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In this thesis, we present a latent data framework that facilitates formalizing ob- 

servations of data behavior into statistical models. Using this framework, we derive 

two related models for a broad category of real-world data that includes images, 

speech data, and other measurements from natural processes. These models take 

the form of constrained Gaussian mixture models. Our statistical models lead to 

new algorithms for adaptive transform coding, a common method of signal com- 

pression, and adaptive principal component analysis, a technique for data modeling 

and analysis. 

Adaptive transform coding is a computationally attractive method for compress- 

ing non-stationary multi-variate data. A classic transform coder converts signal 

vectors to a new coordinate basis and then codes the transform coefficient values 

independently with scalar quantizers. An adaptive transform coder partitions the 

data into regions and compresses the vectors in each region with a custom transform 

coder. Prior art treats the development of transform coders heuristically, chaining 

sub-optimal operations together. Instead of this ad hoc approach, we start from 

a statistical model of the data. Using this model, we derive, in closed form, a 

new optimal linear transform for coding. We incorporate this transform into a new 
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transform coding algorithm that provides an optimal solution for non-stationary 

signal compression. We evaluate our adaptive transform coder on the task of image 

compression. Our results show that a single adaptive transform coder can com- 

press database images with quality comparable to or better than a set of current 

state-of-the art coders customized to each image in the database. 

Adaptive principal component analysis (PCA) is an effective modeling tool for 

high-dimensional data. Classic PCA models high-dimensional data by finding the 

closest low-dimensional hyperplane to the data. Adaptive or local PCA partitions 

data into regions and performs PCA on the data within each region. Prior art under- 

estimates the potential of this method by requiring a single global target dimension 

for the model hyperplanes. We develop a statistical model of the data that allows 

the target dimension to adjust to the data structure. This formulation leads to a 

new algorithm for adaptive PCA, which minimizes dimension reduction error sub- 

ject to an entropy constraint. The entropy constraint, which derives naturally from 

the probability model, effectively controls model complexity when training data is 

sparse. We evaluate our adaptive PCA models on two tasks; exploratory data analy- 

sis of salinity and temperature measurements from the Columbia River estuary and 

texture image segmentation. Our results show that entropy-constrained adaptive 

PCA conforms to the natural cluster structure of data better than state-of-the-art 

modeling met hods. 



Chapter 1 

Introduction 

Signal classification, or recognition, includes a wide range of information processing 

problems. Included in this field are diverse and compelling topics such as speech 

recognition, detection of machinery faults, image compression, and medical diag- 

nosis. Computer-based solutions to these problems have generally proved difficult 

since the data are highly complex and closed form solutions rarely exist. Com- 

mon approaches to signal classification make substantial simplifying assumptions. 

One such assumption is that signals are wide-sense stationary, that is, their first 

and second order statistical properties do not change across time or space [Haygl]. 

However, many signals of practical interest are not stationary. In digital images, 

different image regions, e.g. a region showing a tree vs. a region showing a human 

face, exhibit different statistical properties. In human speech, statistical properties 

vary between phonemes. 

Solution strategies for non-stationary signal classification generally fall into one 

of two categories: development of complex non-linear models that capture the chang- 

ing signal characteristics over the whole data space, or development of a collection of 

simple linear models that assume the signal is wide-sense stationary in small regions 

of the data space. Non-linear principal component analysis (PCA) for dimension 

reduction [KragI, DC931, implemented with multi-layer auto-associative neural net- 

works, is an example of the first approach. Local PCA for dimension reduction 

[KL97], which partitions the signal space into regions and performs classic PCA in 

each region, is an example of the second approach. The second approach has the 

advantage that a collection of linear models is less complex to develop yet performs 

better than the non-linear approach. 



1.1 Overview 

Adopting a statistical framework provides an effective approach to these problems, 

as these signals are often well characterized with mixtures of probability densities. 

In order to develop appropriate models, we first develop a statistical framework that 

allows us to formalize observations of signal behavior into a probability model of the 

data of interest. A latent data framework is an effective tool for describing data be- 

havior and making model choices. In this framework the observed or measured signal 

is derived from some simple underlying distribution. This latent data is mapped 

to the observed signal space with some linear transformation and distorted with 

noise. Different choices of latent data distribution and mapping produce different 

statistical models of the data. 

Using this latent data framework, we derive models for a broad category of real- 

world data that includes images, speech data, and other measurements of natural 

processes. Data of this sort consist of collections of several distinct low-dimensional 

patterns embedded in the high-dimensional observation space. These patterns can 

be represented mathematically as low-dimensional hyperplanes. We develop two dif- 

ferent latent data formulations that result in constrained Gaussian mixture models 

(GMM) for data that is comprised of low-dimensional hyperplanes. The first has ties 

to data compression and leads us to an algorithm for optimal adaptive transform 

coder design. Adaptive transform coding is a computationally attractive method 

for compressing non-stationary, multivariate signals. The second has ties to local 

and probabilistic formulations of PCA. From this second model, we develop an algo- 

rithm for entropy-constrained adaptive PCA, which can be used for data modeling 

and analysis. Both the adaptive transform coding and adaptive PCA algorithms 

improve on comparable state-of-the-art methods for compression and modeling. 

1.2 Adaptive Transform Coding 

Transform coders provide a lower complexity alternative to vector quantization. 

They are typically used for high bit-rate compression of multidimensional signals 

such as images. The Joint Photographic Experts Group (JPEG) standard for image 

compression incorporates transform coding [Wa191]. 

A transform coder converts signal vectors to a new coordinate basis in order to 



reduce statistical redundancy between vector components. Separate scalar quantiz- 

ers then code each of the transform coefficients. This combination of redundancy 

removal and efficient quantization produces a compressed representation but adds 

distortion. The goal of transform coding is to minimize coding distortion while 

reducing the signal representation below some target size. 

Transform coders use one of two types of scalar quantizers: fixed-rate or entropy- 

constrained. Fixed-rate quantizers use the same number of bits to code every signal 

vector. Entropy-constrained or variable-rate quantizers adjust the number of bits 

used to code a signal vector according to its entropy. For the same amount of 

coding distortion, variable-rate quantizers provide more compression than do fixed- 

rate quantizers and are generally preferred. However, fixed-rate coding is more 

robust for applications requiring transmission of the compressed signal over noisy 

channels. For more information on signal compression, see Gersho and Gray's text 

[GG92]. 

Classic transform coding assumes that the correlations between signal vector 

components are the same everywhere in the signal space. However, most signals of 

interest, e.g. digit a1 images, are non-stationary. To capture these local variations 

and thereby reduce distortion in the compressed representation, adaptive transform 

coding methods partition the signal space into regions and compress the signal vec- 

tors in each region with a separate, unique transform coder. However, adaptive 

transform coders require substantial space in which to store the coder parameters. 

This overhead makes adaptive transform coding ineffective for the compression of 

individual signals. Consequently, adaptive transform coding is limited to the com- 

pression of databases of related signals, since the overhead can be amortized over 

the entire database. 

Much prior art treats the problem of designing adaptive transform coders heuris- 

tically, chaining sub-optimal operations together in a somewhat ad hoc manner. 

For example [CS77, DH95, TB99] all employ partial optimization, combining sub- 

optimal space partitioning methods with the PCA transform and (sometimes) opti- 

mally designed quantizers. While the PCA transform is traditionally considered the 

best linear coding transform, it only minimizes coding error when the data density 

is Gaussian. 

Our development is unique in that we establish a statistical model for transform 



coding that leads to a generalized Lloyd algorithm for both global and adaptive 

transform coder design. An essential part of our work is a new orthogonal trans- 

form, the coding optimal transform (COT), that minimizes coding error. Our new 

design algorithm minimizes compression distortion by concurrently optimizing the 

partition of the signal space, the local transforms, and quantizers. We present this 

development in three chapters: evaluation of the coding optimal transform for global 

transform coding, evaluation of coding optimal partition using PCA based, fixed- 

rate, adaptive transform coders, and evaluation of entropy-constrained adaptive 

transform coding on a realistic image compression application. 

Adaptive PCA 

Global PCA models high-dimensional data by finding the "closest" low-dimensional 

hyperplane to the data. PCA minimizes the mean-squared dimension reduction error 

or reconstruction distance between example data and this hyperplane. To model 

non-stationary data, adaptive or local PCA methods partition data into regions and 

perform PCA on the data within each region. Adaptive PCA has the potential to be 

an effective tool for data modeling in situations where there is insufficient training 

data to develop full covariance models, yet simple spherical models provide too little 

modeling flexibility. 

Despite their success, previous authors [KL97, HRD95, TB99] under-utilize the 

potential of adaptive PCA models by choosing a single global target dimension. This 

constraint neglects the variability of intrinsic data dimension that is observed in real 

world data. Our development is unique in that we develop a statistical model of 

the data that permits the local dimension to vary. This formulation leads to a new 

algorithm for adaptive PCA, which minimizes reconstruction distance subject to an 

entropy-constraint. The entropy-constraint is not introduced in an ad hoc manner, 

but is naturally derived from the probability model. This constraint can be used 

to control model complexity when training data is sparse. In addition, it allows 

the local dimension to adjust to the data structure. Consequently, different model 

forms, from spherical to full covariance, can appear in a single adaptive model. This 

flexibility allows us to effectively model non-stationary data. 



1.4 Organization 

This thesis is organized into three primary sections: the statistical framework, adap- 

tive transform coding, and adaptive PCA. Chapter two describes our statistical 

framework based on a latent data description of the signal of interest. Chapters 

three, four, and five cover our adaptive transform coding work. Chapters six and 

seven cover our work with variable dimension and entropy-constrained adaptive 

PCA. 

1.4.1 Statistical Framework (chapter two) 

In this first chapter, we present a latent data framework from which we derive our 

adaptive transform coding and adaptive PCA algorithms. This framework is an 

extension of that presented by Basilevsky [Bas94], Tipping and Bishop [TB99], and 

Roweis and Ghahramani [RG99]. This statistical framework can be used to derive 

a number of common density models and related signal processing algorithms. We 

present three example algorithms: K-means clustering, entropy-constrained vector 

quantization, and global PCA. 

1.4.2 Coding Optimal Transform (chapter three) 

A significant contribution of our transform coding work is the coding optimal trans- 

form (COT), which minimizes coding error rather than some other cost function, 

such as dimension reduction error. This transform has apparently not been discussed 

in the compression literature, although developing an optimal transform coder design 

algorithm is impossible without it. We develop optimal global transform coder design 

algorithms that incorporate the COT for both fixed-rate and entropy-constrained 

compression. In addition, we compare compression performance of COT and PCA 

transform based global coders on benchmark images. We found that the COT differs 

enough from the PCA transform to provide up to 1 dB improvement in signal-to- 

noise ratio (SNR). 



1.4.3 Fixed-rate Adaptive Transform Coding (chapter four) 

We develop the statistical model and algorithm for optimal &ed-rate adaptive trans- 

form coding. However, in order to facilitate comparisons with prior work, we use 

PCA transform based coders rather than the COT. The PCA transform does not 

minimize coding error and careful implementation is required to avoid convergence 

problems. Image compression experiments on both video images and magnetic res- 

onance images show that fixed-rate adaptive coders can improve SNR by 2.5 to 3.0 

dB compared to global coders and by 0.5 to 3.0 dB compared to other published 

fixed-rate methods. 

1.4.4 Entropy-Constrained Adaptive Transform Coding 

(chapter five) 

We develop the statistical model for entropy-constrained transform coding and the 

resulting generalized-Lloyd algorithm for optimal adaptive transform coder design. 

We then evaluate our algorithm by using it to compress a both benchmark images 

and database of synthetic aperture radar (SAR) images. Compression experiments 

on benchmark images demonstrate that our coders improve compressed image SNR 

by 0.25 to 1.25 dB over adaptive coders that use the Discrete Cosine (DC) and 

PCA transforms. Overhead considerations limit adaptive transform coding to the 

compression of databases of related signals Our results from the SAR database show 

that a single adaptive transform coder with either DCT or COTS can compress 

database images with SNRs comparable to those achieved by using a customized 

global coder for each image in the database. 

Figure 1.1 summarizes the transform coding work presented in chapters three, 

four, and five. The first two columns list the algorithm and the associated key 

concepts. Each algorithm is found by minimizing a cost function with respect to 

the model parameters. The equation number of this cost function is listed in column 

three and column four gives the section where the derivation is performed. Column 

five gives the figure which summarizes key evaluation results. 
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our compression work, led us to consider a new approach to local or adaptive PCA. 

In this work, we develop a resource allocation approach to dimension selection. Our 
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1.4.6 Entropy Constrained Adaptive PCA (chapter seven) 

We present the development of our statistical model for adaptive PCA and the 

resulting entropy-constrained algorithm. This algorithm adjusts the model param- 

eters to minimize the dimension reduction error between the model and sample 

data subject to a penalty on the entropy. We evaluate the modeling quality of our 

entropy-constrained adaptive PCA on several data sets: a mixture of five Gaus- 

s ian~ ,  measurements of salinity and temperature in the Columbia estuary, and high- 

dimensional image texture data. Adaptive PCA models conform to the natural clus- 

ter structure even when the data set is too small to develop accurate full-covariance 

models. In addition, comparisons to an entropy-constrained vector quantizer demon- 

strate that adaptive PCA models can classify data as accurately as spherical models 

while using substantially fewer components. 

Figure 1.2 summarizes the adaptive and local PCA work presented in chapters 



Figure 1.2: Summary of Adaptive PCA Chapters 
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three and column four gives the section where the model parameter derivation is 

performed. Column five gives the figure which summarizes key evaluation results. 



Chapter 2 

Statistical Framework 

In this chapter, we present our latent data framework from which we can derive a 

number of common density models and signal processing algorithms. This latent 

framework extends that presented by Tipping and Bishop [TB99] for PCA and both 

Basilevski [Bas941 and Roweis and Ghahramani [RG99] for factor analysis. This 

framework allows us to develop explicit statistical models of the data of interest, 

which facilitates the selection and development of effective processing methods. We 

first describe the general latent data framework and how it can be used to derive 

signal processing algorithms. We then present three example algorithms that fit 

into this framework: K-means clustering [Mac67], entropy-constrained vector quan- 

tization [CLG89], and principal component analysis (PCA). 

2.1 Latent Data Model 
The latent data framework is based on the presumption that observed signals are 

not as complex as they appear. Instead they have some simple latent structure 

that is obscured by linear transformations and noise. Our goal is to recover this 

underlying structure in order to reduce the size of the signal representation. 

We envision a d dimensional latent data space S, where data from the latent 

space is mapped to a d dimensional observation space X. The latent data, s, is 

modeled with a simple mixture density of the form 

where n, are the mixing coefficients and p(sla) is often a spherical Gaussian or delta 

function. The location of each latent mixture component is given by the conditional 
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Figure 2.1: PCA Model. Structure of latent variable space, S, and mapping to observed space,

X. The data density in the latent space consists of a single three dimensional Gaussian. This

latent data is mapped to the observed data space by an orthogonal transform, W, which stretches
and rotates the data.

mean TJa = E[sla]. Previous formulations (e.g. [TB99, RG99]) use a single normal

distribution in the latent space, rather than this more general mixture distribution.

Linear maps with translation /-Laand rotation plus scaling transform Wa embed

the latent data in the observed space, X. The embedded data is corrupted with

additive Gaussian noise, Ea rv N(O, <pa) where <Pais diagonal for factor analysis and

spherical for PCA and K-means clustering. Figure 2.1 illustrates this mapping from

latent to observed space. The observed data generated from a sample s drawn from

latent component a is

x = Wa(s - TJa)+ /-La+ Ea (2.2)

with conditional densities

p(xls, a) = N(/-La+ Wa(s - TJa),<pa) (2.3)

The latent data density and mapping induces a mixture of constrained Gaussian

densities on x of the form

p(x) = J L p(xls, a)p(s!a)1fadsa
M

- L 1fap(xla)
a=l

(2.4)

where 1fa are the same mixing coefficients given in (2.1) and

p(xla) = N(/-Lm ~a) (2.5)



The form of C, is constrained by the latent density and the transform W,. We will 

discuss different covariance constraints and resulting models throughout this thesis. 

The Expectation-Maximization algorithm (EM) [DLR77] fits parametric proba- 

bility models to data by maximizing the log likelihood of the model for some training 

data set {x,, n = 1 . . . N). The log likelihood of the data for this family of models 

is given by 
N M 

n= 1 
(2.6) 

To simplify (2.6), we introduce the the density z(a ,  x,) over the unknown compo- 

nent assianments. 
N 

r = log ( 5 z(a,  xn) liap(xna)) 
n=l a=l z(a ,  xn) 

where C,  z(a ,  x) = 1. Using Jensen's inequality to bring the sum over a outside 

the logarithm function, we find L is bounded below by the expected log likelihood 

with equality when the z(a ,xn)  are the posterior probabilities p(alxn) [RG99, 

NH981. This choice of z produces soft-clustering models. 

The EM algorithm maximizes the likelihood (2.6) by iteratively finding the par- 

tition given by the posteriors (E step) and maximizing the model parameters (M 
step). The E step updates the posterior probabilities based on the current estimate 

of the model parameters. 

The M step updates the model parameters so that the expected log likelihood (2.8) is 

maximized. The maximum likelihood estimates of the priors ra and the component 

means p, are given by 



The maximum likelihood estimates of the model covariance matrices C, are found 

by solving 

where 6C, is a matrix of small arbitrary changes in C,. 

2.2 Hard-clustering Algorithms 

Many signal processing applications, such a .  compression or on-line classification, 

benefit from incorporating hard-clustering met hods that assign each data item to 

one and only one model component. For example, compression involves finding a 

compact representation for data and hard assignments can be coded more efficiently 

than posterior probabilities. For exploratory data analysis, hard clustering is easier 

to visualize and interpret. On-line and embedded classification applications have 

tight memory and computational time constraints. Hard clustering implementations 

require less memory and processing time than comparable soft clustering methods 

making them more suitable for such applications. 

The EM algorithm provides a template for deriving hard-clustering algorithms 

from these latent data probability models. To achieve hard-clustering, instead of 

the soft clustering provided by p(alx), we choose z(a, x,) to be 

z (a ,  xn) = 
1 ~ ( a l x n )  > p(yIxn) Q'Y # a 
0 otherwise 

With this hard-clustering model, the final term in the expected log likelihood (2.8) 

becomes zero since z(a,  xn) In z(a, x,) = 0 V a ,  n. Choosing hard-clustering (2.13) 

and expanding (L) (2.8) using (2.5) yields the cost function 

The EM procedure inspires a generalized Lloyd algorithm that iteratively opti- 

mizes the partition and model parameters to minimize modeling cost (2.14). The 

hard assignments given in (2.13) lead to a partition of the data into regions R, such 

that 
N 



for any function f(x). The parameter estimators are the same as the maximum 

likelihood estimators with the posteriors replaced by the hard assignments (2.13). 

The equations for the priors become 

where N, are the number of data items assigned to component a. The equations 

for the means become 

The minimum cost estimates of the covariance matricies are found by solving 

2.3 Algorithms from Latent Data Framework 

A number of commonly used algorithms and density models fit into this latent 

data framework, including K-means clustering, entropy-constrained vector quanti- 

zation and PCA. K-means clustering and entropy-constrained vector quantization 

are commonly used to design vector quantizers or to coarsely cluster data prior to 

other processing. PCA is a common technique for reducing the dimension of input 

data. In this section, we examine how these common algorithms are derived from 

our latent data framework. 

2.3.1 K-means Clustering and Vector Quantization 

Both Nowlan [Now911 and Chou [CLG89] note the correspondence between a mix- 

t ure of spherical Gaussians and vector quantization (VQ) or K-means clustering. 

VQs code each data vector with the closest, in terms of some distance metric (e.g. 

Euclidean distance), of a small set of reproduction vectors [GG92]. To replicate this 

structure, the latent space density becomes a mixture of delta functions 



The single transform is the identity matrix, W = I, and the noise is spherical 

6 N N(O, oil) .  The observed data is given by x = s - q, + p, + c,. The density on 

observed data x is therefore a mixture of Gaussians (2.4), with spherical components 

p(x1a) = n/(p,, a:I). The noise variance is not fit to data, but is selected to control 

model complexity. In the limit that all the noise variances are identical and go to 

zero, the EM algorithm for fitting the mixture model reduces to K-means clustering 

[Mac671 or equivalently, the Linde-Buzo-Gray (LBG) algorithm for (fixed-rate) VQ 

design [LBG80]. Explicit hard clustering is not required, since in the E step, the 

posterior probabilites 

1 
P ( Q I X )  = 

1 + exp (&[~lxn - p71I2 - 202 lnry)  - (IIxn - pall2 - 202 lnra)]) 
(2.20) 

become zero or one in the limit that the noise variance goes to zero, 

The M step optimizes the prior probabilities r, and component means p, using 

(2.16) and (2.17), respectively. 

Entropy-constrained VQ [CLG89] is derived from a similar probability model 

with identical and non-zero noise variances for all components = 02, Va. In this 

case, the observed component densities become 

Expanding the cost function (2.14) using (2.22) yeilds the cost function for vector 

quantization 

The noise variance a2 acts as a LaGrange multiplier combining the mean-squared 
1 coding cost, , C, En z(a, x,) (lx, - p, / I 2 ,  and differential entropy, -r, ln .rr, + 

logo2. The differential entropy consists of a discrete entropy term -r, in r, plus 

the log of a quantizer bin size $ log 02 [CT91]. Choosing 02 is equivalent to placing 

a constraint on the entropy. Note that the entropy constraint arises naturally from 

the probability model and is not an arbitrary addition. 



The generalized-Lloyd algorithm for entropy-constrained VQ design iteratively 

optimizes the partition (encoder) and the model parameters (decoder) [CLG89]. 

The partition, or assignment of data to components, defines regions 

As in the fixed-rate vector quantizer above, the M step optimizes the prior prob- 

abilities ra and component means pa using (2.16) and (2.17), respectively. Note 

that since the 2 logo2 term does not affect the optimization of the partition or 

model parameters, pa and T,, it can be dropped from the cost function to make the 

correspondence between this formulation and classic derivations exact. 

