THE DESIGN AND IMPLEMENTATION
OF A HYPERTEXT DOCUMENT MANAGEMENT SYSTEM

by
Bikram: Day

A THESIS

Presented to the Division of Medical Informatics and Outcomes Research
and the Oregon Health Sciences University

School of Medicine

in partial fulfiiment
of the requirements for the degree of
Master of Science
May 1998

School of Medicine

Oregon Health Sciences University

CERTIFICATE OF APPROVAL

This is to certify that the M.S. thesis of

Bikram Day

has been approved

Chair: William Hersh, M.D.

“Christopher

Paul Gorman, M.D.

Andrew Zechnich, M.D. M.P.H.

Associate Dean for Graduate Studies

TABLE OF CONTENTS

ki ACKNOWIAGRMEIE. i susnnsmavmasinor i in s sy sas e sEa s pansn i davisis v
I ABSIrAtl v imisassomiimsmmismisonssnaresvivss B S A NS A VB S e Vi
MY IO ORI RO <o aiiamassiin s s icaiso s i e S S A S B R SR VA By
G R 0 37/= o = 7 S Y WA ST T WP L. R SN SR RN ERR RN T R s G YT 1
2. BACKGIOUNG oot ettt e e es kit e e e e s et e e e e e sesabeeaessatbaate s sameee e e nareeeeesbuaeasansaesennsbnenanasansnas 3
3 EOAIS OIS PROJECE. ... ;e ocweosnne s poms s sme s ame s e o bk e s P I T E b B i mwemasssn s e wswnans 6
4. PrEVIOUS WOTK. 1iiiieutteeerisiiitee ettt et e et sttt et e et ess e s e s amr e e e s bbn e s s s sbas s e e bbb e e s mc e s 2 mmnneneeaneaan 9
IV. Implementatlom. i ommmmensrrannsassnssmimissnsnssinsmasnnionsissipmmmmnsnsnnasngssn 13
LR ;1= aTe o To] (o | 13
U1 SYSEIMN DI ST recrmmemamms s s mssmasss s VA se e s s i S5 e B st il 13
1.2, SYSEEIMN LLAYOUL. .oreeiecieieiee ettt et et e sttt e st st saa e ean e s b st besab s et et s 14
1.3. Document Acquisition Engine (DAE)cccccoviiiiiiiiiiciiiiiiinsieiece e 17
1.4. Document Control Interface (DCI)......ccoiiiiiieiiiiieieceire ettt cecmtr s enne s e st ee e e s rananne 20
1.4.1 DAE USCr INEEITACE ...cciiieieiiiieeiii ettt ettt et s e e e a e et e s ne s meessman s oenrnns 21

1.4.2 CIUSTET CIBALOT .. et eviveeeieierrerasiaeeiorsre sttt ernnaesessreeasneesutebesbeeseanesamteasaneesmneeemnesses s seeenenessnaesssanans 21

1.4.3 Browser/Selector INTEIFACEc.eicviieiieeie ettt vee s e s 22

1.4.4 Meta-data DIOWSEI/CTEALOT . .ecocvuiieeieieiiieeetieieireeaesiee e rieeeeeeasteresaneeenesesresenesonetssssecnsmtasasusesaons 22

1.5. Document Processing Engine(DPE) ... 23
1.5.1 RDBMS AUVET «..........ocvensnmssibindiliies sersrnsmossnsrs odsssssssasssn sras sbost Sontt AL i e orvomsss sysgisnsr sprasacs 23

1.5:2 Clustering MoOGUIB.........c..cooovimmuecm it aacson bt aromeumsare sesaossiminns 555 65300 ¥enns st oo s b s 24

1.5.3 Topology MOAULC.......cooiiiiiiiicreee et te e re e s seeneeesae e e b e s se e neanaeseearees 25

1.5.4 Indexing and Search eNZINeccocovririciiricr et et 28

2. Implementation DeLalSccociiiiririe ettt ettt ettt sttt ae et n e s rans 31
2.1. Description Of the tablesooi ittt 31
(1) Table “WE IS s om0 5 B B S e oo S vo v onvwevaniivaveve fobwsavess 31

(2) Table: ‘AL LIS 1... bl iR b b Eb S s W b B L6 S v miems e s Jo e e ves e Somwase s ioas senins Seke o smmseesssvmns 32

(B) TabIE “LirIKS ooieiiii ettt et ete ettt et ete e et et e e e e re et eent e neeneeneeneeeaneeanrennnees 33

(4) TaADIE LU @IS ot ettt ettt e e ae et e enae e r e e s e eeneeaneeaneean 34

(5) Table “AoC _CLlUSE @I ittt e e e et e s s ess s enssaeeresebeesneenneeersenssseresens 34

(6) Table et a_AATA o ettt et et s e s esesere st esneenseansesesernsesseensseseserean 34

(0 T - 1o (S W ol I ol =R RORO RO 35

2.2, UniqQue TANHFIBTS «.c.ovviiiiiiiieeet ettt ettt e e e eae e e eee e s esn e e ee s 35
2.3, DOCUMENE THHES ...octiiiiiiiiiei ettt ettt st e et ese e e sab st eaetnaesereessebeenenneesuresennns 36
2.4. Generating Alternate Document Titlescooovrerieiirieieeccecieeese et e 37
2.5. Meta-data EXICIISION .o...oeoiiiiiiieiieiietie et e e eeeae et e e saesreeeesesraesnseaneeasaessansseasneessessenseaes 37
2.6. Using the Meta-data Table........o.coooiiiii ettt 38
2.7 USINE CIUSTOIS .1 veeiiieiieies it eeiteesteet e eeeeeteeesteassstesvs e seessntscbeesaeesseastesateebeeestebesasesasesansenssesesanseaasaeas 39
Vo DisCUSSION tciiiiiiaiis i adiian Shba sa s b s s s e ma i I P oos 41
1. SCOPE OF thiS PrOJECE .uiiiiiiii ettt e sttt e et e et e e earaes e erneesanaeeans 41
2. Performance Assessment and Evaluation........ccoceeviirioiisiccien e 43
S APUGEIFWIITK om0 55 s s s i e i b o o o 4 s e e e 45
VL DG BN i s s s s s s s S S T S e 46
VIl. References......ccccounee PP R Ps e e e T TS O PR PP IE el

VIII. 'ADPeREICOS ::ouumummiismms munssspames susnaasausnasanmnnn e snss sas o piBires sEquss fous sussas s gomsed 52

Appendix A.

Appendix B.

Appendix C.

Appendix D.

Appendix E.

DTy T T4 1o T OO PSSO U ROV PO 52
Table StIUCIUIES .veee ettt eene 53
DAE Codes FOr DOCUMENTS ..ccco.iiiiec it rer e nn e e e e s s ren e s ene s 54
Command Line Parameters for the DAE ...t 55
Screen Snapshots of the Program ... 56

TABLE OF FIGURES

Figure 1. Software layout of the system showing the inter-component interfaces............ 15
Figure 2. Logical layout Of the SYStem.c.ccooveiiioiiiiiiieecieneeirinsii s s v 16
Figure 3. Link patching by the DAE to preserve the link integrity.ccooovvveenenn... 18
Figure 4. Hypertext documents as a directed graph................cccoooevveveivivieeeciieesiiieesiinenens 27
Figure 5. The same directed graph as relational table: ‘R_TABLE'.ccccveenn... 27
Figure 6. Examples of SQL statements to traverse the document topology...................... 27

. Acknowledgements

I would like to thank my advisor, Bill Hersh for his generous support and encouragement
in all my research endeavors in Medical Informatics and Information Retrieval, including
this thesis. His experience and guidance have been an enriching experience for me over

the past few years.

I would also like to express my appreciation for my thesis committee members
Christopher Dubay, Paul Gorman and Andrew Zechnich for their guidance and

suggestions.

