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Abstract 

Multi-Stream Approach To Robust Speech Recognition 

Sangita R. Sharma 

Supervising Professor: Hynek Hermansky 

The recognition accuracy of current automatic speech recognition (ASR) systems de- 

teriorates in the presence of signal distortions caused by the background noise and the 

transmission channel. Improvement in the recognition accuracy in such environments is 

usually obtained by re-training the systems or adaptation with data from the new testing 

environment. In this dissertation, we present a new multi-stream approach to improve the 

robustness of ASR systems, without the need for re-training. 

In our approach, simultaneous estimates of the phoneme probability are made in paral- 

lel in multiple sub-streams. Each sub-stream operates on different features obtained from 

the same input. These partial phone probability estimates are then combined for the final 

recognition. This approach potentially allows for de-emphasizing unreliable sub-streams 

during recognition. We present two multi-stream models based on the features used in 

each sub-stream. 

In the first model, the multi-band model, different frequency sub-bands of the speech 

spectrum are processed independently in different sub-streams. This is in contrast to the 

conventional spectral processing approach in which the entire spectrum is processed as a 

single stream. The sub-band phone probability estimates are then non-linearly combined 

(using a neural network) for final decoding. This model is motivated by the perceptual 



studies of phone recognition in humans (Fletcher, 1953) and helps in localizing the effect 

of narrow-band noise. The multi-band model which is trained only on the clean data 

yields around 50% reduction in word error rate on isolated digits corrupted by realistic, 

frequency-selective, additive noise. 

The second model is an extension of the multi-band model. In addition to independent 

frequency processing, it uses medium-term (around 200-500ms) temporal information in 

each frequency sub-band for phone probability estimation. The use of such syllable-length 

time spans is supported by psychoacoustic studies (Hermansky, 1998). The features (1 sec 

long time trajectories of critical band energies) that we use in each sub-band characterize 

the patterns of temporal evolution of the phonemes in that sub-band. This system yields 

errors which are complementary to that of the conventional spectral-based system. This 

system (trained on clean data) when combined with a spectral-based system yields around 

25% reduction in word error rate on a continuous numbers task when tested under both 

clean and noisy conditions. 

To summarize, the results obtained in this dissertation indicate that estimating phoneme 

probabilities from medium-term temporal-based features, independently from multiple 

frequency sub-bands, followed by non-linear combination of these probability estimates, 

improves the noise robustness of ASR systems. 

xvi 



Chapter 1 

Introduction 

Speech is the most natural means of communication in human-to-human interactions. 

The goal of automatic speech recognition (ASR) systems is to make speech equally viable 

in human-to-machine interactions. In recent years, ASR systems have found their way 

in several commercial applications such as in telephony, desktop dictation systems, etc. 

Even so, ASR technology has still a long way to go before reaching a stage of being the 

natural means of human interaction with machine (Lippmann, 1997). 

The biggest drawback of ASR systems is their limited ability to deal with the diversity 

and variability of real-world environments. For example, recognition errors of ASR systems 

increase rapidly in the presence of noise. Humans, on the other hand, can recognize speech 

fairly well under normally occurring environmental conditions. This suggests that the 

human speech recognition mechanism is quite different from that used in ASR systems 

and that ASR can gain by an understanding of what makes the human recognition system 

robust. 

The objective of this dissertation is to improve the noise robustness of ASR systems. 

To achieve this objective we propose to incorporate two concepts into the ASR system 

- 1) partial recognition in frequency sub-bands and 2) temporal processing over medium 

time (about syllable-length) spans. Psychoacoustic evidence suggests that the human 

auditory system is capable of such processing. We hypothesize that these phenomena 

account to some extent for the robustness of the human speech perception system to 

adverse environments and should also improve the noise robustness of ASR systems. To 

incorporate these two concepts into the ASR system, we propose and explore the multi- 

stream approach to speech recognition. 



In this chapter, Section 1.1 provides a brief review of the commercial applications of 

ASR. Section 1.2 discusses some of the drawbacks of ASR as compared to human speech 

recognition and suggests an approach towards addressing these drawbacks. Section 1.3 

presents our generalized multi-stream framework and reviews its application in the field 

of pattern recognition. In Section 1.4, we briefly discuss the conventional state-of-the art 

ASR system. Section 1.5 motivates and presents a multi-stream concept which forms the 

basis of the work in this dissertation. In Section 1.6, we specify the scope of the thesis 

and outline the main contributions. We conclude this chapter in Section 1.7 with the 

organization of the remaining chapters. 

1.1 Applications of Automatic Speech Recognition Systems 

Speech recognition technology is being used in many commercial applications. Some of 

these applications, as summarized by Rabiner (Rabiner, 1997), include 

Command-and-control applications where the user gives a single word voice com- 

mand from a small vocabulary of word commands and the system recognizes and 

executes the desired command. 

Specialized telephony-based applications such as voice dialing which are especially 

convenient in hands-free mobile environments, directory assistance, and credit card 

authorization. 

Desktop applications such as dictation systems, voice browser for the internet and 

voice navigation of desktop computers. 

Business applications such as data entry, airline reservation systems, etc. 

Although these applications have achieved moderate success, their widespread acceptance 

is limited due to their reduced performance in real world acoustic environments. 



1.2 Challenges Facing ASR 

Recognit ion in adverse environments 

Most speech recognition systems rely on high quality speech input, usually obtained from 

close-talking microphones under quiet laboratory-like conditions, for good performance. 

However, most real world environments are characterized by the presence of interference 

caused by noise, for e.g., fans or computer-generated noise in an office environment, ma- 

chinery noise on a factory floor, engine noise in mobile telephony environments (cellular 

phones or car phones) and background speakers. These are examples of noise that get 

added to the speech signal. Besides these additive noise conditions, there also exists speech 

signal distortion due to different acquisition channels such as different microphones and 

telephone lines. In general, recognition errors of ASR systems increase rapidly in the 

presence of such noise since there is a mismatch in the training and the testing conditions 

under which speech is recorded. The recognition of words in an utterance typically reduces 

in accuracy by 20% to 50% due to environmental noise (Gong, 1995). 

Successful commercial applications often require additional tuning, data collection and 

analysis after field deployment, to adjust the system parameters for differences between 

laboratory test conditions and actual usage conditions (Thomson, 1997). Such re-training 

of the system for every new condition is both time-consuming and expensive and should 

be avoided, if possible. 

Comparison of speech recognition performance of humans and machines 

The human speech recognition system demonstrates remarkable robustness to the common 

speech signal degradations mentioned above. Lippmann (Lippmann, 1997) has reported 

comparisons of the performance of humans and machines on speech recognition tasks 

ranging in vocabulary size from 10 words to more than 65,000 words. The comparisons 

show that even under quiet conditions, machine error rates are an order of magnitude 

higher than those of humans. This difference in performance becomes larger in the presence 

of noise. 
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Bridging the gap between human and machine speech recognition

The gap in the performance of humans and machines suggests that the human speech

recognition mechanism is quite different from that used in ASR. An approach towards

addressing this issue is to understand the robust mechanism of the human auditory system

and try to incorporate it into the ASR model. This approach focuses on understanding

the psychoacoustic and neurophysiological aspects of the human speech communication

process that makes the system resistant to adverse environmental changes.

Several auditory speech processing techniques that aim to explicitly mimic certain

peripheral and central auditory processing phenomena observed in humans, have been

proposed over the years. These include the ensemble interval histogram (EIH) (Ghitza,

1987), the Mel-frequency cepstral coefficients (MFCC) (Davis and Mermelstein, 1980),

the perceptual linear predictive (PLP) technique (Hermansky, 1990), phenomenon of lat-

eral inhibition in the system (Shamma, 1985), among others (see (Hermansky, 1998) for

review). There also exist techniques which explicitly emulate the temporal properties of

human hearing (Seneff, 1985; Cohen, 1989; Hermansky and Morgan, 1994).

These techniques produce new acoustic feature representations of the speech signal and

hence represent alternate speech signal processing techniques for feature extraction. This

dissertation proposes to take the perceptual understanding into the acoustic modeling

stage of ASR, using a multi-stream framework.

1.3 Generalized Multi-stream Speech Recognition Model
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Figure 1.1: Generalized multi-stream speech recognition model.



Figure 1.1 represents a generalized block diagram of a multi-input , multi-stream speech 

recognition model. Speech input can be captured by a number of sensors such as telephone, 

microphone arrays, and even a video camera which may track the lip movements of the 

speakers. Each input signal, in turn, can be processed in a number of different ways, for 

e.g., by different feature extraction techniques, each of which focuses on a different aspect 

of the signal subspace. Hence, the extracted features will possibly contain some amount of 

complementary information. Pattern matching (i.e., classification) can then be performed 

on each feature stream, either obtained from the same input and/or from different inputs. 

The outputs from all these parallel streams can then be fused or merged to decode the 

spoken utterance. Thus, this generalized multi-stream model is based on combining the 

outputs of two or more classifiers that produce information independently. The output 

of one classifier does not affect the output of the other classifiers. Such a system is an 

example of a weakly coupled data fusion system (Clark and Yuille, 1990). 

This multi-stream model for speech recognition shown in Fig. 1.1, can be considered 

as an engineering model of human speech perception. Firstly, it is well-known that human 

speech perception is at least bi-modal (Massaro and Cohen, 1983; Dodd and Campbell, 

1987). In addition to using acoustic information, humans also use visual information, if 

available, in the form of positional information about the visible speech articulators (for 

e.g., lip movements, tongue and teeth positions). Secondly, even within a single modality, 

say for example the acoustic signal, there exist processes of partial recognition (Fletcher, 

1953; Allen, 1994) (to be discussed further in Chapter 3), which support the notion of a 

multi-stream paradigm within a single-input framework. 

The advantages of the multi-stream approach are: 

a If some operating environment corrupts only a subset of the streams, it allows for 

the possibility to de-emphasize or drop those sub-streams in the merging process. 

a It allows for independent and even different processing in each of the sub-streams. 

It allows the flexibility to incorporate additional streams without re-training the 

existing ones. 



In this dissertation, we focus on a single speech input multi-stream framework (see 

shaded region of Fig. 1.1). This allows us to address the drawbacks related to the pro- 

cessing of single input speech signal before considering the possible extension to multiple 

inputs. The defined scope has many applications, especially in telephony, where only a 

single-input is available. 

Multi-stream approach in pattern recognition 

The multi-stream framework, also called the multi-classifier system in literature, is not un- 

known to the field of pattern recognition. For example, it has been used for unconstrained 

character/handwriting recognition (Xu et al., 1992; Ho, 1992; Lyon and Yaeger, 1996). 

The use of the multiple classifier systems in pattern recognition has been motivated by 

the existence of not only alternative feature representations but also alternative classifica- 

tion methodologies such as Markov models, neural networks, nearest neighbor classifiers, 

etc. Each methodology in turn leads to a solution that could complement the other, in 

terms of which patterns are correctly classified. Hence, proper integration could make 

it possible to yield better overall performance than any one technique used in isolation. 

Many a times the co-existence of multiple techniques also stems from incomplete knowl- 

edge about the true underlying model of the data. Different techniques or methodologies 

facilitate wider coverage and better modeling of the effective feature space in the absence 

of a solid assumption about a unique underlying model and hence help to complement 

each other (Shimshoni and Intrator, 1996). 

Multiple neural network systems, also referred to in literature as ensembles or commit- 

tees of learning machines, are another example of the use of the multi-stream framework 

for pattern classification and regression problems. In these systems, the input feature r e p  

resentation and classification methodology usually remain the same. The multiple neural 

networks, however, typically differ in initial conditions and/or architectures. The ensem- 

ble members are sometimes trained on the same data set (Hansen and Salamon, 1990) 

or on different subsets of the data (Perrone and Cooper, 1993; Wolpert, 1992). Ensem- 

ble neural networks have been used for several classification tasks such as seismic signal 



classification (Shimshoni and Intrator, 1996) and classification of underwater acoustic sig- 

nals (Ghosh et al., 1992). Mixture models such as adaptive mixture of experts (Jacob 

et al., 1991) and hierarchical mixtures of experts (Jordan and Jacobs, 1994) also use mul- 

tiple neural networks. However, they are different from simple ensemble methods in that 

they are based on the "divide and conquer" approach. In this approach, a mixture of 

experts compete to gain responsibility in modeling the output in a given input region. 

The underlying model is based on the assumption of mutual exclusivity - i.e., a single 

expert is responsible for a particular data point. Boosting (Schapire, 1990; Drucker et al., 

1993) is another example of a committee machine in which the experts are trained on data 

sets with entirely different distributions. The multi-stream framework has also been used 

in the field of image sensor fusion, to integrate information from various sensors for object 

detection and identification (Luo and Kay, 1988; Sharma et al., 1999). 

Multi-stream approach in speech recognition 

The multi-stream approach has been used for speech recognition in the form of modular 

networks (Haykin, 1998). Modular networks are also based on the principle of "divide 

and conquer", in which each module (subnetwork) operates on distinct inputs without 

communicating with each other. Modularity has been used in the design of large phonemic 

networks for recognition of all consonants (Waibel et al., 1989). In this approach, several 

time-delay neural networks are developed for different subsets of confusable consonants 

and the outputs of these subnetworks are combined to determine the consonant class. The 

goal was to provide scalability from smaller modular networks to a larger network without 

increasing computational complexity. Ensemble methods, such as boosting and mixture 

of experts, have also been used for phoneme classification (Waterhouse and Cook, 1997; 

Cook et al., 1997) and found to yield improvement in classification performance. The 

multi-stream approach has also been used in lipreading (speechreading) systems. The 

two streams representing audio and visual inputs respectively, are combined to improve 

speech recognition accuracy, especially in degraded acoustic conditions (Petajan, 1987; 

Stork et al., 1992; Silsbee and Bovik, 1996). 



In this dissertation, we propose new sub-stream definitions in the multi-stream frame- 

work, to improve ASR robustness. 

1.4 Conventional (Single-Stream) ASR Model 
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Figure 1.2: Conventional ASR model. 

Figure 1.2 represents a simplified block diagram of the conventional ASR system. The 

feature extraction block divides the incoming signal into short-term frames (typically 10 

to 20 ms) which are equally spaced in time, and extracts a feature vector from each frame. 

Each feature vector typically characterizes the spectral properties of the speech frame. The 

probability estimator block (for example, a hidden Markov model or a neural network) 

then estimates the log-likelihoods or posterior probabilities of the frames with respect to 

predefined speech sub-units (such as phones) being modeled. This probability estima- 

tion stage constitutes the acoustic modeling stage in ASR. The estimated probabilities 

are further processed by the language processing module (decoder), which uses language 

modeling information (i.e., a model of syntax and semantics) to generate the most likely 

sequence of words present in the incoming speech. 

We call the model in Figure 1.2 a single-stream model because information from the 

speech signal flows along a single path through the system. 

1.4.1 Drawbacks of the conventional ASR approach 

There are at least two major limitations in the acoustic modeling stage of the conventional 

approach: 

1. Since the single stream model employs only a single feature vector per speech frame, 

all the elements of the feature vector are treated as one entity by the probability 



estimator. As a result, localized degradation of even a few elements results in a 

degraded feature vector, which often leads to misclassification. For example, even 

if only a few frequency regions get corrupted by narrow-band noise, the recognition 

performance degrades rapidly. 

2. As mentioned above, features are extracted on a short-time basis (typically every 

10ms) to account for the non-stationarity of the speech signal. The common assump- 

tion of the subsequent HMM modeling is that the feature vectors are independent 

across time. The HMM model attempts to capture the temporal aspects of the speech 

signal by assuming that speech can be modeled by a succession of states defined by 

locally stationary segments, with transitions between the states. Any correlations 

between feature vectors is overlooked (Bourlard and Morgan, 1994). However, the 

speech production phenomenon of coarticulation suggests that the feature vectors 

can be correlated over several phonemes, due to the influence of the surrounding 

phonemes on the production of the current phone. The effects of coarticulation 

often extend across syllable boundaries (OIShaughnessy, 1987). 

1.5 Our Approach 

Independent frequency processing 

Fletcher and Stewart (Fletcher, 1953) proposed the multi-channel model of phone percep- 

tion, which shows that the probability of errors in sub-bands multiply to yield the overall 

probability of error1. Allen interpreted this model in terms of speech recognition to imply 

that humans could be processing phones in several independent frequency channels (Allen, 

1994). The resulting partial phone estimates are then fused for final decoding of phones. 

The multiplication of the sub-band errors also implies that errors (probably due to noise) 

in one frequency channel will not affect the errors in the other frequency channels. 

An interpretation of this is that as soon as some sub-band combination yields relatively 

reliable information, information from the other possibly corrupted sub-bands need not 

'To be discussed in Section 3.2.1. 



be used for recognition. The concept of independent processing of frequency sub-bands 

thus indicates that degradations due to narrowband noise could be localized and hence 

could improve robustness. 

Across-time processing 

The effect of a phoneme is known to last over several neighboring phones due to coartic- 

ulation. One way to account for this temporal spread of phonetic information is to use 

temporal information from time-spans extending across phone boundaries to decode the 

current phone. 

Also, it is difficult to distinguish between stationary noise (such as  those introduced 

by linear transmission channel) and speech by looking at just 20ms of the signal. Longer 

time spans are required to suppress such noise effects. In ASR, the success of dynamic 

cepstral features (Furui, 1981), cepstral mean subtraction and RASTA (Hermansky and 

Morgan, 1994) techniques, which process sequences of feature vectors covering 50ms to 

several hundred milliseconds, indicates that temporal processing improves noise robustness 

of ASR systems. Besides, use of temporal information from around 200ms is supported 

by the auditory phenomenon of temporal masking which states that the perception of 

one sound is diminished by the presence of a preceding sound (07Shaughnessy, 1987; 

Moore, 1989). The sensitivity of human hearing to modulation frequencies around 4-6 

Hz (Drullman et al., 1994; Arai et al., 1996), also suggests temporal processing of the 

order of 150-250ms. This ability of the auditory system to process temporal information 

could account to some extent for its robustness. 

Hence, we hypothesize that the use of temporal information from around syllable- 

length (around 200ms) durations should not only yield considerable phonetic information, 

but also help in reducing noise effects. 

Our Proposal 

Combining the above two concepts of independent frequency processing and across-time 

processing, we propose a shift in the conventional ASR paradigm (Figure 1.3), 
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Figure 1.3: Single input multi-stream concept. 

from the assumption of dependence across the different frequency regions to the 

assumption of relative independence between them, and 

from the assumption of independence of the feature vectors across time to the as- 

sumption of syllable-length time dependencies between them. 

We further hypothesize that a speech recognition model based on the above paradigm will 

be robust to environmental degradations because 1) errors in frequency can be localized 

and 2) temporal processing will help suppress noisy signal components. 

In this dissertation, we present an approach to incorporating the above two assump- 

tions in the acoustic modeling stage of speech recognition, using the following single-input 

multi-stream model. 

1.5.1 Single-input multi-stream model 
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Figure 1.4: Multi-stream ASR model. 



Figure 1.4 is the block diagram of the single-input multi-stream model for ASR. The 

idea is to derive different information sub-streams from the signal, each of which provides 

a certain view of the underlying linguistic process (speech information). Independent 

feature extraction and probability estimation is then carried out on each of the sub- 

streams. The output vectors of probability estimates (phoneme sub-unit probabilities) 

are then combined. This block diagram does not explicitly show the decoder because the 

combination can be done before the decoding stage or the decoder itself could perform the 

merging2. 

1.5.2 Issues in the multi-stream model 

There are several issues involved in the implementation of the single-input multi-stream 

model shown in Fig. 1.4 : 

1. Definition of sub-streams: The definition of the sub-streams is a critical issue 

in the design of the multi-stream model for ASR. The streams should be such that 

each of them provides, to some extent, independent and complementary informa- 

tion about the linguistic process. Another criteria for stream definition is that the 

sub-streams should cover the input space in such a way that there exist acoustic 

degradation conditions under which at least a few of them continue to model their 

input subspace with the same reliability as in clean (or undegraded) acoustic condi- 

t ions. 

2. Features to be used in each sub-stream: The issue of what features should be 

used in the sub-streams is similar to the equivalent issue in conventional systems to 

obtain the best features for speaker-independent speech recognition. Thus, the fea- 

tures in each sub-stream should robus t ly describe their input subspace with respect 

to speech variabilities due to speakers and noise. 

3. Technique to merge the streams: The effectiveness of the multi-stream model 

depends on the technique used to merge the outputs obtained from the multiple 

- 

2 ~ o  be discussed in Section 3.7.4. 



classifiers (probability estimators) being used in the sub-streams. An important 

issue is whether the merging technique should be linear or non-linear and how should 

the contribution (i.e., weights) of the individual sub-streams be determined. 

