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Abstract

 Microarray experiments offer the user the potential to monitor gene expression 

across thousands of genes at once.  However, researchers are often left with a 

dimensionality problem - too few technological and biological replicates, and thousands 

of genes to monitor for differential expression. [1] The problem of finding interesting and 

novel genes within the thousands of genes on a microarray can seem akin looking for a 

needle in a haystack of needles.  One highly popular approach to finding interesting 

genes for further study is finding similar patterns of expression within the data.  A 

common hypothesis-generating approach, clustering, has been shown to have much 

potential in finding genes with similar function.  However, there are a variety of 

clustering methods, and each has different strengths and weaknesses in finding patterns 

within microarray data.   

 In this thesis, I will first discuss some issues with acquiring and normalizing 

microarray data, which will be useful in discussing clustering methods.  I will then 

discuss three types of clustering methods, namely hierarchical, partitional, and model-

based clustering methods, highlighting the strengths and weaknesses of each approach.

For microarray data that has subtle changes in expression across samples, different 

methods may give different answers, a point that is often overlooked.  The underlying 

research question is to determine an effective way of comparing results across methods. 

This leads to my project goal, which is to develop and validate an evaluation framework 

for comparing clustering methods.  Clustering methods used to develop this framework 

will be discussed, including program design and a review of the metrics used to evaluate 
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the clusterings.  Validation of this evaluation framework will also be discussed, utilizing 

both simulated and real data.  Interpretation of the results indicate that the tool has 

potential in finding consensus between clustering methods.  The tool allows users to take 

appropriate caution interpreting a cluster if a gene of interest is only clustering with other 

known genes in one method.  Finally, some possible future directions outside of the scope 

of the present study will be discussed.
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Chapter 1: Background and Research Question 

1.1 Acquisition and Low-Level Analysis of Gene Expression Data  

As a hypothesis-generating tool, microarray experiments offer the potential of 

monitoring the expression of thousands of genes simultaneously.   

 At its simplest, a microarray is a library of sequences printed to a glass slide.

Each sequence is representative of a gene. There may be several sequences that represent 

a particular gene.  There are two platforms available for doing microarray experiments, 

spotted microarrays, and oligonucleotide based microarrays.  The spotted microarray 

platform is based on complementary DNA (cDNA) sequences, which are derived from 

libraries of cloned genes.  cDNA chips can be made commercially or inhouse, and are 

printed using a robotic printing machine which individually spots each sequence to the 

glass slide.  Sequences from these chips are usually about 100-200 base pairs long.  In 

contrast, oligonucleotide based chips are manufactured using a photolithographic process, 

which attaches RNA bases to sites that have not been masked on the chip. 

Oligonucleotide sequences are also much shorter, on the order of 25-50 base pairs. [2] 

 After the chips are manufactured, labeled gene transcripts are hybridized to the 

slides. The gene transcripts are labeled with a fluorescent dye.  For oligo-based arrays, a 

single sample is hybridized to the slide.  When scanned by a laser, the fluorescence 

intensities obtained from oligo-based slides represent the absolute abundance of gene 

transcripts in the sample.  In contrast, spotted arrays hybridize two samples to the slides: 
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a reference sample and a test sample.  Each sample is labeled with a different fluorescent 

dye.  These two samples competitively hybridize to the slide, and so the fluorescent 

intensities obtained from spotted slides only represent the relative abundances in the 

sample. 

 After the hybridized chips have been scanned with the laser, the spot intensities 

are then converted to numbers, and the raw data is obtained. However, it should be 

emphasized that the potential for systematic variation exists at each step of the data 

acquisition process.  This unwanted variation contributes noise to the data, which may 

interfere with further data exploration. [1] Therefore, a key objective is to remove this 

systematic variation in order to study the interesting, or biological sources of variation.

This process is known as preprocessing and normalization. We will discuss this process 

for both spotted and oligo- based arrays. Within oligo-based arrays, three of the most 

common methods will be discussed: Affymetrix's own Microarray Analysis Suite (MAS 

5.0), and two model-based methods: the dChip method of Li and Wong, and Irizarry's 

own Robust Multiarray Average (RMA) method. [3-6] 

 Often, the first step in this process is log-transform the intensity values.  This is 

done for two reasons.  The first reason is that log-transforming makes effects additive, 

which makes normalization easier. [1] However, in the RMA process, the log 

transformation is performed after background subtraction. The second is that microarray 

data is highly skewed, and log transformation helps to even out these highly skewed 

distributions.

 After log-transforming the intensity values, an estimate of the background noise 

due to nonspecific binding and optical noise is obtained, either by direct measurement, or 
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by mathematical modeling. [3-6] Because only a small percentage of genes are 

differentially expressed on a microarray, background subtraction will help to eliminate 

variation due to noise. However, improper background signal calculation can add noise to 

the data so care must be taken in determination of background levels.     

In spotted arrays, a direct estimate of the background noise is found by estimating 

the signal level of the immediate area surrounding the spot.  This approach is not possible 

with oligo-based arrays due to the fact that the sequences are so tightly packed on the 

chip.  Affymetrix's Microarray Analysis Suite (MAS) divides the chip into smaller 

regions.  A low percentile of the distributions of each region (2% for MAS) is found, and 

used as an estimate of the background noise for this region. [1]  One caveat to this 

approach that should be noted is that this method of background subtraction is local.  If 

one region has a completely different signal distribution than another region, some signal 

information can actually be lost through this method. The Robust Multiarray Average 

(RMA) method takes a different approach by fitting the raw measured signal to an 

additive model of noise plus signal.  Noise is modeled as a Gaussian distribution and the 

true signal as an exponential distribution.  The modeled noise can then be mathematically 

subtracted from the raw measured intensity. [3] 

Another potential source of noise is cross-hybridization. Many oligo-based 

methods utilize the fact that the oligo sequences are represented by both a Perfect Match 

(PM) sequence, which matches the sequence exactly, and a Mismatch (MM) sequence, 

whose central base differs from the sequences by one base.  The MM sequence was 

intended to be a probe-specific measure of cross-hybridization effects.  Both MAS and 

dChip use the quantity PM-MM in their summarization processes.  It has been shown that 
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on average, 30 percent of the MM values are larger than the PM values, which suggests 

that the MM values contain some signal. [1]  The newer version of MAS, MAS 5.0, uses 

what is called the imperfect mismatch (IMM), which is a quantity derived from MM that 

is never larger than the PM values. [4]  

dChip (also known as MBEI, Model Based Expression Index), in contrast, 

attempts to adjust for cross-hybridization and other effects through the iterative fitting of 

probe sets to its multiplicative model, which will be explained in the summarization 

section.  [5, 6] 

Additionally, it has been shown in spike-in studies, where known amounts of 

control cRNAs have been added to a sample, that MM intensities also increase along with 

the PM intensities as more cRNA is added. [3] This suggests that the MM intensities 

contain some signal information and that PM-MM may not be a biologically meaningful 

expression measure. This was the motivation behind Irizarry et al's use of just PM in 

calculating expression indexes.  [3] A newer version of dChip utilizes only the PM 

values.

 The next step in the preprocessing process is normalization. Many potential 

sources for systematic variation exist, and these should be corrected in order to allow for 

the comparison of the expression indices from one slide to the next.  It should be 

emphasized that correcting for these variations is an iterative process.

One source of systematic variation that is most easily seen in spotted microarray 

data is the variation due to the print-tips (or pins) used to spot the sequence to the slide, 

as the pins can become bent or contaminated and impact an entire group of spots. When 

the same sample is used as both the reference and test sample (known as self-self 
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hybridization), a notable difference in the single distributions is detected when the genes 

are separated by print-tip group prior to normalization (see figure 1.1.1).   Other sources 

of variation include variations in experimental technique, differing efficiencies of the 

dyes, spatial effects, and sample quality. 

Figure 1.1.1. Self-self hybridization of a cDNA microarray 
showing variations due to four print tips. [7] 

There have been varying approaches suggested to correct for these sources of variation in 

spotted microarrays.  Perhaps the most popular and successful approach has been the use 

of locally weighted regression (lowess) to correct for intensity-dependent biases.  Lowess 

correction has been shown to reduce systematic variation between print-tip groups, dye 

channels, and other sources of variation. [7, 8] The key assumption in lowess 

normalization is that the distribution of the dataset is symmetric, which may not be the 

case if the array is biased towards highly expressive sequences. 

 There are similar sources of variation with oligo-based arrays that must be 

removed.  Each method takes a different strategy towards normalizing arrays. 

 MAS’s approach to normalization is the simplest approach.  In order to normalize 

arrays for comparison, the array with the median average intensity is chosen to be the 

baseline array.  The intensity of each array is globally scaled such that average intensities 
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of that array match the average intensity of the array.  This is the crudest form of 

normalization. [4] 

 MBEI’s approach also utilizes a baseline approach.  However, the normalization 

process is more sophisticated in that the normalization is based on a set of genes that is 

non-differentially expressed across arrays, known as an invariant set.  Determining which 

genes belong to the invariant set is a nontrivial process and is described further in [5]. 

The baseline array values of this invariant set are plotted against the values of the to-be-

normalized array and a smoothing spline is fitted to the data in order to determine the 

relation between this array and the baseline array.  This process is done for each array. 

 RMA uses quantile normalization in order to normalize across arrays.  In quantile 

normalization, the distributions of each array are forced to fit a chosen distribution.  This 

distribution is chosen by averaging the distributions across all arrays (hence the term 

Multiarray Average).   [3] 

 The point is that the application of these normalization methods takes human 

judgment in order to find the most effective normalization for the data.  Data may need to 

be iteratively normalized within groups to effectively remove systematic variation, such 

as within print-tip group, and thus this is one processing step that cannot be easily 

automated.  

Oligo-based microarrays add the complication that multiple oligonucleotide 

sequences represent a single gene (which Affymetrix calls a probe set), and an 

summarization process needs to be applied to the intensity values over all the sequences 

in that probe set.  If there are multiple transcripts that represent a single gene on a cDNA 

array, this summarization step is also necessary for that array. 
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MAS originally used a summarization known as AvDiff that took the average of 

the differences between all probe pairs within the probe set as the expression index for 

that gene sequence.  This has not had the problems of the distribution of MM values, but 

was not robust to outlier pairs within the probe set, which may be less informative than 

the other pairs within the probe set. [4] However, the latest version of MAS uses the 

Tukey’s Biweight of the PM-IMM pairs for summarization.  Tukey’s biweight can be 

thought of as a mean that is robust to outliers.  MBEI uses as its expression indices the 

maximum likelihood estimates (MLE) of its fitted model. [6]  

The dChip model attempts to account for probe-specific effects through a 

multiplicative model of the PM-MM differences for each probe.  This model is 

constrained by forcing the sum of squares to be equal to the number of probe pairs in this 

model.  Implicit in the model is an estimate of the standard errors of the expression 

indexes. [6]  The model is iteratively fit to the data by first identifying and excluding 

arrays with high errors in the expression indexes, then excluding probe sets with high 

errors, and finally excluding those probes with high errors.  Thus, the iterative nature of 

fitting the MBEI model allows for the detection and exclusion of outliers at every level in 

the dataset.  Li and Wong have suggested that this approach is most successful when 

more than ten arrays are used in the analysis. [5, 6] 

RMA also uses a model to summarize expression values across a probe set.  

However, RMA first log transforms the normalized values so that the effects are additive.  

It then fits an additive model to the data using median polish.  Median polish is a fitting 

method that is robust to outliers.  The expression indices can then be estimated from the 

fitted model. [3] 
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 After the data has been preprocessed, normalized, and summarized, a filtering 

process may be applied.  Filtering is a data-reduction step.  Even after normalization, 

very small fold changes (i.e., the ratio of intensity values between two different 

experimental conditions) among samples may be due to noise, and so removing those 

genes that are not differentially expressed will improve the analysis of results. [1]   Two 

common criteria used for filtering include: choosing an arbitrary threshold for fold-

change, or filtering based on whether the differences in expression across samples are 

statistically significant.  Another option, sometimes used for oligo-based arrays, is to 

filter out genes based on whether the gene is present or absent.  This presence/absence 

call is often made by comparing the expression of a gene with that of the distribution of 

intensities from negative control genes (e.g., genes that are not expressed under that 

experimental condition).  

 After the normalization and filtering processes, a working data set is obtained, 

which is known as a gene expression matrix.  In a gene expression matrix, each column 

represents a different sample, and each row represents a different gene. In time studies, 

each column may correspond to an individual time point.  If there are p genes and n

samples, this matrix M is a [p x n] matrix.  Each entry Mij in M represents the abundance 

of gene transcript i for sample j. [9] 

1.2 High-Level Analysis of Gene Expression Data 

 The next step in utilizing the gene expression matrix is dependent on the type of 

microarray experiment.  In biomarker studies, the interest is finding genes that are 
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differentially expressed across cases and controls.  These genes can be found through the 

filtering process described above.   However, in time series experiments, the focus is on 

tracking how large groups of genes are expressed over a time period.  Finding genes that 

have similar temporal expression profiles is an important goal of these studies. [2] In 

genetic pathway experiments, the focus is on finding genes that are expressed similarly 

across a number of situations.  In these cases, filtering becomes inadequate.  

 Regardless of the type of experiment, the researcher is limited by which statistical 

tools he can use on the data because of the dimensionality problem associated with the 

gene expression matrix.  Most statistical tools for analyzing such data sets rely on the 

assumption that p and n are of similar magnitude, which is not the case with gene 

expression matrices.  Gene expression matrices have a large set of genes, but a much 

smaller range of samples.  This is especially problematic with time series experiments, 

where the time points are discrete and sparse.  Normal methods for analyzing time series 

will not work on such data. Thus, there are few statistically rigorous testing frameworks 

available to explore the data set.

 Given these problems, many investigators utilize clustering techniques to aid in 

mining and visualizing the data. Clustering is a hypothesis-generating tool that partitions 

the data into smaller chunks, or clusters.  The data may be partitioned either by gene 

(clustering on rows) or by sample (clustering on columns).  The data is partitioned based 

on the similarity of the expression profiles.  Thus, for any clustering, a measure of 

similarity, also known as a similarity metric, is needed. [9] The similarity metric can be 

magnitude-based (Euclidean) or based on similar patterns of ups and downs in the profile 

(correlation). In successful clusterings, similarity in expression profiles can lead to 
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similarity of function.  It should be noted that any results from clustering must be 

confirmed by some external method, whether through combining clustering with 

functional annotations or follow up experiments.  

 One visualization technique associated with clustering is the Eisengram, or 

heatmap.  Developed by Eisen, [10] the heatmap provides an easy way to visualize 

patterns of expression.  Heatmaps utilize a false color representation; the most common 

color scheme is of downregulated genes are represented by red, and upregulated genes 

are represented by green. [10]  The relative expression level of the genes is represented 

by the intensity of these colors.  Most importantly, heatmaps provide the user with a way 

of comparing gene expression profiles visually. 

