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Abstract 

Understanding and adapting to speaker variability using 

correlation-based principal component analysis 

Zhihong Hu 

Supervising Professor: Etienne Barnard 

In this research, we study the relati~nship amongst different sounds in speech of a speaker 

and between speakers. We propose a new speaker normalization/adaptation model that 

incorporates correlations amongst phoneme classes, and explore the applications of the 

model. Using principal component analysis we construct a speaker space based on a 

speaker covariance matrix obtained from the training data. The speaker covariance matrix 

is constructed in such a manner as to explicitly describe the correlations between classes. 

The hypothesis of this thesis is that by explicitly modeling these correlations it is 

possible to adapt the model or normalize the speaker's features with limited adaptation 

data. This proposed method also allows researchers to understand some of the properties 

of speaker variability and gives insight into some physical aspects of speaker differences. 

This hypothesis is tested in segment classification tasks where other variant conditions 

(such as contextual variation) are minimized. Various possible applications of this method 

are also tested on an HMM speech recognizer. 



Chapter 1 

Introduction 

Automatic speech recognition (ASR) is rapidly advancing to become part of our everyday 

lives. As a natural human-computer communication mode, speech recognition technology 

will greatly enhance information accessibility. 

Although current state-of-the-art systems perform well under controlled conditions, 

such as the Wall Street Journal read speech corpus, spontaneous speech remains an im- 

portant indicator that computer speech recognition is not yet capable of matching human 

speech perception. Research on the Switchboard corpus (spontaneous speech over the 

telephone) is an example. For this problem, only 40% word accuracy is achieved. 

Why is it, then, that humans do so well? One important reason for this is that human 

perception is extremely good at adapting to variations. These might be variations in 

acoustic environments, speaker, accent, and domain (topic). For example, a person can 

not physically produce the same utterance in exactly the same acoustic form twice. The 

speed, tone and loudness may vary. People from different regions have different accents 

and even grammars. Additionally, the background noise, or the communication channel 

(microphone/telephone) could be different. These factors contribute to the variability in 

the speech signal. 

It is difficult to design a speech-recognition system that can adjust to all kinds of 

variability in the signal. Having the ability to adapt to these variations - thus eliminat- 

ing them from consideration - should greatly improve computer speech recognition. For 

example, various channel normalization techniques [17] improve channel robustness signif- 

icantly; speaker adaptation techniques such as MLLR[33] and MAP[43] help to improve 

the speaker-independent system's performance. 



The purpose of this thesis is to investigate methods to study speaker variances and 

compensate for them. Specifically, this thesis addresses methods that could be used to 

shed light on and understand speaker variabilities and furthermore use this knowledge to 

efficiently adapt a speaker-independent recognition system to approach the performance 

of a speaker-specific system. Hence this will improve the overall recognition performance. 

1.1 Variabilities in speech signals 

Variabilities in speech can be grouped into the following categories: domain variabilities, 

speaker variabilities, and environmental variabilities. 

a Domain variabilities are the variabilities introduced by different topics of speech. 

Different domains of speech contain different vocabularies. These variabilities are 

modeled in language models in speech recognition systems. 

a Speaker variabilities are the variabilities caused by the differences among speak- 

ers. These include the following: 

- Physiological differences: Different people have different physiological char- 

acteristics. For example, male speakers generally have a longer vocal tract com- 

pared to female speakers. A longer vocal tract in turn relates to lower resonant 

frequencies. Most of the speaker adaptation techniques currently used attempt 

to compensate for speaker differences and the effect they have on modeling the 

speech data. 

- Linguistic differences: People talk differently. The differences can arise from 

tone, accent, or talking mode. The realizations of the same word can be different 

among speakers. The realizations of the same word can even be different for the 

same speaker under different circumstances. Factors such as stress, duration, 

vowel coloration, and intonation may all be different. 

a Environmental variabilities are introduced into the speech signal from the envi- 

ronment. These include the following: 



- Background noise that gets mixed into the speech signal such as door bangs, 

telephone rings, music, etc. Generally, these kinds of noises are additive. 

- Channel variation is caused by different channels, such as the telephone 

hand sets, microphones, transmission lines, etc. These effects can be described 

as convolutional noise. 

Designing a speech recognition system to cope with all these variations is a difficult 

problem. Nearey's [35] experiments suggest that the speaker-dependent variation is the 

second biggest source of variation in vowel quality (the largest one is the vowel identity 

itself), and thus a worthy candidate for elimination. Other researches have concentrated 

on environmental variances such as RASTA, CMS, etc. In this research, we concentrate 

on compensating for variabilities, which are typically caused by physiological and habitual 

differences between speakers. 

1.2 Speaker dependent and speaker independent acoustic 

modeling 

One crucial area of any speech-recognition system is the ability to accurately model the 

set of acoustic classes chosen as the basic units of recognition. If the acoustic modeling is 

poor, the effects of additional knowledge gained from language modeling or lexicons are 

limited. Recognition is performed by matching the observed unknown speech to the model 

which is most likely to have generated that speech. Generally, a large amount of training 

data is required for a sufEcient degree of modeling accuracy. 

Speaker independent systems (SI) are designed to be used by all users. They are 

trained with data from many speakers. As a result the models describe the distribution of 

features for d l  speakers, rather than a specific speaker. These systems have to model both 

intra-speaker and inter-speaker variations, and typically contain on the order of millions 

of parameters to do so. To estimate these parameters accurately requires a great amount 

of training data. Given these complex systems, there is, however, no guarantee that the 

system will perform equally well for each possible test speaker. 



On the other hand, a speaker-dependent (SD) system is designed to be used by a single 

speaker. Since the system is trained on only one speaker's data it does not have to model 

the inter-speaker variation. The resulting recognizer can be very precise for this particular 

speaker but tends to perform considerably worse when tested on other speakers. Assuming 

that sufficient data is available to train both systems, speaker-dependent systems typically 

perform better than equivalent speaker independent systems, as mentioned in the results 

on Resource Management by Huang [20]. 

1.3 Speaker adaptation and speaker normalization 

Figure 1.1: Speaker adaptation methods derive a mapping between the SI reference space 
and the speaker specific space (depicted by the solid-line images). The speaker adapted 
models (depicted in the dashed lines), generated by applying the speaker-specific mappings 
(A(l),  A(2), etc.) to the SI model, match more accurately for the new speakers than the 
SI model. 

In many applications, it is impossible for each user to provide a sufficient amount of 

training data to train a speaker-specific recognizer. Speaker-dependent performance is 

still, however, desired. To address this problem, and as an improvement of the speaker 



5

independent system, speaker adaptation technology has been developed. Speaker adapta-

tion generally uses the information (adaptation data) available from the new speaker to

adjust the speaker independent recognizer to be specific to the new speaker. This improves

the recognition performance for this new speaker and hence improves the system's overall

performance.

speaker 1

N(3)
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/' "

( ;'------------
"- "-

'- )
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! '-,

I speaker 3 ---'I
! i
\ /
" /

"-' / / / /

speaker 2

Figure 1.2: Speaker normalization processes construct a "neutral" speaker space that any
speaker can be projected into and the inter-speaker differences are minimized.

Figure 1.1 illustrates the general principles of speaker adaptation in a two dimensional

space. Speaker normalization attacks the problem of speaker variances from the other end

of the process. Speaker normalization algorithms attempt to convert the characteristics of

speech from each speaker to those of a reference or "neutral" speaker. The normalization

process is applied to both the training and test speakers. As depicted in Figure 1.2, the

objective of speaker normalization is to construct a "neutral" speaker space into which

speech from any speaker can be projected (via N(i)) so that inter-speaker variations will

be minimized. This results in less variance in the feature space and thus more precise

modeling.



1.4 Adaptation modes 

The process of adapting a speech recognition system can be performed in several different 

modes. These modes differ in (1) how and when the adaptation takes place, and (2) how 

the adaptation data are used. 

The amount of available adaptation data is generally the most important factor in 

choosing between these modes. 

a The adaptation is called supervised adaptation when the content of the adaptation 

data (typically, the orthographic transcription) is presented to the adaptation pro- 

cess. 

a Otherwise, the adaptation process is called unsupervised adaptation. 

The adaptation data can be used in different ways : 

When all the adaptation data is presented to the adaptation process before the final 

adapted system is produced, it is called static adaptation. 

When the adapted system is produced after only part of the adaptation data is 

presented, and is refined while more adaptation data is observed, it is called dynamic 

adaptation. 

Different adaptation modes have different effects on accuracy, efficiency, and usability 

on different tasks. It is obvious that when a large amount of adaptation data is available 

and correctly labeled, the appropriate adaptation mapping can be determined accurately, 

while limited adaptation data would hurt the estimation accuracy and unsupervised adap- 

tation data may lead to errors in the estimation. In some tasks, a quick speaker enrollment 

is required, hence it may be desirable to initially start with a speaker independent system 

and use dynamic unsupervised adaptation. In tasks where high recognition accuracy is 

desired, more time may be available to collect adaptation data, and a static supervised 

mode can be used. 



1.5 Organization of the thesis 

Our goal in this research is to develop speaker adaptation and normalization techniques 

for efficient and fast adaptation of general-purpose speaker-independent recognizers and 

study the nature of the variation amongst speakers. The focus of this work is to use 

principal component analysis to determine the linear components which are the most 

important contributors to speaker differences. This work incorporates the correlations 

among the different classes in the adaptation process to enable adaptation with limited 

data. Different feature representations are studied. Various applications of this method 

are also explored and discussed. 

Chapter 2 describes previous work on various speaker normalization and adaptation 

techniques. Chapter 3 describes the proposed method in mathematical detail, and Chap 

ter 4 studies various mechanisms related to the proposed method. Chapter 5 provides 

experimental results to support the proposed method. In Chapter 6, various applications 

of this method are described and results are presented. A Summary and conclusions of 

this research are presented in Chapter 7. 



Chapter 2 

Background 

In speech recognition, there usually is a mismatch between the data observed during 

training and the data observed during testing. This mismatch will result in a performance 

degradation compared to the matched condition (training and testing on a known set of 

speakers in a known environment). The task of speaker adaptation is to adapt a speaker 

independent model to the data of an unseen test speaker. 

The mismatch between training and testing conditions can be represented in signal 

space, feature space, or model space as shown in Figure 2.1. In this figure, R represents 

the reference speech signal and T represents the target speaker's signal. Fr and Ft repre- 

sent the feature transformations of the input signal for the reference and target speakers 

respectively. Similarly Mr and Mt represent the models for the reference and target 

speaker. 

Various speaker adaptation methods that attempt to solve the problem of mismatch 

due to speaker variation have been developed. These methods operate either on the feature 

space (transformation Tf) or the model space (transformation Tm). Since the feature- 

extraction process can reduce the dimensionality of the speech signal and has proved to be 

efficient in representing the information of the original speech signal in speech recognition 

process, speaker adaptation has rarely been applied directly to the speech signal. 

In the following sections, various adaptation techniques are presented. Section 2.1 

presents techniques of compensating for the speaker variances in feature space. Section 2.2 

describes model-based approaches, which are most related to the work in this thesis. 

Section 2.3, summarizes the chapter and briefly presents the context within which this 

research fits. 
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Figure 2.1: Different representations of mismatch conditions and their corresponding 
transformations. 

2.1 Feature transformation techniques 

The most prominent feature transformation approaches are vocal tract normalization 

(VTN) and spectral transformations. Vocal tract normalization normalizes the speaker's 

features during the feature extraction process. In contrast spectral transformations at- 

tempt to learn a mapping based on the features extracted. 

2.1.1 Vocal tract normalization (VTN) 

Vocal tract normalization (VTN) is an approach that normalizes the speaker variability 

caused by the physical differences in vocal tract length. The idea of vocal tract normal- 

ization emerged as early as 1977, when Wakita [41] presented a method of vowel formant 

frequency normalization. 

Modeling the vocal tract directly from the speech signal has proven to be difficult. 

The features used in most speech recognition systems are therefore based on the per- 

ceptual model of the ear rather than an explicit vocal tract model. These features are 

typically cepstral transformations of the warped frequency spectrum, for example MFCC 



(Me1 scale) or PLP (Bark scale). To perform VTN, an optimal frequency warp scale is 

determined for each training speaker. Normally this requires the estimation of a single 

scalar normalization parameter. 

Figure 2.2: Representation of a typical frequency scale warping function. 