4. Speech-unit level at which the streams should be merged: As mentioned in 

Section 1.5.1, the streams can be merged at the outputs of the probability estimators, 

- i.e, the frame-level in case of neural network probability estimators or the state- 

level in case of hidden Markov model based probability estimators. The streams can 

also be merged at a higher sub-unit level such as the phoneme, syllable, word or 

utterance-level, in which case the merging has to be implemented as a part of the 

decoder. 

1.6 Dissertation Contribution 

This thesis focuses on the definition of sub-streams for use in the single-input multi-stream 

approach to robust speech recognition. The emphasis is on the definition of streams based 

on the concepts discussed in Section 1.5. The main contributions of the work described 

in this dissertation are the following: 

The multi-stream model : We define the framework of the multi-stream model for 

a single input ASR system. The motivation and the concept behind this framework 

are described in Sections 1.3 - 1.5. The resulting framework for a single-acoustic- 

input system is a significant departure from the single-stream conventional ASR 

paradigm, as discussed in Section 1.5. 

The multi-band model : We propose a sub-stream definition in which each sub- 

stream is defined by frequency sub-bands characterizing different regions of the 

speech spectrum. The features obtained in each frequency sub-band are indepen- 

dently processed by a probability estimator to generate phonetic probabilities. These 

sub-stream probabilities are then non-linearly merged for subsequent classification. 

The resulting model is called the multi-band model. We show that in matched condi- 

tions, merging of independent phoneme estimates from different frequency sub-bands 



yields performance comparable to the conventional system, which processes the en- 

tire spectrum as one entity. We also discuss the issues in the design of this model.. 

a Robustness of the multi-band model: We demonstrate, on an isolated-digit 

task, the inherent robustness of the multi-band ASR model to frequency-localized 

degradations. One of the advantages of the multi-stream framework discussed in 

Section 1.3 is that it allows for de-emphasizing unreliable sub-streams before merg- 

ing them. An important issue, therefore is, the determination of the sub-stream 

reliability. We present several techniques for determining the sub-band reliability. 

We show that an additional improvement in performance is obtained by using these 

techniques. 

a Data-driven analysis of temporal structure of speech : We present a new 

approach to analyzing the nature of phonetic information present in the temporal 

structure of speech. The analysis, which is carried out on several hours of labeled 

speech, yields patterns (called TRAPS for TempoRAl Patterns) representing the 

temporal evolution of phonemes. The syllable-length (z 200 ms) temporal spread 

of the patterns indicates that the effect of phonemes lasts for considerable duration 

in the temporal' domain. This indicates that temporal processing of syllable-length 

time spans can yield additional phonetic information. 

a Incorporation of temporal information within each sub-stream : We pro- 

pose a model called the TempoRAl Pattern (TRAP) classifier model, which in- 

corporates temporal information (of the order of 200 to 500ms) in each frequency 

sub-stream. The TRAP model is an extension of the multi-band model. The fea- 

tures used in each frequency sub-stream are the temporal trajectories of logarithmic 

critical band energies. We present a complete ASR system based on this concept 

of independent processing of frequency dependent temporal trajectories. We show, 

using a continuous numbers task, that this system is competitive with a conven- 

tional ASR system and yields considerable amount of complementary information. 

We demonstrate the robustness of the combined conventional and TRAP system in 

noise. 



1.7 Organization of the Dissertation 

Chapter 2 covers a short overview of the hybrid (hidden Markov model/multi-layer percep- 

tron) speech recognit ion system developed at t he International Computer Science Institute 

(ICSI), Berkeley, California. This system represents the conventional (single-stream) ASR 

system. We use this ASR system for all the experiments reported in this dissertation. 

Chapter 3 presents the multi-band model which independently processes different sub- 

bands of the speech spectrum. We discuss the issues concerned with the design of the 

multi-band model. We demonstrate the feasibility of the model in matched conditions. 

Chapter 4 demonstrates the effectiveness of the multi-band model in frequency-selective 

noise. We describe various techniques for the selection of reliable sub-bands in noise. In 

Chapter 5, we present a new approach to analyzing the temporal structure of speech. 

We examine the resulting patterns of temporal evolution of different phonemes. Chap- 

ter 6 presents an approach to incorporating temporal information in the ASR multi-band 

system. The proposed TempoRAl Pattern (TRAP) Classifier model incorporates medium- 

term temporal dependency in the multi-band model. We present a complete ASR system 

based on TRAPS and demonstrate its benefits in noisy conditions. Chapter 7 describes the 

conclusions from the work in this dissertation and discusses possible research directions 

for the future. 



Chapter 2 

Overview of the Hybrid HMM/MLP 

ASR system 

The combination of hidden Markov models (HMMs) with neural networks is referred to 

as the hybrid approach to ASR. The speech recognition system used for all the experi- 

ments in this dissertation is such a hybrid hidden Markov modellmulti-layer perceptron 

(HMM/MLP) ASR system developed at the International Computer Science Institute 

(ICSI), Berkeley, California. In this chapter, we give a brief description of this ASR sys- 

tem. A complete description of this system along with a discussion of the underlying 

theory can be found in (Bourlard and Morgan, 1994) and (Morgan and Bourlard, 1995). 

The description provided in this chapter is intended to give a quick overview of the system. 

We also describe the databases that we use for the experiments in this dissertation. 

2.1 Stages in an ASR System 

A typical ASR system consists of three main stages - 1) the feature extraction stage 2) 

the probability estimation stage, and 3) the decoding stage. Fig 2.1 represents the block 

diagram of a conventional ASR system. Specifically it represents a hybrid ASR system. 

2.1.1 Feature extraction 

The first step in any pattern recognition system is to extract meaningful features from the 

incoming signal. In speech recognition, the incoming acoustic waveform is segmented into 

overlapping frames at a typical frame rate of around 10ms to account for the non-stationary 
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Figure 2.1: Block diagram of the hybrid HMM/MLP ASR system. 

nature of the speech signal. Features are extracted from each frame using short-time 

discrete Fourier transform based signal-processing techniques. Typical features extracted 

include filter-bank energies, linear predictive coefficients (LPC) , cepstral coefficients, Mel- 

frequency cepstral coefficients (MFCC) (Davis and Mermelstein, 1980) or the perceptual 

linear predictive (PLP) coefficients (Hermansky, 1990). The latter two features are based 

on auditory characteristics of the human hearing. These features represent the short-time 

spectral envelope of the speech frame. For the experiments described in this dissertation 

we use PLP based features. 

2.1.2 Probability estimation 

The next stage in a typical ASR system uses statistical techniques to characterize the 

properties of the extracted sequence of feature vectors. This stage is referred to as the 

acoustic modeling stage which estimates the class-conditional probabilities (called emission 

probabilities) of the extracted features. 

The hybrid ASR system uses a neural network such as a multi-layer perceptron (MLP) 

to estimate the conditional probabilities, instead of the multivariate Gaussian mixtures- 

based probability estimation typically used in HMM systems. HMM-based algorithms 

are based on a well-developed mathematical framework for learning and representing the 

time-sequential nature and the variability of speech. However, several assumptions are 



commonly made to make the optimization of HMMs computationally feasible. HMM 

training algorithms generally maximize the likelihoods (maximum likelihood estimation) 

instead of the posterior probabilities (maximum-a-posteriori estimation) - i.e., each class 

model is trained using data belonging to that class only and hence the training does not 

have access to examples from another class, necessary for discriminative training. As 

a result, the trained models can suffer from poor discrimination. HMM models require 

a priori choice of probability density functions such as the use of mixture of Gaussian 

densities. To reduce the number of free parameters, the components of the input feature 

vector are generally assumed to be uncorrelated - i.e., the covariance matrix is assumed 

to be diagonal. 

The use of a MLP as a probability estimator attempts to alleviate some of the possible 

limitations of the HMM models, mentioned above. MLPs are trained using discriminant- 

based training algorithms that minimize the error rate for misclassification while maxi- 

mizing the accurate modeling of the correct class. When trained as a classifier (i.e., with 

binary outputs), the outputs of the MLP estimate the corresponding class posterior prob- 

abilities (Richard and Lippmann, 1991) without requiring strong assumptions about the 

underlying probability density functions of the input features (as is required in the case of 

HMMs). MLP training does not require any assumptions of the independence of feature 

components. MLPs also allow for the use of contextual inputs, to explicitly account for 

any correlations between successive speech frames, which is not typically used in most 

HMM models. 

Training 

The MLP used in the ICSI hybrid system is a fully-connected feed-forward network with 

a single hidden layer. The number of inputs, hidden units and output units in the MLP 

will be mentioned along with the experiments in the following chapters. The MLP is 

trained using the on-line error-back-propagation algorithm with relative entropy error 

criterion (Haykin, 1998). It uses sigmoid non-linear activation function on the hidden- 

layer and softmax function on the outputs. The training uses the performance of the 

network on an independent data set, referred to as the cross-validation set, to determine 



the stopping criterion for the training of the net as well as to determine the learning rate 

after each epoch of training. The use of the cross-validation set attempts to address the 

problem of overtraining of the network to maintain its generalization capabilities. The 

training starts at a learning rate (e.g., 0.008) that is held constant until the performance 

on the cross-validation set does not improve. For every subsequent epoch the learning 

rate is then divided by a factor of 2. The training is stopped when the performance of the 

cross-validation set shows no further improvement. Such tuning of the learning rate based 

on the cross-validation was found to result in faster convergence of the network. Another 

technique used in the ICSI system is random presentation of the input feature vectors. 

This technique helps speed up the on-line training. 

Input 

To take into account any correlations between successive speech feature vectors, the system 

allows for the use of contextual input, - i.e., in addition to the features belonging to the 

current frame the input can contain features corresponding to 'c' frames preceding it and 

'c' subsequent frames. We have used c = 4 in most of the experiments - i.e., the input 

consists of features corresponding to 9 frames at any given time. Experiments at ICSI 

have found the use of 8 contextual frames (in addition to the current center frame) to yield 

good recognition performance. The input features are also normalized to have zero mean 

and unity variance. The normalizing mean and variance values are computed only over 

the training data and applied to the test data during recognition. It is also possible to 

compute the normalizing mean and variance using the test data by an on-line adaptation 

technique (Tibrewala and Hermansky, 1997). Such an adaptation is found to reduce the 

mismatch between the means and variances of the training and testing data. However, 

such an adaptation was not used for the experiments in this dissertation. 

Output 

The probability estimator converts the input feature vectors into estimates of posterior 

probability for each of the output classes. The ICSI system uses context-independent 

phones as the output classes. The phones used in our experiments are a subset of the 61 



phones used in the TIMIT database and listed in Appendix A. 

2.1.3 Decoding 

The next stage in an ASR system is to find the most probable sequence of words given the 

sequence of emission probabilities (generated by the probability estimator for the incoming 

speech feature vectors) with additional use of knowledge sources like a language model 

and lexicon (dictionary). This stage is referred to as speech decoding. The ICSI hybrid 

system uses the yo (called "why not") decoder (Robinson et al., 1993) which uses Viterbi 

decoding (a variant of dynamic programming) to find the best possible utterance. 

As mentioned earlier the MLP actually estimates posterior probabilities (i.e., probabil- 

ity of a phone given the input feature vector) while in the HMM formalism the decoder uses 

emission probabilities which are actually the likelihoods (i.e., the probability of the input 

vector given the phone). In a hybrid system, these emission probabilities are estimated 

by applying the Bayes' rule to the MLP outputs as given by the equation 

where p(x,lqk) represents the emission probability for the feature vector x, given the 

phoneme qk, p(qklxn) represents the MLP output corresponding to q k  which represents 

the estimated posterior probability and p(qk) represents the estimates of class priors. The 

class priors are estimated by the relative frequencies of the class as determined by the 

class labels from the training data. The ICSI system uses the scaled likelihood, P*, 

on the left-hand side of Eq. 2.1 as the emission probability for HMM during decoding. 

Lexicon 

In ASR, each word is described as a succession of phones. The sequence of phone models 

which constitute a particular word in the recognizer vocabulary - i.e., the pronuncia- 

t ion(~) of all the words, is specified by a lexicon, also called the dictionary. The lexicon 

is one of the constraining knowledge sources used by the decoder. The lexicon specifies 

the sequence of HMMs associated with each word. In a hybrid system, each phoneme qk 

is associated with a single MLP output P(qklxn) - i.e., each phoneme is modeled with 



a single conditional density associated with the corresponding MLP output. To intro- 

duce minimum phoneme duration constraints, each phone q k  is actually modeled by 0 1 2  

states, where D is a prior estimate of the phoneme duration. Each of these states share 

the same posterior probability estimate P(qklx,) and have equal transition probabilities 

(0.5). In the ICSI system, the lexicon, in addition to specifying the word pronunciations, 

also incorporates this state repetition for incorporating duration constraints, as shown in 

the lexicon block in Fig 2.1. 

Language model 

For conversational ASR systems, which require the recognition of word sequences, the 

decoder generally uses additional constraints in the form of a language model (also called 

grammar). The language model specifies the probability of occurrence of a word wi fol- 

lowing the word sequence wi-1, ..., wi-~+l. This is called an N-gram language model. The 

N-gram probabilities can be computed from the training data by counting the number of 

occurrences of each word sequence. 

Additional decoder parameters 

The decoder uses two additional parameters - word transition penalty and the language 

model scale factor, which are used to balance the proportion of word insertion errors to 

word deletion errors. The word transition penalty is a penalty imposed when moving from 

the end of one word to the beginning of another word during decoding. The language model 

scale factor weights the influence of the language model score over the acoustic score. The 

values of these parameters are empirically determined during testing. 

2.2 Databases 

The experiments reported in this dissertation are based on three databases - the Bellcore 

isolated digit database, the OGI-Numbers database and the OGI-Stories database. 



Bellcore Digit database 

The multi-band experiments described in Chapters 3 and 4 are based on this database. 

This database is a telephone-quality isolated digit database. It consists of a 13 word vo- 

cabulary consisting of the ten digits (zero, oh, one, two, three, four five, six, seven, eight, 

nine) and two control words (yes, no). The data is sampled at 8 kHz. The database com- 

prises 200 speakers. Each speaker has recorded one utterance per word. The training set 

consists of 150 speakers of which 132 speakers (1716 utterances) are used for training and 

the remaining 18 speakers (234 utterances) are used for cross-validation. The remaining 

50 speakers (650 utterances) comprise the test set. Four such cuts of the training and test 

set are defined to efficiently use the available data. The reported recognition performance 

is the average of the performance on these four cuts of the database (unless stated oth- 

erwise) and thus effectively comprises of 2600 (650 x 4) utterances. The training set has 

approximately 65,000 frames for each of the four defined cuts and the cross-validation set 

comprises of about 9000 frames. This database is labeled in terms of the 61 phonemes 

from the TIMIT database (refer to Appendix A). 

The lexicon used in the recognition experiments was developed at ICSI. It consists of 

single pronunciations for each of the 13 words based on the most likely TIMIT pronuncia- 

tions for these words. Since it is an isolated digit task, it does not use any grammar, i.e., 

each word is assumed to be equally likely to occur. 

OGI-Numbers database 

The recognition experiments described in Chapter 6 are based on this database. The 

OGI Numbers corpus (Cole et al., 1995) consists of a set of continuous, naturally spoken 

utterances collected from many different speakers over the telephone and sampled at 8kHz. 

The utterances represent the numbers portion of utterances where people recite their 

addresses, telephone numbers or zip codes. The utterances vary in length from one to 

ten numbers per utterance (most utterances have five numbers). The task has a 32 word 

vocabulary consisting of the words - zero, oh, one, two, three, four, five, six, seven, eight, 

nine, ten, eleven, twelve, thirteen, fourteen, fifteen, sixteen, seventeen, eighteen, nineteen, 



twenty, thirty, forty, fifty, sixty, seventy, eighty, ninety, hundred, uh and um. 

Three independent subsets of this database (defined at ICSI) of approximately 1.7 

hours, 0.6 hours and 0.2 hours respectively have been used for recognition experiments. 

The 1.7 hours subset is the training set, the 0.2 hours subset forms the cross-validation 

set (approximately 64,000 frames) on which the frame-level errors are reported, and the 

0.6 hours subset (4670 words) comprises the test set on which the word-level errors are 

reported. The Numbers database consists of 29 phonetic classes which are a subset of the 

61 phonemes from the TIMIT database. 

The lexicon for OGI-Numbers database comprises of multiple pronunciations for each 

of the 32 words, developed at ICSI. The pronunciations are based on the hand-labeled 

phonetic transcriptions of the training set. This task uses a bigram language model. 

OGI-Stories database 

We use this database in Chapters 5 and 6 for analysis of the phonetic information in 

the temporal domain. It comprises of the English portion of the OGI multi-lingual 

database (Cole et al., 1994). The database consists of telephone quality conversational 

speech. A subset of approximately three hours is phonetically hand labeled and comprises 

approximately 50 seconds of extemporaneous speech from each of the 210 different speak- 

ers. We have considered 45 most frequently occurring phonetic classes (subset of the 61 

phonemes in the TIMIT phone set) from this database for our analysis. 

2.3 Summary 

In this chapter, we have described the broad framework of the ASR system used for the 

experiments reported in this dissertation. This ASR system also represents a conventional 

ASR system. The work in this dissertation involves modification of the feature extraction 

and the phone probability estimation stages of the ASR system. The modifications are 

aimed at improving the overall recognition performance under mismatched test conditions. 

The rest of the dissertation describes and discusses these modifications, their motivations 

and the resulting effect on ASR performance. 



Chapter 3 

Multi-Band Model 

In this chapter, we present a new parallel model of automatic speech recognition, the multi- 

band (also called the sub-band) model. The model is motivated by Fletcher's work on 

the Articulation Index. It combines independent phonetic probability estimates obtained 

from different sub-bands of the speech spectrum for phonetic classification. 

This chapter is organized in two parts. The first part, which consists of Sections 3.1 

through 3.4, discusses the motivation leading to the development of the sub-band model. 

In Section 3.1, we revisit the conventional system from the point of view of its perfor- 

mance in narrow-band noise. Section 3.2 describes the psychoacoustical results obtained 

by Fletcher which form the motivation of the proposed sub-band model. It also reviews 

other psychoacoustic studies on human intelligibility in various band-limited speech con- 

ditions. Section 3.3 reviews the on-going research efforts to address the degradation of 

ASR performance in narrow-band noise. Section 3.4 describes our multi-band approach. 

The second part of the chapter, comprising Sections 3.5 through 3.8, is based on our 

empirical studies. Section 3.5 describes our experimental setup. Section 3.6 demonstrates 

the feasibility of the sub-band model. Section 3.7 aims to address the four main issues in 

the design of the sub-band model - 1) the definition of the sub-bands, 2) the features to 

be used in each sub-band, 3) the merging technique for combining the sub-band outputs 

and 4) the linguistic unit level at which the sub-bands should be merged. Section 3.8 

demonstrates the applicability of the sub-band model to a large-vocabulary continuous 

speech task. The chapter concludes with a summary in Section 3.9. 



3.1 Conventional System 

Feature vector 

Speech 0 -+ Bad result 

Bad ~lement 

Figure 3.1 : Conventional ASR. 

The first step in most of the current ASR systems is to convert the incoming speech 

signal into series of short-term (10-20 ms) frames. A feature vector is extracted from each 

frame. Each element of the vector describes part of the information carried by the signal. 

For example, each element of the short-term spectral vector represents the energy of the 

speech signal in a given frequency band. A typical ASR system uses the entire feature 

vector as one entity, for subsequent classification into one of the linguistic classes such as 

phonemes, syllables, words or utterances. 

3.1.1 Conventional system in narrow-band noise 

Consider the case when some of the elements of the short-term vector are corrupted or 

carry unreliable information, while the remaining ones are still uncorrupted (Fig. 3.1). 

This can occur, for example, when the speech signal gets corrupted by narrowband noise. 

In the current conventional ASR system, since the entire feature vector is used as one 

entity, even a single corrupted spectral element can severely degrade the performance of 

the recognizer. This degradation in the performance of the recognizer can be annoying to 

a system user who has relatively little difficulty in understanding such partially corrupted 

speech. 



3.2 The Human Way - Evidence on How Humans Process 

and Recognize Speech 

3.2.1 Fletcher's study on Articulation Index 

Fletcher's work on Articulation 1ndex1 (Fletcher, 1953) (reviewed in (Allen, 1994; Allen, 

1996b; Allen, 1996a)) suggests that human auditory perception works in a different manner 

than conventional ASR systems. Fletcher and his colleagues at Bell Laboratories exten- 

sively studied human speech recognition, in order to quantify the quality of speech sounds 

in the telephone network, with a view to improve speech intelligibility over the telephone. 

