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ABSTRACT

Quantitative Characterization of Thermophysical Properties

in Computational Heat Transfer

KaushikA. Iyer, MS

SupervisingProfessor : LemmyMeekisho

The most fundamental step in the development of a predictive model for

microstructure and residual stress distribution in steels is the accurate representation of

the transient temperature field. Three constituents. of a database of thermophysica1

properties, namely the thermal conductivity, volUmetric specific heat capacity and

convective heat transfer coefficient, were isolated and their effects quantified on the

accuracy of temperature field predictions using finite element analysis (FEA). The most

critical parameter in the heat transfer process was ultimately identified to be the

temperature dependent convective heat transfer coefficient. It was determined using an

inverse heat transfer method, which was successfully applied to accurately establish the

thermal boundary conditions for an arbitrary 3D steel geometry. The temperature

dependency of the volumetric specific heat capacity in the transformation range of

temperatures has to be known a priori, for which a reliable model describing alloy

dependent reaction kinetics has to be developed first. Thermal conductivity and its

dependency on temperature has secondary effects on the accuracy of FEA predictions.

The impact of the outcome of this study lies in its relevance to the heat treatment

industry .
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CHAPTER 1

INTRODUCTION

Heat treatment of low alloy steels is an economical way to produce components

with reliable service properties. The steel chemistry and the kind of heat treatment

contribute to the determination of material properties. The broad objectives of controlling

the heat treatment process include microstructural control to enhance properties such as

wear resistance and toughness, achievement of a predetermined hardness distribution,

minimizing residual stresses and reducing distortion.

In order that these goals are met, the synergistic effects of temperature,

microstructure and stress have to be well understood.

The guiding philosophy behind the current work is the development of a coupled

finite element methodology for the calculation of the temperature field, microstructural

evolution and mechanical response i.e; residual stresses and distortion, for an arbitrarily

shaped 3D steel geometry with a chemistry typical of structural steels. However, the

immediate objective is to establish how critical the representation of the temperature

dependency of thermophysical properties is, as input data, in the development of a

general predictive model applicable to a variety of steels and geometries.

Early work in this area was done by Henwood [1], who developed an analytical

model for computing weld microstructures based on theoretical models found in the

literature. Microstructural changes in the weld fusion and heat-affected zones were

tracked as the material progressed through a thermal cycle. Austenite grain size was

determined using the Ashby grain growth relationship [2] while austenite decomposition

1
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was modeled using Kirkaldy decomposition kinetics [3]. The transient heat flow was

modeled in two dimensions. A finite element program which provided an approximate

solution to the 3D transient heat flow problem described by the quasi-harmonic equation,

was presented in [4]. Ooldak et al [5] made transient temperature field computations and

modeled moving heat sources, nonlinear thermal properties and heats of fusion and

transformation in simulating a welding process, using a finite element formulation for 3D

transient heat flow. The primary database of non-linear thermophysical properties used

in this study was obtained from Goldak's work [5].

Present day finite element codes attempt to incorporate thermodynamics based

prediction of the multicomponent phase diagram corresponding to a specific steel

chemistry with a 3D transient heat transfer analysis. These features, when combined, can

be used to perform finite element calculations of the transient temperature field taking

into account microstructural effects such as latent heat, microstructural evolution during

quenching. Further, calculation of the stress/strain response accounting for dilatation,

transformation plasticity and creep, and, prediction of hardness distribution as a function

of microstructure and cooling conditions are also possible.

Inoue, Ju and Arimoto [6] developed the finite element code "HEARTS" for the

3D simulation of various heat treatment processes such as quenching and tempering.

They coupled the effects of differing cooling rates in a body on the resulting phase

transformations, with the thermal stress distribution. The effect of transformation

plasticity on the predicted cooling rates was also shown to be a significant factor.

Bodin and Segerberg [7] developed a procedure for the evaluation of the

correctness of commercial computer model solutions for heat treatment of steel

components on the basis of test heat treatments carried out on test pieces of various sizes

and differing steel chemistries. Not only did they find that the programs produced results

which sometimes differed considerably from each other and from the experimental

results, but also that the model for phase tranformation prediction crucially affected the

modeling of the quenching process. This suggests that among other factors, such as the
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quality and size of the database of thermophysical properties, crucially affects the

performance of a computer simulation. Simulated results are usually compared with test

results to establish credibility. This being the case, the initial and process data have to

be determined as carefully as possible. These comprise data relating to the material,

boundary conditions relating to the process and the shape and size of the component.

A key parameter used in the calculation of the transient thermal history using

finite element analysis is the heat transfer coefficient between the surface of the

component and the quenchant. This parameter is a function of temperature and the

geometry of the specimen. The accurate modeling of the 3D heat transfer process at the

surface requires a dependable database of these film coefficient values for the specific

component geometry. This can be achieved using the inverse heat transfer analysis if the

geometry specific experimental values are not known, which is generally the case. The

estimation of boundary conditions at the surface of a body, that caused a known

temperature history at one or more interior locations, is an inverse problem. The

determination of the temperature dependency of the heat transfer coefficient for air using

the inverse heat transfer method is described in detail in chapter 3.

B.Hemandez-Morales et al [8] determined heat transfer coefficients using inverse

techniques by quenching stainless steel and mild steel disks instrumented with

thermocouples in brine, water, oil and air, under controlled conditions that ensured one-

dimensional heat transfer. Their results were reproducible to within 18% and they found

that the sequential function specification method produced more reasonable results than

sequential matching techniques for small time increments.

Beck and Osman are major contributors to the theory of inverse methods with

specific reference to the heat conduction problem. In their latest effort [9], they have

used a sequential function specification method with the possibility of varying the number

of future time steps used, to estimate the temperature dependent heat transfer coefficient

and heat flux during a quenching process. They found the function specification method

with variable number of future time steps can provide a quick and accurate analysis of
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quenching of flat plates, cylinders and spherical composite bodies.

Segerberg and Bodin [10] measured and calculated the heat transfer coefficient

of the curved surface of Inconel 600 cylinders with different diameters and found that the

heat transfer coefficients calculated at positions halfway along the longer surface did not

differ greatly for cylinders of different sizes. However, the peak values of the heat

transfer coefficient differed considerably depending on the position of the interior

location from which thermocouple data was used for calculation.

Once again, the goal of this work was not the prediction of microstructures,

residual stresses etc. but rather an investigation of certain specific factors that eventually

affect the accuracy of such predictions. More specifically, this work involved an attempt

to methodically evaluate the relative importance of some of the parameters that constitute

the database of thermo-physical properties and the effects of a complex, application

oriented geometry, on the accuracy of a predictive model. A quarter symmetry model of

the specimen is shown in figure 1.

The specific physical properties under investigation were the volumetric specific

heat, the thermal conductivity and the heat transfer coefficient. The isolated and

combined effects of these and of the complexity of the geometry on the 3D finite element

heat transfer analysis, are discussed in Chapter 2.

The heat transfer coefficient being a strong function of geometry, it was necessary

to attempt an estimation of this parameter for the specific geometry under consideration.

A finite element based evaluation of this nature i.e; involving an arbitrary 3D geometry

using inverse techniques, was done for the first time. The methodology and results of this

study are discussed in Chapter 3.

The final chapter, Chapter 4, discusses the combined impact of the various

parameters taking into account all results.
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CHAPTER 2

DATABASE EXAMINAnON

2.1 OVERVIEW

The first step in addressing the residual stress and/or microstructural prediction

problem is the accurate description of the temperature field as a function of geometry and

time under the influence of given boundary conditions. Once this transient thermal

history of a steel geometry is established, it is possible to advance into the realms of

microstructural development and residual stress measurement. This chapter describes

some of the parameters that crucially affect the prediction of the transient temperature

field using 3D finite element analysis ( FEA ) and their impact on the simulations.

