equiprobable

and independent, so (5,) = (6,) = q, and (6,ev) = q/P.

Even for the permutation case, the delay A,,, for SPMD may be nonzero. The reason

is that the threads on the separate processors rapidly become desynchronized [AGWFH94,

WHAG+92], so that when the message is received, the target processor may be processing a

message from another processor sent during a previous block. Processing the new message

is delayed until all previously received messages have been processed. To estimate (A,,,),

note that the probability that a message is being processed at a given point is the average

time spent processing messages, qPrep'y, divided by the average total time per block,

pblk + qpmply. The expected time to finish processing the message is pWp1y/2. We get

a lower bound by ignoring the case where there is one or more previous messages to be

processed after the current one and before the just-received one:

Taking expectations over max operators is difficult; instead I examine the equations in

regimes where one term sufficiently dominates the other that one can substitute its value

for the appropriate max. Denote this dominates relation by ">".
Under these assumptions, for the SPMD case, I get

where Cedenotes the condition

SpoSt + drSmp K (1 - Ssev)(Smp(targ) + At,,, + 2dmsg)

and CB denotes the reverse. The total time for all N iterations is max, CY b s p m d , and,

as in section 5.6.1, the central limit theorem implies

for large N , where Z (p) is distributed as the maximum of P standard normal variates.

For the SFMD case, and the permutation communication pattern, we have

where p = p p (q) & (6;) = (1 - (1 - q) P) , DB denotes the condition

and Dg its reverse.
spmd spmd

We have (tsfmd) = N (b S j m d) , so the speedup is = j+; asymptotically in N

As CBimplies D<, there are three regimes. In regime R1, defined by CB, the time

t o complete the block dominates the times t o compute and send the reply. In this case,

for large N ,
spmd spmd

(t) , (b) + q P m ~ l ~
- ,--

=ply '
(t s f m d) (b S j m 9 B ~ F) + P P (P) (dmsg + /J)

In regime R2, defined by C<and Da, the time to compute the reply dominates, as

might be the case for small computations requires small pieces of information that require

extensive indexing to find. In this regime, for large N,

Regime R3, is defined by large message times, DB, implying C<. This might correspond

t o the situation where large latency inter-chip messages are sent. One has

2P-1 reply + 2d reply

(tsprnd) pblk + B (~ P msg - pPost) - q 2 p m ~ l ~ (l - ~.-&-) 2P p +.#P Y - -
(t "md) reply) + dmsg + P P (~) (dmsg + ~ (p)

Lower bounds for the speedup in these regimes, asymptotic in the number of itera-

tions, N, are given by the ratio (bspmd)/(bsfmd) of (5.15) and (5.17) in the three regimes.

Comparison of these bounds with simulations are given in figure 5.11.

Both analysis and simulation of the lower bounds show that , as a function of q, the

qualitative form of the speedup has a single minimum a t about 1/P and reaches a max-

imum a t either q = 0 or q near 1. This is intuitive, as SFMD is most penalized for

bulk-synchronous communication when the expected number of messages per block is 1

: P processors each with a 1/P probability of sending a message in a given block. Con-

versely, SFMD is least penalized when there is no communication or when all processors

must compute a reply.

I wish t o examine these equations as functions of the message send probability, q. Let

4(p) = (tspmd)/(tSjmd). Using (maxMX) = ~ . J x ~ (x) ~ - l d ~ (x) < M . S z d P (s) = M (X)

for any random variable X with cdf P (x) , it is routine t o show that 4(q) behaves as

illustrated in figure 5.10. In particular, if we construct &(q) by replacing the pp(q) term

in the denominator by Pep , and construct #l(q) by replacing the same term by oneg, then

4 is bounded below by 4o and for all q E [0, I], and is well approximated by them near

0 and 1, respectively. In particular, for the values of P of interest, P 2 8, and for q > 0.5,

pp(q) is essentially 1. Intuitively, the minimum of 4(q) should be near q = 1/P, as this

corresponds t o an expected one message per block, which will incur the maximum penalty

'This comes from expansion in a Taylor series about q = 0 and q = 1. respectively.

Figure 5.10: d (p) in two regimes: the left panel illustrates regime R 1 , while the right
panel illustrates regime R 2 . Regime R3 is like R 2 except that the local maximum near
1 is not reached for p < 1.

Figure 5.11: Simulation results compared t o analytic lower bounds (dotted lines) in three
regimes. The speedup ratio (tspmd)/(tsfmd) is plotted against the message send proba-
bility, q. In the top panel, time in the sending block dominates (pPre = 100,pPoSt =
400, ~ " P ' Y = 30, dmSg = lo) , in the middle panel, time to compute the reply dominates

Pre - 100, pPost = 301 preply = 400, dmSg = lo) , and in the bottom panel, message transfer (P -
time dominates (ppre = 100, ppost = 30, preply = 30, dmSg = 200). In all cases, P = 16 and
N = 100. Sp, was a constant 100, to simulate a fixed block of pre-message code. Spost
and S,, were uniformly distributed on either [lo, 501 or [200,600].

for SFhlD operation a t the least penalty to SPMD operation. In fact, #o(l /P) = (1/P)

is a lower bound for +(q) for q E [0, 11. We see that "small" q must be very close to zero if

SFMD operation is to be not too unfavorable compared to SPMD; essentially, this is the

"no communication" case. On the other hand, for "large" q E [1/2,1] the issue is not so

clear. Suppose, henceforth, that q > 112. For each of the three regimes, ignoring small

terms as defined by the dominance relation for that regime, 4(1/2) = min,E[,/2,,~4(q),

and the condition 4(1/2) > 112 corresponds to

blk > 1 blk
-2P(p) in R1

p b l k + z p r e ~ l y > ~ (p ~ ~) + p ~ ~) in R2 (5.18)

P ~ m + 3 q~ reply > - 1 2 7 + P in R3

The distribution-free upper bound [DavTO]

where p x and ax are the mean and standard deviation is strict, in that there is a distri-

bution for which the inequality is an equality. It is, however, a substantial overestimate

for many distributions. Let u(P) G (P - I) / J ~ = m. If we substitute the upper

bound in the conditions 5.18 we get stronger (perhaps overly strong) conditions

For P 5 128, u(P) 5 8, and the above conditions hold in case

So if the message probability is not too low (q 2 112) and the variances of the pre, post and

post times are not too great compared to their means, then 4(q) > 112, i .e. , the slowdown

of SFMD computation compared to SPMD computation is less than twofold. With a less

than two-fold slowdown, a 128 PE SFMD chip would have greater raw performance a 16

PE SPMD chip whose (more complex) processors were each 4 times faster, even if the 16

P E chip were not memory bandwidth limited. In particular, much ILV computation falls

into the "high message send probability, permutation communication pattern" regime.

Of course, this is a much simplified model, and very rough bounds, but I believe it

gives us some intuition. First, it suggests the importance of reducing variance in search

and message passing. In this regard, note that I have not yet looked a t "averaging out"

some of the variance by combining loop bodies so that multiple blocks (S,, and SpOst) are

done on a given PE before the barrier synchronization t o begin the reply phase, and that

multiple replies (S,,) are computed on a given PE before the synchronization t o end the

reply phase. Second, it allows us t o conclude that there are reasonable regimes involving

substantial communication where SFMD architectures may be competitive with SPMD

ones. Even if SFMD only gives the same performance as SPMD in some task, this extends

the range of tasks an SFMD chip can usefully perform, making the chip more economically

viable. From Amdahl's law, simply being (approximately) equivalent on some parts of the

computation is important for allowing better performance on other parts of the task to

translate into better overall performance on the entire task.

5.8 Miscellaneous Design Issues

One point about SFMD execution, compared t o SIMD has not yet been made. There

are really two sources of parallelism in a typical SIMD implementation. In addition t o

parallelism from SIMD execution. there is parallelism between the host and the SIMD

array. A common, and important, use overlaps testing and incrementing the outer loop

index variable on the sequencer while the SIMD array computes the inner loop [ANSC94].

A superscalar processor normally overlaps these computations as they are independent

instruction sequences. In an SFMD machine, many loops may still be data-independent,

and executed in SIMD mode, and one expects that it would be worth including shared

functionality on each chip for loop variable computation on the sequencer. In SFMD, when

loops are handled on a per-PE basis using a simple, non-superscalar PE, overlapping is

not possible. If the loop count is data-dependent, but known before the loop is entered, a

DSP "zero overhead loop" mechanism would suffice, as it would for loops that are esited

by a "break" construct, but have a maximum iteration count. A reasonable example of the

latter would be a relaxation loop, but loops that search tree structures can be constructed

this way by giving an unreachably large iteration count. A final possibility is t o include a

small amount of hardware for this specific form of superscalar execution. The hardware

requirements for this, especially if the overlapping is encoded in the instructions through

a Very Long Instruction Word (VLIW) approach, may be minimal.

5.9 Related Work

5.9.1 Instruction Caching

An SFMD architecture includes per-PE instruction memories for small, "inner loop" bod-

ies of code. There are a couple of related ideas on using such instruction caches.

Rockoff [Roc931 demonstrates that for an SIMD system, distributing instructions from

off-chip incurs too large a performance penalty due t o lower off-chip speeds and bandwidth,

and (for post-1993 VLSI processes) is generally inferior t o the use of an on-chip instruction

cache.

Manning and Meyers [MM93] describe simulations of an instruction caching idea whose

goal is massive asynchronous SPMD processing without the cost of separate instruction

memories. Unlike SFMD, there is no notion of "virtual synchrony". The idea is t o replace

separate instruction memories by adding smaller instruction cache (I-cache) t o each P E

of a massively parallel O(1000) system. A data-parallel program is divided into "locales",

and I-cache requests locales as necessary on a token-ring bus. All I-caches snoop the bus

for other caches requesting the same locale. If the desired locale is seen on the bus, it

need not be requested. They use a Markov model of program movement between locales

derived from real programs in their analysis and presents results on PE utilization that are

favorable for massive systems where the number of PEs is much larger than the number

of locales. For smaller number of PEs, this is unlikely to hold as simultaneous request for

a locale unlikely [AGWFH94, WHAGf 921. Lundstrom [Lun87] presents much the same

idea as part of the design for the never-completed Burroughs "Flow Model Processor".

5.9.2 Other SIMD-MIMD hybrids

There is a plethora of ideas for hybrid architectures somewhere between SIMD and MIMD.

Contemporary processors aimed a t multimedia applications are beginning to include

some SIMD-like functionality (see, for example [Lee95]). The idea is to partition the 32-

or 64-bit ALU so that it can operate on, say, 1 64 bit, or 2 32-bit, or 4 16-bit, or 8 8-

bit quantities. What is required is to disable carries over the boundaries of the smaller

data. Operations on data smaller than 32 bits use fixed point arithmetic. Partitioning

gives a very restricted form of SIMD, without either local addressing or local conditional

execution, and provides an economical extension of uniprocessor designs to accommodate

a moderate amount of very regular parallel execution.

There are a number of vector processor hybrids, an example of which is [WAK+96],

targeted at very regular sensory processing applications such a s neural network processing

of speech. These add fixed point vector processing hardware, suitable for very regular kinds

of processing such as non-sparse matrix multiplication, to a standard microprocessor.

Several researchers have looked at emulating MIMD execution on massively paral-

lel SIMD machines, to increase the range of problems they can address [AGWFH94,

WHAG+92, SW951. The emulation overhead generally negates any advantage from the

massive parallelism.

Conversely, and more successfully, SIMD execution can be emulated on an array of

MIMD processors by coupling SPMD execution with barrier synchronization. The best

known example is the CM-5 [Cor92], although the Cray T3D also has hardware support

for fast barriers. The barrier synchronization in the CM-5 is "soft", in the sense that a PE

indicates a desire to participate in a barrier, and may then perform other work until notified

asynchronously that the other PEs participating in the barrier are ready. The barrier thus

acts t o enforce global ordering, but the penalties for asynchronous notification (interrupts

or polling) are still incurred. This is reasonable for a system with potentially thousands of

processors. like the CM-5, where waiting for all PEs to reach the barrier may take a long

time, and where individual PEs may execute multiple processes, and switch between them

while waiting. It differs from the SFMD idea, targeted a t comparatively small numbers

of simple processors each running a single thread, where barriers are "hard". With the

hard barriers of SFMD, no asynchronous overhead is incurred in communication while

operating in SIMD mode after the barrier.

A number of experimental processors have both SIMD and MIMDISPMD modes,

with the capability of quickly switching between them. This necessarily involves barrier

synchronization of some sort a t the transition from MIMD t o SIMD.

PASM [NSD93] is a research machine designed to allow dynamic repartitioning of the

PEs into number of independently operating sub-machines. Each of these sub-machines is

a mixed SIMD/MIMD hybrid, allowing fast switching between SIMD and MIMD modes.

Much PASM research has been targeted a t the cost/performance of switching between

the two modes [BKS91, WSA+94] and has led to an understanding of the efficiency of

the barrier MIMD mode of computations [DZ092, BCJSO]. Triton [PWTH93] is a similar

SIMDIMIMD hybrid. EXECUBE [Kog94] is a similar hybrid, targeted a t very massive

systems, and designed for maximum performance per transistor, rather than per chip. As

the goals of these machines is generality, no restrictions such as disallowing communication

during SPMD mode are enforced.

The OPSILA computer [DBAG88, AB861 is a vector processor with SPMD extensions.

The basic vector processing model has neither local conditional execution nor local ad-

dressing. These are enabled by the addition of small local instruction memories and an

"SPMD mode". SPMD mode is used for calculations requiring local addressing, such as

histogram computation, or local conditional execution, such as the body of a list traversal

procedure. The available literature shows no use of loops within SPMD mode. Since OP-

SILA is fundamentally a vector machine. interprocessor communication is only via bulk

vector operations such as permutations or scatter-gathers. As such, IPC within SPMD

mode is disallowed. The programming language for OPSILA distinguishes SIMD and

SPMD execution and variables used by SIMD and SPMD modes. OPSILA is thus essen-

tially an SFMD architecture, although not emphasizing that programming semantics are

SIMD and not concerning itself with VLSI and chip microarchitecture issues.

5.9.3 Vision-specific Designs

Jonker [Jon93, JKK951 h a s proposed a system targeted at low and intermediate level

vision using hardware-supported "bucket queues" as the representation for ILV data, cor-

responding to use of arrays in low-level vision processing. The architecture is designed

for pipelined processing, and is related to SFMD in that separate processors operate

autonomously, controlled by individual state-machines downloaded into a reconfigurable

logic array.

Mention must be made of the Image Understanding Architecture (IUA), an ongo-

ing research project targeted at low through high level vision processing [Wee93, Wee94,

WLHS89]. The IUA has separate hardware for the three stages of low, intermediate, and

high level vision. The low level hardware is SIMD, while the intermediate level is SPMD

running on a collection of commercial DSPs with a high bandwidth interconnect. There is

no special relationship, other than connectivity, between the SIMD and SPMD hardware

or operation, so there is no notion of SFMD-like function. Weems provides a thorough

discussion of the processing needs of the various levels in [Weegl].

