
A Framework for Representing

Non-Stationary Data

with Mixtures of Linear Models

Cynthia Archer

B.S. Electrical Engineering, University of Illinios (1982)

M.S. Computer Science, Oregon Graduate Institute (1998)

A dissertation submitted to the faculty of the

OGI School of Science & Engineering

Oregon Health & Science University

in partial fulfillment of the

requirements for the degree

Doctor of Philosophy

in

Computer Science and Engineering

October 2002

@ Copyright 2002 by Cynthia Archer

All Rights Reserved

The dissertation "A Framework for Representing Non-Stationary Data with Mix-

tures of Linear Models" by Cynthia Archer has been examined and approved by the

following Examination Committee:

Todd K.
Professor
Computer Science and Engineering
Thesis Research Adviser

Andrew Fraser
Associate Professor
Systems Science
Portland State University

David dasterkeld 8' -
Assistant Professor
Computer Science and Engineering

EZC Wan
Associate Professor
Electrical and Computer Engineering

Dedication

To my children, Isaac and Iris

Contents

. Dedication iv

. Abstract xiv

. 1 Introduction 1

. 1.1 Overview 2
. 1.2 Adaptive Transform Coding 2

. 1.3 Adaptive PCA 4
. 1.4 Organization 5

. 1.4.1 Statistical Framework (chapter two) 5
. 1.4.2 Coding Optimal Transform (chapter three) 5

1.4.3 Fixed-rate Adaptive Transform Coding (chapter four) 6
1.4.4 Entropy-Constrained Adaptive Transform Coding

. (chapter five) 6
. 1.4.5 Variable Dimension Adaptive PCA (chapter six) 7

1.4.6 Entropy Constrained Adaptive PCA (chapter seven) 7

. 2 Statistical Framework 9

. 2.1 Latent Data Model 9
. 2.2 Hard-clustering Algorithms 12

. 2.3 Algorithms from Latent Data Framework 13
. 2.3.1 K-means Clustering and Vector Quantization 13

. 2.3.2 Principal Component Analysis 15
. 2.4 New Algorithms from Our Framework 17

. 3 The Coding Optimal Transform 19
. 3.1 Introduction 20

. 3.2 Transform Coder Model 20
. 3.3 Optimal Transform Coding 24

. 3.3.1 Partition Optimization 24
. 3.3.2 Transform Optimization 25
. 3.3.3 Quantizer Optimization 27

. 3.4 Implementation 28
. 3.4.1 Coding Optimal Transform Algorithm 28

. 3.4.2 Quantizer Algorithms 29
. 3.5 Experimental Results 30

. 3.6 Discussion 34

. 4 Fixed-Rate Adaptive Transform Coding 35
. 4.1 Introduction 36

. 4.2 Probability Models for Transform Coding 37
. 4.3 Adaptive Transform Coding Algorithm 41

. 4.3.1 Partition Optimization 41
. 4.3.2 Transform Optimization 42
. 4.3.3 Quantizer Optimization 44

. 4.4 Adaptive Transform Coding Results 45
. 4.5 Summary 47

5 Entropy-Constrained Adaptive Transform Coding 50
. 5.1 Introduction 50

. 5.2 Probability Models for Transform Coding 52
. 5.3 Adaptive Transform Coding Algorithm 56

. 5.3.1 Partition Optimization 56
. 5.3.2 Transform Optimization 58
. 5.3.3 Quantizer Optimization 60

. 5.4 Algorithm Evaluation 61
. 5.4.1 ' Evaluation on Benchmark Images 62

. 5.4.2 Evaluation on Image Database 63
. 5.5 Summary 67

. 6 Variable Dimension Local PCA 70
. 6.1 Introduction 70
. 6.2 Background 71

. 6.3 Variable Dimension Local PCA 72
. 6.4 Experimental Results 74

. 6.5 Summary 75

. 7 Entropy-Constrained Adaptive PCA 76
. 7.1 Introduction 77

. 7.2 Adaptive PCA Model 78
. 7.3 Entropy-Constrained Adaptive PCA 82
. 7.3.1 Adaptive PCA Cost Function 83
. 7.3.2 Adaptive PCA Model Fitting 84

. 7.4 Algorithm Implementation 86
. 7.4.1 Deterministic Annealing 87

. 7.4.2 Random Initialization 88

. 7.4.3 Iterative Pruning 88
. 7.4.4 Training Method Evaluation 89

. 7.5 Evaluation 93
. 7.5.1 Evaluation Criteria 93

. 7.5.2 Visual Evaluation of Model Quality 95
. 7.5.3 Quantitative Evaluation of Model Quality 99

. 7.6 Summary 106

. 8 Summary 109

. Bibliography 111

. A Entropy-Constrained Transform Coder Derivation 115
. A . 1 Probability Model for Transform Coder 115

. A.2 Parameter Estimation 119
. A.2.1 Transform Optimization 119

. A.2.2 Likelihood in Transform Coordinates 121
. A.2.3 Quantizer Optimization 123

. A.3 Controling Model Complexity 124
. A.4 Model and Transform Coder Correspondence 125

. A.5 COT for Gaussian Data 128

. B Selecting Entropy for Adaptive PCA 130

. Biographical Note 135

vii

List of Figures

. 1.1 Summary of Transform Coding Chapters 7
. 1.2 Summary of Adaptive PCA Chapters 8

2.1 PCA Model. Structure of latent variable space, S, and mapping to observed space,
X. The data density in the latent space consists of a single three dimensional

Gaussian. This latent data is mapped to the observed data space by an orthogonal

transform, W, which stretches and rotates the data. 10
2.2 Dimension Reduction via PCA. PCA reduces the dimension of data x by project-

ing it to hyperplane defined by the PCA transform U. The reconstruction distance
or dimension reduction error is the orthogonal distance between the data point

. and the hyperplane. 15

3.1 Orientation of quantizer grid in signal space. The quantizer reproduction vectors
q,, a = 1. . . M, lie at the vertices of a rectangular grid. The grid is oriented to

the signal vectors x (indicated by the gray area) with orthogonal transform, W. 21
3.2 Structure of latent variable space, S , and mapping to observed space, X. The

data density in the latent space consists of a mixture of delta functions where the

mixture components, q,, are constrained to lie at the vertices of a rectangular
grid. This grid is mapped to the observed data space by an orthogonal transform,

. W, and corrupted with additive Gaussian noise. 22
3.3 Transform Coding a Data Vector. Projecting data vector x with transform W

yields coefficient values W ~ X = s1 and WTX = 32. The data space is partitioned

into subregions with boundaries indicated by dotted lines. Coefficient sl is in

subregion RI1 and s2 is in subregion R22, hence x is represented by reproduc-

tion vector q, = [rll, rZ2lT. The region R, associated with q, (shaded) is the
. intersection of RI1 and RZ2. 25

3.4 Comparison of COT and KLT. The quantizer on the left is oriented with the

KLT, the one of the right with the COT. Data vectors are indicated with -'s. and
. the reproduction vectors are indicated with +'s. 31

3.5 Classic image compression benchmark images. Barbara is a photograph of a
seated women wearing striped clothing. Goldhill is a photograph of a row of

. houses in a hillside village.. 32
3.6 Entropy-constrained compression: SNR versus entropy for Barbara and Goldhill

. test images. 33

...
Vll l

3.7 Fixed-rate compression: SNR versus bit-rate for Barbara and Goldhill test im-
ages.

4.1 Structure of latent variable space, S, with single grid. The density on s consists of

a mixture of delta functions where the mixture components, q,, are constrained
to lie at the vertices of a rectangular grid. The grid is centered at 11 and is defined
by the s axes and a set of grid mark values {rJi), where r j i is the i th grid mark

along the s axis.
4.2 Fixed-rate adaptive model : Structure of latent variable space, S , and mapping (in

hard clustering limit) to observed space, X. The mixture components, qkrn), are
constrained to lie a t the vertices of the Mth grid. Each grid has the same number
of components, K: = 8. The Latent data is mapped to the observation space by
orthogonal transforms, w (~) and corrupted with additive Gaussian noise. . . .

4.3 Transform Coding a Data Vector. Projecting data vector x with transform W

yields coefficient values WTX = sl and WTX = 32. The data space is partitioned
into subregions with boundaries indicated by dotted lines. Coefficient sl is in

subregion Rll and s2 is in subregion R22, hence x is represented by reproduction
T vector q = [rll,r22] .

4.4 Data Space Partition. Partition of a two dimensional data space with two coders.
Both coders consists of a 2 x 1 grids The boundary between the two coders, which
partitions the data space into R(') and ~ (~ 1 , is shown by the heavy black line.
Subregion boundaries are indicated with dotted lines. The diamonds along the

transform axes indicate placement of reproduction values.
4.5 Compressed Image SNR. The x is our coding optimal partition (CLBG), o local

PCA partition with dimension eight (RDP), k-means clustering (EDP), and + is

global PCA. The dotted line values are local PC A results from [DH95]. Errorbars
. indicate standard deviation of 8 trials.

4.6 Test image compressed to 0.5 bpp. The is EDP transform coding, o is RDP
transform coding, x is CLBG transform coding. Errorbars indicate standard

. deviation of eight trails.

4.7 Sections from a test image compressed to 0.5 bpp. From top to bottom, orig-

inal image, image compressed using global PCA transform coding, and CLBG
. transform coding with 32 regions.

5.1 Structure of latent variable space, S, with single grid. The density on s consists of
a mixture of delta functions where the mixture components, q,, are constrained
to lie at the vertices of a rectangular grid. The grid is centered at q and is defined
by the s axes and a set of grid mark values {rJi), where rJi is the ith grid mark

. along the s J axis.

5.2 Nonstationary data model : Structure of latent variable space, S, and mapping
((in hard clustering limit) to observed space, X. The mixture components, q:),

are constrained to lie at the vertices of the Mth grid. Latent data is mapped to the

observation space by orthogonal transforms, ~ (" ' 1 and corrupted with additive

. Gaussian noise. 54
5.3 Transform Coding a Data Vector. Projecting data vector x with transform W

yields coefficient values WTX = s1 and WTX = s2. The data space is partitioned
into subregions with boundaries indicated by dotted lines. Coefficient sl is in

subregion Rll and s2 is in subregion R22, hence x is represented by reproduction
T vector q = [rll ,r22] . 57

5.4 Data Space Partition. Partition of a two dimensional data space with two coders.

Coder 1 consists of a 3 x 1 grid and coder 2 consists of a 2 x 1 grid. The boundary
between the two coders, which partitions the data space into R(') and ~ (~ 1 , is
shown by the heavy black line. Subregion boundaries are indicated with dotted
lines. The diamonds along the transform axes indicate placement of reproduction
values. 58

5.5 Comparison of performance of global transform coders. Plot shows signal-to-

noise ratio versus entropy for Barbara image for global transform coders with

entropy-constrained quantizers and the COT (circle), PCA transform (square),
or DCT(triang1e). 63

5.6 Comparison of compression performance of adaptive coding with 16 local trans-

form coders to global transform coding. Signal-to-Noise Ratio versus entropy

for Barbara image where adaptive COT based coder results are indicated with
open circles, global COT with solid circles, adaptive DCT based coder with open

triangles and global DCT with solid triangles. 64
5.7 Pseudo-color SAR image of Lisbon, Portugal 65
5.8 Signal-to-Noise Ratio versus entropy for Lisbon image. Compression performance

of adaptive coding with approximately 57 local transform coders to global trans-

form coders developed for the test image. Solid circles are for COT based global

coder and solid triangles indicate the DCT based global coder. The bit-rate for
the global coders is the entropy plus overhead. Open circles are the COT based
adaptive coder and open triangles are the DCT based adaptive coder. The lines

pass through the means of the seven trials a t each bit-rate. The bit-rate for the
. adaptive coders is just the entropy. 66

6.1 Non-stationarity of image data demonstrated with Barbara benchmark image.
The characteristics for three regions, smooth taken from the floor, stripe taken
from the women's slacks, and hatch taken from the wicker chair, are shown on
the right. The principal eigendirection is the same for all three regions, but the
second and third eigenvectors capture patterns that are representative of each
region. The number of high-variance eigendirections, which determines the local

. dimension, varies between regions. 72

6.2 Dimension reduction of image blocks from 64 to 8 dimensions. Plot shows SNR
for local PCA with different numbers of regions. Results for fixed local dimension
are shown with dashed line and variable local dimension with solid line. 74

7.1 Adaptive PCA Model. Structure of latent variable space, S, and mapping to

observed space, X. The data density in the latent space consists of a three

Gaussians. This latent data is mapped to the observed data space by orthogonal
transform, W, which stretch and rotate the data. 79

7.2 Mixture of Five Gaussians Test Data. Scatterplot of artificial data set used for
testing. Data consists of 400 three-dimensional points drawn from a mixture of
five Gaussians. Colored lines indicate the principal eigenvectors of each compo-
nent and the number of lines corresponds to the dimension. Data is projected to

the two leading eigendirections. 90
7.3 Selected model size for different training methods. Plot (a) shows model size for

entropy-constrained vector quantizer and plot (b) for entropy-constrained adap-

tive PCA. Models were trained using deterministic annealing (green), random
. initialization (red) and iterative pruning (blue). 91

7.4 Clustering with Adaptive PCA. Two adaptive PCA models, one with five and
one with six model components. Colors indicate assignment of data points to

model components. Components conform to the natural cluster structure without
bridging clusters. In the right-hand scatterplot, one large clusters is represented

. by two components. 92
7.5 Hard-Clustering GMM Models with Different Training Methods. Scatterplots

show the assignment of data points to model components where each model com-
ponent is represented with a different color. Scatterplot (a) shows a model ini-

tialized with five randomly selected data vectors. Scatterplot (b) shows a model
initialized with forty randomly selected data vectors followed by iterative prun-

ing down to five components. The model developed via iterative pruning closely
. matches the natural clusters. 92

7.6 Columbia River Salinity and Temperature Data. Scatterplot of salinity and tem-

perature a t largest diurnal tidal flood and temperature a t deepest diurnal ebb.
Temperatures have been normalized by the estimated difference between the
ocean and river temperatures. Colors indicate different classes identified from

visual examination of the time series. The red and cyan regions may contain
. more than one class. 96

7.7 Clustering Examples for ECVQ, LPCA, HGMM, and APCA. Scatterplot (a)
shows ECVQ model clustering with thirteen model components and noise variance
of 0.5. Scatterplot (b) shows LPCA model clustering with seven components

and a target dimension of one. Scatterplot (c) shows HGMM model clustering
with five model components. Scatterplot (d) shows APCA model clustering with
seven components and noise variance of 0.5. Each color and symbol combination

. represents a different model component. 98

7.8 Texture Test Data. Data consists of 81-dimensional vectors formed into 9 x 9
blocks and organized into a map for visualization. Each block sampled is from
one of four textures, dense leaves (dark), cloth (coarse texture), marble (gray and

. white), and paper (light). 100
7.9 Selected model size for different training set sizes. Plot (a) shows average model

size for ECVQ and plot (b) shows average model size for APCA (circles) and
HGMM (squares). The HGMM results are plotted at 1 for comparison purposes.
The 500 and 200 vector training results for HGMM are identical. Models were
trained using 1000 vector (green), 500 vector (red) and 200 vector (blue) set

sizes. Error bars indicate maximum and minimum model size for ten different
initializations. The correct model size of four is indicated by the dotted line. . . 101

7.10 Component impurity for different training set sizes. Plot (a) shows H, for ECVQ
and plot (b) shows H, for APCA (circles) and HGMM (squares). HGMM results

are plotted at 1 for comparison purposes. Models were trained using 1000 vector
(green), 500 vector (red) and 200 vector (blue) set sizes. Error bars indicate
standard deviation over ten different initializations. The 500 vector and 200

. vector HGMM results are identical. 103
7.11 Component Abundance for different training set sizes. Plot (a) shows Ha for

ECVQ and plot (b) shows Ha for APCA (circles) and HGMM (squares). HGMM
results are plotted at 1 for comparison purposes. Models were trained using 1000

vector (green), 500 vector (red) and 200 vector (blue) set sizes. Error bars indicate
standard deviation for ten different initializations. The 500 vector and 200 vector

. HGMM results are identical. 104
7.12 Normalized Mutual Information for different training set sizes. Plot (a) shows

N M I for ECVQ and plot (b) shows N M I for APCA (circles) and HGMM

(squares). HGMM results are plotted at 1 for comparison purposes. Models

were trained using 1000 vector (green), 500 vector (red) and 200 vector (blue) set
sizes. Error bars indicate standard deviation for ten different initializations. The
500 vector and 200 vector HGMM models each have a single component, so the

. N M I values are both zero. 105
7.13 Texture Segmentation with 200 vector training set. Map (a) on the left shows

ECVQ model segmentation and Map (b) show APCA model segmentation. Both
. models were developed on a 200 point training set. 106

7.14 Texture Segmentation with 1000 vector training set. Map (a) on the left shows

HGMM model segmentation and Map (b) show APCA model segmentation. Both
. models were developed on a 1000 point training set. 107

A.l Structure of latent variable space, S, with single grid. The density on s consists of

a mixture of delta functions where the mixture components, q,, are constrained
to lie at the vertices of a rectangular grid. The grid is centered at q and is defined
by the s axes and a set of grid mark values {rji), where rji is the i th grid mark

. along the s J axis. 1 16

A.2 Structure of latent variable space, S, and mapping to observed space, X. The
data density in the latent space consists of a mixture of delta functions where the
mixture components, q,, are constrained to lie at the vertices of a rectangular
grid. This grid is mapped to the observed data space by an orthogonal transform,

. W, and corrupted with additive Gaussian noise. 118

B . l Eigenvalues of real and artificial textures. Real (sampled) texture eigenvalues are
shown by solid line. The leading eigenvalues of the artificial textures are the same
as the real texture values. The trailing eigenvalues, shown by dotted line, have

been replaced by a noise variance equal to their mean value. 132
B.2 Texture Test Data. Figure (a) shows data sampled from one of four textures,

dense leaves (dark), cloth (coarse texture), marble (gray and white), and paper
(light). Figure (b) shows artificial data generated from PCA model and first and
second order statistics of texture images. 133

B.3 Validation set cost for artificial and sampled texture data. Validation set cost
plotted against loglo cr2 with artificial data cost in red and sampled data cost in
blue. Circles indicate cost minima. 134

B.4 Component impurity (red) and abundance (green) for real texture data. Circles
indicate means and errorbars indicate standard deviation of ten models trained

from different initializations. 134

Abstract

A Framework for Representing Non-Stationary Data

with Mixtures of Linear Models

Cynthia Archer

Supervising Professor: Todd K. Leen

In this thesis, we present a latent data framework that facilitates formalizing ob-

servations of data behavior into statistical models. Using this framework, we derive

two related models for a broad category of real-world data that includes images,

speech data, and other measurements from natural processes. These models take

the form of constrained Gaussian mixture models. Our statistical models lead to

new algorithms for adaptive transform coding, a common method of signal com-

pression, and adaptive principal component analysis, a technique for data modeling

and analysis.

Adaptive transform coding is a computationally attractive method for compress-

ing non-stationary multi-variate data. A classic transform coder converts signal

vectors to a new coordinate basis and then codes the transform coefficient values

independently with scalar quantizers. An adaptive transform coder partitions the

data into regions and compresses the vectors in each region with a custom transform

coder. Prior art treats the development of transform coders heuristically, chaining

sub-optimal operations together. Instead of this ad hoc approach, we start from

a statistical model of the data. Using this model, we derive, in closed form, a

new optimal linear transform for coding. We incorporate this transform into a new

xiv

transform coding algorithm that provides an optimal solution for non-stationary

signal compression. We evaluate our adaptive transform coder on the task of image

compression. Our results show that a single adaptive transform coder can com-

press database images with quality comparable to or better than a set of current

state-of-the art coders customized to each image in the database.

Adaptive principal component analysis (PCA) is an effective modeling tool for

high-dimensional data. Classic PCA models high-dimensional data by finding the

closest low-dimensional hyperplane to the data. Adaptive or local PCA partitions

data into regions and performs PCA on the data within each region. Prior art under-

estimates the potential of this method by requiring a single global target dimension

for the model hyperplanes. We develop a statistical model of the data that allows

the target dimension to adjust to the data structure. This formulation leads to a

new algorithm for adaptive PCA, which minimizes dimension reduction error sub-

ject to an entropy constraint. The entropy constraint, which derives naturally from

the probability model, effectively controls model complexity when training data is

sparse. We evaluate our adaptive PCA models on two tasks; exploratory data analy-

sis of salinity and temperature measurements from the Columbia River estuary and

texture image segmentation. Our results show that entropy-constrained adaptive

PCA conforms to the natural cluster structure of data better than state-of-the-art

modeling met hods.

Chapter 1

Introduction

Signal classification, or recognition, includes a wide range of information processing

problems. Included in this field are diverse and compelling topics such as speech

recognition, detection of machinery faults, image compression, and medical diag-

nosis. Computer-based solutions to these problems have generally proved difficult

since the data are highly complex and closed form solutions rarely exist. Com-

mon approaches to signal classification make substantial simplifying assumptions.

One such assumption is that signals are wide-sense stationary, that is, their first

and second order statistical properties do not change across time or space [Haygl].

However, many signals of practical interest are not stationary. In digital images,

different image regions, e.g. a region showing a tree vs. a region showing a human

face, exhibit different statistical properties. In human speech, statistical properties

vary between phonemes.

Solution strategies for non-stationary signal classification generally fall into one

of two categories: development of complex non-linear models that capture the chang-

ing signal characteristics over the whole data space, or development of a collection of

simple linear models that assume the signal is wide-sense stationary in small regions

of the data space. Non-linear principal component analysis (PCA) for dimension

reduction [KragI, DC931, implemented with multi-layer auto-associative neural net-

works, is an example of the first approach. Local PCA for dimension reduction

[KL97], which partitions the signal space into regions and performs classic PCA in

each region, is an example of the second approach. The second approach has the

advantage that a collection of linear models is less complex to develop yet performs

better than the non-linear approach.

1.1 Overview

Adopting a statistical framework provides an effective approach to these problems,

as these signals are often well characterized with mixtures of probability densities.

In order to develop appropriate models, we first develop a statistical framework that

allows us to formalize observations of signal behavior into a probability model of the

data of interest. A latent data framework is an effective tool for describing data be-

havior and making model choices. In this framework the observed or measured signal

is derived from some simple underlying distribution. This latent data is mapped

to the observed signal space with some linear transformation and distorted with

noise. Different choices of latent data distribution and mapping produce different

statistical models of the data.

Using this latent data framework, we derive models for a broad category of real-

world data that includes images, speech data, and other measurements of natural

processes. Data of this sort consist of collections of several distinct low-dimensional

patterns embedded in the high-dimensional observation space. These patterns can

be represented mathematically as low-dimensional hyperplanes. We develop two dif-

ferent latent data formulations that result in constrained Gaussian mixture models

(GMM) for data that is comprised of low-dimensional hyperplanes. The first has ties

to data compression and leads us to an algorithm for optimal adaptive transform

coder design. Adaptive transform coding is a computationally attractive method

for compressing non-stationary, multivariate signals. The second has ties to local

and probabilistic formulations of PCA. From this second model, we develop an algo-

rithm for entropy-constrained adaptive PCA, which can be used for data modeling

and analysis. Both the adaptive transform coding and adaptive PCA algorithms

improve on comparable state-of-the-art methods for compression and modeling.

1.2 Adaptive Transform Coding

Transform coders provide a lower complexity alternative to vector quantization.

They are typically used for high bit-rate compression of multidimensional signals

such as images. The Joint Photographic Experts Group (JPEG) standard for image

compression incorporates transform coding [Wa191].

A transform coder converts signal vectors to a new coordinate basis in order to

reduce statistical redundancy between vector components. Separate scalar quantiz-

ers then code each of the transform coefficients. This combination of redundancy

removal and efficient quantization produces a compressed representation but adds

distortion. The goal of transform coding is to minimize coding distortion while

reducing the signal representation below some target size.

Transform coders use one of two types of scalar quantizers: fixed-rate or entropy-

constrained. Fixed-rate quantizers use the same number of bits to code every signal

vector. Entropy-constrained or variable-rate quantizers adjust the number of bits

used to code a signal vector according to its entropy. For the same amount of

coding distortion, variable-rate quantizers provide more compression than do fixed-

rate quantizers and are generally preferred. However, fixed-rate coding is more

robust for applications requiring transmission of the compressed signal over noisy

channels. For more information on signal compression, see Gersho and Gray's text

[GG92].

Classic transform coding assumes that the correlations between signal vector

components are the same everywhere in the signal space. However, most signals of

interest, e.g. digit a1 images, are non-stationary. To capture these local variations

and thereby reduce distortion in the compressed representation, adaptive transform

coding methods partition the signal space into regions and compress the signal vec-

tors in each region with a separate, unique transform coder. However, adaptive

transform coders require substantial space in which to store the coder parameters.

This overhead makes adaptive transform coding ineffective for the compression of

individual signals. Consequently, adaptive transform coding is limited to the com-

pression of databases of related signals, since the overhead can be amortized over

the entire database.

Much prior art treats the problem of designing adaptive transform coders heuris-

tically, chaining sub-optimal operations together in a somewhat ad hoc manner.

For example [CS77, DH95, TB99] all employ partial optimization, combining sub-

optimal space partitioning methods with the PCA transform and (sometimes) opti-

mally designed quantizers. While the PCA transform is traditionally considered the

best linear coding transform, it only minimizes coding error when the data density

is Gaussian.

Our development is unique in that we establish a statistical model for transform

coding that leads to a generalized Lloyd algorithm for both global and adaptive

transform coder design. An essential part of our work is a new orthogonal trans-

form, the coding optimal transform (COT), that minimizes coding error. Our new

design algorithm minimizes compression distortion by concurrently optimizing the

partition of the signal space, the local transforms, and quantizers. We present this

development in three chapters: evaluation of the coding optimal transform for global

transform coding, evaluation of coding optimal partition using PCA based, fixed-

rate, adaptive transform coders, and evaluation of entropy-constrained adaptive

transform coding on a realistic image compression application.

