
Bridging Object Models: The Faux-Object Idiom

Chris Sells

B.S., University of Minnesota, 1991

A thesis submitted to the faculty of the

Oregon Graduate Institute of Science and Technology

in partial fulfillment of the

requirements for the degree of

Masters of Science

in

Computer Science and Engineering

September, 1997

The thesis "Bridging Object Models: The Faux-Object Idiom" by Chris Sells
has been examined and approved by the following Examination Committee:

David Maier, Thesis Adviser

Professor

Andrew Black

Professor and Department Head

,

,F James Hook

Associate Professor

Acknowledgement

I would like to thank my adviser, Prof. David Maier and my other committee
members, Prof. Andrew Black and Associate Prof. James Hook, for their numerous

readings and comments. The thesis would not be what it is without their involvement.

Most of all, I would like to thank my wife for her ceaseless confidence in my ability
and her patience with my neglect during the long process of completing this thesis. She

and my two children are what give this accomplishment meaning.

Table of Contents

... CHAPTER 2 . THE COMPONENT OBJECT MODEL 5
.. 2.1 COM INTERFACES 5

... 2.2 IUNKNOWN 7
.. 2.3 COM IMPLEMENTATIONS 8
.. 2.4 COMIC + + INTEGRATION 8

. .. CHAPTER 3 RELATED WORK 15
... 3.1 DISTRIBUTED OBJECT MODELS 15

.. 3.2 COM LANGUAGE BINDINGS 17

.. CHAPTER 7 . DISCUSSION. CONCLUSION AND FUTURE WORK 4
.. 7.1 DISCUSSION -44
... 7.2 CONCLUSION -45
... 7.3 FUTURE WORK -46

.. APPENDIX F . FAUX-OBTECT FOR C/COM CLIENT 7 0

List of Figures
.. FIGURE 1: ISTRING INTERFACE LAYOUT 6

.......................... FIGURE 2: MULE CLASS INHERITING FROM BOTH DONKEY AND HORSE CLASSES 24
.. FIGURE 3: FAUX-OBJECT MEMORY LAYOUT 2 5

FIGURE 4: FOBUILDER .. A FAUX-OBTECT CLASS GENERATOR .. 37
.. FIGURE 5: CODE SIMPLIFICATION STATISTICS 4

Abstract
Microsoft's Component Object Model (COM) is the dominant object model for

the Microsoft Windows family of operating systems. COM encourages each object to
support several views of itself, i.e. interfaces. Each interface represents a collection of
logically related functions. A COM object is not allowed to expose multiple interfaces
using multiple inheritance, however, as some languages do not support it and those that
do are not guaranteed to do so in a binary-compatible way. Instead, an object exposes
interfaces via a function called QueryInterfaceO. An object implements
QueryInterfaceO to allow a client to ask what other interfaces the object supports at
run-time.

This run-time type discovery scheme has three important characteristics. One, it
allows an object to add additional functionality at a later date without disturbing
functionality expected by an existing client. Two, it provides for language-independent
polymorphism. Any object that supports a required interface can be used in a context
that expects that interface. Three, it provides an opportunity for the client to degrade
gracefully should an object not support requested functionality. For example, the client
may request an alternate interface, ask for guidance from the user or simply continue
without the requested functionality.

COM attempts to provide its services in as efficient a means as possible. For
example, when an object server shares the same address space as its client, the client
calls the functions of the object directly with no third-party intervention and no more
overhead than calling a virtual function in C+ +. However, when using COM with
some programming languages, this efficiency has a price: language integration. COM
does not integrate well with a close-to-the-metal language like C+ +. In many ways
COM was designed to look and act just like C + + , but C + + provides its own model
of polymorphism, object lifetime control, object identity and type discovery. Of
course: since C+ + is not language-independent or location transparent. it was
designed differently. Because of these contrasting design goals, a C+ + programmer
using COM often has a hard time reconciling the differences between the two object
models.

To bridge the two object models, I have developed an abstraction for this
purpose that I call a faux-object class. In this thesis, I illustrate the use of a specific
instance of the faux-object idiom to provide an object model bridge for COM that more
closely integrates with C+ +. By bundling several required interfaces together on the
client side, a faux-object class provides the union of the operations of those interfaces,
just as if we were allowed to use multiple inheritance in COM. By managing the
lifetime of the COM object in the faux-object's constructor and destructor, it maps the
lifetime control scheme of C+ + onto COM. And by using C+ + inline functions, a

faux-object can provide most of these advantages with little or no additional run-time or
memory overhead.

COM provides a standard Interface Definition Language (IDL) to
unambiguously describe COM interfaces. Because IDL is such a rich description
language, and because faux-object classes are well defined, I was able to build a tool to
automate the generation of faux-object classes for the purpose of bridging the object
models of COM and C + +. This tool was used to generate several faux-object classes
to test the usefulness of the faux-object idiom.

vii

Chapter 1.
Introduction

Microsoft's Component Object Model (COM) is the dominant object model for
the Microsoft Windows family of operating systems. COM was developed as the
architectural basis for Object Linking and Embedding (OLE). OLE is a set of
communication protocols defined using COM. COM was developed for this purpose,
and widely used since for many purposes besides OLE, because of several technical
advantages that COM has over other object models. For example, COM provides for
location transparency. A client application can be programmed for an object server that
shares the same address space today and is moved to another address space, or even
another machine, tomorrow. If the location of the object server changes, the same
client can use the object server in its new location without a change in the source code.
a re-compilation or a re-boot of the machine.

COM also provides a standard mechanism for binary compatibility between
objects and clients that have been written in different programming languages or using
different vendors' compilers or interpreters. A client that has been written in any
language can use COM objects written in any language, so long as both languages
support a COM binding1. This binary compatibility allows object servers to be shipped
as libraries or executables, without the source code.

COM encourages each object to support several views of itself, called
interfaces. Each interface represents a collection of logically related functions. A COM
object is not allowed to expose an interface that has been derived from more than one
interface, however, as some languages do not support it. Instead, an object exposes
multiple interfaces via a function called QueryInterfaceO, itself part of the only
required interface: IUnknown. An object implements QueryInterfaceO to allow a client
to ask what other interfaces the object supports at run-time. This run-time type

Of course, this would be true of any object model. The chief benefit of COM in this
regard is its wide support among language and tool vendors.

discovery scheme has two important characteristics. One, it allows an object to add
additional functionality at a later date without disturbing functionality expected by an
existing client. Two, it provides an opportunity for the client to degrade gracefully
should an object not support requested functionality. For example, the client may
request an alternate interface, ask for guidance from the user or simply continue
without the requested functionality.

COM provides Query Interface() because it has no support for type joins. A type
join is a type that is a sub-type of more than one super-type. Given a type X, a type Y
is a sub-type of X if Y supports all of the operators of X and is denoted as a sub-type
by the programming language in which the relationship is being defined2. Also, given
that Y is a sub-type of X, X is defined as the super-type of Y. When this relationship is
present, a routine that expects an X will work equally well with a Y because Y
conforms to X, i.e. Y is at least everything that X is. While C+ + allows type joins via
multiple inheritance, COM provides no support for defining a type join. Instead,
QueryInterfaceO provides an object's super-types, i.e. its interfaces, one at a time.

In addition to exposing object interfaces, the IUnknown interface also provides
a language-independent scheme for object lifetime management, i.e. manual reference
counting. Each object keeps track of its own external references via the AddRef() and
Release0 functions. When an interface is held by a subsystem, that subsystem lets the
object know, via AddRef(), that it has one more outstanding reference. When all
subsystems have released their interfaces, via Release(), the object is free to release its
own resources. By maintaining the reference count in the object instead of the clients,
interfaces can be passed freely between processes or machines without one client
worrying when another has finished with an object.

In a distributed system, lifetime control is especially troublesome because a
process on another machine or a whole machine may be stopped before it can free the
object references that it holds. The COM library deals with this problem by
maintaining a machine-to-machine list of object references in a list known as a ping set.
At regular intervals (currently two minutes), a client machine will send a small data
packet - a ping - to the server machine. If a certain number of pings are missed
(currently three), the server will assume the client has gone down and will release the
client's references automatically. This pinging mechanism is also used intra-machine so
that individual client process failures can be detected without releasing all machine held
object references. A server will be told of a client failure with a delta ping, i.e. a data
packet with information about a change in the list of object references in the server's

C+ + requires explicit sub-typing using inheritance and Emerald (described in
Chapter 3. Related Work) infers sub-type. relationships.

ping set. This pinging mechanism is built into COM and happens without any client or
object involvement and provides a reliable way for servers to be notified if clients go
down without releasing outstanding object references.

So, COM provides support for language-independent, vendor-independent
location transparency, run-time type discovery and lifetime control. These features are
provided using interfaces as a layer of abstraction between the client and the object.
COM attempts to provide these services in as efficient as possible. For example, when
an object server shares the same address space as its client, the client calls the functions
of the object directly with no third-party intervention and no more overhead than
calling a virtual function in C+ +. However, when using COM with some
programming languages, this efficiency has a price: language integration.

In languages that have been extended for COM, such as Visual Basic, Per1 or
Java, the language binding can seem to provide seamless integration with COM. COM
does not integrate so well with a close-to-the-metal language like C + +. In many ways
COM was designed to look and act just like C + + , but C + + provides its own model
of object lifetime control and type discovery. C+ + also provides features beyond those
in COM, such as multiple inheritance and user-defined assignment and copy operations.
Of course, since C+ + is not language-independent or location transparent, it was
designed differently (as are all language-specific object models, e.g. Java). Because of
these contrasting design goals, a C+ + programmer using COM often has a hard time
reconciling the differences between the two object models.

Fortunately, C + + provides the ability to wrap the abstractions of COM into
classes that integrate more closely with the language. I have developed an abstraction
for this purpose that I call a faux-object class. Its job is to provide a bridge between
two different object models. In this thesis, I use the faux-object idiom to provide an
object model bridge for COM that more closely integrates with C+ +. By bundling
several required interfaces together on the client side, a faux-object class provides the
union of the operations of those interfaces, just as if we were allowed to use multiple
inheritance in COM. In affect, the faux-object is providing the type join for C+ + that
COM lacks. Also, by managing the lifetime of the COM object in the faux-object's
constructor and destructor, the faux-object maps the lifetime control scheme of C+ +
onto COM. By implementing a copy constructor and assignment operator using a
standard COM persistence interface, a faux-object class can provide C + + copy and
assignment semantics for those COM objects that implement that interface. And by
using C+ + inline functions, a faux-object can provide most of these advantages with
little or no additional run-time or memory overhead.

Finally, COM provides a standard Interface Definition Language (IDL) to
unambiguously describe COM interfaces. IDL is an extended version of the Open

Software Foundation's Distributed Computing Environment Remote Procedure Call
IDL. The COM version of IDL is a superset of this industry standard that has been
extended to define interfaces. Because IDL is such a rich description language, and
because faux-object classes are well defined, I was able to build a tool to automate the
generation of faux-object classes for the purpose of bridging the object models of COM
and C + + . This tool was used to generate several faux-object classes to test the
usefulness of the faux-object idiom. As its input, the tool uses standard Microsoft
Interface Definition Language (IDL) files.

This thesis is organized into several chapters. Chapter 1 is this introduction.
Chapter 2 will describe the major components of COM and how it integrates with
C + +. Chapter 3 will describe related work. Chapter 4 will preset the faux-object
idiom and how it is used to provide a bridge between the COM and the C+ + object
models. Chapter 5 will describe the faux-object class generation tool and show some
simple examples. Chapter 6 will discuss the introduction of a generated faux-object
class in a body of existing code to replace the use of raw COM interfaces. Chapter 7 is
a discussion of how well the faux-object idiom met its goals and how it can be extended
in the future. Chapter 8 is a list of references. Appendices A through F are a set of
code examples used to support points made in the thesis.

Chapter 2.
The Component Object Model

2.1 COM Interfaces

The central concept of COM [COM95] is the separation of interface from
implementation. A COM implementation (also called a COM class) is a black box of
behavior and state to a COM client. The only way for a client to access the
functionality of a COM implementation is via one or more COM interfaces (an
implementation will normally support several interfaces). A COM interface is three
things :

A collection of logically related member functions.

An immutable physical layout.

An optional packet format for passing member function arguments between
processes and machines.

To avoid confusion, when referring to the physical layout of an interface, 1'11 use the
term interface layout and when referring to the packet format, I'll use the term
interface packet format.

For example, the following is the definition of an interface that represents
operations on a string:

interface3 I s t r i n g : publ ic Iunknown4

{
// string member functions inher i ted from unknown
HRESULT ~ u e r y I n t e r f a c e (~ ~ ~ 1 1 ~ r i i d , void** ppv) =O;
ULONG ~ d d ~ e f () =O;
ULONG Release() =O;

The 'interface' keyword is just a type definition for the C/C+ + keyword 'struct.'

All interfaces must derived from IUnknown.

// 1 s t r i ng-speci f i c members
HRESULT SetText(const char* szText) =O;
HRESULT GetText(chare* ppszText) =O;
HRESULT GetLength(int* pnlength) =O;

I ;

This interface would correspond to the following physical interface layout:

IString interface IString vtbl

QueryInterface ()

AddRef ()

Release ()

SetText ()

GetText ()

GetLength ()

Figure 1: IString interface layout

The physical layout of an interface must remain unchanged once it has been
published. Compiled clients rely on the virtual function table (vtbl) layout to perform
vtbl-binding at compile-time. This form of binding is very efficient, but relies on the
physical layout of an interface to remain unchanged between the time the client is
compiled and the interface is actually used.

The packet format for the IString interface would describe how to properly
marshal the member function parameters between processes or machines, e.g., copy
parameters between one address space and another. Marshalling parameters is necessary
because objects are not typically passed by value in COM, but by reference. An
interface pointer is a reference to one of the base classes that an object implements.
When calling interface member functions, the client often references an object that
exists in a separate address space or on a different machine than the client. For the
object to perform the requested operation, the parameters must be marshaled from the
client's address space into its own.

I should mention that while objects are most often passed by reference in COM
(via interface pointers), other member function parameters are going to be copied from
one address space to another for use by the object's implementation. The process of
serializing the parameters of a member function call from the address space of the
client to that of the object is performed by a helper object known as a proxy. It's the
proxy's job to pretend to be the object for the client, but to bundle up the parameters
that the object needs to provide its implementation, i.e. in parameters, and
communicate them to a helper object in the object's address space. This other helper

object is called a stub, and its job is to unpack the serialized parameters, push them
onto the stack and call the proper member function of the actual COM object. Any
parameters that may have been updated by the object's member function
implementation, i.e. out parameters, need to be copied back into the client's address
space at the completion of the member function call. The idea is that both the client and
object can pretend to be in the same address space and the proxy and stub use
marshalling to maintain this illusion.

Every interface must ultimately derive from the universal COM base interface:
IUnknown, i.e. every interface is a sub-type5 of IUnknown. IUnknown provides two
services: run-time type discovery and lifetime control. The IUnknown interface is
defined as follows:

interface unknown

C
HRESULT QueryInterface(RE~11~ r i id, void** ppv) =O;

ULONG Add~ef () =O;

ULONG Release() =O;

1;

The QueryInterfaceO member function is used by the client to request an
interface from an object. For this purpose, QueryInterfaceO takes a 128-bit number that
uniquely identifies the interface called an inteqace identijier (IID). The COM sub-
system provides a routine to generate unique identifiers called Globally Unique
Identflers (GUIDs). IIDs are instances of GUIDs used with QueryInterfaceO.
QueryInterfaceO uses IIDs to provide a safe run-time type discovery mechanism
conceptually identical to the C + + dy namic-cast operation. Both Query Interface0 and
dynamic - cast allow for a client to take a reference to an object and ask if it supports
functionality other than that expressed in the current reference type. The
implementation of dynamic - cast is C + + vendor-specific while QueryInterfaceO works
across vendors and languages.