They used a balanced set of nonsense CVC syllables for these perceptual studies. 

Fletcher defined the term articulation as the probability of correct recognition for 

nonsense speech sounds. He empirically determined (by counting the number of times the 

listeners correctly identified the speech sounds) that the relation between nonsense CVC 

syllable articulation (S), and the consonant (c) and vowel (v) articulations is given by 

for all values of the speech gain, a, which defines the speech signal-to-noise ratio. This 

relation meant that within the bounds of this experimental setup, the phones constituting 

the syllable are decoded independently by the auditory system. Fletcher also showed 

that, within a small error, the syllable articulation equals the cube of the average phone 

articulation, s = (2c + v)/3. 
To further understand how humans decode phones, Fletcher studied the effects of 

channel frequency response and channel noise on phone perception, by low-pass and high- 

pass filtering the speech. His studies showed that the partial phone articulations s~ and s~ 

in the low-pass and high-pass bands respectively, do not sum to the wide-band articulation 

s - i.e., 

S(Q) # ~ ~ ( f c ,  Q) + ~ ~ ( f c ,  a ) ,  (3 -4  

'Articulation Index is a speech recognition measure which characterizes speech intelligibility under 
conditions of filtering and noise. 



where fc is the filter cut-off frequency. However, he hypothesized the existence of a non- 

linear transformation on s, A(s), which would satisfy the additive relation, 

for all values of f, and a. This non-linear transformation was defined as the articulation 

index. He empirically determined A(s) by finding for all values of the gain a the cutoff 

frequency, f, = f,*, such that sL(f,*,a) = sH(f,*,o). At this frequency, f,*, since the 

low-pass and high-pass speech articulations are equal, they are related to the wide-band 

articulation by 

A(sL(~,*,  a)) = AbH(f,*, 4) = 0.5A(s(a)). (3.4) 

Thus, empirically determining A(s) for all values of a, Fletcher found that for nonsense 

CVC syllables, A(s) is given by the functional form 

where 0.985 is the maximum observable articulation under ideal conditions ( a  = 1). Using 

this transformation, A(s), in Eq. 3.4 gives 

(1-S)  = ( l - s L ) ( l - s H ) ,  

and e = e ~ e ~ ,  

where e represents the articulation error given by: e = 1 - s. Based on the additive nature 

of the articulation index given by Eq. 3.3, Fletcher and Stewart further generalized Eq. 3.7 

to the multi-channel model of phone perception given by 

where the speech is filtered by K band-pass filters. 

This relation between the wide band phone articulation and the partial phone artic- 

ulations suggests that the errors in a given frequency band are independent of the errors 

in the other frequency bands. Allen interpreted Eq. 3.8 to imply that the phones are pro- 

cessed in independent frequency sub-bands and the resulting independent phone estimates 

are then combined to yield the final recognition. 



Consider a two frequency band case. If only the high-pass filtered speech is corrupted 

by noise while the low-pass filtered speech is clean, the recognition error should be dictated 

largely by the error in the low-pass filtered frequency band according to Eq. 3.7. It is 

unaffected by the errors in the high-pass filtered band. For example, say, the recognition 

error on the low-pass filtered speech is 10% and the recognition error on the high-pass- 

filtered speech is 90% due to noise. Then according to Eq. 3.7, the error on the wideband 

speech will be e = 0.1 x 0.9 = 0.09, which is close to the error on the clean low-pass 

filtered sub-band. 

One interpretation of Eq. 3.8 is that the information from the corrupted sub-bands 

does not have to be used for speech recognition. This notion also receives support from 

the human speech perceptual studies described in the next section. 

3.2.2 Additional studies of human performance on filtered speech 

Other researchers have also performed perceptual experiments to test the effect of filtered 

(low-pass, high-pass, bandpass and band-reject filtered) speech on intelligibility. The aim 

of these experiments was to gain a better understanding of human speech perception and, 

in some cases, to find the contribution of different portions of the speech spectrum to 

intelligibility. 

Lippmann (Lippmann, 1996) showed that humans can recognize speech produced by 

severe band-reject filtering. Specifically, he showed that when nonsense CVC syllables are 

filtered with a low-pass filter at 800 Hz, the intelligibility of consonants is only around 

44%. However when this low-pass filtered speech is presented along with speech high- 

pass filtered at 4kHz (i.e., mid frequencies from 800 Hz to 4 kHz are filtered out), the 

intelligibility increases to around 90%. This demonstrates that humans are able to achieve 

good recognition performance even on this unnatural disjoint band task. 

Riener (Riener et al., 1992) and Warren (Warren et al., 1995) studied the intelligibility 

of words in sentences heard through narrow spectral slits. They found that relatively little 

spectral information is required to identify component words in sentences. The intelligibil- 

ity of sentences filtered with single 113-octave bands with steep filter slopes (96 dB/octave) 

averaged more than 95%, for an extended range of center frequencies (maximum around 



1500 Hz). Even with severe filtering (1/20-octave bands) intelligibility remained relatively 

high, with maximum of 77% around 1500 Hz. Further, the intelligibility was roughly 23% 

for individual 113-octave bands centered at either 370Hz or GkHz, but increased to 77% 

(much higher than simple additivity of individual intelligibility) when the two bands were 

presented simultaneously. The results showed that bandpass filtered sentences maintained 

high intelligibility, even though features characterizing the component phonemes were 

severely distorted or absent. They concluded that the listeners possess processing mecha- 

nisms and strategies employing limited spectral regions that can enhance comprehension 

under difficult listening conditions. 

Kryter (Kryter, 1960) investigated the effect of several narrow pass bands placed simul- 

taneously at  different points along the frequency scale, on speech intelligibility. The test 

set consisted of 50 phonetically balanced words on a carrier phrase and band pass filters 

with 500Hz bandwidth and slopes 7OdB/octave. He found that the intelligibility of single 

pass bands was around 30%. If two pass bands are presented simultaneously intelligibility 

increases to 50 - 75 %, depending on which center frequencies are combined. Intelligibility 

further increases to 70 - 85% when three pass bands are presented simultaneously. 

Other studies of human recognition of bandlimited speech include the work by Miller 

and Nicely (Miller and Nicely, 1995). The task was the identification of one of sixteen 

consonants in syllables of the form C-/a/, where the stimuli had been bandlimited to 

various degrees. Their results (for example, 50% accuracy in passband 200-600 Hz and 

73% accuracy in 200-2500 Hz band-limited speech) again point to the relatively high 

recognition rates achievable by humans for narrowband speech. 

The results from the studies discussed above show that humans can recognize speech 

with relatively high accuracy even with limited (due to filtering) spectral cues. This 

suggests that the speech spectrum contains significant amount of redundancy. The studies 

also point to the ability of human listeners to easily integrate acoustic cues from different 

(disjoint) frequency regions for speech perception. The results in the above studies which 

use nonsense CVC syllables as stimuli are particularly important, because the recognition 

of the individual phones in these experiments does not use the prior information that can 

be used when meaningful words or syllables are used (this prior information is usually 



referred to as context). Most of the information available to the listeners is acoustic. This 

supports the hypothesis that bandlimited speech contains a large number of cues necessary 

to identify speech elements without the aid of context. 

The conventional system, described in Section 3.1, however, cannot deal with such 

bandlimited speech. Since the entire spectrum is used as a single template in recogni- 

tion, errors across frequency are not treated as independent by the recognizer. Hence, 

degradations in a limited frequency region affect the entire spectral template. 

3.3 Other Research on Recognition of Partially Corrupted 

Speech 

On-going work specifically towards recognition of partially corrupted speech is being car- 

ried out by Cooke and Green et al. (Cooke et al., 1994; Green et al., 1995) and Lippmann 

and Carlson (Lippmann and Carlson, 1997). Their approach is based on missing data 

(occluded speech) recognition which deals with recognition when some of the normally 

available speech evidence is missing. 

The work by Cooke et al. is motivated by auditory scene analysis (ASA), which refers 

to the ability of human listeners to separate out and pay selective attention to individual 

sound sources (Bregman, 1990). The general approach is to computationally separate the 

evidence of speech signal from arbitrary intrusions. The speech evidence thus segregated 

is generally incomplete since some spectro-temporal regions will be dominated by other 

sound sources. They have proposed two techniques for the recognition of such speech 

with occluded regions (Cooke et al., 1994). The first technique is based on unsupervised 

training of Kohonen networks (Kohonen, 1984) using a modified training procedure for 

data vectors with missing components. The second technique is based on a generalization 

of the continuous density hidden Markov model (HMM) recognition. This technique mod- 

ifies the HMM probability computation during recognition by making use of a marginal 

distribution of only those components present in the feature vector (Green et al., 1995; 

Cooke et al., 1996). Experiments with simulated occlusions by uniform random deletion 

of parameter vector (e.g., Mel-filter bank energies or auditory spectral representations) 



components show little degradation in recogkition performance for up to 50% to 80% 

deletion of components. Experiments with loch1 SNR-based deletions also show improved 

performance over conventional recognition, thbugh to a lesser extent than that obtained 

for random deletions. 

Lippmann and Carlson have also used dyn a mic modification of HMM probability com- 

putation during recognition, for dealing with hissing features. Their preliminary experi- 

ments on filtered (low-pass, high-pass and not&h filtered) digit recognition task with prior 

information (true knowledge) about the missidg features, have shown promising improve- 

ment in recognition accuracy. 

These approaches to recognition of partialiy corrupted speech do not explicitly model 

partial sub-band phonetic recognitions, as hydothesized by Fletcher's perceptual studies. 

Our approach, the sub-band model, explicitlymodels this hypothesis. 

3.4 Our Approach - the ~ud-band Model for ASR 

In many environmental conditions (as discusded in Section 3.1.1) , ASR recognition per- 

formance could be improved if the recogniz& had the human ability to de-emphasize 

the unreliable frequency sub-bands, provided t h e  remaining clean sub-bands still supply 

sufficiently reliable information. Our approach to ASR is based on such a paradigm. 

frequency beature probability vectors 
sub-bands vector 
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1 .  
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\ corrupieb vector j 

Figure 3.2: sub-band Model. 

Fig. 3.2 is the block diagram of the sub-b&nd model. In this model, we subdivide the 

speech spectrum into 'N'  sub-bands. spectral features are extracted from each of these 



bandlimited regions. This is followed by independent class-conditional probability (or 

likelihood) estimation in each sub-band, based on the corresponding sub-band features. 

The probability estimation can be carried out by using standard probability/likelihood 

estimators like HMM or artificial neural networks such as multi-layer perceptrons (MLP). 

This stage yields N vectors of class-conditional probability estimates for each input speech 

frame. The probability estimates from each of the N sub-bands are then merged by a 

suitable merging algorithm. The output of the merging stage is a vector representing the 

merged probability estimates. These can be further used in decoding. The output of 

the merging stage may also directly represent the final decoded result, if the merging is 

implemented as a part of decoding (discussed in detail in Section 3.7.4). 

Fig. 3.2 shows that when there is noise which corrupts only part of the speech spectrum 

(e.g., last sub-band in the figure), and the identity of the corrupted sub-band(s) can be 

determined, the model allows for the de-emphasis of the outputs of those sub-band(s) 

during merging. The hypothesis is that the use of the more reliable sub-bands should 

yield less degradation in recognition performance as compared to that of the conventional 

system. 

The sub-band model thus represents a practical engineering approach to Fletcher's 

model for human speech recognition. The use of features extracted independently from 

the frequency sub-bands also receives support from the work on spectral shape analysis in 

the central auditory system (Wang and Shamma, 1995), which suggests that the auditory 

system employs local descriptors of features in the different frequency regions. 

Let, 

N represent the number of sub-bands. 

xb represents the feature vector in sub-band b corresponding to a single frame or 

the sequence of feature vectors corresponding to a sub-unit such as a phone, syl- 

lable, word. Since there are N sub-bands, XI ... xb ... XN represents the feature set 

corresponding to the respective sub-bands. 

M is the number of classes (phones, syllables or words) in the recognition task. 



c1, ..., ck, ... CM represents the M class symbols respectively. 

The output of the bth sub-band probability estimator is then a vector with elements 

P(cklxb) for posterior probability estimation 

or, P(xb(ck) for likelihood estimation 

The desired output of the merging stage is then a vector with elements 

P(cklxl, ..., xb, ..., xN) in the posterior probability framework, 

or, P (x l ,  ..., xb, ... xNIck) in the likelihood framework, 

which represents the joint class-conditional probability of the sub-band input feature vec- 

tors. 

If the merging is carried out at  the decision-making stage of the recognizer, for example, 

after sub-band word decoding in case of an isolated word recognition task, then the decision 

is based on - 

ck = rnaxP(cj/xl ,..., xb ,... xN) for j = 1, .. . , M in the posterior probability framework 
3 

or, ck = r n ~  P (x l ,  ..., xb, ... X N / C ~ )  for j = 1, ..., M in the likelihood framework. 
3 

We use the likelihood approach that is typically used in HMMs and also the hybrid 

(HMM/MLP) systems. When referring to MLP outputs for sub-band probability esti- 

mation in the hybrid approach, or in the case of non-linear merging (to be discussed in 

Section 3.7.3), the use of likelihoods implies that the posterior probabilities estimated by 

the MLP have been transformed to scaled likelihoods using Eq. 2.1. 

3.4.1 Previous work using the multi-band model 

A model similar to the sub-band model described above has been previously used in (Duch- 

nowski, 1992). The approach, referred to as the post-labeling integration approach, was 

motivated by the human perceptual experiments on band-limited nonsense syllables by 

Miller and Nicely (Miller and Nicely, 1995) (discussed briefly in Section 3.2.2). In this 

approach, tentative decisions or phonetic labels of the identity of a given speech frame 



were assigned in parallel by sub-recognizers, each operating on a band-limited portion of 

the speech waveform. Four non-overlapping frequency sub-bands roughly spanning the 

formant frequency regions were used. The labels generated by the four sub-band HMM 

recognizers for each frame were subsequently integrated using a maximum-a-posteriori 

approach. To address the problem of frequent single frames of different labels following 

one another in the stream of frame labels generated by the label-integrator, a second 

HMM was trained to produce the final phonetic segmentation. Phonetic recognition on 

the TIMIT database using the post-label integration model obtained performance close to 

that of a comparable conventional recognizer. 

The main difference between this approach and our proposed multi-band approach is 

in the integration of the sub-band recognizer outputs. Post-labeling integration allows 

for merging based on only the top choice (the discrete class label) from each of the sub- 

bands. The sub-band recognizers inherently yield poor performance due to their band- 

limited nature (discussed later in Section 3.7.1). Hence, limiting the integration to have 

access only to the top choice label could limit the performance of the integrator. In our 

approach, we propose to use all the probabilities estimated by the sub-band recognizers 

for merging. In addition, our approach does not require the use of a second stage for 

phonetic segmentation. Besides, the work on the post-labeling integrator did not deal 

with recognition in the presence of noise. In our work (Chapter 4), we specifically discuss 

the applicability of the multi-band model in noisy conditions. 

3.5 Experimental Setup 

Our experiments on the sub-band model use the telephone-quality isolated-digit Bellcore 

database described in Section 2.2. Each feature vector represents a 25ms speech frame (us- 

ing Hamming window) with 12.5 ms of overlap between consecutive frames. The features 

used in all the experiments are PLP (Hermansky, 1990) based features. We use as features 

either the critical band energies followed by the perceptually motivated equal-loudness 

pre-emphasis and cube-root compression, or the cepstral coefficients obtained from the 

autoregressive coefficients of an all-pole model of the equalized and cube-root compressed 



critical-band energies. The cepstral coefficients are appended with the delta cepstral co- 

efficients, 1 delta energy coefficient and 1 delta-delta energy coefficient. The critical band 

filters used in the feature computation are either the 15 filters at approximately 1 Bark 

spacing or 30 filters at approximately 0.5 Bark spacing. The cut-off frequencies of the 

filters are as specified in the Tables 3.1 and 3.2. The multi-band system uses sub-bands 

defined in terms of groups of critical-bands and not derived by explicit bandpass filtering 

of the speech signal. 

Table 3.1: Cut-off frequencies of the 1-Bark spacing critical band filters used in PLP 
feature representation for 8 kHz sampling frequency. 

The recognizers used in all the experiments are hidden Markov model/multi-layer per- 

ceptron (HMM/MLP) based hybrid recognizers (Bourlard and Morgan, 1994), as described 

in Chapter 2. The MLP generates estimates of phone posterior probabilities for each in- 

put frame. The phoneme set used in this experiment consists of 61 context independent 

phonemes based on the TIMIT phone set, (listed in the Appendix A). The output of the 

MLP thus has 61 units, one unit per phonetic class. The input to the MLP consists of 

the features from the current frame to be classified, along with features from 8 additional 

surrounding frames (4 frames each from the past and the future respectively) to provide 

contextual input, as mentioned in Section 2.1.2. 

Critical band 
number 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

Lower cut-off frequency 
(Hz) 
17 
115 
216 
323 
438 
565 
707 
868 
1051 
1262 
1506 
1790 
2122 
2509 
2962 

Upper cut-off frequency 
(Hz) 
161 
265 
375 
495 
629 
778 
949 
1144 
1370 
1632 
1937 
2292 
2709 
3197 
3769 



Table 3.2: Cut-off frequencies of the 0.5-Bark spacing critical band filters used in PLP 
feature representation for 8kHz sampling frequency. 

3.5.1 Baseline system 

We have defined two baseline systems based on the type of features used. The first baseline 

system uses the 15 equalized and compressed PLP critical band energies as features. The 

MLP thus has 135 inputs (15 x 9 context frames), 200 hidden units and 61 output units. 

The second baseline system uses 8 cepstra, 8 delta cepstra, 1 delta and 1 delta-delta energy 

coefficients. The MLP in this system has 162 inputs (18 x 9 context frames), 200 hidden 

units and 61 output units. Note that for the sub-band experiments we have not optimized 

the size of the hidden layer. 

Upper cut-off frequency 

(Hz) 
158 
208 
258 
310 
365 
42 1 
480 
542 
607 
677 
750 
828 
911 
1000 
1094 
1196 
1305 
1422 
1548 
1684 
1830 
1987 
2157 
2340 
2537 
2750 
2980 
3229 
3497 
3788 

Critical band 
number 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
2 1 
22 
23 
24 
2 5 
26 
27 
28 
29 
30 

Lower cut-off frequency 

(Hz) 
14 
62 
109 
158 
207 
258 
310 
364 
420 
479 
541 
607 
676 
749 
827 
910 
998 
1093 
1195 
1304 
1421 
1547 
1682 
1828 
1985 
2155 
2337 
2535 
2747 
2977 



3.6 Feasibility Study 

In the case of the multi-band system, an important question to be answered is - in terms 

of the recognition performance, is it feasible to independently process different regions 

of the speech spectrum and then merge these independently processed outputs, without 

degrading recognition performance as compared to a conventional (full-band) system? 

In other words, the question is - does independent processing of the frequency sub- 

bands result in loss of discriminatory information, which may be present in the sub-band 

correlations available to the conventional system? 

In order to conduct the feasibility study we divided the speech spectrum into two 

sub-bands. One possible frequency division of the spectrum is around 1000 Hz, which 

approximately corresponds to the frequency beyond which the critical bandwidth as well 

as the perceived pitch increase logarithmically with frequency. Our experiment with two 

sub-bands approximately followed this frequency division. 

Table 3.3: Comparison of the word-level performance of the two sub-band model with 
that of the baseline system. The critical band definitions are obtained from Table 3.1. 
The MLP probability estimator has 200 hidden units and 61 output units. 

Table 3.3 describes the baseline features and the sub-band features and also compares 

the performance of the baseline system with that of the two sub-band system. Non- 

linear merging using MLP was used for combining the outputs of the two sub-band word 

probability estimators (the merging technique and merging level are discussed later in 

Sections 3.7.3 and 3.7.4 respectively). The table shows that: 

a The performance of the individual sub-bands is poor as compared to that of the 

baseline system, as each sub-band operates on a band-limited spectrum. 



In comparison to the baseline (full-band) ASR system, the improvement in perfor- 

mance obtained using the 2 sub-band system is significant at 0.1% level using the 

binomial significance test. 

The results demonstrate that partial information from the individual sub-bands can be 

successfully merged and also results in improved performance as compared to the baseline 

system. The results thus demonstrate the feasibility of the multi-band model. However, 

for a good design of the multi-band system several issues need to be addressed. 

3.7 Issues in the Design of the Sub-band Model 

The main issues involved in designing the sub-band model are - 1) the definition of the 

frequency sub-bands, 2) the features to be used in each sub-band, 3) the merging technique 

and 4) the temporal unit at which the sub-band outputs should be merged. 

