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Abstract 

Probabilistic Model- based Mult isensor Image Fusion 

Ravi Krishna Sharma 

Supervising Professors: Misha Pave1 and Todd K. Leen 

Image fusion is the process of combining images of a scene obtained from multiple sen- 

sors to obtain a single composite image. The goal is to reliably integrate image information 

from multisensor images to aid in tasks such as navigation guidance, object detection and 

recognition, medical diagnosis and data compression. The main challenges in fusion are 

caused primarily by local contrast reversals, mismatched sensor-specific image features 

and noise present in multisensor images. One or more of these conditions adversely affect 

existing fusion techniques. 

In this thesis, we present a probabilistic model-based approach for the fusion of mul- 

tisensor images that addresses the shortcomings of existing solutions. We formulate the 

fusion task as a problem of estimating an underlying true scene from the sensor images. 

We model the sensor images as noisy, locally affine functions of this true scene. The pa- 

rameters of the affine functions explicitly incorporate reversal in local contrast and the 

presence of sensor-specific image features in the sensor images. 

Given this model, we use a Bayesian framework to provide either maximum likelihood 

or maximum a posteriori estimates of the true scene from the sensor images. The esti- 

mate of the true scene constitutes our probabilistic fusion rule which resembles principal 

component projections. The fused image obtained by this rule is a locally weighted linear 

xii 



combination of the sensor images. The weights depend upon the parameters of the affine 

functions and the noise. The weights scale the sensor images according to the signal and 

noise content. We derive estimates of the model parameters from the sensor images. The 

least squares estimates of the affine parameters are based on the local covariance of the 

image data, and are related to local principal components analysis. 

Our fusion approach also incorporates prior image information about the scene. The 

contribution of the prior image information is locally weighted and added to the combi- 

nation of the sensor images. The weighting determines the confidence in the prior. The 

inclusion of the prior provides the ability to obtain reliable fusion results when the sensor 

images are unreliable. 

We demonstrate the efficacy of our fusion approach on real and simulated images from 

visible-band and infrared sensors. We compare the results and computational complexity 

with those of the existing fusion techniques which are based on selection and averaging 

strategies. The results presented in this thesis illustrate that our probabilistic approach 

yields results that are similar to existing techniques when the noise is low and performs 

better than existing techniques when the noise is high. Common features and contrast 

reversed features are preserved, and sensor-specific features from each sensor image are 

retained in the fused image. The results using prior image information demonstrate that 

inclusion of prior information produces more reliable fused images. 

... 
Xll l  



Chapter 1 

Introduction 

Image fusion is the combination of images of an underlying scene captured by multiple 

sensors to synthesize a composite image. Advances in sensing devices have fueled the 

deployment of multiple imaging sensors. The different sensors (e.g. visible-band, forward 

looking infrared, millimeter wave radar etc.) provide different information about the scene 

and are effective in different environmental conditions. The use of sensors from multiple 

modalities can increase utility and reliability in comparison to single sensor systems. For 

effective practical use of multiple sensors it is often necessary to fuse the sensor images 

into a single composite image for interpretation. For example, visible-band and infrared 

images may be fused to aid pilots landing aircraft in poor visibility, or to aid in object 

detection. Image fusion techniques are used in computational vision1 applications such as 

navigation guidance 172, 39, 24, 551, medical imaging [74], data compression [54], object 

detection [56] and recognition [22], classification [54, 411, and in integrating multifocus 

and multiexposure imagery [16]. 

Existing fusion techniques produce unsatisfactory results in the presence of noise, or 

in case of a mismatch in contrast or image features between the sensor images. This 

dissertation focuses on developing a methodology for reliable fusion of multisensor images 

in situations that tax existing techniques. Our proposed solution is to construct a proba- 

bilistic model of the process by which the underlying scene gives rise to the sensor images. 

Given the model, we use a Bayesian framework to estimate the most likely scene from 

'Computational vision involves extraction of information about the real world from data captured in 
the form of images. Image data about a real world scene can be obtained by using a variety of imaging 
sensors [33]. 



the sensor images. The scene estimates constitute our fusion rules. We demonstrate the 

efficacy of our approach on both real and simulated sensor images. The results show that 

our approach overcomes the drawbacks faced by existing techniques while retaining their 

advantages. The fused images produced by our techniques are relatively less noisy and 

show better contrast and feature retention than those produced by existing techniques. 

Moreover, our approach has a provision to include prior image information about the scene 

into the fused image. We demonstrate that prior information can be used to obtain more 

reliable fusion results. 

We also deal with three issues closely related to fusion - conformal geometric represen- 

tations, multisensor image registration and fused image display. Solution of the first two 

issues is necessary to be able to perform fusion whereas addressing the last issue is impor- 

tant to be able to benefit from fusion. Multisensor images often have different geometric 

representations which have to be transformed to a conformal (common) representation 

for fusion. We describe a new geometric representation for fusion of radar images with 

visible-band or infrared images. This representation retains the better resolution of either 

sensor. Another issue that we address is the alignment (registration) of multisensor im- 

ages. Multisensor registration is also affected by the differences in the sensor images. We 

extend a technique used for registration of same-sensor images to overcome the difficulties 

caused by multisensor images. Lastly, we explore techniques that allow sensor-specific 

details to be introduced in a display showing a fused image. These techniques investigate 

the use of color to identify which sensor gave rise to features appearing in the fused image. 

In this chapter, Section 1.1 reviews single sensor computational vision systems. Sec- 

tion 1.2 argues that multisensor image fusion is a viable alternative to overcome the 

drawbacks of using a single sensor and describes an application of fusion. Section 1.3 

highlights the issues involved in fusion of imagery generated by multiple imaging sensors. 

Section 1.4 describes the scope of this dissertation and our main research contributions. 

The last section of this chapter provides an overview of the organization of this document. 
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Figure 1.1: Single sensor computational vision system

1.1 Single Sensor Computational Vision System

A computational vision system consists of an imaging sensor, and components for process-

ing the generated sensor images. An illustration of a single sensor computational vision

system is shown in Figure 1.1. The imaging sensor shown is a visible-band sensor such as

a charge coupled device (CCD) used in a television (TV) camera. The sensor captures

the real world scene as an image. A sequence of images from an imaging sensor comprise

a video sequence. This video sequence is then used either by a human operator or by

a machine to perform some task. For example, in navigation guidance applications, a

human operator views the scene on a display to aid in navigation of an aircraft or vehicle.

In object detection, a human operator searches the scene on the display to detect objects

such as enemy tanks. Tasks such as detection and recognition may be performed by a

machine, in which case there may not be a need for a display. Other applications that

use such vision systems are remote sensing, surveillance, industrial manufacturing and

inspection, and medical diagnosis.

One limitation of a computational vision system is the capability of the imaging sensor



that is being used. The conditions under which the system can operate, the dynamic 

range, resolution, visual angle, range of visibility, and the type of information obtained 

about the scene are all limited by the capability of the sensor. For example, the CCD 

sensor in the TV camera is well suited for a brightly illuminated environment (daylight 

or studio). The same sensor is usually not appropriate for poorly illuminated situations 

such as at night, or under different environmental conditions such as in fog or rain. In 

some applications (recognition and detection tasks, surveillance) it is essential that the 

vision system match and even surpass the limits of the human eye. But in many respects 

(e.g. dynamic range, resolution) the human visual system still exceeds the capabilities of 

current sensing devices [73, 331. 

One possible approach to improve the range of operation of vision systems is to build 

a sophisticated sensor that meets all the specifications. For example, if it is necessary to 

match or surpass the abilities of the human visual system, one could build a sophisticated 

sensor with capabilities that match or exceed those of the human eye. However, such an 

approach would be quite expensive if not infeasible. 

1.2 Mult isensor Image Fusion System 

An alternate approach to overcome the limitations of a single sensor vision system is to 

deploy multiple sensors, and to combine (fuse) the images from these sensors to obtain a 

composite (fused) image. The goal of such a system is to combine the image information 

in multisensor images such that salient image features (e.g. edges) from each sensor image 

are preserved in the fused image. This approach mimics biological systems. For example 

the human visual system fuses visual information from the three color cones and also 

the rods. An illustration of a multisensor image fusion system is shown in Figure 1.2. 

Comparing with Figure 1.1, the TV camera is supplemented by an infrared (IR) camera 

and their outputs are fused to produce a fused image. Although the TV camera may not 

produce a useful image in poor illumination, the IR camera can. The fusion algorithm 

would then emphasize the contribution from the IR camera and the system would be able 

to function even in poor illumination. 
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Figure 1.2: Multisensor image fusion

The benefits of multisensor image fusion [28] include:

1. Extended range of operation - multiple sensors that operate under different op-

erating conditions can be deployed to extend the effective range of operation. For

example different sensors can be used for dayjnight operation.

2. Extended spatial and temporal coverage - joint information from sensors that differ

in spatial extent and spatial resolution can increase the spatial coverage. The same

is true for the temporal dimension.

3. Reduced uncertainty - joint information from multiple sensors can reduce the un-

certainty associated with the sensing or decision process.

4. Increased reliability - the fusion of multiple measurements can reduce noise and

therefore improve the reliability of the measured quantity.

5. Robust system performance - redundancy in multiple measurements can help in



system robustness. In case one or more sensors fail or the performance of a particular 

sensor deteriorates, the system can depend on the other sensors. 

6. Compact representation of information - fusion leads to compact representations. 

For example, in remote sensing, instead of storing imagery from several spectral 

bands, it is comparatively more efficient to store the fused information. 

Deployment of multiple sensors for performing the same task is becoming increasingly 

popular because of two main reasons. The first reason is the advance in sensing devices 

that operate in different bands of the electromagnetic spectrum. Sensors operating in 

the infrared, ultraviolet and millimeter wavelengths provide the capability to see what 

the human eye cannot [33, 421. The second reason is the increase in available computing 

power, which makes it possible to process the images from the multiple sensors. 

The idea of combining information from multiple sources is not new - the human 

visual system utilizes information gathered from both eyes for depth perception. Another 

example is human color perception [73], where trichromatic components are combined to 

create the perception of color. The use of multiple sensors is also not uncommon in the 

field of computational vision. Two or more similar sensors are required in stereo vision 

applications to estimate the depth of objects in the scene 121. Multiple imaging sensors 

are widely used in remote sensing applications [58]. Other applications of multisensor 

image fusion include navigation guidance [24, 39, 55, 721 medical imaging [74], object 

detection [56] and recognition [22]. Image fusion is also used for compression of multisensor 

(or hyperspectral) images. The fused image can be stored or transmitted at a fraction of 

the cost of the original images 1261. 

The term image fusion is aIso used in the context of fusing images obtained from the 

same sensor. For example, image fusion can be used to extend the depth of focus of a 

camera, by fusing two views of the same scene having different depth of fields [16,43]. This 

is called multifocus fusion. Similarly, fusion can be used to overcome camera limitations 

such as limited dynamic range by fusing images obtained from the same camera at  different 

exposure settings [16, 471, also referred to as multiexposure fusion. Images obtained from 

the same sensor at  different times can be enhanced using fusion. Techniques that obtain 



enhanced images using temporal processing (i.e., using sequences of images over time) are 

also called superresolution techniques 135, 651. 

In this dissertation we address the problem of multisensor image fusion. Our focus is 

to develop a fusion approach that addresses the problems arising out of the use of diverse 

multiple sensors. However our proposed fusion solution is general and can also be used 

to combine multiple images from the same or similar sensors. Our fusion approach also 

applies to video fusion, the fusion of image sequences from multiple sensors. However, 

throughout this dissertation we will use the term image fusion to maintain consistency. 

1.2.1 Application of fusion for navigation guidance in aviation 

The application of fusion that we use as an example throughout this dissertation is the 

autonomous landing guidance (ALG) system in aviation [72]. However, the solution for 

fusion that we develop is not specific to this particular application. Autonomous landing 

guidance refers to the use of synthetic or enhanced vision systems for landing aircraft 

autonomously in inclement weather without the help of ground aids [8]. Another system 

that is used for landing of aircraft in bad weather is the instrument landing system (ILS). 

The ILS requires special equipment at the airport and in the aircraft. Even with ILS, 

the pilot has no direct information about the positions of other aircraft or objects on 

the runway. Air traffic experiences delays because the air traffic control enforces greater 

separation between aircraft during bad weather. At airports which do not operate ILS, 

operations cease completely when the visibility conditions drop below a specified minimum. 

ALG employs multiple imaging sensors placed in the nose cone of the aircraft to provide 

navigation guidance to pilots for landing the aircraft in low visibility conditions. The goal 

is to display the landing scene to the pilot on a suitable electronic device2 in the cockpit. 

Such a system could support operation in low visibility, resulting in significant benefits to 

airlines and passengers. Since the equipment for ALG (sensors, processing modules) is on 

board the aircraft, it can improve the safety of landing operations even at small airports. 

In addition, the ALG system would permit shorter separation between aircraft and at the 

2Generally a heads up display (HUD) or a heads down display (HDD) is used for this purpose. 



same time enable the pilot to verify clear runway conditions. 

Although several different sensors have been studied for use in ALG, visible-band, for- 

ward looking infrared (FLIR) and millimeter wave radar (MMWR) based imaging sensors 

are the most common [34]. These sensors have been found to be effective in providing 

imagery that can support reliable navigation in unpredictable environmental conditions. 

FLIR sensors are passive sensors based on the reflection of thermal energy, and can pro- 

duce relatively high resolution images when imaging at night as well as through haze and 

some types of fog [40, 641. MMWR sensors are active sensors based on the reflection of 

transmitted radio waves. MMWR can penetrate fog and provides the least attenuation in 

rain [40]. The concept of the ALG system is illustrated in Figure 1.3. The system consists 

of FLIR and MMWR sensors in addition to a visible-band TV camera. In addition to 

the imaging sensors, the ALG system uses information from the global positioning system 

(GPS) and an inertial navigation system (INS). The ALG system sometimes uses a ter- 

rain database of the landing scene, if it is available. The terrain database provides prior 

information about the scene [51]. 

The pilot can be provided with one display for each of the sensors. However, hu- 

mans are not effective at integrating visual information by viewing multiple displays sepa- 

rately [71]. Another alternative is to have a single display and provide a switch that allows 

the pilot to select which sensor to view at any time. However, this solution can require 

frequent switching in certain situations, for example, in a scenario where the aircraft is 

breaking in and out of clouds. In addition, it is not desirable to increase the workload of 

the pilot in time critical tasks such as landing. 

It is therefore desirable to fuse the images in the sensor image sequences and obtain 

a fused sequence. The fused sequence should ideally provide all the required visual infor- 

mation to the pilot for landing the aircraft safely. For this purpose, one needs to develop 

techniques for automatically and reliably fusing multisensor images. The fused sequence 

can then be displayed to the pilot as illustrated in Figure 1.3. 
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1.3 Issues in Fusing Imagery from Multiple Sensors

Figure 1.4 shows a schematic of multisensor image fusion. Two different sensors (for

example, visible-band and infrared) capture the same scene and generate two different

sequences of sensor images. The issues to be addressed before performing fusion are

concerned with converting the sensor images into representations in which they can be

compared and fused. The central issue is how to combine the images. Finally, there are

issues concerning display of fused images. Most of the issues are common to both fusion

of images as well as fusion of image sequences, and the exceptions are pointed out. The

important issues are discussed below:

1.3.1 Mismatch in features

There is often a mismatch in image features between images from different sensors. This

mismatch makes it difficult to compare the sensor images and therefore causes difficulties

in fusion. The mismatch arises mainly because of the sensors used. For example, visible-

band and infrared sensors are based on different physical phenomena and their sensing

processes are different. The images produced by these sensors have distinct graylevel



appearances [16, 40, 441, giving rise to a mismatch in the features3 in the images. The 

polarity of local contrast is often reversed between visible-band and infrared images. We 

call this local polarity reversal. For example, dark objects in a scene that are warmer 

than the surroundings appear dark in visible-band images and appear bright in infrared 

images. Sometimes, image features present in one image are missing in another image. We 

call such sensor-specific features complementary features. For example, objects obscured 

by fog in visible-band imagery are visible in radar imagery. In addition, the images have 

different noise characteristics depending upon the sensors used. 

1.3.2 Combination of rnultisensor images 

The most important issue concerning image fusion is to determine how to combine (fuse) 

the sensor images. This task is complicated particularly when there is a mismatch between 

the sensor images as discussed above. In recent years, several image fusion techniques 

have been proposed. Pixel-based methods such as pixel-wise averaging operate on pixels 

of sensor images to obtain the fused image. Averaging works well when images are similar, 

but causes a reduction in contrast when there are complementary features or local polarity 

reversals. Feature-based methods [ll, 16, 51, 68, 70, 781 use selection as the criterion 

for fusion and operate in a multiresolution pyramid transform domain (e.g., Laplacian 

pyramids, contrast pyramids). These methods construct a fused pyramid by selecting the 

most salient coefficient (based on, for example, maximum magnitude or local energy) at 

each pyramid location. Since features are selected rather than averaged, they are rendered 

at full contrast in the fused image. However, selection techniques have drawbacks. They 

do not explicitly account for noise in the sensor images and may thus select large noise 

spikes in the fused image. In addition, these techniques do not have the ability to adapt to 

changing sensor characteristics. To improve upon these techniques and reliably integrate 

image information from multiple sensors, one needs to determine the exact nature of the 

relationships between the image features and the noise characteristics, and then use this 

knowledge for fusion. One important aspect concerning the combination of sensor images 

3 ~ m a g e  features are patterns in the image that arise due to objects and materials in the scene, environ- 
mental factors, and the sensing process. 



is the potential of using temporal information, available in the form of a sequence of 

images from each sensor over time (i.e., video sequences), for improving fusion results. 

This aspect has been largely ignored in the existing literature. 

1.3.3 Geometric representations of imagery from different sensors 

Images from different sensors may have different geometric representations. Before per- 

forming fusion, all sensor images must be transformed to a conformal (common) geometric 

representation to facilitate comparison and fusion [lo]. The imaging geometry depends 

upon the physical mechanism underlying the sensor. For example, passive sensors such as 

visible-band sensors or FLIR sensors have a projective geometry and produce projective 

images (images are formed by a 2-D projection of a 3-D scene on the image plane). Active 

sensors such as MMWR sensors have a range geometry (a radar image is the intensity of 

the reflected radio wave as a function of the azimuth angle and the range). Converting 

an image from one geometric representation to another involves reconstruction of the 3-D 

scene geometry from a 2-D image followed by transforming the 3-D geometry to the new 

representation. 

1.3.4 Registration of misaligned image features 

The goal of registration is to establish a spatial correspondence between the sensor im- 

ages and determine a spatial geometric transformation (warping) that aligns the images. 

After registration, corresponding image features in the sensor images are perfectly aligned 

when superimposed. Misalignment of image features is caused by several factors includ- 

ing differences in imaging geometries of the sensors, different spatial positions of the 

sensors, different temporal capture rates of the sensors and the inherent misalignment 

of the sensing elements [7]. Registration is carried out either using optical-flow tech- 

niques [I, 4, 5, 27, 32, 481 or feature-matching techniques [44, 46, 60, 801. These techniques 

align the images by exploiting the similarities (in graylevels or features) between the sen- 

sor images. The mismatch of image features in multisensor images reduces the similarities 

between the images and makes it difficult to establish the correspondence between the 

images. 



1.3.5 Spatial resolution of different sensors 

There is often a difference in spatial resolution between the images produced by differ- 

ent sensors. FLIR and MMWR sensors usually have a lower resolution than visible-band 

sensors [40]. One way to combine image data with different spatial resolutions is to use 

superresolution techniques [18, 35, 591, when possible, to improve resolution. Another ap- 

proach is to use multiresolution image representations so that the lower resolution imagery 

does not adversely affect the higher resolution imagery. 

1.3.6 Differences in frame rate 

This issue is specific to video fusion where a sequence of images from each sensor are to be 

fused. The temporal sampling rates of the sensors need to be matched and synchronized 

for fusion so that images captured at the same time instant are combined. However, 

different types of sensors can have different frame rates. For example, visible-band sensors 

are capable of generating 30 video frames (i.e. images) every second. However, imaging 

radars usually generate around 10 to 15 frames per second [8]. There are two approaches to 

match the frame-rate of the sensors. One approach consists of synthetically increasing the 

frame-rate of the slower sensor by using video frame interpolation techniques to estimate 

the missing frames. Another approach is to discard the excess frames of the faster sensor. 

In the latter case, the resulting fused video sequence may have poor temporal resolution. 

1.3.7 Display of fused images 

Although fusion aims to preserve salient information from the sensor images, the source 

of the information is lost. For example, it is difficult to determine whether a bright patch 

in a fused image came from a visible-band sensor or an infrared sensor. Display issues are 

concerned with reinstating the knowledge about the source of the image features in the 

fused image [71, 761 to provide an easily interpretable display of fused images. 



1.4 Problem Definition and Research Contribution 

The focus of this thesis is methods for fusion, i.e., combination of sensor images. The 

most important contribution of this thesis is the development of a probabilistic model- 

based approach for performing fusion that circumvents the difficulties in fusion due to 

mismatched image features and noise. We provide a rigorous theoretical foundation for 

this approach and demonstrate its efficacy using several examples. We also develop tech- 

niques to achieve conformal geometric representations, multisensor image registration, and 

interpretable display of fused images. The major contributions of this thesis are summa- 

rized by the following points: 

Probabilistic model-based approach for fusion: 

We construct a probabilistic model of the process by which an underlying true scene 

gives rise to the sensor images. The probabilistic nature of the model takes into 

account the uncertainties of the sensing process. The sensor images are modeled as 

noisy, locally afine functions of the underlying true scene. Although the model is 

simple, it explicitly captures the local relationships between the sensor images - 

local polarity reversals and complementary features. The model lays the foundation 

for a principled approach to image fusion. 

PCA-like fusion rules: 

The sensor images and the model are used to derive maximum likelihood and max- 

imum a posteriori estimates of the underlying true scene, within a Bayesian frame- 

work. These estimates constitute our probabilistic fusion rules, which are locally 

weighted additive combinations of the sensor images. The weights depend upon the 

model parameters and determine the contribution of each sensor image based upon 

the signal and noise content. We describe factor analysis techniques to estimate the 

model parameters from the sensor images. With the model parameters estimated, 

the probabilistic fusion rules resemble PCA-like projections. 



Use of prior information for fusion: 

Our fusion approach also provides a principled way to combine prior image infor- 

mation about the scene with the sensor images. The contribution from the prior is 

locally weighted and added to the combination of the sensor images. The weighting 

determines the confidence in the prior. The inclusion of the prior provides the ability 

to obtain reliable fusion results when the prior information is more reliable than the 

sensor images. 

Demonstration of fusion approach on real and simulated images: 

We present results of several fusion experiments on both real and simulated mul- 

tisensor images. The experiments illustrate the different ways of using our fusion 

approach. The results indicate that our approach addresses the problems faced by 

existing methods such as selection and averaging. The fused images produced by 

probabilistic fusion have relatively lower noise, and show better contrast and feature 

retention. 

An approach for registration of multisensor images: 

We develop an approach for registration of multisensor images that have mismatched 

image features. We have extended the gradient-based registration technique [5] for 

this purpose. The image representations that we use for gradient-based registra- 

tion are invariant to graylevel differences and local polarity reversals and, thereby 

facilitate registration. 

A novel conformal geometric representation of multisensor images: 

We develop a conformal geometric representation called M-scope. The M-scope 

representation preserves the best resolution of the sensor images at each spatial 

location and is well-suited for fusion of radar images with images from visible-band 

or infrared sensors. 

Interpretable display of fused images We present several examples of techniques 

for identifying the source of sensor-specific image features in a fused image. We 

investigate the mapping of data from the fused image and the sensor images onto 



color dimensions, and develop three mapping methods. We show that pseudocolor 

mapping can help identify sensor-specific details in a fused display. 

1.5 Organization of the Dissertation 

The organization of this dissertation is as follows. In Chapter 2 we review important 

techniques for image fusion that are described in literature. These include feature based 

approaches based on selection and their variants. We outline the advantages and draw- 

backs of these existing fusion techniques. In Chapter 3 we describe our probabilistic 

model-based approach to fusion. We define our model and derive our probabilistic fusion 

rules using a Bayesian framework. In Chapter 4 we describe techniques to estimate the 

parameters of the model from the sensor images. In Chapter 5 we demonstrate differ- 

ent ways of using the probabilistic fusion rules and describes results of experiments using 

these techniques. In Chapter 6 we present conclusions and suggest directions for future 

work. Fusion issues relating to geometric representations, registration and display are 

organized a s  appendices. Appendix A deals with conformal geometric representation of 

multisensor images. Appendix B describes techniques for multisensor image registration. 

In Appendix C we describe display techniques to facilitate the identification of the source 

of image features in a fused image. 



Chapter 2 

Review of Image Fusion Techniques 

2.1 Introduction 

In Chapter 1 we introduced the concept of multisensor image fusion. We discussed the 

motivation for fusion and its benefits. We also described the various issues that need to be 

addressed in order to develop a solution to the fusion problem. In this chapter, we review 

the most important existing fusion techniques that have been described in literature. A 

detailed understanding of these techniques is essential to develop better fusion algorithms. 

From this perspective, we outline the advantages as well as the disadvantages of the 

existing techniques and set the stage for our proposed fusion solution presented in following 

chapters. 

Section 2.2 states the typical assumptions that are made by fusion algorithms. Sec- 

tion 2.3 reviews some of the simplest fusion techniques that are based on combining the 

images a pixel by pixel. Section 2.4 reviews fusion techniques that decompose images into 

feature representations and then select features from one image or another to generate 

the fused image. The Laplacian pyramid transform, which we later use in examples using 

our proposed fusion solution, and its significance in fusion by selection are explained in 

detail. Sections 2.5 and 2.6 review various techniques that employ variants of the selection 

strategy, use different feature representations, and neural networks for performing fusion. 

In Section 2.7, we draw attention to the shortcomings of the fusion techniques discussed 

in this chapter. Section 2.8 is a brief discussion that highlights the specific issues we will 

address in the following chapters. 



2.2 Typical Assumptions for Image Fusion 

Multiple imaging sensors capturing the same scene usually generate image data that are 

not in a form that is directly suitable for performing fusion. For example, the sensor data 

may have different geometric representations and may be mis-registered. In order to be 

able to perform fusion, the sensor data must be converted to a conformal geometric repre- 

sentation and perfectly registered. As discussed in Section 1.3, conformal representations 

and registration are challenging problems. Appendix A and B deal in detail with these 

issues. For the discussion in this chapter and in Chapters 3, 4 and 5, we assume that 

the images from the sensors are in a conformal geometric representation and perfectly 

registered. Recall from Section 1.3 that additional processing may be required before per- 

forming fusion (e.g., solving frame rate issues for fusion of image sequences from sensors 

with unequal frame rates), but these are beyond the scope of this dissertation. 

2.3 Pixel-based Approach to Fusion 

The simplest techniques employed for fusion are direct approaches that synthesize the 

fused image from pixels of the sensor images. Hence these direct approaches are also 

called pixel-based approaches. 

2.3.1 Fusion by averaging 

A simple approach for fusion, based on the assumption of additive Gaussian noise, consists 

of synthesizing the fused image by averaging corresponding pixels of the sensor images as 

shown in Figure 2.1. Averaging works well when the images to be fused are from the same 

type of sensor and contain additive noise. If the variance of noise in q sensor images is 

equal then averaging them reduces the variance of noise in the fused image by a factor of q. 

Figure 2.2 is an example that illustrates fusion by averaging. The images in Figure 2.2(a) 

and 2.2(b) are synthetic images that simulate noisy visible-band images of a runway scene. 

The fused image in Figure 2.2(c) is less noisy than either of the original sensor images. 