2.3.2 Principal Component Analysis 

Probabilistic formulations of PCA have been developed by several researchers in- 

cluding [TB99, Bas94, Row971. PCA reduces the dimension of data by projecting it 

to the hyperplane defined by the leading eigenvectors of the data covariance matrix 

as illustrated in Figure 2.2. To replicate this structure, the d dimensional latent 

data s consists of a single Gaussian, p(s) = N(q, p21) with mean q and variance $. 

reconstruction distance 

1 

Figure 2.2: Dimension Reduction via PCA. PCA reduces the dimension of data x by projecting 
it to hyperplane defined by the PCA transform U .  The reconstruction distance or dimension 

reduction error is the orthogonal distance between the data point and the hyperplane. 

The observed data is generated from the latent data via 



where p is a translation, W is a rotation and scaling, and E is a noise source. The 

embedding transform W has two parts; an orthogonal transform U and a diagonal 

stretching transform I' such that W = uI'~. Zero entries in the stretching trans- 

form I' suppress variables so that the model dimension q < d. Consequently, I' is 

effectively q x q and U is d x q. Following the action of W, the data is smeared 

with spherical Gaussian noise h/(O, a21). Figure 2.1 illustrates the data structure 

and mapping to the observation space. 

The conditional density of x given s is 

The latent density and mapping induce a density on the observed data given by 

where, without loss of generality, we chose the latent variance p2 to be one. We 

make no assumptions concerning the latent mean q. 

To simplify the cost function (2.14), we first find the inverse of C = a21+ UrUT. 

Applying the Sherman-Morrison-Woodbury formula [GL89] to C yields 

with q x q diagonal matrix A = I' + a21. Expanding the cost (2.14) using (2.28) 

yields the cost function for PCA 

1 The noise variance a2 combines the dimension reduction distortion, En($, - 
p)T(I - UUT) (xn - p), and differential entropy, f log JA/02J + f + f in a2. The 

differential entropy is the sum of a discrete entropy and the log of a quantizer bin size 

[CTSI]. The discrete entropy f log JA/02) + f is the sum of the entropy due to coding 

the data with a quantizer of bin size a and half the dimension z .  The dimension 

term comes from simplifying the Mahalanobis distance Trace[A-'UT(k xn (xn  - 

p)(x, - / J ) ~ ) U ]  = q. Choosing a2 is equivalent to choosing the target dimension. 



The design algorithm for PCA optimizes the model parameters; there is no 

partitioning step, since there is only one component. The component mean p is 

given by (2.17). The U transform is constrained to be orthogonal, that is, UTU = I. 

Minimizing cost (2.29) with respect to W = U F ~ ,  while meeting the orthogonality 

constraint, yields the relation 

u T S  = nuT 
where S = k x, (x, - p)  (x, - p)T is the data covariance [Row97]. The columns of U 

are the eigenvectors of the data covariance S and A is a diagonal matrix containing 

the leading q eigenvalues of S.  The stretching matrix l7 = A - 021. 

To find the optimal dimension q, we evaluate the change in cost due to increasing 

the dimension by one. If we order the entries in A from largest to smallest, then 

increasing the dimension from q - 1 to q results in a change of cost 

where Xq is the qth entry in A. Since lnx 5 x - 1, increasing the dimension will 

decrease the cost (AC < 0) until Xq = u2. In addition, the model dimension is 

constrained to be no larger than the number of stretching values greater than zero, 

so A, > a2 .  These two conditions set the optimal dimension q equal to the number 

of eigenvalues X greater than the noise variance 02. 

2.4 New Algorithms from Our Framework 

In the next chapters, we develop new algorithms for adaptive transform coding and 

adaptive PCA using our latent data framework. Both these algorithms are based 

on modeling the data as a collection of hyperplanes, although the underlying latent 

data models differ. Adaptive transform coding is based on a discrete latent data 

model with the components constrained to lie at  the vertices of a rectangular grid. 

Adaptive PCA is based on a mixture of spherical Gaussians latent data model. In 

both cases, linear transforms embed the latent data in the observation space and 

the data is corrupted by spherical Gaussian noise. 

Our adaptive transform coding model leads to a generalized Lloyd algorithm 

for transform coder design. This algorithm integrates optimization of all transform 



coder parameters: the data partition, the transforms, and the quantizers. We d e  

scribe the derivation and evaluation of our adaptive transform coding algorithm in 

the next three chapters. 

Our adaptive PCA model leads to a generalized Lloyd algorithm for adaptive 

PCA. This algorithm minimizes dimension reduction distortion subject to a penalty 

on model entropy. The entropy-constraint provides complexity control, which allows 

our models to conform to the natural cluster structure of data. We describe the 

algorithm derivation and evaluation of adaptive PCA in the last chapters. 



Chapter 3 

The Coding Optimal Transform 

In order to develop our adaptive transform coding algorithms, we first had to solve 

the problem of optimal global transform coding. This chapter presents our develop- 

ment and evaluation of a generalized-Lloyd algorithm for transform coding. Some 

of the material in this chapter was published at  the Data Compression Conference 

in 2001 [ALOla]. 

We develop a statistical model for transform coding that leads to a new algorithm 

that integrates all optimization steps into a coherent and consistent framework. Each 

iteration of the algorithm is designed to minimize coding distortion as a function 

of both the transform and quantizer designs. Our algorithm is a constrained ver- 

sion of the generalized-Lloyd or LBG algorithm for vector quantizer design. The 

reproduction vectors are constrained to lie at  the vertices of a rectangular grid. 

A significant result of our approach is a new transform basis specifically designed 

to minimize mean-squared quantization distortion for both fixed-rate and entropy- 

constrained coding. For Gaussian distributed data, this transform reduces to the 

PCA transform, or equivalently, the Karhunen-Loeve transform (KLT). However, in 

general the coding optimal transform (COT) differs from the KLT enough to provide 

up to 1 dB improvement in compressed signal-to-noise ratio (SNR) on images. We 

describe a practical algorithm that finds the COT for a given signal. In addition, we 

present image compression results demonstrating the SNR improvement achieved 

with our algorithm relative to KLT based transform coding. 



3.1 Introduction 

Transform coding is a low-complexity alternative to vector quantization and is 

widely used for image and video compression. A transform coder compresses multi- 

dimensional data by first transforming the data vectors to new coordinates and then 

coding the transform coefficient values independently with scalar quantizers. A key 

goal of the transform coder is to minimize compression distortion while keeping the 

compressed signal representation below some target size. While quantizers are typi- 

cally designed to minimize compression distortion [Llo82, FM84], this is not the case 

for the transform. The coordinate transform has been fixed a priori, as in the dis- 

crete cosine transform (DCT) used in the JPEG compression standard [Walgl]. The 

transform has also been adapted to the signal statistics using the Karhunen-Loeve 

transform (KLT) as in recently published transform coding work [DH95, ECG991. 

These transforms are not designed to minimize compression distortion, nor are they 

designed (selected) in concert with quantizer development. For instance, the design 

goal of the KLT is to concentrate signal energy into a few components. 

We develop a statistical model for transform coding. This development leads 

to a new algorithm for transform coder design that concurrently optimizes both 

transform and quantizers. Our algorithm is a constrained version of the Linde- 

Buzo-Gray (LBG) algorithm for vector quantizer design [LBG80]. A significant 

result of our approach is a new transform basis designed to minimize mean squared 

compression distortion. In this chapter, we derive the conditions this coding-optimal 

transform (COT) must satisfy to minimize distortion. In addition, we describe a 

simple algorithm for determining the transform. We conclude by presenting results 

from image compression experiments that compare the compression performance of 

COT-based transform coders with KLT-based transform coders. 

Transform Coder Model 

A transform coder converts a signal to new coordinates and then codes the transform 

coefficients independently of one another with scalar quantizers. One can think of a 

transform coder as a vector quantizer with the M reproduction vectors constrained 

to lie at  the vertices of a rectangular grid. The grid is defined by orthogonal axes, S J ,  

J = 1 . . . d and d sets of scalar reproduction values, one for each dimension. There 
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are MJ possible reproduction values on the SJ axis, thus the total number of grid ver-

tices is M = I1J MJ. Encoding a d-dimensional data vector with a vector quantizer

requires O(M d) add/multiply operations for the distance calculations and O(M)

compare operations. A transform coder requires O(d2) add/multiply operations for

the transform and naively O(2:J MJ) compare operations. However, efficient binary

search techniques can be used to encode the scalar transform coefficients reducing

the number of compare operations to O(lOg2M).

Figure 3.1: Orientation of quantizer grid in signal space. The quantizer reproduction vectors qco
ex= 1... M, lie at the vertices of a rectangular grid. The grid is oriented to the signal vectors x

(indicated by the gray area) with orthogonal transform, W.

The compression and restoration processes replace each signal vector with one of

a small set of reproduction vectors. The encoder assigns the transform coefficients

of a data vector to codewords. The decoder replaces each codeword with the associ-

ated reproduction value. Figure (3.1) illustrates the structure of a two-dimensional

transform coder. The r values indicate the scalar reproduction values; rJi is the ith

value along the SJ axis. The coordinates of the reproduction vectors, qQ, a = 1. . . M

are combinations of the scalar reproduction values [rli, r2j, . . . , rdkJT, i = 1 . . .M1,

j = 1. . . M2, etc. A reproduction vector qQrepresents all the data vectors in region

RQ of the data space. We will refer to the regions defined by the assignment of

signal values to reproduction values as the partition.

The d x d orthogonal transform, W, defines the orientation of the quantizer grid

in the data space. In the data coordinate basis, the reproduction vectors are given

by W qQ' Conversely, in the transform basis, the data vectors are S = WT X.

To replicate the transform coder structure, we envision the data as drawn from a
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d dimensional latent data space, S and embedded in an observation or measurement

space X, also d dimensional. The density on the latent space is a mixture of delta
functions

M

p(s) = L 1fa6(s - qa)
a=l

(3.1)

where the latent values, qa, lie at the vertices of a rectangular grid as illustrated in

Figure 3.2. The grid is defined by the S axes and a set of grid mark values, {r Ji},

where rJi is the ith grid mark along the SJ axis. There are MJ possible grid mark

values on the SJ axis and the total number of grid vertices M = ITJMJ. Thus the

coordinates of some qa can be written as [r1i,r2j, . . . , rdkJT.In addition, we constrain

the mixing coefficients, 1fa, to be the product of prior probabilities, PJi, so that

1fa = IIpJi
J

(3.2)

By incorporating these constraints into (3.1), we can write the density on S as

product of marginal densities (for the full derivation, see Appendix A)

d MJ

p(s) = II LPJi6(sJ- rJi)
J=l i=l

(3.3)

We will use both formulations of the latent density (3.1) and (3.3) for our algorithm

development.

52 q

1 X15

x=WS+J!
~

Figure 3.2: Structure of latent variable space, 5, and mapping to observed space, X. The data

density in the latent space consists of a mixture of delta functions where the mixture components,
qQ;,are constrained to lie at the vertices of a rectangular grid. This grid is mapped to the observed

data space by an orthogonal transform, W, and corrupted with additive Gaussian noise.

The latent data is mapped to the observation space by an orthogonal transfor-

mation, W, and corrupted with additive Gaussian noise f rv N(O, (721),with mean



zero and variance a217 as illustrated in figure 3.2. The observed data generated from 

a sample s drawn from latent component a is 

with conditional densities 

The latent density and mapping induces a mixture of constrained Gaussian den- 

sity on x of the form 

with marginal density 

p(xIa) = N ( P  + Wqa7 021) 

The Expectation-Maximization algorithm (EM) [DLR77] fits parametric proba- 

bility models to data by maximizing the log likelihood of the model for some training 

data set {xn, n = 1 . . . N ) .  The log likelihood is given by 

Introducing the density z(a ,  xn) over the unknown component assignments and using 

Jenkin's inequality, allows us to simplify (3.8). The log likelihood f is bounded below 

by the expected log likelihood 

N M  

I r > ( f )  = C C z(a ,  xn) log 7r. - 
n=l a=l 2a2 

with equality when z(a, x) = p(a)x) is the posterior probability of component a 

conditioned on the data vector x [NH98]. 



The EM algorithm provides a template for deriving a transform coding algorithm 

from this probability model. To achieve hard-clustering needed for transform coding, 

we choose z(a, xn) to be 

1 p(aIxn) > ~ ( d x n )  VT # 
Z(Q, xn) = 

0 otherwise 

With this hard-clustering model, the final term in the expected log likelihood (3.9) 

becomes zero since z(a ,  xn) In z(a ,  a,) = 0 VQ, n. Consequently, (L) reduces to the 

cost function 

This cost function consists of two terms combined with the multiplier 2a2: the aver- 

age coding distortion C, En z(a ,  an) [Isn - Wq, [ I 2  and the entropy - C, .rr, log r,. 

This entropy-constrained cost function (3.11) is the same as that found by minimiz- 

ing coding distortion subject to an average bit-rate constraint (e.g. [CLG89]). In 

the limit as the noise variance a2 goes to zero, and there are a B e d  number of code 

vectors, we recover the cost function for fied-rate transform coding. 

3.3 Optimal Transform Coding 

Our generalized Lloyd algorithm for transform coder design iteratively optimizes 

the partition (encoder) and model parameters (decoder) to minimize the coding 

cost (3.11). The transform coder parameters are the orthogonal transform W, the 

number of reproduction values in each quantizer Mj ,  J = 1. .  . d, and the repro- 

duction values r ~ i ,  J = 1 . . . d, i = 1 . . . M j  that form the reproduction vectors 

q,, a = I . .  . M. We first describe optimizing the partition followed by transform 

and then quantizer optimization. 

3.3.1 Partition Optimization 

To optimize the partition or encoder, each data vector is assigned to the reproduction 

vector qa that represent is with the lowest cost. This assignment partitions the data 
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into regions Ra such that
N

L j(x) = L z(a, xn)j(x)
xER", n=l

(3.12)

for any function j(x). The regions Ra are defined by subregions RJi associated with

the scalar reproduction values. The partition defines subregions RJi such that each

transform coefficient SJ = WT x, belongs to the scalar reproduction value rJi that

represents it with the lowest entropy-penalized distortion,

RJi = {SJ I (11sJ - r Jil12 + 2a21Ji)< (11sJ- r Jkl12 + 2a21Jk) Vk -# i} (3.13)

where IJi = - log PJi is the code word length. For fixed rate coding, the partition

is given by (3.13) with a2 set to zero. Figure 3.3 demonstrates the transform and

coding process.

W2

S~
...,......................

r12 r13
WI

R12 R 13

Figure 3.3: Transform Coding a Data Vector. Projecting data vector x with transform W yields

coefficientvalues wl x = 81 and wi x = 82. The data space is partitioned into subregions with

boundaries indicated by dotted lines. Coefficient 81 is in subregion Rl1 and 82 is in subregion R22,

hence x is represented by reproduction vector qa = [rl1, r22]T. The region Ra associated with qa

(shaded) is the intersection of Rl1 and R22.

3.3.2 Transform Optimization

To optimize the transform, we find the center J-land orientation W of each quantizer

grid that minimizes the coding cost function (5.13). The minimum cost estimators

fJa,

R22. V22
!

I ......"

r!,L
S I .

R21

r 2i

'----v-

Rll



for the grid center place the grid at  the mean of the data. 

To optimize the transform, we find the orientation of the quantizer grid which 

minimizes distortion (3.11). The transform W is constrained to be orthogonal, that 

is WTW = I. The cost function to be minimized is thus 

where WJ is the Jth column vector of W, q~ is the Kth coordinate of reproduction 

vector q, and Y K L  is a Lagrange multiplier. Minimizing C with respect to the 

transform matrix element WK J yields 

If we define the outer-product matrix Q 

then (3.16) requires QW = WTQT. This symmetry condition along with the or- 

thogonality condition uniquely defines the coding optimal transform (COT) W .  

By using the conditions for the coding optimal transform, we can determine 

this transform for two cases of interest, Gaussian data and high-resolution coding. 

Gersho and Gray [GG92] and Mallat [Ma1991 have shown, by using high-resolution 

distortion approximations, that the optimal coding transform for Gaussian data is 

the KLT. Using (3.16) it is possible to show that this is the case, regardless of bit- 

rate. For a alternate approach to this proof, see [GZVOO]. The product of Q (3.17) 
and W is given by 

where s = w T ( x  - p) and W is orthogonal. We need two results to show QW is 

symmetric when W is the KLT or PCA transform. First we note that for Gaussian 

p,(x) = N(0,  C), W diagonalizes the covariance C, hence p,(s) is the product of 

marginals 



Second, the reproduction values which minimize mean-squared distortion are given 

bv 

where RaK is subregion associated with R, and the s~ axis. Substituting (3.19) 

and (3.20) into (3.18)) it is straightforward to show that QW is symmetric, hence 

the KLT is the coding optimal transform when the data is Gaussian. Note that the 

partition (encoder) need not minimize mean squared error, so this result applies to 

entropy-constrained and uniform quantizers, as well as fixed-rate quantizers. 

In the case of high-resolution coding, the reproduction values are so numerous 

and closely spaced that the data density in each region R, is uniform, p,(xlx E 

Ra) = constant. When the reproduction values are given by minimum error quan- 
tizers (3.20)) QW is symmetric for any orthogonal W. Consequently, in the high- 

resolution limit, distortion does not depend on the orientation of the quantizer grid. 

3.3.3 Quantizer Optimization 

Quantizer optimization is most conveniently performed in the transform coordinates. 

To rewrite the cost in terms of the transform coefficients s J = WT(x-p), J = 1 . . . d, 

we start the derivation from the product of scalars formulation (3.3) for the latent 

density instead of (3.1). The resulting cost function, which is equivalent to (3.11)) 

where the lJ, = - logpJi is commonly interpreted as the code word length. 

To optimize the quantizer reproduction values, we adjust the number of repro- 

duction values in each coordinate Mj and the value of each r ~ i  to minimize the cost 

(3.21). Minimizing the cost (3.21) with respect to the reproduction values places 

each reproduction value at  the mean of the transform coefficients SJ = WF(x - p) 

in Rj;. 

where NJi are the number of transform coefficients in Rj;. The entropy term does 

not affect this optimization, so (3.22) specifies optimal reproduction values for both 



fixed-rate and entropy-constrained transform coding. The prior probabilities p Ji are 

given by 

P Ji = NJiIN 

Determining the quantizer sizes is performed differently for entropy-constrained 

and fixed rate transform coding. For entropy-constrained transform coding, select- 

ing the noise variance or Lagrange multiplier is equivalent to selecting an entropy 

constraint. The entropy constraint determines the number of reproduction values 

M j  in each scalar quantizer. The entropy terms in (3.21) move the partition away 

from the minimium distortion solution, so that reproduction values with low prior 

probabilities may have no data items assigned to them. Reproduction values with 

pJ, = 0 can be removed from the coder, reducing the value of Mj. Consequently, 

selecting a large value for a2 produces small quantizers and low bit-rate coders. 

For fixed-rate coding, we set the noise variance to zero and constrain the number 

of coding bits. The number of coding bits per block C Mj is kept below some target 

rate B. The fixed-rate cost function is therefore 

where A is a Lagrange multiplier. Allocating the B coding bits where they minimize 

coding distortion the most determines the optimal values for MJ, J = 1 . . . d [SG88, 

RisSl] . 

3.4 Implement at ion 

The algorithm for optimal transform coder design is a constrained version of the 

Linde-Buzo-Gray (LBG) algorithm for vector quantizer design [LBG80]. It alter- 

nates between improving the transform and improving the quantizers until the con- 

strained distortion measure reaches a local minimum. 

3.4.1 Coding Optimal Transform Algorithm 

The COT algorithm finds the orientation of the current quantizer grid that min- 

imizes compression distortion (3.11). The quality of the final solution is sensitive 

to the bit allocation determined at the initial quantizer grid orientation. To insure 



a good starting point, we initialize W to the KL transform. At each iteration, we 

calculate the QW matrix from the transform coefficients and the reproduction val- 

ues. To minimize distortion, we find the W that makes the QW matrix symmetric 

(3.16). We quantify how far the matrix is from symmetric with the sum squared 

difference between transposed matrix elements 

where a~ J is the Kth row and Jth column element of QW. We apply Givens rotations 

[GL89], G(K, J, 8), to minimize A. Multiplication by G(K, J, 8) applies a rotation 

of B radians to the (K, J )  coordinate plane. For a n x n matrix, there are 9 such 

planes. Minimizing (3.25) with respect to rotation G(K, J, 8) yields a solution for 8 

that is quartic in tan 8. However, when the angle is small, so that tan2 8 << 1, the 

solution simplifies to 

tan 6 x ( ~ K K  + ~ J J ) ( ~ K J  - ~ J K )  - C I + K , J ( ~ J I ~ I K  - ~ J I ~ I K )  
(3.26) 

C I + K , J ( ~ J I ~ I J  + ~ K I ~ I K )  + ( ~ K K  + ~ J J ) ~  - ( ~ K J  - ~ J K ) ~  

In image compression experiments, we consistently found that the rotation angles 

were small. We find the rotation angle (3.26) for each coordinate plane and apply 

these rotations to the current transform matrix. This process is repeated until 

A/IIQWIIF, where llQWllF is the Frobenius norm, is less than a threshold (A x 

0). The new W will orient the quantizer grid so that compression distortion is 
minimized. 

3.4.2 Quantizer Algorithms 

Quantizer optimization defines scalar quantizers that represent the data with mini- 

mal distortion given a constraint on the compressed bit-rate. To develop the quan- 

tizers, we first transform the signal vectors to the the current transform basis W. 

We consider both entropy-constrained and fixed-rate compression cases. 

For entropy-constrained compression, each quantizer is trained to optimally 

represent the transform coefficients using an entropy-constrained quantizer algo- 

rithm [FM84]. We initialize with ten-bit uniform quantizers. If the entropy H = 

C xi p ~ i  log, p ~ i  is too far from the target rate (IH - B( > 0.1 bit), we adjust the 

Lagrange multiplier, A = 2a2, which enforces the rate constraint. The change in A 



is (B - H)/% where $f is estimated from the previous two values of H and A. 

