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In the past decade, permeable reactive barriers containing zero-valent iron metal 

(FePRBs) have emerged as the most significant new technology for the treatment of 

groundwaters contaminated with chlorinated organic compounds and, more recently, 

other organic contaminants such as 2,4,6-trinitrotoluene (TNT). Principle issues relating 

to the design, implementation, and monitoring of FePRBs include the rates of 

contaminant transformation, the resulting distribution of products, and the potential 

changes in FePRB performance due to aging of the iron material. Each of these issues is, 

at its root, a problem of chemical kinetics. In this thesis, commonly observed kinetic 

expressions for contaminant transformation are derived. Analyses of the simplifications 

involved in these derivations indicate that the forms of the rate laws are correct (either 

exactly or approximately) over a wider range of conditions than previously expected and 

that reaction rates may respond in unexpected fashion to changes in concentrations of 

reacting species or iron loading. These theoretical developments are applied to 

experimental investigations of product distribution and FePRB longevity for the 

treatment of TNT contaminated groundwaters. 
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CHAPTER 1 

Overview 

1.1 Introduction and Problem Statement 

In the past decade, permeable reactive barriers containing zero-valent iron metal 

(FePRBs) have emerged as the most significant new technology for the treatment of 

groundwaters contaminated with chlorinated organic compounds and, more recently, 

other organic contaminants such as 2,4,6-trinitrotoluene (TNT) Since the strategy of 

using iron to treat chlorinated solvents was first articulated 3, researchers from a wide 

variety of academic disciplines have investigated aspects of this technology, including 

reaction pathways, degradation products, chemical mechanisms, chemical kinetics, and 

mass transport. Some significant results include (i) the surface area normalization of 

observed degradation rate constants and the application of kinetic models accounting for 

sorption and site limitation 5-7, (ii) the correlation of reduction rates to the lowest 

unoccupied molecular orbital energy (ELUMO) of the contaminant ', (iii) the identification 

of intermediate species and end products for a host of initial contaminants, and (iv) the 

recognition of the role of oxide films in controlling the reduction process 9. 

A common theme in all of these research efforts is the kinetics of the iron 

mediated reduction reactions. Kinetic information for a given contaminant is key to 

designing FePRBs. These kinetic studies also form a principle means of determining 

reaction mechanisms and the distribution of reaction products. Many of the kinetic 

studies with the iron metal system have focused on defining empirical rate equations with 

batch and column disappearance data. In contrast to these macroscopic studies, recent 

molecular modeling efforts have focused on reaction kinetics at the atomistic scale. 



Integration of these two bodies of work, however, is limited by the significant theoretical 

gulf that lies between these two scales (see figure I). A comprehensive theory of scaling 

has been a long-term goal in theoretical chemical kinetics. In addition to possessing 

scientific impact, such a construct would be useful in the ongoing research and 

development of iron metal remediation technologies. This thesis is focused on a piece of 

the scaling problem that, to date, has received little attention-scaling between 

mechanistic chemical kinetics, where all stable reactants, products, and intermediates in a 

reaction are specifically treated, and empirical chemical kinetics, where the number of 

species considered explicitly is minimized to only those that are important. 

1.2 Theory of Chemical Kinetics 

The word "kinetic" is derived from the greek word "kinetikos" meaning to move. 

In physics, the study of motion (mechanics) is divided into kinematics, which deals with 

the description of motion, and kinetics, which deals with the effects of forces on motion. 

In chemistry, such a distinction is not made and chemical kinetics refers to the study of 

the time rate of change of the chemical composition of materials. The chemical 

composition of a material can be described, macroscopically, in terms of thermodynamic 

state variables such as temperature, pressure, or chemical potential, but, the most 

common macroscopic descriptor is chemical concentration (which is related to chemical 

potential) because, as we will see, reaction rates usually depend directly on the 

population of reacting species. 

From a molecular viewpoint, chemical kinetics involves the study of chemical 

reactions in which one or more molecules undergo a transformation to form a new 

molecule or molecules. Of course, at thermodynamic equilibrium, the macroscopic state 

variables listed above remain unchanged but molecular transformations still occur and the 

equilibrium values of the state variables are defined by the kinetics of those 

transformations. The amount of time required for a single molecular transformation is 

typically on the order of a femto-second while changes in the properties of materials are 

usually on a much longer time scale (e.g., microseconds for the combustion of explosives 

to kilo-years for mineral weathering). The kinetics of a chemical reaction are, therefore, 

determined by the number of molecular transformations that occur per unit time and 



chemical kinetics can be thought of as a Markov chain "I2 with the transition 

probabilities determined by the mechanics of the underlying molecular transformations. 

Theoretical methods for predicting the probabilities of a molecular transformation 

are based on the conclusion+riginally drawn by Arrhenius 13-that a chemical reaction 

involves passing over an energy barrier between two (local) minimum energy molecular 

configurations. The initial energy minimum corresponds to the reactant(s) and the final 

energy minimum corresponds to the product(s) of the reaction. Additional energy minima 

may exist between the reactants and products and these minima correspond to stable 

reaction intermediates. 

Calculating the energy for any molecular configuration involves the evaluation of 

the quantum mechanical Hamiltonian for the bond angles, inter-atomic distances, and 

electronic configuration that are particular to the given configuration. Predicting a 

molecular transformation probability, then, involves energy calculations for a range of 

molecular configurations leading to an energy hyper-surface generally referred to as a 

potential energy surface 14. Since the reaction can follow any path across the potential 

energy surface, even discontinuous paths involving quantum tunneling, many schemes 

for evaluating chemical kinetics from first-principles simplify the hyper-surface to a one- 

dimensional energy curve that follows the minimum energy path between reactants and 

products. This minimum energy path is referred to as the reaction coordinate and reaction 

coordinate following is the simplification employed transition-state theory l5 and Marcus 

theory " j 9 1 7 .  

Chemical reactions are often times conceptualized in terms of the reaction 

mechanism where all important molecular transformations are represented as the 

molecular species involved in the transformation connected by an arrow which signifies 

the transformation. The kinetics of the chemical reaction may be specified by 

determining an equation for the rate of each of the transformations in the reaction 

mechanism. The equations are known as the rate laws and are usually formed from the 

product of a constant (known as the rate constant) and the concentrations of the reacting 

species raised to an integer power which is equal to the molecularity of the given species. 

The reaction mechanism can be related to the potential energy surface by considering a 

graph whose nodes represent the local minima in the potential energy surface (i.e., the 



reactants, intermediates, and products) and whose edges are then drawn between any two 

nodes that are connected by a segment of the reaction coordinate that passes through no 

other potential energy surface minima. The rate laws for the reaction mechanism are, 

thus, directly related to the transformation probabilities between connected nodes on the 

PP~. 

The kinetics of a reaction depend, in principle, on the concentrations of all 

reactants, intermediates, and products. For many reactions, however, the rate is found to 

depend primarily on the concentrations of only a few of the stable species (e.g., the 

reactants). Rate laws that account only for the important species can, therefore, be 

empirically defined to capture the critical features of laboratory kinetics experiments. 

Since empirical rate laws need not be constrained by the principles of Markovian 

dynamics, they may take forms other than the product of concentration terms that apply 

to mechanistic rate laws. Such products are, however, still found to be broadly applicable 

with the allowance of non-integer powers on the concentrations '*. Other common forms 

for empirical rate laws include the quotient of two finite series of concentration terms l9 

and exponential rate equations derived from spectral integration. 

1 3  Scaling Chemical Kinetics 

Figure 1 shows the theoretical constructs described above organized according to 

the length scales at which each is most relevant. Quantum mechanics details the 

structures of the reacting species and, therefore, defines the most basic theory of chemical 

kinetics but is also the most difficult to apply to kinetics problems in natural and 

engineered systems. Statistical mechanics does not consider the structure of individual 

molecules but still treats them each as individual entities. It is, therefore, most relevant to 

the scale of a small (hundreds or thousands of molecules) collection of molecules. 

Mechanistic kinetics no longer considers molecules as individual entities but, rather, 

considers all like molecules as belonging to a class called a chemical species. All possible 

chemical species are treated in a mechanistic kinetic theory and reaction rates are 

followed by examining fluxes into and out of each class of molecules. This level of 

theory is applicable to reactions occurring in a well controlled and characterized 

environment and, therefore, mechanistic kinetics is most relevant at the scale of a 



laboratory experiment. Empirical kinetics does not consider all of the possible chemical 

species but, rather, only those that are particularly important to the reaction kinetics such 

as the reactant(s) and product(s). This level of kinetic theory is applicable at the 

laboratory scale but does not require the full knowledge of conditions needed to apply 

mechanistic kinetics and is, therefore, relevant to systems found in nature and to 

engineering applications of chemical kinetics such as the FePRBs considered in this 

thesis. 

Transferring information between these scales of theory is the central problem of 

scaling chemical kinetics. Information may either be transferred up in length scale or 

down. In scaling up, the task is to utilize information at some scale to predict behavior at 

the next higher scale. For scaling from quantum mechanics to statistical mechanics, this 

predictive scaling consists of calculating the probability of transition from the present 

molecular configuration to all possible future configurations. Statistical mechanical 

information can be scaled up to the mechanistic kinetics level by determining the mean 

field solution for the Pauli master equation. 

The task in scaling down is to constrain the possible mechanisms at some scale to 

those that are consistent with the information about the behavior at the next higher level. 

In this sense, scaling down is a diagnostic process where the nature of the parts of a 

system are elucidated from the behavior of the whole. In many respects, this diagnostic 

scaling represents a greater challenge than predictive scaling. Some promising techniques 

include micro-environment embedding-where a quantum mechanical problem is 

coupled with a statistical mechanical representation of the system environment-and 

maximum entropy methods-where, given the constraint of some known mean field 

solution, the statistical behavior of a system is assumed to maximize entropy generation. 

Many of the issues surrounding scaling between quantum mechanics and 

mechanistic kinetics, especially scaling up, are technical rather than strategic. Effective 

scaling strategies have already been identified and the remaining challenge is to 

implement these strategies efficiently. Scaling between mechanistic and empirical 

kinetics, on the other hand, is a largely unsolved problem with respect to both strategies 

for scaling and their implementation. Scaling strategies suggested by this thesis include 

rate limiting step determination, process lumping, and application of approximate rate 



laws for scaling up; and bifurcation parameter variation and analysis of kinetic models 

that are generic with respect to mechanism for scaling down. 

1.4 Summary of Contributions 

The chemical kinetics of solute reduction by iron metal is necessary information 

for the design of FePRBs and is an important tool for determining the details of the 

reaction mechanism. This thesis-focused on scaling between mechanistic and empirical 

chemical kinetics-has made the following contributions toward improving our 

understanding of contaminant transformations on iron metal: 

(i) Kinetic expressions for multi-stage reactions--of which heterogeneous 

reactions are a prime example-are often simplified by pseudo-steady-state 

and/or pseudo-equilibrium assumptions. Mistaken application of these 

assumptions is, however, frequently encountered, and little research has 

addressed the breadth of their applicability. Chapter 2 of this thesis outlines the 

derivation of common empirical rate laws for heterogeneous reactions using the 

pseudo-steady-state and pseudo-equilibrium assumptions and addresses the 

generality of the empirical rate laws from a dynarnical systems viewpoint. 

(ii) The most common rate expressions found for iron mediated reduction reactions 

are the first-order rate law and the Langmuir-Hinshelwood equation. The first- 

order rate law is also found to be broadly applicable throughout environmental 

chemistry and the Langmuir-Hinshelwood equation is foundational to 

heterogeneous catalysis. A principle theoretical challenge to each of these 

expressions is that they assume rate control by a single reaction or, in the case 

of iron metal, a single reactive surface site. In chapters 3 and 4 the first-order 

rate law and the Langmuir-Hinshelwood equation (respectively) are examined 

as approximate expressions for the kinds of multi-pathway reactions that are 

likely occurring in complex systems such as reactions on the surface of iron 

metal. 

(iii) FePRBs have been employed in the treatment of 2,4,6-trinitrotoluene (TNT), 

however, in laboratory experiments, the appearance of the primary reduction 

product, 2,4,6-triaminotoluene (TAT), has been found to vary widely. Other 



potential products include a host of polymeric amino compounds which are 

potentially inhibiting to reduction reactions on the iron surface. The distribution 

of products for the Fe + TNT reaction is, therefore, of considerable interest for 

assessment of long-term FePRB performance. In chapter 5 a combination of 

kinetic experiments and kinetic modeling is performed to elucidate reaction 

mechanisms and to predict the manner in which iron loading and initial TNT 

concentration control the appearance of TAT versus other, surface bound, 

products. 
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scale of greatest relevance. 



CHAPTER 2 

The Theory of Interfacial Chemical Kinetics 

2.1 Abstract 

Interfacial reactions, such as the transformation of environmental contaminants on 

Iron metal, involve (i) transport of the reactant to the surface, (ii) adsorption, (iii) 

transformation of the adsorbed reactant, (iv) desorption of products, and (v) transport of 

products away from the surface. The full mathematical statement of the kinetics of 

interfacial reactions is complex and not usually useful for the analysis of kinetic data or 

for predicting the fate of contaminants in the environment. In this paper we present the 

simplifications that lead to commonly applied rate equations including the pseudo-first- 

order equation, the Langmuir-Hinshelwood equation, and the set of equations for bimodal 

behavior. The key assumptions in this procedure include pseudo-steady-state 

assumption-where one or more of the intermediate phases is assumed to have a 

negligible time derivative-and the pseudo-equilibrium assumption-where one or more 

of the reversible reactions are assumed to rapidly establish an equilibrium. Analysis of 

these assumptions indicates that they are rigorously applicable only in certain limiting 

cases and, further, that the form of the simplified rate equations are correct (either exactly 

or approximately) over a wider range than that range where pseudo-steady-state or 

pseudo-equilibrium approximations are applicable. 



2.2 Interfacial Kinetics in Environmental Chemistry 

2.2.1 Environmental relevance of inte@acial redox reactions 

A large part of environmental chemistry is concerned with the fate and transport 

of material within and among compartments, such as surface waters, soil, sediments, 

groundwater, and air. Increasingly, many researchers are turning their attention to the 

chemical transformations that occur at the interfaces between compartments. This focus 

on interfacial chemistry is driven both by the significance of such reactions in fate and 

transport and by the scientific challenges posed by reactions at interfaces. 

The factors that impart environmental significance to interfacial reactions are 

largely the same as those that have led to the scientific interest in such systems. The 

asymmetrical nature of the forces at interfaces causes the chemistry in these systems to be 

quite distinct from that in the bulk phases. These asymmetries present interesting 

problems for both theoreticians and experimentalists. The same asymmetries can generate 

highly reactive regions that often determine the lifetimes of chemicals in the 

environment. Furthermore, interfacial asymmetries may be engineered to mitigate critical 

contamination problems. 

Electron transfer reactions represent an important class of interfacial reactions. 

Many environmental contaminants are redox active and many remediation schemes rely 

on manipulating the biogeochemical redox conditions of the media containing the target 

pollutant. Scientifically, matters of electronic structure form the basis for our 

understanding of molecules and electron transfer reactions comprise a significant 

component of our understanding of homogeneous chemical reactions. Furthermore, 

because electrons are very important to molecular structure, electron transfer reactions 

offer a prototype for the development of chemical reaction theory. This last point is 

particularly significant to the study of heterogeneous chemical reactions where the 

lessons learned from studying heterogeneous electron transfer may be used to develop a 

coherent view of all surface reactions. 



2.2.2 Generalized heterogeneous reaction kinetics. 

The general mechanism for a heterogeneous redox reaction is depicted in Figure 

2.1. For a reaction to occur, an oxidant molecule in the bulk fluid (Ox) must move to a 

position near the surface, form a precursor complex with the surface (Ox:S), accept an 

electron to produce an adsorbed reduced molecule or successor complex, (Red:S), detach 

from the surface and move back into the bulk fluid (Red). 

Concentrations in the bulk-under some velocity field-are given by the 

advection-diffusion equation (assuming isotropic diffusion in a dilute solution). 

Where [Ox] and [Red] are the concentrations of oxidized and reduced molecules at some 

point, {x, y, z), in the space of the bulk fluid which is bounded by the reactive surface, 

zmctiw = S(x, y), and possibly, a non-reactive container wall, zMll(x, y). 3 denotes the 

velocity field and D, denotes the diffusion coefficient of species "x" (Ox or Red). The 

surface reactions on S(x, y) can be represented as boundary conditions for the system of 

equations (1 and 2). 

d [Red:S] 
= k, [Ox: S] + k z  [s] [~ed], - k:: [ ~ e d : ~ ]  

dt 

S, = [S] + [Ox:S] + [Red:S] (7) 

Where ii is the unit vector normal to the reactive surface, [S] is the concentration of 

reactive surface sites (per unit volume of solution), [Ox:S] and [Red:S] are concentrations 



of molecules adsorbed to the surface (per unit volume of solution), and the k's are rate 

constants for the chemical reaction specified by the subscripts and superscripts. To 

complete the set of equations, flux boundary conditions must be specified that are 

specific to the type of reactor being considered (e.g., no flux across the container walls in 

a batch reactor or flux in and flux out of a fixed bed reactor). 

The full solution to equations (1-6) involves solving the Navier-Stokes equations 

for C as well as exactly specifying the geometry of the reactive surface and accounting 

for any movement of that surface. The level of detail involved in such a solution is not 

available for most systems and, therefore, the mass transport equations are simplified by 

assuming a (locally) well mixed bulk solution with a stagnant boundary layer. The 

boundary layer is assumed to be of constant thickness between the bulk fluid and the 

reactive surface across which Ox (and Red) molecules must diffuse before (and after) 

reacting as shown in Figure 2.2. We then assume that the concentration gradient in the 

boundary layer instantly attains a steady-state so that equations (1-2) may be set = 0 

giving a linear concentration profile in the boundary layer between the bulk 

concentrations ([Ox] and [Red]) and the surface concentrations ([Oxlo and [Redlo). 