Instead of relying on a single client to define the lifetime of an object using
automatic scoping (object is allocated from the stack) or manual scoping operations
(object is allocated from the heap), COM objects use a reference counting model. This
model allows interfaces to be passed between subsystems without regard for the normal
C + + convention of " whoever creates an object must free it. * The C + + convention
works fine (mostly) when a single individual or group controls all of the code that

The relationship of COM and types is described in Chapter 3, Related Works.

references an object. However, in the distributed world, object references are passed
between subsystems, processes and machines. Instead of making the object-creating
client stick around until everyone on the planet is finished with the object, the client
simply manages the lifetime of the object using the interfaces it holds (via the AddRef()
and Release0 member functions present in every interface) and lets other clients of the
object do the same. The object itself maintains its own lifetime count and releases its
resources when it feels free to do so, e.g., when all clients have released all
outstanding interfaces.

2.3 COM Implementations

A COM class bundles one or more interfaces together. A COM class is uniquely
identified via another GUID called a class identifier (CLSID) to allow a client to
request an object that provides an implementation of a set of interfaces. However, the
interfaces that a class supports cannot be known until runtime. By allowing the
implementation to be changed, clients get objects that evolve. Further, by fixing the
interface layout, implementations can evolve safely. Object evolution, or versioning, is
currently a problem with language or vendor-specific object models, which typically
provide syntactic separation of interface and implementation only. Because the
separation is blurred at the binary level, clients have intimate knowledge of the
implementation of an object. For example, for a client to be able to access a C+ +
object that exists in a Dynamic Link Library (DLL)6, the client and the DLL must agree
on implementation details like object layout, space requirements and symbol decoration
conventions7 [Lippman96]. This agreement can typically only be achieved if the client
and the object are developed using the same language, the same compiler vendor and
the same compiler version. Further, even if the client and the DLL do agree on
implementation details, any change in the object layout or space requirements as the
object implementation evolves requires the client to recompile. All of these
requirements are lifted using a binary separation, rather than a syntactic separation, of
interface and implementation such as the one that COM specifies.

2.4 COMIC++ Integration

It could be argued that the reason that COM has QueryInterfaceO is because
interfaces may only derive from a single base interface. If COM interfaces could derive

DLL is a Windows term for a library of code that is loaded into the address space of
the client as needed.
7 Most C+ + implementations use a technique called symbol decoration to implement
type safe linkage. Unfortunately, all vendors do it their own way.

from multiple base interfaces, the most derived interface on an object would expose all
of the public functionality of the object, thus removing a great deal of the need for
QueryInterfaceO. For example, CORBA [Siege1961 provides a distributed object model
similar to COM, but it supports interfaces with multiple bases. ORB vendors provide
tools to generate a language binding that closely integrates with the language of
interest. Those languages that do not support the features of CORBA directly get a
generated wrapper that provides the functionality in a language-intelligent way.

Instead of providing tools to generate language bindings to map the object
model of COM onto the object model of a specific language, COM defines only the
required interface layout. Binary compatibility provides several advantages, but it also
yields somewhat of a lowest common denominator approach. The only features
available are the features that can readily be mapped into all languages in a way that is
binary compatible. The lack of language-specific bindings relieves Microsoft of the
chore of building a code generator for every language that comes along, but it also
requires a developer to understand how their language maps to the interface layout
requirements of COM. Achieving this binary compatibility sometimes requires the use
coding conventions that are very different from the conventions typically used with the
language. For example, in C+ +, a C+ + object can be created using the new
operator, but a COM object will most often be created using the COM function
CoCreateInstanceO. Understanding the need for these two different methods for
obtaining an object in the same language is often daunting and sometimes prohibitive.

This issue gets at the root of the difference between CORBA and COM.
CORBA chose language integration over performance and COM went the other way.
Because multiple-inheritance is not supported in many languages, member function
calls under CORBA take longer to execute. The extra time is needed for the function
call on the interface to be mapped to the function call on the implementation. Under
COM, no mapping is required. An interface member function call to an object in the
same address space8 incurs no more overhead than a C+ + virtual member function
call.

It worth noting that this performance comparison assumes an object that lives in
the same address space as the caller. While both COM and CORBA must have some
part of an object in the same address space as the client, when the in-process part is
merely the proxy for an object in another address space, the function call overhead is
insignificant when compared to that of marshaling the parameters to the stub in the
object's address space and switching control. Herein lies another difference between

This is not always true. Sometimes calls between threads result in extra overhead to
perform concurrency control for objects that would not otherwise be thread-safe.

CORBA. CORBA was designed to handle distributed objects and not all ORBS
implement same address space objects at all. COM was designed first for objects in the
same process and on the same machine and later extended for objects on other
machines. This trade-off is because the original operating system that COM was
designed to work under - Windows - is based on DLLs. Fortunately, the model that
COM uses scales well to distributed objects.

While the binary separation of interface and implementation provides
performance benefits, there are advantages to the model that CORBA uses. One benefit
is that CORBA provides a rich object model very close to that of C+ +. For languages
that do not support all of the features of C+ +, e.g., multiple-inheritance under C,
CORBA provides a language mapping to simulate these features. COM only uses a
single language feature: pointers9. A vtbl is just a table of function pointers. Even an
assembly language programmer can program to an object model expressed in those
terms. However, for the C + + programmer expecting an object model that handles
multiple inheritance and automatic object scoping, the features of the COM model can
seem primitive and complicated.

The problem has to do with the very thing that makes COM so powerful - the
separation of interface and implementation. Under C+ +, a programmer is accustomed
to defining a class that derives from any number of base classes. A successful creation
of an object at run-time guarantees the ability to call any of the member functions of
the object's class, including any of the members of the base classes. I call this ability
implementation guarantee. By compiling a member function call, the ~ompiler '~
guarantees the implementation of that member function will be there at run-time. For
example, here's the definition and use of a simple C+ + class:

#inc lude <iostream. h>
i nc1 ude < s t r i n g . h>

c lass s t r i n g

C
pub l i c :

Str ing() : m-sz(0) €1
-str ing() { freetm-sz);)

9 Languages that do not support pointers must have support for COM added to them.
Only languages that support pointers, and pointers to functions, can using COM
interfaces without explicit support for COM.

lo For simplicity, I'll refer to the operations of the compiler and linker together as
operations of the compiler.

vo id SetText(const char* sz) { m-sz = strdup(sz);)

const char* GetTextC) { re tu rn k s z ; I
i n t GetLengthO { re tu rn strlen(m-sz) ; I

pr i va te :
char* k s z ;

I;

void main()

C
St r i ng s;
s . setText("He1l o, Worl dl') ;
const char* psz = s.GetText();
1 ong nLen = s . ~ e t L e n g t h O ;
cout << PSZ << (Id << nLen << ")" << end1 ;

1

If the compiler allows this code, the constructor, destructor, GetTextO,
SetTextO and GetLengthO member functions are guaranteed to be implemented at run-
time. The compiler has complete knowledge and can check, at compile-time, whether
all needed functions are implemented or not. The client of a C+ + object can simply
create an object and assume the implementation is available, because it is guaranteed to
be.

On the other had, the client of a COM object does not have this guarantee. The
compiler cannot guarantee the availability of the implementation because the
implementation is not chosen until run-time. The burden is on the client, therefore, to
check for desired functionality before it can be used. This forces the client to deal with
a whole new class of errors, i.e., what to do if that functionality is not available. Here
is an example of a COM client creating and using a simple COM object:

#include <windows.h>
#i nc1 ude <i os t ream. h>

// his I I D uniquely i d e n t i f i e s the I s t r i n g i n t e r f ace

const I I D IID-Istring =

{0x73F86A20,0x621c10xllcf,

€0x88,0xD2,0x00,0x00,0x86,0~00,0xA1,0x05~~;

// This CLSID unique1 y i d e n t i f i e s t he c o s t r i ng
// i mpl ementati on
const CLSID C L S I D - C O S ~ ~ ~ ~ ~ =

{0x0845D620,0x621~,0x11cf,

COx8810xD2,0x0010x0010x8610x0010xA1,0x051~;

// This def ines t he I s t r i n g i n t e r f ace f o r c l i e n t use
i n t e r f a c e string : pub l i c unknown

C
pub l i c :

v i r t u a l HRESULT STDMETHODCALLTYPE
setText(const char* szText) = 0;

v i r t u a l HRESULT STDMETHODCALLTYPE
GetText(char** p s z ~ e x t) = 0;

v i r t u a l HRESULT STDMETHODCALLTYPE

vo id main()

C
HRESULT h r ;
c o ~ n i t i a l ize(0) ;

// create an ob jec t o f type Costr ing

 unknown* punk;
h r = c o c r e a t e ~ n s t a n c e (c ~ s I D ~ C o s t r i ng, 0,

CLSCTX-ALL,
IID-IUnknown,
(void**)&punk)) ;

i f (SUCCEEDED(~~))

C
// ~ s k the ob ject f o r the string in te r f ace

 string* ps;
h r = p u n k - > ~ u e r y ~ n t e r f a c e (~ ~ ~ ~ I S t r i n g ,

(voi d**)&ps)

i f (sUccEEDED(hr))

C
// ~ s k the ob ject f o r the I P e r s i s t i n t e r f ace
// (a standard i n t e r f ace def ined i n wind0ws.h)
I ~ e r s i s t * pp;
h r = punk->~ueryInterface(IID~IPersist,

(voi d**)&pp)

i f (sucCEEDED(hr))

C
// safe t o use I S t r i n g and I P e r s i s t
char* p s z = O ;
long nLen = 0;

p s - > s e t ~ e x t (" ~ e l l o , world") ;
p s - > ~ e t ~ e x t (&psz) ;

wchar-t* pszclsid;
CLSID c l s i d ;
p p - > ~ e t ~ l a s s I D (& c l sid) ;
s t r i n g ~ r o m ~ ~ ~ ~ D (c l s i d , &pszClsid) ;

cout << PSZ << " ('I << nLen << ")"
<< from " << szcls id
<< end1 ;

// Release resources c l i e n t has acqui red
co~ask~emFree(psz) ;
~oTaskMemFree(pszC1sid) ;
pp- el ease() ;

1
ps- elea ease() ;

1
punk- e el ease() ;

1
Counini t ia l i z e 0 ;

1

In this example, the COM client first creates an instance of the COM class
uniquely identified by the CLSID-CoString GUID by calling CoCreateInstance(). Part
of the creation process is asking for the initial interface from the object. Since the client
is never allowed access to the implementation directly, it must pick an interface that it
would like to access initially (in this case, IUnknown). From the initial interface, all
other interfaces required by the client must be obtained via QueryInterfaceO.

If an object of the requested type is available (it might not be), the client then
asks for the "string" functionality of the object by querying for the availability of the
IString interface by calling the QueryInterfaceO member function using the IID-IString
GUID. If that functionality is available (again, it might not be), the client is allowed to
use it. To use another interface, i.e., IPersist, the client must call QueryInterfaceO
again. The IPersist interface is a standard interface defined by Microsoft and it provides
a single member function: GetClassIDO.

To access all of the required functionality, the client must manage three separate
interface pointers. For each interface that the client has acquired, a matching Release()
call must be made. The Queryrnterfaceo member function does an implicit AddRef()
on every interface successfully returned.

As you can see, while the functionality provided by the C+ + string object and
the COM string object are identical (with the exception of the COM-specific

functionality exposed by the IPersist interface), the client code to use the COM object
is quite a bit more complicated. The client is required to manage separate interfaces to
access functionality, to manually control the object's lifetime and to check for
implementation guarantees at run-time. In general, the differences in the object models
makes it difficult for a C+ + programmers to enjoy of the benefits of COM.

Luckily, C+ + has a built-in mechanism to extend the functionality of the
language: classes. It is possible to build a C+ + class to map the implementation
guarantee, multiple-inheritance and lifetime control mechanisms of C+ + onto COM.
This mapping uses the facilities of C+ + to build a CORBA-like language mapping
onto COM, thereby merging the benefits of the three object models - C+ +, CORBA
and COM. The provision of this mapping is the subject of this thesis.

Chapter 3.
Related Work

3.1 Distributed Object Models

The Eden [Almes85] system provided the foundation for many distributed object
systems and includes support for concurrency, transactions and persistence. Eden is not
currently used.

The Emerald [Black86, Black871 system is an object-based language that
supports distributed objects. What makes Emerald especially interesting is its support
for types. An Emerald object's type describes methods it supports and the types of the
arguments and results of those methods. An identifier of a given type can be bound to
any objects that support the required methods. For example, given a type X, a type Y
is implicitly a sub-type of X if it supports all of the operations of X and takes the same
number and types of arguments. Likewise, in this example, X is a super-type of Y.
Given this implicit sub-typing system, an operation can define its own types of
arguments, based on its requirements, and the compiler will determine if the passed in
argument types conform to the required argument types.

The Argus [Liskov88] system is a distributed object system with its own
programming language, also called Argus. It is designed to handle the special problems
of distributed systems, e.g., concurrent processes, dropped connections and parts of the
system that have crashed. It does this by providing support for transactions, dynamic
load distribution and replication. The Arjuna [Shriv91] system is based on this work
and offers similar benefits. However, it provides a C + + language mapping instead of
requiring its own language.

The Advanced Network Systems Architecture (ANSA) Computational Model
[APM91] builds on the work of Emerald and Argus in an attempt to define a more
robust model of distribution, concurrency and heterogeneity. It defines these key
concepts :

Object: a unit of program modularity having state and operations.

Interface: a view of an object as an abstract service specified as a set of
operations.

Operation: a part of an interface having a signature and a body, defining the
effect of an invocation of the operation.

Signature: the name of an operation, the number and types of the arguments.

Interface Type: a schema for an interface, the signatures of the operations in
interfaces of the type.

Invocation: the execution of the body of an operation defined by a reference to
an interface and an operation name in a context established by the referenced
interface and a set of arguments.

Server: in the context of an invocation, the object that provides the interface
containing operation being invoked.

Client: in the context of an invocation, the object from which the invocation
was initiated.

While ANSA-specific products have never achieved commercial success, the
conceptual model forms the basis for the distributed systems to follow.

Smalltalk [LaLonde90] is an object-oriented language that has had distributed
implementations [Bennett90, LaLondeBOa, Keremitsis951. Smalltalk is based on the
idea that everything is an object and communication happens by sending a message
from one object to another. However, the lack of type checking and the high machine
requirements have kept it from being widely adopted.

Java [Flanagan96] is a recent entry into the world of object-oriented languages.
It is based on many of the same principles as Smalltalk, but it is strongly typed. In
addition, objects that a running Java application can support can be augmented at
runtime by downloading code from the Internet. With the recent addition of Java
Remote Method Invocation (RMI) [RMI96], Java provides for distributed method
invocations. The chief downside of Java is that clients and object may only be
developed in Java. This will change, however, when Java supports calling objects via
the Internet Interoperability Protocol (IIOP) [Curtis97], as was recently announced.
Current, Java does have some support for invocation of functions exposed from a C
library, but this is operating system dependent.