Adaptive PCA

Global PCA models high-dimensional data by finding the "closest" low-dimensional

hyperplane to the data. PCA minimizes the mean-squared dimension reduction error

or reconstruction distance between example data and this hyperplane. To model

non-stationary data, adaptive or local PCA methods partition data into regions and

perform PCA on the data within each region. Adaptive PCA has the potential to be

an effective tool for data modeling in situations where there is insufficient training

data to develop full covariance models, yet simple spherical models provide too little

modeling flexibility.

Despite their success, previous authors [KL97, HRD95, TB99] under-utilize the

potential of adaptive PCA models by choosing a single global target dimension. This

constraint neglects the variability of intrinsic data dimension that is observed in real

world data. Our development is unique in that we develop a statistical model of

the data that permits the local dimension to vary. This formulation leads to a new

algorithm for adaptive PCA, which minimizes reconstruction distance subject to an

entropy-constraint. The entropy-constraint is not introduced in an ad hoc manner,

but is naturally derived from the probability model. This constraint can be used

to control model complexity when training data is sparse. In addition, it allows

the local dimension to adjust to the data structure. Consequently, different model

forms, from spherical to full covariance, can appear in a single adaptive model. This

flexibility allows us to effectively model non-stationary data.

1.4 Organization

This thesis is organized into three primary sections: the statistical framework, adap-

tive transform coding, and adaptive PCA. Chapter two describes our statistical

framework based on a latent data description of the signal of interest. Chapters

three, four, and five cover our adaptive transform coding work. Chapters six and

seven cover our work with variable dimension and entropy-constrained adaptive

PCA.

1.4.1 Statistical Framework (chapter two)

In this first chapter, we present a latent data framework from which we derive our

adaptive transform coding and adaptive PCA algorithms. This framework is an

extension of that presented by Basilevsky [Bas94], Tipping and Bishop [TB99], and

Roweis and Ghahramani [RG99]. This statistical framework can be used to derive

a number of common density models and related signal processing algorithms. We

present three example algorithms: K-means clustering, entropy-constrained vector

quantization, and global PCA.

1.4.2 Coding Optimal Transform (chapter three)

A significant contribution of our transform coding work is the coding optimal trans-

form (COT), which minimizes coding error rather than some other cost function,

such as dimension reduction error. This transform has apparently not been discussed

in the compression literature, although developing an optimal transform coder design

algorithm is impossible without it. We develop optimal global transform coder design

algorithms that incorporate the COT for both fixed-rate and entropy-constrained

compression. In addition, we compare compression performance of COT and PCA

transform based global coders on benchmark images. We found that the COT differs

enough from the PCA transform to provide up to 1 dB improvement in signal-to-

noise ratio (SNR).

1.4.3 Fixed-rate Adaptive Transform Coding (chapter four)

We develop the statistical model and algorithm for optimal &ed-rate adaptive trans-

form coding. However, in order to facilitate comparisons with prior work, we use

PCA transform based coders rather than the COT. The PCA transform does not

minimize coding error and careful implementation is required to avoid convergence

problems. Image compression experiments on both video images and magnetic res-

onance images show that fixed-rate adaptive coders can improve SNR by 2.5 to 3.0

dB compared to global coders and by 0.5 to 3.0 dB compared to other published

fixed-rate methods.

1.4.4 Entropy-Constrained Adaptive Transform Coding

(chapter five)

We develop the statistical model for entropy-constrained transform coding and the

resulting generalized-Lloyd algorithm for optimal adaptive transform coder design.

We then evaluate our algorithm by using it to compress a both benchmark images

and database of synthetic aperture radar (SAR) images. Compression experiments

on benchmark images demonstrate that our coders improve compressed image SNR

by 0.25 to 1.25 dB over adaptive coders that use the Discrete Cosine (DC) and

PCA transforms. Overhead considerations limit adaptive transform coding to the

compression of databases of related signals Our results from the SAR database show

that a single adaptive transform coder with either DCT or COTS can compress

database images with SNRs comparable to those achieved by using a customized

global coder for each image in the database.

Figure 1.1 summarizes the transform coding work presented in chapters three,

four, and five. The first two columns list the algorithm and the associated key

concepts. Each algorithm is found by minimizing a cost function with respect to

the model parameters. The equation number of this cost function is listed in column

three and column four gives the section where the derivation is performed. Column

five gives the figure which summarizes key evaluation results.

Algorithm

I I , V I fixed-rate (local) I optimal partition I Eqn. 4.13 1 4.3.1 I Fig. 4.5

Key Concept I Cost Function I Section I Results I -

Figure 1.1: Summary of Transform Coding Chapters

3.2
3.3.2
3.4.2
3.4.2

global transform
coding (TC)

adaptive TC
variable-rate
adaptive TC

1.4.5 Variable Dimension Adaptive PCA (chapter six)

. . .
Fig. 3.4
Fig. 3.7
Fia. 3.6

We briefly discuss our early work with variable-dimension local PCA that, along with

mixture model
coding optimal transform

fixed-rate quantizers
variable-rate quantizers

coding optimal transform
optimal partition

our compression work, led us to consider a new approach to local or adaptive PCA.

In this work, we develop a resource allocation approach to dimension selection. Our

Eqn. 3.9
Eqn. 3.15
Eqn. 3.24
Eqn. 3.21

algorithm allocates dimensions to different regions so as to minimize the dimension

Eqn. 5.21
Eqn. 5.13

reduction distortion while keeping the average dimension below some target value.

Our results show that allowing the dimension to vary from region to region, instead

5.3.2
5.3.1

of selecting a single global dimension, substantially reduces dimension reduction

Fig. 5.5
Fig. 5.6

error

1.4.6 Entropy Constrained Adaptive PCA (chapter seven)

We present the development of our statistical model for adaptive PCA and the

resulting entropy-constrained algorithm. This algorithm adjusts the model param-

eters to minimize the dimension reduction error between the model and sample

data subject to a penalty on the entropy. We evaluate the modeling quality of our

entropy-constrained adaptive PCA on several data sets: a mixture of five Gaus-

s ian~ , measurements of salinity and temperature in the Columbia estuary, and high-

dimensional image texture data. Adaptive PCA models conform to the natural clus-

ter structure even when the data set is too small to develop accurate full-covariance

models. In addition, comparisons to an entropy-constrained vector quantizer demon-

strate that adaptive PCA models can classify data as accurately as spherical models

while using substantially fewer components.

Figure 1.2 summarizes the adaptive and local PCA work presented in chapters

Figure 1.2: Summary of Adaptive PCA Chapters

six and seven. The first two columns list the algorithm and the associated key

concepts. Each algorithm is found by minimizing a cost function with respect to

Section
6.3

7.2
7.3

Cost Function
Eqn. 6.3

Eqn. 7.12
Eqn. 7.15

Algorithm
variable dimension

local PCA

adaptive PCA

the model parameters. The equation number of this cost function is listed in column

Results
Fig. 6.2

. , .
Fig. 7.12,
7.13, 7.14

Key Concept
allocation of

dimension resources
mixture model

entropy penalty
for complexity control

three and column four gives the section where the model parameter derivation is

performed. Column five gives the figure which summarizes key evaluation results.

Chapter 2

Statistical Framework

In this chapter, we present our latent data framework from which we can derive a

number of common density models and signal processing algorithms. This latent

framework extends that presented by Tipping and Bishop [TB99] for PCA and both

Basilevski [Bas941 and Roweis and Ghahramani [RG99] for factor analysis. This

framework allows us to develop explicit statistical models of the data of interest,

which facilitates the selection and development of effective processing methods. We

first describe the general latent data framework and how it can be used to derive

signal processing algorithms. We then present three example algorithms that fit

into this framework: K-means clustering [Mac67], entropy-constrained vector quan-

tization [CLG89], and principal component analysis (PCA).

2.1 Latent Data Model
The latent data framework is based on the presumption that observed signals are

not as complex as they appear. Instead they have some simple latent structure

that is obscured by linear transformations and noise. Our goal is to recover this

underlying structure in order to reduce the size of the signal representation.

We envision a d dimensional latent data space S, where data from the latent

space is mapped to a d dimensional observation space X. The latent data, s, is

modeled with a simple mixture density of the form

where n, are the mixing coefficients and p(sla) is often a spherical Gaussian or delta

function. The location of each latent mixture component is given by the conditional

10

82 ~
W(S-Y]) + ~

~
Sj X1

83

Figure 2.1: PCA Model. Structure of latent variable space, S, and mapping to observed space,

X. The data density in the latent space consists of a single three dimensional Gaussian. This

latent data is mapped to the observed data space by an orthogonal transform, W, which stretches
and rotates the data.

mean TJa = E[sla]. Previous formulations (e.g. [TB99, RG99]) use a single normal

distribution in the latent space, rather than this more general mixture distribution.

Linear maps with translation /-Laand rotation plus scaling transform Wa embed

the latent data in the observed space, X. The embedded data is corrupted with

additive Gaussian noise, Ea rv N(O, <pa) where <Pais diagonal for factor analysis and

spherical for PCA and K-means clustering. Figure 2.1 illustrates this mapping from

latent to observed space. The observed data generated from a sample s drawn from

latent component a is

x = Wa(s - TJa)+ /-La+ Ea (2.2)

with conditional densities

p(xls, a) = N(/-La+ Wa(s - TJa),<pa) (2.3)

The latent data density and mapping induces a mixture of constrained Gaussian

densities on x of the form

p(x) = J L p(xls, a)p(s!a)1fadsa
M

- L 1fap(xla)
a=l

(2.4)

where 1fa are the same mixing coefficients given in (2.1) and

p(xla) = N(/-Lm ~a) (2.5)

The form of C, is constrained by the latent density and the transform W,. We will

discuss different covariance constraints and resulting models throughout this thesis.

The Expectation-Maximization algorithm (EM) [DLR77] fits parametric proba-

bility models to data by maximizing the log likelihood of the model for some training

data set {x,, n = 1 . . . N). The log likelihood of the data for this family of models

is given by
N M

n= 1
(2.6)

To simplify (2.6), we introduce the the density z(a , x,) over the unknown compo-

nent assianments.
N

r = log (5 z(a, xn) liap(xna))
n=l a=l z(a , xn)

where C, z(a , x) = 1. Using Jensen's inequality to bring the sum over a outside

the logarithm function, we find L is bounded below by the expected log likelihood

with equality when the z(a ,xn) are the posterior probabilities p(alxn) [RG99,

NH981. This choice of z produces soft-clustering models.

The EM algorithm maximizes the likelihood (2.6) by iteratively finding the par-

tition given by the posteriors (E step) and maximizing the model parameters (M
step). The E step updates the posterior probabilities based on the current estimate

of the model parameters.

The M step updates the model parameters so that the expected log likelihood (2.8) is

maximized. The maximum likelihood estimates of the priors ra and the component

means p, are given by

The maximum likelihood estimates of the model covariance matrices C, are found

by solving

where 6C, is a matrix of small arbitrary changes in C,.

2.2 Hard-clustering Algorithms

Many signal processing applications, such a . compression or on-line classification,

benefit from incorporating hard-clustering met hods that assign each data item to

one and only one model component. For example, compression involves finding a

compact representation for data and hard assignments can be coded more efficiently

than posterior probabilities. For exploratory data analysis, hard clustering is easier

to visualize and interpret. On-line and embedded classification applications have

tight memory and computational time constraints. Hard clustering implementations

require less memory and processing time than comparable soft clustering methods

making them more suitable for such applications.

The EM algorithm provides a template for deriving hard-clustering algorithms

from these latent data probability models. To achieve hard-clustering, instead of

the soft clustering provided by p(alx), we choose z(a, x,) to be

z (a , xn) =
1 ~ (a l x n) > p(yIxn) Q'Y # a
0 otherwise

With this hard-clustering model, the final term in the expected log likelihood (2.8)

becomes zero since z(a, xn) In z(a, x,) = 0 V a , n. Choosing hard-clustering (2.13)

and expanding (L) (2.8) using (2.5) yields the cost function

The EM procedure inspires a generalized Lloyd algorithm that iteratively opti-

mizes the partition and model parameters to minimize modeling cost (2.14). The

hard assignments given in (2.13) lead to a partition of the data into regions R, such

that
N

for any function f(x). The parameter estimators are the same as the maximum

likelihood estimators with the posteriors replaced by the hard assignments (2.13).

The equations for the priors become

where N, are the number of data items assigned to component a. The equations

for the means become

The minimum cost estimates of the covariance matricies are found by solving

2.3 Algorithms from Latent Data Framework

A number of commonly used algorithms and density models fit into this latent

data framework, including K-means clustering, entropy-constrained vector quanti-

zation and PCA. K-means clustering and entropy-constrained vector quantization

are commonly used to design vector quantizers or to coarsely cluster data prior to

other processing. PCA is a common technique for reducing the dimension of input

data. In this section, we examine how these common algorithms are derived from

our latent data framework.

2.3.1 K-means Clustering and Vector Quantization

Both Nowlan [Now911 and Chou [CLG89] note the correspondence between a mix-

t ure of spherical Gaussians and vector quantization (VQ) or K-means clustering.

VQs code each data vector with the closest, in terms of some distance metric (e.g.

Euclidean distance), of a small set of reproduction vectors [GG92]. To replicate this

structure, the latent space density becomes a mixture of delta functions

The single transform is the identity matrix, W = I, and the noise is spherical

6 N N(O, oil) . The observed data is given by x = s - q, + p, + c,. The density on

observed data x is therefore a mixture of Gaussians (2.4), with spherical components

p(x1a) = n/(p,, a:I). The noise variance is not fit to data, but is selected to control

model complexity. In the limit that all the noise variances are identical and go to

zero, the EM algorithm for fitting the mixture model reduces to K-means clustering

[Mac671 or equivalently, the Linde-Buzo-Gray (LBG) algorithm for (fixed-rate) VQ

design [LBG80]. Explicit hard clustering is not required, since in the E step, the

posterior probabilites

1
P (Q I X) =

1 + exp (&[~lxn - p71I2 - 202 lnry) - (IIxn - pall2 - 202 lnra)])
(2.20)

become zero or one in the limit that the noise variance goes to zero,

The M step optimizes the prior probabilities r, and component means p, using

(2.16) and (2.17), respectively.

Entropy-constrained VQ [CLG89] is derived from a similar probability model

with identical and non-zero noise variances for all components = 02, Va. In this

case, the observed component densities become

Expanding the cost function (2.14) using (2.22) yeilds the cost function for vector

quantization

The noise variance a2 acts as a LaGrange multiplier combining the mean-squared
1 coding cost, , C, En z(a, x,) (lx, - p, / I 2 , and differential entropy, -r, ln .rr, +

logo2. The differential entropy consists of a discrete entropy term -r, in r, plus

the log of a quantizer bin size $ log 02 [CT91]. Choosing 02 is equivalent to placing

a constraint on the entropy. Note that the entropy constraint arises naturally from

the probability model and is not an arbitrary addition.

The generalized-Lloyd algorithm for entropy-constrained VQ design iteratively

optimizes the partition (encoder) and the model parameters (decoder) [CLG89].

The partition, or assignment of data to components, defines regions

As in the fixed-rate vector quantizer above, the M step optimizes the prior prob-

abilities ra and component means pa using (2.16) and (2.17), respectively. Note

that since the 2 logo2 term does not affect the optimization of the partition or

model parameters, pa and T,, it can be dropped from the cost function to make the

correspondence between this formulation and classic derivations exact.

2.3.2 Principal Component Analysis

Probabilistic formulations of PCA have been developed by several researchers in-

cluding [TB99, Bas94, Row971. PCA reduces the dimension of data by projecting it

to the hyperplane defined by the leading eigenvectors of the data covariance matrix

as illustrated in Figure 2.2. To replicate this structure, the d dimensional latent

data s consists of a single Gaussian, p(s) = N(q, p21) with mean q and variance $.

reconstruction distance

1

Figure 2.2: Dimension Reduction via PCA. PCA reduces the dimension of data x by projecting
it to hyperplane defined by the PCA transform U . The reconstruction distance or dimension

reduction error is the orthogonal distance between the data point and the hyperplane.

The observed data is generated from the latent data via

where p is a translation, W is a rotation and scaling, and E is a noise source. The

embedding transform W has two parts; an orthogonal transform U and a diagonal

stretching transform I' such that W = uI'~. Zero entries in the stretching trans-

form I' suppress variables so that the model dimension q < d. Consequently, I' is

effectively q x q and U is d x q. Following the action of W, the data is smeared

with spherical Gaussian noise h/(O, a21). Figure 2.1 illustrates the data structure

and mapping to the observation space.

The conditional density of x given s is

The latent density and mapping induce a density on the observed data given by

where, without loss of generality, we chose the latent variance p2 to be one. We

make no assumptions concerning the latent mean q.

To simplify the cost function (2.14), we first find the inverse of C = a21+ UrUT.

Applying the Sherman-Morrison-Woodbury formula [GL89] to C yields

with q x q diagonal matrix A = I' + a21. Expanding the cost (2.14) using (2.28)

yields the cost function for PCA

1 The noise variance a2 combines the dimension reduction distortion, En($, -
p)T(I - UUT) (xn - p), and differential entropy, f log JA/02J + f + f in a2. The

differential entropy is the sum of a discrete entropy and the log of a quantizer bin size

[CTSI]. The discrete entropy f log JA/02) + f is the sum of the entropy due to coding

the data with a quantizer of bin size a and half the dimension z . The dimension

term comes from simplifying the Mahalanobis distance Trace[A-'UT(k xn (xn -

p)(x, - / J) ~) U] = q. Choosing a2 is equivalent to choosing the target dimension.

The design algorithm for PCA optimizes the model parameters; there is no

partitioning step, since there is only one component. The component mean p is

given by (2.17). The U transform is constrained to be orthogonal, that is, UTU = I.

Minimizing cost (2.29) with respect to W = U F ~ , while meeting the orthogonality

constraint, yields the relation

u T S = nuT
where S = k x, (x, - p) (x, - p)T is the data covariance [Row97]. The columns of U

are the eigenvectors of the data covariance S and A is a diagonal matrix containing

the leading q eigenvalues of S. The stretching matrix l7 = A - 021.

To find the optimal dimension q, we evaluate the change in cost due to increasing

the dimension by one. If we order the entries in A from largest to smallest, then

increasing the dimension from q - 1 to q results in a change of cost

where Xq is the qth entry in A. Since lnx 5 x - 1, increasing the dimension will

decrease the cost (AC < 0) until Xq = u2. In addition, the model dimension is

constrained to be no larger than the number of stretching values greater than zero,

so A, > a2 . These two conditions set the optimal dimension q equal to the number

of eigenvalues X greater than the noise variance 02.

2.4 New Algorithms from Our Framework

In the next chapters, we develop new algorithms for adaptive transform coding and

adaptive PCA using our latent data framework. Both these algorithms are based

on modeling the data as a collection of hyperplanes, although the underlying latent

data models differ. Adaptive transform coding is based on a discrete latent data

model with the components constrained to lie at the vertices of a rectangular grid.

Adaptive PCA is based on a mixture of spherical Gaussians latent data model. In

both cases, linear transforms embed the latent data in the observation space and

the data is corrupted by spherical Gaussian noise.

Our adaptive transform coding model leads to a generalized Lloyd algorithm

for transform coder design. This algorithm integrates optimization of all transform

coder parameters: the data partition, the transforms, and the quantizers. We d e

scribe the derivation and evaluation of our adaptive transform coding algorithm in

the next three chapters.

Our adaptive PCA model leads to a generalized Lloyd algorithm for adaptive

PCA. This algorithm minimizes dimension reduction distortion subject to a penalty

on model entropy. The entropy-constraint provides complexity control, which allows

our models to conform to the natural cluster structure of data. We describe the

algorithm derivation and evaluation of adaptive PCA in the last chapters.

Chapter 3

The Coding Optimal Transform

In order to develop our adaptive transform coding algorithms, we first had to solve

the problem of optimal global transform coding. This chapter presents our develop-

ment and evaluation of a generalized-Lloyd algorithm for transform coding. Some

of the material in this chapter was published at the Data Compression Conference

in 2001 [ALOla].

We develop a statistical model for transform coding that leads to a new algorithm

that integrates all optimization steps into a coherent and consistent framework. Each

iteration of the algorithm is designed to minimize coding distortion as a function

of both the transform and quantizer designs. Our algorithm is a constrained ver-

sion of the generalized-Lloyd or LBG algorithm for vector quantizer design. The

reproduction vectors are constrained to lie at the vertices of a rectangular grid.

A significant result of our approach is a new transform basis specifically designed

to minimize mean-squared quantization distortion for both fixed-rate and entropy-

constrained coding. For Gaussian distributed data, this transform reduces to the

PCA transform, or equivalently, the Karhunen-Loeve transform (KLT). However, in

general the coding optimal transform (COT) differs from the KLT enough to provide

up to 1 dB improvement in compressed signal-to-noise ratio (SNR) on images. We

describe a practical algorithm that finds the COT for a given signal. In addition, we

present image compression results demonstrating the SNR improvement achieved

with our algorithm relative to KLT based transform coding.

3.1 Introduction

Transform coding is a low-complexity alternative to vector quantization and is

widely used for image and video compression. A transform coder compresses multi-

dimensional data by first transforming the data vectors to new coordinates and then

coding the transform coefficient values independently with scalar quantizers. A key

goal of the transform coder is to minimize compression distortion while keeping the

compressed signal representation below some target size. While quantizers are typi-

cally designed to minimize compression distortion [Llo82, FM84], this is not the case

for the transform. The coordinate transform has been fixed a priori, as in the dis-

crete cosine transform (DCT) used in the JPEG compression standard [Walgl]. The

transform has also been adapted to the signal statistics using the Karhunen-Loeve

transform (KLT) as in recently published transform coding work [DH95, ECG991.

These transforms are not designed to minimize compression distortion, nor are they

designed (selected) in concert with quantizer development. For instance, the design

goal of the KLT is to concentrate signal energy into a few components.

We develop a statistical model for transform coding. This development leads

to a new algorithm for transform coder design that concurrently optimizes both

transform and quantizers. Our algorithm is a constrained version of the Linde-

Buzo-Gray (LBG) algorithm for vector quantizer design [LBG80]. A significant

result of our approach is a new transform basis designed to minimize mean squared

compression distortion. In this chapter, we derive the conditions this coding-optimal

transform (COT) must satisfy to minimize distortion. In addition, we describe a

simple algorithm for determining the transform. We conclude by presenting results

from image compression experiments that compare the compression performance of

COT-based transform coders with KLT-based transform coders.

Transform Coder Model

A transform coder converts a signal to new coordinates and then codes the transform

coefficients independently of one another with scalar quantizers. One can think of a

transform coder as a vector quantizer with the M reproduction vectors constrained

to lie at the vertices of a rectangular grid. The grid is defined by orthogonal axes, S J ,

J = 1 . . . d and d sets of scalar reproduction values, one for each dimension. There

21

are MJ possible reproduction values on the SJ axis, thus the total number of grid ver-

tices is M = I1J MJ. Encoding a d-dimensional data vector with a vector quantizer

requires O(M d) add/multiply operations for the distance calculations and O(M)

compare operations. A transform coder requires O(d2) add/multiply operations for

the transform and naively O(2:J MJ) compare operations. However, efficient binary

search techniques can be used to encode the scalar transform coefficients reducing

the number of compare operations to O(lOg2M).

Figure 3.1: Orientation of quantizer grid in signal space. The quantizer reproduction vectors qco
ex= 1... M, lie at the vertices of a rectangular grid. The grid is oriented to the signal vectors x

(indicated by the gray area) with orthogonal transform, W.

The compression and restoration processes replace each signal vector with one of

a small set of reproduction vectors. The encoder assigns the transform coefficients

of a data vector to codewords. The decoder replaces each codeword with the associ-

ated reproduction value. Figure (3.1) illustrates the structure of a two-dimensional

transform coder. The r values indicate the scalar reproduction values; rJi is the ith

value along the SJ axis. The coordinates of the reproduction vectors, qQ, a = 1. . . M

are combinations of the scalar reproduction values [rli, r2j, . . . , rdkJT, i = 1 . . .M1,

j = 1. . . M2, etc. A reproduction vector qQrepresents all the data vectors in region

RQ of the data space. We will refer to the regions defined by the assignment of

signal values to reproduction values as the partition.

The d x d orthogonal transform, W, defines the orientation of the quantizer grid

in the data space. In the data coordinate basis, the reproduction vectors are given

by W qQ' Conversely, in the transform basis, the data vectors are S = WT X.

To replicate the transform coder structure, we envision the data as drawn from a

22

d dimensional latent data space, S and embedded in an observation or measurement

space X, also d dimensional. The density on the latent space is a mixture of delta
functions

M

p(s) = L 1fa6(s - qa)
a=l

(3.1)

where the latent values, qa, lie at the vertices of a rectangular grid as illustrated in

Figure 3.2. The grid is defined by the S axes and a set of grid mark values, {r Ji},

where rJi is the ith grid mark along the SJ axis. There are MJ possible grid mark

values on the SJ axis and the total number of grid vertices M = ITJMJ. Thus the

coordinates of some qa can be written as [r1i,r2j, . . . , rdkJT.In addition, we constrain

the mixing coefficients, 1fa, to be the product of prior probabilities, PJi, so that

1fa = IIpJi
J

(3.2)

By incorporating these constraints into (3.1), we can write the density on S as

product of marginal densities (for the full derivation, see Appendix A)

d MJ

p(s) = II LPJi6(sJ- rJi)
J=l i=l

(3.3)

We will use both formulations of the latent density (3.1) and (3.3) for our algorithm

development.