Thanks are due to all the members of Dr. Hersh's research group, both past and present,

whose work has been the foundation for the project.

My wife Sheena has been my inspiration and has always been there for me. I could not

have done this without her.

II. Abstract

We have developed a hypertext document management system designed to specifically
handle Web pages. Our system should benefit those who need to collect, index, review
and organize Web documents from different sites, and use these documents to extract
information, create a meta-index, or an archive from these documents. This system will
allow the user to utilize information from the document text as well as its hyper-link
context and any associated meta-data. We have built this system from small functional
and interchangeable modules of software, some of which were pre-existing programs.
The backbone of our system is a relational database management system where the
extracted information from the documents is stored. All of these components may also be
used by a developer as a development platform to build a more powerful and elaborate
document management system. This system is not designed for authoring new content for
the Web, nor is it a search engine for end-users. To achieve our goal in providing an
integrated system for efficient handling of hypertext documents, we have exploited the
inherent features and capabilities of the document collections themselves. These
attributes have been long ignored due to the lack of proper tools that could utilize these

features.

Vi

lll. Introduction

1. Overview

We have designed and developed an application framework for managing hypertext
documents to be utilized by anyone who is using hypertext document collections or Web
documents from diverse sources. The user may be using these documents for research,
collection and review, or for constructing a meta-index. This system may also be used as
a framework to build more powerful and comprehensive hypertext document

management tools.

As a development model and test bed, we are using this prototype hypertext
management system for managing Cliniweb[6]. Cliniweb is a hierarchical directory of
clinically relevant Web sites. Cliniweb’s directory hierarchy is based on the MeSH
(Medical Subject Headings) hierarchy[14] and it allows a user to browse or search this
directory tree using any Web browser. The leaf (terminal) nodes of this directory are the
Web pages located at different sites on the World Wide Web (WWW). Since MeSH is
based on a controlled vocabulary, the user is provided with unambiguous choices and
can usually locate relevant documents quickly and easily by traversing the hierarchy.
The problem is that a human indexer or reviewer must classify every new document and
determine where it belongs in the hierarchy before it is added to the Cliniweb directory.
To maintain and revise Cliniweb, new Web sites have to be added and current sites
updated and all the links have to be classified and categorized just like the books in a

1

library. Since the candidate sites for inclusion in Cliniweb is growing exponentially, it is

clearly impossible to tackle this task manually without the help of specialized tools.

We need specific tools and functionality to collect and manage the hypertext documents
from the Web, especially those documents in which we are interested. Specifically, we
need to:

e Select and save these documents, or save enough information to get back to the
document later (e.g., URLS).

e Save information about which other documents a particular document refers to and
which other documents refer to it. This information is required to determine the
context of a document and to browse the document hierarchy.

e Locate documents that contain specific terms or concepts, using a searching system.

e Annotate the documents with the reviewer's comments or classifications.

¢ Index and classify the documents into categories or groups.

e Access the meta-data information of the document, or other information not
explicitly described in the document text. This and all the other requirements
mentioned above might have to be satisfied without the original document itself
being present locally.

e Display the documents and all their associated information in a format most useful to

the user.

Our system addresses these issues and attempts to build the foundation for a more
comprehensive framework that would be able to achieve these goals in a more

generalized context.

The specific aims of this project are to:
e Develop algorithms for selection, clustering and retrieval of hypertext documents.
e Implement this framework as an application or toolkit.

e Design evaluation strategies for performance assessment.

This system has not been designed to be an authoring tool for creating novel content for
the Web. It is also not a search engine for locating information on the World Wide Web,
as used by the final consumers of the information, that is, the end-users. This is a tool
for librarians, indexers, reviewers, or anyone who creates an archive of specific Web

documents and has the need to organize and effectively utilize this archive.

2. Background

The problems faced by any user trying to locate useful information on the Web are as
diverse as the information itself. This multidimensional document space is created by
multiple attributes that are intrinsic to the documents, the links between the documents

and the document collections as a whole.

The greatest hurdles in locating useful information are:

e The sheer volume of information[16] — both the documents size and their number.

e An adverse signal to noise ratio of the document content in any large collection.

e The dynamic and diverse nature of the content and the format of the web documents.
Apart from the text content of the document, the content quality and the target audience

varies widely in a collection as diverse as the WWW.

Document locating strategies today can be one of two types:

1) Search engines of varying degrees of complexity, from simple search engines to
complex engines, with features such as Boolean and natural language search options
and relevance feedback.[26] (E.g., Altavista [www.altavista.digital.com], excite
[www.excite.com], Lycos[lycos.com], Verity[www.verity.com][16]). These systems
use word-based indexing systems that process web pages downloaded automatically
by a program traversing the hyperlinks and build comprehensive indices that are
accessible from the web. The search interfaces are the front ends to these indices and
these interfaces implement the variety of complex features mentioned above.

2) A browsable directory-like structure composed of a hierarchy of hyperlinked
documents. (E.g. Cliniweb{www.ohsu.edu/cliniweb], Yahoo[www.yahoo.com])
These hierarchies are created manually by assigning documents to one or more

specific categories, a task accomplished by trained indexers or reviewers.

The popularity of hierarchical or directory-type searching tools on the Internet like
Cliniweb or Yahoo indicates that they may have certain advantages over fully automated
search engines, which perform Boolean or Natural language searches. The most obvious
advantage of these hierarchical-directory based systems is that their contents have been
reviewed and classified based on a clearly defined structure or a controlled vocabulary.
This structural approach is preferred by many novices as it is less frustrating to reach
high quality, reviewed documents without having to navigate through irrelevant pages or
without having to phrase effective queries. Most experts prefer this type of searching
when they require the summarized overview of topics for preliminary consideration or

research.

It may be speculated that the stability and predictability of a hierarchical or directory
structure appeals more to the human mind. This impression may be magnified by the
perceived instability and randomness of the results of a text-word query on a large and
dynamic corpus such as the Web. Since the inclusion criteria for such a hierarchical
index may include some measure of quality or legitimacy, it shifts the burden of
selection and classification from the consumer of the information to the indexer or

reviewer who includes the document in the collection.

Hierarchical or directory type searching tools are not as comprehensive or up-to-date in
their content compared to Web search engines that automatically index web pages
without human intervention. The major disadvantages of the hierarchical systems can

be traced to their singular dependence on the human indexer or reviewer. It is too

5

expensive to create and maintain a system that has reviewed content and that is always
current and as comprehensive as a word-based search engine. The logistics for such an

attempt would most probably fail, based simply on the fact that there would not be
enough manpower or resources to review the documents for inclusion into a directory, in

real-time,

3. Goals of this project.

This thesis proposes to develop tools that would assist and empower the reviewer or
indexer to process documents quickly and more comprehensively. This is achieved by
eliminating (by automation of) repetitive and redundant tasks and allowing the reviewer
to focus more on the exceptions and novel content. Thus, the resource utilization is

optimized and the reviewers can work more efficiently.

As mentioned in the introduction, the need to develop this system emerged when
Cliniweb's maintenance and expansion was becoming increasingly difficult due to lack
of proper tools. Scalability problems of the periodic revisions and updates of the
hyperlinks in the Cliniweb website were not addressed by any available application. The
problems faced while expanding and enhancing Cliniweb are typical of anyone trying to
implement a system that requires the management of a large and dynamic document
collection or web site. Most of the tasks to maintain a large site with many hypertext
links to documents scattered over the Web are accomplished manually. These tasks
include adding new links, deleting redundant or defunct links, or updating changes to

6

links. These tasks have to be tackled manually because there is great variability in the
content and the format of these documents and almost everything occurs
asynchronously. Automation of such a process would involve too many variables and
would be very complex to implement. Our approach would be to automate the least
variable elements of this process and provide effort-multiplier tools to the human
reviewer who would then be able to tackle the more variable factors efficiently and

exhaustively.