Another advantage of using averaging for fusion is that it is computationally inexpensive 

as discussed in Appendix I. 
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Figure 2.1: Schematic diagram of fusion by averaging 

2.3.2 Image merging 

Another direct approach to fusion is image merging. This technique consists of generating 

a composite or fused image by merging relevant regions of the sensor images. Image 

merging generally involves identifying regions of interest from each of the sensor images 

and inserting them into the fused image. This is followed by blurring to smooth the 

boundaries caused by inserting regions from different images. Burt and Adelson [15] 

performed image merging using the multiresolution Laplacian pyramid1 representation, 

followed by smoothing using splines to obtain a smooth merge. 

2.4 Feature-based Approach to Fusion 

Since the essential goal of fusion is to preserve the image features in the sensor images, a 

logical extension of pixel-based fusion is to transform the images into a representation that 

decomposes the images into "features" such as edges, and perform fusion in this domain. 

Such a decomposition or transformation can be obtained in terms of basis functions that 

capture the particular image features. Researchers have shown that fusion techniques that 

'The Laplacian pyramid representation is discussed in Section 2.4.1. 
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Figure 2.2: Example of fusion by averaging



operate on such features in the transform domain yield subjectively better fused images 

than pixel-based techniques [ l l ,  13, 16, 51, 68, 691. 

The need to preserve image features in the fused image imposes certain requirements for 

the transform domain representation to satisfy. The transform should separate the features 

with respect to resolution at different scales and maintain the location information 11511. 

Different features in an image are important at different scales. Relevant details about each 

image feature generally exist over a restricted range of scales and resolutions. Sometimes 

only coarse image features are important, in other cases fine detail is important. For fusion 

(as in other computational vision tasks), it is essential that the scale and resolution of the 

analysis (and synthesis) match that of image features within the scene [12]. A multiscale 

representation facilitates this type of analysis using a fixed size analysis window which is 

then used over different scales of the representation. The transform domain representation 

should also separate the information in the images according to resolution. This facilitates 

combination of image information at the matching resolution when images with different 

resolutions are to be fused. The need for maintaining location information arises because 

the relationships between multisensor image features changes with location (this point 

is discussed further in Section 3.2.1). With location information maintained, features at 

different locations in the sensor images can be combined appropriately. 

A multiresolution pyramid transformation decomposes an image into multiple resolu- 

tions at different scales while preserving location information [ll, 681. A pyramid is a 

sequence of images (or levels) in which each level is a filtered and subsampled copy of 

the predecessor. A schematic of a multiresolution representation is shown in Figure 2.3. 

The lowest level of the pyramid has the same scale as the original image and contains the 

highest resolution information. Higher levels of the pyramid are reduced resolution and 

increased scale versions of the original image. Multiresolution pyramid representations 

contain descriptive information about edges, zero crossings, gradients, contrast etc. in 

the image. The successive levels of the pyramid from the lowest level to the highest level 

represent increasingly coarse approximations to these features. Fusion using the Laplacian 

pyramid representation is described in the following section. 
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Figure 2.3: Multiresolution image representation 

2.4.1 Fusion using selection in the Laplacian pyramid domain 

Burt [ll] first proposed selection-based fusion as a model for binocular vision. The selec- 

tion2 approach to fusion consists of three main steps: 

1. Each sensor image is decomposed into a multiresolution pyramid representation to 

obtain the sensor pyramids. 

2. A fused pyramid is constructed from the sensor pyramids by selecting the most 

salient coefficient (hyperpixe13) from the sensor pyramids at each location of the 

pyramid. 

3. The inverse pyramid transform is then applied to the fused pyramid to obtain the 

fused image. 

These three steps are illustrated in Figure 2.4. 

Burt performed the selection operation in the Laplacian pyramid transform domain. 

The Laplacian pyramid is obtained from the Gaussian pyramid [Ill. Let Gk be the kth 

(k = 0 , .  . . , N) level of the Gaussian pyramid for an image I. Then, 

G"' = [w * G ~ ] ~ ~  for k = 1 . .  . N - 1 

'The pyramid-based selection approach is also known as "pattern-selective" fusion [13, 701 since it 
selects patterns (i.e., image features) in the images that are isolated by the pyramid transform. 

3 ~ n  this dissertation we refer to the the coefficients at  different levels of the pyramid as hgperpixels. 
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Figure 2.4: Fusion using multiresolution pyramids



where w is a kernel that is a digital approximation of the Gaussian probability distribu- 

tion function4, * denotes two dimensional convolution and the notation [...IL2 indicates 

that the image in brackets is downsampled by 2 (in both the horizontal and vertical di- 

rections). The Gaussian kernel w is used as a convolution mask for filtering the image. 

The downsampling operation is accomplished by selecting every other point in the filtered 

image. The Gaussian pyramid is a set of low-passed filtered copies of the image, each with 

a cut-off frequency one octave5 lower than its predecessor. 

The levels of the Laplacian pyramid are obtained as 

Lk = G~ - 4w * [Gk++'It2 for k = 0 . .  . N - 1 

where the notation [.. .It2 indicates that the image inside the brackets is upsampled by 2 

(in both the horizontal and vertical directions). Here, convolution by the Gaussian kernel 

has the effect of interpolation by a low-pass filter. Each level in the Laplacian pyramid 

represents the result of convolving the original image with a difference of two Gaussian 

functions [ll]. The difference of Gaussians resembles the Laplacian operator6 commonly 

used in image processing [26, 631, and hence the name Laplacian pyramid. The Laplacian 

pyramid transform decomposes the image into multiple levels. Each successive level is a 

band-passed7, sub-sampled and scaled version of the original image. 

The Laplacian pyramid has the perfect reconstruction property - the original image 

can be reconstructed by reversing the Laplacian pyramid operations: 

4 ~ ~ r t  [ll] gave several constraints in the spatial domain for the kernel w including separability and 
symmetry. As a result the two dimensional convolution can be implemented as two one dimensional 
convolutions. The kth level of the Gaussian pyramid can also be obtained by filtering with an equivalent 
kernel wk and appropriate downsampling. For a choice of w = [I, 4,6,4,1], the equivalent kernels wk 
resemble the Gaussian probability density function and hence the name Gaussian pyramid. 

5Convolving by w does not result in a perfect half-band filtering operation and consequently there 
is some aliasing due to downsampling. However, the aliased component is cancelled when the image is 
reconstructed from the Laplacian pyramid. 

 he Laplacian operator is a second derivative operator. Zero crossings of the image obtained after 
applying the Laplacian operator give the location of edges in the image [26]. 

'For a frequency domain analysis of the Laplacian pyramid operations, see [53]. 



-k+l $ = ~ k + 4 w * [ ~  Itz for I ~ = o  . . .  N - 1  

Go is identical to the original image I. 

Fusion is performed in the Laplacian pyramid domain by constructing a fused pyramid. 

The pyramid coefficient (or hyperpixel) at each location in the fused pyramid is obtained 

by selecting the hyperpixel of the sensor pyramid that has the largest absolute value. Let 

LA and LB be the Laplacian pyramids of two images A and B. Let LF be the fused 

pyramid. Then, 

~ : ( i ,  j) if 
L$(i,j) = 

IL$(i7 dl > lLk(i,j)l 

Lk(i, j) otherwise 

where k is the level of the pyramid and (i, j) denotes a hyperpixel at that level. The 

computational complexity of fusion by selection using Laplacian pyramids is discussed in 

Appendix I. 

Figure 2.5 shows simulated infrared and simulated visible-band images of a runway 

scene and their corresponding Laplacian pyramids. Figure 2.6 shows the fused pyramid 

synthesized with the selection rule described above. Image features from both the sensor 

images are preserved in the fused image. The runway structure from the infrared image as 

well as the runway lights from the visible-band image appear in the fused image. Moreover, 

the contrast of features that are present in only one of the sensor images (for example the 

runway lights) appears to be retained in the fused image. 

2.5 Variants of Feature-based Approaches 

Several variations of feature-based approaches using multiresolution representations have 

been described in literature. These techniques differ from pattern-selective fusion using 

the Laplacian pyramid described in Section 2.4.1 in the type of pyramid transform used 

and in the rule used to synthesize the hyperpixels in the fused pyramid. A brief description 

of the important techniques follows. 



(a) IR image (b) Visual image

(c) IR pyramid

(d) Visual pyramid

Figure 2.5: Infrared and visual images and their Laplacian pyramids
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(a) Fused pyramid

(b) Fused image

Figure 2.6: Fusion by selection using Laplacian pyramids



2.5.1 Fusion using contrast pyramids 

Toet et al. [70, 68, 691 introduced an image fusion technique which preserves local lumi- 

nance contrast in the sensor images. The technique is based on selection of image features 

with maximum contrast rather than maximum magnitude. It is motivated by the fact 

that the human visual system is based on contrast and hence the resulting fused image 

will provide better details to a human observer. The pyramid decomposition used for 

this technique is related to luminance processing in the early stages of the human visual 

system which are sensitive to local luminance contrast 1701. Fusion is performed using the 

multiresolution contrast pyramid. 

The contrast pyramid is obtained from levels of the Gaussian pyramid (see Sec- 

tion 2.4.1). The kth level Rk of the contrast pyramid is obtained as: 

The hyperpixels of the contrast pyramid R are related to the local luminance contrast. 

Luminance contrast C is defined as 

where L is the luminance at a certain location in the image and Lb is the luminance of the 

local background [68]. The denominator in the equation for Rk represents the upsampled 

and interpolated version of GkS1 .  A hyperpixel in this interpolated image corresponds 

to a weighted local average in the neighborhood of the hyperpixel at the same location 

in Gk.  Hence, the denominator in Rk is proportional to Lb whereas the numerator is 

proportional to L. Therefore the pyramid whose levels are Rk - Ik (where Ik is the 

lcth level of the unit pyramid with all hyperpixels having value I), represents a contrast 

pyramid8. The original image can be perfectly reconstructed by reversing the pyramid 

generation operations described above. 

8~ is also known as the ratio of low pass (ROLP) pyramid because of the manner in which it is 
constructed from low-pass filtered copies of the original image [68]. 



The fused contrast pyramid RF is formed from the contrast pyramids RA and RB of 

the images A and B by using the selection rule, 

R:(i,j) if 
~ b ( i , j )  = 

I R ~ G ,  j) 1 > IRk (i, j )  1 
Rk(i, j) otherwise 

where k is the level of the pyramid and (i, j)  denote the hyperpixels at that level. The 

fusion rule selects the hyperpixels corresponding to the largest local luminance contrast. 

As a result, image features with high contrast are preserved in the fused image. 

2.5.2 Noise-based fusion rule 

Pave1 et al. [51] developed this approach for fusion of images from passive millimeter wave 

radar (PMMWg ) with computer generated imagery (synthetic images) from a terrain 

database. Images from PMMW have a much lower resolution than the synthetic images 

(or even visible-band images). In this technique, the effects related to the generation of 

the PMMW image m(Z), such as limited spatial resolution, atmospheric attenuation and 

noise are described by a set of operations on a gray-level image of the scene s(T): 

where, T is the spatial location, a(z) is the atmospheric attenuation over a distance z, h 

represents the low-pass sensor characteristics, * denotes convolution, n is the noise due to 

the environment and the sensor, and b is a mapping between the PMMW image and the 

desired gray level image s. 

The database image contains the high frequency features expected in the scene, but 

does not have any information about the presence of obstacles in the scene. The database 

image d(T) is related to the desired scene by a multiplicative function c(T) that indicates 

the presence or absence of unexpected objects g (T), 

where c(5) E {O,l). 

'PMMW is a passive sensor based on millimeter wavelength radiation 1611. 



Fusion is performed using the Laplacian pyramid. The fusion algorithm is based on a 

weighted sum of the PMMW and database pyramids, 

with weights that change with the level and location within the pyramid. The weights 

a and p are determined by local estimates of the signal-to-noise ratio of the two sensor 

images. The technique approximates the atmospheric attenuation a using regression anal- 

ysis. The mapping b ( 3 )  is estimated in the minimum mean squared error sense assuming 

c(Z) = 0 everywhere. The residual error is used to estimate the standard deviation of noise, 

gm. The residual errors are then compared to om and excessive values are interpreted as 

potential obstacles, c = 1. Estimates of variability in small spatial and temporal neighbor- 

hoods are used to determine the weights at each hyperpixel location. The authors assert 

that this technique is effective in fusing synthetic imagery with lower resolution PMMW 

imagery. 

2.5.3 Fusion by combination of selection and averaging 

This approach proposed by Burt and Kolczynski [16], is a modification of the selection rule 

using Laplacian pyramids described in Section 2.4.1. Fusion is performed by a combination 

of selection and averaging to improve the noise immunity and to address the case of 

features with opposite contrast. The pyramid representation used in this approach is 

the gradient pyramid where the basis functions are gradient of Gaussian patterns (i.e., 

gradient operators applied to Gaussian kernels). 

The fusion step consists of two operations - selection and averaging. At the hyperpix- 

els where the source images are distinctly different, the most salient hyperpixel is selected 

into the fused pyramid. At the hyperpixels where source images are similar, their average 

is computed and assigned to the fused pyramid. Similarity and salience are determined 

by the match measure and the salience measure. The salience is determined by the local 

energy within a neighborhood p of each hyperpixel. The salience S at a hyperpixel (m, n) 



at orientation o and level k of the gradient pyramid10 of an image I is computed as 

SI(m,n,o,k) = D ~ ( m + m ' , n + n ' , o , k ) ~ p ( m ' , n ' )  
r n ' n ' ~ ~  

where DI denotes the gradient pyramid of the image. The analysis window defined by the 

neighborhood p is typically the hyperpixel itself or a 3 x 3 or 5 x 5 array of hyperpixels 

surrounding the hyperpixel. 

The match measure is determined by the normalized local correlation between the 

source pyramids within the neighborhood p. 

2 DA (m + m', n + n', o, ~ ) D B  (m + m', n + n', o, k)~(m' ,  n') 

The normalized local correlation MAB has a value 1 for identical patterns, -1 for patterns 

that are identical with opposite signs and a value between 1 and -1 for all other patterns. 

The fusion rule consists of a weighted average 

where the weights are determined by the match and salience measures as 

if (MAB 5 a ) ,  Wmin = 0 and W,, = 1 

otherwise Wmi, = 1 - 1- and W,, = 1 - Wmi, 2 2 1-a 

i f (SA>SB),  WA =Wmax and WB = Wmin 

otherwise WA =Wrnin and WB = Wmax 

The weights change between the extremes (0 , l )  in selection mode and are roughly 0.5 in 

averaging mode when the correlation is near 1. The weights as a function of the normalized 

correlation are shown in Figure 2.7 for a = 0.85. 

The fused image is then constructed from the gradient pyramid D by first constructing 

a Laplacian pyramid from the gradient pyramid [16], and then following the steps in 

Section 2.4.1. Burt and Kolczynski [16] assert that this approach provides a partial solution 

''For details of the gradient pyramid see [16]. 
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Figure 2.7: Sensor weights as a function of normalized correlation

to the problem of combining features that have reversed contrast, since such patterns

are always combined by selection. In addition, the area-based salience measure and the

gradient pyramid provide greater stability in noise, compared to Laplacian pyramid based

fusion.

2.5.4 Wavelets based approaches

An alternative to fusion using pyramid based multiresolution representations is fusion in

the wavelet transform domain [43]. The wavelet transform decomposes the image into

low-high, high-low, high-high spatial frequency bands at different scales and the low-

low band at the coarsest scale. The low-low band contains the average image information

whereas the other bands contain directional information due to spatial orientation. Higher

absolute values of wavelet coefficients in the high bands correspond to salient features such

as edges, lines, etc. Li et al. [43]perform fusion in the wavelet transform using a selection-

based rule. Fusion is performed by selecting, at each location of the wavelet transform, the

wavelet coefficient which has the maximum absolute value within a small analysis window,

since it represents the presence of a dominant feature in the local area. This is followed

by a consistency verification stage in which the selection of a hyperpixel in image A is

changed to image B if a majority of the surrounding pixels are from image B. The authors

showed that this scheme performs better than Laplacian pyramid based fusion due to the



compactness, directional selectivity and orthogonality of the wavelet transform. 

Wilson et al. [78J suggested an extension to wavelet-based fusion using a perceptual- 

based weighting. The wavelet coefficients from each sensor image are combined using a 

weighted average. The weighting of each coefficient is based on a salience measure that is 

determined by the contrast sensitivity function1' of the human visual system. As a result, 

higher weighting is given to coefficients that are salient to the human visual system. The 

salience measure is computed using a neighborhood of wavelet coefficients, as the contrast 

sensitivity weighted sum of the Fourier transform coefficients of the wavelet coefficients. 

Wilson et al. showed that this technique produces fused images that are visually better 

than the fusion techniques based on the gradient pyramid (Section 2.5.3) or the contrast 

pyramid (Section 2.5.1). 

2.6 Other Approaches to  Image Fusion 

Fechner and Godlewski 1231 have used artificial neural networks to combine a low light 

level television (LLLTV) image with a FLIR image at the pixel-level. This technique uses 

the LLLTV image as the base image. Important details of the FLIR image, as selected 

by a multi-layer perceptron (MLP), are then superimposed on the base image. The MLP 

generates a binary mask which designates which regions in the FLIR image should pass 

into the fused image. The MLP is trained with input features such as edges, contrast, 

variance, etc., as well as task specific features such as roads and busyness12 determined by 

small spatial filters. The output masks for training are prepared manually. Fechner and 

Godlewski showed that this technique has the potential to work better than selection-based 

fusion. 

llContrast sensitivity is the reciprocal of the threshold contrast required for a given spatial frequency 
to be perceived. The contrast sensitivity function is a plot of contrast sensitivity as a function of spatial 
frequency [17, 57, 731. 

''For details, see the references within [23]. 



2.7 Shortcomings of Existing Fusion Approaches 

Fusion by averaging can produce unsatisfactory results when there is a mismatch in image 

features in the sensor images (such as local polarity reversals and complementary features 

mentioned in Section 1.3). Features that appear with local polarity reversed contrast in 

the sensor images can appear cancelled out in the fused image as a result of averaging. An 

example of fusing images with mismatched features using averaging is shown in Figure 2.8. 

Figure 2.8(a) and 2.8(b) are simulated visible-band and IR images, respectively, of a 

runway scene. The runway surface in the IR image has reversed contrast relative to the 

visible-band image. The fusion result using averaging is shown in Figure 2.8(c). Averaging 

the pixels in the contrast-reversed runway region cancels out the runway features making 

it difficult to identify the runway in the fused image. Another drawback is caused by 

complementary image features that appear in one sensor image but not the others. Such 

features are rendered in the fused image at reduced contrast relative to the sensor image 

in which they appear. The issues relating to the mismatch in image features are discussed 

further in Chapter 3. 

The main disadvantage of using image merging is that, even in ideal situations the 

signal from one image is completely ignored. In addition, it is difficult to automatically 

select regions of interest from the sensor images. Image merging can lead to false edges or 

discontinuities between regions taken from different images [68]. Such artifacts can create 

problems for a human observer viewing the fused image. 

The various approaches to image fusion based on pattern-selection in the pyramid 

transform domain (i.e. the selection rule and variations of this rule) differ mostly in 

the image representation used for fusion. The selection-based approaches to fusion work 

well under the assumption that at each image location, only one of the sensor images 

provides the most useful information. This assumption is often not valid. For example, 

when infrared and visible-band images are to be fused, image features in the infrared 

image are often similar to those in the visible-band image but with reversed contrast. 

The strategy of selecting pyramid coefficients from one image or another degrades fusion 

results when the images contain features with reversed contrast. There is a possibility of 



(a) Visual image (b) IR image

(c) Fusion by averaging

Figure 2.8: Cancellation of image features due to fusion by averaging
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feature cancellation when the inverse pyramid transform is applied to obtain the fused 

image. 

Most of the existing approaches do not explicitly discriminate between signal and noise. 

In selection-based techniques the salience metrics that determine the selection of features 

are sensitive to noise in the sensor images. The salience metrics are usually based either 

on the energy of the pyramid coefficients or the energy of coefficients in a small local 

neighborhood. When noise in the sensor images is high, it tends to get selected into the 

fused image. An example of fusion by selection using an area based selection rule on noisy 

images is shown in Figure 2.9. Figure 2.9(a) and 2.9(b) are simulated visible-band and 

infrared images of a runway scene. The result of fusion using selection in the Laplacian 

pyramid domain is shown in Figure 2.9(c). The salience of each hyperpixel in this case 

is computed as the sum of squared hyperpixel values in a 5 x 5 area surrounding the 

hyperpixel. This area based salience measure reduces the effect of noise. However, the 

fused image is still noisy because the noise spikes in the sensor images appear as salient 

hyperpixels to the selection algorithm. 

The modifications to selection-based fusion approaches, which include techniques that 

perform a mix of averaging and selection (see Section 2.5.3) aim to overcome some of the 

drawbacks of the above techniques. However, the decision to average or select is dependent 

upon certain thresholds that are difficult to determine automatically since they are image- 

dependent. Any hard threshold will be sub-optimal when the sensor image characteristics 

change over time. Moreover, the weighting of the two sensors based on the match and 

salience metrics is somewhat ad-hoc. 

Most of the existing fusion approaches deal with static fusion, i.e., fusion of a set of 

images of the same scene obtained from multiple sensors. Temporal information available 

in a sequence of images (video sequences) from the sensors is not utilized for the purpose 

of fusion. Moreover, a large part of the research on image fusion has focussed on choosing 

an appropriate image representation to facilitate better pattern-selection. An important 

issue that has not been given due emphasis is the characterization of noise in the imagery 

obtained from the sensors. As a result the fusion techniques based on selection are not ca- 

pable of adapting to changing environmental conditions or changing noise characteristics. 



(a) Visual image
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(b) IR image

(c) Fusion by selection

Figure 2.9: Fusion by selection on noisy images



The noise based selection rule of Section 2.5.2 is a first step towards more robust fusion 

techniques. The explicit use of knowledge gained from the study of the human visual 

system has been lacking, as also the need for training the fusion algorithms on known 

data. Approaches such as the ones described in Sections 2.5.4 and 2.6 are beginning to 

address these issues. 

2.8 Discussion 

In this chapter, we reviewed important fusion techniques described in literature. We dis- 

cussed the advantages as well as the shortcomings of these techniques. In this dissertation 

we will present a fusion approach that overcomes some of the shortcomings of the ex- 

isting approaches. In the next chapter we model the process of sensor image formation 

and explicitly deal with noise, local polarity reversals and complementary features. Using 

this model, we develop a probabilistic fusion rule that combines the sensor images based 

upon the signal and noise content. The fusion rule has a provision to use prior image 

information about the imaged scene. In Chapter 4 we describe how the parameters of the 

model are obtained from the sensor images. We also show how temporal information from 

multiple frames can be used to estimate the sensor noise. Our proposed fusion solution is 

illustrated with several examples in Chapter 5. 



Chapter 3 

Model-based Approach to Image Fusion 

3.1 Introduction 

In this chapter we introduce our model-based probabilistic approach to fusion. We define 

an image formation model that is based upon a detailed analysis of images of the same 

scene captured by different sensors. This analysis explains the different relationships that 

exist between image features in multisensor imagery. In our image formation model, 

the sensor images are noisy, locally affine functions of a true scene. The model is an 

approximation of the nonlinear mapping that exists between the scene and the sensor 

images. Yet, it captures the important relationships between the features in the scene and 

the sensor images. The model is defined within a multiresolution pyramid representation 

(see Section 2.4). 

The image formation model is then inverted within a Bayesian framework to provide 

either maximum likelihood or maximum a posteriori estimates of the true scene. These 

estimates constitute our rule for fusion of the sensor images. We relate these fusion rules to 

the existing fusion techniques (discussed in Chapter 2) and show that these rules address 

their drawbacks while retaining their advantages. The fusion rules require estimates of 

the parameters of the image formation model. This estimation process is described in 

Chapter 4. 

Section 3.2, analyzes the fusion problem by examining the relationships between mul- 

tisensor image features. Based on this analysis, we introduce our model for fusion in 

Section 3.3. Section 3.4 describes our Bayesian approach to fusion and derives the fusion 

rules based on maximum likelihood and maximum a posteriori estimation. The derived 



fusion rules are then compared with existing approaches. Section 3.5 summarizes the 

discussion in this chapter. Throughout this chapter, as in Chapter 2, we assume that 

the sensor images have been transformed to a conformal geometric representation and are 

perfectly registered. 

3.2 Fusion Problem Analysis 

Visible-band, infrared and radar-based imaging sensors (e.g. TV, FLIR and MMWR) 

operate in different bands of the electromagnetic spectrum and have different spectral 

sensitivities. The sensing principles of these sensors are based on different physical phe- 

nomena. As a result, characteristics of the image data generated by each of these sensors 

are different. Objects and materials in a scene, environmental factors, and the sensing 

process, give rise to patterns or image features in the sensor images. Due to the differ- 

ences in the sensors, the features in images of the same scene are likely to be different 

from one sensor image to another, but are usually closely related. However, the relation- 

ships between image features can sometimes be complex. In order to appropriately fuse 

images from multiple sensors, it is necessary to understand the nature of the relationships 

between image features at corresponding locations in different sensor images. The ben- 

efits obtained from fusion depend upon extracting knowledge about these relationships 

and meaningfully representing them in the fused image. To understand the relationships 

between image features, we analyzed images obtained from different types of sensors. 

3.2.1 Relationships between multisensor image features 

As stated above, due to differences in the sensing processes, different sensors generate 

distinct images of the same scene. Differences also arise due to the different material 

characteristics of the objects in the scene and their thermal properties. The differences 

are further accentuated by factors such as the time of the day and environmental conditions 

such as fog, cloud cover and rain. 

The polarity of local contrast is often reversed between visible-band and IR images [16, 

441 of the same scene. As a result, an IR image looks like the negative version of the 



(a) Visible-band image
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(b) Infrared image

Figure 3.1: Example of polarity reversal

visible-band image. However, the reversal in the polarity of contrast is not necessarily

a global effect throughout the image. Sometimes only specific local patches or patterns

in the infrared image have reversed polarity of contrast. We call this effect local polarity

reversal. Figure 3.1 shows an example of this effect in the ALG application. Figure 3.1(a)

and 3.1(b) are visible-band and IR images respectively that show a runway scene as an

aircraft is approaching to land. A region that has a local polarity reversal is marked with

white rectangles in both images. During daytime, an asphalt runway with white markings

is imaged as a bright runway with dark markings in the IR image. This is because the

asphalt runway becomes hot whereas the white paint of the markings stays relatively cool.

However in the visible-band image the runway appears dark with bright markings. Such

polarity reversals are often encountered when IR sensors are used.

IR and MMWR images may sometimes contain image features that are absent in

visible-band images or vice versa [64]. Such disparities can be caused by thermal differ-

ences or strongly reflecting man-made objects in the scene. We call such sensor-specific

features in the images complementary features. The reason these features are termed

complementary is because they complement each other in tasks such as detection and

recognition. Figure 3.2 shows an example of images containing complementary features.

Figures 3.2(a) and 3.2(b) are the same images as in Figure 3.1 and show complementary

features marked with white circles.



(a) Visible-band image
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(b) Infrared image

Figure 3.2: Example of complementary features

In addition to the discrepancies in the image features, the noise characteristics may be

different for each sensor image. The source of the noise could be either the sensor itself

or environmental factors such as fog or rain. The sensor images may thus have different

signal-to-noise ratios. The noise characteristics may also change from region to region

within the same sensor image. Figure 3.3 illustrates these effects, again with the help of

an example from the ALG application. The image in Figure 3.3(a) is another image of

the same scene captured by MMWR. The radar image is noisy compared to the infrared

image. The signal-to-noise ratio in the radar image varies from one region to another.

Based on the above analysis, image features in multisensor images can be generally

categorized into the following components:

1. Common features

These are the features that are common to all sensor images. Common features

include features that appear similar as well as features that are polarity reversed.

An appropriate combination of the common features increases the signal- to-noise

ratio and is beneficial for fusion.

2. Complementary features

Complementary features are those features that are unique to a particular sensor

image. Such features convey important information about the scene being sensed and



(a) Radar image
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(b) Infrared image

Figure 3.3: Example of noisy sensor images

can be used in detection, identification and guidance. Examples of complementary

features are bright features that appear in infrared imagery due to hot objects.