IIOP is part of the Common Object Request Broker Architecture (CORBA)
specification and allows Object Request Broker (ORB) implementations from multiple
vendors to communication with each other. CORBA [Siege1961 is unquestionably the
most popular, widely supported distributed object model is use today. This operating
system-neutral, language-neutral, vendor-neutral standard was designed to distribute

objects across process and machine boundaries. It provides a super-set approach; i.e., it
supports features (such as sub-typing) that some languages do not support. The
language mappings for these languages provide an implementation of any missing
features.

COM [COM95] takes a different approach to distributed objects than CORBA.
While COM has always supported communication between objects in different address
spaces on the same machine, it was designed to be extremely efficient when objects
share the same address space. It is only recently that this model has been extended to
support objects that live across the machine boundary. This support is based on the
Open Software Foundation's Distributed Computing Environment Remote Procedure
Call (OSF DCE RPC) specification [RPC93]. Microsoft has provided an
implementation of DCE RPC that extends the wire representation and the interface
definition language to support COM interfaces. In fact, COM is often referred to as
" RPC with a this pointer." The "this" pointer is what gives COM its object-oriented
programming model. RPC itself is strictly procedural.

COM leverages the ideas defined by ANSA, including the ANSA idea that an
object provides multiple interfaces. However, there is one major difference - typing.
The ANSA model allows an interface to be a sub-type of more than one super-type and
the type relationship is inferred. COM, on the other hand, requires an interface to be a
sub-type of exactly one super-type, with IUnknown being the top-most super-type.
COM allows the language vendor to determine whether sub-typing happens explicitly,
implicitly or not at all. For example, C+ + requires explicit sub-typing while C has no
notion of type conformance of any kind. For objects that support multiple interfaces,
all interfaces provide the QueryInterfaceO operation, which acts as a language-
independent mechanism for obtaining a class's super-types, even in languages that do
not support sub-typing. Unfortunately, in COM, this mechanism is also required for
languages that do support sub-typing because COM does not define a join of the super-
types supported by the object. Instead, COM uses QueryInterfaceO to provide one
super-type at a time.

3.2 COM Language Bindings

Since version 4.0, the Visual Basic language [VB97] has provided a built-in
mapping between Visual Basic (VB) and COM. It can do this easily because Microsoft
controls the specification and implementation of the language. Modern implementations
of VB support interfaces and implementations using the COM object model. All type
coercion and lifetime control is done using IUnknown. In short, in VB there is no
mapping between VB and COM - VB is COM.

Microsoft's implementation of Java [Java96], on the other hand, does require
some language mapping to support COM. Microsoft's Java Virtual Machine (VM)
implementation supports dynamic binding to Java classes and COM classes. To
facilitate this process, Microsoft provides a tool that takes a description of one or more
COM interfaces and produces a Java interface for each one. A COM object can be
created using the Java new operator, which has been extended to understand when it is
to use the COM function CoCreateInstanceO. Once the object has been created, the
Java casting syntax can be used to perform a QueryInterfaceO to access the interfaces
provided by the object. A successful QIO yields a valid interface reference while a
failed QI() produces a Java exception. These extensions to Java support COM in a way
that closely integrates with the language. Unfortunately, it is a feature unique to
Microsoft's VM implementation and thus far has not been popular. Not only is it
platform-specific, but it is specific to one vendor's VM implementation and therefore
goes against the very nature of Java.

The C+ + language binding for COM is, like Visual Basic's, a thin one and
unlike Java's, does not require any changes in the implementation of the language
itself. Once a reference to an interface has been obtained, it can be treated like a
pointer to one of an object's super-types. However, the design goals of COM clash
with those of C+ +, providing a gap that the developer must bridge. This gap includes
differences in object lifetime and interface management. The faux-object idiom
described in this thesis is presented to bridge this gap for differing object models in
general and COM and C+ + specifically.

Chapter 4.
Faux-0 bject Idiom

The goal of a faux-object is to provide a mapping between the C+ + and the
COM object models. This reduces coding complexity for the client while still taking
advantage of objects implemented by the server. In general, the mapping will entail
accessing object functionality and managing object lifetime, although every object
model pair will have its own mapping requirements. Specifically, the faux-object to
map the client-side C+ + object model onto the server-side COM object model has the
following requirements:

Join multiple COM interfaces together into a single C+ + object.
A C+ + programmer is used to accessing all of the functionality of an object via a
single interface. COM programmers, on the other hand, are forced to deal with
separate sets of functionality (interfaces) all implemented by the same object. By
joining multiple COM interfaces into a single C+ + class, a C + + client can
simply call member functions and have them mapped to the appropriate COM
interface member function.

Translate C+ + object scoping rules into COM reference counting rules. The
reference counting model of COM is extremely useful for centralizing resource
management in the object implementation. However, proper reference counting is
yet another detail a C+ + programmer must deal with when using COM interfaces.
A faux-object will be created using standard C+ + scoping and the reference
counting model of COM will be handled transparently by the faux-object.

Provide an implementation guarantee for client-required functionality. The
C+ + compiler can guarantee that an object implements all of its member
functions. On the other hand, the C + + client of a COM object must check for
functionality via QueryInterfaceO at runtime. A faux-object class can provide a
guarantee of required interfaces at runtime just like the C+ + compiler does at
compile time.

Provide C+ + type compatibility with individual interfaces. Many of the
functions exposed by existing COM and OLE libraries require COM interface
pointers as arguments. To allow clients of faux-objects to take advantage of this
base of code, as well as any existing COM-based client code, a faux-object allows
direct access to any of the interfaces it supports. Direct interface access allows
seamless use of a faux-object as a function argument where a COM interface
pointer would normally be used.

How the faux-object idiom meets these requirements is discussed in detail
below. Meeting these requirements will allow a C+ + client program to treat a COM
object like any other C+ + object without losing the added functionality provided by
COM. The pattern of implementation that I will present meets these goals for any
collection of COM interfaces implemented by a COM object. This pattern represents
the faux-object idiom.

The faux-object was named for several reasons. Most importantly, the faux-
object is really just a " fake" object that wraps one or more interfaces implemented by a
COM object. Nearly all of the interface member functions of the faux-object are simple
pass-throughs to the underlying COM object implementation. Instead of using the COM
interfaces directly, the C+ + client uses an instance of the faux-object to hide the
underlying COM complexity.

Secondarily, server-side COM implementations are generally named with the
" Co" prefix to mean Component Object, e.g., Costring. Likewise, the faux-object
implementation will be entirely part of the client code and the names will begin with
the "Fo" prefix to mean Fake Object, e.g., FoString. Finally, the fact that "Co,"
"Fon and faux all rhyme provides the third leg that stabilizes my name choice.

4.1 Reduced Complexity

The following is the partial definition of a faux-object class to join the three
interfaces required by the previous COM client, i.e., IUnknown, IString and IPersist:

class ~ o s t r i ng

C
pub1 i c :

// Constructor and Destructor
F O S ~ ~ ~ ~ ~ (R E F C L S I D c l s i d , DWORD c t x = CLSCTXJLL~~) ;

" The Class Context (CLSCTX) allows the client to specify acceptable locations for an
object to be loaded, i.e., in-process or out-of-process. CLSCTX-ALL means that the
client does not care where the object is loaded.

v i r t u a l -Fost r i ng() ;

// Iunknown Pass-Throughs
// A d d ~ e f O and el ease() no t needed f o r c++ scoping
HRESULT ~ u e r y ~ n t e r f a c e (R ~ ~ ~ ~ ~ r i i d , void** ppv) ;

// I s t r i ng pass-~hroughs

HRESULT SetText(LPSTR szText);
HRESULT C i e t ~ e x t (L P s ~ ~ * psz~ex t) ;
HRESULT Get~ength(long* pnlen) ;

// I ~ e r s i s t Pass-Throughs

HRESULT GetclassID(struct -GUID* pClassID) ;

1;

By using a faux-object, a C + + client using a COM object can gain a
substantial reduction in coding complexity. The following is an example usage of the
faux-object defined above:

i nc l ude <windows . h>
#include < i os t ream. h>

// COM GUIDS and i n t e r f ace d e f i n i t i o n s

// s t i l l required but removed f o r c l a r i t y

// ~ e f i n e the ~ o s t r i n g t h a t j o i n s I s t r i n g and 1 ~ e r s i s t

include "Fos t r i ng . h"

vo i d ma in0

C
c o ~ n i t i a1 i ze(0) ;

t r Y
C

// Bind the faux-object t o an implementation

F O S ~ r i ng s (CLSID-cost r i ng) ;

// Use I S t r i n g members i n Fost r ing
char* p s z = O ;
long nLen = 0;

s . setText ("He1 l o , World") ;
s .~etText(&psz) ;
s .~etLength(&n~en) ;

wchar-t* pszc ls id ;

CLSID c l s i d ;
s .GetClassID(&cl sid) ;
s t r i ngFromCLS~~(clsid, &pszclsid) ;

cout << psz << " (" << nLen << ")"
<< from " << pszclsid
<< end1 ;

// Release resources c l i e n t has acquired
coTas kMemFree(psz) ;
c o ~ a s k ~ e m ~ r e e (p s z ~ 1 s i d) ;

1
catch(. . .)
C

cer r << "Unable t o create C L S I D - C O S ~ ~ ~ ~ ~ .\nl';

1

Notice how 'the object creation is wrapped in a try-catch block. Because COM
object implementations are bound at run-time (instead of compile-time, as in C + +), it
is possible that the requested implementation is not available. If the implementation is
available, however, the constructor caches all of the required interfaces. Should the
implementation or any of the required interfaces be unavailable, an exception will be
thrown. Otherwise, if the member functions can be called, their implementations are
guaranteed to be available. This gives an implementation guarantee very much like that
provided by C + + .

Secondly, notice that the client uses the functionality provided in two separate
interfaces, the IString interface defined above and the IPersist interface. In the example
above, the client can simply call the GetClassIDO member function without additional
interface management because the faux-object provides support for both the IString and
the IPersis t interfaces.

Finally, notice the lifetime control of the faux-object. Instead of any calls to
release acquired interfaces, the client simply lets the faux-object go out of scope. When
this happens, the faux-object destructor will be called and it will release the cached
interface references.

This sample shows how the complexity of COM, e.g., manual implementation
guarantee, interface management and manual lifetime control, can be avoided without
giving up the benefits of COM, e.g., run-time binding of implementation and location
independence.

4.2 Faux-Object Implementation
This section describes each of the features provided by the faux-object and the

way in which those features are implemented. The basic implementation philosophy is
to provide a single class, e.g., FoString, that caches each of the interfaces required by
the client at construction time. It also provides a union of all of the member functions
of all of the supported interfaces. To provide the functionality of the underlying object
to the client, the implementation of each of the faux-object member functions simply
calls the member function of the appropriate cached interface. At destruction time, each
cached interface is released.

The following is a list of the requirements of a C + +/COM faux-object class
implementation and how each requirement is met.

4.2.1 Join multiple COM interfaces together into a single C++ object

When an object is created in C+ +, the client of the object knows its class,
which defines the functionality of the object. A C+ + object's functionality is the union
of all of the member functions in all of the base classes plus those of the derived class.
For example, consider a C+ + Mule object that derives its interface and
implementation from its base classes, Horse and Donkey. In C+ +, Donkey, Horse
and Mule could be defined like this:

class Donkey

I
pub1 i c :

v i r t u a l void Bray() ;

3 ;

class Horse

C
pub l ic :

v i r t u a l void Prance() ;

3 ;

class Mule : pub l ic Donkey, pub l i c Horse

C
3;

The resulting class hierarchy is shown in Figure 2.

Donkey Horse

Mule

Figure 2: Mule class inheriting from both Donkey and Horse classes

A C+ + client could create an instance of a Mule object and have access to any
member function with equal notational convenience regardless of the base class of
which it is a member.

On the other hand, in COM, the Mule could not be an interface exposed directly
by an implementation because it has more than one super-type. Instead, the Mule
would be an implementation which would expose two separate interfaces, Donkey and
Horse. The inability to define the Mule as the union of all of the member functions of
the base classes removes the notational convenience provided by a C+ + object: the
client must get a Horse interface reference to access Horse functionality and a Donkey
interface reference to access Donkey functionality. Forcing the use of separate
interfaces robs the C+ + client of the notational convenience it expects when using an
object.

To simulate the notational convenience of a type with multiple super-types, a
faux-object manually joins together the interface member functions of all of the
supported interfaces. The implementation of each of these member functions is a pass-
through to the underlying object via the appropriate interface. For example, the
FoString faux-object supports three interfaces and implements the pass-through member
functions like this:

class ~ o S t r i n g

C
// Iunknown Pass-Throughs

// ~ d d ~ e f () and ele ease() not needed f o r C++ scoping

HRESULT ~ u e r y ~ n t e r f a c e (R E F I I ~ r i i d , void4* ppv)

{ r e t u r n m-pIunknown->QueryInterface(riid, ppv); }

// string pass-Throughs

pub l i c :

HRESULT setText(~PSTR SzText)

{ re tu rn m-p1st r i n g - > ~ e t ~ e x t (s z ~ e x t) ; }

HRESULT GetText(LPSTR4 pszText)

{ re tu rn rn-~1st r i n g - > ~ e t T e x t (pszText) ; }

HRESULT Get Length (1 ong* pnLen)
{ return m p ~ s t r i n g - > ~ e t ~ e n g t h (p n L e n) ; 3

// I P e r s i s t pass-~hroughs
publ ic :

HRESULT GetCl assID(st ruct -GUIDQ pC1 assID)
{ return m-pIPersist->GetC~assID(pC~assID) ; }

// other members removed f o r c l a r i t y

1;

An instance of FoString would be represented in memory as shown in Figure 3
(the m - ctx member is used to cache the context that the object is created in, i. e. in the

FoString faux-object

l Un known

I

Ln
rv Wring

CoString COM object
l Persist

same address space, on the same machine or on another machine).

Figure 3: Faux-object memory layout

Because the faux-object has provided an implementation guarantee, the pass-
through member functions can blindly forward the calls to the appropriate interface
member function. In this way, the client can simply call the appropriate member
function without the overhead of an additional QueryInterface()/Release() pair or using
separately cached interfaces based on the functionality required. Further, letting the
faux-object manage the interfaces internally eliminates the confusion that often arises
from having multiple interfaces to the same object.

4.2.2 Translate C++ object lifetime rules into COM reference counting rules

The C+ + object model uses a block structure that allows objects to be created
from two object stores, i.e., the stack and the heap. If an object is automatically
allocated on the stack, when the name of the object goes out of scope, the object will
be destroyed. In an object is manually allocated on the heap, the scope of the name of

the object does not affect the lifetime of the object. Instead, the programmer is
responsible for determining when the object should be destroyed.

In contrast, COM requires the use of manual reference counting. Each time a
reference to an object is created, the object is notified via a call to the AddRefO
member function of the IUnknown interface. Likewise, when a reference is destroyed,
a call to Release0 is made. The lifetime of a COM object is determined by all of the
outstanding references held by all clients of the object. Once all references have been
released, the object is free to release its own resources.

The benefit of COM reference counting is that many parts of a distributed
system can hold onto a reference to an object without concern for any other outstanding
references. Instead of a client mistakenly destroying an object that another client relies
on, a client destroys its reference and lets the object worry about the total number of
references. The downside of this technique is that every client is forced to implement
the rules of COM reference counting properly or an object will not be able to manage
its lifetime accurately.