1.3 Early Success Stories with Clustering 

 One of the earliest and most successful applications of clustering microarray data 

was that of Eisen. [10] He applied a variation of average-link hierarchical clustering to 

two microarray data sets.  Average-link hierarchical clustering is a data exploration 

method that produces a dendrogram representation that relates the gene expression 

profiles by a similarity measure. The first data set was a time series of the growth 

response of human cells, and the second was a combination of data sets on yeast cells, 

which included mitotic cell cycle data, sporulation, as well as others. [10] He clustered all 

the genes in the data set with known functional annotations. With both data sets, he 

showed two important results.  The first is that redundant sequences representing a single 

gene clustered together.  The second, and more important result, is that genes of similar 

function clustered together. As can be seen from figure 1.2.1 below, there is a strong 
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similarity in the expression profiles across any cluster. [10]

Figure 1.2.1 A portion of Eisen’s clustered data 
in heatmap form. Note the similiarities in expression  

of genes within a cluster (especially within the orange  
box), and the functional annotations of the bottom  
cluster are the same (that of protein degradation). 

Reproduced from Eisen, et al [4]

 However, there are some properties of the datasets that led to the success of this 

study.  Both of the domains Eisen studied exhibited large fold-changes in expression.

This is especially true with the yeast data set, as cell cycle data generally has very large 

fold-changes in expression, on the order of 64-fold.  In addition, the geometry of both 

datasets was well known.  As a result of these properties, Eisen's clusterings were 

relatively stable across a variety of clustering methods.   

 In contrast, the majority of microarray data sets may exhibit more subtle 

differences between conditions (e.g., not have such large fold-changes in expression), 

which means that the patterns of expression that clustering relies on may be obscured by 

noise in the data.  Because clustering methods (especially correlation-based methods) are 

sensitive to noise, clusterings may not be reproducible across a variety of methods. [1] 

Clearly, some way of comparing clusterings from different methods is needed, which will 
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be discussed in section 3. 
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1.4 A Motivating Example for Comparing Clusterings 

 Microarrays often contain sequences that have no functional annotation, either 

unannotated gene sequences or sequences derived from sequenced tagged sites (STS).

Part of what makes microarray studies exciting is the possible discovery of new genes 

with unknown functions.  As the Eisen study shows, genes clustered based on gene 

expression levels may also end up clustering by function. 

 Suppose a biologist uses a clustering method on her microarray data and finds 

such an unannotated sequence clustering with genes of known function.  Such a 

discovery is potentially exciting.  However, suppose another lab uses the same 

microarray data but a different clustering method on the data, and that gene no longer 

clusters with the same genes as before.  Is that gene sequence still worth studying?  

1.5 Research Question 

 In order to help answer this question, we propose the development and validation 

of a evaluation framework for comparing clusterings obtained from different clustering 

methods. The approach we use in this study is that of obtaining consensus among 

clustering results.  This will allow a researcher to weigh all of the evidence and determine 

how reliant the results are on the method used. 
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1.6 Project Goals 

 The end goal of this project is to develop an evaluation framework that will allow 

for the comparisons of different clustering results.  The framework will have two aspects: 

a numerical report with metrics comparing aspects of the various results, presented in a 

table format, and a visualization piece that will allow for visual comparison of clustering 

results.

 The framework will then be validated using both a “gold-standard” data set, that 

of the Eisen Yeast Cycle data set, and a simulated data set.  The Eisen Yeast Cycle data 

set is a good candidate for validation as it has been extensively analyzed and has an 

obvious geometry.  Simulated data sets offer opportunity for validation in that they allow 

for comparison of clustering results with the known true clustering of the data. 

1.7 Use Cases 

There are two possible use cases to consider in the design of the evaluation 

framework.  The simpler case to consider is that of an informatics researcher wishing to 

compare the performance of different clustering methods on a dataset where the answer is 

already known. In this case, the program asks which methods the user wants to compare. 

The program will then ask for appropriate parameters for each method. The program then 

runs through all clustering methods and produces a report comparing those methods. This 

framework will also allow new methods to be added to compare performance. 
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The second use case would be use by a biologist. In this use case, a biologist, 

wishing to find new sequences to pursue, would input her expression matrix into the 

program.  
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Chapter 2: Review of Clustering Methods 

2.1 Cluster Analysis 

 Picking a clustering method involves three choices: 

1) The similarity metric,  
2) The clustering type,  
3) A particular implementation of the clustering type.

 The first step in picking a clustering method is picking the similarity metric.  The 

choice is important to the clustering method because it is dependent on what qualities of 

the data one wishes to capture in the data exploration. [11] Two metrics that are 

commonly used are Euclidean distance and correlation distance.  Euclidean distance 

measures the absolute similarity of two expression profiles.  It is calculated using the 

following equation: 

x y xi yi

2

i 1

p

.       (eqn 2.1.1) 

Where x  and y  are genes, and xi  and yi  represent the value for that gene under the ith 

experimental condition. Figure 2.1.1a shows two expression profiles that have a small 

Euclidean distance.   

Correlation distance, on the other hand, measures how much of a linear 

relationship the two profiles have.  Correlation distance is calculated by the following 

equation:
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r(rx, ry)= 1
m

xi x

x

yi y

yi=1

m

      (eqn 2.1.2) 

Where x and y are genes, xi  and yi  represent the value for that gene under the ith 

experimental condition , y  represents the average value of y over all experimental 

conditions, and y  represents the standard deviation of y over all experimental 

conditions.  Correlation distance is useful in capturing patterns of up and down 

expression even when two profiles are not absolutely similar. [11] Figure 2.1.1b shows 

two profiles that have a small correlation distance.   

   (a)          (b)  
Figure 2.1.1  Two different gene expression profiles. 
In figure 2.1.1 (a), there are two expression profiles 
that are very close in a Euclidean sense.  In figure 
2.1.1 (b), there are two expression profiles that are 

close in a correlation sense. 

 After the distance metric is picked, a distance matrix D must be calculated.  This 

is a p x p matrix that contains the distances between every gene expression profile.  An 

entry Dij represents the distance between gene profile i and gene profile j (Note that this 

matrix is symmetric, because Dij = Dji and Dii = 0).  This matrix is the data format that the 

particular clustering algorithms act upon. 
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2.2 Clustering Methods: An Overview 

 After the distance matrix is generated, a type of clustering must be chosen. 

Although there are numerous approaches, we will discuss two of the most common types 

of clustering: hierarchical and partitional clustering. 

Within the type of clustering, a particular implementation must be chosen.  Each 

method differs by the assumptions it makes about the data, the structure it imposes on the 

data, and the output from that method.  A summary table comparing the two methods 

discussed is provided at the end of this section. 

 The first type of method we will discuss is hierarchical clustering.  Hierarchical 

clustering is a relatively popular method because it requires very few assumptions about 

the data, and it imposes very little structure upon the data.  Hierarchical methods produce 

a dendrogram, a tree structure whose height represents how distant cluster elements are 

from each other.  Clusters can be chosen at a fixed level of similarity by "cutting" the tree 

at a particular height. [1] More commonly, however, clusters are hand-picked from the 

dendrogram.  Thus, a dendrogram can be thought of as a family of related clusterings. 

 The dendrogram can be produced by two methods.  The first method is known as 

bottom-up, or agglomerative clustering, which starts with each element as a singleton 

which is then clustered with other singletons, until a single cluster is formed. [1]

Examples of agglomerative clustering include complete-link, single link, and average link 

clustering.  The second method is known as top-down, or divisive clustering.  Divisive 

clustering starts with all elements as members of a single cluster which is then divided 

into smaller clusters, until the singletons form their own clusters.  Examples of divisive 
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clustering include 2-means (also known as Tree Structured Vector Quantization) and 

Diana. [1, 6, 7]

 Two hierarchical methods were chosen to be studied, one agglomerative and one 

divisive.  The agglomerative method chosen was that of Unweighted Pair Group Method 

with Arithmetic Mean (UPGMA), also known as average link clustering.  This method is 

one of the most common agglomerative clustering algorithms used in cluster analysis.  

This is also the method that was used by Eisen in his original paper.  In UPGMA, one 

starts with the original p x p distance matrix, where p is the number of genes.  The matrix 

is scanned for those two elements that are closest to each other.  These two genes are 

combined into a single cluster.  A new distance matrix with dimensions (p-1) x (p-1) is 

then calculated.  The distance between a single gene i and a cluster of genes is calculated 

by averaging the distances from that single element i to all the members in the cluster.  

Likewise, when the distance between two clusters C1 and C2 is calculated, it corresponds 

to the mean distance of all the elements of C1 to all the elements of C2. 

 The divisive method chosen was a variant of the MacNaughton-Smith Algorithm 

known as Diana.  Diana starts with the entire population and starts to form a "splinter 

group" by picking the gene with the largest mean dissimilarity to all the other points.  The 

remaining genes are then swapped to this splinter group until no gene in the original 

group is closer (in mean dissimilarity) to the splinter group.  Similarly, these two groups 

are further divided until the singletons are reached. [12] 

 There are caveats to hierarchical clustering that must be noted.  If the clustered 

data is noisy, the dendrogram can have very little biological meaning.  Another caveat 

specific to agglomerative clustering is that higher level clusters (those clusters that are 
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near the top of the dendrogram) tend to be less reliable than the lower level clusters 

(those clusters near the bottom of the dendrogram). [13]

 The second type of method we will discuss is partitional clustering. Whereas 

hierarchical clustering requires no parameters to produce the clustering, in partitional 

clustering, the number of clusters K must be specified in these methods.  Thus, a certain 

amount of information must be known for these clustering methods to be used. Partitional 

clustering forces the data into the K partitions specified.  Thus, if K is not known or 

obvious from the geometry of the data, this method can give nonsensical results, forcing 

the data to partition into nonsensical partitions. [11, 14]

 Partitional methods are iterative, meaning that cluster assignments can change 

from iteration to iteration.  Typically, these methods are iterated until the cluster 

assignments do not change. Examples of partitional algorithms include k-means and Self 

Organized Maps (SOM). [1, 15]

 The two partitional methods that were chosen in this study are K-means and Self 

Organized Maps (SOM).  K-means is an iterative algorithm that has only two steps.  The 

algorithm can be started with either a set of k-cluster centers randomly assigned or 

specified from previously known information.  Now the algorithm can start.  In step one, 

those genes that are closest to the cluster centers are found and made members of that 

cluster.  In step two, the cluster centers are recalculated by calculating the vector mean of 

each member of the cluster.  These steps are repeated until there are no changes in 

assignment. 

 Self-Organized Maps are similar to k-means.  However, the cluster centers 

(referred to as prototypes) are linked together in either a one or two dimensional 
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geometry, such as a one-dimensional grid or a two-dimensional grid.  This grid of 

prototypes is randomly assigned, much like the cluster centers of k-means. For each 

iteration, a gene is selected. The closest prototype Np is moved towards that gene the 

most. The other prototypes are moved as well, but with a weight dependent on their 

"connectedness" (i.e., their relative position in the network with respect to another 

prototype) to the closest prototype Np. The algorithm is iterated for a set number of 

iterations, usually on the order of 20,000 to 50,000 iterations. Thus, the geometry of the 

SOM imposes an additional structure to the clusterings. [1, 15]  

 Table 2.2.1 provides a summary of the salient points about each type of 

clustering.

Hierarchical Partitional 
Output Dendrogram Clusters with cluster centers 
Assumptions Very few assumptions made 

about data 
Must know number of 
clusters (K) beforehand. 

Structure
imposed on 
Data

Very little structure imposed 
on data 

Impose # of structures of 
data

Notes Good for when very little is 
known about data. 

Good for when there is an 
obvious pattern of 
expression or geometry of 
elements is obvious, or have 
other previous knowledge. 

Caveats Dendrogram may have very 
little biological meaning 

If K is wrong, clusters may 
be nonsensical.  

Examples Agglomerative/Top-Down 
(UPGMA) and 
Divisive/Bottom-up (Diana) 

K-means and Self-
Organized Maps (SOM) 

Table 2.2.1 Summary of clustering types. 
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Chapter 3: Implementation of program 

3.1 Implementation of Framework 

 Both the visualization and numerical components will be implemented within the 

R/Bioconductor framework.  R (http://www.r-project.org) is an open-source statistical 

programming language that is widely used among statisticians. [16] Bioconductor 

(http://www.bioconductor.org) is a bioinformatics analysis package for R that includes 

gene annotation and microarray analysis tools. [16] This framework was chosen for a 

variety of reasons.  First of all, many of the clustering methods we wish to investigate are 

already implemented and validated in R, easing the development time of such a tool.  

Additionally, Bioconductor offers some visualization capablities of microarray data that 

can be easily extended for the visualization component.  Finally, R is easy to web-enable, 

which means that the final implementation of the evaluation framework can be 

implemented as a web-based tool. 

3.2 Program Workflow 

 The program workflow can be seen in figure 3.2.1. A list of clustering methods to 

be compared is supplied to the program.  This list is currently supplied through the use of 

a simple graphical user interface (GUI). The appropriate output functions for each 

clustering method must also be supplied.  These output functions are responsible for 

performing the clustering method on the expression matrix and returning the cluster 
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assignments in a standardized data format.  The output functions themselves have a 

generic interface that accepts two inputs a list of appropriate parameters for that 

clustering method and the expression matrix itself.  The generic interface design enables 

new clustering methods to be added to the framework relatively easily. 

Figure 3.2.1 Simplified workflow of program. 

 The program then asks for the appropriate parameters for each clustering method, 

and binds these parameters to the appropriate output function in the form of a list.  Each 

slot in this list contains two objects: the output function for a clustering method, and a list 

of the associated parameters.  The list format, along with the generic interface of the 

output functions, allows the program to easily execute any number of clustering methods 

to be compared.   

 After the clustering methods are executed, a list of the cluster assignments is 

obtained.  At this point, this list of clustering assignments is submitted to the metrics 

portion of the program.  This portion of the program is separated into two sections within 

method metrics and between-method metrics.  The separation is necessary because each 
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kind of metric accepts differing inputs.  Specifically, the within-method metrics need the 

cluster assignments as well as the calculated cluster centers.   

 Between-method metrics, on the other hand, need two sets of cluster assignments, 

as well as a calculated contingency table. The contingency table compares the individual 

k clusters from a clustering C to the individual clusters k' from a second clustering C'.

The contingency table counts the number of members in common in a cluster in C with a 

cluster in C' in all possible combinations.   

 After the metrics have been calculated, the program produces a report of both 

kinds of metrics, and also returns a list of cluster assignments for each method.  This list 

of cluster assignments can be used to analyze the performance of the clustering methods 

if the true assignments are known. 