In frequency scale warping, a parametric warping of the frequency axis f can be 

generally written as: 

f l =  9 ( k s , f )  

where k,  is a scalar which compensates for the vocal tract length of speaker s. Figure 2.2 

depicts a typical warping function g. g  can be linear or non-linear. The effect of the 

parameter k, is to shift the warping function, either to the left or right. Shifting of 

the warped frequency scale in effect moves the formant values of the speaker towards a 

"neutral" position. 

The formant values in speech correspond to resonance frequencies of the vocal tract. 

Eide and Gish [lo] use a parametric normalization method to compute k,. This value k,  

is estimated with formant values for a test speaker as the median of the speaker's third 

formant over a subset of frames satisfying certain criteria. This method, however, involves 



a large amount of computation in estimating the appropriate warp parameters. 

In similar work done by others [5, 23, 31, 321, the vocal tract length variation is 

crudely compensated for through a stepwise search of the parameter k,. The parameter 

k, applied to each speaker's speech is estimated uskg the speaker's utterance(s) within a 

model-based framework. In this approach the effect of the scalar (5,) is evaluated either 

within a maximum likelihood (ML) framework or using a.Viterbi approximation. 

The advantage of VTN is that it only needs to estimate a single adaptation parameter 

per speaker and therefore requires a small amount of adaptation data. However, estimat- 

ing this parameter normally involves a large amount of computation or difficult estimation 

of accurate formant values. Since the estimation of the adaptation parameter relies on the 

accuracy of estimation of formant values, this is also not desirable in real time implemen- 

tations. hrthermore, since vocal tract normalization only models the variance caused by 

the differences in vocal-tract length, it does not have the ability to model other types of 

variances between speakers. 

2.1.2 Spectral transformation approaches 

The spectral mapping approach to speaker adaptation has been widely investigated in 

recent years. This approach applies a linear transformation to either the input feature 

vector, or to the whole model set. The main difference in the two implementations are in 

the manner in which the transformations are estimated. 

Spectral transformations were first used with spectral-template based recognizers [14, 

15, 161. These approaches considered the reference templates as representing speech from a 

reference speaker and computed spectral transformations to minimize the distance between 

the new speaker and the reference speaker. The disadvantage of these techniques is that 

they are text dependent. 

More success has been achieved by utilizing phone-specific transformations [21, 441, 

but these methods can be viewed as model transformations instead (see next section). A 

more detailed review of this topic can be found in [2, 331. 



2.2 Model transformation techniques 

The aim of the model transformation techniques is to derive a transformation that adjusts 

the speaker-independent model parameters in order to represent the new speaker more 

accurately. The transformation is chosen from a set with specified parametric form. 

A generic linear model-based speaker adaptation transformation can be represented as 

follows: 

where u' is the adapted model mean, u is the speaker independent or L'prototype'7 

model mean, A is the adaptation transformation matrix and b is the offset. Figure 2.3 

depicts this process in a two dimensional feature space. 

Figure 2.3: Linear transformation (A, b) adapts the "neutral" mean (u) to the speaker 
specific mean (u'). 

The transformation matrix A and offset b are used to adapt the speaker-independent 

model towards the new speaker. The speaker- independent model mean in effect represents 

the ''neutral" speaker's model. Using the inverse transform we can adjust the speaker 

towards this neutral speaker. 

The adaptation parameters represented by the transformation (A$) may be estimated 

using different methods. Most modern adaptation can be categorized by the estimation 



used, which is either maximum likelihood (ML), or maximum la-posteriori (MAP) training 

(Bayesian approach). 

2.2.1 Maximum likelihood linear regression (MLLR) 

The aim of MLLR is to estimate an appropriate transformation for the mean vectors of 

each mixture component so that the original system is adapted to the new speaker. The 

adaptation parameters (A,  b) are estimated to maximize the likelihood of the model on 

the adaptation data. 

In the original formulation of MLLR [33,39], linear transformations are associated with 

each component distribution within the Hidden Markov Model (HMM) framework and 

estimated using a maximum likelihood approach similar to the standard HMM parameter 

estimation. The transformations capture the general characteristics between the speaker 

independent parameters and the new speaker. 

Regression classes for MLLR are studied in [12, 331. Regression classes are used to 

group classes that are similar enough that they could share transformations. When there 

are insufficient data to estimate a transformation for a particular component distribution, 

the transformation is derived from the data within the same regression class. 

Leggetter [331 reports an average 10% reduction in word error rate on the Wall Street 

Journal task using a 65000 word dictionary. 

2.2.2 Speaker adaptive training (SAT) 

The aim of speaker adaptive training [2] (SAT) is to estimate acoustic models that are 

invariant to long-term variations, specifically speaker-induced variations. SAT minimizes 

the effects of these variations in the training data and at the same time estimates the 

acoustic model parameters in a unified maximum likelihood framework. 

SAT can be realized in both feature space and model space. In a feature space ap- 

proach, each speaker's features can be normalized towards the "neutral" speaker using 

an optimum transformation. This transformation can be computed within the MLLR 

framework. The pooled "neutral" features from all speakers are then used to estimate 

the model. This will result in a model which has smaller variance, since all features are 



transformed to the "neutral" speaker's feature space. The smaller variance results in a 

more precise model. 

Anastasakos [2] reported that in a model space approach, speaker normalization is in- 

corporated within a maximum likelihood speaker-independent training paradigm. During 

training, the speaker dependent transformations (A,  b) are estimated for each speaker in 

the training data. The "normalized" model is updated using the inverse transform. 

In most experimental tests, the SAT adaptive training technique results in reducing 

the average word-error by approximately 10% [2] compared to baseline systems, that 

incorporate MLLR adaptation. 

2.2.3 Prediction adaptation 

Although MLLR is a very powerful adaptation technique it does not model correlations 

among phonemes explicitly. With limited data available for adaptation (i.e. not all classes 

are necessarily represented), not all model means are adapted optimally. 

Since all sounds (phonetic classes) from a speaker are produced by the same vocal tract 

there are certain covariant relations between different phonetic classes. An example of this 

relationship between different sounds can be found by studying the formant frequencies 

of vowels. A plot of the mean first-formant frequency (F l )  and the difference between 

the first and second formant frequencies (F2 - F1) for vowels exhibits a pattern called 

the vowel-triangle [27], where the point vowels (/iy/ as in "beet", /aa/ as in "father" and 

/uw/ as in "boot") have extreme F1-F2 values and most other vowels have formant values 

close to one of the sides of the triangle. For any given speaker, if the positions of vowel 

/uw/ and /iy/ are known, the positions of the vowels /aa/ may be estimated relatively 

well. The work in this thesis explores these relations to more effectively normalize the 

speaker parameters. 

Cox [6, 8, 71 was also concerned with this correlation. He presented an approach that 

uses the training data to build linear models between sounds. When only a subset of the 

phonemes are present in the adaptation data, all unseen phonemes (models) are adapted 

using this precomputed linear relation. 



The linear relations are modeled as: 

where X, and Xn are mean vectors from phonetic classes m and n. The linear model 

parameters (& and PI) are estimated for all pairs of classes. This method assumes the 

relation between classes is identical for all speakers. This may not necessarily be true. 

For example, the differences of realizations of two vowels from speakers having different 

accents can be very different. In contrast, our research allows more flexibility in the 

relationships between classes for different speakers. Ahadi and Woodland [I] extended this 

method to a 1000 word vocabulary continuous speech recognition using context dependent 

mixture Gaussian models containing orders of magnitude more parameters. Their research 

shows that regression-based model prediction consistently outperforms MAP(Maximum a 

posteriori) estimation with the same amount of adaptation data. 

2.2.4 Maximum a posteriori estimation(MAP) 

In maximum a posteriori estimation (MAP) parameter estimation, the parameter set is 

chosen to maximize the a posterior probability 

where x represents the adaptation data with a probability distribution function given 

by p(x), and X represents the parameter set defining the distribution. 

Brown first suggested using Bayesian estimation for adaptation in a connected-digit 

recognizer [4]. This work was further extended by Lee [30] who incorporated Bayesian 

adaptation within a segmental K-means framework. This was further extended by Gau- 

vain and Lee [13] to adapt multiple mixture distributions. 

Within the HMM framework, where the data is modeled as a random variable with 

Normal distribution, the model parameters can be adapted using maximum a-posterior 

training (MAP). Given the initial model mean uo with covariance Co, the updated model 

parameters can be computed as [ll]: 



Here C represents the covariance of the adaptation data, and N the total number 

of examples presented. With N large this corresponds to computing the model mean 

directly from the speaker- specsc adaptation data, whereas speaker-independent estimates 

predominate for small N. 

In general, however, MAP corresponds to a linear interpolation between the speaker 

independent model mean and the speaker dependent model mean. In this method data 

from one class can not be used to update the model of another. To solve this problem, 

an extension of MAP (called EMAP) was introduced by Lasry and Stern [29] and further 

investigated by Rozzi [38]. The aim of the EMAP algorithm is to use the correlations 

between classes to estimate the transformation for unseen classes. 

EMAP differs from MAP in that EMAP updates a concatenated mean of all classes 

simultaneously. This concatenated mean vector can be represented as 

where C represents the total number of classes in the recognition system. Each mean 

vector has D dimensions. Therefore the concatenated mean vector for speaker r ,  pf is a 

CD dimensional vector that is assumed to be normally distributed around a priori mean 

po with covariance matrix Co. Each example of class j E 1..C across all speakers is 

assumed to be a random vector of a normal distribution with a mean p j  and covariance 

In this system, correlations amongst classes are modeled by Co, and the matrices Cj  

model the within-class covariance. We define C as a CD by CD block diagonal matrix 

with Cj as the jth block. C is block diagonal due to the assumption of independent 

observations., i.e. individual realizations of phonemes are not correlated. 

Similar to Equation 2.5 we can now compute the adapted mean vector as follows: 



where L is a diagonal matrix with the number of observations per class along the diagonal. 

The vector a denotes the concatenated mean vector computed from the adaptation data 

only. 

Through the mean cross covariance matrix Co, EMAP estimation is able to update all 

classes given any example from any class. We will later see in Chapter 3 that this mean 

cross covariance matrix can be interpreted as a covariance matrix for i), gpeaker space. 

Because of the dimensionality it is very difficult to estimate Co accurately. To estimate 

this matrix accurately would require full coverage of each class (phoneme) spoken by 

every speaker in the training data with large number of speakers. Furthermore the matrix 

inversion (C + L C ~ ) - ~  is also expensive. Rozzi [38] extended the basic EMAP algorithm 

so that the computation is more efficient. These extensions, however, do not solve the 

problem of accurately estimating Co from a reasonable amount of data. 

A combination of MLLR and MAP adaptation was recently proposed by Digalikis [9]. 

In this approach the transformations are used as a preprocessing step to transform the 

speaker independent models so that they better match the new speaker's characteristics. 

This provides improved prior information for MAP adaptation. 

The reader is referred to Appendix A for a detailed derivation of MAP and EMAP. 

2.3 This thesis in perspective 

Each of the techniques presented above either adapts the speaker features or the speaker 

independent model to ultimately derive a speaker specific system. Methods such as MLLR 

adaptation have proven to be successful. However when very little adaptation data are 

available not all classes can be adapted optimally. Cox [7] built linear relations between 

classes. This allowed the adaptation of both the presented and unseen classes. This 

model, however, assumes an invariant relationship among classes (for all speakers), which 

is not valid in practice. The extended MAP algorithm provides a framework in which the 

correlation among classes can be used to adapt unseen models. This method however has 

severe data and computational constraints. Additionally, all these methods lack the ability 

to provide the environment to study the physical aspects of speaker variation so that the 



speaker variability and the mechanism of adaptation/normaliiation can be understood 

and analyzed more thoroughly. 

One of the goals of this thesis is to create correlation models amongst classes and use 

the relationship among different sounds to improve adaptation with limited data. Another 

god of this work is to study and understand the variability of the speaker differences. 

We propose a new method of speaker normalization which incorporates correlations 

amongst classes. Using principal component analysis we construct a speaker space based 

on a speaker covariance matrix obtained from the training data. The speaker covariance 

matrix is constructed in such a manner as to explicitly describe the correlations between 

classes. By explicitly modeling these correlations it is possible to adapt the recognition 

model or normalize the speaker's features, from a very limited amount of speaker specific 

adaptation data. 



