
Join-order Optimization

with

Cartesian Products

Bennet Vance

B.A., Yale University, 1976

M.S., Stanford University, 1981

A dissertation submitted to the faculty of the

Oregon Graduate Institute of Science and Technology

in partial fulfillment of the

requirements for the degree

Doctor of Philosophy

in

Computer Science and Engineering

January 1998

@ Copyright 1998 by Bennet Vance

All Rights Reserved

The dissertation "Join-order ~ ~ t i r n i z a t i o n with Cartesian Products" by Bennet Vance

has been examined and approved by the following Examination Committee:

David Maier
Professor
Thesis Research Adviser

- . t

Len Shapiro
Professor
Portland State University

Acknowledgments

This dissertation owes a debt to many individuals. Dave Maier, my adviser, deserves spe-

cial mention for his role in guiding and reviewing my work, and for bringing to this role

the same clarity, perceptiveness, and patience that distinguish his teaching in the class-

room. Jim Hook, Len Shapiro, and Jon Walpole also deserve credit for their considerable

efforts as readers on my dissertation committee. I am grateful for their comments and

encouragement, and for all that they have taught me over the years.

The following individuals gave me valuable feedback on earlier presentations of the ma-

terial in this dissertation: Khalid Alnafjan, Roger Barga, Roberto Bayardo, Cdsar Galindo-

Legaria, Goetz Graefe, Joe Hellerstein, Bala Iyer, Donald Kossmann, Guy Lohman, Bill

McKenna, Guido Moerkotte, and Vijay Sarathy. For their comments, questions, conver-

sation, and encouragement, I am deeply grateful.

Steve Otto generously gave of his time to explain to me the principle of Chained Local

Optimization. Scott Daniels, Leo Fegaras, Gail Mitchell, and Stan Zdonik helped shape

my thinking about query optimization. Scott Daniels and Jon Inouye gave me technical

assistance in setting up my experiments and in typesetting this document. Rik Smoody

contributed both moral and financial support to my research lab. Mike Carey has been

helpful in numerous ways, not least with bibliographic questions. For all these forms of

assistance, I am grateful.

Support for this work was provided in part by the Advanced Research Projects Agency,

ARPA order number 18, monitored by the US Army Research Laboratory under contract

DAAB-07-91-C-Q518, and by NSF grant IRI 91 18360. The support of these agencies is

gratefully acknowledged.

Contents

. Acknowledgments iv

. Abstract xv

. 1 Introduction 1
. 1.1 The Problem 1

. 1.2 Join-order Optimization in Practice 3
. 1.3 Claim and Synopsis of Dissertation 6

. 1.4 Contributions 8
. 1.5 Road Map 9

. 2 Background and Related Work 11
. 2.1 Relational Databases 12

. 2.1.1 Illustration of Basic Concepts 12
. 2.1.2 Further Details of the Sample Database 14

. 2.2 The Relational Algebra 15
. 2.2.1 The Cartesian Product Operator 16

. 2.2.2 The Select Operator 20
. 2.2.3 The Join Operator 23

. 2.2.4 Summary 29

. 2.3 Query Processing 29
. 2.3.1 A Sample Query 29

. 2.3.2 Phases of Query Processing 30
. 2.3.3 Processing of the Sample Query 32

. 2.3.4 Discussion 38
. 2.4 Cardinality Estimation and Predicate Selectivity 38

. 2.4.1 Concept and Properties of Selectivity 39
. 2.4.2 Difficulties with Selectivity 41

. 2.4.3 Discussion and Resolution 46
. 2.5 Join Graphs 47

. 2.5.1 Concept of Join Graphs 47

. 2.5.2 Edge-labeled Join Graphs 48
. 2.5.3 Roleof the Join Graph 49

. 2.5.4 Complex Predicates and Hyperedges 50
. 2.6 Cost Models and Physical Properties 51

. 2.6.1 Cost Models 51
. 2.6.2 A Generic Cost Model 52

. 2.6.3 Physical Properties 56
. 2.7 Approaches to Join-order Optimization 57

. 2.7.1 Dynamic Programming 57
. 2.7.2 Rule-based Optimization 60

. 2.7.3 Heuristic and Sequencing Techniques 63
. 2.7.4 Stochastic Techniques 65

. 2.7.5 Hybrids and Frameworks 66
. 2.7.6 Summary 68

. 2.8 Summary and Discussion 69

. Cartesian Product Optimization 70
. 3.1 Preliminaries 70

. 3.2 Solution using Dynamic Programming 71
. 3.2.1 Initialization and Two-way Products 72

. 3.2.2 Three-way Products 73
. 3.2.3 Final Result 74

. 3.3 The Blitzsplit Algorithm 75
. 3.3.1 Declarations 75

. 3.3.2 Procedure blitzsplit 77
. 3.3.3 Procedure init-singleton 78

. 3.3.4 Procedure compute-properties 79
. 3.3.5 Procedure find-best -split 79

. 3.3.6 Extracting the Best Expression 81
. 3.4 Complexity of the Algorithm 82

. 3.4.1 Space Complexity 82
. 3.4.2 Time Complexity 83

. 3.4.3 A Small Algorithmic Improvement 86
. 3.4.4 Discussion 87

. 3.5 Summary 89

. . . . 4 Lightweight Implementation of Cartesian Product Optimization 90
. 4.1 Representation of Data Types : 90

. 4.2 Set' Operations using Integer Arithmetic 93
. 4.3 The Auxiliary Function leastsubset 93

. 4.4 Procedure blitzsplit 94
. 4.5 Procedures init-singleton and compute-properties 95

. 4.6 The Auxiliary Function next-subset 96
. 4.6.1 Conception 97

. 4.6.2 Implementation 98

. 4.6.3 Generalization 99
. 4.7 Procedure find-bestsplit 100

. 4.8 Implementation of Concrete Code in C 102
. 4.9 Empirical Observations 104

. 4.9.1 Selection of Sample Points 104
. 4.9.2 Timings 109

. 4.10 Summary 111

. 5 Support for Join Predicates 112
. 5.1 Join Graphs. Subgraphs. Predicates. and Cardinalities 113

. 5.1.1 Induced Subgraphs 113
. 5.1.2 Subgraphs and Join Expressions 114

. 5.1.3 Cardinality Recurrence 116
. 5.1.4 Summary 117

. 5.2 Cardinality in the Presence of Predicates 117
. 5.2.1 Conception of Cardinality Computation 118
. 5.2.2 Realization of Cardinality Computation 121

. 5.3 Accommodating Redundant Predicates 127
. 5.3.1 Transitive Chains 128

. 5.3.2 Selectivity of a Chain in a Set 131
. 5.3.3 Computing Selectivities of Chains 132

. 5.3.4 Relation-name Aliases 135
. 5.3.5 Translation of Relation Names 137

. 5.3.6 Code for Computing Chain Selectivities 139
. 5.3.7 Changes to the Blitzsplit Algorithm 141

. 5.4 Summary and Discussion 144

vii

. 6 Performance Analysis 146

. 6.1 Experimental Design 146
. 6.1.1 Difficulties in Empirical Studies 147

. 6.1.2 Our Measurement Approach 149
. 6.1.3 Shortcomings of our Parameterization 150

. 6.2 General Performance Traits 152
. 6.3 Execution Counts and Fingerprints 155

. 6.3.1 Join-query Fingerprints 156
. 6.3.2 Significance of Fingerprints 158

. 6.4 Fingerprints for Various Queries 160
. 6.5 Execution Counts under the Nested-Loops Model 164

. 6.5.1 Split-Graphs 164
. 6.5.2 Split-Graph Shape and Cost-Function Execution Count 167

. 6.6 Fingerprints under the Nested-Loops Model 169
. 6.6.1 Trajectories as Seen through Split-Graphs 172

. 6.6.2 Behavior of Star Queries 173
. 6.6.3 Behavior of Clique Queries 175

. 6.7 Summary and Discussion 178

. 7 Pruning Cost Computations 181
. 7.1 Pruning by Plan-Cost Tl~resholds 182

. 7.2 Experimental Runs with Plan-Cost Thresholds 184
. 7.3 Considerations in Choosing Plan-Cost Thresholds 187

. 7.4 Plan-Cost Slices 189
. 7.5 Summary and Discussion 191

. 8 A Stochastic Extension 103

. 8.1 Intuitions about Stochastic Optimization 194

. 8.1.1 Characteristics of Various Approaches 196

. 8.1.2 Incorporation of a Heuristic 198

. 8.1.3 Shapes of Join-Plan Spaces 200

. 8.2 Tightening and Iterated Tightening 200
. 8.2.1 A Sample Problem 201

. 8.2.2 The Initial Join-processing Tree 201
8.2.3 Collapsing Subtrees to Pseudo-relations 203

. 8.2.4 Collapsing the Join Graph 203

. 8.2.5 Encapsulation of Pseudo-relations 205

8.2.6 Subproblem Optiinization and Grafting 205

viii

. 8.2.7 Tightening of Subtrees 207
. 8.2.8 Iterated Tightening 207

. 8.2.9 Summary 209
. 8.3 An Algorithm for Tightening 209

. 8.3.1 The Tightening Algorithm Proper 210
. 8.3.2 Type Declarations 210
. 8.3.3 Implicit Functions 212

. 8.3.4 Functions for Tightening 213
. 8.3.5 Technical Issues 215

. 8.4 The Stochastic Bushwhack Algorithm 216

8.4.1 Pseudo-code for the Stochastic Bushwhack Algorithm 217
. 8.4.2 Technical Issues 219

. 8.5 Summary and Discussion 221

. 9 Performance of t h e Stochastic Extension -222
. 9.1 Concept of Watersheds 223
. 9.2 Measurement Procedure 225

. 9.3 Division of Plan Space into Watersheds 226
. 9.4 Frequency of Attaining Global Minima 229

. 9.5 Approximate Optima 230
. 9.6 Optimization Time 233

. 9.7 Quantifying the Quality-Effort Trade-off 236
. 9.7.1 An Optimization-Effectiveness Index 236

. 9.7.2 Attaining an Optimum with 99% Probability 237

9.7.3 The Recursive Bushwhack Algorithm and the "Kick" 238
. 9.8 Varying the Join Graph 240

. 9.9 Larger Numbers of Relations ; 242
. 9.10 Varying the Queries 246

. 9.11 Varying the Cost Model 250
. 9.12 Summary and Discussion 250

. 10 Conclusion 256
. 10.1 Physical Properties 257

. 10.2 Topdown vs . Bottom-up 258
. 10.3 Extension beyond Relational Systems 260

. 10.4 Conclusion 261

. Bibliography 262

. A Complexity of Join Enumeration in Starburst 268

. A.l The Starburst Join-Generation Mechanism 268
. A.2 Overview of Complexity Calculation 270

. A.3 Calculating I..,oo, (k) 272
. A.4 Calculating 275

. A.5 Correction for Extraneous Terms 279

. B Implementation of Blitzsplit Algorithm in C 281

. C Parameterization of Test Queries 285

. C.l The Four Dimensions of Parameterization 285
. C.l.l Mean Cardinality 285

. C.1.2 Variability 286
. C.1.3 Join Graph 286
. C.1.4 Cost Model 290

. C.2 Details of Cost-Function computation 290
. C.2.1 Decomposition of Cost Functions 291

C.2.2 Transformation of a Class of Cost Functions 292
. C.2.3 Justification for the Transformation 293
. C.2.4 Application to Sort-Merge Cost Model 295

. C.2.5 Generalization of the Transformation 296

. Biographical Note 298

List of Tables

3.1 Dynamic programming table . 72

3.2 Quantities relevant t o time complexity of Cartesian product optimization . 88

4.1 Cartesian product optimization time for a given number of relations n . . . 110

List of Figures

. 1.1 Left-deep and bushy expressions 5

. 2.1 A sample relational database 13
. 2.2 Examples of the relational Cartesian product 17

. 2.3 A three-way relational Cartesian product 19
. 2.4 Examples of the selection operation 21

. 2.5 An SQL query and its result 30

2.6 Possible intermediate results in the evaluation of a three-way join 36
. 2.7 Join graphs 48

. 2.8 Join graphs labeled with selectivities 49

. 3.1 Declarations for the Blitzsplit algorithm 75
. 3.2 The Blitzsplit algorithm 76

. 3.3 Printing an optimal expression 82
. 3.4 Making execution of d p l i t conditional 86

. 4.1 Concrete declarations 92

4.2 Least-subset function . 93

. 4.3 Concrete blitzsplit 95

. 4.4 Concrete init-singleton and compute-properties 96

4.5 Next-subset function . 97

. 4.6 Counting inside of a bit pattern 98

. 4.7 Concrete find-best-split 101

. 4.8 Use of an asymmetric cost function 101

4.9 Cartesian product optimization time for 10 relations, as a function of mean

cardinality and ratio of maximum to minimum cardinality 106

4.10 Cartesian product optimization time for a given number of relations n . . . 110

5.1 Subsets and subgraphs in a graph . 114

5.2 Subsets and subgraphs in the graph for S = { A , B, C) 115

5.3 Carving up a fan . 120

5.4 Changes to declarations to support predicates 124

xii

. 5.5 Changes to Blitzsplit algorithm to support predicates 125
5.6 Essential and redundant predicates . 129
5.7 Adjacency in a longer chain . 133
5.8 Relation-name aliases . 136

5.9 Code to calculate chain selectivities . 140
. 5.10 Changes to declarations to support use of chains 142

. 5.11 Changes to Blitzsplit algorithm to support use of chains 143

6.1 Optimization times for 15-way joins under various conditions 153

. 6.2 Fingerprint for a sample query 157
6.3 Fingerprints under the naive cost model . 161

6.4 Split-graphs for a chain query with p = lo4 and variability 0.5 under the

disk-nested-loops cost model . 165

6.5 Chain-query fingerprints and split-graphs for various p 170

6.6 Star-query fingerprints and split-graphs for various p 174

6.7 Clique-query fingerprints and split-graphs for various p 176

7.1 Fingerprint with and without truncation by a plan-cost threshold 183

7.2 Optimization times for 15-way joins with plan-cost thresholds 186

7.3 Fingerprints truncated by successively larger plan-cost thresholds 188

A pathological function shape . 195
Collapsing a join-optimization problem to a smaller problem 202
Tightened join-processing tree. before and after grafting 206
Tightening of a subtree . 208
Retightening the top-level tree after tightening of subtree 208
Tightening algorithm . 211
Function equivalents to cost annotations on tree nodes ; 213
The Stochastic Bushwhack algorithm . 218

9.1 Number of watersheds. and relative size of optimal watershed 227

9.2 Goodness of approximate optima. expressed as ratios of plan costs to opti-

mal plan cost . 231
9.3 Optimization times for the Stochastic Bushwhack algorithm 234
9.4 Time to obtain minimum cost with 99% probability. as function of n and

k-pct . 239

9.5 Profile of Bushwhack behavior for joins of 11 to 20 relations. with k from 4

to 13 (canonical test queries) . 241

9.6 Profile of Recursive Bushwhack behavior for joins of 21 t o 30 relations, with
k-pct from 24 t o 60 (canonical test queries) 243

9.7 Time needed t o obtain a minimal plan with 99% probability (canonical test

queries) . 245

9.8 Number of distinct minima as a function of mean cardinality and variability

(n = 20, k = 8) . 247

9.9 Profile of Bushwhack behavior as a function of mean cardinality and vari-

ability (n = 20, k = 8) . 248
9.10 Profile of Bushwhack behavior as a function of mean cardinality and vari-

ability, with perturbations (n = 20, k = 8) 249
9.11 Profile of Recursive Bushwhack behavior for joins of 21 t o 30 relations, with

k-pct from 24 t o 60 (canonical test queries, disk-nested-loops cost model) . 251

9.12 Profile of Bushwhack behavior as a function of mean cardinality and vari-
ability (n = 20, k = 8, disk-nested-loops cost model) 252

A.1 Starburst join-generation algorithm . 269

C. l The "cycle + 3" join-graph topology for n = 15 287

xiv

Abstract

Join-order Optimization

with

Cartesian Products

Bennet Vance

Supervising Professor: David Maier

Join-order optimization plays a central role in the processing of relational database queries.

This dissertation presents two new algorithms for join-order optimization: a deterministic,

exhaustive-search algorithm, and a stochastic algorithm that is based on the deterministic

one. The deterministic algorithm achieves new complexity bounds for exhaustive search

in join-order optimization; and in timing tests, both algorithms are shown t o run many

times faster than their predecessors. In addition, these new, fast algorithms search a

larger space of join orders than is customary in join-order optimization. Not only d o they

consider all the so-called bushy join orders, rather than just the left-deep ones, but-what

is more unusual-they also consider all join orders that contain Cartesian products. The

novel construction of these algorithms enables them t o search a space including Cartesian

products without paying the performance penalty that is conventionally associated with

such a search.

Chapter 1

Introduction

This dissertation presents new results on the problem of join-order optimization. This

introductory chapter gives an overview of the problem, and summarizes the claims and

contributions of the present work. The introduction closes with a road map of the remain-

der of the dissertation.

1.1 The Problem

The problem of join-order optimization arises in the context of relational query processing.

Recall that to retrieve information from a relational database, one ordinarily poses a query

expressed in some variant of the language SQL (Structured Query Language) [ll, 321.

Consider an SQL query of the form

SELECT *
FROM A, B , C

WHERE . . .

where A, B, and C denote relations, and where the ellipsis (. . .) represents a predicate,

or possibly a conjunction of many predicates. (Chapter 2 gives a more concrete example

with additional detail; the present example is sketchy in the interest of brevity.) After

parsing this query, a relational database management system might represent i t internally

as the join of A, B, and C, i.e., as the relational algebra expression A M B W C.

Now here is the problem. Because the join operator (W) is commutative and associative,

the join of A, B, and C may be written as

Bw (A w C),

or indeed in any of a number of other ways-12 of them altogether. These 12 different

expressions are semantically equivalent in the sense that they all evaluate t o the same

result. But viewed operationally, they are not equivalent; for example, (A W B) w C

suggests first joining A with B , and then joining that intermediate result with C, whereas

B W (A W C) suggests first joining A with C, and then joining B with that intermediate

result. These operational differences are significant because the computational cost of

evaluating one expression (measured in disk and CPU time) may be vastly different from

that of evaluating another, semantically equivalent'expression. To perform well, a database

management system must make a judicious choice of expressions t o use as the basis for

query evaluation. The process of choosing from among the available alternatives is called

join-order optimization (or simply join optimization).

There are, as noted, 12 alternatives in the case of a three-way join (i.e., a join involving

three relations). In general, for an n-way join [29, 31, 543, the number of alternatives is

This quantity grows at an explosive, faster-than-exponential rate. The time complexity

of join-order optimization, however, is not quite as unfavorable as formula (1.4) might

lead one t o expect; it is possible to search the space of alternatives exhaustively without

examining each alternative separately from the others. Even so, the time complexity of

join-order optimization remains exponential. Ibaraki and Kameda have shown the problem

t o be NP-complete [25].

1.2 Join-order Optimization in Practice

The intractability of join-order optimization leads t o a dilemma: To optimize, or not t o

optimize? On the one hand, if one does not optimize, query evaluation may take an

inordinately long time; in this case, we shall refer to the query evaluation as having a high

cost. On the other hand, if one does optimize, it may turn out that the optimization itself

takes an inordinately long time, quite possibly defeating the purpose of optimization. In

the latter case, we shall refer to the optimization as being very time-consuming, or as

entailing a large computational effort. Thus, we make a verbal distinction between the

time or effort of optimization, and the cost of query evaluation, though it is actually time

we are concerned about in either instance.

In practice, the effort required for join-order optimization typically becomes prohibitive

when n (the number of relations being joined) reaches a value somewhere in the teens.

Values of n in this range can arise when users submit SQL queries with large numbers

of relations in the FROM clause, but they can also arise in other ways that users may

not even be aware of. For example, queries that make use of views [ll, 321 often generate

hidden joins, as do queries with path expressions [8, 53, 621. As databases become more

complex, and as they incorporate additional facilities that automatically generate joins

"underneath the covers," queries with large values of n are likely to become more and

more common.

In the case of such queries, while the effort required for join-order optimization may be

excessive, the consequences of forgoing optimization are likely t o be equally unacceptable.

The resolution of the dilemma is to compromise on what is meant by optimization. A

literal reading of the word "optimizationn would require a join-order optimizer to choose,

from among the available alternatives, a join expression whose cost was minimal. Such

expressions are sometimes called exact solutions to the optimization problem; they may

also be referred t o as exact optima or true optima. But a looser reading of the word

"optimization" allows for the selection of an alternative whose cost is merely low, and not

necessarily minimal. Such alternatives may be referred to as approximate optima or near

optima. In general, an approximate optimum can be had for much less effort than an exact

one. The practical objective of join-order optimization is to strike a balance between the

quality of the solution obtained, and the ease of obtaining it.

Optimizers employ a variety of tactics for reducing optimization effort. In this work,

the following tactics shall concern us especially:

1. Exclusion of Cartesian products. As will be explained in greater detail in Chapter 2,

some "joins" are actually Cartesian products, denoted by the operator x. For exam-

ple, consider an SQL query that includes A and B in the FROM clause, a s in the

query illustrated a t the outset. Depending on what was in the query's WHERE

clause, the join of A and B might turn out to be a Cartesian product, and in that

case would ordinarily be written as A x B, rather than as A W B.

As a rule, Cartesian products entail very high evaluation costs; on this basis, most

query optimizers will not even consider expressions that involve Cartesian products

(unless they cannot be avoided). By excluding such expressions, a query optimizer

reduces the size of its search space, and reduces optimization effort accordingly. But

a t the same time, it risks yielding a suboptimal solution in those cases where the

true optimum contains a Cartesian product [45].

2 . Restriction of the search to left-deep join expressions. Left-deep expressions have

the form illustrated in Figure l . l(a), with nesting of join operators occurring only

in the left-hand inputs. The more general space of bushy expressions, of which

Figure l . l (b) is an instance, allows nesting in both the left-hand and right-hand

inputs.

The space of left-deep expressions grows far less quickly than the space of bushy

expressions; given n input relations, there are only n! different left-deep expressions,

in contrast to the ((2n - 2)!)/((n - I)!) bushy expressions reported in formula (1.4)

above. On the other hand, the optimal bushy expression is sometimes far superior to

the best left-deep one [45], and never inferior, since the bushy expressions subsume

the left-deep ones.

((((A IN B) IN C) D) w E) w F (A w (B w C)) w ((D w E) w F)

(a) Left-deep (b) Bushy

Figure 1.1: Left-deep and bushy expressions

3. Use of stochastic search. This tactic has a rather different character from the previ-

ous two. The previous two tactics focused on reducing the size of the search space,

while the idea behind stochastic search is to explore the full "breadth" of the search

space-however large it may be-without searching it exhaustively.

Typically a stochastic search examines only a tiny fraction of the expressions in the

given space. Needless to say, by leaving much of the space unexamined, such a search

runs the risk of overlooking the truly optimal solutions.

In each instance, the guarantee of true optimality is sacrificed in the interest of making the

optimization process more tractable. (Optimizers use many other effort-reducing tactics

as well, some of which do not compromise optimality.)

Tactics 1-3 above need not be mutually exclusive. Much work on stochastic join-order

optimization has focused on the space of left-deep join expressions [26, 561; and regard-

less of any other tactics they employ, nearly all join-order optimizers exclude Cartesian

products. In fact, in those instances where optimizers support consideration of Cartesian

products a t all, they do so only as an option, or only in restricted contexts; exclusion of

Cartesian products has always been the default.

1.3 Claim and Synopsis of Dissertation

The claim of this dissertation is as follows: There is no benefit in excluding Cartesian

products in join-order optimization. We make this claim in the context of bushy join-

order optimization; it may well hold in the context of left-deep optimization as well, but

the bushy case is more interesting, and, at least on the surface, more challenging.

The defense of this claim rests on theoretical and empirical analyses of two new join-

order optimization algorithms presented in this work. The first of these algorithms per-

forms an exhaustive search; the second, a stochastic search. Both algorithms explore the

space of bushy expressions, and neither excludes Cartesian products.

The exposition takes the following shape. We begin by considering the question of

what is involved in optimizing expressions that contain only Cartesian products, and no

joins. We present an algorithm for exhaustively searching the space of bushy Cartesian

products, and show that the time complexity of this algorithm is actually lower than that

of the bushy exhaustive-search join-order optimizers described in the literature. Moreover,

by observing the numerical behavior of the pertinent complexity measures, we predict that

the Cartesian product optimization algorithm can be made t o run very fast. Experiments

on an implementation of the algorithm bear out this prediction.

We then take the next step: to extend the Cartesian product optimization algorithm

so that it accommodates join operators as well. Such is the structure of the algorithm,

and such the nature of the extension, that the accommodation of joins need not impair the

optimizer's speed; nor does it necessitate any restriction of the search space. As the algo-

rithm makes no fundamental distinction between join and Cartesian product operators, i t

chooses Cartesian products over joins whenever they are appropriate.

With a join-order optimizer now in hand, we move on t o empirical evaluation of our

method. Extensive timings show that our optimizer runs faster than previous join-order

optimizers by seveml orders of magnitude. Such comparisons must be treated with caution,

however; in some instances, the improvement can be partly attributed to the use of faster,

more modern hardware, or to simplifying assumptions in our timing experiments. For these

reasons the central claim of the dissertation narrowly focuses on inclusion of Cartesian

products, and not on optimizer speed. Nonetheless, the apparent large speed advantage of

our method is suggestive t o say the least-particularly as it appears to hold even against

optimizers that were developed and benchmarked contemporaneously with our own.

To make the case that our method's inclusion of Cartesian products is not a liability,

we must consider the effects of the simplifying assumptions in our experiments. One

cannot just do away with simplifying assumptions, for there is no such thing as "the

general case" in join-order optimization: All timings of join-order optimizers, and not just

ours, necessarily deal with special cases, and make simplifying assumptions of one kind

or another. (To date, the literature has not settled on any standard set of special cases

and assumptions, and there is considerable variety in the way these issues are handled in

different experiments.) To better understand the potential liabilities of our algorithm, we

investigate a pair of metrics that we refer to as cost-function execution counts.

By studying cost-function execution counts, we find that , as originally presented, our

method in fact can suffer as a result of its consideration of Cartesian products. But

the evidence of this effect also suggests corrective measures, which dramatically reduce

the effect. With the corrective measures in place, we see that as a rule, cost-function

execution counts need not be significantly higher when Cartesian products are included in

the search than when they are not. This result carries the implication that whether or not

our optimizer retains a speed advantage under varying assumptions, it is most unlikely t o

become slower than other optimizers.

There remains an Achilles' heel in our argument in defense of including Cartesian

products in the search. When the number of relations n becomes "large"-meaning some-

where in the teens, as noted above-all exhaustive-search optimizers become overwhelmed

by the exponential complexity of join-order optimization. But there are special cases

where join-order optimization without Cartesian products has merely polynomial com-

plexity [45], whereas the complexity of join-order optimization with Cartesian products is

always exponential [6, 491. In these special cases, our exhaustive-search method becomes

uncompetitive.

Yet we cling tenaciously t o our claim that Cartesian products need not be excluded.

All that is needed a t larger n is a more powerful optimization technique than exhaustive

search; and so we introduce a stochastic join-order optimization technique t o extend the

power of our exhaustive-search method. Again we find that our stochastic technique

outpaces previous stochastic techniques by several orders of magnitude, while obtaining

solutions of extremely high quality. I t performs especially well on the class of problems

whose complexity is polynomial when Cartesian products are excluded; but i t achieves

this high level of performance without excluding Cartesian products.

Although the presentation of these results is set in a relational context, our techniques

extend naturally t o object-oriented databases as well; the relevant principles are sketched

in the concluding commentary.

1.4 Contributions

In the course of defending the claim discussed above, this dissertation makes the following

contributions t o the understanding of join-order optimization:

I t demonstrates that the worst-case time complexity of the Starburst optimizer, as

described by Ono and Lohman [44, 451, is 0(4n) .

I t gives the first detailed account of an exhaustive-search, bushy join-order optimiza-

tion algorithm with a worst-case time complexity of 0(3n), and with a worst-case

space complexity of 0(2n).

It shows how this algorithm can be implemented with very low overhead.

I t presents, in detail, a stochastic join-order optimization algorithm that achieves

extremely high-quality solutions in a small fraction of the time required by previous

algorithms.

It takes the first steps toward a systematic approach t o the benchmarking of join-

order optimization.

A few words of comment will help t o clarify what is new, and what is not new, about our

complexity results.

Ono and Lohman [44,45] were the first t o observe that join-order optimization has time

complexity 0 (3n) in the worst case. But interestingly, in analyzing their own algorithm for

the Starburst optimizer, they examined only the number of join expressions it considers,

and not the complexity of the loop that generates those join expressions. When the

generation loop is taken into account, the complexity of their pseudo-code proves t o be

0(4"), as we shall show.

In the time since the work of Ono and Lohman, there may well have been variations

on their implementation that actually achieved O(3") time complexity. The literature

is inconclusive. Ganguly e t al. [15] give 0 (3 n) as the complexity of bushy join-order

optimization, but again this complexity figure is based on the number of join expressions

considered, not on an algorithmic analysis. No evidence is presented of an implementation

that in fact achieves the stated complexity. As the Starburst example illustrates, it cannot

be taken for granted that execution time is proportional t o the number of cases considered.

The pseudo-code in the present work addresses these matters with care, leaving no

doubt as to its 0 (3n) time complexity; in empirical trials we also verify that the claimed

complexity is actually achieved. Very recent work by Pellenkoft, Galindo-Legaria, and

Kersten [46] presents an alternative approach to join-order optimization with worst-case

time complexity 0(3n)-though t,heir approach has a higher space complexity than ours.

We shall comment on these matters further in due course.

1.5 Road Map

The remaining chapters of this dissertation are as follows:

2 Background and Related Work introduces concepts and conventions pertaining

t o join-order optimization, discusses some of the difficulties inherent in the problem,

and surveys previous approaches t o the problem.

3 Cartesian Product Optimization introduces the Blitzsplit algorithm for Carte-

sian product optimization, and analyzes the complexity of the algorithm.

4 Lightweight Implementation of Cartesian Product Optimization shows how

the abstractly presented algorithm of Chapter 3 can be given an extremely fast

concrete realization.

5 Support for Join Predicates discusses the accommodation of join predicates in

the Blitzsplit algorithm, which enables the algorithm to optimize joins, and not just

Cartesian products.

6 Performance Analysis gives empirical results on the Blitzsplit algorithm's perfor-

mance in join-order optimization, and analyzes those results.

7 Pruning Cost Computations draws on observations from the performance anal-

ysis t o show how the Blitzsplit algorithm's performance can be improved through

pruning of cost computations.

8 A Stochastic Extension builds on the foundation of the deterministic Blitzsplit

algorithm, and describes the Stochastic Bushwhack algorithm for join-order opti-

mization.

9 Performance of the Stochastic Extension gives empirical results on the Stochas-

tic Bushwhack algorithm's performance in join-order optimization, which suggest a

refinement t o the Stochastic Bushwhack algorithm called the Recursive Bushwhack

algorithm.

10 Conclusion summarizes the ground covered, discusses several open issues, and of-

fers a few words of commentary.

Chapter 2

Background and Related Work

In the introduction, we saw the essence of the join-order optimization problem: Once a

database query has been translated into an algebraic expression, there are likely t o be

many equivalent alternatives to that expression, and it is an optimizer's task t o choose

among them on the basis of expected evaluation cost. But that brief characterization

of the problem overlooks the many complications and subtleties involved in join-order

optimization.

In this chapter we examine the problem in more detail. We shall introduce various

concepts and conventions of join-order optimization, and point out difficulties that one

cannot readily overcome without making simplifying assumptions. We shall also discuss

the approaches that have been taken to solving the problem in previous work.

We begin by reviewing some of the fundamentals of relational databases and the re-

lational algebra. We go on to discuss the role of join-order optimization in the larger

context of query processing. We then describe some of the technical difficulties that arise

in join-order optimization in practice. Foremost among these difficulties is that of accu-

rately estimating the evaluation cost of a query expression. We shall go into some detail

in considering the nature of the estimation problem, and in describing the techniques that

have been developed to deal with it. In the course of the discussion, we shall lay the

conceptual groundwork for the remaining chapters of this dissertation.

2.1 Relational Databases

In this section and in the following two sections, we review some of the basics of relational

databases and relational query processing. We begin here by describing the representation

of da ta in relational databases and by introducing pertinent terminology.

2.1.1 Illustration of Basic Concepts

For illustration, Figure 2.1 presents a sample relational database that supports inventory

management and customer billing for an auto-parts dealer. This database consists of six

relations (also known as tables); each relation is a set of tuples (or rows), and each tuple

consists of a collection of attributes (or columns). Relations lend themselves t o tabular

representation because the tuples within a given relation have a fixed number of attributes.

The names of these attributes are fixed as well, and because they are fixed, they appear

as column headings in the illustrated tables.

The Customer relation in the figure consists of two tuples, each representing a cus-

tomer of the auto-parts store, and each containing a C-CUSTNO attribute and a CAAME

attribute. The illustrated Customer relation informs us that there is a customer named

Kinbote, who has been assigned a customer number of 401, and another customer named

Quilty, whose customer number is 402. The customer number plays the role of primary

key for the relation; that is, each customer is assigned a unique customer number, and

consequently the tuple in the Customer relation that gives information about a particular

customer can be located using the customer number.

Note that the attribute names C-CUSTNO and CJAME in the Customer relation both

begin with the prefix "c-." The prefix serves as a reminder of the relation t o which these

attributes belong. Throughout this dissertation we shall follow the convention of prefixing

each attribute name with the first letter of the corresponding relation name.

The Employee relation is analogous to the Customer relation, but gives information

about the store's employees rather than its customers. In addition, the Employee relation

has a third attribute E-MGR that gives the employee number of each employee's manager.

Thus, employee number 3, Tom, is managed by employee number 5, namely Ray; and Ray,

Customer Employee

Kinbote
E-EMPNO E-NAME E-MGR 31

Order LineItem

Part Source

P-PARTNO P-DESCR -1
Nuke

8008

Figure 2.1: A sample relational database

we see, is also managed by employee number 5-in other words, Ray is his own manager.

The Order relation records orders for parts. We see that order number 1001 was

placed by customer number 401 (Kinbote), and was taken by (or "sold by") employee

number 3 (Tom); order number 1002 was placed by customer number 402 (Quilty), and

like the other order, was "sold by" employee number 3 (Tom). The O-ORDERNO attribute

is the primary key of this relation, since it uniquely identifies each order. The o-CUSTNO

and OSOLDBY attributes, on the other hand, are foreign keys. A foreign key may be

thought of as a kind of pointer or reference to another tuple; for example, the foreign key

values 401 and 402 in the o-CUSTNO attribute of the Order relation refer to the tuples

for Kinbote and Quilty in the Customer relation. Through foreign keys, the disparate

relations of a relational database become connected so as to form a coherent whole.

Although a foreign key in one relation usually refers to a tuple of some other relation,

it is also possible for a foreign key t o refer t o a tuple of the same relation. The E-MGR

attribute of the Employee relation, discussed above, is an instance of this special kind

of foreign key: the manager of one employee is just another employee (or possibly, as we

have seen, the same employee).

2.1.2 Further Details of the Sample Database

There are still three relations in the sample database that we have not mentioned: the

L ineI tem, Part, and Source relations. These relations give additional information about

customer orders-specifically, about the parts that have been ordered.

The O r d e r relation discussed above contains only some of the information about

customer orders. The reason why it gives only partial information is that order information

is somewhat complicated, and cannot easily be represented in tabular form. In a single

order, a customer may request various parts, each of which appears as a separate line

item on the customer's invoice. The number of line items varies from order to order,

but since the format of the tuples of the O r d e r relation is fixed, this format cannot

accommodate varying numbers of line items. Consequently, our sample database omits

line-item information from the O r d e r relation, and instead places this information in

a separate relation-the L ineI tem relation. Our database thus decomposes the order

information into the O r d e r and L ineI tem relations.

Each tuple of the L ineI tem relation represents one line item of one order. Accord-

ingly, a L i n e I t e m tuple specifies the order to which it belongs (through the foreign key

L-ORDERNO), as well as the part ordered (LJARTNO) and the quantity ordered (L-QTY).

The part is identified only by a part number, which serves as a foreign key referencing the

Part relation. The Part relation, in turn, has a P ~ A R T N O attribute as its primary key,

and a PDESCR attribute that gives brief descriptions of the parts.

The S o u r c e relation gives information about wholesalers (or other suppliers) from

whom parts can be obtained. The SPARTNO attribute, a foreign key referencing the Part

relation, identifies a part, while the SSUPPL attribute names a supplier who supplies that

part.

Thus, starting from the L ineI tem relation, we see that order number 1001 specifies a

request for 2 head lamps (i-e., part number 7007); according to the Source relation, this

part is supplied by Acme. Order number 1002 specifies a request for 1 head lamp, and in

a separate line item, a request for 8 spark plugs (i.e., part number 8008). As the Source

relation shows, the spark plugs can be obtained from any of four suppliers: Acme, Jolt,

Nuke, or Zap.

2.2 The Relational Algebra

The relational algebra [ll, 32, 381 is an algebraic language for manipulating relations to

obtain new relations.

There are six fundamental operators in the relational algebra: select (a), project (n) ,

Cartesian product (x) , set union (u) , set difference (\ or -), and rename (p or 6) .

In addition, expressions in the relational algebra frequently make use of several derived

operators that can be defined in terms of the fundamental operators. By far the most

important of the derived operators is join (IN).

In the present work, we shall I)e concerned with just a few of the relational operators:

select, Cartesian product, and join. We review the definitions and essential properties of

these operators below.

In discussing these operators, and throughout this work, we shall use the capital letters

A, B, C , and so on, to represent arbitrary relations. These letters may also represent

relation-valued expressions, provided the internal structure of these expressions is of no

concern; but we shall use the letter El sometimes with a subscript or prime (e.g., E;),

when we wish to focus attention on an expression's structure. When we need to refer to

a large or indeterminate number of relations, we shall call them Ro, R1, Rz, and so on;

we will also use the letter R with other subscripts (or no subscript) to represent relations

in particular roles. The small letters p and q, occasionally with primes (p' and q'), shall

represent predicates. The cardinality of a relation A (i.e., the number of tuples in A) will

be denoted IAl. Later on we shall introduce additional notation as needed.

2.2.1 The Cartesian Product Operator

In ordinary mathematical usage, the Cartesian product of two sets is the set of all ordered

pairs of elements drawn from the two sets. For example, the Cartesian product of {1,2,3)

and {a, b) is ((1, a), (1, b), (2, a), (2, b), (3, a), (3, b)). Since a relation is just a set of tuples,

the set-theoretic notion of Cartesian product makes sense for relations as well. However,

the relational definition of Cartesian product differs subtly from the set-theoretic one.

In the relational Cartesian product, pairs of tuples drawn from the two operands are

concatenated to form new tuples, rather than simply being combined into ordered pairs.

Figure 2.2(a) shows the Cartesian product of the LineItem and Part relations from

our sample database. Figure 2.2(b) shows the Cartesian product of same two relations

with their roles reversed-that is, with LineItem as the right-hand operand of x , and

Part as the left-hand operand. Figure 2.2(c) shows another Cartesian product that has

Part as the left-hand operand-this time the right-hand operand is the Source relation.

In each instance, the result is a set of tuples, not a set of pairs of tuples; in other words,

the Cartesian product yields a result that is itself a relation.

A property of relations that we have left implicit until now is that the attribute names

in a given relation are all distinct, so that each attribute name unambiguously identifies a

unique column of the relation. To preserve this property of relations under the Cartesian

product operator, we must forbid the construction of a product A x B if there is any

overlap between the attribute names of A and those of B; and in particular, we must forbid

products of the form A x A. However, it should be understood that these restrictions do

not alter the expressive power of the relational algebra: where necessary, conflicts among

attribute names can be resolved through the use of rename operators. (We do not discuss

rename operators in detail, as we shall have no need for them here.)

The relations shown jn Figures 2.2(a) and (b) are actually considered to be the same

relation. In the tabular representation of a relation, the order of the rows and columns

has no significance from the standpoint of relational theory. It is merely convenient to

show the columns of a Cartesian product in the same order in which they appear in the

operands, and to show the rows in an order based on the order of the operand rows,

LineItem x Part

(a) A relational Cartesian product

Part x LineItem

(b) An alternative representation of the same product

Part x Source

L-QTY

2
2

1
1

8
8

P-PARTNO

7007
8008

7007
8008

7007
8008

L-ORDERNO

1001
1001

1002
1002

1002
1002

P D E S C R

Head Lamp
Spark Plug

Head Lamp
Spark Plug

Head Lamp
Spark Plug

L-PARTNO

7007
7007

7007
7007

8008
8008

P-PARTNO

7007
7007
7007

8008
8008
8008

(c) Another relational Cartesian product

Figure 2.2: Examples of the relational Cartesian product

L-ORDERNO

1001
1002
1002

1001
1002
1002

P D E S C R

Head Lamp
Head Lamp
Head Lamp

Spark Plug
Spark Plug
Spark Plug

S S U P P L

Acme
Acme
Jolt
Nuke
Zap

Acme
Acme
Jolt
Nuke
Zap

P-PARTNO

7007
7007
7007
7007
7007

8008
8008
8008
8008
8008

L-PARTNO

7007
7007
8008

7007
7007
8008

L-QTY

2
1
8

2
1
8

P D E S C R

Head Lamp
Head Lamp
Head Lamp
Head Lamp
Head Lamp

Spark Plug
Spark Plug
Spark Plug
Spark Plug
Spark Plug

S-PARTNO

7007
8008
8008
8008
8008

7007
8008
8008
8008
8008

with the leftmost attributes varying most slowly. But discounting order, the tables in

Figures 2.2(a) and (b) contain identical information.

Algebraic Properties of Cartesian P r o d u c t The algebraic significance of the equiv-

alence of Figures 2.2(a) and (b) is that the relational Cartesian product is commutative:

For arbitrary relations A and B, we have

The same is not true for the set-theoretic Cartesian product, which is commutative only up

to isomorphism. For example, the set-theoretic product (1) x {a) is ((1, a)), whereas the

product {a) x (1) is {(a, 1)). Although (1, a) contains the same information as (a, I), the

two cannot be considered identical, because by definition they are ordered pairs-hence

order cannot be discounted.

In a similar vein, the relational Cartesian product is associative, while the set-theoretic

Cartesian product is associative only up to isomorphism. For example, in the set-theoretic

setting, the product ((1) x (2)) x (3) gives {((1,2), 3)}, whereas (1) x ((2) x (3)) gives

((1, (2,3))); evidently these two results differ structurally. But such structural differences

do not arise in relational Cartesian products, again because the operand tuples are com-

bined by concatenation, and not by pairing. For example, Figure 2.3 shows the three-way

Cartesian product of the LineI tem, Part, and S o u r c e relations. This product can be

regarded equally well as the product of the relation in Figure 2.2(a) and the S o u r c e re-

lation, or as the product of the L ineI tem relation and the relation in Figure 2.2(c). In

general, for arbitrary A, B, and C, we have the law

(A x B) x C = A x (B x C) . (2.2)

I t is important to emphasize that despite their structural differences, the relational and

set-theoretic Cartesian products are isomorphic to one another. One aspect of this iso-

morphism is that the cardinalities of both kinds of Cartesian products can be computed

in the same way. For arbitrary relations A and B,

LineItem x Part x Source

Figure 2.3: A three-way relational Cartesian product

S S U P P L

Acme
Acme
Jolt
Nuke
Zap
Acme
Acme
Jolt
Nuke
Zap

Acme
Acme
Jolt
Nuke
Zap
Acme
Acme
Jolt
Nuke

Zap

Acme
Acme
Jolt
Nuke
Zap
Acme
Acme
Jolt
Nuke
Zap

P-DESCR

Head Lamp
Head Lamp
Head Lamp
Head Lamp
Head Lamp

Spark Plug
Spark Plug
Spark Plug
Spark Plug
Spark Plug

Head Lamp
Head Lamp
HeadLamp
Head Lamp
Head Lamp

Spark Plug
Spark Plug
Spark Plug
Spark Plug
Spark Plug

Head Lamp
Head Lamp
Head Lamp
Head Lamp
Head Lamp

Spark Plug
Spark Plug
Spark Plug
Spark Plug
Spark Plug

P-PARTNO

7007
7007
7007
7007
7007

8008
8008
8008
8008
8008

7007
7007
7007
7007
7007

8008
8008
8008
8008
8008

7007
7007
7007
7007
7007

8008
8008
8008
8008
8008

S-PARTNO

7007
8008
8008
8008
8008

7007
8008
8008
8008
8008

7007
8008
8008
8008
8008

7007
8008
8008
8008
8008

7007
8008
8008
8008
8008

7007
8008
8008
8008
8008

L-QTY

2
2
2
2
2

2
2
2
2
2

1
1
1
1
1

1
1
1
1
1

8
8
8
8
8

8
8
8
8
8

L-ORDERNO

1001
1001
1001
1001
1001

1001
1001
1001
1001
1001

1002
1002
1002
1002
1002

1002
1002
1002
1002
1002

1002
1002
1002
1002
1002

1002
1002
1002
1002
1002

L-PARTNO

7007
7007
7007
7007
7007

7007
7007
7007
7007
7007

7007
7007
7007
7007
7007

7007
7007
7007
7007
7007

8008
8008
8008
8008
8008

8008
8008
8008
8008
8008

For example, from Figure 2.1 we see that the cardinality of the L i n e I t e m relation is 3,

and that that of the Part relation is 2. Hence the cardinality of their Cartesian product

is seen in Figure 2.2(a) t o be 3 - 2 = 6. The cardinality of the three-way Cartesian product

in Figure 2.3 is just the product of the cardinalities of the L ineI tem, Part, and Source

relations: 3 2 5 = 30.

2.2.2 The Select Operator

The select operator has just one operand relation, and yields a subset of the tuples in that

operand as its result. The result omits all operand tuples that do not satisfy a specified

predicate. The usual notation for this operation is a,(A), where A is a relation, and p is

the selection predicate.

Figure 2.4 illustrates the application of selection t o the relations that appear in Fig-

ures 2.2 and 2.3. The examples in Figure 2.4 specify selection predicates that weed out

tuples in which there is a disagreement among the different "part number" attributes.

Thus, in Figure 2.4(a), the selection predicate is LPARTNO = P-PARTNO, so that the

result of the selection will retain only those tuples in which the L i n e I t e m and Part at-

tributes are related. For example, in the second tuple of Figure 2.4(a), the appearance

of 1002 under L-ORDERNO, and Head Lamp under P-DESCR, reflects the fact that order

number 1002 includes a line item for a head lamp. By contrast, in the second tuple of

the Cartesian product in Figure 2.2(a), the appearance of 1001 together with Spark Plug

has no particular meaning-it is just one of all possible juxtapositions. Extracting the

meaningful tuples from a Cartesian product is one of the most important uses of selection.

In Figure 2.4(d), the selection predicate is the conjunction L-PARTNO = P-PARTNO A

P-PARTNO = S-PARTNO, which weeds out any tuple in which the attributes L-PARTNO,

P-PARTNO, and S-PARTNO are not all three the same.

In the examples above, the predicates (or predicate conjuncts) all have the form

attribute = attribute. But a selection predicate may also compare an attribute t o a con-

stant, and the comparison operator need not test for equality. For example, L-QTY < 5

would be an acceptable selection predicate.

(a) A selection applied to the result in Figure 2.2(a)

ULSARTNO=P-PARTNO(P~~~ x LineItem)

(b) A selection applied to the result in Figure 2.2(b)

QP-PARTN~=~-PARTNo(P~~~ x Source)

P-PARTNO

7007
7007
8008

L-QTY

2
1
8

L-ORDERNO

1001
1002
1002

P D E S C R

Head Lamp
Head Lamp
Spark Plug

L-PARTNO

7007
7007
8008

(c) A selection applied to the result in Figure 2.2(c)

~L-PARTNO=P-PARTNOAPPARTNO=SSARTNO(L~~~I~~~ x Part x Source)

L-PARTNO

7007
7007
8008

L-ORDERNO

1001
1002
1002

P-PARTNO

7007
7007
8008

L-QTY

2
1
8

P D E S C R

Head Lamp
Head Lamp
Spark Plug

S S U P P L

Acme
Acme
Jolt
Nuke
Zap

P-PARTNO

7007
8008
8008
8008
8008

(d) A selection applied to the result in Figure 2.3

Figure 2.4: Examples of the selection operation

P D E S C R

Head Lamp
Spark Plug
Spark Plug
Spark Plug
Spark Plug

S S U P P L

Acme
Acme
Acme
Jolt
Nuke
Zap

L-ORDERNO

1001
1002
1002
1002
1002
1002

S-PARTNO

7007
8008
8008
8008
8008

L-PARTNO

7007
7007
8008
8008
8008
8008

L-QTY

2
1
8
8
8
8

P-PARTNO

7007
7007
8008
8008
8008
8008

P D E S C R

Head Lamp
Head Lamp
Spark Plug
Spark Plug
Spark Plug
Spark Plug

S-PARTNO

7007
7007
8008
8008
8008
8008

Whenever a relational expression involves selection, one must take care tha t the ex-

pression be well-formed. A selection ap(A) is well-formed provided that all attributes

mentioned by p are in fact attributes of A, and provided that the comparisons involved

are type-correct. For example, ~ ~ ~ , ~ < s (L i n e I t e r n) is well-formed, but part)

is not, since L-QTY is not an attribute of the Part relation. Likewise, the expression

~ ~ ~ ~ ~ = t ~ ~ ~ ~ (L i n e I t e r n) is ill-formed, since L-QTY represents numeric data, while 'Zap' is

a text string.

Algebraic Properties o f Select A selection operation whose predicate is a conjunction

can also be expressed as a succession of selections. That is, for all A, p, and q,

and similarly for predicates of more than two conjuncts. Since Boolean conjunction is

commutative, it follows directly that

From these laws we see that each conjunct of a compound predicate can be viewed as a

selection predicate in its own right. It is a convention in the query-optimization literature

t o use the term predicate t o refer both to the whole of a predicate and t o its individual

conjuncts. When there is no danger of confusion, we shall use the term both ways here as

well.

The significance of laws (2.4) and (2.5) lies largely in their interaction with the following

algebraic laws that relate a and x. Provided that both the left- and right-hand sides are

well-formed, we have, for arbitrary A, B, and p,

Note that given a particular choice of A, B, and p, the well-formedness condition will

ordinarily be met by a t most one of (2.6) and (2.7). Only in the degenerate case where p

mentions no attributes from A or B will both (2.6) and (2.7) hold a t the same time.

Using (2.4) and (2.5) together with (2.6) and (2.7), one can carry out transformations

such as the following, in which we assume that p' depends only on attributes of C:

uPApl(A x uq(B x C)) = up(gpf(A x uq(B x C))) (2.8)

= up (A x apt (a, (B x C))) (2-9)

= up (A x a, (apt (B x C))) (2.10)

= u,(A x u,(B x uPt(C))). (2.11)

In this sequence of rewrites, the conjunct p' has slid past two Cartesian product operators-

and also past the operator a,-to attach itself to a term deep inside the original expression.

Such transformations are often referred to as pushing down a predicate, or as pushing a

select past other operators.

As noted above, (2.6) and (2.7) are applicable only insofar as both sides of these

equations are well-formed. To illustrate a violation of the well-formedness condition,

consider the use of (2.6) to rewrite the expression

assuppL,~z,p~(Part x Source) (2.12)

(Part) x Source. (2.13)

The original expression makes sense, but the rewritten expression is nonsense, because

S ~ U P P L is not an attribute of Part. On the other hand, the application of (2.7) to the

same expression would yield the legitimate rewritten form

Part X ~ , s , p p ~ = l z ~ ~ * (S ~ ~ r ~ e) . (2.14)

2.2.3 The Join Operator

As we saw above, Cartesian products often contain tuples in which unrelated information is

tacked together arbitrarily; these products become useful only after the meaningless tuples

are discarded. For this reason, Cartesian products are frequently subject to subsequent

selection-so frequently that the idiom a(. . . x . . .) has its own special notation. The join

operator (W) combines Cartesian product with selection:

A Wp B Ef op(Ax B). (2.15)

In the context of join notation, the predicate p is referred to as a join predicate. If p is a

conjunction, then each of its conjuncts may be considered a separate join predicate.

Seen in the light of definition (2.15), the expressions in Figures 2.4(a), (b), and (c) can

all be viewed as examples of join operations. Indeed the join operations in these examples

are of a particular kind, and are referred to as equijoins-joins whose predicates specify

that certain attributes from the left-hand operand are equal to certain attributes from

the right-hand operand. (More generally, an equijoin may equate values derived from the

respective operand attributes.)

Shortly we will see that in Figure 2.4(d), the selection over a three-way Cartesian

product can be rewritten as a three-way join. We will also remark on the fact that the

join operator-and the equijoin in particular-is important to query processing for reasons

over and above notational convenience. But first let us consider some algebraic properties

of the two-way join.

Algebraic Proper t ies of Two-way Jo in Given that the join operator is defined in

terms of the Cartesian product operator, it should come as no surprise that these two

operators have similar algebraic properties. Commutativity of join follows immediately

from (2.15) and from the commutativity of the Cartesian product. For example, in Fig-

ures 2.4(a) and (b), the Cartesian products inside the selection operations are equivalent

by commutativity; and since the selection predicate is also the same in both instances,

Figures 2.4(a) and (b) necessarily yield the same result relations (except for attribute

order). Using join notation, the equivalence of these two result relations may be stated as

LineItem W L J A R T N O = P ~ ~ R T ~ O Part = Part WL-PARTNO=P-PARTNO LineItem.

(2.16)

More generally, for arbitrary A, B, and p, we have

The join operator likewise inherits the Cartesian product's amenability to predicate

pushing. For arbitrary A, B, p, and q, we have

up (A Wq B) = c p (A) W, B

UP (A Wq B) = A w, up (B) ,

subject to the same provisos regarding well-formedness that applied in the case of the

Cartesian product.

The Cartesian product may in fact be regarded as a special case of join. When the

join predicate is vacuously true, then the selection in the definition of the join operator

(2.15) has no effect, and the join degenerates to a Cartesian product. This special case is

important enough to state as a law:

Law For all A and B,

when p r True.

The empty predicate may be thought of as a conjunction with zero conjuncts, and hence

as vacuously true. By a literal reading, therefore, the expression A W B must be taken as

synonymous with A x B [38].

However, more often than not we shall use the notation A W B informally to mean

"the join of A and B under whatever predicate or predicates belong to (or are applicable

to) the join." Our uses of the unannotated symbol W in Chapter 1 were of this informal

variety-the predicates were implicit. The premise was that a collection of predicates had

been supplied in the WHERE clause of an SQL query, and that these were the predicates

we had to work with. Loosely speaking, the predicates that "belong to" a join of the form

A W B would be those that mention attributes from both A and B-and do not mention

attributes outside of A and B.

Note that in some expressions, it may happen that no predicates belong to a given join

operator. Thus, the unannotated expression A W B, with implicit predicates, may denote

either a bona fide join, or a Cartesian product.

Three-way Join and Join Associativity Now let us consider the matter of three-way

joins. In the expression in Figure 2.4(d), we have a selection over a three-way Cartesian

product. By splitting apart the conjuncts of the selection predicate, and by pushing down

one of the conjuncts, we can derive the equivalent expression

We can then use the join operator to abbreviate this expression as

(LineItem WL-PARTN~=P-PARTNO Part) ~P-PARTNO=S,ARTN~ Source. (2.22)

Alternatively, we could have pushed down the other conjunct of the selection predicate t o

obtain

~ L - P A R T N O = P - P A R T N O (L ~ ~ ~ I ~ ~ ~ x ~P-PARTNO=S-PARTNO (Part x Source)) ;

(2.23)

the abbreviated form of the latter expression would then have been

LineItem DQL-PARTNO=P-PARTNO (Part ~P-PARTNO=S-PARTNO Source). (2.24)

The equivalence of (2.22) and (2.24) seems to suggest associativity of the join operator.

But the question of join associativity is tricky. Suppose we commute the inner join in

(2.22) t o obtain

(Part WL-PARTNO=P-PARTNO LineItem) w~-P~~~~O=~-pA&NO Source, (2.25)

and then attempt to change the association of this last expression. The resulting expres-

sion,

Part ~L-PARTNO=P-PARTNO (LineItem WppARTNO=sJARTNO Source), (2.26)

is not well-formed. This example shows that join associativity cannot be taken for granted.

There are several ways to present join associativity in a manner that guards against ill-

formed expressions. The most straightforward approach is simply t o state an associativity

law with a well-formedness condition, as follows:

Law For all A, B, C, p, and q,

provided that both sides are well-formed.

But this formulation is unnecessarily restrictive, in that it requires that the join predicates

be the same on both sides of the equation.

Relaxing this restriction, one obtains an alternative, more widely applicable, law:

Law For all A, B, C, p, q, p', and q',

provided that both sides are well-formed, and provided that p A q = p' A q'.

Note that if A, B, C , p, and q are given, then it is always possible to find p' and q' that

satisfy the requirements of the law; and conversely, if A, B, C, p', and q' are given, then it

is always possible to find suitable p and q. However, when p and q are among the givens,

it is not always possible to find suitable, nonvacuous p' and q'; and the analogous caveat

applies when p' and q' are given, and p and q are to be found. Consequently, changing the

association of a three-way join may effectively result in the introduction of a Cartesian

product.

To conclude, if Cartesian products are to be avoided, then join is not always associative.

On the other hand, if the Cartesian product operation is considered to be merely a special

case of join, then join always is associative. Using our informal notation for join with

implicit predicates, we may state the general join-associativity law as follows:

Law For all A, B, and C,

(A PI B) wC= A W (B w C), (2.29)

where the join operators are implicitly qualified by all applicable predicates.

The validity of (2.29) in general is a consequence of the following fact: Any predicate

applicable to (A W B) W C is also applicable to A W (B W C), and vice versa.

The Role of Join in Query Evaluation The join operator is not only a notational

convenience, but also plays an important role in efficient query evaluation.

As we have seen, the expression A Wp B is algebraic shorthand for ap(A x B). It is

therefore certainly possible t o compute the result of such a join by first computing the

Cartesian product A x B, and then applying the selection operation a,. But such an

approach t o computing a join is likely t o be extremely inefficient, for the following reason.

Suppose that A and B each have cardinality 1,000. Then there are 1,000,000 tuples

in the Cartesian product A x B, and the cost of computing this product is proportional

t o its size. Now the selection operation may cause most of those 1,000,000 tuples t o be

discarded, so the final result of ap(A x B) may just have, say, 2,000 tuples. In such a case,

the computation of the intermediate result represented by the Cartesian product mostly

goes t o waste.

Join-processing algorithms provide an efficient alternative. Where applicable, such

algorithms can compute A W, B directly, bypassing the Cartesian product computation.

(Join-processing algorithms are almost always applicable when A Wp B is an equijoin; in

other cases, they may not be.)

There are numerous join-processing algorithms [43]; among the most widely used are

hash join, merge join, and index-nested-loops join. Each of these algorithms has distinctive

performance characteristics, but generally the cost of computing A Wp B with such an

algorithm is roughly proportional to the cardinality of one the relations A, B, or A Wp B.

Usually (though not always) the cost is proportional to the cardinality of the largest of

these relations.

In any event, if A and B each have cardinality 1,000, and if A Wp B has cardinality

2,000, then the number of tuples that must be examined or generated in the course of join

processing will typically lie in the thousands, in contrast t o the million-odd tuples that

must be processed when the join is computed by way of a Cartesian product. Examples

of this kind demonstrate the tremendous practical importance of the join operator.

2.2.4 Summary

In this section we have taken a brief tour of three relational operators-Cartesian product,

select, and join-that are central t o the development of the ideas in this work. We have

seen that relational Cartesian product and join are commutative and associative (subject

t o restrictions), and that selection operators can be "pushed past" both of the other

two operators. These algebraic properties provide the foundation for the manipulations

involved in join-order optimization.

In addition, we noted that the cardinality of a Cartesian product is equal t o the product

of the cardinalities of its operands. The latter property will prove important in judging

the relative merits of different join orders.

2.3 Query Processing

Let us now briefly consider what happens, from start to finish, when an SQL query is

submitted t o a relational database management system for processing.

2.3.1 A Sample Query

Suppose one wished to issue the following information retrieval request against our sample

database of Figure 2.1 above:

List the order number, part number, quantity ordered, and part description for

all orders for parts that can be supplied by Zap.