3.3 Standard Data Format 

 In order to reduce the amount of work dedicated to data conversion, a standard 

data format was for the expression matrix was decided upon.  The format for the 

expression matrix is simply a matrix that contains the expression data, with the row labels 

corresponding to the gene or sequence being studied and the column labels corresponding 

to the experimental condition.  One requirement is that the row labels must be unique, as 

they are used in calculating the Variation of Information and the Jaccard Index.  R has 

many facilities for reading a dataset in a number of formats and parsing it into this 

standard data format. 
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3.4 List of Methods/Parameters 

 After the program accepts the expression matrix as input, the program queries the 

user for a list of clustering methods to study.  Currently, the program asks for parameters 

for all six methods through a simple graphical user interface (GUI). 

3.5 Clustering 

 After the methods and parameters are decided upon, they are bundled into a list 

format along with the appropriate output function. The output function performs the 

actual clustering and returns the results in a standard output format.  The clusterings are 

returned in the form of a numeric vector which represents the cluster assignments for 

each gene in the expression matrix. 

 The strength of the list format for executing the clusterings is that it is easy to 

implement new clustering methods and extend the capabilities of the framework.  In 

order to implement a new method, the appropriate parameters need to be implemented in 

the framework, and a new output function needs to be written. 

 The final clusterings are also returned in the form of a list.  Each slot in the list 

contains the parameters for that clustering method, along with the clustering results.   The 

list format allows for easy computation of the metrics.  This is especially important in the 

case of the between-method metrics, which compare the clusterings from one method to 

the other. Figure 3.5.1 shows an example of how the clusterings are saved as numerical 

assignments for each gene. 
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ProbeSetID UPGMAEUC UPGMACOR DIANAEUC DIANACOR SOM1 KMEANS1 

203741_s_at 1 2 2 1 3 3 

200782_at 1 2 2 1 2 3 

209430_at 1 2 2 1 3 3 

212586_at 1 2 2 1 3 3 

210346_s_at 1 2 2 1 2 3 

214683_s_at 1 1 2 1 2 3 

208091_s_at 1 2 2 2 3 3 

208873_s_at 1 2 2 2 3 3 

221740_x_at 1 2 2 1 2 3 

216733_s_at 1 2 2 1 2 2 

204057_at 1 2 2 1 2 2 

212150_at 1 2 2 1 3 3 

221899_at 1 2 2 1 2 2 

217779_s_at 1 2 2 1 3 3 

217779_s_at 1 2 2 1 2 2 

204020_at 1 2 2 1 2 3 

201811_x_at 1 2 2 2 2 3 

203221_at 1 2 2 1 3 3 

218396_at 1 2 2 1 2 3 

207655_s_at 2 2 1 1 1 1 

219471_at 2 2 1 2 2 2 

44790_s_at 2 2 1 1 2 2 

212681_at 2 2 1 1 1 1 

221958_s_at 2 2 1 2 1 2 

204681_s_at 2 2 1 2 2 2 

212956_at 2 2 1 2 1 1 

219737_s_at 2 3 1 2 2 2 

213624_at 2 2 1 2 2 2 

39318_at 2 2 1 1 1 1 

209995_s_at 2 2 1 1 1 1 

Figure 3.5.1. Example of storage of clusterings.  Columns represent different  
clustering methods and rows represent different genes.  Clusterings consist  
of numerical assignments of a gene to a cluster in a method. 
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3.6 Properties of a Good Metric 

 Before the metric portions of the tool are discussed in detail, properties of a good 

metric need to be discussed.  For the purposes of this study, a good metric must have 

three properties: 

1) A good metric should be comparable across results.  The metrics used in this 
study need to be normalized with respect to the size of p and the number of 
clusters.

2) A metric can be bounded or unbounded.  Bounded metrics (those metrics that 
range between a certain numerical range, such as [0,1]) are useful, but 
unbounded metrics (metrics that may range to infinity) are also useful.  One 
example of a bounded metric is this study is the Jaccard Index, which has a 
range of [0,1].  One unbounded metric used in this study is the Variation of 
Information, which has a range of [0, )

3) A good metric needs to have some physical meaning. Obviously, the metric 
has to relate some useful property of the clustering to be useful. 

Note that it may not make sense to compare metrics across types of methods (such as 

comparing hierarchical and partitional) if the actual answer is not known.   

3.7 Within-Method Metrics 

 Within-method metrics calculate a single property on one clustering result.  Three 

types of within metrics are Homogeneity, Separation, and Average Silhouette Width.

Homogeneity

Homogeneity is a metric that measures the amount of variation within clusters. 

[17] Homogeneity is defined as the average distance of an element to its cluster center 

over all data points.
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Have

1
p

D(gi , F(gi ))
i

       (eqn 3.7.1) 

Where p = # of genes, D is the distance function, gi is a gene, and F(gi )  is its cluster 

center.  Homogeneity is an unbounded metric, but because it relies on distance measures, 

the homogeneity of one clustering can be directly compared to another.  Homogeneity 

measures how tightly each cluster is defined.  Figure 3.7.1 provides a visual depiction of 

homogeneity.   

Figure 3.7.1 The homogeneity of one cluster 
measures how tightly bound its elements  

are to its cluster center. 

Separation

Separation, on the other hand, is a measure of the amount of variation between 

clusters, as depicted in figure 3.7.2. [17]

Figure 3.7.2 Separation measures  
how far apart clusters are. 
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The distances between each cluster centers are calculated, and normalized according to 

the membership size of the clusters.  This quantity is averaged for all distances between 

cluster centers.   

Save

1
Ci C j

i j

Ci C j
i j

D(F(Ci ), F(C j ))      (eqn 3.7.2) 

where Ci  and C j  are the # of points in Cluster i and Cluster j, D is the distance 

function, and F(Ci ) is the center of Cluster i.

 Both Homogeneity and Separation require cluster centers as an input.  Code to 

calculate the cluster centers was implemented in R, as was code to calculate the 

Homogeneity and Separation metrics.

Average Silhouette Width 

Average Silhouette Width is a metric proposed by Kaufmann and Rouseeuuw.  

Basically, a silhouette measures the degree of uncertainty of assigning an element to two 

clusters: 1) the cluster with which it is assigned, and 2) the cluster with the next closest 

cluster center. [18, 19]  For each data point i, two quantities are calculated: the average 

distance of that point to its own cluster, denoted ai.  The average distance of that point to 

the next closest cluster center is denoted by bi.  The silhouette value for a single data 

point i is then: 
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sili

bi ai

max(bi ,ai )
.        (eqn 3.7.3) 

The average sihouette width sil  is the silhouette width calculated for every data point: 

sil
sili

ni
         (eqn 3.7.4) 

If the clusters are well defined within a clustering, the average silhouette width 

will be closer to 1.  Clusters that are ill-defined will have an average silhouette width 

closer to 0.  Code for average silhouette width, silhouette, previously implemented 

in R as part of the cluster package, was used to implement this metric within the 

framework.  The distance metric we use in this study for the implementation of the 

silhouette function was correlation distance.  Thus, this metric as currently implemented 

detects how strong the linear relationship a profile is to its cluster and the neighboring 

cluster.

3.8 Between-method Metrics 

 We will now discuss methods that compare agreement between two clusterings.  

The two metrics we will discuss here are the Jaccard index and Variation of Information. 

Jaccard Index 

 The Jaccard Index measures how frequently pairs of genes stay in the same 

cluster across clusterings. [13]  For example, in one clustering C, genes a and b may be in 

a cluster together, but in another clustering C’, they may be in two different clusters.   
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Many similar comparison metrics exist, which all rely on counting the following pairs of 

genes or elements: 

 N11 = number of pairs of genes that cluster together in both C and C’ 
 N00 = number of pairs of genes that are in separate clusters in both C and C 
 N10 = number of pairs of genes that cluster together in C, but not C’ 
 N01 = number of pairs of genes that cluster together in C’, but not C 

The Jaccard index is expressed simply as 

J (C,C ')
N11

N11 N01 N10

       (eqn 3.8.1) 

 The Jaccard index offers a sense of the overall agreement of clusterings in terms 

of pair membership. The Jaccard index reports the fraction of pairs that cluster together in 

both C and C’ relative to those pairs that cluster together in at least one clustering. 

Therefore, if the clusterings have a relatively similar pair membership, the Jaccard index 

should be close to 1, because N01 and N10 should be small compared to N11. Those 

clusterings that have relatively few pairs in common (N11 is small compared to N10 and 

N01), will have a Jaccard Index close to 0. 

 The Jaccard index gives the user a sense of how robust the clusters are across two 

different methods. The Jaccard index can help to address whether the unknown gene is 

worth studying if it clusters differently across methods. If the majority of the gene pairs 

belong to N11, the clusterings are relatively robust across the two methods. 

 Code to implement the Jaccard Index was written and implemented for the 

framework. 
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Variation of Information 

 Another method for comparing two clusterings relies on information theoretic 

notions.   This is the metric of variation of information. [20]  Intuitively, two clusterings 

C and C’ may have information in common; one artificial example is presented in figure 

3.8.1.  Two different clusterings both contain two clusters.  There is a cluster that 

overlaps in both of them (the cluster in the center), but the other cluster in both 

clusterings has no overlap. The cluster in common can be thought of as where the two 

clusterings overlap informationally, also known as the mutual information between the 

two clusterings.  If we subtract this quantity from the original clusters, we have what is 

informationally different between the two clusterings.  This is known as the variation of 

information.

          Mutual Information Variation of Information
    (a)    (b)          (c) 
Figure 3.8.1 Illustration of variation of information.  2.3 a) shows two sets of two clusters, one of which is 
the same for both sets. b) This common cluster is the mutual information between the two clusterings. c) 
When the mutual information is subtracted from the two clusterings, what is left is the variation of 
information. 

To exactly explain what the variation of information measures, a little background 

in information theory is needed.  First, consider information available in a clustering C, 

with K clusters.  This can be estimated by calculating the Entropy associated with that 

clustering, H(C) 
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H (C) P(k) log P(k)
k 1

K

,       (eqn 3.8.2) 

where P(k)  is the probability of an element being in cluster Ck .

Secondly, consider two clusterings, C and C ' , as a joint distribution.  The 

probability P(k,k ')  of a point being in cluster Ck in C   and in cluster C 'k '  in C '  is the 

overlap of these clusters divided by the total number of elements: 

P(k,k ')
Ck C 'k '

n
.       (eqn 3.8.3) 

Thus, the mutual information I(C,C ')  between these two clusterings can be calculated 

by

I(C,C ') P(k,k ')
k ' 1

K '

log
P(k,k ')

P(k)P(k ')k 1

K

.     (eqn 3.8.4) 

Finally, the variation of information is basically what is left over after we subtract 

the mutual information (twice because it is an overlap) from the total entropy of the two 

clusterings:

VI (C,C ') H (C) H (C ') 2I(C,C ') ,     (eqn 3.8.5) 

Which may be rearranged as 

C'clusteringfromgainedninformatioC'clusteringfromlostninformatio

)',()'()',()(', CCICHCCICHCCVI ,   (eqn 3.8.6) 

from which it may be seen that the variance of information represents the information lost 

and gained when picking clustering C '  over clustering C .
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 Code for the Variation of Information was written and implemented in R for the 

framework. 

3.9 Reporting/Final Clusterings 

After the metrics have been calculated, the program combines the output of both 

the within-method metrics and between-method metrics and produces a report.  

Parameters that have been used in the clustering methods as well as the clustering results 

are also available. 

Within-method metrics are reported in a tabular format, which can be seen in 

table 3.9.1 below.  The rows list the various methods, and the columns the values of each 

metric.  The first column reports the number of clusters.  This is important to report as 

hierarchical methods may not be able to cut the clusters into a specified number.  The 

second column reported is the homogeneity, then separation, and average silhouette 

width.

n-clusters homogeneity separation silhouette 
UPGMAEUC 5 91.121 4.9606 0.4828648 
UPGMACOR 5 90.612 4.945 0.4823129 
DIANAEUC 5 91.158 5.0078 0.4835716 
DIANACOR 5 90.094 4.7385 0.4052473 
SOM1 5 104.87 3.6936 0.2206755 
KMEANS1 5 88.16 4.3722 0.4530941 

Table 3.9.1. Sample within-method table.  Rows represent different clustering methods.   
Columns represent different metrics.  In order from left to right: number of clusters,  
homogeneity (within cluster variation), separation (average distance between cluster  

centers), and silhouette (how well defined the clusters are). 
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 Between-method metrics were initially reported in an (n-1) x (n-1) matrix format 

for each metric, where n is the number of methods studied.  This representation is 

pictured in figure 3.9.1a.  This format is symmetrical about the diagonal and the value of 

the matrix at [i,j] corresponds to the value of the metric comparing method i and method 

j.  However, it soon became apparent that this is a difficult format to read.  Thus, a 

dendrogram that corresponds to the “metaclustering” of the clusterings was implemented.  

Basically, the metaclustering corresponds to an average-link clustering of the matrix.  For 

the Jaccard Index, since 1.0 signifies agreement, it was necessary to use 1-Jaccard in the 

metaclustering.  Dendrograms represent the between-method metrics is an easy-to-grasp 

visual format that allows the user to group methods visually, as can be seen in figure 

3.9.1b.

UPGMAEUC UPGMACOR DIANAEUC DIANACOR SOM 

UPGMACOR 0.6631373     

DIANAEUC 0.6631124 0.9841910    

DIANACOR 0.6631124 0.9920323 0.9841905   

SOM1 0.7401632 0.4980161 0.4978157 0.4978157  

KMEANS1 0.6631124 0.9841910 1.0000000 0.9841905 0.4978157 

(a)

Figure 3.9.1 Two different representations of the Jaccard Index. 
a) Shows the Jaccard Index in a tabular format. 
b) Dendrogram “meta-clustering” format. Note 
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that the metaclustering uses 1-jaccard. 

The program also returns parameters as well as the actual cluster results for 

further study.  Clustering results are returned as a numeric vector of integer number that 

correspond to the clustering assignments of the inputted expression matrix. 
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Chapter 4: Validation of Tool 

4.1 Why Validate? 

It is one thing to build a tool.  It is another thing altogether to evaluate its 

usefulness to others.  Thus, it is necessary to validate the tool on the appropriate 

microarray data.  We will discuss validating the tool on two different kinds of data.  The 

first kind of dataset are three simulated datasets.  The importance of validating on 

simulated data are that the correct clusterings are known for the simulated data.  Thus, 

accuracy rates can be assessed for each method, and we can trace exactly what each 

clustering method is doing.  The data will be evaluated in a fashion similar to the first use 

case, that of the informatics researcher wishing to compare the performance of the 

various clustering methods on a dataset with known geometry. 