Chapter 3 

Correlation-based speaker normalization 

using principal component analysis 

In this chapter, we introduce a new correlation-based speaker normalization and adap- 

tation model using principal component analysis (CBPCA). This new model may be re- 

garded as an extension of EMAP which requires less adaptation data and computation, 

while preserving most of the information captured in the EMAP model. This new model 

also allows us to explore the physical aspects of the speaker differences. 

3.1 Mat hemat ical met hod 

Assume a set of R speakers (R = 1,2, ..., R), each producing at least one example of a set of 

C phonemes (V = 1,2, ..., C). Reducing the differences among speakers for these phonemes 

would reduce the variance among speakers and consequently increase the classification 

accuracy. 

To construct a space that describes the speaker variation as well as taking advantage 

of the correlations among classes, we design a speaker space in which these aspects can be 

studied. We represent a speaker by a vector that is constructed by concatenation of the 

mean feature vector of each of the phonemes taken from the speaker: 

pr = bI;p;...pr...pa 

Here pi represents the mean feature vector for class i E V for speaker r E 72. The 



collection of such vectors (pr) from diierent speakers form our speaker space. 

If we have C classes, and each feature vector for a class has D dimensions, then the 

speaker r is represented as a 1 x CD dimensional vector pr. The covariance matrix of 

vectors for all speakers (Co) therefore will represent the variance among speakers using 

the information from all the classes. The ordered set of eigenvectors ( $ i )  of Co represent 

the directions in speaker space (in decreasing order) that contribute most to the variances 

between speakers. 

The following example shows a simple instance of this idea. Let's assume there are two 

classes, V = {/at?/, /iy/), and the feature chosen is the average second formant value (Fz) .  

The speaker space in our definition above will be a two dimensional vector space where 

the axes represent the second formant value for the classes /ae/ and /iy/ respectively. 

Figure 3.1 depicts the speaker space and it's eigen-directions for this example. The data 

used for this figure were obtained using the Hillenbrand data set (which is described in 

more detail in Section 4.1). 

In Figure 3.1, each "+" represents a single speaker. The solid lines indicate the eigen- 

directions of the constructed speaker space. The eigen-direction shown as the longer solid 

line corresponds to the largest eigenvalue of the covariance matrix. In this example, the 

largest eigenvalue constituted 93.8% of the sum of all eigenvalues. This means that about 

94% of the differences between speakers described in this speaker space can be described 

by the largest eigenvector of the speaker space covariance matrix. In practice, the few 

eigenvectors with the biggest associated eigenvalues would describe most of the variance. 

These directions are referred to as the principal components of the speaker space covariance 

matrix. 

In this speaker space (which has C D  dimensions), each speaker can be expressed as 

the sum of the group mean (po) and the deviation of this speaker from the group mean 

(er ) : 

fir = po + er (3.1) 

where fir is an estimate of the true speaker mean pr. 

Alternatively this model can be viewed as the sum of a speaker independent part (po) 

and speaker dependent part (er). By thinking of po as the speaker independent model, 



Figure 3.1: Principal components for speaker space constructed from the second formaut 
values for the classes /ae/ and /iy/ taken from 139 speakers from the Hillenbrand data 
set. Each + in the figure represents one speaker. The vectors denoted as dl and d2 are 
the eigen-directions- 



the above formulation (Equation 3.1) describes a speaker adaptation process, where f i r  

represents the adapted speaker specific model. 

By rewriting Equation 3.1 as 

f io  = pr - er 

the model describes a speaker normalization process. The speaker specific vector er is 

used to move the speaker's data to a neutral position in the feature space denoted as fro. 

The deviation vector er can be expressed in terms of the projections onto the orthogonal 

principal components: 
CD 

e r = @ d = C 4 i - a l  (3-3)  
i=l 

Here is the eigen-matrix of C o  and +i represents the ith ordered eigenvector. a! is the 

projection of the speaker difference from the group mean (er - pO) onto these eigenvectors. 

Thus the adaptation formula (Equation 3.1) can be written as: 

When Co has full rank, the projections onto the eigenvectors are computed as follows: 

T r  ar = a  ( P  -Po) 

If we substitute Equation 3.5 into Equation 3.4 we have: 

In this scenario, the estimation is perfect. 

The underlying assumption of the model we proposed here is that features which 

represent classes for the same speaker are correlated and that all speaker variances can be 

described by @. 



3.2 Practical implementations of the principal component 

method 

Theoretically, if examples for all classes used to construct the speaker space are available 

for a particular speaker, and all the eigen-components of the covariance matrix are used, 

perfect normalization could be achieved (i.e. the speaker vector can be mapped unto the 

group mean). 

Since the principal components typically constitute the majority of the total variance of 

the speaker space, not all eigen-components are needed to sufficiently describe the variance 

among the speakers. Principal component analysis (PCA) is an optimal compression for 

variance. Components corresponding to the largest eigenvalues compose the subspace that 

contains most of the variance. 

Using PCA, Equation 3.4 can therefore be approximated as: 

n 

ji'=ro+C&-ai n < C D  
i=l 

(3.8) 

The number of eigenvecton (n) needed is determined by the contributions of the dom- 

inant eigenvectors to the variance between speakers. Selecting only the first few principal 

components has the further advantage that less data are needed for model adaptation. The 

projection coefficients a: might not be perfect for the directions not included. However, 

since the principal components are calculated from the covariance matrix, they preserve 

the correlations among classes. Therefore af is still a good estimation when not all the 

data are available. When n << CD, the speaker space is a subspace of the original eigen- 

space. Figure 3.2 shows a typical eigenvalue distribution for a speaker space where the 

top few principal components describe most of the variance. In this particular example, 

we used the Hillenbrand data set [18] which consists of detailed hand-labeled formant 

trajectories for 12 vowels from 139 speakers. 

During recognition a test speaker provides speech for adaptation (for supervised adap- 

tation, the content of the speech is known; for unsupervised adaptation, the recognizer 

output is used to estimate what was spoken). Models are adapted using this part of the 

data and then used to recognize the test speaker's data. With limited adaptation data, 



Figure 3.2: The distribution of the eigenvalues. Figure (a) shows the percentage of each 
eigenvalue (in descending order) of the sum of all the eigenvalues. Figure (b) shows the 
percentage of the sum of the top n eigenvalues out of sum of all the eigenvalues. 



not all the classes used in constructing the speaker space are available for a particular 

speaker. In this condition however, we can estimate the projections (a:) using the limited 

available data as follows: 

where fir/ ., pb and 4; represent a subspace of the constructed speaker space. In this 

scenario the projection coefficients a: can be viewed as being class independent. 

The normalization process consists of the following steps: 

First, we construct the speaker space and compute the principal components (&) as 

the first n eigenvectors of the speaker space covariance matrix Co using data from 

many training speakers. It defines the subspace where we can model the speaker 

specific variances. 

Second, we use the new speaker's adaptation data to compute the projection (ar) 

of the speaker's deviation from the group mean onto the principal components by 

solving the set of linear equations defined by Equation 3.9. ar together with 

describe the speaker specific between class relations. 

Finally, for the test data (i.e. previously unseen data), we use the projection coef- 

ficients to estimate the deviation from the group mean (er), from which we obtain 

the normalized model (vector in speaker space) Po used for recognition. In an ideal 

scenario fro will be equal or sufficiently close to the speaker space group mean po. 

In order to determine the realistic impact of these compromises, we conducted an 

experiment on the Hillenbrand data set using only the first three principal components. 

Figure 3.3 depicts the normalization results. In this experiment, we construct the speaker 

space using all the vowels and use all the vowels except the data for the classes /iy/ and 

/ae/ to estimate the projections coefficients a'. This figure shows that although during 

normalization the data for /iy/ and /ae/ were not used in the estimation of ar and only 

the first three principal components were used, significant normalization is achieved. In 

the figure, "+"s represent the original positions in speaker space and "0"s represent the 



Figure 3.3: Normalization using three principal components and with partial data taken 
from the Hillenbrand data. "+"s represent the original positions in speaker space and 
"0"s represent the speaker normalized positions. The normalized speaker vectors have a 
smaller variance than the original. 
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speaker normalized positions. The variance of the normalized data is much smaller. This 

is strong evidence that our proposed method might work. In Chapter 4 we investigate 

the possible physical meaning of this approach and evaluate this method on various vowel 

classification tasks. 

3.3 Discussion 

The speaker space defined in this section is a "concentratedn subspace of Co used in the 

EMAP algorithm described in Chapter 2. The underlying assumption of this method 

is that most speaker variances can be described within the "concentratedm subspace of 

Co. The advantage of this method over EMAP is that it reduces the complexity of the 

estimation problem for Co. The top n eigenvectors of Co (n << CD) can be estimated 

accurately using much less training data using singular value decomposition [26]. This 

method is similar to the computation of eigen-faces in image recognition [24]. At the 

same time, the proposed model retains most of the important information represented in 

Co. Our work was first published in [19]. Similar method was proposed independently by 

Kuhn [25]. 

Comparing to regression-based prediction adaptation, our research allows more flex- 

ibility in the relationships between classes for different speakers. While other adapta- 

tion/normalization methods (such as MLLR) may lead to good performance, an important 

advantage of the proposed method is that it provides an environment in which various 

physical aspects of the speaker differences can be studied, and can thus offer insight into 

the underlying mechanism of the adaptation/normaliization process. Since the importance 

of each eigen-component is indicated by the value of the corresponding eigenvalue, one 

can analyze which directions in speaker space are the most significant contributors to 

between-speaker variability. The results of these studies are presented in Chapter 4. 



Chapter 4 

Principles and properties of CBPCA 

The experiments and discussion presented in this chapter are aimed at developing an 

understanding of the principles behind correlation based adaptation. In Section 4.2 we 

study the mechanisms on which the proposed adaptation model is built. Section 4.3 

explores the underlying physical meaning of the speaker space covariance matrix. In 

particular, we concentrate on gender-related variations and show how these are modeled 

by the principal components of the speaker space covariance matrix. In Section 4.4 we 

compare CBPCA with EMAP and show how these two methods compare in the use of 

the underlying speaker covariance matrix (Co). 

4.1 Data sets 

All experiments presented in this chapter and the following chapter are based on the 

following data sets. 

1. Hillenbrand: The Hillenbrand data set [18] is an extension of the Peterson & 

Barney data [36], collected at  the University of Michigan. In this data set, the first 

four formant ( F  1-F4) contours are measured for 12 vowels in the /h-V-d/ context 

The database consists of speech from 45 men, 48 women, and 46 children. This data 

set has extra dynamic information compared to the Peterson and Barney data. 

'Each vowel has phoneme "hn as the left context and phoneme "d' as the right contextn 



2. TIMIT: The TIMIT data set [28] is a phonetically hand-labeled data set which 

contains phonetically- balanced sentences. The entire corpus consists of 10 sentences 

recorded from each of 630 speakers of American English. In our training set (the 

training set defined by NIST), there are 462 speakers which consists of 326 men and 

136 women; in our development set, there are 50 speakers consisting of 32 men and 

18 women. For the TIMIT experiment we chose the following 10 vowels: 

These classes were chosen to best match the Hillenbrand data set. 

3. NTIMIT: The NTIMIT data set is obtained by sending the data from TIMIT 

through 8 different telephone channels. 

In our study, we used Me1 scale cepstral coefficients (MFCC) and formant frequency 

values as our feature sets. The three formant frequency values for each vowel in the 

TIMIT data set are estimated using a formant estimation method proposed by Welling 

and Ney [42]. 

4.2 Mechanism underlying CBPCA 

In this section, we study some issues related to the mechanisms which cause CBPCA to 

adapt to speaker variability. In particular, we study how correlated different phonemes 

are and how well we can estimate the dominant principal components without a large 

number of speakers. Finally, we investigate how different phoneme groups contribute to 

the variations among speakers. 

4.2.1 Correlation among classes 

The underlying assumption of correlation-based principal component adaptation is that 

classes for the same speaker are correlated and that speaker variances can be described by 

the eigenvectors of the speaker-space covariance matrix (@). Because the adaptation of 



unseen classes depends on theses correlations, we expect a direct correspondence between 

these measurements and the ability of the proposed model to adapt to speaker differences 2.  

Table 4.1: Average correlation coefficients among classes for different data sets and differ- 
ent features. 

Table 4.1 presents the average absolute value of the off-diagonal correlation coefficients. 

