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in a 

Time-Feature Space 

Sarel van Vuuren 

Supervising Professor: Dr. Hynek Hermansky 

The goal of this dissertation is to  determine the relative importance of components of 

the modulation spectrum for automatic speaker verification and t o  use this knowledge t o  

improve the performance of an automatic speaker verification system. It is proposed that  

the power spectrum of a time sequence of logarithmic energy, called the modulation spec- 

trum, provide information that  may be used t o  reduce the effects of adverse environments. 

The proposed strategy is t o  attenuate spectral components that  are not particularly use- 

ful for speaker verification. The aim is to  reduce system sensitivity t o  telephone handset 

variability without reducing verification accuracy. 

By computing the effect of carbon-button and electret microphone transducers on the 

modulation spectrum of telephone speech, it is found that  handset transducer variability 

accounts for a substantial portion of the total variability a t  moderate t o  high modulation 

frequencies. This is shown t o  be the case also a t  very low modulation frequencies, where 

variability is ascribed t o  the effect of a convolutional channel. This result is substan- 

tiated with verification results on the Switchboard corpora as used in 1997-1998 NIST 

speaker recognition evaluations. The main conclusion is that  components of the modula- 

tion spectrum between 0.1 Hz and 10 Hz contain the most useful information for speaker 



verification. 

To deal with adverse environments, it is proposed that  the time sequences of loga- 

rithmic energy be lowpass filtered. When compared t o  other filtering techniques such as 

cepstral mean subtraction that  may retain components up to  50 Hz or RASTA processing 

that  retains components between 1 Hz and 13 Hz, lowpass filtering t o  10 Hz is found to  

significantly reduce verification error in conditions where handset transducers differ be- 

tween training and testing. It is furthermore proposed that  the feature stream be sampled 

down from a 100 Hz sampling rate t o  as low as a 25 Hz sampling rate after lowpass fil- 

tering. Using this processing, a relative reduction in error of about 10% is shown for the 

1997 and 1998 NIST speaker recognition evaluations. Additional contributions of the dis- 

sertation include the design and implementation of a modular, high-performance speaker 

recognition toolkit. 

xvi 



Chapter 

Introduction 

Speech conveys information on several levels. It contains a message generically expressed 

as a sequence of words, information specific to  the speaker that  produced the speech, and 

information about the environment in which the speech was produced and transmitted. 

Speaker specific information include the identity of the speaker, the gender of the speaker, 

the language or dialect of the speaker and possibly the physical and emotional condition 

of the speaker. With this richness of information it comes as no surprise that ,  with the 

advent of computers, speech has found wide-spread application in human-computer com- 

munication. In particular, automatic speech recognition is the process of extracting the 

underlying message and automatic speaker recognition is the process of verifying the iden- 

tity of the speaker. Applications range from using voice commands over the telephone to  

control financial transactions and verifying the identity of the speaker, t o  continuous dic- 

tation and speaker detection in multi-party dialogues. The application generally dictates 

the types of information in the speech signal that  are useful. For example, for the pur- 

pose of extracting the underlying message in automatic speech recognition, the presence 

of speaker and environmental information may actually lead t o  confusions and degrade 

system accuracy. Similarly, message and environmental information may degrade speaker 

recognition accuracy. For an application t o  be successful, an accurate modeling of the 

desired type of information is therefore important. 



1.1 Speaker Verification 

Speaker verification can be considered within the wider context of speaker recognition. 

Speaker recognition collectively describes the tasks of extracting or verifying the identity 

of the speaker [4, 201. In speaker identification, the task is t o  use a speech sample t o  

select the identity of the person that produced the speech from among a set of candidate 

identities, or population of speakers. This task involves classification from N-possibilities, 

where N > 1 is the population of speakers. In speaker verification, the task is to use a 

speech sample t o  test whether a person who claims to  have produced the speech did in 

fact do so. This task involves a two-way classification which is a test of whether the claim 

is correct or not. In speaker identification the number of possible choices are the number 

of speakers in the population, whereas in speaker verification the outcome is limited to  

one of two choices. Closed-set speaker identification is the task where every speaker in 

the population is known t o  the system at  the time of use. Open-set identification is the 

task where some speakers in the population are unknown t o  the system a t  the time of 

use and hence must be rejected on the basis of being unknown. Open-set identification is 

therefore a combination of closed-set identification and speaker verification. An example 

where speaker identification has found use is audio indexing, which involves the automatic 

detection and tagging of speakers in a small multi-party dialogue. In this dissertation the 

focus will be on the task of speaker verification, but it should be understood that  the 

techniques investigated here can be readily applied t o  speaker identification. 

Taking a broader view, speaker identification and verification themselves can be placed 

in the field of biometric identification and verification [14], where the goal is t o  use any 

of a number of person-specific cues to  classify that  person. Examples of commonly used 

cues are as diverse as a facial image [96], iris pattern, finger print, genetic material or 

even keyboard typing pattern. The advantage of using a biometric cue for access control 

is that  it is always accessible, unlike a key or password that  can be misplaced, forgotten 

or stolen. 

Using a speaker recognition system is usually a two-step process [27]. The user first 

enrolls by providing the system (computer) with one or more representative samples of his 



or her speech. These training samples are then used by the system t o  train (construct) a 

model for the user. In the second step the user provides a test sample that  is used by the 

system t o  test the similarity of the speech to  the model(s) of the user(s) and provide the 

required service. In this second step the speaker associated with the model that  is being 

tested is termed the target speaker or claimant [60]. 

In speaker verification, when the person is constrained t o  speak the same text during 

both training and testing the task is text-dependent [27]. For example, the verification 

phrase may be a unique password or a fixed string of digits. Applications requiring access 

control, such as voice-mail, telephone banking and credit card transactions have success- 

fully used this type of verification [14, 111. A similar system using fixed phrases is currently 

being tested a t  a US border crossing a t  Otay Mesa, in San Diego, California, that  would 

allow frequent travelers t o  gain clearance by speaking into a hand-held computer inside 

the car. While text-dependent verification potentially requires only a small amount of 

speech it requires the user t o  faithfully produce the required text. As such it requires a 

cooperative user and a structured interaction between the user and system [14]. When the 

person is not constrained t o  speak the same text during training and testing the task is 

text-independent [27]. This is required in many applications where the user may be uncoop- 

erative or applications where speaker recognition occurs as a secondary process unknown 

to  the speaker as in audio indexing. For example, a forensic application may require ver- 

ifying the identity of a speaker based on speech from a recorded telephone conversation 

and the speaker may not actually be aware of this process. In both text-dependent and 

text-independent modes of operation the verification decision can be sequentially refined 

as more speech is input until a desired significance level is reached [55, 27, 253. The word 

"authentication" has sometimes been used for "verification" and "talker" or "voice" for 

"speaker". Similarly, "text-free" has been used for "text-independent" and "fixed-text" 

for "text-dependent" [27]. 

A block diagram of the major stages in a speaker verification system is shown in 

Fig. 1.1. First is the acquisition stage, where the speech produced by the speaker is con- 

verted from a sound pressure waveform into an electrical signal using a transducer. This 

acoustic signal is digitized and sampled a t  a suitable rate. Second is the signal processing 
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Figure 1.1: Block diagram of the major processes in a speaker verification system. 

and feature extraction stage, where salient parameters conveying speaker identity are ex- 

tracted from the acoustic speech signal. Design of the feature extraction stage is based on 

the existing body of knowledge of the speech process - such as models of the articulatory 

and auditory systems [67,37], theory of linguistics and phonetics [46], perceptual cues used 

by listeners [102, 221, transmission process [76], and application specific requirements. The 

third stage involves computing a similarity measure [25] between the information retrieved 

from the speech of the current speaker and a previously constructed model representing 

the person the speaker claims to  be. The model training (construction) forms a major 

component of the speaker verification system. It determines storage cost and computation 

and dictates accuracy of the similarity measure. The fourth and final stage is t o  compare 

the similarity measure to  a predetermined value or threshold and decide whether t o  accept 

or reject the claimed identity of the speaker. In this last stage for example, if the model 

of the claimed speaker is deemed t o  represent the information retrieved from the acoustic 

signal accurately, i.e. the two are similar, then the decision is t o  accept the claim made 

by the speaker. 

There has been, and continues t o  be, a great deal of interest in speaker verification with 

a vast number of speaker specific cues, feature extraction techniques, modeling techniques, 

and evaluation measures proposed. These are covered in a number of tutorial papers [5, 

84, 20, 29, 27, 14, 21, 481. Recently a number of speaker verification systems have also 

been deployed commercially. Examples include systems from ITT,  Lernout & Hauspie, T- 

NETIX, Veritel, Texas Instruments, Voice Control Systems and Nuance Corporation [14]. 



A speaker verification system has to  have certain characteristics t o  be useful. Obvi- 

ously, for a specified mode of operation it is desirable that  the system be accurate and 

consistent in its performance. An important characteristic is that  the system should be 

relatively insensitive or robust to  adverse environmental disturbances such as distortions 

introduced by the transmission channel. Furthermore, a system that  can make accurate 

decisions based on a small sample of speech would be preferable t o  a system requiring 

a large sample of speech, since acquiring a large sample may be annoying t o  the user. 

As discussed previously, depending on the application, another useful characteristic is 

that  of text-independent operation. Other useful characteristics from a practical point of 

view are that  the system should be fast, operate in real time, be extendible (e.g. allow 

improvements) and be scalable (e.g. allow new users t o  be added a t  any time). 

In the important case of speech having been spoken into a telephone handset and 

transmitted over a telephone network, robustness t o  environmental changes becomes an 

important issue [20]. The term environment will be used rather liberally here to  collec- 

tively refer t o  effects specific to the environment in which the speech was produced - such 

as ambient noise and the lombard effect, and to  effects specific t o  the transmission of 

the speech - such as contributed by handset and channel. Robustness t o  environmental 

changes are important since a call from a cellular telephone instead of an office telephone, 

for example, may cause a machine to  falsely reject a speaker. 

1.2 Analysis of Speech in a Time-Feature Space 

To better understand the effect of the environment it is necessary t o  first consider the 

nature of the acoustic speech signal. The acoustic speech signal is produced by exciting 

the vocal tract system of the speaker with a wide-band excitation. The vocal tract changes 

shape relatively slowly with time and thus can be modeled as a slowly time-varying filter 

that  imposes its frequency response on the spectrum of the excitation. For the time-varying 

filter, fixed (stationary) properties over a time interval of 10-40 ms can be assumed [4, 761. 

Over this short time interval the vocal tract shape can be characterized by its natural 

frequencies (called formants) which correspond t o  resonances in its frequency response. 



The acoustic speech signal, which is a measure of the changes in acoustic pressure a t  the 

mouth opening, can then be understood t o  reflect the excitation and shape of the vocal 

tract due t o  the movement of the speech articulators (such as the tongue and lips). 

The short-term assumption can be used t o  analyze the speech signal in a time-feature 

space. An example of a short-term analysis is the well-known behavior of a graphic 

equalizer found in some sound systems. At a given time instant the graphic equalizer 

may display the energy for different frequency components in the speech signal as vertical 

bars. Over time the lengths of these bars change, reflecting the change in energy for that  

frequency component and the non-stationary nature of speech. 

In the short-term analysis of speech, the speech signal is segmented into short seg- 

ments that  are individually analyzed and/or modeled. A segment is usually represented 

or decomposed in terms of its frequency components or spectrum. This short-term analysis 

of speech has been used successfully in a large number of automatic speech and speaker 

recognition systems as a basic feature extraction step [14]. In the case of a spectral repre- 

sentation, the short-term analysis produces a two-dimensional signal in time and frequency, 

where the time dimension refers to  the segment that  is being analyzed and the frequency 

dimension t o  its spectral components. This is commonly displayed as a spectrogram. Thus 

the two-dimensional signal can be viewed as a sequence of frames or feature vectors with 

each feature vector indexed by the time dimension and formed by the spectral components 

of the signal a t  that  particular point in time - see Fig. 1.2 (a). The sequence of feature 

vectors is sometimes referred to  as a feature stream. Each individual spectral component 

or feature in the feature stream can then be seen to  describe a one-dimensional signal 

in time, or time sequence as it will be called - see Fig. 1.2 (b). Medium-term analysis, 

which is the analysis of each of these time sequences over an interval of time extending 

beyond that  of short-term analysis, forms the basis of this dissertation. Time sequences 

of a number of different feature representations will be considered but the focus will be 

mainly on time sequences of logarithmic spectral energy. In general, since the representa- 

tion will be clear from the context, these representations will sometimes also be referred t o  

as time sequences of spectral features, time sequences of energy, time sequences, or simply 

sequences. 
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Figure 1.2: Representing speech in a time-feature space. 

The power spectrum of each time sequence - see Fig. 1.2 (c) - is known as its modulation 

spectrum [41] and is considered to  convey important characteristics of speech [41,22,2,36]. 

For example, dominant components in the modulation spectrum of speech have been 

associated with average syllabic and phonetic rates [22, 2, 361. 

1.3 Adverse Environments 

It is well known that  adverse environments, such as present with the use of different 

telephone handset transducers, affect the time sequences of the speech signal. For example, 

assuming that  the environment acts like a time-invariant filter, it has an approximately 

constant multiplicative effect on the short-term frequency response [4, 76, 261. In general 

however, the environment may be non-linear, time-varying, noisy and not well modeled [7]. 

Given that  the environment affects the time sequences, one way t o  gain an understand- 

ing of the effects is to  analyze the environment in terms of its modulation spectrum and 

compare this to  the modulation spectrum of speech. In this dissertation, the strategy will 

be t o  determine the relative importance of the components in the modulation spectrum 

for speaker verification. The view will be that  attenuation of less important components, 

such as components that  are overly affected by the environment or that  do not actually 



convey useful speaker information may improve performance both in terms of verification 

accuracy and system speed. The motivation for this view stems from the following argu- 

ment [36]. Human speech communication is a highly specialized process and constrained 

by the organs that  are involved. The process involves a source (organs of speech produc- 

tion), a transmission channel (environment), and a receiver (organs of speech perception). 

For optimal communication, these components have t o  be in tune with each other. It is 

likely that  nature may have designed the speech communication process in a way that  

alleviates or avoids the variability inherent in the transmission channel. If, for example, 

evidence exists that  certain modulation frequency components are more important than 

others for perception, then this knowledge should guide system design. Conversely, if 

the transmission channel can be implicated in contributing highly and variably t o  certain 

modulation frequency components, compared to  the contribution of the speech produc- 

tion process, then the attenuation or perhaps even removal of those modulation frequency 

components may be warranted and lead t o  improved performance. 

1.4 Dealing with Adverse Environments 

In the previous section it was proposed that a possible strategy for dealing with adverse 

environments may be to attenuate or deemphasize the redundant and overly noisy informa- 

tion in the speech signal. This strategy can be compared to  some alternative strategies [75] 

that  deal with adverse environments. 

In ASR for example, when the adverse environment includes speaker variability, one 

popular strategy is to  adapt t o  the speaker and environment1. An example is the so-called 

stochastic matching technique where the idea is t o  adapt the models or features to  the 

test environment and thus reduce mismatch that  may have existed between the train- 

ing and test environments. In this technique the models are transformed by maximizing 

the da ta  likelihood [95]. The maximization is used to  find the parameters of a trans- 

formation function that  describes the environmental disturbance. Linear transformation 

'Adaptation techniques fall outside of the scope of this dissertation and will be reviewed only briefly 
in this section. 



functions have been popular [50] and used successfully, while non-linear transformation 

functions have also been investigated [95, 771. In general the adaptation techniques re- 

quire that  the transformation function matches the environmental disturbance and that 

the transformation will not map different models to each other. The latter requirement 

is necessary to preserve model uniqueness and discriminability. Adaptation t o  the trans- 

mission channel using a maximum likelihood linear regression (MLLR) [50] has been tried 

for text-independent speaker verification [57], but was reported t o  be unsuccessful. 

We speculate why this may be the case. In an analysis of variance (ANOVA) decom- 

position of high-quality speech from the TIMIT corpus [94], it has been observed that  

while intra- and inter-phonetic variability may account for as much as 60% of the total 

variability in the speech, the speaker variability (including that  due to  dialect and gen- 

der) accounts for only about 10% of the total variability2. The variability (differences) 

between the models for two speakers may therefore be small relative to  adverse sources 

of variability, which, in the case of text-independent speaker verification, would include 

phonetic and environmental variability, It has also been observed that  dominant speaker 

and environmental variations may actually be quite similar. For example, it is known that  

the long term average spectrum of speech contains speaker information, but also that  this 

average may be influenced by the transmission channel. These observations imply that  

the requirement that  the transformation will not map different models t o  each other, may 

not be met in the case of speaker verification. 

In contrast with an adaptation strategy, where values of parameters for the adverse 

environment have t o  be estimated from the test da ta  [36], the attenuation or deemphasis 

strategy attempts t o  localize and contain the environmental degradation, but not to  mea- 

sure it. This suggests a possible advantage for the attenuation strategy in dealing with 

unknown variability. 

The attenuation or deemphasis of redundant information as a strategy t o  improve per- 

formance when there is a mismatch of training and testing environments, such as with 

the use of different telephone handsets, may also be understood as a particular form of 

2We observed similar contributions in other corpora such as the OGI-TS (stories) corpus of continuous 
telephone speech and the NTIMIT corpus of telephone quality speech. 



regularization. Regularization [83] is motivated from a Bayesian point of view [25, 231 

and deals with the issue of controlling feature and modeling complexity. Regularization is 

known t o  improve system performance or generulization ability when there is a mismatch 

between training and testing environments (see [98] for an analysis and discussion). The 

improvement results from a suitable choice of a prior probability distribution function for 

the features that  deemphasizes aspects of the features that  may be deemed unimportant 

while emphasizing important aspects, such as smoothness. As an extreme case of this reg- 

ularization, the prior could be chosen t o  effectively remove certain aspects of the features 

which may be considered redundant or noisy. 

1.5 Outline 

The dissertation is organized into three parts. The first part reviews, analyzes and mo- 

tivates techniques for the processing of speech by characterizing different sources of vari- 

ability in telephone speech in a time-feature space. This part of the dissertation presents 

a rather general treatment of telephone handset variability in speech and as such does 

not specifically deal with speaker variability. It does serve however t o  indirectly motivate 

and guide the development of a proposed linear filtering of the time sequences of loga- 

rithmic energy that  would attenuate unwanted variability in the speech signal. Whereas 

the first part was concerned with the effect of telephone handset variability in speech 

in general, the second and third parts narrow the focus to  the speaker verification task 

specifically. The second part covers the motivation, design and specification of a text- 

independent speaker verification system that  incorporates the proposed filtering. The 

third part presents a systematic investigation of the relative importance of the compo- 

nents of the modulation spectrum for speaker verification followed by an exploration for 

the usefulness of the proposed lowpass filtering for speaker verification. The aim is to  

find a filter or filters that ,  when applied t o  the time sequences of logarithmic energy to  

generate features, would improve speaker verification performance in terms of verification 

accuracy and/or computational cost. 



1.5.1 Outline by Chapter 

Chapter 2 covers acoustic feature extraction and processing in a time-feature space. The 

main aspect of this processing is a linear filtering of the time sequences of spectral energy. 

In the chapter, short-term acoustic features are first motivated based on perceptual and 

physiological considerations. Next, the theory of short-term analysis of the speech signal is 

reviewed along with common feature representations used in ASR and speaker verification. 

The modulation spectral domain is then defined and introduced as a domain in which t o  

study and manipulate these short-term features. Various practical and theoretical issues 

of the analysis are examined. The problem of acoustic mismatch in automatic speaker 

verification is then examined and existing methods for its alleviation reviewed. As a 

general strategy, it is proposed that  filtering of the short-term features be employed as a 

processing technique for alleviating acoustic mismatch in adverse environments. 

Chapter 3 explores the characteristics of the short-term features in the modulation 

spectral domain. As expected from a convolutional model for the transmission channel, 

it is shown that  telephone handset variability severely contaminates the DC-modulation 

component. Importantly, it is also shown that  the moderate t o  high modulation frequency 

components are severely contaminated by handset variability. The result is obtained 

by computing the variability in speech due to  carbon-button and electret microphone 

transducers and comparing it to  the overall variability in speech. The computation is 

based on an analysis-of-variance model (ANOVA). Speaker specific characteristics are not 

explored in this chapter, but rather handset variability is contrasted t o  the overall speech 

variability t o  obtain an indication of where and how handset variability may be affecting 

the recorded speech. Whether the observed variability is actually relevant t o  speaker 

verification in particular, is tested later in Chapter 5. 

Chapter 4 describes the feature extraction, modeling and evaluation measures used for 

speaker verification in this dissertation. Speaker verification is formulated as a problem 

in statistical hypothesis testing and a test statistic based on two probability density dis- 

tribution functions (pdfs) defined. The decision of whether t o  accept or reject the claim 



of a speaker is made by comparing the test statistic t o  a global threshold. One pdf de- 

scribes speaker independent (SI) features and the other describes speaker dependent (SD) 

features. A Gaussian mixture modeling approach is adopted based on statistical consid- 

erations of the features and a review of existing modeling approaches. The well-known 

Expectation-Maximization algorithm is used t o  estimate the parameters in the SI model 

and Bayesian maximum aposteriori (MAP) adaptation of the SI model is used t o  derive 

the SD models. Various results related t o  optimizations of the feature and modeling pa- 

rameters are presented. Speech data and various training and testing conditions similar 

t o  recent NIST Speaker Recognition Evaluations (NIST-SRE) are used. Descriptions of 

the NIST-SREs and evaluation plans can be found in [72, 73, 601 and NIST's URL at  

h t t p  : //wwn .nist .gov/speech. Appendix A presents a detailed description of the setup 

used in this dissertation. 

Chapter 5 presents a further systematic investigation of the relative importance of the 

components of the modulation spectrum for speaker verification. This investigation for 

speaker verification specifically, is t o  be contrasted to  the more general investigation speech 

and handset variability that  is presented in Chapter 3. In Chapter 5, an analysis of the 

error surface is proposed to  confirm the observation that  higher modulation frequencies 

are less important for speaker verification. The approach is t o  measure and analyze 

the effect on the speaker verification error for various filters designed in the modulation 

spectral domain and applied in the time-feature space. The choice of filters and effect of 

down sampling of the time sequences of spectral features are further investigated, based 

on a finding that  these time sequences can be lowpass filtered without degradation in 

performance. The findings are supported with results from the official 1998 NIST-SRE [59]. 

Chapter 6 summarizes the major results, conclusions and contributions of this disser- 

tation and ends with suggested directions for future research. 

1.5.2 Outline by Original Contribution 

Chapter 3 presents a novel framework for the study and characterization of handset trans- 

ducers in the modulation spectral domain. The framework incorporates an analysis-of- 

variance (ANOVA) that  was modified t o  allow an interpretation at different modulation 



frequencies, and allows different sources of variability t o  be modeled in the speech signal. 

Chapter 4, provides an optimization study of the salient parameters in a state-of-the- 

art  speaker verification system. 

Chapter 5 provides a systematic investigation of the relative importance of the compo- 

nents of the modulation spectrum for speaker verification as well as a processing strategy 

of lowpass filtering for alleviating the effects of environmental mismatch. To the best of 

our knowledge, the modulation spectrum has not been used before t o  characterize speaker 

verification performance in a time-feature space as is done here. The analysis contributes 

t o  an understanding of the effects and usefulness of contemporary processing techniques 

such as CMS and RASTA. Importantly, the chapter includes also the proposal for a re- 

duction of the frame rate - from a traditional 100 Hz t o  as low as 25 Hz. The benefits of 

such processing for speaker verification have not been demonstrated before. 

Appendix C provides a discussion and application of McNemar's significance test [28] 

that  as far as we know is not commonly used in speaker verification. 

Appendix D describes a modular and efficient speaker recognition toolkit build around 

a script language that  facilitates rapid prototyping. This toolkit has contributed substan- 

tially t o  the speaker verification and ASR research effort in our laboratory and elsewhere. 

The toolkit and parts of it have been used by IIT Madras and CSLU among others. 

Appendix E describes the original use of linear discriminant analysis (LDA) in the 

automatic derivation of FIR filters that  optimizes phoneme discriminability for ASR. 



Chapter 2 

Feature Extraction in a Time-Feature 

Space 

The purpose of this chapter is to review and examine acoustic feature extraction and 

processing in a time-feature space. The main aspect of this processing is a linear filtering 

of the time sequences of spectral features. The acoustic feature extraction is considered 

for its usefulness in adverse environments. In Section 2.1, short-term acoustic features 

are first motivated based on perceptual, physiological and acoustic considerations. Short- 

term analysis of the speech signal is then reviewed and discussed in Section 2.2, followed 

by a review of common feature representations used in ASR and speaker verification in 

Section 2.3. Section 2.4 extends the short-term analysis to  a medium-term analysis. The 

concepts of modulation frequency and modulation spectrum are defined and introduced 

in terms of their usefulness for the study and manipulation of the short-term features. 

The effects of the length of the short-term analysis window, analysis sampling rate and 

transmission channel on the modulation spectrum of speech is subsequently examined. The 

usefulness of the modulation spectrum becomes apparent in Section 2.5 where the problem 

of acoustic mismatch is considered. This problem is examined and existing methods for 

its alleviation reviewed. The acoustic mismatch is considered as a degradation of the 

speech signal in an adverse environment and compensated for by filtering of the short- 

term features. Results from a small experimental study are described that  highlight the 

problem of acoustic mismatch in speaker verification. 



2.1 Perceptual and Physiological Bases 

Before considering various feature extraction techniques in this chapter, and various mod- 

eling techniques in Chapter 4, it is appropriate to  review the perceptual and physiological 

bases for speaker recognition. The purpose is t o  use perceptual, physiological and acoustic 

considerations to  guide the choice of features and to  use human listener performance as a 

guide-line t o  the performance of an automatic system. 

One way t o  determine which acoustic features might successfully represent speaker 

identity is t o  examine correlates between the acoustic signal and perceptual cues used by 

listeners [102, 221. Another way is t o  examine the speech production system for possible 

speaker dependent attributes that  may be manifested in the speech signal [67, 861. 

2.1.1 High- and low-level cues 

Speaker-specific information can be categorized in two levels [86]. High-level cues are 

linguistic, semantic and t o  a lesser extent prosodic in nature and derive from word usage, 

pronunciation, habit and manner. Low-level cues are acoustical in nature and describe 

for example loudness, speaking rate, clarity, nasality and breathiness. The high-level cues 

are associated with behavioral characteristics of the speaker and, on account of being 

difficult t o  quantify, generally not well understood [86]. The low-level cues are associated 

with physical and structural characteristics of the speaker and comparatively easier t o  

quantify. Most studies and approaches have focused on the low-level cues [5]. 