52 q

1 X15

x=WS+J!
~

Figure 3.2: Structure of latent variable space, 5, and mapping to observed space, X. The data

density in the latent space consists of a mixture of delta functions where the mixture components,
qQ;,are constrained to lie at the vertices of a rectangular grid. This grid is mapped to the observed

data space by an orthogonal transform, W, and corrupted with additive Gaussian noise.

The latent data is mapped to the observation space by an orthogonal transfor-

mation, W, and corrupted with additive Gaussian noise f rv N(O, (721),with mean

zero and variance a217 as illustrated in figure 3.2. The observed data generated from

a sample s drawn from latent component a is

with conditional densities

The latent density and mapping induces a mixture of constrained Gaussian den-

sity on x of the form

with marginal density

p(xIa) = N (P + Wqa7 021)

The Expectation-Maximization algorithm (EM) [DLR77] fits parametric proba-

bility models to data by maximizing the log likelihood of the model for some training

data set {xn, n = 1 . . . N) . The log likelihood is given by

Introducing the density z(a , xn) over the unknown component assignments and using

Jenkin's inequality, allows us to simplify (3.8). The log likelihood f is bounded below

by the expected log likelihood

N M

I r > (f) = C C z(a , xn) log 7r. -
n=l a=l 2a2

with equality when z(a, x) = p(a)x) is the posterior probability of component a

conditioned on the data vector x [NH98].

The EM algorithm provides a template for deriving a transform coding algorithm

from this probability model. To achieve hard-clustering needed for transform coding,

we choose z(a, xn) to be

1 p(aIxn) > ~ (d x n) VT #
Z(Q, xn) =

0 otherwise

With this hard-clustering model, the final term in the expected log likelihood (3.9)

becomes zero since z(a , xn) In z(a , a,) = 0 VQ, n. Consequently, (L) reduces to the

cost function

This cost function consists of two terms combined with the multiplier 2a2: the aver-

age coding distortion C, En z(a , an) [Isn - Wq, [I 2 and the entropy - C, .rr, log r,.

This entropy-constrained cost function (3.11) is the same as that found by minimiz-

ing coding distortion subject to an average bit-rate constraint (e.g. [CLG89]). In

the limit as the noise variance a2 goes to zero, and there are a B e d number of code

vectors, we recover the cost function for fied-rate transform coding.

3.3 Optimal Transform Coding

Our generalized Lloyd algorithm for transform coder design iteratively optimizes

the partition (encoder) and model parameters (decoder) to minimize the coding

cost (3.11). The transform coder parameters are the orthogonal transform W, the

number of reproduction values in each quantizer Mj , J = 1. . . d, and the repro-

duction values r ~ i , J = 1 . . . d, i = 1 . . . M j that form the reproduction vectors

q,, a = I . . . M. We first describe optimizing the partition followed by transform

and then quantizer optimization.

3.3.1 Partition Optimization

To optimize the partition or encoder, each data vector is assigned to the reproduction

vector qa that represent is with the lowest cost. This assignment partitions the data

25

into regions Ra such that
N

L j(x) = L z(a, xn)j(x)
xER", n=l

(3.12)

for any function j(x). The regions Ra are defined by subregions RJi associated with

the scalar reproduction values. The partition defines subregions RJi such that each

transform coefficient SJ = WT x, belongs to the scalar reproduction value rJi that

represents it with the lowest entropy-penalized distortion,

RJi = {SJ I (11sJ - r Jil12 + 2a21Ji)< (11sJ- r Jkl12 + 2a21Jk) Vk -# i} (3.13)

where IJi = - log PJi is the code word length. For fixed rate coding, the partition

is given by (3.13) with a2 set to zero. Figure 3.3 demonstrates the transform and

coding process.

W2

S~
...,......................

r12 r13
WI

R12 R 13

Figure 3.3: Transform Coding a Data Vector. Projecting data vector x with transform W yields

coefficientvalues wl x = 81 and wi x = 82. The data space is partitioned into subregions with

boundaries indicated by dotted lines. Coefficient 81 is in subregion Rl1 and 82 is in subregion R22,

hence x is represented by reproduction vector qa = [rl1, r22]T. The region Ra associated with qa

(shaded) is the intersection of Rl1 and R22.

3.3.2 Transform Optimization

To optimize the transform, we find the center J-land orientation W of each quantizer

grid that minimizes the coding cost function (5.13). The minimum cost estimators

fJa,

R22. V22
!

I"

r!,L
S I .

R21

r 2i

'----v-

Rll

for the grid center place the grid at the mean of the data.

To optimize the transform, we find the orientation of the quantizer grid which

minimizes distortion (3.11). The transform W is constrained to be orthogonal, that

is WTW = I. The cost function to be minimized is thus

where WJ is the Jth column vector of W, q~ is the Kth coordinate of reproduction

vector q, and Y K L is a Lagrange multiplier. Minimizing C with respect to the

transform matrix element WK J yields

If we define the outer-product matrix Q

then (3.16) requires QW = WTQT. This symmetry condition along with the or-

thogonality condition uniquely defines the coding optimal transform (COT) W .

By using the conditions for the coding optimal transform, we can determine

this transform for two cases of interest, Gaussian data and high-resolution coding.

Gersho and Gray [GG92] and Mallat [Ma1991 have shown, by using high-resolution

distortion approximations, that the optimal coding transform for Gaussian data is

the KLT. Using (3.16) it is possible to show that this is the case, regardless of bit-

rate. For a alternate approach to this proof, see [GZVOO]. The product of Q (3.17)
and W is given by

where s = w T (x - p) and W is orthogonal. We need two results to show QW is

symmetric when W is the KLT or PCA transform. First we note that for Gaussian

p,(x) = N(0, C), W diagonalizes the covariance C, hence p,(s) is the product of

marginals

Second, the reproduction values which minimize mean-squared distortion are given

bv

where RaK is subregion associated with R, and the s~ axis. Substituting (3.19)

and (3.20) into (3.18)) it is straightforward to show that QW is symmetric, hence

the KLT is the coding optimal transform when the data is Gaussian. Note that the

partition (encoder) need not minimize mean squared error, so this result applies to

entropy-constrained and uniform quantizers, as well as fixed-rate quantizers.

In the case of high-resolution coding, the reproduction values are so numerous

and closely spaced that the data density in each region R, is uniform, p,(xlx E

Ra) = constant. When the reproduction values are given by minimum error quan-
tizers (3.20)) QW is symmetric for any orthogonal W. Consequently, in the high-

resolution limit, distortion does not depend on the orientation of the quantizer grid.

3.3.3 Quantizer Optimization

Quantizer optimization is most conveniently performed in the transform coordinates.

To rewrite the cost in terms of the transform coefficients s J = WT(x-p), J = 1 . . . d,

we start the derivation from the product of scalars formulation (3.3) for the latent

density instead of (3.1). The resulting cost function, which is equivalent to (3.11))

where the lJ, = - logpJi is commonly interpreted as the code word length.

To optimize the quantizer reproduction values, we adjust the number of repro-

duction values in each coordinate Mj and the value of each r ~ i to minimize the cost

(3.21). Minimizing the cost (3.21) with respect to the reproduction values places

each reproduction value at the mean of the transform coefficients SJ = WF(x - p)

in Rj;.

where NJi are the number of transform coefficients in Rj;. The entropy term does

not affect this optimization, so (3.22) specifies optimal reproduction values for both

fixed-rate and entropy-constrained transform coding. The prior probabilities p Ji are

given by

P Ji = NJiIN

Determining the quantizer sizes is performed differently for entropy-constrained

and fixed rate transform coding. For entropy-constrained transform coding, select-

ing the noise variance or Lagrange multiplier is equivalent to selecting an entropy

constraint. The entropy constraint determines the number of reproduction values

M j in each scalar quantizer. The entropy terms in (3.21) move the partition away

from the minimium distortion solution, so that reproduction values with low prior

probabilities may have no data items assigned to them. Reproduction values with

pJ, = 0 can be removed from the coder, reducing the value of Mj. Consequently,

selecting a large value for a2 produces small quantizers and low bit-rate coders.

For fixed-rate coding, we set the noise variance to zero and constrain the number

of coding bits. The number of coding bits per block C Mj is kept below some target

rate B. The fixed-rate cost function is therefore

where A is a Lagrange multiplier. Allocating the B coding bits where they minimize

coding distortion the most determines the optimal values for MJ, J = 1 . . . d [SG88,

RisSl] .

3.4 Implement at ion

The algorithm for optimal transform coder design is a constrained version of the

Linde-Buzo-Gray (LBG) algorithm for vector quantizer design [LBG80]. It alter-

nates between improving the transform and improving the quantizers until the con-

strained distortion measure reaches a local minimum.

3.4.1 Coding Optimal Transform Algorithm

The COT algorithm finds the orientation of the current quantizer grid that min-

imizes compression distortion (3.11). The quality of the final solution is sensitive

to the bit allocation determined at the initial quantizer grid orientation. To insure

a good starting point, we initialize W to the KL transform. At each iteration, we

calculate the QW matrix from the transform coefficients and the reproduction val-

ues. To minimize distortion, we find the W that makes the QW matrix symmetric

(3.16). We quantify how far the matrix is from symmetric with the sum squared

difference between transposed matrix elements

where a~ J is the Kth row and Jth column element of QW. We apply Givens rotations

[GL89], G(K, J, 8), to minimize A. Multiplication by G(K, J, 8) applies a rotation

of B radians to the (K, J) coordinate plane. For a n x n matrix, there are 9 such

planes. Minimizing (3.25) with respect to rotation G(K, J, 8) yields a solution for 8

that is quartic in tan 8. However, when the angle is small, so that tan2 8 << 1, the

solution simplifies to

tan 6 x (~ K K + ~ J J) (~ K J - ~ J K) - C I + K , J (~ J I ~ I K - ~ J I ~ I K)
(3.26)

C I + K , J (~ J I ~ I J + ~ K I ~ I K) + (~ K K + ~ J J) ~ - (~ K J - ~ J K) ~

In image compression experiments, we consistently found that the rotation angles

were small. We find the rotation angle (3.26) for each coordinate plane and apply

these rotations to the current transform matrix. This process is repeated until

A/IIQWIIF, where llQWllF is the Frobenius norm, is less than a threshold (A x

0). The new W will orient the quantizer grid so that compression distortion is
minimized.

3.4.2 Quantizer Algorithms

Quantizer optimization defines scalar quantizers that represent the data with mini-

mal distortion given a constraint on the compressed bit-rate. To develop the quan-

tizers, we first transform the signal vectors to the the current transform basis W.

We consider both entropy-constrained and fixed-rate compression cases.

For entropy-constrained compression, each quantizer is trained to optimally

represent the transform coefficients using an entropy-constrained quantizer algo-

rithm [FM84]. We initialize with ten-bit uniform quantizers. If the entropy H =

C xi p ~ i log, p ~ i is too far from the target rate (IH - B(> 0.1 bit), we adjust the

Lagrange multiplier, A = 2a2, which enforces the rate constraint. The change in A

is (B - H)/% where $f is estimated from the previous two values of H and A.

For the kt%djustment, 3 = (~ (" ' 1 - H(*-~))/(A(*-') - with A(O) = 0

and A(') = 1. The quantizers are then retrained with the new A and the entropy is

re-evaluated. This process repeats until the rate constraint is satisfied.

For fixed-rate compression, we use optimal bit allocation [Risgl] to determine

quantizer sizes. In [Risgl], Riskin defines two bit allocation methods; we use the

method that does not require convexity of the rate-distortion function. We maintain

one through ten bit quantizers for each coordinate. Each quantizer is trained to

optimally represent the transform coefficients using the Lloyd algorithm [Llo82].

One then calculates the distortion for each quantizer size and coordinate. Starting

from zero bits in each coordinate, one allocates one, two, or more bits a t a time to

the coordinate where the additional allocation will reduce the distortion per coding

bit the most. This method results in an allocation of coding bits that is at or

close to the desired number of bits B and that is on the convex hull of possible

rate-distortions.

3.5 Experimental Results

We illustrate the difference between the KLT and COT using two dimensional data

that is sampled from two intersecting Gaussian distributions: N(0, UFCIUl) with

Ul = [and El = []
.8 .6 0 .16

and N(0, U?C2U2) with

Figure 3.4 contains a plot of this data overlaid with a one by two bit quantizer grid.

The KLT aligns the grid along the dominant high-variance Gaussian, consequently

data from the lower variance Gaussian is poorly represented. The COT rotates the

quantizer grid so that the reproduction vectors better represent all the data. The

compressed data signal-to-noise ratio (SNR) is 0.46 dB higher when the COT orients

the quant izer .

31

5

',':::;;1,4.:,.{-

':b~ +

:f~/
0 0 5

(a) KLT (b) COT

Figure 3.4: Comparison of COT and KLT. The quantizer on the left is oriented with the KLT,

the one of the right with the COT. Data vectors are indicated with .'s. and the reproduction
vectors are indicated with +'s.

We also exercised our transform coders on image data. In plots 3.6 and 3.7, we

show SNR results for two classic test images, Barbara and Goldhill shown in Figure

3.5. These images are available from the University of Waterloo website [oW98].

The plots in figure 3.6 are for entropy-constrained compression; entropy coding was

not performed. The plots in figure 3.7 are for fixed-rate compression.

For entropy-constrained compression, our experiments show that using the COT

instead of KLT increases SNR by 0.3 to 1.2 dB for entropies in the range of 0.25 to

1.25 bits per pixel (bpp). Of the images tested, Barbara showed the largest SNR

improvement when the COT is used and Goldhill showed the smallest improvement.

Other tested image types (e.g. frames from natural image video, magnetic resonance

images) showed similar SNR improvements.

For fixed-rate compression and low bit rates, using the COT instead of KLT

increases image SNR very little. The high bit-rate COT basis vectors are essentially

the same as the high-variance KLT basis vectors, so when only a few coordinates

are coded there is little difference in SNR. However, the SNR improvement due to

using the COT increases as more coordinates are coded, since for image data the
mid-variance KLT basis vectors differ from the mid and low bit-rate COT vectors.

At 1.0 bpp orienting the quantizer grid with the COT instead of KLT increases SNR

5

4

31
2

1

0

-1

-2

-3

-4

-5
-5

5

4

31
2

1

0

-1

-2

-3

-4

-5
-5

(a) Barbara

32

(b) Goldhill

Figure 3.5: Classic image compression benchmark images. Barbara is a photograph of a seated
women wearing striped clothing. Goldhill is a photograph of a row of houses in a hillside village..

by 0.2 to 0.35 dB.

COT-based transform coding is no worse than KLT-based coding in terms of

storage overhead and encode/decode time. The storage overhead, which includes

storing and transmitting the transform matrix and quantizer reproduction values,

is the same for both methods. Encoding and decoding times are also the same.

However, in our variable-rate compression experiments, the COT-based coders re-

quired typically 3 to 4 times longer to train than did the KLT-based coders. For the

Barbara image, the KLT-based coders required 130 to 135 seconds to train on a Sun

SPARC Ultra2 with approximately 95% of the training time due to developing the

quantizers. The COT-based coders required 225 to 680 seconds, depending on the

number of training iterations. Transform optimization accounted for 30% to 60% of

the training time.

24

22

~20
.2
~18
CD'"

~16
I

0.,
~14
CD

(jj
12

0.2 0.4 0.6 0.8
Entropy (bpp)

(a) Barbara

1.2

24

33

0.4 0.6 0.8
Entropy (bpp)

1.2

Figure 3.6: Entropy-constrained compression: SNR versus entropy for Barbara and Goldhill test
images.

24

22

~20
.2
~18
CD

.~
<f16
0
.,
~14
CD
(jj

12

0.5 1 1.5
Compressed Bit-rate (bpp)

(a) Barbara

2

24

22

~20
.2
~18
CD
'"

~16
I

~
~14
CD
(jj

12

10

(b) Goldhill

0.5 1 1.5
Compressed Bit-rate (bpp)

2

Figure 3.7: Fixed-rate compression: SNR versus bit-rate for Barbara and Goldhill test images.

(b) Goldhill

3.6 Discussion

Transform coders are often constructed by concatenating an ad hoc choice of trans-

form with bit allocation and quantizer design. Instead, we start from a statistical

model of the data from which we derive a new algorithm for transform coder design.

This algorithm is a constrained version of the LBG algorithm for vector quantizer

design, with reproduction vectors constrained to lie at the vertices of a rectangular

grid. In addition, our derivation leads to a new transform basis, the coding optimal

transform (COT), which unlike the KLT, is specifically designed to minimize com-

pression distortion. Variable-rate image compression experiments show that using

our COT instead of the KLT increases SNR by 0.3 to 1.2 dB. We have shown that

the COT reduces to the KLT for Gaussian sources.

Like the KLT, the COT is a data dependent transform. Consequently, it suffers

from the same drawbacks as the KLT; the transform must be calculated from the

input signal and stored with the compressed signal. Because of these drawbacks,

we expect COT-based transforms coders to be most effective in an adaptive or

universal transform coding framework. An adaptive transform coder consists of

several different transform coders, each optimized to compress a different signal

type. Each signal vector is compressed using the transform coder that represents it

with the least distortion. Our transform coding algorithm could be incorporated into

an adaptive framework, such as that developed by ourselves [ALOlb] or Effros, et

al. [ECG99], to create a constrained LBG algorithm for adaptive transform coding.

Chapter 4

Fixed-Rate Adaptive Transform

Coding

In this chapter, we investigate the application of local Principal Component Analysis

(PCA) to transform coding for fixed-rate image compression. Some of this material

was published a t the Neural Information Processing Systems (NIPS) Conference

[ALOlb] and Neural Networks for Signal Processing (NNSP) Workshop [ALOO], both

in 2000.

Local PCA transform coding adapts to differences in correlations between signal

components by partitioning the signal space into regions and compressing signal

vectors in each region with a local transform coder. Previous researchers optimize

the signal space partition and transform coders independently and consequently

underestimate the potential advantage of using adaptive transform coding methods.

We propose a new algorithm, derived from a statistical model of the data, that

concurrently optimizes the signal space partition and local transform coders. The

resulting algorithm is simply a constrained version of the LBG algorithm for vector

quantizer design.

Image compression experiments show that adaptive PCA transform coders de-

signed with our integrated algorithm compress an image with less distortion than

previous related methods. We saw improvements in compressed image signal-to-

noise ratio of 0.5 to 2.0 dB compared to other tested adaptive methods and 2.5 to

3.0 dB compared to global PCA transform coding.

4.1 Introduction

Compression algorithms for image and video signals often use transform coding as a

low-complexity alternative to vector quantization (VQ). Transform coders compress

multi-dimensional data by transforming the signal vectors to new coordinates and

coding the transform coefficients independently of one another with scalar quan-

tizers. One can think of a transform coder as a vector quantizer with the M re-

production vectors constrained to lie a t the vertices of a rectangular grid. For d

dimensional data, a transform coder requires O(d2) add/multiply operations for the

transform operation, whereas a vector quantizer requires O(Md) add/multiply o p

erations for distance calculations. A transform coder requires O(log, M) compare

operations for encoding, much less than the O(M) compare operations required for

vector quantization.

Noting that many types of real-world signals are not wide-sense stationary, sev-

eral researchers have extended the idea of global transform coding to adapt to non-

stationary signals [DH95, TB99, AL991. In these adaptive transform coders, the

signal space is partitioned into disjoint regions and a transform and set of scalar

quantizers are designed for each region. In our own previous work [AL99], we use

k-means partitioning to define the regions. Dony and Haykin [DH95] partition the

space to minimize dimension-reduction error. Tipping and Bishop [TB99] use par-

titioning according to a probabilistic rule that reduces, in the appropriate limit,

to partitioning by dimension-reduction error, as defined by Kambhatla and Leen

[KL97]. These systems do not partition the signal space with the goal of minimizing

compression distortion.

The ad hoc construction of transform coders contrasts sharply with vector quan-

t izer design, which uses algorithms that minimize coding error. These algorithms

can be derived from statistical models of the data. Nowlan [Now911 develops a prob-

abilistic framework for VQ by demonstrating the correspondence between a VQ and

a mixture of spherically symmetric Gaussians. In the limit as the mixture com-

ponent variance goes to zero, the Expectation-Maximization (EM) procedure for

fitting the mixture model to data becomes identical to the Linde-Buzo-Gray (LBG)

algorithm [LBG80] for vector quantizer design.

This paper develops a statistical model for fixed-rate adaptive transform coding.

We define a constrained mixture of Gaussians model that provides a framework

for transform coder design. Our new design algorithm is a constrained version of

the LBG algorithm. It iteratively optimizes the signal space partition, the local

transforms, the allocation of coding bits, and the scalar quantizer reproduction

values until it reaches a local distortion minimum. This approach leads to a new

method of partitioning the signal space designed to minimize coding error.

To evaluate the compression performance of our algorithm, we give results from

compressing two types of gray-scale digital images: Magnetic Resonance Images

(MRI) and gray-scale natural images of traffic moving through street intersections.

We compare compressed image quality using our local PCA transform coding to

that of using global PCA transform coding and two other adaptive transform coding

methods similar to previous work [AL99, DH951.

4.2 Probability Models for Transform Coding

In this section, we develop constrained mixture of Gaussians models that provide a

statistical model for fixed-rate adaptive transform coding. A transform coder con-

verts a signal to new coordinates and then codes the coordinate values independently

of one another with scalar quantizers. An adaptive transform coder consists of a

collection of transform coders, each specialized to optimally compress data from

different regions of the data space.

To develop a model for adaptive transform coding, we envision the d dimensional

observed data as drawn from a structured discrete latent data space S, also with

dimension d. The latent data lies at the vertices, qim) of one of M rectangular

grids centered a t ~ ~ (~ 1 . Grid m is defined by the s axes and a set of grid mark

values {r$')}, where r J* is the ith grid mark along the S J axis. The coordinates of
(m) (m) each qLm) can be written as some [rli , r,, , . . . , r&")lT. There are K$"') possible grid

mark values along the S J axis in the mth grid and the total number of grid vertices

is IC, = nJ EY). Each grid has the same number of components Km = K, Vm,

however the number and spacing of the grid mark values on each axis can differ.

Figure 4.1 illustrates the structure of a single grid.

The density due to a single grid consists of a midure of delta functions

38

r2i

82

81

Figure 4.1: Structure of latent variable space, S, with single grid. The density on s consists of a

mixture of delta functions where the mixture components, q"" are constrained to lie at the vertices

of a rectangular grid. The grid is centered at T}and is defined by the s axes and a set of grid mark
values {rJi}, where r Ji is the ith grid mark along the SJ axis.

The local mixing coefficients p(alm) are the product of prior probabilities p(r Jilm)
so that

d

p(alm) = II p(r}T)lm)
J=1

Consequently, we can write the local density for grid m as a product of marginal

densities (for the derivation, see Appendix A)

(4.2)

lC(m)d J

p(slm) = II 2: p(r}T)Im)6(sJ - T/}m)- r}T))
J=1 i=1

(4.3)

where T/}m)is the ph coordinate value of T/(m).We will use both formulations for the

latent density (4.1) and (4.3) for our algorithm development.

The density on the whole latent space consists of a mixture of delta function
mixtures

M lC

p(s) = 2: ITm 2: p(alm) 6(S - T/(m) - qim))
m=1 0<=1

(4.4)

where ITm are mixing coefficients. The latent data from each grid m is mapped

to the observation space by its own orthogonal transform w(m). The data is then

corrupted with additive Gaussian noise, f rv N(O, (j2I). The observed data generated

from some sample s drawn from latent component (a, m) is

x = w(m)(s - T/(m) - qim)) + p,(m) + f(m) (4.5)

with conditional densities

p(xJ s , a, m) = N(,dm) + W (~) (S - 7,Jm) - qLm)), 021) (4.6)

Figure 4.2 illustrates this mapping from a two grid latent space.

Figure 4.2: Fixed-rate adaptive model : Structure of latent variable space, S, and mapping (in
hard clustering limit) to observed space, X. The mixture components, q!jm', are constrained to

lie at the vertices of the Mth grid. Each grid has the same number of components, K = 8. The
Latent data is mapped to the observation space by orthogonal transforms, ~ (" ' 1 and corrupted
with additive Gaussian noise.

The latent density and mapping induce a mixture of constrained Gaussian mix-

tures density on x of the form

with the marginal densities

The Expectation-Maximization algorithm (EM) [DLR77] fits parametric proba-

bility models to data by maximizing the log likelihood of the model for some training

data set { x n , n = 1 . . . N). The log likelihood is given by

The generating component a of each data item xn is unknown, so we introduce the

density z(a , m, xn) over these unknown component assignments. The log likelihood

f is bounded below by the expected log likelihood

N M K

f > (f) = C C C z(a , m, xn) log (nm~(aIm)) +
N M K d 1 C C C "(a, m, xn)(-- log(2n02) - -1Ixn - P (~) - w (~) ~ ~ ~) I I ~) -

n=l m=l a=l 2 202
N M K

with equality when z(a , m, x) = p(a, m lx) is the posterior probability of component

a in grid m conditioned on the data vector x [NH98]. The posterior probabilities

are given by

P(Q, mix) =
I

-: Dy' 1 + Cr#rn c ~ # ~ exp (F[(x) + 2oz~Y)l- [D ~ ~) (x) + 2o21bm)])
(4.'11)

where Dbm)(x) = llxn - ,dm) - ~ (~) ~ b ~) l l ~ and lLm) = - log(n,p(a(m)).

The EM algorithm provides a template for deriving a transform coding algorithm

from this probability model. To achieve hard-clustering needed for transform coding,

we take the noise variance o2 to zero. In the limit that o2 -t 0, the lLm) terms become

insignificant and the posteriors (4.11) collapse to one or zero

1 DLm)(x) > Dkm)(x) V+y # a and m # m
z(a , m, X) + (4.12)

0 otherwise

In this hard-clustering limit, the final term in the expected log likelihood (4.10)

becomes zero. Consequently, (f) reduces to the cost function

with M and K: selected so that log2(MK:) equals the desired coding bit-rate B.
When the number of grids M = 1 we recover the cost function for fixed-rate global

transform coding.

