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Prosody plays an important role in discriminating between languages and speakers. Due

to the complexity of estimating relevant prosodic information, most recognition systems

rely on the notion that the statistics of the fundamental frequency (as a proxy for pitch)

and speech energy (as a proxy for loudness/stress) distributions can be used to capture

prosodic differences between speakers and languages. However, this simplistic notion

disregards the temporal aspects and the relationship between prosodic features that

determine certain phenomena, such as intonation and stress.

We propose alternative approaches that exploit the dynamics between the

fundamental frequency and speech energy to capture prosodic differences. The aim is to

characterize different intonation, stress, or rhythm patterns produced by the variation in

the fundamental frequency and speech energy contours. In these approaches, the

continuous speech signal is converted into a sequence of discrete units that describe the
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signal in terms of dynamics of the fundamental trequency and speech energy contours.

Using simple statistical models, we show that the statistical dependency between such

discrete units can capture language- and speaker-specific information. On the extended-

data task of the 2001 and 2002 NIST Speaker Recognition Evaluation, such approach

achieves a relative improvement of at least 17% over a system based on the distribution

statistics of fundamental trequency, speech energy and their deltas. We also show that

they are robust to communication channel effects when compared to the state-of-the-art

speaker recognition system.

Segmental information is incorporated to capture dependencies between

segmental and prosodic information. In this approach, a new set of segment classes is

estimated trom the time-alignment between a sequence of phonemes or phones (i.e.,

segmental information) and the new prosodic information representation. We show that

this approach can characterize speaker-dependent information.

Since conventional recognition systems do not fully incorporate different levels of

information, we show that the performance of conventional systems is improved when

the proposed approaches are incorporated by fusing the systems. In the 2003 NIST

Language Recognition Evaluation, the fusion of the prosodic speech representation and a

conventional system yields a relative improvement in performance of 14%. The fusion

with the state-of-the-art speaker recognition system achieves a relative improvement of

about 28% and 12% for the extended-data task of the 2001 and 2002 NIST Speaker

Recognition Evaluation, respectively.
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Chapter 1

Introduction

Speech conveys linguistic (e.g., message and language), speaker (e.g., emotional,

regional, and physiological characteristics of the vocal apparatus), and environmental

(e.g., where the speech was produced and transmitted) information. Even though such

information is encoded in a complex form, humans can relatively decode most of it. This

human ability has inspired several researchers to study the processes of speech

production and perception to develop systems that would emulate such ability. Speech

technology has several applications ranging from human-computer interfaces (e.g.,

dictation and voice commands) to information retrieval (e.g., search for a particular

speaker in a radio broadcast). The type of application determines which information in

the speech signal is relevant. For example, the linguistic message is relevant if the goal is

to recognize the sequence of words that the speaker is producing. The presence of

irrelevant information (like speaker or environment information in the previous example)

may actually degrade the system accuracy. In this thesis, we deal with automatic systems

that recognize who is speaking and the language that is being spoken.

Automatic speaker recognition is the process of recognizing a person's identity

from his or her voice [1-3]. Speaker recognition technology makes it possible to use a

person's voice to control the access to restricted services (e.g., automatic banking),

information (e.g., telephone access to financial transactions), or areas (government or

research facilities). In speech-based applications such as information retrieval,

recognition of a suspect on a telephone tap, and detection of a speaker in a multi-party

1
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dialogue, speaker recognition can be used to detect a person of interest in a speech

recording.

Automatic language recognition is the process by which the language of a spoken

utterance is recognized [4, 5]. This technology allows multi-lingual access to automated

services and information. For example, telephone customer services can quickly identify

the language of foreign callers and route their calls to operators who can speak the

language. It also enables multi-lingual speech applications, such as machine translation

and speech recognition.

1.1 Motivation

Human listeners often have the ability of recognizing speakers and languages from the

speech signal, under varying conditions and contexts, drawing upon several sources of

information [5, 6]. For a given speaker, the accent or some stereotype greeting (e.g.,

speaker can always answers the telephone by saying "greetings and salutations") can

provide additional information about his or her identity. Extra information can also be

required when some discriminatory information is not available or corrupted. For

example, a language can still be identified by its characteristic melody (rhythm and

intonation) without any knowledge about the vocabulary or syntax of the language [7].

Human performance seems to be a result of a robust and adaptive method of exploiting

several sources of information [8-13].

Despite the richness of information conveyed in the speech signal, most

recognition systems rely on the notion that people or languages can be recognized from

only one source of information. For example, the most successful automatic language

identification systems use the phonotactic content (the rules governing the sequence of

allowable sound units of a language) from the speech signal [14-17]. Similarly, automatic

speaker recognition systems traditionally use acoustic features extracted from short

segments of speech to capture speaker-specific information [18-21]. While such systems

have shown reasonably good performance, they ignore the complexities of the speech

signal by disregarding other sources of information. Moreover, the performance of such

systems is prone to degradation due to varying conditions (e.g., background noise and

channel variability) and contexts (e.g., emotional speech) [22-24].
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The human speech processing model shows that the reliability and accuracy of

conventional systems can be improved by exploiting other sources of information in the

speech signal. Not only additional information can improve the system accuracy by

providing extra levels of discriminative information, but also it can increase the

robustness by providing information that is less susceptible to degradation under varying

condition and contexts. In fact, recent work in language identification [12, 25, 26] and

speaker recognition systems [27-29] has shown significant gains in accuracy and

robustness through the inclusion of different levels of information available in the speech

signal.

One source of information that has long been acknowledged to discriminate

languages and speakers is prosody [11,30-34]. Prosodic information is conveyed through

stress, intonation, and rhythm phenomena. Differences in the manifestation of these

phenomena are perceived by the listener as changes in pitch, loudness, and length (e.g.,

'short' versus 'long' phoneme). The manner in which these phenomena are realized can

vary across different languages and different speakers. For example, in English, Italian

and Dutch, pitch movements (rise or fall) are mainly limited to stressed syllable, whereas,

in French, pitch movements occur in relation to word boundaries [35]. Even though

certain linguistic effects are bounded by the native language [36], there is a great deal of

variability in the methods used by humans to produce a given linguistic phenomenon

(e.g., intonation, rhythm, and stress) [37, 38]. For example, changes in the respiratory

system (e.g., variation in subglottal air pressure) and laryngeal muscles are important

factors in the control of the fundamental frequency (acoustic correlate of pitch) [39-41].

The methods used to produce certain changes in pitch may be consistent for a speaker,

but different across speakers [32].

Although perceptual changes in pitch and loudness can encode several prosodic

phenomena, such prosodic features have not yet been fully exploited by speaker or

language recognition systems. Most of such systems use distribution statistics [10, 42] or

the contours [30, 43] of fundamental frequency (or FO, acoustic correlate of pitch) and

intensity (acoustic correlate of loudness) to model prosodic information. One problem is

that the temporal aspects of FOor intensity that characterize a prosodic phenomenon are

lost when using the distribution statistics because the typical independence assumption in
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statistical modeling [44, 45]. In addition, the complex relationship between prosodic

features is concealed by approaches the model separately such features. Besides,

approaches that use the contours of such prosodic features limit the range of applications

by requiring that the speaker must say a pre-defined sentence [2].

The aim of this thesis is to develop methods to quantify the relationship and the

temporal variations of FO and intensity to characterize prosodic differences among

speakers and languages. The focus of this thesis is mostly on the speaker-specific

information. However, we also present results on language identification to demonstrate

the broad impact of our findings.

1.2 Overview of Speaker Recognition Technology

Speaker recognition encompasses two fundamental tasks: speaker identification and

speaker verification [1-3, 46]. The goal of speaker identification is to determine who is

speaking given a set of known voices. In this task, the system uses only a voice sample to

recognize the unknown speaker. There are two modes of operation related to the set of

known voices. In closed-set mode, the system assumes that the unknown voice must

come from the set of known voices. In open-set mode, the voice sample may belong or

not the set of known speakers. In this mode, the system must reject the speakers (also

referred to as impostors) who are not from the set of known speakers. Speaker

identification can be used for forensic applications to recognize the perpetrator's identity

among several known criminals from a voice recording. The goal of the speaker

verification task is to determine whether a person is whom he or she claims to be. This

task is also known as voice verification or authentication, speaker authentication, talker

verification or authentication, and speaker detection [3]. Differently from the speaker

identification task, the system requires an identity claim together with the voice sample.

It is considered an open-set task because it involves rejecting voices unknown to the

system. Speaker verification can be used for security applications, such as, to control

telephone access to banking services.

Automatic speaker recognition systems are further classified according to the

speech modality: text-dependent or text-independent. In text-dependent mode, the user

must speak a phrase, which is fixed or prompted, known to the system. The knowledge of
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a spoken phrase can provide better recognition results [2]. In text-independent mode, the

system does not require a pre-defined phrase from the user, but it requires enough

training data for characterizing speaker's identity.

A typical speaker recognition system involves two phases: enrollment and

recognition [3]. In the enrollment phase, the user provides voice samples to the system.

Then the system extracts information from the voice samples to build a model of the

enrolled speaker. In the recognition phase, a user provides a voice sample that is used by

the system to measure the similarity of the user's voice to the model(s) of the previously

enrolled user(s) and, subsequently, to make a decision. The speaker associated with the

model that is being tested is referred to as the target speaker or claimant [3]. In speaker

identification, the system measures the similarity of the voice sample to all pre-computed

voice models. In speaker verification, the similarity is measured only to the model for the

claimed identity. Finally, the system makes a decision based on the similarity

measurement(s). Generally, closed-set speaker identification systems output the identity

of the recognized user. Open-set speaker identification systems can also reject the user in

case the voice sample does not belong to any of the stored voice models. Speaker

verification systems output a rejection or an acceptance decision of the claimed identity.

1.2.1 Basic Structure of Speaker Recognition Systems

Like most pattern recognition problems, a speaker recognition system can be divided into

two main parts: feature extraction and classification. The classification part has two

components: pattern matching and decision. Figure 1.1 depicts a generic speaker

recognition system.

Feature
extraction

Speaker models
Speech signal

,7

Figure 1.1: Generic speaker recognition system.
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Feature Extraction

The feature extraction module extracts a set of features, which represent speaker-specific

information, from the speech signal. Even though speech provides a large variety of

speaker-specific information, the set of speaker-specific cues should have the following

characteristics [47, 48]: occur naturally and frequently in normal speech, be easily

measurable, have high variability between speakers, be consistent for each speaker, not

change over time or be affected by the speaker's health, not be affected by background

noise nor depend on specific transmission characteristics, and show resistance to disguise

or mimicry. In practice, not all of these criteria are applied to the features used by the

current systems.

Differences between speakers are determined by the physical constraints of the

vocal apparatus (e.g., length of vocal tract, rate and acceleration of articulators), and

linguistic or semantic choices (e.g., speaker idiosyncrasies, intonation patterns, or dialect)

to convey some communicative intent. Such speaker-related differences can be

categorized into two levels [49, 50]. Low-level information describes the acoustical

characteristics of the speech signal (e.g., nasality, breathiness, and speaking rate). High-

level information describes the semantic, linguistic, and prosodic aspects in the speech

signal (e.g., dialect, idiosyncrasies, lexical and syntactical patterns, and speaking style).

Most of the speaker recognition systems are based on low-level information [19,

42, 46, 49, 51-53]. Typically, the time-varying acoustic properties of the speech signal

are described using a sequence of short-term feature vectors. The underlying assumption

is that the properties of the speech signal change relatively slowly in time and therefore

short segments (10 to 40ms) have fixed (stationary) acoustic properties [54, 55]. The

methods based on this assumption are commonly known as short-term analysis, which

are historically inherited from speech coding applications [56]. In the short-term analysis

of speech, each feature vector describes the acoustic properties (frequency components of

the speech signal - speech spectrum) of a short segment of speech. Many different

representations of the speech spectrum have been used for speaker recognition: cepstral-

based features [18, 55, 57-59], linear predictive coding (LPC) coefficients [1,60,61], and

LPC-derived features (e.g., log area ratios [51], reflection coefficients [42], and line

spectral pairs [3]). However, the acoustic properties of certain speech events can differ
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among different speakers, due to physical constraints of the vocal apparatus or

idiosyncrasies in the speaking habits of individuals [21, 62-64]. To exploit the speaker-

dependent properties of certain speech events, speaker recognition systems use speech

recognition methods to locate such relevant speech events. This approach provides more

details about the acoustic properties of the speech signal by having different feature sets

for different speech events. In addition, such approach also reduces the problem of the

high degree of redundant information in speech by only using certain speech events,

instead of the entire speech signal [63]. Some of the speech events include words [65],

broad phonetic categories (e.g., vowel, fricatives, nasals, plosives, stops, and liquids) [64,

66, 67] and phonemes [28, 68, 69]. Besides the short-term spectral properties of the

speech, additional features have been investigated for speaker recognition, such as vocal

tract resonances (formant frequencies and bandwidths) [70, 71], speech intensity [42],

and pitch period [47].

Despite the wide variety of high-level information, few speaker recognition

systems incorporate this type of information. Given the importance of pitch detection to a

variety of speech processing systems [72], pitch was one of the first speech features to be

used to describe high-level information. The characteristics of the pitch contour have

been used to characterize the variations in prosodic information (e.g., stress and

intonation patterns) that can constitute an individual's speaking style [30, 73-76]. Besides

prosodic information, several speaker recognition approaches have adopted techniques

used in speech recognition systems to incorporate semantic and linguistic information.

For example, the sequence of words extracted from the speech signal using an automatic

speech recognition system is used to derive the characteristics of the vocabulary, dialect,

and idiolect of a speaker. Doddington [27] uses the frequency of word sequences to

capture idiolectal differences among speakers. To capture conversational-style

characteristics, Weber et al. [28] use the frequency of disfluency classes such as pause-

fillers (e.g., uh, um), discourse markers (e.g., you know), feedback expressions (e.g., all

right, sure, yeah), speech correction markers (e.g., I mean), conjunctions, and sentence

fragments. Similar approaches are used by several researchers to exploit the phonetic

differences (e.g., differences in the inventory, phonological context, and the frequency of

occurrences of phones - unit of sound that contribute to the meaning of a word) among
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speakers [16, 29, 77-79]. Since timing information of word or phones is also produced by

automatic speech and phone recognizers, duration patterns of such speech units are also

used to characterize speaker-specific information [28, 80-82].

Pattern Matching

The goal of the pattern matching module is to compute similarity scores between the

features from the voice sample and the model(s) from the set of known speakers. In a

verification task, this module outputs a similarity score between the voice sample and the

claimed identity. In an identification task, it outputs similarity scores for all pre-computed

voice models.

There are many types of pattern matching methods and corresponding models

used in speaker recognition [1, 3, 46,83]:

. Template matching: a speaker model (or template) is represented by a

sequence of feature vectors (as a function of time) estimated from a fixed

phrase. A similarity measure is estimated after time-aligning the voice sample

and the speaker template using dynamic time warping (DTW). The goal is to

capture the time-varying characteristics of the speech features. This is a

typical approach to text-dependent speaker recognition. For example,

Doddington [70] and Lummis [71] use the temporal trajectories of several

features (pitch, intensity, and the three lowest formant frequencies) estimated

from a fixed phrase to represent each speaker; these methods perform a time

alignment between the voice sample and speaker template using the second

formant frequency (in Doddington's work) and intensity (in Lummis' work)

contours.

. Nearest neighbor: a speaker model comprises a set of feature vectors

estimated from the enrollment data. A similarity measure is estimated using

the accumulated distance between each feature vector from the voice sample

and its k closest feature vectors (nearest neighbors) in the speaker's feature

vectors. For example, Higgins et al. [84] propose a text-independent speaker

identification system that uses a modified normalized nearest neighbor

distance measure. To reduce significant memory and computational
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requirements in testing, the system discards the training frames with distances

larger than a pre-defined distance threshold.

. Vector quantization (VQ) [61]: a speaker model comprises a small number

of representative feature vectors that are generated by clustering the speaker's

training feature vectors. A similarity measure is estimated using the

accumulated distortion (or distance) between each feature vector from the

voice sample and the speaker's representative feature vectors. This approach

does not require as much memory as the nearest neighbor approach, and it can

be used for text-independent speaker recognition.

. Artificial neural networks: a neural network is trained to discriminate

between speakers or to estimate the underlying statistics of the speaker's

feature space. Some of the neural networks include: auto-associative neural

networks [85], multi-layer perceptron [83, 86, 87], and time-delay neural

networks [88]. For example, Oglesby and Mason [89] train a modified form of

feed-forward neural network based on radial basis functions (RBF) for each

speaker in a speaker verification system. Ganchev et al. [90] propose a system

that trains a probabilistic neural network for each speaker to capture time

correlations between features.

. Hidden Markov models (HMM): a speaker is represented by a stochastic

model. The aim of this modeling approach is to capture the temporal and

statistical variation of the speaker's speech production. Based on a first-order

Markov chain, a HMM is a finite-state machine, where a probability density

function is associated with each state. The states are connected by a transition

network. Using appropriate HMM topologies, both text-dependent and text-

independent systems can be developed. For example, Poritz [91] proposes the

use of a five-state ergodic-HMM, where all transitions between states are

allowed, for text-independent speaker recognition. Rosenberg et al. [92] use a

three-state left-to-right HMM (that is, the system states proceed from left to

right) to characterize the speaker's phrase as a sequence of sub-word units.

. Gaussian mixture model (GMM): a speaker is represented by a mixture of

Gaussian density functions. The use of GMM for modeling speaker identity is
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motivated by the interpretation that the Gaussian components represent some

underlying broad phonetic sounds that characterize a speaker's voice [59, 93].

GMM can also be viewed as a single-state HMM with a Gaussian mixture

observation density. The wide-spread use of GMMs for speaker recognition is

due to its modest computational requirements, ability to model arbitrary

densities, and consistent high performance [94]. Reynolds and Rose [93] show

that GMM provides a robust speaker representation that outperforms other

modeling techniques, such as VQ, RBF, and single Gaussian.

. N-grams: a speaker model is represented by a set of probabilities that

characterizes the frequency of co-occurrences of N discrete units. With the

increased research interest in modeling high-level information, the aim of

such approach is to capture speech patterns (e.g., pronunciation, idiolect, and

intonation) specific to speakers by modeling the statistical dependencies

between relevant discrete units, such as words and phonemes. For example,

Doddington [27] uses the likelihood of word bigrams (N=2) to capture

idiolectal differences between speakers. Andrews et al. [77] use the likelihood

of phone trigrams (N=3) to capture differences of pronunciation patterns.

In speaker verification and open-set speaker identification, the estimated features

can also be compared to a model that represents the unknown speakers, also known as

impostor model or speaker independent model. Typically, the impostor model can be a

collection of "cohort" speakers [95] or a single model derived from a large number of

speakers [18]. The collection of cohort speakers, also known as likelihood or background

sets, can come from other enrolled speakers or from speakers of a different corpus. The

approach that uses a large number of speakers is referred to as universal background

model (UBM) [59] or speaker-independent model [21,96].

Decision

In the decision module, the similarity score(s), determined by a statistical or deterministic

method in the pattern matching module, is used to make a decision. For closed-set

identification applications, a speech utterance from unknown speaker is associated with

the speaker identity whose model is the most similar to the voice sample. Therefore, the
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decision output is a speaker identity. Since the unknown speaker may not belong to the

set of known speakers in open-set applications, a threshold is compared to the similarity

score during the decision process. Therefore, open-set speaker identification applications

can output an additional decision alternative, "the unknown speaker does not belong to

the set of known speakers". In open-set speaker verification, the decision becomes a

problem of accepting or rejecting the claimed identity. Given the problem of an unknown

speaker being identified as belonging to the set of known speakers in open-set

applications, the cost of making a decision error can be incorporated in the decision

process. For example, it is more costly for a bank to allow an impostor to withdraw

money, than to reject a true bank customer.

The effectiveness of a speaker recognition system is measured differently for

different tasks. Since the output of a closed-set speaker identification system is a speaker

identity from a set of known speakers, the identification accuracy is used to measure the

performance. For open-set systems, there are two types of error: recognizing an impostor

as coming from the set of known speakers (false alarm) and false rejection of a known

speaker (missed detection). The performance of some systems are reported using the

equal error rate (EER), which is the point where the number (or probability) of false

alarm errors is the same as the number (or probability) of missed detection errors. The

performance measure can also incorporate the cost associated with each error, which

depends on the application. For example, in a telephone credit card purchase system, a

false acceptance is very costly; in a toll fraud prevention system, false rejection can

alienate customers.

1.3 Overview of Language Recognition Technology

With the globalization of our society, there has been an increasing need for technology

that enable systems (e.g., speech recognition and information retrieval) or services (e.g.,

call centers and 911 dispatchers) to deal with more than one spoken language. Language

recognition has definitely a very important role in such technology. For example, call

centers can provide a better service to foreign customers by automatically identifying the

spoken language and routing the call to an operator fluent in the corresponding language.

Other applications include: automatic information retrieval (e.g., search for speech
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material spoken in some particular language), multi-lingual spoken dialog systems, and

automatic translation services.

Similar to speaker recognition, language recognition encompasses two

fundamental tasks: identification and detection. In language identification, the goal is to

identify the spoken language from a set of known languages. In language detection, the

goal is to determine whether a given language is being spoken in a speech segment. The

main difference between both tasks is that the identification task requires N comparisons

(assuming a set of N languages) to make a decision, whereas the detection task requires

only one comparison.

There are several sources of language-specific information that can be used to

discriminate between languages [4, 97]:

. Phonology: the sounds of a language can be described in terms of a set of

abstract linguistic units called phonemes, which are the smallest contrastive

units of sound that contribute to the meaning of word. The differences in the

inventory and the frequency of occurrences of phonemes can be used to

discriminate languages. For example, some sub-Saharan African languages

can be characterized by the "clicks" found in their phonetic inventory. Even

though many languages share a common subset of phonemes, the acoustic

realization of a phoneme (referred to as phone) can present significant

differences. For example, in English, III and Irl (as in "leaf' and "reef') are

two different phonemes, whereas in Japanese they are not. In addition,

languages can differ in the phonotactics (the rules governing the sequence of

allowable phonemes). For example, phoneme clusters Isrl and Ispl are quite

common in Tamil and German respectively, but are rare in English.

. Morphology: different combinations of phonemes constitute different words.

Thus, languages can differ in the rules of combining phonemes and,

consequently, they have different set of words (vocabulary).

. Syntax: when people communicate, the words must be combined in a specific

way so that the intent message is understood. All languages have a set of

principles (syntactical rules) to combine words, which form phrases, clauses,

or sentences.
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. Prosody: languages vary in tenns of rhythm, intonation, and stress through the

variation of pitch, loudness, and duration. For example, tonal languages, such

as Mandarin Chinese and Vietnamese languages, use pitch contour patterns on

a single syllable to denote different words. Another example is the position of

the stress pattern within a word. In Czech and Finish languages, it always

occurs in the same position (referred to as fixed-stress languages) within a

word, whereas Turkish always has the last syllable stressed.

Given the current speech technology and language resources, only a subset of the

sources ofinfonnation is incorporated in current language recognition systems [4, 5, 97].

For example, the use of morphologic and syntactic rules from a language is limited by the

fact that there are systems that produce an accurate orthographic transcription (the

sequence of spoken words) for only a small number of languages [4]. In addition, the lack

of public-domain speech corpus has restricted the number of languages that can be

included in a language recognition system.

1.3.1 Basic Structure of Language Recognition Systems

Given the pattern recognition framework, language recognition systems involve two

phases: training and recognition. In the training phase, using language-specific

infonnation, one or more models are built for each language. In the recognition phase, a

spoken utterance is compared to the model(s) of each language and then a decision is

made. Thus, the success of a language recognition system relies on the choice of

language-specific infonnation used to discriminate among languages, while being robust

to speaker, channel, and context variability.

Driven by the complexity of extracting morphological and syntactical

infonnation, most language recognition systems have been using infonnation from

prosodic and phonologic sources to discriminate languages. The phonology-based

approaches deal with differences of the phonotactics and the acoustic characteristics of

the speech signal (i.e., acoustic properties of the phone realizations). The prosody-based

approaches deal with differences of the language "melody", result of intonation, stress,

and rhythm patterns.
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Most approaches to language recognition can be classified into two mam

categories: short-term and long-term. Short-term methods are based on the information

extracted from short-term feature vectors, and long-term methods are based on segments

that can span more than one feature vector. Figure 1.2 presents the basic architecture of

both approaches to language recognition system that is capable of recognizing N-

languages.

Long-term
Language

Recognition

Lanl!ual!e #1 Modells)
Lanl!ual!e #2 Modells)

Lanl!ual!e #3 Modells)
Language #N Model(s)

Feature
Extraction Segmentation

Pattern
Matching

Decision

Short-term
Language

Recognition

Lanl!ual!e #1 Modells)
L.anl!ual!e#2 Modells)

Lanl!ual!e #3 Modells)
Language #N Model(s)

Feature
Extraction

Pattern
Matching

Decision

Figure 1.2: Basic architecture of short-term and long-term approaches to language recognition for N-
languages.

In short-term approaches, each language is modeled using the distribution

statistics of the acoustic features (usually, assumed to be independent of each other)

extracted from some training data. The goal is to capture acoustic differences between

languages, result of the differences in phonetic and prosodic information. Given the

similarity to speech recognition and speaker recognition approaches, several systems

have been developed based on this approach. Some of the features used for language

recognition include linear predictive coding (LPC) coefficients [43, 98], LPC-derived

features (e.g., reflection, log area ratios, and prediction error) [99], formant frequencies

[100, 101], pitch and energy features (e.g., raw values, and derivative) [100, 102], and
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spectral features [4, 103, 104]. Since the language-specific information is represented as a

sequence of feature vectors, several methods have been used to classify languages,

including hidden Markov models (HMM) [43, 105, 106], Gaussian mixture models

(GMM) [103, 104], vector quantization (VQ) [98, 100, 101], polynomial classification

[99], quadratic classifiers [100], and artificial neural networks (ANN) [25].