Addition of the links to the collection can be one of the most resource intensive tasks
that are currently accomplished entirely manually with no automated help. Although
automation of the link reviewing and addition process cannot totally dispense with the
human factor, it would simplify the task and can vastly improve the reviewer's

efficiency and productivity.

The human reviewer has to browse and sift through almost all the seemingly relevant
links in a site before issuing a judgment. This is time and resource consuming,
especially when only a few of those links may be actually relevant and get finally
selected for the collection. It would help the reviewer if the entire link structure could be
visualized as a summarized tree hierarchy. The reviewer can then selectively ignore the
obviously irrelevant links and its sub-trees without having to peruse through all the
material in those pages. Since the entire hierarchy tree is visible, the reviewer can jump
to an interesting or relevant page without having to traverse through the intermediate

pages.

The current method of updating Cliniweb is almost ‘entirely manual. These manual
procedures are not scalable and are extremely resource intensive, even on a small
collection of documents. It is almost impossible to keep up with the proliferation of new
sites and pages and incorporate them into the current collection in a timely manner.
Consequently, a fraction on the collection soon becomes dated and some of the links
may become defunct. A follow-up mechanism that can track changes to an already
reviewed site and automatically update the database or, if necessary, alert the reviewer

of additions or changes and will shift this burden to the system instead of the reviewer.

Most of the reviewing of the web sites and pages for inclusion into Cliniweb is done
online— it is considerably slow due to the network availability and lag-time. This time
factor and therefore the reviewer’s efficiency can be significantly improved by having a
local mirror of the web pages being scrutinized. Thus, the reviewer can browse the
pages offline from the local mirror. In addition, this would allow the reviewer to
examine all the links exhaustively and if necessary, index the pages or use them as input
for any processing program. This will prevent individual pages that are slow to be
transmitted over the network or temporarily unavailable, from being lost or ignored.
Currently, the causes for failure or non-inclusion of a page are not tracked. An
automated system would be able to track protocol or network failures and recover from
non-fatal errors. All this would make the reviewing process more comprehensive and

exhaustive and make the output more reliable.

There are also specific problems associated with managing large document collections:
e There are no standardized methods for creating or managing document collections.
e The document archives have to be retrievable and relocate-able as well as scalable.

e There are diverse challenges in the reuse, distribution and even the extraction of data

from the document archives.

There are the universal requirements for speed and economy.
One of the major drawbacks of the search systems discussed above is that they mostly

ignore the topological information associated with the hypertext.

4. Previous work.

Apart from the now ubiquitous search engines on the Internet there are some
commercial and research systems that attempt to address some of these issues. No
single one of these systems offers complete solutions to all these problems. Each of the
concepts and systems discussed below has some novel contribution towards a more
powerful document management system. Some of the concepts used in these systems

have inspired the development of this project.

Clustering of hypertext documents[3] based on the intrinsic properties of the hypertext
content is an effective way to handle large document collections by grouping them into
manageable clusters. This technique has been extensively used in our project. Other
clustering related techniques include "scatter and gather”, a type of feedback technique
that is used to browse large document collections. Clustering methodologies in

information retrieval are concerned mostly with techniques to automatically categorize

9

documents into groups[2,12]. This categorization may be based on terms in the
documents, or on co-occurring citations used in these documents. When extended to
hypertext documents, clustering may be based on the hyper-links between
documents[2,28,30]. The factors used to categorize documents into clusters may be any
quantitative measure of associativity or similarity or even any measure of distance
between two documents. Clustering research has focused on selecting the attributes that
are the basis for clustering, on selecting appropriate clustering method and developing

efficient algorithms for implementing these methods.

This project uses clusters created manually by selecting or categorizing several
documents into groups. These clusters or groups may be arbitrarily created by the user
based on any attribute of the document or source. This system will also have the ability
to automatically create clusters of documents based on the hyper-link topology. This

feature is discussed in detail in a following section.

WebGlimpse [19,20] is a system that combines browsing and searching. It introduces
the concept of the neighborhood of a document, allowing localized or directed searching

and browsing.

Personal Web notebook [15] is a system that uses the analogy of a scrapbook to collect
pertinent fragments from documents on the Web and allows the user to create a

composite document incorporating annotations and user-defined markup. This system

10

defines a very powerful summarization and browsing tool, that extends the bookmark

and scrapbook analogies.

WebSQL [23] defines the syntax and semantics of a query language to retrieve web
documents. This system is aware of the topology and link structure as well as the
document content and meta-information. WebSQL may be a reasonable choice for
developing structured queries in complex document management systems.

There are also a few commercial systems for managing hypertext or Web documents.
Some of these are: Documentum-{9] a large document management system, The Info-
Sleuth (Carnot)project[8] and Trellix[29]. Most of these systems have proprietary
processing engines and are for use by content creators and end-users. Our target users
have slightly different needs and therefore require a more customized solution. These
commercial systems have nevertheless provided many useful design paradigms for our

prototype.

To summarize the features of an ideal hypertext document management system, we

would envision a system with the following capabilities:

e TFacilitate saving and archiving individual documents to local storage media.

e Retain all information related to a document’s source (e.g., the URL), its size, type
and any other information available that is associated with or describes the
document.

e Retain the hyper-link information that describes the topology of the links between

the hypertext documents. It should be stored in a comprehensive and flexible format.

11

Allow for indexing and searching of the entire document collection to locate
individual documents that contain the specified term or concept.

Allow the user to review and add comments to individual documents and create
groups of documents. The user may extract, inspect and add to the meta-data content
of individual documents. These actions may not modify the original documents in
order to maintain the integrity of the repository.

Provide visualization tools to inspect the documents or any associated attributes.

12

IV. Implementation

In this section, we will describe the organization, design and implementation of our
system. The first half of this section describes the overall organization, architecture and
the functions of the various modules of the system. The final half of this section will
discuss in more detail the data-structures used and specific design decisions of our

approach.

1. Methodology.

1.1. System Design.

The prototype system was developed on a networked cluster of Sun Microsystems
Sparc/UltraSparc workstations. A Sun Ultra-1 (143Mhz) with 52 GB of hard disk
storage served as the Web-server and the database server for our cluster. The other
computers on the cluster were Sun Sparcstation-4s and a Sparcstation-20 which shared

the disk storage of the Sun Ultra-1 via NFS mounts over the network.

The development software used for the prototype systems were as follows: the operating
system was Solaris 2.5.1.(SPARC). The Perl interpreter used was GNU Perl 5.004. The
RDBMS engine used was Oracle 7.3 (for Solaris 2.5), running on the Sun Ultra-1. The

Perl-Oracle API used was DBI-DBD (www.hermetica.com/technologia/DBI). The

C/C++ compiler used was the GNU C/C++ compiler GCC version 2.7.1. The Webserver

13

for our prototype was the NCSA Webserver running on the Sun Ultra-1 hardware

mentioned above.

When this system is used by a developer, as a toolkit for developing information
retrieval systems, the programmer may use the Perl API provided to access the
repository data structures. Other alternatives available to a developer are: (i) using the
Perl-DBD interface to the RDBMS, or (ii) using SQL or the native procedural language
of the RDBMS to access the RDBMS tables directly. In the case of our prototype, we

have used Oracle PL/SQL as the procedural language.

Our prototype user interface was constructed using HTML and CGI-forms interfaces
which were driven by Perl programs running on our Web-server. Since most modules
are independent, they can execute on different CPUs in parallel with other modules.
Messages and data are exchanged between these modules through intermediate files.
Processes may also use other methods of inter-process communications like pipes and

sockets to communicate with each other.