[Red]< = 
'Red 

Where 5 is the distance from the reactive surface. The diffusive fluxes of Ox and Red 

normal to the reactive surface and can be calculated as follows: 

[( 'Red]sleWd edb * -DRd ( s . ~ [ ~ e d l )  = -DRe, . F ) =-- D" (Wedl - [~ed l ,  ) 
'Red 

Differential equations can now be derived for the bulk concentrations by considering 

advective fluxes in and out of a control volume and a sink term due to diffusion into (or 

out of) the boundary layer surrounding any reactive surfaces in that control volume. 



Where k& is the mass transfer coefficient for x and J, denotes the flux of x (i.e., moles 

or x per unit time per unit area) across the surface of a control volume of size Vcv with 

unit vector, ii, normal to the surface (i.e., pointing outward from the control volume). 

The surface integrals in equations (12-13) are > 0 for a net flow of X out of the control 

volume. The selection of the control volume is not arbitrary since the applicability of 

equations (12-13) requires that the concentration of Ox and Red be constant within the 

control volume. We discuss the selection of control volumes for common reactor designs 

in the next section. 

The simplified version of equations (3-7) are found by substituting equations (10) 

and (1 1) for the diffusive flux terms in equations (3) and (7) 

d [Red: S] 
= k ,  [Ox:S] + k z  [S] [Red], - k:: [ ~ e d : ~ ]  

dt 

d[Rd10 = k E p ,  ([Red] - [Red], ) - k z  [s] [Red], + k p  ~ e d : ~ ]  
dt 

(17) 

S, = [S] + [Ox:S] + [Red:S] (18) 

Equations (12-18) can be viewed as the set of rate laws that apply to the multi-stage 

reaction depicted in Scheme 1 where mass transport is treated as the first and last 

reversible steps in the reaction sequence. 

Ox, kur , 'OX:S+R~~:S-R~~, +s, km , 
k, 

ox,+s,  ; 
k* km 

Red Scheme 1 



The mass balance equation must, however, be modified from what would be implied by 

Scheme 1 to account for the fact that a given concentration in the bulk of the control 

volume may contribute a different number of total molecules than that of the same 

concentration in the boundary layer. This can be done by considering the total moles of 

Ox and Red in the control volume: 

Total Moles = Bulk Moles + Boundary Layer Moles + Adsorbed Moles 

Where VB& is the volume of the bulk solution, V& is the volume of the appropriate 

boundary layer, and V,, is the total solution volume in the control volume. 

23  Types of Kinetic Data for Reduction of Contaminants by Iron Metal 

2.3.1 Batch Reactor 

The kinetics of reactions on granular iron metal are often investigated by 

introducing the contaminant of interest into a slurry of water and granular iron in a closed 

vessel, applying a means of mixing the slurry, and sampling, over time, the mixture for 

concentrations of the contaminant and/or daughter products. In this type of reactor, 

known as a batch reactor, the bulk solution should be well mixed so the control volume in 

equations (12-13) can be taken as the entire vessel. During the course of the reaction 

there are no fluxes into the vessel and the only flux out of the vessel is through the 

sampling actions, which are designed to be small relative to the reactor volume. The 

surface integrals in equations (12-13) can, therefore, be set = 0 which gives the following 

equations in the place of equations (12-13). 

Equations (14-18) remain the same. 



The kinetic data produced in a batch reactor are time series of concentration data 

such as those shown in Figure 2.3 for 2,4,6-trinitrotoluene (TNT) reacting with granular 

iron (12.5 g/L Fisher electrolytic). In general, the kinetic model contained in equations 

(20-21) and (14-18) is over-parameterized for the treatment of such kinetic data and, 

therefore, simplifications must be made. The necessary simplifications depend on the 

kinetic regime that is observed in the data. Common kinetic regimes and the associated 

simplifications are discussed in Section 2.4. 

2.3.2 Column Reactor 

Under environmental conditions, interfacial reactions typically involve water 

moving past the (relatively) fixed surfaces of soil, sediment, or aquifer grains. To 

simulate these conditions in the laboratory, the kinetics of contaminant transformation are 

studied in columns filled with granular material and have a contaminant containing 

solution as the influent. The flow in such a column reactor can be treated as one- 

dimensional along the length of the column and the bulk fluid can be assumed to be well 

mixed along the plane normal to the direction of the flow. Under these assumptions, the 

appropriate control volume for a column reactor is a differential slice across the column 

with area equal to the cross-sectional area of the fluid phase in the reactor (i.e., the cross- 

sectional area of the column less that area occupied by solids). 

= lim E A , ~  
vcv h + O  

where &is the porosity of the column, Ax-, is the cross-sectional area of the column, and 

Ax is the thickness of the control volume. The fluxes of x (Ox or Red) in and out of the 

control volume are due to advection and diffusion. 

where v is the magnitude of the velocity and 2 is the unit vector in the direction of the 

flow. Z is -f for the portion of the control volume corresponding to 7; and f for the 



portion corresponding to jL . The surface integrals in equations (12-13) can then be 

evaluated as follows: 

Substitution of equation 25 into equations (12-13) gives: 

dWd1 awed1 + Dx - = -v- - k g p ,  ([Red] -[Red],) 
dt ax ax2 

Equations (14-18) remain the same. Ignoring the diffusion terms (i.e., plug flow) and the 

time derivatives (i.e., steady-state operation) gives a more familiar form of equations (26- 

27): 

As implied by equations (28-29), kinetics in a column reactor are usually examined by 

sampling steady-state concentrations along the length of the column. An example of 

concentration vs. distance data collected in a column reactor is shown in Figure 2.4. 

2.4 Kinetic Models for Interpretation of Heterogeneous Kinetic Data 

2.4.1 Pseudo-First-Order Kinetics 

Numerous studies on the kinetics of contaminant reduction by iron metal have 

produced disappearance data that are sufficiently described by a first-order rate law '". 
ro, = -kobs [OX] (30) 

where ro, is the rate of Ox disappearance and &, is the first-order rate constant. In a 

batch reactor, ro, = d[Ox] / dt and [Ox] disappears geometrically with time. In a steady- 



state column reactor ro, = v d[Ox] 1 dx. In a column operated at steady state, [Ox] 

disappears geometrically with distance. 

First-order reaction kinetics can arise from a variety of kinetic scenarios (ref 

FOC). In heterogeneous systems, these include mechanisms where one of the stages in 

scheme 1 is rate limiting, such as mass transfer control, adsorption control, and surface 

reaction control (with abundant surface sites). First-order disappearance kinetics can also 

arise when the rate of reaction is controlled by multiple first-order processes in series 

such as mass transfer and surface reaction (with abundant surface sites). 

A first-order rate equation that is appropriate for any of the possible rate limiting 

steps or cases of mixed control can be derived by assuming that active sites are present in 

an abundance (i.e., d[S]/dt = 0) and that the time derivatives of [Oxlo and [Ox:S] can be 

neglected in equations (14-15). This last assumption is known as pseudo-steady-state 

because the intermediate species are treated as being in steady-state though their 

concentrations change in response to changes in the concentrations of the parent 

compound. 'The pseudo-steady-state assumption can be written formally as: 

0 = kZ [S] [Ox], - k z  [OX:S] - k, [OX:S] 

Equations (31-32) can be rearranged to give expressions for [Oxlo and [Ox:S] in terms of 

[Ox]. 

[OX], = kEp,kZ +kEp,k, 
kEf ik2  + kgpak, + '2 [sI', 

[Ox1 

Substituting equation (33) into equation (12) gives: 

Equation (35) is a first-order rate law only if [S] is constant. We consider the case where 

[S] is variable in the next section but here we assume 



is] = ',pa (36) 

Where rTa denotes the surface concentration of reactive sites. This allows us to express 

equation (35) as a first-order rate expression: 

dPx1 1 - = -- # JOx . R ds - k,pa [Ox] 
dt VC" 

Where kA is the surface area normalized first-order rate constant. 

If a single stage in scheme 1 is rate limiting, the appropriate rate-constant can be 

obtained by finding the limit of equation (38) as the non-rate limiting terms approach 00. 

For mass transport limited reactions, letting k z  , k 2 ,  and k, + 00 gives: 

Ox k, = k, (39) 

For adsorption limited reactions, letting k g  , k, --r 00 gives: 

k, = kzrT,  (40) 

For surface reaction limited reactions, letting k g ,  k z  , k 2  + 00 gives: 

Where the ratio of k z  to k z  is finite even though the individual rate constants are taken 

to be infinite. 

2.4.2 Site-Limited Kinetics 

A number of studies have demonstrated mixed order kinetics 7-13 where the 

disappearance rate is constant (i.e., zero-order) at high concentrations and proportional to 

[Ox] (i.e., first-order) at low concentrations. An example of mixed order disappearance 

data collected in a batch reactor is shown in Figure 2.5. 

A rate law that captures the observed mixed order behavior can be derived by 

relaxing the abundant site assumption in the derivation of equation (37) and including 

only intra-species competition for reactive sites (i.e., ignoring [Red:S] in equation 18). 



Assuming a steady-state for [Ox:S] (i.e., setting equation 11 to zero) and substituting 

equation (18) with [Red:S] = 0 gives the following expressions for [S] and [Ox:S]. 

O x =  ox Substituting equation (42-43) into equation (14) and defining K, k,. /(kZ + krm) 

yields a simplified form of equation (14). 

Equation (44) taken with equation (12) gives a complete system of equations for Ox 

disappearance with intra-species competition for reactive sites and potential mass transfer 

effects. If mass transfer is relatively fast, equations (12) and (44) simplify to the 

Langmuir-Hinshelwood equation for surface mediated reactions. 

Equation (45) is analogous to the Mechalis-Menton equation for enzyme kinetics and is 

also referred to as the Hougen-Watson equation. In the limit of large [Ox], equation (45) 

approaches a zero-order rate-law. 

In the limit of small [Ox], equation (45) approaches a first-order rate law. 

A rate equation that is similar in form to equation (45) can also be derived by assuming a 

rapidly established equilibrium of the Ox adsorption reaction. We compare these two 

approaches, pseudo-steady-state analysis and pseudo-equilibrium analysis, in section 2.5. 



The approach used in deriving the Langmuir-Hinshelwood equation can also be 

used to derive a rate-law that includes inter-species competition for reactive sites. Here 

we address product inhibition due to accumulation of Red on the surface but the approach 

may also be used for inhibitory species that do not participate in the reaction sequence 

depicted in scheme 1. 

As with the derivation of the Langrnuir-Hinshelwood equation we assume a 

steady-state for [Ox:S] by setting equation (15) to zero. Product inhibition is included by 

relaxing the [Red:S] = 0 condition and, instead, assuming a steady-state for [Red:S] by 

setting equation (16) to zero. These two steady-state conditions, along with equation (18) 

give the following equations for [S], [Ox:S], and [Red:S]: 

[SI = ST@ 

e (ki? +km) Red I+  [OxL + [~ed], 
ki? (kE +c) k&s 

I+  "aa3 \"&s "'m ) 
\ [OxL + 3 [Redlo 

ki?(k" ' l- 

Substituting equation (49) into equation (14) and equation (50) into equation (17) gives 

simplified rate equations for [Oxlo and [Redlo that, when taken together with equations 

(12-13), form a complete set of differential equations. 

d[Oxlo - -- kp,K, [Ox], 
dt ([Ox] - [Ox& ) - 1 + K,,,,], + K,, [Red], 

d[Redlo - kRd kp, K& [Oxlo - wrPa(~edl-[Redlo)+ 
dt 1 + K, [Ox], + K,, [Red], 

Where k, KO,, and KRed are defined as follows: 

kp, = S  k k z  
k E + k m  



Red 
- k* 

4 k X - l  - - 

When mass transfer is relatively fast, equations (12-13) and (51-52) simplify to the form 

commonly employed when examining product inhibition effects. 

d[Oxl - --- kP, KO, [Ox1 
dt 1 + K, [Ox] + K ,  [Red] 

d[Redl - -- kP,K, [Ox1 
dt 1 + K ,  [Ox] + K ,  [Red] 

2.4.3 Bimodal Kinetics 

Before establishing the steady-state kinetic regimes described above, many 

reactor designs must pass through a transient induction period. In the batch reactor this 

transient region usually takes the form of an initial drop in [Ox] that is substantially 

steeper than the remainder of the disappearance curve (ref TNT paper). In most cases 

where an initial drop is observed, it consists of only a few points which are ignored in the 

analysis of the data. In other cases, the initial drop is so large that it fully dominates the 

observable kinetics. These two endpoints are the surface controlled and mass 

transportladsorption controlled kinetics discussed above. In some cases, however, both 

the initial drop and steady-state kinetics are sufficiently well resolved so that the reaction 

kinetics must be treated as having two distinct regions. An example of such data is 

depicted in Figure 2.6 where TNT is being reduced by iron metal. 

The fitted curve shown in Figure 2.6 is the sum of two decreasing exponentials. 

[OX] = a, exp(r+t) + a- exp ( ct) (58) 

A triple exponential expression for [Ox] vs. t in a batch reactor can be obtained from 

equations (12-18) by assuming abundant sites and treating [S] as a constant (= STot). A 

triple exponential is, however, over-parameterized for most data displaying an initial drop 

and, therefore, the mass transport and adsorption stages in Scheme 1 must be lumped as 

depicted in Scheme 2. 



Scheme 2 

This can be accomplished by applying a steady-state assumption to either [Oxlo (i.e., 

setting equation 14 to zero) or [Ox:S] (i.e., setting equation 15 to zero). 

We can determine which of the two steady-state conditions is appropriate by 

examining mass balance equations based on equation (19). In a typical batch experiment, 

mass is introduced as Ox and into the bulk solution. The total moles is, therefore, given 

as: 

Total Moles = [Ox]l,=,V,, (59) 

Since the initial concentrations of [Oxlo and [Ox:S] are zero, the reaction is not in the 

pseudo-steady-state defined by equations (33-34). We can, however, calculate the amount 

of material that would have to be transferred from the bulk to the boundary layer and 

surface in order to achieve steady-state by equating equation (59) to the mass balance 

equation for this virtual transition giving 

Where the "SS" superscripts denote the virtual steady-state concentrations. Equations 

(33-34) give relationships between the steady-state concentrations and substituting these 

relationships into (60) along with the abundant site assumption gives: 

The second tern inside the parentheses is L 1 and, therefore, since the volume of the 

boundary layer, V; , is much smaller than the volume of the bulk, V,,, , we can ignore 

contributions from the boundary layer to the total mass and the total volume giving the 

following relationships between the initial concentration,   OX]^,^, and the initial 

concentrations for the virtual steady-state. 



Little of the transferred mass in establishing a steady-state resides in the boundary layere 

indicating that the kinetics of the initial drop in the double exponential are predominately 

controlled by the kinetics of reaching a steady-state in [Ox:S]. We can, therefore, lump 

the mass transport and adsorption processes by assuming a pseudo-steady-state in [Oxlo. 

Setting equation (14) = 0, along with the abundant site assumption, gives an expression 

for [Oxlo. 

kEpa [OX] + k: [OX:S] 
[Ox], = 

kEp, + ~ Z S T ' , ,  

Substitution of equation (65) into equations (12) and (15) gives a set of differential 

equations that apply to Scheme 2 and lead to a double exponential expression for [Ox] 

disappearance in batch (equation 58). 

Equations (66-67) imply definitions for the rate constants on the lumped mass 

transfer/adsorption stage in scheme 1. 

Note that equation (68) has a linear dependence on pa and equation (69) does not depend 

on p,. Equations (66-67) can be applied to a batch reactor by setting the surface integral 

in equation (66) to zero. The solution to this system of equations in terms of [Ox] is given 

by equation (58) with eigenvalues, r+l-, and pre-exponentials, w., given as follows: 



Figure 2.7 shows Ir+,-l (Figure 2.7A) and a+,- (Figure 2.7B) as functions of p, (the 

mass concentration of iron) using rate constants derived from fitting equation (58) to the 

data shown in Figure 2.6. From equation (70) we can see that both r+ and r- are < 0 and 

that the magnitude of r+ is less than the magnitude of r- (i.e., Ir+l < Ir-1). This implies that 

the initial drop is dominated by r- while the slower portion of the bimodal kinetics is 

controlled by r+. Since the initial drop can be interpreted as mass transferladsorption 

controlled kinetics and the slower portion can be interpreted as pseudo-steady-state 

reaction controlled kinetics we can compare r. to kg,,& and r+ to the first-order rate 

constant derived in Section 2.4.1 (see equations 37-38). 

2.5 Critique of Steady State and Equilibrium Assumptions 

The kinetic equations for multi-stage reactions (such as the reaction depicted in 

scheme 1 above) are often simplified by assuming the reaction to be in a steady state 6. In 

reactors comprised of one or more flow through cells (such as a CSTR or PFR), this 

procedure, performed by setting all time derivatives to zero, finds, exactly, the fixed point 

attractor of equations (8- 14). The steady-state equations describe the total amount of 

conversion that occurs within the reactor and the kinetics of the reaction can be 

ascertained by examining the response of conversion rates to changes in input flow rates 

and concentrations or spatial concentration gradients in the case of a fixed bed reactor. 

In reactors that do not have continuous input of Ox (such as a batch reactor), the 

fixed point attractor is the state where all species are in the reduced form and, therefore, 

kinetic information is contained only in the time series concentration data where the 

concentrations progress toward the steady-state. The kinetics equations for such a reactor 

design are often times simplified by assuming that some, but not all, of the species are in 

a pseudo-steady-state. The procedure for deriving these equations involve setting some of 

the time derivatives to zero and using these equations to derive algebraic relationships 



between the concentrations of certain species which are then substituted into the 

remaining rate laws (whose derivatives were not set to zero). In some instances, some of 

the species in a reaction sequence are assumed to rapidly equilibrate with each other and 

that kinetics in one of the species induce proportional kinetics in the other species. This 

equilibrium assumption is a special case of the pseudo-steady-state assumption and we 

will denote it as the pseudo-equilibrium assumption. 