The second kind of dataset that it is important to validate this tool on is real-world 

microarray data.  Even when perturbed with lots of noise, simulated data represents an 

ideal state for the data.  Real-world data is much messier, possibly containing noisy 

expression profiles that can throw off clustering methods.  In the section following, I will 

discuss the results of running the tool on a smaller subset of the yeast cell-cycle data that 

Eisen initially used to show the viability of average link clustering as a useful clustering 

method.  The tool will be used in a similar fashion to the second use case, that of the 

biologist wishing to discover how consistent the clusterings are with an unknown 

method. 
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4.2 Methods Studied 

The six methods studied in the validation are given below in table 4.2.1.  These 

methods were previously discussed in Chapter 2. All six methods were given the correct 

geometry, and so could be considered on equal footing.  For the hierarchical clusterings, 

R allows for the specification of the number of clusters k cut from the dendrogram.   

ID Name Distance Type 
UPGMAEUC UPGMA Euclidean Hierarchical – Agglomerative 
UPGMACOR UPGMA Correlation Hierarchical – Agglomerative 
DIANAEUC Diana Euclidean Hierarchical – Divisive 
DIANACOR Diana Correlation Hierarchical – Divisive 
KMEANS K-means Euclidean Partitional 

SOM
Self-organizing 
maps Euclidean Partitional 

Table 4.2.1. List of methods studied. 

4.3 Generation of Simulated Data  

The purpose of this simulation study was to provide an initial evaluation of this 

tool. This should not be considered a traditional simulation study but rather an attempt to 

create a benchmark data set for initial tool evaluation.  One dataset consist of 1000 gene 

profiles total.  These 1000 profiles are divided into four populations of 250 genes each.  

Each population of 250 genes is derived from a different expression profile pattern, 

which can be seen in figure 4.3.1. The four different kinds of expression profiles are an 

upward pattern, a downward pattern, an up-then-down pattern, and a down-then-up 

pattern.   The data was assumed to be log2-transformed, so that a difference in expression 

level of 1.0 corresponded to a two-fold difference in expression of the raw data. 
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   (b)                                                         (d) 

Figure 4.3.1. The four gene expression profiles used in the simulation of data.  
a) down, b) up, c) up-then-down, and d) down-then-up. 

 Piecewise linear functions which correspond to each profile were constructed.  A 

random number x from a Gaussian distribution with mean 3.0 and whose standard 

deviation was known was inputted into one of the piecewise linear functions to generate a 

gene expression profile.  For example, if the random number x was 1.2 and the piecewise 

linear function was [1x 2x 4x 2x], the expression profile calculated would be [1.2  2.4

4.8  2.4].

 Once each population of 250 simulated genes was generated, they were shuffled 

together into the final expression matrix of 1000 genes. This was necessary because some 

clustering methods may possibly take advantage of the ordering of the genes. 
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  As previously noted, there are many undesirable sources of variation that can 

obscure the underlying patterns of expression.  This situation is simulated by adding a 

noise component to each time point in an expression profile. A random number from a 

Gaussian distribution with known standard deviation and mean 0 was added to each value 

in the expression matrix.  A rough estimate of the Signal to Noise ratio was estimated by 

taking the mean of x and dividing by the standard deviation of the noise distribution. 

 Thus, there are two parameters that can be altered to generate new data sets. The 

first is the standard deviation of the random "signal" input x.  This corresponds to the 

amount of absolute variation in gene profiles across a population in our model. The 

second parameter is the standard deviation of the noise signal. 

 Three datasets were generated. The first dataset had low amount of variation in 

values (signal sd = 0.25), and a low amount of noise (S/N = 20).  It was expected that the 

clustering methods would perform the best on this dataset. 

The second dataset had a high amount of variation in values (signal sd = 1.0), but 

a low amount of noise (S/N = 20). Because of the large amounts of absolute variation, it 

was expected that the correlation-based methods would do better than the Euclidean 

based methods on this dataset. 

 The final dataset had a low amount of variation (signal sd = 0.25), and a high 

amount of noise (S/N = 4).  We would expect clustering methods that are potentially 

sensitive to noise (such as correlation-based methods) to perform poorly on this dataset. 
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4.4 Notes on the Cho Dataset 

 A small subset of data derived from the Cho yeast cell cycle dataset [21] by 

Yeung [22] was also run through the evaluation framework.  The Cho dataset consists of 

17 time points sampled every 10 minutes from yeast cells undergoing mitotic division.  

The yeast cells were synchronized to start in the late G1 phase by raising their 

temperature to 37ºC, which halted them in the late G1 phase.  Shifting their temperature 

to 25ºC reinstated the cell cycle. [21] The 17 time points roughly correspond to two full 

cell cycles, as can be seen in Figure 4.4.1 The Cho dataset was part of Eisen’s original 

dataset for his paper showing the success of clustering. [10] Therefore, we would expect 

that the clustering methods should pick up relatively similar clustering patterns.   

However, it should be noted that the dataset here used is a subset of Eisen’s 

dataset, both in the number of genes clustered and in the number of experimental 

conditions.  Eisen included data from diauxial shifts in yeast, many of which showed 

large fold-changes in expression.  Thus, it is also possible that our results may differ.  It is 

also worth noting that Eisen’s clustering method is slightly different from the standard 

UPGMA method in the way missing values are treated.  However, there are no missing 

values in this dataset, unlike the number of missing values in Eisen’s full dataset.  



42

Figure 4.4.1. A sampling of genes from the Cho Mitotic Cell-cycle dataset. 
M-phase genes are those that peak during the M-phase, and S-phase genes 

correspond to those that peak in the S-phase.  Note that the above 
represents two full cell cycles. Reproduced from Cho, et al. [21] 

In Cho’s original paper, a subset of 420 genes was reported that had been 

separated into six functional categories. These categories corresponded to genes with 

peak expression in the Early G1, Late G1, S, G2, M, phases, and those genes that were 

expressed in multiple phases.  Figure 4.4.1 shows examples of both M-phase and S-phase 

genes.  This subsetting was done largely by visual examination of the genetic data, which 

was somewhat problematic in our study.  Thus, it should be noted the annotations given 

by Cho were not definitive and it was necessary to obtain the Gene Ontology Molecular 

Function annotations for each gene to see if the methods were clustering genes by 

function.

This subset of these original 420 genes was constructed using a filtering process 

described in Yeung. [22]  The first step involved filtering out those genes that were 
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expressed in multiple phases.  Such genes could possibly have a different pattern of 

expression than those expressed in a single phase and thus could make correlation-based 

hierarchical methods produce bad clusters, as was seen with the high-variation, low-noise 

dataset. Those genes containing negative values were also filtered out.  This is because 

without extensive notes about the dataset, negative values are uninterpretable.  The 

remaining genes were then log-transformed and then normalized using the same 

procedure described in Tamayo. [15] 

The Cho dataset has been extensively analyzed with an obvious geometry, and so 

we expected clustering methods to perform reasonably well on this smaller subset. 

However, there are some questions as to the validity of this dataset; there have been 

concerns that two of the timepoints may be suspect. [15, 23]  Several papers have noted 

scaling problems with the time point at 90 minutes, and so remove this point from their 

analysis. [15, 24]  This was not done in our validation. 

4.5 Analysis of Results 

 In order to gauge performance of the clustering methods, the true assignments of 

the genes were compared with assignments from the clustering methods.  A confusion 

matrix was calculated for each method, which compares the clustering label to the true 

label.  The confusion matrix is a useful tool for understanding clustering results because 

it can show overlap between the method’s cluster assignments and the true clustering 

assignments.  This is especially true with the hierarchical clustering methods, where one 

cluster can contain two or more of the true clusters.  Because the cluster assignment 

labels did not correspond to the true assignments, it was necessary to permute the 



44

columns of the confusion matrix in order to maximize the diagonal.  This was done using 

R code available in the e1071 library (more information available at http://cran.r-

project.org/src/contrib/Descriptions/e1071.html).  An accuracy rate for a particular 

clustering method was calculated by taking the total of the maximized diagonal and 

dividing by the total number of genes.

  Confusion matrices for each simulated dataset can be seen in Appendix B.  

Reports including accuracy rate are given below for each dataset. 

 For the Cho dataset, accuracy rates were first assessed using the original 

functional annotation given by Cho. It became clear that the functional annotations were 

assigned by visual inspection and so the accuracy rates were not used.  In order to aid 

with biological interpretation, GO Molecular Function annotations were obtained from 

the appropriate Bioconductor annotation packages (YEAST and GO) for each open 

reading frame (ORF, defined as an identified stretch of DNA that begins with a start 

codon and ends with a stop codon, not necessarily tied to any function). 

 Clusters from each method were initially analyzed as to how many genes 

contained which phase annotation.  It became clear that three clusters had a high degree 

of overlap, and so the overlap with analogous clusters across methods was calculated.  

This was done by taking the intersection of the three datasets and comparing the 

remaining genes by annotation.  The overlapping clusters were then analyzed by 

individual genes description and GO Molecular Function annotation in order to gauge the 

biological significance of these clusters. 
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4.6 Parameters used on Simulated Data Sets 

 All three simulated datasets were run through the evaluation framework.  The six 

clustering methods shown in Table 4.2.1 were run on each dataset.  K-means was given a 

maximum iterations parameter of 10,000.  R has functions for cutting a dendrogram into 

a specified number of clusters, and these were used to cut the dendrograms for the 

hierarchical method into 4 clusters.  k-means received an input k of 4, and SOM received 

an input of a 1x4 map.  Cutting the dendrogram was done in order to put all six methods 

on equal ground.  However, it could also be argued that doing so forces the hierarchical 

methods into unrealistic clusters.  A better comparison might be to give k-means and 

SOM the necessary geometry and to cut the dendrogram by visual inspection of the 

clusters.  This is one potential limitation of this validation and it will become apparent 

especially in examining the high-variation, low-noise dataset.    
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4.7 Results: Low-noise, low-variation dataset 

The true clusterings for the low-noise, low-variation dataset can be seen in figure 

4.7.1 below.  Overall, this dataset is probably the least realistic simulation of all the 

datasets.  Noise affects the correlation patterns minimally, which is not the case in real 

life.  We would expect that both Euclidean-based and correlation-based datasets to do 

equally well on this dataset due to the fact that the profiles are very close and well 

defined in the sense of both correlation and Euclidean distance. 

t1 t2 t3 t4
0

2.5

5

7.5

10

12.5

15

17.5

20

22.5

25

Cluster 1 (n=250)

Time Point

E
xp

re
ss

io
n 

Le
ve

l

t1 t2 t3 t4
0

2.5

5

7.5

10

12.5

15

17.5

20

22.5

25

Cluster 3 (n=250)

Time Point

E
xp

re
ss

io
n 

Le
ve

l

t1 t2 t3 t4
0

2.5

5

7.5

10

12.5

15

17.5

20

22.5

25

Cluster 2 (n=250)

Time Point

Ex
pr

es
si

on
 L

ev
el

t1 t2 t3 t4
0

2.5

5

7.5

10

12.5

15

17.5

20

22.5

25

Cluster 4 (n=250)

Time Point

Ex
pr

es
si

on
 L

ev
el

Figure 4.7.1. The true clusterings of the low-noise, low-variation dataset. 
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The performance of the six methods can be seen in table 4.7.1.  Overall, the 

hierarchical methods perform best on this dataset, all having accuracy rates of 100%.

The partitional methods do not fare as well, with SOM being only 75% accurate, and K-

means even less accurate at 62.9%.  Two Euclidean-based methods (UPGMAEUC and 

DIANAEUC) do very well, while the other two Euclidean-based methods (K-means and 

SOM) do not.  It is necessary to examine the clusters assigned by both k-means and SOM 

in order to understand their lack of accuracy. 

Method Accuracy Rate
UPGMAEUC 100.00% 
UPGMACOR 100.00% 
DIANAEUC 100.00% 
DIANACOR 100.00% 

SOM1X4 75.00% 
KMEANS4 62.90% 

Table 4.7.1. Performance of the various clustering methods 
on the low-noise, low-variation dataset. 

 The cluster assignments of SOM can be seen in figure 4.7.2. (Note that the cluster 

numbers assigned by each method are arbitrary, so the clusters in this figure and all 

following are arranged visually to correspond as much as possible with the original 

clusterings.) As can be seen from the figure, SOM does not even utilize one of the 

available partitions, instead choosing to cluster the up cluster with the down and then up 

cluster.  Because these two clusters have a relatively closer Euclidean distance than to the 

other two clusters, this is not an unreasonable result.  However, SOM does cluster the 

other two clusters, the down cluster and the up-then-down cluster perfectly. 
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   (b) 
Figure 4.7.2. Clusterings for SOM on low-noise, low-variation data. 

In figure 4.7.2 b), SOM has combined both the up and the down-then up 
cluster, due to their close Euclidean distance.  Note that cluster  

numbers assigned by methods are arbitrary, so the clusters are arranged 
visually to correspond as much as possible with the original clusterings. 

 The clusterings for k-means can be seen in figure 4.7.3.  K-means partitions this 

data set similarly to SOM in that it clusters the up and the down-then-up into a single 

cluster.  However, it also separates the up-then-down cluster into two separate clusters, 

even though their overall Euclidean distances are rather close.  Thus, we expect that the 

average silhouette value for this clustering should be lower than the other clusterings. 
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Figure 4.7.3. Performance of k-means on low-variation, low-noise dataset. 

Note that in figure 4.7.3 b) k-means combines the up cluster with the 
down-then-up cluster.  In figure 4.7.3 c) and d), k-means has divided the 

up-then-down cluster into two distinct clusters by range. 

 Now we will examine the within-metrics and see what they add to the analysis of 

the clustering methods.  Table 4.7.2 shows the within-method metrics in the report 

format.  Note that the four best-performing methods have identical homogeneity, 

separation, and silhouette values.  Also note that k-means has an overall lower silhouette 

value than the other five methods.  This suggests that the tool should be used to look for 

aggregations of agreeing values, rather than using any of the metrics as an absolute 
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measure.  The NA value for SOM’s homogeneity has to do with the fact that the 

membership of one of the slots in the 1x4 map is zero. 

n-clusters homogeneity separation silhouette %match 

UPGMAEUC 4 109.1011 10.498687 0.9996794 100%

UPGMACOR 4 109.1011 10.498687 0.9996794 100%

DIANAEUC 4 109.1011 10.498687 0.9996794 100%

DIANACOR 4 109.1011 10.498687 0.9996794 100%

SOM1 4 198.1462 NA 0.9559742 75.00% 

KMEANS1 4 189.0392 9.797287 0.7081339 57.60% 

Figure 4.7.2. Within-method metrics on low-noise, low-variation dataset. 
Note that the best performing methods, UPGMAEUC, UPGMACOR, 

DIANAEUC, and DIANACOR have identical values. 

 The metaclustering dendrograms for both between-method metrics can be seen 

below in figure 4.7.4. In general, the between-method metrics group the methods 

similarly as the within-method metrics.  Note that both metrics group the best performing 

methods as a single group, separate from SOM and k-means.  Note that the height of the 

joins for UPGMAEUC, UPGMACOR, DIANAEUC, and DIANACOR is zero, indicating 

that these clusterings are identical according to both methods.   
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Figure 4.7.4. Metaclustering dendrograms for between-method 
metrics.  Note that both the Jaccard Index and Variation of 

Information group the best performing methods into one group 
separate from the other methods. 