The values are computed for different data sets and different features as indicated in the 

Strip diagonal 
0.6737 
0.4378 
0.4329 
0.3055 
0.2786 

table. Large value of the correlation coefficient indicates there's strong correlation. In the 

Task 
Hillenbrand 
TIMIT 
TIMIT 
TIMIT (BW=4kHz) 
NTIMIT(B W=4KHz) 

table, the rows with "BW=4kHzn indicates the signals in those tasks have a bandwidth 

of 4000 Hz. 

Whole matrix 
0.5058 
0.1893 
0.1894 
0.16 12 
0.1402 

Feature 
formant 
formant 
MFCC 
MFCC 
MFCC 

In Table 4.1, "whole matrix" corresponds to the values averaged over all the off- 

Within phoneme 
0.4825 
0.1800 
0.2034 
0.1925 
0.1857 

diagonal correlation coefficients; "within phoneme" are the average of the correlation 

coefficients for the same phoneme; "stripdiagonal" are the average of correlation coeffi- 

cients which represent the correlation of the same dimension of feature but across different 

classes; these are the coefficients that are parallel to the overall diagonal, as illustrated in 

Figure 4.1. 

The results show that the correlations are very strong. In particular the Hillenbrand 

data has a very high "strip diagonal correlation". Because the Hillenbrand data do not 

contain any contextual variation, the speaker space constructed from these measurements 

is dominated by speaker variances, whereas a combination of speaker and contextual 

variance is expected to dominate in the TIMIT-based corpora. The results presented in 

the next section on normalization effects using formants as well as the vowel classification 
. . 

results presented in the following chapter show significant adaptation gained from this 

high correlation among classes. 

 he experiments on vowel classification (Chapter 5) and hidden Markov modeling (Chapter 6) confirm 
this observation. 



Correlation Coefficients of the Speaker Space 
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Figure 4.1: Illustration of the correlation coefficients representing the correlation of the 
same dimension of feature but across different classes. The "X" represents the "strip 
diagonal" coefficients. 

The correlation decreases as more sources of variance enter the feature measurements. 

For example, the vowel classes from the TIMIT data contain both contextual variance 

and formant estimation errors. This results in a decrease in the correlation, which in turn 

affects the potential adaptation gain. Channel differences also influence the correlation as 

shown by the NTIMIT results. On NTIMIT, the MFCC features are energy normalized 

and channel normalization is implemented with cepstral mean subtraction. 

4.2.2 Normalization effects on formants 

In phonetic studies [27], a vowel triangle is often used to describe the relationships between 

vowels for a single speaker. That is, the locations of the vowels in the plane formed by 

plotting F1 versus F2-F1 is triangular in shape. The position of this triangle shifts between 

speakers, but its overall shape is rather constant. In this experiment, we examine the 

effects of normalization using CBPCA on the formants using the vowel triangle generated 

from the Hillenbrand data set. 
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Figure 4.2: The vowel triangle for all speakers before (a)and after (b) normalization.
After the normalization, the vowels are more separable.



Figure 4.2 shows the vowel triangles (F1 versus F2-F1) before and after normalization 

for the following vowels in the Hillenbrand data: 

During normalization 30 eigen-directions are used. The figures show that normalization 

reduced the variance of each class and the vowels are therefore more separable. Here we can 

see the effect of the high correlation among classes. Since the constructed speaker space 

models only speaker variances the normalization is able to extract the speaker variance 

which results in the classes being almost totally separable. This indicates the potential of 

the proposed normalization model. 

4.2.3 Estimation of eigenvectors 

The adaptation and normalization of the speaker's features are based on the dominant 

eigenvectors of the speaker space covariance matrix (Co). Instead of estimating the full 

covariance matrix, which requires data from a large number of speakers, we estimate the 

top n eigenvectors directly using singular value decomposition [26]. 

The assumption behind this estimation method is that, if the variance in the speaker 

space can be described by only a few dominating eigenvectors, it needs much less data 

samples to estimate these eigenvectors than that needed to estimate the full covariance 

matrix. We test the relative accuracy of this estimation method on a five-dimensional 

simulation. 

In this simulation we generate five . .  dimensional . features with two dominant eigen- 

directions. The simulation experiment is designed to study the estimation accuracy of the 

dominant eigenvectors when only a small number of data samples are available. 

The simulation experiment is conducted as follows: First we generate 500 samples of 

5 dimensional data with 2 dominant eigenvectors. Using all data points we compute the 

full covariance matrix (Co) and associated eigenvectors (@). Next we randomly select n = 

10,20,40,80 examples from the original 500 samples and estimate the eigenvectors using 

singular value decomposition. The resulting eigen-directions are then compared to those 

computed using all 500 data points. The comparison between the original eigenvectors and 



the estimated eigenvectors are represented by the norm of the difference of each eigenvector 

and it's estimation. The results are normalized by the norm of each eigenvector (the 

eigenvectors are uniform and orthogonal). The results presented are the average taken 

over 100 such trials. 

Table 4.2: Simulation results for the estimation of the principal components. 

Table 4.2 depicts the results obtained. With limited data samples, the higher eigen- 

components always get bad estimations, but the dominant eigenvectors can be estimated 

relatively well. These results show that with a relatively small number of data samples, 

we can estimate the principal components reasonably well. We therefore do not need 

to estimate the full covariance matrix (Co), and thus avoid issues of suflicient data and 

computational requirements associated with computing the corresponding eigenvectors 

(a) - 

#samples(n) 
Eigenvalue 
10 
20 
40 
80 

4.2.4 Relative contributions of different groups of phonemes 

The following experiment studies the relative contribution of different phoneme groups in 

adaptation and normalization. We construct the speaker space using all phonemes in the 

TIMIT dataset and compare the adaptation results when only a subset of phonemes are 

used. 

Table 4.3 list the phoneme groups used in this experiment. 

For each phoneme group we compute the phoneme classification performance using (a) 

only the phonemes in the specific group to estimate the eigenvectors (4;) and associated 

speaker-dependent attributes (a!) and (b) using all phonemes. Table 4.4 depicts the results 

obtained. For each phoneme group classification results are presented for (a) phonemes in 

eigenvector order 
1 

59.1501 
0.2907 
0.1607 
0.1474 
0.0819 

3 
0.3151 
0.9022 
0.8573 
0.8224 
0.8601 

2 
23.8899 
0.6246 
0.1898 
0.1606 
0.0829 

4 
0.0850 
1.2635 
1.0881 
1.0234 
1.0501 

5 
0.0297 
1.2252 
1.1952 
1.2013 
1.2358 



Table 4.3: Phoneme groups used to study the most important contributors to normaliz* 
tion. 

I nasal I m n  nn em en I 

phoneme group 
sonorant 

- - 

consonant 
vowel 

phonemes 
aa ae ah ao aw ax axr ay eh e l  em en er ey i h  i x  i y  
1  ow oy r uh uw ux u y 

b c h d d x d h f  g h h j h k m n n g  p s s h t  t h v z z h  
aa ae ah ao aw ax axr ay eh er ey i h  i x  i y  

the group, (b) phonemes that do not belong to the specific group and (c) all phonemes. 

Here the rows labeled as "other" refer to the classification results for phonemes that do 

not belong to the group. 

Using all phonemes to construct the speaker space results in the greatest performance 

gain (35.20% - > 39.15%). The contribution seems to be equally spread between the 

sonorant and consonant phoneme groups. However when each of these broad categories 

are broken into smaller sub-groups we can see that the relative contribution stems mostly 

from the vowel and nasal sub-groups. When only fricatives or stops are used they do not 

- 

stop 
fricative 

help to estimate adaptation parameters well, and this ultimately results in a performance 

degradation (e.g. using fricative only as adaptation data the other phonemes' classi6cation 

performance went down: 31.45% - > 30.27%). 

b d g p t k d x  
ch dh f hh jh s sh th v z zh 

4.3 Physical interpretations of the speaker space 

In order to understand the physical characteristics utilized by ow adaptation model, we 

investigate its relationship with the speech production process. The experiments presented 

in this section show that our adaptation model can capture some known variances among 

speakers. 



Table 4.4: Classification results (in percentage) using different phonemes groups to esti- 
mate the eigenvectors of the speaker space covariance matrix. 

phoneme groups 
sonorants 
other 
all phonemes 
consonants 
other 
all phonemes 
vowels 
other 
all phonemes 
nasal 
other 
all phonemes 
fricatives 
other 
all phonemes 
stops 
other 
all phonemes 

baseline 

31.69 
39.55 
35.20 
39.55 
31.69 
35.20 
32.99 
36.76 
35.20 
35.20 
36.39 
35.20 
51.03 
31.45 
35.20 
34.65 
35.31 
35.20 

all phonemes 
35.09 
44.18 
39.15 
44.18 
35.09 
39.15 
36.85 
40.77 
39.15 
34.26 
39.74 
39.15 
54.72 
35.46 
39.15 
37.09 
39.54 
39.15 

adaptation 
phoneme group 

35.19 
43.60 
38.95 
45.22 
33.27 
38.62 
37.05 
40.22 
38.91 
35.36 
36.66 
36.52 
56.40 
30.27 
35.27 
38.17 
30.57 
31.75 
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Figure 4.3: The distribution of projections from male and female speakers onto the 1st 
eigenvector using the Hillenbrand data set. The upper figure shows the distribution of 
projections for male speakers. The lower figure shows the distribution of projections for 
female speakers. This projection almost separates male and female speakers. 

4.3.1 Gender differences 

Since the most distinct difference among speakers is the gender difference, we test if our 

model can capture this variance. 

We study this problem by investigating the distributions of projections (p') from speak- 

ers' features (pr) onto the first eigenvector (qh) of the speaker space covariance matrix: 

The distributions of pr for male and female speakers from the Hillenbrand data set are 

plotted in Figure 4.3. The figure shows that the projection almost separates the male and 

female groups. This suggests that the first principal component is highly correlated with 

the gender of the speaker. Since the main physical difference between male and female 



speakers is vocal tract length, this result suggests that the first principal component of 

the speaker space also correlates to the vocal tract length. 

Similar experiments using the TIMIT data set and MFCC features yield the same 

conclusion. 

4.3.2 Pitch 

It is also known that male and female speech differ in pitch. The following experiments 

are conducted to study the effects of shifting a particular speaker's pitch without changing 

the spectrum. In this experiment, 10 vowels taken from the TIMIT data set are generated 

for two synthesized voices (one male "mwm" and one female "tll") 3. The speech is 

synthesized by concatenating pre-recorded speech . The synthesizer allows pitch shifting 

and duration change. Each voice is then modiiied to change the pitch without changing 

the spectrum. The effects of the resulting projection on the first eigenvector of the speaker 

space are shown in Figure 4.4. MFCC features are used in this experiment. This study 

shows that the first eigenvector is &o related to the pitch of a speaker. 

In Figure 4.4, the top graph shows the distribution of the projections on the 1st 

eigenvector from male speakers and the lower one shows the same for female speakers in 

the TIMIT training set using MFCC features. The symbol "on depicts the position of 

the original synthesized voice in the distribution and the symbol "*" represent the same 

voice with changed pitch. While changing the pitch, the male voice is transformed by 

using the female pitch and the female voice using the male's pitch. The figure shows 

that after the pitch change both voices move towards the neutral region. During the 

pitch-modification process the spectral envelope of the original speech remains unchanged. 

However, the cepstral coefficients (MFCC) do to some degree contain pitch information. 

The resulting change of position of the speaker in the distribution of the projection onto 

the first eigenvector reflects this information. This result shows that the first eigenvector 

is correlated with the pitch value of the speaker. Another observation from Figure 4.4 is 

that, even after the pitch is changed to that of the female speaker "tll" , the position of 

3using Festival [3, 341 with OGI extensions [40] 
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Figure 4.4: Effects of changing speaker's pitch on the projection of the first eigenvector. 
The histograms are the distribution of the projections onto the first eigenvector of male (or 
female ) speakers in the TIMIT data set. The symbol "0" depicts the original synthesized 
voice in the distribution and the symbol "*" represent the same voice re-synthesized with 
changed pitch. The upper graph shows the effects of changing a male voice by using a 
female (higher) pitch. The effect is to move the voice's projection towards the female 
speakers' distribution. The lower graph shows the effects of changing a female voice by 
using a male (lower) pitch. Consequently, the changed voice's projection moves towards 
the male speakers' distribution. 



speaker "mwm" in the distribution is still much different from that of "tll". This shows 

that pitch is not the only factor that defines the difference between the two speakers. 