We may explain the details of steady-state and pseudo-steady-state derivations 

and bring to light ideas to keep in mind when using thus derived by considering a 

simplified version of scheme 3 in both a plug flow reactor and a batch reactor. 

Scheme 3 

Where we have lumped the mass transport and sorption processes for 0x:S formation and 

neglected Red adsorption. In a plug flow reactor of cross-sectional area, A, and flow rate, 

Q, the kinetic equations for scheme 3 are as follows: 

= - - - -  a[ox1 k ,  [S] [Ox] + khs [Ox: S] a[ox1 
at A ax 

a[ox:s] 
= k ,  [S] [Ox] - khs [Ox:S] - k ,  [Ox:S] 

at 

ST, = [S] + [Ox:S] (74) 

Setting all time derivatives to zero gives 

[Ox:S] = k',h [Sl[OxI 
khs + k m  

Substituting equation (76) into equation (75) and applying equation (74) gives 



Equation (77) is the Langmuir-Hinshelwood equation for scheme 3 as it applies to plug 

flow reactors. The solution to equation (77) is a fixed point solution to equations (72-74) 

and is asymptotically stable (i.e., solutions to equations 72-74 will approach equation 77 

at large times). 

In the case of abundant reaction sites, [S] can be taken as constant and equal to 

STot. The steady-state solution for this case is the pseudo-first-order equation as follows 

d[Ox] A -- 
dx - --STakm k,, [OX] Q k,s + k, 

In a batch reactor, the kinetic equations for scheme 3 are as follows 

d[Oxl -- - -k,, [S] [OX] + k,,   OX:^] 
dt 

d [Ox:S] 
= k,, [S] [Ox] - k,, [Ox:S] - k, [Ox:S] 

dt 

s, = [S] + [Ox:S] (81) 

The fixed point attractor for equations (79-81) is [Ox] = [Ox:S] = 0 and, so, the kinetic 

equations for a batch reactor are typically simplified by setting either d[Ox:S]/dt = 0 (a 

pseudo-steady-state assumption) or d[Ox]/dt = 0 (a pseudo-equilibrium assumption). The 

pseudo-steady-state assumption gives the following 

STctkm k& [OX] 
d[Oxl -- - k,, [SI[Oxl- k,, kd [S] [Ox] = - k*s + k, 

dt k,, + krm (82) 
1+ k& [Ox] 

k, +km 

Equation (82) is the Langmuir-Hinshelwood equation as applied to a batch reactor (note 

the similarities with equation 77). Solutions to Equation (82) are not, however, 

asymptotically stable and are not solutions to equations (79-81). Figure 2.8 shows the 

field of vectors  OX], d[Ox:S]) in ([Ox], [Ox:S]) space. A solution to equations (79-81) 

passing through ([Oxlo, [Ox:SIo) can be visualized by starting at the initial point and 

following the arrows to the fixed point is reached. An asymptotically stable solution 

exists as those points that can not be reached from either [Ox:SIo = 0 or [Oxlo = 0. The 



derivation of equation (82) involves setting d[Ox:S]/dt = 0 and, therefore, solutions to 

equation (82) pass through the horizontal arrows in Figure 2.8. 

sm k"' [Ox] 
[Ox:S] = k&s + km 

1+ kd [Ox] 
k&s + km 

We can see from Figure 2.8 that any initial condition along equation (83) will not follow 

equation (83) but rather will approach the asymptotically stable solution described above. 

Another form of the Langmuir-Hinshelwood equation can be obtained by 

assuming that the adsorption step of scheme 3 is in pseudo-equilibrium (i.e., setting 

d[Ox]ldt = 0) so that equation (79) and equation (81) give the following relationship 

between [Ox:S] and [Ox] 

Equation (84) is the Langmuir isotherm and a kinetics expression for [Ox] is obtained by 

assuming that the overall rate of reaction (i.e., d[Ox]/dt) is equal to the rate of surface 

transformation (i.e., d[Ox:S]/dt) giving 

As is the case for equation (82), solutions of equation (85) are neither asymptotically 

stable nor solutions to equations (79-81). Since equation (85) was derived by assuming 

d[Ox]ldt = 0, solutions to equation (85) lay along the curve in Figure 2.8 where the 

horizontal component of the vector field goes to zero (i.e., equation 84). Equation (84) 

bounds the asymptotically stable solution from above while equation (83) bounds the 

asymptotically stable solution from the bottom. 



As [Ox] becomes small relative to STot, equations (79-8 1) approach pseudo-first- 

order behavior which can be found by substituting [S] = STot into equations (79-80) 

d [Ox:S] A 

= k,, [Ox] - k,, [Ox: S] - k, [Ox:S] 
dt 

Where id = k,,S, . Equations (86-87) comprise a linear homogeneous system of 

equations of second order. The solution to such a system is the sum of two exponential 

functions (provided that they are linearly independent) with eigenvalues 

Both eigenvalues are negative and r-, which is larger in magnitude, corresponds to the 

transient portion of the kinetics (e.g., an initial drop in a bimodal kinetic profile), while r+ 

corresponds to the pseudo-first-order portion of the kinetics (with kbs = r+). 
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Table 2.1. Summary of rate laws that are useful in the treatment of kinetic data. 

Fitting equations 

10x1 = [oxlo ~ X P  (-kgpat) 

In([Ox]) + ci [Ox] = k,C;t 

+ In([Oxl~ + e[Ox10 

Compute numerically 

[Ox] = a+ exp(r+t) + 4 exp(r-t) 

Kinetic 
equations 
First-Order 
disappearance 

Langmuir- 
Hinshelwood 
disappearance 
without 
product 
inhibition 
Langmuir- 
Hinshelwood 
disappearance 
with product 
inhibition 
Bimodal 
disappearance 

Differential equations for batch 

d [Ox] -- - -kZk[OxI 
dt 

4 0 x 1  s,,k,~$ [Ox1 
7 = - 1 + KE [Ox] 

d[Oxl @OK, [Ox] = -  
dt 1 + K, [Ox] + K,, [Red] 

d[Oxl - = -kZIadF [OX] + kgIdes   OX:^] 
dt 

d[Ox:S] 
= kg1,[0x] - ~;,,[OX:S] 

dt 
- k, [Ox:S] 
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Figure 2.1. Processes involved in an interfacial reaction. 



Figure 2.2. Simplified interfacial reaction scheme with a well mixed bulk solution and 

a diffusive boundary layer. 
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Figure 2.3. First-order disappearance of TNT on Fisher electrolytic granular iron 

metal. 
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Figure 2.4. TNT disappearance along the length of a column filled with granular iron 

metal. 
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Figure 2.5. Mixed order disappearance of TCA on granular iron metal pre-exposed to 

a carbonate solution. 
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Figure 2.6. Bimodal TNT disappearance on 0.75 g peerless iron / 60 rnL. 



Figure 2.7. Eigenvalues (A) and eigenvector terms (B) plotted against iron loading. 



Figure 2.8. Vector field for the non-steady-state analogue to Langmuir-Hinshelwood 

kinetics. The long dashed line is the pseudo-equilibrium derived 

Langmuir-Hinshelwood equation, the short dashed line is the pseudo- 

steady-state derived Langmuir-Hinshelwood equation, and the solid line is 

the path of the Lyapunov vector. 





CHAPTER 3 

Central Limit Theorem for Chemical Kinetics in Complex systems1 

3.1 Abstract 

The prevalence of apparently first-order kinetics of reactant disappearance in 

complex systems with many possible reaction pathways is usually attributed to the 

dominance of a single rate limiting step. Here, we investigate another possible 

explanation: that apparently first-order kinetics might arise because the aggregate 

behavior of many processes, with varying order of reaction and rate constant, approaches 

a "central limit" that is indistinguishable from first-order behavior. This hypothesis was 

investigated by simulating systems of increasing complexity and deriving relationships 

between the apparent reaction order of such systems and various measures of their 

complexity. Transformation of a chemical species by parallel irreversible reactions that 

are zero, first, or second order is found to converge to a central limit as the number of 

parallel reactions becomes large. When all three reaction orders are represented, on 

average, in equal proportions, this central limit is experimentally indistinguishable from 

first-order. A measure of apparent reaction order was used to investigate the nature of the 

convergence both stochastically and by deriving theoretical limits. The range of systems 

that exhibit a central limit that is approximately first-order is found to be broad. First- 

order like behavior is also found to be favored when the distribution of material among 

the parallel processes (due to differences in rate constants for the individual reactions) is 

more complex. Our results show that a first-order central limit exists for the kinetics of 

chemical systems and that the variable controlling the convergence is the physical 

complexity of reaction systems. 

' Bandstra J.Z. and P.G. Tratnyek. 2005. J o u m l  of Mathematical Chemistry. In Press. 



3.2 Introduction 

A first-order rate equation is often used to model the chemical kinetics of 

reactions that involve complex pathways and multiple mechanisms. The results of such 

modeling are often quite satisfactory even though theoretical considerations would 

suggest a more complicated rate law. Common explanations of this phenomenon include: 

(i) the first order model is applied over a small extent of reaction, in which case, many 

rate laws will adequately describe the data, (ii) the data contain noise causing any fine 

structure to be obscured and deviation from the first-order model to be attributed to 

random measurement errors rather than model failure, and (iii) the observed kinetics 

reflect a rate limiting step that is first-order. It is the purpose of this work to investigate 

another possible explanation: that multiple processes (which are not necessarily first- 

order) may combine to produce kinetic behavior that is indistinguishable from first-order 

and that such combinations are more likely to exist when reactions occur in a complex 

environment. 

This hypothesis may be viewed as a chemical kinetics analog to the central limit 

theorem of statistics. The central limit theorem states that, when scaled properly, a linear 

combination of random variables approaches a normal distribution as the number of 

random variables becomes large '. Some familiar implications of the central limit 

theorem include (i) the justification for assuming that most measurement errors are 

normally distributed and (ii) the result that sufficiently large stochastic systems obey a 

Fokker-Planck equation and, in the case of chemical kinetics, a reaction rate equation '. 
Our hypothesis, then, is that there is also a central limit effect in the reaction order of 

chemical kinetics where the central limit is first-order behavior and the controlling 

variable is system complexity. 

In a general sense, it seems that the notion of this central limit effect is widely 

held, but we have found no evidence that it has been systematically investigated. Our 

interest in the hypothesis arose from consideration of contaminant degradation kinetics in 

complex environmental media such as soils and sediments, but we expect that this 

investigation will have relevance in other contexts such as chemical engineering of 



bioreactors, catalysis on heterogeneous surfaces, radical reactions in plasmas and flames, 

atmospheric chemistry, etc. 

3.3 Methods 

We have investigated the nature and validity of our conjecture by examining a 

range of specific kinetic systems for the type of behavior hypothesized. This approach 

involves four elements: (i) generation of a variety of rate laws, (ii) solution of the rate 

laws, (iii) assessment of the degree of complexity of the corresponding reaction system, 

and (iv) assessment of the apparent order of the resulting disappearance curve. 

3.3.1 Generation of Rate LAWS 

We selected parallel irreversible reactions as our test case because it is the 

simplest possible system that contains the features employed in formulating our 

conjecture. Considering the simplest case allows us to clearly explain the details of the 

conjecture and allows us to easily develop the necessary analyses and interpret the 

results. We generated rate laws for an arbitrary number of parallel irreversible reactions 

in the form: 

With the initial condition: 

4 0 )  = A, (2) 

Where A denotes concentration (or activity) of the reacting chemical species, Nms 

denotes the number of parallel reactions, ki denotes the rate constant for the ith reaction, 

and mi denotes the reaction order for the ith reaction. 

A variety of rate laws may be obtained from eq 1 by employing various selection 

criteria for N,,, the values of ki, and the values of mi. We expect complexity of the 

system to increase with N-, so we varied N,,, from 1 to 50. We would like to interpret 

each reaction as an elementary reaction step, so we required that the value of each mi be 

0,1, or 2 under the presumption that third-order and higher-order reaction steps are 

prohibitively unlikely. We selected the values of mi stochastically when we wished to 

examine an ensemble of like reaction systems and combinatorially when we wished to 



examine all possible combinations of reaction orders for a given Nhs. P(mi = x) denotes 

the probability that mi = x and nx denotes the number of reactions with mi = x. Note that 

P(mi=O)+P(mi= 1)+P(mi=2)= 1 andno+nl +n2=Nm.  

We selected rate constants by first selecting a characteristic value, ti, and then 

scaling ti according to: 

Where ( a  denotes the average value of the distribution from which each ti is selected. 

Equation 3 contains three scaling factors: l/(N,,-(r)), ~ o ( ' - ~ i ' ,  and a third reaction order 

dependent factor. The scaling factor, ll(Nms.(5)), makes eq 1 independent of Nms and 

( a .  This scaling is equivalent to scaling time by N-.(a. The scaling factor, ~ o ( ' - ~ i '  

(equals 1 for mi = I), causes AIAo to be independent of Ao. 

Rate constants for processes of different reaction order are dimensionally 

inconsistent and, therefore, cannot be compared directly. The third scaling factor is 

needed to force reactions to contribute to the overall system development in proportion to 

their value of ti, regardless of reaction order. We derived the values for this factor by 

requiring a zero-order only system and a second-order only system to proceed to an 

arbitrary concentration endpoint in the same amount of time as a first-order only system. 

The endpoint used was three half-lives, the selection of which is discussed later. In the 

case of stochastic selection of reaction orders, the ti for each reaction was selected 

randomly from a normal distribution which was truncated at zero. In the case of 

combinatorial selection of reaction orders, all ti's were set equal to ( a .  

The manner of rate constant generation described above gives rise to groups of 

reaction systems with the same value of Nrm,, mi selection criteria, and ti selection 

criteria. In the discussion that follows, we will call these groups ensembles of like 



reaction systems. An ensemble member, then, is an individual reaction system and the 

ensemble size is the number of reaction systems belonging to a particular ensemble. 

3.3.2 Solutions to the Rate Laws 

Given the restrictions placed on mi, an analytical solution to eq 1 may be obtained 

by direct integration. To aid integration, we re-write eq 1 as: 

where: 

Integration and application of the initial condition (eq 2) yields: 

lo  t 2 t,=, 

This solution, while general, contains a number of cases that result in singularities 

when calculating disappearance curves. In these cases the calculations were simplified by 

taking limits andlor employing Euler's formula. For example, if a = c = 0, then eq 8 takes 

on an indeterminate form and must be calculated by taking the limit (using L' Hospital's 

rule) as a and c approach zero. The resulting equation, in this case, is the solution to a 

first-order rate law with rate constant equal to b. 

3.3.3 Quantification of Complexity 

In selecting an approach to quantify complexity, we considered two generally 

accepted features of complex systems: (i) complex systems are comprised of many 



interrelated parts, and (ii) complex systems exhibit both ordered and random behavior 48. 

7,9-13 A number of complexity metrics have been proposed , but application of these 

metrics to specific systems can be nontrivial and the interpretation of these metrics is still 

an area of research. Our preliminary efforts using the Shiner metric l3 produced results 

consistent with the findings reported below. However, we found that two lower level 

quantities, the number of reactions, N-, and the pathway entropy (defined later), gave 

comparable results for the systems considered here. These surrogate complexity metrics 

proved to be preferable for present purposes due to ease of implementation and 

interpretation. 

Complex systems are comprised of many interrelated parts. For the systems that 

we have considered, Nm, is the relevant measure of the number of parts. Because we are 

not changing the way in which the reactions are related, it is intuitive to use N,, as a 

measure of complexity. This is consistent with the Shiner metric, which we found to be 

dominated by ln(N,,) for the systems considered. 

In addition to examining the effect of N,,, we also want to compare reaction 

systems with the same N,,. Early work in information theory by Shannon l4 led to 

widespread use of information or Shannon entropy as a measure of complexity: 

i 

where S is a measure of the degree of randomness for the probability distribution, P. 

Because complex systems are neither completely ordered nor completely random, it has 

been recognized that the relationship between Shannon entropy and complexity includes 
6.1 1.15 a maximum at an intermediate entropy value . 

For the purposes of this study, a Shannon entropy pertaining to chemical 

transformation may be calculated from the set of probabilities describing the likelihood 

that a randomly selected molecule will undergo a particular transformation, or follow a 

particular pathway, during the course of reaction. These pathway probabilities were 

calculated, as shown in eqs 10-12, by dividing the limit of the concentration of the ith 

product as time approaches infinity by the total amount of material in the system (Ao). 
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Application of eq 9 to the pathway probabilities (eqs 10-12) yields a pathway 

entropy that we denote as Spa,. For a fixed Nrm, Spth, is a measure of the uniformity in 

the pathway probability distribution. A perfectly uniform pathway probability distribution 

yields the maximum Spth,, In(Nm). A distribution in which a pathway probability, Pi, 

equals one (and all others equal zero) yields Spth, = 0. In all cases considered here, Spth, 

is close to the maximum value, In(N,,), causing the relationship between complexity and 

Spth, to be approximately linear with negative slope. Since we are concerned only with 

relative complexity, we may use Spth, as our measure, noting that reaction systems with 

larger SpthV values are less complex. 

3.3.4 Metric for Apparent Order of Reaction 

Many procedures have been described for determination of the apparent order of a 

reaction from experimental data, and their relative strengths and weaknesses are 

frequently discussed in textbooks of chemical kinetics. The most intuitive and widely- 

used approach involves plotting transformed time series data and examining the plot for 

linearity. In this study, we start by using this approach to provide a qualitative but direct 

indication of reaction order. Since we are interested in examining for behavior that 

appears to be first-order, we used logarithmically transformed concentration versus time 

plots. 

It also proved useful to have a quantitative measure of apparent order. To this 

end, we fit the solution to eq 13 to simulated data generated by evaluating eq 8 at 1000 



time points, evenly spaced between t = 0 and the time required to reach the three half- 

lives concentration. 

Fitting was performed by Chi-square minimization using the Levenberg-Marquardt 

method l6 with both k and M as fitting parameters. M, then, is a quantitative measure of 

apparent reaction order. 