One might formulate this question as an SQL query in the manner illustrated in Fig-

ure 2.5(a). The symbol * in the query's SELECT clause indicates that the query result

should include all attributes from all the relations mentioned in the FROM clause. Note

the predicates in the WHERE clause that equate a part-number foreign key with the

corresponding primary key in the Part relation. These predicates ensure that each tuple

of the query result will give coherent information about a particular part. In addition, the

predicate S ~ U P P L = 'Zap' ensures that only those parts that are supplied by Zap will

appear in the query result. As it happens, the query result in this example consists of a

single tuple, as illustrated in Figure 2.5(b).

S E L E C T *
FROM LineI tem, Part, Source
WHERE L-PARTNO = P-PARTNO AND

P-PARTNO = S-PARTNO AND
SSUPPL = 'Zap'

(a) An SQL query

(b) The query result

Figure 2.5: An SQL query and its result

Examining the da ta in Figure 2.1 in terms of the illustrated query, one can see that

the query result shown makes intuitive sense. We next consider the process by which a

database system can obtain such a result mechanically.

P-PARTNO

8008
L-QTY

8
L-ORDERNO

1002

2.3.2 Phases of Query Processing

L-PARTNO

8008

To process a query and obtain a result relation, the query-processing subsystem of a

relational database management system goes through several phases, roughly as follows:

P D E S C R

Spark Plug

1. The translation phase. The query processing system's parser translates the SQL

query into an internal representation. Let us assume that the internal representation

is an expression in the relational algebra.

2 . The optimization phase. The system's query optimizer may rewrite the relational

algebra expression obtained in the translation phase t o a diflerent but semantically

equivalent expression. Such rewrites are based on laws of the relational algebra, as

discussed in Section 2.2 above. The objective of rewriting is t o obtain an expression

that has lower cost (i.e., that may be evaluated more efficiently) than the original.

S-PARTNO

8008
S S U P P L

Zap

In addition, the optimizer replaces the so-called logical operators of the rewritten

expression-operators such as join, select, and Cartesian product-with suitable

physical operators. For example, a given logical join operator will be replaced by a

metye join, hash join, or index-nested-loops join operator, or by some other physical

join operator that specifies a particular join algorithm. Analogous physical alterna-

tives will also replace any other relational operators.

The expression that results when all logical operators have been replaced by physical

operators is called a query plan, or simply a plan. The term query plan has an

abundance of synonyms in the literature; a query plan may also be referred t o as

a QEP (for query execution plan or query evaluation plan), as an access plan, an

operator tree, a processing tree, or a join-processing tree. (There are many additional

variants of these terms.) The latter terms involving the word tree reflect the fact

that query plans are often depicted graphically as in Figure 1.1 on page 5. We shall

have occasion to refer to plans as processing trees in the later part of this work, when

we shall deal with explicit representations of query plans as tree structures.

3. The execution or evaluation phase. The system's execution engine evaluates the

query plan. That is, it executes the algorithms specified by the query plan's physical

operators, using the specified relations as inputs.

This characterization of query processing is inexact in various ways. For example, com-

mercial query processing systems cannot use the relational algebra as an internal repre-

sentation for queries, because the relational algebra has less expressive power than the full

SQL language. But for our purposes, the relational algebra is expressive enough. We shall

comment further on the form of the optimizer input later on.

Likewise, query plans in actual systems are not simply expressions involving physical

operators. Rather, they are complex data structures that give the execution engine de-

tailed instructions on the handling of the query's operators. However, we shall not burden

ourselves with such details here.

In fact, we shall further simplify by generally not distinguishing between logical and

physical join operators. (Much of the join-optimization literature does likewise.) We

may imagine that our execution engine supports only a single join algorithm; in that

case, all logical join operators map to the same physical join operator, and so there is

no need t o specify the physical operator. Alternatively, allowing for the possibility of

multiple join algorithms, we may think of a logical join operator as representing the

lowest-cost alternative of the physical join operators. The latter interpretation requires a

more complicated cost model-a topic t o which we shall return in Section 2.6 below-but

permits us t o deal exclusively with logical join operators, without loss of generality.

2.3.3 Processing of the Sample Query

To make concrete the brief explanation of query processing just given, let us now consider

how it applies to the sample query of Figure 2.5(a).

Transla t ion In the translation phase, this query must be translated into an expression

in the relational algebra. The first step in this translation is to construct the Cartesian

product of the relations in the sample query's FROM clause:

L ineI tem x Part x Source (2.30)

Because the Cartesian product is associative, this expression is unambiguous without

parentheses. But later on, it may become confusing t o work with expressions whose

association is left unspecified. Let us therefore arbitrarily associate the product (2.30) t o

the left:

(LineI tem x P a r t) x Source (2.31)

This Cartesian product will become the argument of a selection operation that applies the

complex predicate from the sample query's WHERE clause:

In (2.32) we now have a relational algebra expression that is equivalent t o the sample

query. The translation was particularly simple in this case because the sample query's

S E L E C T clause, through the symbol *, requested all attributes of the participating

tables. In the more general situation where only some of the attributes are requested, the

translation would have had t o attach an additional operation (a projection). However, the

optimization problem remains essentially the same whether all attributes are requested,

or just a subset of them. For simplicity, we shall consider only the former case here.

Opt imiza t ion (Part I) Let us suppose now that (2.32) becomes the input t o a query

optimizer. The optimizer must find a query plan equivalent t o (2.32) that can be evaluated

at low cost-preferably at a cost that is minimal for all alternative plans.

For the purposes of illustration, we will break the optimization process into two sub-

phases. The objective of the first subphase is to perform "pre-optimizationn transforma-

tions that are not based on cost analysis, but are deemed advantageous on the basis of a

pn'ori considerations. In particular, it may make sense t o push all the conjuncts of the

selection predicate as far down as they will go-as well as to convert the Cartesian product

operators into joins. Thus, we obtain

(LineI tem WLSARTNO=P-PARTN~ Part) WPSARTNO=S-PARTNO (csSUPPL= zap t (Source)).

(2.33)

The transformation of (2.32) into (2.33) is achieved through repeated application of the

predicate-decomposition rule (2.4), the predicate push-down rules (2.6) and (2.7), and the

definition of join (2.15). This transformation has heuristic merit because

1. It is generally beneficial to apply all predicates as "early" as possible, so as t o reduce

the cardinalities of operands and intermediate results;

2. A Cartesian product that serves as the argument of a selection on fully pushed-

down predicates should always be converted to a join, for the reasons discussed in

Section 2.2.3 above.

There are exceptions t o the first point, as we shall remark later, but overall it remains an

excellent heuristic. Note that the second point does not say that expressions with Carte-

sian products are necessarily inferior to expressions without them; it makes no judgment

about a Cartesian product that is not immediately surrounded by a selection.

With (2.33) we have completed the first optimization subphase. But before we proceed,

it is worth observing several facts about pushed-down predicates.

1. Predicates that mention attributes from only one relation, such as the predicate

S S U P P L = 'Zap' in the sample query, are special. Such predicates can always

be pushed down past all the Cartesian product and join operators in a query, and

so become tightly bound to the relation to which they apply. In our example,

the predicate S S U P P L = 'Zap' becomes attached to the Source relation in the

subexpression uSSUPPL=~ zap, (Source). Because this s u bexpression contains no join

operators, it can be treated for the purposes of join-order optimization as an atomic

unit-as if it were a stored relation in the database. We may ignore predicates that

depend on only one relation, except inasmuch as they affect the characteristics (e.g.,

the cardinality) of that relation.

2. Predicates that mention attributes from zero relations-i.e., predicates that men-

tion no attributes a t all-are also special. We have no such predicates in our sample

query, and for good reason: such predicates make no sense. A predicate that men-

tions no attributes must be equivalent either to the constant True or to the constant

False. In the former case, it has no effect on the query result; in the latter case, it

ensures that the query result will be empty. Neither behavior is likely to be useful,

and on this basis we discuss zero-relation predicates no further.

3. Once the zero-relation and one-relation predicates have been excluded from consid-

eration, we are left with the join predicates-predicates that become attached to

join operators in the course of predicate push-down. Assuming that these predicates

have been pushed down as far as possible, each conjunct will become attached to the

join operator to which it "belongs," in the sense described in Section 2.2.3 above.

In light of the last observation, the following unannotated join expression may be regarded

as equivalent to (2.33):

(LineItem w Part) w (asSUPPL= c Zap 3 (Source)).

Later on, we will be able t o profit from the fact that expressions such as (2.34) are

unambiguous.

Opt imiza t ion (Part 11) Above we derived the expression

(LineI tem WL~ARTNO=P-PARTNO P a r t) WPSARTNO=S-PARTNO (~SSUPPL='Z~~ 8 (Source))

(2.35)

as the result of the first optimization subphase. We now consider the second subphase, in

which the optimizer performs a cost-based analysis of algebraically equivalent alternatives

t o (2.35)-specifically, alternatives that can be reached by way of join commutativity

and associativity. In keeping with the predicate push-down heuristic discussed above, it

is customary to perform join reassociation in such a way that predicates remain pushed

down as far as possible in the reassociated expressions.

For simplicity, let us imagine that in the present example, the join commutativity and

associativity laws lead to only one algebraic alternative t o (2.35), namely

L ineI tem WLSARTNO=PSARTNO (P a r t WP-PARTNO=S-PARTNO (~sSuPPL='~a~~(Source))).

(2.36)

Then what the optimizer must do a t this stage is to estimate the evaluation cost of each

of (2.35) and (2.36), and choose between them accordingly.

To give fair consideration to each expression, the optimizer needs t o find the physical

operator (i.e., the algorithm) best suited to each logical operator in the expression, and

t o base its cost estimates on the operator assignments so determined. However, it is

possible t o make rough cost estimates without considering physical operator assignments,

by instead basing the estimates on properties of the logical expressions. In the case at

hand, one can get a sense of the relative costliness of (2.35) and (2.36) by considering the

cardinalities of the intermediate results that arise in each instance.

The intermediate result in the case of (2.35) comes from the subexpression

while the intermediate result in the case of (2.36) comes from the subexpression

(a) Intermediate result under left association

Part WP-PARTNO=S-PARTNO (QSSWL= 'zap 8 (Source))

L-ORDERNO

1001
1002
1002

(b) Intermediate result under right association

L-PARTNO

7007
7007
8008

Figure 2.6: Possible intermediate results in the evaluation of a three-way join

P B E S C R

Head Lamp
Head Lamp
Spark Plug

L-QTY

2
1
8

P-PARTNO

8008

Figures 2.6(a) and (b) shows the respective results of these two-way joins. (The relation in

Figure 2.6(a) is the same as that illustrated previously in Figure 2.4(a); and the relation

in Figure 2.6(b) is a subset of the relation illustrated in Figure 2.4(c)-namely, the subset

for which the value of the SSUPPL attribute is 'ZapJ .) Evidently (2.37) yields a larger

intermediate result than (2.38), and since both (2.35) and (2.36) yield the same final

result, we see that (2.35) entails the generation of a larger number of tuples overall. Thus,

going by the number of tuples produced, one would have t o conclude that (2.36) was the

more economical expression, and hence should be considered the optimal join plan (or the

basis for such a plan).

The cardinalities in our example are too small t o be significant, but it is not hard t o see

how the effect illustrated can result in vastly different intermediate result cardinalities for

different join orders. When the differences are large enough, the cardinalities alone suffice

t o settle the question of which of two join orders is less costly. In cases where the differences

are subtler, more careful analysis is required: the optimizer must estimate the number of

disk blocks that would be read and written using each available join algorithm, as well as

the amount of CPU time the algorithm would expend in comparing and combining input

tuples t o produce output tuples.

P-PARTNO

7007
7007
8008

S-PARTNO

8008
P D E S C R

Spark Plug
S S U P P L

Zap

But whether or not such detailed analysis turns out to be necessary in a given instance,

the assessment of join order costs depends heavily on intermediate result cardinalities. To

a large extent, the problem of accurate cost estimation is a problem of accurate cardinality

estimation; and because we have thus far said nothing about how cardinality estimation

is accomplished, we shall return t o this question in Section 2.4 below.

Execution Once the optimizer has created a query plan based on expression (2.38),

query execution is straightforward. Conceptually, a t least, execution proceeds "bottom-

up," starting with the innermost operators of the plan, and proceeding outwards.

As the first step in the execution of our sample query, a selection algorithm will cast

out tuples of the Source relation in which the SSUPPL attribute is not 'Zap ' . Next, the

result of this selection will become the right-hand input to a join algorithm that will yield

the relation shown in Figure 2.6(b). (In an actual database system, these selection and

join steps might be combined into a single operation.) Finally, a second application of a

join algorithm will combine the Part relation with the intermediate result of Figure 2.6(b),

and so yield the final query result illustrated in Figure 2.5(b).

Query execution is often pipelined [17], meaning that successive operators run concur-

rently, and not in the strictly serial fashion suggested above. The primary motivation for

pipelining is to avoid storing intermediate results. Without pipelining, an intermediate

result is first produced as the output of one operator, and subsequently consumed as the

input of another operator. In between the execution of those two operators, the intermedi-

a te result must be stored in its entirety-which means that if i t is large, i t must be stored

on disk. Thus, the producing operator must write its output t o disk, and the consuming

operator must read its input from disk.

When pipelined, the producing and consuming operators execute in tandem. Each

tuple emitted by the producing operator immediately becomes an input tuple of the con-

suming operator, and so neither operator has to access the disk. Consequently, pipelining

may substantially reduce execution costs, and careful cost analyses must take this effect

into account. On the other hand, pipelining does not change the number of tuples pro-

duced or consumed by an operator. Intermediate-result cardinalities give a good rough

gauge of execution costs whether or not execution is pipelined.

2.3.4 Discussion

In this section we have placed the problem of query optimization in context. The optimiza-

tion phase of query processing is sandwiched between a translation phase, which prepares

an SQL query for optimization, and an execution phase, which produces the query result,

and in which the execution costs that the optimizer has sought to minimize are actually

incurred.

Above we imagined the optimizer input t o be an expression in the relational algebra.

As we noted, the relational algebra lacks the generality required t o serve as the input

t o commercial query optimizers; on the other hand, for the specialized problem of join-

order optimization, the relational algebra offers more generality than is really needed.

A join-order optimizer needs to know what relations are to be joined, and under what

predicates; beyond that , the information furnished by a relational algebra expression is

not useful, but merely distracting. For example, the initial join order that the input

expression happens to have will likely change in the course of optimization-and the same

goes for the assignment of join predicates t o particular join operators. Accordingly, much

of the join-optimization literature supposes a simpler representation of the input query

that gives only the information required. We shall do likewise in the present work, as we

explain in more detail below.

In any event, it is not enough for an optimizer to be provided with the query t o be

optimized. As we have seen, to do its job the optimizer must estimate costs, and t o

estimate costs i t must estimate cardinalities. The optimizer therefore requires, as part of

its input, the information on which these estimates are based. Our next concern is the

manner in which this information is provided.

2.4 Cardinality Estimation and Predicate Selectivity

To estimate the cost of a query plan, a query optimizer requires cardinality estimates

both for the query's base relations (i.e., the relations stored in the database), and for the

intermediate and final result relations that the plan computes in the course of its execution.

Base-relation cardinalities tend to be readily available, as database management systems

typically maintain a tuple count for each relation stored in a database. But estimating

the cardinalities of the results cf relational operations is another matter; i t is a difficult

topic with an extensive literature of its own. Fortunately, we can avoid delving into this

topic in any depth.

In the study of join-order optimization, it is conventional t o regard the problem of

estimating result cardinalities as consisting of two parts:

1. The first part of the problem is to estimate predicate selectivity values (to be defined

presently) for a query's predicates. This part of the problem is hard.

2. The second part of the problem is to use the predicate selectivity values t o compute

cardinalities. This part of the problem is straightforward.

By convention, join-order optimizers take the predicate selectivity values as given, so that

the hard part of the problem is relegated to another program component. All we need

t o worry about here is the use of selectivity values in estimating cardinalities. But as we

shall see, even this relatively straightforward part of the problem is not without its tricky

aspects.

2.4.1 Concept and Properties of Selectivity

The notion of predicate selectivity may be defined informally as follows: The selectiuity of

a selection predicate p is the probability that a given tuple will satisfy p.

To state the matter another way, when the selection operator up is applied to some

relation A, the selectivity of p is the proportion of tuples of A that "survive" the selection:

I t follows that , given the selectivity of p and the cardinality of A, one can estimate the

cardinality of u,(A) as

For example, consider the selection ~ ~ ~ ~ ~ p L = ~ ~ ~ ~ ~ (S o u r c e) . From Figure 2.1 we see that

the Source relation has five tuples, and that only one of them satisfies the predicate

S ~ U P P L = 'Zap'. Hence, s e l e c t i v i t y (s ~ ~ p ~ ~ = 'Zap') = 1/5. Conversely, if we were

given the selectivity value 1/5, together with the cardinality 5 of the Source relation, we

could predict that the result of the selection in question would have cardinality (b) - 5 = 1.

It goes without saying that in general, a predicate's selectivity depends on the con-

tents of the database, and is subject to change as the database evolves. In other words,

selectivity is not an intrinsic property of a predicate, but is a property of the predicate

with respect to the database state. In our examples of predicate selectivity, we take the

database state illustrated in Figure 2.1 as a given.

Selectivity of Jo in Predicates The example just given involved a predicate that men-

tioned only one relation. But the notion of selectivity applies equally to join predicates.

Consider the relationship between the relation illustrated in Figure 2.2(a) and that illus-

trated in Figure 2.4(a). The former relation, LineItem x P a r t , has cardinality 6, while

the latter relation, ~ ~ ~ ~ ~ ~ ~ ~ = ~ ~ ~ ~ ~ ~ ~ (L i n e I t e m x Par t) , has cardinality 3. The predicate

LJARTNO = P-PARTNO therefore has selectivity 3/6, or 1/2.

More generally, when a selection operation is applied to a Cartesian product A x B,

the relationship expressed in (2.39) becomes

selectivity (p) = IuP(A x B)l - - lA w p Bl - - IA w, Bl
IA x BI IAxBI IAI-IBIS

Hence, given the selectivity of p and the cardinalities of A and B, one can estimate the

cardinality of A Wp B as

Selectivity of Conjunctions Now observe what happens when we replace the predicate

p in (2.39) with the conjunction p A q, and then apply transformation (2.4):

Multiplying both the numerator and denominator of the right-hand side by 1u9(A)ll and

then rearranging and simplifying, we obtain

= selectivity (p) selectivity (9).

Through the combined application of (2.40)) (2.42)) and (2.46)) an optimizer can estimate

all join-result cardinalities, given just the base-relation cardinalities and the selectivities

of individual predicate conjuncts.

2.4.2 Difficulties with Selectivity

There are several difficulties with the idea of basing cardinality computations on predicate

selectivities. To begin with, the selectivity estimates furnished t o optimizers tend in

practice t o be rather haphazard; often they are pure invention. Consequently, even if

an optimizer succeeds in finding the query plan with lowest estimated cost, there is no

assurance that that plan is in fact the cheapest, or for that matter, that it is much good

a t all.

There are also technical and conceptual difficulties with the notion of selectivity. We

discuss several of these difficulties below.

Non-independence of Predicates Consider the cardinalities of the relations illus-

trated in Figures 2.2(a) and (c) and in Figure 2.3; their cardinalities are 6, 10, and 30,

respectively. Now consider the cardinalities of the selections from these relations illus-

trated in Figures 2.4(a), (c), and (d); the selection results have cardinalities of 3, 5, and

6, respectively. Dividing the latter cardinalities pairwise by the former, we obtain the

following selectivity values for the predicates that appear in Figure 2.4:

Evidently something is not right here, since the third predicate is the conjunction of the

first two, and so by (2.46), its selectivity should be the product of the first twoselectivities,

i.e., 1/2.1/2 = 114.

The problem is that-even under the assumption of a fixed database state-a given

predicate's selectivity is not a fixed quantity, but depends on the predicate's context

within a query. In particular, a s this example shows, the selectivity of one predicate can

be influenced by another predicate in the same selection; selectivities can also be influenced

by prior selections.

How important are such effects? Since in practice selectivities are only estimates,

and are not very accurate in the first place, it cannot do much harm t o ignore the kind

of variability we have illustrated, provided the discrepancies are small. In the world of

join-cardinality estimation, the difference between 114 and 115 is hardly noticeable.

On the other hand, the sample database in Figure 2.1 could easily have been con-

structed in such a way as to create a more dramatic discrepancy. Keeping the Part relation

as is, and holding the selectivities of L-PARTNO = P-PARTNO and P s A R T N o = S-PARTNO

at 112, the selectivity of their conjunction could have been driven as low as 0 (by making

the LTARTNO and SPARTNO values disjoint), or as high as 112 (by making the L-PARTNO

and S ~ A R T N O values all equal to, say, 7007). Such constructions are somewhat patholog-

ical, but they illustrate the potential for error when predicates are assumed independent.

Redundant Predicates Even without pathologies in the stored da ta in a database,

under some circumstances the assumption of predicate independence is not even approxi-

mately valid, but is just plain wrong. A case in point is when a query contains redundant

predicates.

Consider the predicate L s A R T N O = S P A R T N O . We can determine its selectivity by

examining the relation in Figure 2.3, which incorporates both the L-PARTNO and SPARTNO

attributes. These two attributes are equal in just 12 of the relation's 30 tuples, and so

when considered in isolation from other predicates, the predicate L ~ A R T N O = SPARTNO

is seen to have a selectivity of 12/30 = 2/5.

Now consider again the selection result illustrated in Figure 2.4(d). Let E denote the

selection in question; i.e.,

Suppose we were to define a new relation E' as the following selection on E:

If we attempted to estimate the cardinality of E' by blindly applying formula (2.40), we

would multiply the selectivity 215 of the selection predicate by the cardinality 6 of the

selection argument, and so obtain an estimated result cardinality of (2/5). 6 = 2.4.

But the true result cardina1it.y is 6; E' will be exactly the same a s E. For as we

can see from Figure 2.4(d), the 1,-PARTNO and SPARTNO attributes of each tuple of E

are already equal, and so the selection in (2.51) has no effect. Indeed the predicate

LJARTNO = S-PARTNO must be satisfied by the tuples of E, because it is Iogically implied,

through transitivity, by the predicates LPARTNO = PPARTNO and PPARTNO = SPARTNO

that were applied in the construction of E.

In this example, the redundant predicate L-PARTNO = S ~ A R T N O throws off our car-

dinality estimate by a factor of 512. It should be underscored that the only reason the

effect is not worse is that our examples have dealt with small relations. Our sample

database consists of relations with cardinalities of 2, 3, and 5, and not coincidentally, the

selectivity values we have encountered have been close to the reciprocals of these figures.

If our sample relations had instead had cardinalities on the order of 1000, we could have

expected to encounter selectivities on the order of 1/1000. Erroneously incorporating such

selectivity values into our cardinality calculations would have caused us to underestimate

result cardinalities by several orders of magnitude.

One might think t o eliminate the problem of redundant predicates by identifying and

removing the redundancies. But redundant predicates actually serve a useful purpose.

Consider the following variation on (2.50), in which the Cartesian product has been re-

ordered so that the L ineI tem and Source relations are combined first:

~ u s h i n ' ~ down the predicates as far as possible, we obtain

(L ineI tem x Source) WL-PARTNO=PPARTNOA Part.
P-PARTNO=SSARTNO

Even with the predicates pushed down, this expression contains a Cartesian product be-

tween L i n e I t e m and Source . But by applying and pushing down the redundant predicate

LSARTNO = S-PARTNO, we can transform (2.53) into

E: = (L ineI tem WL_PARTNO=S-PARTNO Source) WL-PARTNO=P-PARTNOA Part,
P-PARTNO=SPARTNO

(2.54)

in which the operator between LineI tem and Source has now become a join. As a result,

(2.54) can be expected to yield a lower cost estimate than (2.53). In the event that the

cost of (2.54) should turn out to be optimal, the redundant predicate will have played

a vital role-for without this predicate, the optimizer would have produced an inferior

"optimum."

The potential benefits of redundant predicates are significant enough that many query

processing systems, far from eliminating redundancies, actively seek them out [7, 161.

These systems analyze the predicates that appear explicitly in a user query, and then

construct additional predicates that can be inferred from the explicit ones. Because of such

policies, it is essential that an optimizer be prepared to make adjustments for predicate

redundancies when carrying out cardinality estimation.

Foreign-Key P r e d i c a t e s The technical problems noted above reflect a deeper concep

tual difficulty with the notion of selectivity. One can appreciate this conceptual difficulty

by taking a closer look at the behavior of the foreign-key predicates we have been using

in our examples.

Consider once again the join

whose result is depicted in Figure 2.4(a). In light of the fact that LPARTNO is a foreign

key referencing the PJARTNO attribute of the Part relation, one can deduce that the

cardinality of the join result must be the same as that of LineItem: for each tuple in

LineItem (cf. Figure 2.1), there is exactly one tuple in Part whose PJARTNO attribute

agrees with the foreign key LJARTNO. The join between LineItem and Part may be

conceived of as "filling out" the LineItem relation with additional information about

each part it mentions-in other words, the intent of this join is to widen the LineItem

relation without adding or subtracting any tuples.

However, the notion of selectivity disregards such semantic considerations. It uniformly

imposes the view that a join result represents some fruction of the tuples of a Cartesian

product. Formula (2.42) would have us compute the cardinality of (2.55) as

where s is the selectivity of the predicate L P A R T N O = P-PARTNO. For this formula t o work

here, s must necessarily be the reciprocal of JPartJ, since we have already established that

the join in (2.55) preserves the cardinality of the LineItem relation. In this situation,

the value of the selectivity s has nothing to do with the join predicate per se; instead, the

role of the selectivity is t o undo the effect of multiplying ILineIteml by IPartl.

There is nothing harmful about computing selectivities by working backwards from

a known result cardinality, provided that it is possible t o do so. But the motivation

for introducing selectivities in the first place was that estimating result cardinalities is

exceedingly difficult-so working backwards from result cardinalities plainly cannot be a

good general strategy. The concept of selectivity attempts to grapple with the estimation

problem by treating selection as quasi-stochastic; unfortunately, the semantic content of

selection predicates often makes their behavior highly non-stochastic.

2.4.3 Discussion and Resolution

In their classic paper on the System R optimizer, Selinger e t al. [50] make an intriguing

observation regarding errors in cost estimation. Although the System R optimizer proved

t o be rather poor at estimating the costs of plans, Selinger e t al. found that the mnkings

of plans by their estimated costs tended t o coincide with rankings based on true costs.

Consequently the optimizer's inability t o judge costs accurately usually did not impair its

ability to find an optimal plan.

However, there are certainly situations in which inaccurate cost estimates have adverse

effects, and research since the time of System R has sought t o improve the quality of car-

dinality estimates (and hence cost estimates) through a variety of sophisticated techniques

[5, 14, 31, 35, 471. Antoshenkov [I] goes further, and cites instability in cardinality com-

putations as grounds for rejecting point-valued estimates altogether. Noting that roughly

half the problem reports regarding query processing in DEC's Rdb system were related t o

errors in cost estimation, Antoshenkov mentions cases in which the optimizer chose query

plans that were suboptimal by several orders of magnitude. Ultimately the responsibility

for these poor plan choices lay with wildly inaccurate cardinality computations.

Antoshenkov's solution to the problem is complex, and involves cooperation between

the optimizer and the plan-execution component of a query-processing system. As such,

his solution is incompatible with the conventional decomposition of query processing into

three independent phases. In the present work, we will stick t o the traditional style of

estimation based on selectivities, despite its inadequacies. Selectivity-based estimation

remains standard in the join-optimization research literature.

In the following, we will generally assume predicate selectivities t o be fixed, as is

done traditionally. However, we make an exception for the case of redundant predicates,

whose practical importance cannot be ignored. We shall assume that any identification

or construction of redundant predicates has already taken place before invocation of our

optimization algorithms. These algorithms must be informed of redundancies by the caller;

they will then take measures to ensure that selectivities are appropriately adjusted during

the calculation of join-result cardinalities.

2.5 Join Graphs

Next we turn our attention to join graphs, which provide a way of representing the pred-

icate relationships among the different relations in a query.

2.5.1 Concept of Join Graphs

Consider the query

Customer WCCUSTNO=O-CUSTNO Order WO-ORDERNO=L-ORDERNO

LineItem WL-PARTN~=P-PARTNO Part WPSARTNO=S-PARTN~ Source.
(2.57)

A join graph (or query graph) for this query appears in Figure 2.7(a). The nodes of

the graph represent relations, and the edges represent join predicates. For example, the

predicate C-CUSTNO = O-CUSTNO appears as an edge connecting the Customer and

Order nodes because this predicate mentions attributes in those two relations. When a

query's graph has a simple linear form, as in this instance, the query is called a chain

query.

By contrast, a query such as

whose graph (Figure 2.7(b)) has a single relation at its hub, with spokes radiating outward

to the remaining relations, is said to be a star query. Other join graphs whose topolo-

gies are sufficiently distinctive to earn them special titles are the cycle and the clique

(Figures 2.7(c) and (d)). In a clique, every pair of relations is related by some predicate.

It should be noted that the relations a t the nodes of a join graph need not all be

distinct, since a query may involve multiple instances of the same relation under different

aliases. However, it is always the case that an n-way join maps to an n-node join graph.

To reduce confusion, we shall assume in the following that the n relations in a query are

in fact distinct; but our results in no way depend on this assumption.

Customer LineItem Source -
Order Part

(a) Chain

(c) Cycle

Figure 2.7: Join graphs

Order
Employee /t

LineItem

(b) Star

(d) Clique

2.5.2 Edge-labeled Join Graphs

It is sometimes convenient t o label the edges of a join graph with the corresponding

predicate selectivities. For example, Figure 2.8(a) shows such a labeling of the join graph

for (2.58). (The relation names have been abbreviated to reduce clutter.) With the

addition of the selectivity labels, we are better equipped to understand the relationship

between different kinds of join graphs. Indeed, we shall see shortly that an edge labeled

with selectivity 1 is equivalent t o no edge a t all. Figure 2.8(b) uses this fact t o transform

the graph of (2.58) into an equivalent clique with three dummy edges. But what is the

justification for these claims of equivalence?

The answer is that each dummy edge may be thought of as representing a predicate

such as (CJAME = CJAME) A (EJAME = E-NAME), which induces a connection between

Customer and Employee since it mentions an attribute from each. This predicate, and

others of the same flavor, have selectivity 1 because they are vacuously true-hence the

labels of 1 on the dummy edges. It should now be evident that since the meaning of a

query is unchanged by the addition of vacuously true predicates, Figure 2.8(b) is (in some

(a) Query (2.58) (b) Query (2.58) as a clique

Figure 2.8: Join graphs labeled with selectivities

sense) just as good a graph for query (2.58) as Figure 2.8(a).

A corollary of this observation is that the notion of a join graph is somewhat ill-defined,

inasmuch as different but algebraically equivalent formulations of the same query may have

different join graphs. Still, the concept of join graphs has its uses, which we touch on next.

2.5.3 Role of the Join Graph

Join graphs are of interest for a t least two reasons. First, a labeled join graph concisely

captures much of the information needed to specify a given join-optimization problem.

In fact, Steinbrunn [54] characterizes the input to a join optimizer as being exactly the

join graph. In most of what follows, that characterization works well for us, too, provided

that we think of our graphs as being labeled with relation cardinalities in addition t o

relation names. But at certain points-to handle predicate redundancies, for example-

we will need to supplement the join graph with further information (or use more elaborate

labels).

The second reason why join graphs are of interest is that the speed or effectiveness of a

join optimizer often varies with the topology of the join graph. Graphs of large diameter,

such as chains and cycles, are easier t o cope with than small-diameter graphs such as

stars. Graphs of low density (i.e., with few predicates) also tend to be easier t o cope with

than high-density graphs.

The worst-case join graph by any measure is the clique, for it is both minimal in

diameter and maximal in density. Just how important cliques are in practice is not entirely

clear. In queries involving many relations, cliques can arise only in the presence of an

absurd number of predicates-for example, a 15-way join does not become a clique until

i t has (y) = 105 predicates. But if a query-processing system automatically generates

new predicates by exploring the implications of a query's explicit predicates, cliques could

come about routinely. Furthermore, as illustrated above in Section 2.5.2, any query at all

can be turned into a clique through the addition of vacuous predicates. So whether or

not cliques are truly important in their own right, an optimizer's ability t o accommodate

them serves as an indication of its resiliency in the face of arbitrary join graphs.

2.5.4 Complex Predicates and Hyperedges

I t was an unstated assumption of the previous sections that each join predicate in a query

mentions attributes from precisely two relations; and further, that given a pair of relations,

there may be a t most one predicate relating them. If these assumptions were not satisfied,

the correspondence between predicates and join-graph edges would fall apart.

One can easily imagine reasonable collections of predicates that do not conform t o these

assumptions, although often in such situations conformance can be achieved through minor

rearrangements. To take a very simple example, consider the pair of predicates A-CITY =

B-CITY and ASTATE = BSTATE, where the attributes A-CITY and ASTATE belong t o

some relation A, and B-CITY and BSTATE to B. This pair is not permissible, since both

predicates refer t o the two relations A and B. But by conjoining these two predicates

as (A-CITY = B-CITY) A (ASTATE = BSTATE), one obtains a single predicate, which

then conforms to our requirements. Under the assumption of predicate independence, the

selectivity of this conjunction is just the product of the selectivities of the original two

predicates.

Conversely, a predicate of the form A-VALUE < B-VALUE < C-VALUE, which is equiv-

alent t o (A-VALUE < B-VALUE) A (B-VALUE < C-VALUE), violates the restriction that a

predicate may refer t o only two relations. But this time conformance can be achieved by

splitting the conjunction into two separate predicates A-VALUE < B-VALUE and B-VALUE <
C-VALUE. (Determining the selectivities appropriate t o these predicates is nontrivial, but

that cannot be helped.)

These examples show that our assumptions about the forms that predicates may take

are perhaps not excessively restrictive. Nevertheless, they are restrictive t o some degree,

and preclude predicates such as A-VALUE + B-VALUE < C-VALUE, which is inherently

ternary and cannot be split in two. In the framework of join graphs, ternary predicates

correspond t o hyperedges-edges with possibly more than two Uendpoints"; graphs con-

taining such edges are called hypergraphs [38]. So to support ternary, and more generally,

n-ary predicates, an optimizer would have t o accept join hypergraphs as its input.

Hypergraphs have a variety of applications in query processing besides the represen-

tation of n-ary predicates. For this reason, one does encounter mention of hypergraphs

in the query-optimization research literature-but rarely in connection with n-ary predi-

cates. Research on join-order optimization techniques appears t o make no provisions for

hypergraphs or hyperedges [54]. The present work will likewise focus on conventional join

graphs with binary edges.

2.6 Cost Models and Physical Properties

2.6.1 Cost Models

I t was observed above that one may think of the input for a join-optimization problem as

being a labeled join graph. However, quite apart from such complications a s redundant

predicates, which we leave aside for the present, the labeled join graph does not by itself

determine a least-cost plan for the join. The best plan also depends on what cost model

is used to estimate the expected CPU and disk time consumption of alternative plans. As

we have noted, there are many join-processing algorithms [43], and as many models (or

more) for estimating their costs. Consequently, two optimizers, given the same join graph

as input, could generate two completely different join-evaluation strategies as output, and

yet each might be able t o claim (legitimately!) that it had found the unique least-cost

plan-according t o its own cost model.

Fair comparison of different optirnizers requires use of the same cost model in each. In

a sense, one would like to treat the cost model as an optimizer input along with the join

graph. It may not be realistic (or even desirable) to expect an optimizer t o accept this

input in the form of a run-time parameter of the optimizer invocation. But i t is desirable

for an optimization technique t o be adaptable t o a variety of cost models, even if the

adaptation entails changing a portion of the optimizer implementation. Such flexibility

not only facilitates comparisons with other optimization techniques, but also simplifies

optimizer maintenance in a changing environment.

Join-optimization techniques permit flexibility in the cost model t o varying degrees.

We shall touch further on this matter in Section 2.7 below. For now, we introduce the

approach t o cost modeling that we will rely on in the present work.

2.6.2 A Generic Cost Model

Following Steinbrunn [54, 551, the present work will allow for flexibility in the cost model

by making use of a single generic cost model. This generic model is parameterized by a

cost function, as described below.

Premises a n d Cost Equa t ions Our generic cost model depends on the following three

premises:

Each join operator in a query plan entails a cost that is independent of the costs

of the other operators in the plan, and that can be determined by a cost function

K(R,,~, Rlhs, Rrhs). The arguments of the cost function are, respectively, the result

of the join, its left-hand input, and its right-hand input.

The cost of fetching each base relation from the database is independent of the join

order-the da ta from each relation must be fetched regardless of how the relations

are combined. Therefore, the cost of accessing the base relations is immaterial, and

may be taken to be zero. (By taking the cost of accessing base relations t o be zero,

we will underestimate the costs of all plans, but always by the same amount--so the

outcome of optimization will be unaffected.)

The cost of a plan is simply the sum of the costs of the operators in the plan.

Note that none of these premises is strictly valid. Because of considerations such as

memory contention, operator pipelining, and interactions of join algorithms with data-

fetching mechanisms, our somewhat simplistic framework will not be able t o capture all

the fine points of cost modeling. But through parameterization of the cost function rc, it

affords enough generality to subsume most of the cost models that appear in the literature.

Our premises yield the following recursive definition of query-plan cost:

cost (R) = 0 (2.59)

cost(Eo W El) = cost(&) + cost(&) + K([Eo W El], [EO], [El]), (2.60)

where R names a base relation, Eo and El are subplans, and [El is the denotation of E

(i.e., the relation to which E evaluates). Equations (2.59) and (2.60) shall provide the

basis for all our discussions of cost in the remainder of this work.

Application of the Cost Equations As an illustration of the application of (2.59)

and (2.60), let us introduce a naive cost function KO that makes the cost of evaluating a

given join equal to the cardinality of the result. That is,

Given this cost function, let A and B be base relations, and consider the cost of the plan

A W B whose result is some relation that we shall refer to as Rab. Then by (2.59) and

(2.60), we obtain

cost (A W B) = cost (A) + cost (B) + KO([A ~4 B], [A], [B]) (2.62)

= O + 0 + ~ ~ (R a b r A7 B) (2.63)

= IRabI- (2.64)

That is, the cost of the plan is equal to the cardinality of the result. Going a step further,

let C be another base relation, and let us then consider the cost of the plan (A W B) W C,

whose final result we shall call Rabc. NOW we have

cost ((A w B) w C) = cost(A w B) + cost (C) + K~([(A W B) W q, [A W B], [q)
(2.65)

= (Rab(+ 0 + ~ ~ (R a b o Rabr C) (2.66)

= IRabl + IRabcl. (2.67)

The cost of the compound plan proves to be the sum of the costs of its two join operations;

these costs are equal, respectively, to the cardinality of the intermediate result Rab, and

to the cardinality of the final result Rubc.

Multiple Physical Join Operators On the surface, it may appear that our "generic

cost model" supports only those cost models that assume a single physical join operator.

However, one can support multiple physical join operators under the generic cost model

by recognizing that the applicable physical operator for a given join is always the least

costly of the available alternatives (cj . Section 2.3.2).

For example, suppose a query-processing system supports two physical join operators,

whash and wn' (where nl stands for nested-loops). Suppose that the costs of these operators

are modeled respectively by the cost functions ~ h , , h and K,I. Then we may define a new

cost function

that represents the cost of the best physical instantiation of a given generic join operator.

By extending this technique, one can accommodate an arbitrary number of alternative

physical operators. At the conclusion of optimization, each generic join operator in the

optimal query plan can be replaced by the physical operator that yields the lowest cost

for the join in question. Thus, neither the assumption of a single, generic join operator,

nor that of a single, generic cost function, necessarily precludes the modeling of multiple

physical join operators.

Abstract Interpretation of the Cost-Function Arguments Now it may be a mat-

ter of some concern that if we interpret (2.60) literally, it seems to require full evaluation

of the query plan whose cost we are trying to estimate. That is, the arguments of K are

relations, and the only way to obtain those relations is to evaluate each join in the plan.

On the other hand, we saw above that under our naive cost model with cost function

KO, the cost of the plan (A W B) W C was simply IRaal + IRabcl. Hence, to estimate the

plan cost in this instance, it would suffice just to compute (or estimate) the cardinalities

of Rab and Rabc. If we went t o the trouble of computing the relations themselves, and not

just the cardinalities, we would waste a tremendous amount of effort.

I t is possible t o interpret (2.60) in a way that does not necessitate full evaluation

of the relations. We may regard the denotation brackets [.I as designating an abstmct

interpretation [9] of the expression they surround, and we may take the arguments of the

cost function rc t o be not relations, but partial representations of relations. In the example

at hand, the partial representation of a relation might consist of its cardinality, together

with additional information to assist in estimating the cardinalities of subsequent join

results. This representation presumably would not contain any tuples of the relation. The

notation lRoutl in (2.61) should then be understood as the extraction of the cardinality

from the representation Rout, and not as a tuple-counting operation.

Because cardinalities are so important t o cost estimation, they will play a role in any

imaginable cost model. From the standpoint of code reuse, it therefore makes sense for

an optimizer t o provide a cardinality-estimation mechanism separate from the code that

implements individual cost models. The algorithms that we shall present in this work will

incorporate cardinality-estimation mechanisms independent of the cost model.

But from the standpoint of program decomposition, the estimation of cardinalities

ought by all rights to fall within the purview of the cost model. Our optimization tech-

niques are in no way concerned with cardinalities for their own sake; we compute the

cardinalities simply so that we can make them available to the cost function, which may

then do with them as it pleases.

One can conceive of cost models that take into account not only the cardinalities of

join inputs and join results, but also their widths, or indeed other properties that might

affect costs. There is nothing in our framework that precludes such models. Our code t o

compute cardinalities should be seen as a replaceable module whose purpose is t o meet

the needs of the cost model, whatever those might happen t o be. In this sense, the code

t o compute cardinalities is not really a part of our optimization algorithms, but serves as

an illustration of one way in which these algorithms may be parameterized.

2.6.3 Physical Properties

Properties such as cardinality are known as logical properties of relations because they

are independent of implementation considerations; one can speak of the cardinality of a

relation in the abstract even if the relation is never stored in a computer. But i t makes no

sense t o speak of the sort order or location of a relation when the relation is viewed as a

mathematical abstraction. Such properties make sense only with reference t o a relation's

physical representation in memory, or on disk, or on a print-out. Consequently these

properties are called physical properties.

If one ignores physical properties, then optimality in a join plan implies optimality in

its subplans as well, exactly as one would expect. Consider the case where the best plan for

joining A, B, C, and D turns out to be (B W (A W C)) W D. In this case one may deduce

that the best plan for joining A, B, and C must necessarily be B W (A W C). For suppose

there were a better plan-say C W (B W A) . Then (C W (B W A)) W D would have t o be a

better plan than (B W (A W C)) W D , since the only difference between the two is that the

new plan computes its left-hand input more efficiently. Thus, in supposing B W (A W C)

t o be suboptimal, we have arrived at a contradiction; it follows that B W (A W C) is

optimal after all.

The necessity of optimality in all subplans of an optimal plan is referred t o as the

principle of optimality [15, 241. Unfortunately, the principle of optimality breaks down

when costs are influenced by physical properties. Imagine that the join of the previous

paragraph were being performed on a distributed system consisting of two processing units

named t and k (for Tokyo and Kyoto).' In this scenario, one of the physical properties of

each relation is its location.

Let us say that A and B reside on processing unit t in Tokyo, while C and D reside

on k in Kyoto; as a mnemonic device we will now refer to these relations as At, Bi, Ck,

and Dk. Part of the join optimizer's job is then to determine at what location each join
t

should be performed. A join a t processing unit t will be denoted W, and a t k, A. The

inputs t o a given join operation need not be computed (or reside) at the location where

'This example is adapted from Lanzelotte et al. [34].

the join will take place, but remote inputs will incur a communication penalty that will

drive up the estimated cost of the join. Under these circumstances, it is imaginable that

a $a (B, A,) (2.69)

could be a better plan than

Bt (At C k) , (2.70)

and yet be'less well suited to a subsequent join with Dk: for the final join result in (2.70)

is computed in Kyoto, where Dk already resides, while the final result in (2.69) would

have t o be transferred from Tokyo to Kyoto (or else Dk would have to be transferred from
k k

Kyoto t o Tokyo). Consequently, it is possible for (Bt W (At W Ck)) Dk t o be optimal

while Bt (At b Ck) is suboptimal.

This problem is not special to distributed join processing. One encounters similar

phenomena in connection with sort orders, or with any other physical property.

Some of the join-optimization techniques described in the literature make provisions

for physical properties, while others do not. The present work does not address the issue

of physical properties, although in Chapter 10 we do comment on what might be involved

in adapting our techniques to accommodate them.

2.7 Approaches to Join-order Optimization

We now briefly discuss the different approaches that have been taken to join-order opti-

mization. Some of the techniques we describe are specific to join-order optimization; others

are more general, and were designed to optimize queries involving arbitrary operators, not

just join operators. However, as join-order optimization remains a central concern for all

query optimizers, it makes sense to include general-purpose query-optimization techniques

in our discussion.

2.7.1 Dynamic Programming

System R The System R optimizer [50] was the first t o apply dynamic progmmming

t o join-order optimization. This optimizer constructed only left-deep plans, and excluded

Cartesian products except where they could not be avoided.

In Chapter 3, we shall discuss in detail our own approach t o optimization by way of

dynamic programming. Here we give only a brief sketch of the principle involved. System

R and other dynamic programming optimizers proceed in phases. In the early phases,

they build candidate subplans involving just a few relations; in later phases, they build

larger candidate subplans involving many relations. The larger subplans are built up from

the smaller ones in such a way that the subplans retained at the end of each phase are

optimal. The final phase constructs a plan involving all the relations in the query; this

plan is then optimal for the query. For obvious reasons, this approach t o optimization is

often referred t o as bottom-up optimization.

For example, suppose System R were t o optimize the join of relations A, B, C, and

D. In Phase 1, it would find the optimal manner of accessing the da ta in each of the

individual relations A, B, C, and D. In Phase 2, it would find optimal subplans for joins

involving two relations; i.e., for the join of A and B , for the join of B and C, for the

join of C and D l and so on. In Phase 3, it would find optimal subplans for joins of three

relations; i.e., for the join of A, B , and C, for the join of B, C, and D , and so on. In

Phase 4, it would find an optimal plan for the join of A, B, C, and D. This final plan

would contain subplans that had been constructed in the earlier phases of optimization.

Starburst and the Complexity of Dynamic Programming The Starburst opti-

mizer [45] extended the techniques used in System R and provided greater generality and

flexibility. When requested to do so, the Starburst optimizer can produce bushy plans,

as well as plans that contain arbitrary Cartesian products. But the mechanisms used in

the Starburst optimizer are conceptually no different from those used in the System R

optimizer.

Ono and Lohman [44, 451 analyze the time complexity of optimization in Starburst

under a variety of circumstances. For chain join graphs, the time complexity is O(n2)

(where n is the number of relations in the-query) t o find optimal left-deep plans without

Cartesian products, and O(n3) to find optimal bushy plans without Cartesian products.

These cases are noteworthy because the complexity is polynomial. For star join graphs, the

time complexity is O(n2n) t o find optimal plans without Cartesian products. Interestingly,

the complexity in the case of a star is independent of whether the search is confined t o

left-deep plans. When arbitrary Cartesian products are considered, the time complexity of

optimization becomes O(n2n) for left-deep search, and 0(3n) for bushy search, regardless

of the join graph. The complexity figures that apply when arbitrary Cartesian products

are considered also apply when the join graph is a clique. Thus O (r ~ 2 ~) represents the

worst-case complexity for a left-deep search, and 0(3n) the worst case for a bushy search.

Ono and Lohman do not discuss the space complexity of Starburst, but i t is almost

certainly 0(2n) in the worst case. We base this conjecture on the similarity between the

information stored by Starburst and that stored by the dynamic programming algorithm

we shall present and analyze in Chapter 3 below.

P r o b l e m w i t h t h e S t a r b u r s t Complex i ty F igures Unfortunately, the Starburst

time-complexity figures given by Ono and Lohman do not tell the whole story. Ono and

Lohman base their time-complexity figures on the number of "feasible joins" for combining

subplans to obtain larger plans. A "feasible join" is a join expression that meets the criteria

of the optimization problem a t hand-for example, in a left-deep search, only a left-deep

join expression would be considered "feasible," and in a search that excluded Cartesian

products, a "feasible" join expression would have to be free of Cartesian products. Their

premise is that in the course of optimization, the optimizer will examine each feasible join,

and that each feasible join can be examined in constant time. Hence the time required for

optimization should be proportional t o the number of feasible joins.

However, before the feasible joins can be examined, they must be constructed, or enu-

merated. Ono and Lohman present pseudo-code for enumerating the feasible joins [44],

but disregard the time contribution of this code. Analysis by the present author reveals

that in general, enumerating the feasible joins can take more time than examining them;

the worst-case time complexity of feasible-join enumeration in Starburst is 0(4n). In-

tuitively, the reason for this phenomendn is that Starburst's algorithm for enumerating

feasible joins uses a generate-and-filter mechanism. It generates all the joins that might

be feasible, discarding those that are not. In the worst case, it discards many more joins

than it retains. Appendix A gives the details of the author's analysis.

2.7.2 Rule-based Optimization

Principle of Rule-based Optimization and Application to Join Optimization

Rule-based optimizers such as Exodus [19] and Volcano [20, 401 strive for extensibility

through a general-purpose search mechanism that can easily be reconfigured to accommo-

date new operators and new transformation rules. Configuration is accomplished through

a special rule-definition file, or through a collection of functions that define the operators

and transformation rules of the query algebra. Given an input expression over the oper-

ators of the algebra, the optimizer applies the specified transformation rules until it has

explored the space of all expressions equivalent to the input. The optimizer attempts to

find a low-cost plan corresponding to each expression encountered, and chooses the best

such plan as the optimum for the given input expression.

The standard approach to configuring a rule-based optimizer for join-order optimiza-

tion is to include the join commutativity and associativity laws, (2.17) and (2.28), as

transformation rules. As we remarked earlier, join associativity can be stated in several

ways; the formulation given in (2.28),

(A w p B) w , C = A wp, (B W,, C) ,

is the one that corresponds most closely to the formulation ordinarily used in rule-based o p

timizers. Recall, however, that this formulation of join associativity had a well-formedness

condition attached to it, as well as a constraint relating p and q to p' and q'. Rule-based

optimizers in the style of Exodus and Volcano require that segments of code (e.g., C code)

be supplied along with the transformation rules to ensure satisfaction of any preconditions

on rule applicability, and to compute any portions of the transformed expression (such as

the predicates p' and q') that cannot be obtained automatically through application of the

rule.

Complexity of Volcano with Standard Rule Sets One of Volcano's principal in-

novations was the use of memoitation to improve the performance of rule-based query

optimization. In Volcano (unlike Exodus), representations of subexpressions are shared

across all expressions in which they occur; in addition, all possible transformations of a

given subexpression are stored with the subexpression, so that when this subexpression is

next encountered, none of these transformations need to be repeated.

Volcano's use of memoization has the interesting consequence that the space com-

plexity of join-order optimization in Volcano corresponds to the time complexity figures

given by Ono and Lohman, as noted above. In effect, Volcano's memo structures store

representations of the "feasible" joins in the sense of Ono and Lohman, and each such

join is represented exactly once. It follows that space complexity for bushy join-order

optimization in Volcano is 0(3n) in the worst case.

McKenna [20, 401 carried out extensive empirical studies of Volcano performance,

which proved to be roughly comparable to that of Starburst. But the first analytical

treatment of the subject was given by Pellenkoft, Galindo-Legaria, and Kersten [46], who

have shown Volcano's worst-case time complexity in bushy join-order optimization to be

O(4"). (The present author [61] had previously conjectured, incorrectly, that Volcano's

time complexity was just a constant multiple of its space complexity-hence 0(3n).) We

thus see that Starburst and Volcano yield a worst-case time complexity of the same order-

0(4n)-despite their use of unrelated search algorithms. There is no evident structural

explanation for this similarity in performance; it appears to be purely coincidental.

Duplicate-free Rule Sets In the case of Volcano, the fact that the time complexity

grows faster than the number of feasible joins is due to the existence of multiple distinct

paths of transformation steps from a given expression to another, equivalent expression.

For example, suppose relation A is connected to B through predicate p, and B to C

through predicate q. Then the expression (A W, B) W, C can be transformed into its

mirror-image, C Wq (B Wp A), through any one of the following paths of transformation

steps using the join commutativity rule (2.17) and the join associativity rule (2.28):

(Additional paths are also possible.) Note that paths 1 and 2 are essentially the same.

One may think of (A Wp B) Wq C as being the join E Wq C, where E in turn is the join

A Wp B. What happens in path 1 is that first A and B are commuted inside E t o give a

new subexpression El, and then E' is commuted with C. In path 2, by contrast, first E is

commuted with C, and then A and B are commuted inside E t o give El. In other words,

both paths involve the same pair of independent transformation steps; these independent

steps are just carried out in different orders. Most rule-based optimizers work in such

a way that no duplication of effort is entailed by the existence of distinct paths such as

paths 1 and 2, in which the only difference is in the ordering of independent transformation

steps.

However, path 3 differs more fundamentally from paths 1 and 2, and entails duplication

of effort. To circumvent this kind of duplication of effort, the present author [60] and

Galindo-Legaria and his colleagues [13, 461 have independently devised formulations of

join commutativity and associativity under which transformation paths obey the following

property: The path from an expression E t o another expression El, if one exists, is

unique up to reordering of independent transformation steps. Pellenkoft e t al. refer t o a

formulation that yields this property as a duplicate-free rule set.

When Volcano is configured with a duplicate-free rule set for join commutativity and

join associativity, its worst-case time complexity drops t o 0(3n). But there is a catch.

Under the conventional formulation of join commutativity and associativity, if E and El

are equivalent join expressions, and neither one contains Cartesian products, then there is

guaranteed to exist a path from E t o El such that no expression along the path contains

Cartesian p r ~ d u c t s . ~ This guarantee is lost under duplicate-free formulations. Conse-

quently, for queries that yield a low optimization complexity when Cartesian products are

disallowed (e.g., chain queries), optimization effort could be much greater under duplicate-

free rule sets than under conventional rule sets.

*This guarantee is taken for granted in the literature, though to the author's knowledge, it is nowhere
proved; nor is the author aware of any simple proof of its validity.

At this writing, it is not known whether i t is possible t o construct a rule-based join

optimizer, or indeed any join optimizer, such that with Cartesian products excluded,

optimization effort is bounded by a constant multiple of the number of feasible joins in an

arbitrary join query.

The following questions related t o duplicate-free rule sets also remain open:

1. Under what conditions do duplicate-free rule sets exist? Is there an algorithm for

determining whether an arbitrary, given rule set can be reformulated as a duplicate-

free rule set?

2. In those cases where a duplicate-free formulation of a given rule set exists, is there

an algorithm for constructing the duplicate-free formulation mechanically?

The duplicate-free rule sets that have been devised to date have been ad hoc construc-

tions. It appears difficult to extend them with additional transformation rules without

compromising the duplicate-free property.

2.7.3 Heuristic and Sequencing Techniques

The approaches t o join-order optimization discussed above differ in their search techniques,

but both perform an exhaustive search. It is natural t o wonder whether it is possible

somehow to calculate or construct an optimal plan (or nearly optimal plan), without

having t o go t o the trouble of searching for it.

Heuristic join-optimization techniques aim to obtain satisfactory query plans by direct

construction. Typically they use cardinalities and predicate selectivities as guidelines

in deciding how to proceed, but without performing any explicit cost estimation. A

consequence of the lack of cost estimation is that heuristic join optimizers are somewhat

inflexible: they cannot be adapted to different cost models, and hence cannot take into

account the performance of new join algorithms that might become available.

Steinbrunn [54, 551 surveys a variety of heuristic techniques, explaining their mech-

anisms and examining their performance. As Steinbrunn shows, these techniques are

extremely fast-which one would expect, since they have no searching to do-but gener-

ally deliver query plans of very poor quality. When cost estimates are applied t o the plans

obtained, the estimates are often orders of magnitude higher than those of the optimal

plans for the same queries. Because these techniques yield such poor results, we shall

discuss them no further.

Remarkably, however, there is an optimization technique that, with essentially no

search, can directly construct optimal join plans-though only under special conditions.

We shall refer to this technique and its derivatives as sequencing techniques. The original

application of sequencing to join-order optimization, which is due to Ibaraki and Kameda

1251, imposes the following restrictions:

The join graph must be acyclic.

Only left-deep plans are considered.

Cartesian products are excluded.

The cost function K must be expressible as &(Rout, Rlhs, Rrhs) = IRlhsl -gp(Rrhs) for

some family of functions g,, where p designates the predicate that qualifies the join

of Rlhs and Rrh,. (Since the plans must be left-deep, Rrhs will always designate an

individual relation; and since the join graph must be acyclic, only a single predicate

will belong to each join in any plan that is free of Cartesian products.)

Ibaraki and Kameda observed that under these assumptions, the problem of join-order

optimization almost reduces to a sequencing problem that appears in the operations-

research literature. The sequencing problem in question can be solved by an algorithm of

time complexity O(nlogn), where n corresponds to the number of nodes in the join graph.

But to map the join-optimization problem to the sequencing problem, one must designate

an "initialn node in the join graph. Since there is no way to determine the best "initial"

node a prior+, the technique of Ibaraki and Kameda applies the sequencing algorithm for

each possible choice of "initial" nodes, and takes the best result. Thus, the sequencing

algorithm is applied n times, and so the net time complexity of join-order optimization

by this technique is O(n2 logn).

Krishnamurthy, Boral, and Zaniolo [33] subsequently noticed that a portion of the

computation in each of the n applications of the sequencing algorithm was redundant. By

eliminating this redundancy, they obtained an O(n2) algorithm for join-order optimization,

given the same restrictions as in the method of Ibaraki and Kameda. Krishnamurthy e t

al. also sought t o extend the technique by relaxing these restrictions; for example, they

propose a mechanism for accommodating arbitrary join graphs, and not just acyclic ones.

But in the process, they give up the guarantee of optimality, and thus their technique

becomes a heuristic one. Steinbrunn's measurements [54] show that this heuristic extension

generates plans of mediocre quality.

More recently, Swami and Iyer [59] have proposed another technique based on se-

quencing. Their approach begins by applying the technique of Krishnamurthy e t al., and

then seeks t o improve the resulting plan by perturbing it in small ways. In its use of

perturbations t o improve a plan, the technique of Swami and Iyer borrows from stochastic

join-optimization techniques, which we discuss next.

2.7.4 Stochastic Techniques

Stochastic techniques for join-order optimization operate on the principle that if one con-

structs a large number of distinct plans for a join query, then just by blind luck, the best

of these plans is likely t o be of high quality.

Most stochastic techniques incorporate a strategy of "improvement." Given an arbi-

trary plan, they make small exploratory changes to it; changes that turn out t o make the

plan better are considered desirable, and are generally retained, while changes that make

the plan worse are generally not retained. (However, these policies are not absolute; in

some cases, a change that makes the plan worse will be retained in the expectation-or

a t least the hope-that it will lead t o a subsequent improvement.) In this manner an

optimizer can gradually evolve a mediocre plan into a much better one.

Stochastic optimization of join orders was first investigated by Ioannidis and Wong

[27], and many variations on the theme have been proposed since. Stochastic techniques

cannot guarantee optimality, but often they can generate high-quality plans for moderate

effort, and with few restrictions. For joins of very large numbers of relations, the stochastic

techniques may provide the best hope of offering a reasonable balance between plan quality

and affordability of optimization. We shall discuss several stochastic techniques in more

detail in Chapter 8, in the context of presenting our own stochastic technique.

2.7.5 Hybrids and Frameworks

Not all join-optimization techniques fit neatly into one of the classifications listed above.

Swami [56] investigated a variety of hybrids built from combinations of optimization tech-

niques; Swami's hybrids all incorporated a stochastic component. The technique of Swami

and Iyer mentioned in Section 2.7.3 above, though primarily based on sequencing, might

also be considered a hybrid on the basis of its use of stochastic perturbation to improve

its result.

Much of the more recent effort in query optimization research has focused on reducing

the difficulty of constructing, extending, and modifying query optimizers. Production

optirnizers require ongoing maintenance because the other components of query-processing

systems tend t o be enhanced over time. New features in SQL sometimes require optimizer

support if these features are to deliver adequate performance; improvements t o a system's

execution engine, such as addition of new algorithms or support for parallelism, likewise

call for optimizer support.