For the kt%djustment, 3 = ( ~ ( " ' 1  - H(*-~))/(A(*-') - with A(O) = 0 

and A(') = 1. The quantizers are then retrained with the new A and the entropy is 

re-evaluated. This process repeats until the rate constraint is satisfied. 

For fixed-rate compression, we use optimal bit allocation [Risgl] to determine 

quantizer sizes. In [Risgl], Riskin defines two bit allocation methods; we use the 

method that does not require convexity of the rate-distortion function. We maintain 

one through ten bit quantizers for each coordinate. Each quantizer is trained to 

optimally represent the transform coefficients using the Lloyd algorithm [Llo82]. 

One then calculates the distortion for each quantizer size and coordinate. Starting 

from zero bits in each coordinate, one allocates one, two, or more bits a t  a time to 

the coordinate where the additional allocation will reduce the distortion per coding 

bit the most. This method results in an allocation of coding bits that is at  or 

close to the desired number of bits B and that is on the convex hull of possible 

rate-distortions. 

3.5 Experimental Results 

We illustrate the difference between the KLT and COT using two dimensional data 

that is sampled from two intersecting Gaussian distributions: N(0,  UFCIUl) with 

Ul = [ and El = [ ] 
.8 .6 0 .16 

and N(0, U?C2U2) with 

Figure 3.4 contains a plot of this data overlaid with a one by two bit quantizer grid. 

The KLT aligns the grid along the dominant high-variance Gaussian, consequently 

data from the lower variance Gaussian is poorly represented. The COT rotates the 

quantizer grid so that the reproduction vectors better represent all the data. The 

compressed data signal-to-noise ratio (SNR) is 0.46 dB higher when the COT orients 

the quant izer . 
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Figure 3.4: Comparison of COT and KLT. The quantizer on the left is oriented with the KLT,

the one of the right with the COT. Data vectors are indicated with .'s. and the reproduction
vectors are indicated with +'s.

We also exercised our transform coders on image data. In plots 3.6 and 3.7, we

show SNR results for two classic test images, Barbara and Goldhill shown in Figure

3.5. These images are available from the University of Waterloo website [oW98].

The plots in figure 3.6 are for entropy-constrained compression; entropy coding was

not performed. The plots in figure 3.7 are for fixed-rate compression.

For entropy-constrained compression, our experiments show that using the COT

instead of KLT increases SNR by 0.3 to 1.2 dB for entropies in the range of 0.25 to

1.25 bits per pixel (bpp). Of the images tested, Barbara showed the largest SNR

improvement when the COT is used and Goldhill showed the smallest improvement.

Other tested image types (e.g. frames from natural image video, magnetic resonance

images) showed similar SNR improvements.

For fixed-rate compression and low bit rates, using the COT instead of KLT

increases image SNR very little. The high bit-rate COT basis vectors are essentially

the same as the high-variance KLT basis vectors, so when only a few coordinates

are coded there is little difference in SNR. However, the SNR improvement due to

using the COT increases as more coordinates are coded, since for image data the
mid-variance KLT basis vectors differ from the mid and low bit-rate COT vectors.

At 1.0 bpp orienting the quantizer grid with the COT instead of KLT increases SNR
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(a) Barbara

32

(b) Goldhill

Figure 3.5: Classic image compression benchmark images. Barbara is a photograph of a seated
women wearing striped clothing. Goldhill is a photograph of a row of houses in a hillside village..

by 0.2 to 0.35 dB.

COT-based transform coding is no worse than KLT-based coding in terms of

storage overhead and encode/decode time. The storage overhead, which includes

storing and transmitting the transform matrix and quantizer reproduction values,

is the same for both methods. Encoding and decoding times are also the same.

However, in our variable-rate compression experiments, the COT-based coders re-

quired typically 3 to 4 times longer to train than did the KLT-based coders. For the

Barbara image, the KLT-based coders required 130 to 135 seconds to train on a Sun

SPARC Ultra2 with approximately 95% of the training time due to developing the

quantizers. The COT-based coders required 225 to 680 seconds, depending on the

number of training iterations. Transform optimization accounted for 30% to 60% of

the training time.
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Figure 3.6: Entropy-constrained compression: SNR versus entropy for Barbara and Goldhill test
images.
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Figure 3.7: Fixed-rate compression: SNR versus bit-rate for Barbara and Goldhill test images.
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3.6 Discussion 

Transform coders are often constructed by concatenating an ad hoc choice of trans- 

form with bit allocation and quantizer design. Instead, we start from a statistical 

model of the data from which we derive a new algorithm for transform coder design. 

This algorithm is a constrained version of the LBG algorithm for vector quantizer 

design, with reproduction vectors constrained to lie at  the vertices of a rectangular 

grid. In addition, our derivation leads to a new transform basis, the coding optimal 

transform (COT), which unlike the KLT, is specifically designed to minimize com- 

pression distortion. Variable-rate image compression experiments show that using 

our COT instead of the KLT increases SNR by 0.3 to 1.2 dB. We have shown that 

the COT reduces to the KLT for Gaussian sources. 

Like the KLT, the COT is a data dependent transform. Consequently, it suffers 

from the same drawbacks as the KLT; the transform must be calculated from the 

input signal and stored with the compressed signal. Because of these drawbacks, 

we expect COT-based transforms coders to be most effective in an adaptive or 

universal transform coding framework. An adaptive transform coder consists of 

several different transform coders, each optimized to compress a different signal 

type. Each signal vector is compressed using the transform coder that represents it 

with the least distortion. Our transform coding algorithm could be incorporated into 

an adaptive framework, such as that developed by ourselves [ALOlb] or Effros, et 

al. [ECG99], to create a constrained LBG algorithm for adaptive transform coding. 



Chapter 4 

Fixed-Rate Adaptive Transform 

Coding 

In this chapter, we investigate the application of local Principal Component Analysis 

(PCA) to transform coding for fixed-rate image compression. Some of this material 

was published a t  the Neural Information Processing Systems (NIPS) Conference 

[ALOlb] and Neural Networks for Signal Processing (NNSP) Workshop [ALOO], both 

in 2000. 

Local PCA transform coding adapts to differences in correlations between signal 

components by partitioning the signal space into regions and compressing signal 

vectors in each region with a local transform coder. Previous researchers optimize 

the signal space partition and transform coders independently and consequently 

underestimate the potential advantage of using adaptive transform coding methods. 

We propose a new algorithm, derived from a statistical model of the data, that 

concurrently optimizes the signal space partition and local transform coders. The 

resulting algorithm is simply a constrained version of the LBG algorithm for vector 

quantizer design. 

Image compression experiments show that adaptive PCA transform coders de- 

signed with our integrated algorithm compress an image with less distortion than 

previous related methods. We saw improvements in compressed image signal-to- 

noise ratio of 0.5 to 2.0 dB compared to other tested adaptive methods and 2.5 to 

3.0 dB compared to global PCA transform coding. 



4.1 Introduction 

Compression algorithms for image and video signals often use transform coding as a 

low-complexity alternative to vector quantization (VQ). Transform coders compress 

multi-dimensional data by transforming the signal vectors to new coordinates and 

coding the transform coefficients independently of one another with scalar quan- 

tizers. One can think of a transform coder as a vector quantizer with the M re- 

production vectors constrained to lie a t  the vertices of a rectangular grid. For d 

dimensional data, a transform coder requires O(d2) add/multiply operations for the 

transform operation, whereas a vector quantizer requires O(Md) add/multiply o p  

erations for distance calculations. A transform coder requires O(log, M)  compare 

operations for encoding, much less than the O(M) compare operations required for 

vector quantization. 

Noting that many types of real-world signals are not wide-sense stationary, sev- 

eral researchers have extended the idea of global transform coding to adapt to non- 

stationary signals [DH95, TB99, AL991. In these adaptive transform coders, the 

signal space is partitioned into disjoint regions and a transform and set of scalar 

quantizers are designed for each region. In our own previous work [AL99], we use 

k-means partitioning to define the regions. Dony and Haykin [DH95] partition the 

space to minimize dimension-reduction error. Tipping and Bishop [TB99] use par- 

titioning according to a probabilistic rule that reduces, in the appropriate limit, 

to partitioning by dimension-reduction error, as defined by Kambhatla and Leen 

[KL97]. These systems do not partition the signal space with the goal of minimizing 

compression distortion. 

The ad hoc construction of transform coders contrasts sharply with vector quan- 

t izer design, which uses algorithms that minimize coding error. These algorithms 

can be derived from statistical models of the data. Nowlan [Now911 develops a prob- 

abilistic framework for VQ by demonstrating the correspondence between a VQ and 

a mixture of spherically symmetric Gaussians. In the limit as the mixture com- 

ponent variance goes to zero, the Expectation-Maximization (EM) procedure for 

fitting the mixture model to data becomes identical to the Linde-Buzo-Gray (LBG) 

algorithm [LBG80] for vector quantizer design. 

This paper develops a statistical model for fixed-rate adaptive transform coding. 

We define a constrained mixture of Gaussians model that provides a framework 



for transform coder design. Our new design algorithm is a constrained version of 

the LBG algorithm. It iteratively optimizes the signal space partition, the local 

transforms, the allocation of coding bits, and the scalar quantizer reproduction 

values until it reaches a local distortion minimum. This approach leads to a new 

method of partitioning the signal space designed to minimize coding error. 

To evaluate the compression performance of our algorithm, we give results from 

compressing two types of gray-scale digital images: Magnetic Resonance Images 

(MRI) and gray-scale natural images of traffic moving through street intersections. 

We compare compressed image quality using our local PCA transform coding to 

that of using global PCA transform coding and two other adaptive transform coding 

methods similar to previous work [AL99, DH951. 

4.2 Probability Models for Transform Coding 

In this section, we develop constrained mixture of Gaussians models that provide a 

statistical model for fixed-rate adaptive transform coding. A transform coder con- 

verts a signal to new coordinates and then codes the coordinate values independently 

of one another with scalar quantizers. An adaptive transform coder consists of a 

collection of transform coders, each specialized to optimally compress data from 

different regions of the data space. 

To develop a model for adaptive transform coding, we envision the d dimensional 

observed data as drawn from a structured discrete latent data space S, also with 

dimension d. The latent data lies at  the vertices, qim) of one of M rectangular 

grids centered a t  ~ ~ ( ~ 1 .  Grid m is defined by the s axes and a set of grid mark 

values {r$')}, where r J* is the ith grid mark along the S J  axis. The coordinates of 
( m )  (m) each qLm) can be written as some [rli , r,, , . . . , r&")lT. There are K$"') possible grid 

mark values along the S J  axis in the mth grid and the total number of grid vertices 

is IC, = nJ EY). Each grid has the same number of components Km = K, Vm, 

however the number and spacing of the grid mark values on each axis can differ. 

Figure 4.1 illustrates the structure of a single grid. 

The density due to a single grid consists of a midure of delta functions 
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Figure 4.1: Structure of latent variable space, S, with single grid. The density on s consists of a

mixture of delta functions where the mixture components, q"" are constrained to lie at the vertices

of a rectangular grid. The grid is centered at T}and is defined by the s axes and a set of grid mark
values {rJi}, where r Ji is the ith grid mark along the SJ axis.

The local mixing coefficients p(alm) are the product of prior probabilities p(r Jilm)
so that

d

p(alm) = II p(r}T)lm)
J=1

Consequently, we can write the local density for grid m as a product of marginal

densities (for the derivation, see Appendix A)

(4.2)

lC(m)d J

p(slm) = II 2: p(r}T)Im)6(sJ - T/}m)- r}T))
J=1 i=1

(4.3)

where T/}m)is the ph coordinate value of T/(m).We will use both formulations for the

latent density (4.1) and (4.3) for our algorithm development.

The density on the whole latent space consists of a mixture of delta function
mixtures

M lC

p(s) = 2: ITm 2: p(alm) 6(S - T/(m) - qim))
m=1 0<=1

(4.4)

where ITm are mixing coefficients. The latent data from each grid m is mapped

to the observation space by its own orthogonal transform w(m). The data is then

corrupted with additive Gaussian noise, f rv N(O, (j2I). The observed data generated

from some sample s drawn from latent component (a, m) is

x = w(m)(s - T/(m) - qim)) + p,(m) + f(m) (4.5)



with conditional densities 

p(xJ  s ,  a, m) = N(,dm) + W ( ~ ) ( S  - 7,Jm) - qLm)), 021) (4.6) 

Figure 4.2 illustrates this mapping from a two grid latent space. 

Figure 4.2: Fixed-rate adaptive model : Structure of latent variable space, S, and mapping (in 
hard clustering limit) to observed space, X. The mixture components, q!jm', are constrained to 

lie at the vertices of the Mth grid. Each grid has the same number of components, K = 8. The 
Latent data is mapped to the observation space by orthogonal transforms, ~ ( " ' 1  and corrupted 
with additive Gaussian noise. 

The latent density and mapping induce a mixture of constrained Gaussian mix- 

tures density on x of the form 

with the marginal densities 

The Expectation-Maximization algorithm (EM) [DLR77] fits parametric proba- 

bility models to data by maximizing the log likelihood of the model for some training 

data set { x n ,  n = 1 . . . N). The log likelihood is given by 



The generating component a of each data item xn is unknown, so we introduce the 

density z(a ,  m, xn) over these unknown component assignments. The log likelihood 

f  is bounded below by the expected log likelihood 

N M K  

f  > ( f )  = C C C z(a ,  m, xn) log (nm~(aIm)) + 
N M K  d 1 C C C "(a, m, xn)(-- log(2n02) - -1Ixn - P ( ~ )  - w ( ~ ) ~ ~ ~ ) I I ~ )  - 

n=l m=l a=l 2 202 
N M K  

with equality when z(a ,  m, x) = p(a,  m lx) is the posterior probability of component 

a in grid m conditioned on the data vector x [NH98]. The posterior probabilities 

are given by 

P(Q, mix) = 
I 

-: Dy' 1 + Cr#rn c ~ # ~  exp (F[ (x) + 2oz~Y)l-  [ D ~ ~ ) ( x )  + 2o21bm)]) 
(4.'11) 

where Dbm)(x) = llxn - ,dm) - ~ ( ~ ) ~ b ~ ) l l ~  and lLm) = - log(n,p(a(m)). 

The EM algorithm provides a template for deriving a transform coding algorithm 

from this probability model. To achieve hard-clustering needed for transform coding, 

we take the noise variance o2 to zero. In the limit that o2 -t 0, the lLm) terms become 

insignificant and the posteriors (4.11) collapse to one or zero 

1 DLm)(x) > Dkm)(x) V+y # a and m # m 
z(a ,  m, X) + (4.12) 

0 otherwise 

In this hard-clustering limit, the final term in the expected log likelihood (4.10) 

becomes zero. Consequently, ( f )  reduces to the cost function 

with M and K: selected so that log2(MK:) equals the desired coding bit-rate B. 
When the number of grids M = 1 we recover the cost function for fixed-rate global 

transform coding. 



4.3 Adaptive aansform Coding Algorithm 

In this section, we present a new algorithm for fixed-rate adaptive transform coder 

design that integrates optimization of the transform coder parameters: the data 

space partition, transforms, and quantizers. This generalized-Lloyd algorithm fits 

the parameters to data so that coding distortion (4.13) is minimized. Like all such 

algorithms, the optimization process is iterative. It alternately partitions the data 

space into local regions and then optimizes the transform and quantizers for each 

region. 

4.3.1 Partition Optimization 

To optimize the partition or encoder, each data vector is assigned to  the reproduc- 

tion vector *Lm) of transform coder m that represents it with the lowest distortion. 

To partition the data, we compress each d dimensional data vector x with each local 

transform coder m = 1 . . . M. To compress x, we first find the transform coefficients, 

s$"') = ( W ~ ) ) T ( X  - p(m)), J = 1. .  . d, where W j  is the Jth basis (column) vector 

of the W transform matrix. Each sy) is then assigned to the scalar quantizer re- 

production value, r$') that represents it with the least entropy penalized distortion. 

Figure 4.3 demonstrates this transform and coding process. 

We assign x to transform coder f i  such that 
d 

'-"I T (m) 2 m = argmin C IJ(W$ ) (X - P('")) - rji 11 
m 

J= 1 

Hence, the data space partition defines regions R ( ~ )  such that each x belongs to the 

transform coder that compresses it lowest distortion, 

In addition, the partition defines subregions RE) such that each local transform 

coefficient SF) = ( w ~ ) ) ~ x ,  x E ~ ( ~ 1 ,  belongs to the scalar reproduction value r$') 

that represents it with the lowest distortion, 

Figure 4.4 illustrates the relationship between the the transform coder regions, R ( ~ )  

and subregions R$'). 
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Figure 4.3: Transform Coding a Data Vector. Projecting data vector x with transform W yields

coefficient values Wr x = 81 and wi x = 82. The data space is partitioned into subregions with

boundaries indicated by dotted lines. Coefficient 81 is in subregion Ru and 82 is in subregion R22,

hence x is represented by reproduction vector q = [ru, r22f.

The prior probabilities p(r}7)lm) and 7fmare estimated from the number of data

values in each region. The transform coder prior 7fm= Nm/N, where N are the
total number of data vectors and Nm are the number of vectors in R(m). The repro-

duction value priors p(r}7)lm) = NJ~)/Nm where NJ~) are the number of transform

coefficientsin R}7).

4.3.2 Transform Optimization

To optimize the transform, we find the shift p, and orientation W of each quantizer

grid that minimizes the coding cost function (5.13). The minimum cost estimators

for the grid shift place each grid at the mean of the data assigned to its region

1
p,(m)= - L xN,

m xER(m)

(4.17)

The grid orientation or transform W is constrained to be orthogonal, that is
WTW = I. The cost function for transform coder m is thus

1 }(m d d d

C = N L L II x - p,(m) - L W5m)q~~)112+ L L 'YKL((Wim)fwlm) - 6K,d
m a=1 xERim) J=1 K=1 L=1

(4.18)
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Figure 4.4: Data Space Partition. Partition of a two dimensional data space with two coders.
Both coders consists of a 2x 1 grids The boundary between the two coders, which partitions the data

space into R(l) and R(2), is shown by the heavy black line. Subregion boundaries are indicated

with dotted lines. The diamonds along the transform axes indicate placement of reproduction
values.

where WJ is the jth column vector of W, qaK is the Kth coordinate of reproduction

vector qa, and "(KLis a Lagrange multiplier. The partition assigns each data vector

x to a quantizer reproduction vector q~m)defining local regions R~m). Figure 4.1

illustrates the relationship between the reproduction vectors q and scalar quantizer

reproduction values or grid marks r.

Minimizing the local cost function (4.18) with respect to the transform matrix

element w~ny yields

L q;~) L (x - f1(m)f W~m) = L q;rr;J L (x - f1(m)f w5m)
a xERim) a xERim)

(4.19)

where p(alm) is the prior probability of q~m). If we define the outer-product matrix

Q

Q = L q~m)L (x - f1(m)f

a XER~)

(4.20)

then (4.19) requires QW = WTQT. This symmetry condition along with the orthog-

onality condition uniquely defines the Coding Optimal Transform (COT). Appendix

A contains the detailed derivation of the COT.

. (2)
.

-WI
..

-----1----
(2)

R(2)R21 .
22



Our global transform coding trials [ALOla] indicate that there is little difference 

between the PCA transform and the COT for jked-rate quantizers. In addition, 

prior work in the area of transform coding uses either the PCA transform or DCT. 

Consequently, for the results presented in this chapter, we replace the COT with the 

PCA transform. However, the PCA transform is not optimal for coding, so careful 

implementation is required to achieve convergence to a local distortion minimum. 

4.3.3 Quantizer Optimization 

To optimize the quantizers, we adjust the number of reproduction values in each 

coordinate and coder IC$"') and the value of each reproduction value r e )  to minimize 

the cost function (4.13). This optimization is most conveniently performed in the 

local transform coordinates defined by ~ ( ~ 1 .  Deriving the transform coding cost 

function using the product formulation of the latent density (4.3), instead of (4.1), 
(m) T yields the coding cost in terms of transform coefficients sSm) = (WJ ) ( x - ~ ( ~ ) ) .  In 

addition, we have the flexibility to adjust the number of components in each scalar 

quantizer as long as the total number of reproduction vectors in each grid equals K, 

that is nJ ICY) = IC. We incorporate this constraint using Lagrange multiplier A, 

so the cost function for transform coder rn becomes 

Minimizing the cost (4.21) with respect to the reproduction values places each 

reproduction value at  the mean of the transform coefficients assigned to it. 

where NF) are the number of transform coefficients in ~5'). 
For fixed-rate coding, the number of reproduction vectors per grid C, ICY) is 

kept below some target number IC, which corresponds to a target bit-rate B = 

B - log, M. Allocating the B coding bits where they minimize coding distortion 

the most determines the optimal values for K$"'), J = 1 . . . d [SG88, Risgl]. For a 

recent comprehensive review of quantization methods see [GN98]. 



4.4 Adaptive Transform Coding Results 

We find the adaptive transform coder for a set of images by applying our con- 

strained LBG algorithm (CLBG) to a training image. The data vectors are 8 x 8 

image pixel blocks. Then we compress a test image using the resulting trans- 

form coder. We measure compressed test image quality with signal-to-noise ratio, 

SNR = lOlog,,(pixel variance/MSE), where MSE is the per pixel mean-squared 

coding error. 

Our implementation modifies codebook optimization to reduce computational 

requirements and facilitate comparisons to other published methods. First, instead 

of using optimal bit allocation, we use a greedy algorithm [GG92], which allocates 

bits one at  a time to the coordinate with the largest distortion. In global transform 

coding trials (0.375 to 0.75 bpp), this substitution reduced SNR by less than 0.1 dB. 

Second, instead of using the coding optimal transform, we use the PCA transform. 

In global transform coding trials (0.25 to 0.75 bpp), this substitution reduced SNR 

by 0.05 to 0.27 dB. 