We used three half-lives as the endpoint for these calculations, as well as for the 

normalization of rate constants (see above). This value was chosen to provide enough 

extent of reaction to reveal deviations from first order behavior on a log concentration 

versus time plot l7 while preserving enough resolution of the initial rate behavior to be 

consistent with the way many experimental protocols are performed. 

3.4 Results 

3.4.1 Convergence with increasing N,, 

Ensembles of 50 similar rate laws were generated for N,, = 1,5,20, and 50 with 

a uniform distribution on the reaction order (P(mi = 0) = P(mi = 1) = P(mi = 2) = 113) and 

a normal distribution (p = 1, a = 0.3) on the raw rate parameter, r. The resulting 

disappearance behavior is depicted in Figure 3.1 on a semi-log concentration versus time 

plot. Recall that (in this type of plot) purely second-order behavior is a curve with 

positive concavity, purely first-order behavior is a straight line, and purely zero-order 

behavior is a curve with negative concavity. 

The N,, = 1 ensemble (Figure 3.1 A) exhibits all three integer-order possibilities 

in approximately equal proportions. With increasing N,,, (Figures 3.1 B- 3.1 D), the 

likelihood of integer order behavior becomes smaller and the ensemble members tend 

toward a limiting case (indicated by the dashed line in Figure 3.1) that is close to first- 

order. Behavior that appears to be first-order is possible for any N,, while behavior that 

appears zero-order or second-order becomes increasingly improbable as N,, increases. 

The limiting case, shown as a dashed line in Figure 3.1, is described by a rate law 

of the form of eq 4. As N,, becomes large, eqs 5-7 become infinite series which 

converge to the following: 



1 7  
u,,, = lim a=P(m, =2).--- 

N, +- A, In@) 

b,, = lim b = P(mi = 1) 
N,+- 

I 
- lim c=P(mi =O).A,-- c,," - N-+.. 8 ln(8) 

On a semi-log plot, the limit exhibits a slight "S" shape; concave up a high concentrations 

and concave down at low concentrations. The reason for this curvature and its magnitude 

will be examined later. 

The behavior exhibited in Figure 3.1 may be further examined by plotting the 

apparent reaction order, M, (as defined by eq 13) against N-. This is shown in Figure 

3.2 for ensembles of reactions generated in the same manner as those shown in Figure 3.1 

but with the ensemble size increased to 100. Each point represents a particular M for a 

member of an ensemble with the number of reactions indicated on the abscissa. As is the 

case for N,, = 1, some points may lie exactly on top of each other even if the 

corresponding disappearance curves do not. The average order and the average +I- one 

standard deviation for each N,, are plotted as solid lines. As N- increases, the average 

order approaches a limiting value and the standard deviation approaches zero. Although 

the limiting apparent order (= 1.19) is somewhat greater than one, a first-order model 

may be fit to such a limiting disappearance curve. We calculated the average value of the 

absolute residuals for such a fit to be O.Ol.Ao concentration units. This is smaller than the 

random errors in most experimental studies. 

To verify the interpretation given to Figure 3.2, we can remove the distribution on 

rand examine every possible combination of reaction orders for a given N-. A 

combination of reaction orders is defined by the sequence, (no, nl, nz), where n, is the 

number of parallel reactions of order x. All possible combinations corresponding to a 

single N,,, may be found by taking all permutations of (no, nl, n2) under the condition 

no + nl + nz = Nms. The number of permutations is given by the combinatorial 

expression. 

Here, all permutations are not equally probable. The weighting of (no, nl, n2) is given by 



Figure 3.3 shows the results of this analysis, in the same format as Figure 3.2 (M 

vs. N,,). Larger points reflect greater relative weight (as defined by eq 18). As N,, 

increases, the number of permutations increases and the probability density becomes 

increasingly localized in the region of the limiting order. As Nms approaches infinity, the 

number of permutations approaches infinity and the sum of the weights for permutations 

with apparent order equal to 1.19 (the limiting order) approaches one. The average 

apparent order and the average +I- one standard deviation curves plotted in Figure 3.3 

represent the theoretical limit (as the ensemble size approaches infinity) of the behavior 

that is approximated in Figure 3.2. 

3.4.2 Behavior of the limiting case 

Equations 14-16 and 18 indicate that the limiting apparent order (dashed line in 

Figures 3.2 and 3.3) is a function of the reaction order probability distribution. We have 

represented this functional dependence in Figure 3.4 by plotting contours of constant 

limiting apparent order in the space of zero-order and second-order probabilities. In this 

figure, the first-order probability is implied by the values of the zero-order and second- 

order probabilities. Each comer of the triangle represents a case where all reactions have 

the same order. The center of the triangle (indicated by an "x") is the case that we 

considered in Figures 3.1-3.3. We note that the area between the contours for M = 0.8 and 

M = 1.2 is much larger than either of the areas above the M = 1.8 contour or below the 

M = 0.2 contour. This shows that many reaction order distributions will ultimately yield 

apparent behavior that is near to first-order. 

The fitting routine used to generate Figure 3.4 produces fits with chi-square equal 

to zero only for the reaction systems represented by the comers of Figure 3.4. This is due 

to the tendency of the log-transformed disappearance curves to exhibit an "S" shape as 

noted in the discussion of Figure 3.1. The contribution to the concavity of the log- 

transformed disappearance curve due to second-order processes is positive and increases 

with concentration. First-order processes do not contribute to the concavity of the log- 

transformed disappearance curve and zero-order contributions are negative and increases 



with concentration (decreases in magnitude). As a result, the concavity of the log- 

transformed limiting case is initially dominated by second-order reactions and, therefore, 

positive, but finally dominated by zero-order reactions and, therefore, negative. 

The log-transformed concavity is most pronounced when few of the processes are 

first-order (i.e. the P(mi = 0) + P(mi = 2) = 1 line in Figure 3.4). For the worst case along 

the M = 1 contour, the average of the absolute residuals between the limiting 

disappearance curve and the first-order fit is equal to 0.002.Ao concentration units. This 

value is significantly smaller that the error in a typical chemical kinetics experiment. 

Analysis of other cases along the M = 1 contour (not shown) indicates that this value 

decreases to zero at P(mi = 1) = 1 slightly slower than linearly. 

3.4.3 Convergence with decreasing SPtw 

In the preceding discussion we have treated N,, as the variable controlling the 

tendency toward a central limit. It may also be instructive to look for centralizing 

tendencies within an ensemble of fixed N,,. To this end, we have calculated Spth, 

according to eqs 9-12 for each member of an N,, = 5 ensemble generated in the same 

manner as those depicted in Figures 3.1 and 3.2, but with the ensemble size increased to 

10,000. Figure 3.5 shows the results of this calculation plotted against the apparent order, 

M. It is visually apparent from the distribution of the clusters of points that the average 

pathway entropy of ensemble members at or near the limiting order (for these conditions, 

1.19) is larger than Spth, for the ensemble members on either side. This observation is 

reinforced by the maximum in the arithmetic mean of Spthwy (represented in Figure 3.5 by 

the white line), which was calculated for the ranges of order indicated with vertical 

dashed lines in the figure. 

The ensemble members with an approximately equal number of each reaction 

type tend to yield apparent order close to one. Such ensemble members also have, on 

average, smaller pathway entropy. This is because, when multiple reaction types are 

present, the pathways with lower reaction order tend to convert the most material over the 

full course of the reaction, yielding a less ordered distribution of material amongst the 

individual reactions. Somewhat less ordered pathway probability distributions may arise 

for any combination of reaction orders (due to the influence of distributed rate constants), 



but this is more likely for systems with an equal number of each reaction type (due to the 

additional influence of distributed reaction orders). As complexity increases, therefore, 

the likelihood that a system will exhibit first-order behavior also increases even if the 

system does not have a large N,,,,. Convergence toward a central limit with two 

independent measures of complexity, N,, and Sprh,, indicates that this result may apply 

to more complicated reaction systems that involve, for example, reversible steps and/or 

multiple reactants. 
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Figure 3.2. Apparent order calculated for statistically generated ensembles (ensemble 

size = 100) with N,, varying from 1 to 50. Solid lines denote the average 

order and standard deviation about the average for each ensemble. The 

limiting apparent order is shown by the dashed line. 
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Figure 3.3. Apparent order of all possible combinations of zero, first, and second 

order reactions for N,,, from 1 to 50. The point size indicates the weight 

of the corresponding permutation relative to the other permutations for the 

same N-. Average and standard deviation curves are shown (as in Figure 

3.2) and represent the theoretical limit of such lines for infinitely large, 

statistically generated ensembles. 



Figure 3.4. Contours of the limiting apparent order in the space of the probabilities 

used in selecting reaction orders. F'urel y second-order behavior is 

represented by point (0,1), purely first-order behavior by point (0,0), and 

purely zeroth-order behavior by point (1,O). The case considered in 

Figures 3.1-3.3 is marked with an "x". 
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CHAPTER 4 

Applicability of Single-Site Rate Equations for Reactions 

on Inhomogeneous surfaces1 

' 

4.1 Abstract 

Single-site rate laws are broadly applicable to surface mediated chemical kinetics 

even though most surfaces are strongly inhomogeneous. We defined the best single-site 

approximation for an inhomogeneous rate law by square error minimization and, using 

this definition, examined the limits of the applicability of the single-site approximation 

and the nature of the emrs that arise when inhomogeneity is ignored. We found that (i) 

correlation between kinetic inhomogeneity and sorptive inhomogeneity does not affect 

the success of the single-site approximation, (ii) many types of inhomogeneity produce 

similar macroscopic kinetic behavior, (iii) ignoring inhomogeneity in a single kinetic 

experiment causes rates to be overestimated at high and low concentrations and 

underestimated at intermediate concentrations, (iv) it is difficult to obtain detailed 

information about inhomogeneity from a single kinetic experiment, and (v )  kinetic 

experiments over varying concentration ranges may be used to diagnose the existence of 

inhomogeneity and to parameterize an inhomogeneous rate law. 

' Bandstra, J.Z. and P.G. Tratnyek. 2004. Industrial & Engineering Chemistry Research 43(7): 1615-1622. 
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4.2 Introduction 

Many chemical reactions are mediated by a reaction site that is not consumed 

during the reaction: 

reactants + reaction site + complexed reactants 
+ complexed products + products + reaction site 

Scheme 1 

The reaction site can be an individual molecule, part of a macromolecule, or a site on a 

surface. Prominent examples where Scheme 1 applies include catalytic systems such as 

enzymatic reactions ' and reactions employed in industrial synthesis 2, as well as a variety 

of heterogeneous processes such as electrode reactions ', heterogeneous photochemical 

reactions 4, weathering of minerals 5,  abiotic reduction of groundwater contaminants 6, 

and corrosion of metals 7. 

Under most experimental, natural, and/or engineered conditions, concentrations of 

intermediate species in reactions of the type depicted in Scheme 1 rapidly approach a 

steady-state and appropriate rate laws can be obtained by assuming that the rates of 

formation of intermediate species are equal to the rates of destruction throughout the 

entire course of the reaction A particularly useful result arises from the steady-state 

treatment of the first-order transformation of a single reactant: 

k =X+C,  , '=XC km ) = X + P  Scheme 2 

where EX is the reaction site, C is the reactant, EXC is the precursor complex, and P is 

the product. In the case of surface mediated reactions, the corresponding rate law is 

usually written as the Langmuir-Hinshelwood equation: 

where ris the rate of disappearance of the reactant, Cis the concentration of the reactant, 

k,, is the reaction rate constant as defined in Scheme 2, and Ks is the steady-state 

analogue to the equilibrium partition coefficient: K, = kdegl(k,&+k,,). The Langmuir- 

Hinshelwood equation (and its analogue for enzyme kinetics, the Michaelis-Menton 

equation) is readily extended to include multiple reactants, multi-stage reactions, and 

inter-species competition for reactive sites 9-'1. 

A critical assumption in the Langmuir-Hinshelwood treatment is that the surface 

is kinetically homogeneous 2312, but numerous authors have noted that this assumption is 



an improbable simplification for all but the most controlled systems '"I4. Gnetic 

inhomogeneity can be classified as either induced or biographic 15. Induced 

inhomogeneity is caused by interactions between adsorbed molecules 15. Biographic 

inhomogeneity is caused by structural features of the surface such as defects, atomic scale 
16-18 surface roughness, and multi-crystalline composition of the bulk material . 

The overall rate of a surface mediated reaction is equal to the expected value of 

the reaction rate calculated over all adsorbed reactant molecules 19. Reaction rates on 

inhomogeneous surfaces will, therefore, exhibit a dependence on coverage that deviates 

from that which would be predicted on the basis of the reaction mechanism alone (e.g., 

the rate of a first-order surface mediated reaction on an inhomogeneous surface would be 

non-linear in the concentration of adsorbed molecules). 

If the cause of inhomogeneity is known, it may be possible to calculate the 

inhomogeneous rate law directly. This approach has been taken by a number of authors in 

dealing with induced inhomogeneity by adding increased levels of detail to the 

mechanism of interaction between the adsorbate molecules 15*20. A direct approach can 

also be taken if inhomogeneity can be quantified experimentally. This can be done, for 

example, by calculating the dependence of the kinetic parameters on an energetic 

parameter (usually via a linear free-energy relationship) and, then, finding the distribution 

of the energetic parameter experimentally 21122. 

In some systems where it is not feasible to calculate the rate law directly, it is 

possible to explain macroscopic observations on the basis of inhomogeneity. It has been 

shown, for example, that a number of empirical adsorption isotherms (such as those 

attributed to Freundlich, Dubinin-Radushkevich, and Ternkin) and their corresponding 

heterogeneous rate laws can be rationalized by assuming a local Langmuir isotherm and 

the appropriate distribution for the free-energy of adsorption 15,20,23 . An indirect approach 

has also been used to explain qualitative features of heterogeneous reactions such as 

structure insensitivity I6-l8 and the existence of maximally efficient rate controlling sites 
24 

Given the amount of sophisticated study required to deal with inhomogeneity 

explicitly, many workers have pursued the development of heuristic rate equations that 

are applicable under a specific range of conditions 25. Others have considered the effects 



of various levels of approximation when evaluating inhomogeneous rate laws 13*'*. Given 

the broad experimental success of the Langmuir-Hinshelwood equation, it is possible that 

the Langmuir-Hinshelwood equation is, itself, an adequate heuristic rate law and that a 

single-site approximation is sufficient for most purposes when evaluating the kinetics of 

reactions on inhomogeneous surfaces. The goal of this investigation is to characterize (i) 

the breadth of applicability of approximate single-site kinetic models to inhomogeneous 

kinetic systems, (ii) the functional relationship between inhomogeneous kinetic models 

and the corresponding single-site approximation, and (iii) the errors that arise when 

surface inhomogeneity is neglected. 

4 3  Approach 

4.3.1 Representative Inhomogeneous Rate Law 

To investigate the applicability of a single-site approximation, we needed to 

generate rate laws that exhibit variable degrees of inhomogeneity. For this purpose, we 

selected homotattic inhomogeneity (i.e., contiguous patches with homogeneous 

properties ") with the Langmuir equation taken as the local isotherm, which gives the 

following rate law: 

where ~ ( k ~ , , ,  Kss) represents the distribution function of sites with kinetic parameters k,, 

and Kss. In selecting the form of a, we required a distribution function that could be 

varied from single-site to inhomogeneous with only the variation of a few parameters. 

We found that continuous unimodal distributions (e.g., Gaussian) can only produce 

nearly single-site behavior, and that continuous multimodal distributions require too 

many parameters to be investigated succinctly. Focusing on discrete distributions, we 

found that, for any n-site distribution, a two-site distribution can be formed that is more 

inhomogeneous than the n-site distribution by allowing a sufficiently large difference 

between the sites in the two-site distribution. Therefore, we used the two-site Langmuir- 

Hinshelwood equation as our inhomogeneous rate law: 



where k'mn is the reaction rate constant, I f ,  is the steady-state analogue to the 

equilibrium partition coefficient on site i, and 01 is the fraction of type 1 sites (note that 

the site distribution function must be non-negative and normal "1. The numbering of site 

types is arbitrary, so, we require K', to be smaller than pSs. 

4.3.2 Degeneracy of kmn Znhomogeneity 

The site distribution function, a(k,,, K,), is degenerate in that an infinite number 

of site distribution functions will lead to the same inhomogeneous rate law. To see this, 

we rearrange the order of operations in eq 2. 

Notice that integration over kmn yields a function of K, only and that many site 

distribution functions will yield the same result. We can, therefore, define an equivalence 

class as all site distribution functions that yield the same result upon evaluating the 

integral over k,, in eq 4. Since all members of such an equivalence class are 

macroscopically indistinguishable, we can perform subsequent analyses on only one site 

distribution function from each equivalence class. 

For the analysis that follows, we select the representative site distribution function 

by factoring the expected value of km,,, E[kmn], out of eq 4. 

where @ is the equivalent uncorrelated site distribution function defined by: 

Comparison of eq 2 with eqs 5-6 indicates that the inhomogeneous rate law for any site 

distribution function (with arbitrary correlation between kmn and K,) can be replaced 

with the inhomogeneous rate law for an equivalent uncorrelated site distribution function, 

8. In the case of discrete inhomogeneity (e.g., eq 3), 8 is defined as: 



Based on the analysis above, one could not expect to observe macroscopic effects 

due to inhomogeneity in the surface reaction rate constant. Furthermore, we can focus on 

uncomlated site distribution functions without any loss of generality. 

4.3.3 Single-Site Approximation to Znhomogeneous Rate LAW 

In defining a single-site approximation to an inhomogeneous rate law, we require 

that the approximation reproduce the data that would be obtained from a kinetic 

experiment with the inhomogeneous system as accurately as possible. Kinetic data for 

heterogeneous systems can be collected and analyzed by either the integral method or the 

differential method 28. The integral method, known in enzyme kinetics as progress curve 

analysis 29 , involves collecting a time series of concentration data and fitting these data 

with the integrated form of the rate law (e.g. ''1. The differential method, known in 

enzyme kinetics as saturation curve analysis ', involves collecting reaction rate 

measurements at several concentrations and fitting these data with the rate law (e.g. 'I). 