3.7.1 Definition of frequency sub- bands 

The first issue in the design of the multi-band system is - how to subdivide the available 

speech spectrum into sub-bands. The more and narrower the sub-bands, the better is the 

chance to alleviate frequency-localized degradation, with reduced loss in spectral infor- 

mation. On the other hand, exceedingly narrow bands could yield a poor discrimination 

between the linguistic classes because of reduced spectral information in each sub-band. 

An important point to consider is the definition of the frequency bands used by Fletcher 

in his experiments. He referred to the frequency bands as articulation bands. Allen (Allen, 

1994) further noted that the articulation bands were similar, though not equal, to the 

critical bands. This suggests that the frequency division should be somehow related to 

the frequency division defined by critical band filters. 

Allen (Allen, 1994) further suggested that one articulation band roughly represents 

two critical bands. Given that we have 15 (Bark-spaced) critical bands (Table 3.1), a 

frequency division of approximately two critical bands per sub-band yields a seven sub- 

band system. We used two other frequency divisions - the first yielding two sub-bands 

(as used in Section 3.6). The second uses four sub-bands which roughly correspond to 



the four formant frequency regions, as used in (Duchnowski, 1992). The exact critical 

bands used and the corresponding frequency ranges for the 2, 4 and 7 sub-band models 

are further detailed in Table 3.4. The sub-bands are overlapping to some extent due to 

the overlapping nature of the critical bands. The table also lists the size of the sub-band 

MLP-based probability estimators. 

Table 3.4: Word-level performance of the sub-bands in the 2, 4 and 7 sub-band models 
using PLP critical band energies as features. The cut-off frequencies are as defined by the 
15, 1-Bark spaced critical bands, given in Table 3.1. The MLP probability estimator has 
200 hidden units and 61 output units. 

Table 3.4 shows that the average word error in each of the sub-bands increases from 

12% for the 2 sub-band model, to 30% for the 4 sub-band model, and 40% error for 

the 7 sub-band model, because the sub-bands progressively become narrower in terms of 

frequency coverage. 

3.7.2 Features 

Sub-band 
number 

Another issue in the design of the multi-band model is the features to be used in each sub- 

band. We have used critical band energies as features in the earlier experiments. Cepstral 

features, which are the coefficients of the Fourier transform of the log magnitude spectrum, 

# of critical 
bands 

Critical 
bands 

1 
2 

2 sub-band 
17 

1051 

Lower cut-off 
frequency (Hz) 

# of inputs 
to MLP 

Higher cut-off 
frequency (Hz) 

1-8 
9-15 

4 sub-band model 

Word error 

(%) 
model 

8 
7 

1144 
3769 

778 
1632 
2709 
3769 

1 
2 
3 
4 

72 
63 

6 
4 
3 
2 

1-6 
7-10 
11-13 
14,15 

1 
2 
3 
4 
5 
6 
7 

14.0 
10.65 

17 
707 
1506 
2509 

54 
36 
27 
18 

19.95 
20.0 
28.73 
49.8 

7 sub-band model 
1-3 
4,5 
6,7 
8,9 

10,l l  
12,13 
14,15 

27 
18 
18 
18 
18 
18 
18 

3 
2 
2 
2 
2 
2 
2 

58.93 
30.93 
34.05 
33.10 
29.7 

40.95 
49.8 

17 
323 
565 
868 
1262 
1790 
2509 

375 
629 
949 
1370 
1937 
2709 
3769 



are widely used in most speech recognition systems because they have been found to be 

more robust and reliable for ASR. Cepstral coefficients can also be computed from the au- 

toregressive coefficients obtained from an all-pole model, by a recursive formula (Rabiner 

and Juang, 1993). Standard PLP analysis approximates the pre-emphasized (equal loud- 

ness pre-emphasis) and cube-root compressed critical band energies by an all-pole model, 

using the autocorrelation method (Hermansky, 1990). The autoregressive coefficients thus 

obtained are further converted into cepstral coefficients. 

We compared the performance of the sub-bands trained on critical band energies (Ta- 

ble 3.4) to those trained on cepstral and dynamic cepstral coefficients obtained from an 

all-pole modeling of the corresponding critical band energies. To compute the all-pole 

model of the critical band spectrum in a particular sub-band, we re-index the critical 

bands in that sub-band such that the first critical band of that sub-band is at zero fre- 

quency and the last critical band is at frequency T .  Since the sub-bands are comprised 

of very few critical bands (as few as 2 critical bands in case of the 7 sub-band model), it 

restricts the model order that can be used for an all-pole modeling. Hence, we have to 

upsample the critical bands or use more critical bands in a sub-band, to be able to fit an 

all-pole model of higher order (for e.g., an order higher than 1 for 2 critical bands). We 

considered 30 critical bands at a spacing of approximately 0.5 Barks. Table 3.2 gives the 

corresponding critical band filter cut-off frequencies. In addition to cepstral coefficients, 

we also use delta cepstra, 1 delta energy and 1 delta-delta energy coefficients as features. 

Table 3.5 gives the sub-band word error rates for the 4 sub-band model and the 7 sub- 

band model. Comparing the error rates of Tables 3.4 and 3.5, we see that the individual 

sub-band errors decrease from an average of 30% using critical band energy features to 

16% using cepstra and dynamic cepstral coefficients as features for the 4 sub-band system. 

Similarly, for the 7 sub-band system the error decreases from an average of 40% error to 

23% error. The improvement in performance is not only due to the use of cepstral features 

but also due to the use of delta coefficients. 



Table 3.5: Word-level performance of the sub-bands in the 4 and 7 sub-band models using 
cepstral based features. The cut-off frequencies are as defined by the 30, 0.5 Bark spaced 
critical bands (Table 3.2). The MLP probability estimator in each sub-band has 200 
hidden units and 61 output units. 

3.7.3 Merging techniques 

A critical part of the sub-band model is the merging technique to be used for combining 

the outputs of the sub-band classifiers. 

For a combination of the outputs from multiple classifiers to yield performance better 

than any single classifier used, an important criterion is that the classifiers should yield 

complementary information (errors). We analyzed the word level decisions of the sub-band 

classifiers trained on cepstral based features. For all the possible pairs of sub-bands in 

the 4 sub-band system (6 combinations of 2 sub-bands), on average the sub-bands yield 

different decisions for 30% of the words in the cross-validation set. Similarly, all possible 

pairs of sub-bands in the 7 sub-band systems (21 combinations of 2 sub-bands) yield on 

average different decisions for 38% of the words. This analysis indicates that the sub-bands 

yield a significant amount of complementary information. 

The merging technique should combine the outputs of the sub-band classifiers so as to 

get maximum benefit from the complementary information. In other words, it should be 

able to take advantage of the strengths and weaknesses of the individual classifiers, with 

Sub-band 
number 

Model 
order 

# of 
cepstra 

High cut-off 
frequency 

(Hz) 

Critical 
bands 

7 
7 
5 
5 

Low cut-off 
frequency 

(Hz) 

17 
676 
1421 
2337 

4 sub-band model 
1 
2 
3 
4 

Word 
(error %) 

# of 
features 

per frame 

828 
1684 
2750 
3788 

16 
16 
12 
12 

1-12 
13-20 
21-26 
27-30 

7 sub-band 

# of 
Inputs 

to MLP 

5 
5 
3 
3 

1 
2 
3 
4 
5 
6 
7 

144 
144 
108 
108 

model 

14.5 
8.55 
12.6 

27.85 

108 
144 
108 
108 
108 
108 
108 

3 
5 
3 
3 
3 
3 
3 

48.13 
17.18 
18.75 
15.15 
10.95 
20.5 
27.85 

310 
677 
1000 
1422 
1987 
2750 
3788 

1-4 
5-10 
11-14 
15-18 
19-22 
23-26 
27-30 

5 
7 
5 
5 
5 
5 
5 

14 
207 
541 
827 
1195 
1682 
2337 

12 
16 
12 
12 
12 
12 
12 



the aim to improve the overall accuracy beyond that of any single classifier. 

Several combination techniques have been proposed in the pattern classification lit- 

erature. These include voting schemes like majority voting (Xu et al., 1992) and label 

ranking techniques (Ho, 1992; Honathan et al., 1994). These techniques can be applied 

to classifiers that output only discrete labels as outputs. Many classification algorithms 

(including the hybrid HMM/MLP algorithm that we use) provide continuous numbers as 

outputs, which represent the degree to which the input belongs to a particular class. For 

example, neural network classifiers provide estimates of posterior probabilities and HMM 

classifiers give likelihood estimates. In such cases, linear as well as non-linear merging 

techniques can be used. 

class-conditional 
log-likelihoods 

I 

probability estimator 
sub-band 1 

Class 
probabilities / likelihood 

C .- 
probability estimator 

sub-band 2 E 

Figure 3.3: Block diagram for merging of a 2 sub-band four class system. 

Fig. 3.3 is the general block diagram for merging the outputs of a 2 sub-band, four 

class system. The four (continuous-valued) outputs each of the 2 sub-bands have to be 

combined to yield the merged probability estimates for each of the four classes. We have 

examined weighted linear combination techniques which use simple averaging, as well as 

weights based on accuracies in each sub-band, and a non-linear combination technique 

using a neural network. 

Linear merging 

Linear merging techniques include averaging the classifier outputs or using some weighted 

linear combination (Xu et al., 1992; Hashem, 1994; Adjoudani and Benoit, 1996; Ghosh 



Table 3.6: Comparison of the word errors (%) of the Baseline system and the sub-band 
systems obtained using different merging techniques. 

Baseline 

Individual sub-band 

Linear merging techniques 

et al., 1992). In our case, as mentioned in Section 3.4, the desired output of the merging 

classifier is some estimate of the joint class-conditional probability P(xl ,  ..., xb, ..., xN Ick). 

2.0 

Non-linear merging 

If the sub-bands are considered to be independent, then it is given by 

4 sub-band system 
9.0 - 27.5 

4.27 
4.23 
5.68 

equal weights 
sub-band accuracy weights 
sub-band class accuracy weights 

neural network (MLP) 

N 

( x ,  . x . x )  = P ( x c k )  for k = 1, ..., M. 
b= 1 

(3.9) 

7 sub-band system 
11 - 48 

3.0 
2.85 
4.13 

The sub-band classifiers used in our experiments are HMMIMLP based hybrid classifiers, 

1.31 

which are based on the likelihood framework (as is the case in HMM classifiers). Specif- 

1.5 

ically, the outputs represent the log-likelihoods of the different words in the vocabulary. 

Taking log on either sides of Eq 3.9 gives, 

This equation assumes equal weighting of each of the sub-band outputs . However, the 

sub-bands can be reliable to different extents and a measure of this reliability can be used 

as a weighting in the linear combination, as given by 

where wb represents the reliability of the bth sub-band classifier. Eq. 3.11 represents the 

weighted linear merging of the sub-band classifier outputs. 



Averaging - equal weights 

The simplest form of merging is averaging the corresponding log-likelihoods. This implies 

equal reliability of all sub-band classifiers - i.e., 

Weights based on sub-band accuracies 

However, Table 3.5 shows that the accuracies (1 -error) of the individual sub-bands vary 

between 72% - 91% for the 4 sub-band system and 52% - 89% for the 7 sub-band system. 

These accuracies can be used as a reliability measure to weight the different sub-bands 

during combination. Let, rb represent the accuracy of sub-band b for a N sub-band system. 

Then, 

Weights based on sub-band class accuracies 

The reliability of the individual sub-bands not only varies depending on the frequency 

coverage of the sub-band, but it may also vary depending on the class (for e.g., phoneme, 

syllable or word) being classified. 

Table 3.7 gives the word accuracies for the each of the four sub-band classifiers in the 

4 sub-band system. The table shows that the word accuracies vary significantly across the 

sub-bands. Similar variation is observed across the sub-bands in the 7 sub-band system. 

These sub-band word accuracies can also be used as weighting coefficients for merging. 

Let rblc represent the accuracy for the class k in sub-band b. Then, the weights can be 

computed as 

Results of linear merging 

Table 3.6 compares the performance of the baseline system (trained on cepstral based fea- 

tures) with that of the multi-band systems which use the three different types of weightings 



Table 3.7: Word accuracies in the individual sub-bands of the 4 sub-band system using 
cepstral based features. 

discussed above for linear merging. The results indicate that the linear combination tech- 

nique yields significantly reduced word error rate as compared to that of the individual 

sub-bands. However, the performance of the merged system is worse than that of the 

baseline system. 

Classes 

oh 
zero 
one 
two 

three 
four 
five 
six 

seven 
eight 
nine 
Yes 
no 

Non-linear merging 

The linear combination technique is based on the assumption of independence of the sub- 

band inputs, xb. But this assumption may not be true. One of the possible reasons 

is the fact that though the sub-bands are defined on different regions of the frequency 

spectrum they are overlapping to some extent, due to the overlapping nature of the critical 

bands. It has been shown that if the sub-classifiers in a multiple classifier system are 

not independent, the optimal fusion rule has to be non-linear (Pave1 and Hermansky, 

1997). For merging in this case, a non-linear classifier can be used. In this case, the 

sub-band classifiers can be thought of as feature extractors instead of classifiers. With 

this interpretation, the outputs of the sub-band classifiers can be regarded as features to 

be used for further classification (Huang and Suen, 1994). 

We used a multi-layer perceptron (MLP) for non-linear merging. The MLP used is a 

Accuracies (%) 
sub-band 4 

56.94 
86.11 
79.17 
83.33 
76.39 
68.06 
76.39 
87.50 
58.33 
80.56 
47.22 
70.83 
26.39 

sub-band 1 
77.78 
91.67 
87.50 
76.39 
75.00 
93.06 
98.61 
98.61 
98.61 
88.89 
56.94 
91.67 
50.00 

sub-band 2 
93.06 
95.83 
100.00 
93.06 
100.00 
100.00 
94.44 
94.44 
94.44 
73.61 
69.44 
94.44 
68.06 

sub-band 3 
68.06 
93.06 
80.56 
87.50 
81.94 
86.11 
73.61 
93.06 
93.06 
94.44 
63.89 
80.56 
51.39 



three-layered network which is trained using the error back-propagation algorithm. The 

network should ideally be trained on independent training data, if available, for good gen- 

eralization, but in this experiment the data used in the training are the same as that used 

in the training of the sub-band classifiers. The input to the neural network is a concate- 

nated vector of the outputs of the sub-band classifiers. Specifically, the inputs represent 

the class conditional log-likelihoods obtained from each sub-band classifier. Thus, the 

merging network has (13 x 4) 52 inputs in case of the 4 sub-band system, and (13 x 7) 91 

inputs in case of the 7 sub-band system. The number of hidden units used is 26 and the 

network has 13 outputs corresponding to the merged estimates of the probabilities of the 

thirteen word classes. 

Table 3.6 shows that the non-linear merging outperforms the linear merging techniques 

and yields better performance than the conventional system. The improvement in per- 

formance is significant at the 0.05 level for the 4 sub-band system, and 0.1 level for the 

7 sub-band system, using the binomial significance test. The results also indicate that 

irrespective of how many sub-bands are used (i.e., 4 sub-bands or 7 sub-bands), the per- 

formance of the MLP combiner is similar (i.e., 1.3% word error for the 4 sub-band system 

and 1.5% for the 7 sub-band system). This reiterates our observation (in Section 3.6) that 

partial information from the sub-bands can be merged. It also indicates that independent 

processing of the sub-bands up to the point of merging does not result in loss of perfor- 

mance as compared to the conventional system that uses the entire spectrum as one entity. 

This observation receives further support from (Mirghafori and Morgan, 1998), where it 

is shown that the phonetic features are recognized better by the sub-band system than 

the conventional system on a continuous numbers task. 

3.7.4 Merging level 

Another issue in the design of the multi-band system is the level at which the sub-bands 

should be merged - i.e., state/frame-level, phone-level, syllable-level or word-level. This is 

directly related to the question of relaxing the temporal synchrony among different regions 

of the frequency spectrum up to the point of merging. 

In Section 3.7.3, the sub-bands were merged after the likelihoods of the words were 
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Figure 3.4: Block diagram showing merging of the sub-band outputs of a 2 sub-band
system at the word-level in an isolated word task. This system is composed of four
phonetic classes and two words.

estimated independently by the decoder in each sub-band, i.e., the sub-bands were merged

at the word-level. Fig. 3.4 shows the block diagram of merging the sub-bands at the

word-level. Merging at any level higher than the frame-level implies that the optimal

paths taken by the decoder could be different in different sub-bands. This could result

in different state, as well as different phonetic (and syllable) alignments in the different

sub-bands for the same utterance.

sub-band 3

baseline system
alignments

sub-band 4

sub-band 2

sub-band 1

5 10 15 20 25 30

frame number (12.5 ms)

35

Figure 3.5: Phonetic alignments in the individual sub-bands of a 4 sub-band system as
compared to that of the baseline system for an utterance of the word seven.

Fig. 3.5 shows the phonetic alignment for an utterance of the digit 'seven', obtained by

forced alignment in the different sub-bands of the 4 sub-band model. The sub-bands have



different phonetic alignments, which will result in asynchrony in the different sub-bands if 

the sub-band outputs are merged at the syllable or word-level. This observation of asyn- 

chrony in the different sub-bands is supported by similar observations made in (Mirghafori 

and Morgan, 1998). We speculated that one of the advantages of the sub-band model could 

be this relaxation of the temporal synchrony. 
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probability estimator 
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Figure 3.6: Block diagram of merging the sub-bands of a 2 sub-band system at the 
framelstate-level. This system is composed of four phonetic classes. 

To test this hypothesis, we merged the sub-band outputs at the statelframe-level which 

represents perfect synchrony among the sub-bands. Fig. 3.6 shows the block diagram of 

merging the sub-band outputs at the frame level. The phone log-likelihoods estimated for 

a frame in each sub-band are merged. The merged estimates of the class-conditional log- 

likelihoods are then used in subsequent decoding. Since the non-linear merging technique 

using a MLP outperformed the linear merging techniques in Section 3.7.3, we used a 

MLP for computing the merged phone estimates for each frame. The merging network 

has a single hidden-layer and has (61 x 7) 427 inputs for the 7 sub-band system (61 x 4 

= 244 inputs for the 4 sub-band system), 200 units in the hidden layer and 61 outputs 

corresponding to the 61 phonetic classes. 

Table 3.8 compares the performance of the sub-band systems which use a MLP for 

merging at the word-level (same as in Table 3.6) and at the frame-level. The table shows 

that the merging levels do not yield a significant (at the 0.1 level of a binomial significance 

test) change in performance of the sub-band systems on this database. 

Since merging at the frame-level combines the partial sub-band phone estimates and 



Table 3.8: Word error (%) obtained by merging at the frame-level and the word-level. 

Table 3.9: Comparison of the framelphone errors (%) of the baseline system, the sub- 

Baseline 

bands of the 4 and 7 sub-band systems, the sub-band systems obtained by merging at the 

2.0 

frame-level, and Fletcher and Stewart's multichannel model of phone perception given by 
Eq.3.8. 

Recognizer MLP Merging Level 

7 sub-band model 

I Baseline 17.1 1 
7 sub-band model 

58.33 
41.35 
43.09 
42.15 
38.31 
48.77 
56.09 

sub-band 1 
sub-band 2 
sub-band 3 
sub-band 4 
sub-band 5 
sub-band 6 
sub-band 7 
Merged system 

multichannel model 

yields the combined phone estimate, we can compare the phone errors made by the merged 

system with that predicted by Fletcher and Stewart's multichannel model of phone per- 

ception (Eq. 3.8). Table 3.9 shows this comparison. We see that the merged system yields 

considerably higher phone error as compared to that obtained by taking a product of the 

sub-band phone errors (according to Fletcher and Stewart's model). However, even the 

baseline system which computes the phone error on the entire available spectrum (wide 

band phone error) yields performance comparable only to that of the merged system and 

not to that of the multichannel phone model. 

Though not conclusive, the results in Table 3.8 indicate that relaxing the time-synchrony 

4 sub-band model 
34.41 
33.62 
39.26 
55.98 

- 

17.3 
2.54 
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Figure 3.7: Block diagram of merging of the sub-bands of a 2 sub-band system at the 
phone-level. This system is composed of four phonetic classes and 2 words. 

between sub-bands does not improve system performance. Besides extending the applica- 

bility of the multi-band model to a large-vocabulary continuous speech task, with limited 

asynchrony among sub-bands, will require modification of the decoder. The decoder will 

have to handle multiple sub-band models of the same sub-unit, with synchrony forced at 

an intermediate sub-unit like phone, syllable or word, as shown schematically in Fig. 3.7. 