 There are a few lessons we can glean from running the tool on the low-variation, 

low-noise dataset.  The first is that the tool seems to be good at showing consensus 

between clusterings that are identical.  The second lesson is that Homogeneity and 

Separation should not be used as an absolute quantity – they are most helpful in pointing 

groupings of similar values.  The third is that there is general agreement with the 

between-method metrics and the within-method metrics.  Both show the same consensus 

information about the clusterings. 
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4.8 Results: High-variation, Low-Noise Dataset 

 The true clusterings for the high-variation, low-noise dataset can be seen in figure 

4.8.1. below.  Because of the large variation in gene profiles, we expect that Euclidean-

based methods should do poorly on this dataset. 
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Figure 4.8.1. True clusterings for the high-variation, low-noise dataset. 

The performance of the six methods on the high variation, low noise dataset can 

be seen in table 4.8.1. below.  In summary, none of the methods completely clusters the 

data into the correct partitions.  The two correlation-based hierarchical methods do the 
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best, but are still only 75% accurate.  It is instructive to examine the clusterings of 

DIANACOR and SOM. 

Method Accuracy Rate
UPGMAEUC 46.00% 
UPGMACOR 75.10% 
DIANAEUC 61.50% 
DIANACOR 75.10% 
SOM1X4 53.40% 
KMEANS4 57.60% 

Table 4.8.1. Performance of Clustering Methods on 
High-variation, low-noise dataset. 

 The clusters assigned by DIANACOR can be seen in figure 4.8.2.  DIANACOR 

clusters the up and the down-then-up cluster into the same cluster, much like what SOM 

did for the low-variation, low-noise dataset.  The problem turns out to be that one noisy 

gene impacts the cluster, forcing a new, high-level, single cluster, as can be seen in figure 

4.8.2.
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Figure 4.8.2. Performance of Correlation-based hierarchical clusterings 
on high-variation, low-noise data. 

 In figure 4.8.3 a zoom in of the single gene of cluster 3 can be seen.  This is a 

gene that was a member of the down-then-up cluster.  Even though it is essentially a gene 

with no large changes in expression, the correlation-based method picks up that this gene 

has a different correlational structure than all of the other population.  This clustering 

emphasizes the importance of filtering out noisy genes that have no significant changes in 

expression across samples, as correlation-based methods can be misled by such genes. 
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Figure 4.8.3. Zoom in of Cluster 3. Note that this 
noisy gene has a different correlational structure 

than all of the other genes. Note that expression scale 
is very small – essentially this expression profile is 

noise.

 Part of the problem of why the correlation-based hierarchical methods are 

susceptible to noise has to do with the fact that the geometry (the number of clusters) is 

specified by the program. Thus, we are robbing these methods of one of their potential 

strengths – these methods do not need a prespecified geometry. This effect can be seen 

from the UPGMACOR dendrogram in figure 4.8.4.  The single noisy gene is joined to the 

rightmost cluster at a height larger than the two leftmost (and larger) clusters.  Thus, 

specifying the algorithm to cut the tree into four clusters results in the two leftmost 

clusters becoming combined, leaving the singleton as a noisy gene.  This fact does point 

towards a limitation of our study. 
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Figure 4.8.4. Zoom in of clustering dendrogram for UPGMACOR.  Note that 
the single noisy gene is joined with the rightmost cluster 

higher than the two leftmost clusters.

 The clusterings assigned by SOM can be seen in figure 4.8.5.  As can be seen, the 

partitioning of SOM is strictly Euclidean, with SOM confusing the up-then-down cluster 

and down cluster, as well as the up cluster and the down-then-up cluster.  Because these 

clusters are not well-defined, we expect that the silhouette value for this clustering to be 

very low. 
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Figure 4.8.5. SOM clustering of high-variation, low-noise dataset. 

 At this point, it is instructive to examine the within-method metrics in table 4.8.2.

As before, the two best-performing methods have identical homogeneities, separations, 

and average silhouette widths.  Also note that SOM has a low silhouette value. 

n-clusters homogeneity separation silhouette %match 

UPGMAEUC 4 566.7264 13.83335 -0.5155965 46%

UPGMACOR 4 454.754 13.95272 0.95298656 75.10%

DIANAEUC 4 397.8658 10.3832 0.68264895 61.50%

DIANACOR 4 454.754 13.95272 0.95298656 75.10%

SOM1 4 407.9042 11.64011 0.00908861 53.40%

KMEANS1 4 397.4189 10.85499 0.05120928 57.60%

Table 4.8.2. Within-method metrics for high-variation, low-noise dataset.  
Note that the two best performing methods (UPGMACOR and DIANACOR) 

have identical homogeneities, separations, and average silhouette widths. 
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 The between-method metrics agree with the within-method metrics.  Note that the 

distance between UPGMACOR and DIANACOR is zero for both metrics, and they are 

separated the furthest from the other methods. 

Figure 4.8.6. Metaclustering dendrograms of between-method metrics 
on high-variation, low-noise dataset.

There are some interesting lessons to be gleaned from running the tool on the 

high-variation, low-noise dataset.  The first is that correlation-based methods are 

especially sensitive to noisy genes, and the importance of filtering out genes based on 

significant changes across samples is very important.  The second lesson is that seeing 

the performance of the various methods on the dataset suggests that the dataset should be 

plotted and descriptives of the data should be examined before any blind clustering 

occurs.
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4.9 Results: Low-variation, High-Noise dataset

The true clusterings for the low-variation, high-noise dataset can be seen in figure 

4.9.1.  We would expect that correlation-based methods should perform worse than 

Euclidean-based methods on this dataset.  This is also the dataset that seems to be closest 

to the Cho dataset and thus probably the most realistic of the simulated datasets.   
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Figure 4.9.1. True clusterings of low-variation, high-noise dataset. 

 The performance of the various methods can be seen in Table 4.9.1.

Unexpectedly, correlation-based methods do rather well on this dataset.  Two Euclidean-

based methods do well, KMEANS and DIANAEUC, but the other two methods, 

UPGMAEUC and SOM, do not.  SOM behaves similarly as in the other two datasets.  

However, it is instructive to examine what is going on with UPGMAEUC. 
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Method Accuracy Rate
UPGMAEUC 74.90% 
UPGMACOR 99.60% 
DIANAEUC 99.60% 
DIANACOR 99.80% 

SOM1X4 66.10% 
KMEANS4 99.60% 

Table 4.9.1. Performance of clustering methods 
on low-variation, high-noise dataset.

 The clusters assigned by UPGMAEUC can be seen in figure 4.9.2.  Oddly 

enough, UPGMAEUC assigns a gene from the down-then-up cluster into a cluster of its 

own.  The range is slightly higher than the other members of its population.  

Agglomerative methods are sometimes known for undependable high-level clusters, and 

this appears to be of those cases. [1] 
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Figure 4.9.2. UPGMAEUC clusterings on low-variation, high-noise dataset. 

 Now we see what the tool has to say about these clusterings.  Again, the four best-

performing methods have similar metrics. 

n-clusters homogeneity separation silhouette %match 

UPGMAEUC 4 281.1023 11.76735 0.3979998 74.90% 

UPGMACOR 4 219.8808 10.28038 0.8711627 99.60% 

DIANAEUC 4 219.6732 10.27096 0.869455 99.60% 

DIANACOR 4 219.805 10.27004 0.872493 99.80% 

SOM1 4 316.6078 11.38122 0.3621547 66.10% 

KMEANS1 4 219.6732 10.27243 0.869455 99.60% 

Table 4.9.2. Within-cluster metrics for low-variation, high-noise dataset. 

 The between-method metrics show agreement with the within-method metrics, 

grouping the four best performing methods apart from UPGMAEUC and SOM.  Note 
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that the metrics are sufficiently sensitive to pick up even the small differences between 

the four best-performing clusterings. 

Figure 4.9.3. Metaclustering dendrograms for low-variation, high-noise dataset. 

There is a lesson that can be gleaned from the low-variation, high-noise dataset.

Correlation-based methods are able to tolerate a certain amount of noise before their 

performance suffers.  However, it can be argued that not enough noise was added to this 

artificial dataset.  Because there are only four time points, large changes in value were 

required to build any correlational structure in the data.  Because there is a high amount 

of correlational structure in these four populations, it was difficult to add enough noise to 

completely destroy the correlational structures of each population.  The correlational 

structure of each population was still largely intact after the noise component was added.   
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4.10 Results: Cho dataset 

 All six methods were run on the normalized form of the Cho dataset.  K-means 

was given a parameter of 10,000 maximum iterations. Again, to put all methods on equal 

ground, 5 clusters were specified for each method.  Hierarchical methods were instructed 

to cut the dendrogram into 5 clusters, SOM used a 1 x 5 map as input, and, kmeans was 

given a k of 5. 

 The genes grouped by functional annotation are shown in figure 4.10.1.  Note that 

the annotations were done largely by visual inspection of each expression profile.  Thus, 

we would not expect the clustering methods to reproduce these groupings perfectly.  We 

did use the functional annotations as a quick way to compare across clusterings, but not 

to validate these clusterings. In order to do, it is necessary to examine the GO molecular 

function annotations. 
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Figure 4.10.1. Genes grouped by the functional 
annotation given in Cho, et al. [21]

 Upon examining these groupings, it is apparent that only three of the function 

groupings seem to be clusters, those of Early G1, Late G1, and M.  S and G2 are not very 

well characterized patterns of expression. 

 It is a useful exercise to approach this dataset like a biologist searching for genes 

with similar patterns of expression.  Examining the within-method metrics in table 4.10.1, 
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we note that there are three methods that have highly similar metrics: UPGMAEUC, 

UPGMACOR, and DIANAEUC.  We have seen that in the simulated data that the best 

cases have very similar metrics.  Hence this suggests that there is consensus between 

these three methods.   

n-clusters homogeneity separation silhouette 
UPGMAEUC 5 91.121 4.9606 0.4828648
UPGMACOR 5 90.612 4.945 0.4823129
DIANAEUC 5 91.158 5.0078 0.4835716
DIANACOR 5 90.094 4.7385 0.4052473 
SOM1 5 104.87 3.6936 0.2206755 
KMEANS1 5 88.16 4.3722 0.4530941 

Table 4.10.1. Within-method metrics for the normalized Cho dataset. 

 One question that could be asked is why the silhouette value is so low for all three 

of these clusterings.  Once we examine one of these clusterings, it will become apparent 

that there is at least one junk cluster whose profiles of expression differ from the other 

profiles enough to be put in their own cluster.  However, we will see that there is very 

little correlation within this junk cluster.

 Again, the report shows that homogeneity and separation should not be used as 

absolute magnitudes when judging a clustering.  Homogeneity and Separation are metrics 

that give the user a feel for the overall shape and spread of the clusterings.  As the true 

clusters can be highly spread out, the absolute magnitude of either quantity is not a useful 

judge of the clustering.  Rather, these two methods should be used to look for consensus 

among the clusterings. 

 What do the between-method metrics say about these methods?  As can be seen in 

figure 4.10.2 below, two between-method metrics group the methods very similarly.  

Both metrics group the SOM clustering as being much more different than the other five 

clusterings.  UPGMACOR is consistently grouped with KMEANS in both, as are the two 
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Euclidean-based hierarchical methods.  However, the placement of DIANACOR is 

slightly different.  Variation of Information groups DIANACOR with UPGMAEUC and 

DIANAEUC.  Jaccard groups DIANACOR with UPGMACOR and KMEANS.  

However, looking at the height of the joins of DIANACOR relative to these two 

groupings, either clustering is plausible. 

Figure 4.10.2. Metaclustering dendrograms of between-method metrics. 
Note that the trees are generally the same, except for the relation of DIANACOR. 

 In order to see more of the story behind the clustering methods, it is necessary to 

view a clustering and to examine the GO functional annotations that make up a cluster.  

UPGMACOR is a good candidate to start with, because it is the same method that Eisen 

used to show the usefulness of clustering as a method.  Below, in figure 4.10.3, the 

clusters of UPGMACOR can be seen.  Note that cluster 5 is essentially a “junk” cluster 

and that the profiles contained in it correlate poorly.  This is one of the reasons the 

silhouette value for this clustering is somewhat low. 
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Figure 4.10.3 Clusters as assigned by UPGMACOR. 
Note that the members of cluster 5 are largely uncorrelated.

In table 4.10.2 below, the compositions of each cluster are shown, according to 

the Cho annotations.  It becomes apparent that there are three clusters that each contain a 
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large number of genes with a specific annotation.  Cluster 1 has mostly genes with late 

G1 annotations, cluster 2 has a large amount of genes with early G1 annotations, and 

cluster 4 has genes with mostly M  phase annotations. 

Cluster 1   
Phase n-genes Total in Phase
Early G1 4 67 
Late G1 113 135
S 25 75 
G2 0 52 
M 0 55 
  (a) 

cluster2   
Phase n-genes Total in Phase
Early G1 49 67
Late G1 18 135 
S 5 75 
G2 0 52 
M 1 55 
  (b) 

cluster 3   
Phase n-genes Total in Phase
Early G1 0 67 
Late G1 3 135 
S 36 75 
G2 24 52 
M 1 55 
  (c) 

cluster 4 
Phase n-genes Total in Phase
Early G1 12 67 
Late G1 0 135 
S 6 75 
G2 24 52 
M 52 55
  (d)

cluster 5   
Phase n-genes Total in Phase
Early G1 2 67 
Late G1 1 135 
S 3 75 
G2 4 52 
M 1 55 
  (e) 

Table 4.10.2. Composition of clusters for UPGMACOR by annotation. 
Note that cluster 1 (a) is mostly composed of genes with Late G1 annotations, 

cluster 2 (b), genes with Early G1 annotations, and cluster 4 (d), 
genes with M annotations. 

The question is whether the other clusterings with similar within-method metrics 

have analogous clusters with similar genes.  On further examination, there are analogous 



69

clusters to cluster 1, 2 and 4 in both UPGMAEUC and DIANAEUC.  Figure 4.10.4 

shows analogous clusters to cluster 2 across all three methods. 
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Figure 4.10.4. Visual comparison of analogous clusters 

to cluster 2.  a) UPGMACOR, b) UPGMAEUC, 
and c) DIANAEUC. 
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A comparison of the composition of cluster 2 across all three methods can be seen 

in table 4.10.3 below.  All three analogous clusters contain at least 45 genes with the 

Early G1 annotation.

Phase UPGMACOR UPGMAEUC DIANAEUC
Early G1 49 49 45
Late G1 18 18 18 
S 5 5 3 
G2 0 0 0 
M 1 1 1 
Total # 73 73 67 

Table 4.10.3. Comparison of clusters analogous to UPGMACOR cluster 2. 
Note all three have a large number of genes with Early G1 annotations. 