2.1.2 Physiological attributes 

The human speech production system is depicted in Fig. 2.1. Speech is driven by an 

excitation source, generating airflow from the lungs, through the trachea and through the 

vocal folds. Phonation occurs when the vocal folds modulate the airflow by alternatingly 

opening and closing under tension and air pressure. This results in a stream of air pulses 

that  excites the vocal tract, causing it t o  resonate a t  its characteristic frequencies. This 

happens in the production of voiced sounds such as vowels. The characteristic frequencies 

are often referred to  as formant frequencies. The formant frequencies can be modified by 
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Figure 2.1: Human speech production system. 

changing the configuration of the vocal tract by the process of articulation. This happens 

when any of the articulators (shaded in the figure) such as the lips, tongue and velum 

are moved. Fricative sounds are generated when the vocal tract is constricted in some 

location. The frication may be voiced or unvoiced, depending on whether the vocal folds 

modulated the airflow. An unmodulated airflow results in a wide-band excitation as air 

rushes through the vocal tract. Plosive or aflricate sounds are formed if the constriction 

is suddenly or gradually released. Moving the velum t o  allow airflow t o  the nasal cavity, 

produces nasalized sounds. 

A number of physiological attributes have been correlated with speaker identity and 

associated with the acoustic speech signal: 

Variations in the size of the vocal tract cavities produce differences in the spectrum 

of the speech signal. The length of the vocal tract affects the overall spectrum [4]. 

Variations in the size of the vocal folds are associated with changes in the average 

pitch or fundamental frequency of speech [3]. 

Variations in velum and size of nasal cavities produce spectral differences in nasalized 

speech sounds [86, 641. 

a The configuration of the teeth and palate affects frication [64, 461. 



Behavioral traits such as speaking rate [64], breathing, nasalization and dialect affect 

the speech signal. 

Pitch has proven t o  be susceptible t o  mimicry [84], but spectral features associated with 

the vocal tract have been more successful in automatic speaker verification [14]. The 

temporal characteristics of such spectral features are investigated in this dissertation. 

When sounds such as phonemes and syllables are articulated, the vocal tract changes 

shape relatively slowly with time and thus can be modeled as a slowly time-varying filter 

that  imposes its frequency response properties on the spectrum of the excitation. For 

the time-varying filter, fixed (stationary) properties over a time-interval of 10-40 ms can 

be assumed [4, 761. Spectral analysis of a speech signal over a short time interval can 

therefore provide features that  point to  the shape of the vocal tract. The acoustic speech 

signal, which quantifies the changes in acoustic pressure a t  the mouth opening, can then 

be understood t o  reflect the excitation, shape of the vocal tract and movement (rate and 

position) of the speech articulators (such as the tongue and lips), albeit in a complex way. 

2.1.3 Perceptual cues 

In the past, several studies have been aimed a t  identifying perceptual cues used by listen- 

ers. In [102], the approach was t o  ask 32 listeners t o  classify speakers according t o  a set 

of 49 differential factors such as "clear-hazy" and "fast-slow". Significant features were 

determined using a factor analysis. The most significant features were "clarity", "rough- 

ness", magnitude" and "animation". However, the features were not mapped to  acoustic 

cues and given the difficulty of associating abstract features with the physical acoustic 

signal, the usefulness of the study remains questionable [20]. Later approaches have taken 

a more direct approach. In [103], desirable properties for cues, such as measurability, were 

delineated and investigated for discriminability using the F-ratio. Fundamental frequency, 

vowel spectra, glottal source spectrum slope, and word duration were found t o  be useful 

cues. Importantly, in this and other studies [4, 781 the use of spectral features among 

others have been advanced. Spectral features appear t o  be statistical in nature and not 

easily quantifiable. In [lo], interesting observations are presented on the difficulties that  

humans have in visually verifying speakers from spectrograms of their speech. 



A number of studies have examined temporal features and their importance for per- 

ception as well as their auditory relevance. Exploring the time-feature space generated by 

the time sequences of spectral features, [22] and [2] reported perceptual speech recognition 

results using the concept of the moduIation spectrum [41]. The modulation spectrum may 

be viewed as the power spectrum of the time sequence of a short-term spectral feature. In 

the usual short-term analysis paradigm, where the short-term analysis may be performed 

every 10 ms, the highest frequency component in the time sequence of spectral features is 

50 Hz according t o  the Nyquist sampling criterion [65]. In the perceptual studies, it was re- 

ported that  the ability of listeners to  recognize sounds such as consonant-vowel-consonant 

sequences are relatively little impaired if the speech signal is constrained t o  have modu- 

lation frequencies only in the range of 1 to  15 Hz. Employing a sensitivity analysis over 

modulation frequency, it was further shown that  the components in the 2-6 Hz range may 

be the most important for speech recognition. In fact, components around 4 Hz have been 

associated with the syllabic and temporal structure of speech and taken as indicative of 

the dominant rate of speech and associated rate of change of the vocal tract shape [36]. 

This supports earlier studies. Hermansky et al. [37] refer t o  early experiments in [82, 1051 

and [31], which indicate a greater sensitivity of human hearing t o  modulation frequencies 

around 4 Hz than t o  lower (or higher) modulation frequencies. 

These results have since been confirmed by a number of automatic speech recognition 

(ASR) experiments. In [40] it was shown that  a highpass filtering of the time sequences 

improved performance in the presence of mismatched channels. In [37] and [44] it was 

shown that  a bandpass filtering of the time sequences to  a modulation frequency range of 

1 t o  15 Hz improved ASR performance in the presence of mismatched channels. In [37], the 

so-called RASTA-processing technique was designed as an engineering solution to  improve 

speech recognition in adverse environments. The motivation for filtering the spectral 

features was that  the rate of extra-linguistic changes may be outside of the typical rate of 

change of linguistic components. 

It has been reported that  such bandpass filtering may be justified in that  it emulates 

properties of human hearing, such as temporal masking [67, 15, 37, 361. In [44], recognizer 

performance was measured using a sensitivity analysis similar t o  the one used in [2], with 



findings in agreement with the perceptual studies. In [loo], FIR filters t o  be applied to  

the time sequences of spectral features were designed directly from the data  using a linear 

discriminant analysis (LDA). The filters that  were designed on a telephone speech corpus of 

conversational speech t o  maximize phoneme discriminability exhibited bandpass frequency 

responses in close agreement with that  suggested by the perceptual studies. Features 

derived from the filters outperformed a number of conventional features in recognition 

experiments on a telephone speech corpus of connected digits in matched conditions. 

While these experiments in the temporal domain were performed for the task of speech 

recognition, it is of interest t o  know whether the results pertain t o  speaker recognition 

as well. Whether the time sequences may indeed be constrained to  contain only certain 

spectral components is the main topic of this dissertation. 

2.1.4 Human performance 

In a recent perceptual study using short speech segments of nominally 3 seconds duration, 

it was reported [89] that  human listeners can perform the same or better than current state- 

of-the-art speaker verification systems. Although limited t o  small speaker populations due 

to  a working memory capacity of about 7 items, humans were able t o  outperform machines 

in adverse conditions. Human performance was not very consistent however - performance 

varied greatly among individuals. The significance of this study is that  it used speech 

from the 1998 NIST Speaker recognition evaluation corpus1, speech that  is also used for 

speaker verification in this dissertation. Human performance in adverse conditions was 

also reviewed in [20], where it was reported that  human listeners are adept a t  using various 

cues t o  verify speakers in the presence of acoustic mismatch. Human performance must 

however, be interpreted with caution. In general, in human performance studies it is 

difficult to  control all extraneous factors. This makes comparison t o  an automatic system 

difficult. The main conclusion to  be drawn from the fact that  humans can verify speakers 

well in an adverse environment, is that  the human speech process may serve as a useful 

guide-line t o  improve the performance of machines in those conditions. 

'For more information the reader may refer to NIST's URL at http://www.nist .gov/speech. 



2.1.5 Sources of error 

To complete the discussion on perceptual and physiological bases for speaker verification, 

it is appropriate t o  consider sources of speaker verification error. Typical sources of error 

manifest themselves over multiple sessions of use and include [14] the following: 

acoustic mismatch (e.g. different microphones for enrollment and verification, noise 

corruption, varying channels); 

microphone placement (time-varying intra- and inter-session); 

room acoustics (e.g. multi-path and noise); 

emotional state (e.g. stress, excitement and interest); 

sickness (e.g. head colds); 

aging (e.g. change in vocal tract); 

amount (duration) of test speech; and 

a amount (duration and number of sessions) of enrollment speech. 

Acoustic mismatch will be investigated in this dissertation. 

2.2 Short-term Analysis of Speech 

The short-term Fourier transform (STFT) has been used successfully in the analysis of 

speech [4, 65, 761. The key idea is t o  treat the speech signal as quasi-stationary and 

examine spectra of the underlying time-varying process over short observation intervals of 

the signal using the Fourier Transform (FT). Given a speech signal s (m) that  is sampled 

a t  times t, (i.e. the sequence is indexed by m),  and a windowing sequence w(m),  centered 

a t  consecutive observation times t, (indexed by n) ,  the STFT is defined as 

M 

S(n ,w)  =FT,[w(n- m)s(m)] = w ( n -  m)s(m)e-jwm. 
m=-co 

(2.1) 

The windowing sequence is commonly referred t o  as the analysis window, the windowed 

speech segment as a frame, and S(n ,  w) as the short-term spectrum. The subscript m in 



FT, is used t o  denote the F T  variable. The F T  is used here for generality - in practice, 

the STFT is computed using the Fast Fourier Transform (FFT),  i.e. w is sampled a t  

frequencies 2nk/Ic, 1 5 k 5 I<. The spectral vector resulting from the F F T ,  or a similar 

representation, is generated for each frame so that  the sampling rate of n is commonly 

referred t o  as the frame rate. Components of the spectral vector or transformations 

thereof, are sometimes referred t o  as features. For the F T  t o  exist, w(n - m)s(m) must be 

absolutely summable [65] - a requirement that  is met if the window is of finite duration. In 

the STFT,  the analysis frequency in radians is w = 27r ft, ,  where f is the analysis frequency 

in Hertz (Hz), t, = l/ f, is the sampling period and f, is the sampling frequency. 

Equation (2.1) can be rewritten in terms of the F T  of the unwindowed signal s(n) and 

analysis window. Denoting the respective FTs  of s (m) and w(m) as 

with the understanding that  S(w) pertains t o  the segment of the short-term analysis and 

that  outside the analysis window it is either zero or periodic, it follows from the modulation 

or windowing theorem [65] that  

S(n,w)  = FT,[w(n-m)s(m)] 

= FT, [w(n - m)] *, FT,[s(m)] 

where the *, operator represents linear convolution with respect t o  the analysis frequency 

w. Equation (2.3) exemplifies the frequency domain interpretation of short-term analy- 

sis [76]. The F T  of the speech signal is convolved with the FT of the analysis window, 

resulting in the STFT. The estimated spectrum is seen t o  provide an estimate for the 

speech spectrum, with the frequency resolution of the estimate limited by the bandwidth 

of the analysis window. 

As is popular in speech processing, the Hamming window is used as the analysis window 

I o otherwise. 
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Figure 2.2: Frequency response of a 100-point Hamming window at a 100 Hz sampling
rate.

Properties of the Hamming window and other analysis windows have been explored ex-

tensively [65] and will be of importance in latter chapters. The frequency response of

a 100-point Hamming window at a 100 Hz sampling rate is depicted in Fig. 2.2. The

bandwidth (in Hertz) of an lw-point Hamming window, as defined by the location of the

first zero, is

B = 2!s/lw, (2.5)

which is twice that of a rectangular window. The Hamming window however offers the

advantage of a lower side lobe (about 42 dB down from the main lobe) compared to

the rectangular window (about 13 dB down) [65]. For a sampling rate of 8 kHz and

window length of 20 ms or 160 samples, as is common for telephone speech, the frequency

resolution is 100 Hz. Similarly, for a frame rate of 100 Hz and window length of 1 second

or 100 samples, as will be used to estimate the modulation spectrum in the next chapter,

the frequency resolution is 2 Hz.

2.3 Short-term Feature Representations

Many different representations of short-term spectral features have been used for speaker

verification. The aim with short-term features is to reduce dimensionality of the represen-

tation and to smooth out spurious information. Common representations include linear



predictive coefficients (LPC) and various transformations such as PARCOR coefficients, 

reflection coefficients, and cepstral coefficients [4, 76, 751. (The LPC representation can be 

derived from the short-term auto-correlation coefficients by use of the short-term power 

spectrum.) A drawback of the LPC representation is that  it is based on an all-pole model 

that  is strictly valid only for vowels. Another drawback is that  without additional pro- 

cessing i t  is sensitive t o  noise. Other representations include line spectral pairs (LSP) [14] 

(also derived losslessly from LPC's), and filter bank energies and their cepstral represen- 

tation [20, 16, 781. Filter bank features can be derived from the F F T  or LPC envelope. 

Filter bank features derived from the F F T  have proven t o  be particularly useful for speaker 

verification [58], and will be used in this dissertation. The specific parameterization used 

will be detailed in Chapter 4. 

The computation and parameterization of filter bank features have been influenced by 

a number of additional considerations and findings: 

In [30] an RMS distance on the logarithmic spectral energies was reported to  be 

meaningful for speech processing. That  a logarithmic representation may be suit- 

able is also supported by statistical modeling considerations [14] and a model of 

convolutional distortion for the environment [76, 37, 71. 

Based on auditory considerations 143, 16, 67, 341, a log-like (Me1 or Bark) warping of 

the frequency axis (to allow higher resolution a t  low frequencies) may be warranted. 

Similarly, based on the theory of auditory masking, which holds that  frequency 

resolution is limited t o  critical bands [67, 341, a suitable limiting of spectral resolution 

appears useful. (This is usually done by weighting and averaging of adjacent power 

spectral components.) 

A telephone channel [20] has a fairly narrow passband (about 300-3300 Hz, but 

variable). The result is that  spectral energies below 300 Hz and above 3300 Hz tend 

t o  be inconsistent and have a relatively high noise t o  speech content. Ignoring such 

energies as a post-processing step may improve robustness to  acoustic mismatch [20, 

78, 291. 



Short-term spectral features have been reported to  have certain shortcomings [36] if 

used without contextual information. There is a growing body of evidence that  informa- 

tion may be spread across syllable length (about 200 ms) portions of the speech signal, 

due t o  articulatory effects [36, 100, 1041. Furthermore, the short-term spectral features 

may be overly specific and sensitive t o  adverse environments [20] and may require context 

for improved estimates. This context may be build either directly into the feature repre- 

sentation or provided in some other form t o  the follow-on classifier. A framework for the 

analysis of contextual information is provided in the next section. 

2.4 Medium-term Analysis of Speech 

Equation (2.1) suggests a medium-term2 analysis of speech. This follows from a filter 

bank interpretation of short-term analysis, where the time sequences of spectral features 

are obtained by linear filtering. The short-term spectrum S(n ,  w )  may be obtained by 

demodulating the speech signal and convolving it with the analysis window. 'This follows 

directly from Equation (2.1) by viewing it as a function of the observation time n ,  for a 

fixed analysis frequency w 

m=-03 

Here the *, operator denotes linear convolution with respect to  the time index n. The in- 

terpretation is that  the time sequence of a particular spectral component in the short-term 

spectrum can be obtained by demodulation of the original signal s (n)  and application of 

a lowpass filter w(n) to  attenuate the aliased components [65]. This is a basic demod- 

ulation step in many communication systems [93]. As discussed before, the continuous 

analysis frequency w may be sampled on a fixed grid wk, 1 5 k < I<, using a finite number 

of filter bank bands to  give outputs S ( n ,  k) = S ( n ,  wk)  . Fig. 2.3 depicts the filter bank 

interpretation for the k-th filter band. 

It is also informative to interpret the filter bank in terms of Fourier transforms with 

respect t o  the observation index n while the analysis frequency w remains fixed. For this 

2Medaurn-terrn refers to time-spans that are longer than the frame length (typically 20 ms) up to 
time-spans on the order of the utterance duration (in this dissertation typically 3-60 seconds). 
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Figure 2.3: Filter bank interpretation of STFT 

purpose, since w is considered a constant, it is convenient t o  denote3 the FT of s(n) as S(t9). 

Then as a result of the demodulation process the F T  of the input t o  the filter w(n) is 

S(w + 8). Thus the spectrum of s(n) a t  frequency w is shifted t o  zero frequency. The F T  

a t  the output of the filter is then S(w + 0) W(t9). At the output, applying the inverse FT 

gives the time sequence that  is generated by thew frequency component of the short-term 

spectrum 

where IFTs denotes the inverse F T  with respect t o  the frequency variable 8. From Equa- 

tion (2.7) it can be seen that  if W(8) is a lowpass filter with a very narrow passband (i.e. 

w(m) is almost constant) then up t o  a constant, the STFT spectrum S ( n ,  w) becomes a 

good approximation for the actual F T  spectrum S(w). 

2.4.1 Modulation Frequency 

Equation (2.7) introduces the concept of modulation frequency [41, 221. The frequency 

variable B that  is related to  the spectrum of the time sequence generated by a particular 

frequency component of the short-term spectrum, 

3The analysis frequency w should not be confused with the modulation frequency 9. 



is known as the modulation frequency. The modulation spectral domain therefore follows 

from Equation (2.2) as the two-dimensional F T  of the windowed speech signal 

S(0 ,u)  = FT, [S(n,  w)] = FT,,, [w(n  - m)s(m)] . (2.9) 

2.4.2 Modulation Spectrum 

The concept of the modulation spectrum derives from the well-known modulation transfer 

function (MTF) used in the evaluation of optical systems. In the transmission of sound, 

the M T F  refers t o  the transfer function that  characterizes a system in terms of changes 

in the modulation depth of a temporally sine-modulated test signal [go]. The reduction 

in modulation depth as a function of modulation frequency constitutes the MTF. The 

M T F  tends to  be different for different systems and provide a good characterization of 

the properties of the system. Typically the MTF shows a lowpass character, reflecting the 

limited resolution power of the system in preserving finer details. 

In [41], the modulation spectrum was defined as the power spectrum of the octave-band 

energy envelope of speech. In this definition, before computation of the power spectrum, 

the average energy of the octave-band energy envelope was first normalized. This was done 

because the average energy was considered to  be of limited interest since it depends on the 

recording conditions and is highly variable. The definition of the modulation spectrum4 

was later extended in [7] and elsewhere t o  apply t o  non-linear transformations of the 

energy sub-band envelope. In particular, in [22, 37, 2, 44, 71 and [loo] the usefulness of 

the modulation spectrum of logarithmically transformed energy has been demonstrated for 

analysis, recognition and enhancement of speech. (Note that  normalization of the average 

energy of the sub-band envelope can be achieved in this domain by simply normalizing 

the mean of the logarithmic sub-band envelope.) In [7] it was shown that  processing 

in a non-linear domain, such as the logarithmic domain, cannot be implemented using 

a time-domain filter. That  the logarithmic energy domain may be the most extensively 

used domain in speech processing for ASR and speaker recognition, may be due t o  the 

fact that  this domain allows for compensation of the effect of a convolutional channel 

4The term modulation spectrum should be understood to refer to the modulation power spectrum. 



distortion through the process of blind deconvolution [75]. Given these observations, the 

approach used in this dissertation will be t o  compute, analyze and modify the modulation 

spectrum of the time sequences of logarithmic energy. 

Logarithmic energies can be computed directly from the STFT by ignoring the phase 

component: 

Each time sequence can be subsequently modified by linear filtering t o  yield 

where f (n) is the impulse response of an FIR filter. The proposed processing is a convolu- 

tion in the time dimension of the STFT and a multiplication in the frequency dimension. 

From Equations (2.9), (2.10) and the preceding discussion, the modulation (power) 

spectrum of an unfiltered time sequence is formally defined as 

with a similar definition for the filtered time sequence X2(n,  w). An in depth discussion 

of the modulation spectrum and requirements for resynthesis of the speech signal can be 

found in [7]. 

In the interpretation of the characteristics of the short-term logarithmic energies, it 

is informative t o  investigate the effect of the analysis window length, frame rate, and 

environment in the modulation spectral domain. 

2.4.3 Sampling Considerations 

Recall from the filter bank interpretation of short-term analysis, that  the analysis window 

acts as a filter applied t o  the demodulated speech signal (refer Equation (2.6)). Accord- 

ingly, the bandwidth of S ( n ,  wk) is therefore limited by the bandwidth of the analysis 

window. Fig. 2.4 depicts the theoretical band-limiting effect for a Hamming analysis 

window (refer Equation (2.5)). The figure shows the frequency responses of Hamming 

windows of different lengths. The responses are shown in the modulation spectral domain 
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Figure 2.4: Theoretical band-limiting effect of Hamming analysis windows of different 
lengths t,. 

Table 2.1: Minimum sampling rate 6 ,  t o  avoid aliasing for different Hamming analysis 
window lengths 1,. 

assuming a frame rate of 100 Hz. In the figure it can be seen that  the analysis window acts 

as a lowpass filter in the modulation spectral domain. Using the Nyquist sampling crite- 

rion [65], i t  follows that  t o  avoid aliasing, it is necessary t o  choose a frame rate 6 ,  2 2 B  

that  is equal t o  or larger than two times the bandwidth of the window. 

Table 2.1 lists values for the minimum frame rate 0, that  avoids aliasing. The frame 

rate and bandwidth B of the Hamming window are shown as a function of short-term 

analysis window length 1, in samples and t, in milliseconds. The results apply to  a 

speech sample rate of 8000 Hz. The table shows that  a 20 ms long Hamming window 

requires a frame rate 6 ,  > 200 Hz. In ASR and speaker verification it is actually quite 

common to  use a 20 ms long Hamming window and sample at 6 ,  = 100 Hz. To avoid 

aliasing a t  the 100 Hz sampling rate, a 40 ms long analysis window would be needed. A 

suitable choice of analysis window length and sampling rate, as well as an understanding 

of the potential for aliasing, is necessary in the next chapter, where modulation spectra 

of speech and telephone handsets are examined. 

I ,  (samples) 
tw (ms) 

B (Hz) 
6 ,  (Hz) 

80 160 256 320 
10 20 32 40 

200 100 64 50 
400 200 128 100 
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Figure 2.5: Model for convolutional channel distortion. 

2.5 Medium-term Feature Processing 

The strategy proposed in Equation (2.11) was t o  obtain useful features by filtering the 

logarithmic energies defined over points in time t = ..., t,-l, t,, ... for each particular short- 

term analysis frequency wk. This section elaborates on the usefulness of such filtering. 

2.5.1 Convolutional Distortion 

Sources of extraneous/non-speaker variability, such as a changing transmission channel, 

affect the modulation spectrum of speech. For example, it is generally accepted that  a lin- 

ear time-invariant transmission channel affects the DC components in the time sequences 

of the logarithmic energies (see [4, 26, 71 and references therein). A model for the degra- 

dation is shown in Fig. 2.5. The degraded speech signal is denoted as s (n) ,  the original 

undegraded speech signal as so(n) and the impulse response of the transmission channel 

as h(n). For the convolutional transmission channel it follows that  

Then an argument similar t o  the one following Equation (2.7) is that  if W(B) is a lowpass 

filter with a very narrow passband so that  W(6) + const x S(6), i.e. w(m) is almost con- 

stant, then the STFT spectrum S(n ,  w) approximates the actual FT spectrum S,(w)H(w) 

up t o  a constant factor. To get a reasonable estimate of the actual channel it is necessary 

that  the impulse response of the transmission channel h(n) be shorter than the length of 

the analysis window w(n) as implied by the convolution operation and windowing (refer 

Equation (2.6)). Requirements for the approximation are discussed in more detail in [7]. 

With a suitable choice of analysis window the short-term logarithmic spectrum of the 



degraded speech signal s (n)  = so(n)  * h(n) is modeled in the n-th analysis segment as 

where H ( n , w )  is the short-term frequency response of the transmission channel and 

So(n,  w) is the short-term frequency response of the speech signal before passing through 

the transmission channel. Assuming that  the transmission channel is time-invariant, with 

a relatively short impulse response, so that  H ( n ,  w) changes little with time, taking the 

expectation over time may approximate the channel term well 

and is seen to  affect the DC component of the modulation spectrum. 

This simple model of course only accounts for the convolutional effect of a linear time- 

invariant transmission channel and does not model any DC contribution due t o  the term 

log[JSo(n, 0)12 that  describes the undegraded speech signal [4]. While it is clear that  the 

transmission channel affects the DC component of the modulation spectrum, t o  the extent 

that  the convolutional distortion model is only an approximation of one type of distortion, 

it would be of interest t o  determine the effect of distortions such as for example changes in 

telephone handset on the DC component as well as other components of the modulation 

spectrum. 

2.5.2 Additive Noise 

The presence of additive or ambient noise is common in adverse environments. Fig. 2.6 

shows an additive noise source v(n) within the filter bank interpretation of short-term 

analysis of speech. Following the discussion in Section 2.5.1, it is informative t o  decompose 

the degraded speech signal s (n)  = so(n) * h(n) + v(n) in terms of the original undegraded 

speech signal. Assume that  the additive noise is uncorrelated with the original speech 

signal so(n) and stationary. For this idealized model, the decomposition in the power 

spectral domain is 
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Figure 2.6: Model for convolutional channel distortion and additive noise. 

Let s = I S ( U ) ~ ~  denote the power spectrum of the degraded speech, with similar notation 

H, S, and V for the other terms. In the log-spectral domain (see for example [77]), it 

follows5 that  

Equation (2.17) has two important implications. First, with the presence of additive noise, 

a convolutional distortion can not be completely isolated in the log-spectral domain (com- 

pare Equation (2.14)). Conversely, additive noise cannot be completely isolated in the 

spectral domain if a convolutional distortion is also present. Second, while the transmis- 

sion channel may be linear and time-invariant (with a fixed convolutional distortion and 

stationary additive noise) the effects of the acoustic disturbances may be time-varying in 

the log-spectral domain. This can be seen from the third term in Equation (2.17) which 

is a non-linear function of the time-varying undegraded speech term and noise term. This 

time-varying nature of the acoustic disturbances will be important in the analysis of the 

time sequences of logarithmic energy in the next chapter. 

2.5.3 Compensating for Distortions and Noise by Filtering 

Various filters have been proposed t o  compensate for convolutional channel distortions 

and for extracting useful features from the logarithmic energies. A common filtering tech- 

nique is that  of cepstral mean subtraction (CMS) [26, 41. CMS suppresses convolutional 

noise (such as the frequency characteristic of a transmission channel which is additive in 

5The relation follows directly by factoring out the first term from Equation (2.16), so that 
3 = S , H ( ~  + $'.$zl H-l ), and manipulating the resulting second term. 



the logarithmic spectrum or cepstrum) by suppressing the DC component in each time 

sequence of cepstral  coefficient^.^ CMS therefore performs highpass filtering. In this dis- 

sertation, since logarithmic energies are not projected onto a cosine basis, attenuation or 

removal of the mean will be referred t o  as mean subtraction (MS) to  indicate that it is 

the logarithmic energies that  are filtered and not the cepstral coefficients. 