1.2. System Layout.

The system is designed as a set of individual freestanding modules, each of which
provides a different functionality to the system. This modular black box design allows
the system to be versatile, powerful and easily maintained. Adding new features and

functionality would simply involve plugging in the new modules to the system. The

14

inter-relationship between the top-level modules is described in Figure 2. Logically the

framework may be broken down into three functional parts:
e The Document processing engine- DPE.
e The Document acquisition engine- DAE.

e The Document control interface- DCI.

0

- |

f

Y

Program DPE Program DRIVER
Interface/ INTERFACE |\ Interface 4 MODULES

Perl AP{ OBI-DBD SQLNET QORACLE

USER

Programs l

GGl
LIBWWW
AP! PERL

INTERNET

Libraries —¢
SOCKE

WEB

TS
\m/ SERYER NETWORK

Figure 1. Software layout of the system showing the inter-component interfaces.

15

DOCUMENT PROCESSING ENGINE
(DPE) =

ﬁ sl

I s Z
[N

Document Attributes,

DOCUMENT ACQUISITION

Temporary
Document Mirre ey

INDEX,
META-INFO.
(RELATIONAL TABLES)

DOCUMENT CONTROL INTERFACE
(DCT)

LOCAL 4
DaTaBASE 4
& aArcHI

lep Leve] Senemalies
Docurmet: lanagement Systiem

Figure 2. Logical layout of the system.

16

1.3. Document Acquisition Engine (DAE)

The Document Acquisition Engine (DAE) is essentially a program that collects the
documents from the Web or archives and does some pre-processing and data scrubbing
before feeding this document input to the DPE. The DAE has the responsibility of
capturing the topology information and any other information that is not present in the
document itself. In this implementation, the DAE consists of three modules:

e A Web crawler (a robot).

e The Document Pre-processor.

e The Database interface.

This engine, in its current implementation, uses a Perl library (lib-www-perl API:

http://www linpro.no/lwp) as its underlying engine. This program is based on the "1lwp-

rget" program by Gisle Aas and has been modified to enhance and extend its

capabilities to suit our requirements.

This robot visits the top-most (root node) document and downloads it to a local file. It
then proceeds to traverse each link in that page and attempts to download the contents of
that link, subject to command parameters. In case it does download a linked document,
the original link is patched to point to the local copy of the document. Documents or
links that are not fetched and stored locally, still point to the original copy on the Web.

This patching process is illustrated in figure 3. This traversing and downloading

17

continues recursively until there are no more links to visit or the program achieves

anyone of the preset limiting parameters.

Web document: http://medir.ohsu.edu/~dayb/index.html

bgl.GIF
bd-header.JPG

hrtp: //medic.chsu. edu/-dayb/madinf /medirisage . heml

http://medir. ohsu. edu/-dayb/comp. heml

hetp: /Swww . vanderbilt . edu/HomePaga/ Interner . html
heep: / /www. intermarket .net/ laughweb/master by score ns.html

htep:/fliinwww. ira,uka.de/bibliography/index . html

As Downloaded by the DAE: Local file: index000.html

htep:)/ /medir.cheu,.edu/-dayo/bagl .GIF
htep: //madir.cheu.edu/~dayb/bd-header . JPGE

med il rusage . html

comp . html

hotp /M lwww vandarbile . edu/HomePage/Internat

htep: /fweww . Intermarket net/laughweb/master by =

indax001 . html

Shading Key:

Patched links co local files, Back-patched links to remote files, Untouched links.

Figure 3. Link patching by the DAE to preserve the link integrity.

18

The DAE robot can be constrained to fetch only a certain maximum number of
documents per link as well as by limiting the depth that it would explore from the top-
most supplied link. The system may also be constrained within a specific host, domain
or directory structure (the URL prefix). All these limits prevent the robot from aimlessly

wandering into the Web. These parameters are listed in Appendix D.

The documents that are downloaded are all stored in one subdirectory per root (top
level) node, with unique file names (that are derived from their actual file name). This
results in flattening a complex hierarchy into a simple one-dimensional directory
structure. This eliminates the variability of complex directory hierarchies and allows for
a simple file-naming scheme. As this program traverses each link and downloads certain
documents from the Web, it simultaneously logs the document or link information in a
relational table via the database interface. Thus, all the topological and hierarchical
information of every link is retained, including the original hyperlink of each document,
the time-stamps and any associated mime-types. Consequently, no information is lost in
harvesting the documents and mirroring them locally. The details of this relational

information are described in a following section.

The robot does not loop indefinitely or get confused when the URLs are self-referential
or circular, since the system downloads any page only once. If it has seen the page
before, it simply sets the link pointer to the unique local copy and moves onto the next

link.

19

The advantages of using this robot are:

e There is no redundancy in the storage of documents or content in the local mirror.

e The system can be selective in fetching only specific (mime) types of documents; the
robot can filter out graphics and multimedia content, saving network bandwidth and
local storage space.

e Loops and self-referential links are handled gracefully; the content and links are
transferred non-destructively.

This local mirroring of documents is exact; it is seamless and transparent to the browser,

irrespective of the constraints used to download the documents. The DAE has the

responsibility of capturing the topology information from the source, which may be the

Web or a local digital-document archive. For example, the domain and path information

for each document, its parent and children links and other related meta-data will be

saved by the DAE into respective RDBMS tables.

1.4. Document Control Interface (DCI)

The document control interface (DCI) is the user interface to the system. The DCI
allows multiple views of the document repository. It allows the user to visualize the
topology of the document space. It also allows for the browsing of the meta-data tags
and links. This interface allows the user to cluster, sort or rank them based on any

available attribute.

20

The prototype system implements the DCI as a CGl/forms front-end client, which may
run on a Web browser. This client connects to the DCI server running on a Web server.
The DCI server forwards the user requests to the DPE, which returns the user replies to
the DCI server in an open format. The DCI has the responsibility for creating the user-
defined views and their rendition. This design allows for greater flexibility and

efficiency due to the modularization and decentralization of the processing.

1.4.1 DAE user interface

This section discusses the user interface that drives the DAE. The prototype
implementation uses CGI-forms as the user interface. The CGI script is a Perl program
that parses the form input and uses the parameters specified to invoke the DAE robot.
Appendix E shows a screen snapshot of this forms interface as displayed on a Web

browser.

1.4.2 Cluster creator

The cluster creator interface is used to create clusters of documents manually, by
selecting from a list of document titles. The titles themselves are hyperlinks so that the
user may examine the document before making a selection. A document may be
included in more than one cluster. Selections are made by selecting appropriate check
boxes beside each document title. Appendix E shows an example of such a selection

screen.

21

1.4.3 Browser/selector interface

This interface provides the basic capability of browsing the document repository. It
shows the document hierarchy as a "table of contents" view, with a cascading list of
links, a few (by default 3) levels deep. If the user wants to examine a document, the title
hyperlinks will display the document contents in a separate frame below. The interface
provides a column of check boxes beside the document links to create a cluster of

"selected" documents.

1.4.4 Meta-data browser/creator

This interface allows the user to browse the meta-data information that is stored in the
relational tables and associated with a specific document. It should be noted that this
meta-data may be inclusive of the meta-data information embedded in the document
itself and also contain additional meta-data present only in the relational table. The user
may modify or add new meta-data information to be stored in the DPE tables using this

interface.

Although the DCI provides a Web-based forms interface to certain features and
functionality of this system, all this and more can also be accomplished using a
command-line or program/API interface. In fact, the program/API interface is more
suitable and efficient for batch processing by using a script that automates the individual

processes and manages the parameters to the program. Another option available is that

22

the user may directly access the relational tables in the database, thereby bypassing both

the API and the DCIL

1.5. Document Processing Engine(DPE)

The DPE is itself composed of many smaller modular engines. Each of these modules
provides a different functionality to the system. Some of the sub-modules of this system
are the:

e RDBMS Driver,

e Clustering Module,

e Topology Module;

e Indexing and Search Engine.