5.10 Future Work

Of course, experience with SFMD on real machines, for real applications is what is needed.

Prior to building an SFMD machine, though, there are a number of useful analyses to do.

It would be useful to examine the FIFO-based implementation of SFMD further, both

analytically and through simulation. Preliminary simulations suggest the overhead of

using a FIFO due to stalls on a "FIFO full" condition is not large. For understanding

the coding implications of a given size FIFO, one would like some idea of an -equivalent

buffer size": for a given IM size in the non-FIFO implementation of SFMD, what size

FIFO gives a performance degradation of a t most, say 5%. This, of course, will depend

on the distribution of execution times for the code. Elucidating this dependence would be

of interest, and having an idea of equivalent buffer size would be useful in designing code

for a specific application.

There are a number of reasons why i t might be useful for a single SFMD P E t o emulate

multiple virtual PEs. A single P E switching between different virtual PEs might better

tolerate memory latency, using multi-banked sense-ampcaches with different banks for

the different virtual PEs. In my comparison with SPMD execution, each loop iteration

caused a synchronization for replying to, and then receiving, messages. This breaks the

loop body into three phases, "pre-reply", "reply" and "receive", separated by the two

barrier synchronizations. Emulating multiple virtual PEs would provide a natural mech-

anism for executing pre-reply phases for multiple loop iterations, then a single barrier

synchronization, then the reply phases for the multiple loop iterations, a single barrier,

and then multiple receives. Executing multiple loop operations in a single phase would

have the effect of reducing the variance in the times of the phases, and so improving the

performance of SFMD relative t o SPMD.

For the non-FIFO version of SFMD, one can pipeline results between PEs executing

different functions. This would again potentially increase the range of applicability of an

SFMD chip, but i t is unclear how t o model this in the programming language, or whether

any special hardware support is needed.

5.11 Summary

In this chapter I introduced and analyzed the SFMD class of computer architectures.

SFMD extends SIMD by allowing data-dependent control flow for the individual PEs.

This extension t o data-dependent execution is increasingly important as conventional ar-

chitectures are including low-parallelism SIMD vector processing in their design, targeted

at multimedia processing (for example, [Leegj]). "Pure" SIMD and vector designs will

thus have a harder time differentiating themselves from mainstream processors. As seen

in chapter 3, support for algorithms having small computational kernels that exhibit ir-

regular, data-dependent control flow is essential in extending one of the traditional range

of applications of SIMD designs, low level image processing, t o intermediate level and con-

textual processing. By extending SIMD designs into "neighboring" task domains, SFMD

makes it more likely that a given chip can do more of the processing necessary for a task

without needing t o have another chip do part of the work, possibly incurring the cost of

da ta transfer.

SFMD adds little or no expense t o SIMD in terms of programming complexity, tools,

or environment. I t is relatively inexpensive in terms of area, and fits well into designs that

put all models or task parameters on-chip, avoiding memory bandwidth limitations, and

reducin power dissipation, packaging, and system integration costs. An implementation

of SFMD may require reducing the available on-chip memory by perhaps 5%, while over a

wide range of tasks, SFMD provides a 1.5 t o Zfold improvement in performance compared

t o SIMD. Compared t o a multiprocessor running SPMD code, there is a performance

degradation on code with infrequent messaging and on code having a large variance in its

execution time. However, this performance degradation may be mitigated by an SPMD

design having more processors, or possibly by virtualization techniques t o reduce variance.

Even in cases where an SFMD chip is only comparable in performance t o an SPMD chip,

it still extends the range of applicability of the SFMD chip and increases its economic

viability.

Chapter 6

Conclusion

6.1 What Has Been Done

My interest in this work has been in the cost-effective parallel implementation of con-

textual processing. The framework used was t o view models as encapsulated pieces of

contextual knowledge that are applied "top down" in a model matching process. A large

recursive model for ordered input provides context for the interpretation of sequences of its

components through conditional probabilities of components given previously interpreted

components. Smaller, individual object models, provide context for the interpretation

of their components during the process of matching the model to data. This context

can be in the form of conditional probability statements, hard geometric constraints, or

"soft" geometric constraints in the form of deformation energy. The "geometric context"

can be used t o direct search. The key point is that use of context leads to irregular,

data-dependent control flow.

For ordered input such as text and speech, we saw that use of a large, recursive

model based on n-gram probabilities could be useful for correcting the interpretations of

sequences of components, and for dealing with novel words. The HOVS algorithm for

making use of this probabilistic contextual information has a SIMD implementation that

provides very fast processing for large vocabularies. However, for large vocabulary tasks

where the goal is t o identify the correct (non-novel) word from the vocabulary, I concluded

that effective use of parallel model matching was unlikely, due t o the effectiveness of search

mechanisms that make use of the ordering.

Conversely, for unordered input such as vision, search seems hard t o apply. In this

case, identifying objects by matching structured models seems a reasonable approach.

Doing so, however, leads t o algorithms with pronounced data-dependent irregularity that

is inefficient for SIMD-style computation. Examination of a variety of these algorithms,

and related algorithms for feature grouping, led us to a number of "stylized facts" that

suggested certain architectural requirements for the support of these algorithms. The ar-

chitecture should be a hybrid, with a fast uniprocessor coupled t o a parallel array. The

PEs of the parallel array should have large memories, and should communicate by an

asynchronous autonomous network t o allow overlapping computation with communica-

tion. Finally, the PEs should support algorithms having small computational kernels that

exhibit irregular, data-dependent control flow.

Next I examined VLSI and microarchitectural trends to quantify the tradeoffs in de-

signing such a parallel array. The essential fact from current VLSI trends is that the

growth in the number of transistors tha t can be put on a chip will substantially outpace

growth in the off-chip bandwidth. I examined a highly parallelizable model-matching task

being executed by such an on-chip parallel array. When off-chip bandwidth was assumed

equal between a uniprocessor and a parallel array, off-chip bandwidth limitations limited

parallel speedup t o a modest amount unless the subtasks evaluated in parallel were very

compute-intensive. This suggested that a design using off-chip memory would have lim-

ited parallelism and would be hard t o differentiate from mainstream processors, making

it difficult t o justify its development. However, current interest in, and development of,

so-called "embedded DRAM" processes suggest the feasibility of a design using on-chip

rather than external memory. Such a design could have a high degree of parallelism,

sidestepping limitations on parallel speedup due t o off-chip bandwidth constraints.

Examination of current microarchitectural trends delineated the techniques used in

superscalar designs t o improve performance and, in particular, t o tolerate latency due t o

off-chip memory bandwidth limitations. We saw that these techniques were expensive in

terms of area, power, and complexity, may have scaling problems due t o quadratic growth

and non-locality in required interconnect, and were unlikely to function well for highly

data-dependent execution with unpredictable branching and poor locality of reference.

Designs based on these techniques, while tolerating memory latency t o some degree, will

also suffer from off-chip bandwidth limitations. This suggests that a highly parallel design,

with many simple processors per chip using on-chip memory, may have a niche. Such a

design could be architected as a vector or SIMD processor. In such a design, sharing

instruction processing hardware allows processors t o be much simpler; simplicity being

now much more important in terms of reduced area, due t o the larger number of processors.

However, conventional architectures that share instruction processing hardware (SIMD or

vector architectures) perform poorly on the computational kernels exhibiting irregular,

data-dependent control flow that we have seen are needed for model matching and feature

grouping algorithms.

I then introduced the SFMD architecture class, adapting SIMD execution and allow-

ing the sharing of instruction hardware while significantly outperforming SIMD on small

computational kernels with irregular data-dependent control flow. SFMD has the same

semantics as SIMD, and can be implemented as an extension t o an existing SIMD archi-

tecture. SFMD has the low programming and debugging costs of SIMD, and requires little

or no change in an existing SIMD programming environment. The architectural changes

required have a moderate silicon cost, and a low design cost; in particular, as SFMD con-

cerns itself solely with instruction delivery, little redesign of an existing simple SIMD P E

is likely t o be needed.

While the raw performance of SFMD improves on SIMD by a factor of 1.5 to 2 on

a variety of tasks with data-dependent control flow, it, in turn, is outperformed by an

SPMD architecture on tasks with sparse communication and highly varying computation

and communication times. I discuss below improving the relative performance by reducing

variance in the communication and computation times. When communication times are

not too sparse, the performance gap between SFMD and SPMD may be counteracted by

the ability of SFMD t o put more processors on a chip. In any case, SFMD outperforms

SIMD on these kinds of tasks, and extends the range of an existing SIMD design into the

realm of tasks with irregular control flow.

6.2 What Remains To Be Done

6.2.1 Practicalities

Of course, I would like t o examine the performance of SFMD on real examples, or a t

least get better time distribution estimates for my analyses. Unfortunately, there is a

problem. I have contacted a number of vision researchers, in order t o obtain realistic

uses of structural model matching. At present, there really are no realistic examples:

structural models, while of great research interest, are too computationally expensive t o

use in practice. There is a "chicken and egg" problem, between having an application

for which to develop a "context engine" and developing an application which requires a

(not yet existent) context engine for useful performance. With increasing performance by

mainstream processors, I can hope this issue becomes resolved.

What is particularly needed is a "killer" application t o drive development of the en-

gine. MPEG-4, which may use a model-based representation t o achieve extremely high

compression rates is a possibility, as are other forms of video and multimedia processing.

To justify development of a context engine chip, the application probably must require a

low-cost, perhaps portable, solution. For example, interpretation of satellite images is an

unlikely candidate, since this can probably be done cost-effectively by a large conventional

parallel machine. (An system for interpreting satellite images might be able to make use

of a context engine if i t existed, but is unlikely t o drive its development, as conventional

solutions are probably adequate.)

6.2.2 The Asynchronous Autonomous Network

I have been treating the asynchronous autonomous network as a black box. It is clear one

needs t o develop a model of the network that can speak t o issues of messaging latencies,

throughput, silicon area and design cost. Generally, I am thinking in terms of each PE

having a small DMA engine and some memory for storing messages. which may or may

not be separate from the PE7s local memory. As a minimal implementation, one might

have a bus, with one PE's DMA engine designated as "sender" in a round-robin schedule

and all other PE's DMA engines snooping the bus t o determine if the message is for that

PE. This may be inadequate for a 128 P E chip; on the other hand, a network capable

of full permutation routing may not be needed unless it is felt necessary for the SIMD

portion of the applications.

The use of the network in SFMD mode has some special features. As messages are not

"seen" by the P E until the barrier is reached, regardless of when they were sent, the net-

work message latency can perhaps be larger than otherwise. Sending messages in SFMD

mode may also require less "instantaneous" bandwidth needed than normal SIMD execu-

tion. If the code sending the messages contains loops, substantial conditional execution,

or is substantially affected by memory and functional unit latencies, the different PEs

will rapidly become desynchronized [AGWFH94] and so the injection of messages into the

network will be spread out over time. (Note: this would argue against a fixed round-robin

schedule in the bus-snooping implementation suggested above, and for a more dynamic

arbitration scheme.)

After the barrier, the set of received messages can be processed in SFMD mode; send-

ing, receiving and processing multiple messages per barrier will improve performance by

reducing variance. All messages must be sent (and received) before the barrier, and, sub-

ject t o that constraint, the order and time of their receipt is irrelevant t o their processing.

Thus, when multiple messages are sent per barrier, there is no penalty (other than a larger

message memory) in having each PE7s DMA engine store pending "send" messages until

arbitration allows that PE t o send, and then inject all the pending messages into the

network. This amortizes the arbitration cost over the set of messages sent a t once, and

should improve the effective bandwidth.

Consequently, there are aspects of SFMD computation suggesting that , compared t o

SIMD, a lower performance, less expensive network may be adequate, when combined

with a technique of variance reduction by performing multiple (partial) loops per barrier

(see below). Studying this in more detail would be of interest.

6.2.3 Variance Reduction and Virtualization

We saw in chapter 5 that the culprit in the poor performance of SFMD compared t o

SPMD is variance in execution and messaging times. Reducing variance by doing multiple

(say, n) (partial) loop bodies barrier should improve performance by reducing variance

by a factor of &. Consider a loop on a single PE, as in the comparison of SFMD with

SPMD:

for i=l:N

pre(i)

barrier

reply(i1

barrier

endf or

where previously received message are processed and new messages are sent during pre(i),

and messages are replied t o during reply(i) . SPMD outperforms SFMD due t o sparseness

of communication during pre and due t o pre and reply execution times that have large

standard deviations compared t o their means. Consider rewriting the above loop as

for i=l:N

pre(i>

endf or

barrier

for i=l:N

reply(i1

endf or

barrier

where keeping track of which messages are for what loop iterations is taking place behind

the scene. Of course, this transformation makes assumptions about non-dependence be-

tween loop iterations. Rewriting loops in this way makes communication less sparse, and

reduces the "mean / standard deviation" in execution times by a factor of 0 (assuming

statistical independence in execution times). As we saw, rewriting loops this way may

also provide benefits in allowing a simpler, less expensive interconnection network.

One would like t o relieve the programmer of the complexity of rewriting loops this way,

either by compiler optimizations or by presenting a view of multiple virtual PEs (VPEs) for

each hardware PE. Compiler optimizations for variance reduction perform transformations

of the above type automatically, based on analysis of dependence between loop iterations,

and are well understood [Wo196].

With virtualization, a single P E would have a loop of the form

f o r vpe = l : v

f o r i=i:N/v

pre(vpe, i)

barrier

reply (vpe , i)

barrier

endf or

endf or

Assuming non-dependence between processing on different VPEs, this is transformed into

for i=l:N/v

f o r vpe = l : v

pre (vpe , i)

endf or

barrier

f o r vpe = 1:v

reply(vpe, i)

endf or

barrier

endf or

It is clear these are the same transformations; the advantage of a virtualization perspective

is in simplifying the programmer's view of things, allowing him or her to write code for

some convenient number of VPEs without worrying about the exact number of actual

PEs on the chip. Hardware support for virtualization could also be used t o hide memory

latency time, by fast switching between VPEs, and thus raise the IPC rate of the PEs.

However, the cost of support for such virtualization and fast switching is unclear, especially

in the presence of the highly pipelined PEs that will be necessary for competitive clock

speeds.