Classic global PCA transform coding is our baseline compression method. We 

also evaluate the compression performance of two other adaptive transform coders 

that use different methods to partition the signal space. The first method, Euclidean 

Distance Partition (EDP), clusters image blocks into regions so that the Euclidean 

distance between the blocks and the region means is minimized [AL99]. The sec- 

ond met hod, Reconstruction Distance Partition (RDP) , clusters image blocks into 

regions so that the reconstruction distance is minimized [KL97]. The reconstruc- 

tion distance is the mean squared error between an image block and its dimension- 

reduced reconstruction. The RDP method is similar to that used by Dony and 

Haykin [DH95]. For the RDP method, we selected a target dimension of eight, since 

at  0.5 bits per pixel (bpp) this dimension gave us the best test image SNR. 

We report on compression experiments using two types of images, Magnetic 

Resonance Images (MRI) and gray-scale natural images of traffic moving through 

street intersections [oK98]. These MRI images were used by Dony and Haykin in 

[DH95] and we duplicate their image pre-processing. One MRI image is decomposed 

into overlapping 8 x 8 blocks to form 15,625 training vectors; a second image is used 

for testing. The traffic images are frames from two video sequences. We use frames 

from the first half of both sequences for training and frames from the last halves for 



testing. 

I I 
0.4 0.5 0.6 0.7 0.8 613 0.4 0.5 0.6 0.7 0.8 

compressed bit-rate (bpp) Compressed bit-rale (bpp) 

(a) MRI test image SNR. All adap- (b) Traffic test image SNR. All adap- 
tive coders have 16 regions. tive coders have 32 regions. 

Figure 4.5: Compressed Image SNR. The x is our coding optimal partition (CLBG), o local 
PCA partition with dimension eight (RDP), k-means clustering (EDP), and + is global PCA. 

The dotted line values are local PCA results from [DH95]. Errorbars indicate standard deviation 

of 8 trials. 

Figure 3 shows compressed test image SNR for four compressed bit-rates and 

four compression methods. The quoted bit-rates include the bits necessary to specify 

region assignments. The x results are for our CLBG transform coder. Our system 

increases SNR compared to global PCA (+) by 2.3 to 3.0 dB, EDP method (m) by 

1.1 to 1.8 dB and RDP method (0) by 0.5 to 2.0 dB. In addition, our system yields 

image SNRs 1.6 to 3.0 dB higher that Dony and Haykin's local PCA transform 

coder (dimension eight) [DH95]. Their local PCA coder does not use optimal bit 

allocation or Lloyd quantizers, which further reduces compressed image SNR. 

The SNR improvement seen with the RDP method rolls-off a t  higher bit-rates. 

This method requires that we select the number of retained dimensions before train- 

ing. We retain only eight dimensions, consequently at  higher bit-rates directions 

that should be coded are discarded, which reduces compressed image quality. 

We also evaluated the effect of changing the numbers of regions on compressed 

image SNR. Figure 4.6 shows test image SNR for compression to 0.5 bpp with 8, 

16, and 32 region adaptive transform coders. For all three methods, SNR increases 

as the numbers of regions increase, assuming there is enough representative training 

data to prevent over-training. This is the expected result, since if all coding bits are 
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Figure 4.6: Test image compressed to 0.5 bpp. The is EDP transform coding, o is RDP 
transform coding, x is CLBG transform coding. Errorbars indicate standard deviation of eight 
trails. 

used to represent the region designation, these algorithms produce an unconstrained 

LBG vector quantizer. 

The enhanced image quality resulting from CLBG transform coding is also evi- 

dent in the restored images. Figure 4.7 shows sections from a test image compressed 

to 0.5 bpp. The figure includes the original image and restored images from global 

PCA transform coding and our CLBG transform coding. The global PCA transform 

coded image is significantly degraded compared to the original. For example, the 

trolley tracks, the lines on the road, and edges of the cars are blurred and broken. 

In addition, pixel block edges are readily apparent throughout much of the image. 

When the image is compressed with CLBG transform coding, the blocking effect is 

less severe and image details are less blurred. 

4.5 Summary 

In this chapter, we cast the design of both conventional and adaptive transform 

coders as a constrained optimization procedure. We derive a new algorithm for 

transform coder design from the EM procedure for fitting a mixture of mixtures 

model to data. In contrast to standard transform coder design, all operations: 

partitioning the signal space (for the adaptive case), transform design, allocation 

of coding bits, and quantizer design, are coupled together to minimize compression 



distortion. This approach leads to a new transform basis that is optimized for coding. 

The coding optimal transform is in general different from PCA. Our approach also 

leads to a method of data space partitioning that is optimized for coding. This 

method assigns each signal vector to the coder the compresses it with the least 

distortion. 

We evaluated our CLBG algorithm by using it to compress digital gray-scale 

images. To reduce computational requirements, our implementation approximates 

optimal local transform coder design by using the PCA transform and a greedy bit 

allocation procedure. At compression ratios in the range of 10:l to 20:1, tests using 

our method demonstrate compressed image signal-to-noise ratios up to 3.0 dB higher 

than global PCA transform coding. When the same images were compressed with 

adaptive transform coders similar to previously implemented systems [DH95, AL991, 

the resulting image SNRs are 0.5 to 2.0 dB lower than those obtained with our 

system. Our integrated algorithm produces more efficient transform coders than 

previous local PCA methods that design the signal space partition and coefficient 

quantizers separately. 
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Figure 4.7: Sections from a test image compressed to 0.5 bpp. From top to bottom, original
image, image compressed using global PCA transform coding, and CLBG transform coding with

32 regions.



Chapter 5 

Entropy-Constrained Adaptive 

Transform Coding 

In this chapter, we establish a probabilistic framework for adaptive transform coding 

that leads to a generalized Lloyd algorithm for entropy-constrained transform coder 

design. Transform coders are often constructed by concatenating an ad hoc choice 

of transform with suboptimal bit allocation and quantizer design. Instead, we start 

from a probabilistic latent variable model in the form of a mixture of constrained 

Gaussian mixtures. From this model we derive an optimal transform coding algo- 

rithm, which integrates optimization of all transform coder parameters. An essential 

part this algorithm is our introduction of a new transform basis, which unlike other 

transforms (PCA, DCT, etc.) is optimal for coding. 

Compression experiments on benchmark images demonstrate that these optimal 

coders improve compressed image signal-to-noise ratio (SNR) by 0.25 to 1.25 dB 

over transform coders based on the DCT and PCA transforms. Optimal adaptive 

coders improve SNR by about 1 dB relative to global coders. In addition, our results 

from compressing a set of synthetic aperture radar images indicate that adaptive 

transform coders can be used effectively to compress databases of interest for real- 

world applications. 

5.1 Introduction 

Transform coding is a computationally attractive alternative to vector quantization 

that is widely used for image and video compression. A transform coder compresses 



multi-dimensional data by first transforming the data vectors to  new coordinates 

and then coding the transform coefficient values independently with scalar quantiz- 

ers. A key goal of the transform coder is to minimize compression distortion while 

keeping the compressed signal representation below some target size. While quantiz- 

ers have typically been designed to minimize compression distortion [Llo82, FM841, 

this has not been the case for the transform portion of the coder. The transform 

has either been fixed a priori, as in the discrete cosine transform (DCT) used in the 

JPEG compression standard [Walgl], or adapted to the signal statistics using the 

Karhunen-Loeve transform (KLT) as in recently published transform coding work 

[DH95, ECG991. These transforms are not designed to minimize compression dis- 

tortion, nor are they designed (selected) in concert with quantizer development to 

deliver the best compression performance. 

Classic transform design assumes that correlations between signal components 

are the same everywhere in the signal space. This assumption is valid only for wide- 

sense stationary data. Noting that signals such as images and speech are not wide 

sense stationary, several researchers have extended global transform coding to adapt 

to changing signal characteristics [ECG99, DH95, TB99, AL99j. In adaptive trans- 

form coding, the signal space is partitioned into disjoint regions and a set of basis 

functions (transforms) and scalar quantizers are designed for each region. In our own 

previous work [AL99], we use k-means clustering [Mac671 to define these regions. 

Dony and Haykin [DH95] partition the space to minimize dimension-reduction error. 

Tipping and Bishop [TB99] use partitioning according to a probabilistic rule that 

reduces, in the appropriate limit, to partitioning by dimension-reduction error as 

defined by Khambatla and Leen in [KL97]. These last two techniques are optimal 

for the task of dimension-reduction, but not for compression. Effros, et. al. [ECG99] 

correctly partition the signal space to minimize entropy-constrained coding error, 

but then use sub-optimal transform coders to compress the data in each region. 

None of these systems integrate optimization of all the transform coder parameters 

nor design these parameters to produce a coder that minimizes coding error. 

In contrast to the ad hoc construction of transform coders, vector quantizers 

(VQ) are designed with algorithms [LBGSO, CLG89] that minimize coding error. 

VQ algorithms all derive from a probabilistic model of the signal data to be com- 

pressed. Nowlan [Now911 presents this probabilistic framework by demonstrating 



the correspondence between a VQ and a mixture of spherically symmetric Gaus- 

s ian~ .  In the limit that the variance of the mixture components goes to zero, the 

Expectation-Maximization (EM) procedure [DLR77] for fitting the mixture model 

to data reduces to the K-means algorithm [Mac671 or, equivalently, the Linde-Buzo- 

Gray (LBG) algorithm [LBG80] for vector quantizer design. In addition, Chou et. 

al. [CLG89] note that the design algorithm for a entropy-constrained VQ (ECVQ) is 

a hard-clustering version of this same EM algorithm, but with non-zero component 

variance. 

We make use of this probabilistic framework to construct transform coders that 

share the same optimal characteristics as VQs, yet maintain their advantage in 

computability. This paper develops an optimal design approach for both global 

and adaptive (local) transform coding. We first define a constrained mixture of 

Gaussians model that provides a framework for optimal transform coder design. 

Using this framework, we develop a new constrained generalized-Lloyd algorithm 

for transform coders that integrates optimization of the signal space partition, the 

local transforms, and the scalar quantizers. We conclude by demonstrating com- 

pression performance of our algorithms on both benchmark images and a database 

of synthetic aperture radar (SAR) images. 

5.2 Probability Models for Transform Coding 

In this section, we develop constrained mixture of Gaussians models that provide a 

statistical model for adaptive transform coding. A transform coder converts a signal 

to new coordinates and then codes the coordinate values independently of one an- 

other with scalar quantizers. An adaptive transform coder consists of a collection of 

transform coders, each specialized to optimally compress data from different regions 

of the data space. 

To develop a model for adaptive transform coding, we envision the d dimensional 

observed data as drawn from a structured discrete latent data space S, also with 

dimension d. The latent data lies at  the vertices, qim) of one of M rectangular grids 

centered at  rl(m). Grid m is defined by the s axes and a set of grid mark values 

{re)}, where r ~ ,  is the i ' h r i d  mark along the S J  axis. The coordinates of each 
( m )  ( m )  qbm) can be written as some [rIi , r,, , . . . , rg)lT. There are KY) possible grid mark 
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Figure 5.1: Structure of latent variable space, S, with single grid. The density on 8 consists of a

mixture of delta functions wherethe mixture components,qat>are constrained to lie at the vertices
of a rectangular grid. The grid is centered at 'T/and is defined by the 8 axes and a set of grid mark

values {r Ji}, where r Ji is the ith grid mark along the 8J axis.

values along the SJ axis in the mth grid and the total number of grid vertices is

Km = I1JK}m). Each grid can have a different number of components Km. Figure

5.1 illustrates the structure of a single grid.

The density due to a single grid consists of a mixture of delta functions

K(m)

p(slm) = L p(alm) 8(s _1](m) - qim»)
a=1

(5.1)

The local mixing coefficients p(alm) are the product of prior probabilities p(r Jilm)
so that

p(alm) = np(r}7)lm)
J

Consequently, we can write the local density for grid m as a product of marginal

densities (for the derivation, see Appendix A)

(5.2)

K(m)d J

p(slm) = n L p(r}7)lm)8(sJ _1]~m) - r~7»)
J=1 i=1

(5.3)

where 1]~m)is the jth coordinate value of 1](m).We will use this product of marginal

densities formulation later in our algorithm development.

The density on the whole latent space consists of a mixture of delta function
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mixtures
M x::(m)

p(S) = L 1rm L p(alm) 6(s - ",(m)- qim))
m=l a=l

(5.4)

where 1rm are mixing coefficients. The latent data from each grid m is mapped

to the observation space by its own orthogonal transform w(m). The data is then

corrupted with additive Gaussian noise, ( "-' N(O, a2I). The observed data generated

from some sample s drawn from latent component (a, m) is

x = w(m)(s - ",(m)- q~)) + Jj(m)+ ((m) (5.5)

with conditional densities

p(xls, a, m) = N(Jj(m) + w(m)(s - ",(m)- qim)),a2I) (5.6)

Figure 5.2 illustrates this mapping from a two grid latent space.

S2

q~1) W(1)S+ (1)

~yI -

X2

S1 X1

Figure 5.2: Nonstationary data model: Structure of latent variable space, S, and mapping (in

hard clustering limit) to observed space, X. The mixture components, q~m),are constrained to lie

at the vertices of the Mth grid. Latent data is mapped to the observation space by orthogonal

transforms, w(m) and corrupted with additive Gaussian noise.

The latent density and mapping induce a mixture of constrained Gaussian mix-

tures density on x of the form

J
M X::m

p(x) = L 1rm L p(alm)p(xls, a, m)6(s - ",(m)- q~))ds
m=l a=l

X::m

- L 1rm L p(alm)p(xla, m)
m a=l

(5.7)



with the marginal densities 

The Expectation-Maximization algorithm (EM) [DLR77] fits parametric proba- 

bility models to data by maximizing the log likelihood of the model for some training 

data set {xn, n = 1 . . . N). The log likelihood is given by 

In order to simplify (5.9), we introduce the density z(a,  m, xn) over the unknown 

component assignments. 

where En z(a ,  x) = 1. Using Jensen's inequality to bring the sum over a outside 

the logarithm function, we find C is bounded below by the expected log likelihood 

with equality when z(a, m, x) = p(a,  mlx) is the posterior probability of component 

a in grid m conditioned on the data vector x [NH98]. 

The EM algorithm provides a template for deriving a transform coding algorithm 

from this probability model. To achieve the hard-clustering needed for transform 

coding, we choose z(a ,  m, xn) to be one or zero 

1 p(a,m(xn) > p(y,rfi(zn) VT # a and # m 
(5.12) 

0 otherwise 

With this hard-clustering model, the final term in the expected log likelihood (5.11) 

becomes zero since z(a ,  m,  x,) In z(a,  m,  x,) = 0 V a ,  m, n. Consequently, (C) reduces 

to the cost function 



This cost function consists of two terms combined with the Lagrange multiplier 2a2: 

the average coding distortion 

and the discrete entropy 

This entropy penalized cost function (5.13) is the same as that found by minimizing 

coding distortion subject to an average bit-rate constraint (e.g. [CLG89]). In the 

limit that the noise variance v2 goes to zero, and we limit the number of code vectors, 

we recover the cost function for jked-rate transform coding. When the number of 

grids M = 1 we recover the cost function for global or classic transform coding. 

5.3 Adaptive Transform Coding Algorithm 

In this section, we present a new algorithm for adaptive transform coder design that 

integrates optimization of the transform coder parameters: the data space partition, 

transforms, and quantizers. This generalized-Lloyd algorithm fits the parameters to 

data so that entropy penalized coding distortion (5.13) is minimized. Like all such 

algorithms, the optimization process is iterative. It alternately partitions the data 

space into local regions and then optimizes the transform and quantizers for each 

region. Each such iteration reduces (or a t  least does not increase) the value of the 

cost function. Generalized-Lloyd type algorithms converge to a local minimum of 

the cost function. 

5.3.1 Partition Optimization 

To optimize the partition or encoder, each data vector is assigned to the reproduction 

vector qLrn) of transform coder m that represents it with the least entropy-constrained 

distortion. To partition the data, we compress each d dimensional data vector x 
with each local transform coder m = 1. .  . M. To compress x, we first find the 

(m)  T transform coefficients, s p )  = (WJ ) (x - p(rn)), J = 1 . . . d, where WJ is the Jth 
basis (column) vector of the W transform matrix. Each SF) is then assigned to the 
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scalar quantizer reproduction value, r}7) that represents it with the least entropy

penalized distortion. Figure 5.3 demonstrates this transform and coding process.

W2
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Figure 5.3: Transform Coding a Data Vector. Projecting data vector x with transform W yields

coefficient values W[ x = 81 and wi x = 82. The data space is partitioned into subregions with

boundaries indicated by dotted lines. Coefficient 81 is in subregion Rll and 82 is in subregion R22,

hence x is represented by reproduction vector q = [rll, r22]T.

The cost of assigning x to transform coder m is
d

c(m)(x) = L (11(wjm)f(x - p(m)) - r}7)112+ 20-2l}7))
J=l

(5.16)

where 67) = -log p(r}7)lm) is the code word length. We then assign x to transform
coder m such that

m = argminC(m)(x) - 20-2 log 7rmm

Hence, the data space partition defines regions R(m) such that each x belongs to the

transform coder that compresses it with the least entropy penalized distortion,

(5.17)

R(m) = {x I (c(m)(x) - 20-2log7rm) < (C(m)(x)- 20-2log7rm) Ym =1= m} (5.18)

In addition, the partition defines subregions R}7) such that each local transform

coefficient S}m)= (wjm))Tx, x E R(m), belongs to the scalar reproduction value r}7)

that represents it with the lowest coding cost,

R}7) = {S}m) I (1Is}m) - r}7)112+ 20-267)) < (1Is}m) - r}~)112+ 20-2l}~))Yk =1= i}
(5.19)
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Figure 5.4 illustrates the relationship between the the transform coder regions, R(m)

and subregions R}7). Consequently, the new data space partition minimizes the

coding cost function (5.13) for the current transform and quantizer values.

W(l)1

Figure 5.4: Data Space Partition. Partition of a two dimensional data space with two coders.

Coder 1 consists of a 3 x 1 grid and coder 2 consists of a 2 x 1 grid. The boundary between the
two coders, which partitions the data space into R(l) and R(2), is shown by the heavy black line.

Subregion boundaries are indicated with dotted lines. The diamonds along the transform axes
indicate placement of reproduction values.

The prior probabilities p(r}7)lm) and 7rmare estimated from the number of data

values in each region. The transform coder prior 7rm= Nm/N, where N are the
total number of data vectors and Nm are the number of vectors in R(m). The repro-

duction value priors p(r}7) 1m) = N}~)/Nm where N}~) are the number of transform

coefficientsin R}7).

5.3.2 Transform Optimization

To optimize the transform, we find the center f-land orientation W of each quantizer

grid that minimizes the coding cost function (5.13). The minimum cost estimators

for the grid center place each grid at the mean of the data assigned to its region

f-l(m) = ~ L x
Nm xER(m)

(5.20)

"'"
R(l)

/ -
R(2)

.
- wi2)

R(2): R(2)21: 22



The grid orientation or transform W is constrained to be orthogonal, that is 

WTW = I .  The cost function for transform coder m is thus 

(5.21) 

where Wj is the Jth column vector of W, q , ~  is the Kth coordinate of reproduction 

vector q,, and T K L  is a Lagrange multiplier. The partition assigns each data vector 

x to a quantizer reproduction vector pirn) defining local regions I3km). Figure 5.1 

illustrates the relationship between the reproduction vectors q and scalar quantizer 

reproduction values or grid marks r. 

Minimizing the local cost function (5.21) with respect to the transform matrix 

element w!,') yields 

where p(a(m) is the prior probability of qLm). If we define the outer-product matrix 

Q 

then (5.22) requires QW = WTQT. This symmetry condition along with the orthog- 

onality condition uniquely defines the Coding Optimal Transform (COT). Appendix 

A contains the detailed derivation of the COT. 

To minimize distortion, the COT orients the quantizer grid so that the QW 

matrix is symmetric (5.22). We can quantify how far the matrix is from symmetric 

with the sum squared differences between transposed matrix elements 

where a~ J is the Kth row and Jth column element of QW. We apply Givens rotations 

[GL89], G(K, J, O ) ,  to minimize A. Multiplication by the G(K, J, 8) matrix applies 

a rotation of 8 radians to the (K, J) coordinate plane. For a n x n matrix, there 

are such planes. Minimizing (5.24) with respect to rotation G(K, J, 8) yields a 

solution for 8 that is quartic in tan 8. However, when the angle is small (tan2 8 << I), 



the solution simplifies to 

tan 19 PZ (UKK + U J J ) ( ~ K J  - UJK) - CI#K,J(QJI~IK - ~ J I ~ I K )  
(5.25) 

CI#K,J (~JZ~IJ  f ~ K Z ~ I K )  + ( ~ K K  + ~ J J ) ~  - (aKJ - ~ J K ) '  

Since the COT reduces to the PCA transform when the data is Gaussian [ALOla, 

GZVOO], we expect that starting the optimization from the PCA transform will 

keep the rotation angles small. This approach worked well in practice, allowing us 

to use this simpler form for the rotation angle. We find the rotation angle (5.25) for 

each coordinate plane and apply these rotations to the current transform matrix. 

This process is repeated until A/IIQWI(F, where IlQW I I F  is the F'robenius norm, is 

less than a threshold ( A  = 0). This new W will orient the quantizer grid so that 

compression distortion is minimized. 

5.3.3 Quantizer Optimization 

To optimize the quantizers, we adjust the number of coders M, number of repro- 

duction values in each coordinate x?) and the value of each reproduction value 

r g )  to minimize the cost function (5.13). This optimization is most conveniently 

performed in the local transform coordinates defined by ~ ( " 1 .  We rederive the 

transform coding cost function using the product formulation for the latent density 

(5.3), instead of (5.1). This derivation yields the coding cost in terms of transform 

coefficients sp) = ( W ~ ) ) T ( X  - The cost function for transform coder rn is 

where the lg) = - logp(r$')lrn) is commonly interpreted as the code word length. 