The overlap, or intersection, of genes between all three analogous clusters was 

calculated within R (see Appendix A for sample code to calculate overlaps).  A summary 

can be seen in table 4.10.4.  Note that the overlap captures 45 of the 67 total genes with 

early G1 annotations.  Also note that 16 genes that have late G1 annotations are found in 

all three clusters.  This suggests that the grouping of genes with G1 annotation is 

somewhat stable across all three methods. 

Phase Overlap # of Members
Early G1 45 67
Late G1 16 135 
S 3 75 
G2 0 52 
M 1 55 
Total Genes 65 384 

Table 4.10.4. Overlap between the three analogous clusters. 
Note that 45 genes with Early G1 annotation remain. 

A list of the genes that remain after the overlap can be seen in table 4.10.5. 

References have been given where possible in order to justify the actual phase the genes 

are active in. The biological interpretation of this cluster is a little difficult.  First of all, 
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there are several genes within this cluster that are well associated with the Early G1 stage. 

Lee, et al. have noted that PCL9 complexes with PHO85 in the early stages of 

morphogenesis. [25] Han, et al. have noted that CLN3 helps to control initiation of cell 

division. [26] MF(ALPHA)1 and MF(ALPHA)2 are mating factors, and their presence 

suggests that the cells are arrested in G1 phase. [27] FAR1 is part of a cascade (which 

includes the mating factors) that keeps the cell in G1 cell arrest. [27, 28]  CDC6 is a 

licensing factor that is necessary for the coating of DNA in order to start DNA replication 

and has been shown to accumulate in the cell during the G1 phase. [29]  ASH1 is an 

interesting example.   Earlier studies by Long, et al. and Takizawa et al. suggest that 

ASH1 is expressed in the M phase. [30, 31] However, a later study by McBride suggests 

that this gene is expressed in the Early G1 phase. [32] 

The second grouping includes genes that function in different phases than the G1 

phase.  CTS1, CYK3, SCW11, and DSE4 are associated with cell cytokinesis, a function 

associated with the M phase. [33, 34] This presence of these genes in this cluster suggests 

that the biological interpretation of this cluster is somewhat suspect.
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A comparison of the composition of cluster 1 across all three methods can be seen 

in Table 4.10.6. below.  Clearly, all three analogous clusters contain a large number of 

genes with Late G1 annotations. 

Phase UPGMACOR UPGMAEUC DIANAEUC
Early G1 4 4 4 
Late G1 113 116 116

S 25 41 44 
G2 0 1 1 
M 0 0 0 

Total Genes 142 162 165 
Table 4.10.6. Clusters analogous to UPGMACOR cluster 1. 
Note the large number of genes with Late G1 annotations. 

The overlap between these three analogous clusters was calculated. A summary 

table can be seen in Table 4.10.7. Note that the overlap captures 111 of the 135 genes 

with Late G1 annotations.  That these genes are found grouped together across three 

clusters suggest that the cluster is quite stable across these three methods.  The three 

methods group 25 genes with S annotations consistently as well. 

Phase Overlap # of Members
Early G1 4 67 
Late G1 111 135
S 25 75 
G2 0 52 
M 0 55 
Total Genes 140 384 

Table 4.10.7. Overlap of clusters.  Note the high number 
of genes with late G1 annotation that remain. 

A list of genes that occur in the cluster and their GO functional annotations can be 

seen in table 4.10.8.  Genes that had no GO molecular function annotation or the 

annotation “molecular_function_unknown” were eliminated from the list.  There are 
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three major groupings of genes that immediately stick out as being associated with each 

other within this overlapping cluster.  The first grouping has to do with DNA replication.

DNA Replication occurs during the Late G1 phase.  The second grouping has to do with 

cytostructural components, which are needed for replication.  A third group, the cyclin-

dependent kinases, is well associated with the Late G1 phase. McBride and Wittenberg 

are both excellent discussions of these kinases. [28, 32] In fact, even though there are a 

number of GO annotations that simply refer to “protein_kinase_activity,” it is tempting to 

guess that they are cyclin-associated. 

 However, there are a number of genes on first examination that are somewhat 

questionable members of this cluster, HCM1, TOS4, SWI4, and STB1, all of which are 

transcription factors. HCM1 and TOS4, however, are the targets of a cyclin dependent 

kinase and HCM1, STB1 and SWI4 are also associated with the G1/S transition. [37, 38] 

BNI4 is a gene associated with cytokinesis, a M phase function.  

Another gene that potentially doesn’t belong in this cluster is TUB4. TUB4 is 

considered a housekeeping gene whose transcripts are usually constant unless the cell is 

dividing into two daughter cells.  However, TUB4 also regulates microtubules in budding 

yeast, which may explain why it is in this cluster. [39]  

 All in all, this cluster seems to be relatively well grouped by function, and better 

defined than cluster 2.
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 The membership of the above three groups can be visualized in figure 4.10.5 for 

UPMGMACOR.  As can be seen from the dendrogram, those genes responsible for DNA 

replication are mostly grouped together, though there are a few others of these genes 

scattered throughout the cluster. 

Figure 4.10.5 Cluster 1 with functional annotations 
shown for UPGMACOR. D indicates genes used in 
gene replication, S indicates cytostructural genes, 

and C are Cyclin-dependent kinases.

The results of cluster 4 are interesting.  As before, the composition of the 

analogous clusters can be seen in table 4.10.9.  Note that each cluster contains at least 51 

genes with M annotation.  In addition, note that each cluster contains a number of Early 

G1 and G2 annotiations. 
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Phase UPGMACOR UPGMAEUC DIANAEUC
Early G1 12 12 16 
Late G1 0 0 2 
S 6 1 0 
G2 24 13 12 
M 52 51 52
Total # 94 77 82 

Table 4.10.9. Composition of clusters analogous to UPGMACOR 
cluster 4. 

The overlap can be seen in summarized form in the table below.  51 out of the 55 

total genes with M annotation cluster together over these three methods. 

Phase Overlap # of Members
Early G1 12 67 
Late G1 0 135 
S 1 75 
G2 10 52 
M 51 55
Total Genes 74 384 

Table 4.10.10. Overlap of clusters from the above three methods. 

Table 4.10.11 shows the genes that remain in this cluster after the overlap has 

been calculated. Of these genes, several have related functions to cytokinesis, or cell 

division, which takes place in M phase. CLB1 and CLB2 are B-cyclins, which are 

involved with the G2/M transition. [40, 41] MYO1, MYO3, HOF, and IQG1 are 

necessary genes for the manufacture of the actomyosin ring, a complex necessary for cell 

division. [35] Morgan has discussed the role of CDC20 in breaking down CLB1 and 

CLB2 in order to allow for mitotic exit. [42] SRC1 and ASE1 are involved in the 

construction of the mitotic spindle. [38] 

 There are also a number of genes whose functions are not associated with M 

phase genes.  McBride has noted that ACE2 and SWI5 are transcription factors that 
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regulate G1-specific genes. [32] CDC54 is necessary to start replication and synthesis of 

DNA, which is a function associated with the S phase. [43] 
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4.11 Conclusions and Lessons Learned 

There are a number of lessons to be learned from running the tool on both the 

simulated and Cho datasets.  

First of all, the tool is useful at finding consensus between clustering methods.  This 

was seen for both within-method and between-method metrics for the simulated datasets, and 

for the within-method metrics on the Cho-dataset.  The between-method metrics agree with 

each other, but show different similarities than the within-method metrics.  

Secondly, as shown with the Cho-dataset, the tool is useful in finding stable 

clusterings across methods.  This is especially apparent when the methods examined are 

compared by overlapping analogous clusters.  Currently, the overlaps were calculated by hand 

inspection of the clusterings.  Future functionality of the framework should be able to 

automate this overlap by calculating the best match of a cluster across methods.  

Lastly, the tool seems to be useful on real microarray data.  It remains to be seen, 

however, how useful the tool is in finding consensus on microarray data with less obvious 

geometry.  However, it should be noted that in this study we have robbed hierarchical 

methods of one of their potential strengths by specifying the number of clusters, namely that 

they are a good exploration tool for when the geometry is not specified.  A further, more 

realistic study would be to specify the geometry to only k-means and SOM, and let the 

hierarchical methods run without specification.  R has facilities for visually choosing clusters 

from hierarchical methods, and these could be easily implemented in a later version of the 

framework. 
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Also, there are a number of difficulties with working with this dataset that should be 

noted.  The genes were chosen by visual inspection from a larger subset of genes.  This 

dataset is similar to datasets that have been filtered by other means, and so results on this 

dataset should apply to other filtered datasets.  Also, there appears to be only 3 actual clusters 

in the data.  The functional annotations do point at least to one strong clustering, cluster 1, 

with genes involved in DNA replication.  Cluster 4 does appear to have genes associated with 

mitotic division.    
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Chapter 5: Future Directions 

5.1 Visualization component 

 In addition to the numerical portion of the tool discussed above, a further extension 

that will be especially useful for researchers is a component that will allow them to visually 

compare clusterings.  For example, given a set of different dendrograms, it will be useful to be 

able to track if gene X stays with gene Y across the clusterings (see figure below). 

Figure 5.1. Three dendrograms.  In the first, gene X clusters 
with gene Y.  In the second, they are apart.  In the third, 

the two genes cluster together again.

 A further extension will allow researchers to visualize exactly where the clusterings 

overlap, much as shown in section 4.10.  Of course, tools to find analogous clusters need to be 

developed, as they may not be as apparent as they were with the Cho dataset. 
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5.2 Research Using the Evaluation Framework  

Additionally, we would like to utilize this tool to address key questions in 

bioinformatics research with respect to the impact of pre-processing on clustering results. 

Briefly, preprocessing of microarray data is done in order to reduce the effects of noise on 

further analysis.  The impact that types of normalization (statistical protocols to remove 

systematic variation), background subtraction, and filtering have on clustering has not been 

addressed. Since clustering methods are sensitive to noise, we speculate that the effect of such 

preprocessing methods may have a greater impact on the final clusterings than the clustering 

methods themselves.  We suspect that this is the case because a rigorous preprocessing 

protocol can reduce the number of noisy genes to such an extent that most methods would 

perform equally well.   

5.3 Further extensions of this tool 

 Further extensions to this tool include implementing metrics to assess the reliability of 

clustering methods.  Many of these methods rely on perturbing the original dataset with noise 

and comparing the clusterings of the noisy dataset with that of the original dataset. [47] 

Another tactic is to use the “leave one out” approach of leaving out a technical replicate and 

compare the clustering with the original dataset’s clustering.  [22, 48] 

 A final extension to the tool would be to implement a metric that assesses the 

biological, or functional, significance of a clustering.   Jakt has suggested a method for 

measuring the functional significance by measuring the probability that elements of a cluster 
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match a specific functional motif. [49] This method is possible because genes that are 

similarly expressed tend to be regulated by the same transcription factors.  Such a metric 

would increase the utility of this tool to biologists.

5.4 Deployment/Beta Testing 

Another step in the development of this tool would be to deploy it to researchers for 

beta testing and further feedback.  Such a step provides valuable input for the improvement of 

the interface.  This can be done at OHSU in conjunction with the OHSU Gene Microarray 

Shared Resource, which has a large base of researchers utilizing both spotted and Affymetrix 

platforms.  
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Appendix A: Code 

Main Body of Code 

##testMain produces an object called report 
##report is available as results$report 
##clusterings are available as results$clusters 
##params are available as results$params 
testMain <- function(data) { 

 library(cluster) 
 ##grab list of methods and associated parameters 
 methodlist <- getClusterInfo() 
 ##produce clusterings as clusterlist 
 clusterlist <- clusterList(data, methodlist) 
 ##run within-method metrics 
 within <- withinmetrics(clusterlist) 
 ##run between-method metrics 
 between <- betweenmetrics(clusterlist) 
 ##initialize objects 
 clusters <- list() 
 params <- list() 
 for(i in 1:length(clusterlist)){ 
  clusters[[i]] <- as.matrix(as.factor(clusterlist[[i]]$clustering[,1])) 
  row.names(clusters[[i]]) <- row.names(clusterlist[[i]]$clustering) 
  params[[i]] <- clusterlist[[i]]$params  
  } 
 results <- list(report=list(within = within, between = between),  
  clusters=clusters, params=params) 
 results 

}

clusterList <- function(data, methodlist) { 
 ##clusterList takes data and a methodlist and 
 ##outputs a series of clusterings 

   n <- length(methodlist) 
   if(n > 0 && is.list(methodlist)){ 

 clustlist <- list() 
 for(i in 1:n) 
  { 
    params <- as.list(methodlist[[i]])    
    ##initialize output function 
    func <- function(data, params){}   
    ##grab appropriate output function from list 
    func <- methodlist[[i]]$func 

    ##do the clustering with proper output   
    clustering <- func(data, methodlist[[i]]) 

    ## put output in clustering list 
    clustlist[[i]] <- list(clustering = clustering, params = params)  

  } 

 clustlist 
       } 

   else{stop("improper input to clusterlist")} 
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}

##withinmetrics calculates the metrics for each cluster 
##produces a table with all metrics in a report 
withinmetrics <- function(clusterlist) { 

 #list of metrics here 
 withinnames <- c("n-clusters", "homogeneity", "separation", "silhouette") 
 row <- length(clusterlist) 
 col <- length(withinnames) 

 withinresult <- matrix(ncol = col, nrow = row) 
 colnames(withinresult) <- withinnames 
 methodnames <- vector() 

 #calculate correlation distance matrix 
 #needed for silhouette index calculation 
 data <- clusterlist[[1]]$clustering 
 data <- data[,2:ncol(data)] 
 cordist <- as.dist(1 - cor(t(data))) 

 for(i in 1:length(clusterlist)){ 
  clustering <- clusterlist[[i]]$clustering 

  #grab clustering id 
  id <- clusterlist[[i]]$params$id   
  n <- max(clustering[,1]) 
  #calcuate metrics 
  #calculate silhouette value  
  sil <- silhouette(clustering[,1], cordist) 
  #return average silhouette value 
  summ <- summary(sil) 

  avgsil <- as.numeric(summ$avg.width) 
  if(length(avgsil)>1) 
   avgsil <- avgsil[1] 
  if(length(avgsil)==0) 
   avgsil <- 0  

  #sort clustering by assignment 
  clustering <- clustering[order(clustering[,1]),] 
  #calculate cluster centers 
  centers <- clusterCenters(clustering) 

  #grab number of clusters 
  #calculate separation 
  separation <- separation(clustering, centers) 
  homogeneity <- homogeneity(clustering, centers) 

  #print(c(n, separation, homogeneity, avgsil)) 
  withinresult[i,] <- c(n, homogeneity, separation, avgsil) 
  methodnames[i] <- id         
 } 

 rownames(withinresult) <- methodnames 
 withinresult 
}

betweenmetrics <- function(clusterlist) { 

 #list of between-methods 
 between <- c("jaccard", "variationinformation") 
 n <- length(clusterlist) 