6.2.4 Some Speculations on Cortical Models

Large-scale cortical models may or may not ever be the appropriate approach t o applying

contextual knowledge in a computer, but it is certainly plausible, as the cortex is the seat

of much of the processing I am interested in emulating. Cortical models are characterized

by extremely large numbers of processors (neurons), with sparse connectivity and sparse

activation. Bailey and Hammerstrom [BH88, Bai931 have shown that multiplexed hierar-

chical interconnect is a reasonable approach t o implementing sparse connectivity. Sparse

activation suggests, and probably demands, multiplexing of multiple neurons onto a single

processor, but this becomes problematic due t o load balancing issues. Of course, if pro-

cessing time varies among neurons, SFMD is a natural candidate architecture. However,

even if the processing time is the same, SFMD may have a role t o play. At a higher level of

granularity, something like the neuronal group of Edelman [Ede86], there are likely to be

reoccuring patterns of (sparse) activation. These begin t o look like the structured models

I have been considering, and for which SFMD was designed.

6.3 Final Words

Contextual processing involves irregular computation. The SFMD class of architectures

provides a relatively cheap extension of SIMD processing for this purpose, suitable for

on-chip multiprocessing and low-power, "delivery" applications. It allows averaging out

irregularity, while keeping the other advantages of SIMD processing.

Bibliography

[AB86] M. Auguin and I?. Boeri. The OPSILA computer. In M. Cosnard, Y. Robert,

P. Quinton, and M. Tchuente, editors, Parallel Algorithms and Architectures,

pages 143-153. North-Holland, 1986.

[AGWFH94] Nael Abu-Ghazaleh, Philip A. Wilsey, Xianzhi Fan, and Debra Hensgen.

Variable instruction issue for efficient MIMD interpretation on SIMD ma-

chines. In H. J . Siegel, editor, Proc. 8th International Parallel Processing

Symposium, Cancun, Mexico, pages 304-310. IEEE Comp. Soc. Press, 1994.

[AJ97] K. Asanovid and D. Johnson. Torrent architecture manual. Technical Re-

port CSD-97-930, Computer Science Division, University of California a t

Berkeley, 1997.

[AK96] Y. Amit and A. Kong. Graphical templates for model registration. IEEE

PAMI, 18(3):225-236, March 1996.

[Amd67] G. M. Amdahl. Validity of the single processor approach t o achieving large

scale computing capabilities. In Proc. AFIPS Spring Joint Computer Conf.,

Atlantic City, H.J., pages 483-485. AFIPS Press, 1967.

[ANSC94] James B. Armstrong, Mark A. Nichols, Howard Jay Siegel, and Kenneth H.

Casey. Image correlation: A case study t o examine SIMD/MIMD trade-

offs for scalable parallel algorithms. In International Conference on Parallel

Processing, Penn. State Unav., pages 1-241 - 1-245. CRC Press, 1994.

[AP92] H. M. Alnuweiri and V. K. Prasanna. Parallel architectures and algorithms

for image component labeling. IEEE PA MI, 14(10) : 1014-1034, October

1992.

[Asa98] K. Asanovid. Vector Microprocessors. PhD thesis, University of California

a t Berkeley, 1998.

[Ass941 Semiconductor Industry Association. The National Technology Roadmap for

Semiconductors. Semiconductor Industry Association, 1994.

[Ass971 Semiconductor Industry Association. The National Technology Roadmap for

Semaconductors. Semiconductor Industry .4ssociation, 1997.

[BA90] J. Ben-Arie. The probabilistic peaking effect of viewed angles and distances

with application to 3-D object recognition. IEEE PAMI, 12(8):760-776,

August 1990.

[B ai 9 31 J. Bailey. A VLSI Interconnect Strategy for Biologically Inspired Artificial

Neural Networks. PhD thesis, Department of Computer Science and Engi-

neering, Oregon Graduate Institute, 1993.

[Ba179] Dana Ballard. Generalizing the Hough transform to detect arbitrary

shapes. Technical Report T R 55, Dept. of Computer Science, University

of Rochester, 1979.

[Bas931 Ronen Basri. Recognition by prototypes. In IEEE Conf. on Computer Vision

and Pattern Recognition, New York, NY, pages 161-167. IEEE Comp. Soc.

Press, 1993.

[BBB+95] W. Bowhill, S. Bell, B. Benschneider, A. Black, S. Britton, R. Castelino,

D. Donchin, J. Edmondson, H. Fair, P. Gronowski, A. Jain, P. Kroesen,

M. Lamere, B. Loughlin, S. Mehta, R. Mueller, R. Preston, S. Santhanam,

T. Shedd, M. Smith, and S. Thierauf. Circuit implementaion of a 300-

MHz 64-bit second-generation CMOS Alpha CPU. Digital Technical Jour-

nal, 7(1):100-105, 1995.

[BC82] R. C. Bolles and R. A. Cain. Recognizing and locating partially visible

objects: the local feature focus method. Int. J. Robotics Research, 1(3):57-

82, 1982.

[BCJSO] Edward C. Bronson, T. L. Casavant, and L. H. Jamieson. Experimental

application-driven architecture analysis of an SIMD/MIMD parallel process-

ing system. IEEE Tmns. Parallel and Distributed Systems, 1(2):195-205,

April 1990.

[BCK92] R. M. Bolle, A. Califano, and R. Kjeldsen. A complete and extandable

approach to visual recognition. IEEE PAMI, 14(5):534-548, May 1992.

[BCK+97] N. Bowman, N. Cardwell, C. Kozyrakis, C. Romer, and H. Wang. Evaluation

of existing architectures in IRAM systems. In Proc. 24th Ann. Intl. Symp. on

Computer Architecture (ISCA '97), Denver, CO, pages .55-62. ACM Press,

1997.

[BCKMSO] Ruud M. Bolle, Andrea Califano, Rick Kjeldsen, and Rakesh Mohan. Active

3D object models. In Third Intl. Conf. on Computer Vision, pages 329-333.

IEEE Comp. Soc. Press, 1990.

[BD94] Shashi D. Buluswar and Bruce A. Draper. Non-parametric classification of

pixels under varying outdoor illumination. In ARPA Image Understanding

Workshop, Monterey, CA, pages 1619-1625. Morgan Kaufmann, 1994.

[BDBH89] J. Brolio, B. A. Draper, J . R. Beveridge, and A. R. Hanson. ISR: A database

for symbolic processing in computer vision. IEEE Computer, 22(12):22-30,

December 1989.

[BG97] D. Burger and J. Goodman. Billion-transistor architectures. introduction to

a special issue. IEEE Computer, 30(9):46-48, September 1997.

[BGK96] D. Burger, J. R. Goodman, and Alain Kagi. Memory bandwidth limitations

of future microprocessors. Computer Architecture News, 24(2):78-89, May

1996.

[BGKN89] L. R. Bahl, P. S. Gopalakrishnan, D. Kanevsky, and D. Nahamoo. Matrix

fast match: A fast method for identifying a short list of candidate words for

decoding. In ICASSP-89, Glasgow, Uh', pages 345 - 348. IEEE Comp. Soc.

Press, 1989. (paper S6.24).

[BH86] R. C. Bolles and P. Horaud. 3DPO: A three-dimensional part orientation

system. Int'l. J. Robotics Research, 5(3):3-26, 1986.

[BH88] J. Bailey and D. Hammerstrom. Why VLSI implementations of associative

VLCNs require connection multiplexing. In P m . Intl. Conf. on Neural

Networks, Denver, CO, pages 158-164. Morgan Kaufmann, 1988.

[BJMSO] L. R. Bahl, F. Jelinek, and R. L. Mercer. A maximum likelihood approach

to continuous speech recognition. In Alex Waibel and Kai-Fu Lee, editors,

Readings in Speech Recognition, pages 308-319. Morgan Kaufmann, 1990.

[BKS91] T. B. Berg, S-D. Kim, and H. J. Siegel. Limitations imposed on mixed-mode

performance of optimized phases due to temporal juxtaposition. J. Parallel

and Distributed Computing, 13(2) : 154-169, October 1991.

[BM94] H. A. Bourlard and N. Morgan. Connectionist Speech Recognition. Kluwer

Academic, 1994.

Suchendra M. Bhandarkar and Minsoo Suk. Qualitative features and the

generalized Hough transform. Pattern Recognition, 25(9):987-1006. 1992.

D. Burger. System-level implications of processor-memory integration. In

Proc. 24th Ann. Intl. Symp. on Computer Architecture (ISCA '97)? Denver,

CO, pages 1-10. ACM Press, 1997.

M. Butler, T.-Y. Yeh, Y. Patt , M. Alsup, H. Scales, and M. Shebanow. Single

instruction stream parallelism is greater than two. In Proc. 18th Ann. Intl.

Symp. on Computer Architecture, Toronto, Canada, pages 276-286. ACM

Press, 1991.

J . Canny. A computational approach to edge detection. IEEE PAMI,

8(6):679-698, November 1986.

P. B. Chou and C. M. Brown. The theory and practice of Bayesian image

labeling. Int'l. J . Computer vision, 4(2):185-210, 1990.

T. Collette, H. Essafi, D. Juvin, and J. Kaiser. SYMPATIX: a SIMD com-

puter performing the low and intermediate levels of image processing. In

D. Etiemble and J.-C. Syre, editors, PARLE '92 Parallel Architectures and

Languages Europe, Paris, France, pages 147-161. Springer-Verlag, 1992.

(LNCS, v. 605).

0. I. Camps, R. M. Haralick, and L. G. Shapiro. PREMIO: an overview.

In IEEE Workshop on Directions in Automated CAD-based Vision, Maui,

Hawaii, pages 11-21, 1991.

D. T. Clemens and D. W. Jacobs. Space and time bounds on indexing 3-D

models from 2-D images. IEEE PAMI, 13(10):1007-1017, October 1991.

William J . Christmas, Josef Iiittler, and Maria Petrou. Structural matching

in computer vision using probabilistic relaxation. IEEE PAMI, 17(8):149 -

164, August 1995.

Andrea Califano and Rakesh Mohan. Multidimensional indexing for rec-

ognizing visual shapes. In IEEE Conf. on Computer Vision and Pattern

Recognition, Maui, Hawaii, pages 23-34. IEEE Comp. Soc. Press, 1991.

J . Conrad. Lord Jim. Buccaneer Books, 1983.

Thinking Machines Corporation. Connection Machine CM-5 Technical Sum-

mary. Thinking Machines Corporation, 1992.

R. Crisp. Direct Rambus technology: the new main memory standard. IEEE

Micro, 17(6) 318-28, November/December 1997.

H. A. David. Order Statistics. Wiley, 1970.

P. Duclos, F. Boeri, M. Auguin, and G Giraudon. Image processing on a

SIMDISPMD architecture: Opsila. In 9th Intl. Conf. on Pattern Recogni-

tion, Rome, Italy, pages 430-433. IEEE Comp. Soc. Press, 1988.

J. Dreibelbis, J. Barth, R. Kho, and H. Kalter. An ASIC library granular

DRAM macro with built-in self test. In Proc. Intl. Solid-State circuits Conf

(ISSCC98), Sun Francisco, CA, pages 74-75. IEEE Press, 1998.

H. G. Dietz, A. Zaafrani, and M. OIKeefe. Static scheduling for barrier

MIMD architectures. J. Supercomputing, 5(4):263-289, 1992.

G. Edelman. Neural Darwinism: The Theory of Neuronal Group Selection.

Basic Books, 1986.

A. Essen and S. Goldstein. Performance evaluation of the superscalar specu-

lative execution HaL SPARC64 processor. In Proc. Hot Chips VII. Stanford

Univ., Palo Alto, CA, pages 59-73. IEEE Comp. Soc. Press, 1995.

J. Edmondson, P. Rubinfeld, P. Bannon, B. Benschneider, D. Bernstein,

R. Castelino, E. Cooper, D. Dever, D. Donchin, T. Fischer, A. Jain,

S. Mehta, J. Meyer, R. Preston, V. Rajagopalan, C. Somanathan, S. Tay-

lor, and G. Wolrich. Internal organization of the Alpha 21164, a 300-MHz

64-bit quad-issue CMOS RISC microprocessor. Digital Technical Journal,

7(1):119-132, 1995.

A. A. Farag and E. J. Delp. Edge linking by sequential search. In Model-

Based Vision Development and Tools, Proc. SPIE, pages 198-216. SPIE,

1991. (SPIE v. 1609).

0. D. Faugeras and M. Hebert. The representation, recognition, and locating

of 3-D objects. Intl. J. Robotics Research, 5(3):27-52, Fall 1986.

Allan L. Fisher and Peter T. Highnam. Computing the Hough transform on

a scan line array processor. IEEE P,4 MI, 11 (3):262-265, March 1989.

M. A. Fischler. The perception of linear structure: A generic linker. In

ARPA Image Understanding Workshop, Monterey, CA, pages 1565-1579.

Morgan Kaufmann, 1994.

P. J . Flynn and A. K. Jain. BONSAI: 3-D object recognition using con-

strained search. IEEE PAMI, 13(10):1066-1075, October 1991.

R. C. Foss. Implementing application specific memory. In Proc. Intl. Solid-

State Circuits Conf. (ISSCC96), Sun Francisco, CA, pages 260-261 and

210-211. IEEE Press, 1996. (paper F P 16.1).

G. C. Fox. What have we learnt from using real parallel machines to solve

real problems? In Proc. Third Conf. on Hypercube Concurrent Computers

and Applications, pages 897-955. ACM Press, 1988.

G. C. Fox. 1989 - the first year of the parallel supercomputer. In Proc. Fourth

Conf. on Hypercubes, Concurrent Computers, and Applications, pages 1-37.

ACM Press, 1989.

R. Fromm, S. Perissakis, N. Cardwell, C. Kozyrakis, B. McGaughy, D. Pat-

terson, T. Anderson, and K. Yelick. The energy efficiency of IRAM archi-

tectures. In Proc. 24th Ann. Intl. Symp. on Computer Architecture (ISCA

'97), Denver, CO, pages 120-130. ACM Press, 1997.

N. Gaddis, J . R. Butler, A. Kumar, and W. J. Queen. A 56-entry instruction

reorder buffer. In Intl. Solid-State Circuits Conf. (ISSCC96), Sun Francisco,

CA, pages 212-213 and 168-169 and 447. IEEE Press, 1996. (paper F P 13.2).

Davi Geiger. Dynamic programming for detecting, tracking, and matching

deformable contours. IEEE PAMI, 17(3):294-302, March 1995.

D. Gerogiannis. Programming intermediate level vision tasks on parallel

machines. In l l t h Intl. Conf. on Pattern Recognition D: Architectures for

Vision and Pattern Recognition, The Hague, The Netherlands, volume IV,

pages 119-123. IEEE Comp. Soc. Press, 1992.

D. Gerogiannis and S. Orphanoudakis. Efficient use of parallelism in inter-

mediate level vision tasks. In l l t h Intl. Conf. on Pattern Recognition D:

Architectures for Vision and Pattern Recognition, The Hague, The Nether-

lands, volume IV, pages 160-164. IEEE Comp. Soc. Press, 1992.

L. S. Gillick and R. Roth. A rapid match algorithm for continuous speech

recognition. In DARPA Speech and Natural Language Workshop, Hidden

Valley, Pennsylvania, pages 170-172. Morgan Kaufmann , 1990.