Water quenching and air cooling of a steel specimen, whose quarter symmetry

model is shown in figure 1, were studied experimentally and numerically. As mentioned

earlier, the geometry of the specimen analyzed was chosen so as to represent typical

parts found in real life steel manufacturing. Thermocouple data was recorded on and

inside the specimen via a data acquisition system, following which, the 3D FEA was

carried out. The two sets of results for the different locations were compared to

determine the effects of geometry and the quality of the database of the thermophysical

properties on the simulated results.
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2.2 EXPERIMENTAL SETUP AND PROCEDURE

The specimen under consideration was instrumented with Type K ( Chromel-

Alumel ) thermocouples for each experimental run. Static air cooling and water

quenching processing of the specimen were conducted. For each case, two sets of

specimens, each with thermocouples located at different depths from the surface were

used, as shown in figures 2 and 3. One set had thermocouples positioned at 1) the center

of the cavity, 2) I" below the surface of the cavity and along the axis of symmetry, 3)

3" below the surface of the cavity and along the ~!~ 9f symmetry and 4) 5" below the

surface of the cavity and along the axis of symmetry. These were classified as specimen

type A, shown in figure 2. The second set had thermocouples positioned along the axis

of symmetry at distances or 2", 4" and 6" below the surface of the cavity section and a

fourth thermocouple at the center of the bottom surface of the specimen Le; the tip.

These were classified as specimen type B, shown in figure 3.

Holes with diameters closely matching those of the thermocouple wire were

drilled from the surface to the appropriate depths and the thermocouples were implanted

using a spot welding technique. The portion of the thermocouple wire embedded in the

metal was insulated by a Nextel ceramic braid, capable of withstanding temperatures upto

1300oC. In order to ensure that there were no air gaps between the thermocouple wire

and the walls of the hole, a sodium silicate cement was used as a filler. The

thermocouples were connected to a computer assisted data acquisition system.

For the water quenching experiment, the specimen was placed on a heat treatment

tray and loaded in a furnace. It was then heated till the temperature in the specimen

stabilized at a uniform value of 1040oC. Then, it was quickly immersed in a water tank.

The water in the quench tank was agitated and the bath temperature was maintained

between 140C and 160C throughout the experiment. As the specimen cooled,

temperatures from the four thermocouples were recorded at a sampling rate of 5Hz, or,
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5 data points per second, for the first 10 minutes and then at rate of I data point every

50 seconds (0.02Hz) for the remaining duration of the experiment. Specimen type B was

heated to an initial uniform temperature of 9500C and then underwent the same

procedure as type A.

For the static air cooling process, the same procedure was used to heat the

specimen to a uniform temperature of 1040oC. The specimen was then removed from

the furnace and placed on a minimally grilled surface in order to minimize surface-

surface contact. It was then allowed to cool naturally. An initial sampling rate of I data

point every 2 seconds (0.5Hz) was employed for the first 20 minutes following which a

sampling frequency of I data point every 20 seconds was used for the rest of the

experiment. Specimen type B was heated to an initial uniform temperature of 9500C and

then subjected to the same procedure as specimen type A.

The sampling frequency used was higher in the water quench experiment due to

the faster cooling rate compared to the air cool case. The sampling rate chosen should

be sufficiently rapid to detect the transformation. At the same time, very high sampling

rates result in data which is more prone to noise, hence greater correlation between

successive observations. In all the experiments, temperature data recording was stopped

when steady state cooling conditions were reached.

The water quench resulted in a direct austenite to martensite transformation and

the range of temperatures over which this transformation is completed is not known

exactly. More importantly, from the sampling frequency standpoint, this transformation

was not depicted on the cooling curve unlike the air cool in which a gradual

transformation was observed between 4400C and 480oC.

Experiments for obtaining data from surface mounted thermocouples were

conducted in an identical manner. It must be said that the interior sensor locations were

chosen so as to cover a wide variety of depths from the convecting surface. Sensors on

the surface were located at as many positions as were thought to possess unique

conditions of convection ( both free and forced ).
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2.3 HEAT TRANSFER THEORY

In its general form, in cartesian coordinates, the following parabolic heat equation

is solved to obtain the temperature distribution T(x,y,z,t).

(1)

Q(x,y,z,t) = source or sink rate of heat in () ( W/m3 )

kx, ky, kz = thermal conductivity vector ( W/mK )

c = volumetric specific heat ( J/m3 )

Since k and c are functions of T, the heat equation is non-linear. The essential boundary

condition may be expressed as

T(x, y, z) =T1(x, y, z, t) (2)

on the boundary Sl ; i.e; (x,y,z) E Sl : t>O, as shown in figure 4.

On the boundary of () the natural boundary condition satisfied is defined as

q+kn ~~ +h(T-To) +oe(~-n) =0 (3)
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on the boundary S2 ; i.e; (x,y,z) E S2 : t> 0

where

leu= thermal conductivity normal to the surface ( W/mK )

q(x,y,z,t) = a prescribed flux ( W/m2 )

h = heat transfer coefficient for convection ( W/m2K )

(J = Stefan-Boltzmannconstant ( W/m2K4 )

G = emissivity

To = ambient temperature for convection and/or radiation ( K )

Finally, the initial condition must be specified for (x,y,z) E {}:

T(x,y, z, 0) =To(x,y, z) (4)

If the partial differential equation (1) and the boundary conditions (2) and (3), and

the initial condition (4) are consistent, the problem is said to be well posed and possesses

a unique solution. The quenching problem was an initial value problem with the

temperature at all points in the body being specified at the start of the cooling process,

at 10400C or 950oC, as the case may have been. During the FEA, radiation effects were

neglected due to the marginal differences they produced in the results at enormous

computational costs. Hence, according to our model, equation (3) is accurately

represented as

q+k aT +h (T-T o) =0
nan (5)
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The quarter symmetry of the specimen was used to advantage in creating a 3D

finite element mesh, shown in figure 5, composed of lO-noded tetrahedral thermal solid

elements. This element type is particularly suited for meshing arbitrary volumes. The

finite element mesh was optimized such that the mesh density at the surfaces, where heat

transfer rates are most rapid due to convection, was higher than towards the core, where

heat transfer rates are slower and the temperature fluctuations damped. Likewise, time

step selection was optimized to adequately represent high cooling rates at the start of

cooling compared to near steady-state conditions later in the process. Particular attention,

with regard to time stepping, was paid to the time range wherein the critical phase

transformation temperature range was expected to lie.

2.4 RESULTS AND DISCUSSION

2.4.1 SURFACE MOUNTED THERMOCOUPLES

For the ground state model, the temperature dependent thermal conductivity and

volumetric specific heat were taken from Goldak's work [5], as shown in figures 6 & 7.

These were based on a 1020 steel, whose CCT diagram is shown in figure 8. The

convective heat transfer coefficients for air and water were considered to be constant at

their room temperature values during this first run. Comparison of the numerically

obtained cooling curve with the experimental result, for a surface mounted thermocouple

as shown in figure 9, indicated that the shape of the numerical curve was reasonable but

the rate of temperature change was too slow in the case of the air cool model. In other

words, the numerical curve would have to be shifted downwards if it were to compare

more favorably with the experimental one. Further, it is evident that more solution time
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steps would have to be incorporated in the transformation time range. A similar

comparison for the water quench, shown in figure 10, indicated that the effective

modeling of the cooling rate during the very early stages of the quench would be critical

to obtaining more accurate results.

As a first iteration, temperature dependent convective heat transfer coefficient

values were used for both the air cool and water quench cases. For air, the results

obtained by B.Hernandez-Morales et al. [8], using inverse heat transfer techniques, was

used. This is shown in figure 11. The heat transfer coefficient for water quenching with

no agitation was chosen as depicted in figure 12. This variation was used by Buchmayr

and Kirkaldy [11] first. A subsequent comparison of the experimental and numerical

cooling curves at the center of the cavity for both the air cool and water quench cases,

shown in figures 13 & 14 respectively, showed a marked improvement in the correlation

between the two sets of results. In the air cool case, the main weakness of the numerical

result was the temperature range over which the transformation was believed to occur,

which was incorporated in the model. The water quench did not reveal any

transformation behaviour and the correlation between the two sets of results was very

good. This modification of the heat transfer coefficients for air and water was retained

for all future FEA considering that it resulted in a better representation of the boundary

conditions imposed on the finite element model rather than affecting the microstructural

modeling of phase transformations.

The further iterative changes made in the modeling of the air cool case alone are

now discussed. Water quenching had resulted in a direct transformation from austenite

to martensite and hence the original metal thermal conductivity values were an adequate

representation of this property in relation to phases present. However, the air cool had

resulted in the formation of some ferrite, whose lower heat conductivity had to be

accounted for. The basis for this modification rested in the experimentally generated CCT

curves for the specific steel chemistry of the specimen, shown in figure 15. This CCT

diagram was generated as a part of a related study on the metallurgical properties of the
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steel. The superimposition of the transient temperature history from a surface

thermQCoupleon this CCT diagram, shown in figure 16, indicated that the tranformation

was possibly occuring in the temperature range of 2500C to 700°C as opposed to 5000C

to 800°C, as was previously modeled. This resulted in a modification of the metal

thermal conductivity variation as shown in figure 17, where the original variation in the

relevant temperature regime was linearly extrapolated down to 250°C. The result of

imposing this change is shown in figure 18. Comparison of numerical results from

figures 13 & 18 indicates that this modification had very little effect on the FEA result.