3. Irrelevant complementary features

Irrelevant complementary features contain information that is irrelevant to the task

being performed and could cause undue interference to the human operator or vision

system. For example, consider a shadow of an aircraft on a runway. The shadow cools

a patch of the runway. Once the aircraft departs, this patch will appear dark in an IR

image whereas there would be no such feature in a visible-band image. Isolation of

irrelevant complementary features from complementary features generally requires

domain knowledge and task specific processing.

4. Noise

Noise is the randomly varying component that does not carry any information about

the scene that is being captured by the sensors. Noise changes from sensor to sensor

and from region to region within a sensor image.

It is important to note that the relationships between the image features are local in

nature and change from location to .location in the sensor images. The design of effective

fusion algorithms is difficult because the optimality of combining different images depends

on the local relationships between sensor images. For example, fusion based on averaging



works well for regions in the sensor images which are essentially the same except for the 

additive noise (see Section 2.3.1). However, averaging can cause a reduction in contrast 

in the regions in the sensor images that contain complementary features. In this case, a 

simple local selection of the sensor with more salient features will preserve the contrast 

(see Section 2.4.1). 

Due to the local nature of the relationships between the features in the sensor images, 

it is desirable that a fusion algorithm combine different local regions according to the 

local relationships. Furthermore, to maximize the benefits obtained from using multiple 

sensors, a fusion algorithm should enhance and display the common features, display the 

useful complementary features and suppress or eliminate noise and irrelevant features. In 

order to do that we would need to estimate each of these components in each sensor image. 

3.3 Model-based Approach 

A model-based approach to fusion allows the inclusion of knowledge about the sensor 

processes into a fusion algorithm [20]. Our approach to fusion is based on modeling the 

formation of the sensor images from the scene by defining an image formation model. The 

model provides a framework to incorporate knowledge about the relationships between 

the features in the sensor images and the variability caused by the noise. This model- 

based approach also allows the inclusion of additional information about the scene in the 

form of prior knowledge. Our image formation model explicitly accounts for the different 

components outlined in Section 3.2'. 

3.3.1 Image formation model 

We assume that there exists an actual physical scene (true scene) s that is being imaged 

by multiple sensors. For example, for an application such as automatic landing guidance 

in aviation (see Section 1.2.1), s would be an image of the landing scene under conditions 

of uniform lighting, unlimited visibility and perfect sensors. 

'Here, both relevant and irrelevant complementary features are treated as complementary features. Ap- 
pendix C describes approaches to enable a human observer to discriminate between relevant and irrelevant 
complementary features. 



The true scene gives rise to a sensor image through a nonlinear and noninvertible 

mapping. We approximate the mapping between the true scene and each sensor image 

by a locally affine transformation. This transformation is defined at every hyperpixel 

(see Section 2.4.1) of the multiresolution Laplacian pyramid. Using the true scene s,  this 

transformation is given by, 

where, 

i = 1, . . . , q indexes the sensors, 
+ 

I - (x, y, k) is the hyperpixel location, 

where, 

x, y are the pixel coordinates, and 

k is the level of the pyramid, 

t is the time, 

a is the sensor image, 

s is the true scene, 

a is the sensor bias (captures the effects of dysfunctional sensor elements), 

p is the sensor gain (captures local polarity reversals and complementary fea- 

tures), 

E is the (zero-mean) sensor noise having variance ozi, 

and we assume that s,  a,  p, a and E are all real valued, and x, y, k and t are all discrete2. 

This is the image formation model or the sensor model3. The model describes how the 

'The true scene is continuous. However, we assume point sampling with no aliasing. 
'A commonly used image formation model [26] used in the field of image processing consists of 

where (x, y) is the pixel location and h is the blur caused by the imaging process. Our image formation 
model given by Equation (3.1) is a simplification of this model where we assume hi(m, n) = Pi for m = 
0, n = 0 and is zero otherwise. That is, we assume that the effects of blur have already been corrected. 



sensing elements give rise to the sensor data. The probabilistic nature of the model and 

the assumptions about the scene and the noise are described in detail in the next section. 

The image formation model is local because it is defined at each hyperpixel location at 

each time frame. We do assume, however, that the image formation parameters and 

sensor noise distribution vary slowly from one spatial location to another. Specifically, 

the parameters vary slowly on the spatiotemporal scales over which the true scene s may 

exhibit large variations. Hence, a particular set of parameters is considered to hold true 

over a spatial region of several square hyperpixels. We use this assumption implicitly when 

we estimate these parameters from the sensor images (see Chapter 4). 

For the general case in which there are q sensors, the model in Equation 3.1 can be 

expressed in matrix form as, 

T T 
where o = [al,a2,. . . ,aq] , = [a,&, . . . , &lT, a = [al ,a2, .  . . ,aq] , s is a scalar and 

T 
r = [el, €2, .. . , eq] . The reference to location and time has been dropped for simplicity and 

will not be made explicit henceforth unless necessary. 

Note that the image formation model is a locally linear, first degree approximation 

of the actual, possibly nonlinear, mapping that exists between the visual information in 

the scene and the output generated by an imaging sensor. A more complete model would 

capture nonlinearities, and model other attributes such as sampling effects and low pass 

sensor characteristics (blur) [51]. 

The model in Equation (3.1) incorporates components that are important from the 

fusion point of view. Since the image formation parameters p, a, and the sensor noise 

covariance C, can vary from hyperpixel to hyperpixel, the model can express local polarity 

reversals, complementary features and spatial variation of sensor gain. In addition, the 

model explicitly accounts for the noise characteristics of each sensor. 

3.3.2 Representation used for performing fusion 

We employ a multiresolution pyramid representation of the sensor images based on the 

Laplacian pyramid transform. The advantages of using multiresolution representations for 



fusion are outlined in Section 2.4. The Laplacian pyramid transform decomposes an image 

into multiple levels such that each successive level is a bandpassed, subsampled and scaled 

version of the original image. Section 2.4.1 gives a detailed description of the Laplacian 

pyramid transform. 

Although we have chosen the Laplacian pyramid as the representation for performing 

fusion, our model-based approach may also be applied to other representations. The 

focus of our technique is on modeling the relationships between the sensor images with 

an objective to fuse the sensor images in a principled manner. Any of a number of 

multiresolution representations may be used for this purpose. 

3.4 Bayesian Fusion 

We have defined a model that describes how the sensor images are obtained from the true 

scene. The goal of our fusion algorithm is to invert this model to obtain an estimate of 

the true scene from the sensor images. We use a Bayesian approach for estimating the 

true scene. Clark and Yuille [20] have described the advantages of Bayesian methods for 

data fusion, and applied such methods to several problems including stereo vision and 

shape from shading. Given the sensor intensities, a ,  we estimate the true scene s using 

a Bayesian framework. We assume that the apriori probability density function of s is a 

Gaussian with (locally varying) mean so and (locally varying) variance CT:, 

where the location dependence of the parameters is implicit. The noise density is also 

assumed to be Gaussian with zero mean and a (locally varying) diagonal covariance 

C, = diag[ozl, a%,  . . . , oZb], where CT; is the noise variance at a particular hyperpixel 

location of the ith sensor. Noise in one sensor image is assumed to be uncorrelated with 

noise in other sensor images and uncorrelated with the scene s. 

The density on the sensor images, conditioned on the true scene is, 



The conditional density P(a(s)  corresponds to the image formation model which describes 

how the scene gives rise to the sensor data depending upon the sensing devices and other 

factors. The marginal density P(a)  describes the distribution of the sensor images a 

(therefore we also refer to it as the model distribution) and is given by, 

where pm is the model mean given by 

and C is the model covariance given by 

The posterior density of the latent variables s,  given the observed sensor data a ,  is obtained 

by Bayes' rule, 

Substituting Equations (3.3), (3.4) and (3.5) and simplifying, 

where, 

is the posterior covariance, and, 

is the conditional mean. The operator E{.)  denotes expectation. 



3.4.1 Maximum likelihood estimate of fused image 

The maximum likelihood (ML) estimate of the scene can be obtained from the density 

of the sensor images conditioned on the scene, given in Equation (3.4). Maximizing the 

logarithm of F(als)  with respect to s yields 

iML = [ p T ~ ~ l p ]  {pT~;'  (a  - a ) }  

This is the maximum likelihood rule for fusion. For two sensors, this fusion rule reads 

The fused image dML is a weighted linear combination of the sensor images. The weights wi 

change from hyperpixel to hyperpixel and through time as a result of the spatiotemporal 

variations in 0 and C,. 

3.4.2 Maximum a posteriori estimate of fused image 

When prior knowledge about the scene is available, the maximum a posteriori (MAP) 

estimate of the true scene can be obtained. The MAP estimate, iMAP, of the true scene 

is obtained by maximizing the logarithm of the posterior density in Equation (3.9) with 

respect to s.  For our assumption of Gaussian distributions, this estimate is simply the 

posterior mean from Equation (3.11). 

This is the maximum a posteriori rule for fusion. For two sensors, it reads 



From Equation (3.15) one can observe that the fused image i is a weighted linear combina- 

tion of the sensor images and the prior image of the scene. As in the maximum likelihood 

case, the weights wi change from hyperpixel to hyperpixel and through time as a result of 

the spatiotemporal variations in P, C, and a:. 

The MAP fusion rule is equivalent to the ML fusion rule when a: = oo, i.e., with 

no prior knowledge. In Section 3.4.3 we discuss how the fusion rules achieve the goals 

for fusion in the presence of polarity reversed and complementary features as well as in 

noise. The fused image at each time frame can be computed using either Equation (3.14) 

or (3.12) only if the parameters P, a and C, are known. In reality, the parameters P, a 
and C, are unknown and need to be estimated from the sensor images. In Chapter 4 we 

describe different techniques to estimate these parameters, and in Chapter 5 we present 

results using the ML and MAP fusion rules. 

Interpretation of the priors 

The parameters so and a: denote prior knowledge about the scene. For example, in the 

ALG application in aviation, prior knowledge about the landing scene may be available in 

the form of an ensemble of scenes of previous landing approaches to the runway. In this 

case, so and a: are given by the mean and the variance of this ensemble. One cause for 

variations in the ensemble is that thermal properties of materials in the scene affect the 

appearance of the scene at different times of the day. Another cause is registration errors 

in the ensemble. Sometimes, prior knowledge may be available from a terrain database 

of the scene. The parameter 0; determines the weighting given to the prior image in 

the fused image. For example, in Equation (3.15), if a; is high then the weighting given 

to so is decreased and the weighting given to the sensor images is increased. Similarly, 

a low value of a: increases the contribution of so to the fused image and decreases the 

contribution of the sensor images. The parameter a: can therefore be used as a knob to 

control the amount of prior knowledge that should pass on to the fused image. 



3.4.3 Comparison of fusion rule with existing fusion techniques 

The fusion rules in Equations (3.14) and (3.12) can properly respond to situations that 

tax averaging and selection met hods. This can be easily understood from Equation (3.15). 

As an example, consider the case where the second sensor has a polarity reversal. P2 is 

then negative and the contribution of the second sensor is negated before it is added to 

the contribution of the first sensor. On the other hand if the polarity is the same, then 

the two sensor contributions are added. Thus, in either case, the fusion rule performs the 

averaging operation using the correct polarity to add or subtract the sensor contributions. 

This ensures that there is no loss of detail due to reduction in contrast as in simple 

averaging, yet there is an increase in the signal-to-noise ratio due to averaging. 

Now consider the case of complementary features, where a feature is missing from 

sensor 1. This corresponds to PI = 0. The model compensates by accentuating the 

contribution from sensor 2. In this case the result is the same as selection of the sensor in 

which the feature is present. Thus, when complementary features are present, the fusion 

rule resembles the feature selection techniques. 

Finally, consider the case where the sensor images are noisy. If the first sensor has 

high noise (large azl) content, its contribution to the fused image is attenuated. At the 

same time, the contribution of the second sensor is increased. If both sensors are equally 

noisy, then the noise variance weights their contributions equally. Since the fusion rule 

attenuates the contribution of the sensors which are noisy, it overcomes the drawback of 

the feature selection techniques which often tend to select the more noisy sensor. 

Thus the MAP fusion rule not only responds properly to situations that challenge the 

previous fusion techniques, but it also retains the advantages of the existing fusion tech- 

niques (this is true for the ML fusion rule as well). An important difference as compared 

to existing fusion techniques is that these fusion rules explicitly account for noise in the 

sensor images. In the next chapter we will describe how ML and MAP fused images can be 

obtained using spatial as well as temporal information from the sensor images to estimate 

the model parameters. 



3.5 Summary 

In this chapter, we analyzed the relationships between image features in multisensor im- 

agery to understand the fusion problem. This analysis provided an understanding of the 

problems that need to be addressed by a fusion solution and motivated our approach to 

fusion. The approach is based on a probabilistic model which approximates the sensor 

images as local affine functions of the true scene. The model is based on a multiresolution 

representation of the images which decomposes the images into constituent patterns or 

features. The parameters of these affine functions describe how features in the sensor im- 

ages are related to features in the scene. A Bayesian framework provides either maximum 

likelihood or maximum a posteriori estimates of the true scene from the sensor images - 

these estimates are our rules for fusion. We described how the fusion rules extend and 

improve upon the existing fusion techniques such as averaging and selection. However, 

to compute the fused image using the fusion rules, one needs to estimate the parameters 

of the model. The estimation of these parameters is described in Chapter 4 and fusion 

results are presented in Chapter 5. 



Chapter 4 

Estimation of Model Parameters 

4.1 Introduction 

In Chapter 3, we derived fusion rules based on a probabilistic image formation model; the 

model being a set of locally affine functions that map the scene into the sensor images. 

The fusion rules generate the fused pyramid as a locally weighted linear combination of 

the pyramids of the sensor images. The weighting takes into account the strength of the 

signal attributed to the scene as well as the noise in the sensor images. We showed how 

these rules can retain the advantages of existing fusion techniques based on selection and 

averaging, while overcoming their drawbacks. 

The weights of the probabilistic combination rules for fusion depend upon the pa- 

rameters of the image formation model - the affine parameters p and a, and the noise 

covariance C,. These parameters are typically not known and need to be estimated from 

the sensor images and a priori knowledge about the scene. In this chapter we describe 

techniques for estimating these parameters. Section 4.2 describes the concept of using a 

local analysis window to estimate the model parameters. Section 4.3 describes two meth- 

ods for estimating the noise variance X, in the sensor images. The first method estimates 

the noise variance using one image from each sensor. The second method utilizes multiple 

images from each sensor. In Section 4.4 we describe a simple approach to estimate the 

affine parameters from a reference image of the scene. This approach uses regression to 

estimate the parameters ,8 and a, but has drawbacks. In Section 4.5 we describe a proba- 

bility model for sensor image data in the analysis window. Based on this model we derive 

estimates of the affine parameters using least squares factor analysis. Section 4.6 shows 



that with the parameters estimated, the probabilistic fusion rules of Chapter 3 are closely 

related to local principal components analysis. Section 4.7 concludes with a summary of 

the material covered in this chapter. 

4.2 Local Analysis Window for Parameter Estimation 

The image formation model of Equation (3.1) is defined for every hyperpixel at each level 

of a multiresolution Laplacian pyramid. However, with the exception of discontinuities, 

the relationship between two sensor images (e.g., local polarity reversals, complementary 

features) generally varies slowly between neighboring spatial locations (a few pixels apart, 

say 5 to 10 pixels) within an image. Therefore we assume that the image formation 

parameters and the noise characteristics vary slower with spatial location than the scene, 

within each pyramid level. Specifically, the parameters vary slowly over the spatiotemporal 

scales over which the true scene s may exhibit large variations. Hence, a particular set of 

model parameters (P, a and C,) can be considered to hold true over a spatial region of 

several square hyperpixels. 

To estimate the model parameters P and a, we define a local analysis window, RL, of 

h x h hyperpixels. We assume that the parameters are constant over this analysis window 

and estimate the parameters using the statistics computed from all the hyperpixels in the 

window. Essentially, this is an assumption of spatial ergodicity, where ensemble averages 

are replaced by spatial averages (carried out locally over regions in which the statistics 

are approximately constant). Ideally, RL should be small enough so that the parameters 

and cu are indeed constant in the window. However, the analysis window should be 

large enough to contain enough sensor data to estimate the parameters reliably. For 

the results in this thesis we have chosen as R L  a region of 5 x 5 hyperpixels around the 

hyperpixel for which parameters are to be estimated. This choice is a tradeoff between 

the two conflicting requirements on the local analysis window. 

Similarly, we also define an analysis window to estimate the noise variance in the 

sensor pyramids. To estimate noise variance from a single image from each sensor, we 

assume that the noise is identically distributed at all spatial locations in a pyramid level. 



The noise variance at a pyramid level is then estimated from the statistics of local spatial 

variance at that level(see Section 4.3.1). When multiple video frames from each sensor are 

available, we obtain an estimate of the noise variance at each hyperpixel (see Section 4.3.2). 

We assume that the noise is identically distributed at the same object location in the 

multiple frames. Therefore, if motion compensated successive frames are available, the 

noise variance can be estimated using hyperpixels in the successive frames at the same 

physical object location. In addition, we assume that the distribution of noise varies slowly 

spatially. Hence, noise variance estimates in a region of 5 x 5 hyperpixels can be averaged 

to obtain robust estimates at each hyperpixel. 

4.3 Estimation of Noise Variance 

We describe two techniques for estimating the variability due to the noise in the sensor 

images. The first technique can be applied when only a single image is available from 

each sensor. The second technique is based on the assumption that multiple motion 

compensated video frames are available from each sensor. 

4.3.1 Estimation using single frame 

In this technique we obtain an estimate of the noise variance using a single frame (i.e. a 

single image) from each sensor. This technique is based on two assumptions. The first 

assumption is that the distribution of noise is identical at different spatial locations at 

a particular level of a sensor pyramid. The second assumption is that the sensor image 

contains mostly flat regions with few discontinuities in the form of edges and lines. This 

technique can be used to estimate the noise variance when only one image frame is available 

from each sensor image, as long as the assumptions stated above are valid. An independent 

estimate of the noise variance is obtained for each pyramid level in two steps. 

The first step consists of estimating the spatial variance in small spatial regions of the 

image at the pyramid level of interest. The contribution to spatial variance in a small 

spatial region comes from two sources - the variance due to the noise and the variance 

due to edges and lines in the scene. In flat regions in the scene the spatial variance is 
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Figure 4.1: Schematic diagram of noise estimation using a single frame

almost entirely due to noise. In other regions the spatial variance is from both sources. We

estimate the spatial variance at each point in the image using a 5 x 5 region surrounding

the point as shown in Figure 4.1. This operation produces a spatial variance image of the

same size as the pyramid level.

The second step consists of estimating the noise variance by analyzing the distribution

of variance values in the spatial variance image. We plot a histogram of the variance

values as shown in Figure 4.1. If the image was flat throughout, then the histogram would

correspond to the distribution of noise variance estimates. In that case the noise variance

estimate could be obtained by computing the mean of the distribution. However, since

the image also contains edges and lines, the histogram will resemble that of Figure 4.1,

and the mean of the distribution would overestimate the noise variance. We estimate the

noise variance as the spatial variance corresponding to the mode (peak) of the distribution.

Note that this approximation tends to underestimate the noise variance in the case where

the image is essentially flat with very few edges.

The above two steps are repeated to obtain an estimate of noise variance at each level

of the Laplacian pyramid for all the sensors. Figure 4.2 shows the local variance images

and the variance histograms of level 0 of the Laplacian pyramid of two sensor images

corrupted with additive Gaussian noise. The noise covariance matrix ~E is computed
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Figure 4.2: Noise estimation using a single frame



from the noise variance of each sensor as defined in Section 3.4. Although this method is 

useful to estimate the noise from just one image, its drawback is that it obtains a single 

estimate of noise variance for a pyramid level. Hence, this method is not appropriate for 

sensors such as MMWR in which the noise distribution is likely to change from one spatial 

region to another within a pyramid level. 

4.3.2 Adaptive estimation of noise using multiple frames 

When a sequence of video frames are available from each sensor, we employ an alternative 

approach that uses multiple frames to estimate the noise characteristics at each hyperpixel 

in the Laplacian pyramid. This approach consists of adaptively estimating the noise 

variance from multiple frames. Adaptive estimation allows for tracking the change in the 

noise characteristics over time. 

We assume that the noise is identically distributed at the same object location in 

multiple frames. We further assume that successive video frames from the sensors can be 

motion compensated (i.e., registered, see Appendix B) so that identical object locations 

in multiple frames refer to the the same spatial locations. Several techniques for motion 

compensation are available in video processing and machine vision literature [7, 63, 651'. 

We compute the variance due to noise at each hyperpixel in the Laplacian pyramid. 

This approach is advantageous when the noise distribution is likely to change from region 

to region. We decompose the motion compensated frames into Laplacian pyramids as 

illustrated in Figure 4.3. We then compute the noise variance at each location in the 

pyramid from hyperpixels at that location in successive frames. The variance computation 

is performed adaptively by recursively estimating the average and the sum of squares at 

each hyperpixel. The estimate of the average value at each location is computed using the 

previous estimate of the average and the hyperpixel value at that location in the current 

frame. For the initial to frames, this estimation utilizes all available frames to compute the 

average. For subsequent frames, the estimate of the average at each location is computed 

using an exponential decay in the form of a leaky integrator to forget the effect of past 

'In the aviation example of Chapter 1, a knowledge of the motion of the platform containing the sensors 
can aid in motion compensation. 
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frames,

I

yai(t - 1) + tai(t) for 1 < t :S to

ai(t) =

tot~ 1ai(t - 1) + t~ai(t) otherwise

(4.1)

where ai(t) is the value at a particular location (here we have dropped the notation

referring to location) of sensor i at time t, ai(t) is the estimate of the average value at

squares is also estimated in a similar manner,

that location at time t, ai(O) = ai(O), and to > 1 is a time constant. The average sum of

-

!

t t 1ar(t - 1) + tar(t)

ar(t) =
f1L=la2 (t - 1) + la2 (t)to I to I

for 1 < t :S to

(4.2)

otherwise

with ar(O) = ar(O). The variance due to the noise at each hyperpixel for each sensor is

.
-
t-2

t-l



then computed as 

- 
a t  (t) = a: (t) - G~ (t) 

The noise covariance matrix for q sensors is then given by 

A separate estimate of the noise covariance C, is obtained at every hyperpixel location 

within each sensor pyramid. As discussed in Section 4.2, the estimates of noise variance 

of neighboring hyperpixels are usually similar. Hence, the noise variance estimates over a 

5 x 5 neighborhood can be averaged to obtain an estimate for the noise variance at each 

hyperpixel. 

The constant to determines the forgetting factor or the effective sequence length used 

to compute the variance. A lower value of to results in a shorter effective length, and the 

effect of past frames is quickly reduced. Whereas, a higher value of to results in a longer 

effective length and the effect of past frames is slowly reduced. The choice of to should take 

into account the dynamics of the changes in the image features due to motion, from frame 

to frame. For example, if the platform motion is fast, motion compensation will cause 

artifacts due to old scene information moving out of the video frames. Consider a sensor 

moving away from a scene. If the previous frame is motion compensated with respect to 

the current frame, it will have blank patches corresponding to the new scene regions that 

appear due to the away motion in the current frame. These artifacts are prominent for 

video frames that are further apart in time (say 4 frames apart). In our experiments we 

used to = 5, so that the influence of frames prior to the last 5 video frames (i.e., 116th of 

a second, if there are 30 frames per second) on the estimation of noise variance, is rapidly 

reduced. 



Discussion 

We compared the single frame noise estimation technique with the adaptive estimation 

given below on a image sequence obtained by adding Gaussian noise to a simulated image. 

One frame of this sequence is shown in Figure 5.6(a). Both the assumptions made in 

the single frame estimation were valid for an image frame from this noisy sequence. The 

variance estimate from the single frame estimation was comparable to the mean of the 

variance estimates obtained from the adaptive estimation over the pyramid level. However, 

at higher pyramid levels, the single frame estimation overestimated the noise, as the 

number of hyperpixels available for estimation was small. The adaptive estimation over 

multiple frames generates a variance estimate at each hyperpixel location, and therefore 

is capable of providing finer control over the weighting given to the sensor images in the 

probabilistic fusion rules. 

4.4 Reference Image Approach for Estimating Model Pa- 

rameters a! and p 

One approach to estimate the parameters /3 (i.e. PI, P2,. . . , Pq) and cu (i.e. al, a2, .  . . , a q )  

of the image formation model, is to correlate the sensor images with a known reference 

image of the scene. The reference image can be a prior image of the scene, for example 

an image of the scene obtained from a terrain database. In the absence of a prior image, 

one of the sensor images can be considered as the reference image. The choice of which 

sensor image to use as the reference image may depend on the application domain. For 

example, in ALG a visible-band image would be preferred since it generally approximates 

the desired scene. Let the reference image be represented by d. Then from Equation 3.1, 

a hyperpixel ai of the ith sensor image a can be described in terms of the hyperpixel of 

the reference image as, 

where the notation referring to location and time has been dropped. As explained in 

Section 4.2, we assume that the parameters Pi and ai are constant in a 5 x 5 hyperpixel 



spatial neighborhood. These parameters are then obtained by regression by minimizing 

the squared error E given by 

where N = 25 is the number of hyperpixels in a 5 x 5 neighborhood surrounding the 

hyperpixel for which the parameters Pi and ai have to be estimated. The parameter 

estimates are obtained by minimizing E. Differentiating E with respect to ai and Pi and 

equating to zero gives, 

The parameters are thus obtained by regressing the sensor images onto the reference image. 

If one of the sensor images is used as a reference, then the parameters a; and Pi for that 

sensor will be zero and one respectively since the parameters are obtained by regressing 

this sensor image onto itself. Once the parameters Pi and ai and the noise covariance are 

estimated at each hyperpixel, the fused image is obtained using the fusion rules derived 

in Section 3.4.2. 

This approach of estimating the affine parameters using a reference image has draw- 

backs. The estimation of the affine parameters by regression is sensitive to the noise in the 

reference image. If a sensor image used as a reference is noisy, the parameter estimates are 

also noisy. Another drawback of this approach relates to complementary features present 

in a sensor image but absent in the reference image. Since, the parameter Pi is estimated 

by regressing ai on to d, the value of Pi is close to zero when there is a feature in ai that 

is absent in d. Consequently, the graylevel intensity component of ai that is absent in d is 

assigned to ai. Although ai will contain the complementary features in the sensor image 

that is missing in the reference image, these features will not appear in the fused image if 



pi is close to zero (from Equation (3.15), a sensor does not contribute to the fused image 

if pi is zero). In this situation, complementary features appear with reduced contrast in 

the fused image. 

4.5 Probabilistic Approach for Estimating Model Parame- 

ters a and f l  

We now describe an approach to estimate the affine parameters P and a! using the proba- 

bilistic image formation model described in Chapter 3. The image formation model defined 

in Section 3.3 is 

= ( i )  = p ( i )  ~ ( i )  + a ( i )  + ~ ( i )  , (4.9) 

where a corresponds to the sensor images, s is the true scene, E is the noise, p and a! are 

the affine parameters that capture the sensor gain and the sensor offset respectively, and 

we have reintroduced the notation referring to the location i in the pyramid. 

+ 

1 E (x, Y, k) (4.10) 

with k the level of the pyramid and (x, y) the location of the hyperpixel at  that level. 