W. Eric L. Grimson. Object Recognition by Computer: The Role of Geomet-

ric Constraints. MIT Press, 1990.

T. Gautier, J. L. Roch, and G. Villard. Regular versus irregular problems

and algorithms. In A. Ferreira and J . Rolim, editors, Parallel Algorithms

for Irregularly Structured Problems, Proc. 2nd Intl. Workshop, IRREGU-

LAR '95, Lyon, France, Sept. 4-6, 1995, pages 1-25. Springer-Verlag, 1995.

(LNCS, v. 950).

R. C. Gonzalez and R. E. Woods. Digital Image Processing. Addison-Wesley,

1992.

D. Hammerstrom. A VLSI architecture for high-performance, low-cost, on-

chip learning. In Proc. Int'l. Joint Conf. Neural Networks, Sun Diego, pages

11-537 - 11-543. IEEE Comp. Sci. Press, 1990.

Y. He. Planar Shape and Handwritten Word Recognition Using Hidden

hlarkov Models. PhD thesis, SUNY, Buffalo, 1991.

G. E. Hinton. Adaptive elastic models for hand-printed character recogni-

tion. In J.E. Moody, S. J . Hanson, and R. P. Lippmann, editors, Advances

in Neural Information Processing 4, Denver, CO, pages 512-519. Morgan

Kaufmann, 1992.

L. Hammond, B. A. Nayfeh, and K. Olukotun. A single-chip multiprocessor.

IEEE Computer, 30(9):79-85, September 1997.

J . Hampshire and B. Pearlmutter. Equivalence proofs for multi-layer per-

ceptron classifiers and the Bayesian discriminant function. In Touretzky,

Elman, Sejnowski, and Hinton, editors, Proc. 1990 Connectionist Models

Summer School, pages 115-122. Morgan Kaufmann, 1990.

J . Hennessey and D. Patterson. Computer Architecture: A Quantitative

Approach. Morgan Kaufmann, 2nd edition, 1996.

P. J . Hatcher and M. J . Quinn. Data-Parallel Programming on MIMD Com-

puters. MIT Press, 1990.

Daniel P. Huttenlocher and Shimon Ullman. Recognizing solid objects by

alignment with an image. Intl. J. of Computer Vision, .5(2):195-212, 1990.

D. W. Jacobs. The space requirements of indexing under perspective pro-

jections. IEEE PA MI, 18(3):330-333, March 1996.

F. Jelinek. Fast sequential decoding algorithm using a stack. IBM J. Re-

search and Development, 13:675-685, November 1969.

P. P. Jonker, E. R. Komen, and M. A. Kraaijveld. A scalable real-time image

processing pipeline. Machine Vision and Appl., 8(2) :110-121, 1995.

Pieter P. Jonker. An SIMD-MIMD architecture for image processing and

pattern recognition. In M. A. Bayoumi, L. S. Davis, and K. P. Valavanis,

editors, Computer Architectures for Machine Perception (CAMP '93), Neu:

Orleans, Louisiana, pages 222-230. IEEE Comp. Soc. Press, 1993.

N. P. Jouppi and D. W. Wall. Available instruction-level parallelism for

superscalar and superpipelined machines. In Proc. 9th Intl. Conf. Architec-

tural Support for Programming Languages and Operating Systems (ASPLOS

111), Boston, MA, pages 272-282. ACM Press, 1989.

Anil K. Jain, Yu Zhong, and Sridhar Lakshmanan. Object matching using

deformable templates. IEEE PAMI, 18(3):267-277, March 1996.

S. W. Keckler and W. J. Dally. Processor coupling: Integrating compile time

and runtime scheduling for parallelism. In Proc. 19th Ann. Intl. Symp. on

Computer Architecture, Gold Coast, Australia, pages 155-160. ACM Press,

1992.

P. Kenny, R. Hollan, V. Gupta, M. Lennig, P. Mermelstein, and

D. O'Shaughnessy. A*-admissible heuristics for rapid lexical access. In

ICASSP-91, Toronto, Canada, pages 689-692. IEEE Comp. Soc. Press,

1991.

P. Kenny, P. Labute, Z. Li, R. Hollan, M. Lennig, and D. O'Shaughnessy.

A new fast match for very large vocabulary continuous speech recognition.

In ICASSP-93, Minneapolis, MI, pages 11-656 - 11-659. IEEE Comp. Soc.

Press, 1993.

Peter M. Kogge. EXECUBE - a new architecture for scaleable MPPs. In

International Conference on Parallel Processing, Penn. State Univ., pages

34-38. CRC Press, 1994.

C. E. Kozyrakis, S. Perissakis! D. Patterson, T. Anderson, I<. Asanovic,

N. Cardwell, R. Fromm, J . Golbus, B. Gribstad, K. Keeton, R. Thomas,

H. Treuhaft, and K. Yelick. Scalable processors in the billion-transistor era:

IRAM. IEEE Computer, 30(9):7.5-78, September 1997.

[LW 8 81

[LW 921

Ruby B. Lee. Accelerating multimedia with enhanced microprocessors. IEEE

Micro, 15(2) :22-32, April 1995.

J. Lo, S. Eggers, J. Emer, H. Levy, R. Stamm, and D. Tullsen. Converting

Thread-Level parallelism t o Instruction-Level parallelism via simultaneous

multithreading. ACM Trans. Computer Systems, 15(3):322-354, August

1997.

J . Lotz, G. Lesartre, S. Nalfziger, and D. Kipp. A quad-issue out-of-order

RISC CPU. In Intl. Solid-State Circuits Conf. (ISSCC96), Sun Francisco,

CA, pages 210-211,166-167,446. IEEE Press, 1996. (paper FP 13.1).

D. Lowe. Perceptual Organization and Visual Recognition. Kluwer, 1985.

B. Lowerre. The Harpy speech understanding system. In Alex Waibel and

Kai-Fu Lee, editors, Readings in Speech Recognition, pages 576-586. Morgan

Kaufmann, 1990.

M. H. Lipasti and J. P. Shen. Superspeculative microarchitecture for beyond

AD 2000. IEEE Computer, 30(9):59-66, September 1997.

Y. Lamdan, J. T. Schwartz, and H. J. Wolfson. Object recognition by affine

invariant matching. In IEEE Conf. on Computer Vision and Pattern Recog-

nition, Ann Arbor, MI, pages 335-344. IEEE Press, 1988.

S. F. Lundstrom. Applications considerations in the system design of highly

concurrent multiprocessors. IEEE Trans. Computers, C-36(11):1292-1309,

November 1987.

Y. Lamdan and H. J. Wolfson. Geometric hashing: A general and efficient

model-based recognition scheme. In Second Intl. Conf. on Computer Vision,

Tampa, FL, pages 238-249. IEEE Comp. Soc. Press, 1988.

M. S. Lam and R. P. Wilson. Limits of control flow on parallelism. In Proc.

19th Ann. Intl. Symp. on Computer Architecture, Gold Coast, Austmlia,

pages 46-57. ACM Press, 1992.

M. Lipasti, C. Wilkerson, and J . Shen. Value locality and load value pre-

diction. In Proc. 7th Intl. Conf. Architectural Support for programming

Languages and Operating Systems (ASPLOS VII), Cambridge, M A , pages

138-147. ACM Press, 1996.

[Mat971 D. Matzke. Will physical scalability sabotage performance gains? IEEE

Computer, 30(9):37-39, September 1997.

[ME931 S-M Moon and K. Ebcioglu. On performance and efficiency of VLIW and

superscalar. In Intl. Conf. on Parallel Processing, Penn. State Unio, pages

11-283 - 11-287. CRC Press, 1993.

[Me1961 H. Melville. Moby Dick. Buccaneer Books, 1996.

[MM93] Serge M. Manning and David G. Meyer. Analysis of asynchronous execu-

tion streams with I-caching in massively parallel systems. J. Parallel and

Distributed Computing, 19(3):279-291, November 1993.

[Mod Nelson Morgan. Personal communication. (Intl. Computer Science Inst.,
Berkeley, CA) .

[MR97] John Moody and Thorsteinn Rognvaldsson. Smoothing regularizers for pro-

jective basis function networks. In M.C. Mozer, M.I. Jordan, and T. Petsche,

editors, Advances in Neural Information Processing 9, Denver, CO, pages

585-591. MIT Press, 1997.

[ND92] P. J. Narayanan and L. S. Davis. Replicated data algorithms in image

processing. CVGIP: Image Understanding, 56(3):351-365, November 1992.

[NHUT092] H. Ney, R. Haeb-Umbach, B.-H. Tran, and M. Oerder. Improvements in

beam search for 10000-word continuous speech recognition. In ICASSP-92,

Sun Francisco, CA, pages 1-9 - 1-12. IEEE Comp. Soc. Press, 1992.

[Nil861 N. Nilsson. Principles of Artificial Intelligence. Morgan Kaufmann, 1986.

[NO941 B. A. Nayfeh and K. Olukotun. Exploring the design space for a shared-cache

multiprocessor. In Proc. 2lst Ann. Int. Symp. on Computer Architecture,

Chicago, pages 166-175. ACM Press, 1994.

[NSD93] Mark A. Nichols, Howard Jay Siegel, and Henry G. Dietz. Data management

and control-flow aspects of an SIMDISPMD parallel language/compiler.

IEEE Trans. Parallel and Distributed Systems, 4(2):222-234, February 1993.

[Ols93] Clark F. Olson. Fast alignment using probabilistic indexing. In IEEE Conf.

on Computer Vision and Pattern Recognition, New York, NY, pages 387-

392. IEEE Press, 1993.

C. F. Olson. Probabilistic indexing for object recognition. IEEE PAMI,

17(5):518-522, May 1995.

D. Patterson, T. Anderson, N. Cardwell, R. Fromm, I i . Keeton,

C. Kozyrakis, R. Thomas, and K. Yelick. A case for intelligent DRAM:

IRAM. IEEE Micro, 17(2) :34-44, March/April 1997.

D. B. Paul. Algorithms for an optimal A* search and linearizing the search

in the stack decoder. In ICASSP-91, Toronto, Canada, pages 693-696. IEEE

Comp. Soc. Press, 1991.

J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plau-

sible Inference. Morgan Kaufmann, 1988.

S. Palacharla, N. P. Jouppi, and J. E. Smith. Complexit,y effective super-

scalar processors. In Proc. Int'l Symp. Computer Architecture, New York,

pages 206-218. ACM Press, 1997.

Y. N. Pat t , S. J . Patel, M. Evers, D. H. Friendly, and J. Stark. One bil-

lion transistors, one uniprocessor, one chip. IEEE Computer, 30(9):51-57,

September 1997.

Michael Philippsen, Thomas M. Warschko, Walter F. Tichy, and Chris-

tian G. Herter. Project Triton: Towards improved programmability of paral-

lel machines. In Proc. 26th Hawaii Conf. on System Sciences, pages 192-201.

IEEE Press, 1993.

L.-R. Rabiner. A tutorial on hidden Markov models and selected applications

in speech recognition. In Alex Waibel and Kai-Fu Lee, editors, Readings in

Speech Recognition, pages 267-296. Morgan Kaufmann, 1990.

I. D. Reid and J . M. Brady. Recognition of object classes from range data.

In Fourth Intl. Conf. on Computer Vision, Berlin, Germany, pages 302-307.

IEEE Comp. Soc. Press, 1993.

C. C. Reinhart. Specifying Parallel Processor Architectures for High-Level

Computer Vision Algorithms. PhD thesis, Univ. Southern California, 1991.

Thomas H. Reiss. Object recognition using algebraic and differential invari-

ants. Signal Processing, 32 (3) :367-395, 1993.

Isidore Rigoutsos and Robert Hummel. Distributed Bayesian object recog-

nition. In IEEE Conf. on Computer Vision and Pattern Recognition, New

York, NY, pages 180-186. IEEE Press, 1993.

J. Rissanen. Complexity of strings in the class of Markov sources. IEEE

Trans. Information Theory, IT-32(4):526-532, July 1986.

L. R. Rabiner and S. E. Levinson. Isolated and connected word recognition

- theory and selected applications. In Alex Waibel and Kai-Fu Lee, editors,

Readings in Speech Recognition, pages 115-153. Morgan Kaufmann, 1990.

T. Rockoff. An Analysis of Instruction-Cached SIMD Computer Architec-

ture. PhD thesis, Carnegie Mellon University, 1993.

D. Ron, Y. Singer, and N. Tishby. The power of amnesia. In J. D. Cowan,

G. Tesauro, and J. Alspector, editors, Advances in Neural Information Pro-

cessing 6, Denver, CO, pages 176-183. Morgan Kaufmann, 1994.

N. Ranganathan and S. Venugopal. An efficient VLSI architecture for tem-

plate matching. In International Conference on Parallel Processing, Penn.

State Univ., pages 1-224 - 1-231. CRC Press, 1994.

G. Salton and C Buckley. Parallel text search methods. CACM, 31(2):202-

215, February 1988.

Kuntal Sengupta and Kim L. Boyer. Organizing large structural modelbases.

IEEE PAMI, 17(4) :321-332, April 1995.

P. Song, M. Denman, and J. Chang. The PowerPC 604 RISC microprocessor.

IEEE Micro, 14(5):8-17, October 1994.

K. B. Sarachik and W. E. L. Grimson. Gaussian error models for object

recognition. In IEEE Conf. on Computer Vision and Pattern Recognition,

New York, N Y, pages 400-406. IEEE Comp. Soc. Press, 1993.

I?. K. Soong and E.-F. Huang. A fast tree-trellis search for finding the n-

best sentence hypotheses in continuous speech recognition. J. Acoustical

Soc., 87:105-106, May 1990.

Frank K. Soong and Eng-Fong Huang. A tree-trellis based fast search for

finding the N best sentence hypotheses in continuous speech recognition.

In ICASSP-91, Toronto, Canada, pages 70.5-708. IEEE Comp. Soc. Press,

1991.

[Shag71

[SH J 971

A. Sharma. Semiconductor Memories. IEEE Press, 1997.

P. Smyth, D. Heckerman, and M. Jordan. Probabilistic independence net-

works for hidden Markov probability models. Neural Computation, 9(2):227-

269, February 1997.

H. S. Sichel. On a distribution law for word frequencies. J. American Sta-

tistical Assoc., 70:542-547, 1975.

M. D. Smith, M. Johnson, and M. A. Horowitz. Limits on multiple instruc-

tion issue. In Proc. 8th Intl. Conf. Architectural Support for Programming

Languages and Operating Systems (ASPLOS III), Boston, MA, pages 290-

302. ACM Press, 1989.

D. B. Skillicorn. Models for practical parallel computation. Int '1 J. Parallel

Programming, 20(2):133-158, 1991.

A. Saulsbury, F. Pong, and A. Nowatzyk. Missing the memory wall: The case

for processor/memory integration. Computer Architecture News, 24(2):90-

101, May 1996.