1.5.1 RDBMS driver

To handle the large volume of data that this system generates, its data storage has to be
managed efficiently and flexibly. There should be no artificial or system dependent
barriers (e.g., scalability) in the flow or manipulation of this information. Rather than
develop the data structures and associated algorithms from scratch, we decided to use a
commercial RDBMS to store and manipulate the data that may be readily converted into
tables without loss of flexibility or function. The optimized and efficient database
engine of a commercial RDBMS frees us from developing and troubleshooting the
techniques to store all the information and makes the system modular and versatile. As

described above, all the document information may be easily translated into normalized

23

relational tables. SQL statements and operations may be used to query these tables and

derive composite information scattered over different sources. This type of data storage

scheme creates an extremely robust and efficient data repository that can be extended

almost indefinitely.

1.5.2 Clustering Module

This module is used to group document clusters so that an action may be performed

collectively on that cluster of documents. The clusters may be created in the following

ways:

Manually, by selecting a group of documents (using the DCI), and assigning them to
a cluster. A common example of a manually created cluster would be that of a user
grouping documents into three clusters: relevant, non-relevant and undecided. The
relevant cluster can be forwarded to an indexing engine, while the undecided cluster
may be saved for future review.

Automatically, by explicitly defining the criteria (based on a document attribute) that
results in the selection of a group of documents from a larger pool. The cluster
information is stored in relational tables and therefore, any relational algebra or set
operation may be performed on these clusters. This empowers the user with
extremely powerful and flexible tools to manipulate clusters of documents and
perform complex operations without having to handle individual documents.
Implicitly, the results or output of any operation, e.g., a search engine result, or a

topology query output, may be interpreted as a cluster.

24

As discussed, these clusters may be used by the clustering module for other composite

actions.

The document details in a cluster may be easily obtained by creating a relational "join"

over the cluster table and the document detail tables, which are described in §2.1.

1.5.3 Topology Module

This module is used to analyze and process the physical and logical layout of a hypertext
document collection. The hyperlink information present in every document determines
the corresponding documents with which it is linked. The link implies that there may be
some relationship between the contents of these documents. We may define a document
attribute of “relevance by proximity” from such a hypertext link. This referential
information, which is actually a directed graph (Figures 4-5), is captured by the topology
engine and translated into a relational table. (Table *1inks’ in §2.1(3)). This allows
us to traverse links in a document without actually browsing through the documents.
Succinct relational operations can determine complex link hierarchies and create

document clusters with similar topological characteristics (Figure 6).

The referential information that constitutes the links of a hypertext document collection
and ultimately the Web, exists only in the documents themselves. This referential
information of inter-linked documents may be represented mathematically as a directed

graph. See Figure 4 for an illustration of this concept.

25

We have translated this directed graph representation of hypertext documents into a
relational table format that retains all the information of the directed graph form. In

essence, the source and target for each link is stored as an entry in the relational table

(Figure 5.).

The benefits of using this relational table format are:

The referential information can exist independently, without the document itself

being stored. This economizes both storage and processing resources. The hypertext

documents are not required once the tables are loaded with the link information

(usually accomplished by the DAE when downloading a site).

e The data is stored as normalized relational tables. Therefore there is no redundancy
in the structure, allowing for straightforward and efficient additions and updates.

e Topology data may be extracted from these relational tables using SQL statements
(Figure 6). These operations are usually highly optimized by the RDBMS system to
efficiently handle large queries. This is of particular concern since the hierarchical
nature of these links often leads to exponential increases in the number of children
nodes.

e Using table information to traverse the hypertext space is more robust and

comprehensive than using the Web documents and their hyper-links directly.

26

The Arrows represent the links.
A,B,C.E,G,Q are the hyperlinked documents.

Figure 4. Hypertext documents as a directed graph

R_TABLE

Source Target

Qim|a|m|= ||
Q> Q O

Figure 5. The same directed graph as relational table: ‘R_TABLE’.

1. One level indirection:
select TARGET from R_TABLE where SOURCE in "B".
2. Reverse one level indirection:

select SOURCE from R_TABLE where TARGET in "A".

3. Two levels indirection:

select TARGET from R_TABLE where SOURCE
in (select TARGET from R_TABLE where SOURCE in "B").

4. Discover all 1% generation siblings:

select TARGET from R_TABLE where SOURCE
in (select SOURCE from R_TABLE where TARGET in "E").

Figure 6. Examples of SQL statements to traverse the document topology.

27

1.5.4 Indexing and Search engine

A search engine is required to provide a Boolean and/or a Natural language search
environment for the terms present in the documents. This module has to be very fast and
scalable to handle the ever-expanding document domain of the Web. We did not intend
to provide a complex engine with advanced features in the prototype. Instead, the
modular design of this system will allow for the substitution of an advanced search

engine module to replace a more rudimentary module providing the basic functionality.

In this case, the primary requirement of a search engine module would have to be that
the engine should be able to index the document collection incrementally. This would
enable the system to download chunks of documents from the Web and index them,
accumulating the index information. The complete document corpus will not be
required to exist in entirety on this system at any point of time. A moving window to
the document corpus should be sufficient to allow the indexing engine to accomplish its
task.

We have achieved incremental indexing indirectly by using clusters, using a completely

different approach, as described in §2.7.

Since it is not feasible to retain all the local copies of the indexed and processed

documents, most of these documents will be deleted from the local mirror. The index

pointers would be adjusted to point to the original Web version of the document.

28

Instead of developing our own search engine, we have used available search engines as

the indexing and searching module of the DPE.

Search Engine Interface

We have developed a generalized program interface module for search engines. Any
search engine that can conform to this interface may be used by the DPE. This is
achieved by an interface layer that translates command and data between the DPE and a
search engine. Such interface layers have been developed (by other members of Dr.

Hersh’s research group) for two search engines- MG (ftp:/munnari.oz.au/pub/mg) and

SWISH-E (http://sunsite.berkeley.edu/SWISH-E).

Since the interface is standardized, the specific search engines are completely
interchangeable. Either or both may be used and the specifics of the search engines are
transparent to the user. When used with the clustering functionality of the DPE, the
system can function like a meta-search engine, pooling results for many engines or
queries. This and the Boolean functionality of this interface will be discussed in more

detail in §2.7

Apart from being a translation and compatibility layer, these interface modules provide
additional functionality to the search engines. This is achieved by using the DPE
clustering system to create logical partitions of the document repository. This will allow

us to overcome a serious disadvantage of some search engines- their inability to index

29

collections incrementally (i.e. the collection has to be completely re-indexed if new

documents are to be included in the index).

The DPE may create a second cluster of the new documents and builds an index only for
the second cluster. Any query to the repository is duplicated by the interface layer and
both the clusters queried individually. The results from the two queries are pooled
together and returned as a composite result. These actions are transparent to the user, the
DPE-interface handling the details of the separate indices and the reconstitution of the
results. This not only saves computation time and storage by not having to re-build and
re-index large document collections, but also the smaller indices are more efficient and
their individual searching processes may be distributed over multiple CPUs to execute
simultaneously. This may allow for load distribution and parallel processing by multiple

computers or CPUs,

The searching capability on the RDBMS fields (using SQL), including the meta-data
tables, provides an additional feature whereby the search may be limited to specific
fields. This is in addition to the full text searching capability that is provided by the

search engine modules.

30

2. Implementation Details

2.1. Description of the tables

The database tables are the most important component of this entire system. We have
attempted to use standard SQL code to build and query the database tables so that the
code is fully compatible with any commercial database that supports the standard SQL
syntax. For our prototype, we have used Oracle7.3 as the database engine. The database
interface that provides the Perl API is the Perl - DBD-DBI package. This package is also
database independent. (i.e. any commercial or freeware database maybe used, as long as

the DBD driver for the database engine exists).