By using a faux-object, the C + + programmer is freed from the responsibility
of manual reference counting and may allocate the faux-object from either the stack or
the heap. Whatever is used, the object's constructor is called when it is created and its
destructor is called when the faux-object is destroyed (either automatically or manually
via de 1 e te). The constructor and the destructor are the object's opportunity to
properly initialize the object and release any resources held by the object respectively.
In the faux-object, the constructor creates an instance of the underlying COM object
specified by an argument to the constructor and caches all of the required interfaces.
Likewise, the faux-object destructor releases all of the cached interfaces.

The faux-object has two constructors that create a COM object. One takes a
CLSID and one takes a programmatic identzper (ProglD). A programmatic identifier is
a string-based identifier that can be mapped to a CLSID using a machine-wide
database. This ProgID constructor is provided for convenience only as it is functionally
equivalent the CLSID constructor. The following is the implementation of the two
faux-object constructors that create a COM object. Note that both of them call a helper
function discussed below:

class ~ o s t r i n g

C
// GUID constructor

pub l i c :

FoString(REFcLS1D c l s i d , DWORD c t x = CLSCTLALL)

{ c r e a t e (c l s i d , ctx) ; }

// ProgID Constructor

pub l i c :
F O S ~ r i ~ ~ (L P O L E S T R szProgID , DWORD c t x = CLSCTXJLL)

C
cLSID c l s i d ;
i f (S U C C E E D E D (C L S I D F ~ ~ ~ P ~ ~ ~ I D (~ ~ P ~ ~ ~ I D , &clsid)))

C
create(c ls id , ctx) ;

I
e lse

C
throw XCreateFoStringException() ;

I
I

// other members removed f o r c l a r i t y

I;

The following is the implementation of the Create0 member function called by
the constructors of the FoString class:

vo id Fos t r i ng : :create(REFcLsID c l s id , DWORD ctx)

C
// ~ e f i n e a t ab l e o f requi red in te r faces
// f o r t h i s p a r t i c u l a r faux-object c lass

MULTI-QI aqi [31 =

(&1ID-IUnknown, 0, 01,
{&IID-1st r i ng , 0, 01,
{&IID-IPersi s t , 0, 01,

3 ;

// ~f crea t ion succeeded and a l l i n te r faces returned,
i f (c o c r e a t e ~ n s t a n c e ~ x l ~ (c l s i d , 0, c t x ,

0, 3, aqi) == S-OK)

C
// cache a l l i n t e r f ace references from the t ab le
m-p~unknown = (IUnknown*)aqi [O l . p I t f ;
m-p1stri ng = (1 s t r i ng4)aqi [l] .p1 t f ;
m-p~pers is t = (IPers is t *)aq i [Z] . p I t f ;

1
// ~f crea t ion f a i l e d t o re tu rn any o r a l l i n te r faces ,

e lse

C

l2 The use of CoCreateInstanceExO in the previously shown example COM client
would not have freed the client from managing separate interfaces.

// ele ease the interfaces returned

f o r (i n t i = 0; i < 3; i++)

C
i f (aq i [i] . h r == S-OK)

C
aqi [i] .pItf->Release() ;

1
1
// crea t ion f a i l e d , so don' t a l l ow t he

// c l i e n t t o use the ob jec t

throw x c r e a t e ~ o s t r i n g ~ x c e p t i on() ;

1
rn-ctx = c t x ;

1
The beginning of the implementation declares a table of the interfaces required

to properly construct a faux-object, i.e., IUnknown, IString and IPersist in the case of
the FoString. The CoCreateInstanceExO function uses the CLSID that uniquely
identifies the particular implementation of the interfaces required by the client. If the
creation succeeds, the table will be filled with interface references, which are cached by
the object and used to implement the member function pass-throughs. Otherwise, if the
object could not be found or not all of the interfaces are available, interfaces that were
successfully acquired are released and an exception is thrown. The exception stops the
client from using the object if the implementation of each required interface could not
be guaranteed.

In addition to creating a faux-object that creates a COM object, it is useful to be
able to create a faux-object given an interface to an existing COM object. Faux-object
creation for an existing COM object is supported with a constructor that takes an
interface reference and queries for all required interfaces. Here is the implementation
of that constructor and the QueryInterfacesO support function is uses:

c lass F O S ~ r i ng

C
// s ing le I n t e r f ace constructor

pub l i c :

~ o s t r i ng(lunknownq punk)

: rn-p~unknown(O) , m p I S t r i ng(0) , m-pIPersi st(0)

{ ~uery In ter faces(punk) ; }

// Helpers

p r i va te :
vo id Query~n te r faces u unknown* punk)

C
// ~ a n u a l l y query f o r a l l requi red in te r faces

i f (!punk l l

~ ~ 1 ~ ~ ~ (p u n k - > ~ u e r y 1 n t e r f a c e (1 1 ~ ~ 1 ~ n k n o w n ,
(void**)&mp~unknown)) I I

~ ~ 1 ~ ~ ~ (p u n k - > ~ u e r y 1 n t e r f a c e (1 1 ~ ~ 1 ~ t r i ng ,
(void**)&mpIstr ing)) I I

F A I L E D (~ u ~ ~ - > Q U ~ ~ ~ I ~ ~ ~ ~ ~ ~ C ~ (I I D - I P ~ ~ S ~ S ~ ~

(void**)&mpIPersi st)))

{
// ~f a l l i n te r faces a ren ' t ava i lab le ,
// release those re t r ieved
i f (m-p~unknown)

C
m-pIUnknown->Re1 ease () ;

3

// Don't a l low the c l i e n t t o access

// an ob ject t h a t i s n ' t proper ly constructed
throw x c r e a t e ~ o s t r i ng~xcept ion() ;

1
3

// other members removed f o r c l a r i t y

1 ;

No matter which constructor is used, the faux-object's destructor releases the
cached interfaces via the ReleaseAllO member function when the faux-object goes out
of scope:

vo id ~ o s t r i ng : el easeAll()

C
i f (m-p~unknown)

C
// poin ters are zero'd out t o support
// the assignment operator and the copy
// constructor described below
m-p~unknown- el ease() ; rn-pIUnknown = 0;
mp~~tring- elea ease(); m-p1string = 0;

Finally, to stop the programmer from accidentally using COM reference
counting on the faux-object, the IUnknown pass-through member functions AddRef()
and Release0 have been left out. For a client that requires a reference to one of the
object's interfaces directly, the faux-object exposes the QueryInterfaceO member
function. The additional lifetime of the underlying COM object represented by this
additional outstanding interface reference is the responsibility of the client, using the
standard COM lifetime management rules.

Instead of requiring the developer to manage the multiple required interface
references, the faux-object manages them. In this way, the object lifetime rules of
C+ + are successfully mapped onto the reference counting rules of COM. The
programmer who requires direct control of the COM object outside of the faux-object
is allowed such control without interfering with the interfaces cached by the faux-
object.

4.2.3 Provide an implementation guarantee for client-required functionality

The faux-object constructor provides a run-time implementation guarantee for
COM objects in a way conceptually similar to the way the C+ + compiler provides an
implementation guarantee for C + + objects at compile-time. In C + + , if the
implementation of all of the required member functions is not provided, the compiler
error stops the incomplete object from being created.

In COM, if the requested implementation is unavailable or all of the required
interfaces are not implemented, the faux-object constructor stops the incomplete object
from being used by throwing a C+ + exception. When an exception is thrown, the
construction of the faux-object is aborted before it is complete, therefore making it
impossible for a client to attempt to use an incomplete COM object.

Extending the analogy of C + + compile-time versus COM run-time, a C + +
programmer can fix the compile-time error by giving the compiler an object that does
implement the missing member functions. Likewise, a COM client is able to catch the
exception thrown by a faux-object at run-time and attempt to bind to another
implementation. This re-binding process could happen automatically - analogous to a
C+ + compiler fixing your broken code - or the client could alert the user and request
the class identifier for another implementation - analogous to a C+ + compiler error
message. Either way, the faux-object provides an implementation guarantee that
simplifies client code.

4.2.4 Provide C++ type compatibility with individual interfaces

Faux-objects are convenient for a new C+ + client using COM objects.
However, a great deal of existing code - provided both by the operating system and
existing COM clients and COM objects - does not know a thing about faux-objects and
depends on references to COM interfaces to provide functionality. To allow a faux-
object to be used with these existing routines, some mechanism must be provided to
expose the interface references from a faux-object. In other words, to use a faux-object
where one of its interface references is expected, the faux-object should be type
compatible with each of the supported interfaces.

Type compatibility is achieved in C + + via inheritance. A derived class is type
compatible with a base class. In the earlier example, a Mule was type compatible with
both a Horse and a Donkey because Mule derived from Horse and Donkey. Any
function that expected a Horse or a Donkey could be provided with a Mule instead
because a Mule is a Horse and a Donkey. The type compatibility relationship is often
referred to as an is-a relationship. A Mule is-a Horse. A Mule is-a Donkey.

On the other hand, the faux-object clearly implements a has-a relationship with
each of its cached interfaces. A FoString has-a reference to an IString. A FoString has-
a reference to an IPersist interface. A FoString is not an IString interface, but rather
uses an IString interface reference to provide its functionality. To simulate the
convenience of type compatibility in situations such as these, C+ + provides the
typecast operation [Stroustrup86].

A custom operator allows an object to have an arbitrary meaning for standard
operators like + or -. This is handy for allowing normal expressions to be used on user
defined types, e.g. adding two instances of a user defined complex number type. A
custom typecast operator allows an object to provide an arbitrary meaning for a C + +
cast operation. A cast is notation that allows the programmer to tell the compiler to
ignore the type of the variable and use the programmer-specified type instead. The
faux-object will use custom typecast operators to expose each of its supported
interfaces. For example, the FoString faux-object exposes three typecast operators:

class F O S ~ r i ng

E
// Typecast Operators

pub1 i c :
operator unknown* 0
{ return m-p~unknown;)

operator 1 s t r i ng4()

{ return m-p~str ing;)

operator ~ ~ e r s i s t * ()

{ re tu rn m - p ~ ~ e r s i s t ; 1

// other members removed f o r c l a r i t y

1;

A C+ + client using a faux-object can now use an existing COM routine that
takes a COM interface pointer by passing in the faux-object. Here's an example of a
client with a faux-object calling a function that takes a reference to an IString interface:

// ~ e f i n i t i o n s removed f o r c l a r i t y

vo id ~ h o w s t r i n g (~ s t r i n g * ps)

C
char* psz;
ps->GetText (&psz) ;

cout << "showing: " << psz << endl;

vo id main()

t rY
C

~ o s t r i ng s (CLSID-cost r i ng) ;
showString(s) ;

1
catch(. .. 1 {I

The reason an operator is used instead of another, more explicit, member
function, e.g. GetIStringO, or by making the interface reference members public, is for
notational convenience. It is easier to write:

showst r i ng(s) ;

then to write:

showstring(s . ~ e t I s t r i n g ()) ;

or to write:

ShowString(s .m-p~s t r i ng) ;

Use of the typecast operator also looks more like the standard type compatibility
the C + + programmer is used to. However, the disadvantage of the typecast operator is
that it does not AddRef() the duplicated interface reference. For input parameters, as
shown above, this usage is correct13. However, when an interface reference is cached
or returned as a result from a function using the typecast operator, the missing
AddRefO will cause an inaccuracy in the object's lifetime management. In these
scenarios, a faux-object client must perform a manual AddRef() on the resulting
interface reference.

It may seem that multiple-inheritance could be considered an attractive
alternative to typecast operators when providing type compatibility of faux-objects with
the supported interfaces. Indeed, if a faux-object derived from each of the interfaces, it
would be type compatible with each of them. In addition, each of the member function
implementations would properly be forwarded to the actual COM object when called
via the faux-object's base interface. Finally, the additional source code to hand out the
interface reference would not be required at all. Unfortunately, adding type
compatibility to a faux-object via multiple-inheritance violates the mapping of C + +
scoping rules to COM scoping rules.

When a typecast operator is called, a reference to an interface implemented by
the actual COM object is provided by the faux-object. Any reference counting can
happen by talking directly to the object in the standard COM fashion. However, if
multiple-inheritance were used, a reference to the faux-object would be provided to the
routine instead of a reference the underlying COM object. Any client caching a
reference to a faux-object expecting it to obey the rules of COM scoping would be
disappointed when the faux-object went out of C+ + scope and left the client with a
dangling pointer. A dangling pointer is a reference to a C+ + object that has gone
away. The COM scoping rules avoid this problem using reference counting, but the
faux-object obeys the rules of C+ + scoping. No number of AddRef()s to a faux-object
will keep it around when it has gone out of C+ + scope. The typecast operator
approach provides type compatibility without leaving the potential for dangling
pointers.

l3 COM allows AddRef()/Release() pairs to be optimized away when " special
knowledge" is available, e.g. when an interface reference is passed as an input
parameter.

4.3 Faux-Object Additions

In addition to supporting the four chief requirements, the faux-object
implementation that I have developed provides several additional features that enhance
the integration with C + + .

4.3.1 Copy Constructor & Assignment Operator

A C+ + object is allowed to provide its own interpretation of the construction
of one object as a copy of another and the assignment of one object over another. The
faux-object approach can be extended to provide these services using the appropriate
COM interface references.

The copy constructor and the assignment operator are fundamentally linked. A
copy constructor is involved when a new C+ + object is to be created using the state of
an existing C + + object. The assignment operator is involved when an existing C+ +
object's state is to be replaced by that of another existing C+ + object.

The client of a faux-object copy constructor and assignment operator can choose
among four broad possibilities:

No copy allowed.
Disallowing the copy operation can easily be implemented by declaring a private
copy constructor and a private assignment operator and by providing no
implementations of these member functions.

Copy of reference to COM object.
The faux-object copy will be another reference to the same underlying COM object.
Copy of reference can be implemented by copying the cached interfaces from the
source faux-object to the destination.

Copy of value of COM object.
The faux-object will create another COM object and copy the state of the source
COM object to the destination. Copy of value can be implemented using one of the
COM serialization interfaces, e.g., IPersistStream or IPersistStorage.
It should be noted that many COM objects implement serialization via
IPersistStorage by caching the IStorage pointer they are given. The current faux-
object implementation creates a temporary implementation of IStorage for use
during the copying process only. This technique only works properly for objects
that take a snapshot of their data from the IStorage pointer and don't cache the
interface pointer.

Copy of reference to faux-object.
Copying of a reference to any C+ + object, including a faux-object, involves
copying the address of the object only. The copying of an object reference in C+ +

does not involve the object itself and cannot be customized by the object in any
way. More than one reference to any C+ + object can lead to the dangling pointer
problem and should be handled with care.

4.3.2 Equality Operators

A C+ + object is allowed to provide its own interpretation of whether two
objects are the same. Two COM objects are defined to be the same if they both provide
the same interface pointer value from the result of calling QueryInterfaceO and asking
for IUnknown. Optionally, the faux-object can be implemented to provide an
implementation of C+ + equality by simply comparing the values of the cached
IUnknown interface reference on the left-hand side and the right-hand side of the
equality operator. This same technique could be extended to compare a faux-object
with a raw COM interface pointer as well.

4.3.3 Minimized Overhead

The faux-object implementation uses several C+ + and COM optimization
techniques to minimize the time and space overhead:

Inline functions.
The faux-object member function implementations are all inline. This means that
the convenience of the pass-throughs comes at no extra space or function-calling
cost.