In long-term approaches, the language-specific information is extracted from

segments of speech. First, the speech signal is divided into a sequence of segments given

certain acoustic patterns. For example, each segment can represent a phone [15], a

syllable [10, 107], a broad-phonetic category (e.g., vowels, consonants, fricatives, and

sonorants) [108-110], or an acoustic pattern [111]. Then, two techniques can be used to

model a set of languages:

1. Similar to short-term language recognition approaches, acoustic features are

extracted and used to exploit the acoustic differences between languages

conditioned to the segments. For example, Li and Edwards' approach [109]

uses LPC coefficients to model different syllables; Parlangeau-Valles et al.

[112] use spectral features to model vowel and consonantal systems; Rouas et

al. [107] estimate durational and intonational features (distribution statistics of

FO) from pseudo-syllables to discriminate rhythm and intonation properties

between languages. Some of the approaches have used GMMs to capture the

acoustic properties of the segments [107,112], or HMMs to not only capture

the acoustic properties, but also to model the interactions between the

segments [109].

2. The sequence of acoustic pattern categories is used to model the statistical

dependencies between the categories (e.g., phonotactic properties of a

language). House and Neuburg [108] published the earliest long-term

approach based on the different phonotactics of broad-phonetic categories

(stop consonant, fricative consonant, nonvocalic consonant, vowel, and

silence) using a discrete HMM. The improvement of the speech processing

techniques motivated the development of several systems based on the

statistical dependency between phones [15, 17], acoustic patterns [111], and
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broad-phonetic categories [113, 114]. The method extensively used to model

such dependencies is n-gram.

Since different sources of information have been exploited by different

approaches, several researchers proposed the fusion of such methods to benefit from the

variety of language-specific information. Hazen and Zue [115] use a probabilistic

framework to combine phonetic (trigram models from language independent phones),

acoustic (GMMs of cepstral features), and prosodic (GMMs of FO and duration)

information for language identification. Some other combinations include phonetic and

acoustic models [97] and phonetic and prosodic [116].

1.4 Overview of the Proposed Approach

In this work, we investigate the use of pitch and intensity for producing prosodic

phenomena. We hypothesize that different speakers and different languages may be

characterized by different intonation, stress, or rhythm patterns produced by the changes

in pitch and in intensity. Therefore, the combination of pitch, intensity, and duration that

characterizes particular prosodic "gestures" are useful in extracting speaker-specific [76,

117] and language-specific information [12, 97].

We propose alternative approaches to convert the continuous speech signal into a

sequence of discrete units that describe the signal in terms of dynamics of the

fundamental frequency (as a proxy for pitch) and short-term energy (as a proxy for

intensity) contours. We also propose a method to integrate such discrete units to

segmental information. Using simple statistical models, we show that the statistical

dependency between such discrete units can be used to capture language- and speaker-

specific information. We also show that they are robust to communication channel

effects, and that they provide complementary information to the conventional systems.

The contributions ofthis work are following:

. Novel methods to represent the dynamics of fundamental frequency and short-

term energy for prosody modeling. We show that this new representation can

provide another level of information besides the distribution statistics of the

fundamental frequency and energy features.
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. Framework to segment speech signal using the dynamics of two or more

temporal trajectories. The proposed method can also be used to segment

speech using different temporal trajectories (e.g., formant frequencies).

. Complementary information to conventional speaker and language

recognition systems. We show that the proposed approaches can improve the

performance of the state-of-the art of speaker and language detection.

1.5 Thesis Structure

The remainder of the thesis is organized as follows:

. Chapter 2 introduces some of the prosodic bases for speaker and language

recognition. We describe prosody and its effects with respect to language- and

speaker-specific information. A brief review of previous prosody-based

approaches to speaker and language recognition is also presented.

. Chapter 3 describes the speaker recognition paradigm for evaluating the

proposed approaches. Since we are proposing a method to complement the

current systems, we also describe the state-of-the-art speaker detection system

and the method used to fuse systems. A prosodic baseline, which uses

information from FOand short-term energy contours, is also described.

. Chapter 4 describes several approaches to segment the speech signal using

the dynamics of FO and short-term energy. We show that the statistical

modeling of the segment classes can be used to capture speaker-specific

information.

. Chapter 5 describes the method to combine the proposed prosodic modeling

approach and segmental information. We show that the combination of the

proposed prosodic classes and segmental (or phonetic) information can be

used to characterize speaker-specific information.

. Chapter 6 shows that the proposed prosodic modeling approach can also be

used to capture language information. Using the evaluation paradigm defined

in the 2003 NIST Language Identification Evaluation, we show that the

prosodic modeling approach also provides complementary information to

conventional language recognition systems.



Chapter 2

Speaker and Language Recognition using
Prosody

The goal of this chapter is to review the speech production system and prosody, and to

describe some language- and speaker-specific prosodic differences conveyed by

fundamental frequency and intensity contours. Section 2.1 describes the human speech

production system. Section 2.2 defines prosody and its manifestation levels. Section 2.3

presents the prosodic differences between speakers and an overview of speaker

recognition systems based on prosodic features. Section 2.4 presents the prosodic

differences between languages and an overview of language recognition systems based

on prosodic features.

2.1 Speech Production

The anatomy of the human speech production system is shown in Figure 2.1. The vocal

apparatus comprises three cavities: nasal, oral, and pharyngeal. The pharyngeal and oral

cavities are usually grouped into one unit referred to as the vocal tract, and the nasal

cavity is often called the nasal tract [118]. The vocal tract extends from the opening of

the vocal folds, or glottis, through the pharynx and mouth to the lips (shaded area in

Figure 2.1). The nasal tract extends from the velum (a trapdoor-like mechanism at the

back of the oral cavity) to the nostrils.

The speech process starts when air is expelled from the lungs by muscular force

providing the source of energy (excitation signal). Then the airflow is modulated in

18
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various ways to produce different speech sounds. The modulation is mainly performed in

the vocal tract (the main resonant structure), through movements of several articulators,

such as the velum, teeth, lips, and tongue. The movements of the articulators modify the

shape of the vocal tract, which creates different resonant frequencies and, consequently,

different speech sounds. The resonant frequencies of the vocal tract are known as

formants, and conventionally they are numbered from the low- to the high-frequency: FI,

F2, F3, and so on. The resonant frequencies can also be influenced when the nasal tract is

coupled to the vocal tract by lowering the velum. The coupling of both vocal and nasal

tracts produce the "nasal" sounds of speech, like In! sound ofthe word "nine".

Soh palale
(velum)

"'asal cavity

"o,lrit

Pharyngc;ll
cavily

Lip

Tongue

Larynx

Esophagus
Teeth

Oral (or buccal) cavity

Jaw

Trachea

Lung

Diaphragm

Figure 2.1: The human speech production system [119).

The airflow from the lungs can produce three different types of sound source to

excite the acoustic resonant system:

· For voiced sounds, such as vowels, air is forced from the lungs through

trachea and into the larynx, where it must pass between two small muscular

folds, the vocal folds. The tension of the vocal folds is adjusted so that they

vibratein oscillatoryfashion.This vibrationperiodically interruptstheairflow
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creating a stream of quasi-periodic pulses of air that excites the vocal tract.

The modulation of the airflow by the vibrating vocal folds is known as

phonation. The frequency of vocal fold oscillation, also referred to as

fundamental frequency (FO), is determined by the mass and tension of the

vocal folds, but is also affected by the air pressure from the lungs. An example

of voiced sounds is the vowels.

. For unvoiced sounds, the air from the lungs is forced through some

constriction in the vocal tract, thereby producing turbulence. This turbulence

creates a noise-like source to excite the vocal tract. An example is the Isl

sound in the word "six".

. For plosive sounds, pressure is built up behind a complete closure at some

point in the vocal tract (usually toward the front of the vocal tract). The

subsequent abrupt release of this pressure produces a brief excitation of the

vocal tract. An example is the It! sound in the word "put".

Note that these sound sources can be mixed together to create another particular

speech sound. For example, the voiced and turbulent excitation occurs simultaneously for

sounds like Ivl (from the word "victory") and Izl (from the word "zebra").

2.2 Prosody

The literature provides several definitions of the term prosody. In the most classical study

in prosody, Lehiste [39] defines prosody as "features whose arrangement in contrastive

patterns in the time dimension is not restricted to single segments defined by their

phonetic quality". That is, prosody is the speech features (e.g., stress, intonation, and

rhythm) that must be examined relative to their context to be understood and that they

can extend for more than one phonetic segment (e.g., syllable, word, and paragraph). For

example, voicing can extend over a sequence of phonemes but it is not a prosodic feature

because it does not require the existence of adjacent unvoiced regions to be determined.

Stress is a prosodic feature because it extends over a syllable or more, and requires an

adjacent unstressed syllable to be perceived. As the prosodic features typically extend

more than a phonetic segment, prosody is often referred to as the suprasegmental

property of speech.
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Prosody is used to structure the speech flow to convey lexical, syntactic,

semantic, and emotional information. The means for obtaining this structure include

speech rhythm, intonation, stress, tone, and some aspects of voice quality. Such

phenomena are perceived by the listener as variations in pitch, loudness, and length (or

quantity). These variations are a result of modulation of the physically measurable

dimensions of fundamental frequency, intensity, and duration [48]. Some of the prosodic

features include:

. Pitch: is the perceptual correlate of the fundamental frequency of the speech

signal. Changes in pitch are also related to changes in the intensity [39].

. Loudness: is the measure of the perceived intensity of the sound. Note that

increasing the frequency of vocal folds vibration can also affect the perception

of loudness.

. Duration: is the length of a segmental unit such as a phoneme. In many

languages, stress is one of the factors that conditions the duration of a sound

or a sequence of sounds. For example, in English, a stressed syllable has

typically longer vowels than an unstressed syllable.

. Intonation: is the pattern of pitch changes (or melody) over an utterance.

There are several functions associated with intonation, such as to differentiate

structural units (e.g., phrases), to regulate turn-taking in conversations, and to

convey informational structure by highlighting certain words in the utterance.

. Tone: is a perceptual change in the contour or the direction of movement of

FO on syllables. Tone languages (like Mandarin Chinese) use different tones

to distinguish certain words from others.

. Stress: is the term given to any form of prominence of syllables. Sentence

stress is the most prominent word in a sentence, and word stress (also known

as lexical stress) is the stress on the syllables within a word. The acoustic

realization of stress comprises two or even three acoustic parameters of

prosody (FO,intensity, and duration). For example, prominence of a syllable

can be obtained either by syllable lengthening or increasing the intensity of

the speech.
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. Tempo and rhythm: related to the duration patterns and distribution of events

in speech. For example, variations in the use of stress cause different

languages to have different rhythms [120]. While tempo primarily indicates

the rate of speech, rhythm is a measure of the pattern and manner of speech

(e.g., staccato, legato, rhythmic).

2.2.1 Prosodic Phenomena Manifestation

The prosodic phenomena can manifest in four levels [33]: linguistic, articulatory,

acoustic, and perceptual. Table 2.1 presents some links between the manifestation levels

of prosodic phenomena.

Table 2.1: Links between the manifestation levels of prosodic phenomena.

At the linguistic level, the speaker uses prosody to communicate distinction

between: types of sentences (e.g., different intonations for questions and statement),

elements of a linguistic message (e.g., semantic emphasis of a word or multiple words),

chunks of speech (e.g., marking boundaries and defining transition between words,

phrases, or sentences), speaking styles (e.g., spontaneous versus read, neutral versus

emotional), and discourse functions (e.g., turn-taking, seeking and giving feedback). The

differentiated prosodic phenomena are related either to tone, intonation, or stress.

At the articulatory level, prosodic phenomena manifests by modifications of the

articulatory behaviors. For example, the articulatory movement involved in the

production of a stressed vowel compared to the unstressed variant is the same; the

difference is that the articulatory movements for the stressed vowel tend to be larger, and

longer in duration and more distinctive from other unstressed vowel movements. Physical

observations of prosodic phenomena related to articulatory level typically include

variations in the amplitude of articulatory movements, variations in air pressure, or

Lin!!uistic Articulatorv Acoustic Perceptual

Tone, intonation, Periodic airflow pulses due Fundamental Pitch

aspects of stress to glottal closures Frequency (FO)
Aspects of stress Variations in air pressure Amplitude, energy, Loudness

intensity
Aspects of stress Amplitude of articulatory Duration Length (or

movements quantity)
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specific patterns of electric impulses in nerves connected to the articulatory musculature

(especially those innervating the larynx).

At the acoustic level, prosodic phenomena are conveyed through significant

variations of the fundamental ffequency (FO), intensity (amplitude), and duration. For

example, stressed syllables can be characterized by their higher FO,greater intensity, and

longer duration than comparable unstressed syllables.

At the perceptual level, the listener decodes the information ffom prosodic

phenomena conveyed through the acoustic signal. The prosodic phenomena are perceived

through variation in pitch (melody), length, loudness, and speech rate.

2.3 Prosodic Speaker-specific Differences

Speaker differences based on physiological characteristics of the vocal apparatus, social

background, and regional characteristics (accents and dialects) contribute to affect the

realization of prosody. In this section, we describe some of the speaker related

differences that can affect the use of prosody.

Physiological characteristics

The overall complexity of the vocal fold vibration differs for different people, and the

shape of the glottal flow waveform varies with vocal effort and other aspects of the voice

quality [121]. For example, it is possible to perceive a change in pitch when the

fundamental ffequency is fixed but signal intensity is slightly varied; an increase in

intensity produces a drop in pitch as noted by Lehiste [39]. There are several factors that

affect the variation of FO. For example, FO may be raised by increasing vocal fold

tension, by increasing subglottal pressure, or by a combination of the two [39, 40, 122,

123]. The pattern of combination, in turn, may be consistent for a speaker, but different

across speakers. In addition, the ability of exploiting these difference regulatory

mechanisms makes it possible for speakers to produce voices of considerably different

intensity levels [123].

Pitch accent

Typically, a pitch accent is associated with a lexically stressed syllable, has a time scale

in the 100 ms to 500 ms range, and is realized as a (usually upward) obtrusion of FO,
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which then returns toward a global and slowly descending value. Major differences in the

shape of these humps in the pitch contour may be associated with, among other things,

the amount of emphasis on a word or phrase or its position in an utterance. For example,

greater emphasis increases the height and duration of the FOobtrusion, while a pre-pausal

accent typically has a shorter rise but a longer and deeper fall of FO and of energy, as

well. The exact shape of pitch accents also varies widely, notably the ratio of rise and fall

durations, especially when viewed as a function of phonetic context. A full description of

pitch accents is beyond our scope here; we simply note that they are likely sources of

inter-speaker information because they vary greatly in details of execution [122, 124,

125].

The location of the pitch accent can also vary across speakers. For example, the

peak of a pitch accent may occur earlier or later in a stressed syllable, or even after the

syllable with it is phonologically associated [117]. In addition, the phonetic alignment of

a FOevent (often a peak, trough, or turning point) during the realization of a phonological

target can vary between dialects of a language. Nolan and Farrar [126] show that the peak

associated with utterance-initial pitch accents is later in some dialects of English than

others.

Stress

Stress and accents manifest by duration, FOcontours, intensity, and degree of articulatory

enhancement versus reduction [32]. The relative importance of these components is

language specific. The role of duration in accented syllables resembles that of pitch

and/or energy, and can either combine with or complement them. To emphasize a word,

one speaker may use lengthening more, another less; one may use the increased duration

to carry out a larger rise in FOand another not.

Voice quality

Baken [127] shows that pitch and voice characteristics may be correlated. For example,

natural speech is characterized by deviation from strict periodicity (also known as jitter)

and other instabilities, such as shimmer (i.e., perturbations on the signal intensity), but the

amount of such irregularities is greater when subglottal pressure is falling and

fundamental frequency is low, and vice versa.
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Intonation

Intonation is considered the main source of speaker variability [32, 117]. The different

patterns of FO contours, combined with other acoustic parameters, are also affected by

dialectal variations [128] and social conventions.

Taylor [129] shows that immediate segmental environment affects the local shape

of the FOcontour. He lists three types of segmental effects: unvoiced segments, obstruent

perturbations, and intrinsic vowel pitch. In unvoiced segments, there is no fundamental

frequency at all. In obstruent perturbations, there is a tendency of consonants, especially

obstruents, to produce sharp spikes in the contour. The perturbations are normally short

in duration (typically less than 30 ms), but can make a FO excursion into a small pitch

accent [130]. In intrinsic vowel pitch, high vowels consistently cause slightly higher FO

values than low vowels [131]. For example, two utterances with the same intonation can

have apparently different FO contours solely due to these utterances having different

segment content.

Van Dommelen [31] uses manipulated speech signal to measure the contribution

of speech rhythm and pitch to speaker recognition. After synthesizing the manipulated

speech samples (two fixed sentences per speaker), two types of tests are performed with a

group of eight listeners: speaker identification (identify speaker among the 3 subjects)

and speaker discrimination (AX type: whether or not A and X might have been spoken by

the same speaker). One of the experiments synthesizes the speech signal from one

speaker using the pitch contour from another speaker, while preserving the remaining

speaker-specific characteristics. In both tests, the results show that the discrimination

between speakers reduces when pitch contour is manipulated.

2.3.1 Prosody-based Approaches

For several decades, researchers have been investigating the use of prosodic features for

speaker recognition. In this section, we describe some of the methods used to estimate

and model prosodic features for speaker recognition.

Prosodic Features Contour Statistics

In the early 70s, Atal [30] proposed the use of temporal variations of pitch for a text-

dependent, closed-set speaker identification system. The method uses linear discriminant
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analysis to project the features onto a new space and Euclidean distance to perform the

recognition. First, it divides the utterance into 50 ms segments and estimates the average

pitch of each segment. Then, the features representing the pitch contour are linearly

transformed (projected) onto a new 20-dimensional feature space so that the variance

between all speakers is maximized and the variance within a speaker is minimized. The

transformation uses the 20 eigenvectors with the highest variability, which is defined by

the magnitude of the eigenvalues. The eigenvectors and eigenvalues are estimated over

60 utterances from 10 speakers using the Karhunen-Loeve transform, also known as

principal component analysis [44]. The classification step uses Euclidean distance to

measure the distance between the vectors from a voice sample and the reference vectors

from the speaker models. This method obtains a 97% recognition rate on a 10-speaker

dataset.

Similar to Atal's work, Markel et al. [42] studied the averaging characteristics of

pitch, intensity, and reflection coefficients over various segments lengths of speech for

speaker recognition. The experiments are performed on unconstrained conversational

speech obtained during interview (15 to 18 minutes duration) of four speakers. The

features include average FO, standard deviation of FO, standard deviation of the

normalized intensity variation, and spectral features (reflection coefficients extracted

from linear prediction analysis). They use the Fisher Discriminant method to investigate

the effectiveness of long-term averaging for speaker recognition. Despite the small

amount of data, they show that the average FO carries important information about the

speaker and that intensity variation has some discrimination characteristics.

In the effort of capturing local dynamics in intonation to characterize a speaker's

speaking style, Sonmez et al. [74] developed a FOcontour stylization method. First, the

method eliminates regions of pitch doubling and halving using a lognormal tied-mixture

modeling [132] followed by a median filtering. Then a piecewise linear model is fit to the

estimated log pitch values in voiced regions. The method generates a sequence of

connected linear spline segments for each voiced region. From each segment, they

extracted the median FO, slope, and duration, which are independently modeled. In

addition to these 3 features, they also extract the duration of the voiced segment and

pauses. They refer to these 5 features as prosodic features. The score for verification is
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the negative relative entropy between the parametric distributions of the target speaker

and test segment (user's voice sample). They report results on the 1998 NIST Speaker

Recognition Evaluation data: 500 speakers (250 males and 250 females) in 5000 trials

with 2 minutes of telephone, conversational speech for training and test data with

nominally 3, 10, and 30 seconds duration. The task is text-independent speaker

verification, and the training condition is "one-session" as the 1996 NIST Speaker

Recognition Evaluation. They show that prosodic features improve the performance

when added to the cepstrum-based GMM system. They also show that the prosodic

features require certain amount of data to reliably distinguish speakers.

Peskin et al. [82] examined a variety of prosodic and conversational features

usmg the evaluation data for the Extended data task in the 2001 NIST Speaker

Recognition Evaluation [133]. The task is text-independent speaker detection, and the

evaluation data comes from the Switchboard I conversational, telephone speech corpus (a

more detailed description is in Section 3.2.1). One of the proposed systems employs a

nearest-neighbor classifier to compute the distance between the features from a given test

conversation and the speaker model. The examined prosodic features include segmental

duration (e.g., relative duration of words and phones, and duration of voiced and

unvoiced segments), pause related (relative frequency and duration of pauses), and pitch

contour related, similar to the Sonmez's work [74] (e.g., maximum, minimum, range, and

slope). Given a feature vector estimated from a test conversation, a distance between such

feature vector and the speaker model (represented by a set of feature vectors from the

speaker's training data) is estimated using a nearest-neighbor classifier. The distance

metric used in the nearest-neighbor calculation is the symmetrized Kullback-Leibler.

Using the pitch contour related features, they report a 14.8% EER on 8-conversation

training condition (approximately 20 minutes) using 3 neighboring points in the nearest-

neighbor computation and testing on a conversation side of approximately 2.5 minutes.

Recently, Kajarekar et al. [80] used the statistics ofFO and energy from different

regions to capture longer-term patterns that are characteristic of the speaker's speaking

style. Two segmentation methods are proposed to define the regions. The pause-based

method uses long pauses (greater than 500 ms) to detect a region boundary. The

stylization-based method uses the segments detected by the FO stylization algorithm
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proposed by Sonmez [74] as the regions. Several features that describe pitch (e.g.,

maximum, mean, and slope), energy (e.g., range and slope), pause (e.g., average and

maximum duration), and region (e.g., duration of the longest vowel) are modeled using a

Gaussian mixture model. The equal error rate of both systems is between 22% and 32%

(approximately 20 minutes of training data for each speaker model) on the extended-data

one-speaker detection task of the 2003 NIST Speaker Recognition Evaluation [134]. This

task uses data from the Switchboard II conversational, telephone speech corpus (a more

detailed description is in Section 3.2.1). They also report results of a two-way

combination of the prosody-based systems with a spectral-based system that uses a

Gaussian mixture model of mel-frequency warped cepstral coefficients to build speaker

models. The pause-based segmentation and the stylization-based segmentation systems

relatively improve the spectral-based system by 15% and 5%, respectively.

Prosodic Features Contour Matching

Doddington [70] described a text-dependent speaker verification system that performs a

pattern matching of the time contour of pitch, intensity, and formant frequencies. The

system is evaluated using 8 known speakers and 32 impostors. The feature contours for

each known speaker are stored for subsequent recognition. The feature contours are

estimated from a pre-defined utterance by sampling the speech signal 100 times per

second. After the system extracts the feature contours from a sample utterance, the

contours of the sample utterance are time aligned with the stored reference of the claimed

identity using a nonlinear time normalization approach. Such approach normalizes the

time axes by maximizing the correlation between sample and reference second-formant

contour through a piecewise linear continuous transformation of time. He uses the second

formant because it has large excursions that are characteristic of the utterance and its

shape is relatively consistent across different speakers and repetitions. Then, an accept-

reject decision is made based on the dissimilarity between sample and reference functions

computed with several heuristically chosen formulas. The equal error rate of the system is

on average about 1%.

In another approach similar to Doddington's work, Lummis [71] proposed a

speaker verification system that performs time alignment of the sample and reference

contoursbasedon theintensitycontour.Themaindifferencesare:1) timealignmentis
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based on the intensity contour instead of the second fonnant, 2) the reference patterns are

constructed differently, 3) different set of dissimilarity measures, and 4) the speech

samples are low-pass filtered at 4 kHz. The results are reported using the testing database

used by Doddington. Lummis shows that the time alignment of the sample and reference

contours using intensity contour yields same perfonnance as using the second fonnant

(about 1%). On a different experiment, the perfonnance of a system that uses only the

pitch and intensity contours yields an equal error rate of 0.5% (no statistical significance

is reported).

Recently, Adami et al. [76] used a FO contour template matching approach for

text-independent speaker verification system. The system uses the FO contour of 15

utterances as the speaker template. The utterances are words or phrases that have high

occurrence rate and low context or topic dependency, such as, "okay", "absolutely", and

"you know". Using an automatic speech recognition system to detect all the utterances

from the speech signal, the system uses dynamic time warping (DTW) to perfonn time

alignment and estimate the distance between all the matched utterances [118]. The final

score is the average of the DTW distances nonnalized by a set of cohort speakers. The

system yields a 13.3% EER on 8-conversation training condition of extended-data one-

speaker detection task of the 2001 NIST Speaker Recognition Evaluation [133]. This task

uses data from the entire Switchboard I conversational, telephone speech corpus (Section

3.2 presents a more detailed description of the evaluation task).

Prosodic Features Distribution Statistics

Sonmez et al. [132] proposed a probabilistic model of pitch halving/doubling to

characterize speaker-specific infonnation. They show that the pitch has a lognonnal

distribution and that the halving and doubling of pitch, which is produced by errors in

pitch tracking or by the speaker during spontaneous speech, can be also modeled together

with the nonnal pitch using a tied-mixture modeling approach. In this approach, a 3-

component lognonnal mixture model is used to model the pitch distribution. The means

of the mixture components that correspond to halving and doubling pitch are set to be

half and twice the mean of nonnal (or true) pitch, respectively. The variances of the three

mixtures are set to be the same. Each speaker is modeled using a lognonnal tied-mixture

model of the pitch distribution. For each test trial, a lognormal tied-mixture model of the
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test utterance is estimated, and the score is estimated using the relative entropy between

the pitch distribution of the speaker model and the utterance. The task is open-set, text-

independent speaker identification and the system is evaluated on the "one-session"

condition (all training data from one phone call) with males for the target and impostor

speakers from the March 1996 NIST Speaker Recognition Evaluation data. They show

results of the pitch-based systems, a GMM system trained on MFCC, and the fusion

between both systems. Despite the worse performance of the pitch statistics compared to

the cepstrum-based system, they show that the fusion of the pitch-based system with the

cepstra-based system provide a performance gain of more than 20% in false alarm rate,

which is a result of the fact that pitch is affected much less by the handset variability than

the cepstrum.