In principle, rule-based optimizers ought to be easy to build and maintain, but in

practice they often are not. To construct a rule-based optimizer using a tool such as

Volcano, one must supply not only the transformation rules, but also support functions

written in a language such as C. Typically these support functions run t o many thousands

of lines of code, sometimes with the result that the custom-built portion of the optimizer

outweighs the portion supplied by the optimizer-generator tool. Maintenance of optimizers

that include such large amounts of custom code can be a burden. At the same time,

optimizer generators in the style of Volcano lack flexibility inasmuch as they impose a

fixed, transformational search strategy.

Several newer optimizer frameworks seek t o overcome some of the limitations of o p

timizer generators in the style of Volcano. Cascades [18], OPT++ [28], and EROC [41]

are three such frameworks that have several characteristics in common, as well as many

individual differences. Among the characteristics they share are the following:

a All are constructed out of C++ classes. This application of object-oriented software

engineering appears to improve modularity and flexibility of optimizers.

All support class hierarchies for representing arbitrary query expressions. In Volcano,

join and selection predicates were opaque to the built-in mechanisms, and had to be

handled entirely through custom support functions. But in Cascades, OPT++, and

EROC, such predicates are represented as subexpressions that can be manipulated

in the same ways as toplevel query expressions.

All are designed with a view to providing power and flexibility in their search mech-

anisms.

The kinds of power and flexibility these frameworks provide varies from one framework to

the next.

Cascades emphasizes greater control over a search strategy that is essentially the trans-

formative strategy of Volcano. By applying heuristics to the order in which different por-

tions of the search space are explored, an optimizer built with Cascades can reduce its

exploration effort. Moreover, unlike Volcano, Cascades can interleave the application of

transformation rules on logical expressions with the construction of physical plans. In

doing so, Cascades opens up the possibility of pruning away some of the logical transfor-

mations that can be applied to a query-a possibility that Volcano did not offer. Shapiro

et al. [51] present a modified version of Cascades called Columbia that uses a variety of

pruning techniques to improve on the performance of previous rule-based optimizers-but

does so without sacrificing the optimality of the generated plans.

The design of OPT++ emphasizes an optimizer's adaptability to changing require-

ments. OPT++ can be configured to carry out its search in the manner of Starburst or

in the manner of Volcano; relatively few changes are required to switch between these two

search paradigms, despite their rather different character. OPT++ also easily supports

other search strategies, such as stochastic search strategies; and regardless of the search

strategy, OPT++ can be made to restrict the search to left-deep plans, or to plans without

Cartesian products. In addition, the modular design of OPT++ facilitates support of new

logical or physical operators as a query-processing system evolves.

EROC takes a pragmatic, eclectic approach to supporting optimizer construction. The

EROC class library may be thought of as a toolkit for building optimizers from ready-made

components. The toolkit includes classes for general-purpose da ta structures that tend t o

arise in optimization, as well as more specialized classes that deal with searching and other

domain-specific operations. McKenna et al. describe how this toolkit was used t o build

an unconventional, hybrid optimizer that combines Starburst-style enumeration of join

orders with Volcano-style plan generation and pruning. The hybrid was easy t o construct

and performs well in empirical tests.

As previously noted, the primary goals of these frameworks are t o provide flexibility

and adaptability. The ability t o optimize joins of very large numbers of relations does not

appear t o have been a design goal in any of the frameworks. However, these frameworks

have been designed so as to provide competitive performance in the optimization of joins

of moderate numbers of relations. For example, Kabra and DeWitt [28] present join-

optimization timings that show that when emulating Volcano's search strategy, OPT++

performs nearly identically t o Volcano itself. No such direct comparisons are available

for Cascades and EROC, but both have performed well when applied t o the T P C / D

benchmark queries [4, 411.

2.7.6 Summary

In this section we have discussed the approaches to join-order optimization that appear in

the literature: dynamic programming, rule-based optimization, heuristic and sequencing

techniques, stochastic techniques, and hybrids. We mentioned representative systems and

algorithms that exemplify each of these approaches, and we also discussed frameworks

that assist in the development of optimizers whose approach t o join-order optimization

can be adapted t o changing needs.

Dynamic programming remains the predominant approach used by commercial o p

timizers, though some database vendors prefer to use rule-based optimization. When a

system encounters queries too complex to optimize exhaustively, heuristic techniques are

the preferred fallback. To the author's knowledge, stochastic techniques are not yet used

in commercial optimizers, perhaps because they entail a greater optimization effort than

simple heuristic techniques, without a guaranteed payback.

2.8 Summary and Discussion

In this chapter we have introduced some of the vocabulary, concepts, conventions, and

stumbling blocks associated with join-order optimization. We reviewed selected funda-

mentals of relational databases and the relational algebra, and presented a context for

query optimization by describing the phases of query processing. We introduced the no-

tion of predicate selectivity, and showed how it is used in the estimation of intermediate-

result cardinalities. We described the representation of a query as a join graph, and noted

that conventional join graphs preclude predicates involving more than two relations. We

presented a generic cost model that can be parameterized to predict join-processing costs

under a variety of assumptions; and we discussed the effect of physical properties on

join-processing costs, observing that the principle of optimality is lost in the presence of

physical properties. Finally, we discussed the approaches to join-order optimization that

have appeared in the literature, of which a subset are in use in commercial optimizers as

well.

We have seen that some of the trickiest aspects of join-order optimization are related

to predicates. The conditional nature of join associativity, for example, comes as a conse-

quence of join predicates. The problems with the notion of selectivity, and more generally,

the difficulty of cardinality estimation, also arise because of predicates. Join graphs have

utility only because they shed light on predicate relationships; in the absence of predicates,

they could be dispensed with.

These observations lead to the following idea for decomposing the problem of join-

order optimization: First solve the problem in the absence of predicates, and then try to

add predicates back to the solution to the simpler problem. In the following chapters we

explore such a decomposition of join-order optimization, and so obtain the results outlined

in the introduction.

Chapter 3

Cartesian Product Optimization

In this chapter, we address the question of how to optimize the computation of a Cartesian

product. We begin by presenting the solution steps for a sample optimization problem,

and then give an algorithmic generalization of this solution. We go on to analyze the

algorithm's complexity, and to discuss the ramifications of our analysis.

Although optimization of Cartesian product computations is of little practical interest

in itself, we will see later that our Cartesian product optimizer can serve as the back-

bone of a join optimizer. By deferring such distractions as predicates until later we may

concentrate all our attention on the essential structure of our algorithm.

3.1 Preliminaries

Suppose we wish t o find the optimal expression for computing the Cartesian product

A x B x C x D. (We assume that only a dyadic x operator is available.) Before proceeding,

we need a cost model and some information about A, B, C, and D (e.g., their cardinalities).

Let us say that A, B, C, and D have cardinalities 10,20,30, and 40, respectively, and

let us assume for the present an extremely straightforward cost model-again deferring

consideration of more complicated alternatives until later. For now we define the cost of

evaluating a Cartesian product operator to be the cardinality of the result, in keeping

with the cost function KO defined in equation (2.61). Thus, since A has cardinality 10 and

B has cardinality 20, the cost of the operation A x B is 10.20 = 200.

To determine the cost of evaluating a compound expression such as (A x B) x C,

we shall sum together the cost of each x operator in the expression, in accordance with

equations (2.59) and (2.60). In the present situation, those cost equations simplify t o

cost(R) = 0 (3.1)

cost (Eo x E l) = cost (Eo) + cost (E l) + I Eo x El 1. (3.2)

For example, with IAl = 10, IBI = 20, and IC(= 30, we have cost((A x B) x C) =

cost(A x B) + cost(C) + IA x B x CI = 200 + 0 + 10 20 - 3 0 = 200 + 6000 = 6200.

Note that the cost model given by KO is symmetric in that cost(Eo x El) = cost(El x

Eo). In general a cost model need not be symmetric, and in most of what we d o below

we will make no assumption of symmetry. (We will point out the situations in which

symmetry makes a difference.)

3.2 Solution using Dynamic Programming

Table 3.1 illustrates how dynamic programming can be exploited t o find the cheapest way

of computing our four-way Cartesian product. The idea is t o build a table that records the

best strategy for computing each possible subproduct of the four-way product in question.

Each entry (i.e., each row) of the table corresponds to one subproduct.

The table is constructed in such a way that we can extract the optimal expression

for the four-way product as follows. First, we consult the table's final entry, Entry 15,

which says that the "Best Split" for {A, B , C, D) is {A, D) , {B, C); that is, the product

of {A, B, C, D) is best computed as Eo x El , where Eo computes the product of {A, D)

and El computes the product of {B, C).

Next observe that we wish Eo to be optimal for computing the product of {A, D); such

an optimum is furnished by Entry 7 in the table. An optimal El is furnished by Entry

8. By recursively consulting the table in this manner we can derive an optimal expression

for the four-way product-in this case, (A x D) x (B x C).

A bit of notation will prove convenient. Let S* denote the optimal expression for

computing the product of S. Then Entry 15 of our table may be read as saying, in part,

that {A, B, C, D)" zz ({A, Dl*) x ({B, C)*); similarly for the other entries. Singletons

are special: the optimal expression for any individual relation R is evidently just R; thus,

{R)* = R.

Entry

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Relation Set

{A)
{Bl
{Cl
{Dl
{A, Bl
{A1 Cl
{A1 Dl
{Bl Cl
{B, D l
{C, D l
1-49 B, Cl
{A1 Bl D l
{A, C, D l
{ B , C, D l
{ A , B , Cl D l

Cardinality

10
20
30
40

200
300
400
600
800

1200
6000
8000

12000
24000

240000

Best Split Cost

0
0
0
0

200
300
400
600
800

1200
6200
8200

12300
24600

241000

Table 3.1: Dynamic programming table

Now that we have seen how the table will be used, let us consider how its entries are

constructed.

3.2.1 Initialization and Two-way Products

In any application of dynamic programming, the dynamic programming table is filled in

entry by entry until the table is completely filled. Entries for "smaller" subproblems are

always filled in before entries for "larger" subproblems; in this way, the solutions for the

smaller subproblems can be used to assist in solving the larger subproblems.

The first four entries of our sample table describe degenerate "products" involving

just a single relation in each instance. Since the "product" of a single relation R is just R

itself, there is no Best Split t o record for the singleton sets of relations. Thus, the role of

Entries 1-4 is t o record the cardinalities of the relations A, B, C, D-these are assumed

given-together with cost values of 0 reflecting cost equation (3.1).

Entries 5-10 record information about two-way products. Consider Entry 5 as an

example. Here the Cardinality field refers to the cardinality of A x B-hence the value

10 . 20 = 200. The Best Split field gives an encoding of the best (i.e., cheapest) way

t o compute the product of A and B. We know that there are just two expressions that

compute this product-A x B and B x A-and because our cost model is symmetric,

neither expression is better than the other. But in the general case that will not be

true, and so we must distinguish between the two. In the present instance we arbitrarily

designate A x B as the best choice. We encode this choice as the pair of sets {A),{B),

representing, respectively, the relations that appear t o the left of the x operator, and

those that appear t o the right. Finally, the Cost field gives the cost of the expression

designated by the Best Split field; in this case the cost simply equals the cardinality, since

both the left- and right-hand inputs of A x B are just relation names and not complex

subexpressions.

3.2.2 Three-way Products

The benefits of dynamic programming begin t o be felt, if only in a small way, when we

come to the three-way products. Again, let us consider a particular table entry, Entry 11,

as an example. Here the objective is to find the best way to compute the product of A,

B, and C. There are actually twelve possible alternatives, but we need not examine each

of these alternatives individually. Instead, we reason as follows.

Any expression that computes our three-way product must have the form Eo x El for

some Eo and El. Our strategy will be to ignore the substructure of Eo and El, and t o

think only about which relations participate in each of these subexpressions. Observe that

each of A, B, and C must appear exactly once in the whole expression Eo x El. Therefore,

the set of relations appearing in Eo must be some nonempty, proper subset of {A, B, C),

and the relations in El must be the complement (with respect t o {A, B, C)) of those in

Eo.

For example, suppose that the set of relations appearing in Eo is {A,C)-in other

words, suppose that Eo computes the product of A and C . Then the set of relations

appearing in El is constrained t o be exactly {B). Now the cost of Eo x El is cost(Ea) +
cost(El) + 10 30 20 by equation (3.2). The cost of Eo, in turn, cannot be less than the

cost of the best expression for the product of { A , C), which was computed in Entry 6 t o be

300. The cost of El is zero, since El is just B, which involves no computation. I t follows

that with Eo computing the product of {A,C) and with El computing the product of

{B), the cost of Eo x El is a t best 300 + 0 + 10 -30 20 = 300 + 6000 = 6300.

Now recall that we defined the shorthand {A,C)* t o mean the best expression for

the product of {A,C), whatever that expression might be; recall also that {B)* should

be understood as a synonym for B (the idea being that B is the only expression for the

product of the singleton {B), and hence the best such expression). Thus, we may read

Entry 6 of Table 3.1 as saying that cost({A,C)*) = 300, and Entry 2 as saying tha t

cost({B)*) = 0; and we may now restate the conclusion of the preceding paragraph in the

concise form of an equation: cost({A, C)* x {B)*) = 300 + 0 + 10 30 - 20 = 6300.

As i t happens, {A, C)* x {B)* is not the best expression for the product of {A, B, C) ;

a superior alternative is found in {A, B)* x {C)*. The cost of the latter is given by

cost({A, B)*) + cost({C)*) + 10 .20 - 30, which works out t o 200 + 0 + 6000 = 6200, as

can be seen by consulting Entries 5 and 3 of the table. If we were to consider the other

four possible splits of {A, B, C) into pairs of nonempty subsets, we would find tha t none

does better than the pair {A, B), {C). Accordingly, Entry 11 of the table shows this pair

as the Best Split for {A, B, C). The corresponding cost of 6200 is entered alongside.

Note that although the table nowhere explicitly records the best expression for the

product of {A, B , C), that expression can be inferred from the Best Split field for {A, B, C)

together with the Best Split field for {A, B).

3.2.3 Final Result

The handling of the four-way product in Entry 15 is conceptually identical t o that of the

three-way products. The only difference is that the four-way product involves more work-

in the general asymmetric case, a total of fourteen splits of {A, B, C, D) must be examined

t o determine which one is best. On the other hand, a naive exhaustive search without

dynamic programming would entail the examination of all the 120 different expressions

that compute the four-way product. Moreover, determining the cost of each of those 120

compound expressions would involve more work than determining the cost associated with

a given split. These facts, taken together, justify going to the trouble of constructing a

table such as Table 3.1 when seeking the best expression for a four-way product.

The benefits of dynamic programming become glaringly apparent only when one con-

siders products over somewhat larger sets. But this small example at least illustrates the

principles involved.

3.3 The Blitzsplit Algorithm

Naturally enough, the procedure we used above t o fill in Table 3.1 by hand can also

be carried out automatically by a computer program. Figures 3.1 and 3.2 give abstract

pseudo-code for such a program, which we call the Blitzsplit algorithm. This pseudo-code

is abstract in the sense that it uses features that are not generally supported in computer

languages, such as the choose-such-that and for-each-such-that statements. The use

of sets as array indexes also departs from the more conventional use of integers in this

role. Later we will see how to map these abstract pseudo-operations onto efficient, concrete

implementations. But for the present let us focus on higher-level matters.

3.3.1 Declarations

Figure 3.1 contains two declarations. The first o f these introduces a new type rel-data

that describes the information we need to know about the relations whose product is

to be optimized. With our simple cost model, we just need t o know their cardinalities.

Therefore rel-data is declared as an array indexed by relation names that associates a

cardinality with each such name. This declaration assumes that the type relation-name

t y p e rel-data = array indexed b y relation,name of
record

cardinality : real
end

var table : array indexed b y set[relation-name] of
record

cardinality : real
best-lhs : set[relation-name]
cost : real

e n d

Figure 3.1: Declarations for the Blitzsplit algorithm

procedure blitzsplit(7Z : set[relation-name], rel-data : rel-data)
for each R E R d o

init-singleton(R, rel-data)
e n d for

for m := 2 to 1721 do
for each S 72 such t h a t IS1 = m d o

compute-properties (S)
find -best -split (S)

e n d for
e n d for

e n d procedure

procedure initsingleton(R : relation-name, rel-data : rel-data)
tabIe[{R)] .cardinality := rel-data[R] .cardinality
table[{R)]. bestlhs := 0
table[{R)].cost := 0.0

e n d procedure

procedure compute-properties(S : set[relation-name])
choose U such t h a t 0 $ U S
v : = s - U
table[S].cardinality := table[U].cardinality * tabIe[V].cardinality

e n d procedure

procedure find-best-split (S : set[relation-name])
best-cost -so-far .- .- 00

for each Slhs such t h a t 0 $ S,hs $ S d o
Srhs := S - S l h s

operand-cost := table [Slhs] .cost + table[Srhs]. cost
dependent-cost := operand-cost + dplit(S, Slhs , Srhs)

if dependent-cost < best-cost-so-far t hen
best-cost-so-far := dependent-cost
table[S]. bestlhs := Slhs

e n d if
e n d for
table[S].cost := best-costso-far + tcoUt(S)

e n d procedure

Figure 3.2: The Blitzsplit algorithm

has been defined previously. The precise nature of the type relation-name is unimportant,

so long as i t can be used as an array index.

The second declaration in Figure 3.1 allocates a global variable table-a table very

much like Table 3.1, with several minor differences:

a Table 3.1 was annotated with Entry numbers, which were convenient t o have in

Section 3.2 above for the purposes of discussion. But the Blitzsplit algorithm will

have no use for these numbers, and so they are omitted from table.

a Lacking any notion of Entry numbers, the Blitzsplit algorithm instead accesses table

entries on the basis of the Relation Set for which they provide information. Accord-

ingly, table is represented as an array indexed by sets of relation names; and since

these sets of relation names must be known before the corresponding table entries

can be accessed, it would be redundant to store these sets inside the table. Hence

table contains no field that corresponds to the Relation Set column of Table 3.1.

a We are left with the Cardinality, Best Split, and Cost columns of Table 3.1, and

these are faithfully reflected in the cardinality, best-lhs, and cost fields of the table

elements. However, the best-lhs field records just the left-hand component of the

best split, leaving the right-hand component implicit. Nothing is lost in this way,

since the left-hand component fully determines the right-hand component in the

context of a given table entry.

Thus, although table differs from Table 3.1 in a few details, its information content is

essentially the same.

3.3.2 Procedure blitzsplit

Let us now turn t o the first procedure in Figure 3.2, procedure blitzsplit. The arguments t o

this procedure are a set R of relation names and an array rel-data containing information

about the relations named in R. The objective of blitzsplit is to find the least costly way

of computing the Cartesian product of those relations.

The body of procedure blitzsplit consists of two for-loops. The first for-loop fills in

the table entries for the singleton subsets of R; these entries correspond t o Entries 1-4

of Table 3.1. The second for-loop (which has yet another for-loop nested inside of it)

successively fills in the table entries for subsets of R consisting of 2 relation names, then

for subsets consisting of 3 relation names, and so on. At the completion of these two loops,

table has been entirely filled in. Embedded within the completed table lies an encoding

of the best expression for the product of 72. (Extraction of this expression is discussed in

Section 3.3.6 below.)

The real work in filling in the table is done by the subprocedures initsingleton,

compute-properties, and find-best-split, discussed below. But the correctness of those

subprocedures hinges on a dynamic programming assumption that concerns procedure

blitzsplit: The subprocedures assume, when filling in the table entry for a given subset S

of R, that the entries for all nonempty, proper subsets of S have already been completed.

We shall refer to this assumption as the subsets-first assumption. It is satisfied in the

blitzsplit procedure of Figure 3.2, because smaller sets of relation names are always dealt

with before larger ones.

In Chapter 4 we will see that there are also other good ways to satisfy this assumption.

For simplicity, the pseudo-code of Figure 3.2 specifies a deterministic order in which the

subsets of R are to be processed. But in prescribing a particular order, the pseudo-code is

actually overspecifying the processing of the subsets. Slavish adherence to this prescription

is not necessary; what is important is that all nonempty subsets of R be processed, and

that the validity of the subsets-first assumption be upheld.

3.3.3 Procedure init -singleton

The role of procedure init-singleton is to consult the input information given in rel-data,

and using that information, to create entries in table for singleton sets:

The cardinality field for a given singleton product {R) is simply copied from the

cardinality of R as furnished by rel-data.

The best-lhs for { R) is assigned the empty set for lack of a better value-the best-lhs

field actually has no meaning for singleton sets. (Recall that in Table 3.1 the Best

Split field was left blank in the entries for singletons.)

The cost of {R) is set to 0.0 in accordance with equation (2.59) of our generic cost

model.

3.3.4 Procedure compute-properties

Table entries for non-singleton sets of relation names are filled in in two steps. First, pro-

cedure compute-properties computes the cardinality field; second, find-bestdplit computes

both the best-lhs and the cost fields. Here we consider compute-properties.

In Section 3.2 above we glossed over the computation of the Cardinality values in

Table 3.1 because those computations were so straightforward. That the cardinality for

{A, B, C, D) should be 10 20 - 3 0 - 4 0 = 240000, for example, requires no explanation.

However, this naive cardinality computation involves 3 multiplications, and more gener-

ally, for a set of m relation names, m - 1 multiplications. It is preferable to obtain the

result cardinality with a single multiplication. Observe that the set {A, B, C, D) may be

arbitrarily split into two nonempty subsets-for example, {A, C) and {B, Dl-and the

cardinalities associated with these subsets, 300 and 800 respectively, may be multiplied

together to obtain the cardinality 240000 for {A, B, C, D).

Procedure compute-properties takes advantage of this observation, together with the

subsets-first assumption, to compute the cardinality field for a given set S. Thus, S is split

arbitrarily into two nonempty subsets U and V , and the cardinality entries for those two

subsets are multiplied together. In this way all product cardinalities are obtained without

any loop structure inside of procedure compute-properties.

3.3.5 Procedure find -best -split

Procedure find-bestsplit examines all splits of a given set S into pairs of nonempty subsets

and selects as the best split the pair that yields the lowest total cost. The left-hand

component of that pair is recorded in the best-lhs field for S, and the corresponding cost

is placed in the cost field.

That is the gist of find-best-split, but it is not the whole story. Because find-best-split

is called from inside a loop (actually, a nested pair of loops) in procedure blitzsplit, the code

within find-best-split's own loop is the most speed-critical part of the whole algorithm. It

proves t o be worth going t o some trouble t o pare this code down t o its bare essentials.

Thus, t o reduce the effort needed to compute costs, we permit the cost function K t o

be broken apart into a split-independent component KO"' and a split-dependent component

~ ~ p ~ ~ ~ , such that

(We shall assume that both components are non-negative.) For example, the cost function

I E ~ (R ~ ~ ~ ~ Rlha, Rrhs) = lRoutl can be decomposed into

and

Using this decomposition, find-best-split avoids computing the total cost for the expression

associated with each split. Instead it computes a total cost just once, outside the loop, after

the best split has already been determined. This shortcut has the following straightforward

justification.

Let Slhs and Srhs denote, respectively, the left- and right-hand sides of some split of S.

Then by equation (2.60) the total cost of the expression Sf,, x S:h, is

cost (Sf,,) + cost (S:hs) + &(SF S l h s t Srhs) .

(Here we let the sets S, Slhs, and Srhs act as representations for the Cartesian products of

the sets they contain.) Using the decomposition of r; into & O u t and K'P"~, this total cost

may be rewritten as

To minimize this cost over all possible choices of Slhs and Srhs, it suffices t o minimize

since the term KO"'(S) is independent of Slha and Srhs. Hence, the latter term may be

disregarded during the search for the minimum.

The first two terms of cost(Si,) + ~ost(S:~,) + r;'plit(~, Slhs, Srhs) are very easy t o corn-

pute. By the subsets-first assumption, the values cost (Si,) and cost (S:h,) may simply

be fetched from the cost fields of the table entries for Slhs and Srhsl respectively. Conse-

quently, the "operand costn cost(S&,) + co~t(S:~,) can be obtained with a single addition.

The difficulty of computing the term K~P~~' (S , Slhs, Srhs) will depend on the function K; but

for our sample cost function KO, this computation is trivial, since ~;;P '~~(s, slhr, Srha) = 0.

In this instance, then, the entire partial cost cost(S;h,) + co~t(s:~,) + K * P ~ ~ ~ (S , Slh,, Srhs)

can be computed with a single addition.

Procedure find-best-split seeks to minimize this partial cost by keeping a running

best value for it in the variable best-cost-so-far as the loop scans through all possible

combinations of SIhs and Srhs. The running best value is revised downward each time a

better partial cost is encountered; when that occurs, the left-hand component of the split

that engendered the new minimum is recorded as the best-lhs for S. Thus, the best-lhs

field may be overwritten many times, and might be more aptly named best-lhs-so-far.

But by the end of the scan, whatever remains in best-lhs will in fact be the left-hand side

of the absolute best split (or one such in the case of ties); and best-costso-far will contain

the corresponding partial cost. The total cost is then obtained by adding on the term

r;OUt(S), and the result is placed in the cost field.

The shortcut of computing only partial costs inside the loop in find-best-split helps

t o tighten the loop, but unfortunately the effectiveness of this shortcut is very much

dependent on the cost function K. However, the cost function need not be as trivial as

KO t o make the shortcut beneficial. Even with more complex cost models, the amount of

computation required inside the loop in find-best-split can often be kept small on average.

Later we shall discuss techniques for mitigating the expense of computing rc'plit inside the

loop.

3.3.6 Extracting the Best Expression

After the table array has been filled in, a small amount of extra work is required t o extract

the expression that represents the optimal computation of the given Cartesian product.

Depending on context, one may wish to extract that expression as a tree, or as a string,

procedure print-expression(S : set[relation-name])
if S = {R) for some R then

print-relation-name (R)
else

print "("
print-expression(table[S]. bestlhs)
print "x"
print-ezpression(S - table[S]. best lhs)
print ")"

end if
end procedure

Figure 3.3: Printing an optimal expression

or in some other form.

As an example of such an extraction, Figure 3.3 gives pseudo-code that prints the

expression. If procedure blitzsplit was used to construct a table for some collection R of

relation names, then print-expression may be invoked on any nonempty subset S of R-

including R itself. The output will be an optimal expression for computing the product

of the relations named in S . We assume the existence of a previously defined procedure

print-relation-name t o print the relation names a t the leaves of the expression tree.

3.4 Complexity of the Algorithm

We shall now examine the complexity of the Blitzsplit algorithm. We begin with a rough

assessment of its space complexity, and then proceed with a somewhat more detailed

analysis of its time complexity. We then make several observations that follow from the

complexity analysis.

3.4.1 Space Complexity

Let n be the number of relation names in the set R. Then R has 2n subsets, and there is

an entry in table for each of these (except the empty set). The Blitzsplit algorithm uses no

other da ta structure of any significant size. Hence the space complexity of the algorithm

is 0(2n). (We will give a more precise estimate when we discuss concrete representations

for our da ta types.)

3.4.2 Time Complexity

For the time complexity we shall give more than just a big-0 analysis, since we are

interested in the detailed performance characteristics of the algorithm. We assume that

sets of relation names are of bounded size, and hence that primitives on them are constant-

time operations; we also assume that per-iteration loop overheads are constant. One way

to satisfy these assumptions is shown in Chapter 4 below.

Observe first that procedure blitzsplit makes n calls to init-singleton, and approxi-

mately 2n calls to each of compute-properties and find-best-split (because there is one call

for each nonempty subset of R, and R, being an n-element set, has 2n subsets). The

net contribution of init-singleton is plainly insignificant, while the net contribution of the

straight-line code in compute-properties and find-best-split is 2nTsubset for some constant

Tsubset-

There is, in addition, a loop in find-bestsplit. Consider the execution of find-bestsplit

for some particular argument S, and suppose that IS1 = m; i.e., suppose that S is a set

containing m relation names. Then S has altogether 2m subsets, hence 2m - 2 nonempty,

proper subsets. The loop inside find-bestsplit iterates once for each such subset, hence

approximately 2m times for the given argument S.

We have just counted the number of loop iterations in one call to find-best-split, but

now we must count the number of iterations over all such calls. Observe the point where

find-best-split is called, inside the nested pair of loops in procedure blitzsplit. Inside this

pair of loops, S is successively bound to different subsets of R, and find-best-split is called

for each such binding. Indeed, eventually every subset of R (except the singleton subsets

and the empty set) will have been bound to S and passed as an argument to find-best-split.

Unfortunately, the number of iterations of the loop in find-bestsplit varies dramatically

with the number of relations in S. So we must separately consider the 2-relation subsets,

the 3-relation subsets, and in general, the m-relation subsets of R.

The number of m-relation subsets of the n-relation set R is (z) . Hence find-bestsplit

will be called (l) times with an m-relation argument. As the number of loop iterations for

each such call is about 2m, the aggregate number of loop iterations for all the m-relation

subsets of R, for a given m, is about (i)2m. This formula must be summed over all values

of m from 2 to n to take account of the 2-relation subsets of R, the 3-relation subsets, and

so on up to the sole n-relation subset of R (namely R itself). Therefore the total number

of iterations for all calls to find-bestsplit is (c)2m; but it will be convenient to

work with the simpler sum loop-count = C:=o (:)2m, which overestimates the true total

by a negligible amount.

To obtain a closed form for loop-count, recall the binomial expansion (x + y)n =

Ck=o (l)xmyn-m. Taking x = 2 and y = 1, we obtain (2+ l)n = En (")2". ln-m = m=O m

Ck=o (l) 2m = loop-count. That is, loop-count = (2 + l) n = 3n. Thus, in aggregate, the

time contributed by the loop in find-best-split is 3nTloop for some constant Tloop.

(Another way to see that there are altogether approximately 3n iterations through

the loop in find-best-split is this: In any split of a subset S of n relation names, a given

name among the n will appear in the left-hand component of the split, in the right-hand

component, or neither. So each of the n names falls in one of three conceptual buckets

labeled "left," "right," and "discard." Conversely, distributing the n names among three

such buckets determines a subset of the names (namely, those not Udiscarded") and a split

of that subset. Thus, splits of subsets of n names are in one-to-one correspondence with

assignments of those names to three buckets. There are 3n such assignments, hence 3n

splits of subsets. All these splits will be examined in the course of the Blitzsplit algorithm's

execution, except the handful that would leave the "left" or "right" bucket empty.)

To assess the contribution of the conditionally executed code within the loop body,

we use a statistical argument. Consider a particular execution of find-bestsplit. On

each iteration through the loop, the if condition is satisfied only when the split under

consideration improves upon the best so far. Assume the splits are examined in random

order. Then the probability that the split considered on the ith iteration is better than

the first i - 1 is lli, since any of the first i splits is equally likely to be the best among

the i. Hence the expected number of executions of the conditionally executed code is

given approximately by the harmonic series H2m = ~ ;) = m l l l i , where again rn = IS(. In

aggregate, the number of executions of this code across all calls to find-best-split is

n

cond-count = (2) H 2 m .

m=2

Once again, to simplify we change the bounds of the summation, giving

n

cond-count ~ i : (i) H 2 m .

m=O

Using the fact Hk x In k + 7, where 7 = 0.57721.. . [29], we obtain

n

cond-count ~ i : C (:) (In 2- + y),
m=O

which expands to

Now recall that (t) = 2", and that (t) m = (n/2)2". (For an explanation

and interpretation of the former identity, see the text by Liu [36]; the latter identity can be

derived from the former through straightforward manipulation.) Applying these identities

to (3.10) finally yields

cond-count x (In 212) n2" + ~ 2 ~ . (3.11)

Let us disregard the 72" term; it is relatively small, and in any event, its effect on execution

time can be absorbed by the term 2nT,ub,et discussed above. We may thus view the net

contribution of the conditionally executed code as (ln 2/2)n2nTco,d for some constant

Tcond.

Then for some Tloop, Tcond, and Tsubdet, the execution time of the Blitzsplit algorithm

is closely approximated by

3.4.3 A Small Algorithmic Improvement

From the foregoing analysis we can also deduce the number of executions of the cost-

function components tcoUt and tcsplit. Since the split-independent component tcoUt appears

outside the loop in find-bestsplit, we may conclude that KO"' executes approximately 2n

times (i.e., the same number of times as find-best-split itself). On the other hand, the

split-dependent component tcap'it appears inside the loop, and hence, according to our

analysis, executes approximately 3n times.

If t c ' ~ ' ~ ~ should turn out to involve nontrivial computation, its execution count of 3n

could prove to be a bottleneck. To reduce that bottleneck, we may alter the body of the

loop in find-best-split as illustrated in Figure 3.4. Instead of using a single if statement,

the revised loop body of Figure 3.4 contains two nested if statements, and predicates the

computation of tcsp'it on the condition opemnd-cost < best-cost-so-far. Since failure of

this condition also implies dependent-cost # best-cost-so-far, the net effect of the pair of

if statements in Figure 3.4 is the same as that of the single if statement in Figure 3.2.

However, the number of executions of K ~ J " ~ ' may be reduced considerably. From our

analysis above, we may infer that the statements outside the outer if are executed 3n

times, while those inside the inner if are executed about (ln2/2)n2n times. Then the

execution count of tcspl i t in Figure 3.4 must lie somewhere between those two quantities.

It is difficult to give a more precise analytical characterization of the execution count of

for each Slhs such that 0 g Slhs g S do
Srhs := S - Slha
operand-cost := tab~e[Slhs].cost + table[SrhS] .cost
if opemnd-cost < best -cost-so-far then

dependent-cost := opemnd-cost + tcSpkt(S, SIhsl Srhs)
if dependent-cost < best-cost-so-far then

best-costso-far := dependent-cost
table[S]. best -1hs := Slhs

end if
end if

end for

Figure 3.4: Making execution of tcvht conditional

tc"pl". But later we shall study this quantity empirically, and we shall see that at least for

some cost functions, the execution count of tc'plit runs closer t o (In 2 / 2) ~ 1 2 ~ than t o 3". In

such instances, the restructuring of the loop body as illustrated in Figure 3.4 significantly

reduces the algorithm's sensitivity t o the expense of computing tc'~'~'.

3.4.4 Discussion

In Section 2.7 we noted that the exhaustive-search join-optimization algorithms used by

Volcano and Starburst have a worst-case time complexity of O(4"). I t is encouraging that

the Blitzsplit algorithm's O(3") complexity is lower, but this complexity comparison by

itself does not tell us a great deal. Constant factors must also be taken into account; in

addition, one must bear in mind that in typical cases, the Volcano and Starburst algorithms

perform much better than they do in the worst case-and so the 0 (4n) complexity is not

necessarily very meaningful.

It is therefore interesting to look a t actual join-optimization timings for systems that

use the Volcano and Starburst algorithms as reported in some of the recent literature.

The measurements for Volcano [17] and OPT++ [28] show optimization timings in the

range of seconds for a join of eight relations. Optimization time for a ten-way join runs

t o tens of seconds, as reported by Kabra and DeWitt [28], and as can be inferred by

extrapolation from the performance graph given by Graefe and McKenna [17]. Kabra

and DeWitt also graph timings for bushy join optimization allowing Cartesian products;

from the standpoint of complexity, these timings do reflect the worst case, and run t o

hundreds of seconds for a ten-way join. The EROC timings [41] appear t o be consistent

with the Volcano and OPT++ timings, though direct comparison is problematical because

of differences in the kinds of queries that were tested.

We do not yet know the values of the time constants Tloopl Tcondl and Tsubset in for-

mula (3.12) for the execution time of the Blitzsplit algorithm. Even so, by examining the

figures in Table 3.2 we can begin to get a feeling for what the algorithm can and cannot

do, given an execution time of 3"TloOp + (In 2/2)n2"TCond + 2"TSubaet for some values of

Tloop, Tcondl and Tsubset. In the table, the variable c, is used as shorthand for (In 2/2)n2".

Thus, successive columns of Table 3.2 give, for a range of values of n , the execution count

Table 3.2: Quantities relevant to time complexity of Cartesian product optimization

for the unconditional code inside the loop in find-best-split, for the conditional code inside

the loop, and for the code outside the loop.

The first observation to draw from these numbers concerns what the Blitzsplit algo-

rithm cannot do. On today's hardware, this algorithm cannot hope, even under the best

of circumstances, to make short work of problems with n equal t o 20 or more. If we

assume a machine cycle time of 5 nsec, and optimistically suppose that an iteration of

the inner loop in find-best-split can execute in, say, 4 cycles, then Tloo, = 20 . lo-' sec.

Under these highly optimistic assumptions, the algorithm's execution time with n = 18

will already have reached 318 -Tloop x (0.387.10~). (20. lo-' sec) = 7.74 sec. With n = 19,

the time will be 3 times that-about 23 seconds-and with n = 20, the time will exceed

one minute. Clearly, then, for expeditious optimization of 20-way joins, we must look t o

a new generation of processors or a faster algorithm.

On the other hand, one cannot fail to be struck by the fact that for smaller n, the

values of 3, are not really very large a t all. When n = 8, 3, is only a few thousand.

To perform competitively with the algorithms mentioned above, the Blitzsplit algorithm

would have t o optimize an &way Cartesian product in a matter of seconds, and hence,

the time constants Tloo,, Tcond, and Tsubset would have t o be on the order of a millisecond.

But it is imaginable that these constants could be made far smaller than that , and we

shall see that indeed they can be.

I t is the constant TIoOp, above all, that we will want to make small, and in seeking t o

do so, we will have an advantage over transformation-based algorithms such as Volcano's.

For in contrast t o those algorithms, ours need not concern itself with complex predicate

manipulations each time it constructs a new expression (i.e., each time i t considers a

new pairing of sets of relations). Later, when we address join optimization, and not just

Cartesian product optimization, our algorithm will need t o manipulate predicates, too.

But the structure of the algorithm is such that these predicate manipulations will never

need to enter the inner loop where the alternative pairings of sets of relations are examined.

There are other observations t o be drawn from Table 3.2. The ratios in the last two

columns of the table shed light on the relative contributions of Tloop, Tcond, and Tsubset

t o the algorithm's total execution time. We see that as n rises t o the mid-teens, only a

hundredth of the inner-loop iterations execute the conditional code inside the loop. Thus,

t o the extent that the improvement suggested in Section 3.4.3 above succeeds in bringing

the ~~p '~~-execu t ion count close to (In 2/2)n2", it significantly reduces the criticality of the

r ~ ~ p ~ ~ ~ function.

At the same time, perhaps the most striking feature of the ratios in the table's last

two columns is how small they are overall. The smallness of these ratios means that while

the constant TI,,, is certainly the most critical of the three, none of them can be ignored:

profligate computation in any part of the algorithm will make itself felt.

3.5 Summary

We began this chapter by illustrating the technique of dynamic programming as applied

t o Cartesian product optimization. We then formalized the technique in abstract pseudo-

code for the Blitzsplit algorithm, and analyzed the algorithm's complexity. From that

analysis i t became apparent that the algorithm ought t o perform competitively with the

Volcano and Starburst join-optimization algorithms, provided the abstract pseudo-code

can be mapped onto an efficient concrete realization. Finding such a realization will be

our next concern.

Chapter 4

Lightweight Implement at ion of

Cartesian Product Optimization

The analysis of the previous chapter suggested that despite the exponential complexity of

the Blitzsplit algorithm, it ought to have no difficulty in optimizing Cartesian products

of moderate numbers of relations. However, to make a more precise assessment of its

capabilities, one must consider the algorithm's implementation.

In the present chapter we undertake to translate the abstract code given in the previous

chapter into a more concrete form. Our objective will be to devise an implementation that

achieves low values for the time constants TI,,,, Tcond, and TsUaset; we shall also seek t o

achieve efficiency in space usage.

We shall continue t o express the algorithm in a kind of pseudo-code, but this time

around the pseudo-code will be more concrete, and will avoid using sets as array indexes,

or instructions such as choose-such-that and for-each-such-that . At the end of the

section we will discuss the mapping of this concrete pseudo-code into an even more concrete

form: C code. The discussion will conclude with observations about empirical performance

measurements taken on C code.

4.1 Representation of Data Types

Let us refer t o the relation names in R as Roy R1, . . . , R,-l. Then in our concrete

pseudo-code we will identify these names by their integer indexes; inside the code, Ro will

be just 0, R1 just 1, and so on up to n- 1. What these numerical names lack in mnemonic

value they will make up for in programming convenience.

Undoubtedly the implementation detail that most affects the performance of the Blitz-

split algorithm is the representation of sets of relation names. Bit vectors are a natural

representation for sets over finite domains-especially over small domains. The domain of

interest in the present instance is very small indeed: it consists of the n relation names in

R. Since we do not expect n t o run as high as 20-and certainly no higher than 32-we

may encode a set of relation names as a single 32-bit integer. This representation is not

only compact, but also provides for extremely rapid execution of the set manipulations

we require in the algorithm.

Specifically, we will assign sets of relations names t o integers in the following manner.

We will represent the singleton {Ro) by the integer 2'; {R1) by 2'; and so on, so that in

general {R;) becomes 2i. Representations for larger sets will be obtained by summation;

for example, {Roy R2} becomes 2' + 2' = 1 + 4 = 5 (or 101 in binary), and {Roy R1, Rs}

becomes 2' + 2' + 2' = 1 + 2 + 32 = 35 (or 10011 in binary). This encoding of sets is

called the characteristic vector.

Note that a given small integer can have two completely different interpretations as

a relation name on the one hand, and as a set of relation names on the other hand.

The integer 5 representing the relation name R5 should not be confused with the integer

5 representing the set {Ro, R2). TO minimize such confusion, our pseudo-code will use

separate type names for integers in these two roles.

The code in Figure 4.1 is adapted from Figure 3.1; the portions that are new or

changed are highlighted in shadowboxes. The limit we have placed on the problem size,

max-n = 18, reflects the observations of Section 3.4.4. The type relation-name has now

become a subrange of the integers, as discussed above. The new type setrep, also an

integer subrange, will now be used where formerly we specified set[relation-name].

We have been forced t o introduce the constant max-n mainly because our new, concrete

declaration for table reserves space for an array and has t o say how much space is needed.

In an actual implementation, one might prefer to allocate space for table dynamically t o

avoid waste. Indeed, one of the useful properties of the integer representation of sets is

that it is dense in the sense that every integer in the range [0, 2n - 11 is the representation

for some subset of R = {Ro, R1,. . . , Rn-'}. Because of this property, a dynamically

type relation-name = 0 . . (max-n - 1)
type setrep = 0 . . (2ma2-n -

type rel-data = array indexed by relation-name of
record

cardinality : real
end

var table : array indexed by -1 of
record

cardinality : real
best-lhs : [setrep 1
cost : real

end

Figure 4.1: Concrete declarations

allocated table with index range [0, 2n - 11 wastes no space on table entries for sets that

do not exist. (It does waste space by reserving an entry for the empty set of relations,

which "exists" but plays no part in the Blitzsplit algorithm. However, the entry for the

empty set is the only one that is wasteful in this way.)

Moreover, the compactness of the integer representation for sets has the consequence

that each entry of the table need occupy only 20 bytes: 8 bytes for each of the reals

cardinality and cost, and 4 bytes for the bit-vector best -lhs.' The 0(2n) space complexity

estimate given previously may now be refined to 2 0 . 2n bytes. For n = 16, the space

requirement comes to about 1.3MB, a relatively modest amount by current standards; for

n = 18, the requirement is 5.2MB-more substantial, but still not outrageous. (Space

usage will rise by a small factor-ordinarily between 1.2 and 4, depending on the cost

model and whatnot-when we extend the table entries in later chapters.)

'We assume IEEE double-precision floating point except where otherwise noted, not because the prob-
lem demands high precision, but because we may encounter a wide range of exponents.

4.2 Set Operations using Integer Arithmetic

We will assume that the available operations on integers include the usual two's com-

plement addition, subtraction, and negation, as well as several bit-oriented operations:

bit-wise and, here denoted &; bit-wise negation (or one's complement negation), here de-

noted "; and binary left-shift of the constant 1, here denoted 2k, where k is the shift

distance. When its operands represent sets, & may be thought of as the set-intersection

operator; " may be thought of as set complement (with respect t o the domain). Note

that when we use the operation 2k to promote a relation name into a singleton set, the

exponent k should be thought of as having type relation-name, while the result should be

thought of as having type setrep.

Our code will take advantage of the fact that integer subtraction, as in x- y, represents

set subtraction when the set represented by y is contained in the set represented by x;

and that addition, as in x + y, represents set union when x and y represent disjoint sets.

4.3 The Auxiliary Function least-subset

At several points we will make use of the function leastsubset illustrated in Figure 4.2.

Given the input 27+24+23, to take one example, this function returns 23; given 215+25, it

returns 25. It always returns the low-order bit of its input, so in some sense it is returning

the "least" nonempty subset of the set represented by the input. It achieves this result

through a well-worn bit-manipulation trick that can be explained as follows.

The two's complement of a binary number is obtained by inverting all bits, then adding

one. For example, if we assume &bit words, 10011000, when inverted, becomes 01100111,

and then adding one yields 01101000. But observe that if the original binary number had

exactly k trailing zero-bits (in our example, k = 3), these become one-bits when inverted,

and then adding one to them has the effect of restoring them t o zero-bits through carry

function least-subset(s : setrep) : setrep
return s & -s

end function

Figure 4.2: Least-subset function

propagation. The carry finally propagates into the (k + 1)st-lowest bit, which, having

previously been inverted from one to zero, is restored to one. At that point the carry

propagation stops, and all higher-order bits remain inverted. In short, an alternative

description of the two's complement operation is that it inverts all bits to the left of the

lowermost one-bit. In our example, the high-order bits 1001 changed to 0110, but the

lowermost one-bit and the trailing zero-bits were unaffected. Hence the bit-wise and of a

binary number with its two's complement erases its high-order bits and preserves just the

lowermost one-bit.

4.4 Procedure blitzsplit

Armed with least-subset, let us now consider the concrete realization of the procedures

of the Blitzsplit algorithm, beginning in Figure 4.3 with procedure blitzsplit. The first

argument to this procedure is now simply an integer specifying the number n of relations

over which we wish to compute a Cartesian product. Since we are assuming the relations

will be identified by index values in the range [0, n - 11, there is no need to pass a set of

relation names to blitzsplit.

In the first loop of blitzsplit, R now is an integer rather than a relation name, and

the iteration over set elements in the pseudo-code is realized by simply counting from 0

to n - 1. The second loop has also turned into a simple counting loop and is no longer

a nested pair of loops. Here s is a setrep, i.e., an integer corresponding to a set S in the

abstract code; to bind s to the representations of all nonempty subsets of {Roy . . . , Rn-l),

we simply step through the integers from 1 to 2n - 1. There are two details that must be

observed to ensure the soundness of this implementation.

First, the procedures compute-properties and find-bestsplit should be called only with

arguments representing sets of at least two relation names; but sequentially stepping

through the integers from 1 to 2n - 1 yields the singleton sets intermixed with all the

others. To get around this difficulty, the test "if leastsubset(s) # s . . . " bypasses the

singleton sets: a bit pattern is equal to its low-order bit just when there is exactly one bit

in the pattern to begin with.

procedure blitzsplit(n : integer 1, reldata : reldata)

f o r (R : = 0 t o n - I I d o
init-singleton(R, rel-data)

e n d for

if leastsubset(s) f s t h e n
compute-properties (s)
find-best -split (s)

e n d if
e n d for

I I

e n d procedure

Figure 4.3: Concrete blitzsplit

Second, recall that compute-properties and find-best-split rely on the subsets-first as-

sumption. That is, to be sure they will work correctly, we must apply them to all subsets

of a set 7 before applying them to 7 itself. But this requirement will indeed be satisfied

if we step through the integers sequentially, for the following reason: If S $ 7, and s and

t are their respective integer representations, then s < t, since s is just t with some of its

bits zeroed out. (Note, though, that the converse does not hold; for example, 2 O < 2l but

{Ro) {R1).) Consequently, s will be encountered before t in sequential iteration.

4.5 Procedures init -singleton and compute -properties

The realizations of init-singleton and conapute-properties (Figure 4.4) contain no surprises.

Aside from the fact that the set variables S, U, and V, which appeared in script in the

abstract code, have been replaced with the setrep variables s, u, and v , there are just

three small changes.

a The empty-set constant has been replaced by its integer representation, 0.

Instead of {R) we now write 2R to create a singleton set.

The nondeterministic choose-such-that statement in compute-properties has been

replaced by a deterministic assignment statement (the highlighted statement in Fig-

ure 4.4).

procedure initsingleton(R : relation-name, rel-data : reldata)

table[2R].cardinality := rel-data[R].cardinality

table[2R 1. bestlhs :=

table[1 2R].cost := 0.0
end procedure

procedure c o m p u t e - p r o p e r t i e s ([X b
u := least subset (s)

v : = s - u
table[s] .caniinality := table [u] .cardinality * table[v].caniinality

end procedure

Figure 4.4: Concrete initsingleton and compute-properties

The use of the highlighted assignment statement as a replacement for the original choose-

such-that statement is justified as follows. Since the argument s of compute-properties

is a set of a t least two relation names, any singleton subset of it is a nonempty, proper

subset. So the least-subset in particular, being a singleton, satisfies the conditions of the

choice; and since the choice was not otherwise restricted, this choice is as good as any

other.

4.6 The Auxiliary Function next -subset

In find-best-split we face a new problem when we try to make concrete the for-each-

such-that loop that scans through all possible splits of a given set S. In the abstract

code, the loop body executes once for each possible binding of Slhs to a nonempty, proper

subset of S. For a loop in the concrete code to achieve the same effect, its loop variable

must be bound successively to each integer representing a nonempty, proper subset of S.

In other words, given a setrep s representing a set S, the concrete code must somehow

step through all the integers whose bits are a nonempty, proper subset of the bits in s .

If the bits in s are contiguous-for example, if s = 24 + 23 + 22-then stepping through

the subsets is easy. In that case one may just start with 22, and on each iteration add

22 until one reaches 2* + 23 + 22. But if s has "holes" in it, as in 2'' + 27 + 26 + 22,

the stepping cannot be accomplished by iterated addition of the lowermost bit, because

during some of those additions carry bits will spill into the holes and will not propagate

as they should. However, this problem has a remarkably straightforward remedy.

4.6.1 Conception

The auxiliary function next-subset in Figure 4.5 provides the means for stepping through

all the subsets of set s without tripping over the holes in its bit pattern. The conception

behind next-subset is t o build "bridges" over the holes, thereby linking together the islands

of one-bits in s. Then during addition, carry bits will propagate from one island t o the

next by crossing the bridges. Once the addition is completed, the bridges may be removed.

The particulars of this process are illustrated in Figure 4.6. In the first line of the

figure, our example set s = 2'' + 27 + 26 + 2' is represented as a 12-bit binary number;

the labels across the top of the figure reflect the positions of the bits. Just below the

binary representation of s is a depiction of the islands of one-bits that lie within s. In

this depiction, the zero-bits appear as blanks so as to create a visual contrast between the

islands and the holes. (Inasmuch as islands has a numerical value, it is the same as that

of s, namely 2'' + 2' + 26 + 22. Throughout the figure, blanks are to be interpreted as

having zero value.) The next line depicts bridges of one-bits that span the holes between

the islands. Numerically, bridges is just the one's complement of s.

Subsequent lines in the figure illustrate the process of iterating through the subsets of

s. Starting with four zero-bits in the positions that lie within the islands ("start"), we

first fill in the holes between these bits with bridges ("build bridges"). Then we add 1

at the low-order bit ("increment"); this addition ripples through bit-values 2' and 2' and

winds up turning on the bit for 22. After the bridges have been stripped away ("burn

bridges"), we are left with the bit pattern 0,0,0,1 in the island bit positions.

The figure shows three more iterations as the island bits run through the values 0,0,1,0,

then 0,0,1,1, and finally 0,1,0,0. In effect we are counting in binary within the island bits,

function next-subset(subset : setrep, s : setrep) : setrep
return s &(subset - s)

end function

Figure 4.5: Next-subset function

11 10 9 8 7 6 5 4 3 2 1 0
s 0 1 00 11 000 1 0 0
islands 1 1 1 1
bridges 1 11 111 11

start 0 0 0 0

build bridges 1 0 11 00 111 0 11
increment 1 0 11 00 1 1 1 1 00

burn bridges 0 0 0 1

build bridges 1 0 1 1 0 0 1 1 1 1 1 1
increment 1 0 11 0 1 000 0 00
burn bridges 0 0 1 0

build bridges 1 0 1 1 0 1 1 1 1 0 1 1
increment 1 0 11 01 1 1 1 1 00

burn bridges 0 0 1 1

buildbridges 1 0 11 01 111 1 11
increment 1 0 11 10 000 0 0 0
burn bridges 0 10 0

Figure 4.6: Counting inside of a bit pattern

just as if there were no holes, and the islands were contiguous.

4.6.2 Implementation

We can now explain the expression s&(subset - s) in the definition of next-subset.

We are given a value subset that lies within the islands defined by s , and we are t o

find the next binary value that lies within those islands. The first step is t o build bridges,

which we achieve by adding the binary number bridges t o subset; but since bridges is just

the one's complement of s , the result of this first step is subset + "s. (Observe that the

bits in subset and "s are necessarily disjoint.)

The next step is t o add 1, which yields subset + "s + 1. But "s + 1 is just the two's

complement of s, i.e., -s, so at the end of the second step we have subset - s.

Finally, in the third step, a bitwise and with s destroys bridges and preserves only

island bits. Thus we have s &(subset - s).

The foregoing explanation notwithstanding, the appearance of subtraction in the ex-

pression s &(subset - s) may seem counterintuitive. But it makes perfect sense if one

considers particular special cases. One important case is seen when s is the maximal set

consisting of all one-bits. Since the pattern of all one-bits represents -1 in two's comple-

ment arithmetic, s &(subset-s) = -1 &(subset- (-1)) = -1 &(subset+l) = subset+l. In

other words, when the set s is all-inclusive, next-subset simply steps sequentially through

the integers. The cases where s is the two's complement representation of -2, -4, etc.,

are similar-next-subset then steps by 2 through the even integers, or by 4 through the

multiples of four, and so on.

Note also that in the special case where subset equals 0, next-subset returns s &(O-s) =

s & -s. Thus, next-subset(0, s) is the same as least-subset(s). There is nothing surprising

about these facts, but if nothing else they are reassuring, for they show that next-subset

behaves as it ought in the cases that are easiest to understand.

4.6.3 Generalization

The function nextsubset presented above counts upward in binary inside the island bits

of a bit pattern. But counting downward inside a bit pattern is also easily achieved by

means of the function prev-subset(subset, s) = s&(subset - 1). The asymmetry between

this definition and that for next-subset stems from the fact that the zero-bits between the

islands in s already form effective bridges for the propagation of borrows, and hence do

not need to be altered prior to the subtraction of 1.

More generally, the subtrahend 1 in prev-subset can be replaced by any value that

lies within the island bits of s, and subtraction will continue t o work correctly inside the

island bits, just as if these bits were contiguous. Thus, if k lies within the island bits of

s , one can define prev-subset(subset, s) = s&(subset - k) to step through the subsets by

some stride determined by k. Note that any odd stride (i.e., odd with respect to the island

bits) may be used to cycle through all the subsets before any subset is repeated.

Although we use only nextsubset in the present work, it is conceivable that one could

profit by choosing strides other than +1 for stepping through the subsets in alternative

orders. In particular, the assumption in Section 3.4.2 that the subsets are visited in a

random order might come closer to being satisfied (at least in appearance) with some

different stride. Use of a large stride with frequent wraparound can ensure tha t none of

the bits within s remains in the same state for a long time.

4.7 Procedure find-best -split

With the function next-subset in hand, we obtain a concrete realization of procedure

find-best-split without difficulty (Figure 4.7). For simplicity, in this realization of the

code we assume that the cost function K is the naive cost function KO. In particular, we

assume that r ; * p l i t (. . .) = 0, and so dependent-cost and operand-cost are one and the same.

For the most part this concrete code is a fairly direct transcription of the abstract

procedure find-bestsplit in Figure 3.2, but (aside from the omission of dependent-cost)

there is one detail of the concrete code in which we have cheated a bit. Rather than

use next-subset t o iterate through all the subpatterns of s, as one might expect, we have

instead used next-subset to iterate through just half of those patterns. Suppose s is

27 + 26 + 2'. Then the new variable high-part acquires the value 27 + 26, i.e., all bits of s

save the least bit. I t is high-part, not s, that we iterate through, so on successive iterations

of the loop, lhs takes on the values 26, then 27, and finally 27 + 26. The effect of leaving

the bit 22 out of the iteration is that we consider only those splits that place R2 on the

right-hand side of the Cartesian product expression. Symmetry assures that if there is a

least-cost plan with R2 on the left, then there is a plan of equally low cost with R2 on the

right-because the right- and left-hand sides of the expression are interchangeable. So we

do not lose anything by consigning some particular relation (R2 in our example) t o the

right-hand side. We do however gain approximately a factor of two in speed.

Tha t gain appears t o rely on the symmetry of our cost model. But even when the

cost model is not symmetric, it is beneficial t o structure the iteration as we have done in

Figure 4.7. Imagine a cost model such that K, and hence ~ ~ p ' ~ ~ too, is asymmetric with

procedure jnd-best-split(s : setrep)
.- 00 best-costso-far .-

high-part := s - least_subset(s)
lhs := 0
while lhs < high-part d o

lhs := nextsubset(lhs, high-part)
rhs := s - lhs
operand-cost := table [lhs].cost + table[rhs].cost
if operand-cost < best-cost-so-far then

best-costso-far := operand-cost
table[s]. bestlhs := lhs

end if
end while
table[s].cost := best -cost-so-far + table[s].cardinality

end procedure

Figure 4.7: Concrete find-bestsplit

i f operand -cost < best -cost-so-far then
dependent-cost := operand-cost + ~ * p ' ~ ' (s , lhs, rhs)
if dependent-cost < best-cost-so-far then

best -cost -so-far := dependent -cost
table[s]. best l h s := lhs

end if

dependent-cost := operand-cost + K * J " ~ ' (~ , rhs, lhs)
if dependent-cost < best-costso-far then

best-cost-so-far := dependent-cost
table[s]. best-lhs := rhs

end if
end if

Figure 4.8: Use of an asymmetric cost function

respect to the left-hand and right-hand inputs. Then the if statement inside the while

loop of Figure 4.7 must be replaced by the more complicated if statement of Figure 4.8.

By computing dependent-cost twice, with the roles of lhs and rhs reversed the second

time, Figure 4.8 compensates for the fact that lhs takes on only half of the candidate

patterns: the other half are all taken on by rhs. The functionality is therefore the same

as if lhs iterated through all the subpatterns of s , but the loop overhead is only half as

great.

In fact, the savings are not confined to loop overhead, As noted in our discussion of

complexity, the frequency with which the test opemnd-cost < best-costso-far evaluates

to true tends to be low, and so the entire body of the if block of Figure 4.8 is often skipped

over. Because of this effect, asymmetric cost models need not entail significantly greater

optimization effort than symmetric ones.

4.8 Implementation of Concrete Code in C

Although we have translated the abstract code of Figure 3.2 into a more concrete form in

the figures of this chapter, the result is still pseudo-code. To execute this code and measure

its performance, one must take the further step of translating the concrete pseudo-code

into an actual programming language such as C. Appendix B (page 281) shows the result

of such a translation, in which numerous small improvements have been made along the

way. The most significant differences between our concrete pseudo-code and the C

implementation are the following:

The table table, which in the pseudo-code has three fields per entry, has been de-

composed vertically in the C code. That is, it has been made into three separate

arrays, named t -card ina l i ty , t - b e s t l h s , and t -cost , each with a scalar element

type. This decomposition appears to improve processor-cache performance.

The C code has two versions of find-best-split, and so to scan a given subset of

relations, one of the two versions is chosen on the basis of the number of relations

in the subset.

- The function f i n d - b e s t s p l i t 2 , for sets of three or more relations, begins

with three lines of code (labeled with the comment "heuristic to reduce initial

best_costsofar") that could just as well be omitted as far as functionality is

concerned. The idea behind the heuristic is to examine, before any others, two

splits of s in which the relations of the left-hand or right-hand side are known

to "go well togetherv--in the sense that these sets of relations participated

in an optimal split- for some subset of s. One thereby hopes to lower the

frequency with which the condition opemnd-cost < best-cost-so-far is satisfied.

(The author now believes that this heuristic has little or no value in join-order

optimization.)

- In addition, f i n d - b e s t s p l i t 2 unrolls its loop four times. A further economy

is made possible by the fact that successive values produced by nextsubset fall

into a cyclic pattern. By precomputing the pattern that next-subset would pro-

duce on four successive calls, one cuts the number of next-subset computations

by a factor of four.