4.3 Adaptive aansform Coding Algorithm

In this section, we present a new algorithm for fixed-rate adaptive transform coder

design that integrates optimization of the transform coder parameters: the data

space partition, transforms, and quantizers. This generalized-Lloyd algorithm fits

the parameters to data so that coding distortion (4.13) is minimized. Like all such

algorithms, the optimization process is iterative. It alternately partitions the data

space into local regions and then optimizes the transform and quantizers for each

region.

4.3.1 Partition Optimization

To optimize the partition or encoder, each data vector is assigned to the reproduc-

tion vector *Lm) of transform coder m that represents it with the lowest distortion.

To partition the data, we compress each d dimensional data vector x with each local

transform coder m = 1 . . . M. To compress x, we first find the transform coefficients,

s$"') = (W ~)) T (X - p(m)), J = 1. . . d, where W j is the Jth basis (column) vector

of the W transform matrix. Each sy) is then assigned to the scalar quantizer re-

production value, r$') that represents it with the least entropy penalized distortion.

Figure 4.3 demonstrates this transform and coding process.

We assign x to transform coder f i such that
d

'-"I T (m) 2 m = argmin C IJ(W$) (X - P('")) - rji 11
m

J= 1

Hence, the data space partition defines regions R (~) such that each x belongs to the

transform coder that compresses it lowest distortion,

In addition, the partition defines subregions RE) such that each local transform

coefficient SF) = (w ~)) ~ x , x E ~ (~ 1 , belongs to the scalar reproduction value r$')

that represents it with the lowest distortion,

Figure 4.4 illustrates the relationship between the the transform coder regions, R (~)

and subregions R$').

42

W2

R22
=r2;

Xe-L S;
T...i J -.......

rll
~

sd
jr2f

, "....
rI2 j [13

WI

Figure 4.3: Transform Coding a Data Vector. Projecting data vector x with transform W yields

coefficient values Wr x = 81 and wi x = 82. The data space is partitioned into subregions with

boundaries indicated by dotted lines. Coefficient 81 is in subregion Ru and 82 is in subregion R22,

hence x is represented by reproduction vector q = [ru, r22f.

The prior probabilities p(r}7)lm) and 7fmare estimated from the number of data

values in each region. The transform coder prior 7fm= Nm/N, where N are the
total number of data vectors and Nm are the number of vectors in R(m). The repro-

duction value priors p(r}7)lm) = NJ~)/Nm where NJ~) are the number of transform

coefficientsin R}7).

4.3.2 Transform Optimization

To optimize the transform, we find the shift p, and orientation W of each quantizer

grid that minimizes the coding cost function (5.13). The minimum cost estimators

for the grid shift place each grid at the mean of the data assigned to its region

1
p,(m)= - L xN,

m xER(m)

(4.17)

The grid orientation or transform W is constrained to be orthogonal, that is
WTW = I. The cost function for transform coder m is thus

1 }(m d d d

C = N L L II x - p,(m) - L W5m)q~~)112+ L L 'YKL((Wim)fwlm) - 6K,d
m a=1 xERim) J=1 K=1 L=1

(4.18)

43

Figure 4.4: Data Space Partition. Partition of a two dimensional data space with two coders.
Both coders consists of a 2x 1 grids The boundary between the two coders, which partitions the data

space into R(l) and R(2), is shown by the heavy black line. Subregion boundaries are indicated

with dotted lines. The diamonds along the transform axes indicate placement of reproduction
values.

where WJ is the jth column vector of W, qaK is the Kth coordinate of reproduction

vector qa, and "(KLis a Lagrange multiplier. The partition assigns each data vector

x to a quantizer reproduction vector q~m)defining local regions R~m). Figure 4.1

illustrates the relationship between the reproduction vectors q and scalar quantizer

reproduction values or grid marks r.

Minimizing the local cost function (4.18) with respect to the transform matrix

element w~ny yields

L q;~) L (x - f1(m)f W~m) = L q;rr;J L (x - f1(m)f w5m)
a xERim) a xERim)

(4.19)

where p(alm) is the prior probability of q~m). If we define the outer-product matrix

Q

Q = L q~m)L (x - f1(m)f

a XER~)

(4.20)

then (4.19) requires QW = WTQT. This symmetry condition along with the orthog-

onality condition uniquely defines the Coding Optimal Transform (COT). Appendix

A contains the detailed derivation of the COT.

. (2)
.

-WI
..

-----1----
(2)

R(2)R21 .
22

Our global transform coding trials [ALOla] indicate that there is little difference

between the PCA transform and the COT for jked-rate quantizers. In addition,

prior work in the area of transform coding uses either the PCA transform or DCT.

Consequently, for the results presented in this chapter, we replace the COT with the

PCA transform. However, the PCA transform is not optimal for coding, so careful

implementation is required to achieve convergence to a local distortion minimum.

4.3.3 Quantizer Optimization

To optimize the quantizers, we adjust the number of reproduction values in each

coordinate and coder IC$"') and the value of each reproduction value r e) to minimize

the cost function (4.13). This optimization is most conveniently performed in the

local transform coordinates defined by ~ (~ 1 . Deriving the transform coding cost

function using the product formulation of the latent density (4.3), instead of (4.1),
(m) T yields the coding cost in terms of transform coefficients sSm) = (WJ) (x - ~ (~)) . In

addition, we have the flexibility to adjust the number of components in each scalar

quantizer as long as the total number of reproduction vectors in each grid equals K,

that is nJ ICY) = IC. We incorporate this constraint using Lagrange multiplier A,

so the cost function for transform coder rn becomes

Minimizing the cost (4.21) with respect to the reproduction values places each

reproduction value at the mean of the transform coefficients assigned to it.

where NF) are the number of transform coefficients in ~5').
For fixed-rate coding, the number of reproduction vectors per grid C, ICY) is

kept below some target number IC, which corresponds to a target bit-rate B =

B - log, M. Allocating the B coding bits where they minimize coding distortion

the most determines the optimal values for K$"'), J = 1 . . . d [SG88, Risgl]. For a

recent comprehensive review of quantization methods see [GN98].

4.4 Adaptive Transform Coding Results

We find the adaptive transform coder for a set of images by applying our con-

strained LBG algorithm (CLBG) to a training image. The data vectors are 8 x 8

image pixel blocks. Then we compress a test image using the resulting trans-

form coder. We measure compressed test image quality with signal-to-noise ratio,

SNR = lOlog,,(pixel variance/MSE), where MSE is the per pixel mean-squared

coding error.

Our implementation modifies codebook optimization to reduce computational

requirements and facilitate comparisons to other published methods. First, instead

of using optimal bit allocation, we use a greedy algorithm [GG92], which allocates

bits one at a time to the coordinate with the largest distortion. In global transform

coding trials (0.375 to 0.75 bpp), this substitution reduced SNR by less than 0.1 dB.

Second, instead of using the coding optimal transform, we use the PCA transform.

In global transform coding trials (0.25 to 0.75 bpp), this substitution reduced SNR

by 0.05 to 0.27 dB.

Classic global PCA transform coding is our baseline compression method. We

also evaluate the compression performance of two other adaptive transform coders

that use different methods to partition the signal space. The first method, Euclidean

Distance Partition (EDP), clusters image blocks into regions so that the Euclidean

distance between the blocks and the region means is minimized [AL99]. The sec-

ond met hod, Reconstruction Distance Partition (RDP) , clusters image blocks into

regions so that the reconstruction distance is minimized [KL97]. The reconstruc-

tion distance is the mean squared error between an image block and its dimension-

reduced reconstruction. The RDP method is similar to that used by Dony and

Haykin [DH95]. For the RDP method, we selected a target dimension of eight, since

at 0.5 bits per pixel (bpp) this dimension gave us the best test image SNR.

We report on compression experiments using two types of images, Magnetic

Resonance Images (MRI) and gray-scale natural images of traffic moving through

street intersections [oK98]. These MRI images were used by Dony and Haykin in

[DH95] and we duplicate their image pre-processing. One MRI image is decomposed

into overlapping 8 x 8 blocks to form 15,625 training vectors; a second image is used

for testing. The traffic images are frames from two video sequences. We use frames

from the first half of both sequences for training and frames from the last halves for

testing.

I I
0.4 0.5 0.6 0.7 0.8 613 0.4 0.5 0.6 0.7 0.8

compressed bit-rate (bpp) Compressed bit-rale (bpp)

(a) MRI test image SNR. All adap- (b) Traffic test image SNR. All adap-
tive coders have 16 regions. tive coders have 32 regions.

Figure 4.5: Compressed Image SNR. The x is our coding optimal partition (CLBG), o local
PCA partition with dimension eight (RDP), k-means clustering (EDP), and + is global PCA.

The dotted line values are local PCA results from [DH95]. Errorbars indicate standard deviation

of 8 trials.

Figure 3 shows compressed test image SNR for four compressed bit-rates and

four compression methods. The quoted bit-rates include the bits necessary to specify

region assignments. The x results are for our CLBG transform coder. Our system

increases SNR compared to global PCA (+) by 2.3 to 3.0 dB, EDP method (m) by

1.1 to 1.8 dB and RDP method (0) by 0.5 to 2.0 dB. In addition, our system yields

image SNRs 1.6 to 3.0 dB higher that Dony and Haykin's local PCA transform

coder (dimension eight) [DH95]. Their local PCA coder does not use optimal bit

allocation or Lloyd quantizers, which further reduces compressed image SNR.

The SNR improvement seen with the RDP method rolls-off a t higher bit-rates.

This method requires that we select the number of retained dimensions before train-

ing. We retain only eight dimensions, consequently at higher bit-rates directions

that should be coded are discarded, which reduces compressed image quality.

We also evaluated the effect of changing the numbers of regions on compressed

image SNR. Figure 4.6 shows test image SNR for compression to 0.5 bpp with 8,

16, and 32 region adaptive transform coders. For all three methods, SNR increases

as the numbers of regions increase, assuming there is enough representative training

data to prevent over-training. This is the expected result, since if all coding bits are

12

A

a z
10.5

.P
V)

10-

Q.B.5 3 3.5 4 4.5 5 5.5
Log 2 of number of regions

Figure 4.6: Test image compressed to 0.5 bpp. The is EDP transform coding, o is RDP
transform coding, x is CLBG transform coding. Errorbars indicate standard deviation of eight
trails.

used to represent the region designation, these algorithms produce an unconstrained

LBG vector quantizer.

The enhanced image quality resulting from CLBG transform coding is also evi-

dent in the restored images. Figure 4.7 shows sections from a test image compressed

to 0.5 bpp. The figure includes the original image and restored images from global

PCA transform coding and our CLBG transform coding. The global PCA transform

coded image is significantly degraded compared to the original. For example, the

trolley tracks, the lines on the road, and edges of the cars are blurred and broken.

In addition, pixel block edges are readily apparent throughout much of the image.

When the image is compressed with CLBG transform coding, the blocking effect is

less severe and image details are less blurred.

4.5 Summary

In this chapter, we cast the design of both conventional and adaptive transform

coders as a constrained optimization procedure. We derive a new algorithm for

transform coder design from the EM procedure for fitting a mixture of mixtures

model to data. In contrast to standard transform coder design, all operations:

partitioning the signal space (for the adaptive case), transform design, allocation

of coding bits, and quantizer design, are coupled together to minimize compression

distortion. This approach leads to a new transform basis that is optimized for coding.

The coding optimal transform is in general different from PCA. Our approach also

leads to a method of data space partitioning that is optimized for coding. This

method assigns each signal vector to the coder the compresses it with the least

distortion.

We evaluated our CLBG algorithm by using it to compress digital gray-scale

images. To reduce computational requirements, our implementation approximates

optimal local transform coder design by using the PCA transform and a greedy bit

allocation procedure. At compression ratios in the range of 10:l to 20:1, tests using

our method demonstrate compressed image signal-to-noise ratios up to 3.0 dB higher

than global PCA transform coding. When the same images were compressed with

adaptive transform coders similar to previously implemented systems [DH95, AL991,

the resulting image SNRs are 0.5 to 2.0 dB lower than those obtained with our

system. Our integrated algorithm produces more efficient transform coders than

previous local PCA methods that design the signal space partition and coefficient

quantizers separately.

49

Figure 4.7: Sections from a test image compressed to 0.5 bpp. From top to bottom, original
image, image compressed using global PCA transform coding, and CLBG transform coding with

32 regions.

Chapter 5

Entropy-Constrained Adaptive

Transform Coding

In this chapter, we establish a probabilistic framework for adaptive transform coding

that leads to a generalized Lloyd algorithm for entropy-constrained transform coder

design. Transform coders are often constructed by concatenating an ad hoc choice

of transform with suboptimal bit allocation and quantizer design. Instead, we start

from a probabilistic latent variable model in the form of a mixture of constrained

Gaussian mixtures. From this model we derive an optimal transform coding algo-

rithm, which integrates optimization of all transform coder parameters. An essential

part this algorithm is our introduction of a new transform basis, which unlike other

transforms (PCA, DCT, etc.) is optimal for coding.

Compression experiments on benchmark images demonstrate that these optimal

coders improve compressed image signal-to-noise ratio (SNR) by 0.25 to 1.25 dB

over transform coders based on the DCT and PCA transforms. Optimal adaptive

coders improve SNR by about 1 dB relative to global coders. In addition, our results

from compressing a set of synthetic aperture radar images indicate that adaptive

transform coders can be used effectively to compress databases of interest for real-

world applications.

5.1 Introduction

Transform coding is a computationally attractive alternative to vector quantization

that is widely used for image and video compression. A transform coder compresses

multi-dimensional data by first transforming the data vectors to new coordinates

and then coding the transform coefficient values independently with scalar quantiz-

ers. A key goal of the transform coder is to minimize compression distortion while

keeping the compressed signal representation below some target size. While quantiz-

ers have typically been designed to minimize compression distortion [Llo82, FM841,

this has not been the case for the transform portion of the coder. The transform

has either been fixed a priori, as in the discrete cosine transform (DCT) used in the

JPEG compression standard [Walgl], or adapted to the signal statistics using the

Karhunen-Loeve transform (KLT) as in recently published transform coding work

[DH95, ECG991. These transforms are not designed to minimize compression dis-

tortion, nor are they designed (selected) in concert with quantizer development to

deliver the best compression performance.

Classic transform design assumes that correlations between signal components

are the same everywhere in the signal space. This assumption is valid only for wide-

sense stationary data. Noting that signals such as images and speech are not wide

sense stationary, several researchers have extended global transform coding to adapt

to changing signal characteristics [ECG99, DH95, TB99, AL99j. In adaptive trans-

form coding, the signal space is partitioned into disjoint regions and a set of basis

functions (transforms) and scalar quantizers are designed for each region. In our own

previous work [AL99], we use k-means clustering [Mac671 to define these regions.

Dony and Haykin [DH95] partition the space to minimize dimension-reduction error.

Tipping and Bishop [TB99] use partitioning according to a probabilistic rule that

reduces, in the appropriate limit, to partitioning by dimension-reduction error as

defined by Khambatla and Leen in [KL97]. These last two techniques are optimal

for the task of dimension-reduction, but not for compression. Effros, et. al. [ECG99]

correctly partition the signal space to minimize entropy-constrained coding error,

but then use sub-optimal transform coders to compress the data in each region.

None of these systems integrate optimization of all the transform coder parameters

nor design these parameters to produce a coder that minimizes coding error.

In contrast to the ad hoc construction of transform coders, vector quantizers

(VQ) are designed with algorithms [LBGSO, CLG89] that minimize coding error.

VQ algorithms all derive from a probabilistic model of the signal data to be com-

pressed. Nowlan [Now911 presents this probabilistic framework by demonstrating

the correspondence between a VQ and a mixture of spherically symmetric Gaus-

s ian~ . In the limit that the variance of the mixture components goes to zero, the

Expectation-Maximization (EM) procedure [DLR77] for fitting the mixture model

to data reduces to the K-means algorithm [Mac671 or, equivalently, the Linde-Buzo-

Gray (LBG) algorithm [LBG80] for vector quantizer design. In addition, Chou et.

al. [CLG89] note that the design algorithm for a entropy-constrained VQ (ECVQ) is

a hard-clustering version of this same EM algorithm, but with non-zero component

variance.

We make use of this probabilistic framework to construct transform coders that

share the same optimal characteristics as VQs, yet maintain their advantage in

computability. This paper develops an optimal design approach for both global

and adaptive (local) transform coding. We first define a constrained mixture of

Gaussians model that provides a framework for optimal transform coder design.

Using this framework, we develop a new constrained generalized-Lloyd algorithm

for transform coders that integrates optimization of the signal space partition, the

local transforms, and the scalar quantizers. We conclude by demonstrating com-

pression performance of our algorithms on both benchmark images and a database

of synthetic aperture radar (SAR) images.

5.2 Probability Models for Transform Coding

In this section, we develop constrained mixture of Gaussians models that provide a

statistical model for adaptive transform coding. A transform coder converts a signal

to new coordinates and then codes the coordinate values independently of one an-

other with scalar quantizers. An adaptive transform coder consists of a collection of

transform coders, each specialized to optimally compress data from different regions

of the data space.

To develop a model for adaptive transform coding, we envision the d dimensional

observed data as drawn from a structured discrete latent data space S, also with

dimension d. The latent data lies at the vertices, qim) of one of M rectangular grids

centered at rl(m). Grid m is defined by the s axes and a set of grid mark values

{re)}, where r ~ , is the i ' h r i d mark along the S J axis. The coordinates of each
(m) (m) qbm) can be written as some [rIi , r,, , . . . , rg)lT. There are KY) possible grid mark

53

r2i

1 r2"

11 J

82

81

Figure 5.1: Structure of latent variable space, S, with single grid. The density on 8 consists of a

mixture of delta functions wherethe mixture components,qat>are constrained to lie at the vertices
of a rectangular grid. The grid is centered at 'T/and is defined by the 8 axes and a set of grid mark

values {r Ji}, where r Ji is the ith grid mark along the 8J axis.

values along the SJ axis in the mth grid and the total number of grid vertices is

Km = I1JK}m). Each grid can have a different number of components Km. Figure

5.1 illustrates the structure of a single grid.

The density due to a single grid consists of a mixture of delta functions

K(m)

p(slm) = L p(alm) 8(s _1](m) - qim»)
a=1

(5.1)

The local mixing coefficients p(alm) are the product of prior probabilities p(r Jilm)
so that

p(alm) = np(r}7)lm)
J

Consequently, we can write the local density for grid m as a product of marginal

densities (for the derivation, see Appendix A)

(5.2)

K(m)d J

p(slm) = n L p(r}7)lm)8(sJ _1]~m) - r~7»)
J=1 i=1

(5.3)

where 1]~m)is the jth coordinate value of 1](m).We will use this product of marginal

densities formulation later in our algorithm development.

The density on the whole latent space consists of a mixture of delta function

54

mixtures
M x::(m)

p(S) = L 1rm L p(alm) 6(s - ",(m)- qim))
m=l a=l

(5.4)

where 1rm are mixing coefficients. The latent data from each grid m is mapped

to the observation space by its own orthogonal transform w(m). The data is then

corrupted with additive Gaussian noise, ("-' N(O, a2I). The observed data generated

from some sample s drawn from latent component (a, m) is

x = w(m)(s - ",(m)- q~)) + Jj(m)+ ((m) (5.5)

with conditional densities

p(xls, a, m) = N(Jj(m) + w(m)(s - ",(m)- qim)),a2I) (5.6)

Figure 5.2 illustrates this mapping from a two grid latent space.

S2

q~1) W(1)S+ (1)

~yI -

X2

S1 X1

Figure 5.2: Nonstationary data model: Structure of latent variable space, S, and mapping (in

hard clustering limit) to observed space, X. The mixture components, q~m),are constrained to lie

at the vertices of the Mth grid. Latent data is mapped to the observation space by orthogonal

transforms, w(m) and corrupted with additive Gaussian noise.

The latent density and mapping induce a mixture of constrained Gaussian mix-

tures density on x of the form

J
M X::m

p(x) = L 1rm L p(alm)p(xls, a, m)6(s - ",(m)- q~))ds
m=l a=l

X::m

- L 1rm L p(alm)p(xla, m)
m a=l

(5.7)

with the marginal densities

The Expectation-Maximization algorithm (EM) [DLR77] fits parametric proba-

bility models to data by maximizing the log likelihood of the model for some training

data set {xn, n = 1 . . . N). The log likelihood is given by

In order to simplify (5.9), we introduce the density z(a, m, xn) over the unknown

component assignments.

where En z(a , x) = 1. Using Jensen's inequality to bring the sum over a outside

the logarithm function, we find C is bounded below by the expected log likelihood

with equality when z(a, m, x) = p(a, mlx) is the posterior probability of component

a in grid m conditioned on the data vector x [NH98].

The EM algorithm provides a template for deriving a transform coding algorithm

from this probability model. To achieve the hard-clustering needed for transform

coding, we choose z(a , m, xn) to be one or zero

1 p(a,m(xn) > p(y,rfi(zn) VT # a and # m
(5.12)

0 otherwise

With this hard-clustering model, the final term in the expected log likelihood (5.11)

becomes zero since z(a , m, x,) In z(a, m, x,) = 0 V a , m, n. Consequently, (C) reduces

to the cost function

This cost function consists of two terms combined with the Lagrange multiplier 2a2:

the average coding distortion

and the discrete entropy

This entropy penalized cost function (5.13) is the same as that found by minimizing

coding distortion subject to an average bit-rate constraint (e.g. [CLG89]). In the

limit that the noise variance v2 goes to zero, and we limit the number of code vectors,

we recover the cost function for jked-rate transform coding. When the number of

grids M = 1 we recover the cost function for global or classic transform coding.

5.3 Adaptive Transform Coding Algorithm

In this section, we present a new algorithm for adaptive transform coder design that

integrates optimization of the transform coder parameters: the data space partition,

transforms, and quantizers. This generalized-Lloyd algorithm fits the parameters to

data so that entropy penalized coding distortion (5.13) is minimized. Like all such

algorithms, the optimization process is iterative. It alternately partitions the data

space into local regions and then optimizes the transform and quantizers for each

region. Each such iteration reduces (or a t least does not increase) the value of the

cost function. Generalized-Lloyd type algorithms converge to a local minimum of

the cost function.

5.3.1 Partition Optimization

To optimize the partition or encoder, each data vector is assigned to the reproduction

vector qLrn) of transform coder m that represents it with the least entropy-constrained

distortion. To partition the data, we compress each d dimensional data vector x
with each local transform coder m = 1. . . M. To compress x, we first find the

(m) T transform coefficients, s p) = (WJ) (x - p(rn)), J = 1 . . . d, where WJ is the Jth
basis (column) vector of the W transform matrix. Each SF) is then assigned to the

57

scalar quantizer reproduction value, r}7) that represents it with the least entropy

penalized distortion. Figure 5.3 demonstrates this transform and coding process.

W2

~r2;: ' I
52

J...: .
x

'.' '!' ' '.

ru
~

5 I ~

V2f

r12 r13
WI

Figure 5.3: Transform Coding a Data Vector. Projecting data vector x with transform W yields

coefficient values W[x = 81 and wi x = 82. The data space is partitioned into subregions with

boundaries indicated by dotted lines. Coefficient 81 is in subregion Rll and 82 is in subregion R22,

hence x is represented by reproduction vector q = [rll, r22]T.

The cost of assigning x to transform coder m is
d

c(m)(x) = L (11(wjm)f(x - p(m)) - r}7)112+ 20-2l}7))
J=l

(5.16)

where 67) = -log p(r}7)lm) is the code word length. We then assign x to transform
coder m such that

m = argminC(m)(x) - 20-2 log 7rmm

Hence, the data space partition defines regions R(m) such that each x belongs to the

transform coder that compresses it with the least entropy penalized distortion,

(5.17)

R(m) = {x I (c(m)(x) - 20-2log7rm) < (C(m)(x)- 20-2log7rm) Ym =1= m} (5.18)

In addition, the partition defines subregions R}7) such that each local transform

coefficient S}m)= (wjm))Tx, x E R(m), belongs to the scalar reproduction value r}7)

that represents it with the lowest coding cost,

R}7) = {S}m) I (1Is}m) - r}7)112+ 20-267)) < (1Is}m) - r}~)112+ 20-2l}~))Yk =1= i}
(5.19)

58

Figure 5.4 illustrates the relationship between the the transform coder regions, R(m)

and subregions R}7). Consequently, the new data space partition minimizes the

coding cost function (5.13) for the current transform and quantizer values.

W(l)1

Figure 5.4: Data Space Partition. Partition of a two dimensional data space with two coders.

Coder 1 consists of a 3 x 1 grid and coder 2 consists of a 2 x 1 grid. The boundary between the
two coders, which partitions the data space into R(l) and R(2), is shown by the heavy black line.

Subregion boundaries are indicated with dotted lines. The diamonds along the transform axes
indicate placement of reproduction values.

The prior probabilities p(r}7)lm) and 7rmare estimated from the number of data

values in each region. The transform coder prior 7rm= Nm/N, where N are the
total number of data vectors and Nm are the number of vectors in R(m). The repro-

duction value priors p(r}7) 1m) = N}~)/Nm where N}~) are the number of transform

coefficientsin R}7).

5.3.2 Transform Optimization

To optimize the transform, we find the center f-land orientation W of each quantizer

grid that minimizes the coding cost function (5.13). The minimum cost estimators

for the grid center place each grid at the mean of the data assigned to its region

f-l(m) = ~ L x
Nm xER(m)

(5.20)

"'"
R(l)

/ -
R(2)

.
- wi2)

R(2): R(2)21: 22

The grid orientation or transform W is constrained to be orthogonal, that is

WTW = I . The cost function for transform coder m is thus

(5.21)

where Wj is the Jth column vector of W, q , ~ is the Kth coordinate of reproduction

vector q,, and T K L is a Lagrange multiplier. The partition assigns each data vector

x to a quantizer reproduction vector pirn) defining local regions I3km). Figure 5.1

illustrates the relationship between the reproduction vectors q and scalar quantizer

reproduction values or grid marks r.