The temporal structure of speech was explored in [26] with the use of so-called "dy- 

namic cepstral features". These features are estimates of the first and second temporal 

derivatives of the time sequences of cepstral coefficients. The derivatives are usually com- 

puted as the first and second order orthogonal polynomial expansion of 50 t o  90 ms long 

segments of the time sequence. These first and second order derivative features, also 

called delta and double delta features, are common in speech and speaker recognition 

systems and the benefits of these representations are widely recognized. While usually 

viewed as an expansion on the polynomial basis, the expansion can also be treated as a 

linear filtering operation and the characteristics of the polynomial filters examined using 

the modulation spectrum. An important characteristic of the derivative features is that  

they attenuate the DC component in the modulation spectrum and thus are relatively 

insensitive t o  convolutional channel distortions. 

Another technique [37] that  has been shown t o  reduce the effect of the transmission 

channel by limiting the frequencies present in the time sequences of logarithmic energy 

is RelAtive SpecTrAl Processing (RASTA). The RASTA filter is a passband filter with 

a spectral zero a t  zero modulation frequency and a relatively narrow passband. I t  is 

implemented as an IIR filter with the same filter used for all frequency bands. The 

relative successes reported for the CMS and RASTA techniques can be interpreted from the 

perspective of removing or attenuating redundant and possibly noisy information. Both 

techniques achieve a measure of channel independence by attenuating specific components 

in the modulation spectrum. Regardless of what the transmission channel does to  these 

components, their removal leads t o  more consistent features. 

'Cepstral coefficients are obtained by applying the Discrete Cosine transform (DCT) to the logarithmic 
spectrum. 
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Figure 2.7: Frequency responses of various filters in the modulation spectral domain. 

Fig. 2.7 illustrates some of the differences between these filters in terms of their fre- 

quency responses for a sampling rate of 100 Hz. The MS filter has a highpass frequency 

response with a -3 dB cut-off frequency7 that  depends on the length of the averag- 

ing window - here 0.025, 0.075 and 0.25 Hz respectively for window lengths of 30, 10 

and 3 seconds. The RASTA filter has a -3 dB passbands of about 1 t o  13 Hz. The delta 

polynomial (-0.2, -0.1,0,0.1,0.2) computed in a 50 ms window of speech has a -3 dB 

passband of about 7 to  21 Hz. Clearly the effect of these filters on the modulation spec- 

trum of the speech will differ substantially and in general will depend on the modulation 

spectrum of the speech itself. For speaker verification the filtering should of course be 

used to enhance speaker specific information while suppressing non-informative and pos- 

sibly confusing information. This suggests an analysis of the relative importance of the 

components of the modulation spectrum for speaker verification. The processing strategy 

would be t o  filter the logarithmic energies to  extract salient and consistent features. The 

objective would be to  improve performance in adverse environments. 

2.5.4 Experimental study 

This section highlights a small experimental study that  introduces the effects of acoustic 

mismatch in adverse environments and examines the performance of the popular MS 

7 ~ h e  cut-off frequency is defined as the frequency at which the squared magnitude frequency response 
of the filter is 3 dB below the nominal passband value. 

'The passband is defined as the range of frequencies delimited by the lowest and highest frequency for 
which the squared magnitude frequency response of the filter is 3 dB below the peak value. 



and RASTA filtering techniques. For the purpose here it is sufficient t o  give the main 

results. The speaker verification system is described in Chapter 4, the setup is explained 

in Appendix A, and the study is detailed in Chapter 5. 

Speaker verification is performed on a population of 500 speakers obtained from the 

telephone speech corpus used in the 1997 NIST speaker recognition evaluation [72, 581. 

Three systems that  use features based on the short-term logarithmic spectral energies 

are compared. In the baseline system, the time sequences of spectral energy are used 

unmodified. In the 'MS7-system, the mean of each time sequence is set t o  zero (a highpass 

filtering). In the 'RASTA'-system, each time sequence is filtered with a RASTA filter ( a  

bandpass filtering). The frequency responses of the filters were shown in Fig. 2.7. 

A model for each speaker is trained in one environment and tested in the same en- 

vironment (matched condition) and different environment (mismatched condition). The 

matched or mismatched condition refers t o  whether the phone number and handset type 

are the same. The segments of test speech are nominally 3 or 30 seconds in length. Ver- 

ification performance is assessed separately for males and females using the equal error 

rateg (EER), and the errors averaged t o  give a gender independent error.'' 

Table 2.2 lists the average EER in percent for the matched and mismatched conditions. 

It can be seen that  errors in the matched condition are much lower than errors in the 

mismatched condition. In 30 second segments with MS filtering, the EER increases by 

about a factor of 5 from the matched condition t o  the mismatch condition. This shows 

that  acoustic mismatch indeed affects performance deleteriously. For the mismatched 

condition it can be seen that  MS and RASTA filtering reduces the EER considerably 

'The EER is the point where false rejection and false acceptance errors are equal. 
''The errors for males and females are about the same, with similar tendencies. As a result it was decided 

to average them and report only a single number. This greatly simplifies the representation without loss of 
generality. It was decided not to pool scores for males and females before computing the error, as is done 
in the NIST speaker recognition evaluation. Motivation for this decision came from the observation that 
the statistics of male and female scores differ to the extent that pooling the scores and comparing each 
score to the same global threshold would lead to suboptimal performance and a higher error compared to 
the case where, either the scores for males and the scores for females were first normalized to have the 
same statistics before pooling, or where the error was computed separately for males and females without 
a pooling of the scores. For the purpose intended here which was to compare the effect of processing it 
did not matter whether the scores were normalized and pooled or whether the scores were not pooled and 
the errors averaged except that the latter greatly simplified the comparison. 



Table 2.2: Equal error rate in percent for speaker verification using 3 and 30 second test 
segments in (a) matched and (b) mismatched conditions. 

(a) Matched 

Baseline 
Baseline + MS 
Baseline + RASTA 

(b) Mismatched 

TEST SPEECH DURATION 

Baseline 
Baseline + MS 
Baseline + RASTA 

with both giving a similar reduction in EER over the baseline (on average about 30% 

for the 30 second segments and about 15% for the 3 second segments). In contrast, this 

reduction is less in the matched condition (on average a reduction of about a 17% for 

the 30 second segments and actually an increase of 36% for the 3 second segments). MS 

filtering is seen t o  perform slightly better than RASTA filtering overall, especially in the 

matched condition. It can also be seen that  both types of filtering become less effective 

as the length of the speech segment decreases. This suggests that  benefits of both types 

of filtering may come from their effect on the very low modulation frequency components 

- components which are only present in the longer segments. 

While it can be concluded from the results that  a filtering of the time sequences can 

be beneficial, it is not clear exactly what type of filtering gives the best performance 

or may improve performance. Indeed, MS filtering was motivated assuming an ideal 

convolutional disturbance, and RASTA filtering was motivated from similar considerations 

as well as experiments in ASR [37]. It is clear though, that  the filtering should be used 

t o  enhance speaker specific information while suppressing non-informative and possibly 

confusing information. This idea will be explored in depth in the next chapter, where 

3 seconds 

10.2 
13.1 
14.7 

30 seconds 

6.7 
4.7 
6.3 

TEST SPEECH DURATION 

3 seconds 

32.5 
26.8 
28.4 

30 seconds 

31.4 
21.8 
22.5 



the modulation spectrum of speech will be compared t o  a modulation spectrum that  

describes variability among telephone handset transducers. Recalling that  the MS and 

RASTA filters have different frequency responses, a study of environmental variability in 

the modulation spectral domain may help t o  motivate the choice of a suitable filter. 

2.6 Summary 

This chapter motivated feature extraction in a time-feature space. Based on physiological, 

auditory and perceptual considerations, features for speaker verification were derived from 

a short-term analysis of speech. A medium-term analysis was motivated as necessary for 

the analysis of the characteristics of the resulting time sequences of spectral features. 

The modulation spectral domain was defined as a suitable domain for the analysis of the 

time sequences and for the characterization of various filters that  manipulate these time 

sequences. The effects of analysis considerations such as window length were emphasized. 

The effects of convolutional channel distortions and additive noise were studied and various 

compensation techniques reviewed. An experimental study demonstrated the deleterious 

effect of acoustic mismatch that  is present in adverse environments and suggested that  

filtering of the time sequences of spectral features may help t o  alleviate this mismatch. 

I t  was suggested that  an analysis of the relative importance of the components of the 

modulation spectrum for speaker verification may provide insight as t o  what type of filter 

may improve verification performance. 



Chapter 3 

Handset Variability 

In this chapter it is proposed that  the modulation spectrum provide information that  may 

be used to  understand and reduce the effects of telephone handset variability. The chap- 

ter presents a rather general characterization of telephone handset variability in speech 

and as such does not specifically deal with speaker variability. It does serve however to  

indirectly motivate and guide the development of a processing strategy adopted in latter 

chapters that  attenuates unwanted variability in the speech signal. The approach will be 

to  compare modulation spectra of speech from different speakers that  were recorded us- 

ing handsets with different microphone transducer types - specifically, carbon-button and 

electret transducers. As expected from a convolutional model for the transmission channel, 

it is found that  telephone handset variability severely contaminates the DC-modulation 

component. Importantly, this is also found to  be the case for the higher (above about 

10 Hz) modulation frequencies. The result is obtained by computing the variability in 

speech due t o  carbon-button and electret transducers and comparing it t o  the overall 

variability in speech. The computation is based on an analysis-of-variance model. 

The outline of the chapter is as follows. Section 3.1 provides a brief review of the 

problem of handset variability. Previous approaches t o  compensate for this variability 

are categorized as having considered variability in terms of the short-term spectrum or 

frequency dimension of the feature space. It is then suggested t o  consider variability in 

terms of the time sequences of logarithmic energy or time dimension of the feature space. 

Section 3.2 next describes a database that  will be used t o  investigate handset variability 

in this time dimension. Section 3.3 then describes a model that  can be used t o  decompose 

the speech signal into different sources of variability. The section starts  by outlining the 



key ideas behind the decomposition and then proceeds with a decomposition based on 

an analysis-of-variance model. The variability is interpreted in the modulation spectral 

domain. Section 3.4 describes various results related to  the decomposition. Section 3.5 

investigates limitations of the technique and Section 3.6 provides additional results. 

3.1 Variability in Time and Frequency 

Handset variability has been a major source of verification errors in the recent NIST 

Speaker Recognition Evaluations [58, 59, 72, 731. One strategy t o  compensate for handset 

variability has been t o  normalize model scores conditioned on handset type [58, 801. An- 

other strategy has been t o  improve the feature processing. In [74] the approach has been 

to  try t o  classify telephone handsets according t o  electret- and carbon-button transducer 

type. The one handset type was then mapped t o  the other using a memoryless polynomial 

nonlinearity so as t o  match short-term spectral magnitude. An interesting observation 

from this work was that  among other things, the effect of the handset transducer, and 

in particular the carbon-button transducer, was to  create so-called "phantom-formants" 

in the spectrum of the speech signal. These phantom-formants were shown to  occur as 

peaks in the spectrum qt multiples and sums of the original formant frequencies. A pos- 

sible explanation for this effect was that  non-linearities in the transducer would tend to 

emphasize certain harmonics of the formants of the original (undegraded) speech signal. 

The degradation model depicted in Fig. 2.6 will be used in this chapter but it will 

be assumed that  the handset may impose a possibly time-varying convolutional distor- 

tion on the undegraded speech signal as well as introduce additive noise. While sources 

other than the handset may also introduce convolutional distortions and additive noise, 

it will be convenient to  assign all degradations as being due t o  the "handset". From the 

discussion in Section 2.5.2 it can be argued that  the effects of handset variability will 

be time-varying, since the speech signal itself is time-varying. Instead of investigating 

the effects of the transducers in terms of short-term spectral magnitude, the approach 

followed in this chapter will be t o  analyze the effects in terms of the modulation spec- 

trum of the time sequences of logarithmic energy. Motivation for this approach is for 



instance that  "phantom-formants" in the spectrum of the speech signal, if only occasion- 

ally present, would show up in the higher modulation frequency components. Whereas 

the work described in [74] was concerned with the frequency dimension of the feature 

space, this chapter deals with the time dimension of the feature space. As far as we know, 

a characterization of handset transducers along this time dimension has not been done 

before. 

3.2 Handset Data 

To study handset variability, the HTIMIT corpus which consists of speech from 192 males 

and 192 females transmitted over different telephone handsets is used. This corpus was 

collected and kindly made available by Douglas Reynolds [81] and is available through 

the LDC [52]. The HTIMIT corpus contains ten utterances per speaker, each containing 

different spoken text, which originate from the TIMIT corpus1. The HTIMIT utterances 

are the original TIMIT utterances of a speaker which were transmitted through differ- 

ent electret- and carbon-button transducers t o  simulate the effect of different telephone 

handsets. We used three different electret and three different carbon-button transducers. 

We randomly selected 15 male speakers for the study presented here. Utterances were 

chosen so that  the same text strings were spoken by each speaker: "She had your dark 

suit in greasy wash water all year" and "Don't ask me t o  carry an oily rag like that". 

We aligned the recordings for a particular speaker speaking the same text over different 

handsets using a waveform-based correlation and verified visually that  alignment errors 

are on the order of 3 ms or less. The alignment errors are therefore well within a typical 

short-term analysis frame spacing of 10 ms. 

Fig. 3.1 illustrates typical handset variability. The figure shows one second of logarith- 

mic energy with mean removed for the same speech from the same speaker transmitted 

over electret- and carbon-button transducers. Small differences can be seen between the 

two time sequences. These differences are examined in the remainder of this chapter using 

the modulation spectrum that  was defined in Section 2.4.2. 

'The TIMIT utterances were recorded in a sound booth using a high quality microphone. 
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Figure 3.1: Time sequences X ( n ,  k) from the fk = 1 kHz filter bank band for speech from 
a speaker transmitted over an electret and a carbon-button transducer. 

3.3 Analysis-of-Variance Model 

An analysis of variance (ANOVA) [91] provides a convenient way t o  estimate the effect of 

handset variability. In the following, the decomposition is performed on a time sequence of 

logarithmic energy X ( n ,  k) and the contributions of the individual factors analyzed using 

the modulation spectrum. This section is structured as follows. We will first describe 

the procedure for estimating the modulation spectrum of a time sequence. Then we will 

provide an outline of an algorithm for the analysis of variance. The outline will serve 

t o  highlight some of the assumptions and issues involved in the analysis. Finally we will 

introduce the ANOVA model. 

3.3.1 Estimating the Modulation Spectrum 

The modulation spectrum was defined as the power spectrum of a time sequence of log- 

arithmic energy in Chapter 2. Estimates for the power spectrum were computed using 

Welch's averaged periodogram method [65]. This computation is similar t o  the short-term 

Fourier Transform technique described in Section 2.2, except that  a medium-term analysis 

is performed on a sequence of logarithmic energy using a long analysis window. Since the 

speech utterances and thus time sequences are nominally 2.5 seconds in duration, it was 

decided t o  use a 1 second long Hamming analysis window advanced in 1 second steps. To 

interpret the results it will be useful to  recall (refer Section 2.2) that  the bandwidth, and 

thus modulation frequency resolution, of a 1 second long Hamming analysis window is 

2 Hz. For the STFT computation of the time sequences of logarithmic energy, an analysis 

window with a length t ,  of 40 ms and a frame rate 8, of either 100 Hz or 200 Hz will be 



used. Since results differ little for either frame rate, the default 100 Hz frame rate used in 

the latter part of this dissertation will be used in most of the results reported here. When 

other window lengths and frame rates are used, this will be noted in the text. While 

results will be reported for time sequences of logarithmic energy from the fk = 1 kHz 

analysis frequency the main conclusions are fairly general and can be shown t o  pertain to  

time sequences from other analysis frequencies as well. Accordingly, while the frequency 

index k will be dropped from the notation in the following, results should be treated as 

being with respect t o  a particular analysis frequency. 

3.3.2 Outline of Algorithm for the Analysis of Variance 

This section provides an outline of an algorithm for analyzing the different sources of vari- 

ability in the speech signal in the modulation spectral domain. The section is intended 

t o  introduce the key ideas behind an analysis-of-variance decomposition that  will be de- 

scribed in the next section. It is assumed that  the effects of the handset transducers on the 

logarithmic energies are independent and identically distributed and additive. The latter 

assumption is justified for a convolutional degradation which is approximately additive in 

the logarithmic energy domain as discussed in Section 2.5.1. 

The goal is t o  analyze the different sources of variability in terms of the time sequences 

of logarithmic energy that  were computed for the speech signal. Table 3.1 outlines an algo- 

rithm for estimating the variability due t o  variations among handsets specifically ("handset 

variability"), and variations among handsets, speakers, and utterances in general ("total 

variability"). The handset variability as a function of modulation frequency will be de- 

noted as GH(0) and called the handset variation and the total variability as a function of 

modulation frequency will be denoted as Gx(8) and called the total variation. The part 

of the total variability that  is not attributable t o  the handset variability will be denoted 

as Gs(8) and called the speech variation. Several comments related t o  the algorithm in 

Table 3.1 are in order: 

Step 1 is a global energy normalization for the time sequences of logarithmic energy. 

This is necessary to  allow a comparison of GH(d) and Gx(0),  since for GH(d) the 



Table 3.1: An algorithm for computing handset variation GH (9) and total variation Gx (0). 

1. For all time sequences of logarithmic energy Xl j (n ) ,  
spoken by speaker 1 using handset j, compute the av- 
erage over all speakers and handsets to  get X ( n ) .  

2. (a) Let c be a constant. Take any two time-aligned se- 
quences of logarithmic energy, each from identical 
speech spoken by speaker 1 but recorded over dif- 
ferent handsets i and j and compute the difference 
sequence E i j , ~  (n) = c [Xi,i(n) - Xij (n)] 

(b) Compute the power spectrum E j , ~ ( 8 )  for the dif- 
ference sequence Ei j,l(n). 

(c) Repeat steps 2a and 2b for all combinations of 
handsets i, j and all speakers 1 and average the 
estimates E j , ~ ( 9 )  t o  get GH(9). 

3. (a) Take a sequence of logarithmic energy spoken by 
speaker 1 and recorded over handset i and subtract 
the global average ~ ( n )  computed in step 1. 

(b) Compute the power spectrum Pl,;(9) for the dif- 
ference sequence Xl,;(n) - ~ ( n ) .  

(c) Repeat steps 3a and 3b for all handsets i and all 
speakers 1 and average the estimates P1,;(9) t o  get 
G x  (9). 



energy is normalized by the difference computation in step 2. 

The constant scale factor c in step 2 is necessary t o  normalize for correlation of the 

two time sequences. For example, assume that  Xl,;(n) N N(O1 a2) ,  and that  Xlla(n) 

and XlYj(n), i # j are not correlated. In this extreme case then, it follows that  

Var(X1,; (n) - X r j  (n) 1 i # j )  = 2a2. Then a choice of c = 0.5 is necessary for E (n) 

t o  give an estimate of Var{Xr,;(n)). 

Since the only difference between the two time sequences of logarithmic energy is 

due t o  the handset, GH(B) reflects the variations among handset transducers. 

Gx(B) reflects the variations among handsets, speakers, and utterances. In addition 

t o  the handset variation GH(B) it therefore includes variations attributable t o  dif- 

ferences between speakers and differences between the spoken text and manner of 

speaking. In general, Gx(0) reflects the total variability present in speech. 

It is important t o  note that  while the definition of Gx(B) closely matches the classi- 

cal definition of the modulation spectrum of speech, it generalizes and differs from this 

definition in the following way. In the classical definition [41], the modulation spectrum 

was defined a s  the power spectrum of a time sequence from which the long term average 

(computed over n) has been subtracted. Here, in the generalized definition, the ensemble 

average (computed over time sequences), and not the long term average is subtracted from 

the time sequence. The algorithm can of course be modified so that  the long term average 

of each time sequence is removed before computing the power spectrum, but not doing so 

allows a more general analysis. Not removing the long term average means that  variability 

that  gets reflected in the zero modulation frequency component can also be studied. The 

differences and similarities between the two definitions will be discussed in Section 3.6.2. 

3.3.3 Nested Analysis of Variance 

The outline given previously relates t o  a nested analysis of variance [91] for the time 

sequences of logarithmic energy, with interpretation of the variances in the modulation 
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Figure 3.2: Nesting of factors for analysis of variance. 

spectral domain. The ANOVA is nested on the factors handset2 (H), speaker ( S )  and text 

(T). Fig. 3.2 shows the nesting of the factors. Variations due t o  different handsets are 

taken t o  reflect handset variability, while variations due t o  different speakers and spoken 

text are taken t o  reflect speech variability. 

The speech from different speakers speaking the same text will in general not be 

finely aligned due t o  variations in rate of speech and variations in prosody, as well as 

phoneme, syllable and word insertions, deletions and substitutions. This suggests that  

variations due t o  different speakers and text should not be interpreted separately as it 

would be difficult t o  decide t o  what extent the speaker variation is due t o  textual or 

speaker specific variations. It may also not be possible t o  compensate for this ambiguity, 

since trying to  do so may impose unnatural constraints on the speech signal and introduce 

artificial variability3. The handset factor, though, is well defined a t  the speaker level. 

This is due to  the explicit association of handset transducer label with speech signal and 

careful alignment of all recorded speech signals that  originated from a particular speech 

signal spoken by a particular speaker. The total variability is also well defined since it is 

2More specifically handset transducer. 
3This would happen for instance if a technique such as dynamic time-warping were to be applied to the 

signals. 



simply the total variation among all speech signals. The approach taken here is therefore 

t o  estimate the handset and total variability with the understanding that  the difference 

between the total and handset variability represents the speech variability. 

In the analysis, all time sequences are truncated t o  the same length and treated as 

vectors in the time dimension. The time sequence of logarithmic energy Xl (n, k) for a 

particular analysis frequency fk with 1 5 n 5 N is therefore treated as an N-dimensional 

vector in the time index n. In the following we drop the subscript 1 that  was used to  

indicate logarithmic energy and also drop the frequency index k from the notation, but 

results should be understood t o  apply to  a time sequence of logarithmic energy for a 

particular analysis frequency. Unless it is noted otherwise, results will be reported for the 

fk = 1 kHz analysis frequency. 

The observed response a t  the j-th level of T, I-th level of S and i-th level of H is then 

x ( n )  = x ( n )  +xi(.) + Xllj(n) + Xillj(n) + f i l j ,  

for j =  l...J, 1 = l . . .L(j), i =  l . . . I ( j , l ) ,  (3.1) 

where ~ ( n )  is the average response a t  time n. Here 6 ; ~  N(0, a2)  is the experimental 

error which we assume to  be zero for the purposes of this study4. The total variation can 

be obtained in terms of the sums of squares (SS) as 

Letting L,(j) = xz) I ( j ,  I ) ,  the individual terms can be computed as 

4 ~ h a n g e s  in a transducer over time, such as related to temperature, as well as sampling errors are 
ignored in this study, but can be envisaged to be contributing to an experimental error. 



The dot notation, as in x . . ~ ,  is used to  indicate the average value of X computed over the 

"dotted" factors - in this example, i and 1.  

In the previous discussion, it was noted that  it would be difficult t o  decide t o  what 

extent the speaker variation SSs(n)  is due to  textual or speaker specific variations. Ac- 

cordingly, the speech variation SSs, (n )  is substituted for the speaker and text variations 

SSsl(n) = SSs(n)  + S S T ( ~ )  = SSx (n )  - SSH(n) .  (3.4) 

To interpret the variations in the modulation spectral domain it is necessary t o  modify 

the computation. For example, the term SSx (n )  for the total variation is modified as 

follows5 

where FT, denotes the Fourier Transform with respect t o  the time index n. The other 

terms SSs(n)  and SSH(n )  are modified in the same way t o  obtain the variations6 in the 

modulation spectral domain Gs(8) and GH(8).  The variations can be scaled by a constant 

factor without loss of generality. In the following we normalize G H ,  GS and Gx so that  

the total variation Gx is approximately 1 a t  w = 0. 

3.4 Handset Variability 

Fig. 3.3 depicts the total variation and handset variation on a logarithmic scale for time 

sequences from the fk = 1 kHz analysis frequency obtained a t  a frame rate of 8, = 200 Hz 

using a short-term analysis window of length t ,  = 20 ms. The 1 second long Hamming 

analysis window that  was used to  estimate the modulation spectrum had the effect of 

smearing the energy in the DC component into components up t o  about 2 Hz. The 

Nyquist frequency for the analysis is 100 Hz. 

'Note that the modification preserves the overall energy. This can be seen by applying Parseval's 
Theorem [65] 

00 

n=-CQ 

and by rearranging the summation. 
6We will use the term variation to mean variability as a function of modulation frequency 0. 
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Figure 3.3: Total variability and handset variability as a function of modulation frequency 
8. (8, = 200 Hz and t ,  = 20 ms.) 

In the figure, the upper curve is the total variation Gx (9) (or generalized modulation 

spectrum of speech) as computed over 15 speakers in the HTIMIT corpus. The lower 

curve is the handset variation GH(13) as computed over the three electret- and three 

carbon-button transducers jointly. For modulation frequencies 9 > 5 Hz, it can be seen 

that  the total variation falls off by about 7 dB per octave, whereas the handset variation 

falls off by about 3.5 dB per octave. 

It can be seen that  handset variability contributes considerably t o  the total variabil- 

ity a t  very low modulation frequencies (I3 < 1 Hz), and a t  moderate t o  high modulation 

frequencies (I3 > 10 Hz). The high handset variability a t  the very low modulation frequen- 

cies suggests a strongly varying DC component in the time sequences of the logarithmic 

energies. This result conforms with the model for a convolutional degradation that  was 

described in Section 2.5.1, where it was concluded that  a linear time-invariant transmission 

channel will add a bias t o  the time sequences of logarithmic energy. 

Fig. 3.4 depicts the total and handset variations as computed over the two types of 

microphone transducer (carbon-button and electret) individually. Fig. 3.4 (a) depicts 

the case where GH(e) was estimated over the three carbon-button transducers only, while 

Fig. 3.4 (b) depicts the case where GH(e) was estimated over the three electret transducers. 

The variation among carbon-button transducers is clearly different from the variation 
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Figure 3.4: Total variability and handset variability as a function of modulation frequency 
8. (a) Depicts variations among carbon-button transducers. (b) Depicts variations among 
electret transducers. (0, = 200 Hz and t ,  = 20 ms.) 

among electret transducers. Interestingly, it can be seen that  the variability of electret 

transducers is less in the middle range of modulation frequencies than the variability of 

carbon-button transducers. Why this is the case is not entirely clear, but we will offer a 

possible explanation a t  the end of the chapter. 

3.5 Limitations of the Analysis 

It is informative t o  consider the limitations of the analysis of variability in the modulation 

spectral domain. In this section the effects of frequency smearing, aliasing, and alignment 

of the speech signals are investigated in more detail. 

3.5.1 Frequency Smearing 

As was shown in Section 2.2, the 1 second long Hamming window used t o  compute the 

modulation spectra limits the frequency resolution t o  2 Hz. Fig. 3.3 showed that  the 

handset variation GH(@) exhibits a strong peak below about 2 Hz. We suggest that  the 

actual peak may be well below 2 Hz - close t o  DC, and that  the observed peak is the 

result of a smearing of this DC component into higher frequencies - refer Equation (2.3). 