The advantages and disadvantages of integral and differential analysis have been 

discussed extensively 29,32-35 . We have collected kinetic data for the reduction of solutes 

by iron metal in a batch reactor using the integral (progress curve) method 36937 and, 

therefore, we chose to examine inhomogeneity from the integral perspective: i.e., by 

fitting concentration time series data. Preliminary calculations from the differential 

(saturation curve) perspective yielded the same general trends as those presented below. 

Intuitively, one might expect that a single-site approximation can be obtained by 

substituting the average rate parameters (E[km] and E[Ks]) into the single-site rate law. 

We investigated this notion and found that the average parameter rate law significantly 

overestimates the magnitude of the of the reaction rate (results shown below). In the 

absence of formulae for the best single-site parameters, we defined the single-site 

approximation as the single-site rate law (eq 1) that best fits a given inhomogeneous rate 

law (eq 2). We expressed the inhomogeneous rate law in dimensionless form: 



where z is time scaled by E[km]. The two-site model and the single-site approximation 

can, then, be written as: 

dC - KK'*C --- 
dz 1+K'*C (10) 

where KI, K2, and PS are the two-site and single-site steady-state sorption constants 

(note that, for convenience, we have dropped the "SS" subscript) and   is the ratio of the 

single-site surface reaction rate constant and the expected value of the inhomogeneous 

surface reaction rate constant: 

We obtained implicit solutions to both the two-site inhomogeneous rate law (eq 9) and 

the single-site approximation (eq 10) by direct integration. Time series of concentration 

were obtained from the implicit solutions using Brent's method 38 and the single-site 
2 38 approximation was fit using Levenberg-Marquardt minimization of square error ( X  ) . 

Our definition of a single-site approximation can be viewed as a function. The 

argument of the function is a site distribution function. The site distribution function is 

operated on by solving the corresponding inhomogeneous rate law and performing the 

single-site fit. The resulting outputs are the single-site parameters (K'-' and K) as well as 

any goodness-of-fit measures generated by the fitting routine. We use the latter to 

examine the accuracy of the single-site approximation. 

4.3.4 Inverting the Single-Site Approximation Function 

The site distribution function, a(km, K,), is typically unknown. A single-site 

model, however, can be obtained by fitting the single-site rate law to experimentally 

obtained kinetic data. In this sense, single-site approximations are readily available for a 

variety of surface mediated reactions. We would, therefore, like to take as input some 

apparent single-site behavior (i.e., a single value of P") and derive information about 

inhomogeneity that might be present within the system that generated the apparent single- 



site behavior. This requires that we invert the single-site approximation function 

(ignoring K and goodness-of-fit measures). 

When the site distribution function is a Dirac delta function, the inhomogeneous 

rate law (eq 8) will be exactly equivalent to the single site rate law (eq 10) with K = 1. 

Since the Dirac delta function can peak at any value of Ks, we conclude that at least one 

site distribution function will yield any positive K'-S and, therefore, that the single-site 

approximation function is su jective (onto). 

The Dirac delta function can be perturbed by adding a second site. If the 

perturbation is small enough, the resulting two-site distribution function will have the 

same single-site approximation as the original delta function. Many site distribution 

functions will, therefore, yield the same pS and the single-site approximation function is 

not injective (one-to-one). Formally, an inverse can be defined only for bijective 

(one-to-one and onto) functions. We can, however, define a partial inverse of the single- 

site approximation by restricting the range of allowed site distributions (e.g., to 

uncorrelated two-site distributions) and finding all such site distributions that are best fit 

by a single-site approximation with the appropriate value of p". We performed this 

calculation for the two-site distribution by fixing the values of K1 and K2 and then 

bisecting 01 (starting with endpoints 0 and 1) until p" for the midpoint was within 

0.01% of the target pS and the maximum possible error in 01 was less than 5x10-13. 

4.4 Results 

4.4.1 Average Parameter Rate Laws Overestimate the Reaction Rate 

One way to formulate a single-site approximation is to calculate average kinetic 

parameters. As we noted above, this procedure results in an unsatisfactory rate law. To 

see this, we begin by expanding the inhomogeneous rate law in terms of the n-th order 

moments of Ks around the expected value of K,. 



The first term in this expression is equivalent to the average parameter rate law. The 

summation is equal to the error induced by parameter averaging. This series converges to 

a finite positive value. 

The average parameter rate law will, therefore, overestimate the magnitude of the 

reaction rate. 

The magnitude of the overestimation by the average parameter rate law can be 

investigated by considering an example. Figure 4.1 shows a progress curve for the 

reduction of 2,4,6-trinitrotoluene (TNT) on granular iron metal (8.3 g/L) that we 

previously described using a single-site Langmuir-Hinshelwood kinetic expression 36937. 

These data contain sufficient structure to be fit by a two-site rate law (eq 3) and, 

subsequently, the average parameters may be calculated. Comparison of the two-site fit 

and the average parameter rate law-shown in Figure 4.1 as solid and dashed lines, 

respectively-indicates that the magnitude of the overestimation is quite large even 

though an accurate single-site approximation clearly exists. 

4.4.2 Many Two-Site Models are Consistent with a Typical Progress Curve 

Inhomogeneity can cause a progress curve to exhibit curvature that can not be 

fully described by a single-site fit. By examining the residual plots for single-site fits to a 

large number of progress curves ", we have identified a number of progress curves with 

features that suggest inhomogeneity. An example of this is shown in Figure 4.1A, along 

with single-site (eq 1) and two-site (eq 3) fits. Both the single-site and the two-site 

models capture the major features of the data. The residual plots for the two fits (Figure 

4.1B) indicate that the two-site model improves both the magnitude of the fitting error 

and the distribution of the residuals. We can not, however, conclude that the two-site rate 

law is a superior model for these data because the improved fit may reflect either true 

inhomogeneity or merely the effect of additional degrees of freedom in the model. 

The nature of the two-site fit can be investigated further by examining the 

behavior of x2 in the space of the two-site fitting parameters. Figure 4.1C shows the 

dependence of X' on the two-site sorption constants, Kl and K2. At each point, the initial 



concentration (Co) and site distribution (o) have been varied to the point of minimum 

(local) x2. The right and bottom boundaries of this plot are K, = p'S and K2 = p" 
respectively. On either of these boundaries, the two-site model is identical to the best fit 

single-site model. Moving from either of the single-site boundaries into the interior 

region (where K1 c p-S and K2 > p') initially produces a sharp decrease in square error, 

indicating that this degree of inhomogeneity is altering the structure of the progress 

curve. Further into the interior region, the x2 surface flattens out, so much so that, for 

these data, it is numerically impossible to distinguish a distinct minimum in the K1 

dimension. For practical purposes, the minimum exists where X2 = 2.38 yM2 and is 

shaped as an elongated trough at K2 = 0.39 yM-l extending over the range 1.4x10-'~ yM- 

< KI < 4.7~10-* ~M- I .  

Based on the results in Figure 4.1, as well as the general success of single-site rate 

laws that we noted in the introduction, we can not expect to obtain reliable information 

about inhomogeneity from a single progress curve. In many cases, inhomogeneity will 

not be evident in a single kinetic experiment, but even when inhomogeneity is evident we 

still may not be able to uniquely parameterize an inhomogeneous rate law, as is the case 

with the data shown in Figure 4.1. 

Only with a kinetic experiment comprised of very precise concentration 

measurements over a broad concentration range can we expect to obtain reliable 

information about inhomogeneity from a single experiment. We can, however, find a 

unique single-site kinetic model for most kinetic experiments and, therefore, we can 

examine the range of inhomogeneous models that are consistent with a single progress 

curve using the inversion procedure described above. Figure 4.2A shows the average 

square error, (x2), produced by the inversion using the fit to the TNT data shown in 

Figure 4.1A as the input single-site approximation. The ( x ~ )  = 0 contour follows 

K2 = pd in the horizontal direction and K1 = K'-S in the vertical direction. Along this 

contour, the only two-site system that is consistent with the given single-site 

approximation is that in which one of the two sites has a site density of zero. The error 

between the two-site system and the single-site approximation increases toward the upper 

left where Kl becomes much smaller, and K2 becomes much larger, than pmS. 



Each of the (x2) contours appears to be approaching an asymptotic value of K2 

with decreasing KT. Noting the log scaling of the axis, this indicates that (x2) approaches 

some well defined function of K2 as K1 goes to zero. Asymptotic behavior of (x2) is also 

apparent with increasing K2. In the latter case we can calculate a limit analytically: 

By using eq 14 as the two-site rate law we can calculate the properties of the single-site 

approximation when K2 becomes infinitely large. Figure 4.2B shows the limiting 

behavior of (x2) as a function of K1. Once again, the curve approaches an asymptote as Kl 

becomes small. We can conclude that, for the single-site approximation derived from the 

data in Figure 4.1 A, the systematic error induced by treating the data with a 

homogeneous model is not larger than approximately 1.1 p ~ 2  per point in the time series 

data. 

In the preceding discussion, we have utilized the sum of square errors to indicate 

goodness-of-fit. In general, it is good practice to use multiple methods in examining the 

success of a fitting exercise. This is especially true in this study where the main concern 

is errors due to systematic model failure rather than experimental noise. Figure 4.2C 

shows residuals (two-site minus single-site) plotted against KT (= km t) for two-site 

systems that lie along selected (x2) contours (as depicted in Figure 4.2A) between 

K1 = lo-" and K2 = m. All residual curves corresponding to a single (x2) contour were 

found to lie between the residual plot for the infinite K2 case and the small K1 case. 

The maximum absolute values of the residual plots shown in Figure 4.2C are 

small (< 1%) in comparison to Co for the data in Figure 4.1A. This indicates that, even 

for the cases in Figure 4.2A with largest (x2), the systematic e m  induced by treating an 

inhomogeneous system with a single-site model would be insignificant and difficult to 

detect. There is little difference in residual plots corresponding to a single (x2) contour 

indicating that (x2) is a reliable indicator of goodness-of-fit. 

Both the residual plot for a single-site fit to the sample data (Figure 4.1B) and the 

residual plots in Figure 4.2C show a pattern of error where the single-site approximation 

over-estimates concentrations near the endpoints of the progress curve and under- 



estimates concentrations in the middle. This is indicative of the fact that the solution to 

the inhomogeneous rate law contains curvature that the single-site approximation can not 

reproduce. More specifically, the single-site approximation must underestimate the 

reaction rate at high and low concentrations in order to obtain a progress curve that 

minimizes X2 over the entire concentration range. As we show below, this effect is most 

pronounced when a single-site approximation is used to extrapolate to concentrations 

outside the range of experimental data. 

4.4.3 Errors that Arise when Inhomogeneity is Ignored 

A characteristic of heterogeneous chemical reactions is the existence of kinetic 

regimes for sorption limited, desorption limited, site saturation, and pseudo-first-order 

kinetics. Part of the utility of the Langmuir-Hinshelwood equation stems from its ability 

to describe both the site saturation and pseudo-first-order kinetic regimes: 

dC 
lirn - = lirn - 

K K ' ~ C  = -K 
c-b- dz c 1 + f S C  

dC 
lim- = lirn - 

KK'*C 
= lim - KP*C 

c 4  dz c 4  1+K'*C c-bo 

The inhomogeneous version of the Langmuir-Hinshelwood equation retains this feature 

of zero-order behavior at high concentrations transitioning to first-order behavior at low 

concentrations: 

dC K,C 
~ i m  - = ~ i m  - j1 + K,C a ( ~ , )  d ~ ,  = -1 
c+=- dz c+- 

dC K,C 
lim- = lim - I, + K,C a(K,) dK, = lim -E[K,]C 
c 4  dz c-bo c-bo 

This limiting behavior provides another basis for comparison of an inhomogeneous 

model and the corresponding single-site approximation. To do this, we defined the 

limiting inhomogeneous rate divided by the limiting rate predicted by the single-site 

approximation as zero-order (Z.O.) and first-order (F.O.) ratios: 

E[k I 1 Z.O. ratio = + = - 
km K 



F.O. ratio = E I k ~ K s I -  -- E[K,I 
kLfK',S KC 

Figure 4.3 depicts the limiting rate ratios for the range of two-site models that are 

consistent with the approximate single-site behavior for the data in Figure 4.1A. Along 

the single-site boundary, the single-site approximation is exact and the ratios are 1. Both 

ratios are everywhere greater than or equal to one and increase with decreasing K1 and 

increasing K2. Calculations (not shown) indicate that, in the limit of infinite K2, the zero- 

order ratio approaches finite values for all K1 > 0 and infinity for K1 = 0. These 

calculations also reveal non-zero values of ol for 0 c K1 < p-S indicating that the first- 

order ratio approaches infinity under this condition. As was the case with x2 (Figure 

4.2A), Figures 4.3A and 4.3B show increasing effects of inhomogeneity with decreasing 

K1 and increasing K2. 

Because the Z.O. and F.O. ratios are everywhere greater than one, the effect of 

ignoring inhomogeneity would be an underestimation of reaction rates at both high and 

low concentrations. This is consistent with the pattern in the residual plot for a single-site 

fit in Figure 4.1B and, in a broad sense, this result is similar to the errors that can be 

caused by using a pseudo-first-order rate law for heterogeneous reactions 39 and those 

that arise when inhibition of the reaction due to reaction products is ignored 40. The 

underestimation of reaction rates presents a particularly difficult problem in systems 

where the range of concentrations that are available experimentally are different than 

those that are of practical importance. When this situation arises, experiments that test 

specifically for inhomogeneity should be performed before extrapolation from one 

concentration range to another is made. 

4.4.4 Site Averaging is Affected by Concentration Range 

Up to this point in our analysis, we have examined the effects of inhomogeneity 

on individual progress curves with an associated concentration range. The single-site 

approximation is dependent on this fixed concentration range, and therefore, the effects 

of inhomogeneity will vary with experimental parameters such as initial concentration, 

Co. We have investigated the effect of Co by selecting two-site parameters from the 

minima in Figure 4.1C (K2 = 3.9~10-I PM-I, K1 = 3.5~10'~ PM-', 0 2  = 2 .3~103  and 



calculating the single-site approximation for a number of concentration ranges. The 

results of these calculations are depicted in Figure 4.4 as contours of constant K'-', first- 

order ratio, and zero-order ratio in the space of Co and final concentration, Ctin. Note that 

Co must be greater than Ctin and, therefore, the surfaces are undefined below Co = Gin. 
Figure 4.4A shows that K'-' decreases with increasing concentration range (i.e. 

increasing Co and/or Ctin). As the concentration range approaches zero, K'-' approaches 

Ka while K'-' approaches Kl as the concentration range becomes large. This result is 

consistent with the conclusion of Dzombak et al. 41 that, in multi-site adsorption, the 

isotherm is controlled by the strongest adsorption site at low concentration and by the 

weakest adsorption site at high concentration. Kinetic experiments performed at high 

concentrations will, therefore, emphasize the reactivity of and reaction mechanisms 

associated with weak adsorption sites while low concentration experiments will 

emphasize strong adsorptions sites. 

As we note above, both the single-site and the two-site rate laws give zero-order 

behavior at high concentrations and first-order behavior at low concentrations. The first- 

order ratio (Figure 4.4B), therefore, approaches 1 as Co approaches zero and the zero- 

order ratio (Figure 4.4C) approaches 1 as Cfin approaches infinity. This, along with the 

limiting behavior of @-', yields the following relationships between the first-order and 

zero-order rate constants from the single-site fit and the two-site distribution function: 

lim kgK'," = E[kmK,] 
G 4  

(21) 

lim k: = E I C K S I  
G 4  K2 

lim k g  = E[km] 
C h 4  

(24) 

Low concentration progress curves (eqs 21 and 22) yield complete information about the 

first-order rate constant (E[kmn Kss]) and very little information about the zero-order rate 

constant (E[km]), while high concentration progress curves (eqs 23 and 24) yield 

complete information about E[kmn] and very little information about E[km Kss]. 

From this analysis, we conclude that inhomogeneity can be qualitatively 

identified by comparing the results of kinetic experiments performed over different 



concentration ranges. If inhomogeneity is a significant feature of the system being 

studied, the following relationships should be evident from single-site fits to the data: 

p: lL ,.< K',S L ,. (25) 

IS 
IHiih,.> km Im,. (26) 

If inhomogeneity is detected, then an inhomogeneous kinetic model (such as eq 3) 

could be parameterized by global fitting where a single site distribution function is found 

that minimizes the total X2 across both the high concentration and low concentration 

experiments. Alternatively, the zero-order and first-order rate constants could be found 

independently from initial rate data, and an inhomogeneous rate law could be fit to data 

from additional kinetic experiments under the constraint that the fitted rate law return the 

correct values of E[km] and E[km,, K,]. 
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Figure 4.1. Progress curve analysis with one and two-site Langmuir-Hinshelwood 

models: (A) TNT reduction by iron metal, best fit one and two-site models and 

the average parameter single-site approximation. (B) Residual plots for the one 

and two-site fits in A. (C) Contours of constant x2 for two-site fits with Kl and K2 

held. The single-site model is depicted along the bottom and right borders (where 

2 = 14.13). 



Figure 4.2. Systematic errors induced by treating a two-site system with a single-site 

model: (A) 2 contours in (KI, K2) space. (B) x2 in the limit of infinite K2. 

(C) All possible residual plots for single-site fits to the two-site models 

along selected x2 contours in A. 



Figure 4.3. Extrapolation errors induced by treating a two-site system with a single- 

site model: (A) Ratio of predicted first-order rate constants applicable at 

low concentrations. (B) Ratio of zero-order rate constants applicable at 

high concentrations. 
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Figure 4.4. Effect of concentration range on the single-site approximation for a (given) 

two-site system and the systematic errors induced by the approximation: (A) 

Contours of K'-',,. (B) Contours of F.O. ratio. (C) Contours of Z.O. ratio. 