Minimizing the local cost function (5.21) with respect to the transform matrix

element w!,') yields

where p(a(m) is the prior probability of qLm). If we define the outer-product matrix

Q

then (5.22) requires QW = WTQT. This symmetry condition along with the orthog-

onality condition uniquely defines the Coding Optimal Transform (COT). Appendix

A contains the detailed derivation of the COT.

To minimize distortion, the COT orients the quantizer grid so that the QW

matrix is symmetric (5.22). We can quantify how far the matrix is from symmetric

with the sum squared differences between transposed matrix elements

where a~ J is the Kth row and Jth column element of QW. We apply Givens rotations

[GL89], G(K, J, O) , to minimize A. Multiplication by the G(K, J, 8) matrix applies

a rotation of 8 radians to the (K, J) coordinate plane. For a n x n matrix, there

are such planes. Minimizing (5.24) with respect to rotation G(K, J, 8) yields a

solution for 8 that is quartic in tan 8. However, when the angle is small (tan2 8 << I),

the solution simplifies to

tan 19 PZ (UKK + U J J) (~ K J - UJK) - CI#K,J(QJI~IK - ~ J I ~ I K)
(5.25)

CI#K,J (~JZ~IJ f ~ K Z ~ I K) + (~ K K + ~ J J) ~ - (aKJ - ~ J K) '

Since the COT reduces to the PCA transform when the data is Gaussian [ALOla,

GZVOO], we expect that starting the optimization from the PCA transform will

keep the rotation angles small. This approach worked well in practice, allowing us

to use this simpler form for the rotation angle. We find the rotation angle (5.25) for

each coordinate plane and apply these rotations to the current transform matrix.

This process is repeated until A/IIQWI(F, where IlQW I I F is the F'robenius norm, is

less than a threshold (A = 0). This new W will orient the quantizer grid so that

compression distortion is minimized.

5.3.3 Quantizer Optimization

To optimize the quantizers, we adjust the number of coders M, number of repro-

duction values in each coordinate x?) and the value of each reproduction value

r g) to minimize the cost function (5.13). This optimization is most conveniently

performed in the local transform coordinates defined by ~ (" 1 . We rederive the

transform coding cost function using the product formulation for the latent density

(5.3), instead of (5.1). This derivation yields the coding cost in terms of transform

coefficients sp) = (W ~)) T (X - The cost function for transform coder rn is

where the lg) = - logp(r$')lrn) is commonly interpreted as the code word length.

Minimizing the cost (5.26) with respect to the reproduction values places each

reproduction value at the mean of the transform coefficients assigned to it.

where ~ 2) are the number of transform coefficients in R$!).
For entropy-constrained transform coding, selecting the noise variance is equiv-

alent to selecting a target entropy. The target entropy determines the number of

transform coders M and the number of reproduction values FC$"') in each scalar

quantizer. The entropy terms in (5.26) move the partition away from the minimium

distortion solution, so that reproduction values with low prior probabilities may

have no data items assigned to them. Reproduction values with p(rg)lrn) = 0 can

be removed from the coder, reducing the value of ICY). Likewise, coders with low

priors may have no data items assigned to them, allowing the number of coders

to be reduced. Consequently, selecting a large value for a2 produces low bit-rate

coders. For a recent comprehensive review of quantization methods see [GN98].

5.4 Algorithm Evaluation

We evaluate our adaptive transform coding algorithm on benchmark images and

a database of synthetic aperture radar (SAR) images. We compare compression

performance of our method to that of classic transform coders based on the PCA

transform (also known as the Karhunen-Loeve Transform or KLT) and the Discrete

Cosine Transform (DCT). We also compare performance to that of PCA trans-

form and DCT based adaptive transform coders. All coders use optimal entropy-

constrained quantizers [FM84]. We report compression performance as signal-to-

noise ratio (SNR), in dB, versus entropy, in bits per pixel (bpp). No entropy coding

is performed.

In this evaluation, we also compare our emthod to compression with local PCA

transform based coding, such as the iterative algorithm developed by Effros, et. al.

[ECG99] or that presented in our previous work with fixed-rate adaptive transform

coding [ALOlb]. However, we found that the local PCA based algorithm has conver-

gence issues. The PCA transform is only optimal for coding if the data is Gaussian.

Consequently, the PCA transform update portion of this algorithm does not, in

general, reduce the coding cost. That is, using PCA to define the transform does

not yield a generalized Lloyd algorithm. In practice, we found that the coding cost

almost always increased when the transform was updated and then decreased when

the quantizers and partition were optimized. To handle these frequent cost increases,

we monitored the absolute change in coding cost and stopped the optimization when

this absolute change became small.

5.4.1 Evaluation on Benchmark Images

We illustrate the performance advantages of our optimal adaptive transform coding

algorithm over classic transform coders and DCT based adaptive coding by com-

pressing the benchmark images Barbara and Goldhill [ow981 shown in Figure 3.5.

Barbara is a photograph of a seated women wearing striped clothing. Goldhill is

a photograph of a row of houses in a hillside village. We compressed these images

to entropies in the range of 0.25 to 1.25 bpp. The plot in Figure 5.5 displays SNR

versus entropy results for global transform coders on the Barbara image. The dif-

ferences in SNR were smaller for the goldhill image. Our global transform coding

experiments on both images show that using our COT-based coder improves SNR

by 0.3 to 1.2 dB relative to PCA transform based coders and 0.1 to 0.7 dB relative to

DCT based coders. We give additional global transform coding results in [ALOla].
The plot in Figure 5.6 displays SNR versus entropy results for global versus adaptive

transform coders on the Barbara image. In adaptive transform coding experiments

with sixteen coders, our COT-based coder improves SNR by 0.4 to 1 dB relative

to DCT-based adaptive coders. In addition, adaptive transform coding improves

SNR by 0.4 to 1 dB relative to the corresponding global transform coder. Adaptive

coders that use the PCA transform had SNRs comparable to DCT based adaptive

coders a t high bit rates and 0.2 to 0.5 dB higher at low bit rates.

To reconstruct a compressed image, the decompression engine must have the

transform coder parameters. Therefore, these parameters must be transmitted with

the compressed image, effectively increasing the compressed size. The storage space

required for the transform coder parameters is referred to as overhead. For the tested

transform coders, the overhead was 10 bits (3 decimal digits) for each transform

element and 18 bits (5 decimal digits + sign) for each reproduction value and each

associated prior probability. Since the DCT is a fixed for all images, we hard-

coded it into the decompression software. When overhead is included as part of

the compressed image, we find that the Barbara image compressed with the global

DCT based coder has a SNR approximately 0.5 dB higher than when compressed

with the global COT based coder. The SNR improvement provided by the COT

is not enough to compensate for the increased overhead. The deleterious effect

of overhead on compression performance is greater for adaptive transform coders,

making it impractical to develop such coders for individual images.

18-
E

0 COT -
KLT

A DCT

Entropy in bits per pixel

Figure 5.5: Comparison of performance of global transform coders. Plot shows signal-to-noise
ratio versus entropy for Barbara image for global transform coders with entropy-constrained quan-
tizers and the COT (circle), PCA transform (square), or DCT(triang1e).

5.4.2 Evaluation on Image Database

Database compression provides an important knd practical application for adaptive

transform coding. While the data contained in an individual data file, such as an

image, is non-stationary, the characteristics of the different files within the database

are often similar. Consequently, one adaptive transform coder can be developed and

subsequently used to compress all files within the database. This allows us to incor-

porate the transform coder parameters into the decompression engine, alleviating

the overhead problem. For large databases, a single adaptive coder can require less

overhead storage than separate coders for each image. As an added advantage, no

new coders need to be developed when new items are added to the database. Al-

though published work [DH95, ECG99, TB99, AL991 demonstrates the performance

gain of adaptive transform coding over global coders developed on the same training

image, it does not address how much compression performance is lost relative to a

set of global coders, one for each image in the database. In this section, we compare

performance of adaptive transform coders developed on a training image to global

coders developed specifically for the test image.

Entropy in bits per pixel

Figure 5.6: Comparison of compression performance of adaptive coding with 16 local transform

coders to global transform coding. Signal-to-Noise Ratio versus entropy for Barbara image where

adaptive COT based coder results are indicated with open circles, global COT with solid circles,
adaptive DCT based coder with open triangles and global DCT with solid triangles.

We evaluated the adaptive transform coders on a small database (18 MByte)

of synthetic aperture radar (SAR) images [FreOO]. Our database consists of eleven

images acquired via space-borne radar by the space shuttle Endeavor [Lab02]. Each

image contains three pseudo-color channels: red is L-band (24cm) horizontally trans-

mitted and received, green is L-band horizontally transmitted and vertically re-

ceived, and blue is C-band (6 cm) horizontally transmitted and received. Prior to

compression, each image is decomposed into its three channels and the pixels in

each channel are divided into 8 x 8 blocks to form 64 dimensional data vectors.

SAR images of Belgrade, Taipei, and San Diego constitute the training set (5.9MB-
tyes) used to optimize the transform coder parameters. We evaluated compression

performance on eight SAR images chosen for their diversity of land uses and terrain

types. The test images were acquired over Athens, Boston, Hampton, Honolulu,

Laughlin (Colorado River), Lisbon, Phnom Penh, and Ventura.

We developed both global and adaptive transform coders for the three image

training set for four entropies in the range of 0.2 bpp to 0.7 bpp. Seven adaptive

65

coders for each bit-rate were trained starting from 64 regions and different random

initializations. Since the cost function contains an entropy constraint, local coders

that do not represent any data well will see their prior probabilities go to zero

during the training process and are consequently discarded. The number of final

coders ranged from 36 to 63 with an average of 57. We report SNR results in terms

of entropy. The coder parameters can be included in the decompression engine,

so overhead is not included in the bit-rate. We developed eleven global coders for

each bit rate, one for each of the images in our database. Overhead is included in

the customized global coder bit-rate, since coder parameters are different for every

Image.

Figure 5.7: Pseudo-color SAR image of Lisbon, Portugal

Our results show that a single adaptive transform coder can perform as well

on a database of related images as a set of global coders customized for each im-

age in the database. Compression results for the Lisbon image, plotted in figure

5.8, demonstrate the relative performance of the COT and DCT based compression

methods. The Lisbon image, Figure 5.7, includes a wide variety of land uses and

terrain, making it representative of other images in the database. The global DCT

and COT based coders have nearly identical overhead adjusted performance. The

66

adaptive coders, developed for a training image, not only match global coder perfor-

mance, but have slightly better SNRs than a global coder developed for the Lisbon

image. The SNR improvement of the COT based adaptive coder is 0.14 dB and the

improvement of the DCT based coder is 0.36 dB at an entropy of 0.466 bpp. The

PCA transform based adaptive coder had test image SNRs comparable to the COT

based coder. Note that the adaptive COT based coder generalizes less well than the

adaptive DCT based coder.

0.3 0.4 0.5 0.6
Entropy (+ Overhead) in bits per pixel

0.7

ElO.5
('Ij
II:
Q)
.!Q 10
0
z
.9 9.5
as
s:::
C)

U5 9

Figure 5.8: Signal-to-Noise Ratio versus entropy for Lisbon image. Compression performance of

adaptive coding with approximately 57 local transform coders to global transform coders developed

for the test image. Solid circles are for COT based global coder and solid triangles indicate the

DCT based global coder. The bit-rate for the global coders is the entropy plus overhead. Open

circles are the COT based adaptive coder and open triangles are the DCT based adaptive coder.
The lines pass through the means of the seven trials at each bit-rate. The bit-rate for the adaptive

coders is just the entropy.

We saw similar results for the eight test images and for the three images included

in the training set. At entropies of 0.5 bpp, the eleven image SNRs ranged from 8

dB to 12 dB. The adaptive COT based coder had higher SNR than the customized

global coders for all but two test images (Ventura and Laughlin) and had an average

12

11.5

ID 11"C

.£:

improvement of 0.10 dB. The adaptive DCT based coder had higher SNR than the

customized global coders for all but one test image (Ventura) and had an average

improvement of 0.25 dB. The adaptive DCT based coder generalized better than

the COT based coder with consistently better SNRs (average 0.18 dB) on the test

images.

Another important aspect of compression is time: training time, encoding or

compression time, and restoration or decompression time. An adaptive transform

coder requires more time for training and encoding than does a comparable global

transform coder, although the restoration times are about the same. Training and

encoding are done once for the items in a database, making the larger processing

time less important than the reconstruction time. Our adaptive COT based coders

required an average training time of 900 minutes and our adaptive DCT based coders

an average time of 500 minutes on a 750 MHz Sun Ultra-SPARC 111. The individual

global transform coders required an average of 36 minutes and 4.3 minutes for the

COT and DCT versions, respectively. Adaptive coders also require longer encode

times. The adaptive COT based coder required 352 seconds to encode the Lisbon

image compared to 4.1 seconds for the global coder. The adaptive DCT based coder

required 76.5 seconds compared to 3.3 seconds for the global coder. However, the

differences in reconstruction time are small for the different methods. Adaptive

COT based coders require 3.9 seconds to decompress the Lisbon image compared

to 3.8 seconds for global COT, 3.2 seconds for adaptive DCT, and 3.1 seconds for

the global DCT based coders.

Summary

This chapter describes the culmination of our research into optimal global and adap-

tive transform coder design. Existing transform coding design algorithms are con-

structed by concatenating separately designed and often suboptimal transforms and

quantizers. In contrast to this approach, we developed a probabilistic framework

for both global and adaptive transform coding. Using this probability model, we

derived a generalized-Lloyd algorithm for optimal transform coder design. A signif-

icant and necessary part of this work is a new transform, the COT, that minimizes

mean-squared coding error. Definition of this transform made possible our develop

ment of an algorithm that integrates optimization all transform coder parameters:

the signal space partition, the transform, and the quantizers.

We evaluated our adaptive transform coder on benchmark images and a small

database of SAR images. Our results on the benchmark images demonstrate the

performance advantage of our new algorithm over existing transform coding meth-

ods. Global COT based transform coders have SNRs 0.3 to 1.2 dB higher than

coders based on the PCA transform and 0.1 to 0.7 dB higher than DCT based

coders. Adaptive coders have SNRs about 1 dB higher than global coders. How-

ever, practical considerations of training time and overhead storage limit adaptive

coders to applications with a large number of similar data files that will likely be

compressed once and restored many times.

Adaptive coders have been referred to as "universal coders" [ECG99], since with

enough local coders, they can theoretically adapt to a variety of input signals. Our

results on the SAR image database indicate that a single adaptive transform coder

can be used effectively to compress databases. Adaptive transform coders com-

pressed test images with SNRs as good as or better than global transform coders

developed individually for each test image. DCT based adaptive coders appear to

generalize best as they had better test image SNRs than either COT or PCA trans-

form based coders. Note that generalization capability is largely dependent on the

training set. For instance, both the COT and DCT based adaptive coders had SNRs

lower than the corresponding global coder for the Ventura image, indicating that

this image contains regions with characteristics that were not in the training set. An

important practical consideration for developing robust coders is the construction

of a training set that contains adequate representation of all expected signal types.

Adaptive transform coding provides a mechanism for developing custom com-

pression engines for large scientific databases. Possible applications besides image

databases include geophysical data or data from simulations of environmental pro-

cesses. Our optimal adaptive transform coding algorithm provides a benchmark for

systematic tradeoff between complexity, overhead, and performance gain of custom

coder components. For instance, our experiments show that while our optimal al-

gorithm produces coders than outperform existing transform coding methods on

training data, adaptive DCT based coders generalize better to test image data.

Similar evaluations can be performed for types of data for which the DCT may not

be a good transform choice. Similarly, one could constrain the quantizers to have

uniform spacing (uniform quantizers have low overhead) and evaluate compression

performance against optimal, but higher overhead, entropy-constrained quant izers.

In summary, our new algorithm gives transform coding the same grounding as vector

quantization, allowing systematic development of custom adaptive transform coders

and filling a void in the compression literature.

Chapter 6

Variable Dimension Local PCA

This chapter addresses the problem of resource allocation in local linear models for

non-linear principal component analysis. Local PCA models partition the data into

regions and perform PCA in each region. Prior formulations of local PCA under-

utilize the potential of these models by requiring a single global target dimension.

We propose a resource allocation approach to local dimension selection. Evaluations

using our variable dimension local PCA to reduce the dimension of blocks of image

data substantially increases dimension reduced image quality compared to fixed

dimension approaches. Some of the material in this chapter was published at the

International Joint Conference for Neural Networks in 1999.

6.1 Introduction

Local Principal Component Analysis (PCA) models, such as those developed by

Kambhatla and Leen [KL97] and Hinton et. al. [HRD95], are alternatives to non-

linear PCA models such as the five-layer, non-linear autoassociators developed by

Kramer [Kragl] and Demers and Cottrell [DC93]. The latter construct smooth

curved manifolds that are close to the data. Local PCA partitions the data space into

regions and performs PCA in each region. Geometrically, such models approximate

the data manifold by a set of local PCA hyperplanes. When used for dimension

reduction, local PCA models exhibit a clear performance advantage over simple

PCA. They are faster to fit than five-layer, nonlinear autoassociators, and often

outperform them.

Despite their success, previous studies [KL97, HRD95, DH95, TB99] under-

utilize the potential of these models. These authors choose a global target dimension,

and hence neglect the variability in intrinsic data dimension from region to region

in the data space. Here we construct a Langrangian-based algorithm that allows

the model's dimension to be adjusted locally in order to decrease distortion, while

the average dimension is constrained to a particular value.

Background

While transform coding depends on both the transform and the coding of the trans-

form coefficients, dimension reduction dispenses with coding. It is therefore more

purely a window into the performance of the transform. Dimension reduction can

be used to preprocess data for other signal processing tasks, such as compression,

classification and detection, or density estimation. It is vital for visualization of

high-dimensional data.

Previous work on dimension reduction operates almost exclusively with reduc-

tion to a single, globally defined dimension. The dimension may be chosen by a

fidelity requirement that places an upper bound on the allowed average distortion.

Alternatively, several authors [WK85, HPFSO] have applied minimum description

length (MDL) criteria to PCA for estimating signal dimension. We argue that there

is no compelling argument to require a single, global dimension, although a fixed-

dimension approach may be more convenient for data visualization.

A simple exploration of the local correlation structure of images shows that

different regions of the data space have different dimension. We extracted three small

regions from the Barbara image, a common benchmark image for image compression

evaluations. Each region was divided into 4 x4 blocks to produce sixteen dimensional

vectors. The principal eigendirections and variances for these three regions are

shown beside the image in Figure 6.1. Note that the second and third principal

eigenvectors show different patterns that are representative of the blocks in each

region. Equally important, the numbers of high variance directions, that is the local

dimensions, are different for each region.

(a) Barbara Image

72

Smooth

Stripe

.. Hatch

(b) Leading Eigenvectors

10'

B .,
fO
:::;

]'"
~10.'

"

",

'~ \ .

---.

~.~.:.::.>

10.'L0 6 8 10 12
Componen1Number

14 16

(c) Variances

Figure 6.1: Non-stationarity of image data demonstrated with Barbara benchmark image. The
characteristics for three regions, smooth taken from the floor, stripe taken from the women's slacks,
and hatch taken from the wicker chair, are shown on the right. The principal eigendirection is

the same for all three regions, but the second and third eigenvectors capture patterns that are

representative of each region. The number of high-variance eigendirections, which determines the
local dimension, varies between regions.

6.3 Variable Dimension Local PCA

Local PCA algorithms cluster the input data into regions and perform PCA on the

data that falls within each region. Kambhatla and Leen define two clustering meth-

ods for local PCA in [KL97]. One method partitions the space using a coarse vector

quantizer. Data vectors are assigned to the region whose center has the smallest
Euclidean distance to the data vector. The second method partitions the data in

order to minimize reconstruction distance or, equivalently, dimension reduction er-

ror. Both methods require the user to choose a single, global target dimension. The

results presented in [KL97] show little performance difference in the two clustering

methods.

For the local PCA work described here, clustering is done using the simpler vector

quantizer method described in [KL97]. We perform PCA on the data assigned to

each region to identify the local eigenvectors and eigenvalues. However, we do not

choose a single global target dimension, but propose a resource allocation approach

to local dimension assignment. Given some number of regions M and target average

dimension do, our algorithm assigns dimension d, to region R, so as to minimize

the expected dimension reduction distortion while keeping the average dimension

below do. The algorithm can potentially assign a different dimension to each region

of the signal space.

Our algorithm is motivated by a Lagrangian formulation in which we minimize

dimension reduction distortion subject to a constraint on the average dimension. For

a model with M regions, the prior probability of region R, is ?r, and the average

dimension is
M

For a region with N, data vectors, the average dimension reduction distortion is

given by
1

where p, is the region mean and U, is a matrix containing the leading d, eigenvectors

of the local data. The cost function to be minimized is thus

In general, realizing the theoretical minimization of this cost function (6.3) is

not possible. However the following simple heuristic does allow one to reach an

empirical minimum a t approximately the desired average dimension:

1. For all regions R,, initialize d, = 0.

2. Find region with the largest discarded eigenvalue

old 3. Allocate one additional dimension to that region, dEew = d, +l.

4. Calculate the new average dimension d . If d 2 do, stop. Other-

wise, loop to step (2).

Figure 6.2: Dimension reduction of image blocks from 64 to 8 dimensions. Plot shows SNR for
local PCA with different numbers of regions. Results for fixed local dimension are shown with
dashed line and variable local dimension with solid line.

6.4 Experimental Results

We compared the dimension reduction performance of our variable dimension local

PCA algorithm to that of fixed dimension local PCA [KL97] on a database of video

frame images. The database consists of 50 frames each from two video sequences of

city street intersections [oK98]. Each image was decomposed into 8 x 8 blocks to

form 64 dimensional vectors. The training set consists of eight frames from the first

half of each sequence. Frames from the second half of each sequence were used for

testing.

Allowing the local dimension to adjust to the data results in substantial increases

in the signal-to-noise ratio (SNR) of dimension reduced signals compared to fixed

dimension methods. Figure 6.2 shows results for reduction of 64-dimensional blocks

of image pixel values to both eight average and fixed dimensions. When using 32
PCA regions, the local dimension assigned by our algorithm varies between 3 and 23

among the different regions. The corresponding image SNR improvement is 1.3 dB

relative to assigning all regions dimension eight and 2.2 dB relative to global PCA.

For 128 region local PCA, the SNR increases about 1.5 dB in going from global

PCA (1 region) to the 128 region fixed dimension local PCA and increases another

1.5 dB by incorporating local dimension allocation.

6.5 Summary

Despite their success, previous formulations of local PCA under-utilize the poten-

tial of these models. These models incorporate a single global target dimension,

neglecting the variability in intrinsic data dimension throughout the data space.

We developed a variable dimension PCA algorithm that minimizes dimension re-

duction distortion subject to a constraint on the average dimension. The fidelity

gains achieved by our variable dimension local PCA algorithm relative to fixed di-

mension methods are comparable to the advantage of used fixed dimension local

PCA over global PCA.
This work with variable dimension local PCA indicates that to achieve good

modeling quality, we should allow the dimension to adapt to the data structure. Our

work developing adaptive transform coding models shows that constraining entropy

is an effective way to limit model complexity, while giving the model the flexibility

to adjust to the data structure. For transform coding, the entropy constraint arises

naturally from the associated statistical model when we choose the noise variance

to be the same everywhere in the data space. A similar construction for local or

adaptive PCA whould provide an effective way to allow the dimension to conform to

the data, while limiting model complexity. Our new entropy-constrained adaptive

PCA algorithm is described in the next chapter.

Chapter 7

Entropy-Constrained Adaptive

PCA

In this final chapter, we develop a new signal modeling method, entropy-constrained

adaptive PCA, that has the flexibility to accurately model the cluster structure of

non-stationary data. Using a latent data framework, we derive a statistical model

for a broad category of real world signals that includes images and measurements

from natural processes. Data of this type consists of a collection of low-dimensional

patterns embedded in a high-dimensional observation or measurement space. We

use this statistical model to develop our adaptive PCA algorithm. Our algorithm

adjusts the model parameters to minimize the dimension reduction error between

the model and sample data subject to a constraint on the entropy.

We evaluate the quality of models produced by adaptive PCA using image tex-

ture data and salinity and temperature measurements from the Columbia river.

Compared to entropy-constrained vector quantization, local PCA and full-covariance

models, adaptive PCA proved to be a more effective tool for analyzing the salinity

and temperature data. In addition, our results show that our model segments tex-

ture images as well as entropy-constrained vector quantizers, yet uses substantially

fewer model components. Adaptive PCA models conform to the data structure

better than full covariance models when training data is sparse.

7.1 Introduction

Classical methods for signal modeling, e.g. global linear models, are limited in that

they accurately model only simple, invariant signals. Complex real-world signals

require more innovative modeling approaches, since the statistical characteristics

of such data vary within the data space. CoElections of local linear models, which

partition the data space and then model data within each region, offer a promis-

ing approach to modeling such signals. However, most "collection of model" ap-

proaches have their own limitations: they either require large amounts of training

data, limiting their usefulness on small data sets; or must be heavily constrained

geometrically, enforcing too much uniformity of model components to accurately

model non-stationary data. Our goal in this paper is to develop a new method for

creating collections of local linear models that strikes a balance between these two

extremes, allowing us to derive models appropriate for real-world data.