This modification was also retained while further changes in modeling of the phase

transformation kinetics were considered. ~""

Two independent modifications on the volumetric heat capacity were

implemented. The first modification was essentially based on the same rationale used to

modify the thermal conductivity values. In this case, the total heat capacity change

associated with the transformation, as predicted by Goldak, was now spread over the

250°C - 7000C range, as shown in figure 19. It is important to note that although the

shape of the curve was modified considerably, the integral over the respective

temperature ranges was kept constant. Results from this iterative run, shown in figure

20, indicated that the transformation was in effect blunted by modeling the heat capacity

change as a constant over an extended temperature range. Principally, the heat capacity

due to the phase change had been estimated assuming the transformation products were

evenly, or linearly distributed over the transformation temperature range, as shown in

figure 21, resulting in a transformation"less" model in effect. This served to heighten the

disparity between the experimental and numerical correlation, especially at lower

temperatures after the transformation was completed.

The failure of the above modification indicated that the gap in understanding the

transformation kinetics had not been filled yet. An alternate modification on the

volumetric heat capacity was made. This time, the kinetics were assumed to be similar

to those exhibited by an AISI 4024 steel, whose CCT diagram, shown in figure 22, was
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similar to that of the steel used in this study. The expected transformation kinetics were

approximated bilinearly, as shown in figure 23. This change reflects itself on the

volumetric heat capacity curves as two transformation bursts, one of greater magnitude

than the other, shown in figure 24. The effect of this modification on the FEA result is

shown in figure 25. As it can be seen, this effect is indistinguishable from the effect of

the previous modification.

At this stage, careful scrutiny of the experimental curve indicated that the

transformation was occuring over a very narrow temperature range Le; 4400C and

480oC. Thus, Goldak's estimate of the total heat capacity associated with the

transformation was now concentrated over this significantly smaller temperature range,

as shown in figure 26. This iteration, combined with a refinement of the finite element

mesh resulted in very good agreement between the experimental and FEA results, as can

be seen in figure 27.

Once the temperature dependent heat transfer coefficient values obtained from the

literature were used, the FEA results for the water quench were in excellent agreement

with the experimental curves, and warrant no further discussion at this stage. For the air

cool case, the use of the heat transfer coefficient values found in the literature combined

with a refined finite element mesh, markedly improved the correlation between FEA and

experimental results. However, differences still existed. The FEA predicted rate of

cooling at the start of the process was lower than observed experimentally. This

suggested that the existing database for the heat transfer coefficient for air, obtained from

2D inverse analysis, was not adequately representing the convective boundary condition

experienced by a complex 3D geometry such as the subject of this study. The

determination of the heat transfer coefficient for this particular geometry is described in

chapter 3. Another drawback of the FEA result was the inaccurate modeling of the phase

transformation. This disparity could be rectified if the transformation kinetics for this

specific steel chemistry are thoroughly understood.

For all future finite element analyses, the modified database of properties obtained
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thus far was used.

2.4.2 EMBEDDED THERMOCOUPLES

Now that the numerical and experimental results displayed acceptable correlation

for superficial locations on the specimen, the correlation at interior locations was

examined. Looking at the curves for the center of the cavity section, 1" below, 3" below

and 5" below, several observations can be made. First, comparing only the

experimentally generated curves, shown in figure 28, it is apparent that there is an

increase in cooling rate as we move form the 1" to the 3" and onto the 5" location, in

that order. This change, in going from the I" location to the 3" location, is slight

compared to the increase in cooling rate observed in going from the 3" location to the

5" location. This is not surprising considering that the change in the area of cross-section

in going from the I" location to the 3" location is less than that in going from the 3"

location to the 5" location.

At this point, reference shifts to figures 27,29,30,31,32. These give an idea of

how well the FEA results measure up to the experimental data. The agreement between

these is excellent for the 1"-below case. As one moves to faster cooling locations Le; 3"-

below and 5"-below, the agreement becomes progressively worse. In fact, looking at

figures 28 and 29 indicates that the FEA solution is relatively "inelastic" in its response

to the variation in the cooling conditions with decreasing cross-section. In going from the

thicker to thinner cross-sections, the numerical curves show little variation in cooling

rate.

Consider now figures 33 & 34. The cavity of the specimen is subjected to

extremelycomplexheat transfer conditionsdue to its unusualgeometry. The boundary

conditions for the cavity sectionare not known preciselydue to the possibilityof the
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formation of convection cells and other turbulent phenomena. To get an idea of what

these conditions might be, the cooling curves for the center of the cavity section and 1"-

below were compared since they appeared to be remarkably similar. This similarity was

observed in both the experimentally generated curves and the FEA solution. That the

FEA solutions for these to locations are very similar is not surprising due to its

"inelastic" response, mentioned above. Further, only ordinary convective boundary

conditions were imposed for the cavity in the finite element model. The identical nature

of the experimentally generated cooling curves for these two locations is very interesting

because it suggests that the effective cooling conditions at these two locations are nearly

identical inspite of the differing heat transfer mechanisms at these two locations Le;

conduction at the 1"-below location and some combination of forced convection with an

extended vapor blanket stage at the cavity section.

2.4.3 GENERAL DISCUSSION

The accurate calculation of the transient temperature field for a 3D steel geometry

has been the main objective thus far. Air cooling characteristics observed at surface and

interior locations indicate that the corresponding cooling curves may be considered in

three parts Le; the pre-transformation portion, the transformation range, and, the post-

transformation portion. The accurate calculation of the temperature history in the pre-

and post-transformation portions is dependent only on the accuracy with which the heat

extraction conditions at the boundaries are specified and the accuracy of specification of

the temperature dependency of the metal thermal conductivity. Based on the observations

of the effects of the existing database for metal thermal conductivity, it seems to be

adequate and applicable to a variety of low alloy steels. Since the dominant mode of heat

transfer at the boundaries is convection, the temperature dependency of the convective



16

heat transfer coefficient has to be defined accurately. The estimation of this geometry

dependent property for the specimen under study, for air, is described in chapter 3.

Consider the range of temperatures over which the phase transformations occur.

The latent heat of transformations is released as an unknown function of temperature over

this range. As any unit volume of the steel attains the temperature required to initiate the

transformations, energy is released locally as a continuous but unknown function of

temperature until the temperature falls below a critical value. These local energy releases

affect temperatures at locations in and around the unit volume. The total energy released,

the rate of release as a function of temperature, the temperature bounds and the volume

affected are all unknown variables. Further, the effect of alloying elements on these

variables is also unknown. However, this type of information is required as input data

in order that accurate temperature field calculations may be made using FEA. The

combined effect of these parameters is expressed in the temperature dependency of the

volumetric heat capacity for each alloy. Thus, given reliable estimates for the convective

heat transfer coefficient and metal thermal conductivity, it is this thermophysical property

that is key to making reliable temperature history calculations over the transformation

range of temperatures, using FEA. Once the transformations begin, all future temperature

histories are affected irrevocably. Thus, the transformation range has to be accounted for

before calculating temperatures in the post-transformation portion.
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CHAPTER 3

NUMERICAL ESTIMATION OF CONVECTIVE HEAT TRANSFER COEFFICIENT

FOR AIR

3.1 INTRODUCTION

If the heat flux or temperature histories at the surface of a solid are known as a

function of time, then the temperature distribution associated with it can be determined.

This is termed a direct problem. In many dynamic heat transfer situations, the surface

heat flux and temperature histories of a solid need be determined from transient

temperature measurements at one or more interior locations. This is an inverse problem.

The inverse heat conduction problem is much more difficult to solve analytically

than the direct problem. But in the direct problem many experimental impediments may

arise in measuring or producing given boundary conditions. The physical situation at the

surface may be unsuitable for attaching a sensor, or the accuracy of a surface

measurement may be seriously impaired by the presence of the sensor. Although it is

often difficult to measure the temperature history of the heated surface of a solid, it is

easier to accurately measure the temperature history at an interior location or at an

insulated surface of the body. Thus there is a choice between relatively inaccurate

measurements or a difficult analytical problem. An accurate and tractable inverse

problem solution would thus minimize both disadvantages at once [12].