CHAPTER 5 

Reduction of 2,4,6=Trinitrotoluene (TNT) by Iron Metal: 

Kinetic Controls on Product Distributions in Batch ~x~eriments' 

Bandstra, J.Z., R. Miehr, R.L. Johnson, and P.G. Tratnyek. 2005. Environmental Science 

& Technology. 39(1): 230-238. 

5.1 Abstract 

The reaction kinetics and product distributions for the reduction of 2,4,6- 

trinitrotoluene (TNT) by granular iron metal (FeO) were studied in batch experiments 

under a variety of initial concentrations of TNT and FeO. Although the kinetics of TNT 

disappearance were found to behave in accord with the standard theory for surface 

mediated reactions, a complex relationship was found between the initial concentrations 

of TNT and F ~ O  and the appearance of the expected nitro reduction product, 2,4,6- 

triaminotoluene (TAT). TNT was completely converted to TAT only when the initial 

concentration of TNT was low and/or the initial concentration of FeO was high. 

Mathematical analysis of a range of generic reaction schemes that produce stable end 

products in addition to TAT showed that (i) surface complexation of TAT is insufficient 

to describe all of our data, and (ii) polymerization reactions involving TAT and/or 

various reaction intermediates are the likely source of the incomplete conversion of TNT 

to TAT at high initial TNT concentration and low FeO concentration. The relationship 

between TAT production and reaction conditions is shown to imply that passivation due 

to reaction products is more likely when the ratio of initial TNT concentration to F ~ O  

concentration is high and, therefore, that passivation rates observed at the laboratory scale 

are likely to be faster than those which would be observed at the field scale. 

' Bandstra, J.Z., R. Miehr, R.L. Johnson, and P.G. Tratnyek. 2005. Environmental Science & Technology. 
39(1): 230-238. 



5.2 Introduction 

A decade of intensive research into the kinetics and mechanisms of contaminant 

reduction by zero-valent iron metal (FeO) has led to widespread consensus regarding the 

primary effects that influence this process. Many of these effects (e.g., contaminant 

disappearance rate constant, kobs, versus concentration of FeO, A; or kobs vs. initial 

concentration of contaminant, Co) can be described with simple quantitative models. 

These models have been shown to apply over a wide range of contaminants, zero-valent 

metals, and experimental designs '. However, as more high-quality data sets become 

available, evidence is accumulating for more complex effects that involve interactions 

among two or more primary effects. 

One of the first interactions to be well documented is between the effects of Co 

and mixing rate (e.g., rpm) for batch experiments done with azo dyes *. In this case, it 

was shown that site saturation effects-which generally arise as Co becomes large-are 

apparent only at high rpm, where mass transport effects are small. Another interaction 

involving mixing rate is with molecular structure, where it has been shown that mass 

transport effects on contaminant disappearance kinetics-which generally become more 

significant at low rpm-are apparent only with contaminants for which reaction at the 

metal surface is comparatively fast (and therefore not rate limiting). Such highly reactive 

contaminants include nitrobenzene (relative to the carbon tetrachloride) and 1,1,1- 

trichloroethane (relative to 1,1,2-trichloroethane) 4. 

In other cases, interactions arise from competition among parallel reaction 

pathways or mechanisms. This is likely to be the case for the chlorinated ethenes, which 

react with FeO by competing pathways (e.g., a- vs. f3-dechlorinations) and mechanisms 

(e.g., electron transfer vs. hydrogen atom transfer). In fact, it has been argued that the 

relative rates of reduction for trichloroethene (TCE) and perchloroethene (PCE) vary with 

pH and Co in a manner that reflects the combined influence of these factors on the 

kinetics of hydrogen atom transfer '. The nitro aromatics are a similar case, where 

competing parallel reaction pathways (e.g. nitro reduction vs. coupling) and mechanisms 

(again, electron transfer vs. hydrogen atom transfer) are likely to produce interactions 

among primary effects. 



Nitro aromatic compounds in general, and TNT in particular, have several 

properties that make them well suited for probing process-level questions regarding the 

reactivity of ~ e ' .  Among these properties is the well-characterized array of parallel and 

sequential reaction pathways-resulting in mixtures of characteristic products-that 

occur under reducing conditions. The framework of this array involves the reduction of 

nitro groups, as shown in scheme 1 for TNT. In scheme 1, each set of three arrows 

represents the sequential reduction of a nitro group to an amino group via the 

corresponding nitroso and hydroxylamino intermediates (which are not shown). Some of 

these intermediates have been detected during reduction of TNT by FeO, but the yields 

have been small and transient 6,7. Various combinations of the nitroso, hydroxylamino, or 

amino products can undergo coupling to form dimers or bound residues '-I2, but these 

products are difficult to extract or identify and have rarely been quantified. 2,4,6- 

triaminotoluene (TAT) is the most quantifiable product of TNT reduction by FeO, but the 

yield of this product varies widely and this variability has not been explained. 

Scheme I 2-ADNT 2,6-DANT 
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The kinetics of the steps shown in scheme 1 have been described for a variety of 

reducing systems, including some that contain ~ e '  6"913-15. For the disappearance of nitro 

aromatic compounds, a number of standard primary effects have been noted, such as the 
112 6.8 linear dependence of kb on p,,, and rpm . The effect of rpm on the rate of nitro 

benzene reduction has been shown to reflect a mixture of mass transport and surface 

reaction control 3, which leads to the interaction between effects of rpm and molecular 



structure that was noted above. Adsorption could also be rate limiting, although it is 

difficult to distinguish this from mass transport control with simple batch experiments 7. 

Under experimental conditions that minimize the role of mass transport, however, the 

kinetics of nitro reduction are strongly affected by the presence of competing adsorbates 
16 

In contrast to the abundance of detailed analysis on the disappearance kinetics of 

nitro aromatic compounds under reducing conditions, very little quantitative information 

is available on the processes that determine the products of this reaction. The data 

reported by Oh et al. 7717 are suitable for quantitative kinetic analysis of products from 

nitro reduction, and their modeling of these data has provided evidence that the type of 

FeO effects the types of surface sites that are involved in nitro reduction 18. However, such 

effects may be coupled to other factors in a manner similar to the examples given above 

of interactions that reflect parallel and competing reaction pathways. In this study, we 

describe interactions between h, and Co on the distribution of reaction products, using 

2,4,6-trinitrotoluene (TNT) as a model for an environmentally-relevant nitro aromatic 

compound. The results show the rate of TAT appearance and limiting amount of TAT 

that appears in solution are dependent on p,,, h d  Co in a manner that suggests a strong 

influence of polymerization reactions between reduction intermediates and/or TAT; 

which, in turn, are influenced by other variables such as pH of the solution or 

composition of the oxide film on the FeO. Such complex interactions have implications 

for interpretation of data from controlled experiments in the laboratory and for the design 

and performance evaluation of full-scale remediation operations in the field. 

5 3  Methods 

2,4,6-Trinitrotoluene (TNT) was purchased from ChemService (West Chester, 

PA); 2-amino-4,6-dinitrotoluene (2-ADNT) and 4-amino-2,6-dinitrotoluene (4-ADNT) 

were purchased from SigmaISupelco (Bellefonte, PA); 2,4-diamino-6-nitrotoluene (2,4- 

DANT), 2,6-diamino-4-nitrotoluene (2,6-DANT), and 2,4,6-triaminotoluene (TAT) were 

purchased from AccuStandard (New Haven, CT). All chemical standards were >99% 

purity and used as received. 

Granular FeO was obtained from Peerless Powders and Abrasives (Detroit, MI, 

"PMP Traditional" Size 8/50,>90%). To remove fines, this material was sieved to the 



18-35 mesh size fraction. When not in use, the FeO was stored in a vacuum desiccator. 

Only one batch of FeO was prepared, and all analyses were performed with subsamples 

from this preparation. The specific surface area, determined by BET N2 gas adsorption, 
2 -1 was 1.54m g . 

Batch experiments were conducted under anoxic conditions in 60 mL serum 

bottles containing 1,2,3, and 6 g FeO which corresponds to 17,33,50, and 100 g L-', 

respectively. The bottles were filled with deoxygenated deionized water (no buffer, no 

headspace), sealed, and mixed by rotation at 20 rpm with the plane oriented 85 degrees 

from horizontal. The FeO was preconditioned in this environment for 2 days to stabilize 

geochemical and I?e0 surface conditions 15*19. Then, the bottles were spiked with TNT 

stock solution to begin the reaction. Initial TNT concentrations were varied between 4 

and 352 pM. Measurements of pH in bottles containing the same FeO concentrations used 

in the kinetic experiments after two days pre-exposure gave a pH profile beginning at pH - 9.4 at 17 g L" and increasing to pH - 9.9 at 100 g L-' (data not shown). 

Periodically, 400 pL samples were withdrawn from the bottles, filtered through a 

0.45-pm nylon filter, and analyzed by HPLC using a Platinum C-18 column (Alltech, 

Deerfield, IL). The mobile phase used for analysis of TNT and intermediates was 55:45 

methanollwater at a flow rate of 0.9 rnL min-', whereas TAT analysis was conducted with 

595 methanoUammonium acetate buffer (50 mM, pH 7) at a flow rate of 0.7 mL min-l. 

In all cases, TNT and products were monitored at 254 nm. 

Radio labeled experiments were performed by replacing the TNT stock solution 

with a solution of '*c-labeled TNT (Perkin-Elmer Life Sciences, 1.48 GBq / mrnol). 

Concentration data for 14c-labeled batch experiments were collected in the same manner 

as the unlabeled experiments. "c-activity was determined by mixing 0.3 mL of sample 

with 5 mL ScintiVerse Scintillant (Fisher, Fairlawn, NJ) and measuring total decays with 

a liquid scintillation counter. In some of the cases where solution phase radioactivity at 

the end of the experiment was substantially lower than at the beginning, the supernatant 

was adjusted to pH 5 by adding concentrated hydrochloric acid and concentrations and 

radioactivity were reanalyzed as described above. 

Sequential extractions were performed with 14c-labeled TNT under anoxic 

conditions in 53 mL centrifuge vials. A centrifuge vial containing 5 g of Peerless FeO was 



filled with deionized water and 0.2 rnL 14c-TNT stock solution resulting in an initial 

concentration of 264 pM. After mixing for 24 hours the supernatant was removed and the 

FeO was washed once with methanol. 5 rnL of the respective solvent was then added to 

the FeO, mixed for 24 hours, and separated by centrifugation. The extraction solvents, in 

order of application, were acetonitrile, NaOH (pH 1 I), EDTA (pH 1 I), HCl (pH 4), and 

EDTA (pH 3). 

5.4 Results 

5.4.1 Kinetic Experiments and Data Fitting 

Concentration time series collected from batch experiments (e.g., Figure 5.1) 

showed that TNT is reduced to TAT with some of the known intermediates in this 

reaction sequence appearing briefly at low concentrations. These results are consistent 

with previous studies that have examined the reaction mechanism of nitro-aromatic 

reduction * and the relative abundance of the intermediate species '. 
Analyses performed after 24 hours of reaction indicate that TNT and all reactive 

intermediates were entirely consumed and that TAT was a stable end-product. In a 

number of cases (Figures 5.2-5.3), the final TAT concentration was significantly less than 

the initial TNT concentration. Experiments with radio labeled TNT showed that the mass 
14 imbalance was not due to products in the solution phase (c.f., C-labeled data in Figure 

5.1). This is consistent with the finding that reduction products of nitro-aromatic 

compounds adsorb to the FeO surface 16. However, decreasing the pH to 5 by addition of 

HCl at the end of an experiment did not release a significant additional quantity of TAT, 

and serial extraction experiments yielded only a few percent of the missing radio-activity 

(data not shown). These results indicate that some of the reaction products were 

irreversibly bound to the F ~ O  surface. 

We found the kinetics of TNT disappearance to be accurately described with a 

first-order rate law: 

where km is the observed first-order rate constant. Preliminary experiments with low 

(13 g FeO L-', data not shown) exhibited a steep initial drop followed by slower first-order 



disappearance of TNT. This bimodal behavior is consistent with mixed control of the 

kinetics by reversible formation of a reactive surface complex (i.e., by mass transport 

andor adsorption) and irreversible surface transformations '. To minimize complications 

due to this bimodal behavior and to achieve appreciable yields of TAT, we chose to focus 

on relatively high &, which produces mass transport andor sorption limited behavior. 

The observed kinetics of TAT appearance could also be described with a first- 

order rate law: 

where   TAT is a first-order rate constant, TAT, is the concentration of TAT at t + oo, and 

TAT, exp(-kT~~ t) represents the disappearance of a parent compound from which TAT is 

produced. The TAT appearance data show only a small amount of the positive concavity 

that is expected during the early stages of a reaction that proceeds through intermediate 

compounds. This suggests that the rate limiting process for TAT appearance is the 

disappearance of TNT. 

We fit analytical solutions for the rate laws, obtained by direct integration of eqs 

1-2, to the TNT and TAT data using Levenberg-Marquardt square error minimization 20. 

In all cases, the total concentration (TNTo or TAT,) and rate constant (kTN~ or kTAT) 

where treated as fitting parameters. Since TAT, did not always complete the mass 

balance, we fit the TNT disappearance and TAT appearance kinetics as independent 

processes so that TAT, need not equal TNTo and k~~~ need not equal k m .  The results 

are tabulated as Supporting Information (Table Al), and some of the fitted time courses 

are shown in Figures 5.2-5.3. 

5.4.2 Eflect of Initial Conditions 

By performing batch experiments with different FeO concentrations, &, and initial 

TNT concentrations, TNG, we explored the effects of reaction conditions on the kinetics 

of TNT reduction and on the appearance of reduction products. Given the likely presence 

of reduction products bound to the ~ e '  surface 7,16,21 and the implications of this bound 

residue for long term reactivity of the FeO, we designed our experiments to highlight mass 

balance (i.e., TAT appearance). 



Figure 5.2 shows the results of batch experiments at TNTo = 176 pM with p, = 

17,33,50, and 100 g L-'. Consistent with the surface mediated nature of the reaction, the 

rate of TNT disappearance increases with p,. TAT appearance, however, responds to p, 

in an unexpected fashion. TAT, is close to zero for p, 1 33 g L-' (Figure 5.2A) but 

increases to give nearly complete mass balance at p, = 100 g L-' (Figure 5.2D). This 

effect is inconsistent with simple partitioning of TAT onto the FeO surface, because a 

larger surface area would sequester more TAT, not less. 

Figure 5.3 shows experiments performed at p, = 50 g L-I with TNTo = 3.5,35, 

176, and 352 pM. The data in Figure 5.3 indicate that, in contrast to our previous findings 

6, TNT disappearance rates decreased only slightly with increasing TNTo. The difference 

between this result and our previous result is probably due to differences in the kinetic 

regime under which the experiments were performed. The current work was performed 

under mass transport or sorption limited conditions, so we do not expect to see the 

influence of accumulation of adsorbed products that has been reported previously 6. 

The data in Figure 5.3 indicate a non-linear relationship between TAT appearance 

and TNTo. TNT is mostly converted to solution phase TAT when TNTo 1 3 5  pM pigure 

5.4A-B), but a significant portion of the TNT is unaccounted for when TNTo 2 176 pM 

(Figure 5.4C-D). The same trend was observed in batch data with p, = 17 g L-l, which 

gave TAT, - T m  only at TNTo = 3.5 pM and in batch data with p, = 100 g L-', which 

gave TAT, - TNTo for all cases except TNTo = 352 pM (time courses for these 

experiments not shown). 

The trend of decreasing mass balance with increasing TNTo suggests that the 

capacity of FeO to produce TAT can be overwhelmed by increasing TNTo. One 

explanation for this could be passivation of the FeO surface by TNT reduction products, 

thereby preventing further reaction and causing the accumulation of undetected 

intermediate species. Respike experiments, however, indicated that, while some 

passivation occurred, the FeO was still reactive towards TNT, both in the sense of TNT 

disappearance and in the sense of TAT appearance (data not shown). The processes that 

yield incomplete mass balance must, therefore, produce stable end-products and leave the 



I?e0 at least partially reactive. Identification of processes that meet these criteria is the 

principal subject of the remainder of this work. 

5.4.3 Quantitative Analysis 

Figures 5.4-5.5 depict, in graphical form, the fitting results described above and 

tabulated in the supporting information. The plot of k w  against & (Figure 5.4A) shows 

a linear relationship, as has been reported previously for TNT and many other 

contaminants 22923. The slope of this line gives the surface area normalized rate constant, 

ksA = 2.03 * 0.10 x lo-' min-I me' L. This value reflects the range of TNTo that were 

included in the calculation, even though-as noted above-high TNTo experiments 

produce slightly lower rate constants than low TNTo experiments (probably due to the 

increased influence of surface reaction kinetics for the high TNTo experiments). The 

value of kSA reported here is about twice the value that we have reported previously for 
0 6,15 Peerless Fe , but is well within the range of kSA9s that we reported previously for 

similar types of FeO and the range of ksA's for TNT and FeO that have been reported by 

others 69'5. 

A plot of kTAT VS. A (Figure 5.4B) shows features that cannot be explained on the 

basis of the standard theory for surface mediated chemical kinetics. For each value of 

TNTo, kTAT =: 0 at low A but increases linearly above some A. The slope of the increase 

appears to decrease with increasing TNTo and the h, beyond which k T ~ ~  increases 

appears to be larger for higher values of TWO. A linear relationship between kTAT and 

could arise if the rate of TAT appearance is controlled by TNT disappearance. If this 

were the case, however, the linear relationship would hold even at low and the slope 

would be independent of TNTo. 