Fig. 3.5 supports this suggestion. In the figure the handset variation GH(@) computed 

using a 2 second long analysis window (b) is compared t o  that  computed when using a 
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Figure 3.5: Handset variability as a function of modulation frequency 8 for medium-term 
analysis Hamming window lengths of (a) 1 second, and (b) 2 seconds. (0, = 100 Hz and 
t ,  = 40 ms.) 

1 second long analysis window (a). For the 2 second long analysis window, where the 

frequency resolution is limited to  1 Hz, the peak moves down t o  below 1 Hz. 

Fig. 3.5 also indicates that  the choice of medium-term analysis window is important. 

It was remarked in Section 2.2 that  the main side lobe of a Hamming window is about 

42 d B  below the main lobe, whereas this is only about 13 dB for a rectangular window. 

A rectangular window would therefore be inappropriate for the medium-term analysis 

since it would not be able to  resolve the sharp 30 dB change in handset variation that  can 

be observed in the figure. It can therefore be concluded that  the Hamming window would 

be the better choice for the medium-term analysis window. It is important to  note though 

that  even the Hamming window would not be able to  resolve sharp changes of more than 

about 40 dB. 

3.5.2 Aliasing . 

In Section 2.4.3 it was noted that  to  prevent aliasing in the modulation spectral domain 

it is necessary to  sample with a frame rate that  is higher than twice the bandwidth of the 

analysis window that  is used in the short-term analysis. Table 2.1 listed typical minimum 

values for the frame rate that  avoids aliasing when using a short-term analysis Hamming 

window of a certain length. Window lengths t ,  of 20, 32 and 40 ms respectively, required 

frame rates 0, of 200, 128 and 100 Hz to  avoid aliasing. In this subsection the effects of 
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Figure 3.6: Total variability as a function of modulation frequency 0 for a frame rate 
0, = 100 Hz and short-term analysis Hamming window length t ,  of (a) 20 ms, (b) 32 ms, 
and (c) 40 ms. 

aliasing when these conditions are not met are examined using the modulation spectrum. 

Fig. 3.6 shows the total variation Gx(0) for different lengths of the Hamming window. 

The frame rate is 0, = 100 Hz and the Nyquist frequency is 50 Hz. Cases (a) and (b) in the 

figure are t o  be compared t o  case (c). For case (c) where t ,  = 40 ms, no aliasing occurs, 

whereas for case (a) with t, = 20 ms aliasing theoretically occurs above 25 Hz and for 

case (b) with t ,  = 32 ms aliasing theoretically occurs above 36 Hz. While it is important 

t o  consider the potential for aliasing in the interpretation of the results presented here, it 

appears that  aliasing will not be a considerable problem due t o  the band-limited nature of 

the modulation spectrum of speech. In Fig. 3.3 Gx (8) was seen to  fall off rather rapidly 

a t  about 7 dB/octave so that  a t  0 = 36 Hz Gx(0) is already about 25 d B  down from 

its the maximum value. Indeed, in Chapter 4 it will be shown that  speaker verification 

performance is optimum for choices of analysis window length anywhere in the range 20 to  

64 ms. Given these observations, computational efficiency suggests using a 100 Hz frame 

rate and a 20 - 32 ms long analysis window (i.e. not more than 256 samples). A 32 ms 

long analysis window is the default choice in this dissertation. 
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Figure 3.7: Total variability and handset variability as a function of modulation frequency 
6. (a) Time sequences aligned, (b) time sequences randomly shifted by one frame. (Electret 
speech, 6, = 100 Hz and t ,  = 40 ms.) 

3.5.3 Time Alignment 

The results in this chapter are based on time-aligned recordings for a particular speaker 

speaking the same text over different handsets. It was reported in Section 3.2 that  the 

alignment errors are on the order of 3 ms or less. The alignment can be tested by compar- 

ing variations for time sequences that  were randomly shifted by one frame t o  the variations 

of the original time sequences. This is shown in Fig. 3.7. Fig. 3.7 (a) shows the varia- 

tions computed using the original time sequences and Fig. 3.7 (b) shows the variations 

computed using the randomly shifted sequences. In the latter it can be seen that  handset 

variability, that  reflects the alignment variability, becomes the dominant variability a t  

high modulation frequencies. This suggests that  shifting the time sequences by a single 

frame, increases the alignment error and suggests that  the original alignment is optimal. 

3.6 Additional Results 

Additional results related to  handset variability are presented in this section. Speech- 

to-handset signal-to-noise ratios are studied individually for electret and carbon-button 

transducers and as a function of short-term analysis frequency in Section 3.6.1. Differences 
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Figure 3.8: SNR for (a) carbon-button and (b) electret transducer variability as a function 
of modulation frequency 0. (8, = 100 Hz and t ,  = 40 ms.) 

between the modulation spectrum resulting from the classical definition and the modu- 

lation spectrum resulting from the generalized definition are examined in Section 3.6.2. 

Finally, the effects of additive noise and signal gain are investigated in Section 3.6.3. 

3.6.1 Signal to Noise Ratios 

Comparing speech and handset variations may provide an indication of which components 

of the modulation spectrum may be useful for ASR and speaker verification. A higher 

SNR for a particular modulation frequency implies that  the speech signal is affected less by 

handset variability a t  that  frequency. Define a signal-to-noise ratio (SNR) at a particular 

modulation frequency as the ratio of the speech variation and handset variation 

Fig 3.8 depicts the variations in terms of the SNR for handsets with (a) carbon-button 

and (b) electret transducers. It is can be seen that  the SNR is highest in a band of 

modulation frequencies centered around about 3 Hz. This band extends down t o  1 Hz 

and up to  around 10 or 20 Hz. For electret transducers the SNR is higher than 15 dB 

in a band from 1 t o  10 Hz. The SNR is somewhat lower for carbon-button transducers. 

Possible reasons for this will be suggested in the next section. 
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Figure 3.9: SNR as a function of modulation frequency 8 for various short-term analysis 
frequencies f. (8, = 100 Hz and t ,  = 40 ms.) 

Fig. 3.9 depicts the SNR as a function of short-term analysis frequency f .  Results are 

shown for filter bank bands with center frequencies f spanning the telephone band. The 

SNRs shown were computed using handsets with both carbon-button and electret trans- 

ducers. The same conclusions as before hold for the low and high modulation frequencies. 

Here though, it can be seen that  the SNR also depends on the short-term analysis fre- 

quency, and is highest for a short-term analysis frequency in a range of 0.3-3 kHz. The 

dominant range of frequencies agrees with the typical bandwidth of telephone speech [20] 

as can be seen in Fig. 3.10 which shows the SNRs as a function of short-term analysis 

frequency f a t  a modulation frequency 8 = 4 Hz. 

The signal-to-noise-ratios in the figures suggest that  moderate t o  high and very low 
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Figure 3.10: SNR as a function of short-term analysis frequency f for the case where 
8 = 4 Hz. (8, = 100 Hz and t ,  = 40 ms.) 

modulation frequencies are susceptible t o  handset variability and that  attenuating them 

may reduce unwanted variability in the acoustic features. This observation will be inves- 

tigated in more detail in Chapter 5. 

3.6.2 Comment on the Use of Long-term or Ensemble Average 

As was noted in Section 3.3.2, in its classical definition [41, 71, the modulation spectrum 

is defined as the power spectrum of a time sequence of logarithmic energy from which the 

long-term average has been subtracted. The definition was generalized in this chapter to  

define the modulation spectrum as the power spectrum of a time sequence of logarithmic 

energy from which the ensemble average has been subtracted. Fig. 3.11 shows the modu- 

lation spectra that  result from the two definitions. The solid lines show the modulation 

Modulation frequency 13 [Hz] 

Figure 3.11: Comparison between two definitions for modulation spectra. See text for 
details. (Electret speech, 8, = 100 Hz and t ,  = 40 ms.) 



spectrum or total variation Gx and handset variation GH that  comes from the general- 

ized definition. Compared to  these, the dashed line shows the modulation spectrum G~ 

computed using the classical definition. For the latter, the long-term average of each time 

sequence was normalized before computing its power spectrum. 

The difference between the two definitions for the modulation spectrum can be seen 

t o  be in the DC-component. In the classical definition, the DC-component is attenuated7 

and essentially ignored, whereas this is not the case in the generalized definition. 

3.6.3 Additive Noise 

In previous sections it was seen that  the handset variability ascribed t o  variations among 

carbon-button transducers is different from the handset variability ascribed t o  variations 

among electret transducers. A possible explanation is offered in this section. 

First of all, notice that  since the DC component in the logarithmic domain reflects 

the energy in the speech signal, it may be affected among other things by a normalization 

of the speech signal. This would be the case when changing the gain of the transmission 

channel. The observed differences in DC variation for the carbon-button and noisy electret 

handset may therefore depend on whether the noise was added t o  the speech signals before 

or after a change in the broad-band speech signal energy. To compensate for this effect 

the broad-band energy of each speech signal will be normalized. This only affects the DC 

component. 

Now consider the effect of additive noise. It is proposed that  additive noise that  may 

be present in the carbon-button speech signal may be in part responsible for the observed 

difference between transducer types. This can be modeled by artificially adding white 

noise t o  the electret speech signal. The goal is t o  try t o  make the handset variation 

among electret transducers look more like the handset variation among carbon-button 

transducers. In the following, noise will be added in two different ways. 

7Note that the DC component is not exactly zero as may be expected. This is because in estimating the 
modulation spectrum, the analysis window was applied to the time sequence after the long-term average 
was removed from it. The non-zero DC component reflects the fact that the long-term average of the 
windowed time sequence is not exactly zero. 
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Figure 3.12: Total variability and handset variability as a function of modulation frequency 
0. The effect of adding noise t o  speech signals recorded using electret transducers is shown 
for noise levels a t  an SNR of (a) 30 dB, (b) 20 dB and (c) 10 dB. See text for details. 
(0, = 100 Hz and t ,  = 40 ms.) 

Fixed SNR 

Suppose that  white noise8 is added a t  a fixed SNR to each electret speech signal. The 

SNR is measured in decibels as the ratio of average energy in the speech signal relative t o  

the average energy of the noise signal. Fig. 3.12 depicts the resultant total and handset 

variations for different SNR levels of additive noise. 

Variable SNR 

Suppose instead that  white noise is added a t  SNR levels that  vary randomly from 10 - 

30 dB among the electret speech signals. Fig. 3.13 depicts the resultant total and handset 

variations. 

Discussion 

Several important conclusions can be drawn from the analysis. Variations in broad-band 

energy contribute considerably t o  the DC variability. This can be seen by comparing the 

handset variations shown in the current section, with the handset variations shown in 

previous sections. In the current section the broad-band energy of each speech signal was 

normalized, whereas in the previous sections the broad-band energy of each speech signal 

'White noise from the NOISEX-92 corpus is used. 
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Figure 3.13: Total variability and handset variability as a function of modulation frequency 
6. The effect of adding noise to  the speech signals recorded using electret transducers is 
shown. Noise is added a t  SNRs that  vary from 10 t o  30 dB. (8, = 100 Hz and t ,  = 40 ms.) 

was not normalized. Normalizing the broad-band energy can be seen t o  reduce handset 

variability for the DC modulation component. 

It can be seen that  adding noise t o  the electret speech affects the SNR a t  all modulation 

frequencies. The behavior agrees with the conclusion a t  the end of Section 2.5.2 that  the 

effects of additive noise in the log-spectral domain is time-varying. 

The intra-electret and intra-carbon-button handset variations can be compared to  the 

noisy electret handset variation. The variations are shown in Fig 3.14. In Fig. 3.14 (c) the 

variations were computed after adding white noise t o  the electret speech signals a t  SNR 

levels that  varied randomly from 10 - 30 dB. Fig. 3.14 (c) is the same as Fig. 3.13. 

It can be concluded that  additive noise may indeed be partly responsible for the ob- 

served difference in carbon-button and electret handset variation. The intra electret hand- 

set variation in the presence of additive noise is quite similar t o  the intra carbon-button 

handset variation. This supports the assumption that  additive noise may be responsible 

for the observed differences in variation between the transducer types. 

Importantly, it can be seen that  increasing the additive noise leads t o  an increase in 

the handset variation a t  all frequencies with the effect that  handset variation contributes 

substantially t o  the total variation a t  high modulation frequencies. This can be seen best 

in Figs. 3.12 (b-c). The additive noise has basically a 'pinching' effect. When the signal 

to  noise ratio for the additive noise is around 10-20 dB it  can be seen that  frequency 
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Figure 3.14: Total variability and handset variability as a function of modulation frequency 
9. (a) Intra electret, (b) intra carbon-button and (c) intra noisy electret transducer vari- 
ability. (9, = 100 Hz and t ,  = 40 ms.) 

components in the modulation spectrum of speech that  are higher than about 10 Hz 

contain relatively little speech variability compared t o  the noise variability. It can be 

concluded that  attenuating the higher modulation frequency components may make the 

features less sensitive t o  such changes and perhaps increase system robustness. 

Notice also from the figure that  additive noise has the effect of increasing the total 

variation a t  higher modulation frequencies relative t o  the total variation a t  lower modula- 

tion frequencies. This suggests that  aliasing, if allowed t o  occur, may become a problem 

a t  high levels of additive noise and should not be ignored. 

3.7 Summary 

In this chapter it was proposed that  the modulation spectrum provides information that  

may be used t o  understand and reduce the effects of telephone handset variability. The 

approach that  was followed was different from previous approaches in that  characteristics 

of handset types were analyzed along the time dimension of the feature space and not 

along the frequency dimension. A framework for this analysis was proposed based on a 

nested ANOVA model. The model generalized the concept of modulation frequency and 

allowed the variations to  be interpreted in the modulation spectral domain. 



Several results followed and led t o  a number of important conclusions which we summarize. 

Handset variability constitutes a large portion of the overall variability in the speech 

signal a t  very low (DC) and moderate to  high (> 10 Hz) modulation frequencies. 

Gain in particular, was seen to  affect the DC modulation frequencies. 

The ratio of speech variation t o  handset variation is highest in a band of modulation 

frequencies centered around 3 Hz. This band extends down t o  1 Hz and up t o  around 

10 or 20 Hz. 

Carbon-button transducers exhibited a lower SNR than electret transducers. 

It was shown that  the SNR also depends on the short-term analysis frequency, and is 

highest for a short-term analysis frequency in a range of 0.3-3 kHz. This observation 

agreed with a bandwidth for telephone speech in the same range. Irrespective of 

short-term analysis frequency though, it was observed that  very low and moderate 

t o  high modulation frequencies consistently have lower SNRs. 

It was shown that  variations in the broad-band energy of the speech signal con- 

tributes substantially to  the DC variability and that  a normalization is appropriate. 

It was seen that  additive noise affects the modulation spectrum across the range of 

modulation frequencies. 

By adding noise t o  the speech that  was recorded using the electret transducer, it 

was concluded that  additive noise may indeed be partly responsible for the observed 

difference in carbon-button and electret handset variation and that  adding such 

noise caused the electret handset variation t o  better approximate the carbon-button 

handset variation. 

When additive noise is present in the speech signal, i t  was seen that  frequency 

components in the modulation spectrum of speech that  are higher than about 10 Hz 

convey relatively little speech information. This was seen t o  be the case for additive 

noise a t  SNR levels as low as 20 dB. 



This chapter presented a rather general characterization of telephone handset vari- 

ability in speech and did not specifically deal with speaker variability. Handset variation 

was contrasted t o  the total and speech variations. It was concluded that  attenuating the 

higher modulation frequencies may make the features less sensitive t o  adverse environ- 

ments and likely increase the robustness of an ASR or speaker verification system. We 

will test this conclusion in Chapter 5 by performing a systematic investigation of the rel- 

ative importance of the components of the modulation spectrum for speaker verification 

specifically. By using the speaker verification system that  we describe in the next chapter, 

the approach will be t o  measure and analyze the effect on the speaker verification error 

for various filters designed in the modulation spectral domain. 



Chapter 4 

Speaker Verification 

The purpose of this chapter is t o  describe and motivate the system that  will used to  

evaluate text-independent speaker verification performance in this dissertation. The ex- 

traction and parameterization of suitable acoustic features, and choice, optimization and 

assessment of a statistical model for these features are described. 

The chapter is organized as follows. Section 4.1 describes the specific processing and 

parameterization used for feature extraction. Section 4.2 formulates speaker verification 

as a problem in statistical hypothesis testing. This formulation motivates the use of a like- 

lihood ratio test. A likelihood ratio test statistic is introduced that  uses two probability 

density distribution functions (pdfs). The one describes a speaker independent (SI) distri- 

bution of the features and the other a speaker dependent (SD) distribution. Performance 

of the speaker verification system is measured using different evaluation measures. These 

measures are motivated by the requirements of recent speaker recognition evaluations run 

by the National Institute of Standards and Technology. Section 4.3 provides further de- 

tails of the statistical modeling. To decide on a suitable choice for parameterizing the 

pdfs, Section 4.3.1 reviews past and current approaches to modeling the acoustic features. 

A Gaussian mixture modeling approach is then motivated and described. The well-known 

Expectation-Maximization (EM) algorithm is used to  estimate the parameters in the SI 

model and a Bayesian maximum aposteriori (MAP) adaptation of the SI model is used t o  

derive the SD models. Finally, Section 4.4 presents results related t o  optimization of the 

various parameters. 



4.1 Feature Extraction and Parameterization 

Features derived from a short-term analysis using a filter bank were motivated in C h a p  

ter 2 in terms of their suitability for speaker verification. This section details the feature 

extraction and parameterization used in the remainder of the dissertation. Following the 

common approach [16], unless where otherwise noted, acoustic features for the speaker 

verification experiments are derived from a short-term analysis of the speech signal as 

follows. A 32 ms long Hamming window is advanced in t, - t,-l = 10 ms steps. For each 

time point t,, the logarithmic energies Xl(n ,  k)  = log IS(n, wk)I2 at frequencies wk, where 

k = 1, ... K ,  are computed from the squared magnitude F F T  using a triangular integration 

window in a manner similar t o  that  of the computation of Mel-frequency cepstral coeffi- 

cients [16]. Fig. 4.2 depicts the filter bank. In this computation the center frequencies of 

Filter bank band k 

Analysis frequency f [Hz] 

Figure 4.1: Filter bank used in deriving short-term acoustic features. The integration 
window for each filter bank is shown. The filter bank bands falling between 200 and 
3500 Hz are shown as solid lines. 

the filters are warped according to  the Me1 scale f J  = 259510glo(l + f/700). Since the 

purpose is to  process telephone speech, only the Ii' = 19 spectral energies falling within 

the range [fi, fh] = [200,3500] Hz are retained. This process is depicted in Fig. 4.2. In this 

dissertation specifically, the time sequences of logarithmic energies are further processed 

by one or more FIR filters as depicted in the figure. The effects of various choices for 

these filters are analyzed in Chapter 5. After filtering, speech frames with energies more 

than 3 dB below a floating noise floor in the signal are labeled as silence (about 40% of 

the samples). The noise floor is estimated as the cross-over point of a two-component 
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Figure 4.2: Acoustic feature processing. 

Gaussian mixture fit [97] to  the broad-band short-term logarithmic energy that  is esti- 

mated within a sliding two second long window. The estimate is updated two times per 

second. Silence samples are discarded and the remaining vectors decorrelated using the 

optimal Karhunen-Lobve transformation (KLT). The KLT basis functions are estimated 

from the training da ta  [25] to  form the acoustic features X = [ X ( n ) ] .  In contrast to  

other approaches [78], cepstral coefficients are not computed. Parameterizations were op- 

timized on data  from the 1996 NIST Speaker Recognition Evaluation (NIST-SRE) [57]. 

An optimization study is included a t  the end of the chapter. 



4.2 Statistical Hypothesis Testing and Likelihood Ratio Test 

In the verification task the system has t o  decide whether to  accept or reject the identity 

of a speaker claiming t o  be the source of the speech signal. This suggests testing the 

hypothesis that  the claimant speaker is the true speaker. The following development 

closely follows that  outlined in [47, 481 where speaker verification was formulated as a 

statistical hypothesis testing problem. 

Given acoustic features X, test the null hypothesis, Ho, against the alternative hypoth- 

esis, HI, where Ho assumes that X was generated by speaker Yo and HI assumes that  X 

was generated by another speaker Yl. Usually the other speaker is not specified. In this 

case the alternative hypothesis is that  X was not generated by speaker Yo which makes 

HI a composite hypothesis. If the probability density functions (pdfs) of the acoustic 

features X under the two hypotheses are known exactly and fall into a specific class of 

distributions such as the exponential family, techniques are available in the literature for 

designing an optimal test. In general however, given the fact that  H1 is composite, and 

that  the two pdfs p(XIHo) and p(XIH1) are not known, but have t o  be estimated from a 

limited number of data samples, no known optimal testing procedure exists (see [48] for a 

discussion). 

Good performance can however be achieved by adopting the likelihood ratio statis- 

tic [69, 53, 80, 481. The test statistic is then given by 

where given acoustic features X,  the null hypothesis is accepted if the statistic is larger 

than a test threshold A*. In this formulation Oo and 01 are model parameters charac- 

terizing Ho and HI respectively and p(XIQo) and p(XJO1) are the likelihoods that  the 

acoustic features X were generated under the two competing hypotheses. Since the num- 

ber of possible sources for X can be large under the alternative hypothesis that  X was 

not generated by speaker Yo, it may be assumed that  p(XIH1) FZ p ( X )  so that  p(XIO1) 

can be chosen t o  approximate p ( X )  . 
Given the preceding discussion then, the log-likelihood ratio statistic is based on a 

speaker dependent (SD) pdf p(XIOo) and a speaker independent (SI) pdf p(XIO1). It is 



convenient t o  use the log-likelihood ratio instead of the likelihood ratio directly. It suffices 

to  accept the hypothesis that  the speaker associated with the target model Oo generated 

X if 

If it is assumed that  the acoustic features are random vectors X(1), X(2) ,  ..., X ( n ) ,  ..., X ( N )  

drawn from the same distribution, and that  the vectors are independent and identically 

distributed the log-likelihood ratio statistic becomes 

N N 
t ( X )  = log 11 p(x(n)l@O) = 10gp(X(n) l@~) - logp(X(n)lQl).  

,,I ~ ( X ( " > l @ l )  ,=, (4.3) 

Since the t (X) ' s  are also independent and identically distributed [25], with 

E[ t (X)(Hi]  = NE[t(X)(Hi],  

Var[t(X) 1 Hi] = NVar[t (X) 1 Hi], 

normalizing by N gives a statistic that  does not directly depend on the length of the 

utterance. That is, given a target and acoustic features X = [X(n)], n = l...N, the 

following statistic or model score is compared t o  the threshold 

The speaker that  generated X is called the true speaker and a speaker that  did not 

generate X, but claims to  have generated X, is called an imposter. The speaker associated 

with the claim is called the target. Two types of error can occur. A false rejection error, 

often referred t o  as type I error, occurs when a true speaker is falsely rejected for being 

an imposter. A false acceptance error, often referred to  as type I1 error, occurs when an 

imposter is accepted as a true speaker. An evaluation measure E can be constructed as a 

combination of the type I and I1 errors 

where Cfr and Cfa are the costs associated with making the errors. 



In this dissertation verification performance is evaluated using the equal error rate 

(EER) and a minimum decision error (MDE). These two evaluation measures weighs the 

type I and 11 errors differently. The EER weighs the false rejection error probability 

p( f rl Ho) and the false acceptance error probability p( f a1 HI) equally and is defined as the 

minimum error for which Ch = Cf, = 1 and P(Ho) = P ( H I )  = 0.5. The MDE weighs 

false acceptance errors about 10 times more strongly than false rejection errors. For the 

MDE1 Cfr = 10, Cfa = 1, P(Ho) = 0.01 and P(H1) = 1 - P(Ho) = 0.99. 

It is informative t o  plot the tradeoff of false acceptance and false rejection errors. This 

can be done conveniently using a detection error tradeoff (DET) plot [56].  Fig. 4.3 shows 

an example of a DET plot with EER point, MDE point and HDE point (see following 

discussion) indicated. 

False acceptance error [%I 

Figure 4.3: DET plot with EER, MDE and HDE points. (See text for details.) 

Errors are estimated using test  data. The test da ta  refers t o  da ta  obtained during 

actual use of the system and is to  be contrasted to  independent training and development 

data that  were obtained previously during an enrollment stage. The training and devel- 

opment da ta  are used to  construct models for the target speakers whereas the test data 

'The values for the costs and prior probabilities originated with the Speaker Recognition Evaluations 
run by NIST 1601. The MDE used here is the same as the minimum detection cost (min C D E T )  that was 
defined and used in the NIST-SRE. 



are used t o  assess the performance of the system. 

A target speaker is accepted or rejected based on a comparison of the target's model 

score and a predetermined threshold. The threshold is estimated as the threshold that  

minimizes the EER or MDE evaluation measure. Whether t o  use the development or test 

da ta  when determining the threshold is examined next. 

In a real application, it is not possible t o  determine an optimum threshold using the 

test da ta  as it is still being collected and not yet verified. A common approach is to  

determine a threshold that  is optimum for previously collected development da ta  and 

then apply that  threshold t o  the incoming test data. In this scenario the threshold is not 

guaranteed t o  be optimal for the test data,  since the statistics of the development and 

test speech may be different. To prevent the incorrect setting of a threshold on one data  

set t o  affect the conclusions reached for selecting useful features based on performance 

on another data  set, the approach followed here will be t o  assume that  the test data  are 

available for computation of the threshold. Accordingly, unless otherwise specified, for 

both the EER and MDE, results will be reported a t  the optimum threshold as determined 

on the test data. 

In Appendix C, the threshold that  minimizes the MDE on development da ta  will be 

used t o  assess performance on the test data. The resulting error will be called a "hard 

decision error" (HDE). Fig. 4.3 showed an example of a DET plot with EER point, MDE 

point and HDE point indicated. 

4.3 Statistical Model 

This section describes the statistical model used for speaker verification for the experi- 

ments in this dissertation. Derivation of a test statistic for speaker verification suggested 

use of a speaker independent and speaker dependent model. To guide and motivate a suit- 

able parameterization, this section includes a discussion and review of existing modeling 

approaches for speaker verification. 



4.3.1 Existing Approaches - Discussion and Review 

Many different statistical models have been used for speaker verification. These include: 

the long-term average of spectral features, first proposed in [71] and used extensively 

in [4]; 

the second order statistics [8, 881; 

vector quantization (VQ) of the features, first proposed for speaker recognition in [51] 

and investigated in [61]; 

neural networks [63, 241; 

nearest neighbor classification [38]; 

divergence and Battacharyya distance measures [14]; 

a Gaussian mixture model (GMM), first proposed as a 5-state ergodic, autoregressive 

HMM in [70] and studied extensively in [78, 791; and 

a hidden Markov model (HMM), first proposed for speaker recognition in [70] and 

used extensively in [62, 85, 61, 591. 

The long-term average of spectral features was shown early on t o  contain speaker 

specific information [71]. In later work however, it was found t o  be rather sensitive t o  

the transmission channel. A strategy to  make the modeling less sensitive t o  perturbations 

of the long term average was proposed in [29]. The idea was t o  reduce the effect of an 

unreliable average, by a suitable weighting of a likelihood term for the sample average and 

a likelihood term for the sample covariance. 