This figure illustrates the merging of two sub-bands at the phone level thus allowing for 

asynchrony at the state-level. One approach to asynchronous merging can be based on 

the HMM decomposition technique proposed by Varga and Moore (Varga and Moore, 

1990). Another limitation of asynchrony in large vocabulary systems is that it is not 

straightforward to use non-linear merging. The advantage of synchronous merging of the 

sub-bands (at the framelstate level) is that it requires modification of only the frame-level 

probability estimates and not the decoder. In this case, the extension of the multi-band 

system to large-vocabulary continuous speech tasks becomes straightforward. 



3.8 Extension of the Multi-band Model to a Large-Vocabulary 

Continuous Speech Task 

To test the extension of the multi-band model to a large-vocabulary continuous speech 

task, we used the conversational speech SWITCHBOARD database. The training set 

consisted of 4 hours (9019 utterances) of male speech. The test data consisted of 240 

male utterances. The multi-band model consisted of 7 sub-bands as defined in Table 3.5. 

PLP cepstral features were used in the baseline system, as well as in each sub-band, 

with the same autoregressive model order and number of cepstral coefficients, as detailed 

in Table 3.5 for the 7 sub-band model. In addition to cepstral features, each feature 

vector also included delta cepstra, delta-delta cepstra, delta energy and delta-delta energy 

features. Each sub-band MLP probability estimator used 9 frames of input, had 500 

hidden units and 56 output units (called the ICSI56 phoneme set) which were a subset 

of the 61 phonemes used in the Bellcore database experiments. The non-linear merging 

technique (using MLP) was used for merging the frame-level log-likelihood estimates from 

the sub-bands. Because of the availability of additional data, the merging network was 

trained on an independent set of 2 hours of male speech. The decoding was done using 

the lattice-decoder in the STRUT2 software. 

Table 3.10: Word error % on the SWITCHBOARD database. 

Baseline 1 60.9 

7 sub-band system 
I Individual sub-bands 1 68-73 1 
I MLP merging 1 59.0 1 

Consistent with our experiments on isolated digits, the MLP-based non-linear merging 

again yielded the best performance with about 2% absolute improvement in the error 

rates. While we also experimented with various linear merging techniques, they were not 

as effective as the non-linear merging technique. 

'STRUT is the Speech Training and Recognition Unified Tool developed at the FacultC Polytechnique 
de Mons. 



The improvement in performance of the multi-band system cannot be attributed only 

to the multi-band paradigm. When we trained an MLP on independent data to re-classify 

the outputs of the baseline system, the performance of the baseline system also improved 

to 59% error, which was similar to what we achieved by MLP merging of the sub-bands. 

However, we can conclude that the sub-band model can be applied for large-vocabulary 

continuous speech tasks, where it yields performance similar to the conventional full-band 

baseline system, under matched training and test conditions. 

3.9 Summary 

In this chapter, we presented a new parallel sub-band model, as an approach to ASR. 

We empirically demonstrated the feasibility of the model. The multi-band model yields 

slightly better performance as compared to the conventional system in matched training 

and test conditions. This indicates that independent processing of the frequency sub-bands 

before merging does not result in loss of discriminatory information. We also studied some 

of the main issues to be addressed in the model design stage. Our studies on the issues, 

though not conclusive, do elucidate the following points - 

It is feasible to sub-divide the speech spectrum in as many as 7 sub-bands given 

that we have 15 critical bands available up to 4 kHz, without loss in recognition 

performance on matched testing conditions. 

a As has been found in conventional state-of-the art ASR systems, the cepstra and 

dynamic cepstral features result in good performance at the sub-band level too. 

a Since the sub-bands are overlapping to some extent due to the overlapping nature 

of the critical bands, the sub-band classifiers are not necessarily independent and 

hence non-linear merging of the sub-band classifiers yields better performance. 

a It is possible to merge the sub-bands at various linguistic (frame, phone, syllable, 

word) levels, but the simplest merging is at the frame level, which can be readily 

extended to any speech task. Also, allowing temporal asynchrony did not improve 



system performance. The next chapter further supports this point using mismatched 

(noisy) test conditions. 

These observations are supported by studies reported in parallel by our collaborators (Bourlard 

and Dupont, 1996). 

The next chapter highlights the benefits of the sub-band model in noise conditions 

which corrupt only some frequency sub-bands. We also discuss various techniques to 

practically adapt the sub-band model for such noisy cases. 



Chapter 4 

Multi-band in Noise 

In the previous chapter, we presented a parallel model, the sub-band model, for automatic 

speech recognition based on merging the independent class-conditional probability esti- 

mates in several frequency sub-bands. We empirically demonstrated the feasibility of the 

model in matched conditions. We also discussed some of the issues involved in the design 

of the model. 

The main motivation for the development of the sub-band model was to deal with 

noise conditions that corrupt only part of the speech spectrum. In such noise conditions, 

some part of the speech spectrum still carries reliable information. The two main issues 

in the recognition of speech corrupted by noise are - 1) how to determine the reliability 

of the sub-bands, and 2) how to de-emphasize the less reliable sub-bands. This chapter 

explores techniques to address these two issues. These techniques are subsequently tested 

in the presence of realistic noise conditions. 

Section 4.1 demonstrates the feasibility of recognition from band-limited speech. The 

recognition performance on limited spectral regions also demonstrates the spectral re- 

dundancy in speech and its potential advantage in band-limited noise conditions. In 

Section 4.2, we discuss various techniques for the dynamic selection of reliable sub-band 

classifiers during recognition. These techniques include sub-band SNR estimation, classi- 

fier confidence estimation, majority voting and adaptation. Since the main advantage of 

the sub-band model is expected to be its performance in band-limited noise, we demon- 

strate the feasibility of the model and the effectiveness of the selection techniques, on 

controlled band-limited noise - i.e., sinusoidal noise at different signal-to-noise ratios. 

In Section 4.4, we test the effectiveness of the model in several realistic additive noise 



conditions from the NOISEX-92 database. The experiments demonstrate the robustness 

of the sub-band model (more than 50% reduction in word error rate on average) to noise 

which corrupts some sub-bands more than the others. We conclude with a summary of 

this chapter in Section 4.5. 

4.1 Sub-band Model on Band-limited Speech 

In some noise conditions, when only part of the speech spectrum is corrupted, the remain- 

ing speech spectrum may still carry reliable information. One of the main advantages of 

the sub-band model, as mentioned in Section 3.4, is that it allows for the de-emphasis 

of the unreliable or corrupted sub-bands during the merging process. To determine the 

feasibility of the sub-band model in such noise conditions, we tested its performance on 

band-limited speech. 

An approach to simulate band-limited speech is to drop some sub-band(s) from the 

merging process. In the 7 sub-band system, considering all possible combinations of the 

7 sub-bands with up to 6 sub-bands dropped, gives 127 different band-limited speech 

conditions, as shown in Table 4.1. The table entry with 6 sub-bands excluded refers to a 

system with just one of the seven sub-bands and hence implies each individual sub-band 

classifier. Since non-linear merging using a MLP yielded the best performance of the 

sub-band model in our experiment reported in Section 3.7.3, a MLP is trained for each of 

these 127 sub-band combinat ions. 

Table 4.1: Different combinations of sub-bands in the 7 sub-band model. 

I # of sub-bands excluded I # of Merging Networks I 
0 1 1 

Fig. 4.1 gives the range of word errors for the 127 merging classifiers trained on all 

6 7 
Total 127 
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Figure 4.1: Word error (%) with merging networks having 0 to 6 sub-bands excluded.
Merging is done at the frame level.

combinations of the sub-bands in the 7 sub-band model. Each sub-band is trained on

cepstral based features and the merging is done at the frame-level. As in Section 3.7.4,

each of the merging networks is a three-layered network and has 61 inputs from each of

the sub-bands to be merged, 200 hidden units and 61 output units. The errors shown in

the figure are the average errors on the four cuts of the database. The abscissa represents

one of each of the conditions shown in Table 4.1. The range of word errors obtained

from the merging classifiers trained on each of these conditions is shown by a box and

whisker plot. The box has lines at the lower quartile (25% of the merging classifiers yield

word errors below this line), median (50% of the merging classifiers yield errors below

this line) and upper quartile (75% of the merging classifiers yield errors below this line)

error values. The whiskers cover the range of errors below the lower quartile and above

the upper quartile respectively. A line connecting the median values over all conditions

represents the trend in the errors as the number of sub-bands dropped from the merging

process is incremented.

The following observations can be made from our experiment -
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. There is a gradual decrease in the performance of the merging classifiers with decreas-

ing number of available sub-bands. With as many as three out of seven sub-bands

dropped, the upper quartile error is only around twice the error rate obtained when

all the seven sub-bands are retained. This gradual decrease in performance indicates

that the speech spectrum carries redundant acoustic information.

. It also indicates that even with half the spectrum corrupted, if we can identify and

remove the corrupted sub-bands from the merging process, the performance of the

system will degrade quite gradually.

. We also observed that for a specific number of sub-bands dropped, leaving out adja-

cent sub-bands generally yields more error than that obtained when the interleaved

sub-bands are left out. For example, for merging classifiers with four sub-bands

dropped, leaving out the adjacent sub-bands 2,3,4,5 results in a word error of 6.8%,

while leaving out interleaved sub-bands 1,3,5,7 yields a word error of only 2.0%.

4.1.1 Comparison of merging classifiers trained at different merging lev-
els

Merging at frame level
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Figure 4.2: Word error (%) with merging networks having 0 - 6 sub-bands excluded and
trained for merging at the frame-level and word-level respectively. The left-hand side
graph is the same as Fig. 4.1 and has been repeated for easy comparison.

Fig. 4.2 compares the range of errors of the merging classifiers trained for merging at



the frame-level, to those that have been trained for word-level merging. The median error 

rates for the frame-level and word-level merging classifiers are comparable. 

4.2 Techniques for the Selection of Merging Classifiers 

In the previous section, we tested the performance of the multi-band system under various 

band-limited speech conditions. However, in order to practically use the system, we need 

to know which sub-bands are corrupted. In a practical scenario, with unknown noise 

corrupting the speech signal, we need to have some estimate of the sub-band reliability. We 

examined some techniques for estimating reliability of the sub-bands. These techniques can 

be broadly divided in two categories. The first category consists of signal-based estimation 

techniques, for e.g., signal-to-noise ratio (SNR) estimation. The second category consists 

of selection strategies based on the merging classifier outputs, for e.g., majority voting, 

adaptation and classifier confidence estimation. 

4.2.1 Signal-based technique - SNR estimation 

One approach to determine the reliability of the sub-bands is to use signal processing 

techniques to estimate the noise level in each sub-band signal and then compute the 

signal-to-noise (SNR) ratio in each sub-band. Based on some empirically determined 

threshold, sub-bands with SNR below a threshold are considered less reliable than the 

other sub-bands. These sub-bands can then be dropped from the merging process by 

using the merging classifier which is not trained on these sub-bands. 

We estimate the noise level in each frequency sub-band, using the estimation technique 

proposed by Hirsch (Hirsch, 1993). The noise level in each frequency sub-band is estimated 

by computing a histogram of the magnitude spectral values in that sub-band. The spectral 

value at which the smoothed histogram displays a peak is the noise amplitude estimate 

(n). Since, we do not know the power of the clean speech signal, the power of the 

available noisy signal in the frequency band is used as an estimate of the noisy signal 

( S  + N ) .  The sub-band SNR is then estimated as, 

SNR = 10 loglo - 1 ) .  



4.2.2 Classifier- based techniques 

These techniques estimate the merging classifier reliability based on the classifier outputs, 

instead of the signal as used in the case of SNR estimation technique. 

Majority voting 

A simple approach uses majority vote among the 127 merging classifiers. Let L represent 

the number of merging classifiers, Y,  represents the sub-bands which are merged by the ith 

merging classifier, for e.g., if the ith merging classifier estimates the joint class-conditional 

likelihood of sub-bands 1,3 and 5, then Y,  represents the inputs {xl, 2 3 ,  x5) in the respec- 

tive sub-bands. The merging classifier will then estimate the likelihood P(Y,lck) for the 

kth class. The majority vote is computed as 

1 if P(Y,lck) = maxj P(Y,(cj) for j = l...M 
Aik = 

0 otherwise 
(4.2) 

Direct use of majority voting among all the merging classifiers gives equal weighting 

to all the 127 merging classifiers. For band-limited noise condition, some of the merging 

classifiers are likely to be more reliable than the others, depending on which sub-bands are 

being merged by the particular merging classifier. Selection of the merging classifiers for 

majority voting based on some reliability criterion, could hence yield better performance 

than direct majority voting among all the merging classifiers. 

Adapt at ion 

An approach to selecting a merging classifier can be based on the availability of a few 

known utterances from the noisy test environment, if the application permits. In such a 

case, the classifier which gives the best recognition performance on these utterances can 

be used for all further tests in that particular test environment. In cases where more 

than one merging classifier yields the same performance on the adaptation utterances, a 

majority voting among them can be used for further classification. 



Classifier confidence estimation 

Selection of the merging classifiers can also be based on an estimation of the confidence 

of the merging classifier output. We examined the distributions of the log-likelihoods 

estimated by the 127 merging classifiers. For every utterance, each merging classifier 

estimates the log-likelihood (or probability) for each of the competing classes (13 words 

in our experiment), which constitute the output vector. For all utterances in the test set, 

we separated the output vectors obtained from all the merging classifiers into two sets 

- 1) output vectors from the merging classifiers which made the right decision and 2) 

remaining output vectors (i.e., from merging classifiers which made the wrong decision). 

We further divided each set into two more sets of likelihoods - 1) the likelihood of the 

winning class and 2) the likelihoods of the remaining 12 classes. A plot of the distributions 

of these two sets of likelihoods, then indicates the extent to which the distribution of the 

winning class likelihood is separated from the distribution of likelihoods of the other 

classes. 

Right decisions 

log-likelihoods 
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Figure 4.3: Distributions of the outputs (log-likelihoods) of the merging networks for the 
right decisions (top panel) and wrong decisions (bottom panel). 
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The plots in Fig 4.3 show that the distributions of the right decisions are better sep- 

arated than those of the wrong decisions. A measure of this separation can be used as a 

classifier confidence estimate. We examined two such measures. 

The first confidence measure is a sensitivity measure used in signal detection the- 

ory (Green and John, 1974) to measure the difference between the means of the signal 

and noise distributions. It is given by 

where ps is the mean of the signal distribution, and pn and on are the mean and standard 

deviation respectively of the noise distribution, which is assumed to be Gaussian. A higher 

value of d' (referred to as d-prime) indicates that the distributions have greater separability 

and hence implies the higher discriminability of the signal from noise. For our purpose, we 

consider the likelihood of the winning class as the signal and the likelihoods of the other 

classes as noise. Thus, we replace p, by the likelihood of the winning class, and pn and 

a, by the estimate of the mean and standard deviation of the other class' likelihoods. 

The second confidence measure is based on taking a simple difference between the top 

two log-likelihoods in the output vector. The assumption is that a greater difference in 

the log-likelihoods of the winning class and the next best guess implies higher classifier 

confidence. 

Fig. 4.4 compares the distributions of the confidence estimates for the merging classi- 

fiers which make the right decisions to those that make a wrong decision, using the d-prime 

based confidence measure and difference based measure. The distributions show that, as 

desired, the classifiers making the right decision have higher confidence than those that 

make the wrong decision. Based on these distributions, the top 10% to 15% of the merging 

classifiers, having the highest confidence are selected, for majority voting. 

4.3 Controlled Experiment with Frequency-localized Sinu- 

soidal Additive Noise 

To test the effectiveness of the sub-band model in narrowband noise conditions, we per- 

formed a controlled experiment by adding sinusoidal noise at 1500 Hz to the original test 
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set at different SNRs (30dB, 20dB, 10dB and OdB). 

Fig. 4.5 shows the effect of the noise on sub-band performance at different SNRs. It 

is seen that the noise affects sub-bands 4, 5 and 6, as these bands integrate the energy at 

1500 Hz to different extents. As the SNR decreases, the recognition performance in these 

sub-bands decreases. The performance of the remaining sub-bands (1,2,3,7) is unaffected 

by the sinusoidal noise and their performance remains similar to that on the uncorrupted 

(clean) speech. 

The outputs of all the seven sub-band recognizers were then merged at the frame- 

level using the 127 merging classifiers trained on the clean training data, as described in 

Section 4.1. We also tested the effectiveness of the techniques for selecting the reliable 
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Figure 4.5: Sub-band errors (%) on speech corrupted with additive sinusoidal noise at
1500 Hz. at different SNRs.

For the adaptation based selection technique, 10 utterances from a single speaker were

used as adaptation data.

The results of the experiment are shown in Fig. 4.6. The bar labeled Best on the plot

represents a cheating result, obtained by manually picking the merging classifier which

gives the best performance on the test data. This represents the performance that could

be achieved on each of the test conditions in case we could pre-determine the most reliable

sub-bands for the particular test environment.

The following observations can be made from the bar plot -

. The performance of the conventional recognizer (represented by the first bar at each

noise level) deteriorates rapidly from 2.5% word error to 62% word error as the SNR

decreases from the clean case to OdB.

. The sub-band system which uses all seven sub-bands (second bar at each noise level)

shows less degradation in performance as compared to the conventional system.

Similar observations have been reported in (Bourlard and Dupont, 1997) for band-

limited noise on a continuous numbers task. At higher SNRs (up to 10dB), it yields

significant reduction in word error, almost halving the errors for up to 20dB SNR.
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Figure 4.6: Performance of the sub-band system using different selection techniques, on
clean speech and speech corrupted with additive sinusoidal noise at 1500Hz and SNRs
30dB, 20dB, lOdB and OdB. For each SNR level the bars from left to right are in the same
order as referred to in the legend.

However, at low SNRs (e.g., OdB) the sub-band system is not very efficient, yielding

only marginal improvement in performance as compared to the conventional system.

. Majority voting using all 127 merging classifiers (third bar at each noise level) results

in a further reduction in word error rate, especially at lower SNRs (e.g., lOdB and

OdB).

. The eighth bar at each noise level (labeled Best) indicates that there exists at least

one sub-band combination (among the 127 combinations) which yields good perfor-

mance, even in presence of significant degradation by band-limited noise. It shows

that the error rate for the noisy speech could improve dramatically (more than an

order of magnitude for SNRs lOdB and OdB). Performance close to this can be

achieved using some selection criteria (bars 4 to 7 at each noise level).



Comparing the two classifier confidence estimation techniques, it is seen that selec- 

tion of the merging classifiers using the confidence estimate based on the d-prime 

measure (fifth bar at each noise level) is more robust as compared to the selection 

which uses the confidence estimate based on the difference of the top two classifier 

outputs (corresponding fourth bar at each noise level). 

Selection of the merging classifiers based on adaptation (bar 6 at each noise level) 

yielded performance close to that of the Best system. This technique can be used 

with advantage if the application allows for any adaptation to a given environment. 

Selection of a merging classifier based on SNR-based thresholding (bar 7 at each 

noise level) also yields recognition performance close to that of the Best system. 

In conclusion, all selection techniques yield results which are significantly better than 

the results of the conventional recognizer. 

4.4 Experiments with Real Additive Noise 

The previous section demonstrated that the sub-band model is effective in the presence 

of narrowband degradations. The next question is - does noise encountered in real envi- 

ronments exhibit such band-limited characteristics. To answer this question, we examined 

some of the noise samples (babble, factory2, pink, volvo, white and high frequency radio 

channel noise) from the NOISEX-92 database (Varga and Steeneken, 1993), as well as 

a car noise locally recorded in a Volvo with closed windows (referred to as closed-volvo 

noise). Fig. 4.7 shows the average critical band log power spectra for each of the noise 

conditions. The figure shows that for the first 5 noise cases - i.e., babble, closed-volvo, 

factory2, pink and volvo noises, the noise spectral energy appears to be concentrated in 

some spectral regions. For example, as an extreme case the volvo-noise is mainly concen- 

trated in the low-frequency spectral regions. These noise types thus represent the noise 

conditions which corrupt some frequency sub-bands more than the others. On the other 

hand, for the white noise and high-frequency radio channel noise, the noise energy appears 

to be distributed across all spectral channels. 
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Figure 4.7: Average log critical band noise spectra for the six noise samples from the 
NOISEX-92 database and the noise spectrum of a locally recorded Volvo noise (closed- 
volvo). Critical band frequency ranges are as given in Table 3.2. 
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These seven noise samples were then added to test speech data (from the first cut, 

Section 3.5) after being scaled, so that the performance of the conventional full-band ASR 

system noticeably degraded from the baseline error of about 2.5% to approximately 25% 

for each of the noise conditions. The resulting SNR was approximately 15dB for the first 

five noise cases and around 5 dB for the white and high frequency radio channel noise. 