Carey et al. [135] showed that the mean and variance of pitch periods can provide

complementary information to spectral-based features and that they are less susceptible to

handset and channel mismatches. Using the 1995 and 1996 NIST Speaker Recognition

Evaluation data (a subset of the conversational, telephone speech corpus Switchboard I),

they study the use of prosodic features on the text-independent speaker verification task.

First, they show that the mean and variance of pitch and energy variance provide

discriminatory information about the speaker when used individually. Second, the fusion

of the scores from the pitch (mean and variance features) and spectral envelope (cepstral

features) systems provide a relative improvement of 30% on all the 1995 NIST

Evaluation tasks. Third, they also compare the effect of handset and channel on the

spectral- and pitch-based features. They show that the performance for spectral-based

features is more susceptible to handset and channel effects than pitch-based features.

2.4 Prosodic Language-specific Differences

Although prosody exists in all languages, the structure of prosody is not exactly the same

for every language. Languages can differ in the manifestation of stress, placement of

stress and pauses, the communicative functions of intonations patterns, and the

interaction between the parameters FO,intensity, and duration [33].

Some languages may use different prosodic phenomena to convey lexical

information. The unrestricted placement of the stress is used in most languages of
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European origin, such as English, French, German, and Spanish. For example, in English,

the word "increase" can have the stress on the first syllable, "in", signaling a noun, or on

the last syllable, "crease", signaling a verb. These languages contrast with the ones that

have fixed stress in relation to the word (e.g., Czech, Polish, Hungarian, and Swahili). In

accentual languages, such as Swedish and Japanese, the relative pitch difference between

words (pitch accent) is used to alter their meaning. In tone languages, such as Chinese,

Vietnamese, Thai, and Zulu, a tonal scale is used to differentiate the meaning of words.

Besides, differences within each category also exist. For example, Swedish has two

contrasting tones, and minimal pairs which differ only when tone exist; the contrast in

Japanese is characterized by the presence or absence of a tone [36]. Another example is

the number of tone patterns used by the tonal languages: Mandarin Chinese has four

tones, plus a "neutral" pitch; Thai has 5 tones; and Cantonese has 10 tones.

Intonation can be different among languages to convey non-lexical information

(such as questions versus declarative sentences). In English, declarative intonation is

marked by a falling FO ending, while yes-no question intonation is marked by a rising

one. On the other hand, Russian uses strong emphasis on a key word instead of a rising

ending. Chinese questions have an expanded pitch range near the end of the sentences.

The manner in which FO, duration, and intensity contribute to the stress of a

syllable may also differ among languages. For example, the timing of rises or fall of the

FO contour in relation to the placement of stressed syllables can vary. Some languages

use rising FO at the beginning of a stressed syllable, while others use a rising FOat the

end of a stressed syllable [35].

The variations in the use of stress cause different languages to have different

rhythms. Ladefoged [120] classifies the rhythmic differences among languages into those

that have variable word stress (such as English and German), those that have fixed word

stress (such as Czech, Polish and Swahili), and those that have fixed phrase stress (such

as French).

2.4.1 Prosody-based Approaches

Foil [100] used frequency formants and prosodic features extracted from FOand energy

contours to discriminate languages from noisy speech. The motivation for using FOand
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energy contours is that the rhythm and intonation patterns could be described by such

contours. The system uses a set of features based on statistics from voicing, pitch and

energy contours, and contours derivative. Using three languages to evaluate the system

performance, the performance of the prosody-based system is worse than the formant-

base system.

Thyme-Gobbel and Hutchins [10] studied the use of several features estimated

from pitch and amplitude contour information at the syllable level to discriminate

between the following four languages: English, Spanish, Japanese, and Mandarin. In her

study, the utterance is segmented into syllables using the pitch and amplitude contours,

and then features are extracted from within and across syllables. The statistics of the

extracted features are used to examine the discrimination between pairs of languages. She

shows that prosodic cues alone can successfully distinguish between some language pairs

with results comparable to many non-prosodic systems.

Hazen and Zue [136] described a system that integrates phonotactic, prosodic, and

acoustic information of different languages. The prosodic information is modeled through

probability densities of pitch information (FOand its derivative) within a segment (broad-

phonetic categories are used to define the segment boundaries). The system is evaluated

on 11 languages (Hindi, English, Tamil, Farsi, Mandarin, Japanese, French, German,

Spanish, Vietnamese, and Korean) from the OGI Multi-language Speech corpus [137].

They show that, despite the good performance of the system based only on phonotactic

constraints alone, the integration of other sources of information (prosodic and acoustic)

provides additional gain in performance.

Cummins et al. [25] used the smoothed first difference of FO and band-limited

amplitude envelope to discriminate pair of languages. The amplitude envelope is

estimated using a band-pass filter centered at 1000 Hz with a bandwidth of 500 Hz. They

claim that the amplitude variation in this frequency range is important for the perceived

rhythm of speech. Each pair of languages is modeled using an artificial neural network

trained on the first difference of either FOor the band-limited amplitude envelope. They

perform several experiments using data from 5 languages (English, German, Mandarin,

Spanish, and Japanese) of the OGI Multi-language telephone speech corpus. They show

that FOis more effective than the amplitude envelope feature. In particular, Mandarin and
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Japanese are better discriminated from the European languages, but are highly confused

among them.

2.5 Discussion

This chapter presented the prosodic bases for language and speaker recognition. Prosody

is used to modify the speech to convey lexical, syntactic, semantic, and emotional

information. The structure of prosody differs among languages. Within a language,

speakers can differ due to physiological characteristics and the manner in which a

speaker employs and produces prosody. However, the complexity of the realization of

prosodic phenomena makes difficult to define a set of features that can be used to capture

language- and speaker-specific information. Thus, only a few approaches to speaker and

language recognition incorporate prosodic features.

Most systems that incorporate prosodic features use the statistics of the

distribution of FO and intensity to model speaker- and language-specific information.

This type of approach only captures the variability of prosodic features in a segment but

not about the exact sequence of prosodic variations along the time. It disregards the

temporal aspects of prosody that determines stress or intonation patterns. In addition, the

modeling of prosodic features traditionally assumes statistical independence between

them, thereby, disregarding the interaction between such features.

Apart from the exploitation of FOand intensity statistics, some methods also make

use of the information from the contour of FO or intensity to capture intonational or

rhythmic information. Mostly used in text-dependent speaker recognition systems, FO

contours are used to model the intonation characteristics of a word or phrase. Even

though this approach does not discard the temporal information, it is limited to text-

dependent tasks. Another approach is to segment the speech signal and extract statistics

ofthe contour within the segments (e.g., syllables or fixed-length segments). Despite the

use of segmentation, the estimated statistics form the segments do not adequately capture

differences in the realization of prosodic features. For example, different contour shapes

within a segment can have the same statistics.
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Speaker Detection Framework

This chapter describes the framework for evaluating the proposed speaker detection

systems. First, the speaker detection task and the performance measures are described in

Section 3.1. Section 3.2 describes the evaluation setup and data, as defined by the NIST

Extended-data one-speaker detection task. Sections 3.3 and 3.4 describe the acoustic (the

state-of-the-art in the speaker recognition technology) and prosodic baseline systems,

respectively. Finally, a fusion system is described in Section 3.5.

3.1 Speaker Detection Task

The goal of speaker detection task is to determine whether a specified speaker is speaking

during a speech segment. It is assumed that the speech segment has only speech from one

speaker. The decision must be made based upon a test segment and a target-speaker

model.

The problem of speaker detection can be formulated as a hypothesis testing of two

mutually-exclusive hypotheses:

Ho:target speaker is speaking,

HI: target speaker is not speaking.

Since there are only two hypotheses, the likelihood ratio test is used to make a decision

[44]. The likelihood ratio test is a comparison between the likelihood ratio of two

hypotheses and a threshold given by

34
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P(XIHO)
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reject Ho

where p(XJ HJ is the likelihood function for the hypothesis Hi, i=O,1, evaluated for the

observed speech segment X, and T is the decision threshold (also known as operating

point).

There are two types of errors may occur in a detection system. Type I error occurs

when the null hypothesis (Ho) is rejected when it is true. The errors of this type are

referred to as "misses", meaning that the target speaker is not detected when he or she is

speaking. Type II error occurs when the null hypothesis is not rejected when it is false.

The errors of this type are referred to as "false alarms", meaning that the target speaker is

falsely detected when he or she is not speaking. Furthermore, the type of the application

determines the cost for every decision. For example, the cost of a false alarm error has a

more damaging effect than a miss error in a telephone credit card purchase system.

Therefore, the probability and costs associated with the errors have to be considered

when making a decision rule (i.e., selecting the decision threshold). Figure 3.1 shows the

main components of a speaker detection system based on likelihood ratio test.

Feature
extraction

Target-speaker
model

) Test segment

Decision .Accept
Reject

Impostor
model

Figure 3.1: Speaker detection system based on likelihood ratio test.
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The features extracted from the test segment are used to compute the hypotheses

likelihood. The likelihood of the null hypothesis is estimated using the target-speaker

model. The likelihood of the alternative hypothesis is estimated using an impostor model

that characterizes all the speakers, but the target speaker. The estimation of the

likelihoods depends on the distribution used to model the respective feature space. For

example, a system can assume that the feature space is represented by a Gaussian

distribution, so that the models are the mean and variance parameters.

The target-speaker and impostor models are estimated apriori. The target-speaker

models are estimated using training data from the respective speaker. The estimation of

the impostor model poses a more complex task because it must represent the speaker

space that is complementary to the target speaker. The method to define a speaker set that

represents such speaker space is still under research [59, 138].

3.1.1 Speaker Detection Performance

The performance of a detection system is evaluated using the probabilities and costs

associated with the decision errors (false alarm and miss). One performance measure

frequently used in speaker detection tasks is the equal error rate (EER). The EER is the

point where the false alarm and miss probabilities are equal, and both errors have the

same cost. Another performance measurement is the detection cost function (DCF),

which is adopted by the NIST evaluations of speech, speaker, and language recognition

systems. The DCF is defined as a linear combination of the miss (PMisslTarget)and false

alarm (PFalseAlarmlNonTarget)probabilities:

CDet = CMiss * PMisslTarget* PTarget + CFalseAlarm* PFalseAlarmlNonTarget* PNonTarget

where CDetis the detection cost, CFalseAlarmand CMissare the relative costs of detection

errors, and PTargetis the a-priori probability of a particular target speaker (so that,

PNonTarget= 1 - PTarget).Defined by the NIST evaluation paradigm, the DCF parameters are

set as following: CFalseAlarm= 1, CMiss= 10, and PTarget= 0.01. This means that the false

acceptance error is considered about 10 times stronger than a false rejection error.

Despite that DCF is a more generic measure, performance comparisons focus on EER

because the costs associated with each error can vary across different applications.

Besides the EER, we report the minimum DCF value obtained a posteriori for the best
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detection threshold. The minimum DCF value is always going to follow the EER in

between parenthesis.

The performance of a system can also be described in terms of a graph

representing the probabilities involved in the detection task. Since there is a tradeoff

between the miss and false alarm errors, the system can work under different operating

conditions. A performance curve is estimated by continuously changing the value of the

decision threshold. The receiver operating characteristic (ROC) curve has been

traditionally used for this purpose. The ROC curve uses the false alarm rate and the

correct detection rate as the x- and y-axes, respectively. However, ROC curves are not

used in this work because systems that are close to the optimal point (upper left comer of

the graph) tend to group together near this comer, which makes difficult the visualization

of different systems. Instead, we use the detection error tradeoff (DET) [139] curve to

plot the systems performance.

40
... DETcurve 1: EER=1.6%(0.0078)

-.-,. DETcurve 2: EER=1.0%(0.0044)
- DETcurve 3: EER=O.7%(0.0034)
- 95%Confidence Box
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.....

0.1 0.2 0.5 1 2 5 10 20 40
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Figure 3.2: Example of detection error tradeoff (DET) curve. The minimum DCF value is in between
parenthesis following the EER. The boxes represent the 95% confidence interval.
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distribution of the likelihood ratio values are normally distributed for true speakers and

impostors, and the variances of the distributions are equal. Plotting the normal deviates

that correspond to the false alarm and miss probabilities results in a straight line

performance curve (consequence of the normality assumption) with unit slope

(consequence of equal variances). Note in Figure 3.2 that the use of the normal deviate

scale moves the curves away from the lower left comer when the performance is worse,

making visual comparisons easier.

The rectangles in Figure 3.2 represent the 95% confidence interval around the

EER point. The confidence interval is computed under the assumption that each detection

test is an independent trial, that misses and false alarms are uncorrelated errors, and that

the data comes from a binomial distribution. In case of non-overlapped rectangles, like

DET curve 1 and 2 in Figure 3.2, the difference between the systems is statistically

significant (significance level at 0.05). However, the converse is not true, which always is

going to be followed by a significance test. We use the binomial test for differences in

proportion [140] to check whether the difference between the EER of systems IS

statistically significant. Unless specified, the level of significance is set to a = 0.05.

3.2 NIST Extended-data One-speaker Detection Task

In 2001, NIST introduced a new speaker detection task that provides large amounts of

training data: extended-data one-speaker detection task [133, 141]. The purpose of this

task is to support the exploration and development of higher-level and more complex

characteristics for speaker recognition [27].

3.2.1 Evaluation Data

The data for this task comprises of conversational, telephone speech from LDC's

Switchboard corpora. The extended-data task in the 2001 NIST Speaker Recognition

Evaluation (SRE) uses data from the Switchboard I corpus, and the 2002 NIST SRE uses

data from the Switchboard II corpus (phases 2 and 3).

The Switchboard I corpus consists of approximately 2,400 telephone

conversations averaging 6 minutes from all areas of the United States [142]. There are

543 speakers (302 male, 241 female) ranging from 20 to 60 years old. The education
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level of most of the participants (about 90%) was at least college. The collection process

was controlled by a computer system (also known as "Robotoperator"). Upon receiving

an incoming call, the system selected and dialed a second person, and introduced a topic

for discussion. Then, the entire conversation was recorded from the two subjects into

separate channels. The search for the second person was restricted to the participants who

had not spoken with the caller. There were about 70 topics provided for discussion, of

which about 50 were used frequently. No one spoke more than once on a given topic.

The Switchboard-II Phase 2 corpus consists of 4,472 5-minute telephone

conversations from 6 states (Illinois, Iowa, Minnesota, Michigan, Ohio, and Wisconsin)

of the United States. The 679 participants (352 Female, 327 Male) were mainly college

students from several mid-western university campuses. The Switchboard-II Phase 3

corpus consists of 2,728 5-minute telephone conversations from southern United States,

under a variety of telephone (land line) handsets. The 640 participants (292 Male, 348

Female) were mainly college students. The collection process of both phases is similar to

the one used for Switchboard I. Each participant was allowed to initiate and receive at

most one call per day. Each participant would receive five calls at a designated number

and make five calls from distinct phones lines.

3.2.2 Evaluation Setup

NIST provided a control file listing target and test speakers, along with training and

testing conversation list. The training list has all the target-speaker models and their

respective conversations for training. A speaker can have several models that vary the

conversations or the number of conversations used for training. The target-speaker

models are trained using I, 2, 4, 8, or 16 conversation sides. The testing list has the

hypothesized speaker (test segment) and multiple target-speaker models. One

conversation side will serve as a test segment. The system must produce a score and

decision for each trial, which comprises a target-speaker model and its hypothesized

speaker. There are two types of trials: target trials (the hypothesized and target speakers

are the same) and impostor trials (the hypothesized and target speakers are not the same).

To supply a large number of target trials, impostor trials, and target-speaker

models, the evaluation used a cross-validation processing of the entire corpus. The cross-
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validation experiments were defined by NIST [133, 141]. In both NIST SREs, the

evaluation data is divided into several partitions. All trials within a partition have only

target-speaker models and test segments from the speakers within that partition only; data

from other partitions are available for other purposes, such as background model building

and normalization. In the 2001 NIST SRE, the evaluation data was divided into 6

partitions of 80 speakers each. The detection task consists of 483 speakers with 4,105

target-speaker models and 57,470 (target and impostor) trials for the testing phase. In the

2002 NIST SRE, the evaluation data was divided into 10 partitions of 106 speakers each.

The detection task consists of 10,932 target-speaker models and 156,184 trials for the

testing phase.

Due to the limited number of speakers/models, the results for the 16-conversation

training condition were found to have high statistical variation so we will generally cite

results only up to the 8-conversation training condition.

3.3 Acoustic Baseline System

Although this work proposes a prosody-based system, we want to show that the proposed

prosodic approaches can provide complementary information to acoustic-based systems.

The most successful approach to text-independent speaker detection is based on a

likelihood ratio detector (as depicted in Figure 3.1) that uses Gaussian mixture models

(GMMs) for estimating the likelihoods [20, 59]. Since this approach is the state-of-the-art

on the NIST speaker recognition evaluation [94], the parameters configuration of this

system are the same as the ones used in the evaluations according to Reynolds et al. [59].

3.3.1 Feature Extraction

The feature extraction processing consists of three steps, as depicted in Figure 3.3. First,

the speech signal is divided into overlapping segments of 20 ms, with a 10 ms overlap.

Then, a speech activity detector is used to discard silence-noise frames. The speech

activity detector is a self-normalizing, energy-based detector that tracks the noise floor of

the signal and can adapt to changing noise conditions [143]. This procedure basically

estimates the instantaneous signal to noise ratio (SNR) as the ratio of the short-time and
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the long-time signal energy, and removes signal parts for which the SNR is below a

certain threshold.

Channel
Normalization :1 Feature

vectors
Speech
Activity

Detection

Mel-frequency
Cepstrum
Estimation

.-. . . . ... ........ ..... . .. . . . . . . . . . . . . . . . . . . .

::F~~~~r~: txtr:~~ti.on.::::... .

Figure 3.3: Sequence of steps to extract features from the speech signal.

A 19-dimensional mel-scale cepstral (MFCC) feature vector is extracted from the

frames not discarded by the speech activity detector. First, each frame is multiplied by

Hamming window to reduce the discontinuities at the edges of the frame [119]. Second,

the frame is transformed to the frequency domain using short-time Fourier transform.

Since the Fourier transform of a real signal is a complex and symmetric signal, the signal

is converted to a real signal by computing the square of its magnitude. The resulting

signal is referred to as "speech spectrum". Then, motivated by the non-uniform frequency

resolution of the human hearing, the speech spectrum is converted to a non-uniform

frequency scale by applying a set of simulated triangular-shaped filters (spaced according

to the Mel-scale [119]). Such filters compute the average spectrum around each center

frequency with increasing bandwidths. Since speech signal was acquired trough a band-

limited telephone, only the Mel-filters within the frequency range 300 Hz and 3138 Hz

are retained for further processing. A non-linear transformation (logarithmic function) is

applied to the resulting Mel-frequency spectrum. Finally, the Mel-frequency spectrum is

projected on a discrete cosine basis. The coefficient that corresponds to the spectral

energy is discarded from the feature vector.

The mel-frequency cepstrum coefficients are augmented with transitional spectral

information often referred to as delta features [51, 144]. These features provide

complementary information to the mel-frequency cepstrum and are less affected by

communication channel effects. Delta features are computed using a first-order

orthogonal polynomial temporal fit of each cepstral trajectory over a finite length window

(in time) [57, 145]. Let Ck(t)be the J(hmel-cepstrum coefficient from a frame of speech at
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time t. The first-order orthogonal polynomial coefficient, or the generalized spectral slope

(in time), denoted as l1ck(t),has the following form:

(3.1)

where 21 + 1 is the length of the window. The delta features are estimated over a 50 ms

time interval {I=2 in Equation 3.1). The addition of the delta features to the me1-

frequency cepstrum coefficients produces a 38-dimensional feature vector.

Finally, RASTA (RelAtive SpecTrA) filtering [146] is applied to compensate for

the varying acoustic properties of the different telephone handsets or channels (e.g., land-

line or cellular) encountered in training and testing speech data. Assume the case where

the handset or even the channel that was used for collecting training data for a given

speaker is switched in the testing phase. This change can affect the recognition

performance because the speech from the new handset or channel is not represented in

the training data. However, the characteristic of the sources of these non-speech

components is often deterministic, which makes the effects of the speech signal

predictable. For example, the frequency characteristic of a communication channel is

often fixed or slowly varying in time, and it shows as an additive component in the

logarithmic spectrum of speech (convolutional effect). In addition, the rate of change of

these components in speech often lies outside the typical rate of change of the vocal tract

shape. The RASTA filtering exploit these differences to reduce the effects of changes in

the communication channel, by suppressing the spectral components that change more

slowly than speech. This filtering technique also suppresses spectral components that

change faster than speech, thereby reducing the effects of convolutional noise.

3.3.2 Speaker Modeling and Detection

Given the likelihood ratio detector framework described in Section 3.1, two different

models are used to estimate the likelihoods: universal background model (UBM) and

target-speaker model. Extensively used for modeling in text-independent speaker

recognition applications [21, 46, 93, 94, 96, 147], each model is represented by a

Gaussian mixture model (GMM).
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Gaussian Mixture Models

A Gaussian mixture model describes the probability distribution of a given data set as a

linear combination of several Gaussian densities. In this model, each d-dimensional

random vector x is assumed to be drawn independently from a mixture density given by

the equation
M

p(xle)= LliT;p(xIJi;, 1:;),
;=1

o ~ liT. ~ 1 and "M liT.= 1
I L...;=I I

where liT;defines the mixing weight ofthe ih Gaussian component (for all i = 1, 2, ..., M)

given by the relative importance of each component in the density function, p(xIJii'1:J

represents the ih d-dimensional Gaussian component with mean Ji; and covariance 1:;

given by

and e = {liT1'.. ., liTM, Ji1'. .. , JiM,1:l' .. ., 1:M} represent the mixture density parameters.

The mixture density parameters are estimated using a maximum-likelihood approach.

The expectation maximization (EM) [148] is an iterative algorithm for finding the

maximum-likelihood parameter estimates for the case of incomplete data, where in the

mixture of Gaussians the probability of assigning a sample xn to the ih Gaussian

component is unknown. It is assumed that the samples in X = {XI'x2,. . ., XN} are

independent and identically distributed (i.i.d.). Assuming a generative model of the data,

each sample xn E X is generated by only one ofthe Gaussian components. The goal is to

obtain the parameter values e which maximize the likelihood of X given the data, as

follows

N

e = argmax p(xle) = argmax TI p(Xn Ie).
e e n=1

The maximum-likelihood estimate e is the value of e that maximizesp(xle). Given

an initial estimate of the mixture density parameters, the EM algorithm iterates the

following two steps:
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E-step: estimate the probability that xn is assigned to the /h mixture component

given the current parameter estimate e(p) and the data X using

(p) ( I

(p) ~ (p))( .
1

" (p) )- Wi P Xn 11i , i
pXn,ze ,X - M '

L W j (p) p(x n 111 j (p) , ~ j (p) )
j=l

where e(p) = {w(p),II(P),~(p)} represent the mixture density parameters

after the lh iteration.

M-step: re-estimate the mixing weights, means, and covariances of the Gaussians

densities using the data set weighted by p(xn,ile(p),x) to maximize the

likelihood of the data, according to the following equations:

w/P+1) = ~tp(xn,ile(p),x)

(p+!) L:=!P(Xn,ile(p),X~n
IIi = N

LP(xn,ile(p),x)
n=!

There are several reasons for using a GMM in speaker recognition. First,

individual mixture components may capture the characteristics of some set of acoustic

classes. For example, speech can be viewed as a sequence of acoustic classes represented

by a set of phonemes. Such phonemes can be realized differently across speakers due to

physiological characteristics. A mixture component may represent the acoustic

characteristics of a phoneme by encoding the average and the variation of the acoustic

characteristics using the mean and covariance parameters, respectively. Second, a linear

combination of Gaussian basis functions is capable of forming smooth approximations of

arbitrarily shaped densities. However, the strong assumption that the observations are

independent conceals the temporal aspects of the speech signal.
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Universal Background Model (UBM)

Since the UBM must represent the feature space of all speakers except the target speaker,

it is common to use a GMM with a considerable number of mixture components. In this

work, the UBM has 2048 mixtures components with diagonal covariance matrix. Despite

the large number of mixture components, the number of parameters that needs to be

estimated is reduced by the use of diagonal covariance matrix. Moreover, diagonal

covariances provide a simpler implementation and require less computational power than

full covariance matrices. Besides, it has been shown that the modeling capability of using

a set of full-covariance Gaussians can be equally achieved by using a larger set of

diagonal-covariance Gaussians [93]. The UBM is estimated using the Switchboard II

conversational, telephone speech corpus. The EM algorithm is initialized by selecting

2048 features vectors from the training data as the means of the Gaussians distributions.

Then, the EM algorithm is iterated five times to estimate the UBM parameters.

Target-speaker Model

The target-speaker models are estimated by employing a Bayesian adaptation (also

known as maximum-a-posteriori estimation) from the UBM using the target-speaker's

training data [59]. Like the EM algorithm, the adaptation is a two-step estimation process.

In the first step, the estimates of the sufficient statistics of the speaker's training data are

computed for each mixture component in the UBM. This is identical to the E-step of the

EM algorithm. Given the mixture density parameters of the UBM and the speaker's

training data X = {XI'x2'..., XN}, the sufficient statistic estimates of the target-speaker are

computed using the posterior probability p(xn,ileUBM,X), i.e., the probability of xn

being generated by the lh mixture component ofthe UBM:
N

Yi = LP(xn,ileUBM,X)
n=1

Ei(X)=~Ip(xn,ileUBM ,X~n
Yi n=1

Ri(X) = ~ Ip(xn,ileUBM ,X~nx:
Yi n=1
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where, for the lh mixture component of the target-speaker model, y; is the mixing weight,

E;(X) is the mean, and R;(X) is the diagonal covariance matrix. The mixture density

parameters of the UBM are representedbyeUBM={mUBM,pUBM,L.UBM}.In the second

step, the mixture density parameter estimates of the target-speaker model are derived by

unsupervised maximum-a-posteriori (MAP) re-estimation of the mixture density

parameters from the UBM, as follows

tiT.=
[
a~ y; + (l-a~ L.