Code generation.
Code that is very regular, like the implementation of the faux-object, is often kept
in base classes and made table-driven for the sake of flexibility and generalization.
The faux-object implementation I have shown "unwinds" most of the table-driven
code to its simplest, most efficient form. If this code were hand-written, it would be
a tedious process, but since I have built a tool to generate the regular code, it is just
as convenient as the base class, table-driven approach.
In addition, base classes often contain code for every case, even if these features are
used not in the derived class. By using code generation, the programmer is allowed
to decide what functionality is required at design time without providing extraneous
code for cases that are not needed and without coding an implementation by hand.

Efficient creation.
Because a COM object may be located across a process or a machine boundary,
reducing the number of round-trips is an important consideration. The faux-object
implementation uses the COM function CoCreateInstanceExO which can query for
all required interfaces in one round trip. CoCreateInstanceEx() is more efficient

than calling CoCreateInstanceO for an initial interface and QueryInterfaceO for all
additional interfaces.

Efficient usage.
For a COM object to be useful, many interfaces are often needed. By providing an
implementation guarantee, the faux-object caches those required interfaces. A faux-
object changes the typical usage pattern of COM, where an interface is acquired
when it is needed, used and then released. For interfaces used more than once,
using QueryInterfaceO every time an interface is needed can mean many more
round-trips than are necessary.
However, for interfaces that are needed infrequently, putting them into a faux-
object will mean additional overhead, for example, memory to cache the interface
and to hold the proxy-stub pair for remote objects. Such infrequently used
interfaces should not be made part of the interface-join of the faux-object, but
rather should be acquired as needed via QueryInterfaceO.

4.4 Faux-Object Summary

This chapter has presented an idiom to bridge the gap between object models.
The implementation presented was specific to mapping the COM object model onto the
C+ + object model. The implementation was accomplished using a C+ + class that
joined multiple interfaces into a single class and used pass-throughs to map member
function calls. The faux-object implementation guarantee provides run time verification
that all member functions will be properly implemented just like the C+ + compiler
does. The scoping rules of COM were encapsulated into the faux-object to allow the
C + + client the use of regular C+ + scoping rules. And to provide a convenience level
of compatibility with existing COM-based code, faux-objects provide type
compatibility via a C+ + typecast operator for every one of the supported interfaces.
Finally, the faux-object provides some additional enhancements for convenience and
efficiency including various kinds of copy and assignment operators, an equality
operation and minimum overhead. And because the faux-object simply uses COM
interfaces already exposed from COM implementations, the benefits of faux-objects can
be realized on the client-side without any explicit support from the COM object.

Chapter 5.
Faux-Object Generation

It is certainly possible to build objects using the faux-object idiom by hand.
However, since the implementation of a faux-object is so regular, it is more convenient
to have a tool to build them automatically. I have built such a tool called the FoBuilder.

5.1 FoBuilder

The FoBuilder is a small program that takes input from the user and generates a
class using the faux-object idiom. The FoBuilder user interface is shown in Figure 4.

Figure 4: FoBuilder --a faux-object class generator

The FoBuilder tool allows the user to specify a Type Library. A Type Library is
a file that describes the classes and interfaces that a COM object server supports. A
COM object server is a module that provides an implementation of one or more COM
classes, i.e. a DLL or an executable. Type Libraries are a standard part of how COM
servers describe their supported interfaces and implementations. Type Libraries are
defined using the standard COM Interface Definition Language and built using the
Microsoft IDL compiler. No special language was created to define interfaces or

37

implementations for use with the FoBuilder. Rather, the FoBuilder uses Type Libraries
already exposed by most COM servers. In this way, COM objects truly do nothing
special to support the faux-object idiom. Appendix A shows the IDL used to generate
the Stringserver. tlb Type Library file.

The pane on the left of the FoBuilder is a list of the classes for the user to
choose from. The pane on the right is a list of the interfaces that the selected class
supports. From the list of interfaces, the user can choose any combination to join
together into a faux-object class. The pane on the bottom left is a list of the possible
options for supporting the C+ + copy constructor and assignment operator. The
Provide operator== option on the right is to provide support in the faux-object for
comparing object identity. When the user presses the Build button, a faux-object class
is generated and put into a file of the user's choosing. The name of the generated faux-
object class is based on the name of the COM class, i.e. selecting CoString will lead to
a faux-object class named FoString.

The options indicated in Figure 4 are those used to generate the FoString class
used in the previous examples, Appendix B shows the full faux-object class built by the
FoBuilder using these options.

5.2 Code Generation

For the FoBuilder to do its job, it needs to know the details of the interfaces it
is to generate support for. These details include the member functions of each interface,
the type and order of the parameters of each of the member functions and the return
code of each of the member functions. This information is all available in the Type
Library chosen by the user. The FoBuilder combines the information available in the
Type Library and the user-selected options for the copy constructor, assignment
operator and equality operator, with a generic faux-object class template to generate a
specific faux-object class. This class is then saved in a file of the user's choosing.

5.2.1 Faux-Object Class Template

The current implementation of the FoBuilder generates a faux-object class using
a complicated series of if-then-else and select-case statements written in Microsoft
Visual Basic. Conceptually, however, the FoBuilder is simply filling in a template
based on the information provided by the user. The template is not a C+ + class
template, however, because C+ + templates are not flexible enough to provide the
parameterization needed by the FoBuilder. Appendix B shows the conceptual template
that the FoBuilder uses to create a faux-object class.

5.2.2 Type Library Deficiencies

A Type Library is generated using the COM Interface Definition Language
(IDL). IDL is an unambiguous, text-based description of COM interfaces and
implementations. However, because it is text-based, IDL is difficult to parse at
runtime. A Type Library is generated from IDL and so is a preprocessed binary file
that is guaranteed to be correct. It is therefore much easier to parse a Type Library than
an IDL file, which is why the FoBuilder uses Type Libraries.

Unfortunately, for certain interfaces defined in IDL, e.g. IViewObject, not all
information is available in a Type Library that is available in the original IDL.14
Luckily, these interfaces are rare. So, instead of trying to parse IDL, the FoBuilder
continues to use Type Libraries, but augments them with knowledge of the standard
interfaces for which Type Libraries do not provide sufficient information. When these
interfaces are required in a faux-object class, the FoBuilder uses its internal knowledge
instead of the information provided in the Type Library to generate the proper support
code.

However, the FoBuilder is only augmented to support the standard interfaces
that cannot be fully represented in a Type Library. The FoBuilder currently has no
support for user-defined interfaces that cannot be fully represented. One way to solve
this problem is to extend the FoBuilder to support 3'* party augmentation for user-
defined interfaces. This kind of a solution defeats the purpose of using a standard
language (IDL) to define interfaces. Another possible solution would be to wait for
Microsoft to fix the IDL compiler so that it generates Type Libraries properly. A third
solution is to parse IDL. If Microsoft is not forthcoming with a bug fix, a future
version of the FoBuilder is likely to be extended to parse IDL.

l4 IDL has only recently been expanded to generate Type Libraries. Unfortunately, the
Type Library data format is not complete enough to describe interfaces as fully as IDL
does.

Chapter 6.
Extended Faux-Object Example

6.1 FoOleObject

While FoStrings are useful for illustration, they are hardly an example of real-
world use of the faux-object idiom. To put this idiom to the test, I found an existing
COM client application and ported it to use one faux-object class instead of several
COM interfaces. The application I found is a sample provided with the OLE Software
Development Kit. The SimpCntr sample is an example of a OLE object container that
supports in-place activation, menu and toolbar negotiation and serialization. It provides
these services using the interfaces exposed by every insertable OLE object: IUnknown,
IViewObj ect, IViewObj ect2, IPersistStorage and IOleObj ect. However, instead of
caching these interfaces all at once, the SimpCntr sample queries for them as needed.
This results in many more round-trips than is optimal and client code that has to check
for object functionality again and again. The need for implementation guarantee,
interface caching and simplified client code made the faux-object idiom desirable. The
version of SimpCntr modified to use faux-objects is called SimpCntr2. Figure 5 shows
the results of porting the client from raw COM to using a faux-object class:

SimpCntr 55,296 50 1848
(no faux-obj ect use)

SimpCntr2 56,320 26 1829
(faux-object use)
,

Figure 5: Code simplification statistics using a faux-object

Porting the code for one COM object to the faux-object idiom increased the
executable size by less than 2%, but reduced the OLE object related lines of code by
48%. Appendix D shows the entire FoOleObject class as generated by the FoBuilder.

6.2 Porting to Faux-Objects

Using the faux-object idiom requires a few simple steps, which are listed below:

1. Identify the required interfaces.
While it is the object's job to provide implementations of COM interfaces, it is the
developer's job to decide which of these intefaces are required based on the needs
of the client.
To decide which interfaces were required, I looked through the SimpCntr code.
This step is generally easier when you write a COM client yourself, because you
know which interfaces you need from an object. Since I didn't design the SimpCntr
application, and there were so many COM interfaces referenced and cached, it took
longer to decide which interfaces of the embedded OLE object were being used.

2. Describe the interfaces.
In ZDL, an interface definition, marked with an in ter face statement, lists the
member functions of an interface. Likewise, an implementation definition, marked
with a coc 7ass statement, lists the intefaces supported by the implementation.
The FoBuilder needs a Type Library with a coclass statement that lists all of the
required interfaces. Some COM servers provide a Type Library with this
information already available. Some COM servers provide an IDL file, which can
be used to generate a Type Library. Some COM servers provide neither. In the last
case, a minimal ZDL file is required on which to run the Microsoft IDL compiler,
midl.exe, to generate the required Type Library.
In the SimpCntr case, neither a Type Library nor an IDL file was provided, so I
built my own Type Library using IDL. The following is the complete IDL file
needed to build a Type Library with the required interfaces:

// A l l o f the in te r faces used i n simpcntr were standard

// and def ined i n the fo l lowing ~ i c r o s o f t - p r o v i d e d I D L

// f i l e s . These d e f i n i t i o n s a r e needed t o generate
// faux-object pass-throughs funct ions.

import "unknwn. id1 ";
import "01 e i d l . i d l " ;

// The l i b r a r y block def ines t h e information

// t o inc lude i n a Type L ib ra ry .

[
uuid (6~~~8~30-~F00-1 lc f -939C-86C505000000) ,
vers ion(l .O) ,
he1 pstring("simpCntr2 ~ o o b j e c t Type L i brary")

I
1 i brary simpcntr2

C
// his coclass block l i s t s the in te r faces
// supported by t h i s implementation. These
// i n te r faces w i l l be l i s t e d as possible
// members o f a faux-object i n t e r f a c e - j o i n

// i n the r i g h t pane o f the FoBuilder.
[uuid(6~E~8F31-E~00-1lcf-939C-86C505000000) I
cocl ass cool eobj ec t

C
// The d e f i n i t i o n s o f these in te r faces are
// imported i n t o t he Type ~ i b r a r y from the
// import statements above.

[de fau l t] i n t e r f ace Iunknown;
i n t e r f ace I V i e w ~ b j e c t ;
i n t e r f ace IViewObject2 ;
i n te r f ace IPers is ts torage;
i n t e r f ace 101 eobject ;

3
1

3. Build the faux-object class.
Once the Type Library is obtained, run the FoBuilder and choose the appropriate
options. Again, these options are based on the needs of the client.
In the case of the faux-object to be generated for the SimpCntr application -
FoOleObject - all of the interfaces were selected from the CoOleObject
implementation, no copy or assignment was allowed and no equality operator was
required.

4. Use the faux-object class.
Instead of using CoCreateInstance(), create instances of the faux-object using the
C+ + scoping rules. Remember to catch exceptions during creation, as a requested
implementation or the required interfaces may not be available.
In the SimpCntr case, I replaced all of the code that created the OLE object and
queried for interfaces with faux-object calls. All of the calls to QueryInterfaceO
went away and all of the rest of the function calls simply worked without change, as
the arguments remained the same. Here's an example of the kind of code that I
replaced in the SimpCntr example:

// Def ine an i n t e r f a c e po in te r
LPVIEWOBJECTZ Ipviewobject2;
HRESULT hErr;

// Query the OLE object f o r i t s implementation o f
// 1viewobject2 using a cached i n t e r f ace po in te r
hErr = m-psi te->m-lp01e0bject->

~ u e r y ~ n t e r f a c e (~ ~ ~ - I V i ewObject2,
(LPVOID FAR *)&l p v i ewobj ect2) ;

// ~f the query succeeded, c a l l a s i ng l e member
// func t ion o f the i n t e r f ace and release i t

i f (hErr == NOERROR) {

~ ~ V ~ ~ ~ O ~ ~ ~ C ~ ~ - > G ~ ~ E X ~ ~ ~ ~ (D V A S P E C T - C O N T E N T , -1, NULL,

&m-psi te->m-si ze l) ;
I p v i ewObject2- el ease() ;

1

These six lines of code (not including comments) could be replaced with a
single line of code using the Fool e0 b j e c t referenced via the m-p S i t e data
member rn-1 pol e ~ b j e c t :

// Instead o f using a cached in te r face po in te r , use

// a faux-object which has a1 ready cached a l l o f the

// required i n t e r f a c e pointers and provides pass-through

// functions f o r a l l o f the in te r faces ' functions.

m-psi te->m-lpol eobject ->~etExtent (DVASPECT-CONTENT, -1,

NULL,

&m-psite->m-sizel) ;

Notice that the actual call to GetExtentO was unchanged. Once the interface
management, implementation guarantee and lifetime control code was removed
(because It is handled in the faux-object), the client code is greatly simplified.

Test.
Normal testing should be used to insure that the assumptions made when generating
the faux-object are the proper assumptions. In the SimpCntr case, once the code
compiled, it ran flawlessly. All insertable objects that I tested with worked just as
they had before.

Chapter 7.
Discussion, Conclusion and Future Work

7.1 Discussion

7.1.1 Faux-Object Cost

One of the additional benefits of the faux-object class was that it provides a
bridge between a C + + client and a COM object without adding too much overhead.
One of the benefits of the C+ + object model is that the memory requirements and the
member function call overhead are kept very low compared with other object models.
The downside is that there's no "middle layer" in the object model in which to
integrate COM. By middle layer, I mean there is no service performed by the language
to cover up the differences between the C+ + and the COM object models like that
provided in Visual Basic. So, to provide a bridge between the C+ + and the COM
object models, the faux-object adds the middle layer, but what are the costs?

One of the costs is the memory needed for several object references instead of
just one, i.e., one reference for every cached interface. Were we able to use multiple
inheritance of interfaces, however, this overhead would be same, i.e., one vptr for
every base class. Caching multiple references adds no additional overhead.

Another cost is the forwarding of faux-object member function calls to the
underlying COM object via interface member functions. However, since we are using
the C+ + inline function feature, the compiler replaces the faux-object member
function call with the call to the interface member function at the caller site. So, faux-
object pass-throughs have no additional overhead, although they still have the cost of
the indirection required by COM interface member function calls.

A third cost is the additional time it takes to create a COM object and to query
for all of the required interfaces. However, since all interfaces can be retrieved in a
single round trip, the cost is actually less than the typical COM usage model of
querying for an interface every time it is needed.

The caching of COM objects causes one final cost. In the remote case, every
interface has the potential to create a proxy-stub pair to perform the communication

required to marshal the member function parameters between the client and the object.
For frequently used interfaces, it is more efficient to load the proxy-stub pair and leave
it in memory instead of unloading it and reloading it. However, for infrequently used
interfaces, this proxy-stub pair consumes unnecessary memory. To minimize this cost,
the faux-object should include only the interfaces that are commonly used and required
by the client. Those that are optional or not commonly used should be acquired as
needed via Quer yInterface().