Minimizing the cost (5.26) with respect to the reproduction values places each 

reproduction value at  the mean of the transform coefficients assigned to it. 

where ~ 2 )  are the number of transform coefficients in R$!).  
For entropy-constrained transform coding, selecting the noise variance is equiv- 

alent to selecting a target entropy. The target entropy determines the number of 



transform coders M and the number of reproduction values FC$"') in each scalar 

quantizer. The entropy terms in (5.26) move the partition away from the minimium 

distortion solution, so that reproduction values with low prior probabilities may 

have no data items assigned to them. Reproduction values with p(rg)lrn) = 0 can 

be removed from the coder, reducing the value of ICY). Likewise, coders with low 

priors may have no data items assigned to them, allowing the number of coders 

to be reduced. Consequently, selecting a large value for a2 produces low bit-rate 

coders. For a recent comprehensive review of quantization methods see [GN98]. 

5.4 Algorithm Evaluation 

We evaluate our adaptive transform coding algorithm on benchmark images and 

a database of synthetic aperture radar (SAR) images. We compare compression 

performance of our method to that of classic transform coders based on the PCA 

transform (also known as the Karhunen-Loeve Transform or KLT) and the Discrete 

Cosine Transform (DCT). We also compare performance to  that of PCA trans- 

form and DCT based adaptive transform coders. All coders use optimal entropy- 

constrained quantizers [FM84]. We report compression performance as signal-to- 

noise ratio (SNR), in dB, versus entropy, in bits per pixel (bpp). No entropy coding 

is performed. 

In this evaluation, we also compare our emthod to compression with local PCA 

transform based coding, such as the iterative algorithm developed by Effros, et. al. 

[ECG99] or that presented in our previous work with fixed-rate adaptive transform 

coding [ALOlb]. However, we found that the local PCA based algorithm has conver- 

gence issues. The PCA transform is only optimal for coding if the data is Gaussian. 

Consequently, the PCA transform update portion of this algorithm does not, in 

general, reduce the coding cost. That is, using PCA to define the transform does 

not yield a generalized Lloyd algorithm. In practice, we found that the coding cost 

almost always increased when the transform was updated and then decreased when 

the quantizers and partition were optimized. To handle these frequent cost increases, 

we monitored the absolute change in coding cost and stopped the optimization when 

this absolute change became small. 



5.4.1 Evaluation on Benchmark Images 

We illustrate the performance advantages of our optimal adaptive transform coding 

algorithm over classic transform coders and DCT based adaptive coding by com- 

pressing the benchmark images Barbara and Goldhill [ow981 shown in Figure 3.5. 

Barbara is a photograph of a seated women wearing striped clothing. Goldhill is 

a photograph of a row of houses in a hillside village. We compressed these images 

to entropies in the range of 0.25 to 1.25 bpp. The plot in Figure 5.5 displays SNR 

versus entropy results for global transform coders on the Barbara image. The dif- 

ferences in SNR were smaller for the goldhill image. Our global transform coding 

experiments on both images show that using our COT-based coder improves SNR 

by 0.3 to 1.2 dB relative to PCA transform based coders and 0.1 to 0.7 dB relative to 

DCT based coders. We give additional global transform coding results in [ALOla]. 
The plot in Figure 5.6 displays SNR versus entropy results for global versus adaptive 

transform coders on the Barbara image. In adaptive transform coding experiments 

with sixteen coders, our COT-based coder improves SNR by 0.4 to 1 dB relative 

to DCT-based adaptive coders. In addition, adaptive transform coding improves 

SNR by 0.4 to 1 dB relative to the corresponding global transform coder. Adaptive 

coders that use the PCA transform had SNRs comparable to DCT based adaptive 

coders a t  high bit rates and 0.2 to 0.5 dB higher at low bit rates. 

To reconstruct a compressed image, the decompression engine must have the 

transform coder parameters. Therefore, these parameters must be transmitted with 

the compressed image, effectively increasing the compressed size. The storage space 

required for the transform coder parameters is referred to as overhead. For the tested 

transform coders, the overhead was 10 bits (3 decimal digits) for each transform 

element and 18 bits (5 decimal digits + sign) for each reproduction value and each 

associated prior probability. Since the DCT is a fixed for all images, we hard- 

coded it into the decompression software. When overhead is included as part of 

the compressed image, we find that the Barbara image compressed with the global 

DCT based coder has a SNR approximately 0.5 dB higher than when compressed 

with the global COT based coder. The SNR improvement provided by the COT 

is not enough to compensate for the increased overhead. The deleterious effect 

of overhead on compression performance is greater for adaptive transform coders, 

making it impractical to develop such coders for individual images. 
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Figure 5.5: Comparison of performance of global transform coders. Plot shows signal-to-noise 
ratio versus entropy for Barbara image for global transform coders with entropy-constrained quan- 
tizers and the COT (circle), PCA transform (square), or DCT(triang1e). 

5.4.2 Evaluation on Image Database 

Database compression provides an important knd practical application for adaptive 

transform coding. While the data contained in an individual data file, such as an 

image, is non-stationary, the characteristics of the different files within the database 

are often similar. Consequently, one adaptive transform coder can be developed and 

subsequently used to compress all files within the database. This allows us to incor- 

porate the transform coder parameters into the decompression engine, alleviating 

the overhead problem. For large databases, a single adaptive coder can require less 

overhead storage than separate coders for each image. As an added advantage, no 

new coders need to be developed when new items are added to the database. Al- 

though published work [DH95, ECG99, TB99, AL991 demonstrates the performance 

gain of adaptive transform coding over global coders developed on the same training 

image, it does not address how much compression performance is lost relative to a 

set of global coders, one for each image in the database. In this section, we compare 

performance of adaptive transform coders developed on a training image to global 

coders developed specifically for the test image. 



Entropy in bits per pixel 

Figure 5.6: Comparison of compression performance of adaptive coding with 16 local transform 

coders to global transform coding. Signal-to-Noise Ratio versus entropy for Barbara image where 

adaptive COT based coder results are indicated with open circles, global COT with solid circles, 
adaptive DCT based coder with open triangles and global DCT with solid triangles. 

We evaluated the adaptive transform coders on a small database (18 MByte) 

of synthetic aperture radar (SAR) images [FreOO]. Our database consists of eleven 

images acquired via space-borne radar by the space shuttle Endeavor [Lab02]. Each 

image contains three pseudo-color channels: red is L-band (24cm) horizontally trans- 

mitted and received, green is L-band horizontally transmitted and vertically re- 

ceived, and blue is C-band (6 cm) horizontally transmitted and received. Prior to 

compression, each image is decomposed into its three channels and the pixels in 

each channel are divided into 8 x 8 blocks to form 64 dimensional data vectors. 

SAR images of Belgrade, Taipei, and San Diego constitute the training set (5.9MB- 
tyes) used to optimize the transform coder parameters. We evaluated compression 

performance on eight SAR images chosen for their diversity of land uses and terrain 

types. The test images were acquired over Athens, Boston, Hampton, Honolulu, 

Laughlin (Colorado River), Lisbon, Phnom Penh, and Ventura. 

We developed both global and adaptive transform coders for the three image 

training set for four entropies in the range of 0.2 bpp to 0.7 bpp. Seven adaptive 
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coders for each bit-rate were trained starting from 64 regions and different random

initializations. Since the cost function contains an entropy constraint, local coders

that do not represent any data well will see their prior probabilities go to zero

during the training process and are consequently discarded. The number of final

coders ranged from 36 to 63 with an average of 57. We report SNR results in terms

of entropy. The coder parameters can be included in the decompression engine,

so overhead is not included in the bit-rate. We developed eleven global coders for

each bit rate, one for each of the images in our database. Overhead is included in

the customized global coder bit-rate, since coder parameters are different for every

Image.

Figure 5.7: Pseudo-color SAR image of Lisbon, Portugal

Our results show that a single adaptive transform coder can perform as well

on a database of related images as a set of global coders customized for each im-

age in the database. Compression results for the Lisbon image, plotted in figure

5.8, demonstrate the relative performance of the COT and DCT based compression

methods. The Lisbon image, Figure 5.7, includes a wide variety of land uses and

terrain, making it representative of other images in the database. The global DCT

and COT based coders have nearly identical overhead adjusted performance. The
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adaptive coders, developed for a training image, not only match global coder perfor-

mance, but have slightly better SNRs than a global coder developed for the Lisbon

image. The SNR improvement of the COT based adaptive coder is 0.14 dB and the

improvement of the DCT based coder is 0.36 dB at an entropy of 0.466 bpp. The

PCA transform based adaptive coder had test image SNRs comparable to the COT

based coder. Note that the adaptive COT based coder generalizes less well than the

adaptive DCT based coder.
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Figure 5.8: Signal-to-Noise Ratio versus entropy for Lisbon image. Compression performance of

adaptive coding with approximately 57 local transform coders to global transform coders developed

for the test image. Solid circles are for COT based global coder and solid triangles indicate the

DCT based global coder. The bit-rate for the global coders is the entropy plus overhead. Open

circles are the COT based adaptive coder and open triangles are the DCT based adaptive coder.
The lines pass through the means of the seven trials at each bit-rate. The bit-rate for the adaptive

coders is just the entropy.

We saw similar results for the eight test images and for the three images included

in the training set. At entropies of 0.5 bpp, the eleven image SNRs ranged from 8

dB to 12 dB. The adaptive COT based coder had higher SNR than the customized

global coders for all but two test images (Ventura and Laughlin) and had an average
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improvement of 0.10 dB. The adaptive DCT based coder had higher SNR than the 

customized global coders for all but one test image (Ventura) and had an average 

improvement of 0.25 dB. The adaptive DCT based coder generalized better than 

the COT based coder with consistently better SNRs (average 0.18 dB) on the test 

images. 

Another important aspect of compression is time: training time, encoding or 

compression time, and restoration or decompression time. An adaptive transform 

coder requires more time for training and encoding than does a comparable global 

transform coder, although the restoration times are about the same. Training and 

encoding are done once for the items in a database, making the larger processing 

time less important than the reconstruction time. Our adaptive COT based coders 

required an average training time of 900 minutes and our adaptive DCT based coders 

an average time of 500 minutes on a 750 MHz Sun Ultra-SPARC 111. The individual 

global transform coders required an average of 36 minutes and 4.3 minutes for the 

COT and DCT versions, respectively. Adaptive coders also require longer encode 

times. The adaptive COT based coder required 352 seconds to encode the Lisbon 

image compared to 4.1 seconds for the global coder. The adaptive DCT based coder 

required 76.5 seconds compared to 3.3 seconds for the global coder. However, the 

differences in reconstruction time are small for the different methods. Adaptive 

COT based coders require 3.9 seconds to decompress the Lisbon image compared 

to 3.8 seconds for global COT, 3.2 seconds for adaptive DCT, and 3.1 seconds for 

the global DCT based coders. 

Summary 

This chapter describes the culmination of our research into optimal global and adap- 

tive transform coder design. Existing transform coding design algorithms are con- 

structed by concatenating separately designed and often suboptimal transforms and 

quantizers. In contrast to this approach, we developed a probabilistic framework 

for both global and adaptive transform coding. Using this probability model, we 

derived a generalized-Lloyd algorithm for optimal transform coder design. A signif- 

icant and necessary part of this work is a new transform, the COT, that minimizes 



mean-squared coding error. Definition of this transform made possible our develop 

ment of an algorithm that integrates optimization all transform coder parameters: 

the signal space partition, the transform, and the quantizers. 

We evaluated our adaptive transform coder on benchmark images and a small 

database of SAR images. Our results on the benchmark images demonstrate the 

performance advantage of our new algorithm over existing transform coding meth- 

ods. Global COT based transform coders have SNRs 0.3 to 1.2 dB higher than 

coders based on the PCA transform and 0.1 to 0.7 dB higher than DCT based 

coders. Adaptive coders have SNRs about 1 dB higher than global coders. How- 

ever, practical considerations of training time and overhead storage limit adaptive 

coders to applications with a large number of similar data files that will likely be 

compressed once and restored many times. 

Adaptive coders have been referred to as "universal coders" [ECG99], since with 

enough local coders, they can theoretically adapt to a variety of input signals. Our 

results on the SAR image database indicate that a single adaptive transform coder 

can be used effectively to compress databases. Adaptive transform coders com- 

pressed test images with SNRs as good as or better than global transform coders 

developed individually for each test image. DCT based adaptive coders appear to 

generalize best as they had better test image SNRs than either COT or PCA trans- 

form based coders. Note that generalization capability is largely dependent on the 

training set. For instance, both the COT and DCT based adaptive coders had SNRs 

lower than the corresponding global coder for the Ventura image, indicating that 

this image contains regions with characteristics that were not in the training set. An 

important practical consideration for developing robust coders is the construction 

of a training set that contains adequate representation of all expected signal types. 

Adaptive transform coding provides a mechanism for developing custom com- 

pression engines for large scientific databases. Possible applications besides image 

databases include geophysical data or data from simulations of environmental pro- 

cesses. Our optimal adaptive transform coding algorithm provides a benchmark for 

systematic tradeoff between complexity, overhead, and performance gain of custom 

coder components. For instance, our experiments show that while our optimal al- 

gorithm produces coders than outperform existing transform coding methods on 

training data, adaptive DCT based coders generalize better to test image data. 



Similar evaluations can be performed for types of data for which the DCT may not 

be a good transform choice. Similarly, one could constrain the quantizers to have 

uniform spacing (uniform quantizers have low overhead) and evaluate compression 

performance against optimal, but higher overhead, entropy-constrained quant izers. 

In summary, our new algorithm gives transform coding the same grounding as vector 

quantization, allowing systematic development of custom adaptive transform coders 

and filling a void in the compression literature. 



Chapter 6 

Variable Dimension Local PCA 

This chapter addresses the problem of resource allocation in local linear models for 

non-linear principal component analysis. Local PCA models partition the data into 

regions and perform PCA in each region. Prior formulations of local PCA under- 

utilize the potential of these models by requiring a single global target dimension. 

We propose a resource allocation approach to local dimension selection. Evaluations 

using our variable dimension local PCA to reduce the dimension of blocks of image 

data substantially increases dimension reduced image quality compared to fixed 

dimension approaches. Some of the material in this chapter was published at  the 

International Joint Conference for Neural Networks in 1999. 

6.1 Introduction 

Local Principal Component Analysis (PCA) models, such as those developed by 

Kambhatla and Leen [KL97] and Hinton et. al. [HRD95], are alternatives to non- 

linear PCA models such as the five-layer, non-linear autoassociators developed by 

Kramer [Kragl] and Demers and Cottrell [DC93]. The latter construct smooth 

curved manifolds that are close to the data. Local PCA partitions the data space into 

regions and performs PCA in each region. Geometrically, such models approximate 

the data manifold by a set of local PCA hyperplanes. When used for dimension 

reduction, local PCA models exhibit a clear performance advantage over simple 

PCA. They are faster to fit than five-layer, nonlinear autoassociators, and often 

outperform them. 



Despite their success, previous studies [KL97, HRD95, DH95, TB99] under- 

utilize the potential of these models. These authors choose a global target dimension, 

and hence neglect the variability in intrinsic data dimension from region to region 

in the data space. Here we construct a Langrangian-based algorithm that allows 

the model's dimension to be adjusted locally in order to decrease distortion, while 

the average dimension is constrained to a particular value. 

Background 

While transform coding depends on both the transform and the coding of the trans- 

form coefficients, dimension reduction dispenses with coding. It is therefore more 

purely a window into the performance of the transform. Dimension reduction can 

be used to preprocess data for other signal processing tasks, such as compression, 

classification and detection, or density estimation. It is vital for visualization of 

high-dimensional data. 

Previous work on dimension reduction operates almost exclusively with reduc- 

tion to a single, globally defined dimension. The dimension may be chosen by a 

fidelity requirement that places an upper bound on the allowed average distortion. 

Alternatively, several authors [WK85, HPFSO] have applied minimum description 

length (MDL) criteria to PCA for estimating signal dimension. We argue that there 

is no compelling argument to require a single, global dimension, although a fixed- 

dimension approach may be more convenient for data visualization. 

A simple exploration of the local correlation structure of images shows that 

different regions of the data space have different dimension. We extracted three small 

regions from the Barbara image, a common benchmark image for image compression 

evaluations. Each region was divided into 4 x4 blocks to produce sixteen dimensional 

vectors. The principal eigendirections and variances for these three regions are 

shown beside the image in Figure 6.1. Note that the second and third principal 

eigenvectors show different patterns that are representative of the blocks in each 

region. Equally important, the numbers of high variance directions, that is the local 

dimensions, are different for each region. 
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72

Smooth

Stripe

.. Hatch

(b) Leading Eigenvectors

10'

B .,
fO
:::;

]'"
~10.'

"

",

'~ \ .

---.

~.~.:.::.>

10.'L0 6 8 10 12
Componen1Number

14 16

(c) Variances

Figure 6.1: Non-stationarity of image data demonstrated with Barbara benchmark image. The
characteristics for three regions, smooth taken from the floor, stripe taken from the women's slacks,
and hatch taken from the wicker chair, are shown on the right. The principal eigendirection is

the same for all three regions, but the second and third eigenvectors capture patterns that are

representative of each region. The number of high-variance eigendirections, which determines the
local dimension, varies between regions.

6.3 Variable Dimension Local PCA

Local PCA algorithms cluster the input data into regions and perform PCA on the

data that falls within each region. Kambhatla and Leen define two clustering meth-

ods for local PCA in [KL97]. One method partitions the space using a coarse vector

quantizer. Data vectors are assigned to the region whose center has the smallest
Euclidean distance to the data vector. The second method partitions the data in

order to minimize reconstruction distance or, equivalently, dimension reduction er-

ror. Both methods require the user to choose a single, global target dimension. The

results presented in [KL97] show little performance difference in the two clustering



methods. 

For the local PCA work described here, clustering is done using the simpler vector 

quantizer method described in [KL97]. We perform PCA on the data assigned to 

each region to identify the local eigenvectors and eigenvalues. However, we do not 

choose a single global target dimension, but propose a resource allocation approach 

to local dimension assignment. Given some number of regions M and target average 

dimension do, our algorithm assigns dimension d, to region R, so as to minimize 

the expected dimension reduction distortion while keeping the average dimension 

below do. The algorithm can potentially assign a different dimension to each region 

of the signal space. 

Our algorithm is motivated by a Lagrangian formulation in which we minimize 

dimension reduction distortion subject to a constraint on the average dimension. For 

a model with M regions, the prior probability of region R, is ?r, and the average 

dimension is 
M 

For a region with N, data vectors, the average dimension reduction distortion is 

given by 
1 

where p, is the region mean and U, is a matrix containing the leading d, eigenvectors 

of the local data. The cost function to be minimized is thus 

In general, realizing the theoretical minimization of this cost function (6.3) is 

not possible. However the following simple heuristic does allow one to reach an 

empirical minimum a t  approximately the desired average dimension: 

1. For all regions R,, initialize d, = 0. 

2. Find region with the largest discarded eigenvalue 

old 3. Allocate one additional dimension to that region, dEew = d, +l. 

4. Calculate the new average dimension d .  If d 2 do, stop. Other- 

wise, loop to step (2). 



Figure 6.2: Dimension reduction of image blocks from 64 to 8 dimensions. Plot shows SNR for 
local PCA with different numbers of regions. Results for fixed local dimension are shown with 
dashed line and variable local dimension with solid line. 

6.4 Experimental Results 

We compared the dimension reduction performance of our variable dimension local 

PCA algorithm to that of fixed dimension local PCA [KL97] on a database of video 

frame images. The database consists of 50 frames each from two video sequences of 

city street intersections [oK98]. Each image was decomposed into 8 x 8 blocks to 

form 64 dimensional vectors. The training set consists of eight frames from the first 

half of each sequence. Frames from the second half of each sequence were used for 

testing. 

Allowing the local dimension to adjust to the data results in substantial increases 

in the signal-to-noise ratio (SNR) of dimension reduced signals compared to fixed 

dimension methods. Figure 6.2 shows results for reduction of 64-dimensional blocks 

of image pixel values to both eight average and fixed dimensions. When using 32 
PCA regions, the local dimension assigned by our algorithm varies between 3 and 23 

among the different regions. The corresponding image SNR improvement is 1.3 dB 

relative to assigning all regions dimension eight and 2.2 dB relative to global PCA. 

For 128 region local PCA, the SNR increases about 1.5 dB in going from global 



PCA (1 region) to the 128 region fixed dimension local PCA and increases another 

1.5 dB by incorporating local dimension allocation. 

6.5 Summary 

Despite their success, previous formulations of local PCA under-utilize the poten- 

tial of these models. These models incorporate a single global target dimension, 

neglecting the variability in intrinsic data dimension throughout the data space. 

We developed a variable dimension PCA algorithm that minimizes dimension re- 

duction distortion subject to a constraint on the average dimension. The fidelity 

gains achieved by our variable dimension local PCA algorithm relative to fixed di- 

mension methods are comparable to the advantage of used fixed dimension local 

PCA over global PCA. 
This work with variable dimension local PCA indicates that to  achieve good 

modeling quality, we should allow the dimension to adapt to the data structure. Our 

work developing adaptive transform coding models shows that constraining entropy 

is an effective way to limit model complexity, while giving the model the flexibility 

to adjust to the data structure. For transform coding, the entropy constraint arises 

naturally from the associated statistical model when we choose the noise variance 

to be the same everywhere in the data space. A similar construction for local or 

adaptive PCA whould provide an effective way to allow the dimension to conform to 

the data, while limiting model complexity. Our new entropy-constrained adaptive 

PCA algorithm is described in the next chapter. 



Chapter 7 

Entropy-Constrained Adaptive 

PCA 

In this final chapter, we develop a new signal modeling method, entropy-constrained 

adaptive PCA, that has the flexibility to accurately model the cluster structure of 

non-stationary data. Using a latent data framework, we derive a statistical model 

for a broad category of real world signals that includes images and measurements 

from natural processes. Data of this type consists of a collection of low-dimensional 

patterns embedded in a high-dimensional observation or measurement space. We 

use this statistical model to develop our adaptive PCA algorithm. Our algorithm 

adjusts the model parameters to minimize the dimension reduction error between 

the model and sample data subject to a constraint on the entropy. 