Temporal dynamics have also been modeled. In [26] it was proposed t o  model the 

dynamics with a projection onto orthogonal polynomials. Time spans of around 90 ms were 

reported t o  give good modeling results. The so-called delta features (see Sections 2.5.1 

and 5.4) have found wide spread use in contemporary systems [59] where the features 

are usually appended t o  a static feature representation (such as the STFT energies) and 

modeled statistically. Dynamic time warping (DTW) [76] has been used in text-dependent 



speaker verification systems and in [39] dynamics of speech in 80 ms intervals were reported 

t o  be important and modeled using so-called "elastic" filler templates. 

Normalizations for the effects of adverse environments and/or systematic deviations 

from the assumed statistical model have played an important role in speaker verification 

systems. Two types of normalization have been prevalent, namely parameter domain 

normalizations and similarity domain (score) normalizations. Removing the long term 

average of the features [26] is an example of a parameter domain normalization. The 

weighted mean and covariance model [29] discussed previously is an example of a similarity 

domain normalization. Other score normalizations have been proposed. In [80, 581 it 

was proposed that  scores be normalized with respect t o  individual speaker (z-norm) and 

handset type (h-norm) categories. In this dissertation the focus is on parameter domain 

normalizations. Score normalizations of the type mentioned here are not performed. A 

number of approaches have also considered the removal of outliers [29, 611. 

4.3.2 Proposed Approach - Motivation 

In this dissertation a Gaussian mixture model (GMM) is used t o  model the SI and SD 

distributions. Motivation for this choice is as follows. 

Feature distribution In [104] it was shown that  logarithmic energies have strongly non- 

Gaussian distribution~. In the current work the KLT is applied t o  the logarithmic 

energies to  derive the features that  are to  be modeled statistically. However, it is 

expected that  this transform will not be able to  adequately compensate for the non- 

Gaussianity of the logarithmic energies. The implication is that  the first and second 

order statistics may not be adequate t o  model the features properly. In informal 

experiments we found that  modeling a particular time-sequence of logarithmic energy 

Xl(n, k) directly with histograms with on the order of 25 bins, reflected the results 

and tendencies obtained with GMMs, although exhibiting a higher overall error 

rate. The conclusion is that  a mixture of Gaussians or other suitable non-Gaussian 

distribution would be needed for accurate modeling. 



Complexity HMM-based systems (of which GMMs are a special case) have been reported 

t o  outperform D T W  [62] and VQ systems [86]. Limited evidence exists though to  

support a performance advantage for a more complex HMM model over a simpler 

GMM model. In [85] it was reported that  an HMM with a left-right topology that  is 

trained on sub-word units2 gave better performance than VQ and an ergodic3 HMM 

on a data  base of isolated digit utterances of 100 speakers. On the other hand recently 

it has been reported [61, 58, 591 that  HMM-based and GMM-based systems perform 

rather similarly. It has also been reported that there exists a tradeoff in performance 

between the number of mixture components per state K1 and the number of states 

K2 with reasonable performance achieved for a fixed product K1 x K2 [61, 78, 591. 

The implication is that  a major modeling issue for speaker verification is the spectral 

and temporal resolution [85] of the model, perhaps more so than the exact state 

topology. A possible advantage of a GMM approach over an HMM approach is 

that  a GMM does not require marked training data  as does an HMM in the initial 

training phase. 

Scalability The GMM approach that  will be adopted here is more scalable than a neural 

network or similar approach which requires discriminative4 training. Scalability was 

a requirement in the NIST-SRE. 

The GMM described next, performed competitively in the 1998 NIST-SRE [ lo l l  591. 

4.3.3 Speaker Independent Model 

The SI pdf is modeled using a mixture of Gaussians 

'Phone-like units (PLU) and acoustic segment units (ASU) were modeled. Similar performances were 
reported for both types of units. 

3An HMM where every state is allowed to transition to every other state. 
41f desired, the minimum classification error (MCE) could be used to make the GMM training discrim- 

inative. See for example [54, 53, 471. It should be noted that interesting parallels exist between the MCE 
measure and a test statistic based on SD and SI pdfs. 



with mixing weights wk 2 0, so that  ~ f = ~  wk = 1 ,  and with each Gaussian parameterized 

by a d-dimensional mean pk and a variance Ck as 

While the main experiments in this dissertation use either Ii; = 128 or  Ii' = 256 compo- 

nents, which represent a reasonable balance between modeling accuracy and computational 

complexity, some results will be reported for I( = 20 t o  1024 as well. The SI model is 

trained using the Expectation Maximization (EM) algorithm [19] on a population of male 

and female speakers different from those used in SD training and testing. 

The mean of each component in the SI model is initialized t o  a centroid derived from 

the LBG algorithm [13] with centroids obtained by successive splitting starting from a 

single global centroid. The variance of each component is initialized t o  a scaled global 

covariance for the data  and constrained t o  be diagonal. This constraint offers a com- 

putational advantage and does not appear to  affect performance deleteriously [79]. The 

training procedure is detailed in Appendix B. 

4.3.4 Speaker Dependent Models 

The SD model of a speaker is obtained by updating the SI model using the training 

data  of that  speaker. Update rules were derived by unsupervised maximum aposteriori 

(MAP) reestimation of the parameters in the SI model [45, 18, 251. This training is 

similar t o  that  proposed in [80] for speaker verification and in [49] for ASR. Writing the 

posterior probability for the n-th training sample Xn being generated by the k-th mixture 

component as 



the update rules are: 

weights: 

means: 

~ f = ~  ~ ~ ( ~ n - P k ) ( ~ n - P k ) ~ + V ( ~ k - f i k ) ( ~ r t - f i k ) ~ + ~ ~ k  variances: CL = 7 (4.11) 

where the meta-parameters vk, 7 and p reflect the respective confidence in the parameter 

estimates wk, pk and Ck. 

During testing, the likelihoods for the SD and SI models are accumulated using only 

the five best scoring components identified for the SI model on the test vectors [go]. This is 

motivated in that  only a few of the components in the mixture contributes t o  the likelihood 

for any one given acoustic vector and the SD model is adapted from the SI model. To 

decide whether t o  accept a claim or not, the likelihood ratio between the SD and SI models 

is compared t o  a speaker independent threshold5. 

4.4 Parameter Optimizations 

Suitable values for the parameters described previously are determined in a series of opti- 

mization experiments in this section. The optimizations are based on the EER and MDE 

evaluation measures proposed in Section 4.2. Optimizations related t o  the feature ex- 

traction process are described in Section 4.4.1 and optimizations related t o  the statistical 

modeling process are described in Section 4.4.2. 

Since it is prohibitive t o  search the whole parameter space exhaustively, the strategy 

adopted here is t o  perform line searches for a single parameter at a time, searching for a 

reasonable optimum for that  parameter. This search is clearly sub-optimal, but does afford 

an interpretation of the effect of different parameter values on the overall performance 

of the system. Each line search was initiated starting from default values for all the 

parameters. Values for the parameters related t o  the default condition will be denoted 

'Speaker or handset specific score normalizations are not used in this dissertation. 



Table 4.1: Default values for the parameters in the speaker verification system related to 
experiments in this and subsequent sections. 

with an asterisk (*) in the figures t o  follow. Default values for the system parameters used 

in this section are shown in Table 4.1. 

Parameters of the feature extraction process are optimized using the telephone speech 

corpus of the 1996 NIST-SRE [60], while parameters of the statistical modeling process are 

optimized using the telephone speech corpus from the 1997 NIST-SRE [60]. The corpora 

and experimental setup are discussed in Appendix A. Results are computed for male and 

female speakers separately and averaged. 

The EER and MDE results presented here relate t o  matched and mismatched training 

and testing conditions. The possibility for mismatch occurs when the telephone number 

and/or handset type differs between training and testing. Handset types are categorized 

TYPE 

FEATURES 

MODELS 

PARAMETER OR PROCESS 

DESCRIPTION 

Frame rate 
Low frequency cut-off 
High frequency cut-off 
# of filter bank bands 
Analysis window length 
(i) Section 4.4.1 
(ii) Section 4.4.2 and Chapter 5 
Preemphasis coefficient 
Mean subtraction 
Use static features (cf Fig. 5.7) 
Use dynamic features (cf Fig. 5.7) 

# of mixture components 
(i) Sections 4.4.1 and 4.4.2 
(ii) Chapter 5 
# of EM-iterations 
Variance regularization coefficient 
Adaptation confidence parameters 
(i) Weights 
(ii) Means 
(iii) Variances 
Number of GMM components evaluated 

NAME 

0s 
f 1 

f h  

t w  

tw 
a 
MS 
A or C 
B or D 

K 
K 

6 

vk 

7l 

P 
N-best 

VALUE 

100 Hz 
200 Hz 
3500 Hz 

24 

20 ms 
32 ms 
0.97 
Yes 
Yes 
No 

128 
128 or 256 

5 
0.2 

16 
16 
16 
5 



into electret transducer and carbon-button transducer types6. For the feature extraction 

parameters, the conditions of interest are same number (SN) and diferent number (DN). 

For the statistical modeling parameters, the conditions are same number and same handset 

type ( S N S T )  and diferent number and different handset type (DNDT). The conditions are 

described in more detail in Appendix A. 

4.4.1 Feature Extraction 

Various results related t o  the optimization of the feature extraction parameters are pre- 

sented in this section. Parameters include the frequency cut-offs for telephone band- 

limiting, the length of the analysis window and the number of filter bank bands. The 

effectiveness of mean subtraction and use of dynamic features are also investigated. The 

1996 NIST-SRE corpus is used for the experiments in this section. Results are computed 

separately for four available conditions of interest namely males and females, and 3 and 

10 second long segments of test speech. To simplify interpretation, the results of these 

four conditions are averaged and reported here. 

Length of Analysis Window 

Various results in Chapters 2 and 3 indicated that  t o  avoid aliasing, a good choice for the 

length of the short-term analysis window is longer than 20 ms. It was also remarked that  

to  match the quasi-stationary nature of the speech signal, this length should be shorter 

than about 40 ms. Fig. 4.4 shows EER and MDE values for the matched and mismatched 

conditions as a function of length t ,  of the analysis window. 

The errors are seen to  be relatively insensitive t o  the length of the analysis window 

as long as it is not shorter than about 20 ms or longer than about 64 ms. This suggests 

that  aliasing is not much of a problem, even a t  20 ms lengths. It also suggests that  the 

quasi-stationary nature of the signal may extend up to 64 ms or  that  the spectral estimate 

benefits from the smoothing obtained with a longer analysis window. A default length 

of 20 ms is used for the experiments in this section and seems reasonable. In subsequent 

'These distinctions were assessed using telephone number and handset type labels distributed by NIST. 



Figure 4.4: EER and MDE as a function of short-term analysis window length t ,  (in 
milliseconds). 1996 NIST-SRE corpus. 

sections however, a default length of 32 ms will be used. Reasons for this choice are the 

following. In Chapter 3 it was observed that  lowpassed features may be less sensitive t o  

the effects of environmental mismatch. In Chapter 2, it was shown that  the longer the 

analysis window, the narrower is its bandwidth and that  this is a way to obtain such 

features. A choice of 32 ms thus seemed appropriate. 

Number of Filter Bank Bands 

Fig. 4.5 shows that  using a filter bank with around 20 t o  26 bands is optimal. Given 

this result and so as t o  make the processing used here consistent with that  used in other 

work (see e.g. [78]) it was decided to  use 24 bands. This choice implies a 90 Me1 spacing 

# bands # bands 

Figure 4.5: EER and MDE as a function of number of filter bank bands between 0-4 kHz. 
1996 NIST-SRE corpus. 



Figure 4.6: EER and MDE as a function of lower cut-off frequency fi and as a function 
of higher cut-off frequency f h  . 1996 NIST-SRE corpus. 

between the center frequencies of adjacent filter bands. Based on the results presented in 

Section 4.4.1, only the center 19 bands will be used. 

In Section 4.1 it was suggested that  the speech signal be band-limited to a range [fr, fh] 

= [200,3500] Hz. Fig. 4.6 show the EER and MDE as a function of the lower cut-off 

frequency f i  and higher cut-off frequency fh.  In the mismatched condition, the EER and 

MDE are minimum for both parameters a t  the proposed values. In the matched condi- 

tion, band-limiting the speech signal increases the MDE. For robustness t o  environmental 

degradations though, it appears that  the choice is reasonable. 



Yes ' No 

Mean subtraction 

Yes No 

Mean subtraction 

Figure 4.7: Effect of mean subtraction on the EER and MDE. 1996 NIST-SRE corpus. 

Mean Subtraction and Preemphasis 

Fig. 4.7 shows the effect of mean subtraction (MS). MS clearly reduces the EER and MDE 

in the mismatched condition. In the matched condition, MS is seen t o  slightly worsen the 

MDE. This suggests that  a simple MS model for dealing with a convolutional degradation 

is suboptimal. This is not surprising since MS removes the long-term average which may be 

useful for speaker verification when not corrupted. In the matched condition the channel 

may actually help t o  verify or identify the speaker. In Section 2.5.2 it was suggested that 

a non-linear compensation strategy is necessary if additive noise is present. 

Fig. 4.8 confirms however, that  the system with mean subtraction is invariant t o  the 

effects of a linear time-invariant channel. The figure shows that  preemphasis does not 

affect the EER and MDE. The value of the preemphasis coefficient a was set t o  either 0 

or 0.97 t o  obtain the preemphasized speech signal s'(n) = s ( n )  - as(n) .  

0 0.97' 

Preemphasis coefficient 

0 0.97' 

Preemphasis coefficient 

Figure 4.8: EER and MDE as a function of preemphasis coefficient showing invariance to  
a convolutional transmission channel. 1996 NIST-SRE corpus. 
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Feature 
C' D 

Feature 

Figure 4.9: EER and MDE for static features (C) versus dynamic (delta) features (D). 
1996 NIST-SRE corpus. 

Dynamic Features 

Fig. 4.9 contrasts the EER and MDE for a system using the default "static" features (C) 

to  that  of a system using "dynamic" features (D). These dynamic features are obtained 

by using the so-called delta polynomial fit to  the time sequence of logarithmic energy. 

The polynomial used here spans 5 frames of speech (refer Section 2.5.3). When used 

individually, static features are seen to  contain more speaker information than dynamic 

features. However, a t  the end of this chapter and in Chapter 5, it will be shown that  using 

static and dynamic features together leads t o  a further reduction in error. 

4.4.2 Statistical Modeling 

Various results related to  the optimization of the modeling parameters are presented in this 

section. These parameters are described in detail in Appendix B. Parameters include the 

number of iterations used in the EM-algorithm for training the SI model, the regularization 

parameter used for the covariances, the number of components in the GMM, the number of 

components that  are evaluated in the GMM during scoring, and the confidence parameters 

used in the MAP adaptation. The effectiveness of using both static and dynamic features 

is also investigated. The 1997 NIST-SRE corpus is used for experiments in this section. 

Results are computed separately for six available conditions of interest namely males and 

females, and 3, 10 and 30 second long segments of test speech. To simplify interpretation, 

the results of these six conditions are averaged and reported here. 
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Figure 4.10: EER, MDE and likelihood as a function of the number of EM-iterations used 
for training the SI-model. 1997 NIST-SRE corpus. 
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Fig. 4.10 shows the EER, MDE and data-likelihood as a function of the number of itera- 

tions used in the EM-algorithm. For implementation details of the EM-algorithm refer to  

Appendix B. It can be seen that  the EM-algorithm is close t o  convergence after about 5 

iterations and has effectively converged after 10 iterations. 

Covariance Regularization Parameter 

In Appendix B it is proposed that  the covariance matrices be regularized (see for ex- 

ample [66]) t o  prevent the occurrence of singularities in the likelihood function that  is 

maximized by the EM-algorithm. Singularities can occur when the dimensionality of the 
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Figure 4.11: EER and MDE as a function of E parameter used to  regularize the covariances 
during training of the SI-model. 1997 NIST-SRE corpus. 

da ta  is high and the number of training samples is small so that  some of the covariance 

matrices may become singular. As is evidenced by Fig. 4.11, singularities do not appear 

t o  be a problem here. This may be because the number of training samples is fairly large 

( lo6 samples were used here) and the samples were equally distributed among the mixture 

components during the VQ-training step. 

N-Best GMM Components to be Evaluated 

Fig. 4.12 shows the EER and MDE as a function of the number of best scoring N compo- 

nents evaluated in the SD and SI models during scoring. I t  can be seen that  evaluating as 

little as one component does not affect performance deleteriously. In general, for experi- 

ments in this dissertation, the top 5 components will be evaluated. 

DNDT 

SNST * - -. 

DNDT - rn 
I. 

1. 

SNST 
a - 8 .  

Figure 4.12: EER and MDE as a function of N-best components evaluated in the SD and 
SI models during scoring. 1997 NIST-SRE corpus. 



Confidence Parameters Used in MAP Adaptation 

In Appendix B it is shown that  the general MAP update rules for the weights, means and 

variances take the form 

where OX is an estimate for the parameter based on the SD adaptation da ta  X and OsI 

is the previous estimate obtained for the SI data. The adaptation parameter X can be seen 

t o  form the new parameter estimate from the weighted combination of the current and 

previous estimates. For the mean of a single component GMM for example, the adaptation 

parameter X can be related t o  the confidence parameter by 

where N is the number of samples in the adaptation da ta  that  is available for estimating 

the mean. The value of a confidence parameter is essentially a measure of how many 

samples are assumed t o  have been used to  obtain the old parameter estimate, and is to  be 

contrasted to  the number of samples that  is to  be used in obtaining the current estimate. 

In this example, if the confidence parameter 11 is very large relative t o  N, X + 0 and the 

new estimate for the mean is equal t o  the old estimate, so that  no adaptation is performed. 

Conversely, if the confidence parameter is very small relative t o  N ,  X + 1 and the new 

estimate for the mean is equal t o  the current estimate derived from the adaptation data. 

Table 4.2 lists optimum values for the confidence parameters (see also Appendix B). 

The EER and MDE exhibit a minimum for a broad range of values for the parameters. The 

table shows that  good performance is obtained for values of the confidence parameters set 

to  vk = 16, 7 = 8 and p = 64. Good performance is also obtained for the default values. 

It can be concluded that  adaptation of the component means are the most important, 

with adaptation of the covariances ranking second. The higher value for the covariance 

confidence parameter p is t o  be expected given that  more samples are needed to  estimate 

the covariances than t o  estimate the component means. 



Table 4.2: EER and MDE for various values of the MAP confidence parameters vk, 7 and 
p. 1997 NIST-SRE corpus. 

Number of Components in the GMM 

Fig. 4.13 shows the effect of increasing the number Ir' of components in the Gaussian 

mixture model and appending the vector of static features (C) with a vector of dynamic 

features (D) to  form a new feature vector (C,D). The solid lines in the figure indicate the 

errors when using static features only. The dotted lines indicate the errors when using the 

static and dynamic features together. 

Increasing K beyond 512 increases the error and suggests that  a model with more 

than 512 components has too many free parameters. The result is that  the model begins 

t o  fit irrelevant details in the training data - the well-known phenomenon of over fitting 

the training data. It appears that  models with as few as 128 components give reasonable 

performance. 

Appending dynamic features t o  the static features leads t o  a lower error 'rate, partic- 

ularly so in the mismatched condition. This suggests that  the dynamic features provide 

additional robustness t o  environmental degradations. 

COMMENTS 

Little adaptation 
Full adaptation 
Best performance 
Default system * 
Adapt covariances only 
Adapt means only 
Adapt weights only 

- 
PARAMETERS 

uk77,f' 
1024,1024,1024 

1,1,1 
16,8,64 
16,16,16* 

1024,1024,l 
1024,1,1024 
1,1024,1024 

ERROR 
MDE x 100 

SNST 

7.8 
4.1 
4.0 
4.1 
6.7 
4.4 
7.7 

EER % 
DNDT 

9.5 
8.5 
8.5 
8.5 
9.6 
8.7 
9.5 

SNST 

22.5 
8.8 
7.6 
8.0 
13.6 
8.2 
17.2 

DNDT 

36.7 
24.3 
23.3 
23.8 
31.7 
23.8 
29.3 



# mixture components K # mixture components K 

Figure 4.13: EER and MDE as a function of number of mixture components for static 
features (C) versus static and dynamic features (C,D). 1997 NIST-SRE corpus. 

4.5 Summary 

The speaker verification system that  will used to  evaluate text-independent speaker veri- 

fication performance in this dissertation was described. Details of the feature extraction 

process were first described. Two different evaluation measures were subsequently defined. 

Derivation of a test statistic for speaker verification lead to  the use of a speaker indepen- 

dent pdf as well as speaker dependent pdfs for modeling the speakers statistically. Based 

on previous work and observations about the non-Gaussianity of the speech data,  the 

pdfs were parameterized using a mixture of Gaussians. Rules for deriving the parameters 

of these GMMs were then described. The last section of the chapter motivated specific 

choices for the values of the parameters. 

In the optimization experiments it was observed that  lengths from 20-64 ms for the 

analysis window give reasonable performance. It was seen that  band-limiting the speech 

signal t o  the telephone bandwidth improves performance in the mismatched condition. 

Using a short-term analysis filter bank with between 20 and 26 bands gave good per- 

formance. Mean subtraction and the inclusion of dynamic features in addition t o  static 

features were seen to  improve performance considerably in the mismatched condition. 

However, dynamic features used on their own performed less well. For the statistical 

modeling, a GMM with 256 to  512 components in the mixture performed best, although 

a GMM with as few as 128 components performed reasonably well. 



The experimental setup that  will be used in the remainder of this dissertation will 

be described next, before revisiting the performance of the speaker verification system in 

Chapter 5. There, by analyzing the errors of the system under various conditions, the 

approach will be t o  systematically investigate the relative importance of the components 

of the modulation spectrum for speaker verification. 



Chapter 5 

Speaker Verification in a Time-Feature 

Space 

Whereas Chapter 3 was concerned with the effect of handset variability in speech in 

general, this chapter narrows the focus t o  the speaker verification task specifically. The aim 

is t o  use filtering in the time-feature space to  measure the importance of the components 

of the modulation spectrum for speaker verification. The approach will be t o  design a 

number of filters in the modulation spectral domain, apply them t o  the time sequences of 

logarithmic energy, and measure and analyze their effect on the speaker verification error. 

The outline of the chapter is as follows. In Section 5.1, a methodology is described for 

the measurement of the relative importance of the components of the modulation spectrum 

for speaker verification. Importance is measured by applying a specific bandpass filter 

to  the time sequences, measuring the speaker verification error on the 1997 NIST-SRE 

corpus, and comparing the errors resulting from the application of different bandpass 

filters. Sections 5.2 and 5.3 then detail the effects of lowpass and highpass filtering of 

the time sequences of logarithmic energy. Section 5.4 reexamines the choice of dynamic 

features, using the results from the filtering experiments t o  guide the choice. By proposing 

a lowpass filtering of the time sequences, the potential for a subsequent down sampling 

of the filtered time sequences is examined in Section 5.5, where, using the suggested 

processing, a reduction in verification error is reported for the 1998 NIST-SRE corpus. 

The 1998 NIST-SRE corpus is used as a formal test set. Unless noted otherwise, results 

are computed for the test speech segments of 30 second duration only. This allows an 

analysis of modulation frequencies down to  the centi-Hertz range. 



5.1 Relative Importance of Components of the Modulation 

Spectrum 

This section presents a methodology for the measurement of the importance of the com- 

ponents of the modulation spectrum for speaker verification. This is done by applying a 

specific bandpass filter t o  the time sequences, measuring the speaker verification error on 

the 1997 NIST-SRE corpus, and comparing the errors resulting from the application of 

different bandpass filters. The relative importance of these components is then measured 

and results detailing the relative importance presented and discussed. 

5.1.1 Methodology 

Verification error rates related t o  specific components of the modulation spectrum are 

obtained by bandpass filtering in the modulation spectral domain with different low fre- 

quency cut-offs O1 and different high frequency cut-offs Oh ranging from 0 to  50 Hz on a 

logarithmically spaced grid1. In each case the equal error rate e(Ol, Oh) as a function of 

low and high cut-offs is computed using features with modulation spectral components 

from that  particular passband only 5 8 < oh. As an example, Fig. 5.1 depicts the 

grid generated by cut-offs a t  2, 4, 8, 16, and 32 Hz. To derive charts that  would sum- 

marize the relative importance of the spectral components, normalized differentials with 

respect t o  each of the low and high cut-off frequencies for the surface described by the 

error function e(Ol, Oh) are averaged2. The average relative importance R(O1, 02) of the 

spectral components between O1 and 62 is then estimated as the average of the normalized 

partial differentials evaluated in the band O1 5 O < 02. The computation is set up so 

that  a positive value for the average relative importance of components of the modulation 

spectrum within a given band reflects a relative reduction in verification error due to  the 

inclusion into the acoustic features of those components. 

'Filters were designed to have frequency responses with similar shape on the grid with sharp cross-overs 
and 50 dB attenuation in the stop band. 

2This procedure is similar to one described in [44] except for the normalization applied here. 
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Figure 5.1: Grid for evaluating the importance of components of the modulation spectrum 
for speaker verification. 

The relative importance is defined and computed as follows. For a given high cut- 

off Oh > 02, let 

denote the relative change in error associated with a change aOl = e2 - el in the low 

cut-off. Similarly, for a given low cut-off el < el, let 

denote the relative change in error associated with a change Oeh = el - O2 in the high 

cut-off. Then, when averaged over nh possible high cut-offs and nr possible low cut-offs, 

the average relative change in error for the inclusion of the band el 5 0 < e2 is 

This gives an estimate of the relative importance of the spectral components between 

and e2. Fig. 5.1 depicts this computation for R(8,16). 



Note that  the computation amounts t o  estimating an averaged gradient for the loga- 

rithmic error surface. For instance, for a change dor = O2 - O1 in the low cut-off, it follows 

that  

A similar interpretation holds for a change doh = O1 - e2 in the high cut-off. This relation- 

ship aids interpretation of the relative importance of the components of the modulation 

spectrum for speaker verification since it relates the relative importance t o  a minimization 

of the logarithmic error surface. It should be noted that  the measure R(O1, 02) used here 

only provides an indication of the importance of a band and as such does not provide 

information on the inter-dependence (e.g. correlation) of different modulation spectral 

components for speaker verification. 

5.1.2 Results 

Fig. 5.2 depicts the relative importance of different components of the modulation spec- 

trum for speaker verification on the 1997 NIST-SRE corpus. A positive value for a band 

reflects a relative reduction in verification error due to  the inclusion into the acoustic 

features of the components of the modulation spectrum within that  band. Components 

around 2 t o  4 Hz are seen t o  be relatively more important for reducing the error rate. This 

finding agrees with the observations of Chapter 3 where it was seen that  speech may be 

least affected by extraneous sources of variability in this range of modulation frequencies. 

This finding is also consistent with dominant rates of change in the logarithmic power 

spectrum of speech that  have been estimated a t  around 2 t o  4 times per second [loo, 441. 