From experiments in this section, we know that the k i t  eigenvector correlates with the 

gender (independent of whether pitch information is included or not); therefore, we expect 

to reduce the influence of gender variations by using- the 1st eigenvector in adaptation. 

Experimental results presented in Section 5.5 validates this observation. 

4.3.3 Other physical meanings of speaker space 

Other studies of physical meaning [25] found a weak correlation between the speaking 

rate and the second eigenvector. Also, the third eigenvector of the speaker space was 

found to correlate with short steady state portions of vowels relative to the onsets and off 

glides. However, since we are using different features from Kuhn [25], we can not verify 

the suggestions (the physical meaning of the second and third eigenvectors depends on 

the features used). There are many different variances in the feature representation, so 

the eigenvectors can be a combination of various variance sources, and it is difficult to 

identify which one each eigenvector represents. 

4.4 Comparison between EMAP and CBPCA 

In order to compare EMAP with CBPCA, we examine the mathematical relationship 

between the two methods and also compare the two methods on a basic vowel classification 

task. 

We denote by the eigen-matrix of Co in Equation 2.8. Using @ to rotate the data 

results in the following covariance matrix: 

where A is a diagonal matrix with the diagonal elements corresponding to eigendues of 

Co. Linear transformation of Equation 2.8 with iD results in. 

aTP1 = Q ~ c @ ( @ ~ c @  + L A ) - ' @ ~ P ~  + A ( @ ~ C Q  + L A ) - ' L @ ~ ~  (4.3) 



Assuming diagonal covariances for the speaker-dependent part (C), we define the fol- 

lowing diagonal matrix: 

@Tc@ = A' (4.4) 

The term aTz@ + L I $ ~ c ~ @  in Equation 4.3 will therefore also be diagonal: 

aTz@ + L I $ ~ c ~ @  = A (4.5) 

The EMAP equation can now be written as follows: 

T I - A ~ A - ~ Q T  
@ P -  po + hA-lLaTa (4.6) 

Equation 4.6 can be viewed as the EMAP equation in the transformed speaker space. 

In contrast CBPCA uses the eigenvector matrix to move the speaker's features as  follows: 

where a represents the projections of the speaker difference vector onto the eigenvectors: 

From Equation 4.6 and 4.7 we can see that although EMAP and CBPCA share a 

similar linear form, they are not fundamentally the same, with EMAP always taking into 

account the data count L which describes the prior information in the equation. 

4.4.1 Similarity of the two methods 

Both are designed to use correlation among classes to achieve adaptation for classes 

that are not present in adaptation data. 

a Both use the between-speaker covariance matrix Co to model the correlation. 

4.4.2 Differences between the two methods 

a EMAP corresponds to a linear interpolation between the speaker- independent model 

mean and the speaker-dependent model mean; CBPCA moves the speaker-independent 

model mean toward the speaker dependent mean directly along the directions defined 

by @. 



EMAP takes into account the covariance within each class; CBPCA only uses the 

between-speaker covariance matrix Co in the modeling. It does not use the prior 

information of speaker-specific variances for each class. 

EMAP requires a large number of speakers to estimate Co accurately; CBPCA 

requires much less speakers to estimate the major eigenvectors of Co. 

EMAP requires inversion of a large matrix (C + LCo) for each speaker; CBPCA does 

not require any matrix inversion. 

4.4.3 Advantage of each method 

EMAP can be very effective when there is enough data to estimate Co. Furthermore, 

it has the nice asymptotic property that adaptation approaches speaker-dependent 

performance as the adaptation data increases. 

CBPCA does not have to estimate the full Co. It therefore needs to estimate only 

a smaller number of parameters, and can provide successful adaptation with less 

training data. 

4.4.4 Comparison between experimental results 

In this section the effects of our proposed method (CBPCA) and EMAP are compared on 

a TIMIT vowel classification task. The features used here are the frame-level 14th order 

MFCC feature with dimension 15 (including the normalized energy). F'rame-level features 

are used to meet the needs of EMAP. EMAP needs a large amount of data to estimate the 

adaptation parameters accurately, i.e. for C and Co in Equation 4.3. Table 4.5 summarizes 

the classification results obtained using supervised adaptation. A single mixture Gaussian 

classifier is used in the experiment as baseline classifier. In Table 4.5, the column "% of 

variance" describes the percentage of the total variance described by the eigenvectors used 

in the experiment. 

Table 4.5 shows that with good knowledge of the adaptation data (supervised or good 

baseline system), CBPCA can achieve better adaptation results. The reason is that 

CBPCA is designed to move the models parameters towards the target directly while 



Table 4.5: Comparison results of adaptation performance on vowel classification accuracy 
using CBPCA versus EMAP. 

EMAP results in an interpolation between models parameters that describe the training 

data and model parameters of the adaptation data. 

Next, we test the performance using different amounts of adaptation data. On the 

TIMIT data set, each speaker speaks 8 sentences. We use n, (n < 8) sentences as adapta- 

tion data and the remainder (8 - n sentences) as test data. This experiment is conducted 

in supervised adaptation mode. Figure 4.5 depicts the classification results obtained using 

varying amounts of adaptation data. The irregular curve in the figure is caused by the 

fact that the adaptation data and test data for this experiment are not chosen by full 

jack-knifing, so that the test set differs for 'different n. ; 

The results show that CBPCA consistently outperforms EMAP in this task. The 

potential reason for this is that: (1) estimate of full correlation matrix in EMAP is not 

sufficiently accurate; (2) EMAP has much stronger parametric assumptions than CBPCA 

(that observations of different phoneme's are independent,) which is not valid. The results 

also indicate that given accurate information about the adaptation data, CBPCA has the 

advantage of "faster" adaptation. 

Method 
baseline 
EMAP 
CBPCA 
CBPCA 
CBPCA 
CBPCA 
CBPCA 

4.5 Summary and Conclusions 

The preliminary experiments in this section show strong evidence that the principal com- 

ponents of the speaker space are highly correlated with the vocal tract length, which 

contributes a major part of speaker differences in the speech signal. Studies in Section 4.2 

# param 

150 
3 
10 
20 
30 
100 

% variance 

44% 
63% 
75% 
82% 
98% 

error rate 
44.7% 
33.7% 
40.4% 
37.6% 
36.*8% 
34.8% 
27.0% 

error reduction 

17-9% 
9.6% 
15.9% 
17.9% 
22.0% 
39.6% 
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Figure 4.5: Comparing CBPCA and EMAP using varying amounts of adaptation data. 
The test sentences are different for different numbers of adaptation sentences. 30 eigen- 
vectors are used for CBPCA. 

show that features for different classes are correlated, and the dominant principal compo- 

nents can be estimated reasonably well using a relative small number of speakers. 

Comparing to the previous work described in Chapter 2, this proposed method does 

not assume a class-independent transformation, but a class-covariant transformation. The 

model is constructed in a compact way so that it is able to adapt using limited data 

and require much less computation. Compared to EMAP, the proposed method uses 

similar information, reduces the computational complexity of Co, and with same amount 

of adaptation data, can adapt more accurately. Finally, by analyzing the dominant eigen- 

directions, one can gain some understanding of the underlying physical meaning of the 

adaptation. 



Chapter 5 

Vowel classification 

In this chapter, we test the proposed method on vowel classification tasks using Gaussian 

mixture classifiers (D dimensions, single mixture per class). In these experiments we 

choose to use the adaptation form (Equation 3.1) rather than the normalization form 

(Equation 3.2). Since the current paradigm models the deviation of a class from the 

group mean using a single vector, adjustment of the model and the feature vector are 

mathematically equivalent. Adaptation and normalization are therefore interchangeable 

in this paradigm. 

5.1 Vowel classification on the Hillenbrand data set 

For each of the experiments the feature vector chosen consists of: (1) the average pitch 

F O ,  (2) the formant values F1 through F4  sampled at the 20% , 50%, and 80% intervals 

of each segment, and (3) the log duration of the vowel segment. In these experiments 

a jack-Mng method was used to create a series of test sets. When constructing the 

speaker space and corresponding principal components (&), we use all but the data from 

one speaker. The remaining speaker is then used for testing. During testing, a subset of 

all vowels (for example, 3 out of 10) for the test speaker are used to estimate the speaker 

attributes crr, and the remaining vowels are tested. Each speaker in the data set was chosen 

to be the test speaker once, and all vowels for the same speakers are rotated through the 

estimation and test set as explained above. This experiment uses the supervised static 

adaptation mode. Results presented here are the average of the jack-knifing experiments. 

In this experiment, results are obtained by using a single mixture Gaussian classifier. 
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Figure 5.1: The classification results of adaptation on Hillenbrand data using different 
amounts of adaptation data and different numbers of eigenvectors. 
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The results are shown in Figure 5.1. Normalization can indeed be seen to improve 

J$ 

the classi6cation accuracy when even only one principal component is used. As expected, 

the performance improved with additional vowels used during the adaptation; however, 

with only a few eigenvectors and a few vowels used for adaptation, the error rate can be 

reduced significantly. 

In this example, the first eigen vector describes most of variance (>70%), the rest of the 

eigenvector describe much less variance (4% for the second eigenvector). It requires more 

data samples to estimate the adaptation parameters that corresponds to the second and 

third eigenvecton, etc. The fact that using more than two eigenvecton does not improve 

the classification performance indicates that there are too few examples to estimate the 

adaptation parameters accurately. 



5.2 Vowel classification on the TIMIT data set 

In this experiment, we intend to test the effectiveness of our adaptation model on a 

more realistic data set and using a more widely used feature set, namely Me1 Frequency 

Cepstral coefficients (MFCC). Cepstral-based analysis (as used in MFCCs), is more robust 

than formant tracking, while sharing some of its attractive features (insensitivity to pitch 

variations, emphasis on perceptually important aspects of speech). The task includes 

classification of 10 broad-category context- dependent vowels in TIMIT: 

where obs<ae>obs represents /ae/ in the context of an obstruent on each side. The 

following obstruents are allowed: 

p k t b d g h h h v z s t h z h s h f  ch jh  

We choose these vowels to match the vowels in the Hillenbrand data set and choose 

the context to get enough samples of each vowel for each speaker from the TIMIT training 

set while restricting the contextual variation. 

For each of the experiments the feature vector chosen consists oE (1) the average 14 

MFCC coefficients over a segment; (2) the average energy over the segment and (3) the 

log duration of the vowel segment. 

The restriction to obstruent contexts obviously is less successful in limiting contextual 

variation than in the previous experiment. Therefore, the principal components of speaker 

space will not only represent the differences among speakers but also the differences caused 

by the variance in context. The classification results are depicted in Figure 5.2. 

The following observations can be made from these results: 

Using CBPCA for adaptation can achieve performance gain under more difficult 

conditions (i.e. with other variance sources present in the feature representation) 

By using only a few principal components, CBPCA adaptation can achieve sign%- 

cant improvement in accuracy (24.6% error reduction). 



Figure 5.2: The classification results of adaptation on TIMIT data using different numbers 
of eigenvectors. 

VOWEL CLASSIFICATION RESULTS ON TIMIT DATA SET 

Figure 5.3: On TIMIT Data: The distribution of the eigenvalues. Figure (a) shows the 
percentage of each eigenvalue (in descending order) of the sum of all the eigenvalues when 
using formant features. Figure (b) shows the percentage of each eigenvalue (in descending 
order) of the sum of all the eigenvalues when using MFCC features. 
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Again, note that increasing the number of eigen-components beyond 7 does not further 

increase recognition accuracy. This suggests that only a small number of principal com- 

ponents carry significant speaker information. Figure 5.3 plots the relative contribution of 

each eigenvector (principal component) to the variance of the constructed speaker space. 

Fkom the classification results presented in Figure 5.2 and the relative contribution, we can 

see that the lower principal components do not contribute significant extra information. 

5.3 Unsupervised adapt at ion 

So far all the adaptation experiments we have conducted are done in supervised mode. 

This means that during the adaptation of the models, speech data with appropriate labels 

are available for adaptation. In a realistic scenario, the correct words/phonemes would not 

be known for a new speaker. Instead, recognition results from a first pass (using speaker- 

independent models) are used as labels instead. This is called unsupervised adaptation. 