J . E. Smith and G. S. Sohi. The microarchitecture of superscalar processors.

Proc. IEEE, 83 (12) : 1609-1624, December 1995.

H. S. Stone. Parallel querying of large databases: A case study. IEEE

Computer, 19(10):11-21, October 1987.

J . E. Smith and S. Vajapeyam. Trace processors: Moving to fourth-

generation microarchitectures. IEEE Computer, 30(9):68-74, September

1997.

Wei Shu and Min-You Wu. Asynchronous problems on SIMD parallel com-

puters. J. Parallel and Distributed Computing, 6(7):704-713, July 1995.

D. M. Tullsen, S. J. Eggers, J. S. Emer, H. M. Levy, J . L. Lo, and R. L.
Stamm. Exploiting choice: Instruction fetch and issue on an implementable

simultaneous multithreading processor. In Proc. 22nd Ann. Intl. Symp.

on Computer Architecture, Santa Margherita, Ligure, Italy, pages 191-202.

ACM Press, 1995.

K. B. Theobald, G. R. Gao, and L. J . Hendren. On the limits of program

parallelism and its smoothability. In 25th Ann. Intl. Symp. on Microarchi-

tecture, pages 10-19. ACM Press, 1992.

Kenneth B. Thornton and Robert M. Haralick. Model-based point matching.

In Model-Based Vision Development and Tools, Proc. SPIE, pages 251-261.

SPIE, 1991. (SPIE v. 1609).

R. Torrance, I. Mes, B. Hold, D. Jones, J. Crepeau, P. DeMone, D. Mac-

Donald, C. O'Connell, P. Gillingham, R. White, S. Duggins, and D. Fielder.

A 33 GB/s 13.4Mb integrated graphics accelerator and frame buffer. In

Proc. Intl. Solid-State Circuits Conf. (ISSCC98), Sun Francisco, CA, pages

340-341. IEEE Press, 1998.

USAF. Model-driven automatic target recognition, report of the

ARPA/SAIC system architecture study group, October 1994. (USAF

Moving and Stationary Target Acquisition and Recognition Program

(MSTAR), Automatic Target Recognition Branch, Wright Laboratory,

Wright-Patterson AFB, Dayton, OH).

Reinhard v. Hanxleden and Ken Kennedy. Relaxing SIMD control flow

constraints using loop transformations. ACM SIGPLAN Notices, 27(7):188-

199, July 1992.

John Wawrzynek, K. AsanoviC, B. Kingsbury, J. Beck, D. Johnson, and

N. Morgan. SPERT-11: A vector microprocessor system. IEEE Computer,

29(3) :79-87, March 1996.

D. W. Wall. Limits of instruction-level parallelism. In Proc. 4th Intl. Conj.

Architectural Support for Programming Languages and Operating Systems

(ASPLOS IV), Santa Clara, CA, pages 176-188. ACM Press, 1991.

S-J. Wang and T. 0. Binford. Model-based edge1 aggregation. In ARPA

Image Understanding Workshop, Monterey, CA, pages 1589-1593. Morgan

Kaufmann, 1994.

Jon A. Webb. Steps toward architecture-independent image processing.

IEEE Computer, 25(2):21-31, February 1992.

Charles C. Weems. Architectural requirements of image understanding with

respect to parallel processing. Proc. IEEE, 79(4) :537-547, April 1991.

Charles C. Weems. The second generation image understanding architecture

and beyond. In M. A. Bayoumi, L. S. Davis, and K. P. Valavanis, editors,

Computer Architecturesfor Machine Perception (CAMP '93), New Orleans,

Louisiana, pages 276-285. IEEE Comp. Soc. Press, 1993.

[Wee941 Charles C. Weems. The next generation image understanding architecture.

In ARPA Image Understanding Workshop, Aonterey, C.4, pages 587-594.

Morgan Kaufmann, 1994.

[Wee971 C. Weems. Asynchronous SIMD : an architectural concept for high perfor-

mance image processing. In C. Weems, editor, Computer Architectures for

Machine Perception (CAMP '97), Cambridge, MA, pages 235-243. IEEE

Comp. Soc. Press, 1997.

[Wei93] Daphna Weinshall. Model-based invariants for 3-D vision. Intl. J. of Com-

puter Vision, 10(1):27-42, 1993.

[WHAG+92] Philip A. Wilsey, Debra A. Hensgen, Nael B. Abu-Ghazaleh, Charles E.

Slusher, and David Y. Hollinden. The concurrent execution of non-

communicating programs on SIMD processors. In H. J . Siegel, editor, Fourth

Symposium on the Frontiers of Massively Parallel Computation, McLean,

Virginia, pages 29-36. IEEE Comp. Soc. Press, 1992.

[WI95] M. D. Wheeler and K. Ikeuchi. Sensor modeling, probabilistic hypothesis

generation, and robust localization for object recognition. IEEE PAMI,

17(3):252-265, March 1995.

[WLH+89] C. C. Weems, S. P. Levitan, A. R. Hanson, E. M. Riseman, D. B. Shu,

and J . G. Nash. The image understanding architecture. Intl. J. Computer

Vision, 2(3):251-282, 1989.

[Wo196] M. Wolfe. High Performance Compilers for Parallel Computing. Addison-

Wesley, 1996.

[WRF95] M. Weinberger, J . Rissanen, and M. Feder. A universal finite memory source.

IEEE Trans. Information Theory, 41(3):643-652, May 1995.

[WSA+94] Daniel W. Watson, H. J . Siegel, M. K. Antonio, M. A. Nichols, and M. J .

Atallah. A block-based mode selection model for SIMD/SPMD parallel en-

vironments. J. Parallel and Distributed Computing, 21(3):271-288, June

1994.

[WTS+97] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee, J. Kim,

M. Frank, P. Finch, R. Barua, J . Babb, S. Amarasinghe. and A. Agarwal.

Baring it all to software: Raw machines. IEEE Computer, 30(9):86-93,

September 1997.

[YH097] T. Yamauchi, L. Hammond, and I(. Olukotun. A single chip multiproces-

sor integrated with DRAM. In Proc. 24th .4nn. Intl. Symp. on Computer

Architecture (ISCA '97), Denver, CO, pages 255-261. ACM Press, 1997.

[ZA92] Y. Zhang and G. B. Adams 111. Exploiting instruction level parallelism with

the DS architecture. In Proc. Intl. Conf. Parallel Processing, Penn. State

Univ., pages 1-230 - 1-237. CRC Press, 1992.

[Zip321 G. K. Zipf. Selected Studies of the Principle of Relative Frequency in Lan-

guage. Harvard Univ. Press, 1932.

Appendix A

SIMD HOVS pseudo-code

This appendix gives pseudo-code for various SIMD implementations of the HOVS algo-

rithm. For clarity and brevity, the pseudo-code focuses on the main loop, and omits

initialization and the handling of starting and ending conditions.

In these implementations, inputs from the classifier at iteration t are log m(ht; ot) ; using

logarithmic representations is needed to avoid underflow problems from repeated multi-

plications. All context probabilities, p(ht(h:lt), are thus represented as log-probabilities,

too.

Notation: p . x is a variable local to a particular PE p, being accessed only on that PE.

When such variables are accessed in parallel for all (active) PEs, the notation *. x is used.

p . vp [I is the array of virtual PEs for p. v. x refers to a variable local to a virtual PE, and

is shorthand for p . vp [k] . x for some k; analogously, * . v . x is shorthand for * . vp [k] . x.

hos t . x refers to a variable on the host. All unqualified variables are global: distributed to

each PE, but with the same value on each PE. I use p and v to refer both to the (virtual)

PE, or its integer identifier, as convenient.

Each (V)PE corresponds to a set of contexts, all having a common final state or state

sequence, and maintains the information for that state (sequence) at each timestep. This

PE (VPE) is denoted nxtp (nxtv) in the code, and its identity is broadcast from the

host (when it cannot be determined trivially). Nodes of the context graph are numbered,

context node n having number n.num, such that (V)PE p corresponds to the set of nodes,

n for which *. lo[pl <= n-num <= * .h i[pl . As the l o and h i information is global, it

may be either stored locally, or broadcast. Each (V)PE p has local variables p.LO ==

*.loCpl and p.HI == *.hi[p].

Each (V)PE contains two arrays, holding the context information. prob Cnl [hl con-

tains the context probabilities p(h1n) for the various contexts: n, in the (V)PE. nx tc tx t [nl Chl

contains the information to implement the jh(n) function. As it is not done in parallel,

computing the ;lh(n) function may also be done on the host. This is the likely implemen-

tation in most cases, as the computation is small, and doing it on the host means that

PEs need not store the nx tc tx t array, which essentially halves the local storage used by

the algorithm. Nonetheless, for completeness the pseudo-code will assume the yh(n) is

computed on the PE array. For the nodes corresponding to a particular PE, the prob

and nx tc tx t arrays are laid out in PElocal memory so that the address of each array

for context node n can be easily calcula.ted from n.num, p . LO, and p .HI. Denote these

calculations as probAddr (n . nun, p . LO, p .HI) and nxtAddr (n .nun, p . LO, p .HI).

Finally, the local variable cScore holds the broadcast value of the current classifier

output.

while not end of string
C
for h in I..IHI // O(lHl)

C
// broadcast classifier output score for h at this time
cScore = (broadcast score>

// calculate score in context
*.score = *.prob[h] + *.prevScore + cScore

// find PE with maximum score
maxp = PnAX{*. score)

// point-to-point communication between nxtp and maxp
nxtp = <PE for h>
nxtp .nxtllode = maxp.nxtctxt[h]
nxtp.nxtScore = maxp.score

// record backppointer on host
host .backptr [pl [tl = m a p

1
// update all PEs for next timestep
*.prevScore = *.nxtScore
. prob = . probAddr(* . nxtlode , * .LO, *.HI)
.nxtctxt = * .nxtAddr(*.nxtlode, .LO, *.HI)

t++
1

Figure A. l : SIMD HOVS pseudo-code for the basic case when (HI = P. Globally, there
is one PE for each state of H, and the PE for a state h contains all contexts ending in
h. Computation of nxtp is trivial, as the PEs are 1:l with the states. Complexity is

O(IHI) = O(IH121P)-

while not end of string
i:

for h in 1..IHI
C

// broadcast classifier output score for h at this time
cScore = <broadcast score>

// find max score for the virtual PEs on each PE
// score is for h in that vpe's active context
*.localmax = minusInfinity
for k in 1. .K

C
with *.v = *.vp[kl
/ / calculate score in context
*.v.score = *.v.prob[h] + *.v.prevScore + cScore
/ / record max and vpe giving it
if *.v.score > *.localmax

// find PE with maximum score
maxp = PnAX{p. localmax)

// VPE with contexts ending in 'h' (exactly 1 such)
(nxtp, nxtk, nxtv) = <virtual PE for h>

// point-to-point colmnunication between nxtp and maxp
with v = nxtp.vpCnxtk1
v.nxtScore = maxp.localmax
v . nxtlode = maxp . vp [localmaxvl .nxtctxt [hl
host. backptr [h] [t] = maxp

)
f o r k in l..K

with *.v = *.vp[kI
*.v.prevScore = *.v.nxtScore
r.v.prob = *,~.~robAddr(*.v.nxtlode, *.v.LO, *.v-HI)
+.v.nxtctxt = *.v.nxtAddr(*.v.nxtl~de, *.v.LO, *.v.HI)

>
t++

>

Figure A.2: SIMD HOVS pseudo-code when IHI exceeds the number of PEs, P. Each
PE contains I< = [lHI/Pl VPEs; globally, there is one VPE for each state of H , and the
VPE for a state h contains all contexts ending in h. Complexity is IH 111 H I/P1 = 1 HI2/P.

while not end of string
C
for h in 1.. IHI

C
/ / broadcast classifier output score for h at this time
cScore = (broadcast score>

for nxtv with contexts ending in 'h' // O(KP/IHI)
t

// find max score for the VPEs on each VP
// score is for h in that vp's active context
*.localmax = minusInfinity
for k in 1. .K

t
with *.v = *.vp[k]
/ / calculate score in context
*.v.score = *.v.prob[h] + *.v.prevScore + cScore
/ / determine if context of *.v can precede those of nxtv
* . v. canprecede = (loCnxtv] <= t .v .nxtctxt [hl .num <= hi [nxtv])
/ / record max and vp giving it
if *.canprecede LL *.score > *.localmax

// find PE with maximum score
maxp = PHAXC* . localmax>

// find PE and vpe index for nxtv
(nxtp, nxtk) = <PE and vpe index for nxtv>

// point-to-point communication between nxtp and maxp
with v = nxtp.vp[nxtk]
v.nxtScore = maxp.localmax
v . nxtlode = maxp . vp Clocalnaxv] . nxtctxt [hl
// record backpointer on host
host .backptr[h] [tl = maxp

>
1

f o r k in 1..K

pith *.v = *.vp[k]
*.v.prevScore = *.v.nxtScore
.v .prob * .v .probAddr(* .v.nxtloda , * .v.LO , .v.HI)
.v .nxtctxt = * . v .nxtAddr(* .v .nxtIode . * .v .LO, * .V .HI)

1
t++

>

Figure A.3: SIMD HOVS pseudo-code when I HI is less than the number of PEs, P.
Each VPE contains the contexts in the intersection of the active fringe with a complete
subtrees of the context tree; all contexts have the same final state. K is the maxi-
mum number of VPEs (or context subtrees) associated with any PE. The canprecede
compatibility condition is needed as only some contexts can precede a given context
(e.g. h'h2 can only precede contexts of the form h'hl). Complexity of the algorithm
is K ~ P = (nb. of c ~ n t e x t s) ~ / P .

while not end of string
{
for hl in 1.. I H I

C
// broadcast classifier output score for hl at this time
*.cScore = <broadcast score for hi>

for h2 in 1.. IHI
{
nxtp = <processor for h2> // p-{h2)
nxtk = <vpe index for hl>
nxtv = nxtp .vp[nxtk] // V-{hi. h2)
thisk = <vpe index for h2>

// calculate score in context
with * .v = * .vp[thisk] // v-{h2. h-p)
*.score = *.v.probChll + *.v.prevScore + *.cScore

// find PE with maximum score
maxp = PHAXC* .score)

/ / point-to-point communication between nxtp and maxp
with v = nxtp.vpCnxtk3 // v-{hl.h2)
v.nxtScore = maxp.score
v . nxtlode = maxp . vp [thisk] . nxtctxt [hll
host. backptr [hl] Ch21 [tl maxp

>
>

for k in 1.. I H I
C

with *.v = *.vp[k]
8.v.prevScore = *.v.nxtScore
.v .prob = * .v .probAddr(* .v.nxtlode , .v .lo, * .v. hi)

* .v .nxtctxt = * .v .nxtAddr(* .v .nxtlode, .v. lo. .v. hi)
1

t++
)

Figure A.4: SIMD HOVS pseudo-code for recursion on 2-tuples of states, for IHI = P.
Each PE, p is associated with a particular state, h; I write p = ph and h = h,, as
convenient. Each PE has IH I VPEs, each associated with a pair of states; for phi, the VPEs
are {vhlh21h2 E H } . The VPE vhlhz contains the context information {p(hlp(h'h2))).