Modulation frequency 0 [Hz] 

(a) Matched condition (SNST) 

al 
0 
C - 

,125-.5 .5-1 1-2 2-4 4-8 8-16 32-50 

Modulation frequency 0 [Hz] 

(b) Mismatched condition (DNDT) 

Figure 5.2: Relative importance R of components of the modulation spectrum. Positive 
values indicate a decrease in verification error due t o  the inclusion of a particular mod- 
ulation spectral band in the acoustic features. Results were derived on 30 second test 
segments (male and female) from the 1997 NIST-SRE corpus. 
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Figure 5.3:  EER versus highpass cut-off for verification of 30 second test segments from 
the 1997 NIST-SRE corpus. Oh=50 Hz. 

5.2 Effect of Highpass Filtering 

This section examines the effects of highpass filtering of the time sequences of logarithmic 

energy. It was seen in Fig. 5.2 that  inclusion of components of the modulation spectrum 

below about 0.125 Hz increases error rate in the mismatched condition, while inclusion of 

components above about 0.125 Hz leads t o  a decrease in error rate. This suggests that  the 

highpass cut-off of 1 Hz (see Fig. 2.7)  used with RASTA filtering in ASR should be lowered 

for speaker verification. Figures 5.3 and 5.4 confirm this observation. Fig. 5.3 shows EER 

as a function of cut-off frequency for highpass filtering ([el, 501 Hz). The figure shows that 

reducing the highpass cut-off generally reduces the error rate, with an optimum reached 

a t  a cut-off frequency close t o  that  of MS. Fig. 5.4 shows EER as a function of cut-off 

frequency for a bandpass filtering ([el, 81 Hz). The choice of an 8 Hz cut-off comes from the 

logarithmic grid defined earlier and as the results will show, is close enough to  the 13 Hz 

cut-off of the RASTA filter ([I, 131 Hz) t o  allow a comparison (see also Fig. 5.5. )  It can be 

seen that  the EER obtained with the RASTA filter closely matches the EER obtained with 

a bandpass filter ([I, 81 Hz) and suggests that  the 1 Hz highpass cut-off of the RASTA filter 

should be lowered for speaker verification. This result explains the observed differences 

reported in the experimental study of Section 2.5.4 where slightly better performance was 

achieved with MS filtering, than was achieved with RASTA filtering. 



Figure 5.4: EER versus highpass cut-off for verification of 30 second test segments from 
the 1997 NIST-SRE corpus. Oh=8 Hz. 

5.3 Effect of Lowpass Filtering 
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This section examines the effects of lowpass filtering of the time sequences of logarithmic 

energy. Fig. 5.2 showed that  in the matched condition, inclusion of components above 
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16 Hz does not affect the error rate, while in the mismatched condition inclusion of com- 

ponents as low as 8 Hz increases the error rate. Fig. 5.5 details these observations with 

RASTA DNDT 

MS + LPBHz + 

bandpass results for a system with [ O r ,  Oh] = [0.025, Oh]. The figure shows the EER for 

matched and mismatched conditions and for testing with 30 second segments from the 

SNST 
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Figure 5.5: EER versus lowpass cut-off for verification of 30 second test segments from 
the 1997 NIST-SRE corpus. O1 = 0.025. 



Table 5.1: EER in percent a t  a lowpass cut-off of 10 Hz (MS+LPlO) and without lowpass 
filtering (MS) in matched (SNST) and mismatched (DNDT) conditions. Results are for 
verification of test segments (male and female) from the 1997 NIST-SRE corpus. 

1997 NIST-SRE. Based on these results it can be concluded that  higher modulation fre- 

quencies are not important for speaker verification and that  removing them will improve 

performance. 

It appears that  a reasonable performance trade-off between matched and mismatched 

conditions may be obtained with a lowpass cut-off of around 10 Hz. Table 5.1 compares 

the EERs from a lowpass system with Oh = 10 and MS and a baseline system with Oh = 50 

and MS. The table shows results for matched and mismatched conditions and different 

durations of 3, 10 and 30 seconds for the test segments. 

For 30 second segments in the mismatched condition the lowpass system results in a 

relative reduction in EER of more than 14% while in the matched condition the lowpass 

system results in a relative reduction in EER of more than 8%. The lowpass filtering 

may be less effective for shorter segments because of the 1 second length of the FIR 

filter that  was used and because of difficulties with initializing the filter a t  the beginning 

of the segment. It can be seen that  lowpass filtering t o  about 10 Hz reduces acoustic 

mismatch. This reduction occurs in addition t o  the reduction of convolutional mismatch 

afforded by MS. 

SYSTEM 

MS 
MS+LP10 

MS 
MS+LP10 

CONDITION 

DNDT 
DNDT 

SNST 
SNST 

DURATION (sec) 
3 

26.75 
25.90 

13.10 
13.20 

10 

22.50 
20.80 

6.50 
6.85 

30 

21.75 
19.05 

4.70 
4.35 



5.4 Temporal Features from Orthogonal Polynomials 

Up t o  now only the modulation frequency characteristics of the filters have been speci- 

fied. Temporal characteristics are examined in this section. The idea is t o  find a good 

combination of static and dynamic features. The static and dynamic features are defined 

as follows. If two types of features are used, then the distinction between a static and 

a dynamic feature is that  the static feature exhibits higher energy a t  lower modulation 

frequencies than the dynamic feature. 

In seminal work by Furui [26] superior performance was indicated for a system using 

static features and dynamic features obtained from a first order orthogonal polynomial 

expansion of 90 ms long segments of the time sequence. Neither the static or dynamic 

features were lowpass filtered however, and it is not known whether such lowpass filtering 

may lead t o  even better performance. It is the aim of this section t o  investigate this 

question. 

5.4.1 Technique 

Static and dynamic features can be obtained by projecting the time-sequences onto an 

orthogonal polynomial basis [26, 331. The first three orthogonal polynomials in the basis 

are 

where -(L - 1)/2 5 n < (L - 1)/2 and L is the length in frames spanned by the 

polynomial. Then the filter coefficients are 

By comparing polynomials of length L, it follows that  static and dynamic features can 

be obtained by filtering respectively with fi,L(n) and fj,L(n), where j > i. In the re- 

mainder of this chapter, we will obtain static features using the allpass filter = S(0) 



We will obtain dynamic features by filtering the static features using a first or second 

order polynomial filter fl,L(n) or f 2 , ~  (n). 

Fig. 5.6 (a) shows the normalized frequency responses of the first order orthogonal poly- 

nomial filters: fiYL, L E {3,5,9,17,33) and Fig. 5.6 (b) shows the normalized frequency 

responses of the second order orthogonal polynomial filters: fitL, L E {5,9,17,33). The 

peak responses for the first order filters are a t  25.0, 13.8, 7.5, 3.9 and 2.0 Hz. The peak 

responses for the second order filters are a t  23.0, 12.1, 6.3 and 3.2 Hz. 

1 2  4 8 1 6 3 2  2  4 8  16 32 
Modulation freq. 0 [Hz] Modulation freq. 0 [Hz] 

(a) 1st order (b) 2nd order 

Figure 5.6: Normalized frequency responses of the orthogonal polynomial filters. 

The usefulness of different static and dynamic features can be evaluated by comparing 

speaker verification performance for various combinations of the features. Feature vectors 

are obtained by appending a dynamic feature vector to  a static feature vector. Fig. 5.7 

shows a block diagram for the extraction of different static and dynamic features. The 

features are obtained by filtering the time sequences of logarithmic energy XI (n, k). Note 

that  the time sequences are sampled a t  a rate of 8, = 100 Hz. Features are obtained by MS 

filtering with fMs followed by optional filtering with either fLp, f 1 , ~  or f 2 , ~ .  The lowpass 

filter fLp is a 101-tap FIR filter with cut-off a t  10 Hz. Fig. 5.8 shows the composite 

frequency responses a t  outputs A, B, C and D of the different filters. They are to  be 

compared to  the frequency responses in Fig. 2.7. 

In the previous sections it was observed that  components of the modulation spectrum 

a t  relatively low frequencies (down to  a t  least 0.125 Hz and as low as 0.025 Hz in the case of 

MS) contain useful speaker information and should not be attenuated. It was also observed 

that  the removal of higher frequencies (above about 10 Hz) reduces verification error in the 



Legend: 

x, (hk) Downsample 

C Baseline static feature fo,1 with mean subtraction. 
A Proposed static feature fojl with mean subtraction )(L (nk) 

and lowpass filtering f L p  to  10 Hz. 
A' Same as A but with sampling rate reduction from 

8, = 100 Hz to  8, = 25 Hz. 
Di,L Baseline dynamic feature f l ,L  with mean subtraction. 
Bl,s Proposed dynamic feature f i , 5  with mean subtraction 

and lowpass filtering fLp to  10 Hz. 

Bi,5 Same as B but with sampling rate reduction from 
8, = 100 Hz t o  0, = 25 Hz. 

Figure 5.7: Block diagram of system using polynomial filters for deriving dynamic acoustic 
feature vectors from logarithmic energies. 
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Figure 5.8: Effective filter frequency responses for deriving acoustic feature vectors from 
logarithmic energies. 



mismatched condition. Based on these observations i t  appears reasonable to  process the 

logarithmic energies with a bandpass filter that  preserves modulation frequencies between 

0.025 and 10 Hz. The usefulness of such filtering is investigated here. 

It is proposed that  a reasonable combination of features are a MS- and lowpass-filtered 

(to 10 Hz) static feature combined with a similarly filtered dynamic feature. The system 

using these features will be denoted as (A, B1,5). Since these features have been lowpass 

filtered, it is possible to reduce the sampling rate. The system using features that  were 

obtained by reducing the sampling rate from 100 Hz t o  25 Hz will be denoted as (A', Bi,5). 

Systems (A, B1,5) and (A', Bi,5) are the systems proposed in this dissertation. The per- 

formances of these proposed systems are to  be compared t o  that  of systems using other 

combinations of features. 

5.4.2 Dynamic Features Based on First Order Polynomials 

Fig. 5.9 shows the EER for various combinations of static and dynamic features obtained 

from the first order polynomial filters. While it is not shown here, i t  should be noted that  

the same trends were observed for the MDE. In the figures, from left t o  right, errors are 

shown for systems based on four major types of features. Table 5.2 lists the systems and 

their associated features. 

Table 5.2: Systems and features related t o  Fig. 5.9. 

1. Baseline system (A) with static features that  are lowpass filtered 
with 10 Hz cut-off. 

2. Proposed systems (A, B1,5) and (A', Bi,5) (down sampled) with 
static and dynamic features that  are both lowpass filtered. 

3. Baseline system (C, with static and dynamic features that  
are not lowpass filtered. 

4. Comparison system ( A ,  with static features that  are lowpass 
filtered and dynamic features that  are not lowpass filtered. 
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Figure 5.9: EER in percent for various combinations of static and dynamic fiVL features. 
Errors were averaged for males and females and 3, 10 and 30 second test conditions. 1997 
NIST-SRE corpus. 

The main observations t o  be reached from the figure are the following: 

Inclusion of dynamic features dramatically improves performance in mismatched 

conditions. This can be seen by comparing system (A) t o  the other systems. 

When dynamic features are appended t o  static features, lowpass filtering of the 

static features dramatically improves performance in mismatched conditions. Per- 

formance is unaffected in matched conditions. This can be seen by comparing sys- 

tems (C, t o  systems (A, and (-4, B1,5) ,  The same conclusion was reached 

in Section 5.3 where static features were lowpass filtered and dynamic features were 

not used. 

A first order polynomial filter spanning 5 t o  9 frames gives the best dynamic feature. 

Down sampling does not affect the performance deleteriously as can be seen by 

comparing system (A', Bi,5)  t o  system (A, Bl ,s ) .  



Table 5.3: Systems and features related to  Fig. 5.10. 

1. Proposed system (A', Bi,5) with static and dynamic features that  
are both lowpass filtered and down sampled. 

2. Comparison system ( A ,  with static features that  are lowpass 
filtered and dynamic features that  are not lowpass filtered. 

3. Comparison system ( A ,  Dz,L) with static features that  are lowpass 
filtered and dynamic features that  are not lowpass filtered. 

5.4.3 Dynamic Features Based on Second Order Polynomials 

Fig. 5.10 shows the EER for various combinations of static and dynamic features obtained 

from the second order polynomial filters. Again, the same trends were observed for the 

MDE. In the figure, from left to  right, errors are shown for systems based on two major 

types of features. Table 5.3 lists the systems and their associated features. 

Based on the figures it can be concluded that  the first order polynomial filters result 

in better performance than the second order polynomial filters. As a result, it was decided 

not t o  use second order polynomial filters for the remainder of experiments. 
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Figure 5.10: EER in percent for various combinations of static and dynamic f2,L features. 
Errors were averaged for males and females and 3, 10 and 30 second test conditions. 1997 
NIST-SRE corpus. 
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Figure 5.11: EER and MDE as a function of number of components in the GMM. Error 
rates for the baseline system without lowpass filtering is shown on the left. Error rates for 
the proposed system with lowpass filtering is shown on the right. 1997 NIST-SRE corpus. 
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5.4.4 Temporal and Spectral Resolution 

It may be argued that  the improvements obtained by lowpass filtering are simply the effect 

of the modeling being biased t o  a relatively low spectral and temporal resolution. To 

test this argument the baseline system without lowpass filtering (C, Dl,s )  was compared 

t o  the proposed system with lowpass filtering ( A ,  B1,5i) while increasing the number of 

components in the GMM from 256 to  1024. Fig 5.11 shows the effect of doing this. 

Clearly, the results show that  the argument is false and that  lowpass filtering is beneficial 

in general, irrespective of the temporal and spectral resolution. 

0 

? 
x 6 ,  
W 
n 
5 

4 

5.5 Test Set Performance 
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This section presents official results from the 1998 NIST-SRE [59]. This is meant to  

provide additional support for the results shown previously in this chapter. Recall that  

these results were obtained on a development data  set through a series of optimization 

experiments using the speech corpus from the 1997 NIST-SRE. It is therefore appropriate 

to  test the main conclusion that  the time sequences should be lowpass filtered and down 

sampled on an independent, unseen data set. For this purpose the speech corpus from the 

1998 NIST-SRE was used as a test set and verification results compared for a baseline 



system and the proposed system on the 30 second test segments for males and females. 

The system specifications were as follows. 

Baseline system The baseline system consisted of static and 5-point dynamic features 

t o  which MS filtering was applied. The features were sampled a t  a rate of 100 Hz. 

((C,  in figure 5.7.) 

Proposed system The proposed system consisted of static and 5-point dynamic features 

t o  which MS and lowpass filtering to  10 Hz was applied. The features were sampled 

a t  a rate of 25 Hz. ((A', B{,J in figure 5.7.) 

In the mismatched condition (DNDT), the proposed system performed significantly 

better than the baseline system, while in the matched condition (SNST), the two sys- 

tems performed similarly. The difference in performance in the mismatched condition was 

statistically significant a t  the level (I. = 0.02. In the mismatched condition the proposed 

system resulted on average in a relative reduction of the MDE and EER of more than 10%. 

The results are tabulated in Appendix C together with an indication where the differences 

in performance are statistically significant. Fig. 5.12 shows DET plots of the system per- 

False acceptance error [%] False acceptance error [%] 

(a) Matched condition (SNST) (b) Mismatched condition (DNDT) 

Figure 5.12: DET plot with EER, MDE and HDE points indicated for the baseline system 
and the proposed system. (See text for details.) 



formances. Results are shown for matched (SNST) and mismatched (DNDT) conditions 

on 30-second long segments of speech for the 2-session training condition. Scores from 

males and females were pooled in computing the DET curve. The performance differences 

are evident. 

5.6 Discussion 

The highpass filtering, lowpass filtering and down sampling of the features are discussed 

in this section, 

5.6.1 Highpass Filtering 

In recent years, RASTA-filtering has become a popular processing technique for dealing 

with adverse environments. In [37] the 1 Hz highpass cut-off of the RASTA filter was 

contrasted t o  the variable cut-off obtained with a MS filtering. In the current work consis- 

tently better performance was obtained a t  a relatively low MS cut-off of around 0.025 Hz 

- substantially lower than the higher 1 Hz cut-off. This suggests that  the 1 Hz highpass 

cut-off of the RASTA filter should be lowered for speaker verification. Furthermore, in 

that  the performance curves appears t o  flatten out only as the cut-off is pushed to  below 

about 0.1 Hz (see Figures 5.3 and 5.4) it is surmised that  as much as 10 seconds of speech 

may be needed to obtain a reasonable channel estimate for MS. 

5.6.2 Lowpass Filtering 

The concept of the modulation spectrum has, to  the best of our knowledge, not been 

used elsewhere t o  investigate filtering for speaker verification. It should be noted though 

that  benefits of a lowpass type filtering have been reported before. In [26] for example, 

it was reported that  dynamic features obtained from a first order orthogonal polynomial 

expansion of 90 ms long segments of the time sequence outperformed other choices across 

a range of conditions and e ~ ~ e r i m e n t s . ~  However, static features were derived directly 

3The 90 ms duration does not have to be interpreted as relating to lowpass filtering. It can also be 
interpreted as specifying the context necessary to compute the polynomial expansion. 



from the short-term spectrum - without any lowpass filtering. Whether an expansion on 

90 ms long segments would improve the static features was therefore unclear a t  the time. 

Essentially the same conclusions were reached in [l] where the usefulness of regression 

features were investigated for ASR. In [92], it was reported that  estimating the static and 

dynamic features within a window of about 75-165 ms (5-11 frames) generally gave better 

performance. 

These results agree with the results reported in Section 5.4.2, where good performance 

was indicated for dynamic features derived using the filter fi,9 which was shown in Sec- 

tion 5.4.1 t o  have a frequency response with a peak a t  the relatively low modulation 

frequency of 7.5 Hz. Given the previous work and the results presented in this disserta- 

tion, it seems reasonable t o  conclude that  speaker verification performance improves with 

the use of lowpass filtered static and dynamic features. 

5.6.3 Down Sampling 

The benefits of down sampling may be more important than the reduction in error afforded 

by the lowpass filtering. While down sampling does not increase the error it allows a 

substantial computational savings. Compared to  a baseline system that  models and scores 

the features a t  a rate of 100 Hz, it can be seen that  a system that  instead models and scores 

the features a t  a rate of 25 Hz, as proposed here, would achieve a 75% computational 

savings. This savings is immediate, since after down sampling, only one fourth of the 

frames have t o  be modeled or scored. In general, the savings can be expected t o  be linear 

in the amount of speech t o  be processed, since the result can always be obtained after 

evaluating a fixed number of models. If many models have t o  be evaluated the savings in 

the scoring stage can be expected to  be substantial. 



5.7 Summary 

Filtering in the time-feature space was used in this chapter t o  measure the importance of 

the components of the modulation spectrum for speaker verification. This was done by 

analyzing the effects that  lowpass, highpass, and bandpass filtering of the time sequences 

of logarithmic energy have on the speaker verification error. I t  was concluded that  mod- 

ulation frequencies in the 0.1-10 Hz range convey the most useful information for speaker 

verification. 

Dynamic features were derived from a projection onto orthogonal polynomials and 

the usefulness of different polynomials investigated. The aim was t o  find a reasonable 

combination of static and dynamic features. A first order polynomial filter spanning 5 

to  9 frames was found t o  give the best dynamic feature. The frequency responses of 

these filters exhibited a bandpass characteristic with peaks a t  modulation frequencies 

of 3.9 and 7.5 Hz respectively. It was shown that  dynamic features appended to  static 

features improve performance in mismatched conditions. Lowpass filtering of the static 

features specifically, was shown t o  further improve performance in mismatched conditions 

and not t o  affect performance in matched conditions. 

The analysis contributed to  an understanding of the effects and usefulness of contem- 

porary processing techniques such as CMS and RASTA. Compared to  these techniques, 

it was shown that  the time sequences of spectral energy may be lowpass filtered to  as 

low as 10 Hz and down sampled by as much as a factor of four, while preserving, or 

improving verification accuracy. It was shown that  this processing significantly improves 

verification accuracy in the presence of acoustic mismatch of telephone handsets. While 

down sampling did not increase the error it allowed a substantial computational savings. 

Using down sampled features in the modeling and scoring stages translated into a 75% 

computational savings, since after down sampling only one fourth of the frames had to  be 

modeled and scored. Results from the official 1998 NIST speaker recognition evaluation 

were provided t o  further support the claim that  components of the modulation spectrum 

in the 0.1 to  10 Hz range contain the most useful speaker information. 



Chapter 6 

Conclusion 

The goal in this dissertation was t o  determine the relative importance of components of 

the modulation spectrum for automatic speaker verification and t o  use this knowledge to  

improve the performance of an automatic speaker verification system. This goal was based 

on the thesis that  some components may actually not be useful for speaker verification and 

that  by attenuating them it may be possible to  improve speaker verification performance 

in terms of verification accuracy, and/or computational cost. 

An analysis of handset and speech variability a t  different modulation frequencies in 

the time sequences of logarithmic energy indicated that  handset variability accounts for 

a substantial portion of the total variability a t  moderate t o  high modulation frequencies. 

This conclusion also held a t  the very low modulation frequencies, where the variability 

was ascribed to  the effect of a convolutional transmission channel. From an analysis of 

the speaker verification error for various filters it was concluded that  spectral components 

between 0.1 Hz and 10 Hz contain the most useful speaker information. It was concluded 

that  a RASTA-type processing can be useful for speaker verification, provided that  fre- 

quency components as low as 0.1 Hz are retained. It was shown that  lowpass filtering 

t o  10 Hz preserves salient speaker information while improving robustness. A reduction of 

the sampling rate of the feature stream from 100 Hz t o  25 Hz was proposed. This afforded 

a 75% computational savings in the scoring stage without affecting accuracy. On the 

Switchboard corpus, the proposed processing resulted in a 10% relative reduction in error 

when there was a mismatch of the transmission channel between training and testing. The 

remainder of this chapter summarizes the work and conclusions described in this disser- 

tation, highlights the original contributions and suggests directions for future research. 



6.1 Summary and Results 

The first part of the dissertation covered processing in a time-feature space. The main 

aspect of this processing was a linear filtering of the time sequences of logarithmic en- 

ergy that  when interpreted in the modulation spectral domain, and combined with an 

analysis-of-variance decomposition, allowed a characterization and comparison of speech 

and telephone handset variability. This part of the dissertation presented a rather general 

treatment of telephone handset variability in speech and as such did not specifically deal 

with speaker variability. I t  did however serve to  motivate and guide the development 

of a proposed linear filtering of the time sequences of logarithmic energy for attenuating 

unwanted variability. Whereas the first part was concerned with the effect of telephone 

handset variability in speech in generaj, the second and third parts narrowed the focus 

to  the speaker verification task specifically. The second part presented a system for text- 

independent speaker verification, with detailed motivation and description of the feature 

extraction, statistical modeling, performance evaluation and parameter choices. The third 

part examined temporal aspects of speaker verification in the time-feature space. This was 

done with a systematic investigation of the relative importance of the components of the 

modulation spectrum for speaker verification. 

Chapter 2 covered acoustic feature extraction and processing in a time-feature space. 

Short-term acoustic features were motivated based on perceptual and physiological consid- 

erations. The theory of short-term analysis of the speech signal was reviewed along with 

common feature representations used in ASR and speaker verification. A medium-term 

analysis was motivated as necessary for the analysis of the characteristics of the result- 

ing time sequences of spectral features. The modulation spectral domain was defined as 

a suitable domain for the analysis of the time sequences and for the characterization of 

various filters that  manipulate these time sequences. The effects of the length of the short- 

term analysis window, analysis sampling rate and transmission channel on the modulation 

spectrum of speech were examined. The usefulness of the modulation spectrum became 

apparent when the problem of acoustic mismatch in automatic speaker verification was 



considered. The effects of con~olutional channel distortions and additive noise were stud- 

ied and various compensation techniques reviewed. An experimental study demonstrated 

the deleterious effect of acoustic mismatch that  is present in adverse environments and 

suggested that  filtering of the time sequences of spectral features may help t o  alleviate this 

mismatch. An analysis of the relative importance of the components of the modulation 

spectrum for speaker verification was suggested t o  determinate which type of filtering may 

improve verification performance. 

Chapter 3 explored the characteristics of the short-term features in the modulation 

spectral domain. It was proposed that  the modulation spectrum provides information that  

may be used t o  understand and reduce the effects of telephone handset variability. The 

approach that  was followed in this dissertation was different from previous approaches 

in that  characteristics of handset types were analyzed along the time dimension of the 

feature space and not along the frequency dimension. A framework for this analysis 

was proposed based on a spectral analysis-of-variance model. The model generalized 

the concept of modulation frequency and allowed the variations t o  be interpreted in the 

modulation spectral domain where specifically, handset variation was contrasted to  the 

total and speech variations. 

It was shown that  telephone handset variability severely contaminates the DC-modulation 

component as was to  be expected from a convolutional model for the transmission channel. 

It was also shown that  the moderate t o  higher (above about 10 Hz) modulation frequency 

components can be severely contaminated by sources of extraneous variability. This led 

to  the important conclusion that  frequency components in the modulation spectrum of 

speech that  are higher than about 10 Hz convey relatively little speech information. It 

was suggested that  an attenuation of the higher modulation frequency components may 

make the features less sensitive t o  adverse environments and likely increase the robustness 

of an ASR or speaker verification system. 

The ratio of speech variation t o  handset variation (SNR) was observed to  be highest in 

a band of modulation frequencies centered around 3 Hz. It was found that  carbon-button 

transducers exhibited a lower SNR than electret transducers. It was shown that  the SNR 



also depends on the short-term analysis frequency, and is highest for a short-term anal- 

ysis frequency in a range of 0.3-3 kHz. This observation agreed with a bandwidth for 

telephone speech in the same range. Irrespective of short-term analysis frequency though, 

it was observed that  very low and moderate to  high modulation frequencies consistently 

have lower SNRs. It was shown that  variations in the broad-band energy of the speech 

signal contribute considerably to  the DC variability and that  a normalization is appro- 

priate. I t  was seen that  additive noise affects the modulation spectrum across the range 

of modulation frequencies. By adding noise t o  the speech that  was recorded using the 

electret transducer, it was concluded that  additive noise may be partly responsible for 

differences in carbon-button and electret handset variations. 

Chapter 4 detailed the speaker verification task, describing the feature extraction, 

modeling and evaluation measures used in the dissertation. The chapter first described 

the specific processing and parameterization used for feature extraction. It then defined 

evaluation measures that  were used to  assess the accuracy of the speaker verification 

system. The evaluation measures were motivated by the requirements of recent speaker 

recognition evaluations run by the National Institute of Standards and Technology. Sta- 

tistical modeling of the features was covered in detail. Past and current approaches t o  

modeling the acoustic features were first reviewed. A test statistic for speaker verifica- 

tion was then motivated from statistical hypothesis testing and a model score defined. 

It followed that  two probability density distribution functions (pdfs) had t o  be modeled. 