]
r

I 'N ,p,

,1;=a~E;(X)+(I-a~).;

t; =a;R;(X)+(I-a;X~; +p:)-,1:

where 1: is a scale factor to ensure that the mixing weights sum to unity, and the

parameters at, aim, and a; reflect the respective confidence in the parameter estimates

YpE;(X), and R;(X). That is, if a mixture component has a low probabilistic count of

speaker's data, Y;' then the new parameter estimate will rely on the parameter estimates

of the UBM. The confidence parameters are defined as

P E {w,m, v}

where rPis a fixed relevance factor for parameter p.

In this work, only the means of the mixture components are adapted from the

UBM [59, 147]. The adaptation process is iterated only once. The relevance factor is set

to 16.

3.3.3 Scoring

The likelihoods for the target-speaker model and UBM are accumulated using only the

five best scoring components identified for the UBM on the test vectors [59]. This is

motivated by two reasons. First, when a GMM with many mixture components is used to

estimate the likelihood value for a feature vector, only a few of the mixtures contribute

significantly to the likelihood value. This suggests that the likelihood value can be

approximated using only the top C best scoring mixture components. Second, the adapted

Gaussian components maintain a correspondence with the mixtures of the UBM, so that
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the feature vectors close to a particular mixture in the UBM will also be close to the

corresponding mixture in the target speaker model.

3.3.4 System Performance

The EER of the acoustic baseline for 8-conversation training condition on Switchboard I

is 0.7%. Figure 3.4 shows the DET curve for the acoustic baseline system for different

training conditions on the 200I NIST SRE.

--- 1 conversation: EER=3.3%(0.0124)
40 ~... ql"". 2 conversations: EER=1.6"10(0.0078)

4 conversations: EER=1.0"10(0.0044)
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..i..

2

1 \I:"

. ~'''<~~'-'~''''--!L~~':''

.....

0.5

0.2

0.1

0.1 0.2 0.5 1 2 5 10 20 40
False Alarm probability (in %)

Figure 3.4: DET curves of the acoustic baseliue system ou the 2001 NIST SRE.

3.4 Prosodic Baseline System

The aim of the prosodic baseline system is to capture the characteristics of the FO and

short-term energy features distribution. This system is based on a likelihood ratio detector

that uses GMMs for estimating the likelihoods as described in Section 3.3.2.

3.4.1 Feature Extraction

This section is divided into three parts. In the first part, we describe the process of

fundamental frequency estimation. Then we describe the method used in this work to
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estimate the fundamental frequency. Finally, the speech parameterization process IS

described.

Fundamental Frequency Estimation

The goal of fundamental frequency (FO) estimation is to obtain the period of the glottal

excitation waveform. This waveform is generated by the periodic opening and closure of

the vocal cords in the glottis while air is pushed through from the lungs. The periodic

opening and closing happens for voiced speech only; otherwise, unvoiced speech is

produced. Thus, the detection of voiced speech segments must be performed before

estimating the FO. However, automatic FO estimation is often a very difficult task for

several reasons, such as:

. FOchanges with time;

. Glottal excitation waveform is not a perfect train of periodic pulses;

. Interactions between the vocal tract and the glottal excitation can alter the

glottal excitation waveform (e.g., fast changes of the formant frequencies);

. Voicing is very irregular at voice onset and offset causing irregularities in the

contour of adjacent periods;

. Unvoiced speech segments can be confused with low-level voiced speech;

. Pitch period can suddenly change and even halve (vocal fry), particularly at

the end of stressed voiced speech segments.

Besides the inherent difficulties associated with FOestimation, the accuracy can

also be affected when the speech is transmitted through some transmission channel. For

example, telephone systems introduce additive and convolutional noise to the speech and

attenuate the FOand formants.

Several approaches to automatic FOestimation have been proposed [72]. They can

be classified into three categories:

1. Time-domain techniques estimate the FOdirectly from the speech waveform.

These techniques search for patterns of gross speech waveform features (peak

and valley, zero crossing, and auto-correlation measurements) from one

period to the next. Despite the low computational complexity, these

techniques are often noise sensitive.
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2. Frequency-domain techniques use the property that periodicity in the time

domain results in a series of impulses in the frequency domain at the FOand

its harmonics. These techniques are sensitive to the length of the analysis

window so that their dynamic pitch range tends to be limited.

3. Hybrid techniques employ the previous two categories combined. For

example, spectral flattening (so the effect of vocal tract is partially removed,

leaving the glottal excitation spectrum) followed by autocorrelation.

The estimation of FO usually is performed in three stages: pre-processing, FO-

candidates estimation, and post-processing. The goal of the pre-processing stage is to

remove any interfering signal component (e.g., background or channel noise, vocal tract

influence, and DC offset), and to transform the signal to match the requirements of the

method (e.g., low-pass filtering improves the FOestimation because it removes the effects

of the higher frequencies in the search for the FOcandidates). The goal of FO-candidates

estimation stage is to generate a set of FOcandidates for the estimation of the true period.

The last stage, post-processing, selects the best candidate and refines the FOestimate.

Most of the methods for generating a set of FO candidates employ the auto-

correlation function [72, 149]. The reason is that the correlation of the speech signal will

have a large peak corresponding to the pitch period. However, there are several problems

related to methods based on the autocorrelation function. First, the function requires a

long segment of speech to compute the correlation so that it can cover adequately the FO

range. For example, when the segment is short compared to the pitch period, rapid

changes in formant frequencies can create peaks that are larger than the pitch; thus the

procedure of selecting the highest peak as the pitch period will fail. Second, because of

the large segments, rapid FO changes can result in the loss of a clear peak in the

correlation result.

Several methods that are not based on the auto-correlation method also present

similar problems. For example, the cepstrum method uses the property that if a signal has

periodicity then the cepstrum (the inverse Fourier transform of the short-time log

magnitude spectrum) will have a peak at the fundamental period of that signal. However,

the interval of speech which the spectrum must be computed is the same as that required

for the auto-correlation function.
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In this work, we use the RAPT - Robust Algorithm for Pitch Tracking proposed

by Talkin [149] to estimate the FOcontour. Widely used for estimating FO, this method

uses the normalized cross-correlation function (NCCF) to find a set of FOcandidates and

dynamic programming to select the best FO candidate or unvoiced hypotheses. The

NCCF overcomes all of the shortcomings of the methods based on the auto-correlation

function, i.e., it does not need a large segment of speech to estimate the correlation and is

sensitive to rapid changes in the amplitude. This method is available through the get_ill

program in the ESPS/waves+ software package from Entropic Research Laboratory,

Inc.[150].

RAPT - Robust Algorithm for Pitch Tracking

The algorithm performs a two-pass procedure based on the NCCF to find the FO

candidates. In the first pass, a set of coarse FOcandidates are estimated using the NCCF

of a downsampled version of the speech signal. The downsampling is performed to

reduce the computational cost of estimating the NCCF. First, the input signal is

downsampled to a frequency Fdsdetermined by

Fs
Fds =

(round ~
4FOmax

where Fs is the sampling frequency (Hz) of the original signal and FOmaxis the maximum

FO(Hz) to be searched. Before the downsampling, the signal is low-pass filtered using a

symmetric finite impulse response (FIR) filter obtained by truncating the impulse

response of an ideal Fdsl2 low-pass filter with a 5 ms duration Hanning window. Then,

the NCCF is computed at all lags k for a speech frame from the downsampled signal with

size w ms (also know as analysis window), every t ms (also know as analysis frame

interval) using the following equation:

m = iz; z = tFds; n = wFtfs; i = O,1,...,M -1

where Sm,m=O, 1, 2, ..., is a nonzero sampled speech signal with sampling frequency Fds,

i is the speech frame index for M speech frames, and
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Note that rjJ;,kis boundedbetween-1 and 1, and rjJ;,kis close to 1 for lagscorrespondingto

integer multiples of the "period". In case of unvoiced regions, rjJ;,ois 1 and rjJ;,kis

approximatelyzero for k "# O.All thesepropertieshold independentlyof the amplitudeof

the speech signal. To reduce the computational cost, the NCCF is only estimated for a

limited range ofFO values, [FOmin=50Hz,FOmax=500Hz], so that FdslFOmax::;k:§s/FOmin.

For each speech frame i, the maximum value of fjJis defined as r/Jmax,and all local maxima

that exceed 0.3* r/Jmaxare marked. Then, a more precise peak location and amplitude at Fs

are obtained using parabolic interpolation on the three samples of fjJdefining each peak at

Fds.Finally, they are sorted by decreasing amplitude, and the top 19 candidates are saved.

In the second pass, the NCCF function is computed using the original speech signal at Fs,

but only for seven lags around the detected local maxima. Then, new local maxima are

selected as the FO candidates using the same process described in the first pass (the

parabolic interpolation is not performed at this time).

Dynamic programming is used to obtain the optimum FOand voicing estimation

at each speech frame. Let Ii be the number of states proposed at frame i, where state 0 is

unvoiced and the remainder ones are the FOcandidates. Thus, at each frame, 1;-1possible

fundamental frequencies (voiced states) and one unvoiced state will be proposed. For

each frame i, a local cost value, dij, for each state j and a transition cost, ~j,k, from the

previous frame k are estimated for each state. There is also a cumulative penalty, Dij,

associated with each state, which represents the best match with the state from the

previous frame. The cumulative penalty is computed using the local cost and the smallest

transition cost from the previous frame k using the following equation

D.. =d.. +min{D. Ik +8. 'k}'
l,J l,J keli_i l- , /,J,

with the initial conditions

DO,j = 0, 10 = 2.

The state from the previous frame with the smallest transition to the current one is

saved to define a trajectory to the best match in the previous frame. The optimum

trajectory is defined by the trajectory with the smallest cumulative penalty. Since there is
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an unvoiced state per frame, the voicing decision is also estimated in the trajectory. For a

more comprehensive description of the FOestimation algorithm, the reader is referred to

Talkin's work [149].

Parameterization

The FOand energy features are estimated every 10 ms from the speech signal. Since the

distribution ofFO have a lognormal characteristic [132] and intensity is usually measured

on the logarithmic scale, both features are represented on the logarithmic scale. Then,

delta features are appended to the feature vector to characterize transitional information

of each feature contour. The delta features are estimated over a 50 ms time interval using

Equation 3.1. Therefore, the addition of the delta features generates a new 4-dimensional

feature vector.

Since FO cannot be estimated from unvoiced speech regions, only the feature

vectors extracted for voiced speech regions are used in the speaker modeling. In addition,

the speech activity detector used for the acoustic baseline system is employed to discard

feature vectors extracted from silence and noisy regions.

The feature vectors at the beginning and ending of every voiced speech region are

discarded to avoid discontinuities in the derivative computations. Given the

discontinuities in the FOcontour created by the non-existence of FOvalues for unvoiced

speech region, the delta features around the boundary between voiced and unvoiced

speech regions are not correctly estimated. Since delta features are estimated over a 50

ms time interval, the delta features in the first and last two feature vectors of each voiced

speech region are discarded.

3.4.2 Speaker Modeling

Gaussian Mixture models are used to estimate the likelihoods for the UBM and the target

speaker models, as described in Section 3.3.2. The UBM is a 512-component GMM

trained with gender-balanced speech from cross-validation partitions not under test. Only

the mean vectors of the target-speaker models are adapted from the UBM. The relevance

factor is set to 16. The score is computed using only the five best scoring mixture

components per frame.
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3.4.3 System Performance

Figure 3.5 shows the DET curve for the prosodic baseline system on different training

conditions on the 2001 NIST SRE. The EER of the prosodic baseline for 8-conversation

training condition on Switchboard I is 15.2%.
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Figure 3.5: DET curves of the prosodic baseline system on the 2001 NIST SRE.

Given the small number of features (2 static and 2 delta, compared to the acoustic

baseline's 19 mel-cepstrum coefficients plus 19 deltas), the limitation to only voiced

frames, the noisiness of the pitch values due to halving and doubling of FOestimates, and

the simpler modeling technique (512 mixtures compared to the acoustic baseline's 2048

mixtures), the prosodic baseline provides a reasonable performance.

3.5 Fusion System

The goal of information fusion is to exploit the combination of different information

sources such that the combination result is qualitatively and quantitatively (in terms of

accuracy, reliability, or robustness) better than the individual sources [151-153].

Information fusion is analogous to the cognitive process used by humans to combine
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information (e.g., sights, sounds, smells, tastes, and touch) from different sensors (e.g.,

ears, eyes, nose, and mouth) to make inferences about the external world, such as,

assessment of the surrounding environment and identification ofthreats [151, 153, 154].

Since speaker recognition is based on a pattern recognition framework [45], the

information fusion can be employed on several levels of the recognition process [151].

The fusion can take place at the raw data level (prior to feature extraction), at the feature

extraction level (prior to classification), at the classification level (prior to decision), or at

the decision level (after the decision has been made). The choice of when performing

fusion depends on the type of sensor data and the data processing along the recognition

process.

3.5.1 Classification-level Fusion System

In this work, a classification-level fusing system is used to combine different speaker

recognition systems. In this type of fusion system, the likelihood scores produced by the

likelihood ratio test from each system are combined into one score, which is then used by

the decision module to make an acceptance or rejection decision. There are several

reasons for fusing likelihood scores. First, most of the speaker recognition systems

produce a likelihood score. Second, the dimensionality of the input data of the fusion

system depends only on the number of systems that are going to be fused. Finally, since

the fusion does not cause any change of the feature space or classification method, the

fusion system is transparent to the fused systems.

Assuming that the relationship between different sources are nonlinear, the fusion

system uses an artificial neural network (ANN) to combine the likelihood scores [15,

154, 155]. The advantages of the ANN approach are that it does not require any

knowledge about the feature distribution, and the reliability of each information source is

incorporated into the classification process. This approach treats the likelihood scores of

all system as a feature vector, and the fusion problem as a pattern classification process

[154]. It partitions the space into the regions corresponding to target and impostor

speakers.

The neural network is a single-layer perceptron network [156, 157] depicted in

Figure 3.6. The neural network has a layer consisting of inputs for each system, Xj,i=l, 2,
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..., n, (and a bias tenn, xo=l), no hidden layer,and an output layer with two sigmoidal

output nodes: target, OJ,and impostor, 02. Before feeding the likelihood scores to the

network, the scores are nonnalized to zero mean and unit standard deviation using

parameters derived from the training data.

Bias

xo=l

Target

Impostor

Xu

Figure 3.6: Single-layer perceptron network architecture.

A single-layer perceptron network takes a vector of likelihood scores as the input data,

calculates a linear combination of these inputs, and then computes its outputs using a

continuous function. More precisely, given inputs {xo,Xl, X2,...xn}, the network outputs

are estimated using

j =1,2

wherej is the output node, Wjithe weight associated with the lh input to the output nodej,

and rjJ(.)is the nonlinear continuoussigmoidal function or, alternatively,the logistic

function,

The backpropagation algorithm is used to learn the weights Wjifor the single-layer

perceptron network. It employs gradient descent to minimize the squared error between

the network output values and the target values fir.,k=l, 2, for these outputs. In this work,

there are two possible types of target values. For the likelihood scores from the target

trials, the target values are fj=l and f2=O.Otherwise, the target values are fj=O and f2=1.
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In each iteration of the backpropagation algorithm, the weights are modified according to

the following equation

wji(n) = wji(n-1)+ dwji(n)

where

dw.. (n)=1]o.x.. +adw.. (n -1 ) .
JI J JI JI

Here dwji(n) is the weight update performed during the nth iteration, 11 is a positive

constant called the learning rate, 0 =:ag is a constant called the momentum, and Okis the

error term for the output node k given by

Ok =ok(I-0kXtk -Ok)

The learning rate controls the adjustment applied to the weight. The momentum smoothes

the weight estimate by controlling the influence of the weight update trom the previous

iteration on the current weight update. The learning rate 11is set to 0.2 and the momentum

a is set to 0.6. The training process iterates 20 times over the training data to estimate the

input.

A single-layer perceptron network is trained for each number of training

conversations from a given partition using the remaining partitions as the training data.

Assume that we want to fuse the scores of a set of systems. For each partition, a neural

network is trained for each evaluation condition (i.e., number of training conversations: 1,

2, 4, 8 and 16). The data used for training the neural network comes from the remaining

partitions for the same evaluation condition. Therefore, a total of 30 neural networks (5

training conditions times 6 partitions) is trained for fusing systems on the 2001 NIST

SRE, and 50 neural networks (5 training conditions times 10 partitions) for fusing

systems on the 2002 NIST SRE.

Once a neural network is trained for a given partition and evaluation condition,

the final score for each trial is estimated using the following equation

0) + (1- 02 )
ScoreFusion= ,

2

where 0 j, i=l, 2 are the values trom the output nodes [156].



Chapter 4

Modeling Pitch and Intensity Dynamics

Most speaker and language recognition systems do not represent adequately the

realization of prosodic phenomena when incorporating prosodic information. The

incorporated prosodic information often disregards the temporal aspects or the

relationship between prosodic features (e.g., FO, intensity, and duration). In this chapter,

we describe a new approach for modeling the variations in the temporal aspects and

interaction between FOand short-term energy contours. We show that this approach can

capture prosodic differences among speakers. Basically, the approach segments the

speech signal at the points where there is a change in the dynamics of the FOand short-

term energy contours. Then, each segment is labeled with a class that represents the

characteristics of dynamics of both contours within the segment. Finally, a simple

statistical model is built from the sequence of segment classes. Section 4.1 introduces the

assumptions of the approach for modeling prosodic differences. Sections 4.2 and 4.3

present two methods for segmenting the speech signal. Section 4.4 shows that the

modeling approach provides complementary information to the acoustic and prosodic

baseline systems. Section 4.5 demonstrates that, without any parameter tuning, the

modeling approach provides similar performance on a different evaluation data. Section

4.6 analyzes the effects of amount of training data, speaker demographics, and handset on

the performance of the modeling approach for speaker recognition. Finally, some

extensions to the new prosodic modeling are presented in Section 4.7.

57
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4.1 Prosodic Information Modeling

The acoustic realization of prosodic phenomena can be observed and quantified using FO,

intensity, and duration. However, for the purpose of prosodic information representation,

the focus of this work is on the modeling of patterns of variations in the FOand intensity

contours. One reason for modeling both features is that they have long been

acknowledged to exhibit a high degree of interdependence [33, 39-41]. For example, FO

may be raised by increasing vocal fold tension, by increasing subglottal pressure, or by a

combination of the two. Consequently, such parameters are going to contribute

differently to the realization of different intonation, stress, or rhythm patterns. Since the

problem with duration is not so much in measuring as in determining the points at which

to perform the measurements [158], the duration feature is not directly exploited in the

modeling. Besides, one of the goals of this work is to provide a representation of prosodic

information that is language independent, i.e., a method that does not require knowledge

about the segmental structure (e.g., phones and syllable) of a given language to describe

prosodic information.

The hypothesis is that different speakers or languages may be characterized by

different intonation, stress, or rhythm patterns produced by the changes in FO and in

intensity features. Therefore, the combination of FO and intensity gestures (i.e., falling

and rising) and duration that characterizes particular prosodic gestures are useful for

describing speaker- and language-specific information. That is, the prosodic information

in an utterance is described as sequence of elementary patterns representing the joint state

of the dynamics (i.e., falling and rising) ofFO and intensity contours, and their respective

duration. Assuming that there are two types of FOand intensity gestures, the combination

of the gestures from both features produces four possible joint-state classes: 1) rising FO

and rising intensity, 2) rising FO and falling intensity, 3) falling FO and rising intensity,

and 4) falling FOand falling intensity. Since unvoiced speech regions do not produce any

FOvalue, a fifth joint-state class is used to represent such regions.

Once the sequence of joint-state classes is estimated from the speech signal,

several parameters can be computed from each segment defined by a joint-state class.

Since the rhythm and tempo are related to duration patterns in speech, the duration of the

segments is incorporated into the representation to capture such patterns. For example,
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the duration of the joint-state class segments are shorter for a speaker with a fast speaking

rate than a speaker with a slow speaking rate, since the fonner produces more rising and

falling FOgestures (i.e., pitch accents) than the latter.

4.2 FO-basedJoint-state Class Estimation

In this section, we present an approach to estimate the joint state (i.e., rising, or falling) of

the dynamics of the FOand short-tenn energy contours conditioned to the changes in the

FO contour. This approach uses a piecewise linear fit of the FOcontour to segment and

convert the speech signal into a sequence of joint-state classes.

The joint-state classes estimation is divided into four steps: 1) detect changes in

the dynamics of the FO contour, 2) segment both contours at the points (in the time

dimension) of the detected changes in the dynamics of the FO contour, 3) compute the

rate of change of the energy contour for each segment, and 4) label each segment

according to the dynamics of both contours. Details of the estimation steps are described

next.

1st step - Detect changes in the dynamics of the FOcontour

A FOclose-copy stylization algorithm is used to detect the changes in the dynamics of the

FOcontour. The close-copy stylization is a synthetic approximation of the FOcontour that

is perceptually indistinguishable ITomthe original [74, 159]. There are two reasons for

using a stylization algorithm. First, the contour approximation reduces the noise

introduced by the pitch tracker and micro-intonation effects that hide the speaker's

intended pitch movements. Second, the algorithm approximates the FOcontour using the

smallest possible number of straight-line segments, while preserving the speaker's

intended pitch contour. Thus, the changes in the dynamics of the FOcontour are defined

at the boundaries ofthe straight-line segments.

The FO contour is stylized using a method based on a piecewise linear model,

proposed by Sonmez et a1. [74]. The stylized FO contour ITom this method has been

shown to be perceptually (listening tests) equivalent to actual FO contours that contain

micro-intonation. The method, which is perfonned separately on every conversation side,

is divided into three steps. First, the FOcontour of a conversation side is estimated using

Talkin's method [149] described in Section 3.4.1. Second, the FOcontour is filtered using
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a median filter of order 5, i.e., the output at time n depends on the input at time n and the

previous and the following 2 samples. The aim of filtering the FOcontour is to reduce the

pitch tracker irregularities. Finally, a piecewise linear model is fitted to the median

filtered FOcontour. For each voiced region, a piecewise linear model (splines method) is

fit to the median filtered estimated (log) FOvalues. The splines method approximates a

function j{x) using a number of straight lines t(x), each valid over a sub-interval of the

contour. Letj{x) be the function that represents the voiced region contour, {(Xi'yJ}:o be

a set of data points with Xi-l< Xi, for i =1, ..., m, and Yi = I(xi). The parameters {Xito

are referred to as the knots of the curve, and the Xoand Xmare set to the beginning and

ending points of the voiced region, respectively. The approximation function is given by

h(X)= alx+bp

J(x) = 112(X) = a2x+ b2,
I
1m(X) = amx+bm,

Xo ~ X ~ XI

X2 ~ X ~ X3

were amand bmare respectively the slope and the intercept of the line defined by (Xi,Yi)

and (Xi+l,Yi+l).The number of data points is chosen proportional to the duration of the

voiced region. The set of data points {(xi'yJtoare estimated by minimizing the mean

square error between the approximation function J(x) and j{x) on the voiced region.

Figure 4.1 shows an example of FOstylization of the utterance "I'm not there" (excerpt

from Switchboard I), which has two voiced regions. The dotted curve in the FO plot

shows the piecewise linear approximation of the FOcontour for each voiced region. The

vertical dotted-bars in the FOplot of Figure 4.1 represent the estimated {Xi}:o for each

voiced region.

2nd step - Segment both contours at the detected changes in the FO contour

dynamics

Both contours are segmented at the knots of the curve estimated from all voiced regions.

Let {bi}:=I' with 0 < bl < b2 <... < bk < N , be the union between the estimated knots Xi

from all voiced regions, and fo (x) and e(x) are respectively the FOand energy contour
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functions, whose domains are a closed and bounded interval [0, N]. Then the segments

are defined on each of the intervals

The vertical dotted-bars in the FOplot of Figure 4.1 (representing the knots from each

voiced speech region) are grouped together to generate the segment boundaries, {bi}:=1.

3rdstep - Compute the rate of change of the energy contour within each segment

The rate of change of the energy contour within each segment is approximated by fitting

a straight line to the energy samples within the segment. The dotted lines in the energy

plot of Figure 4.1 represent the linear, least-squares fit estimated for each segment.

"I'm not there"
lililp Iii [TlfllillT[11 Il]Tf ITIIIITIIII'1 n111lrl ITIIllpll!]IITI lilT! [1'I1"11l11Irrlll11 ITllrlTTli~ ~ ~ ~ ft ~ ~ ~ ~ ,

~ --- - - - - --- --- .Q1

aa tel

Figure 4.1: Example of joint-state class sequence estimation using FOand energy contours of the
utterance "I'm not there" from a conversation in Switchboard I.

4th step - Label each segment according to the dynamics of both contours

Each segment is labeled with a joint-state class according to the direction of the rate of

change of both contours within the segment. The sign of the slope of the fitted line for

each segment is used as the state of the FOand energy contour over that segment. Thus,

the state of a contour within a segment is defined as rising when the slope is positive, and

falling when the slope is negative. Since the slope for unvoiced regions are not estimated,
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these regions are converted into one specific class. Table 4.1 lists the 5 possible classes

that reflect the joint-state of both contours within a segment. According to Table 4.1, the

resulting sequence of joint-state classes for the utterance "I'm not there" is shown at the

bottom of Figure 4.1.

Table 4.1: Joint-state classes of FOand energy contours within a segment.

4.2.1 Integrating in Duration Information

Since the duration of each segment class is the result of several factors, such as, speaking

rate, rhythm, or stress, the duration of each segment is incorporated into the sequence of

joint-state classes. For each joint-state class, an extra label representing the segment

duration is added to the joint-state class symbol.