So, the overall cost of the faux-object is small when compared with the code
that a client would normally write. The C + + overhead is nearly zero and COM
performance can actually improve.

7.1.2 COM vs. CORBA

In many ways the faux-object idiom is similar to the C + + language mapping
for CORBA. The CORBA language mapping does a far better job of integration with
C + + than raw COM does. It might seem like I could have saved myself a lot of work
by just using CORBA.

However, COM has a number of benefits that CORBA does not have:

COM supports in-process objects with no additional member function overhead.
Only a few ORBS support in-process objects.

COM is supported as a free part of every operating system that Microsoft has
shipped since Windows 3.1. Windows constitutes approximately 80 % of the
desktop market and a growing percentage of the server market. In addition,
Microsoft and other software vendors are supporting other operating systems,
including Apple's MacOS System 7, Sun's Solaris, Hewlett-Packard's HPIUX,
Linux and Digital Equipment Corporation's VMS.

There exist a large number of powerful and inexpensive tools for building COM
objects and COM clients. While it has been traditionally true that UNIX
development tools are more powerful than Windows development tools, the last few
years have turned the tables. Many developers have switched to Windows and tool
vendors have concentrated their efforts on this platform more than any other.

In short, by adding the language binding benefits of CORBA to COM, I have
made the use of COM easier for the growing number of COM client programmers who
wish to program in C + + .

7.2 Conclusion

Recall the goal: to bridge the gap between two different object models. Bridging
this gap would simplify the client code written using one object model without losing

the functionality of the object written in the object model. The mechanism to bridge the
object models is a faux-object - a layer of glue that maps elements of one object model
to the other. Specifically, I presented a faux-object implementation scheme to allow
C + + clients easy access to COM objects while still minimizing C + + and COM
overhead. To make this idiom available without tedious hand coding of each faux-
object class, I built the FoBuilder to generate faux-object classes on demand. This
thesis has shown two examples of faux-object classes generated using the FoBuilder
tool. Each example shows greatly simplified client code and little or no overhead. The
faux-object idiom met, and in some cases exceeded, my expectations. I believe that I
have solved the basic problem.

7.3 Future Work

The faux-object idiom could be expanded for advanced use by C+ + clients to
integrate even more of the C+ + object model into COM. The following is a list of
additional features that could be added:

Dead object detection.
Because COM objects can live in an address space separate from that of the client,
there is the possibility of a communications error between the two. COM provides
the ability to catch this class of error by examining the result of calling an interface
member function. The faux-object could detect these kinds of errors in the pass-
throughs and throw an exception in the event of a communications error. Since this
capability would add to the overhead of a faux-object, this functionality should be
optional.

Static member functions.
The C+ + object model supports the notion of class member functions as well as
object member functions. Class member functions perform operations common to
all of the instances of the class, e.g., returning the number of objects. COM
provides this facility via a class object that may support interfaces to perform class-
level functionality. Given the interfaces of a COM class object, a faux-object could
provide this functionality via C + + static member functions.

Default arguments.
While COM member functions do not support default arguments, C+ + member
functions do. A faux-object could further simplify client code by supporting default
values in the pass-throughs.

Support IMultiQI.
Modern implementations of COM15 support an additional interface in the proxy:
IMultiQI. IMultiQI allows a client to query for many interfaces at once, much like
CoCreateInstanceEx(), and could be used to make construction of a faux-object
more efficient when constructing from an interface reference to an existing COM
object. However, since most in-process COM objects will not support this interface,
the faux-object must support both IMultiQI and IUnknown when constructing a
faux-object in this way.

More robust copy of value.
The current faux-object implementation of copy of value assumes a COM object
that does not cache the reference to the IStorage interface passed during
serialization. This is not the norm. Most COM objects do cache this reference and
are considered "unconstructed" until they are given one. For such objects, the
C+ + assignment operator has no meaning. The faux-object should be expanded to
handle COM objects that support serialization in this manner.

Better code generator implementation.
Frankly, the implementation of the FoBuilder is not as straightforward as I would
like. The FoBuilder can build faux-objects using the idiom as it is currently
defined, but expanding it for additional features would be a chore. Adding the
features listed above should be a matter of expanding a template and not
restructuring the FoBuilder tool itself. I would like a future code generator to be
more flexible, more extensible and more robust.

Supporting other languages.
It would be interesting to take the faux-object idiom and apply it to other object
model pairs. For example, the C + + language mapping for CORBA could be
cleaned up considerably, I think, using faux-objects. Other interesting combinations
would include C + +/Java, C + + /Per1 and AdaICOM. Each of these pairs would
have different mapping specifics, but the general technique of building an object in
one language whose implementation is bound to an object in other language would
remain the same.
As an example of this possibility, Appendix E shows a faux-object class
implementation for C/COM and Appendix F shows a sample client. You may
notice that the faux-object usage code is nearly identical to that of C+ + except that
C does not support exceptions and the faux-object provides global functions instead
of member functions.

l5 Modern implementations of COM are those that support access to objects across the
machine boundary.

Chapter 8.
References

[Almes85] Almes, G . , Black, A., Lazowska, E. and Noe, J., "The Eden System: A
Technical Review,'' IEEE Transactions on Software Engineering, vol. SE-11, no. 1,
pp. 43-58, January 1985.

[Anderson861 Anderson, D., " Experience with Flamingo: A Distributed, Object-
Oriented User Interface System, " OOPSLA Proceedings, pp. 177-1 85, 1986.

[APM91] Architecture Projects Management Ltd, "The ANSA computational model,"
AR.OO1, APM Ltd, August 199 1.

[Bennett901 Bennett, J., " Experience With Distributed Smalltalk," Software - Practice
and Experience, vol. 20, no. 2, pp. 157-180, Feb. 1990.

[Berlin901 Berlin, L., "When Objects Collide: Experiences with Reusing Multiple
Class Hierarchies, " Proceedings of the ACM Conference on Object-Oriented
Programming: Systems, Languages and Applications, pp. 18 1 - 193, 1990.

[Black861 Black, A., Hutchinson, N., Jul, E. and Levy, H., " Object Structure in the
Emerald System," Proceedings of the ACM Conference on Object-Oriented
Programming: Systems, Languages and Applications, pp. 78-86, 1986.

[Black871 Black, A., Hutchinson, N., Jul E., Levy, H. and Carter, L., "Distribution
and Abstract Types in Emerald," IEEE Transactions on Software Engineering, vol.
SE-13, no. 1, pp. 65-76, January 1987.

[Bracha90] Bracha, G . and Cook, W., " Mixin-Based Inheritence, " Proceedings of the
ACM Conference on Object-Oriented Programming: Systems, Languages and
Applications, pp. 38-45, 1990.

[Brock95] Brockschmidt, K., Inside OLE, 2"* Edition, Microsoft Press, 1995.

[Cardelli85] Cardelli, L. and Wegner , P., " On Understanding Types, Data
Abstraction, and Polymorphism," ACM Computing Surveys, vol. 17, no. 4, pp. 47 1-
523, December 1985.

[Chen93] Chen, D. and Huang, S., "Interface for reusable software components,"
Journal of Object-Oriented Programming, pp. 42-53, January, 1993.

[COM95] Microsoft Corp., "The Component Object Model Specification," Microsoft
Corp., 1995.

[CPPREF] "Working Paper for Draft Proposed International Standard for Information
Systems - Programming Language C+ +, " Document No. X3J16196-0225
WG2 1 /N1043, American National Standards Institute, 1996.

[Curtis971 Curtis, D., "Java, RMI and CORBA, "
http://www.omg.org/news/wp~iava.htm, Object Management Group, 1997.

[Donahue851 Donahue, J. and Demers, A., "Data Types are Values, " ACM
Transactions on Programming Languages and Systems, vol. 7, no. 3, pp. 426-445,
July 1985.

[Flanagan96] Flanagan, D., Java in a Nutshell, O'Reilly & Associates, Inc., 1996.

[HailperngO] Hailpern, B. and Ossher, H., "Extending Objects to Support Multiple
Interfaces and Access Control," IEEE Transactions on Software Engineering, vol. 16,
no. 11, pp. 1247-1257, November 1990.

[Helm901 Helm, R., Holland, I. And Gangopadhyay , D., " Contracts: Specifying
Behavioral Compositions in Object-Oriented Systems," Proceedings of the ACM
Conference on Object-Oriented Programming: Systems, Languages and Applications,
pp. 169-180, 1990.

[Java961 Microsoft Corp., Visual J+ + Books Online, Microsoft Visual J+ + 1 .O,
Online help pages, Microsoft, 1996.

[Jones861 Jones, M. and Rashid, R., "Mach and Matchmaker: Kernel and Language
Support for Object-Oriented Distributed Systems," Proceedings of the ACM
Conference on Object-Oriented Programming: Systems, Languages and Applications,
pp. 67-77, 1986.

[Jordan901 Jordan, D., " Implementation Benefits of C + + Language Mechanisms, "
Communications of the ACM, vol. 33, no. 9, pp. 6 1-64, 1990.

[Keremitsis95] Keremitsis, E., Fuller, I., "HP Distributed Smalltalk: A Tool For
Developing Distributed Applications," Hewlett-Packard Journal, vol. 46, no. 2, pp.
85-92, April 1995.

[Khosh86] Khoshafian, S . and Copeland, G., " Object Identity, " OOPSLA
Proceedings, pp. 406-4 16, 1986.

[Korson90] Korson, T. and McGregor, J., "Understanding Object-Oriented: A
Unifying Paradigm," Communications of the ACM, vol. 33, no. 9, pp. 40-60,
September 1990.

[LaLonde90] LaLonde, W. and Dugh, J., Inside Smalltalk Volume I, Prentice Hall,
1990.

[LaLonde90a] LaLonde, W., Pugh, J., "Preparing To Use The Distributed Facility In
IBM Smalltalk," Journal of Object-Oriented Programming, vol. 9, no. 2, pp. 44-48,
May 1996.

[Lippman96] Lippman, S., Inside the C+ + Object Model, Addison-Wesley, 1996.

[Listkov88] Liskov, B., "Distributed Programming in Argus," Communications of the
ACM, vol. 31, no. 3, pp. 300-313, March 1988.

[McGregor90] McGregor, J., " Understanding Object-Oriented: A Unifying
Paradigm," Communications of the ACM, vol. 33, no. 9, pp. 40-60, September,
1993.

[RMI96] Sun Microsystems , "Remote Method Invocation Specification, " JDKTM 1.1.3
Documentation,
http: Ilwww ,javasoft. com/products/idk/ 1.1 /docs/guide/rmi/spec/rmiTOC.doc.html, Sun
Microsystems , 1 996.

[RPC93] Open Software Foundation, AESIDistributed Computing - Remote Procedure
Call, Open Software Foundation, 1993.

[Shriv91] Shrivastava, S., Dixon, G. and Parrington, G . , " Arjuna: Reliable
Distributed System Programming, " IEEE Software, pp. 66-73, January 1991.

[Siege1961 Siegel, J., CORBA Fundamentals and Programming, John Wiley & Sons,
1996.

[Snyder861 Snyder, A., " Encapsulation and Inheritance in Object-Oriented
Programming Languages," Proceedings of the ACM Conference on Object-Oriented
Programming: Systems, Languages and Applications, pp. 38-45, 1986.

[Stroustrup86] S troustrup, B., The C + + Programming Language, Addison-Wesley ,
1986.

[VB97] Microsoft Corp., Visual Basic Books Online, Microsoft Visual Basic 5.0,
Online help pages, Microsoft Corp., 1997.

[WOSA93] Microsoft Corp., "WOSA Backgrounder: Delivering Enterprise Services to
the Windows-based Desktop," Microsoft Developer Network, Online help pages,
Microsoft Corp., July, 1993.

Appendix A.
StringServer.idl

import "unknwn. i d l " ;

[
uuid(73F86~20-621C-11cf-88D2-00008600A105),

ob jec t

1
i n t e r f ace 1 s t r i n g : Iunknown

C
HRESULT ~ e t ~ e x t ([i n, s t r i ng] const char* szText) ;
HRESULT GetText([out, s t r i ng] char* pszText) ;
HRESULT Get~ength([out] long* pnLen) ;

1

he1 p s t r i ng("costt-i ng Server")

1
l i b r a r y c o s t r i n g ~ i b

C
[uuid(0845~620-621A-llcf-88D2-00008600~105)]

coclass Costr ing

C
[defau l t] i n t e r f ace Iunknown;

i n t e r f ace I s t r i n g ;
i n t e r f ace IPe rs i s t ;

1
1

Appendix B.
FoString

// FoStr ing FoObject c lass
// (Define necessary i n te r faces p r i o r t o i nc lud ing t h i s f i l e)

i f n d e f FOSTRING-H
#def i ne FOSTRING-H

c lass XCreateFoStri ngExcepti on {};
c lass XCopyFoStri ngException {} ;

c lass FoSt r i ng

I

// GUID Constructor
p u b l i c :

Fostring(REFCLS1D c l s i d , DWORD c t x = CLSCTXALL)
{ c rea te (c l s i d , c tx) ; }

// PrOgID const ruc tor
p u b l i c :

FoString(LP0LESTR SZPrOgID, DWORD C t X = CLSCTXALL)

C
CLSID c l s i d ;
i f (~ U C C E E D E D (C L ~ I D F ~ ~ ~ P ~ ~ ~ I D (~ Z P ~ ~ ~ I D , &cls id)))

{
c rea te (c l s i d , c tx) ;

1
e lse

1
throw XCreateFoStringException() ;

1
1

// Sing le I n t e r f a c e const ruc tor
p u b l i c :

F o s t r i ng(runknown* punk)
: mpIunknown(O), m p I s t r i ng(0) , m p I P e r s i s t (0)
{ ~ u e r y ~ n t e r f a c e s (p u n k) ; }

// Copy Constructor
p r i v a t e :

Fost r i ng (Fost r i ng&) ;

// Assignment Operator
p r i v a t e :

FoStr i ng& operator=(FoStri ng&) ;

// Dest ruc tor
pub l i c :

v i r t u a l -Fost r i n g 0
{ ~ e l e a s e ~ l l 0 ;)

// Typecast operators
pub l i c :

operator IUnknown*()
{ r e t u r n mpIunknown; 3

operator I s t r i ng*O
{ r e t u r n m p I s t r i n g ; 1

operator IPe rs i st*()
{ r e t u r n m p I P e r s i s t ;)

// Iunknown Pass-Throughs
p u b l i c :

HRESULT QueryInterface(REF1ID r i i d , void** ppv)
{ r e t u r n mp~unknown->QueryInterface(r i id, ppv);)

// I s t r i ng Pass-Throughs
p u b l i c :

HRESULT SetText(LPSTR szText)
{ r e t u r n m p I s t r i ng->SetText (szText) ; 3

HRESULT GetText(LPSTR* pszText)
{ r e t u r n m-pIstring->GetText(pszText);)

HRESULT GetLength(long* pnLen)
{ r e t u r n mp~str ing->Get~ength(pnLen) ;)

// I P e r s i s t Pass-Throughs
pub l i c :

HRESULT GetClassID(struct -GUID* pClassID)
{ r e t u r n m-pIPersist->GetClassID(pC1assID);)

// Helpers
p r i va te :

V O ~ d Create(REFCLS1D c l s i d, DWORD C ~ X)