In our correlation model, we can estimate the adaptation parameters (a!) reasonably 

well even if the baseline system made mistakes. This conclusion is based on the fact 

that the most confusable classes are the ones that share similar acoustic features. If 

this assumption is true, the proposed method should perform well in an unsupervised 

adaptation mode. 

We performed unsupervised adaptation on the TIMIT data set. In this process, the 

speaker-dependent attributes ar are calculated by using the examples that are classified 

by the baseline classifier instead of using the hand-labels. The results are presented in 

Figure 5.4 and summarized in Table 5.1: 

Table 5.1: Classification performance (error rate) comparison between unsupervised adap- 
tation and supervised adaptation. In the results presented, 6 eigenvectors are used. 

This result shows that unsupervised adaptation can improve the classification perfor- 

data set 
TIMIT 

mance at  the cost of some reduced performance, and shows the potential for a real-world 

baseline 
33.3% 

supervised 
25.1% 

unsupervised 
28.4% 
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Figure 5.4: The classification results of adaptation on TIMIT data using different numbers 
of eigenvectors in different adaptation modes. 

0.35 

implementation of the proposed method. 

These results also show that our assumption that classes which share similar feature 

spaces can share similar adaptation parameters is correct and that the proposed method 

is suitable for unsupervised adaptation. 

- orlglnal enor rate 

5.4 The effects of normalization using different features 

I t  .. .. .. .. - - .. I1 

In this section, we compare the effects of normalization/adaptation using CBPCA on 

different features. The features we compare are "trajectory features" and "steady state" 

features. Trajectory features are features that describe the trajectories of the spectral 

movements. "Steady state" features describe the spectral property at  the steady states of 

a phoneme - that is, the portion of a phoneme where the spectrum stays relative steady. 

Our experiments are performed on the Hillenbrand data set. The results (classification 

error rate) are shown in Table 5.2: 

From Table 5.2 we can see that adaptation on systems based on trajectory features 



Table 5.2: Comparison results of adaptation performance on vowel classification error rate 
using trajectory features versus steady state features. 

I feature type 1 steady state 

gives a substantially higher in performance. This suggests that dynamic information 

trajectory 
data set 
Hillenbrand 

carried by trajectory features contains relatively more speaker-dependent information that 
. . 

can be captured with our adaptation model. 

baseline 
30.4% 

5.5 Gender-dependent modeling and CBPCA adaptation 

Gender-dependent modeling uses training data from speakers of the same gender to ob- 

norm 
20.3% 

tain the acoustic models for that specific gender. The resulting gender-dependent models 

only describe the variations within each speaker group with the same gender. This exper- 

error reduction 
33.2% 

iment compares the effect of normalization to that of gender-dependent modeling to test 

if the adaptation merely achieves the same effect as the gender- dependent models. The 

experiments are conducted on both the Hillenbrand and the TIMIT data sets. 

The results (classification error rate) shown in Table 5.3 indicate that normalization can 

indeed obtain better performance improvement than gender-dependent classifiers, with the 

baseline 
24.8% 

advantage that no gender information is required during training or testing. This provides 

further evidence that the proposed method can capture speaker variations not modeled 

norm 
8.5% 

by the normal modeling techniques such as gender-dependent modeling. 

error reduction 
65.7% 

Table 5.3: Comparison of classification performance (error rate) using normalization versus 
gender-dependent models. The classifiers are single mixture Gaussian classifiers. Adapta- 
tion outperforms gender-dependent models on both tasks. 

data set 
Hillenbrand 
TIMIT 

baseline 
24.8% 
33.3% 

gender-dep. 
9.7% 
30.3% 

normalization 
8.5% 
28.4% 



5.6 Summary 

In this chapter, we conducted various classification experiments to evaluate the effective 

ness of the proposed method. With only a few eigenvectors and a few vowels used for 

adaptation, CBPCA adaptation reduced the classification error rate siflcantly. With- 

out using explicit gender information, CBPCA adaptation can achieve better performance 

than gender-dependent modeling. CBPCA also proved to be effective in unsupervised 

adaptation. These results suggest that it is possible to use the proposed model in a real 

speech- recognition system. This will be the topic of Chapter 6. g 



Chapter 6 

CBPCA in HMM speech recognition 

system 

The classification experiments in Chapter 5 demonstrate that CBPCA can reliably extract 

speaker-dependent characteristics. In this chapter we investigate an application of this 

method, in an HMM recognition system. Section 6.1 briefly introduces some background 

on HMM recognizers. Section 6.2 describes the baseline HMM recognition system result. 

Section 6.3 describes the process and results of using CBPCA for speaker clustering. 

Section 6.4 compares CBPCA and MLLR-based adaptation results. Finally Section 6.6 

investigates the possibility of using CBPCA in adaptive training of an HMM recognizer. 

6.1 Acoustic Modeling using Hidden Markov Models 

In this section, we briefly introduce the well-known and widely used Hidden Markov Model 

approach, and formulate it in mathematical terms appropriate for this thesis. 

In current speech technology, the speech signal is converted to a parametric represen- 

tation before it is used in recognition. This process produces a sequence of parameter 

vectors representing the speech waveform. The parameterization can be performed for a 

fixed short time window (e.g. 20 milliseconds), or for a much bigger section of speech (e.g. 

segments of phonemes, words, etc). In this chapter, we only discuss the most common 

frame-based representation. 

If an utterance of speech is represented by a series of T parameterized speech frames 



(referred to as observation vectors 0 ) ,  

the object of the pattern matching stage is to determine the most likely sequence of words 

which produce this observation sequence. 

Assuming the observation vectors are produced by a Markov process, the pattern 

matching can be achieved by using Hidden Markov Models (HMMs). The underlying 

assumption of an HMM model is that the speech signal can be characterized as a para- 

metric random process, with successive observations conditionally independent. Given 

this assumption, the parameters of the stochastic process can be estimated in a precise 

and well-defined manner, as described below. 

6.1.1 Hidden Markov Models representations 

Markov Model and HMM 

A Markov model (Figure 6.1) is a finite state machine which makes a state transition 

once every time step. At each time t a state j is entered, and an observation vector ot 

is generated according to a probability density function associated with the state bj(ot). 

Furthermore, the transition from state i to state j is also probabilistic and is governed by 

the probability aij. Hence, the likelihood of generating observation 0 using any sequence 

of states can be computed. 

A hidden Markov model (HMM)[22] has the following two components: 

1. A first order Markov chain that models the sequentially evolving temporal nature of 

the process. 

2. A finite set of output probability distributions that model the statistical behavior of 

the steady states of the process. Each state of the Markov chain is associated with 

an output probability distribution, which can be characterized by either a discrete 

probability function or a continuous probability density function. 

When used in speech recognition, the state process S = (51,232, .. . , ST) is not observed, 



Figure 6.1: Example configuration of a HMM structure with non-emitting beginning and 
exit state. 

hence it is referred to as a hidden sequence. Therefore, the models are referred to as 

Hidden Markov Models. 

Hidden Markov Model Parameters 

As illustrated in Figure 6.1, an HMM consists of a set of N states sl ,s2, ..., S N  with the 

following properties: 

a The number of states in the model, denoted by N, where the states are labeled 

s = sl ,  9 2 ,  ..., S N .  State i at time t is denoted as st = i. 

The left most (entry) state (sl  in the figure) of the model and the right most (exit) 

state (s5 in the figure) of the model are non-emitting states. The non-emitting states 

allow simple construction of model sequences and incorporation of language models. 

a States sz through 34 are emitting states. Each emitting state sj has an associated 

output probability density function bj(ot). 

a The initial state distribution is defined as 

T = ( T ~ ~ T ~  = P(sl = i ) ,  1 < i 5 N )  (6-2) 

where P(sl = i )  represents the initial probability of state i a t  time step t = 1. 

a A transition matrix A defines allowable transitions between states. aij is the prob 

ability of moving from state i at time step t to state j at time step t + 1. 



with the following constraints: 
N 

The output probability distribution associated with each state is denoted as: 

B = bi(e) = P(ot(st = i), 1 < i < N (6-5) 

The output probability density functions bj(ot) can in theory be any probability dis- 

tribution. However, in practice, they are usually assumed to be mixtures of Gaussian 

densities. 

where K is the number of component densities, cjk is the mixture weight, where 0 5 cjr, < 1 

and 

and bjk is a multivariate Gaussian density function. 

Here d is the dimension of the observation vector ot and kjk and Cjk are the mean 

and covariance matrix respectively for the kth Gaussian component of the j th  state. The 

covariance matrix could be a full n x n matrix or a diagonal covariance matrix. 

An HMM can be represented by using the compact notation X = (n, A, B) as defined 

in Equations 6.2, 6.3 and 6.7. Specification of an HMM involves in the choices of number 

of states (N), the number of mixtures components per state (K), and the estimation of 

its parameters X given the observation data. 

Assumptions in HMM modeling 

The assumptions made in the generally used HMM speech modeling are the following: 



1. The distribution of observation vectors (the output probabilities) is assumed to 

depend only on the present state. 

2. The speech signal is assumed to be stationary over a single Erame of speech. 

3. The observation vector distributions are adequately modeled by the parameters of 

the HMM. 

The independence assumption is obviously not true, since there are certainly come 

lations between adjacent frames. However, it is computationally expensive to integrate 

the correlations between frames and diicult to train a model which accounts for these 

adequately. 

The second assumption is also not strictly true. H o ~ v e r ,  it is generally accepted 

that spectral analysis based on this assumption is adequate for the purposes of speech 

recognition. 

The third assumption might also not be true since we do not know the underlying 

model. Fortunately, an arbitrary density function can be approximated to any degree of 

accuracy by a sufficiently large number of component densities. 

6.1.2 HMM parameter estimation 

The objective of a speech recognizer is to find the word sequence which is most likely to 

produce the given set of observation vectors (0). 

If an observation sequence is known to represent a single word (wi)  from a limited set 

of possible words (vocabulary V), the task is to compute the most probable word given 

the observation data 0. 

Using the Bayes rule we can rewrite the a posterior probability in terms of the data 

likelihood as follows: 



This task can then be reduced to determining p(Olwi) assuming that p(wi), the prob- 

ability of occurance of word wi, can be computed through a language model using a pra'ori 

knowledge, and that p(0)  are common to all words under consideration, and therefore do 

not affect the choice of the wi. 

Using hidden Markov models, we can generate a class-conditional observation prob- 

ability p(Olwi), given that an acoustic model X representing each wi exists. This can 

be achieved by computing the likelihood C(0IX) of taking any path through the acous- 

tic model X and producing the given sequence of observation vectors. L(OIX) takes into 

account all possible state sequences, 

Computing L(0IA) defines the parameter estimation problem in HMM modeling. The 

most common parameter estimation method is maximum likelihood estimation. In max- 

imum likelihood (ML) estimation, the parameter vector A of a model is derived as a 

function of the observation vector 0 by maximizing the likelihood function L(0;  A), which 

is defined as the probability that the model X has generated the observation sequence 0. 

Therefore: 

AML = arg max L(0; A) 
A 

(6.11) 

In HMM training, the parameter estimation is achieved using the expectation-maximization 

(EM) algorithm to provide ML estimates in an iterative fashion. Detailed derivations are 

given in many papers such as [2, 33, 37, 431. Here we just highlight the results: 

maximization of the auxiliary function Q(X, i )  will result in maximization of the 

likelihood C(0; A), where 

where S is the Markov state sequence corresponding to the observation sequence 0. 

When only the parameters p and C in the HMM models are optimized, the auxiliary 

function becomes: 



N K T  

where %k(t) is the state occupation probability of occupying state s mixture k at time 

step t. In this equation N represents the total number of states in the system. ji and f: 
are the estimated p and C respectively. 

Differentiating Equation 6.13 with respect to f i  and f: and setting to 0 to find the 

maximum of the likelihood function yields the following iterative solution: 

cT=I rik(t)ot 
b i k  = C?=I 7 i k  

and 

6.2 Baseline system 

For all the experiments described in this chapter, the baseline recognition system is an 

HMM alphabet-digit system. The major parameters we shown in Table 6.1. There are 650 

speakers in the training data; each speaker speaks approximately 30 sentences of alphabet 

letters and digits. There are about 6 words in each sentence. The development set has 

77 speakers and the h a l  test set has 82 speakers. The system has N = 599 tied states 

with K = 10 mixtures per state. Each tied-state triphone model is represented using the 

standard 3-state left-to-right model configuration. 