- Both of the C versions of find-best-split avoid computation of the floating-point

sum table[lhs].cost + table[rhs].cost if it can be ascertained that the sum is not

needed.

a In representing real numbers, C distinguishes between Cbyte "floats" and 8-byte

"doubles." In our application, we may encounter extremely large exponents that

can be accommodated only by double^;^ floats are inadequate in general. However,

we reason that any Cartesian product with cost exceeding lo3' is of no practical

interest. On this basis we use floats for cost values.

As a consequence, if the least-cost solution to a given Cartesian product optimiza-

tion problem does exceed lo3' (COST-LIMIT in the code), our C implementation of

blitzsplit will return empty-handed. But if there exists any solution with a cost of

lo3' or less, we are still assured of finding it, and indeed of finding the cheapest such

solution.

To achieve further savings in floating-point manipulations, we sometimes compare

floats using integer operations. That is, we take the raw 32-bit encodings of floats,

and pretend that these 32-bit values are integers. It is a property of many floating-

point representations, including those of the IEEE standard, that if only non-

negative, finite values are considered, smaller integers encode smaller floating-point

'Most newer machines conform to the IEEE floating-point standard, in which the range for double-
precision values exceeds 600 orders of magnitude. However, some older architectures, such as the VAX,
use exponent fields of the same width for doubles as for floats. On such architectures one needs to simulate
wide-range floating-point arithmetic-for example, using (integer, float) pairs-to avoid overflow on join
problems involving many large relations and many s m d selectivities.

values, and larger integers encode larger floating-point values. This property justifies

our use of integer < t o compare floating costs.

The improvements listed above have proved to be beneficial t o the performance of the

algorithm in tests run on a Sun SPARCstation Z3 Whether these benefits carry over

t o other platforms has not been investigated; presumably at least some of them do. In

all likelihood many other improvements of a similar nature are possible, some platform-

dependent, and some not.

4.9 Empirical 0 bservat ions

Later, in Chapter 6, we will present a detailed analysis of our algorithm's performance on

join-optimization problems. But there is merit in taking a preliminary look a t performance

now. Patterns seen in the measurements here will provide intuition behind decisions t o be

made when we generalize the algorithm beyond Cartesian products. They will also give

us clues about how t o attack the much more difficult problem of measuring performance

subsequently, when we must worry about the join-graph topology, selectivity values, and

the cost model in addition t o the variables we will consider here.

4.9.1 Selection of Sample Points

To measure our optimizer's performance, we must select a sample Cartesian product query,

or a set of such queries, to use as input. How should we select those samples? Even at this

stage we are dealing with a query space that has many degrees of freedom; i t is not obvious

how t o find sample points in that space that will be representative of the remainder of the

space. However, we have nothing to lose by surveying a cross section of the query space in

the hope of discovering regularities. As a first step let us therefore examine the subspace

in which the number of relations n is fixed at 10.

3The performance judgments reported here, and the Sun timings reported in this chapter, are based
on measurements taken on a lightly loaded Sun 4/75 running under SunOS 4.1.3-U1 Version B at circa
40MHz with a 64KB unified instruction + data cache; the C compiler was gcc version 2.5.8 invoked as gcc
-02.

Thus, we are assuming that the optimization problem involves n = 10 cardinalities t o

be given as input. Each cardinality may vary independently, so we are still faced with

the challenge of exploring a 10-dimensional problem space. But common sense suggests

that it may not be necessary to vary each cardinality independently; instead i t may be

more profitable t o identify important features of the input configurations, and t o consider

variations in those features. One interesting feature is the geometric mean of the 10

cardinalities. A second feature is the spread of the cardinalities-the ratio between the

maximum and minimum among them. Let us see what we can learn by varying just these

two features.

(Note that what we call the spread of the cardinalities is closely related to the statistical

concept of variance [23]. In varying the geometric mean and spread of the cardinalities,

we are effectively varying the first two moments of the distribution of the cardinalities'

logarithms.)

Since we have just replaced 10 dimensions with merely 2 features, there are still 8

degrees of freedom left over that we must resolve in some manner. We do so as follows.

Upon choosing a mean cardinality p and a spread S, we assign cardinalities to Ro through

Rg such that Ro is smallest and Rr, largest, with the cardinalities of the remaining relations

spaced evenly between these extremes on a logarithmic scale. Hence lRol . IRgl = p2 and

IR91/1Rol = S, and there is a constant ratio p = s1f9 such that IRi+ll/lRil = p for i from 0

t o 8. For example, if p = lo5 and S = lo9, then lRol = z 3.162, while IRgl = x

3.16. lo9, so that lRol. IRgl = = 101° = p2; moreover p = ~ ' 1 ~ = (1 0 ~) ~ l ~ = 10,

and hence the R; form the sequence 3.162,31.62,316.2, . . . ,3.162.109. We use this policy

t o assign cardinalities t o the input relations in all the measurements reported in this

chapter.

Figure 4.9 shows how optimization time varies with our two selected features. The

overall shape of Figure 4.9(a) is attributable to the fact that the total number of iterations

of the loop in find-best-split is constant except when the Cartesian product under consid-

eration entails costs exceeding COSTLIMIT (1 0 ~ ~) . Such costs arise when mean cardinality

reaches about lo3.', for then the cardinality of the result, a 10-way Cartesian product,

becomes 103.5.10 = 10~~-hence the total cost of the product cannot be less than

time in secs.
0.03

0.025
0.02

0.015

1

mean cardinality

(a) The big picture

time in secs. &
0.03

0.025
0.02

1

1
rnadmin cardinality

mean cardinality ratio

(b) Close-up view of rear corner of big picture

Figure 4.9: Cartesian product optimization time for 10 relations, as a function of mean
cardinality and ratio of maximum to minimum cardinality

As mean cardinality rises above 103e5, one starts to encounter products of fewer than 10

relations whose cardinality exceeds and t o avoid overflowing its cost variables, our

implementation will refrain from optimizing such products. Consequently, optimization

time falls off steeply beyond this point. But for mean cardinalities below this threshold,

the picture is basically a large plateau.

At the rear corner of the plateau, however, there is a sharp upward aberration. This

aberration is brought into focus in the close-up view of Figure 4.9(b). The shape of this

corner surface is attributable t o variations in the frequency with which the if conditions

are satisfied in the loop in find-best-split. When the costs of alternative splits considered

in find-bestsplit are spaced far apart, it is often possible to dismiss an uncompetitive split

with a cursory glance at its left- or right-hand component alone. More effort is needed t o

decide whether alternatives are competitive when the costs are close together.

The spacing of costs of alternative splits depends both on the mean cardinality and

on the spread of the cardinalities. When mean cardinality is 1 and the spread factor is 1,

all intermediate results for all subsets also have cardinality 1; in this situation, there is no

variation a t all in the costs of alternative splits.4 If mean cardinality rises but the spread

remains a t 1, there will be variation due t o the fact that products of larger numbers of

relations have greater cardinality than products of smaller numbers of relations. On the

other hand, if the cardinality remains a t 1 but the spread increases, there will be variation

simply because different products will be made from different mixes of relations.

As the figure shows, the interplay between mean cardinality and spread is complex,

but well-behaved. There is no evidence of discontinuities anywhere in the surface; it seems

a good bet that the worst time that appears in the figure is not far from the worst time

possible. It is also notable how quickly the optimization time drops off from the corner

mound; mean cardinalities as low as 5 yield times that are not far different from the

average over the whole plateau.

When mean cardinality is 5 or greater, the spread of the cardinalities no longer seems

t o make a great deal of difference. From this observation we leap t o the conjecture that

the 8 degrees of freedom that we threw away earlier probably would not make a great deal

of difference either. The measurements in the figure are based on cardinalities equally

spaced (logarithmically) between the minimum and the maximum. What would happen

if the cardinalities were spaced irregularly? One cannot say for certain without making

innumerable measurements, but it seems most implausible that the individual spacings

should have a big effect when the aggregate spacing-the ratio between the maximum and

minimum-evidently does not.

4~owever, somewhat paradoxically, this case is not the very worst one. With no variation in costs, the
best lhs for a given set will be fixed on the first iteration of the loop in find-bestsplit, and will never be
bested; the innermost if will fail on all subsequent iterations. A harder case is when there is almost no
variation, but just enough to leave room for updates to best lhs .

The 8 degrees of freedom we discarded determine not only the spacing between the

cardinalities, but also the order of the cardinalities. The measurements shown in the figure

are based on Ro being smallest, R1 being next smallest, and so on. Might one obtain

different measurements with a different ordering? In fact, the ordering of the cardinalities

does affect performance; the ascending order we have used here is actually not an especially

favorable one. At present we do not know how t o predict which orderings will do better

and which will d o worse (though a simple descending order often gives noticeably better

results than an ascending order). Our ignorance on this point represents an opportunity

for further improvement in the implementation-for nothing stands in the way of adding

a preprocessing step that rearranges the input cardinalities (in effect by renaming the

relations) t o obtain a more favorable ordering. But lacking a solid understanding of the

issue, for the present we shall stick with a simple ascending order. The performance figures

given here should be regarded as conservative with respect to order; it is possible t o do

better.

Our cross-sectional measurements and the conclusions and conjectures we drew from

them were based on a fixed number of relations n = 10. With different n one obtains

numerically different results, but qualitatively the effects described here and displayed in

Figure 4.9 are entirely typical.

The smooth and generally flat shape of the optimization time function makes i t possible

t o give a fairly informative characterization of the implementation's performance at a given

n with just two measurements:

a A "typical" performance figure, meant t o be representative of the plateau, and taken

at the sample point with mean cardinality 50 and spread 10. These parameters take

us a safe distance from the rear corner mound, and at the same time, even with

n = 18, keep clear of the dropoff that results when costs exceed (Note that

with n = 18, a mean cardinality of only 100 falls off the edge of the plateau, since

= 102.18 = 1036 4

A "near-worst" figure, taken a t mean cardinality 1.01 and spread 1.01. We know of

no sample point that yields higher timing figures.

4.9.2 Timings

Based on the "typical" and "near-worstn sample points discussed above, we now present

optimization times for n ranging from 3 t o 18. Table 4.1 gives both typical and near-worst

times measured on a Sun SPARCstation 2 and on a Hewlett-Packard Series 9000/755.~

Figure 4.10 gives only the typical times, in the form of a graph.

One will note, referring t o the graph, a sudden jump in the Sun timings at n = 15

and in the H P timings at n = 17. We conjecture that these jumps reflect the points a t

which the array of costs no longer can be held in processor cache. Because of these jumps,

i t is unreasonable t o try t o fit all the Sun measurements or all the HP measurements t o

a function of the form 3"Troo, + (In 2/2)n2nTcond + 2nT,,b,,t, i.e., to the execution times

predicted by formula (3.12). However, it is an interesting exercise t o attempt such a fit by

excluding the points beyond the jump-thus, excluding n 2 15 on the Sun and n > 17 on

the HP. The dashed curves in the graph illustrate such a fit, and show that formula (3.12)

indeed fits the measured timings quite well for the points that precede the jumps. From

these curve fittings, we infer that TI,,, is about 180 nsec on the Sun, and about 50 nsec

on the HP.

It is notable that if the (In 2/2)n2nTco,d term of formula (3.12) is dropped, it is not

possible t o obtain curves that fit the measured data anywhere near as well as the curves

seen here. Thus, our statistical argument regarding the execution frequency of the con-

ditional code in find-bestsplit appears to be borne out empirically, despite the fact that

our implementation of the algorithm visits the subsets in an order that is anything but

random. The success of the model may just be a lucky accident, but in any event, it does

appear that the execution count of the conditional code is roughly proportional t o n2n.

These last remarks apply only t o optimization problems whose cardinality configura-

tions lie in the plateau of Figure 4.9(a). When the cardinalities are all very small, the

execution frequency of the conditional code will be higher. On the other hand, when

the cardinalities are greater than those in the plateau, not only will the conditional code

5All Hewlett-Padcard timings were measured on a lightly loaded HP 9000/755 running under HP-UX
09.03 at 97MHz with 256KB each of instruction and data cache; the C compiler bundled with HP-UX was
invoked as cc -Aa +03. The code in Appendix B differs slightly from the version used for these timings.

time in seconds

Table 4.1: Cartesian product optimization time for a given number of relations n

Sun SPARCstation 2
typical near-worst

0.000 033 0.000 033
0.000 089 0.000 090
0.000 229 0.000 236
0.000 566 0.000 607

0.001 37 0.001 58
0.003 34 0.004 21
0.008 2 0.011 5
0.020 8 0.032 3

0.054 2 0.092 4
0.144 0.269
0.397 0.792
1.15 2.39

5.36 9.37
18.8 32.1
60 104

187 326

8 10 12 14 16 18
number of relations

H P 9000/755
typical near-worst

0.000 015 0.000 015
0.000 041 0.000 041
0.000 099 0.000 100
0.000 228 0.000 235

0.000 519 0.000 556
0.001 20 0.001 34
0.002 80 0.003 36
0.006 77 0.008 67

0.016 9 0.023 2
0.043 5 0.064 0
0.116 0.181
0.320 0.521

0.90 1.52
2.60 4.49

16.5 23.0
62 87

I I I I I I I I I

- Sun measured + *.++
- Sun fitted curve *"" ,$.--?'. - I

HP measured 9.- .
- HP fitted curve ' ' ' *+'

. .u-':~ -
..a': .+ - - ..4- .* -

.4' . .(- ...': .is - .*-, .r -
....':'. ' - .. .T -

.*v-. + -
..v'. - - ..v-. *- -

A'
)*-'*- I I I I I I I I

Figure 4.10: Cartesian product optimization time for a given number of relations n

be executed less frequently, but the function find-best-split will be skipped altogether

for many sets of relations. When join predicates are added t o the picture, we will be

able t o capitalize on the latter effect in ways that are not possible in Cartesian product

optimization.

4.10 Summary

In this chapter we have descended from high-level algorithmic matters into a detailed

investigation of implementation considerations. We drew on a combination of lightweight

da ta representations and coding tricks in the pursuit of high performance.

Our empirical results validate our approach, a t least in the limited context of Cartesian

product optimization. They also reveal performance properties of our algorithm that

would have been difficult to predict from first principles. Especially interesting is the

algorithm's insensitivity to variations in the spread of the input cardinalities except at

very low mean cardinalities-and the consequent flatness of the optimization time function

over a wide range of possible inputs. That flatness allows us to say with some confidence

that the performance trends seen in Table 4.1 and Figure 4.10 are not a fluke of our chosen

sample points, but are representative.

Having obtained what we needed from this venture into implementation details, we

shall revert in the remaining chapters t o a more abstract treatment of the subject, and

say no more about bit manipulations, floating-point representations, or cache effects.

Chapter 5

Support for Join Predicates

In the last two chapters we focused on Cartesian product optimization. Because there were

no join predicates to contend with, the cardinality of the product over a set {A, B, C) was

simply [A/ - IBI JCI; consequently, computation of cardinalities was a trivial part of the

problem. But now, when we take join predicates into account, we have a little more work

t o do t o compute cardinalities.

Suppose the join of {A, B, C) can be computed by the expression (A W, B) W,,,, C,

where p, q, and r are predicates. Then the join-result cardinality (henceforth, just join

cardinality) is IAl. I BI . ICI . selectivitdp) selectivitdq) . selectivity(r). So if we can identify

such an expression for joining { A , B, C), it will be straightforward to obtain the cardinality

of the result. But given just {A, B,C), how can we deduce p, q, and r? Worse, what

if there is another expression for the join of {A, B , C) that uses dinerent predicates-

say (C W, A) W t B? Which expression should we take as the basis for our cardinality

computation?

As we shall see shortly, the worries lurking behind these questions are unfounded. All

sensible expressions that join {A, B, C) must involve exactly the same predicates, and

these predicates can be deduced without actually constructing any of the join expressions

in which they participate. In fact, although the computation of cardinalities in the presence

of predicates is more complicated than in the Cartesian product case, the extra effort

required is surprisingly slight.

In this chapter we present techniques for accommodating join predicates under two

sets of assumptions. First, we consider the case where the predicates are independent, and

second, we develop a mechanism that compensates for redundant predicates. But before

getting deeply into either of these topics, let us start off with a few general observations

about join graphs and join-result cardinalities.

5.1 Join Graphs, Subgraphs, Predicates, and Cardinalities

Consider the join graph in Figure 5.l(a). Its nodes are labeled with the relation names
- - - A

A, B, C, and D; we will identify its edges by the names AB, AC, BC, AD, and G,
and these names will also serve to identify the corresponding predicates. Following graph-

theoretic convention, we may characterize the graph as an ordered pair G = (R , P) ,

where R is the node set {A, B , C, D}, and the edge set P is the set of predicate names

{Xz,Z,E,E,Ej}.

5.1.1 Induced Subgraphs

Now suppose we are interested in the cardinality that results from a join over the subset

S = {A, B,C). Let Q be the set of edges wholly contained in S (i.e., those with both

endpoints in S)-namely {AB, AC, BC}. Then the subgraph (S, Q) of G , illustrated in

Figure 5. l(b), is called the subgraph of G induced by S. One can see that in the course

of a join of the relations named in S, the predicates that will be applied will be exactly

those in the subgraph (S, &)-no more and no fewer. No more, because predicates not

in & refer t o relations not in S, so these predicates cannot possibly be evaluated when

only the relations in S are available. No fewer, because there is no benefit in deferring the

application of a predicate once its referent relations have become available.

It follows that the join cardinality of S can be computed by multiplying together

the cardinalities of all the relations, and the selectivities of all the predicates, that are

represented in the induced subgraph (S, Q) shown in Figure 5.l(b).

A word of caution should be added to the assertion above that there is no benefit

in deferring the application of predicates. This assertion rests on the assumption that

predicate evaluation is cheap. Other optimizers make the same assumption, and rule out

deferral of predicate application in multiway joins. That is, if (A WPAq B) W, C is a

valid join expression, most optimizers will not consider the alternatives (A Wp B) WrAq C

(a) Sets of relation names in a (b) A subgraph
join graph

Figure 5.1: Subsets and subgraphs in a graph

and (A M, B) M,,,, C. However, those alternatives could be preferable to the original

expression if p or q involve expensive computations. Hellerstein and Stonebraker [22] de-

scribe a cost-based predicate-placement technique that achieves huge gains when expensive

predicates are deferred.

We have not investigated the applicability of their technique in the context of the

Blitzsplit algorithm. In the present work, we assume that predicates are cheap to evaluate,

and that they should therefore be evaluated a s early as possible. In other words, they

should be pushed down as far as possible.

5.1.2 Subgraphs and Join Expressions

The observations of the foregoing paragraphs tell us which predicates should be applied

in the course of a join over S, but they do not directly tell us how to construct actual join

expressions that apply those predicates. They do however give us the latter information

by implication.

Suppose we split S into two disjoint subsets U and V, as illustrated in Figure 5.2.

Then what was true for S must also be true for U and V: The predicates applied in the

course of a join over U will be just those in the subgraph induced by U, and the predicates

applied in a join over V will be those in the subgraph induced by V.

Now let U* denote the best expression for joining U, and V* the best for V (cf. page 71),

and consider a join of U* and V*. Since all relations in S participate in this join, all

Figure 5.2: Subsets and subgraphs in the graph for S = {A, B, C)

predicates wholly contained in S should also participate. But some of those predicates

may also be wholly contained in U and therefore already participate in U*, and similarly

for V. Then it is the predicates that are left over-those that span U and V-that must

qualify the join of U* and V*. In our example, the predicates spanning U and V are

and jr('C, so the correct expression for joining U* and V* is U* W E A m V*.

Because the predicates qualifying a join are completely determined by the join graph

and by the relation names on the left- and right-hand sides, we may omit predicate anno-

tations without ambiguity: U* W V*, given the join graph G above, means U* V*,

and cannot mean anything else. In the general case,

U* W v* = U* W,,"j v*

1
(5.1)

where conj = l\{p I p spans U and V

whenever U and V are disjoint sets of relation names. The predicates that span U and V

are precisely those that belong to the join of U* and V* in the sense described previously

in Section 2.2.3.

5.1.3 Cardinality Recurrence

Now to compute the join cardinality of S, we may multiply together the join cardinality

of U, the join cardinality of V, and the selectivities of all predicates spanning U and V:

n { s e ~ e c t i u i t ~ (~) I p spans U and V 1
where U n V = 0

and U U V = S.

The validity of (5.2) follows immediately from the fact that the join of S can be computed

by the join expression of (5.1) (given that U n V = 0 and U U V = S).

But this explanation may not satisfy completely. Is it not possible that the right-hand

side of (5.2) could depend on the choice of U and V? That no such danger exists, and that

the right-hand side of (5.2) gives the correct cardinality regardless of the particular choice

of U and V, can be seen by considering separately the cardinalities and the selectivities

that must participate in this product.

The cardinality of each relation in S must show up in the product exactly once, and

indeed it will; for a given relation in S is either in U, in which case its cardinality appears

as a factor in cardinality(U), or it is in V and contributes a factor to cardinality(V). The

given relation cannot be in both U and V, and hence never contributes more than one

factor to the product. These observations are valid whenever U and V are disjoint and

their union is S.

As for the selectivities, recall that the join cardinality of S must include a selectivity

factor for each predicate in the subgraph induced by S. These predicates, as noted above,

fall in three camps: those wholly contained in U, those wholly contained in V, and those

that span U and V. Those wholly contained in U contribute their selectivities as factors

in cardinality(U), and similarly for V; so the predicates that remain are just those that

span U and V. But since we explicitly include the selectivities of these predicates in

formula (5.2), these, too, are accounted for. Moreover, these three sets of predicates are

disjoint, so no predicate is counted more than once.

5.1.4 Summary

We now have some basic facts about join predicates and join cardinalities at our disposal,

and we will proceed to apply them in the context of the Blitzsplit algorithm. All the

cardinality computations in the sections that follow are based, directly or indirectly, on

equation (5.2).

Refer t o equation (5.2) once again. If U and V are both nonempty, then by the

subsets-first assumption, the values cardinality(Z.4) and cardinality(V) will be readily avail-

able when it comes time t o compute cardinality(S) in the Blitzsplit algorithm. Con-

sequently the problem of computing cardinalities reduces to the problem of computing

fl{selectivity(p) I p spans U and V); products of this form will command much of our

attention as we proceed.

5.2 Cardinality in the Presence of Predicates

In this section we shall present a technique for computing cardinalities in the presence of

simple, independent predicates. Our objective will be to enhance the Blitzsplit algorithm

so that the cardinality associated with each set S in the dynamic programming table

reflects the appropriate predicates (i.e., the predicates in the join subgraph induced by

S). Our technique will apply to arbitrary join graphs (excluding hyperedges).

We will use the observations of Section 5.1 above t o incorporate predicate selectivities

into our cardinality computations with just three multiplications per entry in the dynamic

programming table. (Since we already required one multiplication in the Cartesian product

case, the selectivity computations effectively require only two multiplications per table

entry.) Achieving this efficiency in computing the cardinalities will depend in part on

adding another field to each entry in the dynamic programming table. By extending the

table in this way, we will be able t o further capitalize on the sharing of computation tha t

dynamic programming makes possible.

First we present the conception behind our approach, and then its realization in ab-

stract pseudo-code.

5.2.1 Conception of Cardinality Computation

Our strategy takes advantage of the fact that an order may be imposed on the relation

names in the input. Conceptually it does not matter what the order is, as long as it is well-

defined and total; but for concreteness let us say that the ordering is A < B < C < D in

our example above. This ordering has nothing to do with cardinality or any other property

of relations-it is just an arbitrary ordering on the names.

We develop the conception as follows. First we define two operations, least-subset and

fan-sels, that rely on the ordering of the relation names. Then we show how to com-

pute fan-sels, and finally we show that the cardinality computation is straightforwardly

expressed in terms of least-subset and fan-sels.

Operation least-subset We have already seen an operation with this name in C h a p

ter 4. Here the definition will be slightly different, but as it turns out, equivalent, which

justifies our reuse of the name. What we need now is that least-subset(S) should be the

singleton set {R) such that R < R' for all R' in S. For example, least-subset({A, C, D)) =

{A), and leastsubset({B,C)) = (8). Our new definition matches the behavior of

the least-subset function of Chapter 4 if one takes the ordering on Roy . . . , Rn-1 to be

Ro < ... < Rn-1.

Recall that our goal in Chapter 4 was to split a set S into two disjoint subsets U and

V ; taking U = leastsubset(S) proved to be a convenient route to that goal. That U ended

up being a singleton, and moreover, a particular, well-defined singleton, was an accident

of the implementation, and completely irrelevant from the standpoint of the specification.

Here the situation is entirely different: all details of the behavior of least-subset take

on logical significance. At this stage leastsubset should be thought of not a s an implemen-

tation device, but as an abstract operation in its own right-albeit one with a very precise

specification, and one for which we are lucky enough to have an efficient implementation

waiting in the wings.

Operation fansels Before defining fan-sels, we must introduce the notion of a fan of

predicates for a set S. Again consider the set S of Figure 5.2. Since U is a singleton, the

edges emanating from U toward the relation names in V resemble the spokes of a folding

fan. In this example there are just two spokes, and z, so it is not much of a fan; but

one can well imagine if V were a larger set such as {B, C, E, J, K, L), then there could be

as many as six spokes, and the resemblance to a folding fan would emerge more strongly.

There may be many fans embedded in the subgraph induced by a set S, but when

we speak of the fan of S, we shall mean specifically the fan of predicates reaching from

least-subset(S) to the remaining relations in S. Because A is least in {A, B, C, D), the

fan we used in our illustration above was in fact the fan of S = {A, B, C).

Now to the definition of fansels. In the example of Figure 5.2, fan-sels(S) is just the

product of the selectivities of and E. More generally, for any S, fansels(S) is the

product of the selectivities of the predicates in the fan of S:

fan.sels(S) = n{selectivity(p) I p spans U and V 1
where U = least-subset(S)

and V = S - U .

One will note the similarity between this product and the n-expression that appears in

equation (5.2). The only difference is that our present characterization of the product is

more restrictive: here U must be leastsubset(S). This restriction will prove crucial to

computing fansels easily in the context of the Blitzsplit algorithm.

A recurrence for fan-sels A free-standing computation of fan-sels would presumably

require a loop or recursion to iterate through the selectivities to be multiplied together.

However, our use of fansels will not be free-standing; rather, it will occur in the context of

a dynamic programming algorithm, and we will compute fan-sels(S) for every nonempty

subset S of some set R. If we memoize the result of each such computation in our

dynamic programming table, then we have the option of expressing the results of the

later computations in terms of the earlier results-relying, as usual, on the subsets-first

assumption. By constructing a recurrence relation for fan-sels, we will be able to avoid

looping or recursion in the computation of fan-sels for any particular set S.

Suppose as before that S = {A, B, C) has been split into U = {A) and V = {B, C).

(a) A split of V (b) Subfans of S = U U

Figure 5.3: Carving up a fan

Figure 5.3(a) illustrates how V may be further subdivided into subsets W and 2. Now

consider the sets U U W and U U 2 shown in Figure 5.3(b). Since A is least in S, A must

necessarily also be least in each of the sets U U W and U U 2 . It follows that the predicates

spanning U and W constitute the fan of U U W , and the predicates spanning U and 2

constitute the fan of U U 2. Moreover, these fans are disjoint (since W and 2 are disjoint)

and their union is the fan of S (since W U 2 = V and U U V = S). From these facts we

deduce the recurrence

where U = least-subset(S)

and W n 2 = 0

and W U 2 = S - U .

In the figure, both W and 2 are singletons, but in general they need not be; (5.4) holds for

any split of V into disjoint W and 2. One may visualize the more general case by thinking

of the solid lines in Figure 5.3(b) as representing not individual predicates, but bundles of

predicates connecting U to W and U to 2, respectively. (Nor does the correctness of (5.4)

depend on U being a singleton. The necessity of U = least-subset(S) being a singleton

will be explained shortly in Section 5.2.2.)

Computing cardinality Combining equations (5.2) and (5.3), we immediately obtain

where U = leastsubset(S)

and V = S - U .

Now we are done, for by applying first equation (5.4) and then (5.5), we obtain a cardinality

for S that takes the appropriate selectivities into account; and it does so with just three

multiplications, as promised-provided only that we extend our dynamic programming

table so that it can store fan-sels(S) with each set of relations S .

5.2.2 Realization of Cardinality Computation

It is straightforward to implement the technique just described as program code. But the

foregoing discussion left some loose ends, and these need to be tied up in the code, for

computers are famously obstinate about failing to infer one's intent even when it ought

to be obvious.

One thing that ought to be obvious is that selectivities cannot be conjured up out of

thin air. Yet in our just-concluded discussion of cardinality computations, in which we

purportedly took selectivities into account, we never once referred to the predicate selec-

tivities that presumably would be supplied by the caller as input to the join optimizer.

Plainly we must have omitted something. Our omission was to give recurrence relations

without addressing the initial conditions. The recurrence relations themselves were legit-

imate, but for some sets S the recurrences shed no light. Of particular interest are the

cases of recurrence (5.4) when S is a singleton, or when S is a set of exactly two relation

names.

Consider first the case where S is a singleton. What is the fan of a singleton? If

we split singleton S into U = leastsubset(S) and V = S - U , then U = S and V = 8.

Then the fan of S is the set of predicates spanning S and the empty set, which is just

an empty set of predicates. Therefore fan-sels(S) is the empty product, i.e., 1. Note

also that if the empty set V were to be split into W and 2, then both W and 2 would

have to be the empty set themselves. It would then follow that U U W = U = S and

U U 2 = U = S. Then what recurrence (5.4) says about fan-sels(S) for singleton S is

that fansels(S) = fansels(S) - fan-sels(S), which is consistent with fan-sels(S) = 1; so

we are still respecting (5.4) even in the singleton case.l

When S has exactly two elements, then if U = least-subset(S) and V = S-U, evidently

V must be a singleton. Consequently if V is split into W and 2, then either W = V and

2 = 0, in which case UU W = S and UU2 = U, or just the reverse (i.e., W = Q and 2 = V,

in which case U U W = U and U U 2 = S). Then recurrence (5.4) degenerates into the

tautology fan-sels(S) = fan-sels(S) -1 (or, equally unhelpful, fansels(S) = 1- fansels(S)).

This tautological recurrence is the crux of the matter: the tautology tells us that when

S is a two-element set, we are free to set fan-sels(S) to whatever value we choose. In

choosing this value, we must respect the selectivity information that is to be supplied as

input to the optimizer. Observe that the fan of a two-element set consists of the one

predicate, if there is one, that connects the two elements of the set. Then for fansels(S)

we may take the externally supplied selectivity of the predicate in question. On the other

hand, if there is no predicate connecting the two elements of the set, we again have the

empty product, or 1, as the appropriate value for fan-sels(S). Another way to explain

the choice of 1 for fan-sels(S) in this situation is to imagine that the only join graphs we

deal in are cliques. Then to transform a nonclique graph into a clique, it is necessary to

add dummy edges; these dummy edges will have selectivity 1 (cf. Section 2.5.2).

The singleton sets and sets of two elements are the only anomalous cases. When S

has three elements or more, then if U = least-subset(S) and V = S -U, we can be certain

that V has at least two elements. Consequently there exists a t least one pair W, 2 of

nonempty, proper subsets of V that qualify as a split of V. In this case we are assured that

recurrence (5.4) will give us a straightforward means of computing fan-sels(S) in terms of

previously established results. But note that this assurance is obtained only by virtue of

the fact that U = least-subset(S) is guaranteed to be a singleton; and it is for this reason,

and no other, that we insisted that least-subset(S) be a singleton when we defined it in

'The equation fanlrels(S) = fan-sels(S) . fan-sels(S) has a second solution fanse l s (S) = 0. However,
if f a n - ~ e l s (S) = 0 for singleton S, then one may deduce fanse l s (S) = 0 for all S. Such an interpretation
of the recurrence is mathematically consistent, but of no apparent utility.

Section 5.2.1 above.

Let us now go through the abstract code of the Blitzsplit algorithm piece by piece,

revising where necessary to support selectivity computations, and taking care not to misuse

the recurrences.

Declarations Figure 5.4 revises the declarations for the Blitzsplit algorithm. The verti-

cal dots indicate that we still have a type rel-data, but since it is unchanged from Figure 3.1

(page 75), it is not shown here. However, we have declared a new type predicate (shad-

owboxed) that characterizes a predicate: a predicate record identifies the relation names

mentioned by the predicate-these are the predicate's endpoints when it is viewed as an

edge in the join graph-as well as the predicate's selectivity. As long as hyperedges are

excluded, a predicate will have exactly two endpoints, hence the endpoints field will be a

set of exactly two relation names.

As was true of the rel-data entries, one can imagine that there might be additional

fields in the predicate entries that would be necessary to support some cost models. For

example, for some cost models it might be helpful to have access to the text (or the

abstract syntax tree) of the predicates.

Aside from the addition of a predicate type, we have made one other change to the

declarations: the addition of the fan-sels field in the table entries.

Procedure blitzsplit Let us now turn to the procedures of the Blitzsplit algorithm,

starting with the top-level procedure blitzsplit. The algorithm appears in Figure 5.5 with

revisions to support predicates.

The top-level procedure blitzsplit has two differences from the version of Figure 3.2.

First, blitzsplit now has an additional argument, which identifies the predicates and their

properties. Second, two new loops have been added to blitzsplit to initialize the fan-sels

fields of the table entries for sets of two relation names.

The first loop assigns a default fan-sels value of 1 to every set of two relation names

(and also, incidentally, to every singleton set, since we did not specify that R and R'

should be distinct). In effect, this loop generates a clique of dummy edges in the join

t y p e predicate =
record

endpoints : set[relation-name]
selectivity : real

end

var table : array indexed b y set[relation-name] of
record

I fan-seb : real I
cardinality : real
best-lhs : set[relation-name]
cost : real

end

Figure 5.4: Changes to declarations to support predicates

graph, and assigns a selectivity of 1 to each such edge. Where a pair of relation names has

an actual edge connecting them, the dummy edge will be replaced with the actual one in

the second loop.

The second loop iterates through each predicate name supplied in the input, looks

up the set of two relation names that the predicate connects, and assigns to that set

a fan-sels value equal to the predicate's selectivity. Thus, the dummy selectivities are

replaced wherever actual selectivities are available.

All initialization of the fan-sels entries for the singleton and two-element sets is there-

fore completed before the start of the final loop in blitzsplit, where the entries for smaller

sets will be consulted in the computation of entries for larger sets.

Procedure init-singleton Procedure init-singleton has been changed to initialize the

fan-sels fields of singleton sets to 1 in accordance with the observations of the beginning of

this section. This initialization is not really needed, since it is performed redundantly by

the first of the new loops in blitzsplit, as noted above. On the other hand, initsingleton

is the obvious place for this initialization, and there is no harm in performing it twice.

(This initialization is cheap, and its execution count is only n.)

procedure blitzsplit(R : set[relation-name], rel-data : rel-data,
pTEq&zqset(pndimtell)

for each R E R d o
initsingleton(R, rel-data)

e n d for

for each R, R' E R do
tabIe[{R, R')].fansels := 1.0

e n d for
for each p E P d o

table[p.endpoints]. fansels := p.selectiuity
end for

for m := 2 t o 1721 d o

e n d for
e n d procedure

procedure init-singleton(R : relation-name, rel-data : rel-data) I table[{R)].fansels := 1.0

table[{R)] .cardinality := rel-data [R].cardinality
table[{R)]. bestlhs := 0
table[{R}].cost := 0.0

~ -

e n d procedure

procedure compute-properties(S : set[relation-name])
U := least -subset (S)
v : = s - U

W := least-subset(V)
Z : = V - W
tabIe[S].fansels := table[U U W].fansels * table[U U Z].fansels

C I

table[S].cardinality := table[U].cardinality * table[V].cardinality
pqzj&zzl

e n d procedure

Figure 5.5: Changes to Blitzsplit algorithm to support predicates

Procedure compute-properties The meat of the changes is in compute-properties,

the present version of which is a fairly direct transcription of equations (5.4) and (5.5) for

computing fansels and cardinality, respectively.

Several points about this code are worth noting. First, although compute-properties

will never be called with a singleton argument S, it will be called for two-element sets.

Since we know two-element sets t o be an anomalous case, we must pay special attention

t o how they are handled. If S has two elements, both U and V will be singletons, W will

be the same as V, and 2 will be empty. Therefore, we will perform the assignment

table[S]. fansels := table[S]. fansels * table[U].fansels,

which will be useless but harmless: it will multiply the fansels value associated with S

by 1.0. A possibly more pleasing though less compact alternative would be to check for

empty 2, and t o skip the assignment in that case.

Second, although we have argued that it is essential that U be obtained via least-subset,

it is not essential that W also be obtained in this manner. In defining W to be equal t o

leastsubset(V), the revised code overspecifies. What is really intended is this: "W should

be any nonempty, proper subset of V, except in the case where V is a singleton, for in that

case, V has no nonempty, proper subsets; so in that case, W should be any subset of V at

all." That is what is intended, but it is easier just to say, "W := leastsubset(V) ," which

is close enough-and which certainly conforms t o the intent.

Finally, the interested reader is referred again to the C code in Appendix B. Tha t im-

plementation of the Blitzsplit algorithm does not support predicates; even so, the program

already caIculates W and 2, and, in fact, already checks for empty 2. Consequently, the

changes required for the C code t o support predicates and selectivity computations are

very slight indeed.

Summary Support for predicates entails changes to each procedure in the Blitzsplit

algorithm of Figure 3.2 except find-best-split-the vertical dots a t the bottom of Figure 5.5

indicate that find-bestsplit remains a s before.

The loops added to blitzsplit have O(n2) time complexity, and contribute little t o over-

all execution time of the algorithm. Because the 0(3n) and O (7 ~ 2 ~) parts of the algorithm

are completely unaffected by the changes, and because the time needed by the 0(2*) part

has presumably no more than tripled (where there was one floating multiplication before,

there are now three), one would expect the impact of the changes on the algorithm's speed

t o be small, especially for larger n. Measurements bear out this expectation; under the

naive cost model (i.e., using the cost function KO defined on page 53), the slowdown at

larger n does not exceed a few percent.

The impact on space complexity is also small. We have added an &byte field t o each

entry of table. At the beginning of Chapter 4 we estimated the size of an entry at 20

bytes, but we subsequently brought the figure down to 16 bytes by representing costs in

a $-byte floating-point format. Now we are bringing it back up t o 24, a 50% increase

over 16. But total space usage for n = 16 remains just 1.6MB-a 20% increase over our

original estimate.

A final issue that we have yet to address is extraction of the optimal plan from the

completed table. The process is essentially the same as before, but t o be thorough we ought

now t o annotate the join operators with the predicates attached to them. However, we

have made no provision t o store those annotations! But they can easily be reconstructed

when the optimal plan is extracted from the dynamic programming table. The expense of

this reconstruction is small, since the reconstructed annotations are needed only for the

n - 1 operators of the optimal plan.

5.3 Accommodating Redundant Predicates

The issue of redundant predicates was first raised in Section 2.4.2. Now we consider the

problem in more detail, and propose a mechanism for dealing with it.

Recall queries (2.50) and (2.51) from page 43, and consider the following reformulation

of (2.51) as a multiway join query:

(LineItem WLSA~NO=P-PART~.,O Part) WPSARTNO=SSARTNOA Source.
L-PARTNO=SSARTNO

(5.6)

The difficulty we encounter in a query of this kind is that the predicate LPARTNO =

SPARTNO makes no difference to the result of the query, since this predicate is implied

by the other two (L-PARTNO = P-PARTNO and PPARTNO = SPARTNO). Because the

predicate L s A R T N o = S-PARTNO could equally well be omitted from the query without

affecting the result, its selectivity in the context of this query must be 1. But in other

contexts the selectivity of this same predicate may be nowhere near 1. We must therefore

allow LPARTNO = SPARTNO t o have its own independent selectivity s, but we must then

ignore s (or correct for it) in queries in which L ~ A R T N O = SJARTNO turns out t o be

redundant, as i t is here.

5.3.1 Transitive Chains

The situation just described, abstracted somewhat, is depicted graphically in Figure 5.6(a).

The graph represents the three-way join of relations A, B , and C under predicates z, -
BC, and E, whose selectivities are taken to be 112, 1/2, and 215, respectively. We shall

assume that these predicates have a particular form: is A X < B-x, is B-x 4 C-x,

and is A-x 4 c s , whete 4 is some transitive relation (not necessarily an equivalence
A -

relation). Under these circumstances we shall say that AB, BC, and = belong t o a

transitive chain.

Formally, we define a transitive chain c to be a triple c = (R,, PC, <,) satisfying these

conditions:

R, is a set of relation names; in our example, R, = {A, B, C). (In general, Rc will

be a subset, and typically a proper subset, of the set R of relation names supplied

as input t o the join optimizer.)

PC is a set of predicate names such that the graph (R,, PC) is a clique; in our example,

PC = {AB, BC, AC).

<, is a total order on the relation names in R,. (In general <, will not necessar-

ily coincide with the relation-name ordering < introduced in Section 5.2.) In our

example, A <, B <, C.

Whenever R <, R1<, R" for some R, R', R" E R,, then the predicate named R>'

is logically implied by the conjunction of R ~ I and R'RN. In our example, since
A -

A <, B <,C, the predicates AB, BC, and E must be such that = is logically

Figure 5.6: Essential and redundant predicates

-
implied by AB and BC. This requirement is satisfied by our example predicates,

since A-x 4 c z is indeed iniplied by A-x 4 B-x A B-x 4 c z .

Note that the relations and predicates of a query such as query (5.6), in which the transitive

relation 4 is in fact the equivalence relation =, can be mapped onto the transitive-chain

formalism in several different ways. In each such mapping, Rc would contain L ineI tem,

Part, and Source , and PC would contain the three predicates that appear in the query.

But <, could equally well be any total order on the names L ineI tem, Part, and Source ,

and the conditions of the formalism would be satisfied.

Let us now return t o the more abstract example depicted in Figure 5.6(a). We will refer

t o 3 and 2 as the essential predicates of the chain, since neither can be inferred as a

logical consequence of two or more other predicates in the chain; AC, on the other hand, is

a redundant predicate, because it can be inferred from 3 and z. In Figure 5.6(a), the

essential predicates are shown as solid lines, and the redundant predicate A C as a dotted

line. When 4 happens t o be an equivalence relation, the distinction between essential and

redundant predicates becomes somewhat arbitrary. However, we still make the distinction

in that case, arbitrary though i t may be, because i t will permit us t o treat all chains in

the same manner.

Figure 5.6(a) may serve as the join graph for a variety of join expressions. Among the

possibilities are the following:

Now plainly the predicate A-x + c z is redundant in both (5.7) and (5.8); i t could be

omitted from either without making a jot of difference. But what about expression (5.9)?

Omitting ~z 4 c z would affect the efficiency of evaluation of (5.9), for without this

predicate, the join of A and C would become a Cartesian product. Nonetheless, the

omission of this predicate would in no way affect the final result of (5.9), because the

presence of the two predicates AX 4 B-x and B-x 4 C-x assures that AS 4 c z must hold

for any result tuple. Consequently, for the purposes of determining the result cardinality

of expression (5.9), we may regard A-x + c z as being entirely redundant, just as i t was

in (5.7) and (5.8).

These examples illustrate the fact that join remains commutative and associative when

redundant predicates come into play-as indeed it must, since redundant predicates are

still predicates, and what is true of join in the general case must also hold in the special

case where the predicates happen to conform to a particular structure. Therefore we may

legitimately continue to speak of the join cardinality of a set of relations, and t o base our

cardinality computations on join graphs and not on join expressions.

The only new development with the introduction of transitive chains is that in a given

join graph, some edges may represent redundant predicates whose selectivities ought t o be

excluded from the cardinality computation. We will deal with this new development by

completely separating the transitive chains from the other predicates in a join optimization

problem. To this end, we will require that the Blitzsplit algorithm be given an additional

argument that characterizes the transitive chains; and in the interest of simplicity, we will

assume initially that we are dealing with just a single chain c. The cardinality computation

for a relation set S will then proceed in three steps:

1. We will compute a preliminary result cardinality for S by the method of Section 5.2,

taking into account only the ordinary, nontransitive predicates.

2. Then we will compute the selectivity of c in S, as explained in detail below, t o

account for the transitive predicates.

3. We will multiply the preliminary result cardinality for S by the selectivity of c in S

t o obtain a final result cardinality for S.

The first step involves nothing new, and the third is immediate, so it is the second step

t o which we must turn our attention.

5.3.2 Selectivity of a Chain in a Set

Let us explore further the example discussed above. Given a chain c with A <, B <,C,

we saw that in the join of {A, B , C) , the predicates 3 and were essential and

was redundant. The selectivities of the two essential predicates ought t o be factors

in the cardinality computation for {A, B , C}, while the redundant predicate should be

disregarded. Altogether, then, the predicates of the chain will contribute a factor of

se lect iv i ty(z) . seleetivity(6?) = 112. 112 = 114. On this basis we may say that the

selectivity of c in {A, B , C) is 114.

Until now we have been focusing on the set {A, B,C) because our example chain c

involves exactly the relations A, B, and C. But what is the meaning of the selectivity of

c in sets other than {A, B, C)? Let us first consider subsets of {A, B , C).

In the singleton {A), no predicates come into play, and so the selectivity of c in { A)

is 1. Similarly for {B) and {C).
C4

In {A, B), only comes into play (Figure 5.6(b)), and we may ignore BC and

. Then the selectivity of c in {A, B) is selectivity(3) = 112. Similarly for {B,C)

(Figure 5.6(c)). The case of {A, C) is interesting (Figure 5.6(d)). Here the only predicate

that comes into play is z, which was redundant in the join of { A , B,C). But is

not redundant in the join of {A, C). As we have already remarked, the join A MA,<,, C

would become a Cartesian product if the predicate were omitted. Predicate is shown

in Figure 5.6(d) as a dashed and not a dotted line because i t has become essential in the

present context. Accordingly, the selectivity of c in {A, C) is selectivity(=) = 2/5.

Next consider a superset of {A, 3, C). Suppose we are faced with computing the join

cardinality of {A, B,C, D). If we retain our example chain c without changes, then the

join graph for {A, B, C, D) will include Figure 5.6(a) as a subgraph. Once again and

will be essential, and will be redundant, exactly as in the join of {A, B , C) . The

presence of D makes no difference at all to the effect of the chain c; the selectivity of c in

{A, 3, C, D) is just 1/4.

Finally, consider the set {A, B, D) , which is neither a subset nor a superset of the

set {A, B, C). In the join of {A, B, D), 3 is the only predicate from c that comes into

play, and so the selectivity of c in {A, B , D) is 1/2. Again the presence of D makes no

difference.

Generalizing from these examples, one can see that the selectivity of a chain c in an

arbitrary set S is equal t o the selectivity of c in SnR,. Consequently, if we can determine

the selectivity of c in just the subsets of R, (including R, itself), we will obtain a complete

characterization of the chain's effect in all sets.

5.3.3 Computing Selectivities of Chains

The technique we shall use t o compute chain selectivities should come as no surprise. We

will use dynamic programming t o compute the selectivity of a chain c in all subsets of 72,.

This computation will be performed using an auxiliary table separate from the table tha t

we have used in the Blitzsplit algorithm up to this point.

The recurrence that will permit us to apply dynamic programming to chain selectivity

computation is straightforward. Before we present it, however, i t may be helpful t o look

at a few examples of chains involving a larger number of relations than we have considered

so far.

Suppose the chain c traverses the relations in R, = {A, B, C, D , E), with

Figure 5.7: Adjacency in a longer chain

As illustrated in Figure 5.7(a), most of the chain's predicates are redundant in the join of

{A, B, C, Dl E). Only the four predicates connecting adjacent relation names are essential;

we define relation names R and R" to be adjacent in S with respect to <, just if R and

R" are distinct and there is no R' in S that comes between R and R" in the ordering

<,. When two relation names R and R" are not adjacent, and there is an R' such that

R <, R' <, R" or R" <, R' <, R, then the definition of transitive chains provides that RX~
is logically implied by R?' and R'R", and hence is redundant.

Now, keeping c the same, consider what happens if we remove D from the set of relation

names to be joined (Figure 5.7(b)). The removal of D has caused C and E to become

adjacent, and consequently is essential in the join of { A , B, C, E). In effect, 6? takes

the place of and z, which disappeared along with D. Altogether the removal of

D resulted in a loss of two essential predicates and a gain of one, for a net loss of one.

The reader can verify that the removal of any other individual relation name would have

similarly reduced by one the total number of essential predicates in the join. The total is

now three.

Going a step further and removing B from the join graph in Figure 5.7(b), we obtain

in Figure 5.7(c) a graph for the join of {A, C, E). The removal of B has resulted in a net

loss of one more essential predicate, and now there are two such predicates remaining. In

fact, Figure 5.7(c) has exactly the same form as Figure 5.6(a). The fact that {A, C, E) is

embedded in a chain involving 5 relations has no bearing on the join graph for {A, C, E),

and all that matters to the determination of the essential predicates in {A, C , E) is the

restriction of <, t o {A,C, E). We care about the larger chain in which {A,C, E) is

embedded only insofar as it will affect the placement of information about {A, C, E) in

the dynamic programming table for the chain.

The foregoing observations may be summarized as follows. Given c = (R,, PC, <,) and

nonempty S R,, the essential predicates from PC in the join of S are just the IS1 - 1

predicates R>I with R and R" adjacent in S with respect to <,. The selectivity of c in S

is the product of the selectivities of these IS1 - 1 predicates. Note that even the somewhat

degenerate examples of Figures 5.6(b)-(d) conform to this rule: when S contains but two

relation names, they are necessarily adjacent, and the lone predicate connecting them is

therefore always essential. Indeed the rule holds for singleton sets S as well, since the

graph for such a set admits no predicates a t all, and hence no essential predicates.

Figure 5.7(d) illustrates the decomposition of a set of relation names-in this instance,

{A, B, C, D l E)-into two overlapping subsets-namely, {A, B, C) and {C, Dl E)-whose

essential predicates together comprise the essential predicates of the whole. The selectivity

of the chain in {A, B , C , D , E) is therefore the product of its selectivities in these two

subsets. Our recurrence for computing the product of a set's essential selectivities is

based on this decomposition.

To state the recurrence, we need t o introduce a variant of the least-subset operation

described in Section 5.2 above. Let least-in-c be the operation identical t o least-subset

except that least-in-c orders relation names by <, rather than by <. In other words,

least-in-c is chain-specific; if we encounter a new chain c', we must replace least-in-c with

the operation least-in-c' based on <,I. The desired recurrence is then

where S R,,

u u v = s ,
24 <c v,

and W = least-in-c(V).

The notation U <, V should be understood t o mean that every element of U precedes every

element of V in the ordering <,.

5.3.4 Relation-name Aliases

We assumed above that there is a distinct <, for each chain, and correspondingly a dis-

tinct least-in-c. But while these assumptions were useful in defining recurrence (5.10),

it might be undesirable to have to support a multiplicity of least-in-c functions in an

implementation. The leastsubset function corresponding to the relation-name ordering

< of Section 5.2 had the attractive property that a simple and highly efficient concrete

realization of it had already been given in Chapter '4. Arbitrary least-in-c functions corre-

sponding t o arbitrary orderings <, might be more difficult to realize; both the simplicity

and efficiency of the optimization code could suffer.

We can get by with a single leastsubset function for all chains if we are willing t o use

different names, or aliases, for the same relation in different contexts. The approach of

using aliases is best illustrated by considering an optimization problem involving more than

one chain; our pseudo-code below will provide for just one chain, but the extrapolation t o

more than one chain, using relation-name aliases, will be straightforward.

Suppose, then, that our join optimization problem involves relations F, G, H, I, and

J. Suppose further that F, G, and I participate in a chain c with F <, I <,G (we shall

refer t o this chain informally as the FIG chain); and that F, I, and J participate in a

separate chain c' with J <,I I <,I F (the JIF chain). Now in Chapter 4 we found it

convenient t o refer to relations by the generic names Ro, R1, etc., with the understanding

that these names were just stand-ins for the actual names by which the relations might

136

names
me

c: .~

Ro ".. "..
RI

R2

R3

R4

names
in c'

actual
name

generic
name

F

G

H

I

J

c: ~

c: ~

c: ~

"""" ---~~<'-"".. "".. -- --........--.-_-:.~--=;~~~=-- ""..-- """ "..-- """""--- "".. "..-- " :-..-- ~
map_to_c

c: ~

Figure 5.8: Relation-name aliases

be known externaIIy to the optimizer. In the present example, Ro might stand for F, and

RI for G, and so on. This association between actual and generic names is depicted in

Figure 5.8 by the bidirectional arrows at the left-hand end of the figure.

The assignment of actual names to generic names is unconstrained; an assignment in

which Ro stands for J, RI for I, and so on, would work just as weII as the assignment

in Figure 5.8. However, if we take as given that Ro < RI < ..., then the assignment of

actual names to generic names wiII affect the implicit ordering of the actual names. For

example, the assignmentin Figure 5.8 implies the ordering F < G < H < I < J.

Ordinarily we are not much concerned with this ordering, for while the ordering makes

a difference to the details of our cardinality computations in Section 5.2, it makes no dif-

ference to the end results of those computations. But the introduction of chains changes

the picture somewhat; some orderings may now appear more attractive than others. In-

deed, it is tantalizing to observe that there exist assignments of actual to generic names

that yield orderings consistent with the FIG chain (Le., with F < I < G), and that there

also exist assignments consistent with the JIF chain. If we were to take a FIG-consistent

assignment, then we could use our efficient implementation of leasLsubset for leasLin_c

as weII; alternatively, if we were to take a JIF-consistent assignment, our implementation

of leasLsubset could double as the implementation of leasLin_c'.

Unfortunately, though, there can exist no assignment consistent with both FIG and

JIF. In a similar vein, it would appear that no single implementation can serve for both

least-in-c and least-in-c', since these functions are intrinsically incompatible. For ex-

ample, the FIG chain requires least-in-c({F, I)) = {F), whereas the JIF chain requires

least-in-ct({F, I)) = {I).

Yet there is nothing to stop us from circumventing the difficulty by using different

sets of names in different contexts. In our computations involving the FIG chain, let

R; stand for F, and Rf for I, and RS for G. (These names appear in the right-hand

portion of Figure 5.8.) It is to be understood that, by default, indexed names are always

ordered according to their indices; thus Rg < RE < R;, reflecting the ordering F <, I <, G.

Then we will have least-subset({R~, Rf)) = {R;), which we may interpret as saying

that least-in-c({F, I)) = {F). On the other hand, in our computations involving the

JIF chain, let R$ stand for J, and R: for I, and R$ for F. Then we may interpret

least- subset({^$, RE))) = {RE)) as saying that least-in-c' ({F, I)) = {I).

By now we have introduced up to three distinct aliases for each of the actual relation

names in our example. This profusion of aliases will cause no trouble as long as we take

care to use the aliases in a consistent manner. In a given context we will restrict ourselves

to using aliases only of like kind. Specifically, in contexts having nothing to do with chains,

we will use the unadorned generic names Roy R1, etc., and no others; in the context of

selectivity computations for the FIG chain, we will use only the names R;, Ri , and R;;

and for the JIF chain, we will use only the names R$, RE), and R$. By separating the use

of distinct classes of names into mutually exclusive contexts, we pave the way for reusing

the same concrete representations for these names across contexts. In Chapter 4, we

represented Rk by the integer k; we may continue to do so, and we may likewise represent

R;i and R: by the integer k, since the meaning of k will be unambiguous in a given context.

The same efficient implementation of leastsubset may be used in all contexts.

5.3.5 Translation of Relation Names

There remains just one more issue to be addressed in connection with relation-name aliases.

If a given relation is to be known by more than one name, we need a way to translate

among the different names as we move from one context t o the next. When we give

pseudo-code for handling chains below, it will be seen that i t suffices t o translate from

names of the form Rk t o chain-specific names of the form R: and R;'-translations in the

other direction, or between pairs of chains, are not needed.

The right-hand portion of Figure 5.8 illustrates the translations applicable t o our

example. The mapping map-to-c, represented by the solid arrows, yields aliases consistent

with the FIG ordering. For example, map-to-c takes Rot representing F, to R;, which

(in the context of the FIG chain) again represents F. In the same spirit, map-to-c takes

R3, representing I, t o Rf , and R1, representing G, t o R:, as required t o obtain the FIG

ordering. By contrast, the mapping map-to-c', represented by the dashed arrows, yields

aliases consistent with the J IF ordering.

In one detail, the description just given of the mappings map-to-c and map-to-c'

is not strictly accurate. Our description implied that these mappings were functions of

type relation-name + relation-name-that is, functions which, given a relation name as

input, produce another relation name as output. But i t will prove more convenient t o

associate with these mappings the typing relation-name + set[relation-name]. Rather

than mapping Ro to R;, as suggested above, map-to-c will actually map Ro t o the singleton

{Rg), and similarly for the other cases. The advantage in taking the codomain of these

mappings to be set[relation-name] is that this typing admits the empty set as a possible

result. For example, since H (represented by RZ) does not participate in the FIG chain,

there is no sensible choice of names in c that map-to-c can map it to; the empty set is

therefore a logical alternative. Similar considerations naturally apply t o map-to-c'. In

Figure 5.8, note that both the solid and dashed arrows emanating from R2 lead t o the

empty set, reflecting the fact that H participates in neither the FIG nor the J I F chain.

Now suppose one wished t o use map-to-c to map a set of generic names t o a set of

names in c. For example, suppose one wished t o obtain the set of names in c corresponding

t o the set {Ro, R2, R3)-which represents the set of actual names {F, H, I). One could

accomplish this mapping by applying map-to-c t o each of the elements Ro, R2, and Rg in

succession-thus obtaining {Rg), {), and {RE)-and then taking the union of these results

t o obtain {RE, Ri)-which represents {F, I) in c. In short, a set representing {F, H, I) is

mapped t o a set representing {F, I) in c.

Recall from Section 5.3.2 our observation that the selectivity of a chain c in a set S is

the same as the selectivity of c in SnR,. In other words, relation names in S that do not

participate in c are irrelevant t o the selectivity of c in S. In our example, the selectivity

of the FIG chain in {F, H, I) is the same as its selectivity in {F, I). Consequently, the

fact that map-to-c in effect maps {F, H, I) to {F, I), and simply discards H, is not only

not harmful, but t o the contrary, is exactly what we want. Our table of selectivities for

the FIG chain will be indexed by sets of names in c. Given a set S of generic names, we

may use map-to-c to map S t o a possibly smaller set S, of names in c; then taking S,

as an index into the table of selectivities, we will obtain the selectivity of S in c, without

ever explicitly computing an intersection of the form S n 2,.

5 -3.6 Code for Computing Chain Selectivities

We shall break our discussion of the code for handling transitive chains into two parts.

In this, the first part, we shall focus on the construction of a table of selectivities for a

given chain c, and in the second part we will address the changes required of the Blitzsplit

algorithm t o incorporate such a table in its cardinality computations.

The construction of a table of selectivities for chain c can take place entirely within the

context of the chain; that is, for now we may take all relation names t o be names in c-

names of the form Rg, Rf , etc. Later on, when we address the Blitzsplit algorithm proper,

the names in c will have t o coexist with other kinds of names. To avert the possibility that

names in c might then be confused with names in other chains, or with generic names, we

shall give each kind of name a different type in the pseudo-code. Specifically, the names

R;, R f , and so on, will be referred to as having type relname-in-c.

Figure 5.9 gives pseudo-code to construct a table sel-c of selectivities of a chain c in all

subsets of R, (including the empty subset!). The code opens with the declaration of a new

type pred-in-c, which is exactly the same as the type predicate, except that i t specifies a

predicate's endpoints using relation names in c rather than ordinary relation names. This

type declaration is followed by a declaration of the table sel-c, the table of selectivities of

c in subsets of R,. This dynamic programming table will have one entry for each subset

t y p e pred-in-c =
record

endpoints : set[relname-in-c]
selectivity : real

e n d

var sel-c : a r r ay indexed b y set[relname-in-c] of real

procedure build-chain-table(R, : set[relnarne-in-c], PC : set[pred-in-c])

for each R, R' E Rc d o
sel-c[{R)] := 1.0
sel-c[{R, R')] := 1.0

e n d for

for each pc E PC d o
sel-c[p,.endpoints] := p,.selectivity

end for

for m := 2 t o lRcl d o
for each Sc C Rc such t h a t ISc\ = m d o

Uc := least subset (S,)
Vc := s c - Uc
W, := least-subset (V,)
sel-c[Sc] := sel-c[U, U W,] * sel-c[Vc]

e n d for
e n d for

e n d procedure

Figure 5.9: Code to calculate chain selectivities

of R,, and accordingly is indexed by sets of relation names in c. The number of entries in

this table is therefore 2IRcl; for typical chains one may expect this table to be quite small.