I
MULTI-QI aqi [3] = {

{&IID-IUnknown, 0, 01 ,
{& I ID- ISt r i ng , 0, 01,
{&I ID-IPersist , 0, 01,

I ;

i f (CoCreateInstanceEx(clsid, 0, c t x , 0, 3, aqi) == S-OK)

C
mpIunknown = (Iunknown*)aqi [0] . p ~ t f ;
m p I s t r i n g = (IStr ing*)aqi [l] . p I t f ;
m p I P e r s i s t = (IPers i s t*)aqi [Z] . p I t f ;

1
e lse

C
f o r (i n t i = 0; i < 3; i++)

C
i f (aqi [i] .hr = S-OK)

I
aqi [i] .pItf->Release() ;

1
1
throw x c r e a t e ~ o s t r i ngExcepti on() ;

1
m c t x = c t x ;

1

v o i d QueryInter faces (Iunknown* punk)
C

i f (!punk 1 1
FAILED(PU~~->query~nterface(II~- unknown,

(void**)&m-prunknown)) I I
~ ~ 1 ~ E D (p u n k - > ~ u e r y I n t e r f a c e (I I D - 1 s t r i ng ,

(voi d**)&m_pIstri ng)) I I
FAILED(punk->QueryInterface(IID~IPersistl

(voi d**)&mpIPersi s t)))

C
i f (mpIunknown)
C

m-pIUnknown->Re1 ease () ;
1

i f (m p I s t r i n g

C
m p I S t r i ng->Re1 ease () ;

1

i f (m p I P e r s i s t)
C

mpIPers i st->Re1 ease 0 ;
1

throw x c r e a t e ~ o s t r i ngException() ;

vo id ReleaseAll()
I

i f (mpIunknown)
C

mp~unknown->Release(); mpIUnknown = 0;
mp1st t - i ng->Release() ; m p I S t r i ng = 0;
mp~~ersist- elea ease(); m p I P e r s i s t = 0;

1
1

// I n t e r f a c e Po in ter Members
p r i v a t e :

IUnknown* mpIunknown;
I s t r i n g * m p I s t r i ng;
I P e r s i s t * m p I P e r s i s t ;

// o t h e r cached s t a t e
p r i v a t e :

DWORD L C t X ;

I :

e n d i f // FOSTRING-H

Appendix C.
FoBuilder Template

Code in < < > > is expanded by the FoBuilder based on the faux-object class options.
// <<faux-object name>> Foobject c lass
// (Define necessary i n te r faces p r i o r t o i nc lud ing t h i s f i l e)

c lass XCreate<<faux-object name>>Exception {);
c lass XCopy<<faux-object name>>Exception {I ;

c lass <<faux-object name>>

C

// GUID Constructor
p u b l i c :

<<faux-object name>>(REFCLSID c l s i d , DWORD c t x = CLSCTULL)
{ c rea te (c l s i d , c t x) ;)

// ProgID Constructor
p u b l i c :

<<faux-object name>>(LPOLESTR szProgID, DWORD c t x = CLSCTXALL)

C
CLSID c l s i d ;
i f (S U C C E E D E D (C L S I D F ~ ~ ~ P ~ O ~ I D (S Z P ~ ~ ~ I D , &cl s i d)))

C
c reate(c ls id , c tx) ;

1
e lse
C

throw Xcreateefaux-ob jec t name>>Exception();

1
1

// Sing le I n t e r f a c e Constructor
pub l i c :

<<faux-object name>>(Iunknown* punk)

<<for each i n t e r f a c e n>>
mp<< i n te r face n name>>(O) ,

// copy Constructor
< x i f copy const ruc tor no t a1 lowed>>
p r i v a t e :

<<faux-object name>>(<<faux-object name>>&);

<< i f copy const ruc tor allowed>>
pub l i c :

<<faux-object name>>(<<faux-object name>>& fo)

f
COPY (fo) ;

1

// Assignment Operator
< < i f assignment operator no t allowed>>
p r i v a t e :

<<faux-object name>>& operator=(<<faux-object name>>&);

<xi f assignment operator a1 lowed>>
// Assignment operator
pub l i c :

<<faux-object name>>& operator=(c<faux-object name>>& fo)

C
i f (mpIunknown != fo.mpIunknown)

C
Re1 easeAll() ;
COPY (fo);

I
r e t u r n * t h i s ;

3

// Dest ruc tor
p u b l i c :

v i r t u a l -<<faux-object name>>()
{ ReleaseAll();)

< < i f e q u a l i t y operator allowed>>
// Equa l i t y v i a ob jec t I d e n t i f i e r
p u b l i c :

i n t operator==(const <<faux-object name>>& rhs)

C
r e t u r n (m-p~unknown == rhs .mpIunknown) ;

1

// Typecast Operators
p u b l i c :

operator IUnknown*()
{ r e t u r n mpIunknown; }

<<for each in ter face>>
operator <<inter face n name>>*()
{ r e t u r n mp<<in ter face n name>>; }

// Iunknown Pass-Throughs
pub l i c :

HRESULT QueryInterface(REFI1D r i i d , void** ppv)
{ r e t u r n mpIUnknown->QueryInterface(ri i d, ppv) ; }

<<for each in te r face n>>
// <<interface n name>> Pass-Throughs
publ ic :

<<for each in ter face n member function>>
<<member funct ion m result>> <<member funct ion m name>>

(<<member funct ion m parameters>>)
{ re turn mp<<interface n name>>-><<member funct ion m name>>

(<<member funct ion m parameters>>);)

// Helpers
pr ivate:

vo id Create (REFCLSID c l s i d , DWRD ctx)

C
MULTI-QI aqi [<<faux-object interfaces>>] = {

{&IID-Iunknown, 0, 01,

<<for each in ter face n>>
{&IID-<<interface n name>>, 0, 03,

1;

i f (CoCreateInstanceEx(clsid, 0, c tx , 0,
<<faux-object interfaces>>, aqi) == s-OK)

C
mpIUnknown = (~unknown*)aqi [0] . p I t f ;

<<for each in te r face n>>
mp<<interface n name>> =

(<<i nterface n name>>*)aqi [<<n>>] . p I t f ;

1
else

C
f o r (i n t i = 0; i < <<faux-object interfaces>>; i t+)

C
i f (aqi [i] .hr == s-OK)

C
aqi [i] . p I t f ->Re1 ease (1 ;

I
3
throw XCreate<<faux-object name>>Exception();

3
m-ctx = c tx ;

3

void QueryInterfaces (Iunknown* punk)

C
i f (!punk 1 1

<<for each in ter face n>>
FAILED(punk->QueryInterface(IID-<<interface n name>>.

(voi d**)&mp<<i nterface n name>>)) I I

FA1LE~(punk->Query In ter face(I ID~ IUnkno~n,
(voi d**)&mpIunknown)))

C
i f (mpIunknown)
C

mpIUnknown->Release () ;

<<for each i n t e r f a c e n>>
i f (mp<< in te r face n name>>)
C

mp<<i n ter face n name>>->Re1 ease () ;
I

throw Xcreateefaux-ob jec t name>>Exception();

1

<<i f copy/assi gnment o f reference>>
vo id Copy(<<faux-object name>>& fo)
C

mpIunknown = fo.mpIUnknown;

<<for each i n t e r f a c e n>>
mp<< in te r face n name>> = fo .mp<<in ter face n name>>;

AddRefAll () ;

m c t x = f o . m c t x ;

1

< < i f copy/assi gnment o f value v i a IPe rs i ststorage>>
v o i d copy(<<faux-object name>>& fo)

C
i f (fo.mpIUnknown)

C
CLSID c l s i d ;
LPLoCKBVrES pLockBytes = 0;
LPSTORAGE pstorage = 0;
const DWORD grfMode = STGKCREATE I STGKREADWRITE I

STGKSHARE-EXCLUSIVE;

t rY
C

i f (~~~~E~(fo.GetClassID(&clsid)) I I
~ ~ ~ ~ ~ ~ (c r e a t e ~ ~ o c k B y t e s o n ~ ~ ~ o b a ~ (O , TRUE,

&pLockBytes)) I I
~ ~ ~ ~ ~ ~ (s t g ~ r e a t e D o c f i l e O n I L o c k B y t e s (p L o c k B y t e s ,

grfMode, 0,
&pstorage)) I I

FAILED(fo.Save(pStorage, FALSE)) I I
FAILED(fo.saveCompleted(0)) I I
FAILED((Create(clsid, f o .mc tx) , S-OK)) I I
FnILED(Load(pstorage>))

C
throw xcopyFo0leObjectExcepti on() ;

I
e lse
C

pstorage- el ease () ;
pLockBytes->Release() ;

1
1
catch(...)

C
Re1 easeAl 1 () ;
if (pstorage) pstorage->Release() ;
i f (pLockBytes) p~ockBytes->Release();

throw;
3

1
3

<<i f copy/assignment o f value v i a I P e r s i s t s t r e a n w
v o i d copy (<<faux-ob j e c t name>>& fo)

C
i f (fo.mpIunknown)

C
CLSID c l s i d ;
ILockeytes* pLockeytes = 0;
Is to rage* pstorage = 0;
IStream* pstream = 0;
const DWORD grfMode = STGKCREATE I STGKREADWRITE I

STGKSHARE-EXCLUSIVE;

t rY
C

i f (FAILED(fo.GetC1assID(&clsid~) I I
FAILED(Create ILo~kByte~OnHGlobal (O, TRUE,

&pLockBytes)) I I
FAILED(stgCreateDocfileOnILockBytes(pLockBytes,

grfMode, 0,
&pstorage)) I I

FAILED(p5torage->CreateStream(L"Contents", grfMode, 0,
0. &pstream)) I I

FAILED(fo . save (pstream , FALSE)) I I
FAILED((Create(clsid, f o . m c t x) , s-OK)) I I
FAILED(Load (pstream)))

C
throw XcopyFostri ngException() ;

3
e lse

C
pstream- el ease () ;
pstorage->Re1 ease () ;
pLockBytes->Release();

3
3
catch(. . .)
C

~ e l e a s e A l l () ;
i f (pstream) pstream->Release() ;
i f (pstorage) pStorage->Release() ;
i f (pLockBytes) pLockBytes->Release() ;

throw;
1

1
3

vo i d Re1 easeAl 1 (1

<<for each inter face n>>
m p e i nterface n name>>->Release() ;
mp<<interface n name>> = 0 ;

// In ter face Poi nter Members
pr ivate:

Iunknown* mpIunknown;

<<for each inter face n>>
<<interface n name>>* mp<<interface n name>>;

// other cached state
pr ivate:

DWORD L C t X ;
3 ;

Appendix D.
FoOleO bject

// Fooleobject Foobject c lass
// (Define necessary i n te r faces p r i o r t o i nc lud ing t h i s f i l e)

i f n d e f FOOLEOBJECT-H
#def ine FOOLEOBJECT-H

c lass XCreateFoOleObjectException 1);
c lass XCopyFoOleObjectException 1);

c lass Fool eobject
C

// GUID Constructor
p u b l i c :

FoOleObject (REFCLSID c l s i d, DWORD c t x = CLSCTXJLL)
{ c rea te (c l s i d , c t x) ; }

// ProgID const ruc tor
p u b l i c :

FoOleObject(LP0LESTR szProgID, DWORD c t x = CLScTULL)

C
CLSID c l s i d ;
i f (S U C C E E D E D (C L S I D F ~ ~ ~ P ~ ~ ~ I D (~ Z P ~ ~ ~ I D , &cls id)))

C
c rea te (c l s i d , c tx) ;

1
e lse

{
throw XCreateFoOleObjectException() ;

1
1

// s ing le I n t e r f a c e const ruc tor
p u b l i c :

~oo1e0bject(1~nknown* punk)
: m_pIUnknown(O), m p I V i e w ~ b j e c t (01, m p 1 v i ew0bject2 (0) ,

m p ~ ~ e r s i ststorage(0) , mpIo leob jec t (0)
{ ~ u e r y ~ n t e r f a c e s (p u n k) ; }

// copy const ruc tor
p r i v a t e :

FooleObject(FooleObject&) ;

// Assignment Operator
p r i v a t e :

Fool eobject& operator=(const Fool eobjectb) ;

// Dest ruc tor
pub l i c :

v i r t u a l -Fooleobject 0
{ ReleaseAll() ;)

// Equa l i t y v i a ob jec t I d e n t i f i e r
pub l i c :

i n t operator==(const FoOleObject& rhs)

1
r e t u r n (mpIunknown == rhs.mpIunknown);

1

// Typecast operators
pub l i c :

operator Iunknown*()
{ r e t u r n mpIunknown;)

operator Iv iewobject*()
{ r e t u r n mpIv iew0bjec t ; 1

operator 1vi ewobject2*0
{ r e t u r n mpIv iewobjec t2 ;]

operator IPe rs i s t s to rage*O
{ r e t u r n mp1Persi s tstorage; }

operator Io leob jec t * ()
{ r e t u r n m p I o l e o b j e c t ; 1

// Iunknown Pass-Throughs
p u b l i c :

HRESULT QueryInterface(REFI1D r i i d , void*" ppv)
{ r e t u r n mpIunknown->QueryInterface(ri i d , ppv) ;)

// Iv iewobjec t pass-Throughs
p u b l i c :

HRESULT Draw(DW0RD dwDrawAspect, l ong l i ndex , void* pvAspect,
s t r u c t tagDVTARGETDEVICE* p td , HDC hdcTargetDev,
HDC hdcoraw, s t r u c t -RECTL* lprcsounds,
s t r u c t AECTL* IprcWBounds,
BOOL (STDMETHODCALLTYPE* pfncontinue) (DWORD dwcontinue),
DWORD dwcontinue)

{ r e t u r n mpIviewobject->Draw(dwDrawAspect, l i n d e x , pvnspect, p td ,
hdcTargetDev, hdcDraw, IprcBounds,
IprcwBounds , pfncont inue, dwconti nue) ;)

HRESULT GetColorSet(DW0RD dwDrawAspect, l ong l i n d e x , vo id* pvAspect,
s t r u c t tagDVTARGETDEVICE* p td , void* hicTargetDev,
s t r u c t tagLOGPALETTEq* ppcolorset)

{ r e t u r n mpIViewobject->Getcolorset(dwDrawAspect, l i n d e x , pvAspect,
ptd, hicTargetDev, ppcolorset) ; }

HRESULT Freeze(DW0RD dwDrawAspect, long l i ndex , void* pvAspect,
DWORD* pdwfreeze)

{ r e t u r n mpIViewobject->Freeze(dwDrawAspect, l i n d e x , pvnspect,

pdwfreeze) ;)

HRESULT Unfreeze(DW0RD dwfreeze)
{ r e t u r n m p I v i ewobject->Unfreeze(dwFreeze) ; }

HRESULT set~dvise(DW0~D aspects, DWRD advf ,
s t r u c t IAdv i ses i nk* pndvsi nk)

{ r e t u r n mp~viewobject->set~dvise(aspects, advf , pAdvSink); }

HRESULT GetAdvise(DWORD* pASpeCtS, DWORD* pAdvf,
s t r u c t IAdv i ses i nk** ppndvsi nk)

{ r e t u r n m p ~ v i e ~ b j e c t - > ~ e t ~ d v i s e (p A s p e c t s , pAdvf, ppndvsink);)

// IViewobjectZ Pass-Throughs
pub l i c :