Comparing kTAT to our fitted values of TAT, (Figure 5.4C) reveals a relationship 

between these parameters. This could either indicate that the processes causing TAT, to 

be less than TNTo are occurring throughout the course of the reaction, or simply that the 

fitting parameters kTAT and TAT, are covariant. Of the two parameters, TAT, is more 

robust because it is largely independent of modeling details (e.g., order of reaction); in 

fact, nearly identical TAT, values to those found by first-order fitting could be obtained 

by taking the average value of the last few TAT points in the relevant time series. 
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Therefore, we chose to analyze the variables controlling TAT appearance (and the

behavior of kTATnoted above) using TATooas the dependent variable, rather than kTAT.

Figure 5.5 shows TATooplotted against Pmand TNTo.TATooincreases with

respectto eachof thesevariablesbut, in mostcases,TAT00 appearsto approacha

horizontal asymptote (which, if the slope is everywhere positive, is expected since TAToo

~ TNTo). In the case of Pm(Figure 5.5A), the value of the asymptote is TNTo, while for

TNTo (Figure 5.5B) the asymptotic value appears to be a function of Pm.In general, to

approach a horizontal asymptote with positive slope, a function must have negative

concavity. This feature is apparent in the plot of TAToovs. TNTo (Figure 5.5B), but is less

apparent in the plot of TAToovs. Pm(Figure 5.5A) where the 176 J.IMand the 352 J.IM

data display mostly positive concavity, especially for Pm< 50 g L-1.Since we expect the

TAToovs. Pmcurve to approach TNT0as Pm~ 00,the curve must have an inflection point;

i.e., a Peritbelow which little TAT is produced and above which nearly all TNT is

converted to TAT.

Both the positive slope of TAToowith respect to Pmand the negative concavity

with respect to TNT0 are inconsistent with significant adsorption of nitro reduction

products in contrast to previous suggestions 16.As noted above, adsorption would be

expected to produce OfAToolBPm< 0, because increasing the adsorbent concentration

(i.e., Pm)would increase the amount of TAT that is adsorbed. At constant Pm,adsorption

would be expected to produce OfATool OTNTo> 0 (as is observed) because increasing

TNT0 would increase the adsorbed concentration. Adsorption would, however, produce

TAToovs. TNT0profiles with zero concavity at both low TNT0where a linear isotherm

would be expected and high TNT0where saturation of adsorption sites would occur.

Since, under an adsorption mechanism, the slope of the low TNT0portion of the curve

would be < 1 while the slope of the high TNT0region would be =1, the transition from

linear adsorption to site saturation behavior would display positive concavity. This is in

contrast to the data in Figure 5.5B which appear to possess a slope =1 at low TNTo and a

concave down transition to slope ~ 0 at high TNTo.
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5.5 Modeling

5.5.1 Scenarios leading to incomplete mass balance

In order to produce the partial mass balances that we observed, there must be

reaction pathways that do not lead to TAT or reactions that involve the transformation of

TAT to undetected products. These processes can be arranged into three scenarios:

branching, partitioning, and coupling (scheme 2).
Branching

IU~KI --
TNT ~, INT ~ TA-r:I~UNK!

IU~KI
Coupling

Scheme 2

Where !NT denotes a generic and/or lumped intermediate (which could include the

various intermediates shown in scheme 1 as well as TNT) and UNK represents

undetected (unknown) products-most likely residing on the Feo surface-that are

responsible for the incomplete mass balance that we often observed. In the following

analysis we employ the subscripts "Branch", "Couple", and "Partition" to denote the

source a specific UNK species. No subscript is used when a statement applies to all three

processes.

The branching scenario involves the formation of a product (or products) from the

milieu of intermediates that (during the time course of our experiments) does not react

further to form TAT. To produce incomplete mass balance, the branching reaction must

be irreversible on the time scale of our experiments. Physically, a branching reaction

might arise in this system due to coupling of nitroso- with hydroxylamino-intermediates,

forming a polYmericsubstance that is likely to be sequestered on the Feo surface 24.

In the coupling scenario, TAT reacts with !NT and, once all the INT is gone, the

reaction stops, leaving the remaining TAT unreacted. This scenario could arise in a

polymerization reaction similar to that leading to a branching scenario but with TAT as

one of the reactants 8.The branching scenario is, formally, a subset of the coupling

scenario. However, since the coupling scenario involves the added complexities

associated with a feedback loop, we chose to analyze the two as separate cases.
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In the partitioning scenario, TAT undergoes further reaction to form undetected

species. The reaction, in this scenario, must be reversible, otherwise TAT would

disappear entirely. Such a scenario could arise from the reversible sorption of TAT to the

Feo surface. Since we have already noted that adsorption can not explain all aspects of

our data, we have included the partitioning scenario mainly for completeness. However,

we note that other reversible reactions involving TAT could exist, the character of which

we address later.

In order to define models for TAT appearance based on the three scenarios

represented in scheme 2, we require that the models conform to the following criteria,

which derive from our discussion of the trends represented in Figure 5.5.

dTAT~ ~ 0
dPm

(3)

{

>o

d2TA;~ =0
dPm ~ 0

dTAT~ ~ 0
dTNTo

d2TAT~ < 0
dTNTo2 -

Pm < Perit

Pm =PeTit

Pm > Pcrit

(4)

(5)

(6)

Rate equations can be developed for each of the regimes shown in scheme 2 by assuming

reaction rates that are proportional to the concentrations of the reacting species

(including, where appropriate, the reactive surface area). Owing to their linearity, the rate

equations produced by this procedure do not meet the criteria of eqs 3-6. The goal of

modeling analysis that follows is to determine what modifications must be made to the

standard rate equations in order to satisfy the above criteria and, in particular, to

determine whether recourse must be made to factors that are not explicitly depicted in

scheme 2 (e.g., effects of pH or [Fe2+]in solution).



5.5.2 Branching 

A model for the branching scenario can be written by assuming that the rates of 

TAT and UNKBranch formation obey a power law in INT concentration with rate constants 
25-29, that depend on p, . 

d[lNTl -= 
dt ~TNT+INT ('1 - k~~~ (Pm) - k N K ( ~ )  [INTI- 

where f,,,+,,(t) is a generic function representing the production of INT, k's are rate 

constants, m's are the orders of reaction with respect to INT, and all concentrations are 

initially zero. The parameter subscripts in eqs 7-9 correspond to the product of the 

relevant reaction so that, for instance,  TAT is the INT reaction order for the INT + TAT 

reaction. This notation is employed throughout the rest of the paper. If we assume that 

 TAT = m w ~  we can derive a formula for TAT, by integrating the ratio of the rate of 

TAT production to the rate of UNKBranch production from t = 0 to t = oo (details given in 

the Supporting Information). 

TAToo = TNT, K ( P ~  ) 
1+ K(Pm) 

Where K =  kTATl kmK. Eq 10 satisfies eq 3 if and only if a ~ /  a p ,  > 0 (proof given in 

Supporting Information) implying that the rates of processes leading to TAT must 

increase with p, faster than the rates of processes leading to UNKBmch. Eq 10 satisfies eq 

4 if and only if # K /  & > 0 for 0 c p, I pht, where ht is the inflection point in TAT, 

vs. p, (Figure 5.5A) implying that the concavity of kTAT with respect to p, must be large 

compared to the concavity of kUNK (proof given in Supporting Information). 

Eq 10 is linear with respect to TNTo and, therefore, does not satisfy eq 6. This is a 

result of the assumption, used in deriving eq 10, that  TAT = ~ I N T .  TO see this, we assume 

that f,,,,,(t) in eq 7 is a Dirac-6 style pulse (modulated by TNTo) at t = 0 such that eq 

7 becomes: 



with the initial condition 

which is equivalent to assuming that the branching occurs at TNT rather than at INT. 

Integrating eq 6 from t = 0 to t = oo and substituting eq 11 on the right hand side yields a 

relationship for TAT, (details given in the Supporting Information). 

Where K = kTATI kWK, Am = r n m ~  -  TAT, and the dummy variable, w, has been 

substituted for [INTI. Eq 13 reduces to eq 10 when r n m ~  =  TAT and satisfies eq 5 for all 

K, ~ U N K ,  and mTAT. Eq 6 is satisfied if and only if rnmK >  TAT (proof given in 

Supporting Information), therefore, the rates of processes leading to UN&mCh must 

increase with INT concentration faster than the rates of processes leading to TAT. 

5.5.3 Coupling 

A model can be written for the coupling scenario in a fashion similar to the 

branching scenario with the addition of a TAT concentration dependence to the rate of 

UM&qle formation. 

where *AT, k, and h~ are stoichiometric factors such that 

TNTo = [TNT] + [TAT] + [INTI + + 'TAT [UNK,] (17) 
VUNK 

and  TAT is the order of the coupling reaction with respect to TAT. Setting  TAT = 0 and 

*AT = 0 gives the branching model described above. In the case where ~ U N K  =   TAT an 



equation for TAT, can be found by dividing eq 15 by eq 16 and integrating the result 

(details given in Supporting Information). 

TNTo - TAT, - W+AT 

- TA' K(pm) - vTAT w*" 
dw 

VINT - VTAT o 

where K=  K TAT I kmK and w has been substituted for [TAT]. Eq 18 satisfies eqs 3-4 if and 

only if a r /  ap, > 0 and #K/ a h 2  > 0 (proof given in Supporting Information). Eq 18 

satisfies eqs 5-6 for any  TAT > 0. The coupling model, therefore, has the same essential 

features with respect to 14, as the branching model but produces the observed behavior 

with respect to TNTo without need for non-linearity in the INT reaction orders. The 

required non-linearity is supplied by the TAT term in the UNKcwple formation rate 

indicating that both non-linearity in the reaction order of individual species and non- 

linearity in the overall order of reaction can give the behavior that we observed in Figure 

5.5B. 

5.5.4 Partitioning 

We can derive a model for the partitioning scenario by assuming equilibrium 

conditions between TAT and UNKmtim with a partitioning coefficient, f ' ,  that depends 

on p,. 

(zr (TNTo - TAT, 
1 -= 

K(P, TAT,- 

 TAT and m m ~  are stoichiometric factors and a mass balance condition has been applied 

to obtain the right hand side of eq 19. In the absence of non-linearity (i.e.,  TAT = mUNK), 

eq 19 reduces to the same form as eq 10. 

TAT, =TNT, K(& )'Irn 
1 + K(P, )'Irn 

where m =   TAT = m m ~ .  AS with the branching and coupling scenarios, Kcan be 

interpreted as a ratio of rate constants, K=  k U N K - ~ ~  I kTA-pm~. Eq 19 satisfies eqs 3-4 if 

and only if ~ K I  a& > 0 and #rl ap,' > 0 (proof given in the Supporting Information) 

indicating that the partitioning reaction must be shifted toward TAT with increasing p, 



and that the shift must be stronger (i.e. higher order) than linear. Differentiation of eq 19 

with respect to TNTo shows that the partitioning model will satisfy eq 5 for any values of 

 TAT and m m ~ ,  but eq 6 will be satisfied if and only if m m ~  >  TAT (proof given in 

Supporting Information), indicating that nonlinearity plays the same role for the 

partitioning scenario as it does for the branching and coupling scenarios. 

5.5.5 Fitting 

We parameterized the models presented above by non-linear square error 

minimization using both a single variable approach and a multivariate approach. In the 

single variable approach, the TAT, vs. p, data with the same TNTo were fitted together 

and, separately, the TAT, vs. TNTo data with the same p, were fit together. In the 

multivariate approach, TAT, is treated as a function of both p, and TNTo, and all TAT, 

data were treated together. 

The TAT, vs. TNTo data (Figure 5.5B) were fit by treating a )  as an adjustable 

parameter. To fit the TAT, vs. p, data, however, the functional form of a )  must be 

assumed. One way to interpret the dependence of the rate constants and partition 

coefficient on p, is to treat ~ e '  surface sites as reactants and, therefore, to assume that 

reaction rates obey a power law with respect p, 28f9. 

M 
.(prn) =.A (21) 

Where K =  kTATl kmK (as in eq 10 but with the p, dependence factored out), AA = ATAT - 

AmK, and /Z is the order of each reaction with respect to reactive surface area. The 

conditions given above imply that, for each of the three models, 1. 

Under the power law assumption, a fitting equation can be derived for TAT, vs. 

p, (Figure 5.5A) from eq 10 for branching. 

To achieve the sharp increase in TAT, that we observed in the data, it was necessary to 

set AA to fairly large values (6.7 for 176 pM, 3.6 for 352 phi). Since AuNK 2 0, this result 

indicates that ATAT must be significantly greater than 1. It is reasonable to expect the INT 

+ TAT reaction to depend on p,, but values of ATAT >> 1 are physically unrealistic. If 



we set ATAT = 1 and ATAT = 0, the model does not reproduce the positive concavity and 

inflection point that are shown in Figure 5.5A. Adding non-linearity to the concentration 

dependence of the reaction rates (i.e., by employing eq 13 or 18) does not significantly 

decrease the value of Ail needed to replicate the TAT, vs. p, data. This is not surprising 

because the conditions that were derived for K&) do not depend on the values of the 

INT or TAT reaction orders. 

Although the application of a power law expression accurately reproduces the 

behavior of TAT, vs. A, the values of the fitted parameters indicate that additional 

chemical factors-factors indirectly influenced by &-must be involved in determining 

the distribution of material between TAT and UNKBranch (or UN&ouple). Since hTAT = 1 is 

consistent with our analysis, we hypothesize that, while the rate of the INT + TAT 

reaction is adequately modeled with a power law expression, the rate of the INT + 
U N K B ~ ~ ~  (or UM(Couple) reaction depends on solution chemistry. Given the acidfbase 

catalyzed nature of many polymerization reactions U*M, it seems likely that pH may be 

influencing TAT appearance, though we can not rule out other factors such as pe2+]. 

The character of the partitioning scenario can be investigated by deriving a fitting 

equation from eq 19 under a power law assumption for the partition coefficient dl. In the 

case of m w ~  = A TAT = 1, the fitting equation is identical to eq 22 and, therefore, the 

fitting results for the branching scenario also apply to the partitioning scenario. In this 

case, the large values obtained for Ail imply that the reaction order with respect to p, for 

the UNKwti, + TAT reaction is significantly greater than that for the TAT + 
UNKMtioo reaction, which is the opposite of what would be expected if adsorption of 

TAT to the F ~ O  surface was controlling TAT,. Modifying the p, dependence to involve 

additional chemical factors (as we suggested for the branching scenario) could also be 

done for the adsorption model. Such a modification, however, would have to be strong 

enough to overcome the tendency for more material to adsorb to more adsorbent, making 

the success of such a modification unlikely. 

Eq 13 for branching, eq 18 for coupling, and eq 19 for partitioning can each be fit 

to the TAT, vs. TNTo data by treating Kas an adjustable parameter. All three scenarios 

were capable of fitting the data equally well. In each case, the sharpness of the transition 



from TAT, = TNTo to a horizontal asymptote increased with the degree of non-linearity 

(i.e., Am = m m ~  -  TAT in eqs 7-20 andor A TAT in eq 18). The fitting results indicate a 

sharp transition (e.g., Am as large as 4.6 for eq 13), but the data are too sparse to produce 

definitive information about the nature of this transition. The existence of such a 

transition is, however, clearly indicated by these data, and non-linearity in the TAT 

disappearance mechanism is sufficient for its description. 

Since we expect that, for the branching and coupling models,  TAT = 1, the non- 

linearity in INT reaction orders indicates that the INT + UNK reactions are multi- 

molecular. This is consistent with the interpretation of these reactions as polymerization 

of the intermediates andor TAT. At high TWO, the concentrations of the intermediates 

become large and the rate of polymerization increases relative to the rate of TAT 

production, leading to an overloading of the capacity of the FeO to produce TAT without 

completely passivating the surface. In the context of the partitioning scenario, the 

interpretation of Figure 5.5B and the required non-linearity is less clear. As noted above, 

the observed behavior is not consistent with simple adsorption of TAT to the F ~ O  surface. 

The non-linearity could be rationalized by assuming that the forward reaction (TAT + 
UNK) is multi-molecular, which could arise if TAT undergoes a reversible coupling 

reaction with itself. 

In total, these results indicate that the processes controlling TAT appearance are a 

combination of coupling and branching reactions with reaction rates that are sensitive to 

solution conditions. Lumping these processes into a single model would lead to eqs 14-17 

for coupling, of which, eqs 7-9 for branching are a special case. Fitting eq 13 for 

branching (with eq 21 substituted for @ to our TAT, data with the multivariate approach 

shows that the branching scenario is sufficient to describe all of our data. The 

multivariate fitting results are shown in Figure 5.5. The fitted parameters from the 

multivariate approach are consistent with the results above that indicate significant 

nonlinearities in both Ail and Am which may be due to polymerization reactions 

involving TAT andlor various reaction intermediates. 



5.5.6 Zmplications for Scaling Passivarion Kinetics 

Aromatic amines inhibit corrosion reactions both by competition for active sites 31 

and by polymer film formation '* and, therefore, the fate of TAT can be expected to 

effect the longevity of F ~ O  based remediation technologies. To investigate the 

implications of our results for surface passivation, we can use our modeling results to 

show how the coverage of surface sites will vary with both TNTo and A. To do this, we 

assume that UNK precipitates onto active sites to form passive sites and that UNK 

precipitates onto passive sites with no effect on the reactivity of the site. 