The procedure build-chain-table for filling in the table of chain selectivities is basically

a pseudo-code transcription of recurrence (5.10), wrapped in a loop that iterates through

all subsets of R, in a manner that conforms to the subsets-first assumption. The code

prior to the loop initializes the table entries for empty, singleton, and two-relation subsets

of Rc.

5.3.7 Changes to the Blitzsplit Algorithm

To accommodate redundant predicates, the Blitzsplit algorithm itself must be revised t o

make use of the selectivities provided by the procedure build-chain-table discussed above.

Figure 5.10 shows revisions t o the declarations for the Blitzsplit algorithm. The type

map-to-c defines a representation for the mapping from relation names of the form Ri t o

sets of relation names of the form R;. This mapping is represented as an array of sets of

relation names in c. (As before, we may assume that these sets will in turn be represented

as integers. Thus, in the optimization of a join of n relations, a mapping of type map-to-c

can be expected t o be realized as an array of n integers.)

The dynamic programming table table is augmented with two new fields. The field

names-in-c holds, for each set S, the subset of relation names in S that map t o names

in R,; this subset is represented as a set of relation names in c . This set will serve as an

index into the table sel-c t o obtain the selectivity of c in S. The second field added t o

table is pre-cad, which represents the result cardinality of S before the chain selectivity

is taken into account.

Given these changes to the declarations, Figure 5.11 shows the needed revisions t o the

procedures of the algorithm. The revised algorithm takes a chain as input in addition

to its other inputs. The chain is specified through the sets R, and PC, and through a

mapping map-to-c of type map-to-c. Thus, the ordering of the relation names in Rc is

implicit-we assume that this ordering is provided by the type relname-in-c; it is the role

of the mapping map-to-c to map relation names in R to names in Rc in such a way that

the names in Rc are ordered appropriately for the chain.

Given these inputs, procedure blitzsplit begins by invoking build-chain-table t o ini-

tialize the table sel-c. The only other change to procedure blitzsplit is that i t helps

initsingleton t o initialize the names-in-c fields of the singleton sets. If a set R does

not participate in the chain c, then map-to-c[R] will just be the empty set; if R does

participate in the chain, then map-to-c[R] will be a singleton set of the form { R C) .

Procedure init-singleton initializes the new pre-card field in the same way as the

see also declamtions in Figure 5.9

t y p e map-to-c = array indexed b y relation-name of set[relname-in-c]

var table : array indexed by set[relation-name] of
record

~ - I names-in-c : set[relname-in-c]

fansels : real
Ipre-cad : real]
cardinality : real
best-lhs : set[relation-name]
cost : real

end

Figure 5.10: Changes to declarations to support use of chains

cardinality field, because a singleton set of relations cannot involve any redundant predi-

cates, and hence there is no distinction to be made between pre-card and cardinality for

singletons.

In compute-properties, the names-in-c field is computed using a trivial recurrence. If

we temporarily disregard the type distinction we are now making between relation names

in general and relation names in c, the recurrence may be stated as follows:

snn, = (UnR,)u(VnR,)

where U U V = S.

This recurrence is a direct consequence of the distributivity of set intersection over set

union, and draws on the fact that the names-in-c field of each set S may be loosely

thought of as representing S n 2,.
Then the pre-card field is computed as cardinality was computed before the intro-

duction of redundant predicates-for pre-card represents cardinality before redundant

predicates are taken into account. Finally, cardinality itself combines the cardinality in

pre-card with the selectivity of c in S, as given by the auxiliary table sel-c.

procedure blitzsplit(R : set[relation-name], reldata : rel-data, P : set[predicate],
R, : set[relname-in-c], PC : setbred-in-c], map-to-c : map-to-c

build-chain-table(R,, PC)

for e a c h R E R d o

ini tsingleton(R, reldata, 1-b
e n d for

e n d procedure

procedure ini tsingleton(R : relation-name, rel-data : rel-data,
U, : set[relname-in-c]

table[{R}].names-in-c := U,

table[{R)].fansels := 1.0
(table[{R)].pre-card := rel-data[R] .cardinality

table[{R)].cardinality := rel-data[R].cardinality
table[{R)] .bestlhs := 0
table[{R)] .cost := 0.0

e n d procedure

procedure compute-properties (S : set[relation-name])
U := least-subset (S)
v : = s - U
W := leastsubset(V)
2 : = v - W
I table[S]. names-in-c := table[U].names-in-c U table[V] .names-in-c I
1

table[S] .fansels := table[U U W].fan-sels r table[U u 21. fansels
table[~].I pre-card I := table[~].I p n - c a d 1 * table[~].l ~re-card I

* table[S]. fan-sels
table[S].cardinality := table[S].pre-card * sel-c[table[S].names-in-c]

e n d procedure

Figure 5.11: Changes t o Blitzsplit algorithm t o support use o f chains

5.4 Summary and Discussion

In this chapter we have shown how the Blitzsplit algorithm can be extended to accommo-

date predicates by adjusting its cardinality computations with the appropriate predicate

selectivity factors. We began by restricting our attention to collections of independent

predicates, and then went on to consider collections of predicates that were related to

one another through logical implications. In both cases, we were able to modify the

Blitzsplit algorithm's cardinality computations without changing any code in procedure

find-best-split, which is responsible for the 0 (3n) and 0 (~ 1 2 ~) components of the algo-

rithm's complexity. The code we added had time complexity 0(2n) , and the changes we

sketched also had only a small effect on space complexity.

It is quite conceivable that variations on the techniques illustrated here could be used

to support predicates under different sets of assumptions as well. For example, one might

wish to provide for predicates that were statistically correlated, though free of any log-

ical interdependencies. Another interesting and useful extension would be support of

hyperedges in the join graph. These extensions would probably prove more challenging

to support than the cases illustrated here, but there is no evident reason why it should

not remain possible to compute cardinalities in time 0(2n) by taking advantage of the

dynamic programming context. Regardless of what kinds of predicates are supported,

there are only O(Zn) sets of relations for which a result cardinality needs to be computed;

and as we have seen, the computations for a given set can be shortened through judicious

use of information previously computed for smaller sets.

However, the foregoing remarks oversimplify somewhat, for the presence of predicates

can affect time complexity in subtle ways that we have not yet discussed. Our comments

above presumed that because the d e for find-bestsplit remained unchanged when pred-

icates were added, it could be taken for granted that the time spent in find-best-split

would also remain unchanged. That presumption is not quite correct. The addition of

predicates to a given Cartesian product optimization problem can in fact cause the time

spent in find-best-split to go u p - o r down-for the following reason: Predicates change

the costs associated with sets of relations in ways that can affect the execution frequency

of the conditional code in find-best-split. Because of this effect, the Blitzsplit algorithm

will prove sensitive to join-graph topology, even though our predicate-handling technique

treated all join graphs as if they were cliques. Empirical studies of this sensitivity to

join-graph topology, as well as other performance traits of the algorithm, will be the focus

of the next chapter.

Chapter 6

Performance Analysis

We now examine the performance of the Blitzsplit algorithm in the presence of predi-

cates. The mission of this chapter is two-fold: to present measurements of the algorithm's

performance on a wide range of input queries, and to offer detailed explanations for the

performance behavior we observe. Our explanations will be informal, but in principle

it ought to be possible to recast these explanations in the form of mathematical models.

Such models might be expected to have the power to predict performance of our algorithm

under a greater variety of conditions than we consider in our measurements. Thus, the

performance observations of this chapter are chiefly empirical, but have been conducted

with a view to pursuing a more analytical treatment in future work.

We begin by discussing our experimental design for measuring the performance of our

join optimizer. After presenting a summary of the measurements we obtained using this

design, we go on to attempt to interpret these results. Our interpretive efforts lead to

an investigation into the frequency with which the Blitzsplit algorithm needs to carry out

complete cost computations on the various "splits" of sets of relations that it examines in

its inner loop. We conclude with a commentary on the implications of this analysis.

6.1 Experimental Design

In this section we present our approach to benchmarking the Blitzsplit join optimizer. We

begin by discussing general problems in studying performance of a join-order optimizer.

We then describe our way of dealing with those problems, and present the salient features

of a parameterization of the join-query space that we use in our empirical studies. (The

full details of this parameterization are relegated to Appendix C.) We also point out some

of the limitations of this parameterization, which should be regarded as a starting point,

not the last word, in the systematic study of join-optimizer performance.

6.1.1 Difficulties in Empirical Studies

Earlier, in Chapter 4, we examined the Blitzsplit algorithm's performance in Cartesian

product optimization. We noted there that it was difficult to obtain a thorough character-

ization of performance because of the large dimensionality of the space of possible queries.

We sidestepped the difficulty by considering only a fixed number of relations in each query,

and by parameterizing the base-relation cardinalities along just two dimensions.

Those techniques of dimensionality reduction remain applicable here. However, now we

face new difficulties, because the introduction of predicates also introduces many additional

dimensions to the space of possible queries. In the worst case, there are n(n-1)/2 predicate

selectivities, which may all vary independently. Moreover, in the space of selectivity

combinations there is no obvious analogue to the two-dimensional parameterization that

we used to generate cardinalities in Chapter 4.

A further complication in studying performance of join-order optimization is that

it no longer suffices to use just the naive cost model KO that we applied to Cartesian

products. In essence there is only one way to compute a Cartesian product, and the cost

of this computation is always roughly proportional to the product of the input cardinalities

(and hence to the result cardinality). But there are many alternative join-computation

strategies; join-optimization performance measurements lack realism if they fail to take

these alternatives into account.

The present study is not the first to encounter these complications. Join-order o p

timization, unlike Cartesian product optimization, has an extensive literature. But in

turning to previous performance studies as a guide, one finds no ready solutions to the

problem of constructing effective test suites. These studies have not converged on a sin-

gle, standard benchmark for join-order optimization, but instead take many disparate

approaches, each with its own particular strengths. Reproducing the experimental condi-

tions of these various approaches may involve guesswork; in some instances, the published

description of the measurement methodology is evidently intended only to give a sense of

the approach, not to permit duplication of the experiments [20, 281.

Even when the descriptions are more thorough [54, 551, experimental conditions may

be difficult to dupIicate because of their dependence on the use of a particular pseudo-

random number generator and seed. (Understandably, published accounts of the experi-

ments rarely (if ever) specify such details as random number generation.) Random number

generation arises when a benchmark seeks to report average behavior of an optimization

method over some class of queries. The corresponding variances are usually not reported,

but one suspects that they are often large,' and that the observed averages are not neces-

sarily close to the true averages. In such cases, the choice of random number generators

is an issue, as one might observe rather different averages if a different random number

generator were used.

The lack of a single, commonly accepted, and well-defined benchmark for join-order

optimization makes it difficult to compare different algorithms on the basis of speed and

effectiveness. Presentations of new algorithms in the literature generally do include such

comparisons with earlier algorithms [12, 591; producing these comparisons necessitates

reimplementing the earlier algorithms [12] unless pre-existing implementations are readily

available. This reimplementation effort is unfortunate both because of the labor it entails,

and because of the da.nger that it could introduce performance bugs (or indeed other bugs)

in some of the algorithms involved. Such bugs could conceivably go undetected.

Some benchmarks yield misleading results. Steinbrunn [54] reports an instance of unin-

tentional benchmark bias in measurements he and his collaborators had made in an earlier

study. In the earlier study [55], they had found that a join-optimization heuristic known

as RDC performed competitively with other heuristics; however, subsequent experiments

using a more sophisticated cost model revealed that the RDC heuristic was actually rather

fragile, and worked well only under special conditions.

'Graphical presentations of averages at each of various parameter settings give clues about variance
even when the variance is not reported. Smooth graphs tend to correspond to low variances. Jagged
graphs may be a sign of Iarge variances-though not necessarily: in Chapter 9 we shall see graphs in which
the jaggedness is intrinsic, and not due to measurement uncertainties.

6.1.2 Our Measurement Approach

It is beyond the ambitions of the present work to propose a standard benchmark for join-

order optimization. At the same time, there is no single previous benchmark that appears

adequate for our purposes. Our measurement approach is based on the following premises:

Our test queries should be easy to duplicate.

Reported performance should give a sense of which queries are easiest to optimize,

and which are hardest. Averages taken across multiple queries obscure the patterns

of variation, and are therefore to be avoided.

Cardinality values that occur i n actual queries cannot be assumed to fall within

any particular range. Hence the test queries should cover a very wide range of

cardinalities.

The test queries should use a variety of distinct join-graph topologies.

Measurements should be run using several different cost models, as no single cost

model can be considered definitive. Using cost models that have appeared in previous

studies is preferable to inventing new cost models.

To satisfy the last two requirements, we borrow from the comprehensive survey by

Steinbrunn et al. [54, 551. Steinbrunn's measurements were run using several different

join-graph topologies and cost models; here we use a subset of those topologies and cost

models. But we depart from Steinbrunn in the assignment of cardinalities and selectivities.

We parameterize the base-relation cardinalities along two dimensions, as in Chapter 4; we

calculate the selectivities according to a formula that tends to minimize the variability

in the intermediate-result cardinalities yielded by different sets of relations. Thus, our

test queries remain entirely deterministic, and are parameterized along four dimensions in

total: one for the cost model, one for the join-graph topology, and two for the base-relation

cardinalities. We shall comment on particular details of this parameterization below; the

complete details are summarized in Appendix C.

Aside from the fact that we have added two new dimensions for the cost model and

join-graph topology, the present parameterization differs from that of Chapter 4 in two

respects. First, here we fix the number of relations n a t 15 rather than a t 10. One

obtains qualitatively similar behavior across the different values for n, but the effects we

shall observe become quantitatively more interesting with larger n; the choice of 15 is

near the upper end of the query sizes that can be handled in reasonable time. Second,

we have replaced the "max/minV cardinality parameter with a parameter we simply call

"variability," which ranges from 0 to 1. When variability is 0, the base-relation cardinalities

are all equal; as variability rises, the cardinalities spread out. Thus, variability plays much

the same role a s the max/min parameter; the difference is that the new parameterization

does not yield fractional cardinalities between 0 and 1, which cannot arise in base relations

in actual queries.

6.1.3 Shortcomi~lgs of our Parameterization

Our join-graph parameter ranges over four diverse topologies: the chain, the cycle aug-

mented with three cross-edges (which we refer to as "cycle+ 3"), the star, and the clique.

Although these alternatives provide diversity, they also leave huge gaps in the sense that

the topology of a given actual query might not be especially similar to any of the four we

consider.

Moreover, for a given join-graph topology, we let the cardinality rank of each relation

determine its position in the join graph. For example, in the star graph, we always place

the relation with the largest cardinality a t the hub of the star. In the case of chain and

"cycle+ 3" graphs, we assign the relations to the positions in the join graph in such a way

that each predicate tends to connect a relation whose cardinality is below the median to

another relation whose cardinality is above the median. (The details of these policies are

given in Appendix C.) The predicate connections of an actual query might be organized

in an entirely different manner. Limited experimentation with variations on our default

cardinality arrangements has so far failed to turn up any cases where optimization times

depart by a large amount from the optimization times reported below; but our failure up

to this point to find such cases may merely mean that we have not yet looked hard enough.

A further deficiency in the join-graph parameterization is that we make no allowance

for varying the selectivities independently from the base-relation cardinalities. Within

each topology, the selectivity of a given edge is completely determined by the cardinalities

of the relations it connects, in accordance with the formula in Appendix C. Thus, our

measurements give no systematic account of the manner in which performance may vary

depending on selectivity values.

This deficiency may not in fact be grave, for we have observed from ad hoc experiments

that performance is not especially sensitive to the selectivity values. But we presume that

the selectivity values must make a difference in some situations, for the simple reason

that the join-graph topology itself makes a difference. In limiting cases (i.e., as certain

selectivity values approach I), distinct topologies can "morph" into one another. In the

regions of transition there would have to be sensitivity to the selectivities. However, our

measurement strategy fails to identify those regions.

Instead, for a given join-graph topology our formula for computing selectivities is

intended to give near-worst-case values, so that our measured timings are more likely to

overstate than understate the timings that would be obtained with different selectivities.

Later in this chapter we give evidence that our choices are in fact near-worst-case. At

the same time, that evidence will suggest that extensive additional measurement would

be needed to gauge the performance of our algorithm under less pessimistic conditions.

Finally, our parameterization of the cost model leaves much to be desired. The three

models we use, which are defined in detail in Appendix C, are the naive model introduced

in Section 3.2 (K ~) , a sort-merge cost model (K,,), and a disk-nested-loops model (~ ~ ~ 1) .

There is precedent for these cost models, as all three are drawn from the performance

analysis of Steinbrunn et al. [55]; moreover, they are appealing choices for benchmarking

purposes because of their simplicity, and because they are very different from one another.

But they lack realism. Steinbrunn's revised survey [54] abandons the cost models of the

earlier version, and instead adopts a single, more complicated and more realistic cost

model that combines features of the earlier cost models, as well as adding new features.

One surmises that it was chiefly this change in cost models that revealed the fragility of

the RDC heuristic, as noted above.

The use of simplistic cost models may not have such severe consequences here as

it did in benchmarking the RDC heuristic. Since our optimization method is a form of

exhaustive search, the quality of the solutions obtained is not an issue, as it is for stochastic

and heuristic methods. What is a t issue here is merely the time required for optimization.

The simplicity of the cost models used here has the virtue of revealing fundamental effects

in the performance of the Blitzsplit algorithm. Future studies will be needed to examine

how these effects are altered by the use of more realistic cost models.

6.2 General Performance Traits

The parameterization of the join-query space discussed above, and mapped out in detail

in Appendix C, served as the basis for empirical measurements of the performance of the

Bli tzspli t algorithm with predicates. Here we present a summary of those measurements,

together with general observations about their significance.

The array of graphs in Figure 6.l(a) shows HP 9000/755 timings of runs of the Blitzsplit

algorithm taken over our 4-dimensional parameter space with n = 15. The rows and

columns of the array represent two axes of the space, a cost-model axis and a join-graph-

topology axis; and within each cell inside the array, two more axes are represented-a

long axis for mean base-relation cardinality, and a short axis for the variability among

the base-relation cardinalities. Moving left-to-right along the long axis corresponds to

increasing mean base-relation cardinality, and moving back-to-front along the short axis

corresponds to increasing variability among the base-relation cardinalities. (Again, refer

to Appendix C for details.) Figures 6.l(b) and (c) show two of the array cells in enlarged

form, with labeled axes to give a sense of scale. Note that the vertical axis represents

optimization time (and not plan cost).

Figure 6.1 shows that under the naive cost model, 15-way joins are optimized in times

comparable to those we obtained for 15-way Cartesian products in Chapter 4. On the HP,

the latter were typically optimized in about 0.9 seconds; here it is harder to say what is

"typical," but optimization time under the naive model rarely falls outside the range 0.6-

1.1 seconds. Incorporating predicates appears to make the execution time of the Blitzsplit

algorithm more variable, but not necessarily greater.

The chaise-longue-like shapes in the figures reflect two basic performance properties

chain cycle+ 3

KO

K8m

Kdnl

star

-- - ----

153

clique

(a) Four-dimensional summary of performance sensitivities

time in secs-

5
4
3
2

mean cardinality
le8 variability

(b) Ko/chain

5
4
3
2

1e6
mean cardinality

le8

(c) Kdnl/ cycle + 3

Figure 6.1: Optimization times for IS-way joins under various conditions

of our algorithm. First, as we saw already to be the case for Cartesian products in

Chapter 4, performance degrades (sometimes dramatically) as the mean cardinality of the

this effect.

base relations approaches 1; but mean cardinality does not have to be large to escape

Second, performance is substantially affected by the cost model, but the

performance differences diminish as mean cardinality increases (and also, in the case of

cliques, as variability increases).

We shall investigate these effects in detail as we proceed, but here we comment briefly

on what is new in the present performance graphs in comparison with those of Figure 4.9.

In Chapter 4 we were dealing with just a single cost model, the naive cost model repre-

sented by the cost function KO.Because the split-dependent component K~plitof that cost

function was trivial, it did not matter how many times K~plitwas executed in procedure

find-best-split (page 76). At low mean cardinalities, the execution frequency of the con-

ditional code in find-best-split increased, but since the code in question did not perform

much computation, the effect on overall execution time was not dramatic.

Here we are dealing with several different cost models, and we see just how much the

execution count of u;'plit can vary, and how much difference it can make when it does vary.

When we introduced a nested if structure in Section 3.4.3 to reduce the execution count

of u;'plit (cf. page 86), we observed that with that structure, the ~ ~ p ~ ~ ~ - e x e c u t i o n count

could be expected to lie between (In 2/2)n2" and 3". At the left-hand edge of the graphs

in Figure 6.1, where mean cardinality is 1, the execution counts are presumably

close to 3"; and we see that when r;"~"' involves nontrivial computation, as it does in the

disk-nested-loops model (rcdnl), the evaluation of rcaplit evidently represents the bulk of the

optimization effort. As the mean cardinality moves away from 1, it is apparent that the

~ ~ p ~ ~ ~ - e x e c u t i o n count drops precipitously. The structuring technique of Section 3.4.3 thus

appears to be validated empirically.

A second point of contrast to note between Figure 4.9 and Figure 6.1 concerns the

behavior of the Blitzsplit algorithm a t higher cardinalities. In Figure 4.9(a) we saw that

as mean cardinality increased, optimization time fell off rapidly because of cost overflows.

But it was also the case that those cost overflows reflected optimization failures: when

cost overflowed, no optimal plan could be found.

Here the decline in optimization time with increasing cardinalities is less pronounced,

because the presence of predicates has a moderating effect on intermediate-result cardi-

nalities; and when the cardinalities are moderated, cost overflows naturally occur much

less frequently. Nonetheless, they do still occur, and the reductions in optimization time

a t higher cardinalities are apparent in Figure 6.1. But notably, the occurrence of cost

overflow in the presence of predicates does not necessarily reflect an optimization failure.

It is possible for cost to overflow for some sets of relations S R , and for an optimal plan

for the join of R to be found nonetheless. In Chapter 7 we shall make use of this effect to

improve on the performance graphs shown in Figure 6.1.

6.3 Execution Counts and Fingerprints

The observations of the previous section suggest, not surprisingly, that variability in the

execution count of tcaplit accounts for most of the variability in the Blitzsplit algorithm's

optimization time for different queries. It is also the tcapli'-execution counts that determine

what sort of degradation in performance we will encounter if we move to more elaborate

cost models, in which computation of tcaplit will involve more work. One might even hope

that by understanding rc'~~~~-execution counts, one could predict the performance of our

optimizer under a new cost model for which it had not yet been tested.

Unfortunately, such predictive power may be difficult to achieve. A complicating factor

in the study of tc'~~~'-execution counts is that these counts are not independent of the cost

model. Thus, when we change cost models, we can expect changes in both the number of

~ ~ p ~ ~ ~ - e x e c u t i o n s and i n the time required for each of them. Nonetheless, tcSplit-execution

counts offer valuable insight into the algorithm's behavior, and we shall study them i n

depth.

To establish a baseline, we shall begin by considering ~ ~ p ~ ~ ~ - e x e c u t i o n counts under

the naive cost model. Under this model, the time required for each tcSplit-execution is

zero, and the number of r;'piit-executions is exactly equal to the number of updates of

best-cost-so-far. (We are assuming that the invocation of tcapfit is enclosed in the nested

if structure of Figure 3.4 (page 86) .) Since we have an analytical estimate for the latter

quantity (namely (In 2/2)n2n in the "average" case), it follows that this same formula

predicts the typical ~ ~ p ~ ~ ~ - e x e c u t i o n count under the naive model. By comparing actual

execution counts against the prediction, we may gain insight into influences on cost-

function execution counts that did not enter into our original estimate.

Subsequently we shall study ~'pl~~-execution counts under the disk-nested-loops cost

model. For completeness, perhaps we ought to study tca~li'-execution counts under the sort-

merge cost model as well. However, the graphs in Figure 6.1 suggest that our algorithm's

performance characteristics under the sort-merge cost model do not differ greatly from

those under the naive cost model, and lack the interesting features seen under the disk-

nested-loops cost model. Our inclusion of the sort-merge cost model up to this point has

served chiefly to show that a nontrivial cost computation need not inflate optimization

times significantly.

6.3.1 Join-query Fingerprints

To get a better handle on ~~pl~~-execution counts, let us now narrow our focus. Rather

than considering the total number of executions of K;"P"' in the optimization of a query,

we shall look at the ~~p~~~-execu t ion count during just a small portion of the optimization

run.

Recall that the main loop in procedure blitzsplit (page 76) successively processes sets

consisting first of two relation names, then three relation names, and so forth. In par-

ticular, there comes a time when all the sets of seven relation names are processed; and

for the present we shall focus our attention on the processing of just these seven-relation

sets. (It is immaterial to the present discussion that the processing of seven-relation sets

may in reality be interleaved with the processing of sets of other sizes, as we saw i n

Chapter 4.) Thus, staying within the context of 15-way join optimization, we consider the

number of executions of dpiit in the processing of sets such as {Ro, R1, R2, R3, R4, R5, R6),

{Rz, R4, R61 R81 R101 R121 R14}, and O n -

Assuming that it is reasonable to study sets of a particular size, why is seven a good

size to look at? One might equally well have chosen to examine sets of a different size,

but the size seven has the advantage of lying approximately midway between the smallest

and largest sizes, and therefore holds promise of being at least somewhat representative

of other sizes. Moreover, in a 15-way join optimization problem, there are many seven-

relation sets to be processed. To be precise, there are (7) = 6435 such sets; only the

eight-relation sets occur in equal abundance, since ('86) = (7). At sizes beyond eight (or

below seven), the numbers of sets taper off: there are 5005 sets of size nine, 3003 of size

ten, and so on. Because they are few in number, the very largest and very smallest sets

presumably do not have a major influence on performance. Consequently, our observations

regarding the seven-relation sets are likely to remain pertinent even if it should turn out

that these sets are not especially representative of the sets lying at the extremes.

Now let us consider the optimization of a specific 15-way join problem from our tests

157

"
n

. ~

I
'. .::'

.. .'
0#. ,,~.). ,.

10 20 6030 40 50

Number of executions of ,,;6plit(S,-, -)

Figure 6.2: Fingerprint for a sample query

of Section 6.2, namely the star query whose base relations have a mean cardinality of 104

and variability of 0.5. In other words, the problem we are considering corresponds to the

point at the very center of the surface in the ,,;o/star cell of Figure 6.1. Supposing that this

problem is submitted to blitzsplit for optimization, the question we now seek to answer is

the following: What determines the number of executions of ,,;6plitduring the processing

of the seven-I:elation sets?

One way to characterize the executions of ,,;6plitfor the seven-relation sets-and by

extension, for the query as a whole-is to take a fingerprint of the optimization process

in the manner illustrated in Figure 6.2. There are 6435 points in the plot-one for each

seven-relation set. The position of each dot is determined by properties of the set S that

the dot represents, as follows.

. The x-coordinate is the number of executions of ,,;6plitthat occur in the search for the

best split of S. The x-axis runs from 0 to 63 because our algorithm will loop through

63 splits of each seven-relation set. (A seven-relation set actually has 27 - 2 = 126

possible splits, but recall that under symmetric cost models, only half of them, or

63, need to be considered.)

1e40

1e35

1e30

1e25

,,;out(S) 1e20

1e15

1e10

1e5 .
1

0

The y-coordinate (which is scaled logarithmically) is the value obtained for rcDut(s).

The y-axis runs only as high as lo4' because we deem cost distinctions above this

value to be of no interest: as noted in Section 4.8, plans whose costs are this large

cannot possibly have practical utility. In our plots, y values larger than are

shown as being equal to

Since in the example at hand we are using the naive cost model KO, and since K:~~(S) =

Cardinality(S), an alternative reading of the y-coordinates is that they represent the join

cardinalities of the various seven-relation sets.2 With other cost models, too, one may

expect a close connection between rcoUt(S) and the join cardinality for S; so a reading of

the y-coordinates as a representation of join cardinality should be at least approximately

valid for a variety of cost models.

There is a tendency for multiple points in the plot to fall so close to one another that

they would be indistinguishable from a single point if they were plotted with absolute

fidelity. To counter this effect, with the aim of allowing each set S to make a contribution

to the plot, we have smeared the points out somewhat from their true positions. (The

displacement is within f0.4 on the x-axis, and within a factor of on the y-axis.)

Despite the smearing, there are still areas in the plot where points occur in such heavy

concentrations that they pile up on top of one another. The blotch at coordinates (5,105)

is one such area, whose actual density is not evident from the plot. This small blotch

actually comprises about 3000 points, or nearly half of the points in the entire plot. The

fingerprints of all our star queries have such a blotch, and in examining the plots it is

helpful to think of these corner blotches as loci of enormous mass, like neutron stars.

6.3.2 Significance of Fingerprints

Having discussed above the mechanics of reading Figure 6.2, we now turn to the interpre-

tation of the information in the plot.

At the most basic level, a fingerprint that lies mostly near the left-hand edge of the plot

is good news; a fingerprint near the right-hand edge of the plot is bad news. The further

2Recall that Cardinality(S) refers not to the cardinality of the set S of relation names, but to the
cardinality of the relation that results from the join of the relations named by S.

to the right the fingerprint's center of mass, the more effort the optimizer is expending in

calculating the split-dependent costs given by tcaplit. The vertical positions of the points,

by contrast, have no immediate bearing on optimization effort. But the vertical position

is informative in other ways, and later we will see that it bears on optimization effort after

all.

Note that, for the query at hand, the plot indicates that there are two categories of

seven-relation sets: those whose join cardinality (as depicted by vertical point position) is

low, and those whose join cardinality is high. This dichotomy has a simple explanation.

The query described by the plot is a star query, with some relation a t the hub of the star;

consequently, the seven-relation sets may be divided into those that include the hub, and

those that do not. The sets lacking the hub induce join subgraphs with no edges, and

hence join as Cartesian products-giving large result cardinalities; whereas the sets that

include the hub induce join subgraphs that are themselves stars, and join to yield results

of modest cardinality. Indeed, because the selectivities in our test queries are chosen to

counteract the variation in the base-relation cardinalities, the join cardinalities of all sets

that include the hub are actually identical.

Next let us examine in more detail the 2-coordinate values, i.e., the K"P"~-execution

counts exhibited for the various seven-relation sets. Recall the reasoning we pursued in

Section 3.4.2 in obtaining our estimate for the total execution count of the innermost

conditional block in find-bestsplit. We assumed that the splits would be examined in

random order; from this assumption we argued that in find-best-split's search for the best

split of a given m-relation set S, the expected number of executions of the innermost

block was H2m x m In 2. Given the naive cost model, K'P'~' is executed if and only if

the innermost block is executed, so we should expect the ~~p'~~-execution count also to be

about mln 2. Here we are looking at seven-relation sets, but rn is effectively 6 since only

26 splits are to be considered. Hence, on average, we expect to see 6 In 2 x 4.2 executions

of K'P"~ for each seven-relation set.

This expectation is nearly met in the case of the sets that contain the hub; these

sets all entail exactly 5 executions of r;dp'it. On the other hand, in the case of the sets

that do not contain the hub, the observed r;aplit execution counts fall in the range 10 to

17--substantially above the predicted average. The explanation for this effect is not im-

mediately obvious; in particular, in the case of the naive cost model, there is no apparent

reason why the cardinality of a set should have anything to do with the number of execu-

tions of dplit . (The situation is quite different in the case of the disk-nested-loops model,

as we shall see presently.)

We attribute the discrepancy between the predicted and observed behavior to the fact

that the alternative splits are not, in fact, examined in random order. It may be possible to

reduce the discrepancy by changing the algorithm to examine the splits in a different (but

still deterministic) order, or by permuting the names of the base relations Ro through RI4

so that their cardinalities are not necessarily in ascending order. However, investigation

of these possibilities shall be left to the future.

6.4 Fingerprints for Various Queries

Let us now see what we can learn about different kinds of queries by examining their

fingerprints. Figure 6.3(a) shows the fingerprints obtained under the naive cost model

from a variety of queries. All the queries represented are 15-way join problems, constructed

according to the parameterization discussed in Section 6.1.2 above. Henceforth we shall

refer to such queries as our basic test queries. The variability of the mean base-relation

cardinalities is fixed a t 0.5 for all the queries considered in Figure 6.3. There remain two

parameters that vary: the join-graph topology, and the mean base-relation cardinality

(denoted p in the figure). The first, second, and third columns of plots depict, respectively,

fingerprints for chain, star, and clique queries. (We omit the cycle+3 topology because its

characteristics are very similar to those of the chain.) Plots in successive rows of the figure

represent queries whose mean base-relation cardinalities range from 4.64 to lo8. (We do

not consider the effects of varying p between 1 and 4.64. Behavior in this low range is

likely to be interesting and complex (though fingerprints for queries with p exactly equal

to 1 are boring, one-point blobs); but for the present it may be just as well not to become

embroiled in any more complexity than necessary.)

It is a t once apparent that the fingerprints within each topology grouping have their

4.64

161

JL chain cliquestar

100

104

106

108

(a) As function of join-graph topology and mean base-relation cardinality

chain star clique
3000

2000

1000

0

(b) Cumulative point densities at each Ksplit-execution count (with JL= 108)

Figure 6.3: Fingerprints under the naive cost model

,1 ..,., .-

':'"
till:,", .,...'

...

:

I'
,:'"

"II'. 1<..

.

I"'

mr:'!

4.'
,',

, '
'." ..
"

r -.
':IJ',, j

'..t
..

, ,

own distinctive features. We already discussed above the general appearance of a star-

query fingerprint, and we see here that all the star queries depicted in Figure 6.3 have the

same character. Now let us make sense of the fingerprints for chains and cliques.

The chain-query fingerprints show that the join cardinalities of the seven-relation sets

span a wide range, more or less continuously-certainly with no large gaps. But the points

representing these sets become very sparse a t both the low and high ends of the range.

(The thinning a t the upper end is obscured in the plots where large numbers of points

jam up against the ceiling at but still occurs in principle.)

Both the smoothness of the distribution and the thinning a t the extremes can be

understood in terms of the join graph. The seven-node subgraphs of a fifteen-node chain

join graph may have anywhere from zero to six edges. Those with zero edges represent

joins that are actually Cartesian products, just as in the case of the star queries; the join

cardinalities of the corresponding seven-relation sets will generally be large. But whereas

in the case the star query, roughly half the seven-node subgraphs lack edges, the same

holds for only a small handful of subgraphs in the case of the chain. Likewise, whereas in

the case of the star, roughly half the seven-node subgraphs have six edges, and hence, in

general, low join cardinalities, in the case of the chain the seven-node subgraphs with six

edges are again something of a rarity. Most of the subgraphs have between two and four

edges, and yield cardinalities of intermediate but highly nonuniform magnitude.

The clique-query fingerprints are the most compact. Again an explanation is found in

the join graph. Any seven-node subgraph of a clique is itself a clique; thus, these seven-

node subgraphs are all topologically isomorphic. Consequently, any variability in the join

cardinalities of the corresponding relation sets is due solely to variability in the values that

annotate the join graph-i.e., the base-relation cardinalities and the predicate selectivities.

In the queries under study, the variation in the base-relation cardinalities is significant-

they range from fi to p2-b~t the predicate selectivities are computed in such a way

that they partially compensate for the variation in the base-relation cardinalities. The net

effect is that the smallest join cardinalities for the seven-relation cliques are much larger

than in the case of chains and stars, while the largest join cardinalities are much smaller

for cliques than for chains and stars.

We noted in Section 6.3.2 above that in the case of the star query, there was an

unexpected correlation between a point's x- and y-coordinates. Here we see that this

correlation appears, t o varying degrees, in the fingerprints for the chain and clique as

well: in each instance, the point clusters slope upwards as x increases. However, while the

correlation is in evidence within each fingerprint, there appears t o be no similar correlation

across fingerprints. That is, the successive fingerprints for p = 4.64,100, lo4,. . . , show

ever-increasing join cardinalities for the seven-relation sets, as evidenced by the increasing

upward reach of the point clusters; but these clusters show no corresponding horizontal

movement. We conjectured in Section 6.3.2 that the correlation seen inside an individual

fingerprint was due t o obscure details of our implementation, and not t o any intrinsic

difficulty in finding the best split for a set with a large join cardinality. The present

evidence supports this conjecture, inasmuch as large cardinalities per se are not associated

with high execution counts for ~ " p " ~ .

Thus far we have not ruled out the possibility that there is hidden horizontal movement

from one fingerprint to the next. One can imagine the center of mass of the points

migrating slowly t o the right with increasing p , even as the envelope of the points remains

stationary. To eliminate this possibility, one may plot the point densities in the manner

illustrated in Figure 6.3(b). The graphs in this portion of the figure show, for the case

p = lo8, the number of fingerprint points lying along the vertical line determined by

each x-value. The peak of the point densities for the chain query lies a t x = 6; for the

clique query, a t x = 13; and there are two peaks for the star query-one a t x = 5 (the

position of the blotch), and another a t x = 13 (the mode of the points representing hubless

sets of relations). The same peaks are obtained when one plots the corresponding graphs

for the other values of p; indeed, the graphs for the different p are so similar as t o be

virtually indistinguishable. Because they add no new information or insight, we omit the

point-density graphs for p = 4.64 through lo6.

6.5 Execution Counts under the Nested-Loops Model

From the foregoing analysis under the naive cost model, we now have a baseline for

further fingerprint studies. The naive-cost-model fingerprints showed the ways in which

the behavior of our implementation departs from the ideal behavior predicted by our

theoretical model. We found that even when K"P'~' G 0, the number of executions of K ~ J " ~ ~

was somewhat larger than expected. In the case where $ 0, we have no quantitative

expectation-only the expectation that the execution counts for K'P' ;~ should increase

further still. Here we present empirical results on the extent of that increase under the

disk-nested-loops cost model.

6.5.1 Split-Graphs

Before discussing fingerprints under the disk-nested-loops cost model, we introduce one

additional visual aid, to which we give the name split-graph. Figure 6.4 illustrates two

such graphs. A split-graph may be thought of as an exploded view of a single dot in a

fingerprint plot. That is, each dot in the fingerprint represents a seven-relation set; the

split-graph for such a set gives information that helps to explain why the dot for that set

lies where it does in the fingerprint.

Both the split-graphs in Figure 6.4 pertain to the optimization under the disk-nested-

loops model of the 15-way chain query with p = lo4 and variability 0.5. (These particulars

are not important a t this stage, and are given only for completeness.) Figure 6.4(a)

gives information about the set {Roy R1, Rs, Rs, R8, Rlz, R13), and Figure 6.4(b) gives

information about the set {Ro, Rz, Rs, R7, Rs, Rs, Rll). The captions of the two graphs

refer to these sets as "easy" and "hard," respectively, for reasons that will be explained

in Section 6.5.2 below.

To interpret the information in the graphs, recall that there are 27 - 2 = 126 possible

splits of a seven-relation set; but since we are working with a symmetric cost model, any

split (U , V) is equivalent-where cost is concerned-to its mirror image (V , U) . Hence

there are 63 distinct splits that find-best-split must consider when it is invoked on either

of the sets under discussion (or, indeed, on any other seven-relation set). Each of these 63

1840

le35

le30

le25

le20

le15

lelO

le5

1

(a) Costs of all splits of the "easy" set {Ro, RI, Rg, Rs, Rlz, R13)

le40

le35

le30

le25

1 e20

le15

lelO

le5

1

- -
- -
- -
- - - - - - -

. . a

. . a
*.Y U.& - - - U.Y C - - --U.- - - - -
... - I I I I . I . I I I . . C

(b) Costs of all splits of the "hard" set {Ro, Rz, Rs, R7, R8, Rg, RII)

Figure 6.4: Split-graphs for a chain query with p = lo4 and variability 0.5 under the
disk-nested-loops cost model

splits is represented in the graphs of Figure 6.4 at a separate position on the x-axis.

Now, find-best-split goes through several steps in considering the viability of a par-

ticular split of a set S into two sets SIha and Srha (cf. Figure 3.2, page 76). First, the

costs of SIhs and S r h a are added to obtain operand-cost, and then K~P"'(S, $[har Srhs) is

added to operand-cost to give dependent-cost. If dependent-cost is less than the current

best-costso-far, then dependent-cost becomes the new value of best-costso-far. Thus, it

is the value of dependent-cost that determines how each split stacks up against the others.

The splits in each graph in Figure 6.4 are arranged in order of decreasing dependent-cost,

and the solid curve in the graphs plots the descent of dependent-cost as one moves from

the poorest split to the best split for the set. (Note that the order in which the splits

appear in the split-graphs has nothing to do with the order in which they are examined

by find-bestsplit. Note also that splits whose dependent-cost values are equal are ordered

arbitrarily.)

It is the value of dependent-cost that ultimately determines the viability of a split,

but the value of opemnd-cost also holds considerable interest: Whenever opemnd-cost

by itself exceeds best~cost~so~far, there is no need to go to the trouble of comput-

ing K ~ ~ ~ ~ ~ (S , S ~ ~ ~ , S ~ ~ ~) (cf. Section 3.4.3, page 86). But how often, one may ask, does

opemnd-cost exceed best-cost-so-far? The graphs in Figure 6.4 take a step towards an-

swering this question by showing the values of operand-cost for each split, as well as the

values of dependent-cost. The values of operand-cost appear as vertical dotted spikes that

reach up towards the curve depicting dependent-cost.

The lower, "filled-in" portion of each of the graphs thus represents operand costs,

while the white space sandwiched between the operand-cost and dependent-cost values

represents the difference between the two-in other words, the white space represents the

contribution of K'P'".

Note, though, that it is easy to be deceived about the quantities represented by the

white space. In some split-graphs there is only a narrow band of white space, and the area

it occupies is small in comparison with that of the filled-in space below it. In most such

cases, one would be mistaken in inferring that dependent-cost is chiefly determined by

opemnd-cost, and that K"P"' makes only a small contribution towards the total. Because

the vertical axis of the graphs is scaled logarithmically, the linear distance representing the

naplit contributions is drastically compressed; in most of the graphs we will examine, the

contribution of naplit actually vastly overshadows that of operand-cost, and yet appears

visually as the smaller of the two.

In this sense, the split-graphs are misleading. But however deceptive they may be

numerically, they tell the truth about the relative significance of operand-cost and r;*plit

in optimization. We shall see later that in some situations, the numerical value of ~ " p " '

makes no difference whatsoever; and in those situations where it does make a difference,

it generally matters only inasmuch as it exceeds operand-cost by at least an order of

magnitude.

One final descriptive matter: The horizontal, dashed lines in the graphs show the

successive values taken on by best-cost-so-far during find-bestsplit's processing of the

sets in question. There are three such lines in Figure 6.4(a), and seven in Figure 6.4(b);

but because some of these lines fall so close to one another, they are not all distinguishable.

What appear to be thick, dashed, horizontal lines are actually clumps of several thinner

lines.

6.5.2 Split-Graph Shape and Cost-Function Execution Count

As noted above, we refer to the set depicted in Figure 6.4(a) as an "easy" set, and to the

set in Figure 6.4(b) as a "hard" set. The reason for these designations derives from the

number of executions of in the processing of each of the sets: five executions for the

"easy" set, and forty-five executions for the "hard" set.

This difference in the number of executions of ~ " p " ' is extreme, but not surprising

in light of the relative contributions of the operand-cost values in the two cases. In

the case of Figure 6.4(a), by the time the second value of best-cost-so-far has been set,

the operand-cost values for nearly all splits protrude above the level of best-cost-so-far.

Consequently, there is no need to evaluate K ~ J " ~ ~ for these splits-they can be thrown out

on the basis of their operand-cost value.

By contrast, in Figure 6.4(b), most of the operand-cost values do not protrude above

the level of best-cost-so-far even after best-cost-so-far has been reduced to its final, lowest

value. As a result, the loop in find-best-split can eliminate a split on the basis of its

operand-cost value in only a handful of instances. In all the remaining instances, evaluation

of ~ " p ' ~ ' is required to determine that the split is not competitive.

There appears to be a component of "luck" in the fact that only five ~ " p " ' executions

are needed to process the set of Figure 6.4(a). Perhaps the word luck does not quite

apply, since our algorithm is deterministic and will always process the given set in the

same way. But one can well imagine that if the splits were processed in a different order,

the execution count for r ~ " p ' ~ ~ might turn out t o be somewhat larger. Even so, the odds

that i t would be much larger are slim. We will find that while there is no guarantee of a

low tcaprit-execution count in a set whose split-graph has the appearance of Figure 6.4(a),

the preponderance of such sets nonetheless do yield very low ~"p'~~-execution counts.

Here, then, we see a striking effect. It would not be surprising t o find that evaluation

of tc8p1" could generally be avoided when the contribution of ~ " p ' ~ ' was small compared

t o that of operand-cost; for then the situation would be only marginally different from

the situation that obtains under the naive cost model, where ~ " p ' ~ ' contributes nothing

at all. But in Figure 6.4(a) we have values of K'P'~' that exceed the corresponding values

of operand-cost typically by five orders of magnitude-and yet, for the most part, these

monstrous quantities turn out to be irrelevant.

Evidently the crucial feature of Figure 6.4(a) that leads t o a low execution count for
K8plit is simply this: Most of the values of operand-cost are larger than some of the values

of dependent-cost. Seen in this light, the numerical values contributed by ~ " p ' ~ ' do indeed

appear t o be beside the point, except in a few instances. Specifically, it is important that

there exist several splits for which operand-cost and tc"plit are both small in comparison

with the operand-cost values encountered in most of the other splits. The existence of

several such relatively low-cost splits makes it likely that in the processing of the set,

best-cost-so-far will quickly fall to a level that undercuts the bulk of the operand-cost

values.

In Figure 6.4(b), it is precisely the absence of low-cost splits, in the sense just described,

that makes it necessary t o evaluate K'P"~ for nearly all splits. The smallest values of

are huge (that is, really huge), and consequently the smallest values of dependent-cost are

also huge. Most of the values of operand-cost are very small by comparison.

We may go one step further and observe that the existence of low-cost splits for a set

S is not entirely accidental, but is associated with another property of sets of relations

that we have remarked on before. Consider again the induced join graph for S . When

this graph contains many edges, there are many ways the edges can be apportioned when

S is split into two sets Sfhs and Srha. That is, some edges may end up belonging t o Slh,,

and some t o Srhs, while those that belong t o neither will furnish join predicates for the

join of Slha and Srhs. AS it happens, the set depicted in Figure 6.4(a) induces a join graph

with a relatively large number of edges. The resultant variations in predicate assignments

in the splits of this set are reflected in the gradual, sloping descent of dependent-cost in

Figure 6.4(a).

By contrast, if the join graph for S has no edges, or few edges, there are few ways

t o apportion the edges in the splits of S. Accordingly, the dependent-cost curve for such

sets characteristically consists of a relatively small number of discrete, nearly flat steps,

connected by abrupt transitions, a s in Figure 6.4(b).

This contrast has another manifestation as well. When a set S induces a join-graph

with many edges, as in Figure 6.4(a), the associated join cardinality will generally be

relatively small. When the join-graph has few edges, as in Figure 6.4(b), one may expect

t o encounter larger join cardinalities. Thus, sets that appear low down in a fingerprint

plot will tend t o have "easy" split-graphs, while sets that appear higher up will tend t o

have "hardn split-graphs.

6.6 Fingerprints under the Nested-Loops Model

We now examine fingerprints under the disk-nested-loops cost model. In particular, we

shall observe the evolution of the fingerprints under increasing mean base-relation cardi-

nalities. As the fingerprints evolve, the dots representing individual sets will be seen t o

migrate in ways that are tied t o the split-graphs for those sets. The patterns that emerge

from these observations will help t o explain the peculiar bulges in the performance graphs

of Figure 6.1.

We begin by considering chain queries. The left-hand column of Figure 6.5 shows

fingerprints of 15-way chain queries under the disk-nested-loops model. The queries shown

are taken from our repertoire of basic test queries, with the mean base-relation cardinality

p ranging from 4.64 t o lo8, and with the variability held fixed at 0.5.

The middle and right-hand columns of the figure show split-graphs that correspond

t o the fingerprints in the left-hand column. The sequence of split-graphs in the middle

170

J1, fingerprint {Ro. Rl' R3. R5. Rs,RI2.RI3} {Ro, R2' Rt>,R7. Rs, ~.Rll}

(3,1.2el) (9.3.1e2)

4.64

. .'';;'" :70 m..

(3.4.6e4) (17.7.4eS)

100

~-~j,,,,i;>U".J<:""""
,.IIJIIr'" 'W-"" ~;!..,... I . mIDi 11!!i i! im i! H! H!i i i i i g g i i igig i i g mmmm1Th m~~~ ~ ~~~ ~~ ~~i i i ii ITITJ ii ~i i i i i i!!!! H!!! Hi!!!!! HffiTITITIITj

(5.1.0el0) (45.2.SelS)

106

'"