The duration, measured in number of analysis frames, is quantized into three

levels: "Short," "Medium," and "Long". Two quantizers are estimated using the

cumulative distribution function (CDF) of the duration of all segments. The 33rdand 66th

percentiles of the CDF are selected as the two quantizers, q/ and q2.Then, a "Short" label

is added to the segment class with duration equal or less than q/ frames, a "Medium"

label is added to the segment class with duration more than q/ and equal or less than q2

frames, and a "Long" label is added to the remainder segment classes. Using a held-out

data set from Switchboard I, the estimated quantizers are 4 and 8 frames (or 40 and 80

ms, for a 10 ms analysis frame interval). The addition of the duration of the example in

Figure 4.1 produces the following sequence: 5S 2L 4L 5L 1L 4L 2L 4M SM. Thus, the

addition of the duration to the joint-state classes produces a new set of 15 classes to

represent the dynamics of the FOand energy contours.

4.2.2 Speaker Modeling and Scoring

There are several techniques for exploiting long term patterns in the sequence of joint-

state classes. Some of the techniques include discrete hidden Markov model (DHMM),

Class Joint-state dynamics
1 Rising FOand rising energy
2 Rising FOand falling energy
3 Falling FOand rising energy
4 Falling FOand falling energy
5 Unvoiced segment
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binary-decision trees, and n-grams. In order to select the modeling technique, we run

several preliminary experiments using modeling techniques such as DHMM [118],

binary-decision trees [78], and n-grams [27]. The experiments were performed on the

2001 NIST SRE and each conversation side is represented by a sequence of 5 possible

joint-state classes from Table 4.1 (duration is not incorporated into the classes). The

modeling using a 10-state ergodic DHMM (2 states for each symbol) achieves the best

performance (EER) for 8-conversation training, but it achieves the worst performance for

I-conversation training. As expected, the characteristic sparsity of the joint-state class

representation affects more the methods that require higher number of parameters to

describe a model. The results of binary-decision tree [78] and n-gram techniques using

comparable configuration (both methods estimate probabilities of two symbols occurring

in a given sequence) show similar performance under different training conditions.

However, as the complexity (represented by the number of parameters) of the models is

increased, the performance of the binary decision tree shows a similar result to the

DHMM.

Given its consistent performance and simplicity, n-gram modeling is used to

model the sequence of joint-state classes. Widely used in speech recognition systems

[45], n-gram modeling provides a viable and effective approach for modeling the

speaker's usage of the proposed prosodic classes [27, 160].

N-gram Modeling

Given that the speech signal is converted into a sequence of discrete symbols, a speaker

model is defined as a probability distribution PreS) over sequences S that attempt to

capturehow likelya stringS is generatedby a given speaker.Let S = {Sf, S2,...,sm} be a

sequence of m symbols, where Sj E <1>,for i = 1,2,...,m, and <I>denotes the set of all

possible symbols. The probability distribution PreS) is expressed as

pr(S) = fIp(S;_n+1 'S;-n+2'" ',S;_I ,s;),
;=1

where p(s ;-n+1'S;-n+2,. .., S;_1'SJ is the probability of n symbols happening in that order.

Several approaches in speaker recognition [27, 29, 156, 160] have been using the

joint probability of symbols to estimate the probability distribution of a given sequence of
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symbols. The maximum likelihood estimate of the probabilities P(Si-n+pSi-n+2'..,Si_pSJ

over some training data is estimated by simply computing the frequencies of the sequence

Si-n+pSi-n+2,",Si-pSioccurring in the training data. For example, in bigram models, the

joint probability is estimated as follows

p( ) ~ C(Si_pSJ
Si_1,Si ~ m

IC(Sj_I,Sj)
j=1

(4.1)

where C (.) is the number of times that the parameters appear in the training data. This n-

gram modeling approach is also referred to as "bag of n-grams" [27].

Likelihood Ratio Test Scoring

The speaker detection score is computed using a conventional log-likelihood ratio test

between the target-speaker model and the UBM averaged over all n-gram types [27,29].

Let STestbe the sequence of symbols, which is referred to as test sequence, produced by a

given speaker, which contains 1STestIsymbols. The averaged log-likelihood ratio LLRj for

the lh speaker is written as

log

1ST...I

f1 Prs, (s j-n+1 , S j-n+2 , . .., S j_1 , S j )
j=1

ISTes,1

(f1 PUBM S j-n+1 , S j-n+2 , . .. , S j-I , S j )
j=1=

ISresl1

1ST...I

( ~ IST... I )~L log Prs, (s j-n+1 , S j-n+2 , ... , S j_1 , S j )}- L 10g(PuBM (s j-n+1 , S j-n+2 , . .., S j-I , S j ~- j=1 j=1

- ISresl1

1sT...I

( ~ )~L log Prs, (s j-n+1, Sj-n+2 , ..., Sj_1, Sj )}-log(PuBM (s j-n+1, Sj-n+2, ...,S j_1 , S j ~
j=1=

ISresl1

where Prs (Sresl) is the probability that the target speaker i generated the sequence STestI

and PUBM(Sresl) is the probability that the sequence STestwas produced by any speaker,
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but the target speaker. Let QTestbe the set of all possible n-gram types in the sequence

STest.Instead of summing over every n-gram, the summation can be rewritten so that the

log-likelihood ratio is actually computed only for each n-gram type t/Jin the test

sequence:

L C Test(t/J)llog(P IS; (t/J))-log( PUBM (t/J)) J

LLR. = ,peQTesl

I L CTest (t/J)
,peQTe"

where CTest(t/J) is the number of occurrences of the n-gram type t/Jin the test sequence.

The joint-probability estimates for a given target speaker and the UBM are given by:

TeQTS;

where QTSi and QUBMrepresent the set of all possible n-gram types of the i'h target

speaker (TSj) and the UBM.

4.2.3 Speaker Detection Results

In this section, we present the performance ofthe joint-state classes on the 8-conversation

training condition of the 2001 NIST SRE. Speaker models are represented using bigrams

models of the sequence of joint-state classes estimated from the training data of the

respective speaker. Since no special processing is performed for regions with halving and

doubling pitch effects, the stylization algorithm can produce small segments for those

regions during the fitting process. Therefore, all segments smaller than 30 ms are

removed from the sequence of joint-state classes. To avoid the modeling of classes across

utterances, we place <bound> symbols around each utterance. An utterance is defined as

a period of time when one speaker is speaking and that there is no silent gap for more

than 0.5 second (the detection of utterances is out of the scope of this work). Figure 4.2

shows the DET curves for the speaker modeling derived from the FO and energy

contours.
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Figure 4.2: DET curves for the FOand short-term energy alone and PWL-based joint-state classes.

The EER of the bigram modeling of joint-state classes is 19.2%. Compared to the

15.2% of the prosodic baseline, this result is very promising because the modeling is

simpler, and the system only uses a sequence of five possible symbols (joint-state classes)

of two streams (delta estimates of FO and short-term energy) to represent the speech

signal. The addition of the duration label to the joint-state class yields an EER of 14% (a

27% relative improvement over the joint-state classes without the duration label). This

result shows that not only the sequence of joint-state classes is speaker dependent, but

also that the duration provides speaker-dependent information. Note that the difference in

performance between the 15 classes and the prosodic baseline is statistically significant.

The bigram modeling of the joint-state classes can capture more speaker-

dependent information than the modeling of the contours alone. Using the segmentation

obtained from the joint-state classes, we created a sequence of three possible classes

(rising, falling, and unvoiced) for each contour. That is, each speaker model is estimated

using a sequence of gestures from one of the contours. For example, the sequence of

classes for the FOcontour in Figure 4.1 is: "uv r f uv r f r f uv". Then, using a bigram
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modeling, we evaluate the performance of each stream separately. The EER of the

systems based on the FO and short-term energy contours are 21.7% and 24.8%,

respectively. These results show the importance of the temporal information in

representing differences in prosodic phenomena realization. A comparison between these

performances and the performance obtained from the joint-state classes modeling shows

that the interaction between both contours carries speaker-specific information. However,

the joint-state modeling performance could be a result of the larger number of classes (5

joint-state classes versus 3 single-contour classes). Both single-contour classes are fused

by averaging the likelihood scores for each trial. The EER of the fused scores is 22%,

which shows that the joint-state class modeling captures the interaction between both

contours.

Although environmental and channel effects restrict the use of energy features for

speaker recognition, the energy-based modeling seems to provide discriminatory

information about speakers. The performance of the energy-based modeling has a relative

difference of 14% from the FO-based modeling. This result shows that even temporal

patterns of the energy dynamics convey speaker-dependent information.

4.2.4 Discussion

The results show that the joint-state modeling of the FOand short-term energy contours

can provide other levels of information not previously exploited by the methods that

employ the distribution of such prosodic features. Given that differences in the realization

of prosodic phenomena are likely to produce differences in the sequence of joint-state

classes, the joint-state classes provide the means for capturing prosodic differences

among speakers.

Even though most prosodic phenomena are conveyed through changes in pitch

and intensity, the proposed segmentation method favors the changes in the dynamics of

the FOcontour in detriment of the changes in the dynamics of the energy contour. Figure

4.3 shows the segmentation on the energy contour and the linear fit used to estimate the

rate of change within a segment. Changes in the energy trajectory (as pointed by the

arrows in Figure 4.3) are not used in the estimation ofthe segments.
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Figure 4.3: Short-term energy contour segmentation. The arrows point the changes in the contour
dynamics that are not used in the joint-state class estimation.

Despite the distinct differences between voiced and unvoiced segments, the

duration quantization scheme is applied to both types of segments. Since the

segmentation is only performed over the voiced regions, the classes related to voiced

regions present a smaller time interval than the class related to unvoiced segments.

Besides, short pauses between words are labeled as unvoiced segments by the FO

estimation algorithm. Therefore, a more precise quantization approach is required to

generate the labels for the duration of the segment classes.

4.3 Delta-based Joint-state Class Estimation

The approach described in this section uses the changes in the dynamics of both FOand

energy contours to segment the speech signal. In addition, the rate of change is used to

detect changes in the dynamics of the prosodic feature contours.

The joint-state classes estimation is divided into four steps: 1) compute the rate of

change for each contour, 2) detect the points where the dynamics of the contours changes,

3) generate new segments using the detected points, and 4) convert the segments into a

sequence of symbols that represent the dynamics of both contours.

1st step - Compute the rate of change for each contour

The rate of change is approximated using delta features, defined in Equation 3.1. The

delta features have been used in automatic speech recognition systems to approximate the

short-term dynamics of temporal trajectories [51, 144]. Besides its extensive use, the

delta features offer several advantages over the piecewise linear fit approach. First, the

amount of detail of the rate of change is easily defined by increasing or decreasing the

number of consecutive samples used in the delta estimation. Second, delta features are

simpler to compute. Finally, it does not restrict the number of changes in the contour
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dynamics within a voiced segment (the number of changes in the contour dynamics is

bounded by the length ofthe voiced segment).

The FOcontour for a conversation side is estimated using Talkin's method [149],

which is described in Section 3.4.1. Since the FOcontour can have discontinuities due to

unvoiced speech regions and halving or doubling effects, the delta features estimation is

performed differently for the FO contour. First, delta features are only estimated for

voiced speech regions. Second, delta features are not estimated across transitions between

halving/doubling and normal FO. Figure 4.4 shows an example of discontinuities

(represented by circles) of a FO contour and the intervals used for estimating the delta

features. In this example, the delta features are estimated for the two voiced speech

regions located between (ti, ti+2)and (ti+3,ti+4)intervals. In the first voiced speech region

(ti, ti+2),the delta features are estimated over two intervals, (ti, ti+/)and (ti+l,ti+2),due to

the discontinuity created by the doubling FOeffect in the region.

C-- Doubling
~

~I~~--
~
Q-

time

Figure 4.4: Example of delta feature estimation of the FOcontour. The estimation is not performed
across discontinuities (represented by circles) such as voiced/unvoiced speech regions (e.g., point at t;,

t;+2'ti+3,and t;+4)and doubling/halving effects (e.g., point at t;+/).

A lognormal tied-mixture model is used to estimate the probabilities of halving

and doubling FO at the frame level. The doubling of FOoccurs when the system detects

sub-harmonics multiples of the "true" pitch as the fundamental frequency. The halving of

the FO period can be either caused by the speaker (Shriberg et al. [161] show that

glottalization or creaky voice is high correlated with halving) or by the pitch tracking

system (pitch halving can occur when the FOestimator detects longer pitch periods than

the normal pitch). The estimation of the halving and doubling probabilities is based on

the approach proposed by Sonmez [132]. LetJObe the true FOcontour of a given speech
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sample, 10 be the estimated FOcontour, which can have halving and doubling FOvalues.

The relationship between 10 andto can be defined as follows

70 == g(jo) = g(fo)

where g(.) is a probabilistic mapping

x

g(x) = ~ x

with probability P
with probability a

2x with probability 1- a - P

2

and log(fO)has a normal distribution with mean Jl and variance ci, N(Jl,a2). This results

in the following lognormal tied-mixture (LTM) model for the estimated FO:

log(7o)~ LTM(a,p,Jl,a)= PN(P -log(2),a2)+

aN(p,a2 )+

(l-a - p)N(P + log(2),a2)

where a is the probability of normal pitch and pis the probability of halving FO.The first

term models halving FO, the second term models the normal FO, and the third term

models the doubling FO. The parameter vector (a, p, Jl, cr) is estimated using the

expectation-maximization algorithm over a given conversation side. Then, the model is

evaluated for each FO sample to determine the posteriors for halving, normal, doubling

FO.

Given the continuous characteristic of the short-term energy, the estimation of the

delta features of energy contour is performed using the Equation 3.1. Since the short-term

energy is computed in the FO estimation algorithm, there is not extra processing for

estimating the energy contour.

2ndstep - Detect the points where the dynamicsof both contours changes

The changes in the contour dynamics are defined by the points at which there is a

voiced/unvoiced speech region transition and a change in the direction of the contour

dynamics. A change in the direction of the contour dynamics occurs at the points where

the first derivative is zero. These points are referred to as critical points of a function f

Let e(t) be the continuous function of short-term energy with continuous first
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derivative de(t), whose domain is a closed and bounded interval [0, N]. The function

de(t) has exactly k critical points at 0 < t:< t; < .. . < t:< N , where

only for t E ~: , t;,..., t: }.

Given the discontinuities of the FOcontour, the detection of the changes in the FO

contour dynamics is performed somewhat differently from the detection in the energy

contour. Since FO can be only estimated from voiced speech regions, the detection is

performed separately for each voiced speech region. Let 10(t) be a piecewise continuous

function of FO from a given voiced speech region with a piecewise continuous first

derivative d/o(t) :

d/o,l(t),

d/o (t) = Id/o,2(t),
I :

d/o,i(t ),

to ~ t ~ tl

t2 ~ t ~ t3

where d/o,i(t) is a continuous function valid over a sub-interval of d/o(t), ti-i g gi, and

to and ti are the beginning and ending point, respectively, of the voiced speech region.

The number of continuous functions is the same as the number of discontinuities

withind/o(t) plus one. For example, the first voiced speech region (tj,ti+2)in Figure 4.4

can be described using two functions (there is only one discontinuity), whereas only one

function is needed to describe the second voiced speech region (ti+3,ti+4)'Then, each

functiond/oAt), whose domain is a closed and bounded interval [ti-i, td, has exactly I

critical points atti_1< t[o,;< tfO" <... < t(O"< ti, where

only for t E 1.foJ tfo" t foJ
}fl , 2 ,. .., I .

The filled circles in the FOplot of Figure 4.5 represent the critical points and the voiced

regions boundaries. In the energy plot, the filled circles represent only the critical points.

3rd step - Generate new segments using the detected points

The segment boundaries are defined as the voiced speech region boundaries, the

estimated critical points from the FOand energy contours, and the beginning and ending

points of the contours. Since FOcannot be estimated from unvoiced speech regions, the
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critical points from the energy contour that fall within an unvoiced speech region are not

used in the segmentation. For example, the critical point in the /tcl/ phone of Figure 4.5 is

not used in the segmentation because of unvoiced characteristic of such phone. Let

kewtobe the collection of all valid points witht;ew< t;ew< ... <t:ew, t;ew= 0, and

t:ew= N. The segment boundaries are defined as follows

(tnew tnew \ (tnew tnew \ (tnew tnew \ (tnew tnew )o ') PI' 2 p. . ., m-2' m-)P m-P m

The new segment boundaries are represented by vertical dotted bars in Figure 4.5.

"I'm not there"
= l' I I II lilili inpTi , I'" i I HI' I' "TITlTil in rp ,IT II f i 'ITi , j 1'1111 nil Ii" i I' ii' 1'11'1 liT' TTi !rlr50 ISO 2SO 3SO 450 5SO 658 7SO 858 !I

.QJ

aa 1 tel

Figure 4.5: Example of a joint-state class estimation using delta features. The critical points are
marked by filled circles. The vertical bars represent the segmentation boundaries generated from the

critical points of both contours. At the bottom, the boxes represent the segmentation and their
respective joint-state class.

4th step - Convert the segments into a sequence of symbols that represent the

dynamics of both contours

Each segment is classified into one of the five classes that represent the dynamics of both

contours within the segment, as shown in Table 4.1. For each segment, the classification

rules are defined as follows



Figure 4.5 shows, at the bottom, the segments and their respective joint-state class

for the utterance "I'm not there".

4.3.1 How long should the delta window be?

In most speech-based applications, the delta features are estimated over a typical time

interval between 50 and 100 ms [145]. In order to determine the adequate duration of the

time interval, additional experiments were performed by varying the duration of the time

interval between 30 ms and 170 ms. Figure 4.6 presents the DET curves for different time

intervals (delta window) used in the delta features estimation.

40
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~
:5 5<tt
..c
o....
a.

g: 2
~

0.5
--- 17-point Delta: EER=17.6% (0.0925)

9-point Delta: EER=15.4% (0.0873)
-,-,. 5-point Delta: EER=14.2% (0.0819)- 3-point Delta:EER=14.1%(0.0821)

0.2

0.1

0.1 0.2 0.5 1 2 5 10 20 40
False Alarmprobability(in%)

Figure 4.6: Speaker detection performance for bigram modeling of joint-state classes estimated using
different time intervals for the delta features estimation: 30 ms (3-point window), 50 ms (5-point

window), 90 IDS(9-point window), and 170 ms (17-point window).

73

1 if dfo(t)> 0 /\ de(t) > 0

2 if dfo (t) > 0 /\ de(t) < 0

Class(i) = 3 if dfo (t)< 0 /\ de(t) > 0 for 'it E &;n:, t;new).

4 if dfo (t) < 0 /\ de(t) < 0

5 if ,3dfo (t)
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Figure 4.6 shows that the longer the time interval used to estimate the delta

features, the less speaker information is captured by the joint-state classes modeling.

Therefore, fast changes in the FO and energy temporal trajectories carry more speaker-

dependent information than relatively slower changes, in particular, changes within a 50

ms time interval. Figure 4.7 presents several sequences of joint-state classes using

different delta window lengths for the utterance "I'm not there" depicted in Figure 4.1. It

shows that the trajectory is described in more details as the delta window length is

reduced.

Delta
window Segmentation

30ms

50ms

90ms

170 ms

Figure 4.7: Example of segmentation using joint-state classes of the utterance "I'm not there" using
different delta window lengths.

We also tried different combinations of delta window lengths for each contour,

but the performance is only worse than the results presented in Figure 4.6. For example,

we tried a 5-point window for the FO contour and a 9-point window for the energy

contour, and vice-versa. This shows the adequacy of the window length for both

trajectories.

4.3.2 Integrating in Duration Information

The duration quantization method differs in two ways from the one described in Section

4.2.1. First, the duration quantization is different for voiced and unvoiced regions. Since

the segmentation is performed on voiced speech regions, the joint-state classes estimated

from these regions (i.e., classes 1 to 4) are smaller than the classes estimated from

unvoiced speech regions (i.e., class 5). With shorter duration, the duration of joint-state

classes from voiced speech segments are overestimated when grouped with unvoiced
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segments. Second, we found that, because of the shorter segments, the quantization into 3

levels does not provide any extra information when compared to the quantization into 2

levels. Thus, the duration of segments from voiced and unvoiced regions are quantized

into "Short" and "Long". The quantization value used to determine whether a segment is

short or long is estimated from the median value using a held-out data set. For voiced

speech regions, "Short" is assigned to segment classes with duration shorter than 8

frames (80 ms). For unvoiced speech region, "Short" is assigned to segment classes with

duration less than 14 frames (140 ms). Therefore, the total number of possible symbols

used to represent the prosodic information from a speech signal is 10.

4.3.3 Speaker Detection Results

The delta-based joint-state modeling is evaluated on the 2001 NIST SRE task, with the

same configuration as defined in Section 4.2.2. Figure 4.8 shows the speaker detection

performance for the bigram modeling of the delta-based joint-state classes and single-

contour classes.
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0.5
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--- Energy-based classes: EER=23.5%(0.0980)
'"'''''' Fa-based classes: EER=2O.5%(0.0974)

Joint-state classes: EER=14.2%(0.0819)
. - Joint-state classes + duration: EER=11.4%(0.On4)
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False Alarm probability (in %)

Figure 4.8: DET curves for the delta-based joint-state class modeling.
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The performance of the energy-based (23.5%) and FO-based (20.5%) classes

estimated from the delta features show an improvement over the piecewise linear fit.

Such result does not come as a surprise because the goal of a stylization algorithm is to

estimate the speaker's intended pitch contour and not all the variations in the contour. For

this reason, the delta features estimated from time intervals shorter than 50 ms can

capture these small variations that carry speaker-specific information. The segmentation

of the energy contour using its critical points also provides improvement over the

previous approach.

The EER of the delta-based joint-state modeling without and with the duration

labels is 14.2% and 11.4%, respectively. These results show that independent estimation

of the rate of change of the FOand energy contours provide a better characterization of

the speaker-specific information. The results of the delta-based approach show an

improvement of 26% (without duration) and 18% (with duration) over the respective

PWL-based approaches. The relative improvement over the prosodic baseline is 6%

(without duration) and 25% (with duration).

4.3.4 Speaker Entropy

Using the data from Switchboard I corpus, we analyze the speaker information captured

in the bigrams of the delta-based joint-state classes. The amount of information conveyed

by a source of information can be measured using the information theory quantity of

entropy. Entropy is a statistical measure of information or, in the information theory field,

uncertainty [162]. Consider an information source that generates a sequence of symbols

X = {Xl,X2,...,xn} from a finite or countable infinite sample space S, according to some

stochastic distribution law. The probability that X takes on the particular value x is

written P(x). The entropy of the source is defined as

H(X) = - LP(x)log(P(x)).
xeX

The entropy H(X) will be the highest when you know least about the next symbol and the

lowest when you know most. Given that we want to measure the amount of speaker

information per n-gram type, the symbols represent the speakers, and the source of

information is the n-gram type. Then, the probability P(x) represents the probability that
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some gIven n-gram type is produced by speaker x, which is approximated by the

Equation 4.1.

Figure 4.9 shows a scatter plot of the speaker entropy for the bigrams of joint-

state classes versus the number of occurrences of bigrams for 261 speakers. Most of the

bigrams that include the boundary symbol <bound> (to mark the beginning or ending of

an utterance) have higher entropy than the remaining bigrams with similar number of

occurrences. That is, such bigrams do not provide as much information about the speaker

who produced them as the bigrams that do not contain the boundary symbol <bound>.

One of the reasons is that the method used to detect utterances does not perform a

consistent detection. For example, due to the variability of the pause duration between

words, the method is going to incorrectly detect some of the pauses (longer than 0.5

second) as utterance boundaries, even though the pauses are not true utterance

boundaries.
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Figure 4.9: Speaker entropy of joint-state class bigrams. The dashed line separates the bigrams types
that include the <bound> symbol from the remaining bigram types.
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Even though low-entropy bigrams provide more speaker-specific information than

high-entropy bigrams, it is expected that the speaker is consistent in producing such

bigrams across different conversations [27, 163]. Therefore, low-entropy bigrams with

high number of occurrences (e.g., "2-5" and "5-4" bigrams) can provide a more

consistent modeling of speaker-specific information. Figure 4.10 shows the performances

of the joint-state class bigram modeling on 8-conversation training condition (2001 NIST

SRE) using a leave-one-out technique. The bigram in the x-axis represent the bigram type

left out from the scoring process (e.g., the EER of joint-state classes bigram modeling

without the bigram "4-5" is 25.7%). The performance degradation in Figure 4.10 is the

highest for the experiments that do not use the low-entropy bigrams with high number of

occurrences (e.g., "4-5", "4-2", "1-4", "2-4", and so on).

30

25

~20
'i!-
~15w
w
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5

o

Figure 4.10: Performance for the leave-one-out experiments. The x-axis represents the bigrams not
used in the detction process.

The performances in Figure 4.10 show that the removal of the joint-state class 4

(falling FO and falling energy) from the scoring process have the worst performance

degradation compared to the performance of the system without any bigram removal

(14.2% EER) on the 2001 NIST SRE. Note that, in the first 10 worst performances in

Figure 4.10, the joint-state class 4 is in 70% of the bigrams. This shows that there is a

large variability in how frequently speakers produce a falling FOand energy for different

bigram contexts. For example, the standard deviation of the occurrence frequency of the

bigram "4-5" for every speaker is 0.0181, whereas it is 0.0024 for a bigram "3-5" that

does not affect the performance when removed.
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4.4 Is joint-state class modeling really capturing complementary
information?

Since the prosodic baseline system is modeling the absolute FOand energy distribution,

whereas the proposed system is modeling the relative FOand energy contour dynamics, it

is expected that a fusion of these systems should produce better performance than the

individual systems. In Figure 4.11, we show the results of fusing the various systems on

the 8-conversation training condition of the 2001 NIST SRE using a single-layer

perceptron fusion system described in Section 3.5.1.

0.5
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Figure 4.11: DET curves for the fusion between prosody-based systems and the prosodic baseline.