The problems of determining the surface temperature and the surface heat flux

histories are equivalent; if one is known the other can be found in a straightforward
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fashion. They cannot be independently found since in direct heat conduction problems

only o.ne boundary condition can be imposed on a given boundary at a given time.

However, the heat flux is more difficult to calculate accurately than the surface

temperature.

The fundamental objective of this work is to determine the convective heat

transfer coefficient values for air as a function of temperature. The inverse problem has

been defined as the estimation of the surface heat flux history given one or more

measured temperature histories inside a body conducting heat. The temperature dependent

film coefficient values for air can be determin.ed from the transient flux history by the

direct application of a simple equation. It may be~~oted that the word "estimation" is

used because in measuring the internal temperatures, errors which affect the accuracy of

the heat flux calculation are always present. Further, even if discrete data accurate to a

large but finite number of significant figures are used, the heat flux cannot be determined

exact!y.

3.2 MATHEMATICAL MODELFOR THE INVERSEPROBLEM

3.2.1 THE HEAT EQUATION

In its general form, in cartesian coordinates, the heat equation is a parabolic

equation representedas follows.

a aT+ a aT+ a aT+ _ aT
axkxax aykyay azkzaz g(x,y,z,t)-pCat (1)



19

where :

g ( x,y,z,t ) is the source or sink rate in 0, the body ( W/m3 )

kx, ky, kz represent the thermal conductivity vector ( W/mK )

c is the specific heat (J/kgK)

p is the density ( kg/m3 )

T (x, y, Z, 0) =To(x, y, z) (2)

(3)

Equation (2) describes the initial condition and (3) defines the convection boundary at

x=L

(4)

Yj denotes experimentally measured temperatures.

The objective then, is to estimate the surface heat flux at discrete times, ~ , from
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q( t.) =~k aT +~k aT +~k aT I
~ ax x ax ay y ay az z az 0

(5)

The thermal conductivity, density and specific heat are known functions of temperature.

Hence the inverse problem is nonlinear. The volume energy source term, g, accounts for

the energy contribution arising out of a phase transformation as would be the case when

austenite decomposes to ferrite and/or pearlite and/or bainite and/or martensite.

3.3 EXACT SOLUTIONS OF THE INVERSE PROBLEM

Exact solutions of the inverse problem are very important because

(1) they provide closed form expressions for the heat flux in terms of temperature

measurements

(2) they provide considerable insight into the characteristics of inverse problems

(3) they provide standards for comparison of approximate methods.

Inverse heat conduction problems can be categorized as steady-state or transient

problems. This study involves the transient problem with a distributed thermal

capacitance, which in effect, means that temperature gradients exist inside the conducting

body resulting in a non-uniform temperature distribution. No exact solution to the

nonlinear inverse problem of heat conduction for which the temperature sensor is at an

arbitrary location inside a three-dimensional body are available in literature. Thus

approximate methods have to be used.
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3.4 APPROXIMATE METHODS FOR DIRECT HEAT CONDUCTION PROBLEMS

The basic concepts and methodology of approximate solutions for the direct

problem form the basis of such solutions to the inverse problem also. Hence it is

essential to discuss, at least briefly, these conceptual foundations.

Numerical procedures employed to solve the direct heat conduction problem fall

into two broad categories. One is based on an integral formulation of the mathematical

model and the other on a differential form of the model. The transient heat conduction

equation can be either linear or nonlinear. For the linear case the partial differential

equation formulation can be equivalently represented by an integral equation. The most

important approach that employs integral equations is one using Duhamel's Theorem or

Integral.

Duhamel's theorem [12] can be considered to be a result of the principle of

superposition and thus is valid only for linear cases. There are several ways of deriving

it, using Laplace transforms or the concept of superposition. Duhamel's theorem employs

a "building block" solution which is used with the superposition principle to obtain the

temperatureat any spatialcoordinateand time. One suchsolutionis cJ> ( r,t) which is for

the temperature rise at a point rin a heat conducting body due to the heat flux,

q(t) = 0, t<O
1, t>O

This is called the unit step heat flux. The thermal properties of the body are independent

of temperature but can be functions of position, and the temperature distribution need not

be one-dimensional. The derivation requires that the surface heat flux be a product of two

functions, one a function of only space coordinates and the other only of time. Duhamel's

theorem, also known as Duhamel's Integral is expressed as,
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t

T(Z, t) =To+Jq(}..) c34>(Z...'t-}..) d}"o
(6)

Equation (6) is a heat flux form of Duhamel's Integral; it is a convolution because

there is a product of two functions, one of A and the other of t-A. There is a folding or

convoluting of one function with respect to the other. A numerical approximation of

equation (6) is expressed as,

M

TM=To+I: qn.~<I>(z, tM-n)
n=l

(7)

If the actual heat flux is constant over each time step, the above expression is exact for

the temperature TM ; it yields approximate results if the true heat flux varies over the

time steps. The importanceof this equation cannot be overstated because it gives a

convenientexpressionfor the temperaturein terms of the heat flux components.

Duhamel's theorem is a powerful techniquefor solvinga wide variety of linear

heat conduction problems, but, many situations exist in which either the technique

becomes too cumbersomeor is not applicable.The most severe limitation is for non-

linear problems with temperaturedependentthermal properties. In many heat transfer

problems, the temperaturechangeof a body exposedto a heat flux is sufficientlylarge

that the changes in thermal properties are appreciable. In these cases, the nonlinear

partial differential equation of heat conduction is converted into a system of linear
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algebraic equations involving the temperature at discrete locations. Two popular

approaches for discretizing partial differential equations are finite differences and finite

elements. Another very interesting approach involves the application of the conservation

of energy for a finite control volume. The finite control volume procedure results are

referred to as distributed capacitance effects because the thermal capacitance of a control

volume may be distributed over several nodes. The finite difference method is also a

lumped capacitance approach because the thermal capacitance associated with the entire

volume is lumped at a center node point for all interior control volumes. The results

from the finite element method are identical to the lumped thermal capacitance results

for interior nodes.

3.5 INVERSE REAT CONDUCTION ESTIMATION PROCEDURES

The inverse heat conduction problem is an ill-posed problem involving an

estimation using data. Ill-posed problems include the mathematical problems of the

solution of singular or ill-conditioned systems of linear algebraic equations,

differentiation of functions known only approximately, solution of partial differential

equations using "interior" measurements and solution of integral equations of the first

kind utilizing measurements. In order for the problem to be well-posed it is necessary

that the solution exist, be unique and be continuously dependent on the data, or

equivalently, be stable. It is the condition of stability which is not met by the solution of

the inverse heat conduction problem. Arbitrarily small differences in the input

temperature can result in arbitrarily large differences in the surface temperature or flux.

Difference methods offer considerable potential for solving the non-linear direct

and inverse heat conduction problems particularly because the non-linearity associated

with temperature dependent thermal properties can easily be accomodated with difference
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methods. The procedure involves local linearization of the problem by evaluating all

therma) properties at temperatures corresponding to the previous time step. Thermal

properties are seldom known to sufficient accuracy to justify iteration. This approach is

called quasi-linearization.

At this stage, it is essential to introduce the concept of sensitivity coefficients

[12]. The sensitivity coefficient associated with an unknown parameter is defined as the

first derivative of a dependent variable, such as temperature, with respect to the unknown

parameter, such as a heat flux component. If the sensitivity coefficients are either small

or correlated with one another, the estimation ,problem is difficult and very sensitive to

measurement errors. Thus irrespective of the probl~~ being one of function or parameter

estimation, a detailed examination of sensitivity coefficients can provide considerable

insight into the estimation problem.

For the inverse heat conduction problem, sensitivity coefficients of interest are

those of the first derivatives of temperature T at location ~ and time ~ with respect to

a heat flux component qM, and are defined by

(8)

for k=I,2, ,J, i=I,2, ,n, and M=I,2, ,n. The numberof times ~ equals the

number of heat flux components.The heat flux component~ is the constantheat flux

between times tM-1and tM.For the transientproblem, such as the subjectof this study,

the sensitivitycoefficientsare zero for M> i. In other words, the temperatureat time ~

is independentof a yet to occur futureheat flux component~ , M> i.