The classic example of a collection or mixture of linear models is the Gaussian

mixture model (GMM) with full or unconstrained covariance. Such models are often

a poor choice for high-dimensional data, as sufficient training examples are rarely

available to produce robust models. To reduce training data requirements, one typ-

ically constrains the covariance to be spherical or diagonal [OT96], which limits the

ability of the model components to conform to the natural data structure. Adaptive

principal component analysis (PCA), which models data as a collection of hyper-

planes, has the potential to strike a balance between full covariance and spherical

GMMs. Recently several researchers [KL97, HRD95, DH951 have developed effective

dimension reduction methods using adaptive PCA. In addition, Tipping and Bishop

[TB99] and Ghararamani and Hinton [GH96] have developed statistical models for

mixture PCA and the related technique, mixture factor analysis, respectively. De-

spite their success, these methods under-utilize the potential of local or adaptive

PCA models by requiring a single global dimension for all model components.

The intrinsic dimension of real-world signals, such as image or speech data,

varies throughout the signal space. In prior work [AL99], we found that dimension

reduction performance of local PCA methods could be substantially improved by

allowing the dimension to vary, Meinicke and Ritter [MROl] have recently proposed

a mixture PCA model that incorporates variable dimension and produces higher

likelihood models than fixed-dimension methods.

Recently, we developed a statistical model for transform coding [ALOlb, ALOla],

a common methods of signal compression. From this model, we derived a new

generalized Lloyd algorithm for transform coding, in which coder complexity is

controlled by an entropy constraint. The entropy constraint arises naturally from

the associated statistical model. A similar construction for adaptive PCA should

provide an effective way to allow the dimension to conform to the data structure,

while limiting model complexity.

In order to develop more flexible adaptive PCA models, we first develop a sta-

tistical model of the data. Using a latent framework, we derive a model for a

broad category of real-world data that consist of collections of several distinct low-

dimensional patterns, or classes, embedded in a high-dimensional observation space.

This probability model is the same as that developed independently by Meinicke

and Ritter [MROl]. However, we take the development further by recognizing the

entropy-constrained form of the cost function and developing a new hard-clustering

algorithm for adaptive PCA.

Following our algorithm derivation, we describe several training methods used to

fit model parameters to sample data. We conclude with an evaluation of our adaptive

PCA algorithm on both low and high dimensional real-world data; salinity and tem-

perature measurements from the Columbia River Estuary and image texture data.

As an additional extension of prior adaptive PCA work [TB99, MROl], we compare

the ability of our adaptive PCA model to separate data into its distinct classes to

that of both spherical and full-covariance models. We find that our adaptive PCA

approach indeed allows us to specify models that are neither overly "data-hungry"

nor overly constrained geometrically. These models accurately represent' this broad

category of real-world data even when the sample data is sparse.

7.2 Adaptive PCA Model

In this section, we present the statistical model from which we derive our entropy

constrained adaptive PCA algorithm. This model is developed within a latent data

framework, which follows that presented by Tipping and Bishop [TB99] for proba-

bilistic PCA and Basilevsky [Bas941 and Roweis and Ghahramani [RG99] for factor

analysis. The latent data framework is based on the presumption that observed

79

signals are not as complex as they appear. Instead they have some simple latent

structure, which is obscured by linear transformations and noise. Our goal is to

recover this underlying structure in order to improve our understanding of the data

and to reduce the size of the signal representation.

82 W3
X2

W2

~
X1

83

Figure 7.1: Adaptive PCA Model. Structure of latent variable space, S, and mapping to observed
space, X. The data density in the latent space consists of a three Gaussians. This latent data

is mapped to the observed data space by orthogonal transform, W, which stretch and rotate the
data.

For adaptive PCA, we envision ad dimensional latent data space S, where data

from the latent space is mapped to a d dimensional observation space X. The latent

data, s, is modeled with a simple mixture density of the form

M

p(s) = L 1ra p(sla)
a=l

(7.1)

where 1ra are the mixing coefficients and the components are spherical Gaussians

p(sla) = N('TJa,p2I) with means 'TJaand variance p2.

Unique linear maps with translation J1aand rotation plus scaling transform Wa

embed the latent data in the observed space, X. Wa consists of two parts, an
1

orthogonal transform Ua and a diagonal scaling transform r a, so that Wa = uar~.

Zero entries in r a suppress latent variables, which causes the model dimension da

to drop below d. The number of columns in Ua is set by the number of non-zero

entries in r a, so that Ua is a d x da matrix. The embedded data is corrupted with

additive Gaussian noise, fa rv N(O, (T~I). Figure 7.1 illustrates this mapping from

latent to observed space.

The observed data generated from a sample s drawn from latent component a

is

x = W a (s - %) + p a + € a (7.2)

with conditional densities

The latent data density and mapping induces a mixture of constrained Gaussians

density on x of the form

where r, are the same mixing coefficients given in (7.1) and p(x)a) = N(p,, Ca).

The covariance is constrained such that

where, without loss of generality we choose the latent variance p2 to be one. We

make no assumptions about the latent means, rb.

The Expectation-Maximization algorithm (EM) [DLR77] fits parametric proba-

bility models to data by maximizing the log likelihood of the model for some training

data set {x,, n = 1 . . . N). For additional information on mixture model fitting see

chapter two of [Bis95]. The log likelihood for this model is given by

To simplify the log likelihood equation (7.6), we introduce the density z(a, xn) over

the unknown component assignments. C is then bounded below by the expected log

likelihood

with equality when the z(a, xn) are the posterior probabilities p(a(xn) [RG99,

NH98]. This choice of z produces soft-clustering models.

Researchers have recently developed two different probability models for PCA

[TB99, MROl], which can be derived from this framework. In Tipping and Bishop's

model [TB99] the dimension is the same for all components, d, = do, Va. The target

dimension do is specified prior to model fitting and the noise variances a: are fit to

data. In the limit that all noise variances are identical, a: = a2 , and go to zero, the

EM algorithm for fitting this model reduces to Kambhatla and Leen's Local PCA

algorithm [KL97] for clustering by reconstruction distance. In this hard-clustering

limit, the posterior probabilities become zero or one, that is

1 if (5 - P ~) ~ (I - uff U:) (x - pa) < (x - pJT(I - U7UT)(x - p7)
0 otherwise

for all y # a. In addition, the expected log likelihood (7.7) reduces to the cost

function for local PCA

We take a different approach and use the noise variance to control model com-

plexity instead of constraining the dimension to be the same everywhere in the data

space. Our approach was inspired by our development of statistical models for trans-

form coding [ALOlb, ALOla]. We found that choosing the noise variance to be the

same for all components, a: = a2, V a produces entropy-constrained cost functions

for variable-rate coding. A similar construction for adaptive PCA should allow the

local dimensions to adjust to the data structure. Consequently, like Meinicke and

Ritter [MROl], we choose the noise variances for all components to be the same and

fit the local dimensions d, to the data. With identical component noise variances

a2, the local covariance matrices (7.5) become

In the limit that a2 goes to zero, each local covariance matrix (7.10) reduces to

C, = U,r,Uz with d, = d. That is, this latter model becomes a classic Gaussian

mixture model with unconstrained covariance matrices.

To expand the log likelihood (7.7) for our adaptive PCA model, we first invert

C, (7.10) using the Sherman-Morrison-Woodbury formula [GL89]

with diagonal d, x d, matrix A, = Fa + a21. Using (7.11) to expand (7.7) gives the

expected data log likelihood

C C z(a, x.) In ~ (a , 5.1

where z are the posterior probabilities, p(a)x). Our model parameters include the

component means, pa, the component dimensions, d,, the component stretching

matrices, I?,, the component transform matrices, U,, and the number of compo-

nents, M. The noise variance a2 is considered a control variable, rather than a

model parameter.

7.3 Entropy-Constrained Adaptive PCA

Many signal processing applications, such as compression or on-line classification,

benefit from incorporating hard-clustering methods that assign each data item to

one and only one model component. For example, compression involves finding a

compact representation for data and hard assignments can be coded more efficiently

than posterior probabilities. For exploratory data analysis, hard-clustering is easier

to visualize and interpret. On-line and embedded classification applications have

tight memory and computational time constraints. Hard clustering implementations

require less memory and processing time than comparable soft clustering methods

making them more suitable for such applications.

7.3.1 Adaptive PCA Cost Function

The EM algorithm provides a template for deriving hard-clustering algorithms from

latent data probability models. To achieve hard-clustering, instead of the soft clus-

tering provided by p(alx), we choose z(a, x,) to be one or zero.

1 ~(a1xt.n) > P(YIx*) VY # 0
0 otherwise

The hard assignments given in (7.13) partition the data space into regions R, such

that
N x f (XI = x ~ (a , xn)f (x) (7.14)

X € %. n=l

for any function f (x). By choosing hard clustering with z given by (7.13), the

expected log likelihood (7.12) reduces to the entropy-constrained cost function for

adaptive PCA

l N M
c = 3 C C z (a , x n) [(xn - 11,)~(1- LI,U:)(X~ -11,) - 2021n if, +

n=l a=l

The modeling cost consists of two parts, an error term and entropy term, linked by

202. The distortion contribution of data vector x E R, is the error due to reducing

the dimension of x to d,

D, (x) = (X - ~ ,) ~ (1 - u,@) (2 - ~1,) . (7.16)

The differential entropy contribution of x is the sum of its discrete entropy contri-

bution

and the log of a quantizer bin size f lno2 [CTSl]. The lno2 term quantifies mea-

surement uncertainty and in this respect set the resolution of the model.

The discrete entropy H = C, En z(a, xn)H,(xn) is the sum of the entropy as-

sociated with selecting a model component, - C, T, In T,, the entropy associated

with coding the data within a component, $ Z, T, ln lA,/021, and half the average

dimension 2 x, rodo. The average dimension comes from the Mahalanobis distance

term in (7.17), since

Selecting the noise variance a2 is equivalent to setting a penalty on the entropy,

Choosing an entropy penalty controls model resolution and complexity by determin-

ing both the number of components and the dimension of each component. When

a2 is large relative to the data variance, the local dimensions are close to zero and

the resulting (nearly spherical) model has only a few components. As a2 decreases,

both the number of components and component dimensions increase. However,

when a2 becomes small, the number of components decreases and the local dimen-

sions approach the full dimension. As a2 approaches zero, the model becomes a

hard-clustering version of a GMM with unconstrained covariance matrices. At most

choices of noise variance, different model forms, from spherical to full covariance,

can appear in a single adaptive model. This flexibility will allow us to effectively

model non-stationary data.

7.3.2 Adaptive PCA Model Fitting

The EM procedure inspires a generalized Lloyd algorithm for minimizing the con-

strained cost. This algorithm iteratively optimizes the partition and model parame-

ters to minimize modeling cost (7.15). To optimize the partition, each data vector is

assigned to the region R, that represents it with the lowest cost. This is equivalent

to assigning a data vector to the region with the highest posterior probability (7.13).

The partition consists of regions R, such that

R, = {x (Da (x) + 2a2& (x) < D, (x) + 2a2 H,(Z) V y # a) (7.19)

Note that the In a2 term is the same for all components, so it does not affect partition

optimization and can be ignored. The discrete entropy shifts the partition away from

the minimum distortion solution by increasing the cost for components with large

entropies. Components with low priors, large variances, or large dimension may

have no data vectors assigned to them, in which case, they can be removed from the

model. Consequently, the model conforms to the cluster structure by fitting small,

low-dimensional components to the data in densely populated areas of the signal

space.

We optimize the model parameters, T,, pa, d,, U,, and I?,, by finding the values

that minimize cost(7.15) for the current partition. The equations for the priors are

where N, are the number of data items assigned to component a. Minimizing cost

with respect to the translation vectors places each p at the mean of its region

The embedding transform is constrained to be orthogonal, that is, UTU = I. Mini-
1

mizing cost with respect to W, = U,I?z, while meeting this orthogonality constraint,

yields the relation

U ~ S , = A , U ~ (7.22)

where A, = I?, + a21 and the data covariance is

Consequently, U, and A, contain the d, leading eigenvectors and eigenvalues of the

data covariance S,, respectively. The stretching factors are r, = A, - 021.

To find the optimal dimensions d,, we evaluate the change in cost due to in-

creasing each local dimension by one. If we order the eigenvalues in A, from largest

to smallest, then increasing the dimension from q - 1 to q results in a change of cost

where A, is the qth entry in A,. By Jensen's inequality In0 < B - 1, therefore

increasing the dimension will decrease the cost (AC < 0) until the next eigenvalue is

as small as the noise variance, A, = a2. In addition, the model dimension must be no

larger than the number of stretching values y greater than zero. Since = A, - a2,

A, must be greater than a2. These two conditions set the local dimension d, equal

to the number of eigenvalues in A, greater than the noise variance a2.

We perform a search for the best model size, M. The next section describes three

different training methods that incorporate this search for the optimal number of

components. We achieved our best results by initializing the model with a large

number of components and iteratively removing components until the best model

size was found. After training the initial model to convergence, we record the

modeling cost (7.15) for a separate validation set. The search process iteratively

removes the least probable components, retrains, and records the modeling cost.

The model with the optimal number of components has the lowest cost of those

tested.

An outst anding issue concerns the selection of an appropriate entropy constraint

via the noise variance a2. We attempted to select an optimal o2 by determin-

ing the value the minimized the cost for a hold-out or validation data set. How-

ever, this selection of a2 results in under-constrained models with nearly full di-

mension. However, our early evaluations show that models which contain several

low-dimensional components conform better to the data structure than those with

few high-dimensional components. Further work is needed to refine this observation

into a principaled method of selecting an appropriate noise variance. To facilitate

this work, we choose the a2 that gives the largest average model size over a set of

different model initializations. At the chosen value of a2, we report results for the

model with the lowest validation set cost. For the data we evaluated, this heuristic

method selected models that conformed well to the natural cluster structure.

7.4 Algorithm Implement at ion

An important aspect of implementing the adaptive PCA algorithm is the deter-

mination of the optimal model size. For any selection of noise variance, there is

some optimal number of model components. In this section, we present three model

training methods that incorporate searches for this number of components. The

first method uses deterministic annealing for constrained cost functions developed

by Rose [RGF93]. The second method starts training from a random initialization

for a range of model sizes. The third method starts with a random initialization at a

large number of components and iteratively removes the least probable component,

retraining the model after each deletion. In all three cases, we retain the model that

minimizes modeling cost a separate validation data set. In our work, we found that

the third method produced the lowest cost and most consistent models.

7.4.1 Deterministic Annealing

Deterministic annealing is motivated by viewing clustering as a minimization of free

energy [Ros98]. For data X and model parameters Y with joint probability p(x, y),

we wish to minimize the average distortion D(X, Y) = C, C, p(x, y)d(x, y) with

some distortion measure d while keeping the entropy H(X, Y) = Ex C, p(x, y) logp(x, y)

below some value. That is, we wish to minimize free energy F = D - TH, where T
is a Lagrange multiplier. Minimizing F with respect to cluster assignments z(x, y),

yields a Gibbs distribution [RGF93]

For adaptive PCA, our distortion function d is

d
d(i , y) = D, (x) + 202 (H , (x) + - ln a2)

2
(7.26)

where D, is given by (7.16) and H, is given by (7.17). Substituting (7.26) into

(7.25) and using (7.25) to expand the free energy F yields

The Lagrange multiplier T controls clustering hardness. When T = 2a2, we have soft

assignments and F is the log likelihood of the Gaussian mixture model associated

with adaptive PCA (7.6). As T approaches zero, the assignments becomes hard, as

in (7.13), and each x is assigned to a single cluster. In this hard-clustering limit, F
reduces to the adaptive PCA cost function (7.15).

The free energy formulation of adaptive PCA (7.27) allows implementation of

deterministic annealing using the template described by Rose [RGF93]. It does not

require the two-stage training process proposed by Meinicke and Ritter [MROl].

To use deterministic annealing for training an adaptive PCA model, we start with

M components placed at the mean of the data plus small random perturbation.

Without these perturbations, all components will remain a t the global mean dur-

ing the training process [MROl, Ros98]. We initialize T to twice the largest global

eigenvalue of the data. Gradually reducing T with u2 = T/2 increases the model

complexity, since the local dimension d, increases as a2 decreases. We use an an-

nealing schedule of Tnew = 0.9 Told and at each value of T the model is trained to

convergence. At the desired entropy or noise variance, we freeze a2 and turn T to

zero to achieve hard-clustering.

Unfortunately, deterministic annealing does not produce consistent models. The

final model size is sensitive to the numbers of components used a t initialization.

Consequently, it was necessary to repeat the deterministic annealing process us-

ing different numbers of initial components M to find the optimal model size. In

addition, the training process and resulting model are sensitive to the random per-

turbations introduced at initialization. To insure good models, we must investigate

models from a number of different initializations. Deterministic annealing seems sus-

ceptible to the same problems as less sophisticated methods, yet has much heavier

training time requirements.

7.4.2 Random Initialization

Random initialization is a classic and simple method for initializing parameters

for EM or generalized-Lloyd algorithms. To use it for adaptive PCA training, we

initialize M component means to randomly sampled training vectors. We then

train the model to convergence using the adaptive PCA algorithm. We repeat this

process using different numbers of initial components M and retain the model that

minimized modeling cost for a separate validation data set. During the training

process, some components may have no data assigned to them, in which case, they

can be discarded. Hence, the final model size may be smaller than the initial number

of components. This method has the advantage of being simple and fast, but the

selected numbers of components varies significantly for different initializations. This

model inconsistency increases the training time, as one must investigate models from

many initializations to insure a good fit to the data.

7.4.3 Iterative Pruning

While working with generalized-Lloyd algorithms, we found it critical that the ini-

tial model represent all regions of the data space. Otherwise, some data clusters

will be poorly modeled by too few components. To ensure a good initialization, we

propose a simple heuristic method that starts from a large number of components,

which should adequately cover the data space. We then iteratively shrink the model

size, searching for the optimal number of components. We examined two methods of

shrinking the model: combining the two components with smallest Kullback-Leibler

distance and deleting the component with the lowest probability on a separate val-

idation set. The second method, deleting the least probable component, produced

models that better conformed to the natural cluster structure.

The search process starts with a large number of components (we found 40 to

80 worked well) with means assigned to randomly selected data vectors. This large

model is trained to convergence. During the training process, some components have

no data assigned to them and they can be discarded. Consequently, the trained

model size may be smaller than the initial number of components. The training

process then removes the least probable components, one a t a time, retraining the

model after each deletion. Once again, we retain the model with the lowest modeling

cost. This training method produced the most consistent and accurate models with

respect to model size of the three methods. As a result, the time spent searching

for a good model fit is kept small.

7.4.4 Training Met hod Evaluation

We evaluated these three training methods on several artificial data sets. Here we

show results for a 1000 points training set drawn from a mixture of five low di-

mensional Gaussians embedded in a three dimensional space. Figure 7.2 contains a

scatterplot of the 400 point test data projected to the two leading global eigendi-

rections.

Our two evaluation criteria for these methods were how closely the model size

matched the number of generating components and how much the model size varied

between different initializations. We trained both entropy-constrained vector quan-

tizers [CLG89] and adaptive PCA models using all three methods. Figure 7.3 shows

the average, maximum, and minimum model sizes for 25 different initializations for

the random and iterative pruning methods and for 10 different initializations for

the deterministic annealing method. Fewer initializations were performed for the

deterministic annealing method due to the long training times.

For the vector quantizer, all three methods had similar average model size and

the models produced by deterministic annealing have lower variability than those

from the other two methods. At low noise variances, however, the vector quantizer

90

60

c:
0

~ 20
.~
"'Cc:
~ 01 0

'Q5
"'C

§ -20
(,)
Q)
rn

0

g CDo~

~<6~0
0<c8

040
0

0
§

-40

0
I

00
0

0

-60
-50 0 50

leading eigendirection
100

Figure 7.2: Mixture of Five Gaussians Test Data. Scatterplot of artificial data set used for testing.

Data consists of 400 three-dimensional points drawn from a mixture of five Gaussians. Colored

lines indicate the principal eigenvectors of each component and the number of lines corresponds

to the dimension. Data is projected to the two leading eigendirections.

model sizes are much larger than the true size of five. For these spherical models,

the noise variance sets the component variance or size. Consequently, when the

noise variance is small, it takes many components to cover the data space.

For adaptive PCA, all three methods produce models with similar numbers of

components at high noise variances. At lower noise variances, the deterministic

annealing and random initialization methods produce models with too many com-

ponents. In addition, the model size varied widely for different initializations. In

contrast, the iterative pruning method produces models of size five or six, a good

match to the true model size. Figure 7.4 shows examples of five and six component

models. Each model component matches one of the generating clusters in Figure

7.2 and no components bridge multiple clusters.

Q) 30
N

i:i5 25
Q)

"C

°20
:2:

g 15
<.)

w 10

91

40

35
. iter prune

rand init
deter anneal

.

.

5

0
1 1.5 2 2.5

Log10 Noise variance
3

(a) ECVQ

. iter prune
rand init
deter anneal

..

1.5 2 2.5
Log10 Noise variance

3

(b) APCA

Figure 7.3: Selected model size for different training methods. Plot (a) shows model size for

entropy-constrained vector quantizer and plot (b) for entropy-constrained adaptive PCA. Mod-
els were trained using deterministic annealing (green), random initialization (red) and iterative

pruning (blue).

40

35

Q) 30
.!:::!

251

T

!
i

°20 i
:2:

<315
a..
« 10

5

0
1

92

0

g(J)O~

~
0

1

0 'bo 0
40~ o~o

IJi Cb 0
00 «B 0 0

o,\~ 00 0 0 0

20~ o~ 0 0 {j eJ 0
~oe {f' 000

I 0 0 -0<> 000 0Or:; 00

~000~0 0

L 0 00 0 0 <e
-20r 0 0 i§>

,§J <!Do0 0 0-40~ 0

0

60

00

0

-60
-50 0 50

(a) Five Components

Figure 7.4: Clustering with Adaptive PCA. Two adaptive PCA models, one with five and one

with six model components. Colors indicate assignment of data points to model components.

Components conform to the natural cluster structure without bridging clusters. In the right-hand

scatterplot, one large clusters is represented by two components.

60 60

40

00

0 00

40~ ~
20~ g~~o '::::ifl

Ik
O 'b~ °

t
o

000
"" 0

o~o

m
o § 0

0 0 {f' 0
0 0 0 000

-20~ 0 0 ~
o~ 0 00 0

0 . 'b 0 000

-40~ ,§J <e0 000
0

00

20

-20

-40

-60
-50 0 50 100

-60
-50 0 50 100

(a) Random Initialization (b) Iterative Pruning

Figure 7.5: Hard-Clustering GMM Models with Different Training Methods. Scatter plots show

the assignment of data points to model components where each model component is represented

with a different color. Scatterplot (a) shows a model initialized with five randomly selected data
vectors. Scatterplot (b) shows a model initialized with forty randomly selected data vectors fol-

lowed by iterative pruning down to five components. The model developed via iterative pruning
closely matches the natural clusters.

We also found that our iterative pruning method improves the quality and con-

sistency of full-covariance models. We trained hard-clustering versions of full covari-

ance GMM on this mixture of five Gaussians data using both random initialization

and iterative pruning. Since this is low dimensional artificial data, we can generate

enough data to fit accurate full-covariance models. For small model sizes (less than

ten components), iterative pruning produced models that better matched the nat-

ural cluster structure of the data. The models were similar for larger model sizes.

Figure 7.5 contains scatterplots that show the match between model components

and data. The model developed using random initialization contains components

that span natural clusters, whereas the model developed using iterative pruning

matches the natural cluster structure. For the rest of the experiments presented in

this chapter, we use our iterative pruning method for model training, since it pro-

duces better quality and more consistent models than those developed from random

initializations.

7.5 Evaluation

We compare the modeling performance of our entropy-constrained adaptive PCA

algorithm (APCA) to an entropy-constrained VQ (ECVQ) [CLG89] and a hard-

clustering version of a full covariance GMM (HGMM). When the model noise vari-

ance is large, APCA discards all dimensions and reduces to ECVQ. When the model

noise variance becomes small, APCA retains all dimensions and fits the full covari-

ance matrices to data like HGMM. Consequently, these two methods provide bounds

on the modeling behavior of APCA. When there is sufficient training data, we expect

the HGMM algorithm to provide the best match between model and data. How-

ever, when training data is sparse, the APCA algorithm should be less susceptible

to overfitting. In this latter case, we expect the APCA models to match unseen test

data better than HGMM models.

7.5.1 Evaluation Criteria

In order to evaluate our APCA algorithm, we wish to quantify how well the resulting

model represents true data structure. For low dimensional data, we can determine

how well the model matches the natural cluster structure, by visually evaluating

the assignment of data to model components. To model quality quantitatively, we

evaluate both the ability of the model to correctly classify the test data and how

closely the number of components matches the number of data clusters.

We measure classification ability using the conditional entropy of the cluster or

generating class given the model component Hp = H(c1usla). Component impu-

rity, H,, measures the number of information bits required to specify the generating

class when the model component is known. It is zero when each model compo-

nent contains points from just one cluster. If all model components contain equal

proportions of each of N clusters, Hp = log, N.

Spherical models with many small components have good classification perfor-

mance, however they provide little insight into the natural cluster structure of the

data. Consequently, we also measure model component (0ver)abundance using the

conditional entropy of the model component given the cluster Ha = H(alc1us).

Component abundance, Ha, measures the number of information bits required to

specify the model component when the generating class is known. Ha is zero when

each model component completely contains one or more clusters. If all data clusters

are modeled by N equally probable components, Ha = logz N.

Normalized mutual information combines these two aspects of model to data

structure correspondence into a single metric. Mutual information between the

model components, a, and the clusters is given by

I(clus, a) = H(a) + H(clus) - H(a , clus) (7.28)

where H(x) = - C, p(x) logp(x) is the discrete entropy. Normalizing by H (a) +
H(clus), which is the value of H (a , clus) when the model components and clusters

are independent, yields the normalized mutual information.

NMI(clus, a) = 1 - Hp + Ha
H (a) + H (cl us)

When the model components and clusters match perfectly, the normalized mutual

information is one (Hp and Ha are zero). It decreases to zero as the correspondance

between the model and data structure decrease.