Fig. 4.8 compares the sub-band errors for each of the noise corrupted speech cases with 

that of clean speech case. The figure shows that 

For the first 5 noise cases some of the sub-bands degrade more in performance than 

the other sub-bands. For example, for the factory noise case, sub-bands 4,5,6 and 

7 are degraded to a much lesser extent than the remaining sub-bands. For the 

other two noise examples - i.e., white and high-frequency radio channel noise, all 

sub-bands show a significant degradation in performance. 

Also shown in the figure in the form of bar plots, is the comparison of the performance 

of the conventional recognizer (leftmost bar) to that of the sub-band system which 

merges the outputs of all seven sub-bands either at the frame-level (middle bar) or 

the word-level (rightmost bar). The sub-band system which has been trained only 

on clean speech yields a significant reduction in word error rate (as much as 50%) 

for the first 5 noise cases. As mentioned earlier, these are also the noise types which 

corrupt some frequency sub-bands more than the other sub-bands and hence are 

similar to the band-limited noise cases. 

The multi-band approach is seen to be ineffective for the white-noise and high- 

frequency noise cases where all the sub-bands show significant degradation in per- 

formance. 

The bar plots also indicate that the sub-band system which combines the outputs 

of the 7 sub-bands at the word-level, in general, gives worse performance than the 

sub-band system which combines the outputs at the frame level. 



Figure 4.9: Average word error rates (%) for speech corrupted with babble, factory, pink, 
volvo noises from NOISEX-92 database and Volvo noise recorded locally. Fig.(I) shows the 
case where the conventional system performance degraded to around 25% error. Fig.(II) 
shows the case where the conventional system degraded to around 50% error. 

4.4.1 Selection strategies on real noise conditions 

We evaluated the effectiveness of each of the merging classifier selection strategies for the 

real noise cases. Fig. 4.9(1) shows the averaged error rates for speech corrupted with the 

five noise cases - babble, factory2, pink and volvo noise samples from the NOISEX-92 

database and another Volvo noise sample collected locally. The sub-band system which 

combines all 7 sub-bands yields on average about half the error compared to the conven- 

tional baseline system. Use of merging classifiers based on the selection strategies give 

an additional improvement in recognition performance as compared to the sub-band sys- 

tem. The selection strategies which use the two confidence estimates - d-prime based 

confidence estimate and difference in top 2 classifier output based estimate, give similar 

performance. The threshold of 5dB was found to yield the best performance for the SNR 

estimation based selection technique. However, it does not yield as good a performance 

as the classifier-based selection techniques. 



Another point to note is that it is possible for the selection strategies to yield perfor- 

mance better than that obtained by cheating (labeled Best), since the best combiner is 

the single merging classifier which yields the best performance on all the test utterances, 

while the selection strategies dynamically select merging classifiers for each utterance, and 

hence can yield better performance. 

Fig. 4.9(11) shows the averaged error rates for the 5 noise cases when the noise was 

added at a higher noise level (approximately 5dB SNR), such that the baseline system 

performance degraded to approximately 50% word error. The sub-band system still yields 

a significant improvement in performance. However, the improvement due to the selection 

techniques is more pronounced than seen for the lower noise level (Fig. 4.9(1)). 

Figure 4.10: Average word error rates (%) for speech corrupted with white and high- 
frequency radio channel noise. 

The selection strategies are ineffective (Fig. 4.10) for white noise and high frequency 

channel noise, where all the sub-bands were significantly corrupted by noise and hence 

exhibit significant degradation in performance. For these noise cases the conventional 

system yields the best performance. 



4.5 Summary 

In this chapter, we examined the performance of the sub-band model under various band- 

limited speech conditions. The gradual decrease in recognition performance as the avail- 

able speech spectrum is reduced, indicates the presence of spectral redundancy in speech. 

This can be exploited in the multi-band system, by combining different spectral regions 

using several merging classifiers. These different merging classifiers thus provide a way of 

obtaining "different views" of the underlying linguistic process. In addition, these classi- 

fiers provide an approach to de-emphasizing the unreliable sub-bands by dropping them 

from the merging process. 

We further examined several techniques for the selection of reliable sub-band classifiers 

or merging classifiers. The effectiveness of the SNR estimate based selection technique de- 

pends on the consistency of the SNR estimates as well as the determination of a proper 

threshold for rejecting the sub-bands. The adaptation approach requires the availability 

of a few known adaptation utterances in the testing environment. In our experiments, the 

selection strategy based on classifier confidence estimate performed consistently (perfor- 

mance close to the best merging classifier) for moderate as well as strong noise levels. 

We tested the sub-band model in a controlled band-limited sinusoidal noise condition 

as well as in several realistic noises at various noise levels. For moderate noise levels, the 

sub-band system itself, without the use of any selection technique, significantly reduces 

error rates (around 50% reduction in word error as compared to the conventional system). 

For stronger noises, the selection techniques appear to be more effective. A comparison 

of the performance of the sub-band system merged at the frame-level with that of the 

sub-band system merged at the word level showed that frame-level merging yielded better 

performance in most noise conditions. 

The results indicate that the sub-band system is inherently robust to narrow-band 

additive degradation. Further improvement in performance is obtained by effective de- 

emphasis of unreliable (noise corrupted) sub-bands. 

This chapter and Chapter 3 explored the sub-band model, which treats different regions 

of the frequency spectrum as independent up to the point of merging. We demonstrated the 



feasibility of this approach and showed its efficacy in dealing with narrowband noise. The 

features used in each sub-band were short-time spectral-based transformations. Hence, 

the temporal information available to each sub-band classifier at any given time, was in 

the range of only 10-100ms. Our hypothesis (as discussed in Section 1.5) is that the 

availability of temporal information of the order of at least syllable-length durations can 

improve robustness of recognizers. In the next two chapters, we explore the extension of the 

sub-band model to include medium term (around syllable-length) temporal dependencies 

in each sub-stream. 



Chapter 5 

Analysis of Temporal Information - 

TempoRAl Pat terns (TRAPS) 

In Chapters 3 and 4, we discussed the sub-band model for ASR. The model comprised of 

multiple classifiers, where each classifier operated on features derived from different speech 

frequency sub-bands. This model relaxed the dependency among elements of the feature 

vector, which in a conventional ASR system are considered dependent. 

The frequency localized cepstral features used in each sub-band are short-time spec- 

trum based (10ms to looms, due to delta coefficients) features. However, psychoacoustic 

and physiological evidence (Hermansky, 1998; Greenberg, 1996) suggests that the periph- 

eral human auditory system integrates longer time spans (around 200 ms) of the audio sig- 

nal. Recent research (discussed in Section 5.1.2) on speech feature extraction has focussed 

on exploring ways of integrating medium-term temporal information in the short-time 

features. Such feature extraction techniques yield improved ASR performance, especially 

in mismatched test conditions. This observation forms the basis of our motivation for the 

multi-stream concept (as stated in Section 1.5 and shown in Fig. 5.1) of incorporating 

medium-term temporal dependencies among the short-time feature vectors. 

In this chapter, we examine relatively long (z 1 sec) temporal trajectories of the speech 

features to gain an understanding of the nature of phonetic information that is present in 

time. Based on this study, we propose a set of features which incorporate medium-time 

temporal dependency in the features used in the multi-band system. The features are the 

mean TempoRAl Patterns (Mean TRAPS) of spectral energies, and comprise a radically 

different set of features than those traditionally used. 



Conventional 
/' feature vectors 
/ - Multi-Stream 

,- 

time --, time - 
I 

independency in time ,/ C more dependency in time A 
Figure 5.1: Single input multi-stream concept. 

In Section 5.1 we review the evidence from the psychophysical and recognition studies, 

which support the use of medium-time temporal information in ASR systems. Section 5.2 

describes our approach towards analyzing the temporal information. This analysis yields 

the patterns of temporal evolution (Mean TRAPs) of the phonemes. Section 5.3 describes 

the clustering of the Mean TRAPs to yield the Broad TRAPs, which represent the tem- 

poral evolution of the broad phonetic categories. Section 5.4 summarizes this chapter. 

5.1 Introduction 

5.1.1 Spectral processing 

In ASR systems, the speech signal is processed as a series of independent short-time 

(e.g., 10ms) frames to account for the non-stationary characteristic of the signal, and 

to facilitate application of the well-developed processing techniques for stationary signals. 

Spectral features (such as filter bank energies, linear predictive coefficients (LPC), cepstral 

coefficients, Mel-frequency cepstral coefficients (MFCC) (Davis and Mermelstein, 1980) 

and perceptual linear predictive (PLP) cepstral coefficients (Hermansky, 1990)) extracted 

from short-time frames, form the basis of most feature extraction methods in current 

ASR. These spectral features describe the spectral envelope of the speech signal in a given 

frame. The spectral envelope has the drawback that it is quite sensitive to changes in the 

communication environment, such as characteristics of different channels or background 

noise. As a result, recognizers which use these features, rapidly degrade in performance 



in realistic communication environments. 

5.1.2 Towards temporal processing 

Psychoacoustic and physiological evidence 

Psychoacoustic studies (reviewed in (Hermansky, 1998)) suggest that the peripheral au- 

ditory system in humans integrates information from much larger time spans than the 

temporal duration of the frame used in speech analysis. This time span is of the order of 

several hundred milliseconds (around 200ms). One such evidence in auditory perception 

is that of forward masking (discussed in detail in (Moore, 1989)). This is a phenomenon 

by which, if one signal (masker) is followed by a test signal (probe) closely in time, the 

perception of the probe is diminished. The effect of forward masking lasts for about 200ms. 

It is known that speech is not produced as a string of well-formed sounds. Rather, the 

production of a speech sound is grossly affected by the preceding and following sounds, 

due to the mechanical constraints of the articulators. This speech production mechanism 

is referred to as coarticulation. Coarticulation suggests the temporal dependence of the 

short-time speech frames even across phone boundaries. 

Temporal processing in ASR 

Several feature extraction techniques also attempt to incorporate medium-time temporal 

information within the short-time based ASR framework (refer to (Hermansky, 1995) 

and (Hermansky, 1998) for a detailed review). These techniques have had some success in 

improving the noise robustness of ASR. 

The dynamic cepstral coefficients (Furui, 1981) are widely used as features in most 

ASR systems. These coefficients are computed as the first and second order orthogonal 

polynomial expansions of feature time trajectories and are referred to as delta and acceler- 

ation coefficients, respectively. They represent the slope and curvature, respectively, of the 

feature trajectories and are typically computed over 50ms to 90ms speech segments. These 

coefficients are robust to slowly varying convolutive distortions introduced by communica- 

tion channel variations, and are used in both speech recognition and speaker verification 

tasks. 



Another technique that uses temporal processing is the cepstral mean normalization 

technique, in which the long-term average is subtracted from the logarithmic speech spec- 

trum. This technique thus suppresses convolutive noise introduced due to the communi- 

cation channel. However it requires computation of long-term averages, which affects a 

real-time implementation. To minimize the processing delay, the mean from the past data 

can be updated recursively (Tibrewala and Hermansky, 1997). 

The RelAtive SpecTrAl (RASTA) technique (Hermansky and Morgan, 1994) over- 

comes the long-term average requirement for suppressing the slowly varying convolutive 

distortions, and in addition, also attenuates the spectral components that vary more 

rapidly than the typical rate of change of speech (between 1-16 Hz). It employs an 

infinite-impulse response bandpass filter on the logarithmic spectral time trajectories, 

with a passband between 1 to 12 Hz (at a frame rate of IOms, the sampling frequency 

of the spectral time-trajectories is 100Hz). The impulse response of the optimal RASTA 

filter has an effective length of around 200ms. 

Recent efforts towards exploring the temporal domain 

The RASTA filter design was ad hoc as it was optimized on a small series of ASR experi- 

ments with noisy telephone digits. To address the optimization issue, RASTA-like filters 

were designed from a labeled database using a constrained optimization technique (Aven- 

dano et al., 1996), and also using the linear discriminant analysis (LDA) technique (van 

Vuuren and Hermansky, 1997). The criterion for the LDA technique was to optimize 

the linear discriminability among phonetic classes by suppressing undesirable within-class 

variability. The three most significant FIR filters (weighting functions) obtained using 

LDA suggest the use of features derived from at least 250ms long speech segments, for 

optimal linear discrimination between context independent phonemes. 

Other preliminary efforts to explore alternate techniques for deriving medium to long- 

time dependent features include the RASTA HMM features (Luettin et al., 1997). The 

design of these features aimed to address the limitations imposed due to the inherent 

assumptions in the design of the RASTA-like features derived using LDA - i.e., the 

assumptions of equal within-class covariances, and the use of non-class specific filters. 



The approach chosen was to design class-dependent RASTA filters by using LDA. 

A study was recently conducted on how the information about the linguistic process is 

distributed in time. This study used the joint mutual information between the phonetic 

labels of a labeled database and the logarithmic energies at points in the time-frequency 

plane, as a criterion (Yang et al., 1999). The results indicate that at a particular frequency, 

components around looms outside the phonetic labeled segment still carry information 

relevant to the classification of the given phoneme. 

The techniques discussed above support the notion that information about a sound 

(e.g., phoneme) is available not just at its time of occurrence, but rather, it is spread over 

relatively long (at least syllable-length) duration around it. 

5.2 Our Approach to Analyzing the Nature of Temporal 

Informat ion 

Phonemes are the one of the basic sound units used in ASR. To understand the nature of 

the linguistic information available in the temporal structure of speech, we analyzed the 

temporal structure of phonemes. In our analysis, we have used logarithmic critical band 

energies. This domain has previously been used to incorporate temporal information (see 

Section 5.1.2). 

For our analysis, we used the OGI-Stories corpus, described in Section 2.2. We used 

a subset of approximately three hours of phonetically hand labeled data. We considered 

the 45 most frequently occurring phonetic classes. 

The analysis is carried out on the temporal trajectories of logarithmic critical band 

energies a s  shown in Fig. 5.2. We extract all segments from a particular critical band that 

are labeled as the class (phoneme) under consideration. From each such segment, we form 

approximately 1 sec long (101 frames at 10ms frame rate) vectors of logarithmic critical 

band energies, centered around each frame of the segment labeled as the phoneme. For 

example, say we are considering the phoneme /ah/. If a particular segment labeled /ah/ 

has five frames, we form five, 1 sec long vectors, each containing one of the five frames 

of /ah/ in the center. The mean of all such 1 sec vectors, then represents the pattern 
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Figure 5.2: Computation of the temporal evolution of phoneme /ah/ for critical band Ii
from a labeled database.

corresponding to the average temporal evolution of the phoneme under consideration, at

that particular frequency.

In this analysis, only the center frames in all these vectors belong to the same class.

Other frames can belong to any other class that occurs in context of the center phoneme,

in conversational speech. The mean operation averages over all the surrounding context

of the phoneme under consideration. The value of the temporal pattern at the center (i.e.,

at time t = 0 ms, in Fig. 5.2) corresponds to the average spectral value of the considered

phoneme at that frequency. The shape of the pattern, away from the center, represents the

average coarticulation of that phoneme with all other sounds in whose context it appears.

This process of extraction of the temporal evolution patterns for different phonemes

is repeated independently for each of the 15 critical band time trajectories. As a result,

15 temporal patterns are obtained for each phoneme.



Figure 5.3: Mean TRAPs for 45 phonemes at 500 Hz (i.e., the fifth critical band). The 
dotted line for each of the TRAPs represents the center frame (i.e., at  time t = 0 ms). The 
patterns separated by the thin solid lines represent sounds with similar temporal patterns. 



5.2.1 Temporal evolution of phonemes - Mean TRAPs 

Fig. 5.3 shows the TempoRAl Patterns (TRAPs) of the 45 phoneme classes. The patterns 

are shown for the fifth critical band (centered around 500 Hz). The dotted line in each 

pattern represents the center frame (i.e., time t = 0 ms). Two observations from this 

figure are: 

Some of the phonemes have distinctly different patterns of temporal evolution, for 

example, the stop-consonant /b/ compared to the vowel /ah/. 

The temporal evolution of some phonemes is quite similar (represented by patterns 

separated by the thin solid line in Fig. 5.3), for example, the vowels /ah/ and /cao/. 

5.2.2 Variation in temporal patterns across frequency 

Fig. 5.4 shows the temporal evolution patterns of four phonemes across the 15 critical 

bands. The temporal patterns for a particular phoneme differ in average energy across the 

critical bands, for all the phonemes. The patterns for some of the phonemes, for example 

/s/ and /n/, also differ considerably across the critical bands. The vector consisting of 

the center frames from all the critical bands represents the average spectral envelope of 

the phoneme. 

5.2.3 Variance of the temporal patterns 

The covariances of the temporal trajectories can also be computed for each phoneme class, 

in a manner similar to the computation of the mean of the temporal trajectories. Fig 5.5 

shows the variance vectors (the diagonal of the covariance matrices) for all the 45 phoneme 

classes. Irrespective of the class, the center frame has the minimum variance and the 

variance increases as we move away from the center frame in time. In the computation 

of the pattern of temporal evolution for a particular class, only the center frame of all 

the vectors belongs to the same class. Hence, the center frame has minimum variance. 

Frames other than the center frame can belong to any other class in whose context the 

center class occurs. Hence, the variance increases away from the center, reflecting the 

contextual variability. 
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Figure 5.4: Temporal evolution patterns of four phonemes for all the 15 critical bands. 
Each temporal evolution pattern is normalized to zero mean for convenient display. 

5.3 Clustering of Temporal Patterns 

As described in Section 5.2.1, some of the classes have very similar patterns of temporal 

evolutions. Therefore, these patterns can be clustered using a distance measure which 

takes in to account the similarity. We used the hierarchical clustering algorithm (Arthanari 

and Dogde, 1981) for clustering the TRAPS, and a correlation based similarity measure, 

which is given by 

where d(x, y) represents the distance between the two patterns, x and y, 02, represents 

the covariance between x and y, and a, and ay are the standard deviations of x and y 

respectively. The similarity measure yields a distance between -1 and 1. A distance of 1 
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Figure 5.5: Variance of the 1 sec temporal trajectories of the 45 phoneme classes for the 
fifth critical band. 

implies that the TRAPs have the same shape and a distance of -1 implies that the two 

TRAPs have opposite correlation. 

The clustering results in 5 distinct broad-category TRAPs, which we call the Broad 

TRAPs. Fig 5.6 shows the TRAPs of the phonemes clustered together, along with the 5 

Broad TRAPs, for the fifth critical band time trajectory. The Broad TRAP is computed 

as the weighted mean of the clustered Mean TRAPs. The weighting represents the relative 

frequency of occurrence of each of the clustered TRAPs in the OGI-Stories database. 

The clustering shows that - 

Although no assumptions were made in the clustering algorithm, the TRAPs clus- 

ter into the five broad phonetic categories - 1) vowels and diphthongs 2) stop- 

consonants 3) fricatives 4) schwas (reduced vowels) and 5) silence. 

These Broad TRAPs have distinct and intuitive temporal patterns. For example, the 

Broad TRAP corresponding to the vowel cluster has a peak in the center since vowels 

have higher energy than the other sounds. The stop-consonant Broad TRAP has 

a dip off-center to the left, since a stop-consonant is usually preceded by a closure, 

which has low energy. In general, the Broad TRAP corresponding to the fricative 

cluster has low energy at the center where the fricative is located (though this varies 

for the individual fricatives depending on the frequency band, as mentioned below) 
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Figure 5.6: Five Broad TRAP clusters of the fifth critical band TRAPs. The thinner lines 
in each plot represent the individual TRAPs of the phonemes clustered in one category. 
The thicker line is the Broad TRAP and represents the weighted mean of the constituent 
phoneme TRAPs. 

and the energy increases around it because the surrounding context generally consists 

of vowels. However, the schwas are characterized by a rather complex temporal 

evolution pattern. 

Some phonemes change cluster affiliations depending on the frequency bands. For 

example, the phoneme /s/ clusters as a fricative for frequency bands up to 2 kHz. 

For higher frequencies, where /s/ has high energy, it displays a vowel-like temporal 

pattern. The nasal sounds ( /n / ,  /m/, /ng/) display vowel-like temporal patterns at 

lower frequencies (up to approximately 500 Hz) and move to the fricative cluster at 

higher frequencies. The glides ( /1 / ,  /r/, /w/) move from the vowel cluster at lower 



frequencies to the stop cluster at higher frequencies. 