The inverse heat conductionproblemis linear if the heat conductionequationis
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linear and the boundary conditions are linear. The thermal properties ( k,p,c ) can be

functions of spatial coordinates and not affect the linearity. They cannot, however, be

functions of temperature without causing the problem to be nonlinear. One way to

determine linearity is to inspect the sensitivity coefficients. If the sensitivity coefficients

are not functions of the parameters, then the estimation problem is linear. If they are, the

problem is nonlinear.

Two kinds of sensitivity coefficients occur depending on the nature of the

approximation of the thermal flux [12]. One is due to a step '1Min the heat flux for an

infinite time duration and the other, due to a pulse '1Min the heat flux for the time

duration tM-tM_I.Since the duration of the step function is infinite, the step function

sensitivity coefficient is expected to grow without bound. For a sensor located at depth

Xk , the temperatureresponsedue to the step in heat flux can be written as

tM_Idenotes the time at which the heat flux step ( or pulse ) begins; ql, <12,..., '1M-I

contain all the information about the time variation of the heat flux prior to time ~_I ,

and hence contain all the initial temperature information necessary to continue the

temperature calculations to tM , tM+1, The step function sensitivity coefficient is

defined by

(9)

where:

xk is the sensor location
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t is an arbitrary time

tM-1 is time at the beginning of the heat flux step

qM-l is the previous flux history

qM is the magnitude of the heat flux step

For a linear problem, Z, the step sensitivitycoefficient, is independentof ~.

Expressed in another way, T is a linear function of ~. The quasi-linearapplication

involves holding the thermal properties constant over a few future time steps while

allowing some property variation over the entire time domain. For this case, Z is

independentof ~ but it dependson tM-1and~-l throughthe temperatureprofile at ~-l'

By definition, a sensitivity coefficient is identically zero prior to the initiation of the heat

flux step or pulse.

The pulse sensitivity coefficient denoted by X with the same arguments as those

for the step function sensitivity coefficient can be obtained from the latter by simple

relationships for linear and quasi-linear problems. For linear problems,

x
Zk =~X k

'
.x L.J .J

j=l

(10)

which states that for linear problems, the response due to a step is the sum of the

responses due to a series of pulses of constant magnitude and distributed over the same

time interval.

For quasi-linear and constant property cases, superposition is used to calculate X

from Z. For non-linear problems, the sensitivity coefficients can be calculated from

differences of the temperatures at the same time and location for two values of the heat

flux. For example, the temperature distribution is calculated for two different values of

heat flux q* and q* ( 1 + e ), where e is a small parameter of the order of 0.001. The

the sensitivity coefficient is given by
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(11)

The only difference in the X and Z sensitivity coefficient calculations is the boundary

condition imposed in calculating them.

For X, the boundary condition is

q(T) = q., tM_1~ t ~ tM
0, all other t

For Z, the boundary condition is q(t) = q. , t>tM_1.

The evaluation of the above equation requires two different temperature calculations i.e;

direct solutions.

The sensitivity coefficients described above in such detail are essential inputs in

determining the flux history. The nature of the flux boundary condition imposed on a

body at any time affects the temperature at all points in the body for all future times.

This is reflected in that the sensitivity coefficient associated with a heat flux pulse of

finite duration can be nonzero after the heat flux itself returns to zero. These effects are

more apparent closer to the boundary while the effects and interior locations are damped

and lagged. Hence while evaluating the flux going into or coming out of a body at a

given point in time, its effects at future times should also be incorporated to obtain a

more accurate picture. An interior location closer to the flux boundary holds more

reliable or "first-hand" information about the flux than a point farther removed from the

surface.

The actual steps involved in the determination of the flux history depend on the

number of sensors from which data is used and the number of future time steps from

which the temperature data for each of these sensors is used. In either case, discrete
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transient temperatures from the sensors are used to determine the surface heat flux as a

function of time. When a single sensor is used, the calcuated temperatures are made

equal to the measured values. This is called "exact matching". In this case, a single

temperature sensor is considered to be located at a depth Xtbelow the active surface. The

heat flux value qM,considered constant over the time interval tM-1< t :s; tM,that forces

a matching of the computed temperature with the measured temperature at Xt. For

realistic temperature data containing errors, this approach is known to produce significant

oscillations in the computed heat flux. Exact matching can be obtained using a numerical

form of Duhamel's integral or a finite control volume (or finite difference or finite

element) method. This formulation is linear in the unknown heat flux and hence we limit

its discussion to this stage.

Multiple temperature sensors are recommended in order to obtain as much

experimental information as possible. However, only one sensor can be matched exactly.

In order to accomodate the over-specification of the problem, a value of ~, constant

over tM_1< t :s; tM,is determined such that the least squares error accumulated over all

sensors is minimized. This is called "approximate matching". The procedure involved

in the solution of the multiple sensor, single future time step inverse problem is to treat

each sensor independently ( over a single time step) and determine the heat flux 4t,M that

exactlymatchesthe singledatapointYt,M' Afterevaluatingtheseforeachsensor,the4t,M

heat flux values are weighted according to an equation of the form

J

Q"M=L wkfik,M
k=l

(12)

where Wt is the weighting function.

Based on considerations mentioned above, the sensors closest to the active surface will

have the largest sensitivity coefficients and hence will automatically be weighted more
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heavily.

It has already been mentioned that a flux q(t) =ClM,constant over tM-1S t S ~

and zero otherwise, will influencesensor measurementsYM, YM+ h Hence, it is a

logical step to use these future temperature measurements to estimate~. Beck [ 12 ] was

the first to recognize the importance of future temperature information and apply it to the

Duhamel theorem solution of the inverse problem. Beck et al. [ 12 ] applied sensitivity

coefficient concepts and substantially reduced the number of computations required for

difference methods with future temperatures.

Now, consider the case where data from a single sensor is used and the flux is

specified as a constant over an arbitrary number of future time steps. Suppose the

inverse problem has been solvedupto time tM-1Le; the estimatedheat flux 4M-l and the

entire temperature field at time tM-Jis known. In order to estimate the unknown flux ~

at time tM,a constant value of flux is specified over 'r' future time steps such that the

least squares error between the computed and measured temperatures is minimized.

Alternatively, a linear or higher order flux variation may be specified over the 'r' future

time steps. The least squares function is

I

s=1: [Y(xkl tM+i-1)-T(Xklt, tM+i-11 qM-11 qM)] 2 (13)
i=l

Differentiating S with respect to '1M,replacing ~ by 4M,and setting it to zero yields,
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where the sensitivity coefficient is defined by

Since ClMis assumed constant over Or' future time steps, the Z sensitivity coefficient is

used instead of X.

The temperature field T ( x,y,z,t ) depends in a continuous manner on the

unknown heat flux qM' For the general case, this dependence is written as T ( Xt, t, tM-1,

qM-l,qM) where qM-lis the vector of all previous heat flux values and tM_1indicates the

time that the heat flux step begins. Because the temperature field is continuous in ClM,it

can be expanded in a Taylor series about an arbitrary but known value of heat flux q*,

as shown below.

+ (higher order terms)....... ......(16)
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For linear problems, only the first derivative is non-zero. Applyinga similar Taylor

series expansionand neglectingderivativesof order 2 and above, we get the simplified

expressIon

(17)

The arguments have been simplified for clarity. Substituting (16) in (14) and solving for

<1Mgives

r

:E~,jj=l

(18)

If the thermal property variation with temperature is treated in a quasi-linear manner, Z

has to be recalculated for each value of <1Mi.e; each time step. The subscript k serves as

a reminder that the sensitivity coefficients depend on the sensor location. The computed

heat flux qMis retained only for the time interval tM-1:S;t :s;;tMand a new heat flux is

calculated for each subsequent time interval.

When we consider multiple sensors and an arbitrary number of future time steps

for the analysis, the least squares error function must be modified to include a summation

over the number of sensors. For J sensors and r future time steps, this function is defined

as
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J I

S=L L [Y(Xk, tM+i-1)-T(xk, t, tM+i-1,QM-1'qM)] 2 (19)
k=l i =1

Once again, the value of CJM,constant over r future time steps, that minimizes S is

sought. The final expression for the estimated heat flux is

J I

Q"M=q;'+L L [Yk,M+i-1-T;,M+i-1].Kk,i
k=l i =1

(20)

where

Zk .
K - ,~

k,i- J I

L L Z;'j
k=l i=l

( 21)

Upto this point, all the function specification methods have utilized the (

temporary) assumption of a constant heat flux. As mentioned earlier, other assumed

functional forms can be utilized.
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3.6 NUMERICAL PROCEDURE AND EXPERIMENTATION

The solution to the inverse heat conduction problem is very sensitive to

measurement errors. The more information one tries to extract from the experimental

data, the more pronounced is this sensitivity. Hence, a compromise has to be reached

between accuracy and the amount of information used to solve the problem.