Comments on field data types: The fields in the database that contain strings are
defined as "varchar2" datatypes. This storage type is defined to be the largest
possible string length expected for that field. (The Oracle database does not store any
unused trailing spaces after the string). It should be noted that all the time (date) fields

are converted to and stored in the universal time (GMT) standard.

(1) Table ‘urils’

create table urls(

docid number not null,

url varchar2 (500) not null,
title varchar2 (1000),
local_flag char (1),

local_stat varchar2 (500),

mime varchar2(80),

stime date,

fsize number,

31

links number,

UNIQUE (docid)
bi
docid — the unique document identifier.
url — normalized URL for the document.
title — original title from the title tag of the document.
local_flag — if this flag is *Y’, it indicates that the file exists in the local
repository and the ‘local_stat’ field contains the file name for the local copy.
local stat— if the local_flag value is ‘Y’ this variable contains the local
filename. Otherwise, this field contains the error code for the transport protocol or the
reason why the file was not stored in the repository. A list of these codes may be found
in Appendix C.
mime — the mime-type of the document. From HTTP:Header.
st ime — the time the document was downloaded or accessed.
fsize — the size of the document in bytes. From HTTP:Header.
Links — the number of hyperlinks that refer to this document, i.e. every time this
document is referred to and a download is attempted, the DAE returns the duplicate

(DUP/DUPBF) flag and increments this link count by one.

(2) Table ‘dirs’
Each time the DAE is invoked with a new starting link, it creates a new directory and

proceeds to download the hyperlinked files into this directory. This is not an absolute

32

requirement, but it is helpful since it separates the downloaded files from each
invocation into different directories.
This directory information and the details from each run are stored in this dirs table.

table dirs(

dirid number not null,
prath varchar2 (500),
stime date,

range_s number,

range_e number,

UNIQUE (dirid)
)i
dirid — unique directory/run identifier.
path — absolute path to the repository directory.
stime — timestamp of the run.
range_s — starting docid of the run: (i.e. docid of the first document).

range_e — ending docid of the run.

(3) Table ‘1inks’
table links(
source number not null,
target number not null
Vi
source — the docid of the document with the link.
target — the docid of the document the link refers to.

Note: To preserve the referential integrity, all the starting documents will not have an

entry in this table as a ‘target’ since that would imply an undefined ‘source’. Later, all

33

excluding the first references will be treated normally.

(4) Table ‘clusters’

table clusters(

clusterid number not null,
clustername varchar2 (100),
ctime date,

detail varchar2 (1000),

UNIQUE (clusterid)
);
Clusterid —unique cluster identifier.
Clustername — arbitrarily chosen name (preferably unique).
Ctime — time stamp.

Detail - description or comments.

(5) Table ‘doc_cluster’

This table identifies the documents and their relationship to the clusters.
create table doc_cluster(

clusterid number not null,

docid number not null
i3

Clusterid — cluster identifier.

Docid — the unique document identifier.

(6) Table ‘meta_data’

table meta data/(

34

docid number not null,
meta_tag varchar2 (1000},
meta_value varchar2 (1000)

)a

Please refer to §2.5 for the description and usage of the table.

(7) Table ‘alt_title’

table alt_title(
docid number not null,
title varchar2 (1000)

)

Please refer to §2.4 for the description and usage of the table.

2.2. Unique Identifiers

This section describes the assignment of unique serial numbers for documents and other

objects (e.g., docid, clusteridetc.)

Each object in the repository has a unique number that identifies it exclusively and
completely within its type. The uniqueness of this field is ensured by enforcing the
"unigque" attribute for this field and the primary database tables. A new serial number
1s generated by the DPE program by incrementing by one, the largest assigned serial

number in the table.

There can be another approach for generating unique serial numbers. Some databases
may generate a sequence number internally (e.g., Microsoft Access), or indirectly via

some procedural code fragment that is executed when a new row is created in the table

35

(e.g., Triggers in Oracle). This approach was not used since it makes the DPE code
dependent on a specific RDBMS and less portable, as different RDBMSs implement the

generation of serial numbers in different ways.

As the DPE generates its own unique serial numbers, it has the responsibility to ensure
synchronization and concurrency in multi-process mode by exclusive locking (using
available RDBMS locking features). An added benefit in having the DPE generate serial
numbers, is that the DPE, if required, may recycle old serial numbers that are no longer
used by the system (using a reliable algorithm to reclaim all dangling references to that

identifier).

2.3. Document Titles

The ‘title’ field of a document is very useful for displaying as link anchors in table of
contents pages or lists. A descriptive and self-explanatory title is very helpful in
identifying documents. Sometimes this title field is ‘null’ or contains the string
‘untitled’. In these cases, an alternative title may be created and used in place of the

document title.

The title field in the table ‘urls’ is extracted from the HTML document header by the
HTTP:head command by the DAE. In case this value is ‘null’, the DAE stores that
‘null’ value in the ‘title’ field of the ‘urls’ table entry for this document. In order
to generate alternative titles, the DPE will identify all ‘null’ and ‘untitled’ entries

in the ‘urls’ table and attempt to generate synthetic titles only for these. In order to

36

retain the integrity of the ‘urls’ table, generated titles are not inserted back into the
title field of the ‘urls’ table (thereby overwriting the ‘null’ and ‘untitled’
entries). Instead, the generated titles are stored in a separate table ‘alt_titles’. This
table has two fields, ‘docid’ and ‘title’. Applications that require the document title
to be displayed, first query the ‘alt_title’ table to check if an entry exists for a
particular docid. If one is found, it is used, otherwise the actual ‘title’ from the

‘urls’ table is used.

2.4. Generating Alternate Document Titles

The logical alternative to the <TITLE> tag in an HTML document is the <H1> tag
contents (or the largest header tag <H* > available). If there are no header tags available,

possible alternatives include the first line (30-80 characters) of the text of the file, or the

file-name itself.

The program selects the most suitable alternate title using the logic described above and
creates an entry for the document in the ‘alt_title’ table (the user may select or

provide an alternative title if necessary).

2.5. Meta-data Extension

The Meta-data content of an HTML document is usually embedded in the document as
tag-value pairs. To extract this information, the document is processed and the tag-value

records saved as rows in the table ‘meta_data’.

37

Additional comments or meta-information (not embedded in the document), that is
provided or generated by the reviewer/indexer (either automatically or manually), may
also be saved in this table as tag-value pairs. This additional information may be
indexing terms from a controlled vocabulary such as MeSH or SNOMED terms, or
reviewer comments and judgments. It should be noted here that the additional meta-
information not present in the original document is retained only in the meta_data

table; the original document remains unchanged.

If at some point the user wants to generate a new version of the document that contains
all the meta-information embedded in the HTML file, a program may be used to inject
the meta-data tag-value pairs into the HTML document (similar to the methods

described by Munoz et. al.[25]).

2.6. Using the Meta-data Table

The meta-data table may be used to search for terms in the meta_value field. The
_ search may be limited to specific meta_tag fields like "Author", "MeSH", etc. A
reviewer may use the system to add one or more meta-data entries to all the documents
in a cluster by performing the action on a selected cluster, instead of a single document.
Examples of such meta-data entries are: a cluster of documents authored by an
individual tagged as: <META NAME= “Author” CONTENT= "“John Doe”>;
documents of type 'reviews" tagged as: <META NAME= “Document Type”
CONTENT= “Review”>.