The one described speaker independent (SI) features and the other described speaker de- 

pendent (SD) features. A Gaussian mixture modeling approach was then motivated and 

detailed. The well-known Expectation-Maximization algorithm (EM-algorithm) was used 

t o  estimate the parameters in the SI model and Bayesian maximum aposteriori (MAP) 

adaptation of the SI model was used t o  derive the SD models. The chapter concluded 

with optimizations experiments for the parameters related t o  the feature extraction and 

statistical modeling. 

It was indicated that  an analysis window with a length from 20-64 ms give reason- 

able performance. It was concluded that  band-limiting the speech signal t o  the telephone 



bandwidth improved performance in the mismatched condition. Using a short-term anal- 

ysis filter bank with between 20 and 26 bands was found t o  give good performance. It 

was concluded that  mean subtraction and the inclusion of dynamic features in addition 

t o  static features improve performance in the mismatched condition but that  dynamic 

features used on their own perform less well. 

Verification experiments were modeled on the recent NIST Speaker Recognition Eval- 

uations (NIST-SRE). Matched and mismatched test conditions were introduced that  al- 

lowed the performance of a speaker verification system t o  be studied in the presence of 

acoustic mismatch. 

Chapter 5 presented a systematic investigation of the relative importance of the com- 

ponents of the modulation spectrum for speaker verification. An analysis of the error 

surface was proposed to  confirm the observation that  higher modulation frequencies are 

less important for speaker verification. The approach was t o  measure and analyze the 

effect on the speaker verification error of various filters designed in the modulation spec- 

tral domain and applied in the time-feature space. It was concluded that  components 

with modulation frequencies in the 0.1-10 Hz range convey the most useful information 

for speaker verification. Highpass filtering of the time sequences a t  different cut-offs was 

contrasted to  MS and RASTA filtering. Good performance was indicated for MS, while 

it was shown that  the 1 Hz highpass cut-off of the RASTA filter was too high. Based on 

various results it was subsequently concluded that  the time sequences of spectral energy 

may be lowpass filtered to  as low as 10 Hz and down sampled from 100 Hz t o  as low as 

25 Hz, while preserving, or improving verification accuracy. It was pointed out that  this 

processing allows a 75% computational savings in the scoring stage. 

Results for different combinations of static and dynamic features were reported. It 

was shown that  dynamic features appended to  static features improve performance in 

mismatched conditions. It was concluded that  5 t o  9 frames provide a suitable time span 

for dynamic features derived from a polynomial filter. Lowpass filtering of the static 

features specifically, was show t o  further improve performance in mismatched conditions 

and not to  affect performance in matched conditions. 

Based on results from the official 1998 NIST speaker recognition evaluation, when 



compared t o  a baseline, the proposed processing resulted in a relative reduction in error 

of 10% in the mismatched condition. This led to  the conclusion that  the benefits of the 

proposed processing carry over to  an independent test set. 

6.2 Original Contributions 

Original contributions of this dissertation t o  the areas of speech processing, speech recog- 

nition and speaker verification are listed in this section. 

A Framework for the Characterization of Variability in the Modulation 
Spectral Domain 

This dissertation provided a characterization of the effects of different handset transducers 

and the presence of additive noise on the time sequences of logarithmic energy. This was 

done by contrasting the variability in telephone speech that  is due specifically t o  varia- 

tions among handsets t o  the overall variability in telephone speech. The different sources 

of variability were modeled using an analysis-of-variance (ANOVA) that  was modified to  

allow an interpretation a t  different modulation frequencies. The characterization indi- 

cated that  noise and handset transducer variability severely contaminate the very low and 

moderate t o  high modulation frequency components. 

An Analysis and Assessment of the Relative Importance of Components 
of the Modulation Spectrum for Speaker Verification 

This dissertation showed that  higher modulation frequencies are in general not particularly 

important for speaker verification. It was proposed that  attenuation of components in the 

modulation spectrum that  are highly affected by the environment or that  do not actually 

convey useful speaker information may improve performance both in terms of verification 

accuracy and system speed. This was confirmed by careful analysis of the effects that  

lowpass, highpass, and bandpass filtering of the time sequences of spectral features have 

on the speaker verification error. It was found that  modulation frequencies in the 0.1-10 Hz 

range convey the most useful information for speaker verification. 



The analysis contributed to  an understanding of the effects and usefulness of contem- 

porary processing techniques such as CMS and RASTA. Compared t o  these techniques, it 

was shown that  the time sequences of spectral energy may be lowpass filtered t o  as low as 

10 Hz and down sampled by as much as a factor of four, while preserving, or improving 

verification accuracy. It was shown that  this processing significantly improves verification 

accuracy in the presence of acoustic mismatch of telephone handsets. 

Results from the official 1998 NIST speaker recognition evaluation were provided to  

further support the claim that  components of the modulation spectrum between 0.1 Hz 

and 10 Hz contain the most useful speaker information. 

Design and Implementation of a Speaker Verification Toolkit and a Sys- 

tematic Optimization of a State-of-the-art Text-Independent Speaker Ver- 

ification System 

A major contribution of this dissertation concerned the design, implementation and op- 

timization of a highly modular, efficient and extendible speaker verification toolkit. This 

toolkit has been used to  build the state-of-the-art text-independent speaker verification 

system that  was used in this dissertation and that  was entered in the official 1998 NIST 

speaker recognition evaluation. The toolkit has contributed substantially t o  the speaker 

verification and ASR research effort in our laboratory and elsewhere and have been used 

by IIT Madras and CSLU among others. 

Temporal Processing for ASR 

A contribution, which was included in Appendix E as an extension t o  the dissertation, and 

that  falls in the area of ASR, concerned the use of linear discriminant analysis (LDA) in 

the automatic derivation of FIR filters that  optimize phoneme discriminability. Improved 

performance over baseline processing techniques was demonstrated on a connected digit 

recognition task. 



6.3 Directions for Future Research 

The research discussed in this dissertation is by no means an exhaustive treatment of 

text-independent speaker verification, feature extraction or the associated applications. 

This section lists some directions for future research. 

6.3.1 Applications 

In this dissertation the focus was on speaker verification using telephone handsets with 

electret or carbon-button transducers. A characterization of other types of handset would 

be of interest. Cellular and other wire-less telephones in particular have been gaining 

popularity in recent years. Since there exists a large number of different encoding protocols 

for these telephones, a study of feature variability among these telephones would be of 

interest. Similarly, in this dissertation the effects of different types of noise and other 

degradations were not studied, except for a characterization of the effects of additive 

white noise. A study using other types of noise, such as pink noise and car noise would 

be of interest. The effects of reverberation would also be of particular interest. In [7] and 

elsewhere, it was shown that  reverberation exhibits an approximate lowpass filtering effect 

in the modulation spectrum. 

Results in Chapter 3 were obtained independently of whether the task was speaker 

verification or automatic speech recognition. The main conclusions were corroborated 

with speaker verification experiments, but it would be of interest t o  see whether the same 

conclusions carry over t o  automatic speech recognition. In the text, experiments were 

mentioned that  suggested that  this is the case. 

Speaker verification is closely related to  speaker identification and speaker detection. 

Since many of the results in this dissertation pertain t o  features that  describe speaker char- 

acteristics, it is expected that  these results carry over t o  the identification and detection 

tasks. It would be of interest to  formally verify this assumption. 



6.3.2 Features 

The domain that  was explored in this thesis was the domain of logarithmic energies. 

This was motivated in that  convolutional degradations are approximately additive in this 

domain. Noise however, is assumed t o  be added in the linear domain, which suggests that  

linear and other domains should also be explored. For example, in [37] the benefits of a 

log-linear domain was shown for dealing with a combination of convolutional and additive 

noise. 

It was proposed that  the time sequences be filtered using an FIR filter. It can be 

envisaged that  the filtering could be made multi-dimensional (i.e. the time sequences 

in the feature stream could be filtered jointly). Similarly, the linear filtering could be 

extended t o  a non-linear filtering t o  deal with time-varying effects and other shortcomings 

in the domain of filtering. 

Time sequences were parameterized using a simple polynomial basis. A more non- 

parametric temporal approach may be of use. For example, in informal experiments we 

found that  the GMM model described in this dissertation achieved a significantly lower 

than chance EER when trained using the 1 kHz time sequence only, where feature vectors 

were obtained as consecutive blocks of 100 samples (i.e. 1 second long segments). 

6.3.3 Modeling 

Variations among handset transducers were measured using an analysis-of-variance in 

Chapter 3. Measuring variations using the second order variance statistic may be sub- 

optimal. For instance, while the variance statistic allows correlations between the input 

variables t o  be studied, it may be more appropriate t o  study statistical dependencies. To 

this extent, information theoretic measures such as the mutual information (MI) may be 

useful. 

The aim in this dissertation was to  attenuate modulation spectral components that  

were deemed not useful for the speaker verification task. As discussed in Section 1.4, other 

techniques such as adaptation exist for dealing with adverse environments. Application 

of these techniques using some of the modulation frequency techniques introduced in 



Chapters 2 and 3 would be of interest. 

Model scores were not normalized with respect t o  handset type, speaker and other 

conditions for the results reported in this dissertation. Based on other work, score nor- 

malizations [80] may prove useful in improving the performance of the system described 

here. 
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Appendix A 

Experimental Set up 

This appendix describes the experimental setup that  is used with the speaker verification 

experiments in this dissertation. The setup is based on the 1996, 1997 and 1998 NIST 

Speaker Recognition Evaluations (NIST-SRE) [57, 58, 59, 72, 731. See [60] for the official 

evaluation plans. 

Section A. l  describes the various training and testing conditions of interest. These 

include matched and mismatched training and testing environments. Section A.2 describes 

the da ta  set organization. Section A.3 highlights the major similarities between the NIST- 

SRE and the experimental conditions used in the dissertation. 

A. 1 Training and Testing Conditions 

Segments of conversational telephone speech from the Swb-I and Switchboard-2 phase 1 and 2 

corpora are used in the experiments. The experimental conditions of interest are summa- 

rized in the following list. 

Training condition. The training condition relates to  the session and handset variability 

present in the enrollment speech. 

"One-session" (IS). Enrollment speech consists of speech for a single speaker taken 

from one conversation (session). Approximately two minutes of speech is col- 

lected in one-minute segments. 

"Two-session" (2s). Enrollment speech consists of equal amounts of speech for the 

same speaker taken from two different conversations (sessions) collected using 



the same handset (same telephone number). Approximately one minute of 

speech is collected from each conversation. 

"Two-session-full" (2F). Same as 2S but with more speech available for training. 

Gender. Performance is computed separately for males and females.' Results are aver- 

aged. 

Test speech duration. Performance is computed separately for segments of test speech 

with nominal durations of 3, 10 and 30 seconds. 

Test condition. Performance is computed for segments of test speech collected using the 

training or enrollment handset (matched condition), versus segments collected using 

a different handset (mismatched condition). 

Mismatch occurs when the telephone number and/or handset type differs between 

training and testing. Handset types are categorized [80, 58, 591 into electret trans- 

ducer and carbon-button transducer types2. For the corpus used in the 1996 NIST- 

SRE the conditions of interest are same number (SN) and different number (DN). 

For the corpora used in the 1997 and 1998 NIST-SREs the conditions are same 

number and same handset type (SNST) and diflerent number and different handset 

type (DNDT). 

Statistics related to  the corpora, and different training and test conditions as used in this 

dissertation, are summarized in Table A.1. 

Performance is computed separately for six different cases namely, for males and fe- 

males and each of the three test durations. To simplify the interpretation of results the 

general approach in this dissertation will be t o  present either the averaged result from 

these six cases or the averaged result using 30 second segments only. In the cases where 

differences in the results between cases may lead to  a different interpretation, more de- 

tailed results will be presented. In general though, i t  can be shown that  conclusions to  be 

'Gender classification is considered to be a separate task from speaker verification in the NIST-SRE. 
The argument is that gender classification can be performed with high accuracy if needed, by following a 
different methodology and using, for example, features such as pitch. Gender is therefore considered to be 
known apriori in this dissertation. 

2These distinctions were assessed using telephone number and handset type labels distributed by NIST. 



Table A.l: Statistics of Switchboard-:! phase 1 and 2 corpora as used for training and 
testing in this dissertation. 

drawn for any one case relate to  the other cases, thus motivating this strategy. In most 

experiments then, results will be reported for the matched and mismatched conditions for 

both the EER and MDE. 

NIST-SRE C O R P U S  

Training condition 
Default features (cf. Fig. 5.7) 
Default # of GMM components 
# of speakers in SI model 

# of target speakers 

Test segment duration (sec) 
# of test segments / 
segment duration 
# of target tests / 
segment for each gender 
Total # of tests / segment duration 

A.2 Data Organization 

The speech corpora are divided into training, development and test da ta  sets. The 1996 

and 1997 NIST-SRE corpora are used for system development and parameter optimization 

and the 1998 NIST-SRE corpus for formal testing. Each corpus contains a training data 

set and a test data  set that  are used respectively t o  train the speaker dependent (target) 

models and measure the speaker verification performance. The 1996 NIST-SRE corpus 

contains additional development data that  are used t o  train a speaker independent model 

for that  corpus. Since the 1997 and 1998 NIST-SRE corpora do not contain dedicated 

1996 

2 S 
static (C) 
128 
43 (male) 
45 (female) 
21 (male) 
19 (female) 

3, 10 
1183 (male) 
1197 (female) 
21 (male) 
19 (female) 
47586 

1997 

2 s  
static (C) 
128 
40 (male) 
40 (female) 
67 (male) 
132 (female) 

3, 10, 30 
2623 (male) 
3266 (female) 
10 (male) 
10 (female) 
58890 

1998 

IS,  2S, 2F 
static, dynamic (A, B) 
256 
40 (male) 
40 (female) 
250 (male) 
250 (female) 

3, 10, 30 
2500 (male) 
2500 (female) 
10 (male) 
10 (female) 
50000 



development data,  a portion of the 1997 NIST-SRE corpus is set aside and used as de- 

velopment data. The speaker independent model used for the 1997 and 1998 NIST-SRE 

corpora is trained using this development data. 

For the 1996 and 1998 NIST-SRE corpora, the same training and test data  sets are 

used as specified in the actual 1996 and 1998 NIST-SREs. For the 1997 NIST-SRE corpus, 

training and test data  sets were reorganized so as to  match the conditions expected in the 

1998 NIST-SRE. 

In the experiments reported here, the SI models were trained as follows. In experiments 

using the 1996 NIST-SRE corpus, the SI model was trained using the development portion 

of that  corpus which consists of 43 male and 45 female speakers. In experiments using 

the 1997 and 1998 NIST-SRE corpora, the SI model was trained using 40 male and 40 

female speakers culled from the 1997 corpus. For all the experiments reported here, the 

SI models were trained on pooled male and female speech from the two-session (2s) data. 

A. 3 NIST Speaker Recognit ion Evaluation 

This section briefly summarizes the NIST speaker recognition evaluations (NIST-SRE) [60] 

and motivates the experimental setup that  is used in this dissertation. 

Evaluation measures. The measures used in this dissertation are those defined and used 

in the NIST-SRE except that  here scores from males and females are not pooled. 

Instead, the errors are averaged across gender and test speech duration. 

Training conditions. The NIST-SREs specify different training conditions. Only the 

"one-session", "two-session" and "two-session-full" conditions are investigated here. 

Test conditions. The test conditions investigated here are the same as in the NIST-SRE. 

Design and evaluation rules. The rules specified in the NIST-SRE are followed here. 

Each decision is based only on the specified segment of test speech and current 

target speaker. This precludes the use of discriminative training and does not allow 

normalization across test speech segments. It does however allow extendibility since 



the system can operate as soon as a single person has enrolled and new user can be 

added a t  any time. 

A speaker verification system was described in Chapter 4 that  used processing that  was 

proposed in Chapter 5. This system and processing were formally evaluated in the NIST- 

SREs where it performed competitively with systems from other groups. 



Appendix B 

Estimation of GMM Parameters 

This appendix covers the theory and implementation of estimating a Gaussian mixture 

density for multivariate data. The well-known Expectation Maximization technique which 

fits the parameters of the density by maximizing the likelihood function is generalized to  

the case of maximizing the posterior probability. The usefulness of this generalization is 

examined in terms of a) Bayesian optimal updating of the density estimate given additional 

data  and b) Bayesian regularization of the density estimate. 

B . l  Introduction 

Consider the problem of estimating the probability density of a continuous random vector 

X E 'Rd for which a data set X = {XI, X a ,  ..., X,, ... X N )  of N independent and identically 

distributed realizations of X is available. For this purpose assume that  the density is well 

modeled by a weighted mixture of Gaussians 

where the mixing proportions wk 2 0, ~ f = ,  wk = 1 and where O = (wk, pk, ~ k ) f = ~  denotes 

the parameter vector. To write the likelihood it is convenient t o  substitute Rk = Xcl and 

use the identity ( X  - p ) t R ( X  - p)t  = t r  R ( X  - p) ( X  - p)t where t r  is the trace operator 

and t is the transpose operator. Then each Gaussian density can be written as 

where for the k-th component, pk is the mean vector and Ck is the covariance matrix. 



Table B.l: EM-algorithm. 

EM algorithm 

E-step: Given a current parameter estimate di) compute 

 old')) = E~x, r l [ l~gp(X*IO)  + log P(o)~@('), XI. 

M-step: Choose the new parameter estimate as 
the O that  maximizes &(010(~)). 

Within the framework of Bayesian learning [23], t o  find the MAP parameter estimate 

it is necessary t o  maximize the posterior probability P(O1X). Using Bayes' law, this is 

equivalent t o  maximizing p (XJO)P(O) ,  where p(XlO) is the data  likelihood and P(O)  is 

a prior distribution for the parameters. Keehn [45] first derived the parameter estimates 

for a single Gaussian density by comparing the parameters in the prior and posterior 

distributions. Here we will use the Expectation Maximization (EM) algorithm [19] to  

derive the parameter estimates for the case of incomplete data,  where in the mixture 

of Gaussians the probability p(X,, k) of assigning a sample X ,  t o  the k-th Gaussian 

component is unknown. Assuming a generative model for X,  let X* denote the complete 

data  vector - that  is, the incomplete data  vector X and the component assignments (X,  l),  

1 2 1 S K .  

The EM algorithm was proposed as an iterative technique t o  find the mode of the 

complete-data log-likelihood or complete-data log-posterior [19]. For the latter, given an 

appropriate prior distribution the complete-data log-posterior expands as logp(O, X*) a 

E(O, X*) = logp(X*(O) + log P ( O ) .  The EM algorithm is then formalized in Table B.1. 

In the E-step the expectation is estimated over the available da ta  {(X, I ) ) .  Iterative 

application of this procedure can be shown [19] t o  lead t o  an estimate of the mode of the 

log-posterior distribution. Closed form solutions for the parameter updates can be derived 

so that  the auxiliary function need not be computed in practice. 



To derive these MAP parameter update rules it is necessary t o  specify the data like- 

lihood and prior distribution. Using Equations ( B . l )  and (B .2 )  the likelihood for N 

independent and identically distributed samples is given by 

B.2 Prior Distribution 

It is convenient to  use a conjugate family of distributions where the prior distribution 

P ( O )  and posterior distribution P ( O I X )  belong t o  the same family. A thorough treatment 

of such distributions can be found in [18] .  Following [45] ,  a conjugate prior distribution 

p ( p k ,  R k )  for the multivariate normal distribution in Equation (B .2 )  that  reflects an initial 

estimate for the mean and covariance parameters (bk,  kk)  is the product of a normal 

distribution 

and a Wishart distribution1 

'The Wishart distribution Equation (B.5) is often parameterized as a multivariate generalization of the 
beta distribution 

-1  
where a > d- 1 and c(d, a )  = {rd(d-1)14 I? [TI) . For our purposes it is convenient to substitute 

p = a - d a n d 2 = & .  



A conjugate prior distribution for the mixture weights is the Dirichlet distribution [18] 

K K 

~ ( w l v )  or u f ,  with wk 2 0 ,  wi  = 1, and uk 2 0 .  
k=l k= 1 

(B-6 )  

The meta-parameters 7 ,  p and v  reflect the respective confidence in the estimate of 

pk, C k  = R ~ - '  and w .  

B.3 MAP Parameter Updates 

The posterior probability that  X n  is assigned to  mixture component k  given the current 

parameter estimate di) and da ta  X can be written as 

The auxiliary function t o  be maximized with respect t o  the parameters O  = (uk, pk, l l k ) f X l  

can then be written as 

- .  - -  
Q ( @ I @ ( ' ) )  = P(') ( n ,  k )  pogwk + log ~ ( X n l p k  Rk)]  

Maximization proceeds by setting the derivatives with respect t o  each parameter t o  zero 

and solving. The following differentiation rules [25], pp. 566-567, will prove useful. For 

matrices A and B  

d d a -tr ( A B )  = -tr ( B A )  = B~ and -log [A(  = ( A - ' ) ~ .  
d~ d~ a A 

2The choice of the Dirichlet distribution stems from the observation that the probability for the assign- 
ment of a sequence of samples X among I< mixture components follows a multinomial distribution 

where n k  is the number of occurrences of the k-th assignment. For our purposes its convenient to substitute 
v = y - 1 for the conventional parameterization of the Dirichlet distribution. 



B.3.1 Weights 

For the weights the constraint that  CE1 wj = 1 may be enforced using a Lagrange mul- 

tiplier. Collecting the appropriate terms from Q(@I@(")) this yields, 

Taking derivatives and setting t o  zero, 

Solving yields 

B.3.2 Means 

Differentiating with respect t o  pk and setting t o  zero 

Since lRkl # 0 solving yields 

B.3.3 Variances 

Differentiating Q ( @ I @ ( ' ) )  with respect to  Rk and setting t o  zero 

Substituting Ck = Rk-l and solving yields 



B.3.4 Discussion 

To interpret the update equations it is informative t o  substitute 

Then Equation (B.lO) for example, can be written in the form 

where pE is a sufficient statistic for the data. The adaptation parameter h can be seen 

to  form the new estimate from the weighted combination of the current and previous 

estimates. The other update rules can be interpreted similarly. 

B .4 Initial Parameter Estimates 

Equations (B.9), (B.lO) and (B. l l )  may be used to  deduce learning rules for the initial 

parameters if they are not known. With p(i)(n, Ic) defined as before, for the weights, setting 

uk = 0 (giving an uninformed prior) yields 

For the means, setting 17 = 0 yields 

For the variances, setting 17 = 0 and p = 0 yields 

(B. 14) 

With the choice of uninformative priors made above these learning rules are the same as 

given by the EM algorithm when maximizing the complete-data log-likelihood. 

B .5 Regularization 

For a finite amount of data samples, the auxiliary function Q(o[o(~))  typically has many 

local maxima as well as singularities. For this reason it is usually helpful t o  introduce a 



prior distribution for the variances when estimating the initial parameters. A reasonable 

prior that  regularizes smoothness of the estimated density is provided by the Wishart 

distribution of Equation (B.5). In particular, choosing pgk = € I  in Equations (B.5) 

and (B.11), where I is the unit matrix, serves to  bias the covariance estimate away from 

becoming singular [66]. The resultant variance estimate is 

A reasonable value for E may be obtained from cross-validation, with the value depending 

on N ,  d and the scale of the data. For a large amount of data,  E may be very small. 

For example, for speaker verification with normalized data,  d = 19 and N = 40000, 

cross-validation yielded E z 1 while for N = lo6  a value E < 0.2 was found t o  give good 

results. 

B .6 Numerical Implementation 

To implement the EM algorithm it is necessary to  have initial (seed) estimates for wk, 

pi, and Ck. The means are initialized using centroids pYQ derived from Vector Quantiza- 

tion [13]. The training algorithm can be summarized as follows. 

Given the set X = {XI, X2, ..., X,, ... XN) of N training vectors, in a feature space 

S = zd, find a partitioning of the space S into K << N non-overlapping regions S1, Sz, 

... SK. Specifically, S; n Sj = 0, i # j ,  where 0 denotes the empty set and S = UE~S;. 

Each partition is represented by a centroid vector pYQ. Training iteratively minimizes the 

average distortion 

1 N 

D = - min d(Xn, pYQ), N n = l  
k 

where d(Xn,  plQ) is the distortion between the training vector Xn and the centroid vector 

p l Q  of the k-th partition. In implementation, the algorithm may be initialized with a single 

centroid K = 1, which is optimized for and then split into two centroids I( = 2, which are 

jointly optimized for by minimizing the average distortion. This process is iterated until 

the desired number of centroids is reached and the optimization has converged. 



Following vector quantization, the parameters are subsequently initialized t o  

where STk is a pooled covariance estimate for the data  with ,$ = 2 typical. 

To refine the initial parameter estimates using the EM algorithm it is efficient to  

accumulate for n = l...N the sufficient statistics. Starting from zero values, for each EM 

iteration the following statistics are accumulated 

w F  = C p(') (n ,  k )  

p Y C  = C p(') (n ,  k )  X n  

ST = C p(') (n ,  k )XnXA 
n 

n 

The parameters are then updated as 
acc 

(i+l) - pk 
Pk w y  

To compute p(;)(n ,  k) it is convenient t o  invert ~1:) using its Cholesky decomposition LLt. 

The determinant can be obtained as the product of the elements on the diagonal of L. 

The decomposition itself can be computed in place with no need t o  allocate extra memory. 

( Convergence for the EM algorithm is assumed when lp;+"(j) - p P 1 ( j )  I < r for j  = l..d 

or after I iterations of the EM algorithm. Typical values are T = lo-' and 5 5 I 5 10. 

Instead of computing quantities in p ( X l p k ,  Rk)  directly, it is convenient to  take log- 

arithms. This serves to  simplify the computations by allowing the multiplication to  be 

substituted with a summation 



Appendix C 

Statistical Significance 

This appendix revisits the test results provided a t  the end of Chapter 5. Statistical 

significance of the test results are examined in Section C. l  while results from other systems 

as reported in the 1998 NIST Speaker Recognition Evaluation (NIST-SRE) are considered 

in Section C.2. 

C. 1 Statistical Significance 

The statistical significance of the test results from Chapter 5 are examined this section. 

C. l . l  Exposition 

Suppose that  systems A and B are t o  be tested and compared t o  each other on the 

same data  set. Let Do be the portion of the data  set for which acceptance is the correct 

decision. Let Dl be the portion of the data  set for which rejection is the correct decision. 

Let Ho denote decisions associated with Do and let H I  denote decisions associated with 

Dl .  Typically, Dl is the larger data  set and more decisions will be available for Dl than 

for Do. As in Section 4.2, define the total error or cost associated with system A as 

where Cf, and Cfa are the costs associated with the false rejection and false acceptance 

errors. The total error for system B is defined in the same way. 

Define n;j as in Table C. l  to  be the correct and incorrect counts for systems A and 

B given Do. Similarly, define m;j to  be the correct and incorrect counts for systems A 



Table C.l:  Error counts given data  set Do. 

B 
correct incorrect 

A correct 
incorrect 

and B given Dl. In general, no0 and rill will be non zero, so that  the error for system A 

will not be independent of the error for system B. This suggests that  a test that  directly 

compares the errors for the two systems over the whole data  set will be inappropriate. 