104

lOS

~~~~;,':~l';;':~111111111~11111~lllllllllllllflll'lllllllli;~;!i;I~;1111!1\11111111111\111~111111~11111~lllllii

Figure 6.5: Chain-query fingerprints and split-graphs for various J1,

column traces the trajectory of an arbitrarily chosen "easy" set, while the sequence in the

right-hand column traces the trajectory of an arbitrarily chosen "hard" set.

(The "easy" set is {Ro, Rt. R3, R5, Rs, R12, RI3}; in accordance with the chain topology

described in Appendix C, the induced join graph of this set has four predicate edges, which

connect the following pairs of relations: Ro-Rs, R1-Rs, R5-R12' and R5-RI3. The "hard"

set is {Ro, R2' R6, R7, RB' Rg, Rll}' The induced join graph of this set has two predicate

edges, which form the connections Ro-Rs and R2-Rg.)



As noted previously, each split-graph corresponds to an individual point in the corre- 

sponding fingerprint. The coordinates in the upper right-hand corner of each split-graph 

show the positions of those points in the adjacent fingerprint. 

Let us now examine the sequence of fingerprints; we will come back to the split-graphs 

in a moment. We see that as cardinality increases, the fingerprint drifts upwards-but it 

also spreads out. The fingerprint's center of mass moves farther and farther to  the right, 

reflecting increasing numbers of executions of tc"pli t .  These increasing execution counts 

correspond to the rise in optimization time observed as mean cardinality ranges up to 

about lo4 in the fcdnl/chain cell of Figure 6.1. 

As cardinality rises above lo4, the rightward drift of the cloud of points in the fin- 

gerprint sequence continues unabated, yet Figure 6.1 shows that optimization time starts 

to  drop off in this region. This drop is due to a separate effect, also evident in the 

fingerprint sequence. With the larger cardinalities, we encounter increasing numbers of 

sets S for which the split-independent cost tcoUt(S) rises above lo3' and overflows the 

single-precision floating-point representation that we use for plan costs. As explained in 

Chapter 4, we skip the loop in find-bestsplit when we encounter such sets. Thus, we start 

to obtain substantial savings when there are many such sets. 

Sets whose split-independent cost overflows appear in the fingerprints as points that 

are jammed up against the upper boundary of the plot. They are shown as having 

y-coordinates of lo3', though their true y-coordinates may be much higher. Their x- 

coordinates show the number of executions of t cSp i i t  that would be required if costs were 

maintained in double-precision floating-point, and the loop in find-best-split were executed 

for these sets as for all other sets. But since that loop is in fact skipped for the sets in 

question, the actual number of executions of tc8p"' for these sets is zero. To visualize their 

effect on optimization time, one can imagine the points representing these sets as simply 

being removed from the fingerprint plots once their split-independent cost overflows. 

In the sequence of fingerprints in Figure 6.5, the dot representing a particular set may 

trace a trajectory that begins in the lower left-hand corner of the plot, then gradually 

moves upward and to the right until finally the dot jams up against the top of the plot. 

The effort involved in processing the set increases with the dot's motion toward the right, 



but when the dot bumps into the upper boundary, the effort abruptly drops back to  

zero. The abruptness of this drop is not evident in Figure 6.1, because the effect of any 

individual set on optimization time is small. But as more and more sets are gradually 

removed from consideration, the cumulative effect becomes large. 

6.6.1 Trajectories as Seen through Split-Graphs 

The trajectories of the dots representing different sets are plainly not all alike. It  is 

apparent from the gradual dispersion of the dots that some of them are drifting rightward 

far more quickly than others. 

The reason for the variation in drift rates can be understood in terms of split-graphs. 

Though "easy" and "hard" are relative terms, these classifications are useful in explaining 

drift rates. The dot for the "easy" set depicted in the middle column of Figure 6.5 drifts 

slowly-its x-coordinate successively take on the values 3, 3,5,  9, and 11 as the mean base- 

relation cardinality runs from 4.64 to lo8. The x-coordinate for the "hard" set depicted 

in the right-hand column, by contrast, progresses rapidly through the values 9, 17, 45, 50, 

and 55. 

It is interesting to note that in both the sequences of split-graphs, the values of s"pfit 

increase much more quickly than the operand-cost values (i.e., the band of whitespace 

occupies an increasingly large proportion of the area under the dependent-cost curve). 

There appears to be some difference between the "easy" set and the "hard" set in the rate 

of growth of the whitespace, but not enough of a difference to account for the divergence 

of the execution counts in the two cases. 

Instead, the effect a t  work is that "easy" sets tend to remain "easy" as cardinalities 

increase: in these sets, as noted above, there exist splits for which both dependent-cost and 

Kaplit are relatively small. The splits that possess this trait tend to retain the trait even 

when the cardinalities increase. The split-graphs for the "hard" set, on the other hand, 

show a gap at the right-hand edge between the dependent-cost curve and the opemnd-cost 

spikes below it. At low cardinalities, this gap is not readily discernible, but it is still 

present. In other words, the "hard" set does not fundamentally change its character with 

the changing cardinalities. It always possesses the character of a "hard" set, only the 



consequences are less severe at lower cardinalities. As long as the whitespace at the right- 

hand edge of the split-graph is narrow compared t o  the range spanned by the operand-cost 

values, one can expect t o  obtain relatively low ~~p'~'-execution counts. 

6.6.2 Behavior of Star Queries 

We shall not give detailed consideration t o  the "cycle+ 3" topology, because its character- 

istics are very similar t o  those of the chain topology. But the optimization of star  queries 

under the disk-nested-loops cost model reveals interesting differences from what we saw 

in the case of the chain. We shall now analyze the star in the same manner that  we just 

analyzed the chain. 

The surface in the tcdnl/star cell of Figure 6.1 differs only subtly from the  chain 
cell t o  its left. Both have qualitatively the same shape; in both cases, as cardinality rises, 

optimization time first increases, and then later drops off again. But in the star-query 

case the effects are more compressed and more exaggerated. 

These differences are reflected in the star-query fingerprints in Figure 6.6. About 

half the points in these fingerprints-those constituting the blotch in the lower-left hand 

corner-remain fairly stationary throughout the sequence. But the remaining mass of 

points moves quickly t o  the right as cardinality rises, accounting for the corresponding 

rapid increase in optimization time. At the same time, this mass of points also moves 

upward rather quickly; before long, large numbers of these points are jammed up against 

the  upper boundary of the fingerprint. Once again, the accumulation of points a t  this 

boundary corresponds to  a reduction in optimization time as the loop in find-best-split is 

skipped for larger and larger numbers of sets. 

Like the corresponding figure for the chain-query case, Figure 6.6 includes two columns 

of split-graphs alongside the fingerprints. As before, the middle column traces the trajec- 

tory of an arbitrarily chosen "easy" set, and the right-hand column trace the trajectory 

of an arbitrarily chosen "hardn set. The fingerprint dot for the "easy" set remains within 

the blotch at the lower-left corner throughout the fingerprint sequence. The dot for the 

"hard" set belongs to the mass of dots that  moves upward and rightward. 

(Here, the "easy" set is {Ro, RS, R4, R6, R7, Rlz, RI4). In accordance with the star  



174

J.L fingerprint {Ro. R3. R4, Re. R7, R12' R14} {Ro.RI.~. Rs.Re.RlO,RI2}

(7.1.4eO) (26.2.8e3)

4.64

,. .... :::::..........................................................

(5,7.4el) (53,5.4ell)

100 '
~..

1

fTIm";::::;::iiiiiii::::::::::::::::::..................
!! m i i HH! H! m i i H i Iii i i ii i Ii::!!!!!!!! i i:::::::::::::::::: i i m!! H H!!! !mHH! m!! H!!! H HHHH!H!!!!i !!H!H! Hi!

..

(5.2.8e4) (62.1.4e24)

104

106 ~ii::iii!!;"""" (7. 10.7) Illiiil!imii:::mmmiiiiii;;;;;""':':':':~:,='

!IIII!!!!!!!!IIIII!!!!!!!!IIIII!!!III!!!!!!!!!!!!!!!!!!!IHII!!!i!!II!!!II!!!!!!!!!!I!!!!!I!!IIIIIII!II!!!!IIIIIIIIIII!!!IIIII
iiii!iiiiiiiiiiii!iiiiiiiiiiiiiliiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii!iiiiiiiiiiiiiiiiiiii!iiiiii!iiiiWiiiiiiiii!iii!iiiiiiiii

108

.llllllllliillli~lllllllllllli~llllilllllli!;il;II~;;;,1111111111111111111111111I1111~111111111111~1111111111II~II

(63.1.0e49)

Figure 6.6: Star-query fingerprints and split-graphs for various J.L

topology described in Appendix C, its induced join graph has predicate edges between

R14 and each of the other relations in the set-i.e., six predicates altogether. The "hard"

set is {Ro, Rl! R4, R5, R6, RIO,R12}, whose induced join graph has no predicate edges at

all.)

In the case of the chain, the distinction between "easy" and "hard" sets was one of

degree, but here it is absolute. Sets that contain the hub of the star are "easy" j the

rest are "hard." The "easy" sets all induce join graphs with six predicates-a sufficient

number that the split-graphs for such sets show a. dependenLcost curve that descends



very smoothly and gradually, in the manner seen in the middle column of Figure 6.6. 

The "hard" sets induce join graphs with no predicates; the resultant split-graphs in the 

right-hand column of Figure 6.6 show dependent-cost curves that  are essentially one flat 

plateau except near the left-hand edge. 

In light of the appearance of these split-graphs, the behavior of the star-query finger- 

prints is entirely unsurprising. In the "easy" graphs, the lowest dependent-cost values un- 

dercut nearly all the operand-cost values; in the "hardn graphs, the lowest dependent-cost 

values undercut almost none of the operand-cost values. 

One feature of the "easy" split-graphs deserves comment. The band of whitespace in 

these graphs grows t o  be quite wide a t  the larger cardinalities, but the gap between the 

dependent-cost curve and the operand-cost values always closes near the right-hand edge 

of each graph. The reason for this closing of the gap is that  near the right-hand edge of the 

graph, one encounters the left-deep splits-the splits in which the right-hand side consists 

of a single r e l a t i ~ n . ~  Given a star join-graph topology, it is only in the left-deep splits that  

both the left-hand side and right-hand side are free of Cartesian products. Consequently, 

the products of the input cardinalities are lowest for the joins formed from the left-deep 

splits; and in our test queries, the total cost of such a join can be expected t o  be roughly 

comparable t o  the total cost of the join at its left input, since both these joins involve 

cardinalities of similar magnitude. 

6.6.3 Behavior of Clique Queries 

Figure 6.1 showed that  the optimization times for clique queries are elevated relative t o  

the times for chains and stars. However, even in the case of cliques there was a hint of 

the same pattern exhibited by the other topologies-an increase in optimization time as 

cardinality rises from low to  moderate, and then a drop as cardinality rises still further, 

from moderate t o  high. 

The fingerprints and split-graphs in Figure 6.7 give another perspective on the difficult 

3Some of the splits in question are technically right-deep rather than left-deep. But since we are 
assuming symmetrical join costs, we need not make a distinction between left-deep and right-deep. We 
shall maintain the convention of referring to splits of either kind as left-deep. 



176

J-l fingerprint {~.R2.%.R7.R8.~.~l} {Rt. Rt;. R8. Rll. R12. Rl3. R14}

(34. S.lel) (30.4.2e2)

4.64

, !!TI",,,,,,,,,,,,,,,,m,,m...,,,,,,,,,,,,,,,,,,,,,,,,,,,...

(54. 1.4e1) (60,1.Se9)

100

'. .,~ li1 H!1!i!H!!!! 1H!!iiim! 1!!1HH!HH 1111i i!iiH!H1!!!!!1! !IN!!mHTlIIIIIII~lli!l!!Ii iiII~~I~~I!!iiilII Iliiiiilmm

(6l,9.le14) (63,1.6e19)

104

.tjiiiiiii!!iiiiiiiiiiiiiiill!I!!ililiiil!I!lili!ii!!ii!=ii~iiiiiiiiiiil~I!li!!!IIIII!II!I!~!llllilllllil

lOS

il. (62,6.1.22) - '--106

Figure 6.7: Clique-query fingerprints and split-graphs for various J-l

character of the clique queries. As before, the figure shows two columns of split-graphs, for

the sets {Ro, R2, R5, R1, Rs, Rg, RB} and {R4, R6, Rs, RB, R12, R13,R14}, respectively. In

this instance, there is little justification for calling one of the sets "easy" and the other

"hard." One might more accurately characterize them as being "horrible" and "even more

horrible." In the case of the clique, there are no "easy" sets.

(Both the sets represented in these split-graphs induce join graphs that are cliques, as

do all subsets in a clique topology; but one difference between the two sets represented

here is that the "even more horrible" set contains relations of larger cardinalities. As



explained in Appendix C, in our basic test queries, the relation Ro is assigned the lowest 

cardinality of any relation, and the cardinalities ascend with the relation indices, so that  

RI4 has the highest cardinality.) 

In fact, the clique behavior exhibited in Figure 6.7 is in several respects qualitatively 

different from the behavior we have observed for chains and stars: 

As just noted, in the clique there are apparently no "easy" sets. All points in its 

fingerprint move in more or less the same way as cardinality increases. 

In the split-graphs for the clique query, low operand-cost values correlate with high 

dependent-cost values-just the opposite of what occurs in the chain- and star-query 

split-graphs. 

At no stage in the clique-fingerprint evolution do we find points jamming up against 

the upper boundary of the fingerprint plot. Yet Figure 6.1 does show a pronounced 

drop in clique-query optimization time at high cardinalities. 

Presumably all the seven-relation sets behave more or less similarly because they are 

all topologically isomorphic; i.e., the join subgraphs they induce are all subcliques. What 

little difference one does find among the different sets is due t o  variations in the base- 

relation cardinalities and predicate selectivities. These variations are moderate in our test 

queries, and as we have seen before, it is the larger differences related t o  the presence or 

absence of predicate connections that  distinguish "easy" from "hardn sets. 

These comments explain why all the sets behave alike; but why do all the sets exhibit 

"hard," rather than "easy" behavior? The answer to  this question is bound up with the  

negative correlation between the operand-cost and dependent-cost values in the split-graph 

for any given set. In the case of the chain and the star, high values for dependent-cost and 

operand-cost both tended t o  be associated with the presence of Cartesian products in one 

or both operands; hence these values were positively correlated. Here, Cartesian products 

are not an issue. Instead, high values for dependent-cost are associated with splits that  

assign roughly equal numbers of relations to  the left-hand side and the right-hand side: 

such splits yield joins that  have a large number of join predicates, and hence the product 



of the operand cardinalities is large in proportion t o  the result cardinality. This large 

product appears as a term in the cost function K g : ,  and thereby pushes up the  value of 

dependent-cost. But these same splits, in which the numbers of relations on the left and 

right are roughly balanced, are the ones that  give the lowest operand-cost values. When 

one operand contains more relations that  the other, its cost is significantly higher, and 

drives up the sum of the operand costs. 

Finally, we turn to  the question of why the drop in optimization times at high car- 

dinalities is not reflected in our fingerprints. The explanation is simple: our fingerprints 

represent only the seven-relation sets. Fingerprints of the eight-, nine-, and ten-relation 

sets would show point clusters at higher and higher levels, and the larger the sets, the more 

points would be jammed up against the upper boundary of the plot. In fact, the same 

is true in the case of the chain and star queries-though we did see points accumulating 

a t  the upper boundary even in the seven-relation fingerprints, the effect would have been 

stronger had we examined the behavior of slightly larger sets. Note, however, that  the 

influence of the sets that  are much larger-e.g., those of thirteen, fourteen, and fifteen 

relations-is small, because as noted earlier, the number of such sets is small. 

6.7 Summary and Discussion 

In this chapter we have attempted a systematic exploration of the performance character- 

istics of the Blitzsplit algorithm. Such an exploration presents challenges because there is 

no standard assessment procedure for join-order optimization. 

We began by defining a parameterization for a suite of basic test queries tha t  we 

submitted t o  the Blitzsplit algorithm for optimization. Using relatively simple cost models, 

we obtained timings that  are very favorable compared t o  those that  have been reported 

for other methods. Moreover, we gave evidence that  our worst-case timings occur only 

under rare conditions, and that  for a broad spectrum of queries the optimization time falls 

well below the worst case. At the same time, our performance graphs revealed sensitivity 

t o  the cost model, and displayed mysterious bulges for which there was no immediate 

explanation. 



We then sought to understand the algorithm's performance in more detail, espe- 

cially with a view to anticipating what kind of effects we would encounter under more 

computation-intensive cost models. To that end, we investigated the aspects of a query 

that affected the number of executions of the split-dependent component tc8plit of the cost 

function K-for it is this component of cost to which the algorithm will inevitably show 

the greatest sensitivity. 

We introduced query fingerprints and split-graphs for the purpose of probing the K'P"~- 

execution counts. We found that the somewhat mysterious patterns in Figure 6.1 are not 

so mysterious after all, but have straightforward explanations in terms of our fingerprint 

plots and split-graphs. 

One can extrapolate from these explanations and begin to make some predictions 

as well. For example, one might predict that redistributing the selectivities among the 

predicates (preserving the product of these selectivities) ought not to change the overall 

shapes of the fingerprints, but would presumably cause some additional spreading of the 

fingerprint dots along the vertical axis. It is therefore not surprising that in our ad hoc 

experiments with altered selectivities, we observed performance very similar to that of our 

basic test queries. One can imagine going further, and attempting to quantify the effects 

of such changes by constructing analytical models. However, such a modeling effort is 

beyond the ambitions of the present work, and will have to be left to the future. 

The applicability of some of our observations to actual query processing may be ques- 

tioned. In particular, the relevance of the disk-nested-loops cost model is suspect, since, 

aside from being fairly simplistic, it assigns prohibitively high costs to queries involving 

large cardinalities. One could not possibly hope to execute our basic test queries a t  large 

cardinalities if the execution costs were in fact those given by the disk-nested-loops model. 

However, this deficiency in the disk-nested-loops model does not necessarily compro- 

mise the utility of our measurements and analysis. On the contrary, it is a reasonable 

conjecture that the effects observed under this model illustrate the worst-case behavior of 

our algorithm with regard to the ~;"p"~-execution counts. Cost models that do not include 

a term proportional to the product of the join-input cardinalities can be expected to yield 

split-graphs with narrow bands of whitespace. In cost models that do include such a term, 



the band of whitespace will become wide, sooner or later, as cardinality increases. 

More sophisticated cost models create a synthesis of these two alternatives, giving con- 

sideration to nested-loops strategies where they are feasible, and avoiding them elsewhere. 

One may expect the behavioral characteristics of such a synthesis to be intermediate be- 

tween those of our naive model and those of our disk-nested-loops model. By focusing 

separately on two distinct potential sources of cost, these simplistic models bracket the 

range of behaviors one would be likely to encounter in realistic cost models. 



Chapter 7 

Pruning Cost Computations 

We now consider further improvements to  the Blitzsplit algorithm based on the obser- 

vations of the previous chapter. To motivate these improvements, let us briefly review 

both what is good and what is bad about the algorithm's performance, as shown by our 

observations. 

What is good is its sheer speed under simple cost models. With the Blitzsplit algo- 

rithm, we obtained optimization times that, even in the worst case, were lower by several 

orders of magnitude than those that  have been reported for other methods. 

But one must be cautious in interpreting these timings. Earlier studies of join- 

optimization performance suggest that when heavier-weight join-enumeration strategies 

are used, the effort of join enumeration is the limiting factor in join-optimization perfor- 

mance [40, 451. Under those conditions, one can equally well measure performance using 

a simple cost computation or a more complicated one-the effort involved in the cost 

computations is dominated by the join-enumeration effort in either case. However, once 

the join-enumeration effort is pared down to  almost nothing, as the Blitzsplit algorithm 

has done, the tables are turned. Cost computations emerge as a significant and possibly 

the dominant component of optimization time. 

Seen in this light, what is bad about our algorithm's performance is tha t  i t  does 

not do a good job of economizing on the number of executions of the cost function K. 

Assuming, as we have done, that  the computation of n is separated into a split-independent 

component tcoUt and a split-dependent component naplit, we have seen that  we need t o  be 

especially concerned about the number of executions of K ~ P ~ ~ ' .  Even under the idealized 

assumptions of Sections 3.4.2 and 3.4.3, the ~~p~~' -execut ion count does not necessarily 



compare favorably with the cost-function execution counts that  would be obtained with 

algorithms that  consider only "feasible" sets of relations in the manner of Starburst or 

Volcano. For when the join-graph topology is a chain, for example, the complexity of 

optimization in Starburst or Volcano is polynomial in the number of relations n; whereas 

our algorithm necessarily has exponential complexity-and in particular, gives a 

execution count of (In 2/2)n2n according to  our idealized analytical estimate. 

Moreover, the fingerprint studies of the previous chapter show how far the actual 

K"P"~-execution counts can diverge from the ideal. In terms of ~ 'p~~~-execu t ion  counts, our 

algorithm appears to  be paying a heavy price for including consideration of Cartesian 

products. 

At the same time, the fingerprint studies suggest a way of avoiding the penalty as- 

sociated with Cartesian products. Except in the case of the clique-whose difficulty has 

nothing to  do with Cartesian products in the first place-the points that  lie furthest t o  the 

right i'n the fingerprint plots also tend to  be found high up in the plots. The techniques 

described below take advantage of this fact to  cut the ~~p'~'-execution counts, sometimes 

drastically. 

7.1 Pruning by Plan-Cost Thresholds 

As a first measure to  avoid the penalty incurred by Cartesian products, we apply a simple 

pruning technique that  we refer t o  as pruning by plan-cost thresholds. The idea behind this 

technique is simply to  remove from the fingerprints all points above a particular threshold. 

This technique is implemented by means of a small change to  the code in find-best-split 

(cf. page 76). Recall that  no"' represents the component of a cost function K that  depends 

only on the set S of relations whose join is to  be optimized, and not on any particular split 

of S into left- and right-hand sets of relations. Consequently, tcoUt(S) can be computed for 

the set S, once and for all, outside the inner loop that  examines the individual splits of S. 

As described in Section 4.8, our actual implementation of the Blitzsplit algorithm entirely 

skips the inner loop in find-best-split whenever tcoUt(S) threatens overflow, i.e., whenever 

tcoUt(S) exceeds lo3'. But the threshold lo3' can just as well be replaced by some other 



183

rr..~: .-,,'5-

~.~dI-~'~(:
-~~;:(.'. .. o. ~

(a) Full fingerprint (b) Truncated fingerprint

Figure 7.1: Fingerprint with and without truncation by a plan-cost threshold

threshold T chosen to reduce the effort in optimization.

The effect of such a change at the level of fingerprints is illustrated in Figure 7.1.

Figure 7.1(a) shows the fingerprint under the disk-nested-Ioops model of the basic chain

query with mean cardinality 104 and variability 0.5. In Figure 7.1(b) we see the result

of removing the dots for all sets S such that Kout(S) lies above the threshold T = 1014.

(The value 1014has no special significance; we comment further on the choice of T below.)

Evidently, Figure 7.1(b) reflects a much lower total Ksplit-execution count than does the

original fingerprint in Figure 7.1(a). Imposition of the threshold has eliminated many

dots, and moreover has removed them mostly from the right-hand half of the fingerprint,

the province of "hard" sets.

Under the naive cost model as well, plan-cost thresholds can remove large numbers of

sets from a fingerprint. The absence of "hard" sets under the naive cost model makes the

effect of the thresholds only slightly less compelling. Indeed, plan-cost thresholds make

sense for any cost model K for which the split-independent component Koutis nonzero. If

Koutis zero, all the points in a fingerprint plot will be glued to the x-axis, and a plan-cost

threshold will have no effect. But any realistic cost model ought to have a non-zero split-

independent component that charges some cost proportional to output cardinality. The

cost need not be large to make the plan-cost thresholds effective.

There remains the question of how to choose a threshold To Plainly, the lower the

threshold, the greater the savings in optimization time. But in lowering the threshold too

aggressively, one runs the risk of rendering some queries unoptimizable. That is, if the

threshold is set below the cost of the optimal plan for a given query, the optimizer will be



unable t o  find any plan for that  query. (Note, though, that  in no case will the optimizer 

commit the insidious error of mistaking a suboptimal plan for an optimal one. If any plan 

is found, it will be optimal.) There is no obvious criterion for choosing a threshold tha t  

strikes a good compromise. Below we consider several perspectives on this problem. 

7.2 Experiment a1 Runs with Plan-Cost Thresholds 

Our first attack on the setting of threshold values is straightforward if ad hoc, and gives 

us the experimental results reported below. We reason as follows: 

If a query is expected t o  execute quickly, then it is imperative that  it also be optimized 

quickly, for in general one would like optimization time to  be smaller than (preferably, 

much smaller than) execution time [30]. By the same token, if the query execution will 

be extremely long, then it is probably acceptable to  allow more time for optimization, as  

long as the optimization time is still small compared to  the execution time. 

On this basis, it seems reasonable t o  choose a plan-cost threshold that  represents a 

query-execution time on the order of one hour. The optimizer will then directly find 

optimal plans for queries whose estimated execution time (after optimization) is below 

one hour. On the other hand, given a query that  cannot run in under one hour, the 

optimizer will fail t o  find a plan; it will then be necessary to  take remedial action. The 

remedial action we take is to reoptimize with a higher threshold-for lack of a better 

value, we set the second threshold a t  10' hours. The second threshold will clearly suffice 

for any query that  one may reasonably hope t o  execute. But for the sake of completeness 

we make allowance for a third optimization pass if the second threshold is still too low. I t  

will turn out that  this third pass is required for some of our basic test queries. 

In our experimental runs with plan-cost thresholds, we make no attempt t o  reuse 

information from one optimization pass t o  the next; each optimization pass is independent. 

As a result, in those cases where we optimize first with a threshold of one hour, and then 

with a threshold of 10' hours, the aggregate time spent on optimization will be the sum 

of the time needed t o  optimize with the lower threshold and the time needed t o  optimize 

with the higher threshold. Similarly, if there are three optimization passes, the aggregate 



optimization time will be the sum of the optimization times for each pass. In this sense, 

the time spent on the earlier passes ends up being completely wasted. 

Our cost models have no time units associated with them, so to  choose thresholds 

that  represent one hour, we need t o  make common-sense estimates. Since the costs in 

the naive and sort-merge cost models count tuples, one may take the cost units for these 

models t o  represent times on the order of microseconds. The costs in the disk-nested- 

loops model count disk-block transfers, and presumably represent times on the order of 

tens of milliseconds. Using these ball-park estimates as a guide, we take the threshold 

lo9 as an approximation for one hour under the naive and sort-merge cost models; for the 

disk-nested-loops model, the corresponding threshold is lo5. 

Figure 7.2, which is organized the same way as Figure 6.1 on page 153, shows the 

optimization times we obtain after altering our optimizer t o  incorporate the plan-cost 

thresholds just described. The optimization times depicted in Figure 7.2 tend to  run 

markedly lower than the corresponding times in Figure 6.1. In particular, for chain queries 

under the naive cost model, Figure 7.2(b) exhibits optimization times that  settle down to  

a scant 0.1 second. Figure 7.2(c) illustrates a variation of the same effect for the case of 

"cycle+3" queries under the disk-nested-loops model: optimization times rapidly drop off 

as cardinality rises-but then ripples appear where the plan-cost thresholds are exceeded, 

and additional optimization passes are required. 

Plan-cost thresholds are effective for all join-graph topologies, but the benefits are 

most pronounced for chain-like graphs. Recall that  the lowest points in the chain-query 

fingerprints become extremely sparse; a sufficiently low threshold will cut away the vast 

majority of the points and leave behind only a handful, nearly all of which correspond t o  

"easyn sets. 

There is another way of understanding the effectiveness of plan-cost thresholds for 

chain queries. A well-placed plan-cost threshold tends to  make a fairly clean separation 

between the sets that  involve Cartesian products and those that  do not. In the terminology 

of Starburst, the threshold cuts away the "infeasible" sets and leaves behind the "feasiblen 

sets. Moreover, in searching for the optimal plan for each feasible set, our optimizer will 

reject splits whose operand-cost exceeds the threshold, and hence will tend t o  perform a 



chain cycle+ 3

KO

K6m

Kdnl ~~

star

186

clique

.
(a) Four-dimensional summary of performance sensitivities with plan-cost thresholds

time in sees.

5

':_;'040'0le4 1e6 0.8 0.6 .
meancardinality le8 I variability

(b) KO/chain; threshold at 109

5
4
3
2

le2 le4 le6 le8

0
0.2

0.4
0.6

0.8 variabilityI
mean cardinality

(c) Kdnl/cycle+3; thresholds at 105,1014

Figure 7.2: Optimization times for 15-way joins with plan-cost thresholds

full cost computation only for the splits that correspond to "feasible" joins. The net result

is that our K6plit-executioncounts fall to a level that lies in the neighborhood of the number

offeasible joins for the query. The effect is particularly dramatic for chain queries because,

as we have noted, the number of feasible joins for such a query is only polynomial in the

number of relations in the query. But for star queries as well, we obtain Ksplit-execution

counts consistent with the feasible-join counts set forth by Ono and Lohman [45].

In effect, when equipped with plan-cost thresholds, our optimizer excludes Cartesian

products after all. But the exclusion is cost-based and not topology-based. Since the

more conventional topology-based exclusions only approximate the effects that are actually

desired, we obtain two advantages by directly applying a cost-based criterion. First, we do

not necessarily exclude Cartesian products-we just tend to exclude them. If the optimal

plan for a query includes a Cartesian product, then our cost-based exclusion will admit



that  Cartesian product and allow the optimizer t o  generate the optimal plan that  includes 

it. Second, the cost-based exclusion allows us t o  prune away excessively costly sets even 

when they do not involve Cartesian products. Because of this second effect, we sometimes 

obtain  execution counts that  actually fall below the feasible-join counts based on 

topology. 

7.3 Considerations in Choosing Plan-Cost Thresholds 

We still face the challenge of choosing effective plan-cost thresholds for a given query. The 

benefits of these thresholds diminish when the thresholds fail to  give a fairly tight bound 

on the  cost of the optimal plan. 

One way t o  obtain a fairly tight plan-cost threshold, suggested by Roberto Bayardo [3], 

would be t o  precede the exhaustive-search optimization with a brief run of a stochastic 

join-optimization method such as iterative improvement. An alternative, more brute- 

force strategy is t o  use multiple optimization passes with successively larger thresholds, 

as described in Section 7.2 above, but with much finer spacing between the thresholds. 

In this way the successive thresholds could work their way up to  a tight upper bound by 

approaching it from below. 

This seemingly ungainly strategy may well prove worthwhile in situations where cost 

computations dominate the optimization time. Figure 7.3 gives a sense of the trade-off 

involved in adopting a finer spacing of the thresholds. The figure presents several views of 

the disk-nested-loops fingerprint for our basic chain query with mean cardinality lo4  and 

variability 0.5. In Figure 7.3(a), we see the effects of the successive plan-cost thresholds 

we used in our experiments of Section 7.2 above; i.e., the successive thresholds are lo5, 

1014, and Figure 7.3(b) shows the effect we would have obtained by spacing the 

thresholds only a factor of 10 apart, i.e., by using successive thresholds of lo5, lo6, lo7, 

and so on. 

In our experiments, the threshold lo5 proved too low for the query under considera- 

tion, and so it had t o  be reoptimized with the next threshold of 1014, which turned out 

t o  be adequate. But it is apparent that  processing all the sets in the second fingerprint 



188

~ ...""_.,..

\...' h':' "..~..;!.."., r.. ~ ., ,..~.oil~~

, . .~. . ~",..~V ;J.'
',...' fi'" ".,"'r~<.
. ., r.' .

r = 105 T = 1014 T = 1023

(a) Thresholds spaced a factor of 109 apart

. ,..," ,. '''';1'<'\.'' '

T = 105 T = 106 T = 107

(b) Thresholds spaced a factor of 10 apart

Figure 7.3: Fingerprints truncated by successively larger plan-cost thresholds

of Figure 7.3(a) entails a hugely greater effort than is required for the first fingerprint.

This big jump in effort is reflected in the height of the leftmost ripple in the "-dnllchain

and "-dnJ/cycle+3 cells of Figure 7.2(a); this pronounced ripple effect is even more clearly

discernible in Figure 7.2(c). Thus, the appeal of using the succession of thresholds illus-

trated in Figure 7.3(b) is that the amount of effort needed for successive optimization

passes would be greatly reduced. One would expect the ripple heights to diminish corre-

spondingly.

On the other hand, in switching to more closely spaced thresholds, one runs the risk

that a much larger number of optimization passes might be needed, and the total effort

involved might therefore be larger. As it happens, the threshold of 106 illustrated in the

middle of Figure 7.3(b) suffices for our example query, and so the third and subsequent

optimization passes can be avoided. But there is no assurance that other queries might

not pose greater difficulties.



However, even if many optimization passes should be required, the amount of redun- 

dant effort involved can be capped. As we argue next, it is not necessary for any of the 

cost computations t o  be repeated. What does need t o  be repeated on successive passes is 

the enumeration of the join alternatives. Since the number of passes will be logarithmic in 

the optimal plan cost, the enumeration effort will also become logarithmic in the optimal 

plan cost. This resultant moderate increase in enumeration effort for expensive queries 

should not be grounds for concern in cases where the cost computations dominate the 

total optimization time. 

7.4 Plan-Cost Slices 

Our strategy for using plan-cost thresholds in the experiments of Figure 7.2 was rather 

crude. On successive optimization passes, we simply reexecuted the Blitzsplit algorithm 

with different thresholds, without making any substantive internal changes t o  the algo- 

rithm. However, in taking this crude approach, we unnecessarily discarded valuable infor- 

mation obtained in one run of the algorithm, and then had t o  recreate that  information 

in the next run. 

A better approach would be to  retain the dynamic programming table from one run 

t o  the next, a t  first building a table full of guesses and "question marks," and then using 

successive passes t o  patch up and improve the table until it contained an optimal plan- 

though it might still be full of guesses and "question marksn elsewhere. Then rather than 

calculating all costs up to  an ever-increasing threshold, each pass of the optimizer would 

peform cost calculations related t o  a particular horizontal slice of the query fingerprint. 

The resultant savings in cost-function executions would be especially beneficial if one were 

dealing with more computationally intensive cost functions than we have considered in this 

work. 

Here we briefly sketch how such an approach to  iterative application of the Blitzsplit 

algorithm could be implemented. One would need to  extend the dynamic programming 

table t o  maintain two cost columns, rather than just the one we had before (cf. Figure 3.1). 

The Cost column we had before would continue t o  represent total plan cost, but the Cost 



entry for a given set S would not always be the lowest cost of any plan for S ;  instead, 

it would be an upper bound on such costs-that is, a running best cost so far  that  would 

be carried over from one iteration of the algorithm t o  the next. Meanwhile, the new 

cost column would store the values of the split-independent cost /coUt(S) for each set S. 

The values of this new column would be calculated up front, and would never change 

subsequently. 

The Blitzsplit algorithm would then run iteratively, and each iteration would concern 

itself with a cost-slice defined by an interval [slice-low, slicehigh). The upper end of the 

interval used in one iteration would become the lower end of the interval used in the next 

iteration, so that  successive slices would stack up on top of one another. The central obser- 

vation t o  make is that  on any given iteration, the split-dependent cost K " ~ " ~ ( S ,  Slhs, Srhs) 

for a given split should never be calculated unless 

slice-low 5 Cost(Slha) + Cost(Srhs) + KO'~(S) < slice-high. 

What is a little tricky about this rule is that  the values of Cost(Slha) and Cost(Srh,) could 

change from one iteration to  the next. However, by the same token, this rule (together 

with the subsets-first assumption) ensures that  if one of operand costs should change on a 

given iteration, its new value cannot possibly be less than slice-low-so there is no danger 

of failing t o  cost a split because its operands suddenly "shrink away" beneath the cost-slice 

window! Moreover, it is not difficult to  see that  under this rule, the split-dependent cost 

K"P"~(s, Slhal Srha) for a given split will be calculated at most once, no matter how many 

times the algorithm iterates. 

On successive iterations, the slice levels work their way upward, while the plan costs 

work their way downward; when the two converge, optimization is complete. Specifically, 

when a cost below slicehigh is obtained for the set R of all base relations, one may deduce 

that  the plan rooted a t  the table entry for R is optimal. 

In terms of cost-function execution counts, this iterative approach could be expected 

t o  perform quite well. Not only does it not repeat any cost computations, but i t  goes out 

of its way t o  postpone performing these computations in the first place; it finally performs 

them only when it becomes quite clear that  they cannot be pruned away with confidence. 



If sufficiently thin slices were used, then ~~p~~~ would almost never be computed for a 

split whose opemnd-cost exceeded the lowest dependent-cost for the set. In effect, this 

iterative algorithm would tend to  drive the points in a fingerprint plot somewhat leftward, 

in addition t o  removing nearly all the points that  lay above the level of the optimal plan 

cost. 

Just  how well this iterative approach would perform would naturally depend on the 

query t o  be optimized. An approach of this kind should be especially effective for finger- 

prints that  become sparse in their lower regions; the queries that  yield such fingerprints 

include chain queries, but they can also include queries of other topologies when there is 

significant variation in both the base-relation cardinalities and predicate selectivities. Our 

basic test queries are inadequate for studying the performance of an iterative algorithm 

of this kind because by construction those queries tend t o  suppress vertical variation in 

the fingerprint plots. A more meaningful benchmark would very likely have t o  consider a 

larger number of dimensions of parameterization of the input query space. 

7.5 Summary and Discussion 

In this chapter we have sought to  address a weakness of the Blitzsplit algorithm that  

manifests itself when the cost function K, and in particular its split-dependent component 

K ~ p ~ i t  , is computationally intensive. For while the Blitzsplit algorithm performs extremely 

rapid enumeration of join alternatives (or "splits"), it potentially performs a much larger 

number of cost-function executions than the Starburst and Volcano algorithms. 

In response t o  this weakness, we observed first that  through the simple and rather 

crude technique of applying plan-cost thresholds, it was possible t o  reduce the number of 

cost-function executions substantially, especially for "chain-like" queries. These reductions 

were reflected in improved optimization times for nearly all the basic test queries t o  which 

we had applied our original performance measurements previously. We noted, moreover, 

that  with appropriately chosen plan-cost thresholds, cost-function execution counts could 

be brought down t o  levels comparable with those that  obtain in the Starburst and Vol- 

cano algorithms. In particular, cost-function execution counts for chain queries become 



polynomial in the number of relations in the join. 

We then speculated on how the notion of plan-cost thresholds might be refined into 

a notion of plan-cost slices that  could more reliably reduce the number of cost-function 

executions. Although correct implementation of plan-cost slices involves some tricky de- 

tails, the mechanisms required are not complicated, and can be expected t o  prune away 

cost computations t o  a degree that  might be difficult to  achieve by any other means. 

The idea of plan-cost slices deserves further exploration. I t  should be noted that  pursuit 

of cost-computation savings by this means involves a trade-off that  may be regarded as 

counterintuitive: for by imposing an extra layer of iteration on the Blitzsplit algorithm, 

plan-cost slices effectively sacrifice the algorithm's rapid enumeration of join alternatives. 

In a sense, such 'a trade goes against the spirit of the Blitzsplit algorithm, which was 

constructed t o  perform enumeration a t  blinding speeds. 

But it is precisely its fleetness in enumeration that  allows the Blitzsplit algorithm to  be 

applied in ways that  would be inconceivable under a heavier-weight enumeration strategy. 

Optimizers that  use heavier-weight strategies cannot afford the luxury of iterating the 

entire enumeration process many times over, and consequently they do not have the option 

of repeatedly going back and revisiting their pruning decisions. They have no choice but 

t o  make these decisions conservatively, lest they prune too much. Thus constrained, 

heavier-weight optimizers are likely t o  miss some of the pruning possibilities that  become 

so important when costing of plans becomes corn putationally intensive. 



Chapter 8 

A Stochastic Extension 

The performance results for the Blitzsplit algorithm reported in Chapters 6 and 7 were 

encouraging, but there are reasons for seeking even better performance. No matter how 

much pruning one achieves in the cost computations, the Blitzsplit algorithm's complex- ' 

ity always retains an exponential term that  renders the algorithm infeasible for queries 

involving very large numbers of relations. Furthermore, direct extension of the Blitzsplit 

algorithm t o  incorporate consideration of physical properties (cf. Section 2.6.3) could de- 

grade its performance substantially. In this chapter we consider a stochastic extension of 

the Blitzsplit algorithm that  can handle larger numbers of relations, and that  has the po- 

tential t o  be more resilient in the presence of complicating considerations such as physical 

properties. 

The ideas described in this chapter are not fundamentally new. Swami [56] explored 

a variety of approaches to  join optimization that  combined heuristic and combinatorial 

techniques. One approach he considered was a hybrid technique that  he referred t o  as local 

improvement; this technique improved randomly generated plans by applying dynamic 

programming t o  subproblems of the join-optimization problem. The approach we take 

in the present chapter may be regarded as a straightforward variant of Swami's local 

improvement, a t  least in conception. (The details of our approach are different-and 

more complicated-in large part because we generate bushy plans, rather than just left- 

deep plans, as Swami did.) Swami reported disappointing performance for the local- 

improvement technique-other techniques he explored proved far more effective. The 

present investigation would therefore appear t o  be poorly motivated by Swami's results. 

But two considerations justify giving local improvement a second look. First, the 



Blitzsplit algorithm permits rapid solution of subproblems by dynamic programming, and 

increases the size of subproblem for which exhaustive solutions are feasible. Second, meth- 

ods analogous t o  local improvement have proved effective in problem domains unrelated 

t o  query processing, and may have something to teach us. The present work on stochas- 

tic optimization takes its inspiration largely from the combinatorial-optimization work of 

Martin and Ot to  [39], who have devised a stochastic technique they call Chained Local 

Optimization. They have applied this technique with astonishing success t o  a variety 

of well-known intractable problems such as the Traveling Salesman Problem. Their tech- 

nique is similar to  Swami's local improvement, but differs subtly in its inclusion of a "kickn 

mechanism, about which we will say more in due course. 

Par t  of the appeal of applying a technique such as local improvement to  join-order 

optimization is that  it gives us a way of retaining some of the benefits of dynamic pro- 

gramming when moving on to  problems involving large numbers of relations. Conventional 

stochastic techniques achieve only a modest amount of sharing in the analysis (including 

the costing effort) that  goes into comparing the different plans considered. Hybrid tech- 

niques that  incorporate dynamic programming t o  solve subproblems can explore a larger 

proportion of the search space, for a given amount of effort, than those that  do not. 

In Section 8.1 below, we review the intuitions behind Chained Local Optimization, and 

contrast i t  with other stochastic optimization techniques that  have been applied t o  join 

optimization. The remaining sections of this chapter describe the central mechanisms of 

our adaptation of the Chained Local Optimization technique t o  join-order optimization; 

we refer t o  the resultant algorithm as the Stochastic Bushwhack algorithm. 

However, we shall defer incorporation of Chained Local Optimization's "kick" into 

our algorithm until Chapter 9, in which we conduct empirical studies on the Stochastic 

Bushwhack algorithm's behavior. We shall see that  the algorithm is rather effective even 

without the "kick," but that  inclusion of the "kick" increases its power still further. 

8.1 Intuitions about Stochastic Optimization 

Consider the function depicted by the solid curve in Figure 8.1. Call this function f. 



Figure 8.1: A pathological function shape 

We see from the figure that  f has a gently-sloping, scalloped surface punctuated by deep 

crevasses. 

Now suppose we are faced with the problem of finding the minimum of the function in 

question; in other words, our objective is to  find the x-coordinate of the point at which the 

function is lowest-which happens to  be the point labeled J in the lower left-hand corner 

of the figure. Let u s  assume for the present that  the only means we have t o  examine the 

ups and downs of the function curve is t o  evaluate f (x) at a succession of values x of our 

choosing. Thus, we have nothing like the derivative of f at our disposal. 

The problem just posed is loosely analogous to  the problem of join-order optimization. 

We may think of the different x-values as corresponding t o  different join orders or join 

expressions, and the function f as corresponding to  the cost function defined by equa- 

tions (2.59) and (2.60) on page 53. Let us therefore try to  develop a very approximate, 

intuitive sense of the strengths and weaknesses of several stochastic join-optimization 

techniques by considering how these techniques would cope with the problem of finding 

a minimum for f .  Subsequently we will also consider how Swami's local-improvement 

technique and the Chained Local Optimization technique of Martin and Ot to  would cope 

with this problem. 



8.1.1 Characteristics of Various Approaches 

Iterative Improvement The algorithm known as itemtive improvement [54,58] is very 

simple, but quite effective. Given the problem a t  hand it might proceed as follows. First, 

it probes f at a randomly chosen value x; let us say that  i t  probes the point labeled 

A in Figure 8.1. It then probes f a t  x + 6 and x - 6, where 6 is some suitably small 

increment, seeking a lower point on the function surface. If it finds such a point, i t  adjusts 

x accordingly, and repeats the process. In this way it "climbsn downhill until it reaches a 

local minimum. In the present example, it might find its way down to  B. 

The entire hill-climbing is then repeated for a different random starting point, say C. 

This time the algorithm might find its way to  D. After some number of repetitions of 

this hill-climbing procedure, the algorithm has found its way t o  an assortment of local 

minima, B and D among them. The best of these local minima is taken as the solution t o  

the problem. 

But one can see the difficulty with iterative improvement in the present instance. The 

odds of finding a deeper local minimum such as E or F are relatively low, since the large 

majority of points on the surface lead down t o  shallower minima. The algorithm therefore 

requires a very large number of repetitions to  stand a good chance of finding a deep 

minimum. 

Simulated Annealing Simulated annealing [27, 54, 581 partially overcomes the dif- 

ficulty encountered by iterative improvement in the problem a t  hand. The simulated- 

annealing algorithm is somewhat similar to  iterative improvement, but rather than me- 

thodically climbing downhill a t  each step, this algorithm permits both downhill and uphill 

moves. I t  probabilistically gives preference to  downhill moves so as t o  ensure net down- 

ward motion, and the likelihood of an uphill move declines over time so that  the algorithm 

eventually settles down t o  a local minimum. But by allowing uphill moves, the algorithm 

can "climb over" small obstacles that  lie between a shallow minimum and a deeper mini- 

mum. Thus, starting a t  B in Figure 8.1, simulated annealing might find its way t o  El or 

starting at Dl it might find its way to  F. 

The problem with simulated annealing is that  its progress is slow. I t  makes many 



false moves in the course of making its way to  a deep minimum. Moreover, as usually 

formulated, simulated annealing proceeds only from a single starting point, and so it finds 

only a single local minimum, albeit a deep one. There may be other deep local minima 

that  are far better. (Theoretically, simulated annealing can be parameterized so that  i t  

finds a global minimum with probability 1; but the time required may be astronomical.) 

Two-phase Optimization Two-phase optimization or 2 P 0  [26, 541 attempts t o  com- 

bine the advantages of iterative improvement and simulated annealing. In the first phase, 

a number of iterations of iterative improvement are performed so as to  obtain a low point 

among the shallow minima. In the present instance, the low point found in this manner 

might be the point labeled D. In the second phase, the low point so identified is taken as 

a starting point for simulated annealing. Thus, a t  the end of the second phase, we might 

arrive at the point labeled F. 

The intuition behind two-phase optimization is that  the deepest minima are likely t o  

be found near the deepest among the shallower minima. But this method backfires when 

faced with a pathological function of the sort shown in Figure 8.1. Here the depth of 

the deep minima is negatively correlated with the depth of the nearby shallow minima, 

and the two-phase optimization strategy leads to a deep minimum that  does not compare 

especially favorably with the global minimum. 

Transformationless Random Probing The transformationless random probing tech- 

nique of Galindo-Legaria e t  al. [12] picks each point to  probe entirely a t  random. In other 

words, unlike most techniques, it is not constrained t o  probe in the neighborhood of the  

last point i t  has probed. 

The strength of this approach lies in its rejection of spatial proximity as a criterion for 

selecting successive points to  probe. By forgetting where it has probed before, i t  avoids 

getting stuck in local minima such as B and D in Figure 8.1-or for that  matter, in deeper 

but still suboptimal local minima such as E and F. 

But this algorithm's forgetfulness is also its weakness. On probing the point K in 

Figure 8.1, it has come within a hair of finding the global minimum. A small effort 



spent exploring the neighborhood of K would reveal points much lower than K itself. 

However, points near K are no more likely to  be probed after K has been probed than 

they were before. When a function has the shape illustrated in Figure 8.1, the probability 

of obtaining a very low point strictly through random probes is relatively small-and we 

can make i t  as small as we like by narrowing the crevasses. 

8.1.2 Incorporation of a Heuristic 

The techniques just described were purely stochastic techniques. Let us now move on 

to  consideration of techniques that  still have a stochastic aspect, but also incorporate 

heuristics. Specifically, we consider Swami's local improvement technique and the Chained 

Local Optimization technique of Martin and Otto. 

Swami's approach requires an initial join-processing tree as a starting point for the local 

improvement. Local improvement involves repeated application of dynamic programming 

t o  obtain a succession of lower and lower points. Each use of dynamic programming 

involves only a subset of the relations in the join t o  be optimized, and hence cannot be 

expected to  give a global minimum. However, the dynamic programming still achieves 

an exhaustive search of some subspace of the space of all possible plans; what is more, 

by construction the subspace that  is searched includes the plan that  served as a starting 

point for the search. It follows that  this exhaustive search of the subspace will yield a 

plan no worse than the starting point, and possibly better. 

Using our analogy from Figure 8.1, let us say that  the starting point is the point labeled 

C in the figure. Successive applications of dynamic programming might improve on the 

starting point by giving, say, points D, F, and G; let us suppose, for the sake of argument, 

that  G cannot be improved upon by this method. Note that  while there is a sense in which 

these successive points are "near" t o  one another-each adjacent pair of them evidently 

belongs t o  a common subspace of plan space-this notion of proximity is rather loose. I t  

might take many steps of a purely stochastic technique such as iterative improvement t o  

achieve the same progress that  is achieved in a single step of local improvement (though 

certainly each step of local improvement requires more effort). Perhaps more significantly, 

in many instances the requisite sequence of steps would not be possible under iterative 



improvement, because of obstacles intervening between the starting and ending points of 

a local-improvement step. 

The Chained Local Optimization of Martin and Ot to  begins the same way as Swami's 

local improvement. I t  presumes the existence of some "heuristic" that  rapidly improves on 

a starting point, if improvement is possible within some "distancen of the starting point. 

Iterated application of dynamic programming, as in local improvement, conforms t o  the 

requirements of a heuristic that  might be used in Chained Local Optimization. Thus, 

starting at point C in Figure 8.1, Chained Local Optimization applies the heuristic, and 

directly obtains the point G (as suggested by the dashed line from C t o  G ) .  

But rather than settle for G as an approximation to  the global minimum, Chained 

Local Optimization proceeds as follows. The point G is displaced by a random "kick," 

giving a nearby point, say H (as suggested by the dotted line). The kick provides no 

immediate benefit, but it provides a new starting point for another application of the 

heuristic, which may then lead t o  a new local minimum (e.g., J). The new minimum may 

or may not improve upon the previous local minimum; if it does, progress has been made. 

If not, one can go back t o  the previous minimum and try a different kick (or one may 

accept the new, inferior minimum with some probability, as in simulated annealing). The 

entire process of applying the heuristic, and then giving the solution a kick, is repeated 

until no further improvement is achieved. 

As with any stochastic technique, Chained Local Optimization cannot guarantee that  

a global optimum will be found. In particular, a very deep local minimum such as L 

in Figure 8.1, which happens t o  be distant from any equally deep minimum, might well 

confound any stochastic optimization technique, including Chained Local Optimization. 

But Martin and Ot to  have reported success with Chained Local Optimization at finding 

global minima for notoriously difficult optimization problems. 

The intuition behind Chained Local Optimization is that  the structure of a solution 

space may be intricate and jagged, but it is not random. Solutions that  are very good but 

not optimal are likely t o  share some features with the global optimum. By "kicking" a 

solution to  obtain a new starting point for the heuristic search, rather than taking a new 

starting point entirely a t  random, one hopes to  hang on t o  features of the solution that  



may lead the way to  still better solutions. 

8.1.3 Shapes of Join-Plan Spaces 

The motivating remarks above revolved around the pathological function illustrated in 

Figure 8.1. One may question whether the pathologies of this function have anything t o  

do with the realities of plan-spaces for join-order optimization problems. 

Ioannidis and Kang [26] argue that  large classes of query plan spaces are essentially 

bowl-shaped. But this observation does not apply universally, and does not rule out 

pathologies of the sort we have discussed. Moreover, the results of Ioannidis and Kang 

depend on a mathematical model whose conformity t o  actual query-plan spaces is not well- 

established. In particular, the continuous functions in their model may differ in important 

ways from the corresponding functions on actual plan spaces, which are discrete domains 

[37I. 

In this connection it is also worth noting an observation made by Swami [57] and by 

Galindo-Legaria e t  al. [12] regarding the proportion of points in query-plan space whose 

cost is close t o  that  of the global minimum. This proportion tends t o  decline as the 

number of relations n increases. This effect suggests that  a t  larger n, the plan space is 

indeed pockmarked with crevasses of some sort. 

With the current state of knowledge about the subject, it is difficult either t o  defend 

or t o  refute broader claims about the character of query-plan space. We have motivated 

the application of Chained Local Optimization through two-dimensional, visual metaphors 

that  may or may not accurately reflect properties of the many-dimensional spaces a query 

optimizer must deal with. But the experimental results reported in Chapter 9 below 

suggest that, whatever the flaws of our motivating arguments, the intuitions they provide 

have not grossly misled us. 

8.2 Tightening and Iterated Tightening 

We now describe the technique of tightening a query plan. The idea behind tightening is 

that  when a join-optimization problem is too large t o  be solved by dynamic programming, 



i t  may nonetheless be possible to  take advantage of dynamic programming in searching 

for approximately optimal solutions. We will illustrate the concept of tightening, and then 

iterated tightening, by working through a simple example. 

8.2.1 A Sample Problem 

Suppose we are confronted with the join-optimization problem illustrated by the labeled 

join graph in the left-hand portion of Figure 8.2(a). The problem is t o  join five relations A, 

B, C, D, and El1 with the base-relation cardinalities and predicate selectivities shown in 

the illustration. (The base-relation cardinalities are the numbers inside the small boxes.) 

We shall assume the naive cost function KO,  which makes the cost of each join equal t o  

the cardinality of the result. 

I t  would be straightforward to  optimize the given five-way join by exhaustive search, 

but for the sake of argument, let us imagine that  exact optimization of five-way joins is 

infeasible. Let us suppose, however, that  exact optimization of three-way joins is feasible, 

and can be achieved rapidly. We shall use a series of three-way join optimizations t o  help 

us find a good plan for the five-way join. 

8.2.2 The Initial Join-processing Tree 

Our technique requires that  we start  out with some plan for computing the five-way join; 

our tactic will be to  improve on the given plan. Let us say that  our initial plan is the 

join-processing tree illustrated in the right-hand portion of Figure 8.2(a). Each node of 

the processing tree is annotated with the cardinality of the intermediate result computed 

at that  node. Under the assumed naive cost model, the cost of a join is equal t o  the 

cardinality of the result, and consequently the annotation at each node can also be read 

as the cost of processing that  node. The total cost of the plan is then the sum of these 

annotations. 

Note that  the given initial plan is not a particularly good one. I t  needlessly computes 

two sizable Cartesian products-for example, the join of D and E is a Cartesian product, 

'There is no connection between the use of the relation names A, B, C, Dl and E here, and the use of 
the letters A, B, C, Dl and E (among others) as labels in Figure 8.1. 



(a) Annotated join graph (left) and one possible initial join-processing tree (right) 

(b) Groupings of the base relations into pseudo-relations So, S1, and S2 

(c) Collapsing pseudo-relations into encapsulated pseudo-relations 

Figure 8.2: Collapsing a join-optimization problem to a smaller problem 



since there is no predicate connecting D and E in the join graph. However, our method 

makes no requirement that the initial plan be free of such deficiencies. 

8.2.3 Collapsing Subtrees to Pseudo-relations 

Now let us see how we may use the initial plan as a guide to finding a better plan. 

The right-hand portion of Figure 8.2(b) shows one way that the five-way join-processing 

tree of Figure 8.2(a) can be viewed as a three-way join-processing tree. Each of the three 

circled subtrees computes a relation, and the relations so computed may be thought of as 

the inputs of a three-way join. We refer to these three inputs as pseudo-relations, and in 

this example we give them the names So, S1, and S2. 

By extracting a three-way join-processing tree from a larger tree, we create an oppor- 

tunity to invoke our three-way optimizer to obtain a possibly better tree. But we have a 

little more work to do before we can invoke the three-way optimizer. The input required 

by the three-way optimizer consists of the cardinalities of the three relations to be joined, 

together with the selectivities of the predicates connecting those relations. In the present 

instance, the "relationsn to be joined are the pseudo-relations So, S1, and S2. There is no 

difficulty in furnishing their cardinalities: the cardinality of So, for example, is just 10- 

the estimated cardinality of the intermediate result A w B. But what are the predicate 

connections among So, S1, and S2? We address this question next. 

8.2.4 Collapsing the Join Graph 

To determine the predicate connections among the pseudo-relations, let us reexamine the 

join graph of our original optimization problem. The left-hand portion of Figure 8.2(b) 

shows an altered view of the original graph, with circles enclosing the sets of relations 

that have been joined into pseudo-relations in the right-hand portion of the figure. In 

the context of the three-way join of interest, we must regard each pseudo-relation as a 

relation; hence, each circled group of relations will become one node of the join graph for 

the three-way join. The nodes of the three-way join graph are thus obtained by collapsing 

together nodes of the original five-way join graph. We refer to the process of converting 

the five-way join graph to a three-way join graph as collapsing the join graph. 



To construct the edges of the collapsed join graph, we must consider which predicates 

will be applied when the pseudo-relations are joined. For example, when So is joined with 

S2, the predicate connecting B and D becomes applicable, since So represents the join 

of A and B and S2 represents the join of D and E. From this example one can see that 

whenever an edge of the original join graph spans two pseudo-relations, that edge will be 

retained in the collapsed join graph as an edge between the pseudo-relations. 

However, in the original join graph, there are two edges that span S1 and S2--one that 

connects D and C, and another that connects E and C. Let us give the names p and q 

to the corresponding predicates; thus, p is some predicate that refers to  attributes in D 

and C ,  and q is some predicate that refers to attributes in E and C. It follows that a join 

of D and C will be qualified by p-such a join might be written as D W, C-and a join 

of E and C will be qualified by q. But if D and E are first joined with one another, and 

the result is then joined with C, then both the predicates p and q become applicable in 

the top-level join. Thus, this join may be written as (D W E )  WPA, C. If one assumes, as 

we do here, that selectivities of distinct predicates are independent, then the selectivity 

of the compound predicate p A q is equal to the product of the selectivities of p and q. 

Since the join of Sz and S1 is nothing more than the join of D W E and C, the predicate 

qualifying this join is the compound predicate p A q. 

Extrapolating from this example, one can see that whenever multiple edges of the 

original join graph span a given pair of pseudo-relations, those edges may be combined 

into a single edge in the collapsed join graph. The selectivity of the resultant edge is just 

the product of the selectivities of the combined edges. 

(Note that multiple edges can be collapsed to a single edge even if the assumption of 

independence of predicate selectivities does not hold. All that changes in the more general 

case is that the selectivity of the collapsed edge must be computed differently.) 

Finally, observe that the edge connecting A and B in the original join graph must be 

discarded when these two relation nodes are collapsed into a single pseudo-relation node 

in the collapsed join graph. Discarding this edge is appropriate because the predicate it 

represents has already been applied in the computation of A W B, and its selectivity has 

been taken into account in the estimation of the cardinality of So. 



8.2.5 Encapsulation of Pseudo-relations 

Figure 8.2(c) shows the result of applying the foregoing observations to the example at 

hand. The left-hand portion of the figure shows the collapsed join graph, with each pseudo- 

relation encapsulated in a single node. These nodes are annotated with the estimated 

cardinalities of the pseudo-relations; for example, the annotation 2000 for 5'2 is taken 

from the estimated cardinality of D M E in the initial join-processing tree. 

The collapsed join graph contains two edges. The edge connecting So and S2 reflects 

the B-D edge in the original join graph, and has the same selectivity. On the other hand, 

the edge connecting Sz and S1 is a synthesis of the D-C and E-C edges in the original 

graph; the selectivities of these edges, 1/30 and 1/50 respectively, have been multiplied 

together to derive the selectivity 1/1500 of the synthesized edge. 

The right-hand portion of Figure 8.2(c) gives a view of the initial join-processing tree 

as a plan for the join-optimization problem described by the collapsed join graph. The 

pseudo-relations a t  the leaves of the collapsed tree encapsulate subtrees of the original 

tree in such a way that we may temporarily forget about the details of those subtrees. 

In particular, we may proceed on the assumption that the evaluation cost of the pseudo- 

relations is zero; in reality, the evaluation costs of the encapsulated subtrees may be 

substantial, but whatever they are, they must be paid regardless of how we compute the 

three-way join of So, S1, and S2. Thus, for the purposes of comparison with alternative 

plans for the three-way join, we may estimate the cost of the join-processing tree in 

Figure 8.2(c) a t  300 + 10 = 310. 

If we now apply the three-way join optimizer to the problem described by the collapsed 

join graph, we expect to obtain a join-processing tree equivalent to-but possibly better 

than-the tree in Figure 8.2(c). 

8.2.6 Subproblem Optimization and Grafting 

Dynamic programming algorithms for join optimization do not require an initial join- 

processing tree a s  a starting point for subsequent improvement. Rather, they create new 

trees from scratch. Consequently, we do not in fact need the collapsed join-processing tree 



(a) Optimal three-way join (b) With pseudo-relations expanded 

Figure 8.3: Tightened join-processing tree, before and after grafting 

from Figure 8.2(c) to optimize the three-way join of So, S1, and Sz. All we need is the 

information in the collapsed join graph: the collapsed relation cardinalities, the collapsed 

predicate connections, and the associated selectivities. 

However, though not required, the collapsed initial join-processing tree does serve a 

useful purpose, since it gives us an upper bound on the cost of the optimal plan for the 

three-way join. (In this case, as we have seen, it gives an upper bound of 310.) We can 

use this upper bound as a plan-cost threshold to reduce the amount of time required in 

the optimization of the three-way join (cf. Chapter 7). 

Figure 8.3(a) shows the join-processing tree that results from performing an exhaustive 

optimization of the three-way join expressed by the collapsed join graph. The evaluation 

cost for this tree is seen to be 40 + 10 = 50. Thus, the improvement over the initial 

collapsed tree is 310 - 50 = 260. 

We can now achieve the same improvement of 260 in the initial, uncollapsed join- 

processing tree of Figure 8.2(a). We do so by grafting the subtrees encapsulated by the 

pseudo-relations onto the optimal tree of Figure 8.3(a), giving the five-way join-processing 

tree of Figure 8.3(b). The latter tree computes our original five-way join at a cost of 

2060-which is 260 less than the initial tree's cost of 2320. 

We use the term tightening to describe the entire sequence of operations illustrated 

above. At the end of the sequence, the initial five-way join-processing tree has been 

"tightened" into a more efficient five-way join-processing tree. Tightening may or may 



not improve the initial tree; but as formulated here, tightening is guaranteed not t o  make 

the initial tree worse. 

The relative improvement we have obtained by tightening of our sample initial join- 

processing tree is modest. In this instance, what is more important than the cost reduction 

itself is the fact that  we have restructured the tree in a way that  facilitates further tight- 

ening. 

8.2.7 Tightening of Subtrees 

Above we applied tightening t o  the top level of the initial join-processing tree. Tha t  is, the 

collapsed join tree computed a three-way join that  was equivalent t o  the initial five-way 

join. But it is also possible to  apply tightening to  subtrees of an initial join-processing 

tree. 

Had we attempted t o  tighten the subtrees of the initial tree in Figure 8.2(a), we would 

not have obtained any benefit, since the subtrees in that  tree were already optimal. For 

example, although it is very inefficient to  compute the join of D and E (which is really 

a Cartesian product), the subtree that  performs this computation cannot be improved in 

isolation from the rest of the join-processing tree. Viewed as a tree in its own right, the 

subtree that  computes A w 3 M C in Figure 8.2(a) is also optimal. 

However, in general, there are opportunities for improvement within subtrees, and in 

particular, the tree obtained in Figure 8.3(b) presents such an opportunity. Figure 8.4(a) 

shows how the cost of the subtree that  computes the join of C, D, and E, can be reduced 

from 2040 t o  70. In Figure 8.4(b), the optimized subtree is reintegrated into the five-way 

join-processing tree, whose total evaluation cost has now been reduced t o  90. 

8.2.8 Iterated Tightening 

Just  as tightening at the top level created an opportunity for improvement in one of the 

resultant subtrees, now we will find that tightening the subtree has altered the structure 

of the toplevel tree in such a way that  it is profitable to  tighten i t  once again. 

This time we shall not go into the details of the tightening of the toplevel tree. Fig- 

ure 8.5 illustrates the outlines of retightening the tree that  was obtained in Figure 8.4(b). 



(a) Optimal plan for C, Dl and E (b) As a subplan of five-way processing tree 

Figure 8.4: Tightening of a subtree 

(a) Summary of one tightening operation 

(b) A second tightening, using different pseudo-relations 

Figure 8.5: Retightening the top-level tree after tightening of subtree 



It can actually be retightened twice. In Figure 8.5(a), we start  with the tree obtained in 

Figure 8.4(b) and tighten i t  by treating the circled subtrees as pseudo-relations-the result 

of this tightening is shown on the right-hand side of the double-arrow. In Figure 8.5(b), 

we repeat the process, this time starting with the tree that  was obtained on the  right-hand 

side of Figure 8.5(a), but with different pseudo-relations. 

8.2.9 Summary 

We have concluded our example of tightening and iterated tightening. We began in Fig- 

ure 8.2(a) with a join-optimization problem, represented as a join graph, and an initial 

join-processing tree for that  problem. Both these ingredients were necessary for tighten- 

ing. We needed the initial join-processing tree for extracting "pseudo-relations," and we 

needed the join graph for constructing a "collapsed" three-way join-optimization problem 

involving the pseudo-relations. Upon solving this smaller problem, we grafted subplans 

of the initial processing tree onto the optimal three-way plan, and obtained a five-way 

processing tree that  improved on the initial one. 

By repeatedly applying tightening operations, we eventually arrived at a plan that  

happens t o  be optimal for the five-way join in question. Not surprisingly, it will not always 

possible t o  find a global optimum simply by applying a sequence of local improvements, 

as we have done here. But our example aptly illustrates how each tightening step tends 

t o  create opportunities for additional tightening steps. 

8.3 An Algorithm for Tightening 

We now generalize the examples of tightening given in the previous section, and present 

pseudo-code that  applies tightening steps t o  an arbitrary join-optimization problem. 

The presentation is in two parts. In the present section, we give an algorithm that  

carries out an individual tightening operation. In the next section, we present an algo- 

rithm that  implements a particular policy of iterated tightening. In both instances, the 

presented code is in pseudo-ML, and is abstracted from our implementation in Standard 

ML [42]. 



Earlier, in presenting the Blitzsplit algorithm, we used imperative pseudo-code and 

discussed an imperative implementation, because updates of the dynamic programming 

table were an essential ingredient of the algorithm, and because low-level features of C 

enabled us t o  fine-tune the implementation. Here we face somewhat different consider* 

tions. Our stochastic algorithm is more complicated than the Blitzsplit algorithm, and 

for ease of coding and debugging it was preferable t o  build a prototype in a high-level 

language. Moreover, using functional pseudo-code permits fairly compact presentation of 

the algorithm, which would be quite unwieldy if presented in imperative form. In our 

presentation below, we assume basic familiarity with functional programming notation. 

8.3.1 The Tightening Algorithm Proper 

Figure 8.6 shows the declarations and functions that  together implement the tightening 

operation described in the previous section-but without any iteration of the tightening 

steps. 

8.3.2 Type Declarations 

The pseudo-code of Figure 8.6 begins with several type declarations. 

The types rel-index, rel-info, and pred-info in Figure 8.6 are analogous to the types 

relation-name, rel-data, and predicate used in the Blitzsplit algorithm. (See Figure 3.1 

on page 75 and Figure 5.4 on page 124.) However, here the representations for rel-info 

and pred-info are somewhat simpler, in that  we do not bother with record types. Instead, 

we just represent a relation by its cardinality (which is a real), and we let predicates take 

the form ({endpoint,, endpoint,), selectivity), where endpoint, and endpoint, are of type 

rel-index, and selectivity is a real. Note that  we use curly braces ("{" and ")") t o  denote 

mathematical sets. (In Standard ML, curly braces have a different interpretation.) 

The problem type is intended t o  characterize a join-optimization problem; we assume 

that  a join optimizer requires a data  structure of type problem as its input. Such a 

da ta  structure consists of a list of relation descriptions paired with a set of predicate 

descriptions. For example, the join-optimization problem depicted by the join graph in 



type rel-index = integer 
type rel-info = real 
type pred-info = rel-index set * real 
type problem = ref-info list * pred-info set 

datatype plan = REL of rel-index I JOIN of plan * plan 

fun pick ( t  as REL -, k )  (node-list, cost) = ( t  :: node-list, cost) 
I pick ( t ,  1) (node-list, cost) = ( t  :: node-list, cost) 
( pick ( t  as JOIN(lhs, rhs), k )  (node-list, cost) = 

let val k-rhs = min (max(k div 2,  k - num-leaves lhs), num-leaves rhs) 
in pick (lhs, k - k-rhs) (pick (rhs, k-rhs) (node-list, cost + node-cost t ) )  
end 

fun pick-subplans ( t ,  k )  = pick ( t ,  k )  ([I, 0.0) 

fun collapse-rels subplans i = j such that REL i is a leaf of subplansj 

fun collapse-preds ( f ,  preds) = 
let val spanning-pairs = { { f  i ,  f i t )  I ( { i ,  i t) ,  sel) E preds; f i # f i t )  

fun selectivity { j ,  j') = n { s e l  I ( { i ,  it), sel) E preds; f i = j ;  f it = j ') 
in { ( { j ,  j'), selectivity { j ,  j ')) I { j ,  j'} E ~ ~ a n n i n g - ~ a i r s )  
end 

fun graft (subplans, REL j )  = subplansj 
I graft (subplans, JOIN(lhs, rhs)) = JOIN(gmft(subplans, lhs), graft(subplans, rhs)) 

fun tighten (preds, k )  plan = 
let val (subplans, curr-cost) = pick-subplans (plan, k )  

val crels = [card t ( t e subplans] 
val f = collapse-rels subplans 
val cpreds = collapse-preds ( f ,  preds) 
val skeleton = optimize-with-threshold curr-cost (crels, cpreds) 

in graft (subplans, skeleton) 
end 

handle exception Failed-ToBeat- Threshold j plan 

Figure 8.6: Tightening algorithm 



Figure 8.2(a) might be represented as the problem 

([lo, 20,30,40,501, { ( ( A ,  B), 1/20), ({B, D), 1/40), ({C, D), 1/30), ({C, E), 1/50))), 

where A, B,  C, D, and E are mnemonic stand-ins for the relation indexes 0, 1, 2, 3, and 

4. We shall use these mnemonics in all our examples; similarly, when the need arises, we 

shall use the pseudo-relation names So, S1, and S2 rather than the explicit indexes 0, 1, 

and 2. 

Finally, the type plan characterizes the output of join optimization, namely a query 

plan. The plan datatype declaration generates data constructors REL and JOIN for 

creating, respectively, the leaves and the internal nodes of a join-processing tree. For 

example, the three subtrees encapsulated as pseudo-relations in Figures 8.2(b)-(c) can be 

constructed as 

so = JOIN(REL A, REL B) (8.1) 

sl = REL C (8.2) 

s, = JOIN(REL D, REL E); (8.3) 

using these trees as building blocks, one can then construct the initial join-processing tree 

of Figure 8.2(a) as 

(Here and in later examples, we use the lower-case designation sj for the tree encapsulated 

by a pseudo-relation, while the upper-case designation Sj refers to the pseudo-relation itself 

(which hides the encapsulated tree). As noted above, a designation of the form Sj is just 

a mnemonic description of the integer index j which identifies the pseudo-relation.) 

8.3.3 Implicit Functions 

The plan type declaration as just described omits some details present in our actual 

implementation. In the actual implementation, each node of a processing tree is annotated 

with various information, such as the estimated cardinality of the join computed a t  that 

node, the estimated cost of computing that join, and the total estimated evaluation cost 

of the subplan rooted a t  the node in question. 



fun  node-cost (REL -) = 0 
I node-cost (t as JOIN (lhs, rhs)) = ~ ( t ,  lhs, rhs) 

fun total-cost (REL -) = 0 
I total-cost (t as JOIN (lhs, rhs)) = total-cost lhs + total-cost rhs + node-cost t 

Figure 8.7: Function equivalents to cost annotations on tree nodes 

To compensate for the absence of these annotations in the pseudo-code, we shall assume 

the existence of several functions that furnish cardinalities and estimated costs on demand. 

We call these functions card, node-cost, and total-cost. The first is self-explanatory, and 

the latter two behave as if defined in the manner shown in Figure 8.7. In the definition 

of node-cost, the arguments of K are representations, respectively, of the result relation 

computed at the given join node, and of the relations that serve as the inputs of this 

join. The definition of total-cost restates, in new notation, the definition of cost given by 

equations (2.59) and (2.60) on page 53. 

We shall also assume the existence of a function num-leaves that counts the number 

of REL nodes (i.e., the number of leaf nodes) in a plan or subplan. 

8.3.4 Functions for Tightening 

We now give a very brief account of the functions defined in Figure 8.6. 

Function pick-subplans The function pick-subplans identifies the subplans in a pro- 

cessing tree that are to be encapsulated as pseudo-relations. The number of pseudo- 

relations desired is supplied as an argument to pick-subplans. For example, if to, SO, SI, 

and sz are as defined above in (8.1)-(8.4), and if the cardinalities and predicates of the 

join-optimization problem are as illustrated in Figure 8.2(a), then 

pick-subplans (to, 3) = ([so, 81, sz], 310). 

The first component of the result is the list of subplans identified for encapsulation. We 

refer to such a list a s  a pseudo-relation plan list. The second component is the cost of the 

collapsed processing tree illustrated in Figure 8.2(c). 



Note that pick-subplans is defined in terms of an auxiliary function pick, about which 

we comment further below. 

Function collapse-reb Given a pseudo-relation plan list and a relation index, the 

function collapse-rels returns the index of the pseudo-relation that contains the specified 

relation. For example, 

collapse-rels [so, sl, s2] D = S2, 

because the relation D occurs in the tree s2 .  Note that we may think of the expression 

collapse-rels [so, sl, s2] as being a function in its own right. Thus, if we define 

f = collapse-rels [so, sl , s2], (8.5) 

then we have f D = S2, f A = So, and so on. The pseudo-code uses collapse-rels in just 

this way. 

Function collapse-preds The function collapse-preds collapses a set of predicates that 

connect relation indexes to a set of predicates that connect pseudo-relation indexes. It 

does so with the help of a relation-collapsing mapping such as is provided by collapse-rels. 

For example, given f as defined in (8.5) above, 

collapse-~reds (fl {({A, B), 1/20), ({B, D l ,  1/40), ({C, D l ,  1/30), ({C, El, 1/50))) 

= {({So, Szl,1/40), (is19 S2l,1/1500)). 

In the code for collapse-rels, i and i' represent relation indexes, while j and j' represent 

pseudo-relation indexes. 

Function graft The function graft grafts a list of subplans onto the leaves of a given 

tree. For example, 

gmft ([so, sl, s2], JOIN(REL So,  JOIN(REL S1, REL S2))) = JOIN(s0, ~ o I N ( s 1 ,  ~ 2 ) ) .  

In the pseudo-code, the notation subplansj denotes element number j in the list subplans 

(counting from 0); e.g., for arbitrary a, b, and c, [a, 6,  cI2 = c. 



Function tighten The function tighten begins by invoking pick-subplans to create a 

pseudmrelation plan list called subplans. 

Then it constructs a join-optimization problem as follows. First, it creates a list crels 

of pseudo-relation descriptions (i.e., cardinalities) by means of the lit comprehension 

"[card t I t t subplans] ." Second, it creates a set cpreds of collapsed-predicate descrip 

tions by invoking collapse-preds. 

The join-optimization problem (crels, cpwds) is then submitted to the optimization 

function optimize~with~threshold, which is assumed to provide an interface to the Blitzsplit 

algorithm. The arguments (crels, cpreds) describe the relations and predicates to which 

the Blitzsplit algorithm is to be applied. But we also furnish the algorithm with the 

argument curr-cost, which represents a plan-cost threshold for optimization, as described 

in Section 7.1. We assume that optimize-with-threshold returns an optimal join plan in 

the form a join-processing tree. (This optimal plan is named skeleton because it has 

pseudo-relations at its leaves, and is not really a complete plan.) 

Finally, the pseudo-relation plan list is grafted onto the optimal plan skeleton produced 

by the optimization function. The skeletal plan is thus transformed into a complete plan- 

though the complete plan that results is not necessarily optimal. 

Note that the plan-cost threshold furnished to the optimization function is derived from 

the original plan to be tightened. If a plan cannot be found with a cost below this threshold, 

the optimization function is assumed to fail with the exception Failed-To-Beat-Threshold, 

whereupon tighten just returns as output the original plan it was given as input-i.e., the 

given input plan cannot be tightened, and so it is left as is. 

8.3.5 Technical Issues 

Identification of Pseudo-Relations 

As noted above, we express the function pick-subplans in terms of the auxiliary function 

pick. In implementing the latter function, we are forced to make a policy decision, for 

there are many possible ways to pick the k subplans to encapsulate. 

The policy adopted here is based on a breadth-first traversal of the plan tree. In effect, 

pick descends through the tree until it reaches a level where there are k nodes across the 



breadth of the tree. I t  makes appropriate adjustments when the tree is unbalanced, and 

favors the left branch when k is odd. 

That  this left-leaning breadth-first policy is the most sensible one is by no means 

obvious. Note, specifically, that  the tightenings illustrated in Figure 8.5 are not possible 

under a left-leaning policy. One can imagine alternative policies that  might be more 

powerful; in particular, the idea of a stochastic policy has some appeal. On the other 

hand, the drawback of a stochastic policy is that  because each tightening of a tree under 

such a policy offers the possibility of new improvements, one never knows when t o  stop 

attempting t o  tighten a given tree. 

Computing Costs of Collapsed Plans 

In addition to  selecting subplans, pick performs the side-task of summing the node costs 

of the nodes traversed in reaching those subplans. It thus obtains the cost of the collapsed 

tree that  would result if the subplans were replaced by stubs. 

This side-task is an annoying complication in the implementation of pick. In principle, 

one could achieve the same result much more simply: If t is the given tree, and subplans 

is the list of chosen subplans, one could simply take 

total-cost t - C totaLcost s. 
s tsubplans  

However, we shun this alternative because of the risk of numerical error. Suppose the 

total cost of the collapsed plan were 100, and that  the sum of the costs of the subplans 

were The total cost of the original plan t would then be 100, but conventional 

floating-point representations lack the requisite precision to  distinguish this value from 

loz5. Consequently, the total would be recorded as and subtraction of the sum of 

the subplan costs would yield 0 a s  the cost of the collapsed plan. 

8.4 The Stochastic Bushwhack Algorithm 

We now present what we refer t o  as the Stochastic Bushwhack algorithm. Given a join 

query t o  optimize, the Stochastic Bushwhack algorithm begins by constructing a random 



initial join-processing tree for that query. It then iteratively improves the initial tree by 

invoking the tightening algorithm on different portions of the tree, as described below. 

8.4.1 Pseudo-code for the Stochastic Bushwhack Algorithm 

Figure 8.8 gives pseudo-code for the Stochastic Bushwhack algorithm. The principal 

functions of this algorithm are as follows. 

Functions shake-up and shake-down The shaking functions implement two forms of 

iterated tightening. Given an initial join-processing tree, shake-up first recursively shakes 

up its left- and right-hand children, and then performs a tightening operation a t  the top 

level. Loosely speaking, shake-up tightens all subtrees of the given tree, starting a t  the 

leaves, and then working its way upwards. 

By contrast, shake-down first tightens its argument at  the top level, and then re- 

cursively shakes down the left- and right-hand children of the result. Thus, shake-down 

once again tightens all subtrees of the given tree, but starts at  the top and works its way 

downwards. 

Both shake-up and shake-down take an argument of the form (preds, k), which is 

needed only so that it can be passed through to tighten. (The preds are needed to compute 

the predicates that will be handed to the Blitzsplit algorithm, and k determines the 

size of join-optimization problem that will be handed to the Blitzsplit algorithm.) Note 

also that both shake-up and shake-down are expressed in terms of the auxiliary function 

app-children, which simplifies the recursion. 

Function itshake The function itshake implements the following iterated tightening 

policy. Given an initial join-processing tree and a factor fac, itshake first shakes the tree 

up, and then shakes it down. If the resultant tree has a total cost below that of the initial 

tree by a t  least a factor of fac, the entire process is repeated. But if on any given iteration 

the improvement is less than a factor of fac, the recursion ceases, and the most recently 

obtained tree is returned as the result. 



fun app-children f (t as REL -) = t 
I app-children f (t as JOIN(lhs, rhs))  = JOIN( f lhs, f rhs) 

fun shake-up (preds, k )  plan = 
tighten (preds, k )  (app-children (shake-up (preds, k ) )  plan) 

fun shake-down (preds, k )  plan = 
app-children (shake-down (preds, k ) )  (tighten (preds, k )  plan) 

fun itshake (preds, k )  fac old-plan = 
let val plan = shake-down (preds, k )  (shake-up (preds, k )  old-plan) 
in if total-cost old-planjtotal-cost plan < fac 

then plan 
else itshake (preds, k) fac plan 

end 

exception Empty-%e B u g  

fun mnd-tree [ I  = raise Empty-'lf.ee_Bug 
I rand-tree [(i, cardinality)] = REL i annotated with cardinality 
I rand-tree leaves = 

let val z = a random integer from 1 t o  2(Iength leaved) - 2 
fun divvy ( z ,  [ I )  ( I ,  r )  = (1 ,  r )  

I divvy ( r ,  x :: xs) ( 1 ,  r )  = divvy ( z  div 2 ,  xs) 
(if z mod 2 = 0 then ( x  :: 1 ,  r )  else ( I ,  x :: r ) )  

va1 (1, r )  = divvy ( z ,  leaves) ( [ I ,  [ I )  
in JOIN(rand-tree I ,  rand-tree r )  
end 

fun bushwhack k fac (rels,preds) = 
let val indexed-rels = [(i, relsi) I i c [0 . . length rels - I ] ]  

val init-plan = rand-tree indexed-rels 
in itshake (preds, k )  fac init-plan 
end 

Figure 8.8: T h e  Stochastic Bushwhack algorithm 



Function rend-tree Given a list of indexed relation descriptions (i.e., a list of (relation 

index, cardinality) pairs), rand-tree constructs a random join-processing tree for joining 

the given relations. I t  does so by choosing a random split of the relations into a left-hand 

list and a right-hand list. By recursive calls t o  rand-tree, random processing trees are 

generated for the left- and right-hand lists, and the processing trees so obtained are then 

combined with a JOIN node t o  obtain a processing tree for the entire list. 

Two aspects of this tree-generation scheme deserve comment. First, no attempt is 

made to avoid Cartesian products-the predicates in the join-optimization problem are 

not even considered in the tree construction. 

Second, if the random splits are drawn from a uniform distribution (as implied by the 

pseudo-code), then the different possible processing trees will not all be generated with 

equal probability. Since the trees that  conform to  a given nearly-balanced split are far 

more abundant than the trees that  conform to  an unbalanced split, uniform generation of 

the trees would require biasing the split selection in favor of nearly-balanced splits. By 

using a uniform distribution for the splits, in effect we bias the choice of trees in favor of 

those that  are unbalanced. 

However, there is no reason to  believe that  this bias is harmful. Unbalanced trees are 

so rare, relatively speaking, that  despite the bias we are still far more likely t o  choose a 

nearly-balanced tree. 

Function bushwhack The function bushwhack constitutes the top level of the Stochas- 

tic Bushwhack algorithm. It simply constructs a random initial join-processing tree for 

the problem at hand, and then improves it by invoking itshake. 

8.4.2 Technical Issues 

Termination of Iterative Tightening 

One of the Stochastic Bushwhack algorithm's parameters is fac, which determines at what 

point itshake gives up and stops attempting to  tighten the plan further. In our present 

work, we consistently use a value for fac of 1.00001-in other words, effectively we continue 

tightening as long as there is measurable improvement in the plan, even if the improvement 



is minuscule. 

Note that  no matter how close fac is t o  1, we cannot guarantee that  the plan has 

been tightened down as much as it can be. In theory, a particular iteration of itshake 

might yield no improvement, and yet it might be possible t o  obtain improvement on a 

subsequent iteration. One would have t o  be especially wary of such an effect if pick were 

made nondeterministic in the manner suggested in Section 8.3.5 above. 

In practice, we have found that  iterated tightening tends t o  improve plans in huge 

leaps, followed in some instances by one or two small corrections before a local minimum 

is reached. Only rarely does itshake recurse more than twice. The precise value of fac 

does not appear to  be especially critical. 

Problems Involving More Than 30 Relations 

In the present work, we do not consider joins of more than 30 relations. There is no obvious 

inherent reason why the Stochastic Bushwhack algorithm cannot handle larger problems. 

However, one must pay attention t o  a couple of issues of numerical representation when 

the number of relations n rises above 30. 

First, on most machines, the integer expression 2('""gth leaven) - 2 in the function 

mnd-tree will overflow when n exceeds thirty. To avoid the problem, mnd-tree would 

have t o  be revised. (Note, though, that  larger values of n will not cause any difficulty in 

the calls t o  the Blitzsplit algorithm inside the function tighten. The Blitzsplit algorithm 

will be called only with smaller numbers of relations or pseudo-relations, and these rela- 

tions will be identified by very small integers inside the Blitzsplit algorithm, even if they 

are identified by larger integers in the context of the tighten function itself.) 

Second, when n exceeds thirty, the cardinalities at some nodes of randomly generated 

plan trees, and the selectivities of some collapsed predicates, may cause overflow or un- 

derflow of double-precision floating-point formats. (For example, the Cartesian product 

of 31 relations that  each have cardinality 101° would have cardinality 1 0 ~ ~ ~ - t o o  much 

for the double-precision format of the IEEE standard.) Thus, for larger n,  a different 

representation of cardinalities, selectivities, and costs would be needed. 

In our implementation, we simply represent these values in double-precision floating 



point. Note that  in our implementation of the Stochastic Bushwhack algorithm, and also in 

the version of the Blitzsplit algorithm that  is called from inside the Stochastic Bushwhxk 

algorithm, we do not take the short-cut of representing costs in single-precision floating 

point. It is not clear that  tightening could be made t o  work correctly if costs above 

became indistinguishable. 

In a tuned implementation of Stochastic Bushwhack, one might incorporate two ver- 

sions of the Blitzsplit algorithm: one for the cases where the plan-cost threshold was 

representable in single-precision floating point, and another for the remaining cases. 

8.5 Summary and Discussion 

In this chapter we discussed intuitions about stochastic optimization, and drawing on 

those intuitions, we developed a stochastic join-optimization algorithm. As the first step 

in this development, we presented a deterministic "tighteningn algorithm that  uses the 

Blitzsplit algorithm t o  improve plans for joining large numbers of relations. The next step 

was t o  present the Stochastic Bushwhack algorithm, which generates a random initial plan 

for a join query, and then improves this initial plan through iterated tightening. 

The Stochastic Bushwhack algorithm is ad hoc in the sense that  there is no apparent 

reason why the tightening steps should be carried out in precisely the sequence prescribed 

by the algorithm. Indeed, other sequencing policies might work equally well or better. 

Nor is it clear that  starting with a random initial plan is a good idea. 

Even if we set aside such doubts, and assume that  the Stochastic Bushwhack algo- 

rithm's design is appropriate, it is not obvious from first principles how one would best 

take advantage of what this algorithm can do. Should one run the algorithm just once, 

t o  obtain an "approximately" optimal plan for a query, and hope for the best? Or, is i t  

advisable, for good results, to  run the algorithm many times, so that  many different initial 

plans are explored? How should one choose the parameter k-i.e., the number of relations 

that  will be handed off to  the Blitzsplit algorithm in each tightening step? 

Because these questions are difficult to  answer from first principles, we address them 

through empirical studies in the next chapter. 



Chapter 9 

Performance of the Stochastic Extension 

In this chapter, we conduct empirical studies on the Stochastic Bushwhack algorithm 

presented in the last chapter. Performance of a stochastic algorithm has two aspects: the 

quality of the solutions obtained, and the amount of time it takes to  find them. Here we 

study both of these aspects of performance in the Stochastic Bushwhack algorithm, and 

the relationship between them. 

Swami [57] has broadly characterized the quality of plans obtained from stochastic join 

optimizers as follows: 

A low-cost or good plan has an estimated cost within a factor of 2 of the optimum. 

An acceptable plan has an estimated cost that  is more than twice the optimum, but 

that  does not exceed the optimum by more than a factor of 10. 

a Any other plan is bad. 

(If the optimal cost for a query is unknown, as can happen with large queries, then Swami 

substitutes the cost of the best plan that  can be found by any stochastic optimization 

technique.) 

Swami's distinctions are useful, but here we will pay special attention t o  plans that  are 

not merely good, but optimal. For it is apparent that  under a t  least some conditions, the 

Stochastic Bushwhack algorithm will yield optimal plans. Recall that  the algorithm has a 

parameter k that  specifies the number of relations (or pseudo-relations) in the subproblems 

that  will be optimized by exhaustive search. When k is equal t o  the number of relations 

n in the original query, the Stochastic Bushwhack algorithm reduces t o  exhaustive search. 



The random initial join-processing tree generated by bushwhack becomes irrelevant, as 

tightening will inevitably transform this tree into an optimal one. 

Thus, when k = n, a single invocation of bushwhack suffices t o  obtain a solution of 

perfect quality. On the other hand, the time it will take t o  obtain this solution will be 

the same as for exhaustive search. (Actually, the time will be slightly higher, because 

of additional overhead.) But one can also see that  a given invocation of bushwhack will 

sometimes yield an optimal solution even when k is below n, for if just by blind luck the  

random initial tree generated by bushwhack should have almost the right structure, then 

tightening will again transform this tree into an optimal one. The advantage of reducing 

k below n is that  the time needed for optimization should also be reduced, since the calls 

to  the Blitzsplit algorithm will involve substantially less work. In short, we expect that  

by adjusting k, we ought to  be able to  trade off optimization time against the likelihood 

of obtaining an optimal solution. 

In the following, after a few preliminaries, we begin our empirical investigation by ex- 

amining the expected trade-off in the context of a single, narrow class of join-optimization 

problems parameterized only by the number n of base relations. We then investigate the 

extent t o  which the results obtained for that  single class of problems generalize t o  other 

join-optimization problems. 

Despite our algorithm's similarity t o  Swami's local-improvement technique, and despite 

his essentially negative results, we shall find the Stochastic Bushwhack algorithm t o  be 

highly effective. In summarizing our observations in Section 9.12, we speculate on some 

of the possible reasons for the discrepancy between Swami's results and our own. 

9.1 Concept of Watersheds 

In presenting our measurements below, we shall frequently make reference t o  the notion 

that  the space of query plans is divided into watersheds. Here we explain what is meant 

by a watershed, and why we care about them. 

As we have seen, the way that  bushwhack optimizes (or approximately optimizes) a 

query is to  first generate a random initial plan for the query, and then to  call itshake t o  



tighten the initial plan down t o  a local minimum. One can see that  there must be distinct 

choices of initial plans that  itshake will tighten down t o  the same local minimum. We can 

picture plan-space as a mountainous surface with ridges, peaks and valleys; initial plans 

chosen from the same valley will all be tightened down t o  the same plan at the bottom of 

the valley. 

There is a sense in which the boundaries between the valleys, and the number of valleys, 

are intrinsic features of the plan-space, since these topographical features are determined 

by the costs of the plans, and not by any characteristic of an optimizer. On the other 

hand, the ridges between valleys are not all of equal height, and so the distinctness of 

adjacent valleys becomes a matter of interpretation: what might be regarded as a low 

ridge might also be regarded as a mere bump in the landscape. The tightening operations 

of the Stochastic Bushwhack algorithm enable it t o  "tunnel" under the smaller ridges 

that  separate distinct valleys, so that  from the perspective of the algorithm, these valleys 

become indistinguishable. The larger the value of k, the better the algorithm can "tunnel," 

so that  even some of the larger ridges become insignificant. 

We shall use the word watershed t o  describe a portion of plan-space in which all 

plans are tightened t o  the same local minimum. Thus, when subjected t o  the action of 

itshake, all plans in a watershed flow down t o  the same place. The number of watersheds, 

and the boundaries between them, are not intrinsic t o  plan space, but depend on the 

parameterization of the Stochastic Bushwhack algorithm. 

The division of plan space into watersheds is of interest because it sheds light on the 

likelihood of obtaining optimal solutions. For example, suppose plan space is divided into 

four watersheds of roughly equal size. Then regardless of the random initial tree generated 

by Stochastic Bushwhack, it will be tightened down t o  one of four local minima. One of 

those local minima must be the global minimum-so the odds of attaining the global 

minimum are about one in four. 

Now that  we have the intuition of a watershed, we must make a minor amendment 

t o  its definition. Distinct plans that  have the same cost are equally good and need not 

be distinguished, and hence may be considered t o  belong to  the same watershed. Thus, 

widely separated valleys whose lowest points have the same "elevation" become connected 



in conceptual plan space. We will regard two points in plan space as belonging t o  the 

same watershed if they tighten down t o  points (i.e., t o  plans) that  have the same cost. 

9.2 Measurement Procedure 

The  test queries we use in this chapter are constructed according t o  the four-dimensional 

parameterization discussed in Section 6.1.2 and described in detail in Appendix C. How- 

ever, here we do not fix the number of relations n at 15, and so n becomes another 

parameter of our tests. In addition, our tests also will vary the bushwhack parameter k. 

Thus, we have two new dimensions of parameterization in addition t o  the four we had 

before, for a total of six dimensions. Typically we will vary two dimensions at a time, 

while holding the others fixed. In particular, we will hold the cost function fixed at no 

in all tests except as noted. To start  out, we will focus on queries with mean cardinality 

lo4 and variability 0.5-a kind of middle-of-the-road, average case among the basic test 

queries of each topology; we refer to  these as the canonical test queries of each topology. 

Only later on do we explore variation along the dimensions of mean relation cardinality 

and variability. 

Most of the measurements reported below are illustrated first for the case of the cycle+3 

topology; we later report the analogous measurements for other topologies as well. 

For a given query specification, and for a given k, our measurement procedure consists 

of the following steps: 

Construct the specified query. 

Invoke bushwhack 1000 times, with the given query and k as parameters (and with 

fac = 1.00001), thus obtaining iterated tightenings of 1000 randomly chosen initial 

trees. The 1000 tightened trees so obtained are expected t o  cover the spectrum 

of results that  bushwhack may yield when presented with the given optimization 

problem. 

Sort the costs of the 1000 tightened trees in ascending order. The resultant sequence 

of 1000 costs becomes the raw data  for the quality-of-optimization analysis described 



below. 

a Record the total CPU time required for all 1000 runs. This total will serve as the  

basis for the estimated average running time of bushwhack per invocation. (The 

time needed for each individual invocation is also recorded, but because of clock 

granularity, these timings are not very informative. However, they do establish 

approximate bounds on the variability in the running time of individual invocations.) 

a Record miscellaneous additional performance statistics, which will be mentioned 

below where they are relevant. 

All measurements were taken on a Standard ML implementation of the Stochastic Bush- 

whack algorithm running on a Sun SPARCstation 20.' We used the SPARCstation 20 for 

these measurements, rather than the SPARCstation 2 or HP 9000/755 mentioned in previ- 

ous chapters, because of the availability and relatively high speed of the SPARCstation 20. 

Performance of the SPARCstation 20 is slightly below that  of the HP 9000/755. 

Our test runs did not maintain memory-usage statistics; note, however, tha t  the mem- 

ory requirements of stochastic join-optimization techniques tend t o  be rather modest, and 

there is no reason to  think that  the Stochastic Bushwhack algorithm would be an exception 

t o  this rule. 

9.3 Division of Plan Space into Watersheds 

In this and the next section, we will concern ourselves with the Stochastic Bushwhack 

algorithm's ability t o  find true optima for join-optimization problems. As one would 

expect, a given run of the Stochastic Bushwhack algorithm does not necessarily yield a 

global optimum; but we will find, for the parameterizations we consider here, that  over 

a sufficient number of runs, the algorithm will always eventually find a global optimum 

for a given join-optimization problem. Naturally we will be interested in knowing how 

frequently a global optimum is attained. But first we consider a different but closely 

'The test machine was a lightly loaded SPARCstation 20 with 160MB of main memory running at circa 
5OMHz under Solaris 2.5.1; the compiler used was Standard ML of New Jersey, version 0.93. Our code for 
the Stochastic Bushwhack algorithm includes a Standard ML implementation of the Blitzsplit algorithm. 



(a) Number of distinct costs obtained in 1000 trials 

(b) Fraction of trials that  attain minimum cost 

Figure 9.1: Number of watersheds, and relative size of optimal watershed 

related question: Over a large number of runs, how many different local minima does the 

algorithm yield for a given optimization problem-in other words, how many watersheds 

are there in that  problem's plan space? 

In the first set of measurements discussed below, we consider the canonical cycle + 3 

queries for all combinations of n in the range 11 to  20 and k in the range 4 t o  13. (Larger 

values of n are considered in Section 9.9 below.) Figure 9.1 gives a picture of some basic 

results regarding the Stochastic Bushwhack algorithm's ability to  find global minima. 

Both graphs in the figure plot values that  depend on n and k; n and k vary along the 

horizontal axes, while the vertical axis represents the dependent value. In Figure 9.l(a), 



the dependent value is the number of distinct costs encountered in 1000 bushwhack trials- 

hence the number of distinct watersheds encountered by the 1000 randomly-generated 

initial plans. The vertical axis, which is on a logarithmic scale, is plotted upside-down. 

Figure 9.l(b) shows the fraction of the 1000 trials for which bushwhack attained a cost 

that  was the global minimum-in other words, the fraction of trials for which bushwhack 

found an optimal plan. We comment further on Figure 9.l(b) in Section 9.4 below. 

Figure 9.l(a) is one of several plots that  will be displayed with an upside-down vertical 

axis. The general rule for all the plots is that  the "up" direction corresponds t o  superior 

outcomes, while the "downn direction corresponds to  less desirable outcomes. Thus, the 

plateau a t  the top rear of Figure 9.l(a) represents the combinations of n and k tha t  give 

the best results: For these combinations, where n is relatively small and k is relatively 

large, the entire space of possible initial plans apparently lies in one large watershed. 

But as  one moves away from this part of the plotted surface (i.e., as n increases and k 

decreases), the downward slope of the surface reflects the division of the space of initial 

plans into larger and larger numbers of distinct watersheds. 

However, the rise in the number of watersheds is gradual. Considering the many billions 

of possible plans for the queries under consideration, the division of these plans into roughly 

ten to  one hundred watersheds indicates that  on average, each individual watershed must 

be very large indeed. Recall our observation that  the Stochastic Bushwhack algorithm, 

starting with an initial plan in a particular watershed, transforms that  plan into one that  is 

optimal within the watershed. I t  is in this sense that  the Stochastic Bushwhack algorithm 

finds a "local minimum." Given the size of the watersheds, one sees that  these minima 

are not so local as the term "local minimum" might suggest. When the number of local 

minima is small, one may expect that  just a handful of invocations of bushwhack stands 

a good chance of reaching all the local minima-and consequently, of reaching the global 

minimum as well (since one of the local minima must be the global minimum). 

I t  should be noted that  because our watershed counts are based on finite random 

samples of bushwhack runs, we cannot be certain that  the counts are reliable. There could 

be additional watersheds that  we have failed t o  detect. But i t  is extremely unlikely that  

these additional watersheds could have escaped our detection unless they occupied only 



a very small proportion of plan space. For example, consider a watershed (or collection 

of watersheds) that  represents 1% of the initial plan space. The odds that  in 1000 trials 

we would have failed t o  encounter any plans in this watershed are 0.991°00 x 4.3 . 
Similarly, the odds that  we would have failed to  detect a watershed occupying 0.5% of 

the plan space are 0.991°00 = 0.007. We may conclude that  the portion of plan space not 

reflected in our measurements probably amounts t o  well below 1% of the space. 

Still, we must be concerned about the possibility that  the global minimum might 

tend t o  lie in a very small watershed that  is difficult to  detect. We show next that  such 

situations apparently do not arise in practice. 

9.4 Frequency of Attaining Global Minima 

To check whether the lowest of the local minima found by bushwhack was in fact the global 

minimum for a given query, we compared the results obtained by bushwhack against the 

results of optimization by exhaustive search. We applied this check to  all the test queries 

discussed in this chapter, with the following exceptions: 

Test queries with n > 20 were exempted from this check because of the large amount 

of computation required t o  perform exhaustive search. 

Our tests under the disk-nested-loops model were less thorough than the main body 

of tests carried out under the naive cost model. Verification of optimality was omit- 

ted from the disk-nested-loops trials. 

In every instance where we computed the global minimum by exhaustive search, the cost 

so computed coincides with the lowest of the costs obtained in 1000 bushwhack trials. In 

particular, in those cases where our measurements indicate that  plan space consists of a 

single watershed, each run of bushwhack yields an optimal plan. 

Moreover, in those cases where plan space is divided into multiple watersheds, the wa- 

tershed that  contains the global minimum tends to  be larger, not smaller, than the others. 

Figure 9.l(b) illustrates this effect. The vertical axis shows the measured probability that  

a particular run of bushwhack will yield a plan whose cost is the global minimum. The 



shape of the  plotted surface is very similar t o  the shape seen in Figure 9.l(a); the plateau 

at the top rear of the surface again shows the good behavior of bushwhack when n is 

relatively small and k is relatively large. Here the interpretation of the plateau is tha t  for 

the queries in question, a global optimum is obtained with probability 1. 

Although the surfaces in the two figures are similar, they are not identical. The plateau 

in Figure 9.l(b) appears t o  be slightly larger. The difference reflects the fact that  when the 

plan space divides into d watersheds, the probability that  a given run of bushwhack will 

yield the global minimum is nearly always found t o  be larger than lld-and sometimes 

much larger. For example, when n = 13 and k = 4, the 1000 invocations of bushwhack 

on our test query show that  there are a t  least 15 watersheds, and yet 650 of the 1000 

invocations yield an optimal solution. The inferred probability of 0.65 that  a random 

initial plan tree will lie in the optimal watershed is plainly well above 1/15. When we 

increase k t o  6, holding n fixed a t  13, the observed number of watersheds drops t o  3, 

while the probability of hitting a global minimum rises t o  0.98, which is again well above 

113 = 0.33. The bias towards the optimal watershed is not always so pronounced as in 

these examples, but there is usually some such bias, and it appears t o  be an extremely 

rare occurrence that  there is significant bias away from the optimal watershed. 

As with the measurements reported in Figure 9.l(a), we again need t o  be concerned 

about the relationship between the measured frequency with which a global minimum is 

found and the actual intrinsic probability of this event. However, we shall not consider 

this issue in detail here. We simply observe informally that  the law of large numbers 

makes large discrepancies between the measured frequencies and actual probabilities highly 

unlikely. 

9.5 Approximate Optima 

The foregoing analysis focused on the division of plan space into watersheds, and on 

the amount of probability concentrated in the watershed that  holds the global minimum. 

This analysis implicitly assumed that  when seeking t o  optimize a query, we would not be 

satisfied with any solution short of the global minimum-otherwise we would not have 



(a) Median cost ratio 

worst cost ratio 

12 13 

(b) Worst-case cost ratio 

Figure 9.2: Goodness of approximate optima, expressed as ratios of plan costs t o  optimal 
plan cost 

swept aside the other local minima without first stopping to  consider how different they 

were from the global minimum. But if it should turn out that  the other local minima are 

all quite close t o  the global minimum, then holding out for the global minimum alone, and 

refusing t o  settle for a close approximation, might be a stance without rational justification. 

Figure 9.2 graphs statistics that  bear on the acceptability of local minima that  are 

not necessarily global minima. Figure 9.2(a) shows, for each combination of n and k, the  

median cost of the plans returned by 1000 invocations of bushwhack, expressed as a ratio 

t o  the optimal cost. Analogously, Figure 9.2(b) shows the worst-case plan cost over 1000 

invocations, again expressed as a ratio t o  the optimal cost. Once again the vertical axes 



are upside-down; thus, the plateau at the top rear of Figure 9.2(b) represents combinations 

of n and k for which bushwhack yields only good plans, while the downward slope closer 

t o  the viewer represents combinations where, in the worst case, the cost of a plan returned 

by bushwhack may exceed the true optimum by a large factor. 

To understand the significance of the median cost ratio, first consider the  meaning of a 

median in the  present context. By the definition of median, half of all runs of bushwhack 

(for fixed n and k and a fixed query) yield a cost less than or equal t o  the median cost, 

while the other half yield a cost greater than or equal t o  the median cost. Then the median 

cost ratio is simply the ratio of the median cost t o  the global minimum. 

In Figure 9.2(a) we see median cost ratios that  run very close t o  unity; the largest 

median cost ratio, at n = 20 and k = 4, is 1.74, while most of the other values depicted 

in the figure are within a few percent of unity. According t o  Swami's classification, an 

approximate solution whose cost is within a factor of 2 of the optimum is good, and not 

merely acceptable. Thus, with any combination of n and k in the ranges shown in the 

figure, one may expect t o  obtain a good solution a t  least half the time. 

A higher probability of attaining a good solution can be achieved through multiple 

runs of bushwhack. Since each individual run yields a good solution with probability at 

least 112, a succession of j runs will yield a good solution with probability a t  least 1 - 1/2j. 

I t  follows that  if we wish t o  be 99% certain of obtaining a good solution, i t  suffices t o  

invoke bushwhack 7 times-since 1 - 112' = 1 - 11128 > 0.99-and take the best of the  

7 solutions i t  yields. 

The  strategy just described yields good solutions with high probability regardless of 

the choice of k .  But it offers no guarantees about the quality of the solution in those 

rare occurrences (i.e., fewer than one in a hundred) where the solution is not good. To 

get a sense of the solution quality in those cases, we turn t o  the worst-case cost ratios in 

Figure 9.2(b). 

When k is very small, the worst-case cost ratio is seen to  run as high as several hundred. 

Given the possibility that  a local minimum could exceed the optimum by such a large 

factor, i t  would probably be inadvisable t o  take the result of a single run of bushwhack 

t o  be an "approximate optimum." But as k increases, the worst-case cost ratio rapidly 



falls to the single digits. With larger k, then, it might not be unreasonable to treat the 

result of a single run as an approximate optimum. Recall that Swami defines an acceptable 

solution as one whose cost is within a factor of ten of the optimum; by this definition of 

LLacceptable," most of the points in Figure 9.2(b) represent combinations of n and k for 

which a single run of bushwhack is guaranteed to yield an acceptable solution. 

By combining our observations regarding the median cost ratio and the worst-case cost 

ratio, we can have the best of both worlds: a good solution with very high probability, 

and an acceptable solution in the residual cases. To obtain a good solution with 99% 

probability, we invoke bushwhack seven times; and to assure that the solution will be 

acceptable with virtually 100% probability, it is merely necessary to avoid very small 

values of k in a t  least one of the seven invocations. 

9.6 Optimization Time 

In Figures 9.1 and 9.2 we examined the quality of the solutions produced by bushwhack, 

without regard for the amount of time it took to produce them. We now consider the 

time needed to run bushwhack, without regard for the quality of the solutions obtained. 

Subsequently we will address both issues together, and consider the trade-off between 

quality and time. 

Figure 9.3(a) shows, as a function of n and k, the average CPU time consumed by 

a single run of bushwhack on the canonical cycle + 3 queries. Figure 9.3(b) shows the 

expected aggregate CPU time required to obtain an optimal plan with 99% probability; 

we shall discuss the latter graph in detail in Section 9.7 below. Here we comment only on 

the CPU time for individual runs of bushwhack. 

Because of the stochastic character of bushwhack, the execution time of individual runs 

is variable; however, our measurements indicate that this variability is not open-ended. 

Only rarely does an individual run require twice the average time, and never (as far as we 

have seen) does its running time exceed the average by as  much as a factor of three. 

Our reported timings do not include garbage-collection time. Separate measurements 

show that the amortized execution time of the garbage collector is typically about 10% 



Bushwhack time (secs.) 

(a) Average CPU time for one invocation of bushwhack 

net time for 99% (secs.) 

(b) Time required to  obtain an optimal plan with 99% probability 

Figure 9.3: Optimization times for the Stochastic Bushwhack algorithm 

to  20% of the time required by bushwhack proper. However, in an individual run of 

bushwhack, there may be no garbage-collection activity at all, or, a t  the other extreme, 

the garbage-collection time may exceed many times over the bushwhack execution time if 

a major collection is needed. 

The surface of Figure 9.3(a) is smooth and uniform except in the far rear corner. 

In general, execution time consistently rises with both n and k. The dog-ear in the far 

rear corner arises because optimization time stops increasing when k exceeds n,  since 

bushwhack is equivalent t o  exhaustive search whenever k 2 n. (Bear in mind that  k is the  

maximum number of pseudo-relations in the tightenings carried out inside bushwhack; the 

number of pseudo-relations may be less than k.)  



For the most part, the timings shown here run far below our exhaustive-search timings 

from Chapter 6-sometimes by as much as three orders of magnitude. However, in a few 

instances, and notably in the instances where bushwhack reduces t o  exhaustive search, the 

present timings are an order of magnitude or more higher. Exhaustive search takes longer 

here than in our earlier measurements primarily because here the exhaustive search is 

carried out by code written in SML, not C. The New Jersey SML compiler generates very 

good code, but the kind of manipulations performed in our exhaustive-search algorithm 

do not show SML to  best advantage. Performance of our present code also suffers t o  some 

degree from a lack of tuning. In light of these factors, the generally favorable timings 

seen in Figure 9.3(a) are all the more noteworthy. 

Perhaps the most striking feature of Figure 9.3(a) is that  growth is faster along the k- 

axis than along the n-axis. Since the vertical axis of the graph is logarithmic, exponential 

growth rates appear as straight lines. Thus, we see approximately exponential growth 

along the n-axis; since the times a t  n = 20 are roughly twice the corresponding times at 

n = 11, we may infer that  optimization time is roughly proportional to  2"19 (i.e., 1.08") 

for n and k in the ranges under study. By contrast, the lines that  trace growth along 

the k-axis are not straight a t  all, but start  out flat and then curve sharply downwards 

(reflecting a steep increase in opt,imization time). Growth along the k-axis thus appears 

t o  be faster than exponential. But inspection of the numbers behind the graph reveals 

that  this appearance is somewhat deceptive-there is actually a knee in the curve. The 

curve does indeed start  out almost flat, and then approaches an asymptote proportional 

t o  3". The net effect is that  across the entire range from k = 4 t o  k = 13, the times grow 

by roughly a factor of 50. 

The likely explanation for the knee in the growth along the k-axis is simply that  when 

k is less than about 8, the time taken by Blitzsplit runs is so small that  it is insignificant 

compared to  the time collectively required to  identify pseudo-relations, t o  collapse relations 

and predicates, t o  annotate tree nodes, and so forth. But as k rises above 8, the time 

required t o  apply exhaustive search to  subproblems increases so steeply that  it quickly 

becomes the dominant component of optimization time. 



9.7 Quantifying the Quality-Effort 'Ikade-off 

Let us now turn t o  the problem of quantifying the trade-off between quality of optimization 

and the time required for optimization. We have seen that  for fixed n and a fixed query, 

larger values of k tend t o  yield better solutions in return for a greater optimization effort. 

Is the best choice of k simply a matter of judgment, or is there some objective criterion 

for preferring one k-value over another? 

The question may be recast in the following terms. Suppose the objective of optimiza- 

tion is t o  obtain, with probability at least p, a solution whose cost is within a factor r of 

the optimum. The appropriate choices of p and r may very well depend on the context 

in which the optimized query will be used, and so we cannot presume t o  prescribe the 

best choices for these variables. But we can identify particular instances of p and r tha t  

are likely t o  be of interest. For example, some plausible choices for p might be 0.95, 0.99, 

0.995, and so on, and plausible choices for r might be 1, 2, 5, and 10. (Various values of 

r between 1 and 2 would likely also be of interest.) Once p and r have been chosen, i t  

becomes possible t o  perform an objective comparison of different choices for k. 

9.7.1 An Optirnization-Effectiveness Index 

Now let us assume a fixed query, and let pk denote, for each k, the probability that  a 

single run of bushwhack parameterized by n and k will yield an optimal solution; and 

let tk denote the average time required for such a run. (Thus, pk is the quantity plotted 

in Figure 9.l(b), and tk is the quantity plotted in Figure 9.3(a).) To obtain an optimal 

solution with probability a t  least p, we must run jk repetitions of bushwhack, where jk is 

the least positive integer such that  

(The left-hand side is the probability that  in jk runs we will fail t o  find an optimal 

solution.) The expected total time required for these jk runs is Tk = jktk. Then an 

objective criterion for choosing k is to  take the k for which Tk is least. 



In solving for jk, we first rewrite (9.1) as 

and then (reversing the inequality since the logarithms are negative), as 

The least positive integer jk satisfying this inequality is 

and so the time required to  achieve the desired probability p of obtaining an optimal 

solution is 

To avoid a zero denominator on the right-hand side, an exception must be made when 

pk = 1; in that  case we may simply take Tk = t k .  (Alternatively, and with the same effect, 

we may replace a measured proba,bility pk equal t o  1 with a presumed true probability of 

pk = 1 - E for some suitable small positive 6 . )  

9.7.2 Attaining an Optimum with 99% Probability 

Here we examine the case where p = 0.99 and r = 1. In other words, for a given n,  we 

seek the value of k that  minimizes the effort that  must be expended t o  find a plan for our 

test query such that  the cost of this plan is optimal with probability at least 0.99. 

Figure 9.3(b) plots, as a function of n and k, the values of Tk for our canonical cycle+ 3 

queries, given the objective of finding a minimum with 99% probability. The arched shape 

of the surface shows that  the effectiveness of bushwhack declines if k is either too small 

or too large. We have seen before that  when k is too small, the probability of attaining 

a minimum becomes very low; on the other hand, when k is too large, the time required 

t o  execute bushwhack becomes large. The best compromise appears t o  be found when k 

is in the neighborhood of 6 to  9. Within this range, the smaller values of k appear t o  be 

more appropriate for smaller n, while the larger k are better suited t o  the larger n. 



For example, at n = 11, we can obtain the value Tk = 0.016 sec by taking k = 6; at 

n = 15, we obtain Tk = 0.14 sec when k = 7; at n = 20, we obtain Tk = 1.6 sec when 

k = 9. Note, though, that  the arch is rather flat at its high point; using a choice of k that  

is slightly too large or slightly too small does not greatly affect the value of Tk obtained. 

9.7.3 The Recursive Bushwhack Algorithm and the "Kick" 

Two aspects of the results just reported motivate possible improvements t o  the Stochastic 

Bushwhack algorithm. These improvements are likely t o  be especially important as we 

consider larger queries. 

First, it appears, not surprisingly, that  the value of k best suited t o  a given value n is 

roughly proportional t o  n.  Thus, it may make more sense to parameterize the algorithm by 

the ratio of k t o  n than by k itself. In our studies of queries of larger numbers of relations, 

we shall use such a parameterization, as illustrated in Figure 9.4. The parameter k-pct 

determines k as a percentage of n. In the figure, k-pct varies from 24 t o  60, so that ,  for 

example, when n = 21, k effectively varies from 5 t o  13, and when n = 30, k varies from 

7 t o  18. 

Second, the times needed t o  obtain an optimal plan with 99% probability, as illus- 

trated above, are dramatically lower than the times needed t o  perform exhaustive search 

on problems of the same size. I t  is therefore tempting t o  make the Stochastic Bushwhack 

algorithm recursive in the following sense. Where tighten calls an exhaustive-search o p  

timizer t o  optimize a subproblem, it can be made instead t o  issue a recursive call (or a 

series of such calls) to  the Stochastic Bushwhack algorithm. With this change, we are no 

longer guaranteed an optimal solution t o  the subproblem. But we can expect t o  obtain 

a high-quality solution for a greatly reduced effort, and so there is a good chance we will 

come out ahead. We shall refer to  this recursive variant of the algorithm as the Recursive 

Bushwhack algorithm. 

Needless t o  say, if we wish t o  make the Stochastic Bushwhack algorithm recursive, we 

must ensure that  the recursion is well-founded. That is, we must identify a base case that  

is not recursive, and ensure that  the recursive calls eventually work their way down t o  the 

base case. We meet these requirements of well-foundedness as follows. For the base case, 



net time for 99% (secs.) 

Figure 9.4: Time t o  obtain minimum cost with 99% probability, as function of n and k-pct 

we adopt a somewhat arbitrary policy: tighten will solve a k-way subproblem by exhaustive 

search whenever k 5 10, but otherwise by a recursive call to  bushwhack. To ensure that  

we eventually obtain subproblems involving no more than 10 pseudo-relations, we rely on 

a parameterization of the algorithm by k-pct rather than k. For example, if n = 30 and 

k-pct = 60, then we obtain subproblems of size 30 - 0.60 = 18; in the recursive invocations 

of bushwhack, we thus have n = 18, and we obtain subproblems of size 18 * 0.60 x 11; 

finally, a t  the third level of recursion, we have n = 11, and the resultant subproblems of 

size 11 - 0.60 x 7 are solved by exhaustive search. 

On a philosophical level, the recursive strategy may come across as the moral equivalent 

of a perpetual-motion machine. Is it not an attempt t o  get something for nothing? When 

n = 30, is there any reason t o  expect we should get better results from a recursive algorithm 

with k-pet = 60, than from a non-recursive algorithm with k fixed a t  7? In either case, we 

will be breaking the optimization problem down t o  7-way subproblems, and performing 

exhaustive search only on these 7-way subproblems. What does the recursive strategy do 

that  the non-recursive strategy does not do? 

The sequence of 7-way subproblems that  are solved may be slightly different in the 

two cases, but probably the more important difference is that the recursive strategy will 

be injecting additional randomness into the tightening process. Each recursive call t o  

bushwhack will bring with it a call to  rand-tree, which in the case n = 30 will randomly 

rearrange the positions of up to  18 relations or pseudo-relations. The immediate effect of 



these rearrangements will usually be t o  degrade the plan as a whole; but they will also 

create opportunities for descending t o  new local minima that  have not yet been explored, 

and that  would not be reachable by a sequence of 7-way tightenings. In effect, the recursive 

calls provide the "kick" that  is called for in the Chained Local Optimization technique of 

Martin and Ot to  [39] (cf. Section 8.1). Later in this chapter we shall present experimental 

results on the Recursive Bushwhack algarithm's performance. 

9.8 Varying the Join Graph 

Up t o  this point we have been examining the behavior of the Stochastic Bushwhack algo- 

rithm only for queries of the cycle+ 3 topology. In this section, we repeat the experiments 

of Figures 9.1, 9.2, and 9.3 for several other topologies as well. For compatibility with the 

earlier experiments, we continue to  use the non-recursive Stochastic Bushwhack algorithm 

for the present. In Section 9.9, we will extend these experiments t o  larger joins; at that  

point we will switch t o  the Recursive Bushwhack algorithm, as the non-recursive version 

becomes prohibitively expensive. 

Figure 9.5 gives twenty-four graphs, arranged in six rows and four columns. The six 

rows correspond t o  the six graphs that  were presented in Figures 9.1, 9.2, and 9.3 for 

the case of the canonical cycle + 3 queries. Within each row of Figure 9.5, analogous 

information is presented for each of four distinct join-graph topologies, namely the chain, 

cycle + 3, star, and clique. Thus, one may scan down any column of the figure t o  see a 

summary of the behavior of the optimizer for any one of the topologies. In particular, 

the second column (the "cycle + 3" column) repeats, in reduced format, the graphs of 

Figures 9.1, 9.2, and 9.3. 

The surfaces for the chain and star  are generally flatter than for the cycle + 3 and 

clique topologies. This flatness reflects the fact that the chain and s tar  topologies are 

acyclic, and apparently queries drawn from these topologies are easier t o  optimize that  

queries drawn from cyclic topologies. However, the star presents a difficulty that  is absent 

in the other topologies. In the star case, the time required for bushwhack execution rises 

very fast as k increases. The probable reason for this effect is that  optimal plans for stars 



241

chain cycle+ 3 star clique