We now briefly review the probabilistic framework of the image formation model, 

noting the dependence on the location i wherever necessary. We assumed that the a 

priori probability density of s is Gaussian with mean s o ( i )  and variance o:(i) as given 

by Equation (3.3). We also assumed that the noise density is Gaussian with zero mean 

and covariance ~,(i). Therefore the density on the sensor image hyperpixels conditioned 

on the true scene s at the location i, P(als, i) is Gaussian with mean 

p(i)  ~ ( i )  + a([) (4.11) 

and covariance 

as given by Equation (3.4). From Equation (3.5), we also know that the marginal density 

on the sensor images at the location i, ~ ( a l i )  is also Gaussian with mean 
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and covariance

C(f) = (j(f) (jT(f) a;(f) + EE(f) . (4.14)

The image formation model fits the framework of the factor analysis model in statis-

tics [3, 29, 67]. Factor analysis refers to a number of statistical techniques for the resolution

of a set of observed variables in terms of a smaller number of variables called factors or

latent variables. Factor analysis attempts to explain the correlations between the set of

variables, and yields the minimum number of underlying factors (linear combinations of

observed variables) that contain all the essential information about the linear relationships

between the observed variables [38]. In our image formation model, the hyperpixel values

of the true scene s are the latent variables or common factors, {j contains the factor load-

ings, and the sensor noise f values are the independent factors. Estimating the parameters

{j is then equivalent to estimating the factor loadings from the observations a.

Following the discussion in Section 4.2, in order to estimate the model parameters {j

and a at a location f in the pyramid we assume that the parameters are constant over a

small region R£ shownin Figure 4.4. The regionR£ constitutes a local analysis windowof

5 x 5 hyperpixels. Assuming ergodicity, we replace ensemble averages by spatial averages.

The factor analysis parameter estimation of {j and a involves expressing the first and



second order statistics of the observed sensor data in the local analysis window in terms 

of the parameters of the image formation model. To do this, one needs to obtain the 

probability density of the sensor image hyperpixels over the local analysis window defined 

by the region RL.  

The probability density function ~ ( a  1;) (see Equation (3.5) and Equations (4.13) 

and (4.14)) above) specifies the distribution of a at the location i .  To obtain the distri- 

bution of a over the region Rc, one must integrate over the region RL.  Therefore, the 

distribution of the sensor hyperpixels a over the region RL is given by, 

where ~ ( i )  is the probability of sampling from the area dl' about 1' in the region RL, and 

the random variable R denotes membership in R r .  We assume ~ ( i )  to be uniform in the 

region RL and zero outside, 

1 o otherwise 

The probability density function P(alR) gives the distribution of the sensor hyperpixels 

given the image formation model in the region RL. Hence we refer to P ( a J R )  as the model 

distribution over Rc. At each location in RL the sensor hyperpixels a can be assumed to 

be independently2 and identically distributed according to the density function P(a1R). 

Note that the model distribution over RL is different from the distribution of a at a 

location i given by Equation (3.5). The former is the average probability density of a 

over the region RL. Since the probability distribution P(a) is a Gaussian, P(alR) is also 

Gaussian. 

To be able to estimate the parameters P and a, of the image formation model one 

needs to know the parameters of the model distribution over the region R, in particular 

its mean and covariance. The mean of the model distribution over the region R is obtained 

2 ~ h e  assumption of independence can be justified since a is an hyperpixei within a Laplacian pyramid 
scheme and corresponds to a prediction residual [14]. 



as follows. 

Assuming that /3 and a are constant over the region R, we obtain 

where 

is the expected value of so in the spatial region defined by R .  

To derive the model covariance over the region R L ,  C(alR),  we make use of a general 

result concerning conditional covariance (derived in Appendix G) and obtain, 



Assuming P, a, X, and a: to be constant over the region RL, we obtain 

where 

and 

is the spatial variance of so over the region RL. In the local analysis window Rc, P(alR) 

is Gaussian with mean p,(aJR) and covariance C(alR) as given in Equations (4.18) 

and (4.21) respectively. 

4.5.1 Least squares factor analysis estimation of (Y and /3 

In this approach, we derive the estimates of the affine parameters from the first and second 

order statistics on the sensor image data in the local analysis window. Let there be N 

individual hyperpixels in the local analysis window (in this case, N = 25). Let a, be 

the vector of sensor intensity values from the nth hyperpixel (1 5 n 5 N) in the 5 x 5 

region (a, = [al,, azn,. . . , aqnIT, where al ,  a2,. . . , a, are the hyperpixel values of sensors 

1,2, . . . , q respectively). From these observations, the sample mean vector pa and the 

sample covariance matrix Ca are computed as, 

Least squares factor analysis consists of obtaining estimates of the affine parameters 

a, and the noise variance C, by fitting the model to the observed sensor data. We have 



already described separate estimation procedures for the noise variance in Section 4.3. 

Here we develop the least squares estimates of a and P. 
To obtain the least squares estimate of a, consider the squared norm of the difference 

between the model mean p,(a(R) given by Equation (4.18) and the data mean pa given 

by Equation (4.24), 

Minimizing E, with respect to a gives 

To obtain the least squares estimate of /3, consider the squared norm of the difference 

between the model covariance C(alR) given by Equation (4.21) and the data covariance 

C, [3, 381 given by Equation (4.25), 

Ep is the sum of squared differences between the elements of C, and C(a1R). Differenti- 

ating ED with respect to P and equating to zero gives (see Appendix D), 

This equation imposes two constraints on P - 

1. p is an eigenvector of (C, - C,), and 

T 
2.  CT~,,P /3 is the corresponding eigenvalue. 

The solution to P that satisfies both these constraints is, 

where U is an eigenvector, and X is an eigenvalue of the noise-corrected covariance matrix 

(C, - C,). The variable r = *I, and determines the polarity of contrast. The choice of 



s-space a-space 

Figure 4.5: Mapping from s-space to a-space 

the sign of r is discussed later in this section. It is shown in Appendix D that the error 

metric in Equation (4.28) is minimum when U is the principal eigenvector and X is the 

principal eigenvalue of the noise-corrected covariance matrix (C, - C,). 

Link between the estimate of and the relationship between the sensor images 

The image formation model of Equation (4.9) maps hyperpixels in s-space (true scene) 

into hyperpixels in a-space (sensor images). Figure 4.5 illustrates this mapping in the case 

where there are two sensor images a1 and a2. The parameter P determines the underlying 

orientation of the cloud of hyperpixels in a-space. a! determines the shift of the cloud from 

the origin in a-space. Both s and r contribute to the spread of the cloud. The contribution 

from s is along the direction of P, whereas the contribution from r is along the a1 and 

a2 axes. Although P determines the underlying orientation of hyperpixels in a-space, the 

noise variance in each sensor pushes the sensor hyperpixel values along the direction of 

the a1 and a2 axes. Therefore, in the general case, where the noise variance in each sensor 

is different, the orientation of the cloud in a-space is different than that of P. 
The relationship between the image features in the sensor images a1 and a2 can be 

illustrated from the scatter plot of hyperpixel values in a-space. Figure 4.6(a) is an example 

of a scatter plot when there are common image features (see Section 3.2) in a1 and as, and 

these features have the same polarity. The values in a2 are high when a1 values are high 

and low when a1 values are low. Figure 4.6(b) shows a scatter plot of image features that 



are common to a1 and a2, but having reversed polarity. The values in a2 are low when 

values in a1 are high and vice versa. Figure 4.6(c) shows the scatter plot when a feature 

is present in a1 but not in a2. There is a large variation in a1 values due to the presence 

of the complementary features, whereas there is little variation in a2. Figure 4.6(d) shows 

the converse case when there are complementary features in a2. 

Noise in a1 and a2 can cause the orientation of the data cloud in a-space to change. 

The general case where the noise covariance is heteroscedastic (different noise in each 

sensor) is illustrated in Figure 4.7(a). The least squares factor analysis estimate of P 
points along U, which is the principal eigenvector of the corrected data covariance matrix 

(C, - C,). The contribution of the noise terms is suppressed and the direction (of U )  that 

contains the contribution from s is captured. Thus, the principal eigenvector U captures 

the relationship between the image features as discussed above. In general, this direction 

is different from the direction of maximum variance in a-space. However when the noise 

covariance is homoscedastic (equal noise in all sensors), the scatter plots look like the one 

in Figure 4.7(b). Here, the direction of U is also the direction of maximum variance in 

a-space. 

Choice of t h e  sign r of t h e  eigenvector U 

The sign parameter r in Equation (4.31) represents the sign (i.e. the direction) of the 

eigenvector U and therefore the sign of P. Therefore it determines the sign of d in the 

fusion rule of Equation (3.14), and hence also determines the polarity of contrast in the 

fused image. The least squares estimation specifies the orientation of the U but not 

its sign (direction). This is because either choice of the sign results in the same fit of 

the model covariance matrix C(aJR)  to the data covariance matrix C,. In the following 

discussion we assume that U computed from (C, - C,) has an arbitrary sign, and we 

need to choose an appropriate sign r for U. The choice of r would not pose any problem 

if the image formation model was global. However, our model consists of several local 

models - one for each hyperpixel. An arbitrary choice of r for each local model would 

result in arbitrary reversals in the polarity of local contrast in the fused image. In order 

to be able to properly piece together our local models, we cannot allow arbitrary sign 



(a) scatter plot in region (b) scatter plot in region 
containing common features containing common features 
with same polarity of contrast with polarity reversed contrast 

(c) scatter plot in region 
containing complementary 
features in image a1 

(d) scatter plot in region 
containing complementary 
features in image a2 

Figure 4.6: Scatter plots in a-space for different relationships between image features in 
a1 and a:! 
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reversals between neighboring local regions. To ensure this, we must correctly choose the 

sign parameter r at each hyperpixel. 

To be consistent with our assumption that the parameters of the image formation 

model change slowly spatially, the signs for neighboring hyperpixels should be chosen 

such that the orientation of p changes slowly from one hyperpixel to another. To ensure a 

slow spatial change in the orientation of P, we must choose the signs to minimize a metric 

of the form 

where the summation is over all pairs of adjacent hyperpixels i, j within a pyramid level. 

In addition, it is also necessary to ensure that the signs do not change arbitrarily at 

similar spatial locations from one pyramid level to another. This is a difficult combinato- 

rial optimization problem and would require an iterative solution across the entire fused 

pyramid. 

Instead of a complex optimization solution, we have developed a simple method to 

determine the signs. Empirically, we have found that this method gives good results. We 

choose a convenient reference region in a-space and then choose the signs r such that /3 

is forced to lie within the reference region for all hyperpixels. To understand how this 

method works, we refer to Figure 4.8. The shaded area in Figure 4.8(a) is one choice 

for the reference region for two sensors a1 and az. Figure 4.8(b) is a scatter plot of 

hyperpixel values, a1 and aa, in two sensors. The plot shows the spread of hyperpixel 

values in a small, local spatial region that contains image features with the same polarity. 

The eigenvector U points in the direction of maximum variance, but can be oriented in 

either direction shown by the dark vectors in Figures 4.8(b) and 4.8(c). An arbitrary 

choice of the signs for eigenvectors in neighboring local regions can result in neighboring 

eigenvectors pointing in opposite directions. However, if we choose the signs to restrict 

the eigenvector to lie within the shaded region, the eigenvector in Figure 4.8(c) will have 

to be flipped. Note that if we assume U to have some orientation with an arbitrary sign, 

then a choice of r = -1 will cause p to point in the opposite direction to that of U. The 

flipped eigenvector is shown by the gray vector. The constraint enforced by the shaded 



region effectively prevents arbitrary changes in the direction of P in neighboring regions. 

The constraint imposed by the reference region also provides a way to bias the fused 

image such that polarity reversed image features appear with the polarity of a particular 

sensor. Figure 4.8(d) is a scatter plot of hyperpixels in a local region containing polarity 

reversals. The constraint will force U to lie in the shaded region. The components P1 and 

,B2 of p, for polarity reversed regions, will be such that P1 is positive and P2 is negative. 

From Equation 3.15, one can see that hyperpixel values a2 of the second sensor will be 

negated and added to hyperpixel values a1 of the first sensor to obtain the hyperpixel 

of the fused pyramid. Thus, the polarity of features of the first sensor will be preserved 

in the fused image. Figure 4.8(e) shows the scatter plot for a region in which there are 

complementary feature in sensor 1. The constraint ensures that the signs of a1 are not 

reversed in the fused image. 

However, there is an inherent indeterminacy in the constraint defined by the shaded 

region in Figure 4.8(a). At the borders of the shaded region (i.e. the a2 axis), small 

variations in the orientation of U can cause an arbitrary choice of the sign r .  Figure 4.8(f) 

shows the scatter plot for a region in which there are complementary features in sensor 

2. If U is exactly along the vertical then there is no ambiguity, since it is still within the 

shaded region. However if U is slightly away from the vertical, the constraint will choose 

r that flips U as shown in Figure 4.8(g). Consequently, complementary features in a2 can 

appear with arbitrary polarity in the fused image. We have a heuristic that addresses 

this problem. We choose the signs based on the shaded region shown in Figure 4.8(h). 

Complementary features in either sensor appear with their respective polarities in the 

fused image. Our heuristic does not overcome the indeterminacy though. One approach 

to resolve the indeterminacy is to look at the eigenvector directions in neighboring regions 

and then flip any eigenvectors that seem inconsistent. This solution, would require a 

relaxation technique such as the one mentioned above. 
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Choice of a:,,, and p,, 

The least squares estimates of the parameters /3 and a, given by Equations (4.31) and (4.27) 

respectively, depend upon the parameters a:,,, and p,,. The parameters uz,,, and p,, de- 

pend upon the priors a: and so as shown in Equations (4.22) and (4.19). In the absence 

of prior knowledge about the scene, a:,,, and ,us, must be appropriately chosen in order 

to estimate the parameters /3 and a. 

The least squares approach does not provide an estimate of either a;,,, or p,,. As 

with the sign of r ,  this would pose no problem for a global model. But we must impose a 

constraint in order to smoothly piece together our local models. We impose that a:,,, = A, 

everywhere , motivated by the following reasoning: consider a small patch over which s 

varies but both a: and the image formation parameters (P,a,C,) are constant. Any 

variation in sensor hyperpixel intensities in this region must arise from variations in the 

true scene s ,  and the noise. The leading eigenvalue X of the noise-corrected covariance 

matrix (C, - C,) gives the scale of variations in a arising from variations in s. Thus, 

we should have X cx a:,s,. To ensure consistency, the proportionality constant should be 

the same in all local regions. From the least squares solution of Equation (4.31), this 

2 proportionality constant is just 11 P 1 1 2 .  Hence we take ( 1  /3 I I =  1 everywhere, or a,,,, = A. 

In the absence of prior knowledge about the scene, we assume that so is zero every- 

where, i.e., the prior distribution on s at each hyperpixel location has zero mean. Although 

this assumption is not valid in practice (this assumption attributes all variations in the 

scene s to the prior variance a:, and hence basically to noise), it allows us to obtain an 

approximation for the estimate of a since we now have p,, = 0 from Equation (4.19). 

Note that the assumption does not change our choice for a:,,, given above. 

In view of the above assumptions made for choosing a:,,, and p,,) and assuming that 

the sign of r has been appropriately chosen, the least squares estimates of P and a are, 



and 

4.6 Relation of Fusion to Principal Components Analysis 

With the image formation model parameters P and a! estimated using the factor analysis 

techniques described in Section 4.5.1, the MAP and ML fusion rules described in Chapter 3 

are closely related to PCA. The factor analysis techniques estimate the affine parameters 

B and a! from an analysis of the covariance structure of hyperpixel intensities in the 

sensor image data. In principal components analysis (PCA), the principal components are 

obtained by analyzing the covariance structure of the data. However, factor analysis differs 

from PCA because factor analysis incorporates an a priori structure on the covariance 

matrix and an a priori structure on the noise terms. In factor analysis, the contribution 

of the noise covariance to the data covariance is removed before computing the principal 

components. This is achieved in least squares factor analysis by computing principal 

components of (C, - X,). 

To show the relationship between the estimate B of the true scene and PCA, we substi- 

tute the least squares estimates of the parameters P and a! in Equations (4.33) and (4.34) 

into the fusion rule in Equation (3.14) to obtain, 

where U is the principal eigenvector of the corrected data covariance matrix, (I=, - X,). 

The estimate B is a scaled and shifted projection of the noise variance weighted sensor 

data onto the eigenvector U. 

The relationship between the MAP estimate i and PCA is clear when the noise is 

homoscedastic, I=, = U ~ I .  Under this condition Equation (4.35) simplifies to 



where U, is the principal eigenvector of the data covariance matrix Xa3. The MAP 

estimate B is simply a scaled and shifted local PCA projection of the sensor data. Both 

the scaling and shift arise because the prior distribution on s tends to bias B towards so. 

When the prior distribution on s is flat (uniform prior or a: = oo), the fused image is 

given by a simple local PCA projection, 

Equivalently, if the noise variance vanishes (a: = 0), the fusion rule reduces to the local 

PCA projection given by Equation (4.37). 

Alternatively, using the ML fusion rule of Equation (3.12) and substituting the pa- 

rameter estimates from Equations (4.33) and (4.34) 

Now, in the case where the noise variance is homoscedastic, the fusion rule again reduces 

to the local PCA projection of Equation (4.37). 

4.7 Summary and Discussion 

In this chapter we described techniques to estimate the parameters X,, P,  and a of the 

image formation model from the data available from the sensor images. We described two 

techniques for estimating the noise variance, one that uses a single image from each sensor, 

and another based on using multiple image frames from sensor video sequences. The single 

frame technique is based on a set of assumptions and does not provide local estimates 

of the noise variance, rather one estimate for each pyramid level. The multiple frame 

technique is adaptive and provides an estimate of the noise variance at each hyperpixel 

location. However, the multiple frame technique is based on the assumption of motion 

compensated frames being available. This makes it computationally much more expensive 

than the single frame technique in a practical application where motion compensation is 

likely to be expensive. 

3Note that U, is also the principal eigenvector of (C, - C,) when E, = U;I. 



We described a technique for estimating the affine parameters ,8 and a, using simple 

regression by making use of a reference image. However, we noted the drawbacks of 

this technique in the presence of noise in the reference image and when complementary 

features present in the sensor images are absent in the reference image. We then described 

a probabilistic technique to estimate the affine parameters. The parameters were derived 

using least squares factor analysis. The relation between the parameter estimates and the 

relationship between the sensor images was explained in detail. We also showed that with 

the parameters estimated using least squares factor analysis, the probabilistic fusion rules 

of Chapter 3 are closely related to local PCA. In the next chapter we will show examples of 

fused images obtained by using the probabilistic fusion rules and the estimated parameters. 



Chapter 

Experiments and Results 

5.1 Introduction 

In Chapter 3 we presented our probabilistic model for fusion and derived the fusion rules 

using a Bayesian framework. In Chapter 4 we derived estimates of the parameters of our 

probabilistic model - the affine parameters P and a, and the noise variance C,. In this 

chapter we present several fusion experiments using the theory developed in Chapters 3 

and 4. The experiments, performed on both real and simulated images, illustrate the 

different ways in which the model-based probabilistic fusion can be used to fuse images 

obtained from multiple sensors. In most of the experiments we compare the results ob- 

tained using the probabilistic fusion approach, with results of the averaging and selection 

based fusion rules discussed in Chapter 2. We also demonstrate the capability of our 

approach to combine prior information from a database with information from the sensor 

images. Finally, we describe an approach to quantitatively evaluate the result of fusion. 

In Section 5.2 we describe experiments to fuse images from visible-band and IR sen- 

sors using the probabilistic fusion rules and associated parameter estimation described in 

Chapters 3 and 4. For comparison, we also show results using the traditional averaging 

and selection approaches. The effects of using different number of pyramid levels, differ- 

ent constraints for the signs and different sizes of local analysis windows for parameter 

estimation are illustrated using examples. Section 5.3 describes experiments for fusing 

images containing additive noise. Both the ML and MAP approaches are employed for 

combining the images, and the advantage of the MAP approach is discussed. Section 5.4 



describes a set of experiments that utilize simulated computer graphics images to demon- 

strate approaches of combining image information from a database image with imagery 

from the sensors. Two different approaches using the MAP fusion rule to include database 

information are described. Section 5.5 describes a simple approach that we have developed 

for quantitative evaluation of fusion results. We discuss the advantages and drawbacks 

of this approach. Section 5.6 concludes with a summary of the experiments and results 

described in this chapter. 

5.2 Fusion of Visible-band and Infrared Images 

As discussed in Chapter 1, visible-band and IR sensors are commonly used in image fusion 

applications. The experiments described in this chapter illustrate fusion of visible-band 

and IR sensor images. Figure 5.l(a) is a visible-band image showing a runway scene as 

an aircraft is approaching to land. Figure 5.l(b) is an infrared image of the same scene. 

These images contain local polarity reversed and complementary features. The polarity of 

contrast of the markings on the runway is reversed between the two images (see the region 

highlighted by the rectangle). The visible-band image contains a bright horizontal patch 

just before the runway. This patch is missing in the IR image (see the region highlighted 

by the circle). The horizontal lines that are visible in the lower portion of the IR image 

are missing in the visible-band image. 

5.2.1 Assuming equal noise variance in the sensor images 

We fused the visible-band and IR images of Figures 5.l(a) and 5.l(b) using the ML fusion 

rule of Equations (3.12) and (3.13) given by, 



(a) TV image

(c) Averaging
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(b) FLIR image

(d) Selection

(e) ML fusion

Figure 5.1: Fusion of TV and FLIR images. The rectangle highlights a region containing
local polarity reversal. A region with complementary features is marked by the circle
(Original data from the SVTD [9] project).



In this experiment, we assumed that the variance of noise in the sensor images is equal 

(C, = 021) and close to zero (a: w 0). Using the assumption of equal noise variance, 

The parameters a and B are computed using the least squares estimates of Equations (4.27) 

and (4.31), given by 

a ~ s  = pa - PpSo and 

where pa is the data mean, X is the principal eigenvalue, U is the principal eigenvector of 

the noise corrected data covariance (C, - u ~ I ) ,  and Ca is the data covariance matrix. The 

principal eigenvector U is identical to the principal eigenvector U, of the data covariance 

matrix C,, since the noise variance is equal. Following the discussion in Section 4.5.1, 

values for ,us,, and r need to be appropriately chosen. We assume ,us, = 0, )I /3 ))= 1, 

and choose an appropriate sign r to obtain, 

= pa and 

p = u , .  

Using these parameter estimates, the ML fusion rule in Equation (5.1) simplifies to 

which is a local PCA projection of the data on to the principal eigenvector Ua of the 

data covariance, as given by Equation (4.37). Note that when the noise variance in the 

sensor images is equal and zero, the MAP fusion rule of Equations (3.14) and (3.15) also 

simplifies to the local PCA projection above as explained in Section 4.6. However, when 

the noise variance is equal and high (the images are equally noisy), the MAP fusion rule 

can be applied in a different manner to obtain better results (see the results of MAPl 

fusion described in Section 5.4). 



The experimental setup for computing the fused image, summarized in Table 5.1, 

consisted of decomposing each sensor image of size 128 x 128 pixels into 7 levels of the 

Laplacian pyramid using the operations described in Section 2.4.1. At each pyramid level 

a 5 x 5 hyperpixel local analysis window surrounding each hyperpixel was used to com- 

pute the data mean pa and the data covariance matrix C, as defined by Equations (4.24) 

and (4.25) respectively. At the border hyperpixels in the pyramid, the boundary was 

extended by reflecting the hyperpixels at the border, to obtain the 5 x 5 region. The 

principal eigenvector U, was obtained through a eigen-decomposition of the data covari- 

ance matrix C,. The hyperpixels of the fused pyramid were obtained by computing B at 

each location using the computed eigenvector and the hyperpixels a1 and a2 of the sensor 

images. The direction for the eigenvector U, (i.e. the sign r) was chosen such that U, lay 

in the shaded region shown in Figure 4.8(a). The fused image was obtained from the fused 

pyramid formed by the B values using the inverse Laplacian pyramid transform described 

in Section 2.4.1. 

One should note that the number of hyperpixels present at higher levels of the pyramid 

are insufficient to estimate the image formation model parameters. For example, for an 

image of size 128 x 128 pixels, the topmost level contains just 1 hyperpixel (the intensity 

value of this hyperpixel corresponds to the mean intensity of the graylevels in the image). It 

is not possible to estimate the model parameters from just 1 hyperpixel from each sensor. 

Hence the probabilistic fusion rules cannot be used to combine the topmost pyramid 

levels of the sensor images. In practice the sensor hyperpixels at the topmost level can be 

combined by averaging. Note that the topmost level of the fused pyramid would dictate 

the mean intensity in the fused image. The choice of the method used for combining the 

topmost hyperpixels is of no consequence if the graylevels in the fused image are scaled 

prior to display (since scaling would change the mean intensity level). Therefore, in our 

experiment we used 7 levels of the pyramid, meaning that the topmost pyramid level used 

was 2 x 2 hyperpixels. In practice, it may be adequate to stop at a pyramid level where 

there are a minimum number of hyperpixels to form a local analysis window. 

Fusion by averaging, described in Section 2.3.1, consists of computing the fused im- 

age by averaging corresponding pixels of the sensor images. In our experiments, we have 



Table 5.1: Experimental setup to obtain the ML-fused image of Figure 5.1 

performed fusion by averaging in the pyramid domain, to be consistent with the proba- 

bilistic fusion methods and fusion by selection. Each sensor image was decomposed into 

7 levels of the Laplacian pyramid. Hyperpixels in corresponding locations in the sensor 

pyramids were averaged to compute the fused pyramid. The fused image was obtained by 

applying the inverse pyramid transform to the fused pyramid. Note that these operations 

are equivalent to averaging the images (since the Laplacian pyramid operations are linear 

operations). 

Fusion by selection in the Laplacian pyramid domain is described in Section 2.4.1. 

The sensor images were decomposed into 7 levels of the Laplacian pyramid. The salience 

measure described in Section 2.4.1, used for deciding which of the sensor hyperpixels 

to select into the fused pyramid, is sensitive to noise since it is based on the energy 

at a single hyperpixel. Instead, we computed an area-based salience measure for each 

hyperpixel as in Section 2.7. The sum of squared hyperpixel values in a 5 x 5 hyperpixel 

region surrounding the hyperpixel of interest constituted the salience measure. The fused 

pyramid was constructed by selecting the most salient of the two sensor hyperpixels (i.e. 

selecting the hyperpixel that had the largest salience measure) at each hyperpixel location. 

The fused image was obtained by applying the inverse Laplacian pyramid transform to 

the fused pyramid. 

The fused images obtained by averaging, selection and ML fusion are shown in Fig- 

ure 5.1. For the purposes of displaying the fused images it is necessary to rescale the 

graylevels so that the images can be readily compared. Pave1 and Ahumada [50] d' ISCUSS 

Size of images 
Laplacian pyramid levels 
Size of local analysis window 
p, a computed at 
B computed at 
Constraint on sign r 
Noise variance 
Processing at borders 

128 x 128 pixels 
7 
5 x 5 hyperpixels 
each hyperpixel location 
each hyperpixel location 
shaded region in Figure 4,8(h) 
assumed equal in both sensors 
reflected hyperpixels to extend borders 



display issues concerned with image quality in detail. We have used a simple scheme for 

displaying the fused images. The graylevels in all the fused images of Figure 5.1 were 

linearly scaled such that the average graylevel of each fused image and the standard de- 

viation of graylevels in each fused image was identical. This ensures that the contrast 

and brightness computed over the entire image is same for each displayed fused image1 

(see the discussion in Section 5.5). The graylevels of the scaled images were then clipped 

between 0 and 255 before display. 

The fused image obtained by averaging, Figure 5.l(c), has reduced contrast in the 

regions containing polarity reversed features and complementary features. The bright 

patch before the runway in the visible-band image and the horizontal lines in the lower 

portion of the IR image are rendered at reduced contrast in the fused image obtained by 

averaging, as compared to the contrast in the sensor images. Selection, Figure 5.l(d), does 

better than averaging. Contrast is preserved in regions containing complementary features. 

Selection causes pattern cancellation if the algorithm arbitrarily selects from one sensor 

image or the other, in regions containing polarity reversals (for example, see the selection 

fused image of Figure 2.9). Arbitrary selection is likely to occur if image features have 

equal but opposite contrast. Noise in the sensor images can then cause arbitrary switching 

between the sensor images. In the sensor images of Figures 5.l(a) and 5.l(b), the runway 

markings have opposite but unequal contrast. This prevents pattern cancellation. 