38

The meta-data extension, along with the clustering functionality of the DPE, will allow
the reviewer or indexer to operate efficiently on entire groups of documents in selecting
and classifying them, instead of one document at a time. While searching for, or
selecting documents from the repository, the meta-data fields may be used to narrow
selections to specific documents or groups of documents having similar meta-data tag-
value pairs. If the values of meta-data contain controlled vocabulary terms, searching for
specific terms in this table instead of the document text may greatly improve the

precision of searching.

2.7. Using Clusters

Often the reviewer has to perform the same set of actions on numerous individual
documents. If these same documents were grouped together into a cluster, the reviewer
may perform the actions only once on the entire set. The changes would affect all the
documents in the cluster, thereby reducing the reviewer’s task of handling individual

documents.

Clusters will allow the user to perform Boolean operations on groups of documents.
This is especially useful if the sub program (e.g., a search engine) does not support
Boolean operations. The results of more than one operation (as clusters) may be
'AND'ed or 'OR’'ed together in any combination to produce another cluster. This will

allow the user to construct complex operations from simple functional modules. Search

39

engines without Boolean capabilities may be used to perform Boolean searches
indirectly by deconstructing the query into simple components. An interface may be
developed to parse a Boolean query into its components and subsequently reconstruct
the results from the component clusters, all handled by the interface layer and the DPE,

transparent to the user.

When used as an experimental system, the cluster operations will allow a researcher to
compare the results of two or more search engines (or any two processes that creates
clusters). For example, a Boolean "AND" operation will indicate the overlap between
the two results sets. This facility may also be used to create a meta-search engine that
can pool the result from two or more search engines and return a composite list of

results.

40

V. Discussion

1. Scope of this project

We have developed a system that will allow any reviewer, librarian and Web site
maintainer to manage large hypertext collections. It provides them with tools to index,
annotate and group the documents for improved accessibility by the final consumer of
the information. Without this system, most of these tasks are accomplished manually, if
it all. A manual process is not only inefficient and labor-intensive, but also error prone

and much less comprehensive compared to our system.

A few automated tools in use today perform some of these functions, but most have
been adapted from other uses and are not perfectly suitable or integrated for these
particular applications. These systems often do not exploit the full potential of the
information-rich hypertext documents, mostly because their predecessors were

developed prior to the introduction of hypertext and SGML.

Our document management system has been designed specifically to handle Web and
hypertext documents. We have designed it to integrate seamlessly with all the
components within the system and provide flexible interfaces to external components
and other programs. To achieve a high degree of flexibility without sacrificing the

powerful features, the system was assembled from small functional modules. These

4

modules were pre-existing component software, components developed for this project,

or components that were modified to integrate with the rest of the framework.

Apart from designing and developing this system as a tool, we have made the individual
components of this framework available, so that an information retrieval system

developer may use it as a toolkit for developing other systems.

The features offered by this system to the reviewer or indexer:

e Visualize a document structure overview as a table of contents/index.

e Operate on clusters instead of single documents.

e Markup documents with meta-data.

e Ability to work offline from the Web.

e Maintain a local archive or mirror of the remote site, which may also serve as a
snapshot of a dynamic or volatile website.

e Have exhaustive error tracking and audit trails.

The features offered by this system to a developer using the system as a toolkit:
e Develop systems using pre-fabricated components.
e Exploit the document information infrastructure in the RDBMS.

e Access to the pre-processed document repository.

42

2. Performance Assessment and Evaluation

In this part of the thesis, we will attempt to design and describe evaluation strategies for
assessing the performance of this document processing system. The performance
evaluation of a system as large as this can be a project all on its own merit. We did not
intend to perform any of the assessment or evaluation strategies discussed below due to

time and resource constraints.

The primary goals for such an evaluation would be to determine if this toolkit can
provide an improved signal to noise ratio over more conventional tools and techniques.
We may also attempt to discover if the topological clustering does actually help in
predicting other document attributes, like quality and content. The following afe

possible scenarios for evaluation.

To evaluate the ability of this system to improve the recall and precision by limiting the
search domain to predetermined clusters of documents, arbitrary selections from one or
two test collections based on actual Web content may be used. It must be emphasized

that such results may not be extendible to large collections or the entire WWW.

The experiment may use test collections with a known number of relevant judgments of
documents and their corresponding queries. The queries may be run against document
clusters created based on different attributes, and their recall and precision computed.

The results may indicate if any attribute used to generate a cluster has an effect on

43

improving the recall or precision. A positive result may indicate the existence of a
clustering technique that may be used to fine-tune a search based on that particular

attribute.

As a specific case, a test collection that has been clustered manually on the content
quality, and automatically based on topological information, may be studied. It would
be instructive to examine the correlation of documents between these clusters. A strong
correlation would allow us to predict the quality of documents in any cluster, if we have

some topological information and the quality judgments on only a few documents.

This may even be the basis for the development of a statistically valid comparative scale
for document quality that would depend on topological and domain information as input.
There are many other possible assessment studies that are beyond the scope of this
thesis. Some of these possibilities may include: (1) Usability studies to examine if this
system improves the efficiency of the user in locating information in a diffuse document
space. (2) If the system can improve the quality of documents retrieved by applying

some machine learning techniques to its clustering logic.

44

3.

Future work

Plans for future development include:

Developing an interface to the Saphire[14] system, which would allow users to
automatically generate clinical terms from a controlled vocabulary like MeSH or
SNOMED, associated with the document being processed. These terms may be

saved as meta-data associated with that document.

Adding facilities to handle additional mime-types of non-text documents like
images, documents in specialized formats like PDF(Portable Document Format) and

documents in multiple languages.

Developing a comprehensive and consistent programming API to the entire system
in a high-level structured language like C++ or Java. This would enable developers

to easily integrate components from this system into their own applications.

Developing an integrated front-end, written completely in Java (for portability), that
would provide the user with a powerful and flexible user interface. This front-end
program should be able to communicate with the rest of the system -- specifically

the RDBMS repository through a JDBC channel.

45

VI. Conclusion

Over the last decade, the World Wide Web has been growing exponentially, along with
its contents, diversity and complexity. The tools to locate and manage specific
information in this growing environment have just not been able to keep up. Most of the
systems that are currently used were actually designed for other non-hypertext uses and
subsequently adapted for the Web. Consequently, many of the features and facilities
that are unique to the Web are underutilized or ignored due to the lack of appropriate

and specific tools and programs.

In this project, we have tried to address these issues by developing an application
framework designed specifically to handle hypertext documents of the World Wide
Web. Our development strategy has been to use small component modules to provide
specific functionality to the system. This makes the system flexible and allows the user
to modify the system to suit their specific needs. Apart from using this system as an
application framework, a developer or researcher may use this system as a toolkit to

build a more complex document management system, or a research system.

Our primary goal in developing this system was to provide a powerful and flexible tool
to maintain and update Cliniweb. This system may also be used as a general application
framework for collecting, indexing and reviewing hypertext and Web documents from

multiple sources.

46

Our system strives to improve both the quality and the quantity of the content of the
material generated by reviewers and indexers compared to their manual efforts. It
provides for a more comprehensive and complete solution compared to isolated tools
and programs. We attain these goals by exploiting the unique features of the hypertext

and the World Wide Web that have often been ignored by other systems.

47

VIl. References

. Abiteboul, S. et.al. Querying documents in object databases. , Intl. J. Digital

Libraries (1997) pp. 5-19.

. Allan, James. Building Hypertext using Information Retrieval. Info. Processing &

Mgmt, 1997. 33 (2) pp145-159

. Botafogo R.A. Cluster Analysis in Hypertext Systems. , Proceedings of the
Sixteenth Annual International ACM SIGIR Conference on Research and

Development in Information Retrieval (1993), pp.116-125.

. Bowman C. M., P. B. Danzig, D. R. Hardy, U. Manber, and M. F. Schwartz, "The
Harvest Information Discovery and Access System,” Computer Networks and

ISDN Systems. 28 (1995), pp. 119-125.