All results in this chapter are obtained from the final test set using the models which 

performed best on the development set. The baseline system's word error rate is 13.2%. 

6.3 Speaker clustering 

As illustrated in Equations 3.2 and 3.3, the speaker-dependent subspace of speaker space 

can be extracted by computing each speaker's projections onto the principal components 

(af). Since similar projections (a!) translate into speakers having similar voices, we can 

generate speaker clusters using these projections. Since each speaker cluster contains 



Table 6.1: Baseline system parameters and performance. 

task 
# speakers 
# speakers 

alphabet a and digits 
train: 650 
dev: 77 

# speakers 
# states 

similar speakers, the model trained on data from one cluster should perform better than 

test: 82 
599 

# mixtures per state 
word error rate 

the baseline system which was trained on data from all speakers. 

10 
13.22% 

In this experiment, speaker clusters are generated using five speaker-dependent at- 

tributes. Three speaker clusters are generated using vector quantization. The baseline 

system is further trained on each cluster's data. During evaluation, the resulting "cluster- 

dependent" recognizers are used to compute likelihoods for each test sentence. The model 

which produces the highest likelihood is used to generate the answer. Gender-dependent 

result is also computed for comparison. The results (word error rate) for 10 mixture 

models are presented in Table 6.2. 

Table 6.2: Comparison between speaker clustering and gender-dependent system. 

1 I baseline I gender-dependent I clustering 1 

Speaker clustering resulted in a 11.6% reduction in word error. This result is similar 

! , - - 
word error rate 13.22% 12.07% 11.69% 

to that of gender-dependent training in largevocabulary systems, but achieved without 

any knowledge of gender in the training data. On this particular task, using 3 speaker 

11.6% % error reduction 

clusters results in better performance than gender-dependent models. 

8.Wo 

The result shows that the speaker clusters generated this way indeed reflect speaker 

similarities. This also provides further evidence that the constructed speaker space de- 

scribes speaker variation. The advantage of using the proposed method is that it needs 

very limited data to estimate the low-dimensional speaker-dependent parameters on which 

to do clustering. These clusters may also be used in speaker segmentation for tasks such as 



the NIST "broadcast news" task in which speech from many different speakers is present. 

Finally, when a very large training corpus is available, additional improvements may be 

achievable with more than two speaker clusters. Multiple speaker clusters may more ac- 

curately describe the natural distribution of speaker groups and the proposed method can 

discover these groups. 

6.4 Speaker adaptation for HMM using CBPCA 

In this section we study the behavior of adaptation using CBPCA and compare it with 

that of traditional MLLR. 

6.4.1 Speaker adaptation results 

Unsupervised adaptation results for both CBPCA and MLLR are presented first. The 

alignment from the corresponding baseline system for all the test sentences are used to 

estimate the adaptation parameters. 

The recognition results (word error rate) using adaptation with CBPCA are presented 

in Table 6.3. In the experiments, 5 principal components are used hence 5 adaptation 

parameters (a;, i = L.5) are estimated. 

Table 6.3: Adaptation results using CBPCA. 

I .ff mixture 1 1 1 2 1 4 I 6 I 8 I l O I  

Results in Table 6.3 show that CBPCA can perform adaptation with a relatively small 

number of adaptation parameters. These results also show that CBPCA can result in 

consistent error reduction for different mixture models. 

The comparative results with a class-dependent offset MLLR are presented in Table 6.4. 

In these comparisons, all 30 sentences are used as adaptation data. 

Table 6.4 shows that MLLR and CBPCA adaptation perform similarly. MLLR adap- 

tation uses many more adaptation parameters than CBPCA (1014 versus 5), and may 

adaptation(%) 
% error reduction 

22.37 
5.5 

17.39 
3.4 

14.93 
4.0 

13.62 
4.2 

12.71 
5.1 

12.53 
5.2 



Table 6.4: Comparison between MLLR and CBPCA adaptation results. 

have a disadvantage when only a small amount of adaptation data are presented as we 

demonstrate in the following section. 

6.4.2 Results with limited adaptation data 

Since we only need to estimate a few adaptation parameters for CBPCA, we can adapt 

successfully when only limited adaptation data is available. The experiments in this 

section investigate the behavior of adaptation using CBPCA and MLLR in this case. In 

the following experiments, we use a small part of the data in the development set as 

adaptation data and test on 20 previously unseen sentences for each speaker. 

In the experiments, CBPCA adaptation uses five adaptation parameters and the class- 

dependent offset requires 39 x 26 = 1014 parameters. We adapted an HMM with K (K 

=1,2,4,6,8,10) mixture components. 

The results are presented in Figure 6.2 and Figure 6.3. 

Figure 6.2 and Figure 6.3 show that, when less data is used for adaptation, MLLR's 

performance declines significantly, while CBPCA-based adaptation maintains similar per- 

formance gain. This result strongly supports our conclusion in Section 3.1 that we can 

use CBPCA successfully in situations where only limited adaptation data are available. 

4 
15.56 
15.38 
14.93 

2 
18.01 
17.75 
17.39 

# mixture 
baseline(%) 
MLLRoffset(%) 
CBPCA (%) 

6.5 Normalized training for HMM 

1 
23.67 
22.74 
22.37 

In this section, we describe our attempt to use the proposed model in normalized training 

of an HMM system. 

Since the proposed CBPCA normalization model can reduce the variance across dif- 

ferent speakers, training recognizers using the normalized features can concentrate the 

models on variances other than the speaker variations. Alternatively, we can also shift 

6 
14.21 
14.07 
13.62 

8 
13.40 
12.99 
12.71 

10 
13.22 
12.74 
12.53 
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Figure 6.2: Adaptation results using different amounts of adaptation data using CBPCA. 

MLLR ADAPTATION USING DIFFERENT AMOUNT OF DATA 

30 baskline performance - 
MUR ad~ptaljon +ng 30 sentences + 
M U R  adapt&on uslng 10 wntenaes x 

Figure 6.3: Adaptation results using diierent amounts of adaptation data using MLLR. 



the model for each speaker during training, which will result in a more compact model 

(Section 6.6). 

In this experiment, we normalize the features of each speaker in the training set using 

Equation 3.2. The normalized data are then used to train a new HMM system. This is 

a form of speaker adaptive training (SAT) in which the features from each speaker are 

normalized using the method presented in this research. The results (word error rate) 

are shown in Table 6.5: (These results were obtained with a slightly different feature set 

compared to that used previously, and also from a diierent test set, word error rates are 

therefore not directly comparable.) 

Table 6.5: Recognition results from normalized training on alpha-digits. 

There are several interesting observations in these results: 

Normalized training results in models that have smaller variance with the same 

complexity, as expected. 

n o r d i e d  training (unsupervised) 
12.67% 
10.86% 

mixture 
4 
10 

Models trained with normalized features achieve proportionally better results at 

lower complexities. This can be explained by the lower model variance resulting 

from normalization. This may be an important implementational advantage for 

real-world systems, since fewer resources may be needed due to the use of CBPCA. 

baseline 
13.71% 
11.38% 

In the most complex configuration, the system performed only slightly better than 

the baseline system. This might be attributed to the hard decision of class boundaries 

when aligning classes during the feature normalization stage. 

6.6 Speaker adaptive training 

In this section, we explore speaker adaptive training (SAT) using CBPCA, in which we 

adapt the model during the training process. 



In Section 2.2, the general idea of speaker-adaptive training was introduced. In prac- 

tice, this method normally is used by combining the estimation of the adaptation param- 

eters with the embedded training algorithm in a unified parameter-estimation process. 

Instead of moving the features as in Section 6.5, the models are adjusted to fit each train- 

ing speaker before training on that specific speaker; then the models are adjusted back 

using the inverse transformation. The advantage of this method is that there is no need to 

make the hard boundary decisions when aligning the classes to the data. During the em- 

bedded training process, each frame of training data will automatically be associated with 

the likelihood of it belonging to a particular model, and the corresponding parameters are 

adjusted accordingly. 

The most important difference between adaptive training based on the ML criterion 

and CBPCA is that by using CBPCA, the training process incorporates the information 

of correlation in the acoustic models which the ML- based SAT normally does not capture. 

6.6.1 SAT training based on Maximum Likelihood 

Speaker adaptive training [2] is based on the assumption that speech features contain 

two types of information. One type is the speaker-independent information which reflects 

phonetic variations among all speakers. The other component of speech is a speaker- 

dependent variation which reflects each speaker's characteristics. This component can be 

represented as the transformation (or a filtering) of the speaker-independent parameters 

through a transformation G. 

Assume a set of acoustic models X that represent phonetic phenomena of speech that 

are invariant to speaker-dependent variations. The effect of each training speaker on 

these acoustic models is considered as a transformation G that describes the particular 

speaker. Therefore, the acoustic models would best match the speaker-specific data if the 

data can be represented as the transformation of the speaker-independent model with the 

speaker-specific transformation G. 

In the SAT process, training data are collected from several different speakers. To 

estimate the model parameters that best fit the underlying speaker-independent acous- 

tic models, the derivation of the acoustic models involves simultaneously estimating the 



parameters A, which represent the phonetically relevant speech variations, as well as 

the speaker-dependent transformation G. Therefore the speaker-independent training 

problem is transformed into the following: given the set of transcribed observations 

0 = 01, 02, ..., OR that are collected from R training speakers, estimate the speaker 

transformations G = G1, G2, ..., G~ for each speaker, as well as the speaker-invariant 

acoustic model X which maximizes the likelihood of the training data 0. The maximiza- 

tion formulation is: 

In this formulation, each observation of) provides evidence of the speaker-invariant 

observations via the transformation Gf. If the inverse transformation G-' for each speaker 

exists, it is possible to normalize each speaker's training data with respect to the speaker's 

characteristics. It is obvious that this SAT formulation can be used in a feature-based 

approach, by training models on the normalized features. Here we will concentrate on the 

model-space approach, because it provides more flexibility and allows for the development 

of an EM-based algorithm for the maximum-likelihood parameter optimization. 

6.6.2 SAT formulation 

In conventional SAT the transformation is often modeled as an additive bias: 

so that the speaker-independent Gaussian mean pk is transformed to best represent the 

speaker-dependent mean ji; of the r'th speaker. The additive bias pf depends on the 

characteristics of the speaker and they can be shared among all Gaussians of the system 

or be specific for a cluster of Gaussians, states or phones. 

The objective of speaker adaptive training is to estimate the parameters of the Gaussian 

densities and the parameters in the linear transformation for all training speakers according 



to the transformation (Equation 6.1 7) so as to maximize the joint likelihood of the training 

data according to Equation 6.16, in which GT = p. The maximum likelihood estimates 

can be computed using the same Baum-Welch algorithm. Following Equation 6.13, we 

have: 

R N K T ,  

R N K T ,  

d is the dimension of the feature vector 0;. 

The effects of different speakers in the training data are explicit in the summation 

over R. Maximization of QN will lead to the estimation of the parameters for the speaker- 

independent model and the speaker-dependent parameters in for each speaker so that 

the overall likelihood for all the training data is maximized. These estimates are derived by 

differentiating Equation 6.18 with respect to the parameters to be optimized and setting 

to 0 to find the maximum. The resulting optimization solution can be realized in the 

following steps: 

The SAT process starts from the speaker-independent model which is represented by 

paXameters pik and Cik .  

For each speaker r ,  we estimate the parameter pr using: 

Then, using the estimated pr we compute the model parameters p and I=: 



6.6.3 Speaker adaptive training using CBPCA 

When implementing speaker adaptive training using CBPCA, the speaker dependent and 

class dependent bias ,@ can be estimated in the standard CBPCA process. The rest of 

the parameter-adaptation process is similar to that of the standard SAT (Equation 6.20 

and Equation 6.21). 

Here the calculation of pZ is: - 

where af is computed by solving Equation 3.8. 

The advantage of using CBPCA is that the speaker-specific parameters can be cal- 

culated for the phoneme classes not presented in the adaptation data while in normal 

SAT, those classes are not adapted. Another potential advantage of using CBPCA-based 

SAT it that the resulting system would inherently incorporate the information of class 

correlations, and therefore might be more concise than a normally trained system using 

ML-based SAT. 

Experimental results 

The results of our experiments comparing CBPCA-based SAT with the baseline perfor- 

mance (word error rate) are given below. These results are also depicted in Figure 6.4. 