Irrespective of the phoneme duration, which varies from approximately 30ms for 

stop-consonants to 80ms for vowels, the effect of the center phoneme lasts for about 

syllable-length durations (z 200 ms) around it. This result indicates that there is 

linguistic information beyond the 50-90ms time duration used in the conventional 

ASR systems. 

5.4 Summary 

In this chapter we presented a novel technique for analyzing the phonetic information 

present in the temporal domain. The technique is based on analyzing 1 sec long time 

trajectories of the critical band energies in the vicinity of the phoneme under consideration. 

This analysis yields patterns of temporal evolution of the different phonemes, which we 

call TRAPs. These patterns reveal a syllable-length temporal spread of activity in the 

region surrounding a phoneme, irrespective of the phoneme duration. This observation 

supports the hypothesis that the effect of a phoneme lasts for a long duration in time in 

the region surrounding the phoneme. The TRAPs show distinct characteristics for the 

broad phonetic categories of sounds - i.e., vowels, stop-consonants, fricatives, schwas 

and silence. Broad TRAPs, which characterize the broad phonetic categories, are derived 

based on this observation. 

The next step is to integrate the results of this temporal analysis into an ASR system. 

The next chapter explores this integration, which leads to the generalization of the multi- 

band system into the TRAP-based classification system. 



Chapter 6 

TRAP Classifiers in ASR 

In the last chapter, we presented a novel approach for analyzing the nature of phonetic 

information available in the temporal structure of speech. The analysis yielded Tempo- 

RAl Patterns (TRAPs) derived from the data. These patterns characterize the temporal 

evolution of different phonemes in the logarithmic spectral domain. The TRAPs have a 

syllable-length temporal spread in the region surrounding a phoneme. This supports the 

notion that information of a phoneme is spread in rather long time durations around it. 

The analysis of the temporal structure was motivated by our goal to extend the multi- 

band model to use temporal information in the individual sub-bands. This chapter dis- 

cusses the use of TRAPs in the multi-band framework. We examine the use of the tem- 

poral patterns (TRAPs) in place of the conventional spectral patterns for ASR in the 

multi-stream framework. The proposed system is found to yield a significant amount of 

complementary information to that of the conventional spectral features-based ASR sys- 

tem. A combination of these two ASR systems results in improved robustness to additive 

and convolutive environmental degradations. 

Section 6.1 describes our TRAP-based classification approach. Section 6.2 describes 

the experimental setup used for the experiments in this chapter. Section 6.3 describes the 

use of Mean TRAPs, developed in the previous chapter, for ASR . A simple template- 

matching based approach to phonetic classification using the Mean TRAPs is presented. 

We demonstrate the presence of considerable amount of phonetic information in each 

band-limited temporal trajectory of energies. We further analyze the nature of phonetic 

information available from all the sub-band Mean TRAP classifiers and propose a non- 

linear integration of these Mean TRAP classifier outputs, in the multi-band framework. 



This integration yields high ASR performance. An analysis of the errors of the TRAP- 

based combined system and the conventional spectral-based system shows availability of 

complementary information. A combination of these two systems is shown to yield better 

recognition performance than the conventional system. 

In Section 6.4, we present an improvement in the performance of the TRAP-based sys- 

tem, by using a neural classifier (called Neural TRAPs), in place of the template-matching 

based Mean TRAP classifier. In Section 6.5, we explore the use of broad phonetic catego- 

rization using Broad TRAPs, as a first step towards achieving fine phonetic categorization. 

The results obtained using this simplified system are quite promising. In Section 6.6, we 

demonstrate the robustness of the TRAP-based ASR system to convolutive as well as 

additive noise. We conclude this chapter with a summary in Section 6.7. 

6.1 Our Approach 

The multi-band experiments, discussed in Section 4.1, suggested the presence of spectral 

redundancy in the critical band filtered speech. This was demonstrated by the relatively 

gradual degradation in performance, when recognizing speech under various band-limited 

spectral conditions. These results and the potential of the temporal domain in providing 

reliable linguistic information, led Hermansky (Hermansky, 1998) to hypothesize that - 

"Even though there is a strong evidence that human auditory perception does 

some sort of spectral analysis of the incoming acoustic signal, it may be that 

the main reason for frequency selectivity of human auditory system is not 

to derive frequency content of a given segment for phonetic classification but 

rather to provide means for optimal choice of high signal-to-noise (SNR) regions 

for deriving reliable sub-band based features by temporal analysis of the high 

SNR sub-bands of the signal." 

Our approach investigates this hypothesis. Figure 6.1 represents our approach and 

contrasts it with the conventional paradigm of ASR. In contrast to doing phonetic clas- 

sification based on features extracted from the entire frequency spectrum (and possibly 

augmented with dynamic features), we propose phonetic classification based on features 
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Figure 6.1: Temporal Paradigm for ASR. 

extracted from 1 sec long temporal trajectory of logarithmic energies from a single fre- 

quency (critical) band. The phonetic class is defined with respect to the center of this 

temporal trajectory, as was used in the design of RASTA-like filters using LDA (van 

Vuuren and Hermansky, 1997). 

By using temporal vectors for classification, we aim to capture the temporal evolution 

of the band-limited spectral energy in the vicinity of the underlying phonetic class. Since 

the classifier based on temporal vectors attempts to capture the appropriate temporal 

pattern from the acoustic stream, we call such a temporal sub-band classifier the TRAP 

classifier. 

I 
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6.2 Experimental Setup 

- 

We have used two databases for our work, the OGI Stories corpus and the OGI Numbers 

corpus (both described in Section 2.2). The OGI Stories database is used for training the 

temporal (TRAP) classifiers. The OGI Numbers corpus which has a 32 word vocabulary 

and 29 phonetic classes is used for the recognition. 

The baseline system is the hybrid, hidden Markov model/multi-layer perceptron 

(HMM/MLP) speech recognizer (Bourlard and Morgan, 1994), described in Chapter 2. 



The features used for the baseline system consist of 8 PLP cepstral coefficients (Her- 

mansky, 1990) with utterance-based cepstral mean subtraction, along with 9 delta and 9 

acceleration coefficients. The input to the MLP consists of 9 frames of context, with the 

current frame at the center of this context window (234 dimensional input). The hidden 

layer has 500 units and the output of the MLP represents the estimated posteriori prob- 

abilities for the 29 phonetic categories occurring in the Numbers corpus. The baseline 

system is trained on the 1.7 hours subset of the Numbers corpus. This baseline system 

yields 21% frame-level error and 6.5% word-level error. 

6.3 Phonetic Classification using Mean TRAPs 

~ ( f j  , t) 
current _ 
frame 

correlate wit 0 assign 
4 center frame 

to /phoneme/ 

Figure 6.2: Template matching approach to phonetic classification in a frequency band, 
fi, using the Mean TRAPs. 

The Mean TRAPs of the phonemes in each frequency (critical) sub-band were derived 

in the last chapter. A simple way to use the TRAPs for phonetic classification is based 

on the template matching approach with a correlation-based similarity measure. Such a 

classifier has been referred to as the correlation classifier or the matched filter classifier in 

pattern recognition literature (Fukunaga, 1990). 

Fig. 6.2 represents the block diagram of the Mean TRAP-based sub-band classifier. 



To classify a frame in a particular critical band, a 1 sec time trajectory around that frame 

is matched to each of the 29 Mean TRAPs for that critical band, using the correlation 

measure. This measure is the same as used for the clustering of the TRAPs in Section 5.3 

and is given by Equation 5.1. The frame is assigned to the phoneme associated with the 

TRAP which yields the maximum correlation. The availability of 1 sec of data around the 

current time frame allows for mean removal from each 1 sec vector, to make the features 

robust. Further, in order to de-emphasize the contributions of the spectral energies towards 

the edges of the time trajectory, each 1 sec temporal vector is weighted by a Hanning 

window. Mean removal and window weighting is also carried out on the Mean TRAPs. 

Table 6.1: Frame-level performance of the Mean TRAP classifier in each critical band. 

Table 6.1 gives the range of the frame errors for the template matching based Mean 

SYSTEM 

Baseline 
Mean TRAPs 

TRAP classifier (using 29 TRAPS) for each of the 15 critical bands, when tested on the 

FRAMEERROR 

21 % 
78 - 82 % 

0.2 hours subset of the Numbers database. It is encouraging that the performance in 

each critical band is approximately 80% error even for the simple TRAP classifier. This 

is significantly better than chance (96.5% error for 29 classes), in spite of the fact that 

none of the TRAPs have access to any information about spectral correlations between 

neighboring bands. 

Table 6.2: Frame errors of the Mean TRAP classifiers as a function of the size of set k, 
where k corresponds to the set of classes having the top k similarity scores for a given 
frame. 

top 10 28 % 

SYSTEM 

Baseline 

FRAME ERROR 

21 % 
Mean TRAPs 



The recognition performance reported in Table 6.1 is based on comparing the class of 

the current frame with only the class corresponding to the top similarity score. Table 6.2 

gives the recognition performance, when we consider the input frame as correctly classified, 

if its class belongs to a set of classes having the top 5 and top 10 similarity scores. The 

frame error of the TRAPS in each critical band drops significantly from around 80% 

error to 50% error, by considering only the top 5 similarity scores, and to 28% when 

considering the top 10 similarity scores. This indicates that there is considerable amount 

of discriminative phonetic information even in a single time trajectory. 

6.3.1 Similarity scores obtained from the TRAP classifiers 

(a) 29 Mean TRAPs in freauencv band #5 (b) 15 Mean TRAPs for /iy/ 

d  t kdc l tc lkc l  s z f th v m n I  r w i y  ih e h e y a e a y a h a o o w u w e r a x s l l  1  2 3 4  5  6 7 8 9 1011 12131415  

(c) 29 Mean TRAPs in each of the 15 frequency bands 

(d) 15 Mean TRAPs for each of the 29 phonemes 
. . . . . . .  . . . . . . . . . . . . .  . . 

Figure 6.3: Average similarity scores for examples of /iy/ with (a), (b), (c) and (d). 

For every input frame, each Mean TRAP classifier outputs a similarity vector. The 

vector has 29 elements corresponding to the similarity scores obtained from the 29 phoneme 

Mean TRAPs. Since, there are 15 critical band Mean TRAP classifiers, we obtain 15 

output similarity vectors, one from each classifier. Hence, for every input frame, there are 



(a) 29 Mean TRAPS In frequency band #5 (b) 15 Mean TRAPS for /ah/ 
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(c) 29 Mean TRAPs in each of the 15 frequency bands 
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(d) 15 Mean TRAPs for ( 
. . . . . . . . . . . .  

Figure 6.4: Average similarity scores for examples of /ah/ with (a), (b), (c) and (d) 

(15 x 29) 435 similarity scores. We examined the average similarity scores obtained for the 

occurrences of each of the 29 phonemes, on the cross-validation set of the OGI-Numbers 

database. 

Similarity scores for phoneme /iy/ 

Fig. 6.3 shows the average similarity scores obtained for the phoneme /iy/. Fig. 6.3(a) 

shows the 29 similarity scores obtained from the fifth critical band TRAP classifier. The 

Mean TRAP corresponding to /iy/ produces a high score, as desired (marked by a circle 

in the figure). However, most of the other vowel Mean TRAPs also yield high similarity 

scores because of the similarity in their temporal patterns, as noted in Section 5.2.1. The 

Mean TRAPs corresponding to the consonants yield lower similarity scores for occurrences 

of /iy/. 

Fig. 6.3(b) shows the similarity scores obtained from the 15 critical band Mean TRAPs 

of /iy/. The similarity scores are higher in the lower and higher frequency regions. Since 
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(11) Average similarity scores for examples of /t/  with (a), (b), (c) and (d). 

Figure 6.5: Average similarity scores obtained for the 2 classes, /f/ and I t / ,  from the 
Mean TRAP classifiers. 



/iy/ is a front vowel, these frequencies also roughly correspond to the regions of high 

energy in the /iy/ spectrum. This suggests that the higher spectral SNR regions yield 

more reliable scores. 

Fig. 6.3(c) shows all the 435 similarity scores obtained from the 15 Mean TRAP classi- 

fiers. The regions bounded within the vertical dotted lines show the 29 scores obtained in 

the corresponding critical band (marked along the x-axis). Thus, Fig. 6.3(a) represents a 

blow-up of the fifth critical band in this figure, as shown. There is considerable variation 

in the similarity scores across frequency bands, especially if we compare the lower, mid and 

high frequency similarity scores. The scores corresponding to the mid-frequency regions 

do not show a systematic confusion pattern as shown by the lower and higher frequency 

regions (and described above for Fig. 6.3(a)). This indicates that the lower and higher 

frequency sub-bands should yield more reliable information about the occurrence of /iy/ 

as compared to the mid-frequency bands. 

Fig. 6.3(d) shows the same 435 similarity scores, as shown in Fig. 6.3(c), except that 

the order in which the scores are displayed has been changed. In this figure, the scores 

are arranged by the 29 phonetic classes, to explicitly show the distribution of scores of 

the correct class /iy/, with respect to the distribution of scores of the other 28 classes. 

The regions bounded by the vertical dotted lines represent the 15 scores obtained from 

the 15 frequency band Mean TRAPS, corresponding to the phoneme labeled along the 

x-axis. Fig. 6.3(b) is thus a blow-up of the region labeled /iy/ in this figure, as shown. 

The vowels tend to have a similar distribution of scores, as noted for Fig. 6.3(a). If we 

compare Fig.(d) obtained for occurrences of the other phonemes (discussed below), we see 

that this distribution of scores appears to be distinct for each of the phonemes. 

Similarity scores for phoneme /ah/ 

Fig 6.4 shows the average similarity scores for the phoneme /ah/. In this figure, Fig 6.4(a) 

is similar to the corresponding Fig 6.3(a) obtained for /iy/. The similarity scores are higher 

for the vowels as compared to the consonants. Fig 6.4(b) however is different, since /ah/ 

is a back vowel and is characterized with higher energy at the lower frequencies. The sim- 

ilarity scores appear to follow this characteristic of the spectrum of /ah/. Consequently, 



the next figure, Fig 6.4(c), appears to have more reliable information in the lower frequen- 

cies while the higher frequency scores show a different confusion pattern. If we compare 

Fig 6.4(d) with Fig. 6.3(d), we observe that though the vowel similarity scores are high 

in both these cases, the two phonemes exhibit a different relation among the similarity 

scores of the 29 phonemes. 

Similarity scores for phonemes /f/ and /t/ 

Figs. 6.5(1) and 6.5(II) represent the average similarity scores obtained for the fricative 

/f/ and stop-consonant / t / ,  respectively. The figures show that the vowel TRAPs yield 

lower similarity scores for these phonemes as compared to the other TRAPs. For the 

phoneme /f/, the Mean TRAPs corresponding to /f/ appear to have different reliability in 

different frequency bands, with higher similarity and reliability (fewer confusions) at lower 

frequencies (Figs. 6.5(1) (b) and 6.5(1) (c)). The stop / t /  attains a high similarity score, 

irrespective of the frequency band. The similarity scores obtained for these two phonemes 

also show distinctly different relations with the similarity scores obtained from the other 

phoneme TRAPs, as is evident from the figures Fig. 6.5(I)(d) and 6.5(II)(d). 

Average similarity scores for the other phonemes are given in Appendix B. 

6.3.2 Combination of the Mean TRAP classifiers 

In the previous section, we examined the 435 similarity scores obtained for the phonemes, 

on the cross-validation data of the OGI-Numbers database. We observed that the scores 

have a different distribution across frequency bands and also across the phonemes, de- 

pending on which phoneme data are considered. The combination of scores, so as to take 

into account these different distributions, should yield better performance than that of 

any single TRAP classifier. 

We consider the combination of scores in the multi-stream framework, where each sub- 

stream corresponds to a critical band Mean TRAP classifier. Each TRAP classifier yields 

a similarity vector (comprising 29 elements) per input frame. The 15 similarity vectors 

thus obtained are then combined to obtain the combined frame classification. Fig. 6.6 

represents the block diagram of such a system. 
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Figure 6.6: Mean TRAP combiner block diagram. Each TRAP classifier has the form 
shown in Fig. 6.2 up to the decision-making block. 

As in the multi-band ASR system, we use a single hidden layer, feed-forward MLP for 

combining the outputs obtained from each of the 15 Mean TRAP classifiers. The input to 

the combining network is the concatenated vector of the scores for the 29 phonetic classes 

from each of the corresponding 15 TRAPS (435 dimensional input). The network has a 

hidden layer of 300 units and 29 outputs which represent the merged estimate of the class 

posteriori probabilities. The combination network thus has 139200 parameters which is 

comparable to the 131500 parameters of the baseline system. 

Table 6.3: Performance of the Baseline system and the Mean TRAP-based combined 
system on the OGI Numbers corpus. 

1 Mean TRAP-based 1 22 % 1 11.5 % I 
I 

Table 6.3 compares the frame errors and word errors of the baseline system and the 

Mean TRAP-based combined system. The frame level performance of the baseline system 

and the Mean TRAP combined system is quite comparable. On the word level, the simple 

Mean TRAP-based recognizer yields about twice the error of the baseline system. 

Comparison of the frame-level errors of the baseline system to the TRAP-based com- 

bined system shows that although the TRAP-based system improves the frame perfor- 

mance on some fricatives and silence as compared to the baseline system, it suffers in its 

1 Baseline 21 % 6.5 % 



performance on the vowels. This trend in errors is consistent with the notion that the 

vowels are better characterized by their spectrum, and hence, a spectral based system 

should classify them better. Also, since most ASR systems (specifically the decoder) rely 

heavily on vowel recognition to achieve good word-level accuracy (Rabiner and Juang, 

1993), this could account for the lower performance of the Mean TRAP-based system on 

the word level as compared to the baseline system. 

6.3.3 Combinat ion of the Baseline and TRAP-based systems 

Table 6.4: Analysis of the frame-level decisions of the Baseline and the Mean TRAP-based 
combined system on the cross-validation set. 

As noted above, though the baseline system and the TRAP-based combined system 

yield similar performance on the frame-level, they make errors on different frames. Ta- 

ble 6.4 gives the exact analysis of the decisions made by the two systems on the frame- 

level. For approximately 16% ((5509 +4844)/62482) of the frames, both the systems make 

complementary errors. Considering only the errors, out of the total errors made by the 

TRAP-based system (8296+5509 frames), the baseline system gives correct decisions for 

around 40% (5509 frames) of these frames. Similarly, out of the total errors (8296+4484) 

made by baseline system, the TRAP-based system gives correct decisions for around 37% 

(4844 frames) of these frames. This indicates that the two systems make a significant 

number of complementary errors and hence, yield a significant amount of complementary 

information. 

This indicates that a combination of the outputs of the two systems can yield an 

improvement in performance (Sharma et al., 1998). We combine the outputs of the baseline 

system and the TRAP-based system at the frame level (Fig. 6.7) using a simple average 

Nature of decisions 

same decisions 

complementary 
errors 

BASELINE 

correct 
wrong 
correct 

MEAN TRAP-BASED 

correct 
wrong 
wrong 

NO OF FRAMES 

43,833 
8,296 
5,509 

wrong correct 4,844 
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Figure 6.7: Block diagram of combination of baseline (spectral-based) system with TRAP- 
based (temporal) system. 

of the corresponding log-likelihoods from the two systems. Table 6.5 shows that the 

combination yields improved word level performance as compared to the baseline system. 

Table 6.5: Performance of the Baseline system, the Mean TRAP-based combined system 
and a combination of these two systems. 

I SYSTEM I WORD ERROR I 

Mean TRAP-based 11.5 % 

6.4 Neural TRAPS 

The Mean TRAP-based system uses simple linear correlation classifiers, which compare the 

incoming trajectory of spectral energies with the Mean TRAP templates derived for each 

phoneme. Use of a more sophisticated classifier could improve performance. Hence, we 

explored a neural network based non-linear classifier, in order to provide a generalization 

of the Mean TRAP classifiers. 

Fig. 6.8 shows a single Neural TempoRAl Pattern (TRAP) classifier. A feed-forward 

multi-layer perceptron (MLP) is used to classify the center frame of a 1 sec long (101 

points) temporal trajectory, in each critical band. The temporal trajectory comprises of 

the logarithmic energies in the particular critical band. Each Neural TRAP classifier has 

300 hidden units and 29 outputs. It is trained on 2 hours of the OGI Stories corpus for 
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Figure 6.8: Neural TRAP. 

the 29 phonetic classes. The trained TRAPs are tested on the OG1 Numbers corpus. The 

Table 6.6 shows that the performance of the sub-band Neural TRAP classifiers is better 

than the performance of the sub-band Mean TRAP classifiers. 