We evaluate the quality of models produced by adaptive PCA using image tex- 

ture data and salinity and temperature measurements from the Columbia river. 

Compared to entropy-constrained vector quantization, local PCA and full-covariance 

models, adaptive PCA proved to be a more effective tool for analyzing the salinity 

and temperature data. In addition, our results show that our model segments tex- 

ture images as well as entropy-constrained vector quantizers, yet uses substantially 

fewer model components. Adaptive PCA models conform to the data structure 

better than full covariance models when training data is sparse. 



7.1 Introduction 

Classical methods for signal modeling, e.g. global linear models, are limited in that 

they accurately model only simple, invariant signals. Complex real-world signals 

require more innovative modeling approaches, since the statistical characteristics 

of such data vary within the data space. CoElections of local linear models, which 

partition the data space and then model data within each region, offer a promis- 

ing approach to modeling such signals. However, most "collection of model" ap- 

proaches have their own limitations: they either require large amounts of training 

data, limiting their usefulness on small data sets; or must be heavily constrained 

geometrically, enforcing too much uniformity of model components to accurately 

model non-stationary data. Our goal in this paper is to develop a new method for 

creating collections of local linear models that strikes a balance between these two 

extremes, allowing us to derive models appropriate for real-world data. 

The classic example of a collection or mixture of linear models is the Gaussian 

mixture model (GMM) with full or unconstrained covariance. Such models are often 

a poor choice for high-dimensional data, as sufficient training examples are rarely 

available to produce robust models. To reduce training data requirements, one typ- 

ically constrains the covariance to be spherical or diagonal [OT96], which limits the 

ability of the model components to conform to the natural data structure. Adaptive 

principal component analysis (PCA), which models data as a collection of hyper- 

planes, has the potential to strike a balance between full covariance and spherical 

GMMs. Recently several researchers [KL97, HRD95, DH951 have developed effective 

dimension reduction methods using adaptive PCA. In addition, Tipping and Bishop 

[TB99] and Ghararamani and Hinton [GH96] have developed statistical models for 

mixture PCA and the related technique, mixture factor analysis, respectively. De- 

spite their success, these methods under-utilize the potential of local or adaptive 

PCA models by requiring a single global dimension for all model components. 

The intrinsic dimension of real-world signals, such as image or speech data, 

varies throughout the signal space. In prior work [AL99], we found that dimension 

reduction performance of local PCA methods could be substantially improved by 

allowing the dimension to vary, Meinicke and Ritter [MROl] have recently proposed 

a mixture PCA model that incorporates variable dimension and produces higher 

likelihood models than fixed-dimension methods. 



Recently, we developed a statistical model for transform coding [ALOlb, ALOla], 

a common methods of signal compression. From this model, we derived a new 

generalized Lloyd algorithm for transform coding, in which coder complexity is 

controlled by an entropy constraint. The entropy constraint arises naturally from 

the associated statistical model. A similar construction for adaptive PCA should 

provide an effective way to allow the dimension to conform to the data structure, 

while limiting model complexity. 

In order to develop more flexible adaptive PCA models, we first develop a sta- 

tistical model of the data. Using a latent framework, we derive a model for a 

broad category of real-world data that consist of collections of several distinct low- 

dimensional patterns, or classes, embedded in a high-dimensional observation space. 

This probability model is the same as that developed independently by Meinicke 

and Ritter [MROl]. However, we take the development further by recognizing the 

entropy-constrained form of the cost function and developing a new hard-clustering 

algorithm for adaptive PCA. 

Following our algorithm derivation, we describe several training methods used to 

fit model parameters to sample data. We conclude with an evaluation of our adaptive 

PCA algorithm on both low and high dimensional real-world data; salinity and tem- 

perature measurements from the Columbia River Estuary and image texture data. 

As an additional extension of prior adaptive PCA work [TB99, MROl], we compare 

the ability of our adaptive PCA model to separate data into its distinct classes to 

that of both spherical and full-covariance models. We find that our adaptive PCA 

approach indeed allows us to specify models that are neither overly "data-hungry" 

nor overly constrained geometrically. These models accurately represent' this broad 

category of real-world data even when the sample data is sparse. 

7.2 Adaptive PCA Model 

In this section, we present the statistical model from which we derive our entropy 

constrained adaptive PCA algorithm. This model is developed within a latent data 

framework, which follows that presented by Tipping and Bishop [TB99] for proba- 

bilistic PCA and Basilevsky [Bas941 and Roweis and Ghahramani [RG99] for factor 

analysis. The latent data framework is based on the presumption that observed 
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signals are not as complex as they appear. Instead they have some simple latent

structure, which is obscured by linear transformations and noise. Our goal is to

recover this underlying structure in order to improve our understanding of the data

and to reduce the size of the signal representation.
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Figure 7.1: Adaptive PCA Model. Structure of latent variable space, S, and mapping to observed
space, X. The data density in the latent space consists of a three Gaussians. This latent data

is mapped to the observed data space by orthogonal transform, W, which stretch and rotate the
data.

For adaptive PCA, we envision ad dimensional latent data space S, where data

from the latent space is mapped to a d dimensional observation space X. The latent

data, s, is modeled with a simple mixture density of the form

M

p(s) = L 1ra p(sla)
a=l

(7.1)

where 1ra are the mixing coefficients and the components are spherical Gaussians

p(sla) = N('TJa,p2I) with means 'TJaand variance p2.

Unique linear maps with translation J1aand rotation plus scaling transform Wa

embed the latent data in the observed space, X. Wa consists of two parts, an
1

orthogonal transform Ua and a diagonal scaling transform r a, so that Wa = uar~.

Zero entries in r a suppress latent variables, which causes the model dimension da

to drop below d. The number of columns in Ua is set by the number of non-zero

entries in r a, so that Ua is a d x da matrix. The embedded data is corrupted with

additive Gaussian noise, fa rv N(O, (T~I). Figure 7.1 illustrates this mapping from

latent to observed space.



The observed data generated from a sample s drawn from latent component a 

is 

x = W a ( s -  %) + p a  + € a  (7.2) 

with conditional densities 

The latent data density and mapping induces a mixture of constrained Gaussians 

density on x of the form 

where r, are the same mixing coefficients given in (7.1) and p(x)a) = N(p,, Ca). 

The covariance is constrained such that 

where, without loss of generality we choose the latent variance p2 to be one. We 

make no assumptions about the latent means, rb. 

The Expectation-Maximization algorithm (EM) [DLR77] fits parametric proba- 

bility models to data by maximizing the log likelihood of the model for some training 

data set {x,, n = 1 . . . N). For additional information on mixture model fitting see 

chapter two of [Bis95]. The log likelihood for this model is given by 

To simplify the log likelihood equation (7.6), we introduce the density z(a, xn) over 

the unknown component assignments. C is then bounded below by the expected log 

likelihood 

with equality when the z(a, xn) are the posterior probabilities p(a(xn) [RG99, 

NH98]. This choice of z produces soft-clustering models. 



Researchers have recently developed two different probability models for PCA 

[TB99, MROl], which can be derived from this framework. In Tipping and Bishop's 

model [TB99] the dimension is the same for all components, d, = do, Va. The target 

dimension do is specified prior to model fitting and the noise variances a: are fit to 

data. In the limit that all noise variances are identical, a: = a2 ,  and go to zero, the 

EM algorithm for fitting this model reduces to Kambhatla and Leen's Local PCA 

algorithm [KL97] for clustering by reconstruction distance. In this hard-clustering 

limit, the posterior probabilities become zero or one, that is 

1 if (5  - P ~ ) ~ ( I  - uff U:) (x - pa) < (x - pJT(I - U7UT)(x - p7) 
0 otherwise 

for all y # a. In addition, the expected log likelihood (7.7) reduces to the cost 

function for local PCA 

We take a different approach and use the noise variance to control model com- 

plexity instead of constraining the dimension to be the same everywhere in the data 

space. Our approach was inspired by our development of statistical models for trans- 

form coding [ALOlb, ALOla]. We found that choosing the noise variance to be the 

same for all components, a: = a2, V a  produces entropy-constrained cost functions 

for variable-rate coding. A similar construction for adaptive PCA should allow the 

local dimensions to adjust to the data structure. Consequently, like Meinicke and 

Ritter [MROl], we choose the noise variances for all components to  be the same and 

fit the local dimensions d, to the data. With identical component noise variances 

a2, the local covariance matrices (7.5) become 

In the limit that a2 goes to zero, each local covariance matrix (7.10) reduces to 

C, = U,r,Uz with d, = d. That is, this latter model becomes a classic Gaussian 

mixture model with unconstrained covariance matrices. 

To expand the log likelihood (7.7) for our adaptive PCA model, we first invert 

C, (7.10) using the Sherman-Morrison-Woodbury formula [GL89] 



with diagonal d, x d, matrix A, = Fa + a21. Using (7.11) to expand (7.7) gives the 

expected data log likelihood 

C C z(a, x.) In ~ ( a ,  5.1 

where z are the posterior probabilities, p(a)x). Our model parameters include the 

component means, pa, the component dimensions, d,, the component stretching 

matrices, I?,, the component transform matrices, U,, and the number of compo- 

nents, M. The noise variance a2 is considered a control variable, rather than a 

model parameter. 

7.3 Entropy-Constrained Adaptive PCA 

Many signal processing applications, such as compression or on-line classification, 

benefit from incorporating hard-clustering methods that assign each data item to 

one and only one model component. For example, compression involves finding a 

compact representation for data and hard assignments can be coded more efficiently 

than posterior probabilities. For exploratory data analysis, hard-clustering is easier 

to visualize and interpret. On-line and embedded classification applications have 

tight memory and computational time constraints. Hard clustering implementations 

require less memory and processing time than comparable soft clustering methods 

making them more suitable for such applications. 



7.3.1 Adaptive PCA Cost Function 

The EM algorithm provides a template for deriving hard-clustering algorithms from 

latent data probability models. To achieve hard-clustering, instead of the soft clus- 

tering provided by p(alx), we choose z(a, x,) to be one or zero. 

1 ~(a1xt.n) > P(YIx*) VY # 0 
0 otherwise 

The hard assignments given in (7.13) partition the data space into regions R, such 

that 
N x f (XI = x ~ ( a ,  xn)f (x) (7.14) 

X €  %. n=l 

for any function f (x). By choosing hard clustering with z given by (7.13), the 

expected log likelihood (7.12) reduces to the entropy-constrained cost function for 

adaptive PCA 

l N M  
c = 3 C C z ( a , x n )  [(xn - 11,)~(1- LI,U:)(X~ -11,) - 2021n if, + 

n=l a=l 

The modeling cost consists of two parts, an error term and entropy term, linked by 

202. The distortion contribution of data vector x E R, is the error due to reducing 

the dimension of x to d, 

D, (x) = (X - ~ , ) ~ ( 1 -  u,@) (2 - ~1,) .  (7.16) 

The differential entropy contribution of x is the sum of its discrete entropy contri- 

bution 

and the log of a quantizer bin size f lno2 [CTSl]. The lno2 term quantifies mea- 

surement uncertainty and in this respect set the resolution of the model. 

The discrete entropy H = C, En z(a, xn)H,(xn) is the sum of the entropy as- 

sociated with selecting a model component, - C, T, In T,, the entropy associated 

with coding the data within a component, $ Z, T, ln lA,/021, and half the average 



dimension 2 x, rodo. The average dimension comes from the Mahalanobis distance 

term in (7.17), since 

Selecting the noise variance a2 is equivalent to setting a penalty on the entropy, 

Choosing an entropy penalty controls model resolution and complexity by determin- 

ing both the number of components and the dimension of each component. When 

a2 is large relative to the data variance, the local dimensions are close to zero and 

the resulting (nearly spherical) model has only a few components. As a2 decreases, 

both the number of components and component dimensions increase. However, 

when a2 becomes small, the number of components decreases and the local dimen- 

sions approach the full dimension. As a2 approaches zero, the model becomes a 

hard-clustering version of a GMM with unconstrained covariance matrices. At most 

choices of noise variance, different model forms, from spherical to full covariance, 

can appear in a single adaptive model. This flexibility will allow us to effectively 

model non-stationary data. 

7.3.2 Adaptive PCA Model Fitting 

The EM procedure inspires a generalized Lloyd algorithm for minimizing the con- 

strained cost. This algorithm iteratively optimizes the partition and model parame- 

ters to minimize modeling cost (7.15). To optimize the partition, each data vector is 

assigned to the region R, that represents it with the lowest cost. This is equivalent 

to assigning a data vector to the region with the highest posterior probability (7.13). 

The partition consists of regions R, such that 

R, = {x ( Da (x) + 2a2& (x) < D, (x) + 2a2 H,(Z) V y # a) (7.19) 

Note that the In a2 term is the same for all components, so it does not affect partition 

optimization and can be ignored. The discrete entropy shifts the partition away from 

the minimum distortion solution by increasing the cost for components with large 

entropies. Components with low priors, large variances, or large dimension may 

have no data vectors assigned to them, in which case, they can be removed from the 

model. Consequently, the model conforms to the cluster structure by fitting small, 



low-dimensional components to the data in densely populated areas of the signal 

space. 

We optimize the model parameters, T,, pa, d,, U,, and I?,, by finding the values 

that minimize cost(7.15) for the current partition. The equations for the priors are 

where N, are the number of data items assigned to component a. Minimizing cost 

with respect to the translation vectors places each p at  the mean of its region 

The embedding transform is constrained to be orthogonal, that is, UTU = I. Mini- 
1 

mizing cost with respect to W, = U,I?z, while meeting this orthogonality constraint, 

yields the relation 

U ~ S ,  = A , U ~  (7.22) 

where A, = I?, + a21 and the data covariance is 

Consequently, U, and A, contain the d, leading eigenvectors and eigenvalues of the 

data covariance S,, respectively. The stretching factors are r, = A, - 021. 

To find the optimal dimensions d,, we evaluate the change in cost due to in- 

creasing each local dimension by one. If we order the eigenvalues in A, from largest 

to smallest, then increasing the dimension from q - 1 to q results in a change of cost 

where A, is the qth entry in A,. By Jensen's inequality In0 < B - 1, therefore 

increasing the dimension will decrease the cost (AC < 0) until the next eigenvalue is 

as small as the noise variance, A, = a2. In addition, the model dimension must be no 

larger than the number of stretching values y greater than zero. Since = A, - a2, 

A, must be greater than a2. These two conditions set the local dimension d, equal 

to the number of eigenvalues in A, greater than the noise variance a2.  

We perform a search for the best model size, M. The next section describes three 

different training methods that incorporate this search for the optimal number of 



components. We achieved our best results by initializing the model with a large 

number of components and iteratively removing components until the best model 

size was found. After training the initial model to convergence, we record the 

modeling cost (7.15) for a separate validation set. The search process iteratively 

removes the least probable components, retrains, and records the modeling cost. 

The model with the optimal number of components has the lowest cost of those 

tested. 

An outst anding issue concerns the selection of an appropriate entropy constraint 

via the noise variance a2.  We attempted to select an optimal o2 by determin- 

ing the value the minimized the cost for a hold-out or validation data set. How- 

ever, this selection of a2 results in under-constrained models with nearly full di- 

mension. However, our early evaluations show that models which contain several 

low-dimensional components conform better to the data structure than those with 

few high-dimensional components. Further work is needed to refine this observation 

into a principaled method of selecting an appropriate noise variance. To facilitate 

this work, we choose the a2 that gives the largest average model size over a set of 

different model initializations. At the chosen value of a2, we report results for the 

model with the lowest validation set cost. For the data we evaluated, this heuristic 

method selected models that conformed well to the natural cluster structure. 

7.4 Algorithm Implement at ion 

An important aspect of implementing the adaptive PCA algorithm is the deter- 

mination of the optimal model size. For any selection of noise variance, there is 

some optimal number of model components. In this section, we present three model 

training methods that incorporate searches for this number of components. The 

first method uses deterministic annealing for constrained cost functions developed 

by Rose [RGF93]. The second method starts training from a random initialization 

for a range of model sizes. The third method starts with a random initialization at  a 

large number of components and iteratively removes the least probable component, 

retraining the model after each deletion. In all three cases, we retain the model that 

minimizes modeling cost a separate validation data set. In our work, we found that 

the third method produced the lowest cost and most consistent models. 



7.4.1 Deterministic Annealing 

Deterministic annealing is motivated by viewing clustering as a minimization of free 

energy [Ros98]. For data X and model parameters Y with joint probability p(x, y), 

we wish to minimize the average distortion D(X, Y) = C, C, p(x, y)d(x, y) with 

some distortion measure d while keeping the entropy H(X, Y) = Ex C, p(x, y) logp(x, y) 

below some value. That is, we wish to minimize free energy F = D - TH, where T 
is a Lagrange multiplier. Minimizing F with respect to cluster assignments z(x, y), 

yields a Gibbs distribution [RGF93] 

For adaptive PCA, our distortion function d is 

d 
d(i ,  y) = D, (x) + 202 ( H ,  (x) + - ln a2)  

2 
(7.26) 

where D, is given by (7.16) and H, is given by (7.17). Substituting (7.26) into 

(7.25) and using (7.25) to expand the free energy F yields 

The Lagrange multiplier T controls clustering hardness. When T = 2a2, we have soft 

assignments and F is the log likelihood of the Gaussian mixture model associated 

with adaptive PCA (7.6). As T approaches zero, the assignments becomes hard, as 

in (7.13), and each x is assigned to a single cluster. In this hard-clustering limit, F 
reduces to the adaptive PCA cost function (7.15). 

The free energy formulation of adaptive PCA (7.27) allows implementation of 

deterministic annealing using the template described by Rose [RGF93]. It does not 

require the two-stage training process proposed by Meinicke and Ritter [MROl]. 

To use deterministic annealing for training an adaptive PCA model, we start with 

M components placed at  the mean of the data plus small random perturbation. 

Without these perturbations, all components will remain a t  the global mean dur- 

ing the training process [MROl, Ros98]. We initialize T to twice the largest global 

eigenvalue of the data. Gradually reducing T with u2 = T/2 increases the model 

complexity, since the local dimension d, increases as a2 decreases. We use an an- 

nealing schedule of Tnew = 0.9 Told and at  each value of T the model is trained to 



convergence. At the desired entropy or noise variance, we freeze a2 and turn T to 

zero to achieve hard-clustering. 

Unfortunately, deterministic annealing does not produce consistent models. The 

final model size is sensitive to the numbers of components used a t  initialization. 

Consequently, it was necessary to repeat the deterministic annealing process us- 

ing different numbers of initial components M to find the optimal model size. In 

addition, the training process and resulting model are sensitive to the random per- 

turbations introduced at  initialization. To insure good models, we must investigate 

models from a number of different initializations. Deterministic annealing seems sus- 

ceptible to the same problems as less sophisticated methods, yet has much heavier 

training time requirements. 

7.4.2 Random Initialization 

Random initialization is a classic and simple method for initializing parameters 

for EM or generalized-Lloyd algorithms. To use it for adaptive PCA training, we 

initialize M component means to randomly sampled training vectors. We then 

train the model to convergence using the adaptive PCA algorithm. We repeat this 

process using different numbers of initial components M and retain the model that 

minimized modeling cost for a separate validation data set. During the training 

process, some components may have no data assigned to them, in which case, they 

can be discarded. Hence, the final model size may be smaller than the initial number 

of components. This method has the advantage of being simple and fast, but the 

selected numbers of components varies significantly for different initializations. This 

model inconsistency increases the training time, as one must investigate models from 

many initializations to insure a good fit to the data. 

7.4.3 Iterative Pruning 

While working with generalized-Lloyd algorithms, we found it critical that the ini- 

tial model represent all regions of the data space. Otherwise, some data clusters 

will be poorly modeled by too few components. To ensure a good initialization, we 

propose a simple heuristic method that starts from a large number of components, 

which should adequately cover the data space. We then iteratively shrink the model 



size, searching for the optimal number of components. We examined two methods of 

shrinking the model: combining the two components with smallest Kullback-Leibler 

distance and deleting the component with the lowest probability on a separate val- 

idation set. The second method, deleting the least probable component, produced 

models that better conformed to the natural cluster structure. 

The search process starts with a large number of components (we found 40 to 

80 worked well) with means assigned to randomly selected data vectors. This large 

model is trained to convergence. During the training process, some components have 

no data assigned to them and they can be discarded. Consequently, the trained 

model size may be smaller than the initial number of components. The training 

process then removes the least probable components, one a t  a time, retraining the 

model after each deletion. Once again, we retain the model with the lowest modeling 

cost. This training method produced the most consistent and accurate models with 

respect to model size of the three methods. As a result, the time spent searching 

for a good model fit is kept small. 

7.4.4 Training Met hod Evaluation 

We evaluated these three training methods on several artificial data sets. Here we 

show results for a 1000 points training set drawn from a mixture of five low di- 

mensional Gaussians embedded in a three dimensional space. Figure 7.2 contains a 

scatterplot of the 400 point test data projected to the two leading global eigendi- 

rections. 

Our two evaluation criteria for these methods were how closely the model size 

matched the number of generating components and how much the model size varied 

between different initializations. We trained both entropy-constrained vector quan- 

tizers [CLG89] and adaptive PCA models using all three methods. Figure 7.3 shows 

the average, maximum, and minimum model sizes for 25 different initializations for 

the random and iterative pruning methods and for 10 different initializations for 

the deterministic annealing method. Fewer initializations were performed for the 

deterministic annealing method due to the long training times. 

For the vector quantizer, all three methods had similar average model size and 

the models produced by deterministic annealing have lower variability than those 

from the other two methods. At low noise variances, however, the vector quantizer 
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Figure 7.2: Mixture of Five Gaussians Test Data. Scatterplot of artificial data set used for testing.