Let the total number of samples for Do and Dl be 

Then the false rejection and false acceptance error probabilities for system A are 

with the false rejection error probability and false acceptance error probability for system 

B defined in a similar way as pB( f  rJHo)  and pB( fa]  H I ) .  Substituting into Equation (C.l), 

C .  1.2 McNemar's Test 

To determine whether the difference in performance of the two systems is statistically 

significant, McNemar's test is adopted [28]. Suppose first that  we wish t o  test the null 

hypothesis H: : EA = EB or alternatively H: : d = EA - EB = 0 against the alternative 

hypothesis H: : EA # EB . By substituting Equation (C.4) this leads t o  the test statistic 



Clearly, t o  determine whether the difference in performance of the two systems is statisti- 

cally significant, it is sufficient t o  examine the cases where only one system made an error. 

Since Ht is composite, i.e. it can be satisfied in more than one way, and since for the pur- 

poses here we are mainly interested in demonstrating that  the differences in performance 

between the two systems are significant, consider testing two simpler hypotheses instead: 

H O f r : d f r = 0  versus ~ , f ' : d ~ , . # o ,  

 of^ : dfa = o versus Hfa : dfa  # 0. 

Rejection of both H:' and HJa, together with the condition that  both dl, < 0 and dl, < 0 

or that  both dfr  > 0 and dja > 0, would then be grounds for rejection of H:. Conversely, 

acceptance of both H,/' and Hia would be grounds for acceptance of Ht. 

Consider for example testing Hof'. Assuming that  both systems are equally likely to  

make errors, then under Hir, it follows that  nlo = dfr + no1 is a random variable drawn 

from the binomial distribution B(kn, 1/2), where kn = nlo + nol. The null-hypothesis can 

thus be tested by applying a two-tailed test t o  the observation of the random variable nlo 

drawn from the B(kn, $) distribution where 

p = 2 (:) (@kn when n10 > kn/2, 
z=nla 

P = 2 ( )  ( )  kn when nlo < L / 2 .  
i=O 

It follows that  HO~' can be rejected if P is less than some significance level a. 



C.1.3 Results 

A proposed system was compared to  a baseline system in Section 5.5. 

Baseline system (B) 

The baseline system consisted of static and 5-point dynamic features t o  which MS 

filtering was applied. The features were sampled a t  a rate of 100 Hz. ((C, in 

figure 5.7.) 

Proposed system (A) 

The proposed system consisted of static and 5-point dynamic features t o  which MS 

and lowpass filtering t o  10 Hz was applied. The features were sampled a t  a rate of 

25 Hz. ( (A' ,  Bi,5) in figure 5.7.) 

Table C.2 indicates the conditions for which the differences in optimum1 performances 

between the proposed lowpass system (A) and a baseline system (B) are statistically 

significant a t  the level cu = 0.02. The plus symbol (+) in the Table indicates the cases 

where the proposed system performed significantly better than the baseline system. The 

minus symbol (-) indicates the cases where the proposed system performed significantly 

worse than the baseline system. The absence of a symbol indicates no significant difference 

in performance for the two systems under the hypotheses  of^ and H;'. 30-second long 

segments of test speech from males and females were used. 

C.1.4 Discussion 

Based on the results in Table C.2 it can be concluded that  the proposed system per- 

forms significantly better than the baseline system in the mismatched condition (DNDT), 

while no significant difference in performance exists in the matched condition (SN). This 

indicates that  the proposed system improves robustness when there is acoustic mismatch. 

'Performance was measured at the optimum decision threshold as determined on the data set. 



Table C.2: Statistical significance at  the a = 0.02 level for the differences in performances 
between the proposed system (A) and baseline system (B). 

LEGEND: TE = Test condition 
TR = Training condition. 
RR = Percent relative reduction in error for 

proposed system over baseline system 
EA = Error for proposed system A 
EB = Error for baseline system B 

k, k ,  
93 1618 
76 1577 
78 1384 
29 948 
30 844 
27 708 
47 714 
48 517 
26 431 

151 253 
141 288 
111 176 
78 173 
72 163 
44 127 

121 120 
112 114 
85 86 

EA EB 
17.1 19.7 
16.5 19.0 
16.8 18.9 
10.0 10.1 
8.4 8.7 
7.9 8.5 
7.1 6.8 
4.9 4.7 
4.0 4.0 

7.5 8.3 
7.2 8.2 
7.0 7.7 
4.2 4.4 
3.8 4.0 
3.4 3.6 
2.8 2.7 
2.1 2.2 
1.8 1.8 

% RR 
13.0 
12.9 
11.3 
0.7 
4.0 
7.1 

-4.5 
-4.1 
-0.8 

8.8 
12.2 
9.5 
4.3 
4.1 
5.6 

-1.5 
1.5 
2.2 

df,. d j a  
+ + 
+ + 
+ + 

+ 
+ 
- 

+ - 
f + 
+ + 

+ 
+ 
+ 

+ - 

T R  
1s 
2s  
2F 
1s 
2s 
2F 
1s 
2s 
2F 

1s 
2s 
2F 
1s 
2s 
2F 
1s 
2 S 
2F 

ERROR 
EER % 

MDE 
x 100 

TE 
DNDT 

DNST 

SNST 

DNDT 

DNST 

SNST 



C.2 Comparison 

This section depicts verification results from the 1998 NIST Speaker Recognition Evalu- 

ation (NIST-SRE). The purpose of this depiction is simply t o  indicate that  the proposed 

system performs competitively compared to  other systems. This "state-of-art" perfor- 

mance suggests that  the proposed processing improves performance a t  a realistic level. 

Fig. C.l depicts the minimum decision error (MDE) and the "hard" decision error 

(HDE) in the matched (SNST) test condition2 for the two-session (2s) training condition 

using 30 second long segments of test speech. The MDE was defined in Section 4.2 

as the minimum decision error while the HDE was defined as the decision error a t  a 

chosen decision threshold. The decision threshold used here for the proposed system was 

obtained on speech da ta  from the 1997 NIST-SRE. Some of the differences in performance 

between the proposed system (a) and comparison systems (b,c) are related t o  the score 

10 

8 2S, 30 Second condition 

6 5 
W 
0 4 

2 

n 

Figure C.l: MDE and HDE performance in the 1998 NIST Speaker Recognition Evaluation 
for the proposed system and various other systems. Legend: left-side bars show MDE, 
right-side bars show HDE, solid bars show proportion of DE due t o  false rejection errors, 
light bars show proportion of DE due t o  false acceptance errors. Reproduced from 1998 
NIST Speaker Recognition Evaluation Workshop Notes. 

2Results for the matched condition are reported here since that was the condition of interest in the 
evaluation. 



normalization or features that  were used. For example, scores for comparison system (b) 

in the figure were augmented with scores based on a dynamic time warping and subsequent 

comparison of phoneme-like segments. Scores for comparison system (c) were normalized 

with respect to  handset condition and speaker. 



Appendix D 

Software Toolkit 

Reproduced from: S. van Vuuren and H. Hermansky, "!MESS: A modular, efficient 

speaker verification system," in RLAZC, (Avignon, France), pp. 189-201, April 1998. 

This appendix describes features and software aspects of a speaker verification toolkit 

called !MESS. This toolkit was used in the text-independent speaker verification exper- 

iments described in this thesis. !MESS was designed t o  be a highly modular, efficient 

speaker recognition system. The system incorporates an extension of the Tcl script lan- 

guage that  facilitates rapid prototyping and high overall execution speed. This appendix 

provides an overview of the system and its implementation, detailing its applicability as 

a flexible research environment. 

Systems for text-independent speaker verification tend t o  be resource intensive and 

seldomly run in real time [58]. A system that  allows for rapid prototyping and efficient use 

of resources can greatly aid forays into new feature domains. As a departure point it was 

decided to  design and implement a system that  is modular and efficient while giving state- 

of-the-art performance on a well defined benchmark. This system has since been evaluated 

formally by NIST in their 1997 and 1998 Speaker Recognition Evaluations (NIST-SRE) 

with verification performance that  was competitive with that  of other groups. While 

the system incorporates existing knowledge on speaker verification, its implementation 

and applicability is likely t o  differ from other systems in a number of fundamental ways. 

While it is difficult t o  make direct comparisons to  other systems - given that  many of 

them are proprietary, the aim here is t o  highlight some possibly unique characteristics of 

the !MESS toolkit. 



D.1 Modules 

A typical modular approach to  research systems is a set of precompiled routines, combined 

in a script and operating on files. Using the extendible scripting language Tcl [68], a 

somewhat different approach was followed, where the data  stays in memory, precompiled 

routines are dynamically loaded only once and the control flow is scripted in more detail. 

This facilitates rapid prototyping and algorithmic development while maintaining a small 

memory footprint and high execution speed. 

In a verification task the system has t o  decide, with some confidence level, t o  accept or 

reject the identity of somebody claiming t o  be the source of the speech signal. The system 

described here uses spectral and temporal based feature extraction, registration and nor- 

malization using a speaker independent mixture model and speaker dependent modeling 

using a mixture model obtained from Bayesian adaptation of the speaker independent 

model. Scoring uses a likelihood ratio test. Table D.1 lists the individual modules un- 

derlying the speaker verification system. Each module consists of an efficient, and where 

Table D.l: Modules in the speaker verification system. 

necessary, pipelined C-code library containing all the basic functionality. These libraries 

were written to  be highly portable [99, 871. Tcl is used to  access functionality in a scripting 

environment, where each module (a Tcl package) provides specific capabilities such as, for 

example, mixture modeling. Collectively these modules form an environment in which one 

can with ease plug and play various components in order to  design, debug and execute 

complex algorithms. The environment is described in [99, 871. 

Generic data  objects can be automatically and efficiently saved t o  and loaded from 

Description 
General matrix algebra 
Feature analysis 
Speech-silence segmentation 
Data analysis and transformation 
Vector quantization 
Gaussian mixture modeling 
Performance evaluation 

Category 
Math 
Processing 

Modeling 

Decoding 

Module 
Mx 
Form 

Seg 
Lda 
Gvq 
Gmm 
Det 



disk. These objects are conventional C data  structures represented a t  the script level with 

simple string identifiers. 

D. 1.1 Mx: Matrix Mathematics 

The Mx [99] module provides a generic way to  manipulate matrices. Memory manage- 

ment is handled transparently but is controllable. This means that  while an algorithm is 

implemented conveniently in the script language, memory usage can still be tailored for 

maximal efficiency. Fig. D.l  gives an example of this important feature. Here x and y 

loop: r(i) = cov(y) cov(i ) 

reuse temporary 

variable "sx" if 

\ > 

Prefix position: create 'r(i)" 

mx cholinv $sx si 

P set r(i) [mx prod $sy $si] 

Figure D.l: Example of controllable memory usage. 

it already exists 

else create it 

are da ta  matrices and "cov" the covariance. Fast execution speed and a small memory 

footprint are possible if the temporary variables in the loop are forced t o  use memory 

efficiently. The suffix position for sx,  sy, and si means that  memory should be allocated 

for them only if they don't exist (the first pass of the loop). On subsequent passes their 

contents are simply overwritten. The prefix position for the variable r ( i )  means that  

memory should not be reused. This example carries over t o  the other modules. 

In the script environment the user has full control of when t o  create, modify, update and 

destroy objects. Fig. D.2 shows how the Gmrn module can be used t o  train a Gaussian 

mixture model using accumulators. It can also be used t o  retrain a Gaussian mixture 

model using Bayesian MAP training [25]. In the latter case confidence estimates of the 

model are obtained by cross-validation over the training da ta  for that  model1. 

'This is done efficiently during training by using separate accumulators for the model statistics for each 
cross-validation partition. Each permutation of the accumulators (excluding one each time) are combined 
and the model tested on the relevant training partition. 



I 
Confiiure training object I grnm configure -mix 128 trainob 

I 

GMM object from VQ object grnm initialize $trainob -vq $vq gmm 

EM iterations foreach i $item { 

likelihood and j grnm 1ik:initialize $gmm 

model statistics accumulators I gmm em:initialize $trainob $gmm 
I 

I foreach d $data ( 
I 
I gmm lik:accumulate $gmm $d 

Accumulate likelihoods and I 

model statistics gmm em:accumulate Qrainob $gmm $d 
I 

I I 

Update likelihoods and I Puts "gmm liklupdate $gmml" 

model statistics I grnm em:update $trainob $gmm 
I 

I )  

Figure D.2: Script for training a Gaussian mixture model. 

D.1.2 Form: Feature Extraction 

The feature extraction module duplicates the feature extraction steps described in Chap- 

ter 4. The first stage is a short-term analysis of the speech signal. Popular representa- 

tions are supported, including filter bank spectrum, logarithmic spectrum, cepstrum [XI, 

LPC [4], Perceptual Linear Prediction coefficients (PLP) [34], and Mel-frequency cepstral 

coefficients [16]. Bark [34], Me1 [16] and linear frequency warpings are supported as are 

triangular [16] and trapezium shaped [34] frequency integration windows. Band-limiting 

of the output frequencies are supported. The output of this stage can be cached au- 

tomatically if required. The second stage entails medium-term feature processing, such 

as RASTA processing [37], mean subtraction (CMS) [26], and FIR filtering [loo]. The 

medium-term feature processing stage can be duplicated to  produce multiple streams of 

features (such as static and dynamic features.) 

D.1.3 Seg: Speech-Silence Segmentation 

This module allows speech-silence detection and segmentation using an adaptive energy- 

based detector that  is used t o  discard frames with original energies below the estimated 

noise floor in the signal. 



D.1.4 Lda: Data Analysis and Feature Transformation 

This module implements linear discriminant analysis (LDA) [23]. As a special case of 

LDA, feature vectors can be whitened using the statistics of the training da ta  [25]. 

D.1.5 Gvq and Gmm: Modeling 

The Gvq module implements vector quantization [13]. It is implemented using the LBG al- 

gorithm with iterative cluster splitting. The Grnm module implements Gaussian mixture 

modeling [25]. Training is performed with the Expectation Maximization (EM) algo- 

rithm [I91 with Bayesian regularization for the covariance parameters [66]. The Gmm 

module also implements maximum aposteriori (MAP) training [45], allowing a GMM to 

be updated given new data. 

This module allows training of speaker independent (SI) and speaker dependent (SD) 

models. An SI model is trained on a set of cohort speakers using the EM-algorithm. SD 

models are trained by MAP estimation of all the parameters in the SI model. 

D.1.6 Gmm: Scoring 

The SI model can be used t o  register the subspace of the SD model that  pertains t o  

the test utterance. This is done by identifying the N-best scoring components in the SI 

model for each utterance frame [go]. Target (SD) models are then evaluated using these 

components. Given the likelihood scores for the SD and SI models, a likelihood ratio test 

is performed over all the frames of the test utterance. 

D.1.7 Det: Results Evaluation 

This module allows evaluation measures t o  be computed for the speaker recognition sys- 

tem. This includes the computation of the identification error, confusion matrix, equal 

error rate (EER), and general cost functions as described in Chapter 4. 



D.2 System Execution Time 

The GMM system used in the 1997 NIST-SRE consisted of 256 mixture components. On 

a Pentium Pro I1 (266 Mhz) with 128 Megabyte memory running the Solaris operating 

system, the SD model training ran a t  0.38 X R.T. (real time) and verification of a target 

a t  0.11 X R.T. The process size was always under 10 Megabytes. The system needed 

a fraction of the execution time needed by systems from other groups where execution 

time was typically more than 1 x R.T. for comparable verification performance. This 

conforms to  the design requirements that  the system should be fast enough t o  facilitate 

rather exhaustive feature exploration trails. 



Appendix E 

Automatic Speech Recognition in a 

Time-feature Space 

Reproduced from: S. van Vuuren and H. Hermansky, "Data-driven design of RASTA- 

like filters," in Proc. EUROSPEECH'S?', (Rodos, Greece), pp. 409-412, 1997. 

This appendix describes use of Linear Discriminant Analysis (LDA) for data-driven 

automatic design of RASTA-like filters. The LDA applied t o  rather long segments of time 

trajectories of critical-band energies yields FIR filters t o  be applied to  these time trajecto- 

ries in the feature extraction module. Frequency responses of the first three discriminant 

vectors are in principle consistent with the ad hoc designed RASTA, delta and double- 

delta filters. On a connected digit task the new features outperform the original RASTA 

processing. 

E.l  Introduction 

A typical automatic speech recognition (ASR) system contains a feature extraction module 

followed by a stochastic classifier. While the classifier is typically trained on training 

data,  the feature extraction module is most often based on knowledge and beliefs. The 

knowledge applied in the feature extraction module has a critical role in the ASR process. 

Any information lost during the feature extraction is lost for the recognition process. 

On the other hand, the knowledge hardwired into the feature extraction module is the 

knowledge which does not have to  be re-acquired from the da ta  every time the recognizer 

is used for a new task. 



In the late seventies, [42] proposed the use of Linear Discriminant Analysis (LDA) for 

deriving improved features for ASR. The LDA is applied t o  training da ta  which contain 

sources of non-linguistic variability and the resulting transformation matrix is then a part 

of the feature extraction module which thus becomes more robust t o  the source of the 

particular non-linguistic variability. 

This appendix presents a technique which applies LDA t o  rather long segments of a 

single time trajectory of critical band energy. Then, the LDA yields FIR filters to  be 

applied to  this time trajectory. 

E . l . l  Temporal Domain and RASTA Technique 

Acoustic feature vectors typically represent short-term characteristics of the speech sig- 

nal. Standard HMM-based systems do classification over this short time span under the 

assumption of independence of the short-term acoustic vectors. 

The peripheral human auditory system appears to  be able t o  effectively integrate rather 

large time-spans (around 200 msec) of the audio signal [35]. Several emergent techniques 

employ short-term feature vectors from medium-span segments of speech. Among them, 

the RASTA technique [37] does bandpass filtering of time trajectories of speech features. 

To alleviate harmful effects of convolutional distortions, frequency components of time 

trajectories of logarithmic critical-band spectral energies below 1 Hz and above 13 Hz are 

attenuated. Such processing was found optimal by ASR experiments. 

E.1.2 Toward a Data-Driven Design 

The initial ad hoc form of the RASTA filters was optimized on a relatively small series 

of ASR experiments with noisy telephone digits. The optimizations using these ASR 

experiments are costly and there is no guarantee that  the solutions obtained will not be 

specific to  a given ASR problem. Therefore, data-based optimization which would avoid 

using a specific ASR paradigm is desirable. 

The linear discriminant analysis (LDA) is a stochastic technique which optimizes linear 

discriminability between classes (see e.g. [42] for examples of LDA in ASR). The use of 

LDA for data-driven design of RASTA-like filters is examined next. 
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Figure E.l: Linear discriminant analysis on segments of the time trajectory of a single 
logarithmic critical-band energy. 

E.2 Technique 

Fig. E.l shows the Linear Discriminant Analysis technique. The vector space for the LDA 

is constructed from segments of the time trajectory of a single logarithmic critical-band 

energy over a relatively long (typically about 1 s) span of time [6]. These segments are 

overlapped with a one frame spacing. 

This approach is different from previous works using LDA [42, 121 since it applies LDA 

t o  rather long time trajectories offeatures rather than just to  a single feature vector or t o  

a relatively short block of feature vectors. This particular application of LDA results in 

the principal components (discriminant vectors) forming a set of FIR filters. The LDA on 

time-shifted segments of the trajectories therefore allows an FIR filtering interpretation 

of the analysis. This in turn allows us t o  directly relate the new LDA technique to  

other processing techniques such as RASTA processing. It should be noted, that  up to  

certain constraints and assumptions1, the LDA-based FIR filters map most efficiently 

'It is assumed that the data are homoscedastic so that the within covariances of different classes are 
the same. 



(with respect t o  the within-class and the across-class variability) the vector space onto 

several points of the output space. 

E.3 Databases 

As LDA tries t o  optimize class separability in the presence of unwanted variability the 

result depends crucially on the type of nonlinguistic variability present in the data,  as well 

as on the set of classes in the analysis. Three different databases and two sets of classes 

are examined. First, the LDA is applied to  a hand-labeled subset of the Switchboard 

database. This database is labeled according to standard conventions into a set of 56 

American English phonemes. Additionally, this database also contained classes of between- 

word pauses, and utterance beginning and end silences[32]. Second, the Switchboard 

database is appended by the identical database but with an added simulated convolutional 

variability. This is achieved by adding a constant approximately representing 2 standard 

deviations of the data  t o  each time trajectory. Finally, the English portion of the OGI 

multi-lingual database is used with a representative set of phoneme classes for the analysis. 

Essentially this set includes prevalent phonemes in the speech and excludes silence. While 

the class assignments were obtained from a hand-labeled continuous speech corpus, it 

should be noted that  they may as well be obtained using automatic techniques such as 

forced alignment. Furthermore, as will be shown, the LDA-based filters need not be 

designed and used on the same data. It will be shown that  even when the filters are 

designed on a database different from the one on which they are eventually used they can 

still outperform other processing methods. 

E.4 Discriminant Vectors as Filters 

In previous work [6] it was showed that  the frequency response of the first discriminant 

vector agrees well with the frequency response of the ad hoc designed RASTA filter that  

smoothes the feature trajectory. It is important t o  stress the importance of this result. 

The discriminant vectors were designed entirely from the data  without any intervention 

whereas the RASTA filter was iteratively optimized for on ASR experiments. 



Figures E.2 through E.5 show frequency and impulse responses of the first three dis- 

criminant vectors derived on all three above described databases, as well as the frequency 

and impulse responses of the original RASTA filter and of the RASTA filter combined 

with the filters approximating the first (delta) and the second (double-delta) derivatives. 

Figure E.2: Frequency and impulse responses of the first three discriminant vectors derived 
on the clean Switchboard database. 
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Figure E.3: Frequency and impulse responses of the first three discriminant vectors derived 
on the Switchboard database with additional steady-state variability. 

The first thing t o  notice is that ,  as expected, filters designed on the Switchboard data 

with the additional steady-state variability exhibit stronger suppression of low as well as 



of high frequencies2. The stronger suppression of low frequencies is expected because the 

additional variability is steady-state. 

Filters designed on the OGI multilingual database do contain similar general charac- 

teristics as the filters derived on the Switchboard da ta  but differ in details (for example 

the second and the third filters are interchanged). Note that  a reduced class set of only 

the 20 most common phoneme labels was used with the OGI database. 

Figure E.4: Frequency and impulse responses of the first three discriminant vectors derived 
on the English portion of OGI multi-lingual database. 

The similarity of the first discriminant vectors from all three databases with the original 

RASTA filter is noticeable. The impulse responses of the first discriminant vector is 

approximately symmetric, implying close t o  zero phase and supporting [17]. 

The first discriminant vector, while being the most important for discrimination, ex- 

plains only about 80% of the variability in the data. It was therefore decided t o  investigate 

the second and third discriminant vectors as well. The frequency characteristic of the sec- 

ond and third discriminant vectors are somewhat comparable t o  the second (slope) and 

third (curvature) orthogonal polynomials approximating the time trajectory of the feature 

within a 9 frame (90 ms) time interval as proposed in [26]. The second peak a t  around 

1 Hz in the two-peak filters can be simulated by adding a small bias t o  the double-delta 

'For the Switchboard experiments, which used only 30 minutes of speech data, to guarantee numerical 
stability, it was necessary to enforce a condition number of 500 for the with-in covariance matrix. This 
conditioning caused a slight suppression for the high frequencies. This conditioning was not used for the 
OGI data. 



Figure E.5: Frequency and impulse responses of the RASTA filter and the RASTA filter 
combined with the delta and double-delta filters. 

orthogonal polynomial. 

As shown in Fig. E.6 which depicts frequency responses of the first discriminant vector 

a t  all 15 carrier frequencies (there are 15 critical-band filters covering the telephone- 

bandwidth), filters a t  different carrier frequencies are rather similar. 
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Figure E.6: Frequency response of the first discriminant vector at all 15 carrier frequencies 
derived on the English portion of OGI multi-lingual database. 

To further highlight the modulation frequency selective nature of the LDA-based filters 

Fig. E.7 shows the frequency response of the resultant first discriminant vector for the case 

where the log filter bank energies had a disturbance added a t  modulation frequencies of 

5 and 20 Hz with respective amplitudes about 2.5 and 0.5 times the average standard 



deviation in the log filter bank energies. Such a disturbance can be thought of as a time- 

varying convolutional disturbance on the speech signal. As expected, the filter attempts 

t o  attenuate modulation frequencies a t  the disturbance. 

Modulation frequency 0 [Hz] 

Figure E.7: Frequency response of the first discriminant vector for an artificial non- 
stationary channel disturbance. 

E.5 ASR Results 

For the results listed below the filters were derived on the English portion of the OGI multi- 

lingual database (OGI-TS). This is a database of almost 3 hours' continuous telephone 

speech with both speaker and handset variability. Recognition experiments were per- 

formed on 500 connected digit utterances from the OGI-Numbers corpus. This database 

also has speaker and handset variability. The phoneme classes used for deriving the filters 

were chosen t o  match the monophone classes expected in the recognition experiment. For 

the filter design a total of twenty monophones were used. Each monophone was weighted 

according t o  its natural frequency of occurrence in the OGI-TS database. 

The results are competitive with current filtering schemes such as RASTA. Table E.l  

lists the word level accuracy for the connected digit recognition task. A 5 state left-to- 

right HMM model was used with 3 mixtures per state. Twenty monophone models were 

trained and a simple single pronunciation grammar used. The baseline features (base) 

were critical-band log energies from a PLP analysis. The table lists accuracies for the 



Table E.l: Percentage word level accuracies for a connected digit recognition task (OGI- 
Numbers corpus) for the various processing techniques. 

rasta + delta + ddelta 
+ delta + ddelta 

baseline features processed with RASTA filtering (rasta) and with combinations of the 

first three LDA-derived filters (ldal, lda2 and lda3). Accuracies for when delta (delta) 

and double delta (ddelta) features are added are also listed. Features were normalized 

throughout with a full whitening transform. This normalization was necessary t o  ensure 

a fair comparison between the different features for mainly two reasons. a)  Decorrelation: 

The HMM model used diagonal covariances. b) Scale: The HMM model used a numerical 

floor (le-4) on the variances parameters. 

In practice it was found that  the whitening transform gives results similar t o  the DCT 

transform. To mitigate effects from the language back-end of the system, and since it is 

known that  different processing techniques exhibit different insertion and deletion trade- 

off [9], word level accuracies are reported a t  the optimum cross-word penalty. 

The basic LDA derived feature (ldal) is seen to  generally outperform the baseline 

and RASTA processed features. The differences are significant a t  the level cu = 0.01 using 

Mcnemar's test. These results suggest that  while RASTA greatly aids performance on this 

database, other data-derived filters (here from LDA) may yield even better performance. 

This observation extends t o  the case where delta and double delta features are added. 



Given that  the LDA filters were derived from another database and based entirely on the 

baseline feature and class labels the results are highly encouraging. 

E.6 Conclusion 

A new temporal filtering technique was proposed t o  optimize class discriminability. The 

encouraging performance of the entirely data-derived filters in recognition experiments 

have since led t o  extensions of the technique forming the subject of ongoing research in 

our laboratory. 
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