The scheme utilized to estimate the transient flux history and the convective heat

transfer coefficient thereof utilized temperature data from three interior sensors over

three future time steps. The three locations were chosen to be the 1"-below, 3"-below

and 5"-below positions, described in section 2.2 and shown in figure 2. The step-wise

algorithm to sequentially estimate the flux history with the constant heat flux assumption,

three sensors and three future time steps can be described as follows.

1. Imposetwo fluxboundaryconditionsq(t) =q*and q(t) =q*( 1 + e) over tM-1

< t < tM+2independently on the finite element model and perform the FEA.

2. Calculate the pulse sensitivity coefficients (X) using the difference equation Le;

equation (11). These are nine in number corresponding to each possible

combination of sensor location and future time step.

3. Calculate the gain coefficients, given by equation (21). J =r=3 in this case.

4. q-Mis retained, M is increased by one and the procedure is repeated.

Once the flux history is calculated in this manner, the convective heat transfer

coefficients are calculated using a simple interpolative equation given by

(22)
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where:

TsM= estimated surface temperature, and

TfM= surrounding fluid temperature.

In order to start solving the inverse problem, an estimate was needed for the flux

boundary conditions to be imposed on the finite element model which would produce the

same spatial temperature distribution in the model after a predetermined value of elapsed

time, as was observed in the real quenching process. The basis for comparison was the

transient thermal histories obtained from three sensors located in the interior of the body

at 1", 3" and 5" below the surface of the cavity and along the axis of symmetry.

Conceptually, this is the implementation of the "approximate matching" procedure. As

a first estimate, the heat content of the body at the start of the cooling process was

evaluated using the formula

1040

Q= J m. CpodT
25

(23)

where Cp(T) is the volumetric specific heat of the material as function of temperature.

The limits of integration denote the temperature from which the body is cooled Le;

1040°Cand the equilibrium steady state temperature it eventually reaches Le; 25°C. Since

a quarter symmetry model was considered, one fourth of the total mass was used for the

calculation of Q.

In order to impose flux boundary conditions, the quantity of heat calculated above

has to be divided by an area factor and a time factor. Based on the simplifying

assumption that the outgoing flux from all the surfaces is the same, Q was divided by the

total surface area of the quarter symmetry model. Now, the choice of the time factor
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could have been made in several ways. The simplest and least realistic approach is to

assume that the quantity of heat, Q, is dissipated via the convecting surfaces at a constant

rate over the entire duration of the cooling process, in which case the time factor is the

total time of cooling. In reality, however, the quantity of heat dissipated from a given

surface varies continuously as a function of time in a nonlinear fashion, with decreasing

quantities of heat being dissipated over identical intervals of time as cooling proceeds.

Hence, in the limit, only a fraction of this initial heat content is dissipated over a very

small interval of time. This fraction is definitely geometry dependent. Given the complex

3D geometry of the model, there is no way of calculating the different values of heat

fluxes emanating from the different surfaces analytically. It can only be said that guesses

can be made about the fraction of heat that might be dissipated over some arbitrarily

small interval of time for an arbitrary geometry. Hence, an initial trial value of -9000

W/m2 was imposed on all the convecting surfaces and the actual "averaged" flux value

was determined iteratively to be -143000 W/m2. This value of flux, when imposed on the

finite element model, produced a temperature distribution that matched very closely the

experimentally observed values 20 seconds after the start of cooling.

It was mentioned earlier that utilizing a higher sampling rate to obtain a greater

volume of experimental data also implied greater errors in the estimated fluxes. At the

same time, the greater the sampling rate, the more closely one is tracking the actual

cooling process. Revisiting the definition of sensitivity coefficients discussed in section

3.5, they are defined as the partial derivative of temperature with respect to the particular

flux component at a specific point in time. Each time step has a flux component

assocaiated with it and hence a matching sensitivity coefficient. They are therefore

indicators of how sensitive the numerical model is in its temperature response to

variations in the imposed flux boundary conditions. The greater the value of sensitivity

coefficients and the more consistently reproducible these are, the better the numerical

model. A sensitivity coefficient of zero would indicate that the numerical model is highly

insensitive in its response. It is also obvious that a greater variation in temperature
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response will be observed if we impose more divergent values of flux boundary

conditi.ons. This naturally implies larger moduli of sensitivity coefficients. In the cooling

process, a more accurate tracking of the flux variation over time would involve a higher

sampling rate of temperatures over time. The closer in time that temperatures are

recorded, the nearer in magnitude are the fluxes that caused them and hence the lower

the sensitivity coefficient moduli, which is undesirable. This leads to a question about

where to make the trade-off between sampling rate and accuracy. If a more detailed

representation of the flux history over the time domain is desired, the sensitivity

coefficient moduli are smaller and some accuracy is forgone. By opting for a coarser

representation over the time domain, some accuracy is gained. Once the exact
-':~~

discretization of the time domain is decided upon, the values of the sensitivity

coefficients are fixed.

In order to get an idea of how the sensitivity coefficients varied with the degree

of temporal discretization and sensor location, a series of numerical experiments were

conducted on the finite element model. All these used the function specification method

with three future time steps and three sensors. Estimates for the flux at the end of 30s

from the start of the cooling process were obtained using four different discretization

schemes. These were

i) estimate of the flux at t=30s from the estimates for t=Os and t= 10s i.e;using a 20s

time interval ( 0-10-30-50-70).

ii) estimation of the flux at t=30s from the estimates for t=Os and t=20s i.e; using a

10s time interval ( 0-20-30-40-50 ).

iii) estimation of the flux at t=30s from the estimate for t=Os alone i.e; using a 30s

time interval ( 0-30-60-90 ).

iv) estimation of the flux at t=30s from the estimates for t=Os, t= 10s and t=20s i.e;

using 10s time intervals with all the intermediate time steps ( 0-10-20-30-40-50 ).

The results of these test runs are shown in figures 35-40. Several observations can

be made from figure 35. First, the values of the sensitivity coefficients increase andhave
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finite values upto the third future time step for each case Le; 50s, 70s, 90s as the case

may be. As we move towards coarser time discretization Le; lOs to 20s to 30s, the

magnitude of the sensitivity coefficients increase. Discretizing the time domain in lOs

results in some of the sensitivity coefficients assuming values of 0 ( cases ii and iv ).

Comparison of these two cases indicate that the sensitivity coefficient values for either

case are almost identical. This suggests that the estimation of the flux at t=30s is

dependent mainly on the estimated flux at the previous time step ( t=20s in this case ),

which is used as input data. In other words, if the time domain is discretized in lOs

intervals, there is little use in estimating the flux at t= lOs. A coarser time discretization

can be used and some accuracy gained in the process by estimating the flux at t=20s

directly, which may then be used as input to determine the flux at t=30s. Comparison

of cases i and ii indicates that the magnitude of the sensitivity coefficients are higher for

case L Based on the belief that a higher magnitude of sensitivity coefficients indicates a

more accurate scheme, it can be concluded that the flux at the end of t=30s is more

accurately determined from the flux at the end of t= lOs than from the flux at the end of

t=20s.

Comparison of the values of the flux estimates from the four schemes, figure 36

reveals an approximately 4 % variation in the predicted values. Cases ii and iv are

associated with almost identical values of sensitivity coefficients and hence are expected

to generate similar estimates for the flux at the end of t=30s. This is indeed the case.

The two estimates differ by only 0.4 %. Comparing the magnitudes of the sensitivtiy

coefficients for cases i and iii, we find that they are considerably different. Yet, their

estimates for the flux at the end oft=30s differ by only 0.3%. This leads to an important

conclusion that the magnitude of the sensitivity coefficients do not entirely affect the

estimated value of flux. The above observation indicates that the solution has achieved

some stability.