Data consists of 400 three-dimensional points drawn from a mixture of five Gaussians. Colored

lines indicate the principal eigenvectors of each component and the number of lines corresponds

to the dimension. Data is projected to the two leading eigendirections.

model sizes are much larger than the true size of five. For these spherical models,

the noise variance sets the component variance or size. Consequently, when the

noise variance is small, it takes many components to cover the data space.

For adaptive PCA, all three methods produce models with similar numbers of

components at high noise variances. At lower noise variances, the deterministic

annealing and random initialization methods produce models with too many com-

ponents. In addition, the model size varied widely for different initializations. In

contrast, the iterative pruning method produces models of size five or six, a good

match to the true model size. Figure 7.4 shows examples of five and six component

models. Each model component matches one of the generating clusters in Figure

7.2 and no components bridge multiple clusters.
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Figure 7.5: Hard-Clustering GMM Models with Different Training Methods. Scatter plots show

the assignment of data points to model components where each model component is represented

with a different color. Scatterplot (a) shows a model initialized with five randomly selected data
vectors. Scatterplot (b) shows a model initialized with forty randomly selected data vectors fol-

lowed by iterative pruning down to five components. The model developed via iterative pruning
closely matches the natural clusters.



We also found that our iterative pruning method improves the quality and con- 

sistency of full-covariance models. We trained hard-clustering versions of full covari- 

ance GMM on this mixture of five Gaussians data using both random initialization 

and iterative pruning. Since this is low dimensional artificial data, we can generate 

enough data to fit accurate full-covariance models. For small model sizes (less than 

ten components), iterative pruning produced models that better matched the nat- 

ural cluster structure of the data. The models were similar for larger model sizes. 

Figure 7.5 contains scatterplots that show the match between model components 

and data. The model developed using random initialization contains components 

that span natural clusters, whereas the model developed using iterative pruning 

matches the natural cluster structure. For the rest of the experiments presented in 

this chapter, we use our iterative pruning method for model training, since it pro- 

duces better quality and more consistent models than those developed from random 

initializations. 

7.5 Evaluation 

We compare the modeling performance of our entropy-constrained adaptive PCA 

algorithm (APCA) to an entropy-constrained VQ (ECVQ) [CLG89] and a hard- 

clustering version of a full covariance GMM (HGMM). When the model noise vari- 

ance is large, APCA discards all dimensions and reduces to ECVQ. When the model 

noise variance becomes small, APCA retains all dimensions and fits the full covari- 

ance matrices to data like HGMM. Consequently, these two methods provide bounds 

on the modeling behavior of APCA. When there is sufficient training data, we expect 

the HGMM algorithm to provide the best match between model and data. How- 

ever, when training data is sparse, the APCA algorithm should be less susceptible 

to overfitting. In this latter case, we expect the APCA models to match unseen test 

data better than HGMM models. 

7.5.1 Evaluation Criteria 

In order to evaluate our APCA algorithm, we wish to quantify how well the resulting 

model represents true data structure. For low dimensional data, we can determine 

how well the model matches the natural cluster structure, by visually evaluating 



the assignment of data to model components. To model quality quantitatively, we 

evaluate both the ability of the model to correctly classify the test data and how 

closely the number of components matches the number of data clusters. 

We measure classification ability using the conditional entropy of the cluster or 

generating class given the model component Hp = H(c1usla). Component impu- 

rity, H,, measures the number of information bits required to specify the generating 

class when the model component is known. It is zero when each model compo- 

nent contains points from just one cluster. If all model components contain equal 

proportions of each of N clusters, Hp = log, N. 

Spherical models with many small components have good classification perfor- 

mance, however they provide little insight into the natural cluster structure of the 

data. Consequently, we also measure model component (0ver)abundance using the 

conditional entropy of the model component given the cluster Ha = H(alc1us). 

Component abundance, Ha, measures the number of information bits required to 

specify the model component when the generating class is known. Ha is zero when 

each model component completely contains one or more clusters. If all data clusters 

are modeled by N equally probable components, Ha = logz N. 

Normalized mutual information combines these two aspects of model to data 

structure correspondence into a single metric. Mutual information between the 

model components, a, and the clusters is given by 

I(clus, a )  = H(a)  + H(clus) - H(a ,  clus) (7.28) 

where H(x) = - C, p(x) logp(x) is the discrete entropy. Normalizing by H ( a )  + 
H(clus), which is the value of H ( a ,  clus) when the model components and clusters 

are independent, yields the normalized mutual information. 

NMI(clus, a) = 1 - Hp + Ha 
H (a)  + H (cl us) 

When the model components and clusters match perfectly, the normalized mutual 

information is one (Hp and Ha are zero). It decreases to zero as the correspondance 

between the model and data structure decrease. 



7.5.2 Visual Evaluation of Model Quality 

To qualitatively evaluate how well a model matches the data, we visually examine 

scatterplots of the data that are color coded to indicate the assignment of data 

vectors to model components. These scatterplots reveal where multiple components 

are representing a single cluster or class and where a component covers all or part of 

several different classes. Here we present clustering results on a real world data set, 

salinity and temperature measurements gathered in the Columbia River Estuary. 

Columbia River Data 

Sensors deployed in the Columbia River Estuary by environmental scientists at  

Oregon Health & Science University [BWP+99] gather information on salinity and 

temperature. The salinity sensors are susceptible to gradual response degradation 

known as bio-fouling. Recently, we developed classifiers to successfully detect this 

degradation during the summer months, when bio-fouling is most prevalent [ABL02]. 

We are now in the process of extending these bio-fouling detectors to operate year 

round. 

Developing robust bio-fouling detectors is complicated by normal changes in mea- 

sured salinity due to fluctuating river and ocean conditions. Our current detectors 

incorporate temperature information to distinguish normal changes in salinity from 

bio-fouling. However, the relationship between measured temperature and salinity 

changes throughout the year, although we see similar behavior from year to year. 

Visual examination of time series of salinity and temperature measurements indicate 

that there are a t  least five behavioral regimes or classes. 

The Columbia River data contains measurement from two sensor stations located 

near the mouth of the estuary. It consists of 698 measurements spanning all seasons 

and acquired over several years (1997 - 2001). Each measurement contains three 

values: salinity and temperature at  the highest diurnal tidal flood and temperature 

at  the deepest diurnal tidal ebb. The temperature measurements are normalized 

by the estimated difference in ocean and river temperatures. We divided the data 

set into three equal parts to create training, validation, and test sets. Figure 7.6 
contains a scatterplot of the test data set. Colors indicate different classes identified 

from visual examination of the time series: blue is summer period, red is winter 

period, and cyan, orange, and green occur during spring and fall. Green indicates 
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measurements from when the river and ocean temperatures are close together. Yel-

low indicates measurements taken during periods of abnormally low salinity. Cyan

indicates measurements taken during periods of rapid river temperature warming or

cooling.
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Figure 7.6: Columbia River Salinity and Temperature Data. Scatterplot of salinity and temper-

ature at largest diurnal tidal flood and temperature at deepest diurnal ebb. Temperatures have

been normalized by the estimated difference between the ocean and river temperatures. Colors
indicate different classes identified from visual examination of the time series. The red and cyan

regions may contain more than one class.

River Data Analysis
We use several modeling methods to cluster the salinity and temperature data

into classes, including our entropy-constrained adaptive PCA (APCA), entropy-

constrained vector quantization (ECVQ), a hard-clustering version of a full covari-

ance GMM (HGMM), and local PCA (LPCA). Local PC A [KL97] partitions the

data space in order to minimize dimension reduction error for some fixed target

dimension. All models were trained using the iterative pruning method described

previously with model sizes selected to minimize cost on the validation set. We de-

veloped models from six different initializations. For ECVQ and APCA, we report
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results for a noise variance of 0.5, which gives an average dimension between 1 and

1.5 for the APCA models. For the LPCA model, we set the target dimension to one.

To evaluate the models, we visually compared how each model separated the test

data into classes. Scatterplots are from the model that had the lowest validation set
cost.

The ECVQ models partition the space into many small spherical classes. Figure

7.7a shows clustering by the ECVQ model at noise variance 0.5. This model had

thirteen components, over twice the number of our subjective estimate. All natural

clusters are represented by several components. Since it does not identify the number

of unique classes nor regimes, we found ECVQ to be a poor choice for this data

analysis.

The LPCA models partition the space into many one-dimensional subspaces.

Figure 7.7b shows clustering by a seven component LPCA model. Model size se-

lection using the validation set indicated that the number of components should

be at least forty (largest size tested). This large a model is not instructive, so we

present results for a model size of seven. Model components consistently cut across

the natural cluster structure of the data. We found the LPCA modeling method to

be inappropriate for clustering or data analysis.

The HGMM models partition the space into five regions, but they do not match

the classes show in Figure 7.6. Figure 7.7c shows clustering by the HGMM model.

The summer (aqua) data is well delineated, however, the river temperature transi-

tion and low salinity classes (pink) are grouped into one cluster. The component

indicated by the black circles bridges the cold temperature classes. We observed

similar clustering behavior from all the HGMM models. While HGMM models se-

lected reasonable numbers of components (4 to 7), the components did not conform
well to the natural cluster.

Unlike the previous three model types, APCA models are well-matched to the

natural cluster structure of the data. Figure 7.7d shows clustering by the APCA

model. This model correctly identifies the summer (red), low salinity (blue), and

equal river and ocean temperature (cyan) classes. It identifies two classes within the

temperature transition region (pink and green) and two classes within the winter

region (yellow and black). Of the methods tested, the APCA model corresponded

most closely to the natural cluster structure.
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Figure 7.7: Clustering Examples for ECVQ, LPCA, HGMM, and APCA. Scatterplot (a) shows
ECVQ model clustering with thirteen model components and noise variance of 0.5. Scatter plot

(b) shows LPCA model clustering with seven components and a target dimension of one. Scat-

terplot (c) shows HGMM model clustering with five model components. Scatterplot (d) shows

APCA model clustering with seven components and noise variance of 0.5. Each color and symbol
combination represents a different model component.



7.5.3 Quantitative Evaluation of Model Quality 

To qualitatively evaluate how well a model corresponds to the data structure, we 

measure the normalized mutual information between the model components and 

data clusters. This metric measures how well the model classifies the data into its 

generating classes and how closely model size matches the true number of clusters. 

Here we present results from segmenting image texture data with a known number of 

textures. Segmenting high-dimensional texture data provides a realistic application 

for evaluating how the APCA algorithm performs when training data is sparse. As 

an added advantage, this data can be organized into a map for effective visualization 

of segmentation or clustering accuracy. 

Image Texture Data 

Our image texture data consists of 81-dimensional vectors (9 x 9 blocks) sampled 

from four different gray-scale textures. The textures are images of dense leaves, 

cloth, marble, and paper. Figure 7.8 shows the test map used to evaluate the models. 

We generated three different training files with 200, 500, and 1000 vectors, one 500 

vector validation set and one 2500 vector test set. We develop all models using 

the iterative pruning training method described earlier. Model size was selected to 

minimize cost on the validation set. Rather than selecting a single noise variance, 

we report results for a range of noise variances to demonstrate the full range of 

adaptive PCA model behavior. 

Model Size Analysis 

As part of our analysis, we evaluated the model size selected for each method. Figure 

7.9 includes model sizes for ECVQ, APCA, and HGMM. The full covariance HGMM 

method can model the data with one or two components, so the size is consistently 

too small. At high a2, the ECVQ and APCA models have heavy entropy penalties 

and select too few components. The ECVQ model size increases as a2 decreases, 

as more components are needed to cover the space as the component size shrinks. 

In contrast, the APCA model selects the close to the correct number of classes for 

a range of noise variances. For these moderate noise variances (1000 to 8000)) the 

local dimension is small and several components are required to model the data 
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Figure 7.8: Texture Test Data. Data consists of 81-dimensional vectors formed into 9 x 9 blocks

and organized into a map for visualization. Each block sampled is from one of four textures, dense

leaves (dark), cloth (coarse texture), marble (gray and white), and paper (light).

accurately. As a2 drops, the local dimensions increase, so fewer components are

needed and the model size decreases. When a2 is very small, the APCA models are

nearly full dimension and have too few components like the HGMM models.

Quantitative Quality Analysis

Correctly identifying the model size does not tell us how accurately the model

matches the data. To evaluate goodness of fit, we normalized mutual information

on the test data for models developed on each of the training data sets. Normalized

mutual information incorporaates measures of component impurity, Hp in Figure

7.10 and component abundance, Ha in Figure 7.11. Figure 7.12 shows normalized

mutual information for the different models and training set sizes.

For ECVQ, model components become overabundant as a2 decreases, hence

the normalized mutual information decreases. Note that the classification ability

as measured by Hp is very good for noise variances less than 5000. HGMM has

very poor purity values, since the models had fewer than four components, so the
normalized mutual information is low. Data from the different texture classes lies

close together in the 81-dimensional space, so the HGMM model with one or two

full dimensional components covers the data space. Adding components does not

reduce the modeling cost as there is no penalty for high-dimensional components.
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Figure 7.9: Selected model size for different training set sizes. Plot (a) shows average model size

for ECVQ and plot (b) showsaverage model size for APCA (circles) and HGMM (squares). The
HGMM results are plotted at 1 for comparison purposes. The 500 and 200 vector training results
for HGMM are identical. Models were trained using 1000 vector (green), 500 vector (red) and 200

vector (blue) set sizes. Error bars indicate maximum and minimum model size for ten different
initializations. The correct model size of four is indicated by the dotted line.



Even when the model size was hand selected to be at  least four, most test blocks 

were attributed to two components and purity values did not improve. 

We found that when the APCA models have noise variances in the right range, 

the component purity is close that that of the ECVQ models, but the models are 

more concise. Consequently, the values of normalized mutual information are higher 

than for the other modeling methods. Adaptive PCA models have low impurity 

values and good model sizes for noise variances in the range 1200 < a2 < 8000 

for all training set sizes. For the larger training sets, the model quality remained 

good for a2 down to 600 for the 500 vector set and 300 for the 1000 vector set. 

With larger training sets, we can fit more covariance parameters accurately and the 

models continue to conform to the data structure as we lower the noise variance. 

For all training set sizes, the APCA models reveal more about the natural cluster 

structure of the data than either full covariance or spherical models. 

Visual Quality Analysis 
We also evaluated model accuracy by visually examining how well the model seg- 

mented the test texture image. A perfect model would use four components and 

attribute all the data blocks from one texture to one component. Figures 7.13 and 

7.14 shows an examples of the assignment of test data blocks to  model components. 

Each color in these images represents a different model component. For these ex- 

amples, we selected the noise variance a2 that produced the largest average model 

size (see Figure 7.9). The selected a2 was 2928 for the 200 vector training set and 

2802 for the 1000 vector set. 

The test image segmentation results shown in Figure 7.13 use models developed 

on the 200 vector training set with a2 = 2928. The ECVQ model has ten components 

with H, = 0.170 bits, Ha = 1.051 bits, and NMI = 0.75. This model correctly 

classified 96.1% of the image blocks. The APCA model has four components with 

H, = 0.202 bits, Ha = 0.195 bits, and NMI = 0.90. It correctly identified the 

texture for 96.5% of the image blocks. The HGMM model (not shown) had only 

one component, consequently, it was unable to segment the image. The ECVQ 

model uses 4 and 5 components to represent the cloth and leaf textures respectively, 

whereas the APCA model uses a single component for each class. The APCA model 

segments the texture image as accurately as the ECVQ model, even though it has 

many fewer components. 
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Figure 7.10: Component impurity for different training set sizes. Plot (a) showsHp for ECVQ
and plot (b) shows Hp for APCA (circles) and HGMM (squares). HGMM results are plotted at
1 for comparison purposes. Models were trained using 1000 vector (green), 500 vector (red) and
200 vector (blue) set sizes. Error bars indicate standard deviation over ten different initializations.
The 500 vector and 200 vector HGMM results are identical.
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Figure 7.11: Component Abundance for differenttraining set sizes. Plot (a) showsHa for ECVQ
and plot (b) shows Ha for APCA (circles) and HGMM (squares). HGMM results are plotted at
1 for comparison purposes. Models were trained using 1000 vector (green), 500 vector (red) and

200 vector (blue) set sizes. Error bars indicate standard deviation for ten different initializations.
The 500 vector and 200 vector HGMM results are identical.
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Figure 7.12: Normalized Mutual Information for different training set sizes. Plot (a) shows N M I

for ECVQ and plot (b) shows NMI for APCA (circles) and HGMM (squares). HGMM results are

plotted at 1 for comparison purposes. Models were trained using 1000 vector (green), 500 vector

(red) and 200 vector (blue) set sizes. Error bars indicate standard devii1tion for ten different
initializations. The 500 vector and 200 vector HGMM models each have a single component, so
the N M I values are both zero.
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(b) APCA

Figure 7.13: Texture Segmentation with 200 vector training set. Map (a) on the left shows
ECVQ model segmentation and Map (b) show APCA model segmentation. Both models were

developed on a 200 point training set.

The segmentation results in Figure 7.14 are for models developed on the 1000

vector training set with a2 = 2802. The ECVQ model (not shown) has 28 com-

ponents with Hp = 0.076 bits, Ha = 2.11 bits, and N M I = 0.65. This model

correctly classifies 98.7% of the test blocks. The HGMM model, with Hp = 1.20

bits, Ha = 0.012 bits, and N M 1= 0.57, has only two components and segments the

image poorly with 52.5% correct classification. The APCA model, with Hp = 0.050

bits, Ha = 0.282 bits, and N M I = 0.92, models one texture with two components

and the remaining textures with one component each. The APCA model, with five

components and correct classification of 99.3%, segments the texture image more

accurately than either the ECVQ or HGMM models.

7.6 Summary

Adaptive models, which partition the signal space into regions and then model the

data within each region with simple linear models, can effectively represent non-

stationary data. However, standard adaptive modeling methods, such as K-means

clustering and full-covariance GMMs have their own limitations. They either require
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(b) APCA

Figure 7.14: Texture Segmentation with 1000 vector training set. Map (a) on the left shows
HGMM model segmentation and Map (b) show APCA model segmentation. Both models were

developed on a 1000 point training set.

large amounts of training data to produce robust models, like GMMs, limiting their

practical usefulness or they are geometrically constrained, like K-Means clustering,

which limits their ability to adjust component parameters to the data structure.

In this paper, we developed a new modeling method, entropy-constrained adaptive

PCA, which strikes a balance between these two methods.

Using a latent data framework, we derived a statistical model for a broad cate-

gory of non-stationary data, in which the data consists of a collection of hyperplanes.

From this model, we develop our adaptive PCA algorithm. Adaptive PCA adjusts

each component's eigenvectors, eigenvalues, and dimension to the local data struc-

ture. In addition, an entropy penalty provides complexity control, which allows

accurate modeling of even sparse training data. Unlike some constrained modeling

methods, this entropy penalty arises naturally from the statistical model.

An outstanding research issue concerns the selection of an appropriate entropy

penalty via the noise variance. The noise variance should be relatively high when

data is sparse and lower when data is abundant. We first attempted to selected the

noise variance by determining the value that minimized the cost for a validation data

set. However, this selection resulted in models with nearly full covariance matrices.



Consequently, these models were under-constrained and exhibited the same poor 

modeling behavior as full covariance models. Similar validation set methods used 

by Meinicke and Ritter [MROl] also resulted in models with nearly full dimension. 

Evaluation of component impurity and abundance for models with different noise 

variances suggest a different approach for noise variance selection. Models conform 

best to the natural data structure at  noise variances where the component abundance 

is highest. That is, the best models contain several low-dimensional components 

rather than very few high-dimensional components. Further work is needed to refine 

this observation into a theoretically motivated way of selecting an appropriate noise 

variance. For the work in this chapter, we selected the noise variance at  the point 

where the average model size was largest. 

We used our adaptive PCA algorithm for texture segmentation and for the pre- 

liminary analysis of salinity and temperature measurements from the Columbia 

River estuary. We evaluated how well adaptive PCA models matched the nat- 

ural data structure in comparison to entropy-constrained VQs, a hard-clustering 

version of a full covariance GMM, and local PCA. Spherical models, such as VQs, 

use many small clusters to model the data. While such models can classify the data 

accurately, they provides little insight into the data structure. Local PCA produces 

consistently poor clusters that cut across the natural data structure. Hard-clustering 

GMM produces models with too few components that bridge the natural clusters. In 

contrast, adaptive PCA models consistently conform to the natural data structure 

with classification accuracy comparable to spherical models that have many more 

components. 



Chapter 8 

Summary 

Statistical signal classification encompasses solution strategies for a number of com- 

pelling, practical problems. The list of such problems continues to grow as industry 

seeks to apply computer-based analysis and decision-making to more real-world phe- 

nomena, both man-made and natural. The problems selected for our research, image 

compression and data modeling, are interesting in their own right. They are also 

good representatives of this problem space as a whole. 

In this thesis, we developed a latent data framework, which facilitates formalizing 

observations of data behavior into a statistical model. We showed how one can use 

this framework to develop processing algorithms from statistical models of the data. 

Using this framework, we developed new algorithms for adaptive transform coding 

and PCA-based data modeling. 

Our primary contributions in the area of adaptive transform coding include the 

derivation, in closed form, of the optimal linear transform for coding. Using this 

definition, we develop a new transform coding algorithm that provides an optimal 

compression solution for non- stationary signals. One useful outcome is that this 

algorithm provides a standard against which one can evaluate the "goodness" of the 

PCA (or other) transform for compression. 

Our primary contributions in the area of adaptive PCA modeling include de- 

velopment of a new adaptive PCA modeling method that allows model parameters 

to adjust to local data structure. This algorithm incorporates an entropy penalty, 

which permits the model to conform to the data structure, when training data is 

sparse. Our adaptive PCA models match the natural cluster structure of data better 

than spherical or full covariance modeling methods. 