7.5.2 Visual Evaluation of Model Quality

To qualitatively evaluate how well a model matches the data, we visually examine

scatterplots of the data that are color coded to indicate the assignment of data

vectors to model components. These scatterplots reveal where multiple components

are representing a single cluster or class and where a component covers all or part of

several different classes. Here we present clustering results on a real world data set,

salinity and temperature measurements gathered in the Columbia River Estuary.

Columbia River Data

Sensors deployed in the Columbia River Estuary by environmental scientists at

Oregon Health & Science University [BWP+99] gather information on salinity and

temperature. The salinity sensors are susceptible to gradual response degradation

known as bio-fouling. Recently, we developed classifiers to successfully detect this

degradation during the summer months, when bio-fouling is most prevalent [ABL02].

We are now in the process of extending these bio-fouling detectors to operate year

round.

Developing robust bio-fouling detectors is complicated by normal changes in mea-

sured salinity due to fluctuating river and ocean conditions. Our current detectors

incorporate temperature information to distinguish normal changes in salinity from

bio-fouling. However, the relationship between measured temperature and salinity

changes throughout the year, although we see similar behavior from year to year.

Visual examination of time series of salinity and temperature measurements indicate

that there are a t least five behavioral regimes or classes.

The Columbia River data contains measurement from two sensor stations located

near the mouth of the estuary. It consists of 698 measurements spanning all seasons

and acquired over several years (1997 - 2001). Each measurement contains three

values: salinity and temperature at the highest diurnal tidal flood and temperature

at the deepest diurnal tidal ebb. The temperature measurements are normalized

by the estimated difference in ocean and river temperatures. We divided the data

set into three equal parts to create training, validation, and test sets. Figure 7.6
contains a scatterplot of the test data set. Colors indicate different classes identified

from visual examination of the time series: blue is summer period, red is winter

period, and cyan, orange, and green occur during spring and fall. Green indicates

96

measurements from when the river and ocean temperatures are close together. Yel-

low indicates measurements taken during periods of abnormally low salinity. Cyan

indicates measurements taken during periods of rapid river temperature warming or

cooling.

5

~
.,-.

; .
'~, c

'Y.,..,~ .,.(.. 0
',)'" 0

2, 0
0 0 0 @' 00

0 oo~
0

0

Q..
E

~ 0
..c..c
W

-5

~oo

cP o~5~l
(,0 QC:' ":ff;:~')~

,j) ,y,','"

10

0
28

5

-5
26

Flood Temp
-10 24

Salinity

Figure 7.6: Columbia River Salinity and Temperature Data. Scatterplot of salinity and temper-

ature at largest diurnal tidal flood and temperature at deepest diurnal ebb. Temperatures have

been normalized by the estimated difference between the ocean and river temperatures. Colors
indicate different classes identified from visual examination of the time series. The red and cyan

regions may contain more than one class.

River Data Analysis
We use several modeling methods to cluster the salinity and temperature data

into classes, including our entropy-constrained adaptive PCA (APCA), entropy-

constrained vector quantization (ECVQ), a hard-clustering version of a full covari-

ance GMM (HGMM), and local PCA (LPCA). Local PC A [KL97] partitions the

data space in order to minimize dimension reduction error for some fixed target

dimension. All models were trained using the iterative pruning method described

previously with model sizes selected to minimize cost on the validation set. We de-

veloped models from six different initializations. For ECVQ and APCA, we report

97

results for a noise variance of 0.5, which gives an average dimension between 1 and

1.5 for the APCA models. For the LPCA model, we set the target dimension to one.

To evaluate the models, we visually compared how each model separated the test

data into classes. Scatterplots are from the model that had the lowest validation set
cost.

The ECVQ models partition the space into many small spherical classes. Figure

7.7a shows clustering by the ECVQ model at noise variance 0.5. This model had

thirteen components, over twice the number of our subjective estimate. All natural

clusters are represented by several components. Since it does not identify the number

of unique classes nor regimes, we found ECVQ to be a poor choice for this data

analysis.

The LPCA models partition the space into many one-dimensional subspaces.

Figure 7.7b shows clustering by a seven component LPCA model. Model size se-

lection using the validation set indicated that the number of components should

be at least forty (largest size tested). This large a model is not instructive, so we

present results for a model size of seven. Model components consistently cut across

the natural cluster structure of the data. We found the LPCA modeling method to

be inappropriate for clustering or data analysis.

The HGMM models partition the space into five regions, but they do not match

the classes show in Figure 7.6. Figure 7.7c shows clustering by the HGMM model.

The summer (aqua) data is well delineated, however, the river temperature transi-

tion and low salinity classes (pink) are grouped into one cluster. The component

indicated by the black circles bridges the cold temperature classes. We observed

similar clustering behavior from all the HGMM models. While HGMM models se-

lected reasonable numbers of components (4 to 7), the components did not conform
well to the natural cluster.

Unlike the previous three model types, APCA models are well-matched to the

natural cluster structure of the data. Figure 7.7d shows clustering by the APCA

model. This model correctly identifies the summer (red), low salinity (blue), and

equal river and ocean temperature (cyan) classes. It identifies two classes within the

temperature transition region (pink and green) and two classes within the winter

region (yellow and black). Of the methods tested, the APCA model corresponded

most closely to the natural cluster structure.

98

c,
c, -

c, -6 £(x

0 '~XX~,

0
0 ~~~o

° c,f)o:;;

° c, ~

10

8(f)~~*,
0 c c;.,i3'- /,~;C'\;;, v 5'

c, c, 4.

a. 5
E
<I>
I- 0
.c.c
UL5

5
a.
E
~ 0
..0
..c
W -5

10

80)E%~~~
° 0 o~0 0 cSJ

0 0

30 0 30

FloodTemp -10 25
Salinity Flood Temp -10 25

Salinity

(a) ECVQ (b) LPCA

0

~o
° o°f}of)o:;;

° 0 o~

o~~o

0

Flood Temp

10

~

, ~,.:~c, c, cSJ
0 0 ~

a. 5
E
<I>
I- 0
.c.c
w-5

10

80)S;~~° o~~
0 0 cSJ

0

a. 5
E
<I>
I- 0
.c.c
w-5

0

Salinity

0

Flood Temp

30

-10 25 -10 25
Salinity

(c) HGMM (d) APCA

Figure 7.7: Clustering Examples for ECVQ, LPCA, HGMM, and APCA. Scatterplot (a) shows
ECVQ model clustering with thirteen model components and noise variance of 0.5. Scatter plot

(b) shows LPCA model clustering with seven components and a target dimension of one. Scat-

terplot (c) shows HGMM model clustering with five model components. Scatterplot (d) shows

APCA model clustering with seven components and noise variance of 0.5. Each color and symbol
combination represents a different model component.

7.5.3 Quantitative Evaluation of Model Quality

To qualitatively evaluate how well a model corresponds to the data structure, we

measure the normalized mutual information between the model components and

data clusters. This metric measures how well the model classifies the data into its

generating classes and how closely model size matches the true number of clusters.

Here we present results from segmenting image texture data with a known number of

textures. Segmenting high-dimensional texture data provides a realistic application

for evaluating how the APCA algorithm performs when training data is sparse. As

an added advantage, this data can be organized into a map for effective visualization

of segmentation or clustering accuracy.

Image Texture Data

Our image texture data consists of 81-dimensional vectors (9 x 9 blocks) sampled

from four different gray-scale textures. The textures are images of dense leaves,

cloth, marble, and paper. Figure 7.8 shows the test map used to evaluate the models.

We generated three different training files with 200, 500, and 1000 vectors, one 500

vector validation set and one 2500 vector test set. We develop all models using

the iterative pruning training method described earlier. Model size was selected to

minimize cost on the validation set. Rather than selecting a single noise variance,

we report results for a range of noise variances to demonstrate the full range of

adaptive PCA model behavior.

Model Size Analysis

As part of our analysis, we evaluated the model size selected for each method. Figure

7.9 includes model sizes for ECVQ, APCA, and HGMM. The full covariance HGMM

method can model the data with one or two components, so the size is consistently

too small. At high a2, the ECVQ and APCA models have heavy entropy penalties

and select too few components. The ECVQ model size increases as a2 decreases,

as more components are needed to cover the space as the component size shrinks.

In contrast, the APCA model selects the close to the correct number of classes for

a range of noise variances. For these moderate noise variances (1000 to 8000)) the

local dimension is small and several components are required to model the data

100

Figure 7.8: Texture Test Data. Data consists of 81-dimensional vectors formed into 9 x 9 blocks

and organized into a map for visualization. Each block sampled is from one of four textures, dense

leaves (dark), cloth (coarse texture), marble (gray and white), and paper (light).

accurately. As a2 drops, the local dimensions increase, so fewer components are

needed and the model size decreases. When a2 is very small, the APCA models are

nearly full dimension and have too few components like the HGMM models.

Quantitative Quality Analysis

Correctly identifying the model size does not tell us how accurately the model

matches the data. To evaluate goodness of fit, we normalized mutual information

on the test data for models developed on each of the training data sets. Normalized

mutual information incorporaates measures of component impurity, Hp in Figure

7.10 and component abundance, Ha in Figure 7.11. Figure 7.12 shows normalized

mutual information for the different models and training set sizes.

For ECVQ, model components become overabundant as a2 decreases, hence

the normalized mutual information decreases. Note that the classification ability

as measured by Hp is very good for noise variances less than 5000. HGMM has

very poor purity values, since the models had fewer than four components, so the
normalized mutual information is low. Data from the different texture classes lies

close together in the 81-dimensional space, so the HGMM model with one or two

full dimensional components covers the data space. Adding components does not

reduce the modeling cost as there is no penalty for high-dimensional components.

101

60

0

0

200
500
1000

70

0

Q)

'~50C/)

Q)

"840
:2:

030>
()
w20

0 1

10

1.5 2 2.5 3 3.5
Log10 Noise Variance

4 4.5

(a) ECVQ

10

8
Q)

.!::::!
C/)

Q) 6
"'C
0

:2:

« 4
()
a..

«)~
'"

0 1 1.5 2 2.5 3 3.5
Log10 Noise Variance

4 4.5

(b)APCA & HGMM

Figure 7.9: Selected model size for different training set sizes. Plot (a) shows average model size

for ECVQ and plot (b) showsaverage model size for APCA (circles) and HGMM (squares). The
HGMM results are plotted at 1 for comparison purposes. The 500 and 200 vector training results
for HGMM are identical. Models were trained using 1000 vector (green), 500 vector (red) and 200

vector (blue) set sizes. Error bars indicate maximum and minimum model size for ten different
initializations. The correct model size of four is indicated by the dotted line.

Even when the model size was hand selected to be at least four, most test blocks

were attributed to two components and purity values did not improve.

We found that when the APCA models have noise variances in the right range,

the component purity is close that that of the ECVQ models, but the models are

more concise. Consequently, the values of normalized mutual information are higher

than for the other modeling methods. Adaptive PCA models have low impurity

values and good model sizes for noise variances in the range 1200 < a2 < 8000

for all training set sizes. For the larger training sets, the model quality remained

good for a2 down to 600 for the 500 vector set and 300 for the 1000 vector set.

With larger training sets, we can fit more covariance parameters accurately and the

models continue to conform to the data structure as we lower the noise variance.

For all training set sizes, the APCA models reveal more about the natural cluster

structure of the data than either full covariance or spherical models.

Visual Quality Analysis
We also evaluated model accuracy by visually examining how well the model seg-

mented the test texture image. A perfect model would use four components and

attribute all the data blocks from one texture to one component. Figures 7.13 and

7.14 shows an examples of the assignment of test data blocks to model components.

Each color in these images represents a different model component. For these ex-

amples, we selected the noise variance a2 that produced the largest average model

size (see Figure 7.9). The selected a2 was 2928 for the 200 vector training set and

2802 for the 1000 vector set.

The test image segmentation results shown in Figure 7.13 use models developed

on the 200 vector training set with a2 = 2928. The ECVQ model has ten components

with H, = 0.170 bits, Ha = 1.051 bits, and NMI = 0.75. This model correctly

classified 96.1% of the image blocks. The APCA model has four components with

H, = 0.202 bits, Ha = 0.195 bits, and NMI = 0.90. It correctly identified the

texture for 96.5% of the image blocks. The HGMM model (not shown) had only

one component, consequently, it was unable to segment the image. The ECVQ

model uses 4 and 5 components to represent the cloth and leaf textures respectively,

whereas the APCA model uses a single component for each class. The APCA model

segments the texture image as accurately as the ECVQ model, even though it has

many fewer components.

103

2 0

0

200
500
1000-c..

E 1.5
0
(.)

en
en
(Ij

-8.1
I
a
>
0
wO.5

0

@ ~ >- "'" ~, ,
2 2.5 3 3.5
Log10 Noise Variance

J
0 1 1.5 4 4.5

(a) ECVQ

2f-D

-c..
E 1.5
0
(.)
en
en
(Ij

-8.1
I
«
0
a..« 0.5

0

0 1 1.5 2 2.5 3 3.5
Log10 Noise Variance

4 4.5

(b) APCA & HGMM

Figure 7.10: Component impurity for different training set sizes. Plot (a) showsHp for ECVQ
and plot (b) shows Hp for APCA (circles) and HGMM (squares). HGMM results are plotted at
1 for comparison purposes. Models were trained using 1000 vector (green), 500 vector (red) and
200 vector (blue) set sizes. Error bars indicate standard deviation over ten different initializations.
The 500 vector and 200 vector HGMM results are identical.

104

5
0

0

200
500
1000_4

en
en
Ct$
(.)

c..3
E
0
.2.-

I2a
>
()
w
1

0

0 1 1.5 2 2.5 3 3.5
Log10Noise Variance

4 4.5

(a) ECVQ

2

i1.5
Ct$

(.)

c..

E
~1
I
«
()
a..« 0.5

0 1 1.5 2 2.5 3 3.5
Log10 Noise Variance

4 4.5

(b)APCA & HGMM

Figure 7.11: Component Abundance for differenttraining set sizes. Plot (a) showsHa for ECVQ
and plot (b) shows Ha for APCA (circles) and HGMM (squares). HGMM results are plotted at
1 for comparison purposes. Models were trained using 1000 vector (green), 500 vector (red) and

200 vector (blue) set sizes. Error bars indicate standard deviation for ten different initializations.
The 500 vector and 200 vector HGMM results are identical.

105

0.9

0.8

0.7
0

:E 0.6
"S
:::E0.5
0
60.4
UJ

0.3

0.2

0.1

0 1 1.5 2 2.5 3 3.5
Log10 Noise Variance

0 200
0 500
0 1000

, I

4 4.5

(a) ECVQ

0.9

0.8

0.7
.E
.E 0.6
.....
~
:::E0.5«
~0.4«

0.3

0.2

0.1

0 1 1.5 2 2.5 3 3.5
Log10 Noise Variance

4 4.5

(b) APCA & HGMM

Figure 7.12: Normalized Mutual Information for different training set sizes. Plot (a) shows N M I

for ECVQ and plot (b) shows NMI for APCA (circles) and HGMM (squares). HGMM results are

plotted at 1 for comparison purposes. Models were trained using 1000 vector (green), 500 vector

(red) and 200 vector (blue) set sizes. Error bars indicate standard devii1tion for ten different
initializations. The 500 vector and 200 vector HGMM models each have a single component, so
the N M I values are both zero.

(a) ECVQ

106

(b) APCA

Figure 7.13: Texture Segmentation with 200 vector training set. Map (a) on the left shows
ECVQ model segmentation and Map (b) show APCA model segmentation. Both models were

developed on a 200 point training set.

The segmentation results in Figure 7.14 are for models developed on the 1000

vector training set with a2 = 2802. The ECVQ model (not shown) has 28 com-

ponents with Hp = 0.076 bits, Ha = 2.11 bits, and N M I = 0.65. This model

correctly classifies 98.7% of the test blocks. The HGMM model, with Hp = 1.20

bits, Ha = 0.012 bits, and N M 1= 0.57, has only two components and segments the

image poorly with 52.5% correct classification. The APCA model, with Hp = 0.050

bits, Ha = 0.282 bits, and N M I = 0.92, models one texture with two components

and the remaining textures with one component each. The APCA model, with five

components and correct classification of 99.3%, segments the texture image more

accurately than either the ECVQ or HGMM models.

7.6 Summary

Adaptive models, which partition the signal space into regions and then model the

data within each region with simple linear models, can effectively represent non-

stationary data. However, standard adaptive modeling methods, such as K-means

clustering and full-covariance GMMs have their own limitations. They either require

.

(a) HGMM

107

(b) APCA

Figure 7.14: Texture Segmentation with 1000 vector training set. Map (a) on the left shows
HGMM model segmentation and Map (b) show APCA model segmentation. Both models were

developed on a 1000 point training set.

large amounts of training data to produce robust models, like GMMs, limiting their

practical usefulness or they are geometrically constrained, like K-Means clustering,

which limits their ability to adjust component parameters to the data structure.

In this paper, we developed a new modeling method, entropy-constrained adaptive

PCA, which strikes a balance between these two methods.

Using a latent data framework, we derived a statistical model for a broad cate-

gory of non-stationary data, in which the data consists of a collection of hyperplanes.

From this model, we develop our adaptive PCA algorithm. Adaptive PCA adjusts

each component's eigenvectors, eigenvalues, and dimension to the local data struc-

ture. In addition, an entropy penalty provides complexity control, which allows

accurate modeling of even sparse training data. Unlike some constrained modeling

methods, this entropy penalty arises naturally from the statistical model.

An outstanding research issue concerns the selection of an appropriate entropy

penalty via the noise variance. The noise variance should be relatively high when

data is sparse and lower when data is abundant. We first attempted to selected the

noise variance by determining the value that minimized the cost for a validation data

set. However, this selection resulted in models with nearly full covariance matrices.

Consequently, these models were under-constrained and exhibited the same poor

modeling behavior as full covariance models. Similar validation set methods used

by Meinicke and Ritter [MROl] also resulted in models with nearly full dimension.

Evaluation of component impurity and abundance for models with different noise

variances suggest a different approach for noise variance selection. Models conform

best to the natural data structure at noise variances where the component abundance

is highest. That is, the best models contain several low-dimensional components

rather than very few high-dimensional components. Further work is needed to refine

this observation into a theoretically motivated way of selecting an appropriate noise

variance. For the work in this chapter, we selected the noise variance at the point

where the average model size was largest.

We used our adaptive PCA algorithm for texture segmentation and for the pre-

liminary analysis of salinity and temperature measurements from the Columbia

River estuary. We evaluated how well adaptive PCA models matched the nat-

ural data structure in comparison to entropy-constrained VQs, a hard-clustering

version of a full covariance GMM, and local PCA. Spherical models, such as VQs,

use many small clusters to model the data. While such models can classify the data

accurately, they provides little insight into the data structure. Local PCA produces

consistently poor clusters that cut across the natural data structure. Hard-clustering

GMM produces models with too few components that bridge the natural clusters. In

contrast, adaptive PCA models consistently conform to the natural data structure

with classification accuracy comparable to spherical models that have many more

components.

Chapter 8

Summary

Statistical signal classification encompasses solution strategies for a number of com-

pelling, practical problems. The list of such problems continues to grow as industry

seeks to apply computer-based analysis and decision-making to more real-world phe-

nomena, both man-made and natural. The problems selected for our research, image

compression and data modeling, are interesting in their own right. They are also

good representatives of this problem space as a whole.

In this thesis, we developed a latent data framework, which facilitates formalizing

observations of data behavior into a statistical model. We showed how one can use

this framework to develop processing algorithms from statistical models of the data.

Using this framework, we developed new algorithms for adaptive transform coding

and PCA-based data modeling.

Our primary contributions in the area of adaptive transform coding include the

derivation, in closed form, of the optimal linear transform for coding. Using this

definition, we develop a new transform coding algorithm that provides an optimal

compression solution for non- stationary signals. One useful outcome is that this

algorithm provides a standard against which one can evaluate the "goodness" of the

PCA (or other) transform for compression.

Our primary contributions in the area of adaptive PCA modeling include de-

velopment of a new adaptive PCA modeling method that allows model parameters

to adjust to local data structure. This algorithm incorporates an entropy penalty,

which permits the model to conform to the data structure, when training data is

sparse. Our adaptive PCA models match the natural cluster structure of data better

than spherical or full covariance modeling methods.

Our work has resulted in new understanding in both the theoretical limits of

computer-based processing in these areas and in the relationships between com-

mon processing algorithms. We have also demonstrated computationally practical

implementations with better performance than existing methods. These same ap-

proaches are applicable to a number of problems in the field, e.g. handwritten

character recognition, helicopter transmission fault detection, and image segmenta-

tion. The improved performance and practical computability of these local model

based techniques will enable computer-based solutions for many difficult classifica-

tion problems.

Bibliography

[ABL02] C. Archer, A. Baptista, and T. K. Leen. Fault detection for salinity
sensors in the Columbia estuary. submitted to Water Resources Research,
2002.

[AL99] C. Archer and T.K. Leen. Optimal dimension reduction and transform
coding with mixture principal components. In Proceedings of Interna-
tional Joint Conference on Neural Networks, volume 2, pages 916-920,
July 1999.

[ALOO] C. Archer and T.K. Leen. Adaptive transform coding as constrained vec-
tor quantization. In Neural Networks for Signal Processing, Proceedings
of the IEEE Workshop, pages 308-317, December 2000.

[ALOla] C. Archer and T.K. Leen. The coding-optimal transform. In Storer and
Cohn, editors, Proceedings Data Compression Conference, pages 381-
390. IEEE Computer Society, March 2001.

[ALOlb] C. Archer and T.K. Leen. From mixtures of mixtures to adaptive trans-
form coding. In Leen, Dietterich, and Tkesp, editors, Advances in Neural
Information Processing Systems 13, pages 925-931. MIT Press, 2001.

[Bas941 A. Basilevsky. Statistical Factor Analysis and Related Methods. John
Wiley and Sons, Inc., 1994.

[Bis95] C. Bishop. Neural Networks for Pattern Recognition. Oxford Press,
1995.

[BWP+99] A. Baptista, M. Wilkin, P. Pearson, P. Turner, C. McCandlish, and
P. Barrett. Costal and estuarine forecast systems: A multipurpose in-
frastructure for the Columbia river. Earth System Monitor, 9(3), 1999.

[CLG89] P. Chou, T. Lookabaugh, and R. Gray. Entropy-constrained vector quan-
tization. IEEE Transactions on Acoustics, Speech, and Signal Process-
ing, 37(1):31-41, 1989.

[CS77] W. Chen and C. Smith. Adaptive coding of monochrome and color im-
ages. IEEE Transactions on Communications, 25(11):1285-1292, 1977.

[CT91] T. Cover and J. Thomas. Elements of Information Theory. John Wiley
and Sons, Inc., 1991.

[DC93] D. DeMers and G. Cottrell. Non-linear dimensionality reduction. In
Giles, Hanson, and Cowan, editors, Advances in Neural Information
Processing Systems 5, pages 580-587. Morgan Kaufmann, 1993.

[DH95] R. Dony and S. Haykin. Optimally adaptive transform coding. IEEE
Transactions on Image Processing, 4(10):1358-1370, 1995.

[DLR77] A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from in-
complete data via the EM algorithm. Journal of the Royal Statistical
Society, Series B, 39:l-38, 1977.

[ECG99] M. Effros, P. Chou, and R. Gray. Weighted universal image compression.
IEEE Transactions on Image Processing, 8(10):1317-1328, 1999.

[FM84] N. Farvardin and J . Modestino. Optimum quantizer performance for a
class of non-gaussian memoryless sources. IEEE Transactions on Infor-
mation Theo ry, IT-30(3):485-497, 1984.

[FreOO] T. Freeman. What is Imaging RADAR? Jet Propulsion Laboratories.
Available at http://southport .jpl.nasa.gov/desc/imagingradarv3. html,
revised February 2000.

[GG92] A. Gersho and R. Gray. Vector Quantization and Signal Compression.
Kluwer Academic, 1992.

[GH96] Z. Ghahramani and G. Hinton. The EM algorithm for mixtures of factor
analyzers. Technical Report CRG-TR-96-1, Department of Computer
Science, University of Toronto, 1996.

[GL89] G. Golub and C. Van Loan. Matrix Computations. John Hopkins Uni-
versity Press, 1989.

[GN98] R. Gray and D. Neuhoff. Quantization. IEEE Transactions on Infor-
mation Theory, 44(6) :2325-2383, 1998.

[GZVOO] V. Goyal, J. Zhuang, and M. Vetterli. Transform coding with back-
ward adaptive updates. IEEE Transactions on Information Theory,
46(4):1623-1633, 2000.

[Ham621 M. Hamermesh. Group Theory and Its Application to Physical Problems.
Addison- Wesley, 1962.

[Hay911 S. Haykin. Adaptive Filter Theory. Prentice Hall, 1991.

T. Hediger, A. Passamante, and M.E. Farrell. Characterizing attractors
using local intrinsic dimensions calculated by singular-value decomposi-
tion and information-theoretic criteria. Physical Review, A 41 (10):5325-
5332, 1990.

G. Hinton, M. Revow, and P. Dayan. Recognizing handwritten digits us-
ing mixtures of linear models. In Tesauro, Touretzky, and Leen, editors,
Advances in Neural Information Processing Systems 7, pages 1015-1022.
MIT Press, 1995.

N. Kambhatla and T. K. Leen. Optimal dimension reduction by local
PCA. Neural Computation, 9(7):1493-1516, 1997.

M. Kramer. Nonlinear prinipal component analysis using autoassociative
neural networks. AIChE journal, 37(2):233-243, February 1991.

Jet Propulsion Laboratories. Space radar images of earth SIR-C/X-SAR.
Available at http://www.jpl.nasa.gov/radar/sircxsar, Viewed February
2002.