Table 6.6: SAT with CBPCA results compared to baseline and non-SAT adaptation. 

The results in Table 6.6 indicate that CBPCA-based speaker adaptive training results 

in a larger performance gain at lower complexities. This indicates that the adaptation 

indeed can reduce the variance among speakers; therefore the resulting models can be 

more precise while modeling the phonetic variances. 



RESULTS OF SAT BASED ON CBPCA 

Figure 6.4: Adaptive training results using CBPCA. 
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The results in Table 6.6 show no obvious advantage in using CBPCA when al l  the data 

baseline prformence I- 
CBPCA SAT wing 30 sentences + 

- 

are presented at the highest complexities. 

6.7 Summary 

The experiments in this chapter investigated various applications of the proposed method. 

CBPCA proved to be able to capture speaker differences, therefore providing a new method 

to successfully perform speaker clustering using very few parameters. Experiments also 

show that CBPCA can achieve adaptation using limited adaptation data while MLLR 

failed to perform robustly in this situation. Normalized training using CBPCA yield more 

compact models than the original baseline model, and speaker adaptive training using 

CBPCA results in better models that are compact and have better performance. 

The adaptation results show that we did not achieve significant performance gain with 

higher model complexities. This can be attributed to following factors: 

a The higher complexity models already have the ability to model most of the variance 

sources present in the data, including speaker variance. 

The data contains more variations than the Hillenbrand and TIMIT data sets. This 



results in decreased class correlations, which in turn affects the ability to adapt based 

on these correlations. 

a The current adaptation model adapts models based on a chosen set of phonemes. 

The computed offset vector will be the same for all mixtures corresponding to a 

particular phoneme. This high degree of sharing might not be optimal. 



Chapter 7 

Summary and ~onclusions 

7.1 Summary and discussion 

In this thesis, we introduced a theoretical model of the proposed speaker normaliza- 

tion/adaptation method based on correlations between acoustic classes. This correlation 

can be used to achieve better speaker adaptation using small amounts of data. Various 

experiments showed the soundness and feasibility of this method. The mechanism and 

underlying physical meaning of this model was also explored. One important advantage 

of the proposed method is that it allows researchers to understand some of the properties 

of speaker variability and gives insight into some physical aspects of speaker differences. 

Comparing to other speaker adaptation techniques, our method has the following 

unique characteristics which result in its advantage over current methods: 

7.1.1 Understanding the underlying mechanism of adaptation 

This method provides an environment that allow researcher to study and understand the 

underlying physical meaning and the mechanism of the adaptation process, and this sug- 

gests future extensions and improvements. Most of the previous model-based methods do 

not provide this kind of environment (vocal tract normalization is expensive to implement 

in live systems). When we understand the underlying process of adaptation, we can detect 

the deficiency and its cause, and subsequently design methods to reduce the deficiency. 



Generic data driven adaptation techniques (such as MLLR) do not provide these kinds of 

insights. 

The proposed method (CBPCA) describe the speaker variations within a speaker space, 

and the adaptation and normalization process is conducted within that space. Because 

of this mechanism of adaptation and normalization, we can study the underlying physical 

meaning of the process. This helps us to understand the effects on models and features 

during the adaptation and normalization process. For example, our study shows that the 

first principal component of the speaker space highly correlates with speaker gender which 

suggests that it correlates with speaker's vocal tract length. When we perform adaptation 

based on the first principal component, we know we are reducing gender-related variation 

during the process. The speaker clustering experiment in Chapter 6 also show that with 

CBPCA we could use very few parameters to characterize different groups of speakers. 

This is very different from the data-driven model-based techniques such as MLLR which 

only result in a data-wise optimal transformation without thoughts of the physical effects 

of the transformation. Those techniques generally need large amount of adaptation data 

to perform well as we have seen in Chapter 6. 

7.1.2 Adaptation using correlations 

The CBPCA method enables us to use correlations among classes to adapt the classes 

not presented in the adaptation data. Most of previous model-based approaches do not 

have this ability. In CBPCA, we model a "covariance" relationship between speakers and 

between classes, comparing to the "invariant" relation proposed in Cox's [7] prediction 

techniques. Our research allows more flexibility in the relationships between classes for 

different speakers. 

7.1.3 Adaptation using limited data 

The proposed adaptation model (CBPCA) has the ability to adapt with limited adapta- 

tion data. Dat&dependent adaptation methods such as MLLR, require large amount of 

adaptation data for each adaptation transformation. A small amount of adaptation data 

often yields little adaptation (small change for the models) for Bayesian methods such as 



MAP. 

Since our proposed method operates within a concentrated subspace of the speaker 

variation, it requires estimation for only a few adaptation parameters. Therefore, it allows 

us to adapt efficiently using limited data. The results in Section 6.4 show strong support 

for this assumption. With limited adaptation data, MLLR adaptation's performance 

degrades while CBPCA's performance remains unchanged. This capability of CBPCA 

can be very useful in applications that only have very few phrases for adaptation, or when 

it is essential to adapt faster. For example, in a system for a large population when we 

need to adapt in the context of a single dialog, CBPCA adaptation will be very useful. 

Even if we get multiple interactions, this will allow us to store a very small amount of 

adaptation parameters for each speaker. This is a simpler and cheaper method which can 

result in improved performance. 

7.2 Extension of this work 

As with every new method, many issues are still unsolved and should be investigated 

further. During our investigations, we identified the following areas: 

7.2.1 Combining CBPCA and MAP 

It would be beneficial to combine the advantage of CBPCA with that of MAP. CBPCA 

could be used to estimate better priors for MAP adaptation. Since CBPCA could adapt 

the models using small amount of data, this would "accelerate" the MAP adaptation when 

there's only small amount of adaptation data are available. 

7.2.2 Extension of this method to adapt the covariance of the models 

The adaptation method studied in this thesis only addresses the adaptation of the means 

of models. In addition, the adaptation of the covariance of each model could also be 

investigated within the general CBPCA framework, i.e. in the "concentrated subspace" 

of the original speaker space. 

The underlying assumption of the adaptation formula (Equation 3.4) is that all speaker 



variances can be described by iD (and most of variance could be described in the subspace of 

Co) and the difference between speakers can be described by a shift in the subspace. Other 

forms of more complicated transformation in the subspace could also be investigated. For 

example, a matrix transformation of the subspace projections. 

7.2.3 Other physical Meanings 

Possible physical meanings other than the ones discussed in this thesis could also be 

further investigated. This might be done with specific features like formants. Large 

number of speaker should be includeh to be able to provide quantifiable result. Many 

different combination of variations should be tested since the higher rank eigenvectors 

might represent some combinations of variations. This will lead to better understanding 

of the adaptation process which may lead to better adaptation method. 

7.2.4 Speaker Morphing 

In the speaker space we constructed, we can transform a speaker's feature into another, 

by computing a transformation as follows: 

where pP and pq represent the position of speaker p and q in the speaker space, and @rq 
are the projections of the difference vector between p and q onto the principal components. 

Given some training data from speaker p and q, @rq can be estimated for the trans- 

formation and then used to map speaker p onto speaker q. If the features used in this 

process capture the major speaker characteristics, we could transform a speaker's voice 

into another. The potential advantage of this approach is that it would require a small 

amount of data to morph between speakers. 

The advantage of this method is that only limited parameter for the source and target 

speaker are needed, which equal to that of the number of eigenvectors used in the system. 

The requirement of this method is that the features used in this scheme must be highly 

speaker-dependent and accurately estimated. This is of major importance in text-to- 

speech(TTS) systems where most of the storage goes towards speaker data. By capturing 



the transformation from a specific speaker to another with small number of parameters, 

we can have many voices from a single database. In addition, we can "add" a new voice 

from very limited data. 
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Appendix A 

Maximum A Posteriori 

Estimation(MAP) and EMAP 

The Maximum a Posteriori(MAP) estimation approach has shown to be an effective 

method of adaptation. It's advantage , when compared to other linear transformation 

methods, is that it provides a way of incorporating prior information in the training pro- 

cess and its asymptotic behavior. As the amount of adaptation data increases, the estima- 

tion process weighs the prior information less, thus converging to the speaker dependent 

training. 

One major disadvantage of the MAP adaptation approach is that the method only 

adapts the models for which samples have been observed in the adaptation data. These 

models may represent only a small &action of all the models in the recognition system. 

Extended MAP (EMAP) is one of the schemes that address this problem by incorporating 

correlations among models, so that observations that contribute to the estimation of one 

model will also contribute to the estimation of all other models. This appendix reviews 

the derivation of MAP and EMAP. 

A.l  Maximum A Posteriori Estimation(MAP) 

Within the HMM framework, where the data is modeled as a random variable with Normal 

distribution, the model parameters can be adapted using maximum a-posterior training 

(MAP). 

Considering one Gaussian model for one class, through Bayes law, the a posteriori 

probability of the adapted model mean P' can be expressed as: 



where x is the set of observation for this class from a single speaker. The definition of 

p(xJpl) and p(pl) can be written as: 

I T -1 p(xIpl) = c l -  exp[-1/2(x - P C (x - PI)] 

and 

T -1 r -  
P(P') = c2 - exp[-1/2(p1 - Po) Co (P p0)l (A-3) 

where cl  and c2 are independent from pl. 

In order to compute the maximization of the a-posterior probability for the adapted 

model, taking the derivative with respect to p' of the natural logarithm of p(pl)x) we have: 

Given the initial model mean po with covariance Co, and the speaker dependent adap- 

tation data mean a and covariance I=, the first term on the right side of Equation A.4 can 

be written as: 

N 

vdlog[p(~lpt)] = C z-l(xi - PO) = ~ - l  ~ ( a  - PO) 
i=l  

(A-5) 

In Equation A.5, N is the number of examples for the class in the adaptation data. 

The second term on the right of Equation A.4 can be written as: 

The third term of right side of Equation A.4 is zero since p(x) is independent of p'. 

Setting V,~log[p(p'lx)] equal to zero, we get: 



Solving for p' results in the MAP equation for the updated model mean p' [ll]: 

With large N we can see that this corresponds to computing the model mean directly 

from the adaptation data: 
1 N lim U' = N C i = l ~ i  = o 

N+oo 

In general, however, MAP corresponds to a linear interpolation between the speaker 

independent model mean and the speaker dependent model mean. 

A.2 Extended MAP(EMAP) 

In normal MAP, data from one class can not be used to update any other class. In order 

to solve this problem, an extension of MAP (called EMAP) was introduced by Lasry and 

Stern [29] and further investigated by Rozzi [38]. The aim of the EMAP algorithm is to 

use the correlations between classes to estimate the transformation for unseen classes from 

the available adaptation data. 

EMAP differs from MAP in that EMAP updates a concatenated mean of all classes. 

This concatenated mean vector can be represented as 

pr = b ; , ~ ; ,  - - - I  &I (A.lO) 

where C represents the total number of classes. Each mean vector has D dimensions. 

Therefore the concatenated mean vector for speaker r ,  pr is a CD dimensional vector that 

is assumed to be normally distributed around a priors' mean po with covariance matrix 

Co. Each example of class j E 1..C across all speakers is assumed to be a random vector 

of a normal distribution with a mean pj and covariance C j .  

In this system, correlations amongst classes are modeled by Co, and the matrices C j  

model the within class variances. We define C as a CD by CD block diagonal matrix 

with Ej  as the jth block. C is block diagonal due to the assumption of independent 

observations., e.g. individual realizations of phonemes are not correlated. 

Similar to Equation A.8 we can now compute the adapted mean vector as follows: 



where L is a diagonal matrix with the number of observations per class along the diagonal. 

The vector a denotes the concatenated mean vector computed from the adaptation data 

only. 

Therefore, through the mean cross covariance matrix Co, EMAP estimation is able to 

update all classes given any example from any class. We see in chapter 3 that this mean 

cross covariance matrix can be interpreted as a covariance matrix for a speaker space. 

Because of the dimensionality it is very difficult to estimate Co accurately. To estimate 

this matrix accurately would require full coverage of each class (phoneme) spoken by 

every speaker in the training data. Furthermore the matrix inversion (C + is also 

prohibitive. Rozzi [38] extended the basic EMAP algorithm so that the computation is 

more efficient. These extensions however, still do not solve the problem of accurately 

estimating Co from a reasonable amount of data. 
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