The fused image obtained by ML fusion is shown in Figure 5.l(e). ML fusion retains 

complementary features from both the sensor images. The bright horizontal patch in the 

visible-band image, the image features at the top left in the IR image and the horizontal 

lines in the lower portion of the IR image are all visible at the original contrast in the 

fused image. Local polarity reversed features are combined by a weighted sum after 

reversing the polarity of one of the images. Overall, the ML-fused image is similar to the 

selection-fused image. Recall from Section 4.5.1 that the choice of the constraint used for 

choosing the sign r in Equation (5.3) determines the contrast with which local polarity 

'If two images that were exact copies of each other were displayed on different monitors, then the 
contrast and brightness knobs of the monitor could be adjusted to match the two images. In case of two 
images that differ, the difference seen after matching the contrast and brightness would be the actual 
difference between them. 
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Figure 5.2: ML-fusion using 4 levels of the Laplacian pyramid

reversed and complementary features are rendered in ML fusion. This aspect is examined

in Section 5.2.4.

5.2.2 Effect of number of Laplacian pyramid levels used

In Section 5.2.1, the 128 x 128 pixel visible-band and IR images were fused using 7 levels

of the Laplacian pyramid. We now examine the effect of the number of Laplacian pyramid

levels used for performing ML-fusion. In this experiment we decomposed the sensor images

of Figures 5.1(a) and 5.1(b) into 4 levels of the Laplacian pyramid. As in Section 5.2.1,

a 5 x 5 hyperpixel analysis window was used to compute the parameters J1.aand Va at

each level of the Laplacian pyramid except the topmost level. The hyperpixels of the

fused pyramid were obtained by computing s at each location using Equation (5.5). For

a 4 level Laplacian pyramid, the topmost level (lowest resolution) consists of 16 x 16

hyperpixels. At this level, all the hyperpixels were used to estimate Va and J1.a'However,

a different s was computed for each hyperpixel of the topmost level. The experimental

setup is summarized in Table 5.2. Figure 5.2 shows the result of fusion using 4 levels of

the Laplacian pyramid. The parameters of the image formation model and the ML-fused

image are computed as described in Section 5.2.1. Comparing the image in Figure 5.2 with

Figure 5.1(e), there are a few noticeable differences. The dark marks appearing along the

center line of the runway have higher contrast in the fused image obtained using 7 levels.

These marks closely resemble the marks in the visible-band sensor image of Figure 5.1(a).

In addition, the fused image of Figure 5.1(e) has a slightly higher overall contrast than



Table 5.2: Experimental setup to compute the ML-fused image in Figure 5.2 

I Size of images 1 128 x 128 ~ ixe l s  I 

I B. a com~uted at 1 each h~D€!rDixel location 1 

~ a ~ l a c i g  pyramid levels 
Size of local analysis window 

4 
5 x 5 hyperpixels 

I Noise variance I assumed equal in both sensors I 

- - - 

j. computed at 
Constraint on sign r 

I 

Processing at borders I reflected hyperpixels to extend borders 

each hyperpixel location 
shaded region in Figure 4.8(h) 

the ML-fused image of Figure 5.2. 

This experiment indicates that using more Laplacian pyramid levels is beneficial for 

fusion. However the differences between the fused images are not significantly large. One 

can, therefore, make a choice on the number of levels to be used for performing fusion by 

making a tradeoff between the speed requirements of the application and the improvement 

in the fused image. 

5.2.3 Effect of the size of the local analysis window used for parameter 
estimation 

In order to estimate the parameters /3 and a of the image formation model, we assumed 

in Chapter 4 that these parameters are constant over a spatial region containing several 

hyperpixels. This spatial region constitutes a local analysis window from which the data 

mean pa and the data covariance matrix X, are computed. In the experiments described 

in the previous sections we used a local analysis window of 5 x 5 hyperpixels surrounding 

each hyperpixel for which the parameters P and a had to be estimated. In Section 5.2.1 

we discussed why a 5 x 5 window is a practical choice. In this experiment we examine the 

effect of the size of the local analysis window on the fused image. 

To examine the effect of changing the size of the local analysis window, we performed 

two experiments on the sensor images of Figures 5.l(a) and 5.l(b) using local analysis 

windows of sizes 3 x 3 and 7 x 7 hyperpixels. The experimental setup was the same as that 

in Table 5.1, except that the size of the analysis window was different for each experiment. 
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(a) 5 x 5 window

(b) 3 x 3 window (c) 7 x 7 window

Figure 5.3: ML-fusion: effect of the size of the local analysis window used for parameter
estimation



The images were fused using Equation (5.5) as in Section 5.2.1. Since changing the size of 

the analysis window affects the computation of the data mean pa and the data covariance 

C,, it also affects the estimates of a and p. Figure 5.3 shows the fused images using 

the different window sizes. All the images are scaled to have the same average value and 

variance for the purpose of display. 

The fused image of Figure 5.3(a) is the same as that in Figure 5.l(e). The fused image 

in Figure 5.3(b), obtained using the 3 x 3 analysis window, appears more noisy than the 

fused image of Figure 5.3(a). It also seems to contain more noise compared to the sensor 

images of Figures 5.l(a) and 5.l(b). The 3 x 3 hyperpixel local analysis window contains 

only 9 data points. This data is insufficient to estimate the data mean and the data 

covariance. As a result, the estimates of a and p are noisy and the fused image is noisy. 

The fused image of Figure 5.3(c), obtained using a 7 x 7 analysis window, looks like 

a smoothed version of Figure 5.3(a) in some regions. The markings on the runway, the 

striation on the runway surface as well as the lines below the runway appear smoothed. The 

smoothing can be attributed to the fact that the data mean and the data covariance are 

computed from a larger analysis window. This means that the hyperpixels in the analysis 

window that lie further away from the hyperpixel of interest (the center hyperpixel), 

influence the computation of 1, and C,. Now consider two neighboring hyperpixels for 

which parameters are to be estimated. The percentage of area change in the local analysis 

window from one hyperpixel to another is 14% for a 7 x 7 window and 20% for a 5 x 5 

window2. Therefore, C, and pa, from hyperpixel to hyperpixel, change more slowly when 

a 7 x 7 hyperpixel window is used as compared to when a 5 x 5 hyperpixel window is used. 

This means that /3 and a also change slowly from hyperpixel to hyperpixel for a 7 x 7 

window. Now consider high resolution levels of the Laplacian pyramids (that contain the 

sharp edge information). The slow change in /3 causes a smoothing effect from hyperpixel 

to hyperpixel in the fused image. As a result, the edges are smoothed and therefore the 

hy or a 7 x 7 hyperpixel analysis window, the total number of hyperpixels in the window is 49. When the 
analysis window is shifted by 1 hyperpixel location, 7 old hyperpixels are discarded and 7 new hyperpixels 
are introduced. However 42 hyperpixels remain unchanged. Hence the percentage of new hyperpixels is 
approximately 14%. Similarly for a 5 x 5 hyperpixel analysis window, 5 new hyperpixels or 20% new 
hyperpixels are introduced every time the analysis window is shifted by 1 hyperpixel. 



Table 5.3: Experimental setup to compute the ML-fused image in Figure 5.4 

Size of images 
Laplacian pyramid levels 
Size of local analvsis window 

128 x 128 pixels 
7 
5 x 5 hvperpixels 

Prcu computed at 
b computed at 
Constraint on sign r 

fused image appears smoothed. 

each hyperpixel location 
each hyperpixel location 
shaded region in Figure 4.8(a) 

Noise variance 
Processing at borders 

5.2.4 Effect of the choice of the constraint region used to determine the 

sign of p 

assumed equal in both sensors 
reflected hyperpixels to extend borders 

In the experiments described in Sections 5.2.1, 5.2.2 and 5.2.3, the constraint defined by 

the shaded region in Figure 4.8(h) was used to determine the direction of the eigenvector 

U, (and therefore, also of P) .  The reason for this constraint was that it addresses the 

problem of arbitrary sign reversals when there are complementary features in the sensor 

images (see the discussion in Section 4.5.1). 

This experiment examines the effect of using the constraint defined by the shaded 

region in Figure 4.8(a) to determine the sign r of a. The experimental setup is summarized 

in Table 5.3. Figure 5.4(a) shows the result of ML-fusion using this constraint. Recall that 

the constraint of Figure 4.8(a) ensures that polarity reversed features in the sensor images 

appear with the polarity of contrast of the first sensor image a l .  In this experiment, a1 

is the visible-band image. Therefore the runway markings appear white in the ML-fused 

image of Figure 5.4 just as they do in the visible-band image of Figure 5.l(a). However 

there is an indeterminacy of the sign of at the borders of the constraint region. As a 

result complementary features may have arbitrary contrast reversals. This effect can be 

observed in the lower portion of the fused image. The horizontal line intermittently (see 

the highlighted box) changes contrast and appears bright and dark. The ML-fused image 

of Figure 5.l(e) that uses the constraint region defined in Figure 4.8(h) is shown again in 



(a) Constraint of Figure 4.8(a)
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(b) Constraint of Figure 4.8(h)

Figure 5.4: ML-fusion using different constraint regions to determine the sign of {3

Figure 5.4(b) for comparison.

5.3 Experiments With Images Containing Additive Noise

This experiment demonstrates our fusion technique in the presence of additive noise in the

sensor images. We added samples from a Gaussian distribution to the graylevels of the

visible-band and IR sensor images shown in Figures 5.1(a) and 5.1(b). The noisy images

are shown in Figures 5.5(a) and 5.5(b) respectively. The visible-band image contains more

noise than the IR image. The standard deviation of noise added to the visible-band image

is 12 times that added to the IR image. We fused these images using the ML and MAP

fusion rules3 and compared the results with those of averaging and selection methods.

Figure 5.5(c) shows the result offusing these images using averaging. The images were

decomposed into 7 levels of the Laplacian pyramid. Hyperpixels of the sensor pyramids

were averaged to obtain the fused pyramid, and the fused image was constructed by

applying the inverse pyramid transform to the fused pyramid. The result of averaging

suffersfrom the same drawbackas before- reducedcontrast in regionscontaining polarity

reversed and complementary features.

Figure 5.5(d) shows the result offusion using selection. Again 7 levels of the Laplacian

3 A comparison of the ML and MAP fusion rules with fusion using local PCA is shown in Appendix J.



pyramid were used and a 5 x 5 area based salience measure was employed to decide which 

of the sensor hyperpixels to select into the fused pyramid. The result of selection is noisy. 

Comparing Figure 5.5(d) with the sensor images in Figures 5.5(a) and 5.5(b), one can 

observe that the selection technique selects features from the visible-band image in most 

locations of the scene. Noise in the visible-band image dominates the salience measure 

and noise spikes are confused as salient features. 

ML fusion 

The ML fusion approach uses the maximum likelihood fusion rule of Equations (3.12) 

and (3.13) given by 

= [ B ~ E ; ~ ~ ]  { f l T E l 1  (a - a ) )  

and the least squares estimates of the image formation model parameters a and /3 from 

Equations (4.27) and (4.31) given by 

a ~ s  = pa - Pp,, and 

A i 
P L s  = -Ur 

os,so 

As in Section 5.2.1 (also see the discussion in Section 4.5.1), we assume p,, = 0, 1 1  /3 I [= 1 

and choose an appropriate sign of r to obtain, 

a = pa and 

p = u .  

The experimental setup used for computing the fused image is summarized in Ta- 

ble 5.4. The ML-fused image is shown in Figure 5.5(e). Comparing with the results of 

averaging and selection in Figures 5.5(c) and 5.5(d), ML fusion does better than averag- 

ing and selection in regions containing polarity reversed and complementary features. The 

markings on the runway, the horizontal lines in the lower portion of the FLIR image and 



Table 5.4: Experimental setup to obtain the ML and MAP-fused images of Figure 5.5 

I Size of images 1 128 x 128 pixels 

1 b. a com~uted at I each h v ~ e r ~ i x e l  location I 

xaplac&n pyramid levels 
Size of local analysis window 

7 
5 x 5 hyperpixels 

I Noise variance I estimated from single frame 1 

- - - 

B computed at 
Constraint on sign T 

r ~ r o c e s s i n ~  at borders I reflected hyperpixels to extend borders ( 

each hyperpixel location 
shaded region in Figure 4.8(h) 

the bright horizontal patch just before the runway are all more distinct in the ML-fused 

image. The ML-fused image is less noisy compared to the averaging and selection-fused 

images. The ML fusion rule gives more weight to the IR image in regions where the image 

features are common between the visible-band and IR images, since the variance of noise 

in the IR image is lower than that in the visible-band image. However the ML fusion 

rule gives a high weight to the visible-band image in regions containing complementary 

features that are absent in the IR image. Consequently these complementary features are 

visible at high contrast in the fused image. 

MAP fusion 

The sensor images can also be combined by using the MAP fusion rule of Equations (3.14) 

and (3.15) given by 

with the least squares estimates of cr and P given by 

CYLS = pa - Pps, and 
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(a) TV image

(c) Averaging

(e) ML fusion
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(b) FLIR image

(d) Selection

(f) MAP fusion

Figure 5.5: Fusion of TV and FLIR images with additive Gaussian noise (Original data
from SVTD [9] project).



Following the discussion in Section 4.5.1, we assume, 

s o = O ,  

(therefore ,us, = O) ,  11 /3 I [=  1, and choose an appropriate sign r to obtain, 

a = pa and 

/3 = u .  

The assumption 1 1  /3 I(= 1 gives, 

and the assumption so = 0 gives 

From Equations (5.13) and (5.14), we obtain an estimate of a: as 

The MAP-fused image is obtained by substituting Equations (5.12), (5.11) and (5.15) 

in Equation (5.9). The noise variance is estimated as described in Section 4.3.1. The 

experimental setup used for obtaining the fused is identical to that in Table 5.4. We call 

this approach MAPl fusion to distinguish it from the MAP fusion approaches described 

in Section 5.4. Figure 5.5(f) shows the image obtained using MAPl fusion. Clearly, the 

MAP1-fused image is less noisy compared to the ML-fused image. The estimate of a: does 

not contain any contribution from noise (since a: = A, and X is the principal eigenvalue 

of (C, - C,)). In regions of relatively low sensor image contrast such as flat regions in 

the scene, 0: is low (since X is low). Therefore the denominator in Equation (5.9) is 

large and the contribution from the sensor images is attenuated as compared to the ML 

fusion rule. Hence the noise in the flat regions is also attenuated. In regions of high 

contrast in the sensor images such as edges in the scene, a: is high (since X is high). 

Therefore the denominator in Equation (5.9) is approximately equal to the denominator 

in Equation (5.6). The contribution from the sensor images is then similar to that in 

ML-fusion (since so = 0). 



Assuming a:,, = 0 causes the spatial variations in the scene, captured by the sensor 

images, to be attributed to 0:. This results in an overestimation of a: especially in regions 

of relatively high scene contrast in the sensor images. However, this overestimation turns 

out to be beneficial for fusion, as the high value attributed to a: results in more weight 

to be given to the sensor images. 

5.4 Fusion Using Prior Image Information From a Database 

As previously discussed in Section 3.4.2, the probabilistic MAP fusion rule has a provision 

to include prior image information about the scene into the fused image. We demonstrate 

the use of this provision with the help of the ALG example. In ALG, prior knowledge 

about the scene may be available in the form of a terrain database of the scene. The 

terrain database provides an image of the scene under ideal viewing conditions (uniform 

illumination, unlimited visibility). However the database image is not by itself sufficient 

for ALG because the actual situation in the real runway scene may differ from that in 

the database image. The database image information must be combined with image data 

from the sensors to properly depict the runway scene in the fused image. We demonstrate 

two different methods of applying the probabilistic MAP fusion rule to combine the prior 

information from the terrain database with image data from the sensors. 

We illustrate the use of prior information using simulated images and compare them 

with averaging and selection based fusion, as well as the ML fusion and MAPl techniques 

described in Section 5.3. We generated a sequence of noisy sensor images by adding 

Gaussian noise to one simulated image each from visible-band and IR (FLIR) sensors. 

Figure 5.6(a) shows one frame of the noisy visible-band sequence. Figure 5.6(b) shows one 

frame of the noisy IR sequence. These simulated sensor images depict a runway scene with 

an aircraft on it. The polarity of contrast of the runway surface and markings is reversed 

in the IR image. The taxiways that are visible on the left and right of the runway in the 

visible-band image have not been sensed by the IR sensor and are missing in the IR image. 

The variance of the added Gaussian noise in both the sensor images is equal. Figure 5.6(c) 

shows an image of the same scene as might be obtained from a terrain database. Although 



._~ __.m m.__.

(a) TV image
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(b) FLIR image

(c) Database image

(d) Averaging (e) Selection

Figure 5.6: Fusion of simulated TV and FLIR images
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this image is clean, it does not show the actual situation on the runway - the aircraft in 

the sensor images is absent in the database image. 

Figure 5.6(d) shows the result of fusing the sensor images of Figures 5.6(a) and 5.6(b) 

using averaging. Averaging was performed using 7 levels of the Laplacian pyramid. Av- 

eraging does not fuse well in regions containing polarity reversed and complementary 

features. The polarity reversed runway and markings have almost disappeared and the 

contrast of the taxiways has been reduced. Figure 5.6(e) shows the fused image obtained 

by selection using an area based salience measure and 7 levels of the Laplacian pyramid. 

Selection performs better than averaging in the polarity reversed regions, but the fused 

image is noisy. 

We combined the simulated noisy sensor video sequences using ML fusion and MAPl 

fusion described in Section 5.3. Every pair of video frames from the sensor video se- 

quences was combined using probabilistic fusion. We estimated the noise variance in the 

sensor video sequences using the multiple frame noise estimation technique described in 

Section 4.3.24. The experimental setup used for computing the fused image using the 

probabilistic fusion rules is summarized in Table 5.5. For the remainder of this section, 

we will focus on results of fusing the image frames shown in Figures 5.6(a) and 5.6(b). 

We combined the images in Figures 5.6(a) and 5.6(b) using the ML fusion rule and the 

MAPl fusion rule described in Section 5.3. The experimental setup used for computing 

the fused image is summarized in Table 5.5. Figure 5.7(a) shows the result of combining 

the images by the ML fusion rule using Equations (5.6) and (5.8)5. The result of ML 

fusion is noisy because both the sensor images are equally noisy. However, ML fusion 

performs better than fusion by selection as can be seen by the higher contrast in regions 

containing the runway and runway markings. 

Figure 5.7(b) shows the result of combining the images by MAPl fusion using Equa- 

tions (5.9), (5.11), (5.12) and (5.15). The noise variance was estimated using multiple 

4 ~ h e  simulated noisy frames for each sensor were generated by adding different realizations of Gaussian 
noise with the same standard deviation to  a clean simulated frame. Motion compensation was not necessary 
since the multiple frames were generated from the same clean simulated image. 

'Since the noise variance in the sensor images is equal, the ML-fused image in this experiment can also 
be computed as a local PCA projection. 
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(a) ML fusion

(b) MAP 1 fusion (c) MAP2 fusion

Figure 5.7: Fusion of simulated TV and FLIR images (continued). The two MAP methods
shown, use prior image information from a terrain database



Table 5.5: Experimental setup for fusion of noisy sensor images with prior image informa- 
tion from a database 

frames. The result of MAPl fusion is less noisy as compared to ML fusion. As explained 

in the MAP fusion experiment of Section 5.3, 1 1  /3 II= 1 and so = 0 implies 0: = A. Al- 

though both sensor images are noisy, a: regulates the weight given to the sensor images 

in different regions of the scene, in accordance with the reliability of the features in the 

sensor images. For example, in flat noisy regions in the sensor images, a: is low. Hence the 

contribution from the sensor images is attenuated. In high contrast regions in the sensor 

images, a: is high, preventing attenuation of the contribution from the sensor images. 

As a result, the runway surface, markings and aircraft are prominent in the MAPl fused 

images. The taxiways are also visible. The image is cleaner than either sensor image. But 

there is some loss in sharpness at the edge at the boundary caused by the horizon and the 

sky. Note that no database information was used to construct the images in Figures 5.7(a) 

and 5.7(b). 

We now describe two different methods by which the database information can be 

included in the fused image: 

Size of images 
Laplacian pyramid levels 
Size of local analysis window 
p, a computed at 
i computed at 
Constraint on sign r 
Noise variance 
Processing at borders 

MAP fusion using the database image and assumptions on the prior a: 

128 x 128 pixels 
7 
5 x 5 hyperpixels 
each hyperpixel location 
each hyperpixel location 
shaded region in Figure 4.8(h) 
estimated from multiple frames 
reflected hyperpixels to extend borders 

In the first method, MAP2, the database image is used as so. The experimental setup 

for this method is identical to that in Table 5.5. In addition, the database image is also 

decomposed into 7 levels of the Laplacian pyramid. The MAPz fused image is obtained 



using 

and the least squares parameter estimates 

where we assume 11 p I\= 1 to give 

The value for so in Equation (5.16) is given by the hyperpixel in the database image. The 

parameter ps, given by Equation (4.19) and is estimated at each location in the pyramid 

by computing the mean in a 5 x 5 hyperpixel region in the database image. 

where N = 25 is the number of hyperpixels in the 5 x 5 region. As in MAPl fusion, we 

make the assumption uz = X SO that the contribution of the database image scales with 

the reliability of the sensor images. In flat noisy regions of the sensor images, a: is low, 

hence the contribution of the database images so is increased. Conversely, in high contrast 

regions of the sensor images, 0: is high, hence the contribution of the database image so 

is reduced. 

Figure 5.7(c) shows the result of MAPz fusion. The fused image appears better than 

either of the sensor images and the fused images of Figures 5.6(d), 5.6(e) ,5.7(a) and 5.7(b). 

Local polarity reversed features are preserved in the fused image and have high contrast. 

The taxiway is clearly visible in the fused image. Noise in the flat regions as well as the 

edges is reduced. The aircraft on the runway is prominent and also has high contrast. 

The fusion rule has given more weight to the database image in regions where the sensor 

images are less reliable. 



Using a: as a parameter to control the contribution of the database 

We describe another method, MAP3, where the database image is again used as so. In 

this method we specify the prior variance a: and use it as a measure of confidence in the 

database image. The value of a: controls the relative contribution of the sensors versus 

that of the database image in the fused image. A high value of a: corresponds to low 

confidence in the database. Conversely, a low value of a: corresponds to high confidence 

in the database. 

The confidence assigned to each spatial location in the database image must be prop- 

agated to the same spatial locations in the pyramid that are at different levels of the 

pyramid. In the experiment described below, we achieve the propagation in the following 

manner. We generate a sequence of images containing white Gaussian noise with a specific 

standard deviation. The standard deviation of noise corresponds to the confidence in the 

database image. We then decompose the sequence of images into Laplacian pyramids and 

compute the variance at each hyperpixel location from the sequence. This variance is the 

value we have assigned to a: at each hyperpixe16. 

The MAP3 fused image is also computed using the MAP fusion rule of Equation (5.16). 

The parameters a, and are computed using the least squares estimates of Equation (5.17). 

The spatial mean p,, is computed as in Equation (5.19). We also compute an estimate of 

a:, at each hyperpixel using the database image so as, 

where N = 25 is the number of hyperpixels in a 5 x 5 hyperpixel region. We can now 

compute u:,,, given by Equation (4.22), using the value of a:. Therefore, we have all the 

quantities needed for estimating a, and p, and the fused image. 

The experimental setup to compute a fused image using MAP3 fusion is the same as 

that in Table 5.5. The results of fusion using three different values of a: are shown in 

'The confidence a t  each hyperpixel can be computed from the confidence assigned to each location in 
the database image using the mathematical expressions for the operations involved in the pyramid com- 
putation. However, the operations in the Laplacian pyramid computations involve several steps including 
downsampling and upsampling operations that make it difficult to propagate the confidence through the 
pyramid levels. Therefore, for the purpose of the MAP3 experiment, we chose to use an empirical solution. 
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(a) MAP3 fusion (low 0";)
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(b) MAP3 fusion (medium 0";)

(c) MAP3 fusion (high 0";)

Figure 5.8: Controlling the contribution of the prior image

Figures 5.8(a), 5.8(b) and 5.8(c). The standard deviation of the Gaussian noise images

generated to compute the values of 0";for these three cases was 20, 25 and 40 respectively.

From Equation (5.16), higher values of 0"; reduce the weight given to the database image

hyperpixels So and therefore accentuate the contribution of the sensor images relative

to the database image. Conversely, lower values of 0"; increase the weight given to the

database image hyperpixels So and therefore accentuate the contribution of the database

image in the fused image.



5.5 Evaluation of Fusion 

In the previous sections we have demonstrated that the fused images obtained using the 

probabilistic fusion rules appear better than the traditional techniques of averaging and 

selection. The probabilistic fusion rules overcome the disadvantages of the traditional 

techniques outlined in Section 2.7, particularly when the sensor images are noisy. However, 

a quantitative evaluation of the fused images is necessary to compare fusion techniques. 

A typical approach to the characterization of systems that enhance signals and images 

is to specify signal-to-noise ratios. One problem with this approach for the purpose of 

evaluating fusion is that the desired fused result is not known. We overcome this problem 

by starting with a known desired image. We then examine the effectiveness of fusion 

algorithms using sensor images that are generated from the desired image. 

We quantitatively evaluated the MAP fusion rule under local polarity reversals. A 

square wave grating, Figure 5.9(a), was used as the known desired image for evaluation7. 

Two sensor images a1 and a2 were constructed as transformations of the desired grating 

image s ,  perturbed by additive Gaussian noise. The image a1 was generated as 

The second sensor image a2 was generated by modulating the square wave grating by 

multiplying with one cycle of a sine wave. The modulated grating was then perturbed by 

additive Gaussian noise. 

where m represents the sine wave. Modulation by a sine wave simulates local polarity 

reversal. The image a2 is shown in Figure 5.9(c). The stripes on the left side of the 

image have the same polarity or are in phase with the stripes in Figure 5.9(b). Whereas 

the stripes on the right have opposite polarity or are out of phase. We varied the noise 

power contained in a1 and a2 and compared the result of averaging, selection and MAP 

fusion. The fused images for a particular noise setting are shown in Figure 5.10. Each 

 h he reason for using a square wave grating was that it represents all spatial frequencies in roughly the 
same proportion that they are observed in natural images (i.e., l/f, where f is the spatial frequency). 



(a) Desired image s

(b) Sensor image al (c) Sensor image a2

Figure 5.9: Images used for evaluating fusion results
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fusion technique employed 7 levels of the Laplacian pyramid. The fused image obtained 

by averaging, Figure 5.10(a), has the right half wiped out due to pattern cancellation of 

local polarity reversed stripes. The fused image obtained by selection, Figure 5.10(b), 

is noisy. The contrast of the stripes on the right is reduced. The result of ML fusion 

is shown in Figure 5.10(c). ML fusion eliminates the problems caused by the polarity 

reversals. However, the fused image is still noisy. The MAP fused image is obtained 

using the MAPl method described in Section 5.3 and is shown in Figure 5.10(d). The 

stripes in the grating are clearly visible in the MAP-fused image. The image appears less 

noisy than the sensor images and the fused images obtained by averaging and selection. 

To quantitatively evaluate the fused images, we have developed an error measure based 

on root-mean-square (RMS) noise. The RMS error between the desired image s and its 

estimate d is given by 

where i refers to the ith pixel in each image and N is the total number of pixels. However, 

this error measure penalizes the fused image for incorrect gain or a shift in the graylevels. 