. Boyle James, A blueprint for managing documents. Byte, May 1997.

. Hersh WR, Brown KE, Donohoe LC, Campbell EM, Horacek AE, CliniWeb:

Managing clinical information on the World Wide Web, Journal of the American
Medical Informatics Association, 1996, 3: 273-280. Cliniweb:

(www.ohsu.edu/cliniweb).

. Cutting D. R., D. R. Karger and J. O. Pedersen, "Constant Interaction-Time
Scatter/Gather Browsing of Very Large Document Collections," Proceedings of the

48

10.

11.

12

13.

14.

Sixteenth Annual International ACM SIGIR Conference on Research and

Development in Information Retrieval (1993), pp. 126-134.

. Darrell Woelk and Christine Tomlinson, The Infosleuth project: intelligent search

management via Semantic agents. Proceedings of the International WWW

Conference, October 1994. (www.mcc.com/projects/infosleuth)

Documentum Inc. (http://www.documentum.com)

Domel, P., "WebMap - A Graphical Hypertext Navigation Tool," Proceedings of
the Second International World Wide Web Conference, Chicago, Illinois

(October 1994).

Epstein J. A., J. A. Kans, and G. D. Schuler, "WWW Entrez: A Hypertext Retrieval
Tool for Molecular Biology," Proceedings of the Second International World

Wide Web Conference, Chicago, Illinois (October 1994).

William B. Frakes and Ricardo Baeza-Yates, Eds. Information Retrieval: Data

Structures & Algorithms, 1992, Prentice-Hall, Inc.

Hackathorn Richard, Farming the Web. Byte, October 1997.

Hersh William R., “Information Retrieval- A Health Care Perspective” Springer

1996.

49

1.,

16.

1s

18.

19.

20:

21.

22,

25

Klark P., and U. Manber, "Developing a Personal Internet Assistant,” Proceedings
of ED-Media 95, World Conf. on Multimedia and Hypermedia, Graz, Austria

(June 1995), pp. 372-377. (www.cs.arizona.edu/people/udi/nabbit/nabbit.html)

Lawrence S, Lee Giles C. Searching the World Wide Web. Science 280 April 3,

1998, pp 98-100.

Lynch Clifford, “Searching the Internet” Scientific Am. March 1997.

Malet G, et.al. Medical core Metadata elements. Personal communications.

Manber U. and S. Wu, "GLIMPSE: A Tool to Search Through Entire File Systems",
Usenix Winter 1994 Technical Conference, San Francisco (January 1994), pp. 23-
32. See also Glimpse Home Pages at:

(glimpse.cs.arizona.edu),(donkey.cs.Arizona.edu/webglimpse)

Manber Udi, Smith M, Gopal B, Webglimpse- Combining Browsing and Searching.

, Proc. of Usenix Technical Conference Jan.1997.

Marcel Holsheimer, et.al. Data mining, the search for knowledge in databases.

C.W.1. Amsterdam, Technical report.

Mendelzon, A.O., et.al. Querying the World Wide Web. Intl. J. Digital Libraries

(1997) pp54-56.

Mihaila G.A. WebSQL - an SQL like query language for the WWW. Masters

thesis, Univ. of Toronto, 1996.

50

24.

25.

26.

27.

28.

29.

30.

Morton D., and S. Silcot, "Systems for providing searchable access to collections of
HTML documents," First Australian WWW conference, July 1995.

(http://www.scu.edu.au/ausweb95/papers/indexing/morton)

Munoz F R, Hersh W., “MCM Generator: a Java-based Tool for Generating

Medical Metadata. Submitted. 1998.

Salton G, McGill M. J. Introduction to Modern Information Retrieval, McGraw-

Hill, New York 1983.

“The Internet: Bringing Order from Chaos.” Special Issue on the Internet. Scientific

American, March 1997.

Small, H., E. Sweeney. 1985. “Clustering the Science Citation Index Using Co-

citations. I. A Comparison of Methods.” Scientometrics, 7, 391-409.

Trellix Inc. (http://www.trellix.com).

Willett, P. 1988. “Recent Trends in Hierarchic Document Clustering: A Critical

Review.” Information Processing & Management, 24(5), 577-97.

51

VIIl. Appendices

Appendix A. Definitions:

Action: any operation or modification on any document sub-structure or super-structure
Archive: (repository) a collection of documents stored together (usually physically).

Attribute: an intrinsic or extrinsic property of the document based on its content or

context.

Cluster: (aggregate) a logical set of documents, grouped together manually or

automatically, based on some document property.
Document: a single file with human and machine-readable content.

Domain: a physically or administratively distinct zone or collection of documents

encompassing one or more hierarchies or archives.

Hierarchy: a linked and logically arranged collection of documents with one root (or

top most node) and many children (leaf) nodes.
Structure: layout or arrangement of the elements of a document or cluster.
URL: Uniform Resource Locator.

View: one of many representations of the contents of the document or document

space(or cluster)

52

Appendix B. Table Structures

create table urls(

docid number not null,
url varchar2 (500) not null,
title varchar2(1000),

local_flag char(l),
local_stat wvarchar2(500),

mime varchar2 (80),
stime date,

fsize number,

links number,

UNIQUE (docid)
) :

create table links({
source number not null,
target number not null
)i

create table clusters(
clusterid number not null,
clustername wvarchar2(100),
ctime date,
detail varchar2 (1000),
UNIQUE (clusterid)

);

create table doc_cluster/(
clusterid number not null,
docid number not null
};

create table dirs/(

dirid number not null,
path varchar2 (100),
stime date,

range_s number,

range_e number,

UNIQUE(dirid)
) :

create table meta_data(
docid number not null,
meta_tag varchar2 (1000},
meta_value varchar2(1000)
)7
create table alt_title(
docid number not null,
title varchar2 (1000)
)

53

Appendix C. DAE Codes For Documents

CODE Description
DEEP Too many levels deep.
DUP *Document seen before in current run.
DUPBF *Document seen in a previous run.
ERROR HTTP protocol error — error code follows:
IMAGE Document is a graphic or binary file.
MAIL Mail link.
OUTSIDE Link is outside the current prefix specification.
OVERLIMIT Too many files have been downloaded, limit exceeded.

*These codes are not stored in the tables- they are for diagnostic facilities only.

54

Appendix D. Command Line Parameters for the DAE

—depth=N Maximum depth to traverse (default: SMAX_DEPTH)
—limit=N A limit on the number documents to get (default: SMAX_DOCS)
—version Print version number and quit

—verbose More output

—quiet No output

—sleep=SECS Sleep between gets, ie. go slowly

—prefix=PREFIX Limit URLSs to follow to those which begin with PREFIX

—noimg Do not fetch Graphics/Binaries.

These command line parameters are extensions of the ‘lwp-rget’ program

parameters.

55

Appendix E. Screen Snapshots of the Program

56

44 21 37 66

57

http://medir. ohsu. edu/~dayh/clinibot/C6I/dae henl

CLINIBOT DRIVES

- //allergy. mog. edu/physicians /ltxhone. htnl

://allergy. mcqg. edus/roledll/role. html

: ffallergy. mcg. edu/studentsst0bj. html

. //anesthesiology. mc. vanderbilt. edu/resweb /eamg/eomgl. htm

:ffavery. med. virginia. edu/~smbdy/edmaterials. html

://ben. vub. ac. be/malaria/mad. html

://bio-3.bsd. uchicago. edu/home /ul/rita/Hhs/

. ffcancer. med upenn. edu/about_oncolink/manuscripts/avs94_paper html
:ffcancer. med. upenn. edu/causeprevent/genetics/breal/

. ffrancer med wpenn. edu/causeprevent/genetics/breal/

delress. dsyb@ohsu edid Far E

58