Our work has resulted in new understanding in both the theoretical limits of 

computer-based processing in these areas and in the relationships between com- 

mon processing algorithms. We have also demonstrated computationally practical 

implementations with better performance than existing methods. These same ap- 

proaches are applicable to a number of problems in the field, e.g. handwritten 

character recognition, helicopter transmission fault detection, and image segmenta- 

tion. The improved performance and practical computability of these local model 

based techniques will enable computer-based solutions for many difficult classifica- 

tion problems. 
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Appendix A 

Entropy-Constrained Transform 

Coder Derivation 

This appendix contains the full derivation of our statistical model for global trans- 

form coding. We first present the probability model, followed by the optimization 

of model parameters. We then discuss the correspondence between the probability 

model and a hard-clustering transform coder. The final section in this appendix 

includes the derivation of the coding optimal transform for Gaussian data. 

A.1 Probability Model for Transform Coder 

A transform coder converts a signal to new coordinates and then codes the coordi- 

nate values independently of one another with scalar quantizers. To replicate this 

structure, we envision the data as drawn from a latent data space, S, in which the 

data density can be written as a product of marginal densities 

where SJ is the Ph component of the d-dimensional vector s. 

The latent space is discrete with values {qa, a = 1. .  . M). We model the data 

density in the latent space with a constrained mixture densities, 

where T, are the mixing coefficients and p(s(a)  = 6(s - q,). We constrain the 

mixture component means, qa, to lie at  the vertices of a rectangular grid centered at  



the q. Without loss of generality, we take q to be zero. The grid is defined by the s 

axes and a set of grid mark values, {rJiJ), where r ~ i ,  is the iih grid mark along the 

s J axis. There are M j  possible grid mark values on the SJ axis and the total number 
T of grid vertices M = n MJ. Thus the coordinates of q, are [rli1, T2i2 . . . , rdid] . 

Conversely, a is a function of i l l  i2, .  . . , id .  Figure A.1 illustrates the latent data 

space structure. 

Figure A.l: Structure of latent variable space, S, with single grid. The density on s consists 
of a mixture of delta functions where the mixture components, q,, are constrained to lie at  the 

vertices of a rectangular grid. The grid is centered at  r] and is defined by the s axes and a set of 

grid mark values { r J i ) ,  where T J ~  is the i th grid mark along the s J axis. 

The marginal densities are pJ(s j ) i  J) = 6(s J - rJi,). We write the density of s 

conditioned on mixture component a as 

We also constrain the mixing coefficients, T,, to be the product of prior proba- 

bilities, p JiJ 

7ia(ill .... i d )  = n P J ~ J .  
J 

By combining (A.l), (A.2), and (A.3) the density on s becomes a sum of products 

of marginal densities 



The sum over the mixture components a is equivalent to sums over all grid mark 

values for all coordinates 
M1 Mz Md 

a = l  i l = l i z = l  id=l 

so the density on s becomes 

We now write the probability model for s in the desired form of a product of marginal 

densities 
d M.r 

The latent data is mapped to the observation space by an orthogonal transforma- 

tion W and translated by p. After the mapping, the data is corrupted with additive 

Gaussian noise 6 - N(0, a21) with mean 0 and variance a21 where I is the identity 

matrix. Figure A.2 illustrates this mapping from latent to observation space. The 

observed data generated from a sample s drawn from latent component a is 

with conditional densities 

The latent density and mapping induces a mixture of constrained Gaussian den- 

sities on x of the form 

with marginal densities 

~ ( x l a )  = N ( P  + Wqa, 021) 

and the mixing coefficients .~r, is given by (A.3). 
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Figure A.2: Structure of latent variable space, S, and mapping to observed space, X. The data
density in the latent space consists of a mixture of delta functions where the mixture components,

qa.,are constrained to lie at the vertices of a rectangular grid. This grid is mapped to the observed

data space by an orthogonal transform, W, and corrupted with additive Gaussian noise.

The expectation-maximization algorithm (EM) [DLR77] fits parametric proba-

bility models, such as (A.7), to data by maximizing the data log likelihood for some

training set of N data vectors, {xn, n = 1... N}.

£ = E log C~ 7rap(xnla))
(A.9)

To simplify (A.9) we introduce the density z(a, xn) over these unknown component

assignments. Using Jenkin's inequality to bring the sum over a outside the log gives

the expected log likelihood. The log likelihood £ is bounded below by the expected

log likelihood

N M

£ ~ (£) = L L z(a, xn) log 7ra -
n=la=l
N M

(
d 1

)- L L z(a, xn) -log(27ra2) + ~Ixn - J.L- Wqal2 -
n=l a=l 2 2a
N M

L L z(a, xn) In z(a, xn)
n=la=l

(A.10)

with equality when z(a, x) = p(alx) is the posterior probability of component a

conditioned on the data vector x [NH98]. The posterior probabilites are given by

7rap(xnla)

p(alxn) = I:{37r{3p(xnlfJ)
(A.11)



A.2 Parameter Estimation 

The EM algorithm fits our model to data by finding values for the model parameters 

that maximize the expected data log likelihood (A.lO). The model parameters are: 

1. the grid translation, p, 

2. the transformation matrix, W, which specifies the orientation of the grid, 

3. the grid mark values, r~, , ,  J = 1.. . d and iJ = 1. .  . MJ that determine the 

component means, q,, a = 1 . . . M ,  

4. the priors, p ,, , , J = 1 . . . d and i J = 1 . . . MJ that determine the mixing 

coefficients T,, a = 1 . . . M, and 

5. the number of grid mark values in each direction, Mj ,  J = 1..  . d.  

The noise variance a2 is not fit to data, by is selected to control model complexity 

as measured by the entropy 

(A. 12) 

Choosing a2 large will produce low complexity models with low H values. Con- 

versely, choosing a2 small will produce high entropy models with many components. 

A.2.1 Transform Optimization 

To optimize the transform related parameters, we find the center p and orientation 

W of each quantizer grid that maximizes the likelihood (A.lO). The minimum cost 

estimators for the grid center place the grid at  the mean of the data. 

The optimal transform Wo is a member of the special orthogonal group in d 

dimensions, SO(d). For background on group theory see [Ham62]. The group has 

(8 - d ) / 2  parameters. Consider a curve in the group W(X), X E R that passes 



through Wo a t  X = 0, but is otherwise arbitrary. Maximizing the likelihood (A.lO) 

along such a curve yields 

where we have used the orthogonality of W to simplify the expression. Defining the 

matrix 
/ \ 

allows us to write (A.14) as 

The derivative along W(A) is 

(A. 17) 

where the Lj are the generators of the Lie algebra so(d) tangent to the group a t  the 

identity. The cj are scalars determined by the specific curve. Postmultiplying Lj 

by Wo moves the tangent vectors from the identity to Wo. Substituting (A.17) into 

(A.16) and using the fact that we consider any curve through Wo, hence arbitrary 

cj, we recover 
8 - d  

Trace[LjWoQ] = 0 for j = 1 .. . - . 
2 

(A.18) 

Since the Lj's are antisymmetric, (A.18) requires that WoQ is symmetric. This 

symmetry condition and the orthogonality condition, WTW = I, uniquely determine 

W. 

Alternately, we can derive the symmetry condition by examining how the like- 

lihood changes with changes in elements of W. W is constrained to be orthogonal, 

so we minimize the constrained likelihood (dropping terms that do not depend on 

w > 



where WK is the Kth column of the W matrix and q , ~  is the Kth coordinate of q,. 

The change in likelihood with respect to a change in one or more elements of WL is 

where 6WL = [6WIL, 6W2L,.. . , 6WdLIT is a vector of small, arbitrary changes in W. 
Since W is orthogonal, Wz SWL + 6Wz WL = 0. Consquently, the terms containing 

qaKqaL cancel and the above equation simplifies to 

At a maximum of the likelihood, 6Lc is zero. Since the change in WL is arbitrary, 

this means the term in parenthesis must be zero. Post-multiplying by W j  and using 

the orthgonality of W yields 

or QW is symmetric 
T T Q W = W  Q (A.22) 

where Q is given by (A.15). 

The symmetry condition (A.22) along with the orhogonality condition uniquely 

defines the coding optimal transform (COT). The transform W contains d x g ele- 

ments, where d is the data dimenision and g 5 d are the number of scalar quantiz- 

ers with more than one reproduction value. Therefore, we require dg equations to 

uniquely specify W. The symmetry condition (A.22) provides g(g - 1)/2 + (d - g)g 

equations and the orthogonality condition, WTW = I, provides g(g+ 1)/2 equations 

for the rquired total of dg equations. 

A.2.2 Likelihood in Transform Coordinates 

To determine the rest of the model parameters, it is easier to work in the transform 

coordinates defined by W. Hence, we rewrite the likelihood using y(n) = WT(xn - p) 



where p(yla) = N(q,, a21). Note that in the limit that the noise variance goes to 

zero, p(y) = p(s). Since WTW = I, the two forms for the data log likelihood, (A.lO) 

and (A.23), are equivalent. 

Next, we write p(a1y) in terms of the priors of the grid mark values and the 

transform coefficients. The transform coefficients are y?) = WFz,, where W j  is the 

Jth column vector of W. 

Replacing the sums over a in (A.23) with corresponding sums over the grid values 

yields 

To keep the equations short in the derivation below, we will show just the first term 

in the square brackets above. The second term is treated identically. Breaking out 

the terms for the last coordinate, d, gives us 



Since xZ1 p (i 1 yy)) = 1 for every coordinate J = 1 . . . d,  (A.26) becomes 

Repeating the above simplification for each remaining coordinate, J = d - 1 . . . l ,  

yields 

A.2.3 Quantizer Optimization 

Maximizing the log likelihood (A.28) with respect to grid value, r ~ k  yields 

The reproduction vectors, qa(il ,..., id) are given by [rlil, . . . , rdidlT. 

The number of grid values MK in each coordinate is influenced by the choice 

of component or noise variance a2. The number of components in each dimension 

is related to the ratio of the data variance in that dimension to the component 

variance. When a2 is small, many components are required to cover the data space, 

so the likelihood maximum will occur at  large values of M and MK. When a2 is 

large, fewer components are needed to maximize the likelihood. 

Next we maximize the likelihood (A.28) with respect to the prior probabilites of 

the grid values. The priors for each coordinate must sum to one. Consequently, we 

maximize the constrained likelihood 

Maximizing (A.30) yields 



Applying the constraint, we find that y~ = - N. Replacing y~ in the above equation 

yields 

The mixing coefficients are calculated from the grid value priors, n,(il,...,id) = n pJiJ . 

A.3 Controling Model Complexity 

Instead of finding the maximum likelihood estimator for the noise variance a2, we 

adjust the variance to control complexity as measured by the entropy (A.12). We 

select a value of a2 that keeps the model entropy below some target value Ho. 

Entropy is influenced by the values of all the model parameters, the transform, the 

grid mark values, the grid mark prior probabilities, and the variance. To keep the 

solution on the constraint surface, H = Ho, small changes in the parameter values 

should cancel each other. 

The variance a2 is an implicit function of W, the pJi , 'S and r J,, 's, J = 1 . . . d and 

iJ = 1 . .  . MJ. So, for given W, pJi,s and r~;,s, we can estimate the (first-order) 

change in a2 necessary to make H = Ho. 

The derivative of H with respect to a2 is 

where hatted parameters (') are those found using the current posterior values and 

non-hatted parameters are those used to calculate the current posterior values. The 

values of pJi are given by (A.31), so (A.34) becomes 



The pJ(ilyJ), i = 1.. . Mj,  are given by 

where y~ = WTx. Taking the derivative with respect to a2, 

Substituting (A.37) into (A.35) and simplifying 

d H  1 1 M~ -=  -- x x x P J ( ~ ~ Y J )  I ~ P J ~  ~ Y Y )  - rJj12 - ~ Y Y )  - rJi12 
do2 2a4NJ=, i= l  

(A.38) 
Substituting this result into (A.33) yields 

A.4 Model and Transform Coder Correspondence 

The EM algorithm provides a template fo deriving a transform coding algorithm 

from this probability model. To achieve hard clustering, we choose choose z(a,  x,) 
to be 

1 p(alxn) > p(7Ixn) VY # a 
0 otherwise 

In this hard clustering model the responsibility for a data value x, is assigned to the 

mixture component with the largest posterior. The final term in the expected log 



likelihood (A. 10) becomes zero since z(a,  x,) In z(a,  x,) = 0 V a ,  n. Consequently, 

(L) reduces to the cost function 

This cost function consists of two terms combined with the Lagrange multiplier 

2a2: the average coding distortion C, En z(a,  x,) llxn - p - Wqa \ I2 and the entropy 

- C, .rr,logn,. This entropy-constrained cost function (A.41) is the same as that 

found by minimizing coding distortion subject to an average bit-rate constraint, as 

we show below. 

This partition (A.40) defines regions 

Rewriting these region definitions in terms of the transform coefficients, y~ = 

WF (x - p) , yields 

Ra(il ,...,id) = {X I 31 E Rlil and 9 2  E R2iz and - . . and y d  E Rdi,) (A.43) 

where 

This is also the optimal partition of the signal space for an entropy-constrained 

transform coder. 

An entropy-constrained transform coder limits compressed signal size to some 

target bit-rate, Ho. 
d MJ 

where lJiJ is the length of the code word for reproduction value r~ ; , .  

The cost of compressing a signal is 

where NJi, are the number of y~ in bin RJiJ. In the hard clustering model, finding 

the model parameters that maximize the likelihood (A.28) is the same as finding 



the transform coder parameters that minimize constrained distortion (A.46). The 

model grid values (A.29) correspond to the optimal scalar quantizer reproduction 

values 

The model grid value priors (A.31) correspond to the prior probabilites of the bins, 

- N K ~ I N .  P K ~  - 
The length of each code word is the logarithm of the associated prior probability. 

Kraft's inequality states that a uniquely decodable code must satisfy 

We add this constraint to (A.46), using Lagrange multipliers y~ 

If we do not constrain the code lengths to be integers, we can take the derivative of 

the cost with respect to the code lengths. 

Applying Kraft's inequality yields y~ = 1/ In 2. The optimal code lengths are 

Using optimal code lengths, the average bit-rate becomes 

which is the entropy. The entropy constraint determines the number of reproduction 

values KJ in each scalar quantizer. The rate or entropy terms in (A.46) move the 

partition away from the minimium distortion solution, so that reproduction values 

with low prior probabilities may have no data items assigned to them. Reproduction 

values with pJi = 0 can be removed from the coder, reducing the value of Kj. 

Consequently, selecting a small entropy Ho produces small quantizers and low bit- 

rate coders. 



Substituting the solution for lJi into the cost equation (A.46) yields 

where we select the Lagrange multiplier A to enforce the entropy constraint. The 

variance a2 in (A.41) corresponds to the Lagrange multiplier A. 

A.5 COT for Gaussian Data 

The optimal coding transform for Gaussian data is the PCA transform or KLT. 

For zero-mean d dimensional Gaussian data, x, p(x) = N(0,  C), where C is the 

covariance matrix. The density of the transform coefficients, y = WT(x - p), is 

To proceed, we need to find QW in terms of the grid mark values, r, and trans- 

form coefficients, y. QW is given by 

The value in the Kth row and Jth column, VK # J is 

where q , ~  is the Kth coordinate of q,. Now q , ~  = rKiK  and WF(2 - p) = Y J .  

Making these substitutions and replacing the sums over a with the corresponding 

sums over iJ and the integrals over R, with the corresponding integrals over Rj;,, 

for J = 1 . . . d, yields 



Repeating this process for K = J, we find the tha diagonal elements of QW are 

If W is the PCA transform, it diagonalizes C and the density on y is 

Substituting (A.56) into the equation for an element of QW (A.54) yields 

where gJ is the mean of the Jth coefficient. 

The r ~ i ~  that minimize the coding distortion (A.41) are given by 

Subsituting (A.58) into (A.57) yields 

Since QW is symmetric, the PCA transform is the optimal transform for coding 

Gaussian data. No high resolution approximations are required to achieve this result. 

In addition, the partition or encoder need not minimize mean squared coding error, 

so this result also holds when the quantizers are designed using entropy penalized 

cost functions. 



Appendix B 

Selecting Entropy for Adaptive 

PCA 

Adaptive PCA models data as a collection of low-dimensional hyperplanes embed- 

ded in a high dimensional observation space and corrupted with spherical noise. We 

control model complexity by selecting a single global variance, a2, for the noise con- 

tribution. Choosing this noise variance is equivalent to selecting an entropy penalty. 

Our evaluations show that entropy-constrained adaptive PCA models have the po- 

tential to accurately model high-dimensional real-world data, even when training 

data is sparse. 

An important aspect of adaptive PCA modeling is the selection of an appropriate 

noise variance, or equivalently, the entropy penalty. Evaluations performed over a 

range of noise variances show that adaptive PCA models accurately model data by 

conforming to the natural cluster structure at  appropriate choices of noise variance. 

However, when the noise variance is selected too large, the models do not have the 

flexibility to conform to the data structure. When the noise variance is selected too 

small for the available training data, the models have only a few high-dimensional 

components that bridge natural clusters. 

Initially, we attempted to select an optimal value of a2 by measuring modeling 

cost on a validation data set, which consists of data examples not in the training 

set. We tested models developed using different values of a2. The model with the 

lowest validation set cost indicates the optimal noise variance. 

This method for selecting a2 performs well on artificial data that is generated 

from a PCA model, but poorly on real-world data. The PCA model is based on the 



assumption that the measured data x is generated from a low-dimensional source 

s, embedded in the observation space with translation p and transform W, and 

corrupted with additive Gaussian noise. Consequently, the observed data is given 

by 
x =  W S + ~ + €  (B.1) 

where s N N(0,  I )  and E N N(0,  $1) .  If we order the eigenvalues of x from largest 

to smallest, beyond some dimension d they will plateau a t  the variance p2 of 6 .  The 

validation set method selects noise variances o2 close to the value of p2. However, the 

eigenvalues of real-world data typically do not reach some plateau. Consequently, 

the validation set method selects noise variances that are small, but which result in 

nearly full-dimensional and under-constrained models. 

To illustrate the different behaviors of artificial and real-world data, we perform 

texture segmentation tasks on both types of data. The real texture data consists 

of 9 x 9 pixel blocks sampled from four texture source images. The source textures 

are images of dense leaves, coarse cloth, marble, and paper. Figure B.l shows the 

eigenvalues for these four source images. We calculated these eigenvalues by first 

dividing each source image into 9 x 9 blocks, then removing the data mean and 

performing singular value decomposition (SVD) . 
The artificial texture data was generated according to the PCA model (B.l) using 

the means, eigenvectors, and eigenvalues of the source textures. We decomposed 

each source imaged into 9 x 9 blocks to form 81 dimensional vectors. The translation 

p is the mean of these blocks. We then removed the mean and performed SVD 

on the image blocks to calculate the matrix of eigenvectors U and eigenvalues A. 

To determine the dimension, d, we retained the largest eigenvalues to account for 

90% of the total variance. The variance floor $ is calculated as the mean of the 

discarded eigenvalues. The transform W = u F ~  where the columns of u are the 

eigenvectors associated with the leading d eigenvalues and I' = A - p21 are the d 

leading eigenvalues minus p2. Figure B.l also shows the eigenvalues of the artificial 

data. The floor variances and dimensions for the four textures are: leaves p2 = 250, 

d = 27, cloth p2 = 268, d = 35, marble p2 = 213, d = 52, and paper p2 = 2.25, 

d = 28. 

For both the real and artificial data sets, we generated a 1000 vector training 

file, 500 vector validation file, and 2500 vector test file. For the real data, we 
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Figure B.1: Eigenvalues of real and artificial textures. Real (sampled) texture eigenvalues are

shownby solidline. The leading eigenvaluesof the artificial textures are the same as the real
texture values. The trailing eigenvalues, shown by dotted line, have been replaced by a noise
variance equal to their mean value.

sampled blocks from the source images starting at random offsets. To generate

artificial texture blocks, we drew an s from a d dimensional unit variance Gaussian

distribution, then transformed and translated it using Wand J-L.We then added

Gaussian noise drawn from an 81-dimensional spherical Gaussian distribution with

variance p2 to form a data vector x. Figure B.2 shows the test data organized into

maps for visualization.

We trained adaptive PCA models for a range of noise variances a2 using the

validation set to select model size. For each model, we recorded the validation

set modeling cost; these are shown in Figure B.3. The adaptive PCA algorithm

produced accurate models with the correct number of components and good seg-

mentation accuracy for a range of noise variances,50002:a2 2:150for the artificial

texture data and 3000 2: a2 2: 450 for the sampled texture data.

For the artificial texture data, the validation set cost has a minimum at a2 = 270

(next larger value tested was 360 and next smaller value was 202), which agrees well

with the noise variances p2 of three of the textures (268, 250, 213). The model

at this noise variance has four components and segments the test image accurately
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(b) Artificial

Figure B.2: Texture Test Data. Figure (a) shows data sampled from one offour textures, dense

leaves (dark), cloth (coarse texture), marble (gray and white), and paper (light). Figure (b) shows
artificial data generated from PCA model and first and second order statistics of texture images.

with correct texture classification of over 95%. For the sampled texture data, the

validation set cost minimum is at a2 = 1.3 (next larger value tested was 1.7 and next

smaller value was 0.75). At this low noise variance, the model has two components:

one 81 dimensional component that represents the cloth, leaves, and marble textures

and one 52 dimensional component that represents the paper texture. However, at

higher noise variances, 3000 ~ a2 ~ 450, the model has four components and

segments the image with better than 95% accuracy.

Selecting the noise variance to minimize modeling cost of a separate validation

set results in values that are too small when the data eigenvalues do not plateau

at some noise floor. However, evaluations performed on texture data indicate that
models conform to the data structure when the noise variances is chosen at or

slightly below the point where the model size is largest. Figure B.4, which contains

a plot of component impurity Hp and abundance Ha for the real texture data,

shows that classification ability is best at noise variances where the components are

most abundant. Investigating the relationship between model size and component

dimension for different choices of noise variance may lead to effective methods of

entropy penalty selection.
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Figure B.3: Validation set cost for artificial and sampled texture data. Validation set cost plotted

against logio (j2 with artificial data cost in red and sampled data cost in blue. Circles indicate cost
minima.
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Figure B.4: Component impurity (red) and abundance (green) for real texture data. Circles
indicate means and error bars indicate standard deviation of ten models trained from different

initializations.
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