 ##initialize results matrix 
 jaccardresult <- matrix(ncol = n, nrow = n) 
 variationresult <- matrix(ncol = n, nrow = n) 

 methodnames1 <- vector() 
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 methodnames2 <- vector() 

 for(i in 1:n){ 
  clustering1 <- clusterlist[[i]]$clustering 
  id1 <- clusterlist[[i]]$params$id 
  methodnames1[i] <- id1 
  for(j in 1:n){ 

   id2 <- clusterlist[[j]]$params$id 
   methodnames2[j] <- id2 
   if(i>j){ 
    clustering2 <- clusterlist[[j]]$clustering 
       

      jacc <- jaccard(clustering1, clustering2) 
      jaccardresult[i,j] <- jacc 
       
        
     variationinformation <-  
     variationInformation(clustering1, clustering2) 
      variationresult[i,j] <- variationinformation 
    } 
  } 
 } 

 colnames(jaccardresult) <- methodnames1 
 rownames(jaccardresult) <- methodnames2 

 colnames(variationresult) <- methodnames1 
 rownames(variationresult) <- methodnames2 

 clusters <- list() 

 betweenresult <- list(jaccardresult=as.dist(jaccardresult),  
  variationresult=as.dist(variationresult)) 

 betweenresult 
}

Parameter/List of Methods Input 

##getClusterInfo utilizes a simple GUI
##to grab a list of Methods 
##and appropriate parameters for each parameter 
##notes: widgetTools is really buggy 
##labels don’t show for each input box 
##This isn’t very user-friendly as is. 

getClusterInfo <- function() { 

 require(widgetTools) 

 pwidth <- 3 
 PWEnv <- new.env(hash = TRUE, parent = parent.frame(1)) 

 upgma <- checkButton(wName = "upgma", wValue = c(upgma = TRUE),  
  wEnv = PWEnv, wWidth = pwidth) 
 upgma.distfunc <- radioButton(wName = "upgma.dist",  
  wValue = c(euclidean = TRUE, correlation = FALSE), 
  wEnv = PWEnv, wWidth = pwidth) 
 upgma.height <- entryBox(wName = "upgma.height",  
  wValue = c(Height = 2), wEnv  = PWEnv, wWidth = pwidth) 

 diana <- checkButton(wName = "diana", wValue = c(diana = TRUE),  
  wEnv = PWEnv) 
 diana.distfunc <- radioButton(wName = "diana.dist",  
  wValue = c(euclidean = TRUE, correlation = FALSE), 
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  wEnv = PWEnv, wWidth = pwidth) 
 diana.height <- entryBox(wName = "diana.height",  
  wValue = c(Height = 2), wEnv  = PWEnv, wWidth = pwidth) 

 som <- checkButton(wName = "som", wValue = c(som = TRUE),  
  wEnv = PWEnv) 
 som.xdim <- entryBox(wName = "som.xdim", wValue = c(xdim = 0),  
   wEnv  = PWEnv, wWidth = pwidth) 
 som.ydim <- entryBox(wName = "som.ydim", wValue = c(ydim = 0), 
   wEnv  = PWEnv, wWidth = pwidth) 

 kmeans <- checkButton(wName = "kmeans", wValue = c(kmeans = TRUE),  
  wEnv = PWEnv) 
 kmeans.k <- entryBox(wName = "k", wValue = c(k = 0), wEnv  = PWEnv,  
  wWidth = pwidth) 
 kmeans.iterations <- entryBox(wName = "iterations", wValue = c(num=10000),  
  wEnv = PWEnv, wWidth = pwidth) 

 pWidgets <- list(upgma = list(upgma = upgma, height = upgma.height, 
         distfunc = upgma.distfunc), 
       diana = list(diana = diana, height = diana.height, 
         distfunc = diana.distfunc), 
       som = list(som = som, xdim = som.xdim, ydim = som.ydim), 
       kmeans = list(kmeans = kmeans, k = kmeans.k,  
     iterations = kmeans.iterations) 
    ) 

 if(interactive()) { 
 methodWidget <- widget(wTitle = "Select Your Methods",  
  pWidgets, funs = list(), env = PWEnv) 

 i <- 1 
 methodlist <- list() 

  } 

     if(wValue(pWidgets(methodWidget)[["upgma"]][["upgma"]]) == TRUE) { 
  id <- "UPGMAEUC" 
  func <- agglomOutput 
  method <- "upgma" 
  clustMethod <- "average"  
  distfunc <- "euclidean"   

  height <- 
as.numeric(wValue(pWidgets(methodWidget)[["upgma"]][["height"]]))

  params <- list(id = id, method=method, func=func,  
   distfunc = distfunc, height = height,  
   clustMethod = clustMethod) 
  methodlist[[i]] <- params  
  i <- i + 1 
  } 

 if(wValue(pWidgets(methodWidget)[["upgma"]][["upgma"]]) == TRUE) { 
  id <- "UPGMACOR" 
  func <- agglomOutput 
  method <- "upgma" 
  clustMethod <- "average" 

  #return proper distance 
  distfunc <- "correlation" 

height <- 
as.numeric(wValue(pWidgets(methodWidget)[["upgma"]][["height"]]))

  params <- list(id = id, method=method, func=func,  
   distfunc = distfunc, height = height,  
   clustMethod = clustMethod) 
  methodlist[[i]] <- params  
  i <- i + 1 
  } 

  if(wValue(pWidgets(methodWidget)[["diana"]][["diana"]]) == TRUE) { 
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  id <- "DIANAEUC" 
  func <- dianaOutput 
  method <- "diana" 
  distfunc <- "euclidean" 
  height <- 

as.numeric(wValue(pWidgets(methodWidget)[["diana"]][["height"]]))
  params <- list(id = id, method=method, func=func, distfunc = distfunc,  
   height = height) 
  methodlist[[i]] <- params  
  i <- i + 1 
  } 

  if(wValue(pWidgets(methodWidget)[["diana"]][["diana"]]) == TRUE) { 
  id <- "DIANACOR" 
  func <- dianaOutput 
  method <- "diana"   
  distfunc <- "correlation" 
  height <- 

as.numeric(wValue(pWidgets(methodWidget)[["diana"]][["height"]]))
  params <- list(id = id, method=method, func=func, distfunc = distfunc,  
   height = height) 
  methodlist[[i]] <- params  
  i <- i + 1 
  } 

 if(wValue(pWidgets(methodWidget)[["som"]][["som"]]) == TRUE) { 
  id <- "SOM1" 
  func <- somOutput 
  method <- "som" 
  distfunc <- "euclidean" 
  xdim <- as.numeric(wValue(pWidgets(methodWidget)[["som"]][["xdim"]])) 
  ydim <- as.numeric(wValue(pWidgets(methodWidget)[["som"]][["ydim"]])) 
  params <- list(id=id, method=method, func=func, xdim=xdim, ydim=ydim, 

 distfunc=distfunc) 
  methodlist[[i]] <- params 
  i <- i + 1 
  } 

 if(wValue(pWidgets(methodWidget)[["kmeans"]][["kmeans"]]) == TRUE) { 
  id <- "KMEANS1" 
  func <- kmeansOutput 
  method <- "kmeans" 
  distfunc <- "euclidean" 
  k <- as.numeric(wValue(pWidgets(methodWidget)[["kmeans"]][["k"]])) 
  iterations <- as.numeric(wValue(pWidgets(methodWidget)[["kmeans"]] 
   [["iterations"]])) 
  params <- list(id = id, method=method, func=func, k=k,  
   iterations = iterations, distfunc=distfunc) 
  methodlist[[i]] <- params 
  i <- i + 1 
  } 

methodlist
}

Output Functions 

somOutput <- function(matrix, params) { 

 require(som) 
 if(params$method == "som"){ 
 xdim <- params$xdim 
 ydim <- params$ydim} 

 else {stop("improper input to method")} 
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 ##somvector takes input from som$visual  
 ##(x,y coords of cluster) and converts 
 ##that to a cluster number 
 somvector <- function(somnum, xdim, ydim) { 
  n <- nrow(somnum) 
  ##validate input  
  ##if not validated, stop 
  if(ncol(somnum) == 2)  
  { 
   ##initialize cluster number vector 
   somvector <- vector(length=(1:n)) 

   for(i in 1:nrow(somnum)) 
    { somvector[i] <- somnum[i,1] + somnum[i,2] + 
         (somnum[i,1] * (ydim-1)) + 1 
    } 

   ##output vector 
   somvector  
  } 

  else { stop("Improper Input to somInput.")} 

  } 

#main body of function 
if(is.matrix(matrix))
 { 
 ##perform som 
 som <- som(matrix, xdim, ydim) 
 ##convert coords to cluster numbers 
 somvec <- somvector(som$visual[,1:2], xdim, ydim) 
 ##produce output file 

 somvec <- as.matrix(somvec) 
 output <- as.data.frame(cbind(somvec, matrix)) 

 output 
 } 

else { 
 stop("Input is not a matrix")} 
}

agglomOutput <- function(matrix, params) { 

  clustMethod <- params$clustMethod 
  distfunc <- params$distfunc 
  k <- params$height 

 ##check to see if input is a matrix 
 ##otherwise, stop 
 if(is.matrix(matrix)) { 

  ##calculate appropriate distance matrix 
  distmatrix <- switch(distfunc, euclidean = dist(matrix),  
   correlation = as.dist(1 - cor(t(matrix)))) 

  ##do clustering 
  tree <- hclust(distmatrix, method = clustMethod) 

  ##cut tree at selected height 
  tmp <- cutree(tree, k=k) 

  ##output data file with cluster info 
  output <- as.data.frame(cbind(tmp, matrix)) 

  ##output file 
  output 
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  } 

 else{ 
 stop("Input is not a matrix.") 
 } 
}

dianaOutput <- function(matrix, params) { 

 require(cluster) 

  clustMethod <- params$clustMethod 
  distfunc <- params$distfunc 
  k <- params$height 

 ##check to see if input is a matrix 
 ##otherwise, stop 
 if(is.matrix(matrix)) { 

  ##calculate appropriate distance matrix 
  distmatrix <- switch(distfunc, euclidean = dist(matrix),  
   correlation = as.dist(1 - cor(t(matrix)))) 

  ##do clustering 
  tree <- diana(x = distmatrix, diss = TRUE) 

  ##cut tree at selected height 
  tmp <- cutree(as.hclust(tree), k=k) 

  ##output data file with cluster info 
  output <- as.data.frame(cbind(tmp, matrix)) 

  ##output file 
  output 

  } 

 else{ 
 stop("Input is not a matrix.") 
 } 
}

kmeansOutput <- function(matrix, params) { 

 if(params$method == "kmeans") { 
   k <- params$k 
   iterations <- params$iterations 
 } 

 else {stop("improper params")} 

 ## checks input to see if it's a matrix 
 ## otherwise, stop 
 if(is.matrix(matrix)) { 

  ##do k-means clustering 
  tmp <- kmeans(matrix, k, iterations) 

  ##produce output file 
  output <- as.data.frame(cbind(tmp$cluster, matrix)) 

  ##output file 
  output 
 } 

 else { 
 stop("Input is not a matrix.")} 

}
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Metric Code 

##Within method metrics here 

##clusterCenters calculates centers of clusters 
##given standard output format of clusters 
##grab row length of matrix

clusterCenters <- function(x) { 

n <- ncol(x) 
max <- max(x[1]) 

if(is.data.frame(x)) { 

 ##calculate vector centers of each cluster 
 agg <- aggregate(x[,2:n], list(cluster=x[,1]), mean) 

 ##initialize matrix for centers 
 centers <- matrix(0, max, n-1) 

 p <- ncol(agg) 

 ##transfer cluster info to matrix 
 for (i in 1:nrow(agg))  
      {centers[as.numeric(levels(agg$cluster))[i],] <-  
   as.matrix(agg[i,2:ncol(agg)]) 
    }  
  ##grabs vector info out of list 

 ##return matrix of cluster centers 
 centers 
 } 

else { stop("input is not a data frame")} 

}

##homogeneity takes both standard clustering output 
##and cluster centers as input 
homogeneity <- function(clustering, centers, distfunc="euclidean") { 

 ##initialize count 
 tally <- c(0) 

 euclidean <- function(clustering, centers) { 

  for(i in 1:nrow(clustering)) { 
  tally <- tally + sqrt(sum((clustering[i, c(2:ncol(clustering))]  
    - centers[clustering[i,1],])^2)) } 
  } 

 correlation <- function (clustering, centers) { 

  for(i in 1:nrow(clustering)) { 
  tally <- tally + (1-cor(clustering[i, c(2:ncol(clustering))],  
    centers[clustering[i,1],]))  
    }        
   } 

 tally <- switch(distfunc, euclidean=euclidean(clustering, centers), 
   correlation = correlation(clustering, centers)) 

 average <- tally / nrow(data) 

 average 

}
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#separation takes both clustering output 
##and cluster centers as input 
separation <- function(clustering, centers) { 
if(is.matrix(centers))
 { 

 countcluster <- function(output) { 
  countclust <- as.vector(table(output[,1])) 
  countclust} 

 sepmatrix <- dist(centers) 

 # L is number of clusters 
 L <- nrow(centers) 

 ##if number of clusters is >= 2 
 ##calculate separation 
 if(L >= 2) { 

  countclust <- countcluster(clustering) 
  colclust <- as.matrix(countclust[2:L]) 
  rowclust <- t(countclust[1:(L-1)]) 
  prod <- colclust %*% rowclust 

  sepmatrix <- sepmatrix * prod 

  separation <- sum(sepmatrix)/sum(prod) 
 } 

 ##if number of clusters is 1, return 0 
 else {separation <- 0} 

 separation 
 } 
else{
stop("input is not a matrix")} 
}

##Between-method Metrics Here 

##contingencytable returns a contingency table 
##given two clusters grouped by cluster assignment 
contingencytable <- function(by1, by2) 
{
 ##function intersect returns number in  
 ##intersection between sets x and  y 
 intersect <- function(x, y) length(y[match(x, y, nomatch = 0)]) 

 contingency <- matrix(nrow=length(by1), ncol=length(by2)) 

 for(i in 1:length(by1)) 
  {for(j in 1:length(by2)) 
   {contingency[i,j] <- intersect(by1[[i]], by2[[j]])} 
  } 
 contingency 
}

jaccard <- function(clustering1, clustering2) 
{
if(is.data.frame(clustering1) && is.data.frame(clustering2) 
  && (nrow(clustering1) == nrow(clustering2))) 
 { 

 ##separate the data frame names by their individual clusters 
 by1 <- by(clustering1, clustering1[1],  
   function(x) {row.names(x)}) 

 by2 <- by(clustering2, clustering2[1],  
   function(x) {row.names(x)}) 



110

 contingency <- contingencytable(by1, by2) 

 Z <- sum(contingency^2) 
 n <- nrow(clustering1) 

 sumsquarerow <- sum(colSums(contingency)^2) 
 sumsquarecol <- sum(rowSums(contingency)^2) 

 jaccard <- (Z - n) / ( sumsquarerow + sumsquarecol - Z - n) 

 jaccard 

 }  

else  {stop("Improper input to function")} 

}

variationInformation <- function(clustering1, clustering2) { 
 ##function intersect returns number in  
 ##intersection between sets x and  y 
 intersect <- function(x, y) length(y[match(x, y, nomatch = 0)]) 

n <- nrow(clustering1) 

if(is.data.frame(clustering1) && is.data.frame(clustering2)) 
 { 

 ##separate the data frame names by their individual clusters 
 by1 <- by(clustering1, clustering1[1],  
   function(x) {row.names(x)}) 

 by2 <- by(clustering2, clustering2[1],  
   function(x) {row.names(x)}) 

 prob1 <- countcluster(clustering1)/n 
 prob2 <- countcluster(clustering2)/n   

 contingency <- contingencytable(by1, by2) 

 jointprob <- contingency/n 

 probproduct <- as.matrix(prob1) %*% t(prob2) 

 logprob <- ifelse(contingency==0,0,log10(jointprob/probproduct)) 

 mutual <- sum(jointprob * logprob)  

 entropy1 <- -sum(prob1 * log10(prob1)) 
 entropy2 <- -sum(prob2 * log10(prob2)) 

 variation <- entropy1 + entropy2 - (2*mutual) 

 variation 

 } 

else  {stop("improper input to function")} 
}
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Data simulation code: 
The following script is an example of the code used to generate and test the simulated datasets. 