Consider figures 37 to 40, showing the sensor location effects. All the schemes

show the same broad trends. The magnitude of the sensitivity coefficients is highest for
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the sensor located 5" below the box section and minimum for the sensor located 1"

below. This would suggest that the information from a sensor located at a faster cooling

point in the body is more reliable than the information obtained from a sensor

experiencing a slower cooling rate. This further suggests that if the fluxes were to be

determined at three positions on the surface corresponding to the three interior sensor

locations, the flux at the fastest cooling location will always be determined most

accurately. This seemingly contradicts the intuitive expectation that a flux varying more

gently over time will be easier to track down compared to a more rapidly varying flux.

However, it should be remembered that the sensitivity coefficient magnitudes indicate

howquicklyand accuratelythe finiteelementmodelof a heatconductingbodycan mimic

the real life situation in the response to a changing flux boundary condition. A thinner

section has a faster cooling rate rate and hence the rate of change of temperature and the

magnitude of that change is higher. The sensitivity coefficient magnitudes are thus

higher. In the time domain, the passage of a greater period of time implies a greater

change in temperature i.e; the response is more easily visible and therefore is associated

with a higher sensitivity coefficient magnitude. Hence the notion of sensitivity coefficient

magnitudes being an indication of the accuracy of a scheme has to be carefully

reconsidered.

Further examination of the figures showing sensor location effects reveal that the

variation of the sensitivity coefficients between any two time steps is linear. Also, the

greater the duration of time for which the problem is solved, the more linear does the

entire variation become. To clarify this statement, compare the curves for the 0-10-20-

30-40-50 case with the 0-10-30-50-70 and 0-30-60-90 cases for any given sensor location.

For the 0 50 case, the slope of the sensitivity coefficient variation between any two

time steps keeps changing perceptibly. For the 0 -70 case, there is only a marginal

change in slope after t=30s and in the 0 -90 case, almost no change is perceptible.

Further, in each case, the variation in slope becomes more apparent for a slower cooling

sensor location. This can be explained as follows. At a slower cooling sensor location,
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the effects of the variation of fluxes at the surface, are damped and lagged. In fact, this

is true for any interior location but the degree of damping and lagging increases as one

moves further away from the surface, where all the primary changes are occuring.

Hence, we expect that for sensors located at more rapidly cooling locations, the

sensitivity coefficient magnitudes are higher and vary at a faster rate too. This is contrary

to the observation made in the figures. The figures seem to suggest that the FEA solution

is more accurate in tracking milder temperature variations as compared to quicker

changes.

Recalling the definition of the sensitivity coefficient, Z,

z- T[q* (l+e)] -T[q*]
eq*

(24)

The denominator of the above equation is constant with respect to time. As cooling

proceeds, the rate of drop in temperature Le; the cooling rate, decreases since the

temperature gradient between the body's surface and the surrounding fluid, which acts

as the driving force, decreases. Hence, for times t), t2 and t3 (t) < t2 < t3), we expect

that the drop in temperature varies as

[ T(t) - T(t0] > [T(t2) - T( t3) ]

This is a reasonable expectation since the rate of cooling between t) and t2is faster than

between t2and t3. Hence the rate of increase of the sensitivity coefficient should decrease

with time as shown in figure 41. This effect is carried over to the flux estimation

process, as can be observed in the figure showing the flux estimates from the four

schemes. The drop in flux magnitude is expected to decrease with each subsequent time

step whereas the opposite trend is observed.
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3.7 RESULTS AND DISCUSSION

Based on the results of the numerical experimentation and the choice of the degree

of continuity with which the convective heat transfer coefficient is to be represented as

a function of temperature, the inverse problem was solved for every 20s time interval

during the initial stages of the cooling process. This degree of temporal discretization was

maintained until the cooling rate dropped below one degree per second, approximately.

This roughly translates to a 200 drop in temperature with every solution step, during

which time a constant flux is assumed to emanate from all the convecting surfaces of the

specimen. As the cooling process approached steady state conditions, coarser time

discretization was employed since the variation in the flux became more predictable. The

estimated flux history as a function of estimated surface temperature at some locations

on the surface of the specimen, is shown in figure 42. This is merely a plot of the

uniform flux that is assumed to emanate from every unit area on the surface of the body

with temperatures at three sample surface locations. It is known, however, that the flux

emanating from different parts on the surface of an arbitrary geometry is in general

different. Unique flux losses at different superficial locations result in unique

temperatures at those positions. Figure 42 reveals the degree of variation that may be

expected in the actual flux boundary condition as we move from thicker to thinner

sections. Figure 43 is a similar plot of the estimated convective heat transfer coefficient

for air , h, for the specimen geometry under study. It may be noted the temperature

dependency was estimated from 10400Cto 490°C, approximately. Comparison of figures

42 and 43 clearly indicates that the variation of h follows the variation of the flux history

identically. This is not surprising considering a linear interpolation formula was used to

calculate the convective heat transfer coefficient from the flux history. Since the transient

flux history was determined by an averaging process involving temperatures at three

sensor locations at different depths from the cavity section, the variation of h is
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represented as a function of the average of temperatures at three analogous surface

locations, as shown in figure 44.

The estimated temperature dependent convective heat transfer coefficient for air

was now incorporated in the database, replacing the dependency used thus far ( figure

11 ). Once again, the measured and the FEA predicted transient temperature histories at

various locations were compared, as shown in figures 45-51. In the temperature range

for which h was estimated Le; 10400Cto 490°C, the agreement is excellent. This is

particularly so for the locations experiencing slower cooling rates, namely, the cavity

section, 1"-below and 2"-below positions. Further, the disparity between the two sets of

results for locations experiencing more rapid cooling has markedly dropPed compared

to previous predictions. As mentioned earlier, this disparity exists because of the

averaged sense in which h was estimated. In order that the boundary conditions at the

faster cooling locations be represented exactly, the same inverse scheme, using

temperature data from the 3"-below, 5"-below and tip locations alone may be used to

estimate h for this portion of the specimen. Continued efforts are in progress to extend

the temperature dependency of the convective heat transfer coefficient to room

temperature.

The most important conclusion that may be arrived at from this work is that the

inverse heat transfer method may be used to estimate the temperature dependency of the

convective heat transfer coefficient for any 3D geometry. This thermophysical property

is most critical in affecting the accuracy of transient thermal history calculations using

FEA at all temperature ranges barring that during which phase transformations occur.

The inverse method may also be applied to any quenching medium. The method

however, is computationally intensive.
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CHAPTER 4

CONCLUSIONS

Based on the results of this study, it may be concluded that the transient

temperature field for a complex 3D steel ge<)metrycan be predicted with reasonable

accuracy using FEA. Three constituents of the database of thermophysical properties
::..".,

were examined closely and their effects quantified. Amongst these, it is seen that the

temperature dependent thermal conductivity plays only a marginal role in calculating the

transient thermal histories. For this property, the database developed during this research

program is quite adequate and may seemingly be applied to a wide variety of steel

compositions. In essence, the metal thermal conductivity of steels seems to be a

"macroscopic" property whose value does not vary significantly as the proportions of the

different constituent phases change.

The use of inverse heat transfer techniques to estimate the temperature dependent

convective heat transfer coefficient for air indicates that boundary conditions governing

heat flow in complex 3D geometries may be accurately established. This ensures accurate

temperature field calculations. The inverse method may be used for any quenching

medium, like water, which is commonly used in the heat treatment industry. Numerical

schemes that mimic processes more realistically may be used. For example, the complex

geometry may be discretized into several lumped bodies and a linearly varying flux may

be assumed to emanate from the convecting surfaces in the time elapsed between each

solution step. This would isolate and account for the effect of geometry on the resultant

microstructure in a steel specimen more accurately. This could be considered for future

for future work.
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The parameter that remains an enigma is the temperature dependent volumetric

heat capacity, particularly so for the air cool case. The direct transformation of austenite

to martensite during a water quench is considerably simpler to model. Information about

the kinetics and energy of phase transformations is cradled in the variation of this

property over temperature. It is this information that has to be available as input for the

predictive model. The energy releases as a function of temperature can potentially be

determined experimentally using a Differential Scanning Calorimeter.