The comparison of the fused images should be insensitive to gain differences or shift 

differences in the fused images. To address this problem, we have developed an error 

measure that is invariant to scaling and shifting of the graylevels in the fused image. We 

find regression parameters y and S that minimize the difference between the fused image 

d and the image 

Note that y and 6 hold over the entire image and therefore are not local in nature. These 

parameters are obtained by minimizing 



(a) Averaging

(c) ML fusion

(b) Selection

(d) MAP fusion

Figure 5.10: Fusion of noisy grating images
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and are given by 

and 

where i is the ith pixel and N is the number of pixels in each image. The RMS error, 

invariant to scaling and shifting of the graylevels, is given by 

The fused images were evaluated using this error measure as a function of the noise added 

to the sensor images. The graph in Figure 5.11 shows a plot of the RMS error of the 

fused images versus the signal-to-noise ratio in the first sensor image. MAP fusion has 

the lowest RMS error. Averaging does worse than MAP fusion. Selection has the highest 

error due to the noise in the sensor images. The difference between the errors due to 

MAP fusion and averaging is more pronounced when the input signal-to-noise ratio is 

low. Note that the errors produced by MAP and averaging are similar at high input 

signal-to-noise ratios. However, the MAP-fused image looks visually better than the fused 

image obtained by averaging which results in pattern cancellation. The fact that the error 

produced by averaging and MAP fusion is similar at high input signal-to-noise ratios may 

be explained by two factors. First, observe that the left half of the sensor images a1 and 

a2 have the same polarity of contrast. Therefore, the RMS error is low in the left half 

of the fused image obtained by averaging. However, the error in the right half is higher 

due to the polarity reversal. Second, note that there is a slight modulation in the left half 

of the MAP-fused image due to which this half looks brighter. The brightness increases 

from the left side to the center of the image. The sine wave in sensor image a2 seems 

like a complementary feature to the probabilistic fusion rule at the level of the pyramid 
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Figure 5.11: Evaluation of fusion results using a scale and shift invariant error measure 
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where this sine wave component is prominent. As a result, the sine wave is retained in 

the fused image and appears as modulation. This modulation increases the error. Now 

observe the right half of the MAP-fused image. There is a similar modulation in the other 

direction due to which this half appears darker. Again, this increases the error. Note that 

though the modulation due to the sine wave appears in the MAP-fused image, the effect 

of polarity reversal has been removed. At low input signal-to-noise ratios, the error due to 

the noise in the averaging fused image dominates the error caused by the modulation in 

the MAP-fused image and therefore, the MAP-fused image produces a lower error. The 

evaluation approach described above, brings out the drawback of quantitative evaluation of 

fused images. The quantitative evaluation results do not exactly correspond to the visual 

results. The results suggest that more sophisticated quantitative measures are necessary 

to evaluate fused images. Evaluation techniques would benefit from a knowledge of task 

(e.g. detection, search) specific information as well as a modeling of the characteristics of 

the human visual system using a vision model [50, 45, 751. 
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5.6 Summary 

In this chapter, the probabilistic fusion rules and the estimates of model parameters de- 

veloped in Chapters 3 and 4 were used to fuse multisensor images. The experiments 

described in this chapter demonstrate the efficacy of the probabilistic fusion approach. 

Probabilistic fusion preserves the contrast of local polarity reversed features and comple- 

mentary features. If the variance of noise in the sensor images is equal or if the noise 

variance is zero, the probabilistic fusion rule is just a local PCA projection. The results of 

probabilistic fusion on sensor images with small noise are comparable to that of selection- 

based fusion as shown in Figure 5.1. When the variance of noise in the sensor images is 

high, but equal, the probabilistic MAP fusion rule outperforms other fusion techniques 

as shown in Figure 5.7(c). When the variance of noise in the sensor images is unequal, 

the probabilistic fusion gives a lower weighting to the sensor having larger noise. However 

complementary features from the noisy sensor are retained in the fused image. The results 

suggests that the model-based probabilistic fusion approach does overcome the drawbacks 

faced by traditional fusion techniques. 

The probabilistic fusion approach also has the provision to include prior imagery of the 

scene into the fused image. The results described in Section 5.4 illustrate the usefulness of 

the ability to include prior information into the fused image. The experiments demonstrate 

that the information in the prior image can be balanced against the information in the 

sensor images. The probabilistic fusion approach can be adapted to either use the prior 

image in conjunction with confidence in the sensor images or to externally control the 

weightage given to the prior image in the fused image. 

We have also quantitatively evaluated the fusion results. The evaluation methodology 

consisted of constructing a set of sensor images from a known image and computing a fused 

image from these sensor images. The fused image was then compared to the known image 

using a RMS based error measure. Although the evaluation results do not entirely agree 

with the visual results, they do indicate that the probabilistic fusion approach performs 

better than the traditional techniques. 

The probabilistic fusion approach can be used for fusion of images from multiple sensors 



as well as video sequences from multiple sensors as demonstrated by the experiments de- 

scribed in this chapter. The computational complexity of the probabilistic fusion approach 

is discussed in Appendix I. In this appendix, we have also outlined ways for reducing the 

computational complexity for practical implementations of probabilistic fusion. 

We illustrated our approach using runway images from the landing guidance appli- 

cation in aviation as an example. However, since we do not make specific assumptions 

about the image content, our approach is equally effective on other types of multisensor 

images. The fusion experiment described in Appendix H demonstrates the effectiveness 

of our approach in fusing hyperspectral images. 



Chapter 6 

Conclusions and Future Work 

We have presented a probabilistic model-based approach for fusion of images from multiple 

sensors. The probabilistic model incorporates the process by which the scene gives rise to 

the sensor images. The model explicitly accounts for contrast reversals, complementary 

features and noise, which adversely affect existing fusion techniques. We derived our fusion 

rules and estimation of model parameters using a theoretical framework. The results that 

we have presented illustrate that our fusion approach yields improved fusion results as 

compared to the existing techniques. 

Although the combination of the sensor images has been the central focus of this thesis, 

we have also presented techniques for conformal geometric representations, multisensor 

image registration and interpretable display of fused images. The solutions to these issues 

are integral to most practical applications involving multisensor image fusion. These 

techniques are described in Appendix A, B and C. 

In this chapter, we first present our conclusions in Section 6.1. In Section 6.2 we 

suggest directions for future work from the point of view of extending the work presented 

here as well as applying our fusion framework to other problem domains. 

6.1 Conclusions 

In this section we present the conclusions from the theory and experimental results pre- 

sented in Chapters 3, 4 and 5. We outline the salient contributions of our probabilistic 

model-based multisensor image fusion approach and the advantages offered by this a p  

proach. We also note the limitations of our approach in terms of the validity of our 



assumptions and computational considerations. 

6.1.1 Salient contributions of probabilistic model-based fusion 

Feasibility of a model-based approach 

We have developed a principled approach to the problem of fusion of multisensor images. 

Under certain assumptions, we explicitly modeled the process by which the true under- 

lying scene gives rise to the sensor images. Our model, defined within a multiresolution 

Laplacian pyramid representation, explicitly accounts for mismatched, noisy image fea- 

tures. We derived a theoretical framework for fusion based on this model. We showed how 

our proposed fusion solution can be used to fuse a pair of sensor images, or a sequence of 

images from multiple sensors (i.e., video fusion). 

Efficacy of local affine functions 

We have shown that our simple model consisting of noisy, locally affine functions is effective 

in extracting the complex local relationships between the sensor images and the scene. In 

the example images we analyzed, this model was able to capture the effects of local polarity 

reversals, complementary features and noise. 

Probabilistic framework effective in characterizing noise 

The probabilistic framework of our fusion approach is advantageous in adapting the fusion 

rules in cases of changing signal and noise conditions. We have shown that our probabilistic 

approach of characterizing the uncertainty due to noise in the sensor images is important 

for fusion. Our results indicate that incorporating this uncertainty in our model alleviated 

the sensitivity of fusion to noise. 

Simple interpretation of fusion rules 

The probabilistic model-based approach estimates the underlying scene from the sensor 

images. These estimates constitute the fusion rules. The fusion rules resemble PCA-like 

projections and are easy to interpret. The fused images obtained by these rules are locally 



weighted linear combinations of the sensor images. The weights scale the sensor images 

according to the signal and noise content in the sensor images. 

Improved fusion results 

The results of our fusion experiments show that our approach addresses the problems 

faced by existing fusion techniques based on selection and averaging methods, while re- 

taining their advantages. The fused images produced by our probabilistic fusion have 

relatively lower noise, and show better contrast and feature retention than selection or 

averaging methods. A quantitative evaluation shows that probabilistic fusion outperforms 

the existing techniques in noisy conditions. 

Inclusion of prior knowledge provides reliable fusion 

We have shown that prior knowledge about the scene, in the form of a prior image, can be 

included in the fused image in a principled manner using the Bayesian approach. Simulated 

experiments using a prior image from a terrain database show promising results. The fused 

image retains features from the sensor images and the prior image and is less noisy than 

the sensor images. We have also shown that the contribution of the prior image in the 

fused image can be controlled depending upon the confidence in the prior. 

6.1.2 Limitations 

Our fusion approach is based on a set of assumptions as described in Section 3.3.1. The 

approach applies well when the assumption of the local affine functions holds. The ap- 

proach would probably deteriorate under situations where the local affine mapping does 

not apply, or where the noise in a sensor image is correlated with the scene or correlated 

across sensors. The parameter estimation would be adversely affected in cases where the 

assumption of slow spatial change of the affine parameters does not apply. 

The advantages offered by our probabilistic fusion approach come at an increased com- 

putational cost. Computation of the fused pyramid requires approximately 350 operations 

per location in the pyramid, not including any computations required for motion compen- 

sation for noise variance estimation. However, these operations could be performed in 



parallel for each location in the pyramid. Alternatively, the model could be simplified to 

reduce the number of estimations needed. Computational considerations are discussed in 

Appendix I. 

Finally, our conclusions are based on experimental results obtained using a small set 

of real and simulated images and with respect to simulated noise conditions. To examine 

the extent to which our approach is applicable in real situations would require fusion to 

be performed on live data from multiple sensors. In addition to a quantitative evaluation, 

the results would have to be evaluated with respect to the specific application for which 

multisensor image fusion is to be used - for example, evaluation with respect to the 

human visual system. 

6.2 Suggestions for Future Work 

6.2.1 Extension of our fusion approach 

Simplifying the model 

Currently the image formation model consists of an f i n e  mapping at each hyperpixel 

within the pyramid hierarchy. This generates an overabundance of model parameters, 

particularly when the image features change slowly from one hyperpixel to another. Early 

experiments show that the model can be simplified by using the same model parameters 

over regions of several square hyperpixels rather than recalculating for each hyperpixel. 

This would reduce the computational complexity of the approach. A further refinement 

could be provided by adopting a mixture model [66] to build up the image formation 

model. 

Multiple frames for estimating the scene and model parameters 

We use image data from multiple frames within a sensor video sequence for estimating 

the noise variance. However, the rest of the estimation uses a single image from each 

sensor. Our approach can be extended to use multiple motion compensated frames from 

each sensor to estimate the scene s as well as the parameters, p and a, of the local 

affine functions. This would be a logical extension of the use of multiple frames for 



estimating the noise variance. We believe that increased use of video information from 

multiple frames would provide further robustness to noise and improved fusion results. 

In a preliminary experiment we used a spatiotemporal local analysis window extending 

over 5 x 5 hyperpixels and 10 frames to compute the data covariance matrix and the data 

mean that are used to estimate the affine parameters. The generated fused image was 

less noisy than that produced by a single frame parameter estimation. The probabilistic 

model framework would have to be extended to derive the fusion rules and the parameter 

estimates from multiple frames. 

Investigation of other multiresolution representations 

Our approach was based on decomposing the images into multiresolution Laplacian pyra- 

mids, generating the fused pyramid by applying the fusion rules, and obtaining the fused 

image from this fused pyramid. The use of other multiresolution representations (for ex- 

ample, wavelet transforms) within our framework could be investigated to determine if 

they are better suited for performing fusion. 

6.2.2 Application to other domains 

Although different fusion problems have a different structure, their solutions can lead to 

similar approaches. Below we discuss a few applications to which our fusion framework 

can be applied. 

Multifocus fusion and composite imaging 

In multifocus fusion, images obtained from the same camera but with different focus 

settings are fused [16]. The change in focus could be modeled as a linear transformation 

of the scene by the camera. Therefore, our approach could be adapted to multifocus fusion. 

In composite imaging [16], multiple narrowband images are fused to obtain a broadband 

image. Here too, each narrowband image could be modeled as a linear transformation of 

an underlying broadband image. 



Multisensor image registration 

Image registration consists of aligning a pair of images such that the corresponding fea- 

tures coincide. Local polarity reversals and complementary features in multisensor images 

cause additional difficulties in traditional registration. Identification of polarity reversed 

and complementary features would facilitate improved registration (see Appendix B). To 

do this, one would require to fuse the images. However, fusion requires registered im- 

ages. Our image formation model for multisensor images could be modified to account 

for misregistration. For example, ai(i, 6), where 6 is a motion vector could be an affine 

function of s as in Equation 3.1. The task would then be to estimate the motion vectors 

in addition to the other parameters. 

Application to speech processing 

Consider the problem of combining two noisy streams of a speech signal obtained from 

two different microphones. Each stream could be modeled as a linear transformation 

by the microphone of the underlying speech signal with additive noise. An approach 

similar to the one described in this work, could also be applied to enhancement of noisy 

speech. Consider, for example, that different bands of the short-time speech spectrum are 

the multiple observations. Here, the model would define the observations as noisy linear 

transformations of the underlying speech spectrum. Moreover, the model would be local 

since a different linear transformation would apply to each short-time speech segment. 

This model framework is very similar to our model. The observations could then be fused 

to obtain an enhanced estimate of the underlying speech spectrum. 

Pattern recognition 

In pattern recognition, the objective is to classify a feature vector of an observed signal 

as one of several patterns or classes [25]. Consider the case where features from multiple 

observations are available. These features can be considered as linear (or affine) transfor- 

mations of an underlying feature. The linear transformation would model attenuation or 

amplification of the features, complementarity and noise. The multiple features could be 

fused to obtain more reliable features for classification. 



Superresolution 

Superresolution consists of generating a high resolution image from a sequence of low res- 

olution images of a scene [65]. This problem is similar to the speech enhancement problem 

discussed above. Again, the low resolution images could be modeled as linear transfor- 

mations of the high resolution image. The fusion problem would then be to estimate the 

high resolution image from the observed low resolution ones. Here, as in registration, the 

model would have to account for motion between the low resolution images. 

Video frame interpolation 

The task in video frame interpolation is to interpolate the missing video frame between 

two available frames. This problem could be expressed in terms of a model similar to 

the one described in this work. The available frames could be considered as noisy affine 

mappings of the missing frame. Uncovered backgrounds and occlusions caused by moving 

objects, give rise to complementary information. Similarly, lighting variations would cause 

a change in gain. The mappings would have to be a function of the local motion vectors 

between the available frames. 

6.3 Final Remarks 

In this dissertation we presented a probabilistic model-based solution to the problem of 

multisensor image fusion. The combination of information from multiple sensors will find 

increased application in a large variety of problems, given that the available computa- 

tional power is steadily increasing. This would entail fusion of sensors as disparate as 

say imaging and acoustic sensors. We have shown that using simple models and dealing 

with uncertainty can help in obtaining reliable and improved fusion results. We hope 

that this work will encourage the further development of probabilistic model-based fusion 

approaches. 
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Appendix A 

Conformal Geometric Representation of 

Mult isensor Imagery 

A. l  Introduction 

The discussion on fusion in Chapters 2, 3, 4 and 5 was based on the assumption that 

the images from multiple sensors have identical geometric representations. In reality, this 

assumption is not valid. Visible-band and infrared sensors, and imaging radars operate in 

different regions of the electromagnetic spectrum. The physics underlying the mechanism 

of each of these sensors is different, and dictates the imaging geometry of the sensor. As 

a result different sensors generate images that are different geometric representations of a 

scene. The differences are particularly apparent between radar and other imaging sensors. 

Visible-band and infrared sensors generate imagery that is conformal with - or very 

similar to - a view of a scene as seen through a window, i.e., a projective transformation. 

Figure A.l(a) shows a simulated forward looking infrared (FLIR) image. The imaging 

geometry of a radar is quite different. An imaging radar transmits a narrow radio beam 

periodically swept over a range of angles along the azimuth. Objects in the scene reflect 

different proportions of the impinging radio energy. The radar output (B-scope) image 

shows the reflected energy as a function of azimuth and range1, i.e., distance from the 

radar antenna. Figure A.l(b) shows a simulated millimeter wave radar (MMWR) image. 

The heterogeneity of the image representations increases the complexity of a system 

'The exact relationship between the scene and the radar image depends on the details of the radar 
technology. A complete characterization of this relationship requires consideration of the radar equation, 
multiple reflections, polarization effects, and details of the radar design [42]. 



that is designed to benefit from the diversity of the sensors. The range images generated 

by an imaging radar cannot be directly fused with visible-band and infrared images. A 

pragmatic approach to fuse images from different types of sensors involves: 

1. Transformation of image data to a conformal (and preferably invertible) geometric 

representation. 

2. Fusion of images in the domain of the conformal representation. 

3. Transformation of the fused images to another representation for display, if required. 

An example of such an approach involves transformation of the radar image to a projec- 

tive transformation, typically called the C-scope [lo]. This process is called radar image 

rectification. This is followed by fusion in the C-scope image. 

In this appendix we describe the projective and range imaging geometries and review 

the process of radar image rectification in Section A.2. We then review several conformal 

representations and discuss their advantages and drawbacks in Section A.3. In Section A.4 

we describe a new conformal representation called M-scope and demonstrate its application 

to fusion of radar and infrared images. 

A.2 Rectification of Radar Images 

Radar image rectification consists of two steps: 

1. Reconstruction of the 3-D scene geometry from a 2-D range image representation. 

2. Transformation of the 3-D coordinates into a 2-D projective image representation. 

Before reviewing the rectification process, we briefly describe the projective and range 

imaging geometries. 

A.2.1 Projective imaging geometry 

The projective transformation projects 3-D points in the scene onto a 2-D image plane [26]. 

The projective imaging geometry is illustrated in Figure A.2. The image plane is parallel 
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(a) FLIR projective image (b) MMWR
range image

Figure A.I: Different geometric representations

to the X - Y plane and the focal point of the camera lens is at (0, H, 0). The relationships

between the 3-D and 2-D coordinates are given by the projection equations,

X
x=J z' (A.I)

and

Y = Yo- J H - Yr7 , (A.2)

where (X, Y, Z) represents the 3-D location of an object, (x, y) are the 2-D image plane

coordinates, Yo is the location of the horizon, and the constant J is the focal length of the

optics used for the projection.

A.2.2 Range imaging geometry

A pixel s(r,O) in the radar B-scope image in Figure A.I(b) represents the intensity s of

the reflected radio wave at a range given by its ordinate r (vertical coordinate), and the



Figure A.2: Projective imaging geometry 



Figure A.3: Radar imaging geometry 

azimuth given by the abscissa 0 (horizontal coordinate). The actual world range R is 

related to the B-scope coordinate by a scaling constant k, r = kR. 

For the range geometry illustrated in Figure A.3, in which the radar is located at 

(0, H, O), the B-scope coordinates are related to the world coordinates by, 

where (X, Y, Z)  represents the 3-D location of a reflecting object, and H is the altitude of 

the platform that contains the imaging radar. 

The 3-D scene coordinates (X, Y, Z) are reconstructed from (r, 0) using Equations (A.3) 

and (A.4). The projective coordinates (x, y) are then obtained from (X, Y, 2) using Equa- 

tions (A.l) and (A.2). However, reconstruction of (X, Y, Z)  from (r, 0) is underdetermined. 

There are three unknowns X,  Y, Z and only two equations, Equations (A.3) and (A.4). It 

is necessary to introduce additional constraints to obtain a solution. 

A.2.3 Radar rectification based on flat earth assumption 

The traditional approach to rectification is to assume that all the reflected radar energy 

is from objects located on a plane. This assumption specifies a constraint which imposes 



Figure A.4: Error due to flat earth assumption 

Y = 0 or Bat earth for all objects in the scene. Under this flat earth assumption, the 

horizontal image plane coordinate x is determined by the azimuth coordinate 8 in the 

radar range image. From Equations (A.3) and (A.l), 

To compute the vertical image plane coordinate y  it is necessary to compute the dis- 

tance Z of each point. An estimate of Z,  denoted by Zf, can be obtained by combining 

Equation (A.4) with Equation (A.1) and using the flat earth assumption Y = 0, 

Using Zf, the 2-D vertical coordinate y  can be computed from Equation (A.2) as, 

The flat earth assumption, results in errors for objects that are not on the plane Y = 0. 

For example, an object located at (X, Y, Z), with Y > 0 is incorrectly localized at Zf as 

shown in Figure A.4. The estimate Zf is smaller (i.e., closer to the radar) than the actual 

value 2. The error in Z is given by 

and the corresponding error in the image plane vertical axis is given by 

H - Y  
~ y =  [--"I Z 

z f 
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In applications such as ALG2, the imaging radar is located on an aircraft. The flat earth

assumption is therefore a reasonable approximation if the aircraft elevation is much larger

than the height of objects in the scene, H» Y. However, the error increases for objects

that are either near (small Z ), or are at the same elevation as the radar as in the final

stages of a landing.

A.3 Review of Conformal Geometric Representations

"
IT - ... ~

(a) Radar C-scope (b) FLIR C-scope

Figure A.5: C-scope representation

In the previous section we discussed rectification of radar images and described the

conversion of a radar range image in B-scope representation to a C-scope representation

using the flat earth assumption. In this section, we discuss the appropriateness of the

C-scope, B-scope and plan position indicator representations for fusing radar (MMWR)

images with infrared (FLIR) and visible-band images.

2The ALG application is discussed in Chapter 1.



A.3.1 C-scope representat ion 

One approach to fuse a radar image with an infrared (or visible-band) image is to use 

the C-scope as the conformal representation. The advantage of this approach is that only 

the radar range image needs to be converted to C-scope (as described in Section A.2). 

Subsequent steps of fusion and display of the fused image are then performed in C-scope 

itself. Figure A.5 shows conformal C-scope representations of a simulated radar range 

image and a simulated infrared image from the ALG application. Figure A.5(a) is the 

radar range image of Figure A.l(b) after conversion to C-scope. 

A drawback of this approach, however, is that useful information about distant struc- 

tures in the B-scope image is lost during conversion from B-scope to C-scope. This is 

because the resolution3 of a radar range image in B-scope and a projective image in 

C-scope is different as a function of 3-D world distance from the sensors along the Z 

coordinate. For an imaging radar, the resolution in range is approximately constant and 

nearly independent of the gaze angle. For a projective image, the resolution decreases 

with distance and is inversely proportional to the distance along the Z axis. At some 

distance along the Z axis (away from the sensing platform), the resolution of the radar 

becomes higher than that of the infrared (or visible-band) sensor. During conversion from 

B-scope to C-scope, the higher resolution data about distant structures is converted into 

lower resolution data. Another drawback of converting a radar image to C-scope is that 

objects close to the radar are significantly aliased as in the lower portion of Figure A.5(a). 

A.3.2 B-Scope representation 

An alternative to the above approach is to convert the projective image to B-scope rep- 

resentation. To convert to B-scope we use the flat earth assumption to obtain the range 

coordinates (R, 0) from the projective coordinates (x, y) using Equations (A.5) and (A.7). 

Figure A.6 shows the B-scope representation of the FLIR image of Figure A.l(a). The 

drawbacks of this approach are complementary to those of the C-scope representation and 

can be observed in Figures A.6(a) and A.6(b). The fine details of Figure A.5(b) in near 

- -- 

3Here, resolution refers to the area of the scene covered by one pixel. 
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(a) Radar B-scope (b) FLIR B-scope

Figure A.6: B-scope representation

locations (locations in the image that are closer in distance to the imaging sensor) in the

horizontal (i.e., X) direction are lost.

A.3.3 Plan position indicator representation

The plan position indicator (PPI) representation [42]represents a 3-D scene by an orthog-

onal projection onto a plane parallel to the earth's surface. The PPI view is a bird's eye

view, i.e., an image of the earth from a viewpoint located high above the surface of the

earth. The PPI image represents the scene as a function of the world coordinates X and

Z (the 3-D scene geometry is illustrated in Figure A.2).

Figure A.7 shows the simulated FLIR and MMWR images of Figure A.l converted

to PPI. The advantage of this approach is that the losses in resolution due to differences

in sampling variabilities are equalized since images from all the sensors have to be trans-

formed to PPI for fusion. The drawback of this approach is that some information from

both sensors is lost. The loss is particularly significant for short distances. Besides, this



(a) Radar PPI
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(b) FLIR PPI

Figure A.7: PPI representation of simulated radar and FLIR images

approach is computationally expensive compared to the above approaches because images

from all sensors have to be converted to PPI.

AA M-Scope Representation

We have developed a conformal mixed scope (M-scope) representation that takes advan-

tage of the differences in resolution to retain the best resolution of each of the sensors. The

M-scope is similar to the B-scope in that it represents the distance along the Z coordinate

versus azimuth angle. However, the Z dimension is represented by a nonlinear scale. This

nonlinear scaling reduces the effects of the differences in resolution between the sensors,

which are more pronounced along the Z direction. The nonlinear scale is defined such that

the step size in Z at any location in the M-scope image is dictated by the sensor which

has the highest resolution along Z at that location. Now consider a range image and a

projective image to be converted to M-scope. For a vertical increment of one pixel in the

range image, let the corresponding increment in Z be JZR as shown in Figure A.8. Sim-

ilarly, for a vertical increment of one pixel in the projective image, let the corresponding

increment in the Z direction be JZp. Then the Z increment in the M-scope image JZM



(a) Range resolution in Z 

x-Y 
plane 

6% 
(b) Projective resolution in Z 

Figure A.8: Z increment for M-scope representation 
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(a) Radar M-scope
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(b) FLIR M-scope

Figure A.9: M-scope representation

is given by

{

I5Zp if I5Zp< I5ZR
I5ZM=

I5ZR otherwise
(A.lO)

For small distances along the Z direction (near locations), the increment in Z in the M-

scope image is dictated by the resolution of the projective image. For large distances (far

locations) the Z increment in M-scope is governed by the radar range resolution.

Figure A.9 shows the M-scope representations of the simulated FLIR and MMWR

images of Figure A.I. Comparing these images with the corresponding C-scope and B-

scope images in Figures A.5 and A.6, one can observe that the M-scope images resemble

the C-scope representation at the near locations whereas they resemble the B-scope images

at the far locations. The M-scope resembles the B-scope with enlarged near features.

The advantage of M-scope is that the loss of information in the conversion process

is reduced. The M-scope representation retains the image information present in the

original representation since it preserves the best sensor resolution at each location. The



drawback of this approach is that all the sensor images must be transformed into this 

representation. This extra computation can be justified for applications where it is crucial 

to retain information from the sensors before further processing. For example consider an 

application where images from MMWR and FLIR are fused for target recognition. The 

M-scope provides an advantage over other representations because MMWR image data in 

far locations and the FLIR image data in near locations are better preserved in M-scope. 

A.4.1 Fusion in the M-scope domain 

Figure A.10 illustrates the use of the M-scope representation for fusion of simulated 

MMWR and FLIR images. The simulated FLIR image in Figure A.lO(a) was gener- 

ated by simulating atmospheric attenuation (to simulate the effects of fog) in the noiseless 

FLIR image and perturbing with additive white Gaussian noise. The simulated radar 

range image in Figure A.lO(b) was obtained by generating a range image and perturbing 

it by multiplicative log-normally distributed white noise. These images were converted to 

M-scope representation and fused using the ML fusion rule in Section 3.4.1. The param- 

eters of the image formation model were estimated as described in Section 4.4 using the 

FLIR image as a reference image. The resulting fused image is shown in Figure A.lO(c). 

The fused image contains salient image features from both the images The near points 

of the scene are dominated by the FLIR image (runway markings), whereas the distant 

areas (edges of the runway) are from the radar image. The fused image does not contain 

image features above the horizon since they do not appear in the M-scope representation. 

In practice, the portion of the FLIR image above the horizon could be retained. 