~~~~
(a) Number of distinct costs

~~~~
(b) Fraction of trials that attain minimum cost

<:>~~~
(c) Median cost ratio

~ t1f!!!;~ e
(d) Worst-case cost ratio

~~~~
(e) Average time for one bushwhack execution

~~~~
(f) Time to attain minimum-cost plan with 99% probability

Figure 9.5: Profile of Bushwhack behavior for joins of 11 to 20 relations, with k from 4 to
13 (canonical test queries)



tend t o  be left-deep, hence deeper than bushy plans with the same number of leaves; the 

recursion depth of shake-up and shake-down is consequently greater as well, and a larger 

number of tightenings are performed on each iteration of itshake. 

Figure 9.5(f) shows differences among the arches for the different topologies. Recall 

tha t  the  top of the arch represents values of k for which optimization is most effective, in 

the sense of yielding the best plans for a given optimization effort. Evidently the most 

effective k values for the easier topologies are lower than for the more difficult topologies. 

9.9 Larger Numbers of Relations 

Now we consider larger values of n. Figure 9.6 profiles bushwhack behavior for joins of 

21 to  30 relations. The overall organization of this figure is exactly the same as tha t  

of Figure 9.5. However, here we base our measurements on the Recursive Bushwhack 

algorithm, because of the huge expense of running the non-recursive version on larger 

joins. Accordingly, the right-hand horizontal axis in each of the present plots represents 

k-pct (as in Figure 9.4) rather than k. 

The present plots tend to  be somewhat bumpier than those for the smaller joins, but 

otherwise they have much the same character. Because of the large sizes of the present 

joins, i t  was not feasible to  verify by exhaustive search that  the lowest minima found for 

each query were in fact the true global minima. However, extrapolation from the evidence 

obtained for joins of 11 to  20 relations suggests that  here, too, the lowest minimum found 

in 1000 trials is likely t o  be the global minimum. For the cycle+3 queries, for example, we 

typically obtain a few tens of distinct costs, each of which accounts for several percent of 

plan space on average. By the same reasoning we applied in Section 9.3 above, any costs 

that  may have been overlooked probably represent well under 1% of plan space. So i t  is 

unlikely that  we are overlooking the true global optimum unless i t  occupies a watershed of 

unusually low probability-which is itself unlikely, since we have noted that ,  if anything, 

the watershed containing the global optimum tends t o  occupy a disproportionately large 

chunk of plan space. That  tendency showed no sign of dropping off as n increased. We 

may expect the same to  be true here. Indeed, we have further circumstantial support for 



243

chain cycle+ 3 star clique

~~~~
(a) Number of distinct costs

~~~~
(b) Fraction of trials that attain minimum cost

~~ ~
<=:=> <=:=> <=:=> ~

(c) Median cost ratio

~~~.
(d) Worst-case cost ratio

~~~~
(e) Average time for one bushwhack execution

~~~~
(f) Time to attain minimum-cost plan with 99% probability

Figure 9.6: Profile of Recursive Bushwhack behavior for joins of 21 to 30 relations, with
k-pct from 24 to 60 (canonical test queries)

this expectation in the fact that the fraction of the present trials that attain the minimum

(for the cycle + 3 topology) is typically 1/10 t o 112.

One may object that any extrapolation from the smaller joins is suspect, since our

earlier observations did not involve recursion in the Bushwhack algorithm, which could

subtly alter its behavioral characteristics. However, note that there is overlap between the

non-recursive and recursive versions of the algorithm. For example, when n = 21 and k-pct

is anywhere up t o about 50, the recursive version is equivalent t o the non-recursive version

with k ranging up t o 10. There is some overlap a t larger n as well, although the amount

of overlap shrinks as n increases. When n = 30, the overlap involves values of k-pct up t o

about 34, which again correspond t o values of k up to 10. Thus, there is a triangular area

in each of the plots where recursion does not come into play; this area in each plot includes

the corner that lies leftmost on the printed page. In several of the star-query plots, and

t o some extent in all the plots of Figure 9.6, one observes a discontinuity at the edge of

this triangle, where recursion kicks in. But in general the transition is fairly smooth, and

suggests that the recursive version of the algorithm does not behave in a fundamentally

different way from the non-recursive version.

The most encouraging information in these plots is the cost ratios in Figures 9.6(c)

and (d). The median cost ratios are all quite good-never above 2 except in the case of

the clique; and the same can be said for the clique as well if the smaller values of k-pct are

avoided. Even the worst-case cost ratios are quite moderate-excluding the clique, the

worst among them run to about 15.

The timings in Figure 9.6(f) are also quite good, but it is hard to get a sense of these

timings from the scaleless plots in the figure. Figure 9.7 plots, for the canonical test

queries of each topology, the amount of time needed to obtain a minimum-cost plan with

99% probability, as a function of the number of relations in the query. What appears t o

be the best choice of k-pct is applied in each case. Thus, for the chain and s tar queries,

Ic-pct = 32; for the cycle+ 3 queries, k-pct = 44; and the for the clique queries, k-pct = 60.

The timings shown are hundreds t o thousands of times lower than the timings reported

by Steinbrunn [54] for stochastic join-optimization techniques applied t o joins of up t o

0.1
21 22 23 24 25 26 27 28 29 30

number of relations

1 I I I I I I I I

r %
C 1

-. . . clique- - . - - . - * - - - - - - l-..-----...____...---- -.,. I.........-- - ./.--- cycle+3.. .- *-----.....--.. **0-:

I- --*....,. -*" #**------------*

- star 0- -
#- - - - - - - - - - -00

chain /
I I I I I I I I

Figure 9.7: Time needed to obtain a minimal plan with 99% probability (canonical test
queries)

30 relations. Moreover, the evidence presented above, combined with Steinbrunn's plan-

quality analyses, suggests that the solutions we obtain by our technique are likely t o be

a t least as good as those obtained by other techniques, and probably better in many

instances.

Our timings may be unrealistically optimistic for a couple af reasons, over and above

the fact that we are using an overly simplistic cost model:

These timings assume that the algorithm is run with an appropriate choice of k-pct;

determining an appropriate k-pet for an arbitrary query may not be easy. (One can

safely use a value of k-pct that is too large, but optimization time may then rise by

an order of magnitude.)

The 99% probability of obtaining a minimum-cost solution is based on executing

some number of bushwhack iterations that depends on the algorithm's behavior for

the query a t hand. Determining the appropriate number of iterations for an arbitrary

query may not be easy.

Nonetheless, the fact that these timings are possible at all gives an indication of the power

of the Recursive Bushwhack algorithm. Further study may reveal good, straightforward

heuristics for choosing k-pct and the number of bushwhack iterations.

9.10 Varying the Queries

All of our measurements up to this point have involved our so-called canonical test queries,

each with mean base-relation cardinality lo4 and variability 0.5. Here we explore the

extent to which the results we obtained for that parameterization generalize to other

parameterizations.

Figure 9.8 shows, in analogy to Figure 9.l(a), the number of distinct costs for 20-

way cycle + 3 queries with different cardinality parameterizations. The plot is based on

runs of bushwhack with k = 8. (Equivalent results would be obtained by running the

Recursive Bushwhack algorithm with k-pct = 40.) The horizontal axes of the figure are

as in Figure 6.1 on page 153; but relative to the plots of that figure, the present plot is

rotated about the vertical axis. Thus, the mean cardinality axis here is the shorter of the

horizontal axes, and the variability axis is the longer of the two.

The reason for this change in perspective becomes evident when one examines the

array of pIots in Figure 9.9, each of which is parameterized the same way as Figure 9.8.

Whereas most of the variation in Figure 6.1 occurred along the mean cardinality axis, here

there is greater variation along the variability axis. However, mean cardinality can make

a big difference here, too. In particular, queries with mean cardinality 1 are the easiest to

optimize under the Stochastic Bushwhack algorithm. The most problematical queries are

those involving extremely large cardinalities.

Large variabilities seem to present a greater challenge than small variabilities except

in the case of the clique. The reasons for the observed effects of variability are unknown

to the author, and remain to be investigated in the future. In general, the effects are not

extremely large; it would appear that the Stochastic Bushwhack algorithm is effective for

a broad range of queries, and not just for our so-called canonical queries. It is possible

that the poor performance we see here for some of the clique queries would be ameliorated

by using a larger value for k or k-pct; again, this possibility remains to be investigated.

Though there is variety among the queries represented in Figure 9.9, the variety is of a

distinct costs

le4
mean cardinality le& -

le8 1 0.8 - oz 0.2 O

variability

Figure 9.8: Number of distinct minima as a function of mean cardinality and variability
(n = 20, k = 8)

restricted kind. The cardinalities in all these queries are equally spaced on a logarithmic

scale, which raises the question of whether the regularity of the query construction some-

how gives the Stochastic Bushwhack algorithm a better handle on the queries. (Such an

effect would have been implausible in the case of the deterministic Blitzsplit algorithm,

but in the present situation is difficult to reject out of hand.) To explore the possibility of

such an effect, below we repeat the experiments of Figure 9.9 using queries in which the

cardinalities and selectivities have been subjected to random perturbations.

We perturb the queries by multiplying each cardinality by loX and by raising each

selectivity value t o the power 1+X/5, where X is a uniformly distributed random variable

drawn from the interval [-0.5,0.5]. (A different X is used t o perturb each cardinality and

each selectivity.) These perturbations result in very uneven spacing of the cardinalities,

and reduce the tendency for the selectivities to cancel out the cardinalities. Figure 9.10

shows the behavior observed in the presence of these perturbations.2*3 Not surprisingly,

the plots show chaotic-looking variation. But the overall outlines of these plots are the

'The plots in Figures 9.10, 9.11, and 9.12 are based on 100 rather than 1000 trials per query.
31n the surfaces in Figure 9.10, each point reflects 100 applications of bushwhack to the same perturbed

query. Figure 9.10 differs from our other figures in that the details of the function surfaces in Figure 9.10
depend on the random number generator used to generate the random variable X. The tests represented
in the other figures also involve random number generation, but in the other figures, the effect of using a
different generator would presumably be negligible.

248

chain
cycle+ 3

star
clique

~ ~

"" "" ~ ~

(a) Number of distinct costs
~

~~
(b) Fraction of trials that attain minim um cost

~ ~~ ~
(c) Median cost ratio

~ ~ ~ ~ ~
(d) Worst-case cost ratio

(e) Average time for one bushwhack execution

~ ~
Figure 9.9: Profile of Bushwhack behavior.., a function of mean cardinality and V3J"iability

(n ==20, k ==8)

(f) Time to attain minimum-cost plan with 99% prohability

-.

249

chain
cycle+ 3

star
clique

~~~ ~~
(a) Number of distinct costs

~~
(b) Fraction of trials that attain minimum cost

~
~

~~
(c) Median cost ratio

~~~ ~~
~

(d) Worst-case cost ratio

~~
(e) Average time for one bushwhack execution

~

Figure 9.10: Profile of Bushwhack behavior as a function of mean cardinality and vari-ability, with perturbations (n ::::20, k ::::8)

(f) Time to attain minimum-cost plan with 99% probability

,

same as those of Figure 9.9. Evidently the behavior of the Stochastic Bushwhack algorithm

does not depend critically on any particular spacing of the base-relation cardinalities or

on any special relationship between these cardinalities and the predicate selectivities.

9.11 Varying the Cost Model

We have accumulated substantial evidence showing the Stochastic Bushwhack algorithm

to be effective for a variety of queries. But all of this evidence has been obtained using

the naive cost function KO. Do the observed results carry over to other cost models?