The improvement in performance of the fusion shows that the joint-state classes

provide complementary information to the prosodic baseline. Note that the fusion

between the prosodic baseline and both approaches (delta-based and PWL-based)

provides a 35% relative improvement of the performance. Indeed, these improvements

show that there is speaker-specific information in the FO and energy contours that is

beyond their distribution statistics.
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Table 4.2 shows the performance of the fusion between the acoustic baseline with

the prosodic baseline and delta-based joint-state classes on 8-conversation training

condition. Note that the EER of the acoustic baseline for this condition is 0.7% with a

DCF of 0.0034.

Table 4.2: Performances of the fusion with the acoustic baseline system.

The performance of the fusion between the acoustic baseline, prosodic baseline,

and the delta-based joint-state classes is 0.4%, an improvement of approximately 40%

over the acoustic baseline alone. This result additionally indicates that the prosodic

features have complementary information to standard spectral information.

The fusion between the acoustic baseline and either of the prosodic systems

obtains a 28% relative improvement (a=O.I) over the acoustic baseline. Despite the

similarity in EER performance between the two fusions, the minimum DCF value shows

that the joint-state classes modeling provides a lower false alarm rate than the prosodic

baseline, i.e., less impostors are falsely recognized as true speakers. Figure 4.12 shows

the contribution of the two types of errors (miss detection and false alarm) to the DCF

value. Note that the fusion system is trained to minimize the DCF. The improvement of

the DCF of the fusion between acoustic baseline (bar number 1 in Figure 4.12) and

prosody-based systems (bar numbers 2 and 3 in Figure 4.12) comes mostly :trom the

reduction of the false alarm error.
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Figure 4.12: Contribution of the two errors types to the DCF value: 1 - acoustic baseline, 2 - fusion
of acoustic and prosodic baselines, 3 - fusion of acoustic baseline and delta-based joint-state plus

duration, and 4 - fusion of both baselines and delta-based joint-state plus duration.

Systems Fusion with acoustic baseline system
Prosodic baseline ../ ../

Delta-based joint-state + duration ../ ../

EER (DCF) 0.5 (0.0028) 0.5 (0.0018) 0.4 (0.0019)
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4.5 Results on 2002 NIST Speaker Recognition Evaluation

Since most of the analysis is performed on the 2001 NIST SRE, we also run the same

experiments, without any change in the configuration or parameter tuning, on the 2002

NIST SRE (Switchboard II phases 2 and 3). Figure 4.13 presents the performance on the

8-conversation training of the baselines, delta-based joint-state classes, and the fusion

between the systems.

... Prosodic Baseline: EER=17.1%(0.0917)
... Joint-stateclasses+ duration: EER=14.2%(0.0828)- Prosodic + Joint-state classes + duration: EER=10.2%(0.0622)
--- Acoustic Baseline: EER=2.5%(0.0096)
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.'.'. Acoustic+ Joint-state classes +duration:EER=2.3%(0.0088)
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Figure 4.13: DET curves of the baselines, joint-state classes, and the fusion between the systems on
the 2002 NIST SRE. The small box on the right side shows a zoomed view of the performance curves

that include the acoustic baseline.

The performance of the individual systems and their fusion shows similar pattern

when compared to the results for the 2001 NIST SRE. That is, the performance of the

joint-state classes is better than the prosodic baseline, the fusions between the systems

improve the performance of the prosodic and acoustic baseline, and the acoustic baseline

has the best performance. The performance of the joint-state classes shows a relative

improvement of 17% over the prosodic baseline. Note that the performance of the fusion

between the acoustic baseline with either the prosodic baseline or the joint-state classes
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does not yield a significant improvement over the performance of the acoustic baseline.

However, the performance of the fusion of all three systems is significantly different

(12% relative improvement) from the acoustic baseline performance. These results show

that the complementary information characteristic of the joint-state classes holds for a

different evaluation data.

4.6 Factors AffectingPerformance

Several factors can affect the performance of a speaker recognition system. In this

section, we analyze how the performance varies with respect to the amount of training

data, handset mismatch between training and testing, and speaker demographics (e.g., age

and gender).

4.6.1 Amount of Training Data

Speaker recognition systems that use long-term speech characteristics (e.g., phonemes,

words, and prosodic features) are known for requiring large amounts of training data [27,

28, 74, 76, 78]. Figure 4.14 shows the performance of the joint-state classes plus duration

system and the prosodic baseline on all training conditions.
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Figure 4.14: Comparison of performance for different number of training conversations. The dashed
trend line depicts the performance improvement for the prosodic baseline and the dotted trend line

depicts the improvement for the delta-based prosodic features.
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training. Therefore, the results show that considerable amount of data is required for

estimating models using joint-state classes. Appendix A shows some statistics about the

amount of training data generated per conversation side for both NIST evaluation data.

4.6.2 Telephone Handset

The variation in the type of telephone handset is a major factor affecting the performance

of systems that use telephone speech [164, 165]. Since the 2001 NIST SRE does not

provide enough target trials that use different handsets, we measured the performance for

matched- and mismatched-handset conditions on the 2002 NIST SRE. The 8-

conversation training condition has 28,907 test trials, which 50% of the target trials (not

impostor trial) are matched. A matched target trial has the phone number of the test

conversation occurring at least once in the speaker model training data. Figure 4.15

shows the performance for the systems on the matched- and mismatched-handset

conditions.
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Figure 4.15: Performance per handset condition of the baselines and the joint-state classes. The
dashed and solid lines represent the performance of the systems under the matched- and

mismatched-handset conditions, respectively.
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The significant difference in performance between matched- and mismatched-

handset conditions shows that all systems are affected by the mismatched-handset

condition. Note that the prosodic systems are more robust to mismatched-handset

condition than the acoustic-based system. The performance degradation of the acoustic

baseline, prosodic baseline, and the joint-state classes plus duration is 183%, 16%, and

26%, respectively.

A performance comparison between both evaluation data shows that the

performance of the joint-state classes for the matched-handset condition (EER=12.6%) is

significantly different from the performance obtained for the 2001 NIST SRE

(EER=II.4%). This result shows that there are other factors, such as speaker gender or

age, affecting the performance ofthe joint-state classes.

4.6.3 Speaker Demographics

Speaker gender is one of the most important sources of variability in speech. Certain

acoustic characteristics of speech that give a voice its quality and individuality have

contributions that range from those of speech production mechanism (i.e., differences

between individual sound sources and the resonant frequencies of the vocal tract) to the

effects of prosody and dialect. For example, female speakers have, on average, higher

fundamental frequency than male speakers [94, 166]. Holmberg et al. [167] show that

female speakers tend to have more gradual rises and falls in glottal flow than males.

Using data from seven languages and dialects (including three dialects of English),

Henton [168] shows that females appear to produce vowels in a manner that is more

phonetically explicit than males. However, despite the high variability between genders,

variability within gender can become a problem when the impostor has the same gender

as the target speaker. Thus, we evaluate the performance of each system using same-

gender trials (the impostor and the target speaker have the same gender) on the 2001 and

2002 NIST SREs.

First, we analyze the systems performance for the same-gender trials on the 1-

conversation training. To avoid the effects of different handsets between training and

testing, only the trials from matched-handset condition (as described in Section 4.6.2) are

analyzed. In the 2001 NIST SRE, there are 6,250 female-female trials (1,875 target trials
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and 4,375 impostor trials) and 6,948 male-male trials (1,844 target trials and 5,104

impostor trials). In the 2002 NIST SRE, there are 14,840 female-female trials (3,160

target trials and 11,680 impostor trials) and 12,126 male-male trials (2,506 target trials

and 9,620 impostor trials). Table 4.3 presents the performance for same-gender trials of

the acoustic, baseline, and joint-state classes plus duration on the I-conversation training

condition.

Table 4.3: EER per gender condition of the baselines and the joint-state classes for I-conversation
training condition on 2001 and 2002 NIST SREs.

As expected, the acoustic baseline performs much worse for female-female trials

than male-male trials. Previous work [94, 165] has found that the performance of mel-

cepstra based systems degrades with higher pitch frequency and with stronger "pitch

mismatch" (i.e., pitch variation between enrolment and testing). In addition, the

performance of female-female trials on 2002 NIST SRE is worse (approximately 33%)

than the 2001 NIST SRE. Given the physiological and linguistic (e.g., vocabulary and

speaking style) differences across speakers of the same gender, the age difference has a

similar effect as the gender difference in the speaker detection performance, i.e., speakers

with small age difference can share more physiological or linguistic characteristics than

speaker with large age differences. Therefore, we measured the age difference of

impostor trials on the 2001 and 2002 NIST SREs. The median value of the age difference

for both gender condition on the 2001 NIST SRE and 2002 NIST SRE is 11 years and 4

years, respectively. Appendix B shows some statistics about age difference between

impostor and target speaker. In fact, the worse performance of the acoustic baseline for

the female-female trials can be explained by the small age difference of the impostor

trials of the 2002 NIST SRE.

The prosodic baseline yields a worse performance for male-male trials only for

the 2002 NIST SRE. Note that the performance for female-female trials is not affected by

NIST SRE Trial
Acoustic Prosodic Joint-state classes
baseline baseline + duration

2001
F'emale-female 3.0% 20.2% 18.5%
Male-male 2.3% 19.6% 17.6%

2002
F'emale-female 3.5% 20.5% 18.2%
Male-male 2.4% 22.1% 18.6%
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the change of evaluation data. Contrary to the acoustic baseline, it seems that the small

age difference of the 2002 NIST SRE affects the performance of the male-male trials.

The performance of the joint-state classes approach shows no significant

difference between gender conditions on both NIST SREs. Only the performances of

male-male trials show a small degradation (a=O.I) trom the 2001 to the 2002 NIST SRE.

However, these results can be consequence of the small amount of training data.

Since the performance of the joint-state classes approach considerably improves

for 8-conversation training condition, we also analyze the speaker gender effects under

such training condition. Note that there is no increase in the amount of testing data. In the

2001 NIST SRE, there are 4,305 female-female trials (1,681 target trials and 2,624

impostor trials) and 4,261 male-male trials (1,673 target trials and 2588 impostor trials).

In the 2002 NIST SRE, there are 10,808 female-female trials (2,988 target trials and

7,820 impostor trials) and 9,535 male-male trials (2,575 target trials and 6,960 impostor

trials). Table 4.4 presents the performance for same-gender trials of the acoustic,

baseline, and joint-state classes plus duration on the 8-conversation training condition.

Table 4.4: EER per gender condition of the baselines and the joint-state classes for 8-conversation
training condition on 2001 and 2002 NIST SREs.

The acoustic baseline does not show any significant difference between the

gender conditions for the 2002 NIST SRE. However, the improvements trom 1- to 8-

conversation training conditions differ for 2001 and 2002 NIST SRE. The improvements

obtained in the 2002 NIST SRE (66% for female-female trials and 50% for male-male

trials) are smaller than the ones in the 2001 NIST SRE (83% for both gender conditions).

Despite the increase in amount of training data, the small age difference seems to affect

both same-gender trials.

The performances of the prosodic baseline show a similar pattern to the 1-

conversation training condition performances: same performance for the 2001 NIST SRE

NIST SRE Trial
Acoustic Prosodic Joint-state classes
baseline baseline + duration

2001
Female-female 0.5% 16.3% 10.8%
Male-male 0.4% 16.3% 13.2%

2002
Female-female 1.2% 14.3% 12.9%
Male-male 1.2% 18.4% 14.1%
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and male-male trials perfonnance is worse than female-female trials for the 2002 NIST

SRE. This result supports the claim that male-male trials perfonnance is affected by the

small age difference between impostor and true speaker. Interestingly, the perfonnance of

the female-female trials on the 2002 NIST SRE is better than the perfonnance on the

2001 NIST SRE. One reason is that the increase in amount of training data provides a

better modeling of female speakers than male speakers.

The perfonnance of the joint-state classes approach shows a significant difference

between female-female and male-male trials on both evaluations. One reason is that the

female speakers produce more segment classes than males do (see Appendix A), which

provides more training data for estimating a speaker model. On average, the number of

joint-state classes per conversation side is about 13% higher for female speakers.

However, the small age difference between impostor and true speaker on the 2002 NIST

SRE affects more female-female trials than male-male trials.

4.7 Extensions to Prosodic Modeling

In this section, we describe two extensions to the joint-state classes estimation. The first

approach deals with more than two levels for quantizing the rate of change of each

contour. The second approach looks into the energy at different frequency bands.

4.7.1 Four-level Delta Quantization

The goal of increasing the number of quantization levels is to capture different levels of

rising or falling movements. Based on intonation modeling literature [120], we quantize

each contour into 4 possible levels: low rise, high rise, low fall, and high fall. The rise

and fall levels are still defined by the critical points of the time-derivative (i.e., points at

the zero-crossings of the rate of change). We use the median value of the rate of change

to detect the type (i.e., low or high) of a rise or fall level. The median value is estimated

for each contour from a held-out data set. Since the rate of change has approximately a

nonnal distribution around zero, the median value is estimated from the absolute value of

the rate of change. We use only one value for each contour to detect a high or low rate of

change. Thus, each segment can be labeled with anyone of the 17 possible labels (4

levels for the FOcontour times 4 levels for the energy contour plus unvoiced region).
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Figure 4.16 shows the perfonnances on 8-conversation training for the bigram

modeling of the joint-state classes using two levels and four levels to describe the rate of

change of both contours. The EER of the modeling of the joint-state classes using four-

level quantization is 10.6% (a relative improvement of 25% over the two-level

quantization). The four-level joint-state classes system shows a similar perfonnance to

the two-level joint-state plus duration classes system. Note that the four-level joint-state

classes do not have the duration label as the two-level joint-state plus duration classes

system.
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Figure 4.16: DET curves for joint-state classes based on two-level and four-level to describe the
direction of the rate-of-change.

The detailed representation of the temporal trajectories provides a better modeling

of the speaker-specific infonnation. Figure 4.17 shows the scatter plot of speaker entropy

for bigrams of both systems: 2-level and 4-level quantization. Note that the bigrams

estimated from the 4-level quantization yields lower speaker entropy than the 2-level

quantization. Consequently, the bigrams from 4-level quantization provide a better

characterization of speaker-specific infonnation.
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Figure 4.17: Speaker entropy of bigram for two-level and four-level delta quantization process.

The addition of duration label to the 4-level joint-state class does not yield any

performance improvement on the 2001 NIST SRE. The performance of this system on 8-

conversation training is 10.6% EER. Since each segment is the result of the critical points

ftom both contours, this quantization process produces more segments, but with shorter

duration. However, the duration of the segments does not seem to be consistent for the

same speaker. Given the short delta window used for estimating the rate of change, small

perturbations in the contours caused by the estimation method or noise can affect the rate

of change estimation.

4.7.2 Sub-band based Modeling

The sub-band modeling uses the frequency-band energy trajectories instead of the full-

band energy (i.e., short-term speech energy). The diagram of the sub-band based speaker

detection system is depicted in Figure 4.18. We assume that the ftequency bands are

independent, so that it allows us to score and even combine different frequency bands.

First, the frequency-localized temporal trajectories are estimated from the speech signal.

Second, for each frequency-band, the sequence of joint-state classes is estimated using



90

the FOand the respective temporal trajectory. Then, the fusion module selects and fuses

the scores from the frequency bands.

There are several reasons for developing a sub-band modeling for speaker

recognition. First, the sub-band approach allows us to deal with noise conditions

(background and channel) that affect only part of the speech spectrum [169]. Second,

there is variability in different frequency bands because of different phones, speakers, and

channels [21, 170]. Third, since short-term energy conveys several levels of information,

the analysis of the spectral domain allow us to extract only the relevant information

(phone and speaker), and discard the irrelevant information (channel). For example, the

region around 5-6 barks (approximately 500-600 Hz) contains the highest phone

variability (consequence of the characteristics of voiced/unvoiced phones in this region

where the voiced phones have high energy in this region and the unvoiced phones have

low energy [171]), which is useful for speaker recognition [53].

Pitch
Detection

Spectral
Analysis

Frequency-band
modeling #1

Frequency-band
modeling #2

Fusion Likelihood
scoreFrequency-band

modelhlg #3...
Frequency-band

modeling #N

Figure 4.18: Sub-band based speaker detection system.

In our experiments, the system uses the temporal trajectories of 15 bark-scale

critical-bands to estimate the sequence of joint-state classes. First, temporal trajectories

are estimated from non-uniform frequency bands mapped from the speech spectrum to

the 15 Bark-scale critical bands (I-Bark spacing between filters). Second, the sequence of

joint-state classes is estimated for each frequency band using the method described in

Section 4.3. Then, a bigram model is estimated from each frequency band to characterize
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a given speaker. When fusion is perfonned, the scores from the frequency bands are

averaged to obtain the final score. Figure 4.19 shows the perfonnance for each critical

band on 2001 and 2002 NIST SREs, and the lower- and upper-cut-offfrequencies of each

critical-band.
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Figure 4.19: Performance for each bark-scale critical-band on the 2001 and 2002 NIST SREs when
used to estimate the joint-state classes plus duration. The lower and upper cut-off frequencies are

shown for each critical-band.

The perfonnance of the bigram modeling of each frequency band shows that the

first bands are more affected by the mismatched-handset condition than others. The

perfonnance of the first critical-band is significantly worse than the respective baseline

(the joint-state classes plus duration that is based on the short-tenn energy contour) for

both tasks. The second critical-band is also worse than the baseline for the 2002 NIST

SRE. The reduced perfonnance of the first two critical-band perfonnance is expected

because we are dealing with narrow-band telephone speech (300-3400 Hz) [170], and

because channel variability is higher in lower bands whereas the speaker variability is

higher in higher bands [21].

Even though most of the energy concentrates around the low-frequency bands, the

perfonnance for high-frequency bands is very similar to the low frequency bands. This

result follows the findings that high frequency bands play an important role in speaker
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recognition [172-175]. Lavner et al. [13] show that the shifting F3 and F4 formant

ffequencies of vowels affect more the identification rate than shifting Fl and F2 formant

frequencies. Lavner's result allows us to speculate that our modeling of the high

ffequency bands might be capturing some relationship between pitch and the phone

formant frequencies.

Since the performance of the individual frequency bands are similar to the

performance obtained ffom the full-band energy, we run several experiments that fuse

different combinations of ffequency bands. Figure 4.20 shows the fusion performances of

some of the combinations.

Cl2002 NISTSRE .2001 NIST SRE

Fused frequency bands

Figure 4.20: Performance of the fusion of different frequency bands on 2001 and 2002 NIST SREs.

The first fusion experiment combines the detection scores from all 15 frequency

bands. The EER of this fusion is 10.5% for 2001 NIST SRE and 12.5% for 2002 NIST

SRE. This fusion achieves a significant better performance than the system based on

short-term energy. Even though the number of parameters in the fusion system is higher

(i.e., number of bands times 5 possible classes) than the approach that uses the short-term

energy contour, the fusion of the frequency-band scores allows the bands that carry more

speaker-dependent information to provide sufficient reliable information to the decision

process.
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The fusion of the upper-half of bark-scale bands (from 8thto 15thbands) performs

significantly worse than the lower-half fusion. The main reason is that most of the energy

of voiced phones concentrates in the region around 500-600 Hz [171].

Despite the insignificant difference between the performances on the two

databases, the comparison across databases shows that the results are not random due to

some nonzero correlation between the performances. Since the performances of the

combinations on both NIST SREs seem to have some linear relationship, a significance

test is used to check whether there is a correlation between the performances. The null

hypothesis is that there is no correlation between the performances. With 19 samples and

a correlation coefficient of 0.869, we computed a p-value smaller than 0.001. Thus, we

conclude that the sample correlation is not due to chance, and the performances do have

some correlation.

The best performance is achieved by the fusion of the 2nd,3rd,5th,6th, 14th,and

15th critical-bands. The performance for both databases yields a 12% relative

improvement over the full-band energy based modeling (EER=lO% for the 2001 NIST

SRE and EER=12.4% for the 2002 NIST SRE). Even though there is no significant

improvement over the fusion of all 15 bands, this fusion uses only 6 frequency bands.

This result is very similar to the findings in a speaker identification experiment on TIMIT

database (clean, telephone speech) done by Besacier et al. [170]. They show that the low-

frequency bands (less than 600 Hz) and the high-frequency bands (more than 3000 Hz)

contain more speaker-specific information than the remained bands.

4.8 Summary

This chapter presented several approaches that use the dynamics of FO and energy

contours to capture prosodic differences between speakers. The approaches convert the

speech signal into a sequence of discrete units that represent the dynamics of FO and

energy contour within a given segment. Then, using a simple statistical model, such

sequence is used to discriminate among speakers.

The method presented in Section 4.1 uses segments estimated from the FOcontour

to model the joint-state of the dynamics of the FO and short-term energy contours. It

segments both contours using a piecewise linear model of the FOcontour to detect the
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segment boundaries. Then, each segment is classified into 5 classes according to the rate

of change from both contours within the segment. The performance of this approach on

the Switchboard I shows a comparable result to the prosodic baseline, which uses the FO,

short-term energy and its first-derivatives. Then, the duration of the segment is integrated

to the class category. The aim of integrating duration is to capture the speaking style (i.e.,

speaking rate, rhythm, and stress patterns) of the speaker. For example, a fast talker will

have more pitch accents in an utterance that causes more frequently changes in both

contours, thereby producing several small segments. The performance of integrating the

duration is better (6% relative improvement) than the prosodic baseline. The results show

that the temporal information of both contours can provide speaker-specific information.

In addition, results from the modeling both contours individually show that the

interaction between both contours can carry speaker-specific information. Despite the

remarkable performance, this approach disregards that prosodic phenomena are also

realized by changes in the energy contour.

In order to capture the variations in the dynamics of both contours, the method

presented in Section 4.3 uses the changes in the dynamics from each contour to segment

the speech signal. The delta features are used to detect the changes in the contour

dynamics. The results show that the independent estimation of the dynamics of FO and

energy provide a better characterization of the speaker-specific information than using

only the FO contour to detect the segments. We also analyzed the performance of the

proposed approach with respect to several factors: speaker demographics, amount of

training data, and different handsets. We showed that this approach is more robust to

mismatched-handset condition than the acoustic baseline. However, the sparsity

associated with the long-term characteristic of the segment classes requires considerable

amount of data (at least 4 minutes) for estimating the speaker models. The performance

analysis across different tasks also showed that the small age difference between target

speaker and impostor affects the systems performance.

We showed that the joint-state classes provide complementary information to

conventional speaker detection systems. In a fusion experiment with the prosodic

baseline, the performance improves 35% relative to the baseline. This result shows that

the proposed approach captures information that is not represented in the prosodic
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baseline. The fusion of the prosody-based systems with the state-of-the-art system

(acoustic baseline) also yields an improvement in performance. This result agrees with

the previous findings that prosodic information complements spectral information.

Some extensions to prosodic modeling were presented in this chapter. The first

approach increases the number of quantization levels to 4 for describing the dynamics of

each contour. The bigram modeling of the new representation yields a 25% improvement

over the approach that uses 2-level to quantize the rate of change. However, the addition

of duration does not yield any significant improvement. Given that the segmentation

produces even smaller segments than the 2-level quantization, it seems that the segment

duration is not consistent for the same speaker. The second approach extends the concept

of modeling the dynamics of two different streams by replacing the short-term energy by

frequency-band energy. The motivation of this approach is that the different frequency

bands are affected differently by phone, speaker, and channel information. Besides, the

independence between frequency bands provides a more robust approach to channel

effects. The best performance is achieved by fusing the scores from 6 frequency bands: 4

below 600 Hz and 2 above 2500 Hz. Note that such frequency ranges have been long

acknowledge to carry more speaker-specific information than the remainder frequencies.



Chapter 5

Phonetic-based Modeling of Pitch and Intensity
Dynamics

The literature has shown that modeling of a sequence of phones or phonemes can capture

differences in phonetic realization or lexicon [16, 28, 29, 77-79, 160, 176]. However,

when a person produces speech, the native language imposes limits on variation in the

integration of the segmental and suprasegmentallevels [48], as discussed by Lehiste [39]:

"Languages seem to differ with respect to the distribution of the

fundamental frequency contour over the voiced portion of the syllable. [A

deaf subject) produced the word feel with a fundamental frequency

movement that continued into the final Ill; the result sounded nonnatural

and nonnative. "

The necessity and nature of temporal integration exemplified in the quotation

from Lehiste shows that the loudness as well as pitch will have to be correctly aligned

with the segmental stream. Therefore, we integrate the joint-state classes from the FOand

energy contours with segmental information to create a new set of classes that can

capture the interaction between the prosody and the segmental information. Section 5.1

and 5.2 describe, respectively, methods to estimate the new set of classes using segmental

information obtained from a large-vocabulary continuous speech recognition system and

a phone recognizer. Section 5.3 shows the performance of the fusion between the

phonetic-based classes and the baselines. Section 5.4 shows the results on the 2002 NIST

96
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SRE. Section 5.5 analyzes the effects of amount of training data, speaker gender, and

handset on the performance of the phonetic-based classes.

5.1 Phoneme-based Joint-state Modeling

This section describes the phoneme-based joint-state modeling approach. This approach

produces a sequence of classes estimated from a time-alignment between a sequence of

joint-state classes (as described in Chapter 4) and a sequence of English phonemes. First,

the phoneme sequence and the joint-state classes ofFO and energy contours are estimated

from the speech signal. Then, both sequences are time-aligned. Second, a new sequence

of segments is estimated using the boundaries from both sequences. Finally, each new

segment is labeled with a concatenation of the phoneme class and joint-state class that

correspond to time interval of the new segment. Figure 5.1 shows an example of

phoneme-based joint-state modeling. The segments labeled as silence are not used for

modeling. The number of phoneme-based joint-state classes depends on the number of

phoneme classes.

Segmental classes
estimation

Joint-state classes
estimation

/ax/ /m/ /n/ ... 4 2 1 3 ...

ax m n aa tel dh eh r

42134 512 3 4 3 2 4. . ... . . .
ax4 ax2 m1 n1 n3 aa3 aa4 tcl5 dh5 eh1 eh2 eh3 eh4 eh3 r2 r4

Figure 5.1: Diagram of the speech signal segmentation process using prosodic and segmental
information.