Y. Linde, A. Buzo, and R.M. Gray. An algorithm for vector quantizer
design. IEEE Transactions on Communications, 28(1):84-95, 1980.

S. Lloyd. Least square optimization in PCM. IEEE Transactions on
Information Theory, 28(2) : 129-137, 1982.

J . MacQueen. Some methods for classification and analysis of multi-
variate observations. In L. LeCam and J . Neyman, editors, Proceedings
of 5th Berkeley Symposium on Mathematical Statistics and Probability,
volume 1, pages 281-297, 1967.

S. Mallat. A Wavelet Tour of Signal Processing. Academic Press, 1999.

P. Meinicke and H. Ritter. Resolution-based complexity control for gaus-
sian mixture models. Neural Computation, 13(2) :453-475, 2001.

R. Neal and G. Hinton. A view of the EM algorithm that justifies
incremental, sparse, and other variants. In M. Jordan, editor, Learning
in Graphical Models. Kluwer Academic, 1998.

S. Nowlan. Soft Competitive Adaptation: Neural Network Learning Al-
gorithms based on fitting statistical Mixtures. PhD thesis, School of Com-
puter Science, Carnegie Mellon University, 1991.

University of Karlsruhe. Image sequence server: Durlacher Tor and
Ettlinger Tor. Available at i2lwww.ira.uka.de/imagesequences, Viewed
April 1998.

D. Ormoneit and V. Tresp. Improved gaussian mixture density estimates
using bayesian penalty terms and network averaging. In D. Touretzky,
M. Mozer, and M. Hasselmo, editors, Advances in Neural Information
Processing Systems 8, pages 542-548. The MIT Press, 1996.

University of Waterloo. Waterloo repository image greyset2. Available at
http://links.uwaterloo.ca/greyscale2.base.html, Viewed January 1998.

S. Roweis and Z. Ghahramani. A unifying review of linear Gaussian
models. Neural Computation, 11(2):306-345, 1999.

K. Rose, E. Gurewitz, and G. Fox. Constrained clustering as on opti-
mization method. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 15(8):785-794, 1993.

E. Riskin. Optimal bit allocation via the generalized BFOS algorithm.
IEEE Transactions on Information Theory, 37(2):400-402, 1991.

K. Rose. Deterministic annealing for clustering, compression, classifica-
tion, regression, and related optimization problems. Proceedings of the
IEEE, 86(11):2210-2239, 1998.

Sam Roweis. EM algorithms for PCA and SPCA. In Solla Jordan,
Kearns, editor, Advances in Neural Information Processing Systems 10,
pages 626-632. MIT Press, 1997.

Y. Shoham and A. Gersho. Efficient bit allocation for an arbitrary set
of quantizers. IEEE Transactions on Acoustics, Speech, and Signal Pro-
cessing, 36(9) : 1445-1453, 1988.

M. Tipping and C. Bishop. Mixture of probabilistic principal component
analyzers. Neural Computation, 11 (2) :443-483, 1999.

G. Wallace. Overview of JPEG (ISO/CCITT) still image compression
standard. Communications of the ACM, 4(4):30-40, 1991.

M. Wax and T. Kailath. Detection of signals by information theoretic
criteria. IEEE Transactions on Acoustics, Speech and Signal Processing,
ASSP-33(2) :387-392, 1985.

Appendix A

Entropy-Constrained Transform

Coder Derivation

This appendix contains the full derivation of our statistical model for global trans-

form coding. We first present the probability model, followed by the optimization

of model parameters. We then discuss the correspondence between the probability

model and a hard-clustering transform coder. The final section in this appendix

includes the derivation of the coding optimal transform for Gaussian data.

A.1 Probability Model for Transform Coder

A transform coder converts a signal to new coordinates and then codes the coordi-

nate values independently of one another with scalar quantizers. To replicate this

structure, we envision the data as drawn from a latent data space, S, in which the

data density can be written as a product of marginal densities

where SJ is the Ph component of the d-dimensional vector s.

The latent space is discrete with values {qa, a = 1. . . M). We model the data

density in the latent space with a constrained mixture densities,

where T, are the mixing coefficients and p(s(a) = 6(s - q,). We constrain the

mixture component means, qa, to lie at the vertices of a rectangular grid centered at

the q. Without loss of generality, we take q to be zero. The grid is defined by the s

axes and a set of grid mark values, {rJiJ), where r ~ i , is the iih grid mark along the

s J axis. There are M j possible grid mark values on the SJ axis and the total number
T of grid vertices M = n MJ. Thus the coordinates of q, are [rli1, T2i2 . . . , rdid] .

Conversely, a is a function of i l l i2, . . . , id . Figure A.1 illustrates the latent data

space structure.

Figure A.l: Structure of latent variable space, S, with single grid. The density on s consists
of a mixture of delta functions where the mixture components, q,, are constrained to lie at the

vertices of a rectangular grid. The grid is centered at r] and is defined by the s axes and a set of

grid mark values { r J i) , where T J ~ is the i th grid mark along the s J axis.

The marginal densities are pJ(s j) i J) = 6(s J - rJi,). We write the density of s

conditioned on mixture component a as

We also constrain the mixing coefficients, T,, to be the product of prior proba-

bilities, p JiJ

7ia(ill i d) = n P J ~ J .
J

By combining (A.l), (A.2), and (A.3) the density on s becomes a sum of products

of marginal densities

The sum over the mixture components a is equivalent to sums over all grid mark

values for all coordinates
M1 Mz Md

a = l i l = l i z = l id=l

so the density on s becomes

We now write the probability model for s in the desired form of a product of marginal

densities
d M.r

The latent data is mapped to the observation space by an orthogonal transforma-

tion W and translated by p. After the mapping, the data is corrupted with additive

Gaussian noise 6 - N(0, a21) with mean 0 and variance a21 where I is the identity

matrix. Figure A.2 illustrates this mapping from latent to observation space. The

observed data generated from a sample s drawn from latent component a is

with conditional densities

The latent density and mapping induces a mixture of constrained Gaussian den-

sities on x of the form

with marginal densities

~ (x l a) = N (P + Wqa, 021)

and the mixing coefficients .~r, is given by (A.3).

118

52 q

1 X15

x=WS+fl
~

Figure A.2: Structure of latent variable space, S, and mapping to observed space, X. The data
density in the latent space consists of a mixture of delta functions where the mixture components,

qa.,are constrained to lie at the vertices of a rectangular grid. This grid is mapped to the observed

data space by an orthogonal transform, W, and corrupted with additive Gaussian noise.

The expectation-maximization algorithm (EM) [DLR77] fits parametric proba-

bility models, such as (A.7), to data by maximizing the data log likelihood for some

training set of N data vectors, {xn, n = 1... N}.

£ = E log C~ 7rap(xnla))
(A.9)

To simplify (A.9) we introduce the density z(a, xn) over these unknown component

assignments. Using Jenkin's inequality to bring the sum over a outside the log gives

the expected log likelihood. The log likelihood £ is bounded below by the expected

log likelihood

N M

£ ~ (£) = L L z(a, xn) log 7ra -
n=la=l
N M

(
d 1

)- L L z(a, xn) -log(27ra2) + ~Ixn - J.L- Wqal2 -
n=l a=l 2 2a
N M

L L z(a, xn) In z(a, xn)
n=la=l

(A.10)

with equality when z(a, x) = p(alx) is the posterior probability of component a

conditioned on the data vector x [NH98]. The posterior probabilites are given by

7rap(xnla)

p(alxn) = I:{37r{3p(xnlfJ)
(A.11)

A.2 Parameter Estimation

The EM algorithm fits our model to data by finding values for the model parameters

that maximize the expected data log likelihood (A.lO). The model parameters are:

1. the grid translation, p,

2. the transformation matrix, W, which specifies the orientation of the grid,

3. the grid mark values, r~, , , J = 1.. . d and iJ = 1. . . MJ that determine the

component means, q,, a = 1 . . . M ,

4. the priors, p ,, , , J = 1 . . . d and i J = 1 . . . MJ that determine the mixing

coefficients T,, a = 1 . . . M, and

5. the number of grid mark values in each direction, Mj , J = 1.. . d.

The noise variance a2 is not fit to data, by is selected to control model complexity

as measured by the entropy

(A. 12)

Choosing a2 large will produce low complexity models with low H values. Con-

versely, choosing a2 small will produce high entropy models with many components.

A.2.1 Transform Optimization

To optimize the transform related parameters, we find the center p and orientation

W of each quantizer grid that maximizes the likelihood (A.lO). The minimum cost

estimators for the grid center place the grid at the mean of the data.

The optimal transform Wo is a member of the special orthogonal group in d

dimensions, SO(d). For background on group theory see [Ham62]. The group has

(8 - d) / 2 parameters. Consider a curve in the group W(X), X E R that passes

through Wo a t X = 0, but is otherwise arbitrary. Maximizing the likelihood (A.lO)

along such a curve yields

where we have used the orthogonality of W to simplify the expression. Defining the

matrix
/ \

allows us to write (A.14) as

The derivative along W(A) is

(A. 17)

where the Lj are the generators of the Lie algebra so(d) tangent to the group a t the

identity. The cj are scalars determined by the specific curve. Postmultiplying Lj

by Wo moves the tangent vectors from the identity to Wo. Substituting (A.17) into

(A.16) and using the fact that we consider any curve through Wo, hence arbitrary

cj, we recover
8 - d

Trace[LjWoQ] = 0 for j = 1 .. . - .
2

(A.18)

Since the Lj's are antisymmetric, (A.18) requires that WoQ is symmetric. This

symmetry condition and the orthogonality condition, WTW = I, uniquely determine

W.

Alternately, we can derive the symmetry condition by examining how the like-

lihood changes with changes in elements of W. W is constrained to be orthogonal,

so we minimize the constrained likelihood (dropping terms that do not depend on

w >

where WK is the Kth column of the W matrix and q , ~ is the Kth coordinate of q,.

The change in likelihood with respect to a change in one or more elements of WL is

where 6WL = [6WIL, 6W2L,.. . , 6WdLIT is a vector of small, arbitrary changes in W.
Since W is orthogonal, Wz SWL + 6Wz WL = 0. Consquently, the terms containing

qaKqaL cancel and the above equation simplifies to

At a maximum of the likelihood, 6Lc is zero. Since the change in WL is arbitrary,

this means the term in parenthesis must be zero. Post-multiplying by W j and using

the orthgonality of W yields

or QW is symmetric
T T Q W = W Q (A.22)

where Q is given by (A.15).

The symmetry condition (A.22) along with the orhogonality condition uniquely

defines the coding optimal transform (COT). The transform W contains d x g ele-

ments, where d is the data dimenision and g 5 d are the number of scalar quantiz-

ers with more than one reproduction value. Therefore, we require dg equations to

uniquely specify W. The symmetry condition (A.22) provides g(g - 1)/2 + (d - g)g

equations and the orthogonality condition, WTW = I, provides g(g+ 1)/2 equations

for the rquired total of dg equations.

A.2.2 Likelihood in Transform Coordinates

To determine the rest of the model parameters, it is easier to work in the transform

coordinates defined by W. Hence, we rewrite the likelihood using y(n) = WT(xn - p)

where p(yla) = N(q,, a21). Note that in the limit that the noise variance goes to

zero, p(y) = p(s). Since WTW = I, the two forms for the data log likelihood, (A.lO)

and (A.23), are equivalent.

Next, we write p(a1y) in terms of the priors of the grid mark values and the

transform coefficients. The transform coefficients are y?) = WFz,, where W j is the

Jth column vector of W.

Replacing the sums over a in (A.23) with corresponding sums over the grid values

yields

To keep the equations short in the derivation below, we will show just the first term

in the square brackets above. The second term is treated identically. Breaking out

the terms for the last coordinate, d, gives us

Since xZ1 p (i 1 yy)) = 1 for every coordinate J = 1 . . . d, (A.26) becomes

Repeating the above simplification for each remaining coordinate, J = d - 1 . . . l ,

yields

A.2.3 Quantizer Optimization

Maximizing the log likelihood (A.28) with respect to grid value, r ~ k yields

The reproduction vectors, qa(il ,..., id) are given by [rlil, . . . , rdidlT.

The number of grid values MK in each coordinate is influenced by the choice

of component or noise variance a2. The number of components in each dimension

is related to the ratio of the data variance in that dimension to the component

variance. When a2 is small, many components are required to cover the data space,

so the likelihood maximum will occur at large values of M and MK. When a2 is

large, fewer components are needed to maximize the likelihood.

Next we maximize the likelihood (A.28) with respect to the prior probabilites of

the grid values. The priors for each coordinate must sum to one. Consequently, we

maximize the constrained likelihood

Maximizing (A.30) yields

Applying the constraint, we find that y~ = - N. Replacing y~ in the above equation

yields

The mixing coefficients are calculated from the grid value priors, n,(il,...,id) = n pJiJ .

A.3 Controling Model Complexity

Instead of finding the maximum likelihood estimator for the noise variance a2, we

adjust the variance to control complexity as measured by the entropy (A.12). We

select a value of a2 that keeps the model entropy below some target value Ho.

Entropy is influenced by the values of all the model parameters, the transform, the

grid mark values, the grid mark prior probabilities, and the variance. To keep the

solution on the constraint surface, H = Ho, small changes in the parameter values

should cancel each other.

The variance a2 is an implicit function of W, the pJi , 'S and r J,, 's, J = 1 . . . d and

iJ = 1 . . . MJ. So, for given W, pJi,s and r~;,s, we can estimate the (first-order)

change in a2 necessary to make H = Ho.

The derivative of H with respect to a2 is

where hatted parameters (') are those found using the current posterior values and

non-hatted parameters are those used to calculate the current posterior values. The

values of pJi are given by (A.31), so (A.34) becomes

The pJ(ilyJ), i = 1.. . Mj, are given by

where y~ = WTx. Taking the derivative with respect to a2,

Substituting (A.37) into (A.35) and simplifying

d H 1 1 M~ -= -- x x x P J (~ ~ Y J) I ~ P J ~ ~ Y Y) - rJj12 - ~ Y Y) - rJi12
do2 2a4NJ=, i= l

(A.38)
Substituting this result into (A.33) yields

A.4 Model and Transform Coder Correspondence

The EM algorithm provides a template fo deriving a transform coding algorithm

from this probability model. To achieve hard clustering, we choose choose z(a, x,)
to be

1 p(alxn) > p(7Ixn) VY # a
0 otherwise

In this hard clustering model the responsibility for a data value x, is assigned to the

mixture component with the largest posterior. The final term in the expected log

likelihood (A. 10) becomes zero since z(a, x,) In z(a, x,) = 0 V a , n. Consequently,

(L) reduces to the cost function

This cost function consists of two terms combined with the Lagrange multiplier

2a2: the average coding distortion C, En z(a, x,) llxn - p - Wqa \ I2 and the entropy

- C, .rr,logn,. This entropy-constrained cost function (A.41) is the same as that

found by minimizing coding distortion subject to an average bit-rate constraint, as

we show below.

This partition (A.40) defines regions

Rewriting these region definitions in terms of the transform coefficients, y~ =

WF (x - p) , yields

Ra(il ,...,id) = {X I 31 E Rlil and 9 2 E R2iz and - . . and y d E Rdi,) (A.43)

where

This is also the optimal partition of the signal space for an entropy-constrained

transform coder.

An entropy-constrained transform coder limits compressed signal size to some

target bit-rate, Ho.
d MJ

where lJiJ is the length of the code word for reproduction value r~ ; , .

The cost of compressing a signal is

where NJi, are the number of y~ in bin RJiJ. In the hard clustering model, finding

the model parameters that maximize the likelihood (A.28) is the same as finding

the transform coder parameters that minimize constrained distortion (A.46). The

model grid values (A.29) correspond to the optimal scalar quantizer reproduction

values

The model grid value priors (A.31) correspond to the prior probabilites of the bins,

- N K ~ I N . P K ~ -
The length of each code word is the logarithm of the associated prior probability.

Kraft's inequality states that a uniquely decodable code must satisfy

We add this constraint to (A.46), using Lagrange multipliers y~

If we do not constrain the code lengths to be integers, we can take the derivative of

the cost with respect to the code lengths.

Applying Kraft's inequality yields y~ = 1/ In 2. The optimal code lengths are

Using optimal code lengths, the average bit-rate becomes

which is the entropy. The entropy constraint determines the number of reproduction

values KJ in each scalar quantizer. The rate or entropy terms in (A.46) move the

partition away from the minimium distortion solution, so that reproduction values

with low prior probabilities may have no data items assigned to them. Reproduction

values with pJi = 0 can be removed from the coder, reducing the value of Kj.

Consequently, selecting a small entropy Ho produces small quantizers and low bit-

rate coders.

Substituting the solution for lJi into the cost equation (A.46) yields

where we select the Lagrange multiplier A to enforce the entropy constraint. The

variance a2 in (A.41) corresponds to the Lagrange multiplier A.

A.5 COT for Gaussian Data

The optimal coding transform for Gaussian data is the PCA transform or KLT.

For zero-mean d dimensional Gaussian data, x, p(x) = N(0, C), where C is the

covariance matrix. The density of the transform coefficients, y = WT(x - p), is

To proceed, we need to find QW in terms of the grid mark values, r, and trans-

form coefficients, y. QW is given by

The value in the Kth row and Jth column, VK # J is

where q , ~ is the Kth coordinate of q,. Now q , ~ = rKiK and WF(2 - p) = Y J .

Making these substitutions and replacing the sums over a with the corresponding

sums over iJ and the integrals over R, with the corresponding integrals over Rj;,,

for J = 1 . . . d, yields

Repeating this process for K = J, we find the tha diagonal elements of QW are

If W is the PCA transform, it diagonalizes C and the density on y is

Substituting (A.56) into the equation for an element of QW (A.54) yields

where gJ is the mean of the Jth coefficient.

The r ~ i ~ that minimize the coding distortion (A.41) are given by

Subsituting (A.58) into (A.57) yields

Since QW is symmetric, the PCA transform is the optimal transform for coding

Gaussian data. No high resolution approximations are required to achieve this result.

In addition, the partition or encoder need not minimize mean squared coding error,

so this result also holds when the quantizers are designed using entropy penalized

cost functions.

Appendix B

Selecting Entropy for Adaptive

PCA

Adaptive PCA models data as a collection of low-dimensional hyperplanes embed-

ded in a high dimensional observation space and corrupted with spherical noise. We

control model complexity by selecting a single global variance, a2, for the noise con-

tribution. Choosing this noise variance is equivalent to selecting an entropy penalty.

Our evaluations show that entropy-constrained adaptive PCA models have the po-

tential to accurately model high-dimensional real-world data, even when training

data is sparse.

An important aspect of adaptive PCA modeling is the selection of an appropriate

noise variance, or equivalently, the entropy penalty. Evaluations performed over a

range of noise variances show that adaptive PCA models accurately model data by

conforming to the natural cluster structure at appropriate choices of noise variance.

However, when the noise variance is selected too large, the models do not have the

flexibility to conform to the data structure. When the noise variance is selected too

small for the available training data, the models have only a few high-dimensional

components that bridge natural clusters.

Initially, we attempted to select an optimal value of a2 by measuring modeling

cost on a validation data set, which consists of data examples not in the training

set. We tested models developed using different values of a2. The model with the

lowest validation set cost indicates the optimal noise variance.

This method for selecting a2 performs well on artificial data that is generated

from a PCA model, but poorly on real-world data. The PCA model is based on the

assumption that the measured data x is generated from a low-dimensional source

s, embedded in the observation space with translation p and transform W, and

corrupted with additive Gaussian noise. Consequently, the observed data is given

by
x = W S + ~ + € (B.1)

where s N N(0, I) and E N N(0, $1) . If we order the eigenvalues of x from largest

to smallest, beyond some dimension d they will plateau a t the variance p2 of 6 . The

validation set method selects noise variances o2 close to the value of p2. However, the

eigenvalues of real-world data typically do not reach some plateau. Consequently,

the validation set method selects noise variances that are small, but which result in

nearly full-dimensional and under-constrained models.

To illustrate the different behaviors of artificial and real-world data, we perform

texture segmentation tasks on both types of data. The real texture data consists

of 9 x 9 pixel blocks sampled from four texture source images. The source textures

are images of dense leaves, coarse cloth, marble, and paper. Figure B.l shows the

eigenvalues for these four source images. We calculated these eigenvalues by first

dividing each source image into 9 x 9 blocks, then removing the data mean and

performing singular value decomposition (SVD) .
The artificial texture data was generated according to the PCA model (B.l) using

the means, eigenvectors, and eigenvalues of the source textures. We decomposed

each source imaged into 9 x 9 blocks to form 81 dimensional vectors. The translation

p is the mean of these blocks. We then removed the mean and performed SVD

on the image blocks to calculate the matrix of eigenvectors U and eigenvalues A.

To determine the dimension, d, we retained the largest eigenvalues to account for

90% of the total variance. The variance floor $ is calculated as the mean of the

discarded eigenvalues. The transform W = u F ~ where the columns of u are the

eigenvectors associated with the leading d eigenvalues and I' = A - p21 are the d

leading eigenvalues minus p2. Figure B.l also shows the eigenvalues of the artificial

data. The floor variances and dimensions for the four textures are: leaves p2 = 250,

d = 27, cloth p2 = 268, d = 35, marble p2 = 213, d = 52, and paper p2 = 2.25,

d = 28.

For both the real and artificial data sets, we generated a 1000 vector training

file, 500 vector validation file, and 2500 vector test file. For the real data, we

132

104

- leaves- cloth- marble- paper

103
Q)
0
c:
(Ij

.~ 102
0
.-
0)

.3101

10°

-1

10 0 10 20 30 40 50
Dimension

60 70 80

Figure B.1: Eigenvalues of real and artificial textures. Real (sampled) texture eigenvalues are

shownby solidline. The leading eigenvaluesof the artificial textures are the same as the real
texture values. The trailing eigenvalues, shown by dotted line, have been replaced by a noise
variance equal to their mean value.

sampled blocks from the source images starting at random offsets. To generate

artificial texture blocks, we drew an s from a d dimensional unit variance Gaussian

distribution, then transformed and translated it using Wand J-L.We then added

Gaussian noise drawn from an 81-dimensional spherical Gaussian distribution with

variance p2 to form a data vector x. Figure B.2 shows the test data organized into

maps for visualization.

We trained adaptive PCA models for a range of noise variances a2 using the

validation set to select model size. For each model, we recorded the validation

set modeling cost; these are shown in Figure B.3. The adaptive PCA algorithm

produced accurate models with the correct number of components and good seg-

mentation accuracy for a range of noise variances,50002:a2 2:150for the artificial

texture data and 3000 2: a2 2: 450 for the sampled texture data.

For the artificial texture data, the validation set cost has a minimum at a2 = 270

(next larger value tested was 360 and next smaller value was 202), which agrees well

with the noise variances p2 of three of the textures (268, 250, 213). The model

at this noise variance has four components and segments the test image accurately

(a) Sampled

133

(b) Artificial

Figure B.2: Texture Test Data. Figure (a) shows data sampled from one offour textures, dense

leaves (dark), cloth (coarse texture), marble (gray and white), and paper (light). Figure (b) shows
artificial data generated from PCA model and first and second order statistics of texture images.

with correct texture classification of over 95%. For the sampled texture data, the

validation set cost minimum is at a2 = 1.3 (next larger value tested was 1.7 and next

smaller value was 0.75). At this low noise variance, the model has two components:

one 81 dimensional component that represents the cloth, leaves, and marble textures

and one 52 dimensional component that represents the paper texture. However, at

higher noise variances, 3000 ~ a2 ~ 450, the model has four components and

segments the image with better than 95% accuracy.

Selecting the noise variance to minimize modeling cost of a separate validation

set results in values that are too small when the data eigenvalues do not plateau

at some noise floor. However, evaluations performed on texture data indicate that
models conform to the data structure when the noise variances is chosen at or

slightly below the point where the model size is largest. Figure B.4, which contains

a plot of component impurity Hp and abundance Ha for the real texture data,

shows that classification ability is best at noise variances where the components are

most abundant. Investigating the relationship between model size and component

dimension for different choices of noise variance may lead to effective methods of

entropy penalty selection.

134

850

800
- Sampled- Artificial

750-
(J)
0

(.) 700
C)
.5
~650
0

::E

600

550

500 -2
10 10° 102 104

Log 10 Noise Variance
106

Figure B.3: Validation set cost for artificial and sampled texture data. Validation set cost plotted

against logio (j2 with artificial data cost in red and sampled data cost in blue. Circles indicate cost
minima.

1.5 2 2.5 3 3.5

Log10 Noise Variance
4 4.5

Figure B.4: Component impurity (red) and abundance (green) for real texture data. Circles
indicate means and error bars indicate standard deviation of ten models trained from different

initializations.

2
X
(I)

......
-c:
E 1.50
u'-'"

I
"C
r::: 1ro-.c..
E
:3 0.5

X
(I)
;t:.
I

0
1

Biographical Note

Cynthia Archer was born in Rockford, Illinois, U.S.A on July 20. 1960. In 1978,

she entered the electrical engineering program at the University of Illinois, Urbana-

Champaign. She completed her Bachelor of Science degree in 1982, graduating with

honors. After graduation, she joined Raytheon's Submarine Signal Division work-

ing on sonar transducer research. In 1983, Cynthia joined General Telephone and

Electric (GTE) working in their Government Systems Division. While at GTE, she

developed custom electronic hardware, firmware, and software for secure satellite

communications equipment. After ten years in industry, Cynthia returned to school

part-time at Oregon Graduate Institute of Science and Technology(OG1) to earn a

degree in computer science. After graduating with her Master of Science degree in

1998, she returned to school full time to pursue her doctoral degree in the area of

machine learning with emphasis on adaptive signal processing and pattern recog-

nition. In 2001, she was one of two recipients of the annual student achievement

award given by OGI. She is the principal author on four published conference papers

and two journal papers currently under review.