Figures 9.11 and 9.12 give a partial answer to this question. Based on measurements

using the disk-nested-loops cost function ~ d , , , these figures show behaviors that are gen-

erally comparable to those seen in the corresponding figures for the naive cost function

(Figures 9.6 and 9.9). The plots in Figures 9.11 and 9.12 are parameterized in the same

way as those in Figures 9.6 and 9.9. Thus, in Figure 9.11, the horizontal axes in each

plot represent n and k-pct, as first illustrated in Figure 9.4 on page 239. By contrast, in

Figure 9.12 the horizontal axes represent mean cardinality and variability, as illustrated

in Figure 9.8 on page 247.

In some respects behavior under the disk-nested-loops model is better, and in other

respects worse, than under the naive model. Notably, clique queries seem to cause more

trouble under the disk-nested-loops model, especially at large cardinalities. But as in the

case of the naive model, it may be possible to obtain better behavior for cliques by using

larger values of k or k-pct.

Overall, the evidence of Figures 9.11 and 9.12 suggests that behavior of the Stochas-

tic Bushwhack algorithm is not critically dependent on the particulars of the problem

formulation.

9.12 Summary and Discussion

In this chapter we have conducted empirical studies of the behavior of the Stochastic

Bushwhack algorithm. Partly on the basis of our preliminary results for queries of 11 to

251

chain cycle+ 3 star clique

~~~~
(a) Number of distinct costs

~~~~
(b) Fraction of trials that attain minimum cost

~~~~
(c) Median cost ratio

~~~..
(d) Worst-case cost ratio

~~~~
(e) Average time for one bushwhack execution

~~~~
(f) Time to attain minimum-cost plan with 99% probability

Figure 9.11: Profile of Recursive Bushwhack behavior for joins of 21 to 30 relations, with
k-pct from 24 to 60 (canonical test queries, disk-nested-Ioops cost model)

252

chain
cycle+ 3

star
clique

~~.
'" "'~ ~8l

(a) Number of distinct costs

~ ~
~'" "'~ ~-

(b) Fraction of trials that attain minimum cost

~

~

~~~~
(e) Average time for one bushwhack execution

~~~-
(f) Time to attain minimum-cost pi"" with 99% probability

Fignre 9.12: Profile of Bnshwhack behavior.. a fnnction of mean cardinality ""d vari-ability (n : 20, k: 8, disk-n""ted-Ioops cost model)

'" '" '" '"

(c) Median cost ratio

'" '"

(d) Worst-casecost ratio

20 relations, we formulated the Recursive Bushwhack algorithm, which effectively incor-

porates a "kick" of the kind called for in the Chained Local Optimization technique of

Martin and Otto. We then used the Recursive Bushwhack algorithm in our subsequent

measurements involving queries of 21 to 30 relations.

Our measurements assess both optimization time and the quality of the solutions

obtained. The evidence suggests, though not conclusively, that with iterated runs of the

Recursive Bushwhack algorithm it is possible with near certainty to obtain optimal plans

for join queries of at least 30 relations. The time required to obtain these plans varies

with the join graph, but generally runs to seconds, not minutes, of CPU time. As such,

our optimization times appear to be at least two orders of magnitude lower than those

reported in Steinbrunn's survey of stochastic join-optimization techniques [54].

Our results must be treated with caution because of the simplicity of our cost models,

and because of our omission of consideration of physical properties. Optimization times

can be expected to increase when more realistic cost models are used and when physical

properties are factored in; it is also possible that the quality of the plans obtained will

decline.

However, there are intuitive grounds for believing that plan quality will remain high

when different cost models are used. One would expect that in typical cases, a query

plan that is good under one cost model ought to be tolerably good under other models as

well; for regardless of the cost model, good plans must avoid generating large intermediate

results. To a large extent, join-order optimization is a matter of balancing the cardinalities

generated a t one node against those generated at other nodes, and ensuring that no one

node assumes too great a burden. Different cost models may assign different weights to the

cardinalities involved, but one may conjecture that the consequences of these differences

are likely to be relatively localized within the plan tree.

The same intuition applies to physical properties as well. For example, the sort-order

of a relation may affect the cost of the join node that is its immediate parent in the plan

tree, and perhaps also that of its grandparent or great-grandparent; but it is unlikely to

have repercussions at far-distant nodes. Only in "borderline" cases would one expect that

consideration of physical properties would justify changing the macroscopic structure of a

plan tree that was optimal under a simpler set of assumptions.

We leave validation (or refutation) of these conjectures t o the future. Inasmuch as

they are correct, they suggest a means of avoiding a large increase in optimization time

with the introduction of sophisticated cost models and physical properties. One could

first optimize using a simple cost model and without regard t o physical properties, and

then iteratively tighten the resultant plan, using the sophisticated cost model and taking

physical properties into account. Such a two-step approach would be reminiscent of a

proposal by Swami and Iyer [59], in which a tentative plan is first obtained under one set

of assumptions, and then locally improved (if possible) by considering changes t o those

assumptions. Other hybrids are also imaginable. For example, the simulated-annealing

phase of two-phase optimization [26] could be replaced by iterated tightening; genetic algo-

rithms [54] could be used t o recombine plans obtained in successive bushwhack iterations;

and so on.

Despite the apparent similarity of the Stochastic Bushwhack algorithm t o Swami's

local-improvement technique [56], performance of the Stochastic Bushwhack algorithm-

and for larger queries, the Recursive Bushwhack algorithm-seems t o be far more satisfac-

tory. Possible explanations for the performance differences lie in the following differences

between the present study and Swami's:

The Stochastic Bushwhack algorithm takes advantage of the fast dynamic program-

ming provided by the Blitzsplit algorithm.

The "kick" in the Recursive Bushwhack algorithm may be essential t o obtain good

performance for larger queries.

Swami based his comparisons of join-optimization techniques on extremely large

queries involving up to 100 relations each. It is possible that , even with the "kick,"

the Recursive Bushwhack algorithm is not effective for such large queries.

Swami's studies considered only left-deep plans, and excluded plans with Cartesian

products. I t is conceivable that allowing Cartesian products in the initial join-

processing tree speeds up convergence of bushwhack, even if the optimal plan does

not contain Cartesian products.

In connection with the last point, it is interesting to note that a t large values of k-pet, the

Recursive Bushwhack algorithm yielded its longest running times when presented with star

queries. The optimal plans for star queries are typically left-deep; the clear implication-

especially in light of the observations of Section 9.8-is that the Recursive Bushwhack

algorithm works faster on bushy plans than on left-deep plans.

Changes to the algorithm might be able to ameliorate performance on left-deep plans.

Our implementation discards all the dynamic programming tables constructed in subprob-

lem optimization; retention of these tables could speed construction of subsequent tables.

The savings would probably be slight for bushy trees, but might be substantial in the case

of left-deep trees (since successive tightenings in the left-deep case involve many of the

same relations).

Chapter

Conclusion

The foregoing chapters have presented evidence in support of the thesis that consideration

of all Cartesian products in join-order optimization need not be prohibitively expensive. In

both the deterministic Blitzsplit algorithm and the Stochastic Bushwhack algorithm, we

consider all join orders without prejudice against Cartesian products. Yet our performance

measurements show that under simple cost models both these algorithms outperform their

more conventional counterparts by a wide margin. This margin may shrink under more

complicated cost models, but based on our performance analysis (including observations on

cost-function execution counts), there is reason to believe that our approach will continue

t o hold an advantage.

Consideration of Cartesian products is affordable because enumeration of query-plan

alternatives is not the limiting factor in join-order optimization. The limiting factor

appears t o be the cost computations; and because the cost computations required for

Cartesian products are generally negligible, there is little t o be gained from their exclusion.

Progress beyond the point reached in the present work will depend on identifying

good ways of containing the cost computations under realistic query-optimization condi-

tions. Below we touch briefly on two issues related to keeping the cost computations

manageable-the accommodation of physical properties, and the question of whether

bottom-up or topdown dynamic programming is better suited t o the avoidance of cost

computations for useless subplans. Both issues are ripe areas for future work.

We also briefly address the question of extending the present work t o non-relational

database systems-specifically, to object-oriented systems.

10.1 Physical Properties

Suppose, as in Section 2.6.3, that the base relations of a database are distributed between

machines in Tokyo and Kyoto, and that each join of a query plan may execute a t either

Tokyo or Kyoto. To accommodate this situation in the Blitzsplit algorithm, we must first

increase the number of columns in the dynamic programming table. Instead of just having

one Best Split and one Cost column, we need two of each: a Tokyo Best Split, a Tokyo

Cost, a Kyoto Best Split, and a Kyoto Cost. That is, the best plan for computing the join

in Tokyo will be different from the best plan for computing the join in Kyoto, and each

of these best plans will have its own cost.

Now in the loop in find-best-split, there is more work to do than before. For a given

split, there are four possibilities to consider: both the left- and right-hand sides are com-

puted a t Tokyo; both are computed a t Kyoto; the left-hand side is computed at Tokyo, but

the right-hand side a t Kyoto; or vice versa. Each combination constitutes a different plan

for computing the join in question, and each such plan must be considered as a candidate

Tokyo Best Split and as a candidate Kyoto Best Split.

In the general case, the database may be distributed across ba cities, for some bo. In

addition, each relation and each join result may be sorted according t o any of bl sort orders,

for some bl. There may be additional physical properties as well, giving, respectively, b2,

. . . , bM-1 alternatives, where M is the number of properties (including location and sort

order). Then on the face of it, the dynamic programming table must have nz!' b; Best

Split columns, and an equal number of Cost columns, to accommodate all the different

combinations of the physical properties. What is worse, each iteration of the loop in

find-best-split must consider (nzil bi)' combinations of left-hand sides and right-hand

sides.

But these horrible factors assume a naive implementation. Presumably i t is possible

t o do better, though just how much better is not yet clear. The key t o beating the naive

implementation is to observe that the plans for different physical properties have a great

deal in common, and that portioils of the cost analysis for the different alternatives can

be shared among them.

In particular, one can include in the dynamic programming table a column Min Cost

that holds the minimum of the Cost columns for all the physical-property combinations.

Similarly, in find-best-split one can maintain a max-best-costso-far that holds the max-

imum of the best-cost-so-far values for all property combinations. Then when a specific

split is considered, if the sum of the Min Cost values for the left- and right-hand sides

exceeds max-best-cost-so-far, one can immediately discard the split, without individually

examining any of the (nz;' b;)2 plans conforming t o that split. This example involves

sharing of the cost analysis at a large granularity, in the sense that it lumps together all

the plans for a split; finer-granularity sharing is also possible, and probably advisable.

In addition, the memory requirements entailed by physical properties can be reduced

by avoiding the storage of redundant information. For example, suppose that for a given

join, the Tokyo Best Split and the Kyoto Best Split happen to be the same; suppose,

in fact, that the best way t o obtain the result of this join in Kyoto is t o compute i t in

Tokyo, and then t o ship the result to Kyoto. In such a case, it is wasteful t o record

identical information for the Tokyo Best Split and Kyoto Best Split, when i t would suffice

t o store this information just once. Moreover, it is wasteful t o record both a Tokyo Cost

and a Kyoto Cost, since in this example the latter can be derived from the former rather

easily. This kind of waste may be tolerable when there are just two cities involved, as in

our example; but if there were, say, fiftg cities involved, the waste would become more

worrisome.

The key t o avoiding such waste lies in recognizing the common features of the plans-

and the costs-for different property combinations. The locality properties of the Blitzsplit

algorithm make it especially well-suited t o taking advantage of shared representations of

plan information. But the details of the pertinent da ta structures, and the corresponding

cost-analysis code, remain t o be worked out.

10.2 Top-down vs. Bottom-up

McKenna and Graefe [20,40] have argued that the topdown, memoizing style of dynamic

programming used in Volcano is more efficient than bottom-up dynamic programming.

(Volcano's transformation-based plan generation may also offer an advantage in flexibility

(e.g., in accommodating new query operators), but here we shall address only the efficiency

issue.) The core of the argument given by McKenna and Graefe regarding efficiency is

that topdown optimization is goal-driven, and can avoid pursuing subgoals that are not

warranted by the toplevel goal.

The argument seems plausible, but needs additional support t o be convincing. In his

comparisons of Volcano performance against Starburst performance, McKenna addresses

only the efficiency of enumeration, showing that the two systems are roughly comparable

in this regard. Whether Volcano succeeds in performing fewer cost-function executions

than Starburst remains unclear.

It should be noted that inasmuch as topdown dynamic programming is preferable t o

bottom-up, the Blitzsplit algorithm can be changed into a top-down algorithm with only

small revisions. Rather than systematically filling in the table entries for all sets S, the

topdown variant simply searches for a best split for the set R of all relations. In the

course of doing so, it may need t o consult other table entries; these other entries are then

filled in, as needed, when they are accessed. But if a table entry is never accessed, i t never

needs t o be filled in. Thus, the ta.ble construction becomes demand-driven.

One can also imagine variants of the Blitzsplit algorithm that cannot be neatly catego-

rized as either bottom-up or top-clown. One might fill in the dynamic programming table

with incomplete information in a bottom-up fashion, and then fill it in more completely

on demand.

In the early stages of the research described here, the author actually experimented first

with a topdown variant of the Blitzsplit algorithm, only later settling on the bottom-up

variant a s preferable. The topdown variant did perform better in some special cases-

for example, for chain-like queries of 18 relations or more-but its performance quickly

degraded when it faced more difficult queries.

The author's current view is that very large queries are best optimized by stochastic

methods such as the Recursive Bushwhack algorithm described in Chapter 9 above. As

problem difficulty increases, stochastic methods degrade more gracefully than dynamic

programming algorithms, be they bottom-up or topdown: In performing exhaustive

search, dynamic programming algorithms always guarantee optimal solutions, but de-

mand exorbitant amounts of time and memory t o solve large, difficult problems. Stochas-

tic methods, by contrast, let go of the guarantee of optimality when it comes at too high

a price. In this way they achieve a better balance between efficient query execution and

efficient optimization.

For queries of more moderate size, the bottom-up variant of dynamic programming

unquestionably beats top-down in speed of enumeration. Moreover, the use of techniques

such as plan-cost slices permits pruning of many unnecessary cost-function executions.

However, it is conceivable that a top-down strategy can prune away cost-function execu-

tions even more effectively. A systematic study of the number of cost-function executions

needed by either approach remains as a challenge for future research.

10.3 Extension beyond Relational Systems

The join-optimization work described in this dissertation was an outgrowth of work on

algebraic foundations for object-oriented query optimization. However, the techniques

and experiments reported in the foregoing chapters have all been presented in a relational

setting. I t is natural to wonder what is involved in generalizing these results t o object-

oriented databases.

The central observation to be made in this regard concerns the algebraic foundation

for join-order optimization. The commutativity and associativity of the relational join

operator are responsible for giving the plan-space the shape it has. (If arbitrary Cartesian

products are allowed, then predicates have no role in the topology of this space.)

I t is difficult to construct a genuinely object-oriented analogue of the relational join

operator without giving up commutativity and associativity.' But it is trivial t o construct

an analogue that is commutative and associative up to isomorphism, in the manner of a

categorical product [2, 481. That is, one can construct an object join t% such that if A, B,

'Analogues have been proposed that retain these properties; see, for example, the work of Shaw and
Zdonik [52]: However, such analogues tend to exhibit anomalous algebraic characteristics.

and C are unordered object collections, then

Actual equality between the left- and right-hand sides is unnecessary for join reordering-

it turns out that isomorphism suffices. Thus, the join-order optimization techniques dis-

cussed in this work can be applied to join expressions built with an object-join operator

that obeys (10.1) and (10.2) above.

10.4 Conclusion

This dissertation has taken a fresh look a t the use of dynamic programming in join-

order optimization; in going over old ground, it has turned up surprising new findings,

and these findings hold promise of making query optimizers more efficient. But i t has

also turned up new puzzles, and leaves many questions unanswered. Despite the long

history of dynamic programming in join optimization, the subtler aspects of its behavior-

those having to do with the amount of effort required for cost computations-are still not

well understood. Further investigation of these matters could yield large rewards in the

efficiency of commercial query optimizers.

This dissertation has also taken a fresh look a t the idea of combining dynamic pro-

gramming with randomized search in a hybrid optimizer. Even less is understood about

the behavior of this kind of hybrid than about dynamic programming itself. But such

hybrids appear t o possess enormous potential-a potential that has yet to be tapped.

Bibliography

[I] Gennady Antoshenkov. Query processing in DEC Rdb: Major issues and future

challenges. Database Engineering, 16 (4) :42-52, December 1993.

[2] Andrea Asperti and Giuseppe Longo. Categories, Types, and Structures. The MIT

Press, 1991.

[3] Roberto Bayardo, IBM Almaden Research Center, San Jose, California. Personal

communication, January 1996.

[4] Keith Billings. A TPC-D model for query optimization in Cascades. Master's thesis,

Portland State University. In preparation.

[5] Stavros Christodoulakis. Estimating block transfers and join sizes. In SIGMOD '83,

Proceedings of Annual Meeting, Database Week, Sun Jose, May 23-26, 1983, pages

40-54, 1983.

[6] Sophie Cluet and Guido Moerkotte. On the complexity of generating optimal left-

deep processing trees with cross products. In Database Theory-ICDT '95, 5th In-

ternational Conference, Prague, Czech Republic, January 11 -1 3, 1995, Proceedings,

volume 893 of Lecture Notes in Computer Science, pages 54-67. Springer-Verlag,

1995.

[7] Richard Cole, Mark J. Anderson, and Robert J . Bestgen. Query processing in the

IBM Application System 400. Database Engineering, 16(4):19-28, December 1993.

[8] George Copeland and David Maier. Making Smalltalk a database system. In SIGMOD

'84, Proceedings of Annual Meeting, Boston, Massachusetts, June 18-21, 1984, pages

316-325, 1984.

[9] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice model

for static analysis of programs by construction or approximation of fixpoints. In

Conference Record of the Fourth ACM Symposium on Principles of Programming

Languages, Papers Presented at the Symposium, Los Angeles, California, January

17-1 9, 1977, pages 238-252, 1977.

[lo] Scott Daniels, Goetz Graefe, Thomas Keller, David Maier, Duri Schmidt, and Ben-
net Vance. Query optimization in Revelation, an overview. Database Engineering,

14(2):58-62, June 1991.

[ll] Ramez Elmasri and Shamkant B. Navathe. Fundamentals of Database Systems. Ben-

jamin/Cummings, 1989.

[12] Cdsar Galindo-Legaria, Arjan Pellenkoft, and Martin Kersten. Fast, randomized join-

order selection-why use transformations? In Proceedings of the 20th International

Conference on Very Large Data Bases, September 12-1 5, 1994, Santiago, Chile, pages
85-95, 1994.

[13] Cdsar A. Galindo-Legaria, Microsoft Corporation, Redmond, Washington. Personal
communication, June 1996.

[14] Sumit Ganguly, Phillip B. Gibbons, Yossi Matias, and Avi Silberschatz. Bifocal

sampling for skew-resistant join size estimation. In 1996 Proceedings, ACM SIGMOD
International Conference on Management of Data, June 4 to 6, Montre'al, Que'bec,

Canada, pages 271-281, 1996.

[15] Sumit Ganguly, Waqar Hasan, and Ravi Krishnamurthy. Query optimization for par-
allel execution. In Proceedings of the 1992 ACM SIGMOD International Conference
on Management of Data, Sun Diego, California, June 2-5, 1992, pages 9-18, 1992.

[16] Peter Gassner, Guy Lohman, and K. Bernhard Schiefer. Query optimization in the
IBM DB2 family. Database Engineering, 16(4):4-18, December 1993.

[17] Goetz Graefe. Query evaluation techniques for large databases. ACM Computing

Surveys, 25(2):73-170, June 1993.

[18] Goetz Graefe. The Cascades framework for query optimization. Database Engineer-
ing, 18(3):19-29, September 1995.

[19] Goetz Graefe and David J. DeWitt. The Exodus optimizer generator. In Proceedings
of Association for Computing Machinery Special Interest Group on Management of
Data 1987, Annual Conference, Sun Francisco, May 27-29, 1987, pages 160-172,
1987.

[20] Goetz Graefe and William J. McKenna. The Volcano optimizer generator: Extensi-
bility and efficient search. In Proceedings of the Ninth International Conference on
Data Engineering, April 19-23, 1993, Vienna, Austria, pages 209-218, 1993.

[21] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete Mathematics.
Addison-Wesley, 1989.

[22] Joseph M. Hellerstein and Michael Stonebraker. Predicate migration: Optimizing

queries with expensive predicates. In Proceedings of the 1993 ACM SIGMOD Inter-
national Conference on Management of Data, Washington, DC, May 26-28, 1993,

pages 267-276,1993.

[23] Robert V. Hogg and Allen T. Craig. Introduction to Mathematical Statistics. Macmil-

Ian, 3rd edition, 1970.

[24] Ellis Horowitz and Sartaj Sahni. Fundamentals of Computer Algorithms. Computer

Science Press, 1978.

[25] Toshihide Ibaraki and Tiko Kameda. On the optimal nesting order for computing N-
relational joins. ACM Transactions on Database Systems, 9(3):482-502, September

1984.

[26] Yannis E. Ioannidis and Younkyung Cha Kang. Left-deep vs. bushy trees: An analysis

of strategy spaces and its implications for query optimization. In Proceedings of the
1991 ACM SIGMOD International Conference on Management of Data, Denver,
Colorado, May 29-31, 1991, pages 168-177,1991.

[27] Yannis E. Ioannidis and Eugene Wong. Query optimization by simulated annealing.
In Proceedings of Association for Computing Machinery Special Interest Group on
Management of Data 1987, Annual Conference, Sun Francisco, May 27-29, 1987,

pages 9-22, 1987.

[28] Navin Kabra and David J. DeWitt. Opt++: An object-oriented im-

plementation for extensible database query optimization, 1995. Available:

http://www.cs.wisc.edu/'navin/research/opt++.ps [September 26, 19971.

[29] Donald E. Knuth. Fundamental Algorithms, volume 1 of The Art of Computer Pro-
gramming. Addison-Wesley, 2nd edition, 1973.

[30] Robert Kooi and Derek Frankforth. Query optimization in Ingres. Database Engi-
neering, 5(3) :2-5, September 1982.

[31] Robert Philip Kooi. The Optimization of Queries in Relational Databases. PhD
thesis, Case Western Reserve University, 1980.

[32] Henry F. Korth and Abraham Silberschatz. Database System Concepts. McGraw-Hill,

2nd edition, 1991.

[33] Ravi Krishnamurthy, Haran Boral, and Carlo Zaniolo. Optimization of nonrecursive

queries. In Proceedings of the Twelfth International Conference on Very Large Data

Bases, Kyoto, Japan, August 25-28, 1986, pages 128-137, 1986.

[34] Rosana S. G. Lanzelotte, Patrick Valduriez, Mohamed ZGt, and Mikal Ziane.

Industrial-strength parallel query optimization: Issues and lessons. Information Sys-

tems, 19(4):311-330, 1994.

[35] Richard J. Lipton, Jeffrey F. Naughton, and Donovan A. Schneider. Practical selectiv-

ity estimation through adaptive sampling. In Proceedings of the 1990 ACM SIGMOD

International Conference on Management of Data, May 23-25, 1990, Atlantic City,

New Jersey, pages 1-11, 1990.

[36] C. L. Liu. Introduction to Combinatorial Mathematics. McGraw-Hill, 1968.

[37] Guy M. Lohman, IBM Alrnaden Research Center, San Jose, California. Personal

communication, April 1996.

[38] David Maier. The Theory of Relational Databases. Computer Science Press, 1983.

[39] 0. Martin and S. Otto. Combining simulated annealing with local search heuristics.

Annals of Operations Research, 63:57-75, 1996.

[40] William J . McKenna. EfJicient Search in Extensible Database Query Optimization:

The Volcano Optimizer Generator. PhD thesis, University of Colorado, Boulder,

1993.

[41] William J. McKenna, Louis Burger, Chi Hoang, and Melissa Truong. Eroc: A toolkit

for building Neato query optimizers. In Proceedings of the Twenty-second Interna-

tional Conference on Very Large Data Bases, September 3-6, 1996, Mumbai (Bom-
bay), India, pages 111-121, 1996.

[42] R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. The MIT Press,

1990.

[43] Priti Mishra and Margaret H. Eich. Join processing in relational databases. ACM

Computing Surveys, 24(1):63-113, March 1992.

[44] Kiyoshi Ono and Guy M. Lohman. Extensible enumeration of feasible joins for rela-

tional query optimization. Technical Report RJ6625, IBM Almaden Research Center,
December 1988.

[45] Kiyoshi Ono and Guy M. Lohman. Measuring the complexity of join enumeration

in query optimization. In Proceedings of the 16th International Conference on Very

Large Data Bases, August 13-16, 1990, Brisbane, Australia, pages 314-325, 1990.

[46] Arjan Pellenkoft, C6sar A. Galindo-Legaria, and Martin Kersten. The complexity of

transformation-based join enumeration. In Proceedings of the Twenty-third Interna-

tional Conference on Very Large Data Bases, Athens, Greece, 26-29 August, 1997,

pages 306-315, 1997.

[47] Gregory Piatetsky-Shapiro and Charles Connell. Accurate estimation of the number

of tuples satisfying a condition. In SIGMOD '84, Proceedings of Annual Meeting,

Boston, Massachusetts, June 18-21, 1984, pages 256-276, 1984.

[48] Benjamin C. Pierce. Basic Category Theory for Computer Scientists. The MIT Press,

1991.

[49] Wolfgang Scheufele and Guido Moerkotte. On the complexity of generating optimal

plans with cross products. In Proceedings of the Sixteenth A CM SIGA CT-SIGMOD-
SIGART Symposium on Principles of Database Systems, Tucson, Arizona, May 12-

14, 1997, pages 238-248, 1997.

[50] P. Griffiths Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G.

Price. Access path selection in a relational database management system. In ACM-
SIGMOD 1979 International Conference on Management of Data, May 30-June 1,

The 57 Park Plaza Hotel, Boston, Massachusetts, Proceedings, pages 23-34, 1979.

[51] Leonard Shapiro, David Maier, Keith Billings, Yubo Fan, Bennet Vance, Quan Wang,

and Hsiao-min Wu. Safe pruning in the Columbia query optimizer. Submitted for
publication, 1997. For more information, see the web site http://www.cs.pdx.edu/'len

[November 4, 19971.

[52] Gail M. Shaw and Stanley B. Zdonik. An object-oriented query algebra. In Proceed-

ings of the Second International Workshop on Database Programming Languages,

4-8 June 1989, Salishan Lodge, Gleneden Beach, Oregon, pages 103-112. Morgan

Kaufmann, 1990.

[53] David W. Shipman. The functional data model and the data language Daplex. ACM

Pansactions on Database Systems, 6(1) : 140-173, March 1981.

[54] M. Steinbrunn. Heuristic and Randomised Optimisation Techniques in Object-
Oriented Database Systems. Infix-Verlag, Germany, 1996. Also published as a PhD
thesis, Universitat Passau.

[55] Michael Steinbrunn, Guido Moerkotte, and Alfons Kemper. Optimizing join orders.

Technical Report MIP-9307, Universitat Passau, 1993.

[56] Arun Swami. Optimization of large join queries: Combining heuristics and combina-

torial techniques. In Proceedings of the 1989 ACM SIGMOD International Conference
on the Management of Data, Portland, Oregon, pages 367-376, 1989.

[57] Arun Swami. Distributions of query plan costs for large join queries. Technical Report

RJ7908, IBM Almaden Research Center, January 1991.

[58] Arun Swami and Anoop Gupta. Optimization of large join queries. In 1988 Proceed-

ings, SIGMOD International Conference on Management of Data, Chicago, Illinois,
June 1-3, pages 8-17, 1988.

[59] Arun N. Swami and Balakrishna R. Iyer. A polynomial time algorithm for opti-
mizing join queries. In Proceedings of the Ninth International Conference on Data
Engineering, April 19-23, 1993, Vienna, Austria, pages 345-354, 1993.

[60] Bennet Vance. Presentation to group meeting of the Revelation project [lo], led by

Prof. David Maier at the Oregon Graduate Institute of Science & Technology, January

1994.

[61] Bennet Vance and David Maier. Rapid bushy join-order optimization with Carte-

sian products. In 1996 Proceedings, ACM SIGMOD International Conference on
Management of Data, June 4 to 6, Montre'al, Que'bec, Canada, pages 35-46, 1996.

[62] Carlo Zaniolo. The database language Gem. In SIGMOD '83, Proceedings of Annual

Meeting, Database Week, Sun Jose, May 23-26, 1983, pages 207-218, 1983.

Appendix A

Complexity of Join Enumeration

in Starburst

This appendix shows that the worst-case time complexity of join enumeration in Starburst

is 0(4n), where n is the number of relations to be joined. Our complexity analysis is

based on join-generation pseudo-code given by Ono and Lohman [44]. The pseudo-code

in question is reproduced with minor reformatting in Figure A.1. According t o Ono and

Lohman, Starburst uses a diflerent join-enumeration strategy when i t detects chain-like

join graphs-but the code shown here implements the strategy that would be used t o

handle a worst-case optimization problem.

Below we first briefly describe the mechanism of the Starburst join-generation pseudo-

code. Then we explain our approach to analyzing the complexity of this code, and proceed

t o go through the details of the analysis.

A.l The Starburst Join-Generation Mechanism

Consider a worst-case bushy optimization problem involving four relations A, B, C, and

D. Let us say that these relations belong t o a clique graph, so that the join of any subset of

{A, B, C, D) can be expressed without Cartesian products. We will examine how the code

in Figure A.l generates the various join expressions that could represent a subcomputation

in the join of {A , B, C, D).

Prior t o the execution of the code in Figure A.1, some initialization would occur. One

of the initialization steps would be to insert the singleton sets {A), {B), {C), and {D)

into a collection called qset [l] .

for k := 2 to n do
for i := 1 to lk/2J do

for each large-set in qset[k - i] do
for each small-set in qset[i] do

if feasibility criteria succeed then
put (large-set U smallset) into qset[k]
(* Implicitly, at this point the algorithm also registers

largeset W small-set as one of the possible joins for
large-set U small-set. *)

end if
end for

end for
end for

end for

Figure A.l: Starburst join-generation algorithm

The variable qset is actually an army of collections. As we have seen, qset[l] is a

collection of singleton sets; qset[2] will be a collection of 2-relation sets; and the same

pattern holds for arbitrary k, so that in general, qset[k] will be a collection of sets that

each contain k relations.

The outer loop in Figure A.l lets k run from 2 to n, and on successive iterations, the

body of this outer loop fills in the collection qset[k] for each value of k. When k = 2, the

code constructs 2-relation sets by considering joins of pairs of l-relation sets from qset[l].

Tha t is, i takes the value 1, and so large-set and small-set both range over the sets in

qset[l]. When largeset = {A) and small-set = {B), the code implicitly constructs the

join expression A w B as a possible means of computing the join over {A, B); what is

explicit in the code is that it inserts {A, B) into qset[2] (assuming this set is not already

present in the collection). When it pairs {A) with {C), the code obtains a join over

{A , C) and inserts this set into qset[2] as well; and similarly for other pairings.

But note that the code will also attempt pairings of large-set with small-set when

both are bound t o {A), and when both are bound to {B), and so on. In these cases, the

feasibility criteria are not met, and so (for example) the set {A) U {A) = {A) will not be

inserted into qset[2], and A W A will not be registered as a possible join for the set { A) .

Starburst's feasibility criteria are configurable, but the minimal criterion that must always

be met is that largeset and small-set be disjoint. On this basis, a pairing of { A) with

{A) is rejected. No other feasibility criteria apply in the situation under consideration.

When k = 3, large-set ranges over all the 2-relation sets, while smallset ranges over all

the l-relation sets. It is apparent that all brelation sets will be obtained in this manner.

When k = 4, the variable i first takes on the value 1, causing 3-relation sets to be paired

with l-relation sets; subsequently, with i = 2, the 2-relation sets are paired with 2-relation

sets. Once again it is evident that all 4-relation sets will be obtained.

At the end of this process, qset[k] for each k from 1 to 4 will contain all the k-relation

subsets of { A , B, C, D). The number of sets in qset[k] will be the number of k-relation

subsets of a Celement set, or (i) .
More generally, in the optimization of a worst-case join of n relations, the number of

sets in qset[k] will be (i). Note that when the algorithm of Figure A.l is in the process

of constructing qset[k] for some particular k, the construction of qsetb] for all j < k will

have already been completed.

A.2 Overview of Complexity Calculation

Now let us calculate the worst-case complexity of this algorithm. We shall assume that

per-iteration loop overheads are constant, and we shall also assume that the execution time

of the if-block (inside the loops) is bounded by a constant. Thus, to obtain the complexity

of the algorithm, we shall merely count the number of iterations of the if-block inside all

the loops. We shall refer to this iteration count as Itotal.

To count iterations of the if-block, we proceed as follows. First we observe that for

fixed k and fixed i, the number of iterations of the loop on large-set is equal to the number

of sets in qset[k - i], which in the worst case is (kEi) , as noted above. Similarly, the number

of iterations of the loop on small-set is equal to the number of sets in qset[i], or (:). Note

that these two innermost loops are independent of one another. Consequently, for a given

k and i, the number of iterations of the if-block is the product of the iteration counts of

the two innermost loops, or (k:i) (7) . Below we shall find it more convenient to write this

product with its factors reversed, as (:) (k?). Thus, using the notation I(k, i) to denote

the iteration count of the inner if-block per execution of the innermost pair of loops, we

have

1 (k , 9 = (;) (k - t .).
Next we must step back and examine, for fixed k, the iteration count of the if-block per

execution of the loop on i. But since i simply ranges from 1 t o lk/2J, i t is straightforward

t o express this count as a summation. To take into account the effect of the two innermost

loops, we must sum the value I(k, i) defined above across the specified range of i values:

I t will be easier to calculate with the approximation

i=O
k - i

in which the lower limit of the range for i has been changed from 1 to 0. We will base our

calculations on I~-loop(k), bearing in mind that it is only an approximation t o Ii-loop(k).

Finally, we can obtain the total iteration count of the if-block by summing I;~loop for

all the values taken by k in the outermost loop. Thus,

Again, i t will be easier t o calculate with an approximation. We will find it convenient t o

sum over I~-loop(k) rather than Ij-loop(k); moreover, we will also change the lower limit of

the outer sum:

Later we will consider the amount of error introduced by simplifying the limits on both

sums. For the present, our objective is t o calculate I:ota,, which will give us a good

approximation t o the complexity of the algorithm. Our first subgoal will be t o calculate

I~-loop(k). Subsequently we will calculate I:otal itself.

A. 3 Calculating Ii-loop(k)

Here we evaluate the sum for (k) given in (A.4). As given, the sum I l loop(k) =

Lk/2J xi=o (:) (k!i) is awkward t o evaluate, because the upper limit of the range for i is

the peculiar quantity [k / 2] . I t is much easier t o evaluate the sum c:=~ (7) (&). I t is

therefore sensible to ask what is the relationship between these two sums. As i t happens,

the latter sum comes t o almost exactly twice the sum we are seeking, because of symmetry

considerations t o be discussed presently. Our strategy, therefore, will be t o convert the

sum in I~-, , , , (k) into an expression involving the easier sum.

The applicable symmetry considerations are the following. For each i in the range 0 t o

Lk/2jl there is a corresponding it in the range [k/21 t o k such that (?) (Li) = (:) (kri,).
To wit, take it = k - i; then plainly 0 < i < Lk/2] implies [k / 2] < it < k , and

n (;) (k it) = (k i) (k - (k - i))

Since the correspondence between i and it is one-to-one, we may sum across the it range

instead of the i range, without fear of dropping or repeating any terms of the original sum.

Thus, we have

The left- and right-hand sides of (A.7) give us two different ways of expressing I ~ - , o o p (k) .

In our next step towards calculating I:-loop(k), we distinguish between the cases of odd

and even k .

Case k odd If k is odd, then Lk/2J and rk/21 are consecutive integers. We may use

this fact in conjunction with the two formulations for I:-loop(k) given by (A.7), as follows:

The last sum can be reduced to closed form by way of the Vandermonde convolution

[21, 291, which may be expressed as

If we take r = s = n, then the left-hand side of (A.l l) becomes the same as (A.10), except

for a factor of 112; hence, when k is odd,

(A. 13)

Case k even The situation is not radically different when k is even. But when k is

even, then Lk/2] and [k/21, rather than being consecutive integers, are the same: lk/2] =

k/2 = [k/21. Consequently, the ranges [0, [k/2]] and [[k/2], k] overlap at k/2, and cannot

simply be tacked together. What we shall do instead is to break the upper range [[k/21, k]

into two subranges-[k/2, k/2] and [(k/2) + 1, k]. The first of these subranges, [k/2, k/2],

contributes a single term that can be moved outside the summation. We will then be left

with summations over the lower range [0, k/2] and the upper subrange [(k/2) + 1, k], which

are adjacent and can be combined into a single sum.

In the manipulations below, note that C is assumed to bind more tightly than +, so

that C A + B means (C A) + B, not C (A + B). Thus, we have the following derivation.

1
I:-,oop (k) = 5 [I t loop (k) + I:-loop (k)l (A.14)

= '[E 2 i=O (f) (k l J + i = k / 2 (:) (k r i)]

The general case Now let us combine the cases of odd and even k . We define x,,,, t o

be the characteristic function for the even integers:

0 if k is odd,
x e v e n (k) -

1 if k is even.

By multiplying a term by this characteristic function, we make inclusion of the term

conditional on k being even. Thus, (A.13) and (A.21) can be combined t o give

which is valid whether k is odd or even.

A.4 Calculating I~,,,,

We now turn t o the calculation of IIOtal itself. From (A.6) and (A.23) we have

Consider the sum (2p). This sum is most easily solved by the same technique we

used in calculating the sum in I~-loo,-namely, by taking advantage of a symmetry property

t o extend the range of the summation. Recall that in general, = (;). Now observe

that if k is in the range 0 t o n, and if we define kt = 2n - k, then kt will be in the range

n to 2n. and

It follows that

and hence that

which, by a basic property of binomial coefficients [36], simplifies t o

Substituting (A.32) into the first term of (A.26), we obtain

Now we turn t o the sum C;=, (32)2 - xeven (k). Yet again a symmetry property will prove

useful. As before, if k is in the range 0 to n, and kt = 2n - k, then k' is in the range n t o

2n, and k' is even if and only if k is even, so xeVen(kt) = xeven(k). Moreover, when k' and

k are even, then

Thus,

Since the terms of the sum in (A.39) are nonzero only' for even k, in effect the sum

ranges over k = 0,2 ,4 , . . . ,271; equivalently, if we let j = k/2, then the sum ranges over

j = 0,1, 2, . . . , n. Changing the index variable from k t o j, and replacing all occurrences

of k with 2 j , we obtain

Now recall the Vandermonde convolution, equation (A.ll) above. In the special case

where r, s, and k are a11 equal t o n, (A.ll) becomes

Changing the index variable from i t o j, then using the fact that (nlj) = (y), and

simplifying, we obtain

Then (A.41) may be simplified using (A.43) t o give

In (A.44), we finally have a closed-form expression for C5, (;i,)2-~e,n(k). Substituting

(A.44) for the sum in (A.35), and then simplifying, we obtain

We have in (A.47) a good approximation to the worst-case complexity of join enumeration

in Starburst. We now show that the 4"-' term dominates (though not by much), and

hence that the complexity is O(4"). Using StirIing's approximation for the factorial [29],

we can rewrite (y) as follows:

Analogously, when n is even,

and so

Incorporating the approximations given by (A.54) and (A.58) into (A.47), we obtain

The leading term dominates, and as n grows into the teens, the contributions of the

remaining two terms become relatively small.

A.5 Correction for Extraneous Terms

To simplify our calculations, in Section A.2 above we altered the lower limits of the

summations involved in the foregoing complexity analysis. The effect of these alterations

is t o overestimate the complexity of Starburst join generation. We now examine the

amount by which we overestimated, and show that i t is much less significant than even

the lower-order terms in (A.61).

The correct sum would have been

whereas the sum we actually used was

The difference I~,,,, - ItOtal is then

When n >_ 6, this 2n error-term does not exceed a few percent of the value given by (A.61).

Thus we conclude that the worst-case complexity of join enumeration in Starburst is indeed

Appendix B

Implementation of Blit zsplit Algorithm
in C

#define MAX-N 18

#define COST-LIMIT lE35

typedef int relname ;

typedef int setrep;

typedef struct (

float cardinality;

) rel-data-entry;

double t-cardinalityC1 << MAX-N]; /* '""""""-""""-'"""""-" */
setrep t,best,lhs[l << MAX-N] ; /* "table" (in 3 pieces) */
float t-cost [I << MAX-NI ; /* """"-"""""'""""-""""- * /

void init,singleton(relname, rel-data-entry *);

void compute,properties(setrep) ;

void find,best,split(setrep);

void find,best,splitl(setrep, setrep);

void find,best,split2(setrep, setrep, setrep, setrep);

#define least-subset (s e t) ((s e t) & - (s e t)>

tdef ine next-subset(subset , s e t) (((subse t) - (s e t)) & (s e t))

i n t b l i t z s p l i t (i n t n , rel-data-entry *rel,data)

. .
<

relname R;

s e t r e p s;

i n t t abs i ze = 1 << n;

i f (n < 1 I I n > MAX-N) <
pr in t f (" b l i t z s p l i t : bad input\nl') ;

ex i t (1) ;

3

f o r (R = 0; R < n; R++)

init,singleton(R, rel-data) ;

f o r (s = 1 ; s < t abs i ze ; s++)
i f (least-subset(s) != S) (

compute-propert i e s (s) ;

f i n d - b e s t s p l i t (s) ;

I-

r e t u r n (t-cost [tabsize - 11 < COST-LIMIT) ? 0 : -1;
/* 0 = OK, -1 = cos t l i m i t exceeded */

void init ,singleton(relname R, rel-data-entry *rel,data)

€
s e t r e p s = 1 << R;

t - ca rd ina l i t y [s] = rel,data[R] .card ina l i ty ;

t -best- lhs [s] = R; /* kludge f o r output */
t -cost [sl = 0.0 ;

3

void compute-propert ies (setrep s)

C
setrep u = least,subset(s), v = s - u;
t-cardinality [s] = t-cardinality [u] * t-cardinality [v] ;

3

void f ind-best-split (setrep s)

C
setrep u = least,subset(s), v = s - u,

w = least,subset(v), z = v - w;

if (t-cardinalitycsl >= COST-LIMIT) (
t,best,lhs[s] = v; /* dummy plan */
t-cost [sl = COST-LIMIT;

1
else if (z == 0)

f ind-best-split1 (s, v) ;

else

find,best_split2(s, v, w, least,subset(z) - w);

/* Macros for find-best-split1 and find-best-split2 */

Pdef ine intcost (i) (((int *) t-cost) [ill

#define intbest (* ((int *) (tbest~cost,so~f ar)))

Xdef ine loop-body \
rhs = s - lhs; \
if (intcost(rhs) < intbest 8% intcost(1hs) < intbest) < \

operand-cost = t-cost [lhs] + t-cost [rhsl ; \
if (operand-cost < best,cost,so-far) (\

best,cost,so-far = operand-cost; \
best-lhs = lhs; \

3 \
1

void f ind,best,splitl(setrep s , setrep v)
C

setrep lhs, rhs, best-lhs = v;
float operand-cost, best,cost,so,far = COST-LIMIT;

lhs = 0;
while ((lhs = next,subset(lhs,v)) != 0) C

loop-body

3
t-best-lhs [s] = best-lhs ;
t-cost [sl = best,cost,so,f ar + t-cardinality [sl ;

3

void find,best,split2(setrep s, setrep v, setrep dl, setrep d2)

C
setrep lhs, rhs, best-lhs = v;

float operand-cost, best,cost,so,far = COST-LIMIT;

lhs = t-best-lhs [v] ; /* Heuristic to */
loop-body lhs += s - v; /* reduce initial */
loop-body /* best-cost-so-f ar */

lhs = dl;

loop-body lhs += d2;
loop-body lhs += dl;

loop-body

while ((lhs = next,subset(lhs,v)) != 0) C
loop-body lhs += dl;

loop-body lhs += d2;

loop-body lhs += dl;

loop-body

3
t-best-lhs [s] = best-lhs ;
t-cost [sl = best-cost-so-f ar + t-cardinality [sl ;

Appendix C

Parameterization of Test Queries

This appendix gives details on the parameterization of the test queries used in our per-

formance measurements in Chapters 6, 7, and 9. We first discuss the four dimensions of

parameterization of our basic tests. We then give additional details about our cost-function

computations, and illustrate two principles that can be applied t o the implementation of

a cost model t o reduce costing effort.

C . l The Four Dimensions of Parameterization

In all measurements in Chapters 6 and 7, the number of base relations n was held fixed

at 15; but in the measurements in Chapter 9, n varies. Because n = 15 is an important

special case, in the following descriptions of our parameterizations, we use the example of

n = 15 (where applicable) for illustration. Regardless of the value of n, we shall assume

that the relations Ro, R1, and so on, are numbered in order of increasing cardinality.

Thus, Ro is smallest, and Rn-l is largest.

Our four basic dimensions of parameterization are the mean cardinality of the base

relations, the variability of the base relations, the join gmph, and the cost model.

C . l . l Mean Cardinality

We define the mean base-relation cardinality t o be the geometric mean

For example, if n = 15 and relations Ro through R14 have the respective cardinalities

then the mean base-relation cardinality would be

C.1.2 Variability

The variability ranges from 0 to 1, with 0 indicating no variability in the base-relation

cardinalities (i.e., all lRil are equal), and with 1 indicating maximal variability subject to

the constraints that the smallest relation cardinality be at least 1, and that the cardinalities

of relations Ro through RnT1 be equally spaced on a logarithmic scale. In general,

I RoJ = (mean ,

and the remaining Ri are such that IRiI/IRi-ll is constant.

For example, the cardinality sequence illustrated in (C.l) above is obtained when the

mean cardinality is lo7 and the variability is 1. Observe that in that case,

JRoJ = (mean = (lo7)'-' = (10')' = 1,

and IR;I/IRi-ll = 10 for i = 1,. . .,14.

C.1.3 Join Graph

Our measurements use four kinds of join graphs: a chain graph, an augmented cycle graph

that we refer to as a "cycle + 3" graph, a star graph, and a clique. We describe first the

topologies of these graphs, and then we describe the assignment of selectivity values to

the edges of the graphs.

The Graph Topologies

When n = 15, our chain graphs have the following predicate connections:

More generally, the pattern of connections is as follows:

The last relation in the chain is Rn-1 if n is even, and RLnI2] if n is odd.

Recall that the relations Ro, R1, and so on, are numbered in order of increasing

cardinality. Thus the cardinalities along the chain occur in a kind of sawtooth pattern;

but overall the cardinalities are higher a t the right-hand end of the chain than at the left-

hand end. This choice of chain configurations was more or less arbitrary. (Experiments

with other configurations have given similar performance results.)

The "cycle + 3" topology is similar to the chain, but adds several predicates that

connect the two ends of the chain. Specifically, when n = 15, the "cycle + 3" topology

takes the form illustrated in Figure C.1. The graph in the figure may be thought of as

a chain that has been wrapped around on top of itself so that the last relation in the

chain (R7) lies directly above the first relation in the chain (Ro). The chain has then

been augmented with the following predicate connections: Ro-R7, R8-R14, R1-RG, and

R9-R13.

In the general case as well, a L'cycle + 3" graph consists of a chain that has been

augmented with four additional predicates, just as in Figure C.1. In each such graph, the

Figure C.l: The "cycle + 3" join-graph topology for n = 15

first additional predicate connects the first and last relations in the chain, thus changing

the chain into a cycle. Then three more predicates are added: one between the second

and second-to-last relations in the chain; one between the third and third-to-last relations

in the chain; and one between the fourth and fourth-to-last relations in the chain. (Note

that the "cycle + 3" topology makes sense only for n 2 9.)

In our star graphs, the hub of the star is always the relation of largest cardinality.

Thus, the star graphs have predicate connections between the hub R,-l and each other

relation.

Cliques have predicate connections between every pair of relations.

Assignment of Selectivities

In all our graphs, the selectivity of the predicate (if any) connecting R; and R j is computed

a5

where p is the mean base-relation cardinality (cf. Section (2.1.1 above), Ic is the total

number of predicates, and k; is the number of predicates incident on R;.

These selectivities always yield a query-result cardinality of p, for the following reason.

The query-result cardinality is the product of all relation cardinalities and all predicate

selectivities. Consider a particular relation Rl for some 1. This relation contributes a

factor of lRll to the result cardinality; but the kI predicates incident on Rl each contribute

a factor of ~ R , l - ' l ~ ~ , so together these predicates contribute a factor of)R1J-', and thus

cancel out the relation's contribution of IRI(. Meanwhile, each predicate contributes a

factor of $Ik, and since there are k predicates altogether, these factors combine to yield

I l k k (P = C6.

Let us now consider an example that illustrates the assignment of predicate selec-

tivities, and the effect these selectivities have on the query-result cardinality. Because

selectivity assignments are somewhat complicated, we give an example with n = 3 rather

than n = 15. Suppose that Ro, R1, and R2 have cardinalities loo0, 1001, and 1002, re-

spectively. Thus, p = 100. Suppose also that the join graph has edge connections Ro-R2

and R1-R2. (This graph may be viewed either as the chain Ro-R2-Rl or as the star with

hub R2 .)

Then the total number of predicates k is 2. The number of predicates ko incident on

Ro is 1, and similarly for the number of predicates kl incident on R1. But the number of

predicates k2 incident on R2 is 2.

Hence, by (C.5) above, the predicate Ro-R2 has selectivity

and the predicate R1-R2 has selectivity

(C. 10)

(C.11)

(C.12)

(C.13)

It follows that the join of Ro and R2 has cardinality I Ro(.I R2(.10-l = 100°~1002~10-1 = lo3,

and that the join of R1 and R2 has cardinality lRll lRzl = 100' 1002. =

lo3. Thus we see that our selectivity assignments tend to have an equalizing effect on

intermediate-result cardinalities.

The query-result cardinality is the product of all cardinalities and all selectivities,

which in this case works out to

(C. 14)

(C.15)

(C. 16)

In other words, the query-result cardinality is equal to the mean baserelation cardinality.

The same holds in all our test queries.

C.1.4 Cost Model

Our cost models are drawn from the study by Steinbrunn e t al. [55]. (More recent versions

of that study [54] do not use the same cost models.) We use three cost models: a naive

cost model, a sort-merge cost model, and a disk-nested-loops cost model.

The cost function KO of the naive cost model (cf. Section 2.6.2) is defined as

The cost function K,, for the sort-merge cost model is defined as

The logarithms in this cost function reflect the fact that sorting a relation consisting of

N tuples has complexity N log N. Note that the presence of the logarithm in the cost-

function definition makes this cost function relatively time-consuming t o compute. In

Section C.2 below we discuss a technique for avoiding performance degradation from the

logarithm computation.

Our disk-nested-loops model is based on that of Steinbrunn e t al., but is formulated

differently here:

where IC is the blocking factor of relation records per disk block (we make the simplifying

assumption that I< is a constant), and M is the number of disk blocks that can be held

in main memory. In our measurements, we arbitrarily set IC = 10 and M = 100. (In

separate tests, we have found that actually computing the relation widths and blocking

factors, rather than taking I< t o be constant, has little effect on the performance graphs.)

C.2 Details of Cost-Function Computation

As noted in Chapter 3, efficient computation of the cost function K is critical t o overall per-

formance of the Blitzsplit algorithm. I t was for this reason that in Figure 3.2 we provided

that a cost function K could be decomposed into a split-independent component soUt and

a split-dependent component K'P'~'. The algorithmic improvement illustrated in Figure 3.4

sought to reduce the execution frequency of rc*piit; but even with this improvement, it is

desirable to decompose a cost function K into components KO"' and K'P'~' in such a way as

to minimize the computation entailed by rcdplit.

In this section we discuss cost-function decomposition in greater detail, and illustrate

two principles of cost-function transformation that can be applied to reduce costing effort

under some cost models.

C.2.1 Decomposition of Cost Functions

Each of the three cost models we use in our benchmarks makes a different assumption

about the sources of join cost.

In the naive model, with the cost function KO defined on page 53 and again in (C.17)

above, the output cardinality is the sole determinant of join cost. Thus, as noted in

Chapter 3, this cost function can be decomposed as

Because tcip"' entails no computation at all, costs become extremely cheap to corn-

pute under this model.

In the sort-merge model (K,,), defined by (C.18) above, cost is determined solely by

the cardinalities of the join inputs. The cost actually has two summands--one that

depends only on the left input, and one that depends only on the right input. Since

no part of K,, depends solely on the join result Rout, direct implementation of this

model must necessarily place the entire cost computation, including two logarithm

calculations, in the split-dependent cost-function component naplit:

KOut
am (Rout) = 0 (C.22)

~ : P (~ o u t , R w ~ , Rrhs) = (R/ha((1 + log I Rlh,() + IRrhaJ . (1 + log JRrhdJ).

(C.23)

The cost function of the disk-nested-loops model (tcdn1), defined by (C.19) above,

has three summands, one of which is proportional t o the product of the input car-

dinalities. This summand in particular is split-dependent and must necessarily be

computed in r ~ ~ p ~ ~ ~ . (The final summand of K ~ , I must also be computed in rcSplit.)

On the surface, the sort-merge model is the most computation-intensive of the three.

However, it turns out that it is actually the product in the nested-loops model that causes

the most difficulty-it is generally hard t o avoid computing that product. But a minor

transformation, described next, makes the sort-merge model quite tractable.

C.2.2 Transformation of a Class of Cost Functions

We now consider a transformation that reduces the effort required t o optimize under a

cost model such as the sort-merge model K,,. We present the transformation in generality,

and then apply i t specifically t o our sort-merge cost model.

Let rc be a cost function with a decomposition of the form

and consider the case where r;'plit in turn has a nontrivial decomposition as

K~~~~~ out, Rlhs, Rrhs) = input(^^^#) + Kinput (R) + tcresidual
rhs (Rout, Rlhsl Rrhr).

(C.27)

Under these conditions we may define a new cost function

K , , (R ~ ~ ~ ~ R~~~~ R ~ ~ ~) = K o U t (~ out) + rc inpUt(~ out + K~~~~~~~ (Rout1 Rlhr, Rrhs),

(C.28)

which is not equivalent t o rc, but which may nonetheless be substituted for rc without

changing the outcome of optimization.

We shall defend this claim in a moment; but first let us consider why such a substitution

is desirable. Recall the execution counts that motivated our decomposition of a cost

function K into a split-independent component KO"' and a split-dependent component K~P'".

We expect t o require about 2" evaluations of and somewhere between (ln2/2)n2"

and 3" evaluations of K""~ (cf, Chapter 3). Hence our aim in the decomposition is t o

reduce the net costing effort by performing as much of the cost computation as possible

in K O ~ ' , and as little as possible in KS~ '~ ' .

Introducing the new function K, assists us in this goal. Observe that K,, as defined in

(C.28) above, can be rewritten as

where

and

In this decomposition we have a split-independent component %,Out that is more com-

plicated than 6 0 U t , while the split-dependent component K ~ P " ~ is less complicated than

nSplit. In other words, by substituting K, for K, we shift effort away from the critical

split-dependent component of the cost computation.

C.2.3 Justification for the Tkansformation

There remains the question of why this substitution is legitimate. Intuitively, the trans-

formation of K into K, involves a change in the way costs are assigned t o the nodes of

a join-processing tree. Consider a node that computes Eo W El ; the child nodes of this

node compute Eo and El. Under the cost function K , the cost components K ~ " ~ ~ ' ([E ~])

and are charged to the node for Eo W El. Under the cost function K,, these

components are instead charged t o the child n o d e s - ~ ~ " ~ ~ ~ ([~ ~]) is charged to the node for

Eo, and K ~ " ~ ~ ~ ([E ~]) is charged to the node for El. Seen this way, the difference between

rc and K , boils down to technical details of cost accounting: The same costs are being

charged, but under different headings.

However, this intuitive view is an oversimplification. Let us examine the relationship

between K and K , with greater precision. Suppose cost(E) is defined as on page 53; i.e.,

cost(R) = 0 (C.32)

cost (Eo W El) = cost(Eo) + cost(E1) + rc([Eo W El] , [Eo], [E l]) .

(C.33)

Next suppose that cost, (E) is defined analogously, so that

cost,(R) = 0 (C.34)

cost, (Eo w El) = cost,(Eo) + cost,(El) + K,([Eo W El] , [Eo], [E l]) .

(C.35)

Our intuitive argument might lead us to conjecture that cost(E) and cost,(E) are equal,

but in fact this equality does not hold-the intuitive view disregarded the boundary cases

where a node has no parent or no children. Instead, the relationship between cost(E) and

cost,(E) is as follows:

cost. (E) - cost (E) = K'"P~' ([E]) - kinput ([R]) , (C.36)
R in E

where the sum subscript "R in E" indicates that the sum ranges over all relation names R

that appear as leaves of the expression E. A straightforward proof by structural induction

demonstrates the truth of (C.36). The intuitive interpretation of (C.36) is that cost,(E)

charges the topmost node of E as if it were the input to some other node; on the other

hand, cost,(E) fails to charge the leaf nodes R in E for the costs they entail when they

serve as inputs to other nodes.

Although cost,(E) and cost(E) are not algebraically equivalent, they are equivalent

for the purposes of optimization because the difference between them is independent of

the structure of E . Suppose, for example, that E and E' are two expressions that both

compute the join of some set of relations S. In other words, [El and [E'J both give the

join of S, and hence are equal; moreover, R in E and R in E' both range over exactly the

relations in S. It follows that

and hence, by (C.36), that

cost,(E) - cost(E) = cost,(E1) - cost(E1). (C.38)

Equivalently, we have

Now suppose E is an optimal expression for joining S under cost function K . Then if El is

any other expression for joining S, it must be the case that cost(E) - cost(E1) 5 0 . From

(C.39) it follows that cost,(E) - cost,(Er) 5 0; i.e., cost,(E) < cost,(Ef). We see, then,

that E is also optimal according to cost function K,.

C.2.4 Application to Sort-Merge Cost Model

The cost function K , , for our sort-merge cost model was defined in (C.18) as follows:

It is apparent that (C.40) has the form

with

input
~ : P (~ o u t , Rlhs, Rrhs) = K r m (R I ~ ~) + r F i U t (~ r h s) + K ~ ~ ~ ~ ~ ~ ~ (R ~ ~ ~ , R~hr, Rrhr),

((2.42)

provided that we define

K,O2(R) = 0

K:,!"'(R) = IR(. (1 + log 1 RI)

Kresidual
sm (Rout, Rlhs, Rrhs) = 0-

Applying the transformation of Section C.2.2 above, we obtain the alternative cost function

which decomposes into the following split-independent and split-dependent components:

I t is this transformed version of the sort-merge cost model that we use in our benchmarks.

C.2.5 Generalization of the Transformation

Our transformation of the sort-merge cost function may be regarded as "cheating," in the

sense that even a slight change in the definition of the cost function would have rendered

the transformation inapplicable. But the two principal benefits of the transformation are

generally applicable even if the transformation itself is not:

The transformation yields a nonzero split-independent cost component, which pro-

motes pruning of cost computations, as discussed in Chapter 7. In any realistic cost

model, there should be some split-independent cost-albeit a small one-associated

with the generation of join-output tuples. If a cost model does not include a com-

ponent that is proportional t o output cardinality, it needs t o be reformulated.

After the transformation, logarithms need t o be computed just 2n times, rather than

the (In 2)n2n times one would expect from the original cost-function formulation-or,

in the worst case, 2.3n times. But it is generally the case that if the cost function has

a subexpression that depends on only one of the join inputs, then that subexpression

need be evaluated just 2n times. That is, the result of such a subexpression can be

memoized in the dynamic programming table, and hence computed just once for

each distinct set of relations.

Our transformation combines these two benefits; and because i t does so without reliance

on memoization, it gives a particularly convenient means of obtaining the desired effects.

But at the same time, it illustrates two principles of cost-function computation that can

and should be applied in the formulation of any cost model.

Biographical Note

Bennet Vance was born in Hanover, New Hampshire in 1954. He graduated summa cum

laude from Yale University in 1976 with distinction in the major in mathematics, and

received a master's degree in computer science from Stanford University in 1981. He

is the author or co-author of several papers on query optimization, including a paper

on join-order optimization that he presented at the 1996 SIGMOD conference. Currently

employed at the IBM Almaden Research Center, he has spent thirteen years in the software

industry as a programmer, designer, consultant, and researcher. His interests include

query processing, functional programming, and software engineering. He is a member of

Phi Beta Kappa and the ACM.

	199801.vance.bennet to p. 100.pdf
	199801.vance.bennet to p. 200.pdf
	199801.vance,bennet to p. 298.pdf