Appendix B

Exhaustive Search: The Effect of

Bandwidth on Parallelism

In section 4.4 we saw that for multiple on-chip processors with individual access t o memory

("per-PE external memory"), chip pin count limits the number of processors t o 16 or 32

for near-term process generations. Another possible architecture is for PEs t o have only

on-chip individual memories, and t o share off-chip da ta 110 hardware. In this case, take

the off-chip memory bandwidth t o be about the same as that of a single microprocessor

implemented on the same size chip. A parallel implementation may then outperform a

single processor implementation due t o both parallel computation and parallel access t o

on-chip memory (per-PE local memories)'. I will examine these effects by looking a t

exhaustive search of a set of models for ones that match given data. I look a t exhaustive

search not only because it is occurs in some cases (for example, vector quantization in

high dimensions and deformable models, but because it offers the greatest potential for

parallelism. With restricted off-chip bandwidth and per-PE local memories, the natural

way to implement exhaustive search of a set of models is t o preload the ones most likely

t o match into the local memories.

In this appendix, I show that , even with preloading, memory/data-path area tradeoffs

imply that the potential parallelism is quite limited, unless the probability of accessing a

'A parallel implementation may be at a disadvantage due to the need to route requests from multiple
on-chip processors to multiple external memory modules. I will ignore these effects since we will see that,
even without them, potential parallelism is limited.

non-preloaded model is small or the amount of computation per model is large. Except

for situations when matching a model takes much longer than reading it from off-chip,

essentially all models must be preloaded for substantial parallel speedup to be realized.

Although the degree of potential parallelism depends on many factors, especially the size

of the model base, for "reasonable" large model base sizes (say, 1000 models, of 1-5 kB

each), and "reasonable" amounts of work per model (say, computation time per model is a

factor of 10 larger than the time t o load it from off-chip), parallelism is limited t o around

16 or 32 for near term process generations. Larger numbers of processors substantially

reduce the allowed size of the model base. Essentially, there are three cases: First, if the

entire model set fits on-chip, then linear speedup is obtained. This points in the direction

of many small processors per chip. Second, if the model set does not fit on-chip, and there

is little work per model, then parallelism is limited by bandwidth limitations and area

tradeoffs, and having many PEs per chip is pointless. Third, independent of model set

size, if there is much computation per model, then some parallelism is justified: if k is the

ratio of the time model evaluation time t o the time t o load a model from off-chip memory,

the parallelism up t o k is achievable. Because of differences in clock rates on and off chip,

factors of k > 32 may correspond t o 60-100 operations per (32 bit) datum; applications

with this level of computational density may be rare.

As exhaustive search allows the greatest possible parallelism, if it has limited potential

parallelism due t o bandwidth limitations, then so do all other potential applications. I

conclude that there are two viable architectural alternatives for on-chip parallelism: if

the range of target applications allows the working set of models t o fit entirely on-chip,

then an architecture of many small processors may be preferred. In all other cases, a few

(16-32) complex PEs will be preferred.

B. l Modeling

My basic strategy is t o assume off-chip memory technology is equivalent for both sequential

and parallel architectures, so that off-chip fetches have the same speed for both. I further

assume off-chip bandwidth is the same for both, if nothing else because of similar pin

limitations for both. I then optimistically assume that the sequential architecture must

make all fetches off-chip, while the parallel architecture may have some preloaded models

on-chip. We are effectively assuming that , relative t o on-chip data cache size, model-base

size is large and temporal locality in model access is small. We are also assuming that the

sequential architecture uses a general-purpose strategy for its on-chip da ta cache, so that

the caching of models is ineffective. The basic result is that , even with these optimistic

assumptions and for the highly parallelizable task of model matching, the potential on-

chip parallelism is quite limited unless either, essentially all models can be preloaded, or

the amount of computation done per model is large. This implies that , given the external

memory modeling assumptions, a relatively general purpose parallel architecture should

have only a modest number of PE's per chip, and hence that these PE's can afford to be

relatively complex.

B. l . l Two forms of model matching

I look a t two algorithmic forms for model-matching. In both, model matching is gen-

eralized t o execution of a set of "tasks" having the following properties: the tasks are

completely independent of one another, and each have the form "fetch all data, then pro-

cess it all" (corresponding t o getting the model parameters and then matching the model

with the input). The set of possible tasks is known in advance, with some probability

distribution over their occurrence The number of tasks t o be done a t any given time, n,

has distribution N . For simplicity, the analysis assumes tasks are all the same size. I do

not model the pre- and post- matching processes of getting the input da ta t o be matched

against, and communicating the results of the matching: both are assumed to be either

negligible as t o time required, or independent of the algorithm and hardware architecture.

To avoid overuse of the word "model", I will speak instead of fetching and evaluating a

task.

In both algorithmic forms, the parallel architectures evaluate P tasks a t once, taking

(on average) k time per task, where a time unit is the time required (on average) for

a sequential architecture to fetch a single task. As parallel architectures maj7 have the

potential for utilizing larger memory bandwidth than sequential architectures, I introduce

a bandwidth factor, b 2 1, so that the parallel architectures fetch b models from memory

in one time unit.

The sequential architectures evaluate one task a t a time, taking (on average) k/q time

units. The factor q measures the speed advantage of the sequential processor compared

t o a single PE. I assume 1 < q 5 P (if P < q, parallelism is pointless). This gives the

following formula for the expected time on a simple sequential architecture that does not

overlap fetching with evaluation, for either algorithmic form:

where (.)x denotes expectation with respect t o distribution X.

The two algorithmic forms differ in how the tasks t o be done are selected. I assume

there is a fixed set of tasks indexed by i, 1 5 i 5 N , with a probability structure, p;,

such that i > j + pi 2 pi. For the non-stochastic form, fied, the selection of tasks is

deterministic: start at the first task and continue until a satisfactory match is found or

all tasks are complete. Evaluation of a task may result in an "satisfactory match" signal,

indicating that no more tasks need be done. Since pi is the probability that i is the first

satisfactory match, it is also the probability of evaluating i tasks.

In random, the selection algorithm is viewed as data-dependent, and is modeled

stochastically as follows. Add a "null" task, pol t o the set of tasks (probably, but not

necessarily, po 2 pl) . Assuming N large, approximate task selection without replacement

by selection with replacement, and view the selection process as having N + 1 independent

trials, each determining if a particular task is t o be selected, task i being selected with

probability p;. This gives a multinomial distribution with parameters (N + 1, pol. . . , p N) .

Selection of the "null" task corresponds t o not executing a task, so if it is chosen Ii' times,

the number of tasks t o actually be evaluated is N - Ir'. Other tasks can a.ctua1ly be se-

lected for evaluation only once, but if N is large and po is relatively large, the chance of

a task being selected more than once is small. Note that tasks are selected independently

of one another; any correlation of tasks is not modeled. Note also that , for fixed, the

computation time for the selection is trivial, for random it may not be. In the latter case,

I take the selection time t o be the same for both the sequential and parallel algorithms;

this is plausible, but not certain.

When there is DMA hardware it is reasonable t o overlap fetching and evaluating models

by prefetching the next set of tasks. For $xed, prefetch of the next tasks can be done with

100% accuracy: the exact ones t o fetch are known in advance; they are the next ones in

the task order. For random, the selection process is stochastic, so what t o prefetch is not

known in advance. Instead, when estimating the effect of additional DMA hardware, I

assume, optimistically, that the next tasks t o be fetched can be selected before the current

tasks are evaluated, so that overlap of fetch and evaluation can take place. Doing the

selection early will presumably increase the expected number of tasks fetched, (n), but

this increase will be about the same for both the parallel and sequential architectures, as

the selection algorithm is assumed t o be the same for both. It will actually be slightly

more for the parallel architecture due t o tasks being prefetched P at a time, but we will

see P is necessarily relatively small, so this effect may be neglected. I model the time

needed for selection as part of the task evaluation time, k. Thus, for comparisons between

architectures, the selection cost is hidden in the k and (n) terms. For the sequential case,

I get

(timeSEQ-DMA > = max{-, k l l (n) ~
4

(B.2)

B.1.2 Effects of preloading tasks

Given a known distribution of the set of possible tasks, i t makes sense t o prefetch (preload)

the most common ones. I wish t o examine the effects of having prefetched some of the tasks

into local memory. Let m be a random variable giving the number of models evaluated

that have not been preloaded. Let A be the number of preloaded tasks. For convenience?

assume that tasks are indexed so that the "preload" contains the first A models; this is

consistent with i > j p; 5 pj, as the most probable models will be the ones that are

preloaded.

For an SIMD architecture, models are evaluated in parallel, P a t a time, each "P-

block" taking k time units. To evaluate n tasks, there are I;] blocks t o be matched. The

m tasks not preloaded must be fetched, each task taking l / b time units. This gives

where time(m, n) is the time t o evaluate n tasks, with m of the n outside the preload.

This equation incorporates into k the time spent fetching from on-chip (local) memory2

Thus, k ca not be too small; for simplicity I will limit k 2 1 in the simulations.

Let W be some distribution over the task input data, with realization w. Assume m

and n are independent of w; this is admittedly unrealistic in that common inputs w may

correspond t o common tasks, which are then more likely t o be preloaded. Given this, one

can then estimate the expected time spent per input as follows:

(time per input)w ((time(m, n)) M l n) ~

Here

N G Prob[N = n] is the distribution of the number of tasks t o evaluate, n,

'As k is the same for both the sequential and parallel implementations, any difference between the
two implementations in time spent fetching from local memory is absorbed into q, the factor by which
the sequential implementation outperforms a single PE in evaluating a task. This is appropriate, as
a major reason memory accesses might be faster in the sequential implementation is from overlapping
memory accesses with computation, using superscalar techniques and taking advantage of instruction level
parallelism.

(M J n) = Prob[M = mln] is the conditional probability of having m of the n tasks

be outside the preload, and

q u a n t ~ (n , P) I (Pr?] - n) ~ measures quantization error when the number of tasks

is not a multiple of the number of processors. Note that 0 5 quantx(n, P) < P, and

that quantN(n, P) is approximately (P - 1)/2 if the density for N is smooth, and

its support is large with respect t o P (cf. equations B.26 - B.28 and discussion).

Ignoring quantization, equation B.3 simply says that the average time per input is the time

per task, k, times the average number of tasks per processor, (n) /P , plus the expected

time t o load the tasks not in the preload, (m)MI,.

To compute the expected number of tasks t o fetch, (m)MIn, let A be the number of

preloaded tasks, N be the total number of possible tasks, and m be a realization of M l n ,

the number of tasks not in the preload, given that there are n tasks t o be evaluated. Let

p~ = 1 - c L ~ pI(i) be the total probability mass of the non-preload.

For random, let Xi be the random variable giving the number of times task i was

selected, 0 5 i 5 N , then (Xo, . . ., XN) - Mudtinornial(N+l,po, (1-po)pl . . . , (1 - p o) p ~)

has a multinomial distribution.

A Let Yo t Xo, YA t Xi, and YAc -- ~ z ~ + ~ X1' Yo is the number of times the 'null'

task was selected, Yo = N + 1 - (number of tasks chosen), with realization N + 1 - n. YA is

the number of chosen tasks in the preload, with realization n-m, and YAc is the number of

chosen tasks not in the preload, m. As exhaustive disjoint sums of multinomial components

are multinomial, (Yo, YA, YAc) N Mult inomial(N+l , pol (1-po)(l-pA), (1-po)pA), and as

marginal distributions of multinomial components are binomial, Yo N Binomial(N+l , po),

YA - Binomial(N + 1, (1 - po)(l - PA)), and YAc N Binomial(N + 1, (1 - po)pA). This

gives

So (B.3) becomes

S I M D PA (t im.eranh) = F ((n) ~ + q u a n t ~ (n, P)) + b (n) ~ -

Compared to equation B.3, this says that, for random, the expected number of tasks to

load is the expected total number of tasks times the probability that a random task is not

preloaded.

For fixed, if a task is evaluated, then all preceding tasks must have been done. This

corresponds to

pMln(m) = bm,rnax{O,n-A) = b m , (n - ~) +

which (of course) is deterministic, not stochastic. Here, 6 is Kronecker delta, and (x)+ =

max(0, x}. This gives

and

S I M D 1
(timetbed) = p ((n) ~ + quantN(n,P)) + i((n - A)+)N- (B.9)

Compared to equation B.3, this says that, for fixed, the expected number of tasks to load

is the expected value of the number of tasks to be evaluated in excess of the number of

tasks in the preload.

B.2 Effects of DMA

I consider also a "SIMD-DMA" architecture: SIMD with additional hardware for over-

lapping evaluation with fetches from off-chip into local memory. To derive a formula for

time(m, n) for fixed on a SIMD-DMA architecture, first note that there are n - m tasks

in the preload. If m = 0, then the time is just

DMA n
timejixed (0, n) = kr-1

P

If m > 0, first all the n - m models in the preload are evaluated, and then the remaining m

models outside the preload. Again, the density of M (n is Sm,(n-A)+, SO (time(m, n))MI, =

time((n - A)+, n), and n - m = A.

So, the first [$J P-blocks in the preload are evaluated, then, if A is not a multiple

of P, another P - (A - PI$ J) = P - (A mod P) tasks are fetched, and a P-block of

them and the (A mod P) remaining unprocessed tasks in the preload are evaluated, and

then the remaining [+(m - (P - A mod P))] or (depending on whether P divides

A) P-blocks not in the preload are fetched and evaluated. This gives, for m > 0,

DMA A timejixed (m, n) = kip] + max{k,
(P - (A mod P))

b 1 * 6 0 , ~ mod P)

P 1 + max{k, -1 * 1- (m - JO,A mod P(P - (A mod P))) l
b P

where S,,, = 1 - S,,, is 1 iff x # y. Notice that I do not model overlapping fetching with

the evaluation of the preloaded tasks: I am assuming that many inputs will be processed,

so that I want the common, preloaded tasks t o remain in the preload, and not be replaced

by speculative fetching of less common tasks.

This is messy, and any real implementation is likely t o only keep an even multiple of P

tasks in the preload3, anyway, for ease of implementation (this assumes tasks are relatively

small compared t o the preload size).

3 ~ h i s assumes equal sized tasks; for unequal size tasks, one might balance the estimated total task
time, not simply the total count.