A.5 Summary 

We reviewed the C-scope, B-scope and PPI conformal representations and described the 

new M-scope representation. The M-scope transformation preserves the best resolution of 

either of the sensor images that are to be converted to M-scope. The M-scope geometry 

reduces the loss of image information during conversion to and from M-scope, and is well- 

suited for fusion of MMWR imagery with imagery from FLIR or visible-band sensors. 
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(a) Original FLIR image (b) Radar B-scope

(c) Fused image

Figure A.lO: Fusion of radar and FLJR



Appendix B 

Regist rat ion of Mult isensor Images 

B.l Introduction 

Image registration is an important component of multisensor image fusion. It is neces- 

sary to ensure that images to be fused are registered so that they can be compared and 

combined. The goal of registration is to establish a spatial correspondence between two 

images of the same scene1 and determine a geometric transformation that aligns one im- 

age with another. Automatic registration of images obtained from multiple sensors is a 

difficult task because of the mismatch in the images caused by local polarity reversals and 

complementary features. 

We describe traditional approaches to registration in Section B.2 and discuss why 

these approaches may not work when the images to be registered are from different types 

of sensors. In Section B.3 we describe modifications to the traditional approaches to apply 

in the case of different types of sensors. Finally, we demonstrate the results of registration 

using our technique. 

B .2 Same-sensor Registrat ion 

Before describing our approach to multisensor image registration, we briefly discuss tech- 

niques for registration of images from the same sensor or from similar types of sensors. 

Although several different approaches exist for registration of same-sensor images [7], they 

'A misalignment between image features in two images of the same scene can be caused by a variety of 
factors including different positions of sensors imaging the scene and movement of the imaging platform. 



(a) Image 1 (b) Image 2 

Figure B. 1: Optical flow 

all depend upon similarities between the images. To estimate the geometric differences 

between the images, one can either exploit similarities that exist between the graylevels 

in the two images or exploit similarities that exist between matching points in the two 

images [31]. These two approaches give rise to two broad categories in image registration 

- optical flow approaches and feature mapping approaches. 

B.2.1 Optical flow approaches 

Optical flow techniques [32, 46, 1, 301 take advantage of the similarity in graylevels be- 

tween the two images to be registered. Optical flow is the apparent motion or spatial 

shift of brightness patterns (graylevels) between two images. For example, in Figure B.l 

the arrows represent the motion of the shaded object from image 1 to image 2. These 

techniques assume that the observed brightness of objects in the images to be registered 

is constant. This is called the brightness constancy assumption. This assumption enables 

one to relate the motion to the shift of brightness patterns. In addition, a smoothness 

constraint is assumed to ensure that the motion of nearby points is similar. 

Gradient based registration techniques 

The gradient based techniques [5, 4, 301 estimate the optical flow field (i.e., the motion) 

between the images by relating the motion to the gradient of image brightness. Consider 



two images Il and I2 that have to be registered. The motion between the images can be 

represented in two ways: 

1. Associate a motion vector (px,py) with each pixel (x, y) in image Il so that it aligns 

with image 12. This is a local motion model since a different motion vector is assigned 

for each pixel. In this case the motion description is not compact and usually the 

problem is underdetermined. 

2. Formulate the motion as (p,,py) = f (x, y; p) where p is a parameter vector that is 

same for the entire image and the function f determines the structure of the motion 

at each pixel. This is a global parametric motion model. This model imposes a 

smoothness constraint since the motion of adjacent pixels is constrained due to f .  

Some techniques also use a combination of local and global models. For example, block 

motion compensation techniques used in video compression algorithms [6, 191. 

For planar scenes, it is advantageous to use the global parametric motion model [30]. 

If Il and I2 are the two images to be registered, then 12(x,y) can be expressed in terms 

of I1 (x,y) as 

where p, (x, y, p) and py (x, y, p) depend upon (x, y), the parameters p and the model used 

to describe the global motion. If the captured scene is assumed to be a planar surface, 

the motion of the scene can be approximated by a projective transformation [5], given by 

where p 5 [ p l ,  ..,p8]T are the parameters of the global motion model. When the distance 

between the scene and the camera is large, the motion can be approximated by an affine 

model, with p7 = p8 = 0 in Equation B.2. Translation is a special case of the projective 

model when p3 = p6 = 1 and p4 = ps = p7 = P8 = 0 in Equation B.2. 

The registration parameters are estimated by minimizing the sum squared error, 



If the displacements (p,,py) are small, the above equation can be simplified by a Taylor 

series approximation of Il (x + px , y + py ), 

where 

The sum squared error can now be expressed as 

where, 

The motion between the images is obtained by setting the derivatives of the error measure 

in Equation B.7 with respect to the parameters of the motion model to zero and solving 

the resulting set of equations. Such an estimation is accurate only when the displacements 

between the images are a fraction of a pixel, so that the Taylor series approximation holds. 

The estimation is improved by using an iterative alignment procedure that begins with an 

initial guess of the parameters. At each iteration, one of the images is warped2 according to 

the initial estimates and then the estimation is repeated to obtain residual displacements. 

To capture large displacements, a hierarchical coarse-to-fine refinement of the regis- 

tration parameters is performed in a multi-resolution framework such as a Gaussian or 

Laplacian pyramid scheme [14]. The registration parameters are first iteratively estimated 

at a lower resolution to obtain a coarse solution. This solution is then used to initialize the 

parameter estimation at a higher resolution to obtain more accurate parameters. Bergen 

et al. [4, 51 and Hel-Or [30] provide detailed descriptions of gradient-based registration 

techniques. 

2 ~ a r p i n g  consists of applying a geometric transformation followed by resampling [79]. 



The performance of gradient-based registration techniques is adequate only in the 

cases where the illumination conditions in the images to be registered are identical. In 

other words, the brightness constancy assumption should be a good approximation for the 

techniques to provide accurate registration. 

B .2.2 Feature-mapping approaches 

Feature-mapping techniques [44, 31, 80, 791, register images by finding a correspondence 

between points in the two images. Features such as edges, corners or contour lines in one 

image are matched to those in the other image. The locations of matching features in 

the two images are then used as control points. Registration is performed by finding a 

geometric mapping that aligns these control points. For example, a set of four matching 

points, (xi, yi) and (xi + p,,,yi + pg , )  where i = 0 . .  .3, in the images Il and I2 provide 

a set of eight simultaneous equations in terms of the unknown parameters pl . . .p8. The 

equations are solved to obtain estimates of the parameters. The estimated parameters are 

used to warp and register the images. 

The main difficulty in feature-mapping techniques is the search for consistent matching 

features in both the images. Consistency checking is essential to avoid the possibility of 

false matches. One also needs to ensure that the ambiguities that exist in matching points 

along edges do not result in incorrectly matched features. 

B .3 Mult isensor Registration 

The registration techniques discussed above are suitable for registration of images from 

the same or similar sensors. For such images the brightness constancy is a reasonable 

assumption, and ambiguities between features in the images to be registered are less 

likely as long as the misalignment is small. However, registration of images from sensors 

such as visible-band and infrared pose additional problems. Different types of sensors 

capturing the same scene produce images that have quite different graylevels and features 

as described in Section 3.2. We now discuss the difficulties faced in multisensor registration 

and describe our approach to solve these problems. 



B.3.1 Difficulties in registrat ion caused by multiple sensors 

Images captured through different types of sensors pose additional difficulties to traditional 

registration techniques. The graylevel characteristics of the images are often different 

because the sensors capture the ambient lighting conditions differently. For example, there 

are noticeable graylevel disparities between the visible-band and infrared images shown 

in Figure 3.1. Local polarity reversed features (Figure 3.1) cause further mis-match in 

graylevels. As a result, the brightness constancy assumption is not reasonable and the 

performance of optical flow techniques degrades. 

The presence of complementary features in multisensor images causes problems for 

feature-mapping techniques. Since features in one image may be absent in the other image 

(Figure 3.1), the search for corresponding matched features becomes difficult. There is a 

high possibility of obtaining inconsistently matched features which can impair registration. 

B.3.2 Invariant representation for registration 

As discussed above, the assumption of brightness constancy is not suitable for registration 

of multisensor images because the relationships between graylevels in multisensor images 

cannot be correctly described by optical flow. The gradient-based registration technique 

described in Section B.2.1 cannot be directly applied if Il and I2 are multisensor images. 

For instance, for images containing graylevel disparities and local polarity reversals, the 

sum squared error of Equation (B.3) is not necessarily minimum even when the images 

are perfectly registered. Figure B.2(a) is a plot of the error (sum squared difference) 

as a function of translation for a pair of two misaligned images. The images contain 

local polarity reversed features and therefore, the translation corresponding to the correct 

registration gives the maximum error (shown by the peak of the error surface). 

To address the problems caused by local polarity reversals and graylevel disparities, we 

transform the images into a representation that is invariant to local polarity reversals and 

insensitive to global changes in brightness. The particular transformation that we have 

chosen is the absolute value of hyperpixels in a Laplacian pyramid representation3. The 

3 ~ h e  Laplacian pyramid representation is described in Section 2.4.1 
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absolute value operation is a nonlinear operation on the Laplacian pyramid intensities. 
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The resulting intensity representation is identical for signals which are exact opposites 

of each other. The nonlinear transformation (consisting of the Laplacian pyramid opera- 

tions followed by the absolute value operation) results in invariant representations of local 

polarity reversed image features. For example, the nonlinear transformation produces 

identical representations of signals that are exact opposites of each other. An additional 

characteristic of this representation is that the levels of the Laplacian pyramid are band- 

passed versions of the original image. Note that graylevel differences between the sensor 

images are accounted for by the low spatial frequencies in the images. The bandpass oper- 

ation ensures that these low spatial frequencies are removed. After applying the nonlinear 

transformation, the error measure of Equation (B.3) is given by, 

where G' denotes the nonlinear operation of taking the absolute value. Figure B.2(b) 

shows the error surface obtained using the nonlinear representation. The minimum point 



on the error surface now corresponds to the translation parameters that give the cor- 

rect registration. The registration parameters, pl, .., ps, are estimated by minimizing the 

modified error measure in Equation (B.9). 

B.3.3 Smoothing the error surface to reduce registration errors 

Experiments using Equation (B.9) for estimating the registration parameters showed that 

the error measure does not always lead to accurate solutions and sometimes the param- 

eter estimation does not converge. The accuracy and convergence of the minimization 

depends upon the error surface. Figure B.2(b) shows the error surface, computed using 

Equation (B.9), as a function of translation for a pair of multisensor images containing ad- 

ditive noise. The noise in the sensor images caused the error surface to be noisy, especially 

at higher resolutions. A noisy error surface can lead to erroneous registration because the 

minimization procedure may converge to a local minimum instead of the global minimum. 

Smoothing of the error surface reduces local minima, thereby improving parameter 

estimation. We smoothed the error surface by applying a low-pass filter to the absolute of 

Laplacian pyramid representation. With smoothing, the error measure of Equation (B.9) 

becomes, 

where G is an operator that denotes both the absolute value operation described above 

as well as the low-pass filtering operation. The low-pass filter operation removes the high 

spatial frequency noise and smears or spreads the features in the absolute of Laplacian 

pyramid. Figure B.2(c) shows the error surface after low-pass filtering the absolute of 

Laplacian pyramid. The error surface is smoother and the basin containing the global 

minimum is widened. A wider error surface leads to robust parameter estimation and 

problems caused by local minima are reduced. The trade-off is that the precision of the 

estimated registration parameters is reduced due to the wider basin in the smoothed error 

surface. 

The frequency response of the low-pass filter used for filtering the levels of the absolute 

Laplacian pyramid affects the extent to which the error surface is smoothed. The lower 



the cut-off frequency of the low-pass filter, the smoother is the resulting error surface. The 

low-pass filter that we have used is the five tap Gaussian kernel given in Section 2.4.1. 

Although, this filter is not optimal for all images, we were able to register several sets of 

multisensor images with this filter as shown in Section B.4. 

The steps in the modified gradient-based registration technique are ilIustrated in Fig- 

ure B.3. The two images to be registered are transformed into levels of a Laplacian 

pyramid. The levels of the Laplacian pyramid are then subjected to the nonlinear trans- 

formation and passed through a low-pass filter as described above. The resulting repre- 

sentation is fed into the parameter estimation step. Registration proceeds hierarchically 

from lower resolutions (higher levels of the pyramid) to higher resolutions (lower levels 

of the pyramid). At each level, parameters are iteratively estimated by minimizing the 

error measure. Parameters estimated at a lower resolution are used as an initial guess 

at a higher resolution. The parameters are propagated from one level to another by a 

change in coordinates. For example to propagate parameters from a lower resolution to a 

higher resolution twice in size, the parameters pl and pz are multiplied by 2 whereas the 

parameters p7 and ps are divided by 2. All the other parameters remain the same. 

B.4 Experiments and Results 

We have applied our registration technique to register several sets of multisensor im- 

ages. We have used both simulated and real images from different types of sensors. Fig- 

ures B.4(a) and B.4(b) are images of the Pentagon obtained from sensors operating in 

different portions of the infrared spectrum. Local polarity reversed features are present in 

the center and the lower left portion of these images. These images were registered using 

the affine model. Figure B.4(c) shows the superimposed images after registration. Note 

that the edges of structures and the roads in the two images are properly aligned. 

Figures B.5(a) and B.5(b) are visible-band and FLIR images, respectively, and show a 

runway scene as an aircraft is about to land. These images contain local polarity reversed 

features (runway markings) as well as overall graylevel disparities. These images were 

registered using the projective model. Figure B.5(c) shows the two images superimposed 



(a)
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(b)

Figure B.4: Registration using affine model (Data from AMPS).

(c)

after registration. The edges of the runways and the taxiways are now aligned. These

are the very images that we used to demonstrate our fusion algorithms in Chapter 5. We

have observed that the residual misalignment towards the bottom of the images is difficult

to remove. This misalignment may have been caused due to the high speed with which

the aircraft (on which the sensors were placed) was approaching the runway. The high

speed coupled with the different scanning rates of the sensors likely resulted in a nonlinear

distortion between the images in regions closer to the sensors.

Figure B.6 shows the registration of FLIR and MMWR images. The FLIR image in

Figure B.6(a) contains features which are absent in the MMWR image in Figure B.6(b).



(a)
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(b)

Figure B.5; Registration of FLIR and visible-band images (Data from SVTD [9]).

(c)



(a) (b)

(c)

Figure B.6: Registration of FLIR and radar images (Data from SVTD [9]).
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In spite of the differences caused by complementary features and local polarity reversals, 

our technique registered the images using the affine model as shown in Figure B.6(c). 

A quantitative evaluation of registration is a difficult task, especially with multisensor 

images, unless the correct registration is known a priori. We evaluated our approach using 

simulated multisensor images where the correct registration is known. Our experiments 

indicate that the registration is accurate to within a pixel. 

B. 5 Discussion and Conclusions 

We described an approach for registration of multisensor images. This approach circum- 

vents the difficulties due to multiple sensors in traditional registration. We used the 

absolute of Laplacian pyramid representation to produce invariant image representations 

under local polarity reversals and graylevel disparities. The technique then modifies these 

representations by low-pass filtering them. This results in smoothing of the error surface, 

and facilitates robust estimation of registration parameters. 

It is important to note that knowledge of local polarity reversed and complementary 

features can further aid the task of registration. Registration algorithms can incorporate 

the knowledge of location of such features to improve the registration. We performed 

some preliminary experiments based on this approach. After a first pass at registration, 

we estimated the location of complementary features using the probabilistic fusion rules 

of Chapter 3 on the registered images. We then used this knowledge to suppress the 

contribution to the error from these locations and performed a second pass at registration. 

Our experiments indicate that there is an improvement in registration accuracy especially 

for images in which complementary features are significant. This implies that fusion of the 

images prior to registration could facilitate improved registration. However, it is necessary 

to register the images before performing fusion. Therefore registration and fusion need 

to carried out in an iterative manner. Registration in itself can be considered a form of 

fusion, since it involves comparison and combination of image information. 

Our discussion on registration focussed on spatial misalignments in image features. 

The temporal sampling rate (frame-rate or the number of images generated per second) 



of the sensors causes yet another misalignment between the images. Temporal misalign- 

ments between images can be corrected using frame interpolation techniques [49, 651. 

These techniques interpolate an image frame from adjacent frames, within a sensor video 

sequence. 



Appendix C 

Display of Mult isensor Fused Images 

C. l  Introduction 

The probabilistic fusion rules retain features from the sensor images. However, the fused 

image does not indicate the source of the image features (sensor-specific information). 

Knowledge of the source of the image features is likely to be helpful in fusion applications. 

For example, the knowledge that a bright patch in the fused image originated from the IR 

sensor is critical in interpreting the patch as a hot object. Similarly, knowledge that a dark 

patch is from a visible-band sensor could help disambiguate between a shadow and an ac- 

tual object. Representation of sensor-specific information could also enable identification 

of image features that have been masked by features from another sensor. In addition, the 

fusion rules do not differentiate between relevant and irrelevant complementary features 

(see Section 3.2.1). Ideally, one would want to identify and suppress irrelevant comple- 

mentary features. Identifying irrelevant complementary features is a difficult machine 

vision task. An alternative would be to display the sensor-specific information and let the 

observer decide whether the features are relevant. 

One way to do that is to use additional dimensions as in color representation. In 

this appendix we explore several methods for representing the source of complementary 

information in the fused image using pseudocolor representations. Section C.2 briefly re- 

views prior work in pseudocolor fusion. In Section C.3 we propose a set of principles for 

mapping fused data onto additional dimensions and discuss possible mapping approaches. 

In Section C.4 we describe two approaches to map the fused image and the sensor im- 

ages onto color channels, and illustrate each approach with an example. In Section C.5, 



we describe an approach for representing complementary features using color. The re- 

sults of experiments described here demonstrate the feasibility and potential of mapping 

approaches. 

C.2 Prior Work 

Waxman et al. [76, 771 have described a technique for generating pseudocolor fused images 

from low-light visible-band and IR sensors. The visible-band image is contrast enhanced 

and two contrast enhanced images are derived from the IR image using on and off center- 

surround processing. These images are then assigned to the red, green and blue channels 

of a color display. The pseudocolor renderings of night scenes produced by this technique 

have a natural-like appearance. Although the technique improves the appearance of the 

fused image, it does not necessarily deliver the sensor-specific information. 

Toet and Walraven [71] have proposed another approach for generating a pseudocolor 

fused display to represent the source of the image information. The common component 

of two sensor images is estimated as the minimum graylevel value at each pixel location. 

Then the unique component of each sensor image is computed by subtracting the common 

component from the original. The unique component of each sensor image is then sub- 

tracted from the other sensor image. The resulting images are applied to the red and green 

channels of a color display. The fused display retains sensor-specific image information. 

However, the shortcoming of this approach is that it does not distinguish between reliable 

signal and noise. 

C.3 Mapping Fused Data to Convey Sensor-specific Details 

The fusion techniques described in this dissertation generate a graylevel fused image from 

graylevel sensor images. We now outline a set of principles for mapping the fused images 

and the sensor images onto additional dimensions to represent sensor-specific information. 

We also discuss different approaches to mapping. 



C.3.1 Principles of mapping 

For a mapping approach to be effective, the mapping of the sensor data and the fused 

data onto the perceptual dimensions cannot be arbitrary. We propose that the following 

set of principles should underly any choice of mapping: 

1. Matched spatial resolution - the spatial resolution of the sensors should match the 

spatial resolution of the corresponding perceptual dimension. A sensor that has low 

spatial resolution should be mapped onto a dimension that has low spatial resolution. 

2. Matched temporal resolution - the temporal resolution of the sensors should match 

the temporal resolution of the corresponding perceptual dimension. A sensor with 

slower response or frame rate would be mapped onto a sluggish perceptual dimension. 

3. Separability of dimensions - the perceptual dimensions used for complementary 

components should be perceptually separable and identifiable. 

4. Integrability of dimensions - the perceptual dimensions for the common components 

should be integrable. 

5. Cross-dimension masking - the inter-dimension masking should not impair the 

perceptibility of the complementary features. 

C.3.2 Different approaches to mapping 

The approaches to represent the source of the image features in the fused display can 

be divided into two broad categories. In the first category each sensor is mapped onto a 

particular dimension and the human visual system is used to fuse the images. Examples 

of this category are the approaches of Waxman et al. [76] and Toet and Walraven [71]. 

An alternative category of approaches is to fuse the sensor images to obtain a graylevel 

fused image and then use additional dimensions to convey the source of the image features. 

One approach could be to use color to convey the sensor-specific information. Another 

approach could be to use shading or texture to render the image features arising from each 

sensor differently. Use of blinking to denote certain features as complementary features 



could be yet another approach. Similarly, translucent overlays could be used to convey 

additional information. 

C.4 Color Mapped Fused Display 

Human color vision is believed to be trichromatic1 or three-dimensional [73] (i.e. consisting 

of three channels). Because of the three-dimensional nature of color perception, the color of 

any light can be represented by a projection of the intensity versus wavelength distribution 

onto three primary color (chrominance) channels. One such trichromatic model is the RGB 

(red-green-blue) model. An alternative model of color perception is the opponent color 

perception model. According to this model, the trichromatic channels are recoded after 

the initial stage of vision into one luminance (achromatic) channel and two chrominance 

channels. Using the notation from vision literature - S, M, and L are responses of cones 

in the human retina that correspond to short, medium and long wavelengths respectively. 

The peak sensitivities of the L, M and S cones roughly correspond to the R, G and B 

wavelengths. The luminance signal, Py, and the two chromatic components, PRG and 

Pyg, are computed in terms of the cone absorptions as 

Py = L + M ,  

P R ~  = L - M ,  

Pyg = L + M - S .  

The chromatic component PRG represents the "red-green" opponent channel, whereas the 

chromatic component PyB represents the "yellow-blue" opponent channel. Based on the 

three dimensional nature of color vision, we have explored two possible mappings of the 

fused image and the sensor data onto transformations of the color dimensions. 

'The trichromatic theory of human color vision states that the color of light entering the human eye may 
be specified by three numbers rather than a complete function of wavelengths over the visible range [49]. 



C.4.1 Fusion using red-green color map 

The human visual system performs fusion by combining the signals from the three types 

of cones. This motivates our first technique where we directly map data from a sensor to 

a particular cone type. The additive representation of the luminance component shown 

in Equation (C.l), in combination with the red-green opponency, suggests that a simple 

mapping of one sensor onto the M channel and the other onto the L channel would yield 

the desired fusion effects and ensure the integrability of common components as well as 

separability of complementary components. Due to the additive representation of the 

luminance component in terms of L and M, the common features in the sensor images 

would appear along the luminance channel. Due to the subtractive representation of the 

red-green opponent channel in terms of L and M, the complementary features or polarity 

reversed features would appear along the red-green opponent channel. 

The mapping from the sensor images a1 and a2 to the L (red) and M (green) channels 

is implemented as 

where the weights wl and w2 determine the gain of each channel. For the R, G and B values 

applied to the monitor excitation to translate into the L, M and S cone absorptions, the 

L, M and S absorptions need to be converted to R, G, and B monitor excitation values. 

In order to do this, one needs to know the cone sensitivities and the monitor spectral 

power distribution (SPD) for R, G and B. The cone sensitivities can be assumed to be 

well described by linear functions as given by Smith and Pokorny [62]. In addition, the 

transformation between the cone absorptions and the standard RGB representation can 

be assumed to be linear. Then the LMS values can be obtained as [73] 

[L, M, S] = [cone sensitivity matrix][monitor SPD matrix][R, G, B]. (c.2) 

The R, G, and B values are obtained by the inverse relation. However, in our experiments 

we assumed that the L and M absorptions correspond directly to the R and G excitations 

and therefore wlal and w2a2 are the excitations applied to R and G respectively. An 



(a) IR image
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(b) Visual image

(c) Fused image

Figure C.l: Simple color scheme for fusion (simulated images)

example of the fusion process is illustrated using two synthetic images in Figure C.1. In

this example we applied the IR image in Figure C.l(a) to the "red" channel (L) and the

visible-band image in Figure C.l(b) to the "green" channel (M). In this example the gain

for each channel was equal (unity). However, when the sensor images are noisy, the gain

for each channel can be selected in accordance with the ML fusion rule of Equation 3.13.

The fused image formed as a result of the red-green color map is shown in Figure C.l(c).

The direct mapping approach shown in Figure C.l has two drawbacks. First, polarity

reversals can result in incorrect conclusion about the identification of the source of the

information. The sensor images shown in Figures C.l(a) and C.l(b) contain the same



image features, although these features are polarity reversed in some regions. Specifically, 

the runway surface and the markings on the runway have opposite polarity of contrast. The 

combination of the dark runway from the visible-band sensor with the bright runway from 

the IR sensor results in the runway appearing red in the fused image. The red appearance 

of the runway implies incorrectly that the runway in the fused image originates from 

the IR sensor alone. This is misleading since the same information is present in both 

images, albeit polarity reversed. Second, polarity reversals can result in reduction in 

detectability of edges or their motion because the resulting chromatic edges appear less 

salient than those defined by luminance. In addition, since the red and green channels 

form an opponent color direction, lights that stimulate a mixture of L and M cones are 

harder to perceive than lights that stimulate just one of these two types of cones [73]. 

To rectify these problems we examined alternate mappings that explicitly address local 

polarity reversals and map the sensors on to color directions that are mutually independent 

and orthogonal. 

C.4.2 Fusion by color mapping in the YIQ color space 

A convenient color space for an alternate mapping that satisfies the mapping principles of 

Section C.3.1 is the YIQ color space [36], that is used in commercial television broadcast. 

The YIQ color space is a transformation of the RGB color space such that the luminance 

(Y) information is decoupled from the chrominance (I and Q) information. The YIQ 

color space is derived from the YUV color space also used in broadcast television. The Y 

component consists of the luminance (graylevel) information. The U and V components 

are obtained from the R and B components by subtracting the luminance component. The 

chrominance components I and Q are obtained by rotating the U and V components by 33 

degrees. The I and Q components have reduced bandwidth than the U and V components 

for comparable visual quality [52]. Also, the I component has higher spatial resolution 

and requires higher bandwidth than the Q component [36]. 

We now describe a mapping approach that uses the YIQ color space in conjunction 

with the probabilistic fusion rule and the mapping principles. Consider two sensor images 

a1 and aa. The zero-mean sensor images are obtained as, 



where El and 5 2  are the averages computed over the entire image of each sensor. We then 

compute the luminance Y and the chromatic components I and Q by 

where j. is the estimate of the scene computed in Equation (3.15). The luminance channel 

Y has the highest spatial resolution and therefore the graylevel fused image is applied to 

this channel. The choice of which sensor image to apply to the I and Q channels depends 

on the spatial resolution of the sensors. The sensor image with higher spatial resolution 

is applied to I to satisfy the mapping principles. 

The Y, I and Q components have the ranges 0 5 Y 5 255, -152 < I 5 152 and 

-134 5 Q < 134. The fused image B and the sensor images a1 and a2 are appropriately 

scaled such that the graylevels are between 0 and 255. The zero mean sensor images then 

have intensity values between -128 and 128. The YIQ representation is then converted to 

the RGB color space by the transformation 

The transformation from YIQ to RGB is linear. However, the R, G and B values have 

restricted ranges, 0 5 R, G,  B 5 255. Even if the Y, I and Q values lie within the allowed 

ranges, not all combinations of Y, I and Q values that lie within the allowed ranges produce 

R, G, and B values that lie between 0 and 255. This is illustrated in Figure C.2. The 

volume covered by the cube spans all the combination of Y, I and Q values that lie within 

the ranges given above. However, the shaded volume represents the permissible range of 
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Figure C.2: Permissible values in the YIQ color space

Y, I and Q values that produce R, G, and B values that lie between 0 and 255. As a

result, the mapping given in Equation C.4 must be modified in practice.

In the modified representation (Y, I', Q'), we fix the luminance component Y to that

in Equation (C.4), and find the largest possible I' and Q' such that

I' I

Q' - Q
(C.6)

and the R, G, B values are within range. This modification retains the proportion of the

sensor intensities in the color space whereas the luminance component is unchanged. The

point (Y, I', Q') lies on the surface of the shaded volume and on the line joining the point

(Y, I, Q) and the origin (0,0,0) in YIQ space.