HRESULT ~ e t E x t e n t (D W 0 ~ ~ dwDrawAspect, l ong l i n d e x ,
s t r u c t tagDVTARGETDEVICE* ptd, LPSIZEL l p s i z e l)

{ r e t u r n mpIview0bject2->~etExtent(dwDrawAspect , l i ndex , p td ,
l p s i z e l) ; }

// IPe rs i s t s to rage Pass-Throughs
p u b l i c :

HRESULT I s D i r t y ()
{ r e t u r n mpIPersistStorage->IsDi r t y o ;)

HRESULT In i tNew(s t ruc t Is to rage* pstg)
{ r e t u r n mpIPersiststorage->Ini tNew(pstg); }

HRESULT Load(struct Is to rage* pstg)
{ r e t u r n mpIPersiststorage->Load(pstg);)

HRESULT save(struct Is to rage* pstgsave, long fsamensLoad)
{ r e t u r n mpIPersiststorage->Save(pstgsave, fsamensload); }

HRESULT saveCompleted(struct Is to rage* pStgNew)
{ r e t u r n m p I P e r s i ststorage->saveCompleted(pStgNew) ;)

HRESULT Handsoffstorage()
{ r e t u r n mpIPersiststorage->HandsOffStorage();)

// I P e r s i s t Pass-Throughs (base o f IPe rs i s tstorage)
pub l i c :

HRESULT GetClassID(struct -GUID* ~ C ~ ~ S S I D)

{ r e t u r n m p ~ p e r s i s t s t o r a g e - > ~ e t ~ l a s s I ~ (p c l a s s ~ ~) ;)

// I 0 1 eob j e c t Pass-Throughs
pub l i c :

HRESULT s e t c l i en t s i t e (s t r u c t I o l e c l i e n t s i t e * p c l i e n t s i t e)
{ r e t u r n m p ~ o l e o b j e c t - > S e t C l i e n t S i te (pc1 ients i te) ;)

HRESULT G e t c l i e n t s i t e (s t r u c t I o l e c l i e n t s i te** p p c l i e n t s i te)
{ r e t u r n mpIOle0bject ->Getc l ientS i t ecppc l i en ts i te) ; }
HRESULT SetHostNames(LPWSTR szcontainernpp, LPWSTR szcontainerobj)
{ r e t u r n mpIoleobject->SetHostNames(~zContai nerApp, szContai nerobj) ;)

HRESULT Close (DWORD dwsaveopti on)

{ r e t u r n ~ p I 0 l e o b j e c t - > C l o s e (d w ~ a v e o p t i on) ;)

HRESULT s e t ~ o n i ker(~w0RD dwwhichnoni ker, s t r u c t IMoni ker* pmk)
{ r e t u r n m p ~ o l e o b j ec t ->~e tMon i ker(dWhi chMoni ke r , pmk) ;)

HRESULT GetMoni ker(DW0RD dw~ss ign , DWRD dwwhi chMoni ker,
s t r u c t IMoni ker** ppmk)

{ r e t u r n m p ~ o l e o b j e c t - > ~ e t ~ o n i ker (dw~ss ign, dwwhich~oni ker , ppmk) ;)

HRESULT In i tFromData(struct IDataObject* poataobject , l ong f c rea t i on ,
DWORD dwReserved)

{ r e t u r n mp IO leob jec t -> In i tFromData(pData0bject , f c rea t i on ,
dmeserved) ;)

HRESULT GetClipboardData(DW0RD dwReserved,
s t r u c t IDataObjectq* ppData0bject)

{ r e t u r n mpIOleobject->GetClipboardData(dwReserved, ppoataobject);)

HRESULT ~overb(1ong i v e r b , s t r u c t tagMSG* lpmsg,
s t r u c t I o l e c l i e n t s i t e * pnc t i ves i t e , l ong li ndex,
HWND hwndparent, s t r u c t tagRECT* IprcPosRect)

{ r e t u r n fn-p~oleobject->Doverb(iVerb, lpmsg, pAc t i ves i t e , l i ndex ,
hwndparent , IprcPosRect) ;)

HRESULT EnumVerbs(struct IEnumOLEVERB** ppEnumOleVerb)
{ r e t u r n mpIoleobject->EnumVerbs(ppEnumOleverb);)

HRESULT update()
{ r e t u r n mp~oleob jec t ->Update() ;)

HRESULT IsUpToDate ()
{ r e t u r n mp10leobject->IsUpToDate();)

HRESULT ~ e t ~ s e r ~ l a s s ~ ~ (s t r u c t -GUID* pc l s i d)
{ r e t u r n m p ~ o l e o b j e c t - > ~ e t ~ s e r C l a s s ~ ~ (p C l s i d) ; }

HRESULT GetUserType(DW0RD dwformofrype, LPWSTR* pszUserType)
{ r e t u r n mpIOleObject->GetUserType(dwFormOfrype, pszUserType);)

HRESULT SetExtent(DW0RD dwDrawAspect, sIZEL* ps i ze l)
{ r e t u r n mpI0leobject->SetExtent(dwDrawAspect , ps i ze l) ;)

HRESULT GetExtent(DW0RD dwDrawAspect, SIZE* ps i ze l)
{ r e t u r n mpIOleObject->GetExtent (dwDrawAspect , ps i ze l) ;)

HRESULT Advise (s t r u c t IAdv i seSi nk* pndvsi nk, DWORD* pdwconnecti on)
{ r e t u r n mpIOleob ject->Advi se(pAdvsi nk, pdwconnecti on) ;)

HRESULT unadvi se(DW0RD dwconnecti on)
{ r e t u r n mp~o leob jec t ->unadv i se(dwconnection) ;)

HRESULT ~numAdvise(struct IE~u~STATDATA** ppenuwdvise)
{ r e t u r n mp~oleobject->~nutnAdvise(ppenumAdvise);)

HRESULT GetMiscStatus(DWORD dwnspect, DWORD* pdwstatus)
{ r e t u r n mpIOleObject->GetMiscStatus(dwAspect, pdwstatus); }

HRESULT SetColorscheme(struct tagLOGPALETTE* pLogpa1)

r e t u r n mpIoleobject->setcolorscheme(p~ogpal) ; 3

// Helpers
p r i v a t e :

vo id Create(REFCLS1D c l s i d , DWORD c tx)
C

MULTI-QI aq i 151 = {
{&IID-Iunknown, 0, 03,
{&IID-IviewObject, 0, 03,
{&IID-1view0bject2, 0, 01,
{&IID-IPersiststorage, 0, 03,
{& I ID~IOleObjec t , 0, 01,

3 ;

i f (CoCreateInstanceEx(clsid, 0, c t x , 0, 5 , aqi) == S-OK)

m p I v i e w b j e c t = (rviewobject*)aqi [I] . p I t f ;
mp1viewobject2 = (~viewobjectZ*)aqi [2] . p I t f ;
m p ~ ~ e r s i s tstorage = (1persi ststorage*)aqi [3] . p I t f ;
m p I o l e o b j e c t = (~o leob jec t *)aq i [4] . p I t f ;

3
e l se
C

f o r (i n t i = 0; i < 5 ; i++)

C
i f (aq i [i] .hr == S-OK)

C
aqi [i] . pItf->Release() ;

1
3
throw XCreateFoOl eObjectExcepti on() ;

3
m c t x = c t x ;

1

vo id QueryInter faces (Iunknown* punk)
C

i f (!punk 1 l
F A I L E D (~ U ~ ~ - > ~ u e r y ~ n t e r f a c e (I I ~ ~ I U n k n o w n ,

(voi d**)&mpIunknown)) I I
F A I L E D (~ U ~ ~ - > ~ u e r y I n t e r f a c e (I I ~ - ~ v i e w b j e c t ,

(vo id**)&mpIv iewbjec t)) I I
FAILED(PU~~->query~nterface (11~-IV~ e w b jec t2 ,

(voi d**)&mpIVi ewb jec t2)) I I
~~1~~~(punk->~uery1nterface(I1~~1~ersist~torage,

(void**)&mpIPersi ststorage)) I I
~~1~~~(punk->~ueryInterface(II~~101e0bject,

(voi d**)&mpIOleOb jec t)))

C
i f (mpIunknown)
C

mp~unknown->Re1 ease () ;
3

throw XCreateFoOleObjectException() ;
3

3

v o i d ReleaseAll()
C

i f (mpIunknown)
I

mpIunknown->Release(); mpIUnknown = 0 ;
mpIv ieWbject ->Release() ; mpIv iewobject = 0;
mpIv ieWbject2 ->Release() ; mp1viewobject2 = 0 ;
m-pIPersistStorage->Release(); m-pIPersistStorage = 0 ;
mpIOleObject ->Release() ; m p I o l e o b j e c t = 0 ;

I
I

// I n t e r f a c e Pointer Members
p r i v a t e :

Iunknown* mpIunknown;
Iv iewobject * mpIv iewobject ;
Iv iewobject2* mpIv iewobject2 ;
IPers is tStorage* m p ~ ~ e r s i s t s t o r a g e ;
I o l e o b j e c t * m-pI0leobject;

// Other cached s t a t e
p r i v a t e :

DWORD m c t x ;
3;

Appendix E.
Faux-Object for CICOM

// Fos t r i ng Foobject "class" f o r C

// (Define necessary i n te r faces p r i o r t o i nc lud ing t h i s f i l e)

i f nde f FOSTRING-H
#def ine FOSTRING-H

// FoSt r i ng s t r u c t u r e
typedef s t r u c t -Fost r i ng
C

Iunknown* mpIunknown;
1 s t r i n g * m p I S t r i ng ;
I P e r s i s t * m p I P e r s i s t ;

1
F o s t r i ng ;

BOOL ~ o s t r i ng-create(~ost r i ng* pThi s , REFCLSID c l s i d, DWORD c tx) ;
v o i d F o s t r i ng-Destroy(FoString* pThi s) ;

#def ine ~ 0 s t t - i ng -~ue ry~n te r face (pTh i s, r i i d , ppv)
 unknown-query~nterface ((pThi s) ->mpIunknown, r i i d , ppv)
#def i ne ~ 0 s t 1 - i ng-setText (pThi s , szText) \

1 s t r i ng -se t~ex t ((p ~ h i s)->mp1st r i ng , szText)
#def ine F o s t r i ng-GetText (pThi s , pszText) \

I S t r i ng-GetText ((pThi s) - > k p I S t r i ng , pszText)
#def ine Fostring-GetLength(pThi s , pnLen) \

~ s t r i ng-Get~ength((pThi s)->m-pIStri ng , pnLen)
#def ine ~ostring-GetClassID(pThis, pc1assID) \

1 ~ e r s i s t - ~ e t C l a s s I D ((p ~ h i s) - > m p I P e r s i s t , pClassID)

i f d e f FOSTRING-IMPLEMENT

// const ruc tor
BOOL F O S ~ r i ng-create (F O S ~ r i ng* pThi s , REFCLSID c l s i d , DWORD c tx)

C
MULTI-QI aqi [3] = {

{&IID-Iunknown, 0, 01,
{& I ID- ISt r i ng , 0, 01,
{&IID-IPersist, 0, 01,

1;

i f (~ o ~ r e a t e ~ n s t a n c e ~ x (c l s i d , 0, c t x , 0, 3, aqi) = S-OK)

1
pThi s->mpIUnknown = (Iunknown*)aqi [0] . p I t f ;
pThi s ->mpIS t r i ng = (IS t r ing4)aq i [I] . p I t f ;
pThi s ->mpIPers is t = (IPers is t *)aq i [Z] . p I t f ;

3

else
I

i n t i;
f o r (i = 0; i < 3 ; i + +)
I

if(a q i [i] . h r = S-OK)

I
Iunknown-Release(aqi [i] . p I t f) ;

I
I
re turn FALSE;

I

re turn TRUE;

1

// Destructor
void Fostr i ng-Destroy (Fostri ng* pThi s)
C

i f (pThi s->mpIUnknown)

C
Iunknown-Release(pThis->m-pIunknown); pThis->mpIUnknown = 0 ;
I S t r i ng-Release(pThi s ->mpIStr i ng) ; pThi s->m-pIStri ng = 0 ;
IPersist-Release(pThis->m_pIPersist); pThis->mpIPersist = 0 ;

1
I

#endi f // FOSTRING-IMPLEMENT
#endi f // FOSTRING-H

e lse
C

i n t i;
f o r (i = 0; i < 3; i++)

C
i f(a q i [i] . h r = S-OK)

C
Iunknown-Release(aqi [i] . p I t f) ;

I
1
re turn FALSE;

1

re turn TRUE;
I

// Destructor
void ~ o s t r i ng-Destroy (~ o s t r i ng* pThi s)
I

if(pThis->m-pIUnknown)

I
 unknown-~elease(p~his->m_p~~nknown); pThis->mp~~nknown = 0;
 string-~elease(pThis->mp~string) ; pThi s ->mpIStr i ng = 0;
IPe rs i st-~elease(pThi s->m_pIpersi s t) ; pThi s->m-pIPersi s t = 0;

1
I

#endif // FosTRING-IMPLEMEKT
#endi f // FOSTRING-H

Appendix F.
Faux-Object for CICOM Client

#def i ne -WIN32-DCOM
#def i ne COBJMACROS
#include ai ndows . h>
inc lude <s td i o. h>
inc lude <assert. h>
inc lude " s t r i ngse rve r . h"
#de f i ne IID-DEFINED
#include " s t r i ngserver-i . c"

#def i ne FOSTRING-IMPLEMENT
inc lude "Fos t r i ngc. h"

v o i d showstr i ng (I s t r i ng * ps)

C
LPSTR pSZ = 0;
1st r i ng-~etText (ps , &psz) ;

p r i n t f ("showi ng : %s\nM , psz) ;

if (psz) co~askMemFree (psz) ;
3

v o i d mai n ()

I
Fos t r i ng s;

i f (~os t r i ng -c rea te (& , XLSID-costri ng, CLSCTXALL))

C
LPSTR pSZ = 0;
l ong nLen = 0;
CLSID c l s i d ;

// use I s t r i n g members i n Fos t r i ng
F o s t r i ng -se t~ex t (&s , "He1 l o , world") ;
Fost ring-GetText(&s, &psz) ;
Fost r i ng-GetLength(&s , &nLen) ;

p r i n t f ("%s (%d)\nW , psz, nLen) ;

if (psz) ~o~ask~emFree (psz) ;

// Use I P e r s i s t members i n Fos t r i ng
FoString-GetClassID(&s, &c ls id) ;
asser t (IsEqualGUID(&cl s i d, &CLSID,CoStri ng)) ;

// Typecast t e s t
showst r i ng (s . m p I s t ri ng) ;

FoSt r i ng-Dest roy (&s) ;
1

Bibliographical Sketch

I was born in Duluth, MN on June 2"' in 1969. 1 obtained my Bachelor's of
Computer Science from the University of MN in 1991. I currently specialize in
distributed application design and development using Microsoft's Component Object
Model. I have been a professional software engineer since 1989, a technical instructor
since 1995 and an independent consultant since 1996. I have been awarded a patent in
computer telephony integration. I have been published in several magazines and
journals and have spoken at several technical conferences. I have co-authored a book
entitled "The Downloader's Companion for Windows 95," with Scott Meyers and
Catherine Pinch, published in 1995 by Addison-Wesley. I anticipate publication of
another book entitled "Windows Telephony Programming," in 1997 also by Addison-
Wesley. I can be reached at my email address, csells@sellsbrothers.com, or via my
web site, http://www .sellsbrothers .corn.