The sequence of phonemes is generated using a large-vocabulary continuous

speech recognition (LVCSR) system. The phoneme sequence and timing information are

generated by the SRI's large vocabulary conversational speech recognition system [177].

Besides the word sequence, the system also outputs a time-aligned sequence of 43
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possible phonemes from a dictionary and a "silence" label. The word error rate of this

system is 30.2% on Switchboard I. Since the LVCSR system can generate 43 phonemes,

the phoneme-based joint-state modeling has 215 classes, which is the product between 43

phoneme classes and 5joint-state classes.

Despite the errors from the LVCSR and the FOestimation systems, no particular

processing is performed during the alignment of both sequences to deal with any type of

error from both systems. Therefore, errors from the LVCSR and FOestimation systems

are propagated to the alignment process. For example, an error in the detection of the

phoneme boundaries affects the duration information; a missed detection of voicing

causes an alignment between an unvoiced label and a phoneme that is produced during

voicing. To deal with some of the errors caused by the systems, after the alignment, the

new segments with duration lower than a certain threshold are discarded.

5.1.1 Integrating in Duration Information

The duration information can be estimated from three possible sources: phoneme class,

joint-state class, or the generated segment from the alignment of the sequence of

phonemes and joint-state classes. The first source assumes that every phoneme has some

intrinsic duration associated with it that is independent of the prosodic level, despite the

context influence in duration (e.g., shortening of vowels before voiceless obstruents in

English). The second source assumes that the prosodic information affects the segmental

stream. The third source assumes that both streams (suprasegmental and segmental)

affect each other during integration. Our preliminary experiments show that the last two

sources perform similarly. The latter source was chosen as the basis for integrating in

duration information.

The segment duration is quantized into two levels: Short and Long. A quantizer is

estimated a priori by selecting the median duration of all segments. Short is assigned to

segments shorter than 6 frames (60 ms). For example, the sequence presented in Figure

5.1 is labeled as follows: ax4S ax2S mlS nlS n3S aa3L aa4L tcl5S dh5S ehlS eh2S

eh3S eh4S eh3S r2L r4S. The addition of the duration label increases the set of classes

to 430 elements.
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5.1.2 Speaker Detection Results

Before speaker modeling, all the segments with duration shorter than 30 ms are

discarded. A bigram modeling is used to model the sequence of phoneme-based joint-

state classes. The scoring process uses only the bigrams that occur more than 500 times in

the background and target-speaker models. Doddington [27] shows that the removal of

infrequent n-grams improves the detection performance. Figure 5.2 shows the speaker

detection performance for 8-conversation training on the 2001 NIST SRE for the

modeling of the sequence of phonemes alone and the phoneme-based joint-state classes.

.".". Phoneme classes: EER=11.7%(0.0674)
Phoneme-based joint-state classes: EER=5.0%(0.0363)

- Phoneme-basedjoint-stateclasses+ duration: EER=4.3% (0.0299)
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Figure 5.2: DET curve for the phoneme-based joint-state modeling.

The EER of the system using only bigrams of phonemes is 11.7%, and of the

system using phoneme-based joint-state class modeling is 5%, The significant difference

(a=O.OI) in performance shows that the phoneme-based joint-state classes are capturing

the interaction between phonemes and the FO and energy contours. To verify that this

claim is true, we also run another experiment that fuses the scores from the systems that

use the phoneme classes (EER = 11.7%) and joint-state classes (EER = 14.2%) to model

speaker-specificinfonnation.The EER of the fusion (at score level) of both systems is
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6.7%, which is 34% worse than the modeling of both streams together. Indeed, the new

modeling approach captures information that only exists in the integration between the

segmental and prosodic streams.

The integration of the duration label to the classes yields an EER of 4.3%. The

relative improvement over the modeling without duration is 14%. One reason for the

small improvement is the limited amount of training data to estimate the bigram models.

Note that the addition of duration label doubles the number of classes, but not the amount

of training data. Therefore, the accuracy of the speaker models are going to be affected

by the small amount of training data.

5.2 Phone-based Joint-state Modeling

There is no doubt that the output from LVCSR systems can be used to capture idiolectal

differences between speakers [27]. However, LVCSR systems usually recognize only a

limited set of canonical pronunciations for each word, which are defined in the system

dictionary. Such limitation has motivated researchers to use language-dependent phone

recognizers to obtain the sequence of sounds produced by the speaker for pronunciation

modeling [16, 29, 78, 79, 176]. Differently from LVCSR systems, the output of phone

recognizers is not constrained to a sequence of likely phones. Besides, phone recognizers

are much simpler (with respect to the processing requirement and implementation

complexity) than LVCSR systems. In this section, we examine the modeling of joint-state

classes with the phonetic sequence generated by the TRAPS phone recognizer. The

TRAPS phone recognizer is described in Section 5.2.1, and the results of the phone-based

joint-state modeling are presented in Section 5.2.2.

5.2.1 TRAPS Phone Recognizer

The TRAPS phone recognizer uses a hybrid hidden Markov model (HMM) followed by a

Viterbi search to convert the speech signal into a sequence of phones. The HMM is a

network of context-independent phones, which are modeled using 3 emitting states. The

probability densities in each state are modeled using a TRAPS (TempoRAl PatternS)

posterior probability estimator [178-180]. The sequence of phones is obtained after the
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Viterbi search, i.e., no language modeling is performed. The phone set is the same as the

one used by the LVCSR system.

The TRAPS estimator focuses on the temporal characteristics of the speech signal

rather than the spectral characteristics. This approach uses a collection of multilayer

perceptrons (MLPs) to estimate the posterior probability of phone classes from the

temporal patterns of critical-band energies. Then, the posteriors are subsequently

combined (using another "merging" MLP) to produce a global estimate of the posterior

probabilities. Figure 5.3 shows the diagram of the TRAPS estimator used for estimating

the posterior probabilities of phone classes.
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Figure 5.3: Diagram of a TRAPS-based posterior probability estimator for N critical-bands.

The input features to each class-posterior estimator are three adjacent 0.5-second

temporal patterns of log compressed Bark-scaled critical-band energies [181, 182]

projected in a lower dimension using Principal Component Analysis (PCA). Since 15

Bark-scale critical bands are estimated from the speech signal, there are 13 class-

posterior estimators with 100 neurons (sigmoid activation function) in the hidden layer,

and 44 neurons (softmax activation function) in the output layer. The merging MLP has

similar architecture as the class-posterior estimators, except that it has 500 neurons in the

hidden layer. The band-classifier MLPs and the merging MLP are trained using back-
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propagation with a cross-entropy error criterion. The MLPs are trained using 68 hours of

speech data excerpt from CallHome [183] (3 hours), Switchboard I & II (61 hours), and

Switchboard Cellular (4 hours) [184].

5.2.2 Speaker Detection Results

The same configuration described in Section 5.1.2 is used to evaluate the speaker

detection systems on the 8-conversation training condition of the 2001 NIST SRE. The

DET curves for the system using phone-based joint-state modeling on 8-conversation

training are shown in Figure 5.4.
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Figure 5.4: DET curve for the phone-based prosody modeling.

The performance obtained by just modeling the sequence of phones (6.9% EER)

shows that the speaker's pronunciation provides a better speaker characterization than the

speaker's intended selection of phonemes (11.7% EER) obtained by the LVCSR system.

Appendix C shows similar results on the 2001 NIST SRE for a phone-based joint-state

classes modeling that uses a conventional phone classifier (mel-cepstra-based HMM).

The improvement of the phone-based joint-state modeling over the phone

sequence modeling is 23%. Even though the sequence of phones provides a better
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modeling of the speaker's pronunciation patterns, the unconstrained characteristic of

phone recognizers can be the source of several problems in the phone-based joint-state

modeling, such as:

. Missed detection of phones and low accuracy of the phone timing information

affect alignment between the phone classes and the joint-state classes. The

timing information error "a)" in Figure 5.5 causes two errors: a class aaS that

aligns an unvoiced segment with a voiced phone, and a duration reduction of

the class tdS. The missed detected phone /dh/ denoted by "b)" in Figure 5.5

causes two errors: a class eyS that aligns an unvoiced segment with a voiced

phone, and a duration increase in of the class tdS.

. Inconsistencies in the phone recognition (e.g., the recognition of a gIven

phone varies across recordings) produce inconsistent phone-based joint-state

classes.

ax m n aa tcl dh eh r
4. 21 3 .4 ~. . 5 ' 'I. 2 :3..4, 3 2",4 '

a) ~ ~ b)- -
ax m n aa \'cl eh r

,4, 2 3 4 5 1 2 ,.4' 3 2 , 4"

Figure 5.5: Examples of misalignment problems caused by errors from the TRAPS-based phone
recognizer: a) timing information of phone boundaries and b) missed detection of phones. The

correct transcription and alignment are shown at the top and the TRAPS transcription and
respective alignment are shown at the bottom.

One of the consequences of misalignment between the phone sequence and joint-

state classes is the generation of extra segments. In the Switchboard I, each conversation

side produces, on average, about 1,532 phone classes and 2,909 phone-based joint-state

classes. Note that the number of phone-based joint-state classes produced per

conversation side is about 90% greater than the number of phone classes produced per

conversation side. In addition, the number of phoneme-based joint-state classes produced

per conversation side is only 27% greater than the number of phoneme classes produced

per conversation side. Such large difference between the percentages of produced classes

per conversation side suggests that the phone-based joint-state class estimation have more

misalignment problems than the phoneme-based joint-state class estimation.
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The integration of the duration label to the phone-based joint-state classes yields

an EER of 5%. This result confirms the misalignment problem in the phone-based joint-

state class estimation. That is, the misalignment between both streams generates more

and smaller segments than the phoneme-based estimation. Consequently, the duration

label provides little or no information about the speaker because most of the classes are

labeled as "Short".

5.3 Fusion Results

Using the fusion system described in Section 3.5.1, we fused the scores of the phone-

based and the phoneme-based joint-state classes systems with the acoustic baseline

system. Figure 5.6 shows the performances of the acoustic baseline and the fusion of the

prosodic systems (the duration information is incorporated in the phonetic-based joint-

state classes) with the acoustic baseline for 8-conversation training condition on the 2001

NIST SRE.

--- AcousticBaseline:EER=O.7%(0.0034)
""". Acoustic + Prosodic Baselines: EER=0.5%(0.0028)

Acoustic + Prosodic + Phone-based prosodic classes: EER=0.4%(0.0021)
- Acoustic+ Prosodic + Phoneme-based prosodic classes: EER=0.3%(0.0017)
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Figure 5.6: DET curve of the fusion between the acoustic and prosodic systems.
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fusion system that includes the phone-based prosodic classes (2.2% EER) and 32% for

the fusion system that includes the phoneme-based prosodic classes (1.7% EER).

- Phone-based prosodic classes: EER=11.1%(0.0712)
---Phoneme-based prosodic classes: EER=8.5%(0.0536)

Acoustic Baseline: EER=2.5%(0.0096)
Acoustic + Prosodic + Phone-based prosodic classes: EER=2.2%(0.0079)

- Acoustic+ Prosodic + Phoneme-based prosodic classes: EER=1.7% (0.0067)
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Figure 5.8: DET curves of the baselines, phonetic-based joint-state classes, and the fusion between
systems on the extended-data speaker detection task in 2002 NIST SRE.

Despite the superior performance of the phoneme-based joint-state classes

(EER=8.5%) over the joint-state classes (EER=14.2%), the fusion of the acoustic

baseline with either systems yields the same improvement over the baseline. This result

shows that the improvements in performance of the fused systems do not depend on the

performance of the systems alone, but in the amount of complementary information that

the fused systems have.

The performances on the 2002 NIST SRE are considerably worse than the

performances obtained on the 2001 NIST SRE. Some of the factors affecting the

performance are analyzed in the following section.
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5.5 Factors Affecting Performance

In this section, we analyze the factor affecting the perfonnance of the phonetic-based

systems. The analyzed factors are the same ones described in Section 4.6: the amount of

training data, handset mismatch between training and testing, and same-gender trials.

5.5.1 Amount of Training Data

Table 5.1 shows the perfonnances on 1- and 8-conversation training conditions for the

systems using the phoneme and phone classes alone, and the new segment classes

(phoneme-based and phone-based joint-state classes) on the 2001 NIST SRE. All the

joint-state classes include the duration label. Note that most of the systems perfonn the

same or worse than the delta-based joint-state classes for I-conversation training

condition. This result shows that larger the set of classes used to characterize speaker-

dependent infonnation, more training data is required to accurately estimate the model.

The results for 8-conversation training condition and relative improvement confinn the

requirement of considerable amount of training data for speaker modeling.

Table 5.1: Comparison of performance of the phonetic-based systems for 1- and 8-conversation
training conditions on the 2001 NIST SRE.

On 8-converstation training condition, only the perfonnance of phoneme classes

is similar to the perfonnance of the delta-based joint-state classes. One reason could be

that speaker-specific infonnation is better represented by a longer n-gram than bigram.

However, a trigram modeling of the phoneme sequence proposed by Andrews et al. [77]

achieves a 13% EER on the 8-conversation training condition. Andrews's work refutes

the longer n-gram hypothesis.

System
1-conversation 8-conversation Relative
trainin EER trainini! EER improvement

Delta-based joint-state classes 18.3% 11.4% 38%
Phoneme classes 29.2% 11.7% 60%

Phoneme-based joint-state classes 18.2% 4.3% 76%
Phone classes 19.8% 6.8% 66%

Phone-based joint-state classes 15.8% 5.0% 68%
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5.5.2 Telephone Handset

Figure 5.9 shows the performances for the phonetic-based systems alone and the fusion

between the phonetic-based joint state modeling and baselines per handset condition on

the 2002 NIST SRE.

iiiMatchedhandset . Mismatchedhandset

Phone

314%Acoustic baseline

Phoneme 111.4%
.8%

Phoneme-based joint-state
914%

Fusion: Baselines+Phoneme-based joint-state

13.9%

Phone-based joint-state
12.1%

Fusion: Baselines+Phone-based joint-state

0% 2% 4% 6% 8% 10% 12% 14% 16%

EER

Figure 5.9: Handset condition performance of the fusion between the baselines and the phonetic-
based prosodic classes.

The performances of the phoneme- and phone-based systems for both handset

conditions show that the phoneme-based system is not affected as much as the phone-

based system by the mismatched-handset condition. Using only the segmental

information, the degradation in performance (from 10.8% to 11.4% EER) for the

phoneme classes is not significant, whereas the relative degradation (from 9.6% to 13.9%

EER) for the phone classes is about 45%. Consequently, any problem in the estimation of

segmental and joint-state classes is likely to affect the alignment of both streams. The

phoneme-based and phone-based joint-state classes have a relative degradation in

performance of 24% and 37%, respectively. The robustness of the phoneme-based

approach is reflected into the performance of the fusion with the baselines. The fusion of

the phoneme-based joint-state classes with the baselines achieves a 32% relative

improvement over the performance of the acoustic baseline under mismatched-handset

condition, i.e., from 3.4% to 2.3% EER.
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5.5.3 Speaker Demographics

Table 5.2 presents the perfonnance for same-gender trials of the phonetic-based systems

for 8-conversation training condition on the 2001 and 2002 NIST SREs.

Table 5.2: The EER per gender condition of phonetic-based systems for 8-conversation training
condition on 2001 and 2002 NIST SREs.

The perfonnance of the phoneme and phone class modeling does not show any

significant difference between same-gender trials. However, the comparison of the results

on the 2002 NIST SRE with respect to the 2001 NIST SRE shows that the perfonnance

of male-male trials for phoneme classes improves. Despite the reduction in the amount of

training data for each model (approximately 29%), the phoneme modeling maintains or

improves the perfonnance across different evaluation data. This demonstrates the

robustness of the LVCSR system in the phoneme sequence estimation. In addition, it

seems that the phoneme class modeling is not affected by the small age difference

between impostor and true speaker.

The perfonnance of the phonetic-based joint-state classes for both same-gender

trials degrades from the 2001 to 2002 NIST SRE. Given the large set of classes (430

elements), the reduced amount of training data per model affects the n-gram modeling. In

the 2002 NIST SRE, a conversation side produces, on average, 29% fewer phoneme-

based classes (phoneme and phoneme-based joint-state) and 35% fewer phone-based

classes (phone and phone-based joint-state) than a conversation in the 20021 NIST SRE.

The perfonnances of the phonetic-based joint-state classes show a significant

difference between same-gender trials on the 2002 NIST SRE. Since the difference of the

amount of training data per gender is very small (about 6%), it seems that the small age

difference between impostor and true speaker affects more the perfonnance of male-male

2001 NIST SRE 2002 NIST SRE

Systems Male- Female- Male- Female-
male female male female

Phoneme classes 12.6% 11.6% 11.3% 11.2%
Phone classes 6.9% 6.8% 10.1% 10.2%

Phoneme-based joint-state classes + duration 3.8% 4.9% 8.9% 6.9%

Phone-based joint-state classes + duration 5.1% 5.2% 10.7% 9.6%
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trials. In fact, the degradation of the perfonnance from the 2001 to the 2002 NIST SRE is

higher for male-male than female-female trials.

5.6 Summary

In this chapter, we presented an approach to model the interaction between prosodic and

segmental infonnation using a sequence of phonetic classes and the dynamics of FOand

short-tenn energy contours. This approach perfonns a time-alignment between both

infonnation streams to generate a sequence of symbols that represent the dynamics of

prosodic features conditioned on the phonetic class (phoneme or phone).

Two approaches using the sequence of phones or phonemes were described. The

main difference between the modeling of both streams is that the sequence of phonemes

represents the intended linguistic message (due to the corrections made by the LVCSR),

and the sequence of phones approximates the sequence of sounds realized by the speaker.

Using the 2001 NIST SRE, we showed that integrating the joint-state of FO and energy

contours to the segmental infonnation provides a better characterization of speaker-

specific infonnation. The small improvements obtained by the addition of the duration

label to the phonetic-based joint-state classes illustrate the data requirement for n-gram

modeling. The perfonnances for the 2001 and 2002 NIST SRE show that the success of

the phonetic-based joint state modeling depends on several factors, such as the robustness

of the sub-systems (phone recognizer, LVCSR system, or joint-state class estimation

algorithm), correct alignment of the prosodic and phonetic streams, consistency in the

phonetic sequence estimation, and reasonable amounts of training data.

Finally, the fusion between the baselines and the phonetic-based joint-state

classes shows that the proposed representation also provides complementary infonnation.

The fusion of phoneme-based joint-state classes and baselines yields at least a 32%

relative improvement over the acoustic baseline on both NIST evaluations. The fusion

with phone-based joint-state classes yields at least a 12% relative improvement over the

acoustic baseline.



Chapter 6

Prosodic Modeling for Language Detection

Since the joint-state classes are used to characterize prosodic phenomena, this chapter

demonstrates that such classes can also be used to capture language-specific information.

In this chapter, we describe few modifications of the joint-state class estimation for the

language detection task. Then, the joint-state class modeling is evaluated on the 2003

NIST Language Recognition evaluation paradigm. The chapter is structured as follows.

Section 6.1 introduces the language detection framework of the 2003 NIST Language

Recognition Evaluation (LRE). Section 6.2 describes two language detection baselines

and their performances on the 2003 NIST LRE. Section 6.3 describes the modifications

on the joint-state classes modeling and results on the 2003 NIST LRE. Section 6.4 shows

that the joint-state classes can also provide complementary information to the baseline

systems.

6.1 Language Detection Task

The goal of the language detection task is to determine whether or not a test segment of

speech is from the target language. It is assumed that the test segment has only speech

from one language. The language detection task has a similar formulation as the speaker

detection task, i.e., hypothesis testing of two mutually-exclusive hypothesis: the target

language is present, or not. Therefore, the likelihood ratio test is used to make a decision.

In this work, the systems are evaluated using the 2003 NIST Language

Recognition Evaluation paradigm [185]. The evaluation data is from the Language Data

111
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Consortium's (LDC) CalIFriend corpus, which is a collection of unscripted conversations

for 12 languages recorded over digital telephone. The languages are: Arabic

(conversational Egyptian), English (American), Farsi, French (Canadian), German, Hindi,

Japanese, Korean, Mandarin, Spanish (Latin America), Tamil, and Vietnamese. The test

segments can last nominally 3 seconds, 10 seconds, and 30 seconds. The test data

comprises 80 test segments of each of the three test durations, for each of the 12 target

languages.

Similar to the speaker detection task, the system performance is measured using

the expected cost of making a detection decision, as described in Section 3.1.1. The

detection decision uses the missed detection probability (rejecting the correct language)

and the false acceptance probability (detecting the wrong language for a given test

segment). The costs of miss detection and false alarm are equal to 1 and the prior

probability of the target language is 0.5. The error probabilities are plotted as DET curves

to show the system results.

6.2 Baseline Systems

We used two systems to show that the prosody-based speech representation can provide

complementary information. Both systems use a sequence of phones produced by phone

recognizers to model the phonological properties of a spoken language. Among the

various phonological factors, the sequence of phones can capture the phonotactics

constraints and phone usage.

6.2.1 Single Phone-recognizer based Language Detection System

This system builds language models for all target languages using the sequence of phones

IToma single phone recognizer. Since the same phone recognizer is used across different

languages, this type of approach eliminates the need for training corpora from each target

language [5]. The TRAPS phone recognizer, described in Section 5.2.1, is used to

estimate the sequence of English phones IToma given utterance. Its phone set has 43

possible symbols.

The language detection task is divided into two phases: training and testing. In the

training phase, a trigram model for each target language is estimated based on the
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sequences of phones produced by the TRAPS phone recognizer for the respective

language. In the testing phase, a likelihood score is computed for every language model

given the phone sequence estimated ITomthe test message. Since it is allowed to use the

knowledge of the whole set of target languages, each score is normalized using the scores

estimated ITom all language models. The diagram of the language detection system is

shown in Figure 6.1.

language Model 1
likelihood

score 1

language Model 2
Likelihood

score 2
TRAPS Phone I/ ax/ /ItL/...

Recognizer

language Model N
Likelihood

score N

Figure 6.1: Diagram of an N-Ianguage detection system based on a single phone-recognizer.

Figure 6.2 shows the DET curves of the single-phone recognizer-based language

detection system under the three evaluation conditions.

40

1

0.5

0.2

0.1

... 3-second condition: EER=32.2'Yo(0.3199)
1O-secondcondition: EER=22.7'Yo(0.2251)

. - 3o-second condition: EER=12.7'Yo(0.1261)

0.1 0.2 0.5 1 2 5 10 20 40
False Alarm probability (in %)

Figure 6.2: DET curve for the single phone-recognizer based language detection system.
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6.2.2 Parallel Phone-recognizers based Language Detection System

Similar to the work done by Van [15], this system uses six language-dependent phone

recognizers (English, German, Hindi, Japanese, Mandarin Chinese, and Spanish) to

obtain a time-aligned sequence of phones that are used to model each language [5, 14,

186]. As shown in Figure 6.3, the system is divided into three parts: front-end, language-

dependent score generator, and score fusion.

English Phone Recognizer

German Phone Recognizer

Hindi Phone Recognizer

Japanese Phone Recognizer

Mandarin Phone Recognizer

Spanish Phone Recognizer

English Score Generator
Language ModeI1.2 N

German Score Generator
Language ModeI1.2 N

Hindi Score Generator
Language ModeI1.2 N

Japanese Score Generator
Language ModeI1.2 ,N

Mandarin Score Generator
Language ModeI1,2, N

Spanish Score Generator
Language ModeI1,2,...,N

Score
Fusion

N-score

Figure 6.3: Diagram of an N-Ianguage detection system based on multiple phone-recognizers.

The front-end is composed by six language-dependent phone recognizers trained

on the OGI Multi-language Telephone Speech corpus [137]. Each phone recognizer is a

hidden Markov model trained on the respective language using Mel-frequency cepstral

coefficients as the input features. Then, each HMM is retrained on CallFriend training

data [185]. The phone set used by the recognizers has 221 phones (43 for English, 40 for

German, 40 for Hindi, 29 for Japanese, 39 for Mandarin, and 30 for Spanish).

The language-dependent score generator estimates a likelihood score for each

target language. The time-aligned phone string from each phone recognizer is scored

using 12 language models trained on the language that corresponds to the phone

recognizer. For example, the sequence of phones coming out from the English phone

recognizer is scored against 12 language models (one model for each target language)

trained on the English phone sequence. The language models are trigram models

estimated from the sequence of phones recognized from the CallFriend training data.
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Finally, the score fusion takes the likelihood scores from all score generators and

produces the final set of scores. Since the detection task has 12 languages and the system

uses 6 language-dependent phone recognizers, the score generators produce 72 scores

(Le., 6 scores for each one of the 12 languages). The classifier is a 3-layer feed-forward

neural network (multi-layer perceptron neural network) trained on the CallFriend training

and development scores. The neural network has a layer consisting of inputs for the 72

scores from the language-dependent score generator, 25 neurons with sigmoid activation

function in the hidden layer, and 12 neurons (one for each language) with sigmoid

activation function in the output layer. Figure 6.4 shows the DET curves of this system

on the three conditions.

40
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3-second condition: EER=22.6%(0.2176)
0.2~uuul 1o-secondcondition:EER=11.9%(0.0.1170)
0.11-uuJ - 3O-second condition: EER=7.7%(0.0710)
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False Alarm probability (in %)

Figure 6.4: DET curve for the multiple phone-recognizers based language detection system.

6.3 Modeling Language Information using Prosodic Features

Since the speaker detection and language detection tasks share several similarities, we

developed a language detection system that uses the joint-state classes to model the target

languages. The estimation of the joint-state classes follows the same approach described

in Section 4.3.
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The time interval used to estimate the time derivatives is longer for language

detection than for speaker recognition. Figure 6.5 shows the EER of the trigram modeling

of the joint-state classes plus durationI using different time intervals for the delta features

computation. The best performance of the language detection system uses time intervals

between 50 ms and 90 ms to estimate the delta features. The difference between the

results within this interval and the results of the remainder time intervals is statistically

significant. Note that the time interval that yields the best performance for speaker

detection is equal or less than 50 ms. The time interval differences between language and

speaker detection shows that the details in contours account more for the speaker than

language information. Thus, the experiments from now on use 90 ms delta window for

estimating the joint-state classes.