The I' and Q' values are computed in the following manner. The restricted range of R,

G, B values along with the transformation of Equation C.5 gives the following 6 constraint
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Figure C.3: Computation of modified I and Q values

0 :S Y + 0.95621 + 0.6214Q :S 255

0 :S Y - 0.2727 I - 0.6468Q :S 255

0 :SY - 1.1037I + 1.7006Q :S 255 (C.7)

With the value of Y fixed, we take a slice parallel to the I-Q plane through the shaded

volume shown in Figure C.2. This slice is illustrated in Figure C.3 for Y = 128. We then

find the intersection of the line passing through the point (I, Q) and the origin (0,0) in the

I-Q plane as shown in Figure C.3. The intersection point closest to (I, Q) gives the desired

point (I', Q'). The (Y, I', Q') values are converted to RGB space using the transformation

of Equation C.5. Note that in practice the transformation is followed by another trans-

formation using the calibration matrix [73, 36] corresponding to the particular monitor to

be used for the display of the fused images.

To provide an intuitive insight we demonstrate this mapping using two test images



166

(a) Horizontal ramp (b) Vertical ramp

,.

(c) Fused image

Figure CA: YIQ scheme for fusion

composed of horizontal and vertical gray level ramps shown in Figure CA. The image in

Figure C.4(a) is a horizontal gray level ramp with the pixel values linearly increasing from

0 to 255 from left to right representing the first sensor, al. The image in Figure C.4(b)

is a vertical ramp with the values increasing linearly from 0 to 255 from bottom to top

representing the second sensor, a2. Figure CA(c) is the corresponding fused image ob-

tained by applying the YIQ scheme to the ramps. The source of the image features in

the fused image can be identified by associating the different colored regions of the fused

image with particular combinations of sensors. For instance, when the intensity of al is

high and that of a2 is low, the resulting color is green. Similarly when both al and a2 are

high, the resulting color is bright pink.
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(a) MWIR image
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(b) LWIR image

(c) Fused image

Figure C.5: YIQ scheme applied to real images (Original data from FLIR Systems Inc.)

Figure C.5 shows an example of the YIQ scheme applied to runway images from

medium wave infrared (MWIR) and long wave infrared (LWIR) sensors. The bluish hue'

around the horizon in the fused image can be attributed to the LWIR image. The cross

marks in the LWIR image that are absent in the MWIR image appear with a yellow hue.

The bright pattern in the lower portion of the LWIR image appears bright pink in the

fused image because of the high intensity at the corresponding locations in the MWIR

image. The polarity reversed markings on the runway appear green in the fused image.

The colors help identify which sensor(s) a particular image feature originated from.

The advantage of this approach is that the luminance component is identical to the
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fused image obtained by graylevel fusion of the sensor images. As a result, in an ac-

tual application, the color information can be turned on or off whenever necessary. The

problem of local polarity reversed features is explicitly addressed by first performing the

graylevel fusion. The mapping provides separability of complementary components as well

as integrability of common components. The visibility of complementary features is not

impaired by cross-dimension masking. Mapping in the YIQ color space provides better

discrimination between the image features compared to the mapping using the red-green

color space. Although this mapping allows identification of the source of sensor-specific

features, the observer (for example, a pilot) has to learn the relationship between the

displayed color and the interaction among the image features.

C.5 Color Mapping of Complementary Features

!:= -- = ~

(a) Graylevel fusion (b) Color display

Figure C.6: Representing complementary signal using color

In this section we explore the possibility of rendering just the complementary features

using color in the fused image, and maintaining the rest of the fused image as a graylevel

image. The advantage of this scheme is that the relationship between the displayed colors

and the interaction among the image features is simple. This scheme ensures separability

of complementary components and can help distinguish between relevant and irrelevant

complementary features. The integrability of the common components is preserved since



the common components appear in graylevel. As previously described in Chapter 3, 

complementary features are image features that are visible in one sensor image but not the 

others. Assume that we have two sensor images a1 and a2. To identify the complementary 

features in up, we describe the image a2 in terms of the image a1 using a locally affine 

transformation at each hyperpixel of the Laplacian pyramids of the sensor images, 

a 2 ( i )  = p ( i ) ~ ~  (i) + a(?)  + ~(i),  (C.8) 

where i = (x, y, Ic) is the hyperpixel location, with x, y the pixel coordinates and Ic the 

level of the pyramid. Note that this mapping is similar to the image formation model 

of Equation (3.1). If the parameters /3 and a are estimated by regression along the lines 

of Equations (4.8) and (4.7) respectively, the parameter a at the different hyperpixels 

represents the complementary features from the second sensor. The image a representing 

the complementary features in sensor a2 is obtained by applying the inverse pyramid 

transform to the pyramid of hyperpixels a ( i ) .  We then let the luminance channel to be 

equal to the estimate B computed using the probabilistic fusion rules as in Chapter 5. 

and assign the complementary information to the I channel of the YIQ color space, 

where the weight w determines the gain of the I channel. No signal is assigned to the Q 

channel in this method. To generate the fused display we first convert Y IQ  to Y I'Q' and 

then to RGB as described in Section C.4.2. Figure C.6 shows the result of applying this 

mapping method to the MWIR and LWIR image of Figures C.5(a) and C.5(b) using a 

unit gain. The graylevel fused image is shown in Figure C.6(a). The color mapped fused 

image of Figure C.6(b) resembles the graylevel fused image in most regions. However, 

complementary features in the LWIR image are now rendered with color (the luminance 

component of these features remains the same as before). Regions containing complemen- 

tary features in a2 that are brighter than the corresponding regions in a1 appear with 

an orange hue. Whereas regions containing complementary features in a2 that are darker 

than the corresponding regions in a1 appear with a bluish hue. 



C.6 Summary and Conclusions 

Graylevel fusion hides the source of the image features in the fused image (i.e., it does not 

indicate which sensor image a particular feature originated from). The information about 

the source can be inserted into the fused image using additional perceptual dimensions 

such as color, shading, texture and overlays. We explored the possibility of providing 

this hidden information to an observer using pseudocolor mapping. We generated images 

using color mappings in which the graylevel fused image was represented by luminance 

and the sensor-specific information by different color directions. The main difficulty of 

this approach is to find a mapping that enables an observer to easily identify and separate 

the contribution of each sensor in the fused image (i.e., the source of the image features 

in the fused image). We achieved separation of the source information using the YIQ 

color space for color mapping, but the approach requires the observer to learn the map- 

ping. In another approach we rendered just the complementary features using color. This 

approach shows promise in terms of aiding an observer to distinguish between relevant 

and irrelevant complementary features. Note that the techniques described here can be 

refined by introducing transformations for the uniform color spaces2. However, finding 

an optimal mapping would require extensive perceptual experiments on identifying color 

directions. The results of our techniques, though promising, are preliminary. Empirical 

studies of observers' performance would be necessary to evaluate any of these and similar 

techniques. 

'In a uniform color space, equal measured distances correspond to equal perceptual distances between 
colors. CIElab and CIEluv [21] are two standard uniform color spaces. 



Appendix D 

Least Squares Factor Analysis Estimation 

of Model Parameter P 

From Section 4.5.1, the least squares estimate of at each hyperpixel is obtained by finding 

the p that minimizes the squared norm of the difference between the data covariance 

matrix E, and the model covariance C(alR) in the local analysis window,' 

where, 

Varying C ,  

Varying p, 

'~enceforth,  we drop the notation referring to the region R and refer to C(aJR)  defined in Section 4.5 
as C.  



Substituting Equation (D.4) in Equation (D.3), 

Therefore, 

-- aEp - -40:,,, (Za - C) 
aP 

To obtain the p that minimizes Ep, we set 

and recover, 

(C, - C ) p  = 0 

Substituting for C from Equation (D.2), 

This equation imposes two constraints on /3 - 

1. fl is an eigenvector of (C, - C,), and 

2. fl%,,,PTP is the corresponding eigenvalue. 

The solution to P that satisfies both these constraints is, 

where U is an eigenvector, and X is an eigenvalue of the noise-corrected covariance matrix 

(C, - C,). The variable r = f l is the sign of B, and determines the polarity of contrast. 

Minimum Value of ED 

Equation (D.8) gives the solution for P in terms of the eigenvalue and eigenvector of 

(E, - 2,) but does not specify the conditions under which Ep is minimum. We now 



consider a case where there are two sensors, so that the noise-corrected covariance matrix 

(C, - C,) has two eigenvalues X1 and X2, with XI > X2, and corresponding eigenvectors 

U1 and U2 respectively. (X, - C,) can be expressed in terms of XI, X2, U1 and U2 as 

(C, - C,) = XIUIUIT + X2U2U2T (D-9) 

Assume that 

1 

8 = x u l r  
os,so 

From Equation (D.l), 

E@ = t r { ( ~ .  - c ) ~ )  

= tr  { (Ca - o,2,s088T - C,) 2, 

= tr  { (c. - 9 - o , 2 , s o ~ T )  2, 

Substituting Equation (D. 10) and Equation (D.9) in Equation (D. 11) , 

(D. 10) 

If we had chosen 

, t 
p = --Z-U2r (D.13) 

os,so 

then ED in Equation (D.12) would have been A:. Therefore, the value of that minimizes 

ED is 

1 - 

p = x u l r  (D.14) 
os,so 

where UI is the principal eigenvector and XI is the principal eigenvalue of (C, - C,). 



Appendix E 

Maximum Likelihood Factor Analysis 

Estimation of Model Parameters a and P 

Maximum likelihood approach to estimate a and P 

An alternate way to approach the problem of estimating the affine parameters /3 and a is to 

use maximum likelihood factor analysis methods [3, 37, 38, 671. In Section 4.5 we derived 

the model distribution over the local analysis window RL. Each hyperpixel in the local 

analysis window can be assumed to be independent and identically distributed according 

to the model distribution over Rc (which is a Gaussian, with mean and covariance given 

by Equations (4.18) and (4.21) respectively). The log-likelihood of observing N = 25 data 

points in the local analysis window RL of 5 x 5 hyperpixels can be computed as, 

N -' 2 c tr  { ( c ( a l ~ ) ) - '  (an - 8 ~ s o  - a) (an - B P S ,  - alT) , (E.1) 
n= 1 

where n corresponds to the nth hyperpixel in the local analysis window. To form a max- 

imum likelihood (ML) estimate of cu we differentiate the log-likelihood L with respect to 

a ,  and set the result to zero to obtain 



where pa is the data mean defined in Equation (4.24). Substituting this estimate of aM, 

in Equation (E.l), the log-likelihood can be written as, 

where C, is the data covariance matrix as defined in Equation (4.25). To obtain the /3 

that maximizes the log-likelihood, we take the derivative of L with respect to P, equate it 

to zero, and recover (the derivation is given in the following section) 

Equation (E.4) simplifies to 

The solution to Equation (E.5) is 

where 6 is an eigenvector and X the corresponding eigenvalue, of the weighted data - - 3 1 

covariance matrix, C, 5 C, c,x;', and r = ztl. The maximum likelihood occurs when 

6 is the principal eigenvector of 5,. The maximum likelihood technique, like the least 

squares technique, does not provide an estimate of the sign of r or for C T : , , ~  and pa,. The 

sign of r can be chosen in the same way as in the least squares technique. The value 

of CT;,,, can be chosen such that llP,,112 = 1 in Equation (E.6) and the value of p,, in 

Equation (E.2) can be chosen as zero in the absence of prior knowledge about the scene. 

The maximum likelihood and least squares solutions for the estimation of the affine 

parameters are related under certain assumptions. The relationship between these two 

solutions is explained in detail in Appendix F. 



Derivation of the maximum likelihood estimate of P 

From Equation (E.3) the log-likelihood of observing N data points in the local analysis 

window of 5 x 5 hyperpixels can be computed as1 

where, 

where, 

and 

To form a maximum likelihood estimate of P we take the derivative of L with respect 

'For simplicity of notation, in the rest of this appendix, we refer to C(alR) the model covariance over 
the local analysis window defined by region R simply as C .  



to p. The derivatives are computed as follows: 

(E. 11) 

where we made use of the fact that C is a symmetric matrix. From Equation ( E. l l ) ,  



To obtain the partial derivative of tr  {C-'C,) with respect to fl we first derive the fol- 

lowing results: 

Using Equation (E.13), the partial derivative of t r  {C-lCa) with respect to C is 

a 
- (tr { c -~c~) )  = 

a 
acij 

= - (c-lxac-l) .. 
3 2  

(E. 14) 

Using Equation (E.14) and given that C and C, are symmetric matrices, we obtain the 



partial derivative of tr {C-'E,) with respect to B as 

From Equation (E. 15), 

From Equations (E.12) and (E.16) 

To obtain the value of p that maximizes the likelihood, we equate the above derivative to 

zero to obtain 

-c-'p + c-leac-'p = 0 

If o:, , a:;, . . . , 0: > 0, then C-'exists, and Equation (E.18) can be written as 

(C - c a ) c - l p  = 0 



But 

c-'p = c,-'p(1+ ~ ~ ~ , p ~ c , - ~ p ) - '  

From Equations (E. 19) and (E.20), 

2 pTc,-'p) -1 = 0 (C - za)%-'P(l+ gs,so 

Post-multiplying by (1 + o:,,,pT~.-'/3), 

(C - ca)c,-'p = 0 

Using Equation (E.8), 

( c e  + ~ : + , B B ~  - X o ) & - ' ~  = 0 

Let 

and 

Then, 



where, 

The 3 that satisfies Equation (E.26) as well as Equation (E.27) is given by 

1 - 77% - 
,8 = -UT (E.28) 

~ s , s o  

- 
where 6 is the normalized principal eigenvector of C,, r = f 1 is the sign, and 

- 
where ?; is the principal eigenvalue of C,. Combining Equations (E.24), (E.28) and (E.29), 

we obtain the maximum likelihood estimate of the factor loadings P. 

where 6 and are the principal eigenvector and the principal eigenvalue of the noise 
1 

weighted data covariance matrix C,-~C,C.-~. 



Appendix F 

Relationship Between the Least Squares 

and the Maximum Likelihood Factor 

Analysis Estimation of Model Parameters 

a and ,O 

The maximum likelihood factor analysis and the least squares factor analysis solutions for 

the estimate of the sensor bias parameter a are identical. Here we derive the relationship 

between the maximum likelihood factor analysis solution for P and the least squares factor 

analysis solution for P. The solutions for the estimate of the sensor gain parameter P are 

identical under two conditions - (i) when the model is exact, and (ii) the noise variance 

is equal in all sensors. 

Exact model 

From Section 4.5, the model covariance over the local analysis window defined by the 

region R is given by1 

where R is the region specified by the local analysis window. An exact model means that 

the data covariance matrix is exactly of the form specified by the model covaraince, that 

'1n this appendix, we have dropped the notation referring to the region R and refer to C(alR) defined 
in Section 4.5 a s  C. 



From Section 4.5.1, the least squares solution for P is obtained from the relation 

The least squares solution is given by 

where U and X are the principal eigenvector and the principal eigenvalue respectively 

of the noise corrected data covariance matrix (I=, - C,), and r = k1 is the sign of the 

eigenvector U. 

From Section El the maximum likelihood solution for P is obtained from 

where 

and 

The maximum likelihood solution is given by 

( X -  1); 
PML = C, 3 fir 

cs,so 
(F.8) 

- 
where fi and X are the principal eigenvector and the principal eigenvalue respectively of 

the noise weighted data covariance matrix C,-~C,C,-) and r = f 1 is the sign of the 

eigenvector c. 
To derive the relationship between the maximum likelihood and least squares solutions 

for P,  we begin with the above definition of an exact model, 



Substituting the least squares solution for P from Equation (F.4) into Equation (F.9), 

using Equation (F.6). Post-multiply by E,-IU 

Divide both sides of Equation (F.ll) by (UTC,-'u) 

Let 

Therefore 

(F. 10) 

(5, - I)Z = (xu~c,-~u)z (F. 14) 

which means that Z is an unit norm eigenvector of (E, - I) and ( X U ~ X , - ~ U )  is the 

corresponding eigenvalue. 

Substituting Equation (F.8) in Equation (F.8) we obtain, 

Comparing Equation (F. 14) with Equation (F. 15), 

(F. 15) 

(F.16) 



and 

Equations (F. 17) and (F. 18) give the relationship between the maximum likelihood and 

least squares solutions for P. 
We now verify that the maximum likelihood and least squares solutions are indeed 

identical using the relationships given by Equations (I?. 17 ) and (F.18). Substituting 

these equations into the maximum likelihood solution given by Equation (F.8), 

Equal noise variance 

The maximum likelihood and least squares solutions for are also identical if the noise 

variance for each sensor is equal (homoscedastic noise variance), that is 

Under this condition, the two solutions to /3 are identical even if the model is not exact 

(i.e., X, # C). 

From Section E, the maximum likelihood solution for fl is obtained by solving the 

equation 



Substituting Equation (F.20) into Equation (F.21) gives 

Equation (F.22) is identical to Equation (4.30) in Section 4.5.1 (also see Equation (F.3) 

above) used for obtaining the least squares solution for P. And the solution for Pis given 

by 

Hence the maximum likelihood solution to P obtained from Equation ( F.22) is identi- 

cal to the least squares solution given by Equation (F.4), where U and X are the principal 

eigenvector and principal eigenvalue of (C, - u~I). Let Ua and Xa be the principal eigen- 

vector and principal eigenvalue, respectively, of the data covariance matrix Ca . Then 

U = Ua (F. 24) 

and 

Substituting Equations (F.24) and (F.25) into Equation (F.23), both the least squares and 

maximum likelihood solutions simplify to 



Appendix G 

Conditional Covariance 

Here we derive a general result concerning conditional covariance. Suppose we have 

P(b lc )P(c )  = P ( b ,  c )  (Gel )  

Then, 

E [b] = Ec [E [bl cll 

where E [.I denotes the expectation operator. However, for the covariance of b we have, 

cov(b) E / db / d c ~ ( b ~ c ) ~ ( c )  { ( b  - E [b]) ( b  - E [b] lT )  

= J db 1 d c ~ ( b ~ c ) ~ ( ~ )  { ( b  - E [blc]) ( b  - E [ b ~ c ] ) ~  

+ ( E  [blcl - E 161) ( E  [blcl - E [bl)T 

The last two terms of Equation (G.3)  vanish using the result of Equation (G.2) ,  to give 

= J dcP(c )  { J  dbp(b l c )  ( b  - E [blc]) ( b  - E [ b ~ c ] ) ~  

+ J dcp(C) { ( E  - E P I )  ( E  [blci - E ~ 1 ) ~ )  
= Ec [cov(blc)] + cov, ( E  [blc]) 



where 

and 

cov, ( E  [blc]) - d c ~ ( c )  { ( E  [blc] - E [b]) ( E  [blc] - E [ b ~ ) ~ }  . 



Appendix H 

Fusion of Hyperspectral Images 

The probabilistic fusion approach can be applied to combine any kind of multisensor 

images. Figures H.l(a) and H.l(b) show two hyperspectral images1 of the Pentagon. The 

images are captured from two different bands at different times of the day. These sensor 

images were fused using ML-fusion as described in Section 5.2.1. The experimental setup 

is given in Table H.1. The ML-fused image, shown in Figure H.l(c), has retained the 

complementary features from both sensor images. For example, see the marked box in the 

top half of the image. The roads from image 2 are clearly visible. The fused image has 

also preserved the contrast of local polarity reversed features. For example, see the lower 

right portion of the top box, and the box on the bottom left. 

Figures H.2(a) and H.2(b) are another pair of hyperspectral images (also from AMPS), 

showing a land-mass interspersed with water. The sensor images have several common 

'images are from the Airborne Multisensor Pod System (AMPS). See http://www.amps.gov 

Table H.l: Experimental setup to obtain the ML-fused image of Figure H.l 

Size of images 1 300 x 300 pixels - 
Laplacian pyramid levels 
Size of local analysis window 

Noise variance I assumed eaual in both sensors I 

9 
5 x 5 hyperpixels 

p, a, computed at 
S computed at 
Constraint on sign r 

I 

Processing at borders ( reflected hyperpixels to extend borders 

each hyperpixel location 
each hyperpixel location 
shaded region in Figure 4.8(h) 



(a) Image 1 (b) Image 2

(c) ML-fusion

Figure H.1: Fusion of hyperspectral images
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Table H.2: Experimental setup to obtain the ML-fused image of Figure H.2 

I B. a com~uted  at I each h v ~ e r ~ i x e l  location I 

Size of images 
Laplacian pyramid levels 
Size of local analysis window 

450 x 450 pixels 
9 
5 x 5 hyperpixels 

I Noise variance I assumed eaual in both sensors I 

-- - 

i computed at 
Constraint on s i ~ n  r 

I ~ r o & s s i n ~  at borders I reflected hyperpixels to extend borders I 

each hyperpixel location 
shaded region in Figure 4.8(h) 

features, with the top half of image 1 showing higher contrast than that in image 2, and 

parts of the left and bottom portions of image 2 showing higher contrast than that in 

imagel. There are some complementary features due to water inlets and local polarity re- 

versed features caused by buildings and roads. The images were combined using ML-fusion 

as in Section 5.2.1. The experimental setup is given in Table H.2. The ML-fused image 

in Figure H.2(c) has retained the image features with higher contrast from each sensor 

image. Local polarity reversed features have retained their contrast and complementary 

features have been preserved. 



(a) Image 1 (b) Image 2

(c) ML-fusion

Figure H.2: Fusion of hyperspectral images
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Appendix I 

Computational Complexity 

In this appendix we compare the computational complexity of our proposed fusion ap- 

proach with that of existing techniques such as averaging and feature-selection in the 

pyramid domain. We point out the compromises that can be made in our fusion approach 

to reduce the computational burden. 

Fusion by Averaging 

Fusion by averaging (Section 2.3.1) operates on pixels of the images to be fused, requiring 

one operation (averaging) per pixel of the sensor images. For two sensor images of size 

M x N,  averaging would require M x N operations to obtain the fused image, making it 

the least expensive technique in terms of computations. 

Fusion by Selection 

Fusion by feature selection is computationally more expensive than averaging. To com- 

pare the computational complexity of fusion by selection, we assume that selection is 

performed in the Laplacian pyramid transform domain (Section 2.4). This technique has 

three distinct stages - pyramid construction, selection of pyramid coefficients based on 

the salience metric, and construction of the fused image from the fused pyramid. As in 

the case of averaging, we assume that there are two sensor images to be fused. Pyramid 

construction requires approximately 10 operations per pixel [12]. For two sensor images 

of size M x N,  this requires approximately 20 x M x N operations. The selection stage 

itself is computationally negligible but obtaining the salience metric can involve several 

computations. Let us assume that the salience metric is the energy (squared sum) of the 



pyramid coefficients in an area of 5 x 5 hyperpixels. This salience measure computation 

requires 50 operations per hyperpixel, and has to be performed at each hyperpixel loca- 

tion for each sensor pyramid. For an image of size M x N pixels, the Laplacian pyramid 

contains (4/3) x M x N hyperpixels. Therefore, the total number of operations for the 

salience measure computation are approximately 100 x (413) x M x N. The last stage 

of applying the inverse transform to obtain the fused image requires approximately 10 

operations per pixel, or a total of 10 x M x N operations. 

Probabilistic Fusion 

The probabilistic fusion approach described in this thesis also consists of three distinct 

stages - pyramid construction, estimation of the hyperpixels of the fused pyramid, and 

constructing the fused image from the fused pyramid. Again we assume that there are 

two sensor images to be fused and the Laplacian pyramid transform is used for fusion as 

described in Chapter 5. The first stage, pyramid construction, and the last stage, obtaining 

the fused image, require the same number of operations as in fusion by selection above - 

20 x M x N and 10 x M x N operations respectively. In probabilistic fusion, the second 

stage consists of estimating the model parameters P and a, estimating the noise variances 

C, and computing i. For the maximum likelihood fusion rule, least squares estimation of 

p and a, and adaptive estimation of noise variance the combined computations amount to 

approximately 350 operations (multiplications and additions) per hyperpixel of the fused 

pyramid. That is a total of 350 x (4/3) x M x N operations. This calculation does not 

include the computations that may be needed for motion compensation required for the 

adaptive estimation of the noise variance. 

The above computational requirements pertain to the computation of one fused frame. 

For, video fusion, the number of computations required would depend upon the frame rate 

of the imaging sensors. For example, for sensors imaging at 30 frames per second, the 

number of computations would increase 30 fold. Although the number of computations 

required is large, it should be noted that most of these computations are independent of 

each other. For example the sensor pyramids can be constructed in parallel. Construction 

of each hyperpixel of the fused pyramid (i.e., 8 )  and the related estimation of parameters 



can be performed in parallel. It may be possible to achieve real time operation using 

multiple processors for performing these tasks in parallel. 

Reducing the Computational Complexity of Probabilistic Fusion 

The computational complexity of probabilistic fusion can be reduced in the following 

manner: 

Reducing the number of Laplacian pyramid levels of the sensor pyramids. However, 

using fewer Laplacian pyramid levels may adversely affect the resulting fused image. 

The tradeoff in using fewer Laplacian levels is explained in Section 5.2.2. 

Combining the sensor images by a direct application of local PCA as in Equa- 

tion (5.5) of Section 5.2.1. Application of local PCA is computationally cheaper 

than the ML or MAP fusion rules, since it does not require the computation of the 

noise variance. This approach can work well when the noise variance in the sensor 

images is almost equal (note that it is exactly the same as ML and MAP fusion when 

the noise variances are equal). However, as illustrated in Appendix J, this approach 

may result in noisy fused images when the noise in one sensor image is higher than 

the other. 

Using the estimated affine parameters P and a over regions of several square hy- 

perpixels rather than recomputing them for each hyperpixel location. Preliminary 

experiments using this simplification have yielded fusion results comparable to re- 

sults using the full estimation. However, a thorough evaluation of this approach is 

essential to understand the differences. 

Using single frame noise estimation instead of multi-frame noise estimation. We 

believe that the multi-frame noise estimation technique described in Section 4.3.2 

should provide better estimates than the single frame noise estimation described in 

Section 4.3.1. However, the single frame noise estimation is computationally cheaper 

since it does not need motion compensation. In our experiments the single frame 

noise estimation worked well when the assumptions made by the technique are valid. 

Results using single frame noise estimation are shown in Section 5.3. 



Discussion 

The averaging, selection and probabilistic fusion techniques have increasing computational 

complexity. However, the results described in Chapter 5 indicate that our probabilistic 

fusion technique overcomes the drawbacks faced by averaging and selection methods. In 

this appendix we have outlined above, a set of approaches to reduce the computational 

complexity of the probabilistic fusion techniques. However, the tradeoff between reduc- 

tion in computational complexity and the degradation of fusion results must be carefully 

evaluated in any practical implementation. 



Local PCA 

Appendix J 

on Noisy Sensor Images 

Section 5.3 described the application of the probabilistic fusion rules for fusion of noisy 

sensor images. We now describe an experiment in which the noisy sensor images of Fig- 

ure 5.5 are by the direct application of local PCA as in Section 5.2.1. Application of local 

PCA is a comparatively cheap substitute for the probabilistic fusion rules, since it does 

not require the computation of the noise variance. The sensor images are shown again in 

Figures J.l(a) and J.l(b).  The result of fusion using local PCA is shown in Figure J.l(c). 

Each hyperpixel of the fused pyramid was obtained by a local PCA projection of the sensor 

hyperpixels in a 5 x 5 hyperpixel analysis window. The experimental setup is same as that 

in Table 5.4. Compare the fusion results of Figures 5.5(e) and 5.5(f) obtained by using 

the probabilistic fusion rules with the result of local PCA in Figure J. 1 (c). It is clear that 

the parameters corresponding to the noise variance in the probabilistic fusion rules play 

a significant role in fusion. They determine the appropriate weighting to be applied to 

each sensor image in order to obtain a reliable fused image, particularly when the sensor 

images are noisy. 



(a) TV image
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(b) FLIR image

(c) Local PCA

Figure J.1: Fusion of noisy images using local PCA (Original data from SVTD [9]project)
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