So, assume that P divides A, for the following estimate:

DMA krF1 i f m = O timeJized (m, n) =
k[$ l+ max{k, g) [~ l if m > 0

Recalling that m = (n - A)+ and using

this can be written

DMA min{n, A)
timeJized ((n - A)+, n) = Ic[P P

giving

D M A 2 = (time Ji..d ((n - A)+. n)) ~
k = -((min{n, A))N + quantM(min{n, A), P)) P

k 1
+max{j5, $ } (((n - A)+)M + q u a n t ~ ((n - A)+, P)) (B.10)

I analyze random as follows: evaluation of a P-block takes time max{k, Flb) , where F

is a random variable giving the number of fetches from off-chip, i.e. the number of preload

misses. As tasks are selected independently, we may view the entire set of selected tasks

as already constructed, using the pi's. For these selected tasks, the probability that one

chosen at random is not in the preload is PA. We can thus view selecting the next P tasks

as a set of P independent trials, with probability of success (not being in the preload)

equal t o PA. So F - BinOmial(P,pA), and the expected time t o evaluate a P-block is

(max{k, f lb))3.

Let

be the expected time for a single task, then h(k, P, PA, b) is concave monotone increasing

in PA, and has the following properties:

PA
h(0, P1p.4, b) = - (B.13)

b
1

h(k, l,pA,b) = k (l - PA) + max{kl -}PA (B. 14)
b

k 1
h(k, P, 1, b) = maxi- -) (B.15)

P' b

the latter bounds becoming tight for P >> k. To evaluate n models requires evaluating

P-blocks, then a single (n mod P) block. This becomes messy, due t o h() , so I adopt

a slightly more pessimistic model, and say that evaluating n models requires evaluating

[Fl P-blocks. This gives

DMA n
(timerand,,) = ((P l p l) h (k l P1 PA. b)) ~

= h (k , P , p ~ , b) ((n) n r + q u a n t ~ (n , P)) , (B.18)

which is, ignoring quantization terms, the expected time t o evaluate a task times the

expected number of tasks.

B.3 Asymptotic behavior of random

To get some intuition, I look at the asymptotic behavior of the formulae for random ,

neglecting quant terms, which gives

SIMD
(timerandom) Z5 (#' + 9) (n) ~

(t'meE?im) ~5 h(k, P, PA 1 b) (n) ~

The first equation says that each model takes an average of t o evaluate, and that a

fraction p~ of them must be fetched from outside the preload, each taking time i. Using

the lower bound for h(k, P ,pAl b) in the second equation gives a RHS of max{$, y } (n) , v

which says that , on average, the time taken by the DMA version is the larger of the evalua-

tion time and the time t o load an average number of models from off-chip. Asymptotically,

I get:

k >> P : When task granularity is very large, h() = $, and PA is irrelevant, giving perfect

parallelism; time^^^^) = (timeDMA random) = B (~) k

p~ = 0 : When everything is found in preload, h () = $, and again we have perfect paral-

lelism; (time S I M D random) = (t imef , f im) = p(n) k

p~ = 1 : There is no preload; h() = max{$, and

S I M D
(timerandom) = ($ + i) (n)

D M A
(timerandom) = $(n) (k 2 F)

1
(t'me,D,fLm) = i; (n) (k I $1

The SIMD equation corresponds t o always loading P models and then evaluating

them. The first DMA equation occurs when evaluation takes longer than fetching,

and corresponds t o all fetches being 'hidden' by the evaluations. The second DMA

equation is the converse, where all evaluation time is 'hidden7 by fetch time.

k << P : For very small tasks, h() = max{$-, y) , and

S I M D
(timerandom) = ($ + y) (n)

(timef,fLm) = max[$-, Eg](n)

Note that (time) 4 0 a s k + 0 and p~ + 0, i.e. when no fetches need be done, and

evaluations take no time. However, k is really limited away from 0 as it includes the

load time from local memory.

P = 1, k < : For a single processor with local memory, doing small tasks; h() = k (1 -

PA) + y , and

(times:,$k) = (k+ y) (n)

(timeEf2,) = (k (l - PA) + y) (n)

Here DMA reduces average evaluation time by hiding it whenever an off-chip fetch

is done.

B .4 Task Distributions

For speedup comparisons with sequential architectures I must make assumptions about

the task distribution, p;. For both random and fixed, we may index the tasks so that

i < j + pI(i) 2 pj. Realistic extreme cases for pi with respect to weighting of lower

indexed tasks, are the hyperbolic and uniform distributions. The uniform distribution

puts as little probability mass in the preload as possible, while the hyperbolic distribution

puts a great deal. Besides illustrating situations where models are highly likely to be

found in the preload, the hyperbolic distribution is realistic for word model matching,

corresponding to Zipf's Law of work frequency distributions [Zip321 For random, I also

vary pol determining the expected fraction of tasks selected, (n)rand = (N + 1)(1 - po),

independently of the probability mass of the preload.

If there are N total possible tasks, the uniform distribution gives mass 1/N to each

task, while the hyperbolic distribution gives the i'th task mass l / (iZ(N)), where Z(N) =

~ f i f = C + log N + & - O(NW2) and C 0.577 is Euler's constant. We have

(B.19)

(B. 20)

(B.21)

(B.22)

4Actually, Zipf suggests a power law, Prob(n) = (l /Z)nr, where n indexes the words in the vocabulary,
n = 1 corresponding to the most common word, n = 2 to the second most common, and so on; Z is
a normalizing constant; and r is a constant, r > 1. The hyperbolic distribution corresponds to r = 1.
However, power laws, while having the correct qualitative properties, do not fit the observed distribution
well, and other distributional forms have been suggested [Sic75]. For my purposes, the relevant property
shared by all these distributions is that of putting a great deal of probability mass in the most common
words (models). So the use of the hyperbolic distribution can be justified as a convenient example of such
a distribution.

and one can derive the following approximations, used in the simulations:

where a = A/N E [O,1] gives the fraction of models contained in the preload, a > 0 as

we are assuming A 2 P, and I adopt the usual convention that a loga = 0 when a = 0,

E [O, 1/21, the error in the i.e., when A = 0. The error in the first approximation is

1 second is + O (r n) E [-1/2.0] + 0(*).

We can also approximate q u a n t ~ (- , P) = (P r $ l) ~ . Let p ~ (n) be the density for n,

SO pN(n) = pI(n) for fixed and p ~ (n) = Binomial(N + 1 , l -po) for random. Writing out

the expectations for the terms in the various formulae,

N min{n, A}
q u a n t ~ (min{nl A), P) = C P N ~) (PI 1 - min{n, A))

P- 1
 PA + (A mod P) (l - pa)

P- 1
M -

2 PA

where the approximations are made by

i.e. assuming that the support of the density is wide, smooth and unrelated to P, and that

N, N - A and A are large relative to P. This holds for the distributions I will consider.

Note also that formula (B.lO) using quant~(min{n, A}) already assumes (A mod P) = 0.

For simulations, I will use a parameter Q E (0, $, 1) to give best,worst and "normal" case

performance, replacing (P - 1)/2 in the above approximations by Q (P - 1).

B.5 Area Tradeoffs

To look at tradeoffs, note that finite chip area implies that the amount of local memory,

and hence a and p ~ , decreases as the number of PE's increases. From equations 4.1 one

gets

where c gives the area of the data path of a single PE, in 106X2, s gives the total chip area,

in 109X2, z gives the size of 1 KB of memory, in 106X2, and M gives the size of a PE's

local memory, in kB. Some typical values of c are c = 30 for a simple fixed point processor,

c = 70 for a simple 32b floating-point processor, and c = 500 for a complex floating point

processor, on the order of a PPC 604. To get estimates biased towards large numbers of

PE7s per chip, I use the numbers for single-ported SRAM, with 1 KB of SRAM taking

z = 5 x 106X2. From table 4.3.1, s E {19,42,68,101,208, 506,1200) for the next 7 process

generations. We can thus remove M as a free parameter:

The total on-chip memory is P M . I introduce another task parameter, d, giving the

number of models storable in one kB. d can be used to replace A, the number of models

in the preload, thus incorporating area constraints: A = dPAl if all on-chip memory were

used for the preload. For use later, I introduce a parameter, i,, measuring the amount of

per-PE instruction memory, in kB:

A = d (P M - Pi,). (B.31)

One can then replace the p~ parameter: p~ = 1 - x f p 1 (i) is 1 - A/N in the uniform

case, and 1 - Z(A)/Z(N) in the hyperbolic case.

Two important special cases are when all tasks can fit in the preload, p~ = 0, and

when none can, p~ = 1. The latter situation obtains when a single task exceeds the size of

an individual PE's local memory, in which case my modeling assumptions and consequent

speedup equations are incorrect. Define Pall t o be the maximal P for which p~ = 0 (that

is, A = N) , and PnOne t o be the maximal P for which p~ < 1. P,,,, then corresponds t o

1 task per PE, or A = P. Using equations B.29, B.30, and B.31, we have

and

B.6 Speedup: some simplifications

It should be clear that the quantization term q u a n t ~ (- , P) = (P - 1)/2 (equations B.26

- B.28) will be negligible compared t o (n) for most model distributions. If we neglect

quantization, then two regimes present themselves with simple formulae for speedup: P 5

Paa (all models in preload) and P 2 PnOne (no models in preload). In these regimes the

formulae for the various task distributions are the same, as are the times for both the

SIMD and DMA cases. For either form of speedup5, (t ~ r n e ~ ~ Q - ~ ~ ~) / (t i r n e f M ~) , we

have

speedup= ~ m a x { i , i} if P < Pan (B.34)

5I ignore the (t imeSEQ) case as it is unrealistic these days. Similar equations hold for
(t imeSEQ-DMA)/(t imeS'MD).

and

speedup y t min k,q if p = pnon,.

where the latter equation is derived using A = 0 rather than A = P, which will be close

if (n) >> P. These equations show that speedup is linear for P < Pall.

For a particular architectural setup, defining s, c, and m, equation B.32 is linear in

N l d , the size in kB of the set of all tasks. Figure B.l illustrates this for some reasonable

values of s, c, and m, using an SRAM size of 5 x 106X2. For example, a current generation

(s = 19) chip with 16 simple floating point processors (c = 70) can preload an entire task

set of about 2.5 megabyte (B.l (c)), and this increases to about 6.5 megabytes in the next

generation (s = 42) (B.l (g)). For a current generation chip with more complex processors

(c = 500), a task set of about 1.5 - 2.0 MB can be preloaded. Similar calculations assuming

an SRAM size of 5 x 106X2 show that, in that case, using complex processors (c = 500) is

not feasible until the next generation (s = 42). When simple (c = 70) processors are used,

a current generation chip with 16 PEs can preload about 1 MB, increasing to 2-3 MB in

the next generation.

Similarly, figure B.2 shows some graphs of P,,,, from equation B.33. Both figure B.2

and examination of equation B.33 show that Pnon, will be substantially greater than P =
16 - 32 for non-minimal sized chips with simple floating point processors (B.2 (a),(c)), and

hence that it will be possible to preload a substantial number of tasks in this case. However,

preloading a large number of tasks will not be possible for a current or next generation chip

with 32 very complex processors (B.2 (b), (d)), especially when processors have substantial

amounts of instruction memory. For further generations (s 2 42), substantial preloading

will be possible, even with very complex processors (not shown).

B.7 Simulations

In the regime Pall < P 5 Pnon, the mutual effects of the various parameters are more

complicated, and so they were studied via simulation.

(el s = 25, c = 70 (£ 1 s = 25, c = 500 ...
60 I----

Figure B.l: The maximum number of processors for which the entire task set can be
preloaded, Pall, as a function of the total task set (modelbase) size in MB, (1 0 - ~ N / d) .
The horizontal axis is the task set size in MB, and the vertical axis is the maximal number
of processors. The different lines on each set of axes correspond to different amounts of
instruction memory, m E {0,4,8,16,32), with m = 0 the topmost line, and m = 32
the bottommost. Horizontal lines are drawn at Pall E {16,32,64,128) for comparison
purposes.

(f) s = 42, c = 70

(f) s = 2 5 , c = 500

Figure 8.2: The maximal number of processors for which a processor can contain an
entire task, P,,.,, as a function of (10-~N/d) , the task set (modelbase) size in MB. The
horizontal axis is the task set size in MB, and the vertical axis is the maximal number
of processors. The different lines on each set of axes correspond t o different amounts
of instruction memory, m E {0,4,8,16,32), with m = 0 the topmost line, and rn = 32
the bottommost. Horizontal lines are drawn a t Pall E {16,32,64,128} for comparison
purposes.

Table B.l: Free parameters of the analysis, their types and constraints
name description tY Pe bounds
P number of processors architectural 1 F P

comparative speed of sequential
comparative memory bandwidth
chip area (109X2)
instruction memory (kB)
size of PE datapath (106X2)
speed of evaluating a model
size of a task (tasks/kB)
total number of tasks
(n)rand = (N + 1)(1 - PO)
best/avg/worst quantization effects

architectural
architectural
architectural
architectural
architectural
algorithmic
application-specific
application-specific
application-specific
simulation

Table B.l lists the parameters I have introduced, together with constraints or reason-

able bounds on their values.

Panel (a) of figure B.3 shows the general shape of the speedup curves in the interval

between Pall and Pnone. The topmost two curves show the lower and upper bounds for the

rundom-hyperbolic case, the two lowest curves show the bounds for the random-uniform

case, and the intermediate two curves show the fixed-uniform and fixed-hyperbolic cases,

the latter being topmost. This ordering is preserved in all subsequent speedup figures,

as is the association between model and the dashing used in the curve for that model.

In subsequent speedup figures we see the same relationships, but the curves are distorted

by (1) different values of Pall and P,,,, and (2) the different speedups at Pall and Pnone

The speedup at Pall is approximately Pall, due to the linear growth for P E [I , Pall]; the

speedup for Pnone is given by equation B.35, but is usually k. For clarity, the value at

PnOne has been continued for P > P,,,, although I do not actually model speedup in that

regime.

Two features of the figure are of note: there is a nearly linear increase in speedup

from P = 1 to Pall and there is an abrupt "cutoff" in the curves at P = P,,,,. The first

effect holds for all curves for which Pall = 0, and is a simple consequence of the models:

a speedup of k 5 P is always possible as that much work can be done while the next

model is being loaded. The second, "cutoff", effect is due to the quantization implied by

requiring A = 0 (mod P) . To make the curves easier t o read, this assumption has been

relaxed in the simulations by allowing fractional numbers of models t o be preloaded. Panel

(b) of the figure shows the effect of enforcing integral numbers of models. The behavior

is quite similar, except for the large speedup random-hyperbolic case and for P z P,,,,.

Subsequent figures do not show quantization effects except for the "cutoff" effect at P,,,,.