Figure 6.6 shows the performance on the three test conditions of the trigram

modeling of the joint-state classes estimated using a 90 ms delta window. First, the

performance of the joint-state classes seems to be less affected by the reduction of the test

segment duration than the phone-based approaches. One reason is that the trigram models

are better estimated than the phone-based models, because of the small number of joint-

state classes. Even though the performance of the joint-state class based system is worse

than the performances of the phone-based systems, it is still an encouraging result

because the joint-state class based system uses a sequence of just 10 possible symbols to

I The values used to quantize the duration are the same as the speaker, i.e., "Short" is assigned to segments with duration less than 8

frames for voiced frames, and for segments with duration less than 14 frames for unvoiced segments.

27% ]
26.3%

26% 25.4%

25%
23.9%I 23.8% 23.8%

0:: 24%
23% I I I 22.7% 22.7% 22.6%

22%

21%

20%

30ms 50ms 70 ms 90 ms 110ms 130 ms 150 ms 170 ms

Figure 6.5: EER for different delta windowlengths.
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model each language, whereas the single phone-recognizer based system uses 43 symbols

and the parallel phone-recognizer based system uses 221 symbols.

40

10

5

""". 3-second condition: EER=37.0%(0.3672)
-,_.. 1O-secondcondition: EER=30.6%(0.3032)
- 3Q-second condition: EER=22.6%(0.2252)

5 10 20
False Alarm probability (in %)

Figure 6.6: DET curve for the prosodic segments based language detection system.

40

Figure 6.7 shows the performance (DCF) of all three systems for each language.

The results show that the joint-state classes system performs about the same as the phone-

based systems for some languages. The performances of the joint-state class based

system for Arabic, Vietnamese, and French languages does not show any significant

difference with respect to the performances of the single phone-recognizer based system.

The joint-state classes system does not show consistent results among the tonal

languages (Vietnamese and Mandarin). Contrary to the results for the Vietnamese

language, the joint-state class based system performs worse for Mandarin than the phone-

based systems. These results can be a consequence of how much language information

can be modeled by the joint-state classes system for each one of these two languages, i.e.,

the dynamics between pitch and intensity playa more important role for Vietnamese than

Mandarin. Such claim can be checked by fusing the prosody-based system with the

phone-based systems, which is described in Section 6.4.
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Figure 6.7: The decision cost per language for the baselines and the joint-state classes systems.

The analysis of the output of the joint-state class system showed that several

languages are commonly misrecognized as each other (Appendix D). Despite the good

performance of German in comparison to the other languages, German is frequently

misrecognized as English, and vice-versa. This misrecognition can be result of the fact

that both languages come from the same family and share prosodic characteristics.

Surprisingly, other languages like Farsi and Arabic are frequently misrecognized as

coming from English. The misrecognition between languages also occurs for Japanese

and Korean. One reason for the misrecognition is that Korean has a similar prosodic

behavior to Japanese [187]. Mandarin is also confused with Japanese, which is a

consequence for using similarly the pitch. These results are also observed in language

identification experiments with human subjects. Muthusamy [7] reports a confusion

between the tonal languages (Mandarin and Vietnamese), pitch accent language

(Japanese), and Korean.

6.4 Systems Fusion

We fuse the scores to verify whether the joint-state classes approach can provide

complementary information to the baseline systems. The fusion process averages the

normalized scores from each system. First, the scores of each system are mean and

variance normalized. The mean and variance are estimated from the target language

scores of the respective segment (normalization over different test segments is not

allowed). Then, the scores are fused by averaging them. Figure 6.8 shows the DET curves
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for the fused systems on the 30-second condition. The results show that fusion

significantly (a=O.OI) improves the performance of both phone-based systems (17% for

the single phone-recognizer based system and 14% for the parallel phone-recognizers

based system). Indeed, the joint-stat class based system has complementary information

with respect to the phone-based systems.

40

20-
:oeo

§. 10
>-
:=
:c 5«I..co....
Co

~ 2
~

1

05 H Prosody-based segments: EER=22.6%(0.2252)
. --- Single phone-recognizer: EER=12.7%(0.1261)

02 H Prosody-based + Single phone-recognizer: EER=10.5%(0.1030)
. Parallel phone-recognizer: EER=7.7%(0.0710)

0.1H- Prosody-based+ Parallel phone-recognizer: EER=6.6%(0.0647)

0.1 0.2 0.5 1 2 5 10 20 40
False Alarm probability (in %)

Figure 6.8: DET curves of the phone- and prosody-based systems fusion on the 30-second condition.

Table 6.1 presents the performance for each language of both fused systems and

the respective relative difference in performance. As we expected, the tonal languages

Mandarin and Vietnamese showed improvements in performance. A consistent

improvement also happened for other languages: Arabic, Farsi, French, and German.

Surprisingly, Korean and Japanese performances improve for the fusion of joint-state

classes and the single phone-recognizer based system, but not for the parallel phone-

recognizers based system. We can speculate that, because of the large number of speech

patterns represented by the phones from the six language-independent recognizers, the

parallel phone-recognizers based system is already capturing some prosodic information.
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The performance of the fusion between joint-state classes and single phone-

recognizer based systems for English, Hindi, and Spanish deteriorates or does not show

any significant difference. The performances for Spanish and Hindi come from the poor

performance of the joint-state class based system on these languages. The confusion

matrix of the joint-state class based system (see Appendix D) shows that the missed

detection rate is high (approximately 80%) for both languages. This also affects other

languages, like English, because the poor model can cause more false alarms.

Table 6.1: Performance (DCF) of the fused systems per language. The relative difference columns
show the relative difference in performance with respect to the phone-based system performance

before the fusion (NS stands for non significant difference).

6.5 Summary

In this chapter, we presented a modification of the joint-state modeling of the dynamics

ofFO and short-term energy contours to characterize language-specific information. This

approach is based on the notion that different languages differ in the realization of

prosodic phenomena. Such differences can be detected by modeling the dynamics of FO

and energy contours. Since the spoken language is the relevant information, the modeling

was modified so that the speaker-specific information is suppressed from the joint-state

class estimation. We showed that increasing the time interval used for estimating the rate

of change can improve the modeling of language-specific information. We found that

estimating the rate of change over time intervals between 50 ms and 90 ms yields the best

Language
Prosody+English Relative Prosody+Multiple Relative

Reco2nizer Difference Reco2nizers Difference
Arabic 0.1085 23.3% 0.0483 20.6%
English 0.0739 NS 0.0767 12.9%
Farsi 0.1466 22.5% 0.0631 21.8%
French 0.1165 31.4% 0.0824 12.6%
German 0.0869 8.4% 0.0500 22.8%
Hindi 0.1926 -8.6% 0.1580 NS
Japanese 0.1187 21.8% 0.0648 NS
Korean 0.0841 29.5% 0.0420 -25.4%
Mandarin 0.0949 12.5% 0.0938 25.6%
Spanish 0.1455 -16.4% 0.0756 NS
Tamil 0.0824 24.1% 0.0239 NS
Vietnamese 0.0131 81.4% 0.0097 83.4%
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perfonnance of the joint-state classes on the 2003 NIST Language Recognition

evaluation.

The joint-state class based modeling often misrecognizes languages that shares

prosodic characteristics. Some cases include the duo Gennan and English, and the trio

Korean, Japanese, and Mandarin. Given that humans rely on prosodic infonnation to

discriminate languages, this misidentification is also reported for language identification

experiments that involve human subjects.

We showed that the prosody-based modeling can provide complementary

infonnation to the conventional systems. Results show that the prosody-based modeling

can yield a relative improvement of 17% when fused with one of the most successful

language detection system.



Chapter 7

Conclusions

This thesis presented new approaches to model prosodic information using the rate of

change of FO and short-term energy contours. Since different speakers and different

languages may be characterized by different prosodic patterns (e.g., intonation, stress,

and rhythm), such modeling was used to characterize speaker- and language-specific

information.

In Chapter 4, we described two methods to convert the speech signal into a

sequence of classes that represent the dynamics (i.e., rate of change) of both FOand short-

term energy contours. The first method uses the segments obtained from the FOcontour

to segment the speech signal. A FO stylization algorithm is used to segment the FO

contour, where each FOsegment represents a prosodic gesture (rising or falling) of pitch.

Then, each speech segment is classified into 5 classes according to the rate of change of

both contours within the segment. Using the 2001 NIST evaluation paradigm, we showed

that the bigram modeling of the sequence of classes representing joint-state of both

contours captures more speaker-dependent information than modeling the contours

individually. Since the duration of speech segments can vary across classes, an extra label

representing a three-level quantization of the segment duration is added to the joint-state

class. The performance of the bigram modeling of the segment classes and duration is

better than the prosodic baseline system, which is based on the statistics of the

distributions of FO, short-term energy, and their respective time derivatives. This result

shows that there is speaker-specific information conveyed in the temporal aspects of FO
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and energy contours, and in the manner in which both features interact with each other to

produce certain prosodic phenomena. The second method extends the first one by making

the segmentation dependent on both contours, and using delta features to detect segment

boundaries. These modifications reduce the complexity of the system by removing pre-

processing of the stylization algorithm, and provide the means of controlling the amount

of detail (by reducing or increasing the time interval used for the delta features

estimation) in estimating the contour dynamics. Since the speech signal is segmented

using the changes in the dynamics from both contours, the length of the segments is

smaller than the FO-based segmentation method. Therefore, the duration quantization is

modified so that two labels (short and long) are used to represent the segment duration.

Despite that this approach has a reduced set of discrete units (10 sYmbols: 5 segment

classes times 2 duration labels) compared to the previous approach (15 sYmbols: 5

segment classes times 3 duration labels), the performance of the bigram modeling of the

delta-based approach is about 19% better than the performance of the FO-basedapproach.

This result shows that incorporating the changes in the dynamics of the energy contour in

the segmentation and using delta parameters to approximate the rate of change provide a

better characterization of speaker-specific information. Since most of the study uses the

evaluation data from the 2001 NIST SRE, we also show that all the results also hold

when using the evaluation data from the 2002 NIST SRE. The same systems were

evaluated using the new evaluation data, i.e., no modification was performed on the

systems configuration.

We also analyzed the effect of several factors on the performance of the speaker

detection systems. Given the long-term characteristics of the joint-state classes, the

speaker detection systems based on joint-state classes requires considerable amount of

training data for an adequate speaker modeling. The effect of different handsets used for

training and testing does not affect the joint-state classes as much as it affects the acoustic

baseline. Contrary to the prosodic and acoustic baseline, the age difference between

impostor and true speaker affects more the only female trials than only male trials for the

joint-state classes.

Another goal of the proposed approach is to provide complementary information

to conventional systems. The fusion between the prosodic baseline and the joint-state
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classes system yields a 35% relative improvement in performance on the 2001 NIST

SRE, and 21% relative improvement on the 2002 NIST SRE. This shows that the

proposed approach provides speaker-specific information that is not captured by the

statistics of the FOand energy distributions. The fusion between the acoustic baseline and

the prosodic systems also improves the performance of the acoustic baseline on the 2001

NIST SRE. The improvement of the state-of-the-art system shows that prosodic systems

provide complementary information. Despite the remarkable results on the 2001 NIST

SRE, the fused systems yield a reduced improvement over the acoustic baseline on the

2002 NIST SRE, which is the result of the factors such as the smaller age difference

between impostor and true speaker, and different handsets for training and testing.

Two extensions to the joint-state class modeling approach were also presented in

Chapter 4. The first approach uses 4 quantization levels to describe the dynamics of the

FO and energy contours. The performance of such approach is better than the 2-level

approach, except when duration label is added to the classes. This result does not come as

a surprise because as the number of quantization levels increases, more details of the

contour are captured by the segmentation. Consequently, the segmentation process

produces more, but smaller, segments such that the duration information provides little or

no information about the speaker. The second approach extends the concept of modeling

the dynamics of two different streams by modeling the interaction between FO and

different frequency bands. The goal is to exploit the variability of different frequency

bands due to phone, speaker, and channel information. The performance of the bigram

modeling of the individual frequency bands yields similar performance to the short-term

energy. Given the several sources of information affecting different parts of the speech

spectrum, we showed that a fusion of only 6 frequency bands (below 600 Hz and above

2500 Hz) yields a better performance than the short-term energy.

In Chapter 5, we presented an approach to model the dynamics of FO and short-

term energy together with segmental information. The goal is to capture the interaction

between segmental and prosodic information that is speaker dependent. This approach

uses the segmentation from the FO and short-term energy contours and some segmental

information to create new segment classes. Such classes represent the dynamics of

prosodic features conditioned on the phone or phoneme type (segmental information).
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We showed that integrating the joint-state of FO and energy contours to the segmental

information can provide a better modeling of speaker-specific information. Results on the

2002 NIST SRE show that the alignment of both streams plays an important role in the

performance. Most of the alignment problems are due to the lack of robustness and

inconsistent results in the estimation of the segmental stream.

The fusion between the baselines and the phonetic-based joint-state classes shows

that the proposed representation provides complementary information. The fusion of

phoneme-based joint-state classes and baselines yields at least a 32% relative

improvement over the acoustic baseline on both NIST evaluations. The fusion with

phone-based joint-state classes yields at least a 12% relative improvement over the

acoustic baseline.

Since the structure of prosody is not exactly the same for every language, we

described in Chapter 6 how the joint-state classes are used to discriminate languages. The

goal is to capture the most common prosodic patterns produced by a given language.

Since the relevant information is the spoken language, the modeling was modified so that

the speaker-specific information is suppressed ITomthe joint-state class estimation. We

showed that increasing the time interval used for estimating the rate of change improves

the modeling of language-specific information. The trigram modeling of the joint-state

classes based on the rate of change estimated over time intervals between 50 ms and 90

ms yields the best performance. We also showed that the joint-state class modeling can

provide complementary information to the conventional systems. Results show that the

prosody-based modeling can yield a relative improvement of 17% when fused with one

of the most successful language detection system.

7.1 Future Work

In this thesis, we showed that the joint-state classes representing the dynamics of FOand

short-term energy contour are used for characterizing speaker- and language specific-

information. However, the relationship between prosodic phenomena and the joint-state

classes was not established in this work. Further research is required to study the

relationship between certain patterns in the sequence of joint-state classes and the

prosodic phenomena, such as intonation, stress, or rhythm.
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The results presented in this work are only applied to the speaker and language

detections tasks. However, these are not the only applications that can get benefit from

prosodic information. It will be interesting to investigate how the joint-state classes can

be used to provide prosodic information to different speech-based applications, such as

speech segmentation into topic and sentences, emotion recognition, speech synthesis, and

dialect recognition.

Despite the n-gram modeling showed to be an efficient method for modeling the

joint-state classes, bigram modeling does not exploit longer dependencies between

classes. The development of different approaches that can explore complex dependencies

between the joint-state classes seems to be the next step. However, such development

must take into account the data sparsity of the joint-state classes. The data sparsity also

encourages the investigation of adaptation techniques to overcome such problem.

The segmentation technique can also be used to exploit the interaction of different

information streams besides pitch and intensity. Traditionally, different information

streams have been modeled as coming from independent sources of information. The

proposed segmentation technique provides the framework to investigate and exploit the

temporal aspects and interaction between different information streams.

In the phonetic-based joint-state modeling, both streams are integrated by

performing a time-alignment of both streams. However, estimation errors coming from

either of the streams affect the accuracy of such alignment. Instead of performing a time

alignment of both streams, a method that takes into account the information being aligned

would reduce the errors from the stream estimation. For example, the alignment method

would never put together an unvoiced segment from the prosodic stream with a vowel

from the phonetic stream.



Appendix A

Speaker Recognition Evaluation: Amount of
Training Data Factor

One of the factors affecting the performance in the speaker recognition evaluation is the

amount of training data, as shown in Section 4.6.1. In this appendix, we present some

statistics about the amount of training data generated per conversation side for both NIST

Speaker Recognition evaluations.

Figure A.I shows the statistics of the short-term feature vectors generated per

conversation side for each gender for the prosodic baseline. Since FO is one of the

dimensions of the short-term feature vector, the models are estimated using only the

feature vectors from voiced speech regions.

Male Female Male Female

NIST SRE 2001 NIST SRE 2002

Figure A.I: Statistics of the feature vectors generated per conversation side for both NIST
evaluations. The average number of joint-state classes is represented by a bar and the standard

deviation by the length of a vertical line.
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On average,conversationsides from female speakers produce more feature

vectors than male speakers: approximately 17% and 12% for the evaluation data of the

2001 and 2002 NIST SRE, respectively. Another difference is that the number of feature

vectors per conversation side decreases from the 2001 NIST SRE evaluation to the 2002.

On average, the conversation sides from the 2002 NIST SRE produce 32% fewer feature

vectors the conversation sides from the 2001 NIST SRE. Such difference in the number

of feature vectors across evaluations is due to the use of a speech activity detector [143]

to select the speech regions for further processing in the 2002 NIST SRE. Such

processing is not performed in the 2001 NIST SRE because speech/silence segmentation

was already performed in the Switchboard I corpus by the Institute for Signal and

Information Processing (ISIP) at Mississippi State University [188].

Figure A.2 shows the statistics of the phoneme and phone class sYmbols

generated per conversation side for each gender and NIST evaluation. Note that both

genders have a balanced number of class sYmbolsper conversation sides in both NIST

evaluations. However, the number class sYmbols per conversation across evaluations

decreases for both sequences. On average, the conversation sides from the 2002 NIST

SRE produce 32% fewer class sYmbols than the ones from 2001 NIST SRE. Such

difference is also result from the use of the speech activity detector mentioned before.
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Figure A.2: Statistics of the phoneme/phone classes generated per conversation side for both NIST
evaluations. The average number of phoneme/phone classes is represented by a bar, the standard

deviation by the length of a vertical line, and the median value by a triangle.

Another difference is that the average number of phoneme class sYmbolsis larger

than the number of phone class symbols per conversation. In the 2001 NISI SRE, a

I · Phonemes1_

o Phones
. Median _

....- ....-
--

f--
""II-

f--

f-- -



129

conversationside has about 19% fewer phone class symbolsthan phoneme class. The

addition of the speech activity detector in the 2002 NIST SRE increases the difference

between the number of phone and phoneme class symbols to 25%. One reason is that the

errors in the recognition together with the unconstrained sequence of phones can produce

short segments (shorter than 30 ms, according to the configuration described in Section

5.1.2) that are removed for the speaker modeling. In addition, given the long-term

characteristic of the features used by the phone recognizer (0.5 second temporal

trajectory), phones with short duration are likely not recognized.

Figure A.3 shows the statistics of the joint-state class symbols, described in

Section 4.3, generated per conversation side for each gender and NIST evaluation.

Similar to the short-term feature vectors used for the prosodic baseline, the conversation

side from female speakers generates more joint-state class symbols (approximately 13%)

than male speakers'. Note that the number of class symbols per conversation side is

similar for both evaluations. Differently from the feature vectors estimation for the

prosodic baseline, the joint-state class approach does not use a speech activity detector to

select the speech regions for processing. This shows that the speech activity detector is

indeed responsible for the fewer features vectors per conversation on the 2002 NIST

Male Female

NISTSRE2001

Male Female

NISTSRE2002

Figure A.3: Statistics of the joint-state classes generated per conversation side for both NIST
evaluations. The average number of joint-state classes is represented by a bar, the standard deviation

by the length of a vertical line, and the median value by a triangle.
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Figure A.4 shows the statistics of the phonetic-based joint-state class symbols,

described in Chapter 5, generated per conversation side for each gender and NIST

evaluation. Besides the characteristic difference between the numbers of class symbols

per gender, the integration between joint-state classes and phone classes produces a larger

number of class symbols than the integrating between joint-state classes and phoneme

classes.

. Phoneme-based joint-state classes & duration
o Phone-based joint-state classes & duration
&Median
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Figure A.4: Statistics of the phonetic-based (phoneme/phone) joint-state classes generated per
conversation side for both NIST evaluations. The average number of phonetic-based joint-state

classes is represented by a bar, the standard deviation by the length of a vertical line, and the median
value by a triangle.
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Appendix B

Speaker Recognition Evaluation: Age Factor

Figure B.l and Figure B.2 show the distribution of speakers per age group from the 8-

conversation training condition for 2001 and 2002 NIST SREs, respectively. The caller

age histogram of the 2002 NIST SRE in Figure B.2 shows skewness to the right because

most of the callers are college students.

w 100
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t; 60
Z 40
g 20
N 0

. Female Speakers
r:JMale Speakers

10-19 20-29 30-39 40-49 50-59 60-69

Age range

Figure B.l: Number of callers per age range from the 8-conversation training condition of the 2001
NIST Speaker Recognition Evaluation extended-data speaker detection task.

w 400
IX
tI) 300I-
~ 200z
S 100
~ 0

. Female Speakers
I:iMaleSpeakers

10-19 20-29 30-39 40-49 50-59 60-69

Age range

Figure B.2: Number of callers per age range from the 8-conversation training condition of the 2002
NIST Speaker Recognition Evaluation extended-data speaker detection task.
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Figure B.3 shows the boxplot of the age difference between true speaker and

impostor for same-gender trials on the 2001 and 2002 NIST SRE. Male-male and female-

female trials show similar characteristics within each evaluation. However, the boxplot

shows that the age difference of the 2001 NIST SRE trials is more variable than those of

the 2002 NIST SRE trials.
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Figure B.3: Boxplot of the Age difference between the true speaker and impostor for same-gender
trials. Outliers are represented by a '+' symbol.

Table B.l shows some statistics about the absolute age difference between true

speaker and impostor for same-gender trials with the speaker models from 8-conversation

training condition.

Table B.t: Absolute age difference statistics for same-gender trials for 8-conversation training
condition.

2001 NIST SRE 2002 NIST SRE
Male-male Female-female Male-male Female-female

Number of trials 4396 4545 6960 7820
Median 11 11 4 5
Mean 12.4 13.0 8.0 8.7
Standard deviation 9.1 9.3 9.6 9.2



Appendix C

Phone-based Joint-state Class Modeling using a
Conventional Phone Recognition System

In Section 5.2, TRAPS, a long-term speech features based phone recognizer, was used to

estimate the sequence of phones from a given conversation side. In this appendix, we

show the speaker detection results for a system that uses a conventional phone recognizer

based on short-term features.

The sequence of phones is computed using a gender-dependent phone recognition

system. The phone recognizer uses the front-end of Zissman's Parallel Phone

Recognition with Language Modeling (PPRLM) system [4]. Such system employs a

hidden Markov model (HMM) followed by a Viterbi search to recognize the phonemes.

The HMM is a network of context-independent phones, which are modeled using 3

emitting states. The probability densities in each state are modeled using a 6-component

GMM. The observations are 12 Mel-cepstral coefficients (energy coefficient is discarded)

and 13 delta-parameters of the cepstral coefficients. The recognizer was trained on OGI

Multi-Language Telephone Speech Corpus [137]. Since our goal is to obtain a sequence

of phones, the language modeling is not performed. This phone recognizer outputs a

time-aligned sequence of 44 possible phones plus a silence label.

The same configuration as described in Section 5.2.2 is used to evaluate the

speaker detection performance. The DET curves for 8-conversation training for speaker

detection using the phone-based prosody modeling are shown in Figure C.1. Note that
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these results do not show a significant difference when compared to the results for the

experiments using TRAPS.
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Figure C.t: DET curve for the phone-based (PPRLM) joint-state class modeling.



Appendix D

Confusion Matrices for the Language Detection
Systems

This appendix shows the confusion matrices of the language detection systems described

in Chapter 6 (Tables D.l to D.3) and their fusions (Tables D.4 and D.5) for the 30-second

test condition. There are 80 test segments for each language.

Table D.l: Confusion matrix of the joint-state class based system on 30-second test condition.
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Input Language
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Arabic 45 11 5 7 7 4 3 3 1 4 1
Enlish 9 20 10 4 10 3 1 2 4 2 1

QJ
Farsi 3 9 20 9 4 6 5 4 4 5

(U
French 3 32 2 1 1 1 3=

= German 5 15 5 6 44 12 3 4 4 5 1(U

Hindi 1 2 7 8 4 19 5 7 4 10 7
't:I

Japanese 2 11 1 3 3 8 28 17 13 13 2QJ
N....

Korean 5 8 9 2 3 4 16 31 5 7 4 1=
= Mandarin 1 1 2 2 1 2 7 2 32 8 4 3CJ

Spanish 2 5 5 1 12 6 5 3 16 4 3
Tamil 3 12 1 6 5 3 7 7 53 4
Vietnamese 3 1 4 1 1 3 1 3 4 68
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Table D.2: Confusion matrix of the single phone-recognizer based system on 30-second test condition.

Table D.3: Confusion matrix of the parallel phone-recognizers based system on 30-second test
condition.

Input Language
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Hindi 4 3 3 4 46 3 2 3 6 1

"C
Japanese 9 4 1 1 4 49 17 5 3

.
= Korean 4 6 6 9 4 5 12 55 5 2 4
t)1)= Mandarin 3 9 5 2 2 2 1 47 2 1Cj

Spanish 6 1 3 13 1 5 4 1 3 58 1
Tamil 10 3 1 15 7 3 1 4 67 1
Vietnamese 2 4 8 2 1 1 2 8 2 7 77
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Arabic 71 1 2 3 2
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Farsi 56 1 1t)1)

=
French 2 56 2=

t)1)
= German 1 68 1=

Hindi 2 1 46 2
"C

Japanese 1 3 1 2 7 72 8 1 1 5
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Spanish 1 2 7 10 2 69
Tamil 2 2 72
Vietnamese 2 1 2 67
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Table D.4: Confusion matrix of the fusion between single phone-recognizer based system and joint-
state class based system on 30-second test condition.

Table D.5: Confusion matrix of the fusion between parallel phone-recognizers based system and
joint-state class based system on 30-second test condition.
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Vietnamese 1 1 2 1 1 1 1 77
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