Table 6.6: Frame-level performance of different TRAPs on OGI Numbers corpus. Robust 
Neural TRAPs refers to the case when the input time trajectories are mean subtracted, 
variance normalized and windowed. 

6.4.1 Robust Neural TRAPs 

SYSTEM 

Mean TRAPS 
Neural TRAPS 

Robust Neural TRAPS 

To make the input representation robust to convolutive channel distortions, the mean can 

be subtracted from the available 1 sec temporal trajectory vector. To compensate for 

the decrease in the variance of the vector, commonly observed in the presence of additive 

environmental noise conditions (Moreno et al., 1995; Tibrewala and Hermansky, 1997), 

each input 1 sec time-trajectory can be normalized to have unity variance. In order to 

de-emphasize the contributions of the spectral energies towards the edges of the time tra- 

jectory, each input pattern can be further weighted by a Hamming window, as in the case 

of Mean TRAP classifiers. Fig. 6.9 shows the effect of mean and variance normalization, 

FRAME ERROR 

FOR EACH CRITICAL BAND 

78 - 82 % 
65 - 69 % 
66 - 74 % 
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Figure 6.9: Effect of mean subtraction, variance normalization and windowing on a 1 sec 
spectral time trajectory of clean speech and speech corrupted with additive white noise. 
Spectral trajectory shown is at 500 Hz. 

and windowing on a particular 1 sec vector. The normalization attempts to reduce the 

mismatch between clean speech case and the case with white noise added. Though this 

normalization is expected to improve performance in mismatched conditions, it is seen 

from the Table 6.6 that the additional mean and variance normalization (referred to as 

Robust Neural TRAPs) degrades the performance, as compared to the Neural TRAPs, 

in matched conditions. However, the performance is still better than that of the Mean 

TRAPs. 

6.4.2 Combination of Neural TRAPs 

Each input speech frame is classified by the 15 Neural TRAPs corresponding to the 15 

critical bands. To obtain a single classification result for a frame, we use a MLP for 

combining the outputs obtained from each of the 15 TRAPs, as used in the case of Mean 

TRAP classifiers (Section 6.3.2). The input to the combining network is the concatenated 



vector of the estimated class conditional log-likelihoods of the 29 phonetic classes, from 

each of the 15 TRAPs (435 dimensional input). The network has a single hidden layer 

of 300 units and 29 outputs which represent the merged estimate of the class posteriori 

probabilities. The combiner network is trained on the 1.7 hours subset of the Numbers 

corpus. 

Table 6.7: Performance of the combined TRAPs on the OGI Numbers corpus. 

Table 6.7 compares the frame errors and the word errors of the baseline system and 

the Neural TRAP-based combined system. The performance of the Neural TRAP-based 

combined system on the frame-level is better than that of the baseline system and the 

Mean TRAP-based combined system. On the word level, the Neural TRAP-based system 

performs significantly better than the Mean TRAP-based system. However, it is still worse 

as compared to the baseline system. On comparing the frame-level errors it is seen that the 

Neural TRAP-based system still suffers in the recognition of some vowels as compared to 

the baseline system. The Robust Neural TRAP-based system results in slightly degraded 

performance as compared to the Neural TRAP-based system. 

WORD ERROR 

6.5 % 
SYSTEM 
Baseline 
Mean TRAP-based 
Neural TRAP-based 
Robust Neural TRAP-based 

6.4.3 Combination of the Baseline and Neural TRAP-based system 

FRAME ERROR 

21 % 

An analysis of the frame errors of the baseline and Neural TRAP-based system shows 

that approximately 40% of the errors made by the two systems are complementary. This 

indicates that both the systems yield significant complementary information. Such a 

situation makes both systems good candidates for merging (Sharma et al., 1998), as was 

observed in the case of Mean TRAPs-based system (Section 6.3.3). 

We combined the outputs of the baseline system and the Neural TRAP-based system 

at the frame level, using a simple averaging of the corresponding log-likelihoods obtained 

22 % 
18.7 % 
20.0 % 

11.5 % 
7.6 % 
8.8 % 



Table 6.8: Performance of the Baseline system, and combination of the baseline system 
with the TRAP-based systems. 

SYSTEM 
Baseline 

from the two systems. Table 6.8 shows that the combination results in a significant 

WORD ERROR 

6.5 % 
- - -  -- 

improvement (at the 0.001 level using a binomial significance test) in performance as 

COMBINED WITH BASELINE 
Mean TRAP-based 
Robust Neural TRAP-based 

compared to the baseline system. 

5.7 % 
4.7 % 

6.5 Broad TRAPs 

The Broad TRAPs were derived in Section 5.3, by clustering the Mean TRAPs in each 

critical band, using the correlation similarity measure. The clustering results in 5 broad 

categories, which also correspond to the broad phonetic categories in speech - i.e., vowels, 

stops, fricatives, schwas and silence. For every incoming 1 sec time trajectory vector, we 

can compute the similarities between the vector and the corresponding frequency band 

Broad TRAPs. These similarity scores will represent the degree of vowel-like, stop-like, 

fricative-like, schwa-like and silence-like qualities, contained in the time trajectory of the 

phonetic class represented by the center frame. 

Fig. 6.10 shows the average similarity scores for all occurrences of the 4 phonetic 

classes, /iy/, /ah/, /f/ and / t /  in the cross-validation set of the OGI-Numbers database, 

with respect to the 5 Broad TRAPs. The scores within each broad category are plotted 

for all the 15 critical band Broad TRAPs, resulting in (5 x 15) 75 scores per phoneme. 

The figure shows that the vowels /iy/ and /ah/ have a high degree of vowel-like quality. 

However, the scores representing the vowel-like quality vary across critical bands depending 

on the specific vowel. For example, for the vowel /iy/ the scores are higher in the lower 

and higher frequency bands of the vowel TRAP. This conforms with the fact that /iy/ is 

a front vowel. While, for the vowel /ah/, which is a back vowel, the scores have a higher 
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Figure 6.10: Average similarity scores for each of the phonemes /iy/, /ah/, /f/ and /t/. 
The regions bounded by dotted lines represent the 15 frequency bands within each of the 
5 Broad TRAP categories, as labeled on the x-axis. 
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value in the low and mid frequency regions. The fricative /f/ has a high degree of fricative 

and stop-like characteristic, while the stop / t /  has a high degree of stop-like quality. 
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If we combine the 75 similarity scores obtained per frame, so as to exploit the varia- 

tions in the degrees of the five qualities, we should obtain good discrimination among the 

phonetic categories. 

6.5.1 Classification using Broad TRAPs 

The Broad TRAPs can be used for the classification of incoming time trajectories into the 

corresponding broad phonetic categories, using the template matching technique described 

in Section 6.3. The frame-level error for such a classification in each critical band, is in 

the range of 32% - 40%. The 5 correlation based similarity scores obtained in each critical 



band can further be used for phonetic classification, by using a MLP for combination. 

The scores obtained from each of the 15 critical bands are concatenated to yield a 75 

dimensional vector. This vector forms the input to a combiner which has 500 hidden units 

and 29 outputs. 

Table 6.9: Performance with the Broad TRAPs. 

1 SYSTEM I FRAME ERROR I WORD ERROR 1 

Table 6.9 shows that the performance using Broad TRAPs is only slightly worse as 

compared to the performance yielded by the Mean TRAPs. This indicates the possibility 

of significant dimensionality reduction in the TRAP-based system. It also suggests that 

the full phoneme classification on each sub-band temporal energy pattern may not be 

necessary. 

Mean TRAP-based 
Broad TRAP-based 

6.6 Performance of the TRAP-based System in Noise 

To assess possible advantages of the TRAP-based recognizer in degraded environments, 

we tested it on speech artificially degraded by various types of noise. We use only the 

Robust Neural TRAP-based system for testing under mismatched conditions. 

22 % 

6.6.1 TRAPs in convolutive noise 

11.5 % 

The baseline system uses utterance-based cepstral mean subtracted features, which are 

known to be robust to convolutive noise. TRAPs should also be robust to such a distortion 

because of the local (1 sec) input mean removal. To simulate convolutive distortion, the 

test data was pre-processed by a pre-emphasis filter (1 - 0.95~-I).  

Table 6.10 shows that the performance of the baseline system without cepstral mean 

subtraction degrades rapidly from 21.8% frame error and 8% word error on clean test 

data, to 33.3% frame error and 16% word error on pre-emphasized data. On the other 

hand, both the baseline system with mean subtraction and the TRAP-based system show 

24.6 % 12.8 % 



Table 6.10: Comparison of the degradation in performance from clean test condition to 
condition corrupted by convolutive distortion. 

only a slight degradation in performance to such convolutive distortion, as compared to 

the clean test case. This demonstrates an inherent robustness of the TRAP-based system 

to convolutive channel distortion. 

6.6.2 TRAPs in additive sinusoidal noise 

SYSTEM 

Baseline without CMS 
Baseline 
TRAP-based 
Baseline + TRAP 

Table 6.11: Frame and Word errors (%) 

WORDERROR 

I I I I 

I Baseline 1 42.57 % 1 36.9 % 1 

FRAMEERROR 
Clean 

8.0 % 
6.5 % 
8.8 % 
4.7 % 

I TRAP 1 29.15 % 'o 18.1 % I 

Clean 

21.8 % 
21 % 
22 % 

' Noise 

16 % 
7 % 

10.2 % 
5.3 % 

The performance of the TRAP recognizer on additive sinusoidal noise at  1 kHz and 

SNR lOdB is shown in Table 6.11. The TRAP-based system results in half the error 

rate as compared to the baseline system. This result is consistent with the results of the 

multi-band system on narrowband noise. 

Noise 

33.3 % 
22.5 % 
21.1 % 

6.6.3 TRAPs in realistic additive noise 

Realistic noises (white, pink, factory and destroyer-engine) from the NOISEX-92 database 

were added to the data. Table 6.12 compares the performance of the baseline, TRAP- 

based and combined systems in the presence of these noise conditions. It is seen that the 

TRAP-based system consistently gives reduced frame error as compared to the baseline 



Table 6.12: Frame and word errors (%) for the additive noises from the NOISEX-92 
database. 

system and gives quite comparable performance on the word level. The combined base- 

line and TRAP system results in significant improvement in the word level performance. 

Specifically, the combined system results in around 25% reduction in word error (average 

reduction on the four noise conditions) as compared to the baseline system. 

6.7 Summary 

In this chapter, we investigated an extension of the multi-band model to incorporate 

medium-term temporal information. The resulting TRAP-based system represents a gen- 

eralization of the multi-band system. Each sub-band consists of only one critical band, 

hence any across-frequency correlation is ignored. Each sub-band uses a 1 sec time tra- 

jectory of spectral energies per input frame for phonetic classification. 

Our experiments show that it is possible to classify phonemes with a reasonable accu- 

racy (around 30%) based on rather long (longer than a single phoneme) temporal pattern 

of spectral energy, in a single critical band alone. We also show that by combining classi- 

fication results from the individual critical bands, we can achieve recognition performance 

quite competitive with the current state-of-the-art spectral-based ASR systems. The re- 

sulting temporal (TRAP-based) system also yields significant amount of complementary 

information, as compared to the conventional (spectral-based) system. Hence, a combi- 

nation of these two systems yields a significant improvement in performance (around 25% 

reduction in word error rate) over the baseline system, in both matched and mismatched 

test conditions. 

This work thus represents a further development of the Fletcher- Allen model (Allen, 

SYSTEM 

Baseline 
TRAP 
Combined 

FACTORY PINK ENGINE 
FRAME 
42.15 
39.21 

FRAME 
49.39 
45.81 

WHITE 
FRAME 
41.56 
34.25 

WORD 
24.3 
26.6 
19.0 

WORD 
33.5 
33.9 
24.6 

FRAME 
41.59 
37.52 

WORD 
24.9 
21.6 
15.5 

WORD 
23.4 
25.1 
17.8 



1994) of speech recognition. It supports the notion of moving away from the conventional 

across spectrum processing approach towards an across t ime  processing approach to speech 

recognition. 



Chapter 7 

Conclusions and Future Work 

This dissertation presents an approach to address the problem of robustness of speech 

recognition systems to environmental noise. The approach taken is to incorporate two 

concepts into the ASR system - 1) the partial recognition of phonemes in several frequency 

sub-bands, and 2) syllable-length temporal processing of speech information. Psychoacous- 

tic evidence suggests that the human auditory system is capable of the processing implied 

by these two concepts (Fletcher, 1953; Allen, 1994; Hermansky, 1998; Greenberg, 1996), 

which we believe accounts to some extent for its robustness. We have used a multi-stream 

framework to incorporate the two concepts. 

In this work, we have proposed and developed two multi-stream models for speech 

recognition. We have also shown the advantages of these models in dealing with environ- 

mental noise. The first model is the multi-band model, which processes different regions 

of the speech spectrum independently, in contrast to the conventional across-spectrum 

processing model. The phone probability estimates from each of the frequency sub-bands 

are then merged for final decoding purposes. The second multi-stream model is the Tern- 

poRAl Pattern Classifier (TRAP) model, which is an extension of the multi-band model. 

In addition to using independent frequency processing as in the multi-band model, it also 

incorporates medium-term temporal dependencies (around 200-500ms) in each frequency 

channel. 

In Section 7.1, we present the conclusions from this work. Section 7.2 suggests direc- 

tions for future work. Section 7.3 concludes with some final remarks. 



7.1 Conclusions 

The main conclusions from the work presented in this dissertation are: 

Independent frequency processing: 

We have shown, using the multi-band and the TRAP models, that it is feasible to inde- 

pendently estimate phonetic probabilities from different regions of the frequency spectrum 

and then merge these partial results. The resulting system, which overlooks possible across 

frequency correlations, performs comparably to the conventional system, which uses cor- 

relations across frequency regions. 

Medium-term temporal processing: 

We have shown, using the TRAP model, that is it viable to use an across-time process- 

ing approach which processes medium time-spans (around 200-500ms), as opposed to an 

across-frequency approach to speech recognition. We used a 1 sec time trajectory in each 

frequency channel, instead of the conventional 10-100ms spectral vector, to classify the 

phonetic category in the center of the vector. Our experiments show that it is possible to 

classify phonemes with reasonable accuracy (30%) in the relatively narrow (critical band) 

sub-bands. On a continuous numbers task, the system obtained by the combination of the 

temporal sub-band classifiers yields performance close to that of the conventional system. 

Complementary nature of spectral and temporal systems 

We have shown that the temporal-based (TRAP) system yields considerable complemen- 

tary phonetic information as compared to the conventional spectral based system (40% of 

the errors of the two systems are complementary). A combination of these two systems 

yields around 25% reduction in word errors. 

Robustness to environmental degradations 

We have shown that merging independently processed frequency sub-bands makes the 

system robust to narrow-band noise, for e.g., we showed using an isolated digit task, that 



the multi-band model is inherently robust to additive noise which corrupts some frequency 

sub-bands more than the others. If we estimate the sub-band reliability and merge only 

the more reliable sub-bands, a further improvement in performance is obtained. 

We have shown that medium-term temporal processing also improves noise robustness. 

The TRAP-based system is robust to convolutive distortions due to the 1 sec mean removal 

from the time trajectories of critical band energies. On a continuous numbers task, the 

combined spectral and TRAP-based (temporal) system yields around 25% reduction in 

word errors in additive noise conditions. 

7.2 Suggestions for Future Work 

The systems developed in this dissertation can be considered as a proof of concept that - 1) 

correlations across frequency regions are less important to speech recognition than assumed 

by most state-of-the-art systems, and 2) temporal correlations can play a significant role 

in improving noise robustness of speech recognizers. Hence, further studies on the issues of 

model implementation such as sub-band definitions could improve performance. We have 

used cepstral-based features in the sub-bands, as used in most state-of-the-art systems. 

However, research on features in the conventional systems has been on-going for several 

decades. Likewise, the multi-band model could also benefit from efforts to improve the 

sub-band features. 

Other areas of future work could include: 

Extending the scope to multi-input framework 

In this work we focussed on the single-input, multi-stream framework. However, the 

techniques discussed for sub-stream combination and reliability estimation can be applied 

to the generalized multi-stream framework (discussed in Section 1.3) which uses multiple 

inputs. For example, visual input in addition to audio input or audio input from multiple 

microphones. Future work could investigate the multi-input framework. 



Merging techniques 

We have used hybrid (HMM/MLP) based recognizers for all the experiments reported in 

this dissertation. However, HMM based recognizers are widely used in speech research. 

The definition of sub-bands can be easily used in the HMM framework. It is also easy to 

combine the HMM-based sub-bands, provided the sub-streams are independent. The esti- 

mated sub-band log-likelihoods can then be combined linearly, as given in Eq. 3.10. This 

technique has been used in (Tomlinson et al., 1997) and (Okawa et al., 1998) with some 

success. However our experiments on merging techniques, as discussed in Section 3.7.3, 

indicate that the non-linear merging of the log-likelihoods yields an improvement in per- 

formance, as compared to a linear merging (or weighted linear merging) technique. Use 

of non-linear merging techniques should be investigated in the HMM framework. 

Sub-band reliability estimation in large vocabulary tasks 

We have shown in Section 4.4.1 that combination of the more reliable sub-bands in the 

multi-band system improves performance in noisy conditions. The selection strategy which 

uses sub-band SNR estimation can be applied to the large-vocabulary recognition task. 

However, most of the classifier-based techniques (discussed in Section 4.2.2) resort to 

majority voting among the top N% of the merging classifiers which have high reliabil- 

ity estimates. Majority voting is feasible in case of an isolated word recognition task. 

Extension of the classifier-based techniques to large vocabulary tasks can be investigated. 

Features in TRAP classifier 

We have used 1 sec time trajectories of log critical band energies as features in each TRAP 

classifier. We found that mean removal and variance normalization of each 1 sec input 

vector improved the robustness of the TRAP classifier. Other techniques for improving 

robustness, such as time trajectory smoothing using low-pass filters, could be investigated. 



7.3 Final Remarks 

This work represents a small step in the direction of moving away from the commonly 

accepted paradigm of across-frequency processing approach to speech recognition. The 

work in this dissertation demonstrates that speech recognizers can gain by incorporating 

some concepts that are appealing from the engineering point of view, as well as that appear 

to account for the robustness of the human speech perception system. We have shown that 

even a simple engineering modeling of these concepts can improve system performance, 

especially in mis-matched conditions, without the need for re-training the system. 

It is our hope that this work will encourage new approaches to acoustic modeling in 

speech recognition. 
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Appendix A 

TIMIT Phoneme Set 

I TIMIT I Worldbet ( Example I I TIMIT I Worldbet I Example I 

Table A. l :  61 TIMIT phonemes used in the multi-band experiments. 



Appendix B 

Mean TRAPS 

The figures in this section show the average similarity scores obtained for all occurrences 

of 24 phonemes in the cross-validation portion of the OGI-Numbers database, as explained 

in Section 6.3.1. 
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Figure B.l: Comparison of the average similarity scores obtained for the 2 classes, /d/ 
and /k/, from the Mean TRAP classifiers. 
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Figure B.3: Comparison of the average similarity scores obtained for the 2 classes, /kc11 
and Is/ ,  from the Mean TRAP classifiers. 
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Figure B.4: Comparison of the average similarity scores obtained for the 2 classes, /z/ 
and /th/, from the Mean TRAP classifiers. 
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Figure B.5: Comparison of the average similarity scores obtained for the 2 classes, /v/ 
and In/,  from the Mean TRAP classifiers. 
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Figure B.6: Comparison of the average similarity scores obtained for the 2 classes, /1/ and 
/r/, from the Mean TRAP classifiers. 
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Figure B.7: Comparison of the average similarity scores obtained for the 2 classes, /w/ 
and /ih/, from the Mean TRAP classifiers. 
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Figure B.8: Comparison of the average similarity scores obtained for the 2 classes, /eh/ 
and /ey/, from the Mean TRAP classifiers. 
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Figure B.9: Comparison of the average similarity scores obtained for the 2 classes, /ay/ 
and /ao/, from the Mean TRAP classifiers. 
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Figure B.lO: Comparison of the average similarity scores obtained for the 2 classes, /ow/ 
and /uw/, from the Mean TRAP classifiers. 
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(a) 29 Mean TRAPS in frequency band #5 (b) 15 Mean TRAPS for /er/ 
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(11) Average similarity scores for examples of /ax/ with (a), (b), (c) and (d). 
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Figure B. l l :  Comparison of the average similarity scores obtained for the 2 classes, /er/ 
and /ax/, from the Mean TRAP classifiers. 
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(I) Average similarity scores for examples of /sjl/ with (a), (b), (c) and (d). 

Figure B.12: Comparison of the average similarity scores obtained for the class /sil/ from 
the Mean TRAP classifiers. 
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