SA+UNK+Sp 
Sp+UNK+Sp 

Where SA and Sf represent active and passive sites, respectively. If the precipitation 

reactions are fast and occur with equal probability (details given in Supporting 

Information): 

Scheme 3 

Where [ S f ]  is the concentration of Sp (e.g., moles Sp per liter of solution), [STot] is the 

concentration of total sites (= [SA] + [S f ] ) ,  and a i s  a constant of proportionality between 

[STot] and 14, (set to 1 in this work). [ S f ]  / [STot] can be interpreted as the degree of 

reaction passivation, k*,(,l Figure 5.6 shows [Sf]  / [STot] calculated from eq 23 

with TAT, taken from the multivariate fitting of eq 13 to the data in Figure 5.5. The 

results indicate that significant passivation is likely when TNTo / is large (i.e., the flat 

portion of the curves on the left side of Figure 5.6) as is the case in most laboratory 

investigations of passivation, while systems with small TNTo / & would passivate more 

slowly. The transition (with respect to both and TNTo) between the two regimes is 

sharp, implying that the rates of surface passivation found for respike batch experiments 

l6 and laboratory column experiments '9*33"5 will tend to overestimate the passivation 

rates that apply to most field conditions. 
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Figure 5.1. TNT disappearance, transient 2-HADNT, 2-ADNT, 2.4-DANT, and 2,6- 

DANT, and TAT appearance in batch reactors with TNTo = 176 phi and 

& = 50 g u'. Data for radioactivity in solution from "c-labeled TNT are 

plotted on the right axis (scaled so that the calculated initial radioactivity 

corresponds to TNTo. 
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Figure 5.2. TNT disappearance (closed circles) and TAT appearance (open circles) in 

batch reactors with T m  = 176 p M  and p,,, = (A) 17 g Lel, (B) 33 g L", 

(C) 50 g L" , and (D) 100 g L" . 
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Figure 5.3. TNT disappearance (closed circles) and TAT appearance (open circles) in 

batch reactors with = 50 g L-' and (A) TNTo = 3.5 pM, (B) TNTo = 35 

pM, (C) T W O  = 176 pM, and @) T W O  = 352 pM. 



Figure 5.4. Rate constants obtained from fitting (A) TNT disappearance curves and 

(B) TAT disappearance curves plotted against &. A table of the fitting 

results is included in Appendix A. 



Figure 5.5. Fitted TAT, plotted against (A) and (B) TNTo. The coarse dashed line in 

(B) represents complete conversion of TNT to TAT. Curves shown are the 

result of multi-variate fitting of equation 13 with ~(p,) given by equation 21. 
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Figure 5.6. Fraction of passivated surface based on scheme 3 plotted as a function of 

p, for each of the values of TNTo used in this study. 



CHAPTER 6 

Conclusions 

6.1 Summary 

6.1.1 The Theory of ZnterJacial Chemical Kinetics 

In Chapter 2 of this thesis rate laws that are commonly encountered in 

heterogeneous systems are derived from the advection-diffusion equation (for isotropic 

diffusion in a dilute solution) and reactive surface boundary conditions. Although this is 

not a new result (c.f., Rosner '), the derivations included in Chapter 2 are not typically 

found together and, too often, the isolated derivations contain conceptual errors (c.f. 

Venkatapathy et al. *). Considering the familiar rate laws together will help to eliminate 

these misunderstandings and the collection will serve as a useful reference for the 

researcher whose focus is the application of heterogeneous rate equations rather than the 

theory. 

It is well documented that heterogeneous reactions may be rate limited by mass 

transfer, adsorption, or surface reaction. Equation (38) in Chapter 2 (reproduced here as 

equation 1) is the typical mathematical form of this statement. 

Equation (I), however, ignores the fact that, in a batch reactor, mass transfer and 

adsorption controlled reactions will not satisfy the pseudo-steady-state assumption used 

in deriving equation (1) until the reaction has run to completion. The analysis of bimodal 

kinetics in Chapter 2 (sec. 2.4.3) indicates that, for a batch reactor, mass transfer and 

adsorption controlled reactions will follow the large eigen-value given by equation (70) 



in Chapter 2 while surface transformation controlled reactions will follow the small 

eigen-value. Figure 7 of Chapter 2 shows that the degree to which a reaction will follow 

the large or small eigen-value. It can, therefore, be expected that plotting & VS. iron 

loading (p,) will produce a transition from surface reaction control at low p, to mass 

transferladsorption control at high p,. Since such a transition would involve transition to 

a larger slope, this phenomenon may explain the negative intercepts sometimes found in 

determinations of kA by linear regression. 

The Langmuir-Hinshelwood equation and the first-order rate law can be derived 

with either the pseudo-steady-state and the pseudo-equilibrium assumptions. The 

question, then, arises as to which assumption is the most general. The general consensus 

is that the pseudo-steady-state assumption is more general because of its rigorous 

application to flow through reactors (e.g., column reactors, continuously stirred tank 

reactors) and the fact that it can collapse to the pseudo-equilibrium assumption. The 

analysis in Chapter 2 (sec. 2.5), however, indicates that both of these assumptions are 

incorrect for batch reactors except in the case where they collapse (i.e., when rapid 

equilibrium is actually established). Figures 8 and 9 indicate that, even when the 

assumptions are incorrect, the form of the Langrnuir-Hinshelwood equation and the first- 

order rate law are likely to be appropriate. This is consistent with the experimental 

success of these rate equations but also indicates that careful calculations need to be 

performed in order to scale between batch reactors and column reactors or FePRBs. 

6.1.2 Central Limit Theorem for Chemical Kinetics in Complex Systems 

In Chapter 3 it is conjectured that the preponderance of first-order kinetics--even 

in complicated media where the usual explanations are unlikely--can be understood as 

emerging from the complexity of the system in a manner that is analogous to the Central 

Limit Theorem. Numerical simulations of parallel reactions (that were constrained to 

behave as elementary steps) indicate that the combined effects of zero and second order 

processes yield a central tendency toward nearly first-order behavior. Roughly equal 

proportions of zero, first, and second-order processes are more likely with increasing 

number of parallel processes and, therefore, this central tendency is more likely to 

emerge in systems with many parts--one of the hallmarks of a complex system. In 



addition to this, the central tendency is more likely when the rate constants for the 

parallel reactions yield a more equal distribution of material. This condition corresponds 

to greater pathway entropy which can be viewed as a proxy for the complexity of the 

reaction network. 

6.1.3 Applicability of Single-Site Rate Equations for Reactions on Inhomogeneous 

Sur$aces 

The Langmuir-Hinshelwood equation is regularly applied to heterogeneous 

reactions such as the reduction of solutes on iron metal 4. In many cases, the implicit 

assumption of a homogeneous surface is unlikely to be satisfied and, so, the parameters 

found by fitting a Langmuir-Hinshelwood equation to experimental data likely represent 

an approximate average site. In Chapter 4 it is found that simple averaging of the sites on 

an inhomogeneous surface overestimates the rate of reaction, even in cases where some 

other single-site approximation is highly accurate. Application of a method for finding 

the best single-site approximation and the inversion of this method indicate that accurate 

single-site approximations are likely to exist over a broad range of inhomogeneity. 

Although the best single-site approximation for an inhomogeneous surface is 

found to depend on the concentration range used to define the behavior of the reaction 

(e.g., the concentration range of a batch experiment). Equations (25-26) of Chapter 4 

(reproduced here as equations 2-3) give general relationships for the relative nature of 

this dependence. 

fc2 lw ,< fc; lbw-. (2) 

1s kg liiiih -. > km ILW -. (3) 

The inequalities of equations (2-3) indicate that ignoring inhomogeneity will cause 

reaction rates to be underestimated when a single-site approximation is extrapolated out 

of the concentration range used to parameterize the equation. This also offers the 

possibility of using kinetics experiments at different concentration ranges as a means of 

identifying inhomogeneous behavior. 



6.1.4 Reduction of 2,4,6-Trinitrotoluene (TNT) by Iron Metal: Kinetic Controls on 

Product Distributions in Batch Experiments 

In Chapter 5, a complicated relationship between TNT reduction product 

appearance and reaction conditions is identified in batch reactors loaded with granular 

iron metal. Specifically, TNT is completely converted to 2,4,6-triaminotoluene only at 

low initial TNT concentration, [TNTIo, and/or high iron loading, p,. Extraction 

experiments with 14c-~NT indicate that the missing mass is on the surface, however, the 

response of TAT appearance to p, is inconsistent with surface complexation of TAT. 

Mathematical analyses of generic reaction schemes that yield stable products in addition 

to TAT indicate that the observed behavior is consistent with coupling of the nitroso and 

hydroxylamino intermediates in the TNT reaction mechanism. These alternative 

products, when bound to the surface, can cause passivation of the iron surface. A 

numerical simulation of passivation due to the surface bound products in this system 

indicates that the relatively high [TNTIo and low p, that are characteristic of laboratory 

experiments will tend to yield a greater degree of passivation than would be found in a 

field scale FePRB. 

6.2 Synthesis 

The conjecture, put forth in Chapter 3, that first-order kinetic expressions will be 

broadly applicable in environmental chemistry is generally supported by the rest of this 

thesis. Many of the kinetic regimes discussed in chapter 2 lead to first-order expressions; 

the first-order rate expression is employed over a wide range of conditions for the 

reduction of TNT by iron metal in chapter 5; and the Langrnuir-Hinshelwood equation, 

discussed in chapters 2 and 4, reduces to a first-order expression at the low 

concentrations that are most environmentally relevant. This observation presents a 

general conclusion: that simple rate laws are likely to be sufficient for describing the data 

generated by most kinetics experiments. In some sense, this conclusion is encouraging 

because is precludes the need for complicated mathematics to commence with the study 

of chemical kinetics. However, this presents a problem with the practice of extrapolating 

reaction rates found in the laboratory to the, potentially quite different, conditions found 



in the field. It also precludes the possibility of generating significant mechanistic 

information with a single kinetics experiment. 

The latter difficulty can be overcome by performing suites of kinetic experiments 

with systematically varied inputs of reacting species. In chapter 5, for example, TAT, 

observations undergo a stark bifurcation with respect to both [Fe] and [TNTIo. 

Considering these bifurcations together yielded information about the reaction 

mechanism that will form a useful basis for investigations into the long-term performance 

of FePRBs for nitro-aromatic compounds. The results of chapter 4 indicate that, with no 

knowledge of the structure of the iron surface, the reactivity of multiple sites could be 

identified from two kinetics experiments performed at very different concentrations of 

oxidant. Sufficient mechanistic detail, thus determined, could alleviate the difficulty of 

scaling reaction rates between laboratory and field. In this light, the singular conclusion 

of this thesis can be stated: that kinetic modeling is among the best scientific tools for 

synthesizing information about chemical reactions generated across multiple scales; from 

molecular theory to laboratory experiment to the behavior of natural and engineered 

systems. 
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APPENDIX A 

Summary of experimental results for "Reduction of 2,4,6- 

Trinitrotoluene (TNT) by Iron Metal: Kinetic Controls on Product 

Distributions in Batch Experiments" 



Table A.1. SUMMARY OF EXPERIMENTAL RESULTS. 

r9n TNTo ~ T N T  T w o  k~ AT TAT, 
(g L-l) Nominal (min") Best Fit (rnin-') Best Fit 

( W )  (W) ( W )  

- - 

*performed with 14c-labeled TNT. 



APPENDIX B 

Derivations and Proofs for "Reduction of 2,4,6=Trinitrotoluene (TNT) 

by Iron Metal: Kinetic Controls on Product Distributions in Batch 

Experiments" 



Derivation of eq 10 for branching model with  TAT = m-. Dividing eq 8 by eq 9 

gives 

integrating with respect to t gives 

[TAT1 - [TAT],, = K(pm ) ([UNKI - IUNKI,) (S2) 

The initial TAT and UNK concentrations are zero and taking the limit as t + oo gives 

TAT, = ~(p,) UNK- (s3) 

Applying the mass balance equation TNTo = TAT, + UNK, and rearranging gives eq 10. 

TAT_ = TNT, K ( P ~  
1+ K(P,) 

Properties of K with respect to for the branching scenario. Taking the derivative of 

eq 10 with respect to p, gives 

aTAT, - TNT, a~ - - 
(I + K ) ~  a p m  

(S4) 
a p m  

Since TNTo / ( l + ~ *  > 0, application of eq 3 gives 

The second derivative of eq 10 with respect to p, is 

a2TAT, - - - 2 TNT, ~IK TNT, a2K - + - 
ap,' (1 + K ) ~  a ~ m  (1 + K ) ~  ap; 

To give a positive slope, k must be finite for 0 < p,,, I pdt, where p ~ t  is the inflection 

point in TAT,. Therefore, application of eq 4 gives 

The right hand side of eq S7 is positive and, therefore, we have 



for 0 < p, 5 p&,. 

Derivation of eq 13 for the branching scenario. Integration of eq 8 with respect to t 

(with [TAT10 = 0) gives 

Substitution of eq 11 gives 

[INTI, 

[TAT] = I -  TAT 
k,,, [INTI* + kTAT [INT]~"' 'INq 

Since [INTIo = TNTo and [INTI, = 0, taking the limit of eq S10 as t + oo and substituting 

w = [ m ] ,  Am = m m ~  -  TAT and K= kTAT I kUNK gives eq 13 

TWO 

TAT, = I ik(Prn) dW 
0 K(P, 1 + wArn 

Properties of  with respect to TNTo for the branching scenario. The derivative of eq 

13 with respect to TNTo is 

Since K ~ S  positive, eq S11 satisfies eq 5. The second derivative of eq 13 is 

Eq S12 satisfies eq 6 if and only if Am L 0. 

Derivation of eq 18 for coupling. For m m ~  =  TAT, dividing eq 16 by eq 15 and 

rearranging terms gives 



Integrating eq S13 with respect to t and substituting w = [TAT] on the left hand side gives 

w = [UNK], - [UNQ 
d Pm - VTAT 

Applying eq 17 for mass balance, the initial conditions [TAT10 = [UNKIo = 0, and taking 

the limit as t + m gives eq 18 

TNT, - TAT, 
dw 

VINT + VTAT 

The left hand side of eq 18 is linear in TAT, with negative slope, -1 /(v,,, + v,,,) , and 

positive intercept, TNT, l (v l ,  + vTAT) . The right hand side goes through the origin and 

has a singularity at TAT_ = ( K /  vTAT)( l 'k '  with positive slope for 

TAT_ < ( K / v ~ ~ ~ ) " ' * ' T '  and negative slope for TAT_ z ( K / v ~ ~ ~ ) ( " ~ ' T '  such that the left 

hand side of eq 18 approaches -m as TAT, approaches m. Since 0 < TAT, < TNT, the 

only roots of eq 18 that are physically realistic are those where 

The equality in eq S 15 applies in the limit as TNTo m. 

Properties of  with respect to for the coupling scenario. Taking the derivative of 

eq 18 with respect to gives 

The derivative on the right hand side of eq S16 can be evaluated using Leibinitz's rule for 

the derivative of an integral. 



Rearranging eq S 17 gives 

Since, by eq S 15, K > v,,TAT,*~~ , aTAT- l ap, > 0 if and only if a K l ap, > 0 . 

The integral on the right hand side of eq S 18 can be evaluated by parts with u = w 

and dv = W - ~ M - '  l ( KW-%*T - v ~ ~ ~ ) ~  giving 

The integral on the right hand side of eq S19 is given by eq 18 and rearrangement gives 

aTAT, - --- I a ( K - V~~~TAT-R I '  
TAT, - 

a ~ m  %ATK a& 
TNTO ) (S20) 

K - vTATTATmhAT K + 

The second derivative of eq 18 with respect to & can be found from eq S20 giving 

1 a2 K + - (TAT- - a) ---? 
%ATK a ~ m  

where a i s  given by 



By eq S15,O 5 a5 TNTo. a= TNTo applies as TNTo 0 and TAT, + TNTo and, 

therefore, a< TAT,. For  TAT 2 1, eq ~ 2 1  can satisfy eq 4 if and only if a 2 ~ I  2 o 
over the range 0 < h, < ph,. For  TAT = 0 

Eq S22 can satisfy eq 4 if and only if a 2 ~ l a p , 2  2 0 over the range 0 < h, < ph, and we 

reason (inductively) that K should also behave in this fashion for 0 <  TAT < 1. 

Properties of K with respect to TAT, for the coupling scenario. The derivative of eq 

18 with respect to TNTo can be evaluated using Leibinitz's rule giving 

Eq S24 is positive for all TNTo thus satisfying eq 5 and it approaches 0 as TNTo + m. 

The second derivative of eq 18 is 

Eq S25 is negative for all TNTo and, therefore, eq 18 satisfies eq 6. 

Derivation of eq 18 for partitioning. Eq 19 can be derived by assuming that ~ U N K  

moles of TAT react in reversible fashion to form  TAT moles of UNK with equilibrium 

constant K - ~  such that 

The stoichiometry for the TNT + TAT reaction is 1: 1 and, therefore, a mass balance 

expression can be written as 

qATTNTo  = -ATTAT, + %KUNK_ (S27) 



Substituting eq S27 into eq S26 gives eq 19. 

1 - (zr (TNT, - TAT, )*AT 
-- 

Properties of  with respect to 14, for the partitioning scenario. Taking the derivative 

of eq 19 with respect to p, gives 

Equation S28 satisfies eq 3 if and only if a~lap, 2 0.  The second derivative can be 

found from eq S28. 

m, AT 

(TNT, - TAT, ) 

\ 
TAT, (TNT, - TAT, ) 

Equation S29 satisfies eq 4 if and only if a2~/ap,,,' 2 0 . 

Properties of  with respect to TAT, for the partitioning scenario. Taking the 

derivative of eq 19 with respect to TNTo gives 

AT 

aTAT, - - TNT, - TAT, 
- 

~TNT, QNK + 4 AT 

TAT, TNT, -TAT, 

Equation S30 is positive for all  TAT and m m ~  > 0 and, therefore, the partitioning model 

satisfies eq 5. The second derivative is 



Equation S3 1 satisfies eq 6 if and only if  TAT 5 ~ U N K .  

Derivation of eq 23 for surface passivation. Assuming that the rates of the reactions in 

scheme 3 are first-order with respect to both UNK and surface site concentrations gives 

Dividing eq S32 by eq S33 and applying [STJ = [SA] + [Sp] gives 

If the reactions in scheme 3 are fast, then the reaction rapidly proceeds to completion and 

the active site population can be found by integrating eq S34 from [UNKIo to 0. 

[UNK] = TNTo - TAT, = ([%&I - [SA]) [ 1 - t ] + t [ % M ~ l n [ g $ )  

If both reactions in scheme 3 occur with equal probability, kA = k p  and solving eq S35 

with [STo;) = & / agives eq 23. 

-- ['PI - , -q TNT, - TAT, 

[%dl 
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