The prediction of the transient temperature field is in general better for slower

cooling locations. In order that the predicted thermal history is accurate at all locations,

portions of the specimen experiencing significantly different cooling rates can be modeled

separately to determine exact boundary conditions at those locations. This aspect may be

considered as a modification for future work. The convective heat transfer coefficient

values determined at locations with slower cooling rates can be expressed as functions

of the temperature history at the more rapidly cooling part, for example, and this

dependency imposed as the boundary condition there. This would involve the

representation of different convective boundary conditions at different areas on the

surface of the finite element model of the specimen. Implementation of this type of

boundary condition would significantly increase the computational intensity of the

analysis.
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Figure 1. Quarter symmetry model of the specimen.
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center of cavity section

111below location

311below location

5" below location

Figure 2. Specimen type A.

211below location

4" below location

6" below location

tip

Figure 3. Specimen type B.
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Figure 4. Domain and boundaries where situations described by equations 1-4 in chapter

2, exist.



Figure 5. Finite element mesh of the quarter symmetry model.
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Figure 6. Temperature dependency of the thermal conductivity used in the
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Figure 9. Comparison between measured and FEA calculated cooling characteristics at
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Figure 10. Comparison between measured and FEA calculated cooling characteristics at

the center of the cavity section; Goldak's [5] properties used in the FEA; water quenched

from 9500C.
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Figure 14. Comparison between measured and FEA calculated cooling

characteristics at the center of the cavity section; temperature dependent

convective heat transfer coefficient used in the FEA; water quenched from

950°C.
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Figure 15. Experimentally determined CCT diagram for specimen steel

chemistry .
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Figure 16. Measured cooling curves superimposed on experimentally

determined CCT diagram for specimen steel chemistry.
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Figure 17. Modified temperature dependency of thermal conductivity used

in the FEA.
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Figure 18. Comparison between measured and FEA calculated cooling

characteristics at the center of the cavity section; modified temperature
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Figure 19. First modification of the temperature dependency of the

volumetric specific heat capacity used in the FEA.
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Figure 20. Comparison between measured and FEA calculated cooling

characteristics at the center of the cavity section; modified temperature

dependency of volumetric specific heat capacity; air cooled from 9500C.



Figure 21. Expected and approximated transformation kinetics for the FE

air cool model.

114c u $I.81) Me
IJID1".WI".

Ac,-I\lOf,",,-UIII

Figure 22. CCT diagram for AISI 4024 steel.

60

100 .
\

expectedc \
0 80 \ - - - - approximated-.::
111 \
E... \
0 60- \
VI
c \
111... \I-- 40 \
c \
Q)
U \...
Q) 20 \Q.

\

o I
\

, , "
0 200 400 600 800 1000

Temperature, °c

...

,.

,.

i-.
j

..

...

...

'" , , \ II.



61

Figure 23. Expected and approximated transformation kinetics for the air

cool FE model, based on kinetics observed in AISI 4024 steel.
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Figure 25. Comparison between measured and FEA calculated cooling

characteristics at the center of the cavity section; second modification of

temperature dependency of volumetric specific heat capacity; air cooled

from 9500C.
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Figure 27. Comparison of measured and FEA calculated cooling

characteristics at the center of the cavity section; third modification of

temperature dependency of the volumetric specific heat capacity; air

cooled from 1040°C.
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Figure 28. Measured cooling characteristics at locations I" below, 3"

below and 5" below the surface of the cavity section and along the axis

of symmetry; air cooled from 1040°C.
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Figure 29. Calculated cooling characteristics at locations 1" below, 3"

below and 5" below the surface of the cavity section and along the axis

of symmetry; air cooled from 1040oC.
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Figure 30. Comparison of measured and calculated cooling characteristics

at the I"-below location; air cooled from 1040°C.
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Figure 31. Comparison between measured and FEA calculated cooling

characteristics at the 3"-below location; air cooled from 1040°C.

1400.0

1200.0

1000.0

U'"
800,0a.I..

.aCIS..
a.I 600,0Q.
e
a.I

E--
400.0

200.0

0.0
0.0



I

1400.0 ~

1200.0

69

Go - - -0numericalresult
- experimental result

0.0
0.0 2000.0 4000.0 6000.0 8000.0

Time, seconds

Figure 32. Comparisonbetween measuredand FEA calculated cooling

characteristicsat the 51t-belowlocation; air cooled from 1040°C.
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Figure 33. FEA calculatedvariation in cooling characteristicsbetween

center of the cavity section and I"-below location; air cooled from

1040°C.
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Figure 34. Measured variation in cooling characteristics between center

of cavity section and 1"-below location; air cooled from 1040°C.
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Figure 35. Temporal disretization effects.
.1000000

-120000.0

-130000.0

,
,,

,

,

,
,

~

~."

10.0 20.0

I

0.0005 l
I

r

0.0000
0.0

-140000.0

-150000.0
0.0

Figure 36. Flux estimates for t=30s from the four schemes.
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Figure 37. Sensor location effects for the 0-10-20-30-40-50 scheme
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Figure 38. Sensor location effects for the 0-20-30-40-50 scheme.
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Figure 39. Sensor location effects for the 0-30-60-90 scheme.
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Figure 40. Sensor location effects for the 0-10-30-50-70 scheme.
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Figure 41. Observed and expected variation of sensitivity coefficient with cooling

duration.
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Figure 42. Estimated flux history.
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Figure 43. Estimated temperature dependency of the convective heat transfer coefficient

for air.
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Figure 44. Estimated convective heat transfer coefficient for air as a function of average

estimated surface temperature.
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Figure 45. Comparison between measured and FEA calculated cooling characteristics at

the center of the cavity section; temperature dependent convective heat transfer

coefficient calculated using inverse method used in the FEA; air cooled from 1040°C.
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Figure 46. Comparison between measured and FEA calculated cooling characteristics at

the 1"-below location; temperature dependent convective heat transfer coefficient

calculated using inverse method used in the FEA; air cooled from 1040°C.
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Figure 47. Comparison between measured and FEA calculated cooling characteristics at

the 2"-below location; temperature dependent convective heat transfer coefficient

calculated using inverse method used in the FEA; air cooled from 950°C.
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Figure 48. Comparison between measured and FEA calculated cooling characteristics at

the 3"-below location; temperature dependent convective heat transfer coefficient

calculated using inverse method used in the FEA; air cooled from 1040°C.
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Figure 49. Comparison between measured and FEA calculated cooling characteristics at

the 4"-below location; temperature dependent convective heat transfer coefficient

calculated using inverse method used in the FEA; air cooled from 950°C.
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Figure 50. Comparison between measured and FEA calculated cooling characteristics at

the Sit-below location; temperature dependent convective heat transfer coefficient

calculated using inverse method used in the FEA; air cooled from 1040°C.
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Figure 51. Comparison between measured and FEA calculated cooling characteristics at

the tip of the specimen; temperature dependent convective heat transfer coefficient

calculated using inverse method used in the FEA; air cooled from 950°C.
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APPENDIX A

The fineness of a finite element mesh is generally limited to a finite number of

degrees of freedom in commercial codes. This limitation is felt more acutely if coupled

analyses, such as thermal/stress analyses, are to be performed, since the number of

degrees of freedom are now higher. Specifically, the number of degrees of freedom and

complexity of computations for structural analysis are higher than for thermal analysis.

The original finite element mesh, shown in figure 5, was designed to satisfy the

constraints of a coupled analysis. However, since the emphasis of this study was heat

transfer analysis, a finer, more uniform mesh, shown in figure AI, was used.

The contribution of radiation in the estimation of the outgoing flux from the

cooling specimen is incorporated in the inverse heat transfer method used in this work.

Conceptually, a flux is calculated such that a least squares error accumulated over several

sensors in minimized. This methodology of flux estimation does not distinguish between

the different modes of heat energy dissipation Le; convection and/or radiation.

Finally, the inverse method may possibly be used to estimate the latent heat

released when solid state phase transformations occur. This estimate could then be

approximated to determine the temperature dependency of the volumetric heat capacity

over this temperature range. The actual proCedure would involve the application of the

inverse method twice. First, the transient temperature history from an interior location

of a lumped geometry of the desired steel chemistry has to be obtained, as the body

cools. With this data, the inverse method can be used to estimate the flux history in the

temperature range over which the phase transformations occur. Next, the experimental

cooling curve may be approximated to represent a transformation"less" situation, for

which, the inverse method can be applied once again to estimate the flux history without

the contribution due to phase transformations. The difference between the two estimates
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will provide an initial approximation of the energy release rates in the relevant

temperature range.
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Figure A1. Finite element mesh of the quarter symmetry model after refinement
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