Figure B.4 shows the speedup curves for the "default" configuration of a current gener-

ation chip (s = 19) with simple floating point processors (c = 70), using a set of N = 1000

tasks. We see for large tasks of 5 KB each (d = 0.2) that one never has all tasks in the

preload. The consequence is that the computation is I/O bound and the speedup curves

are relatively flat. The exception is the random-hyperbolic case, where the likelihood of

finding the desired task preloaded is high even when few tasks fit in the preload. The

figure also shows that , for this confignration, P = 16 or P = 32 are reasonably close t o

the optimal P, especially for the smaller k, but that a wide range of values give similar

speedup, all close t o k (for P 2 k).

For smaller tasks of 1 KB each (d = I) , there is a linear regime up t o P = Pall z 150,

followed by a reversal and decay t o the P = k asymptote that is more or less rapid,

depending on k. For large k, values of P above Pall provide only a modest improvement

in performance (except for the upper bound for the random-hyperbolic case). Essentially7

for the Pall = 0 (d = 0.2) case, P = 16 performs about as well as the optimum P;

for the Pall > 0 (d = 1) case, P = Pall is close t o optimal. The exception is for the

random-hyperbolic model, where the effective size of the task set is much smaller.

Figure B.5 shows the effect of large k, the amount of computation per model. A larger

k naturally decreases the effect of bandwidth limitations and allows more parallelism. In

terms of the graphs, the effect is to meliorate the rapid loss of parallelism as P increases

from Pall t o P,,,,.

Using the information in table 4.8, s = 9 corresponds, for any generation, t o the

smallest chip capable of 16 processors, data I/O pins, but sharing instruction pins. Figure

(a) smooth
,a -. -. -. -. -. ..

(b) quantized

Figure B.3: Panel (a) shows the general shape of the speedup curves in the [Pall, P,,,,]
interval. The horizontal axis is number of processors, P, and the vertical axis is speedup.
Speedup is defined as t S E Q - D M A / t f M A . The topmost two curves show the lower and
upper bounds for the mndom-hyperbolic case, the two lowest curves show the bounds for
the random-uniform case, and the intermediate two curves show the fixed-uniform and
fixed-hyperbolic cases, the latter being topmost. Panel (b) shows the effect of enforcing
integral numbers of models (A = 0 (mod P)). Note the "cutoff" effect at P = P,,,,.
The line on the x-axis marks the interval [Pall, Pno,,], the range of P where some, but not
all, tasks can be preloaded.

(a) k = l , d.0.2 (b) k = l , d=l

(d) k=5, d=l
I -.

Figure B.4: Speedup (y-axis) as a function of the number of processors (x-axis, for varying
(k, d) and other parameters given their default values: N = 1000, s = 19, b = 1, m = 0,
c = 70, po = 0.9, q = 1, Q = 112. This set of values corresponds t o a current generation
chip (s = 19) with simple floating point processors (c = 70). The first column (a,c,e)
shows potential parallelism is limited (P = 16 - 32) for larger model-bases (5 MB) that
do not fit entirely on-chip. The second column (b,d,f) shows large potential parallelism
(P 2 128) for smaller model-bases (1 MB). It also shows that this potential parallelism
quickly disappears when the model-base no longer fits on-chip, due to use of chip area for
additional data-paths (P > 150).

(e) k.10, d30.2 (f) k=10, d= l
80

60,

40

. , .

.. ., ._ .. .- .. -.. .. I , .-
8 ,. -. ..

25 50 75 100 125 150 1 4 0 150 160 170 180 190 200

(a) k.10, dz0.2

,' .. '.
-.

Figure B.5: Speedup versus number of processors, for varying (k, d) and other parameters
given their default values: N = 1000, s = 19, b = 1, m = 0, c = 70, po = 0.9, q = 1,
Q = 112. Compared t o figure B.4, larger values of the computation/model ratio, k, are
used.

B.6 shows that s = 9 needs k > 10 for effective parallelism with the large test set, even

using small floating point processors (c = 70). Again, P = 32 is close t o optimal for

random-hyperbolic, otherwise P = 16 is as good as any. For comparison, figure B.7

shows the speedup curves for the same chip, under the assumption that the individual

data I/O provides a twofold improvement in bandwidth. We see that the doubling of

bandwidth essentially doubles the speedup for the large task set, and, for more work-

intensive tasks (I c = 5, lo), substantially increases the usable parallelism. For the smaller

task set, doubling the bandwidth substantially increases available parallelism in the regime

between Pall and P,,,,.

Figures B.8 gives analogous results for the smallest chip capable of 32 processors, using

the information in table 4.9 and assuming complex processors (c = 500).

Figures B.9 and B.10 examine the current and next generations (s = 19 and s = 42),

assuming very complex processors (c = 500). We see that P = 16 is a reasonable choice

for the current generation; while P = 32 or P = 48 are reasonable for the next one.

The choice of N = 1000 is arbitrary, and is intended mainly to reflect the notion of

a large task set (large task set). For N = 1000, the task set size is 1 MB for d = 1,

and 5 MB for d = 5. Figure B . l l looks a t the case N = 100. For this task set smaller

by an order of magnitude, we see that Pall has become much larger, so that P = 128

and even P = 192 give good performance. Of course, as processors do not evaluate

fractional models, P = N = 100 is the real maximum. Similarly, figure B.12 illustrates

the case where the task set is made smaller by making the individual tasks smaller (d = 5,

corresponding t o 200 bytes per task), as might be seen in nearest neighbor search (where,

for example, a model might be a reference vector of 50 32-bit floating point numbers).

The problem, of course, is that these larger values of P are very poor in the large task set

case, while smaller values of P give linear speedup even in the small task set case.

Finally, figure B.13 shows how available parallelism diminishes with increasing per-

PE instruction memory, for 16 and 32 processor chips, and 1 MB task set size. We see

that a minimal current generation 16 processor chip (s = 9, c = 70) can have around

(a) k = l , d10.2 (b) k=l , d=l

Figure B.6: Speedup versus number of processors, for s = 9, varying (k,d). The case
examined here, s = 9, is that of the smallest chip (in any generation) having 700 pins, and
so being capable of having 16 PEs, each with their own off-chip memory. Chip is assumed
t o have small floating-point processors (c = 70), with other parameters given their default
values: N = 1000, m = 0, po = 0.9, q = 1, Q = 112. We see that the larger task set (a,c,e)
needs about k = 10 t o effectively use 16 processors, while the smaller task set (b,d,f) could
utilize 32.

(c) k=5, dz0.2 (d) k=5, d=l

"',

. *

:

5
.. -. 40

'- -. -.

.. : .
25

20

:
4

: p

(
I -. .. 60 .. -.

' , -. .. 50 ..
a.

..-..- -. .. -.:.: . -:
I U,g.-".."-' -..- --..-..

1 5 '

-.._ -----.._._.._ I -.-._ - - - - - - - - - -L

10 20 30 40 50 60 70 80

..
, .- ._ -- -- .. ._ -I

a .' .-.
, +' I

io 20 30 40 50 60 70 80 40 50 60 70 80 90 100

(a) k-1, d-0.2
I ,.

Figure B.7: Speedup versus number of processors, for s = 9 and c = 70, varying (k, d).
The case examined here is the same as that of figure B.6, except that use of per-PE
data interfaces is assumed to give a twofold bandwidth improvement over the sequential
processor (b = 2). This provides a modest improvement for the smaller task set (b,d,f),
but, for the larger task set (a,c,e), allows effective use of 16 processors at k = 5, i.e., with
half the compute/load time ratio.

(e) k-10, d=0.2

60

50

.' ..

(a) k = l , d=0.2 (b) k = l , d = l

Figure B.8: The case examined here, s = 25, is that of the smallest chip (in any gen-
eration) having 1200 pins, and so being capable of having 32 PEs, each with their own
off-chip memory . The chip is assumed t o have complex processors (c = 500), with other
parameters given their default values: N = 1000, m = 0, po = 0.9, q = 1, Q = 112. We
see the effects of limited on-chip memory caused by the the large size of the processors.
With the larger task set, not even P = 16 processors can be effectively used.

(a) k=l, d~0.2 (b) k=l, d=l

Figure B.9: Speedup versus number of processors, for s = 19 and c = 500, varying (k, d).
The case examined here is that of a large current generation chip with complex PEs. Other
parameters given their default values: N = 1000, b = 1, m = 0, c = 70, pa = 0.9, q = 1,
Q = 1/2. The graphs suggest that P = 16 processors is about optimal. For the larger
task set, k = 10 is needed to effectively use 16 processors.

(e) k.10, d=0.2 (f) k=10, d=l

2s

20

10

5

10 15 20 25 30 17.5 ' 22.5 25 27.5 30 32.5 35

30.

.. '.
25.

..
.- -* I

.-. .. 1

..

(a) k = l , d=0.2

Figure B.lO: Speedup versus number of processors, for s = 42, varying (k, d). The case
examined here, s = 42, is that of a next generation chip (0.18p), with very complex
processors (c = 500). Other parameters given their default values: N = 1000, b = 1,
m = 0, po = 0.9, q = 1, Q = 112. We see that P = 32 - 48 is reasonable except for the
larger task set, and the smallest amount of work per model (panel (a)) .

Figure B.ll: Speedup versus number of processors, for s = 19, varying (k, d). The case
examined here is that of the current generation chip, with an order of magnitude fewer
models in the model base (100 rather than 1000). Other parameters given their default
values: c = 70, b = 1, m = 0, po = 0.9, q = 1, Q = 1/2.

(a) k = l , d=5

Figure B.12: Speedup versus number of processors, for s = 19, varying (k, d). The case
examined here is that of the current generation chip, with small models (d = 5, i.e., 200
bytes per model). Other parameters given their default values: c = 70, b = 1, m = 0,
po = 0.9, g = 1, Q = 112.

Figure B.13: Tradeoff of speedup with instruction memory size for P = 16 and P = 32.
Abscissa is instruction memory size, in kB; ordinate is speedup. Other parameters given
their default values: b = 1, pO = 0.9, q = 1, Q = 1/2, N = 1000, d = 1.

16 kB of instruction memory per PE without affecting speedup, while larger or later

generation chips can have over 64 kB. Chips with 32 processors must be non-minimally

sized (s = 19,42), but then may have over 48 kB of instructions.

B.8 Discussion

In the simulations, the graphs of speedup versus number of processors have two general

shapes. When Pall > 0, the graphs for all task distributions are linear from (0,O) t o

(Pall, Pall) and constant from (P,,,,, k) t o (00, k). They differ between (Pall, Pall) and

(P,,,,, k), with k modifying the shape slightly. Conversely, when Pall 5 0, the graphs are

close t o constant y = k, with small P in the range P = 16 - 32 optimal.

These and the other graphs show that there are essentially two regimes, with dramati-

cally different behavior: one where all tasks can be preloaded, and one where they cannot.

These two regimes are determined by the size of the task set and the amount of on-chip

memory available t o hold preloaded tasks. The former is application-specific, while the

latter is a function of the architecture, especially the number and complexity of the PEs.

The actual speedup value, and t o a lesser extent the shape of the curve, are affected

as well by k, the amount of computation per task. The parameters q, the ratio by which

a single large processor is faster than a single PE, and b, the bandwidth ratio between the

parallel and sequential architectures, have simple linear effects on the speedup.

Unsurprisingly, the quantization assumption, A = 0 mod P, is important for P =
P,,,,, i.e. when few models fit in a PE's local memory. Larger numbers of PEs make it

harder t o (approximately) satisfy this assumption, so it suggests that small P designs will

be more general-purpose.

We see that , when not all tasks can be preloaded, preloading is helpful mainly for

random-hyperbolic, but this may be an important case as it corresponds t o Zipf's Law,

which describes the distribution of word models, and t o other power laws. The essen-

tial point is that effectively the entire task set must be preloaded for good performance,

and that extremely non-uniform task distributions such as the hyperbolic are needed if

preloading the entire model base is t o be avoided.

I have generally assumed model bases on the order of 1 t o 5 megabytes in size. Smaller

model bases allow greater parallelism, as they fit on-chip with larger numbers of PEs.

However, speedup is very sensitive t o having all models fit on-chip. Thus, a given design

must be careful in choosing P t o allow for the largest model base in its range of target

applications.

B .9 Conclusions

One can distinguish three cases:

1. If the entire task set fits on-chip, then linear speedup is obtained. Because of the

tradeoff between on-chip memory and P E complexity, this points in the direction

of many small processors per chip. Figure B.l shows that task set sizes of 1 t o 3

megabytes may be reasonable.

2. If the task set does not fit on-chip, and there is little work per task, the small k

generally implies small parallel speedup (5 k) due t o bandwidth limitations and

area tradeoffs. In this case having many PEs per chip (P > k) is pointless.

3. For any task set, if k is large one has parallel speedup up to P = k , independently

of the amount of area for preloading, as long as each PE's local memory can hold at

least one task.

The implication is that if the task set does not fit on-chip, then, in general, having P > k

is pointless. Thus achieving significant (order-of-magnitude) speedup from the parallel

architecture requires a substantial amount of work per task, say k > 10.

Recall that k is the ratio of a task's computation time t o the time it takes t o load

it. If this is measured in clocks or operations, the fact that the time t o load, a value

of a particular size is probably 2-4 times slower than the time t o perform an arithmetic

operation on it. Loading a task means loading some number of 'values' (component, data,

parameters, ...) for the task, each of which takes, say, 1 system clocks t o load, hence

(2 - 4)1 on-chip clocks. If operations take a single on-chip clock, then achieving a given

value of k requires computing (2 - 4)lk operations per value. For example, with 32 bit

values, and a 16 bit Rambus memory interface [Cri97] running a t chip speed, achieving

k = 10 requires 20 operations per value6 . If the Rambus runs a t 112 chip speed (say a 1.6

GHz chip clock and a 800 MHz Rambus clock), this becomes 40 operations per value. In

reality, these memory da ta rates are maxima, and apply only when memory accesses are

local t o a column decode buffer, but none the less, achieving k = 10 is even more difficult

than it might seem.

'Pin limitations suggest a 16 bit per-processor memory interface (requiring 31 data and control pins)
for a 32 processor chip. For upward compatibility, the Rambus interface has been designed to support a
31 pin interface, although the mass market parts using Direct RDRAM have a 76 pin interface and do
not multiplex data with addressing [Cri97]. A 76 pin interface precludes a 32 processor chip where each
processor has its own path to memory.

Speedup also depends linearly on q, comparative speed of the sequential processor, so

that while achieving k = 10 may take 20-40 operations per datum, achieving a speedup of

10 might take (20 - 40)q. So minimizing q is also of the essence; generally, this points in

the direction of using more complex PEs.

My conclusion is that there are two viable architectural possibilities: if the range of

target applications allows each task set t o fit entirely on-chip, then an architecture of

many small processors may be preferred (there are other factors, such as Amdahl's law,

that may still preclude using many PEs). In all other cases, a few complex PEs will be

preferred.

	199904.rehfuss.paul to p. 100.pdf
	199904.rehfuss.paul to p. 227.pdf