##script to generate simulated dataset 
##Assume S/N ratio of around 3 
##Parameters
datamean <- 3.0 
datadev <- 1.0 
##noise mean is centered around 0 
noisedev <- 0.05 

##generate cluster1 - descending 
clusterseeds1 <- rnorm(250, mean=datamean, sd=datadev) 
##pattern is outer-multiplied by clusterseeds1 
##to form correlated data
pattern1 <- c(4, 3, 2, 1) 
cluster1 <- as.matrix(clusterseeds1) %*% t(pattern1)
##generate noise 
noisematrix <- matrix(ncol=4, nrow=250) 
for(i in 1:4) 
 { 
 noise <- rnorm(250, mean=0, sd=noisedev) 
 noisematrix[,i] <- noise 
 } 
##generate assignment vector 
assign1 <- vector(length=250) + 1 
##generate cluster by adding cluster1 to noisematrix 
cluster1 <- cbind(as.matrix(assign1),(cluster1 + noisematrix)) 

##generate cluster2 - ascending 
clusterseeds2 <- rnorm(250, mean=datamean, sd=datadev) 
pattern2 <- c(1, 2, 3, 4) 
cluster2 <- as.matrix(clusterseeds2) %*% t(pattern2)
noisematrix <- matrix(ncol=4, nrow=250) 
for(i in 1:4) 
 { 
 noise <- rnorm(250, mean=0, sd=noisedev) 
 noisematrix[,i] <- noise 
 } 

assign2 <- vector(length=250) + 2 
cluster2 <- cbind(as.matrix(assign2),(cluster2 + noisematrix)) 

##generate cluster3 - up then down 
clusterseeds3 <- rnorm(250, mean=datamean, sd=datadev) 
pattern3 <- c(2, 4, 2, 1) 
cluster3 <- as.matrix(clusterseeds3) %*% t(pattern3)
noisematrix <- matrix(ncol=4, nrow=250) 
for(i in 1:4) 
 { 
 noise <- rnorm(250, mean=0, sd=noisedev) 
 noisematrix[,i] <- noise 
 } 
assign3 <- vector(length=250) + 3 
cluster3 <- cbind(as.matrix(assign3),(cluster3 + noisematrix)) 

##generate cluster4 - down then up 
clusterseeds4 <- rnorm(250, mean=datamean, sd=datadev) 
pattern4 <- c(2, 1, 2, 4) 
cluster4 <- as.matrix(clusterseeds4) %*% t(pattern4)
noisematrix <- matrix(ncol=4, nrow=250) 
for(i in 1:4) 

{
noise <- rnorm(250, mean=0, sd=noisedev) 
noisematrix[,i] <- noise 
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}
assign4 <- vector(length=250) + 4 
cluster4 <- cbind(as.matrix(assign4),(cluster4 + noisematrix)) 

##bind clusters together 
simdata2 <- rbind(cluster1, cluster2, cluster3, cluster4) 
##shuffle the data 
simdata2 <- simdata2[sample(1000),] 
##assign rownames to matrix 
row.names(simdata2) <- as.character(c(1:1000)) 
simdata2.true <- as.factor(simdata2[,1]) 

##run clusterings and metrics 
simdata2.clusters <- testMain(simdata2[,2:5]) 
##generate report 
simdata2.clusters$report

##generate jaccard index tree 
simdata2.jaccard <- simdata2.clusters$report$between$jaccardresult 
plot(hclust(1-simdata.jaccard), main=”Jaccard Index”) 

##generate variation index tree 
simdata2.variation <- simdata2.clusters$report$between$variationresult 
plot(hclust(simdata2.variation), main=”Variation of Information”) 

##generate confusion matrices 
simtable2 <- list() 
library(e1071)
for(i in 1:length(simdata2.clusters$clusters)){ 
 print(simdata2.clusters$params[[i]]$id) 
 print("True Clustering") 
 print(table(simdata2.true)) 
 print("Method Clustering") 
 print(table(simdata2.clusters$clusters[[i]])) 
 simdata2.order <-  

simdata2.clusters$clusters[[i]]
[order(as.numeric(row.names(simdata2.clusters$clusters[[i]])))]

 simtable2[[i]] <- table(simdata2.true, simdata2.order) 
 class.match <- matchClasses(as.matrix(simtable2[[i]]),method="exact") 
 print(simtable2[[i]][,class.match]) 

}
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Overlap of Clusterings 
The following is a script that was written to calculate the overlaps for three sets of clusters, belonging to UPGMACOR, 

UPGMAEUC, and DIANAEUC. 

##grab clusterings and associate them with functional annotation 
chonorm.upgmaeuc <- cbind(as.matrix(chonorm.clusters$clusters[[1]]), as.matrix(chonorm.true)) 
chonorm.upgmacor <- cbind(as.matrix(chonorm.clusters$clusters[[2]]), as.matrix(chonorm.true)) 
chonorm.dianaeuc <- cbind(as.matrix(chonorm.clusters$clusters[[3]]), as.matrix(chonorm.true)) 

##group clusterings by method assignment 
chonorm.upgmaeuc.by <- by(chonorm.upgmaeuc, chonorm.upgmaeuc[,1], function(x){x}) 
chonorm.upgmacor.by <- by(chonorm.upgmacor, chonorm.upgmacor[,1], function(x){x}) 
chonorm.dianaeuc.by <- by(chonorm.dianaeuc, chonorm.dianaeuc[,1], function(x){x}) 

##intersect returns a vector of length x of matches of x in y 
intersect <- function(x, y) {match(x, y, nomatch = 0)} 

##for cluster with mostly annotation LateG1 
##calculate intersection between UPGMAEUC and UPGMACOR 
inter <- intersect(row.names(chonorm.upgmaeuc.by[[1]]), row.names(chonorm.upgmacor.by[[1]])) 

##show intersection of UPGMAEUC and UPGMACOR 
chonorm.inter <- chonorm.upgmacor.by[[1]][inter,] 

##calculate intersection between above intersection and DIANACOR 
inter <- intersect(row.names(chonorm.inter), row.names(chonorm.dianaeuc.by[[1]])) 

##show intersection of UPGMAEUC, UPGMACOR, and DIANACOR 
chonorm.inter <- chonorm.dianaeuc.by[[1]][inter,] 

##write results to a table 
write.table(chonorm.inter, "chonorm-matcheslateg1.txt") 

##for cluster with mostly annotation EarlyG1 
##calculate intersection between UPGMAEUC and UPGMACOR 
inter <- intersect(row.names(chonorm.upgmaeuc.by[[2]]), row.names(chonorm.upgmacor.by[[2]])) 

##show intersection of UPGMAEUC and UPGMACOR 
chonorm.inter <- chonorm.upgmacor.by[[2]][inter,] 
chonorm.inter

##calculate intersection between above intersection and DIANACOR 
inter <- intersect(row.names(chonorm.inter), row.names(chonorm.dianaeuc.by[[2]])) 

##show intersection of UPGMAEUC, UPGMACOR, and DIANACOR 
chonorm.inter <- chonorm.dianaeuc.by[[2]][inter,] 
chonorm.inter

##write table
write.table(chonorm.inter, "chonorm-matchesearlyg1.txt") 

##for cluster with mostly annotation M 
##calculate intersection between UPGMAEUC and UPGMACOR 
inter <- intersect(row.names(chonorm.upgmaeuc.by[[4]]), row.names(chonorm.upgmacor.by[[4]])) 

##show intersection of UPGMAEUC and UPGMACOR 
chonorm.inter <- chonorm.upgmacor.by[[4]][inter,] 
chonorm.inter

##calculate intersection between above intersection and DIANACOR 
inter <- intersect(row.names(chonorm.inter), row.names(chonorm.dianaeuc.by[[4]])) 

##show intersection of UPGMAEUC, UPGMACOR, and DIANACOR 
chonorm.inter <- chonorm.dianaeuc.by[[4]][inter,] 
chonorm.inter
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##write table 
write.table(chonorm.inter, "chonorm-matchesM.txt")
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Appendix B: Confusion Matrices for Simulated Datasets 

 Confusion matrices are described in section 4.5.  The true clustering (arranged 
in rows) is aligned with the method clustering (arranged in columns). 

Low-Variation, Low-noise dataset
[1] "UPGMAEUC"
Direct agreement: 4 of 4 pairs 
Cases in matched pairs: 100 % 
             simdata1.order 
simdata1.true   1   2   3   4 
            1 250   0   0   0 
            2   0 250   0   0 
            3   0   0 250   0 
            4   0   0   0 250 

[1] "UPGMACOR" 
Direct agreement: 4 of 4 pairs 
Cases in matched pairs: 100 % 

             simdata1.order 
simdata1.true   1   2   3   4 
            1 250   0   0   0 
            2   0 250   0   0 
            3   0   0 250   0 
            4   0   0   0 250 

[1] "DIANAEUC"
Direct agreement: 4 of 4 pairs 
Cases in matched pairs: 100 % 
             simdata1.order 
simdata1.true   1   2   3   4 
            1 250   0   0   0 
            2   0 250   0   0 
            3   0   0 250   0 
            4   0   0   0 250 

[1] "DIANACOR" 
             simdata1.order 
simdata1.true   1   2   3   4 
            1 250   0   0   0 
            2   0 250   0   0 
            3   0   0 250   0 
            4   0   0   0 250 

[1] "SOM1"
Error in matchClasses(as.matrix(simtable[[i]]), method = "exact") :
        Unique matching only for square tables. 

[1] "KMEANS1"
Direct agreement: 2 of 4 pairs 
Cases in matched pairs: 62.9 % 

             simdata1.order 
simdata1.true   2   3   1   4 
            1 250   0   0   0 
            2   0   0   0 250 
            3   0 121 129   0 
            4   0   0   0 250 
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High-Variation, Low-Noise Dataset 

[1] "UPGMAEUC" 
Direct agreement: 1 of 4 pairs 
Iterations for permutation matching: 6
Cases in matched pairs: 46 % 
             simdata2.order 
simdata2.true 4 3   1   2 
            1 2 0 170  78 
            2 0 5   0 245 
            3 0 0 204  46 
            4 0 1   0 249 

[1] "UPGMACOR" 
Direct agreement: 3 of 4 pairs 
Iterations for permutation matching: 1
Cases in matched pairs: 75.1 % 
             simdata2.order 
simdata2.true   4   2   1 3 
            1 250   0   0 0 
            2   0 250   0 0 
            3   0   0 250 0 
            4   0 249   0 1 

[1] "DIANAEUC" 
Direct agreement: 3 of 4 pairs 
Iterations for permutation matching: 1
Cases in matched pairs: 61.5 % 
             simdata2.order 
simdata2.true   4   3   2  1 
            1 201   0   0 49 
            2   0 250   0  0 
            3   0   0 163 87 
            4   0 249   0  1 

[1] "DIANACOR" 
Direct agreement: 3 of 4 pairs 
Iterations for permutation matching: 1
Cases in matched pairs: 75.1 % 
             simdata2.order 
simdata2.true   4   2   1 3 
            1 250   0   0 0 
            2   0 250   0 0 
            3   0   0 250 0 
            4   0 249   0 1 

[1] "SOM1" 
Direct agreement: 0 of 4 pairs 
Iterations for permutation matching: 24
Cases in matched pairs: 53.4 % 
             simdata2.order 
simdata2.true   4  2   3   1 
            1 178  0  72   0 
            2   0 82   0 168 
            3 150  0 100   0 
            4   0 75   1 174 

[1] "KMEANS1" 
Direct agreement: 0 of 4 pairs 
Iterations for permutation matching: 24
Cases in matched pairs: 57.6 % 
             simdata2.order 
simdata2.true   4   2   3   1 
            1 160   0  90   0 
            2   0 136   1 113 
            3  95   0 155   0 
            4   0 124   1 125 
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Low-Variation, High-Noise Dataset 

[1] "UPGMAEUC"
Direct agreement: 3 of 4 pairs 
Iterations for permutation matching: 1
Cases in matched pairs: 74.9 % 
             simdata3.order 
simdata3.true   2   1   3 4 
            1 248   0   2 0 
            2   0 250   0 0 
            3   0   0 250 0 
            4   0 249   0 1 

[1] "UPGMACOR"
Direct agreement: 4 of 4 pairs 
Cases in matched pairs: 99.6 % 
             simdata3.order 
simdata3.true   2   3   4   1 
            1 249   0   1   0 
            2   0 247   0   3 
            3   0   0 250   0 
            4   0   0   0 250 

[1] "DIANAEUC"
Direct agreement: 4 of 4 pairs 
Cases in matched pairs: 99.6 % 
             simdata3.order 
simdata3.true   2   3   4   1 
            1 249   0   1   0 
            2   0 248   0   2 
            3   0   0 250   0 
            4   0   1   0 249 

[1] "DIANACOR"
Direct agreement: 4 of 4 pairs 
Cases in matched pairs: 99.8 % 
             simdata3.order 
simdata3.true   2   3   4   1 
            1 249   0   1   0 
            2   0 249   0   1 
            3   0   0 250   0 
            4   0   0   0 250 

[1] "SOM1"
Direct agreement: 3 of 4 pairs 
Iterations for permutation matching: 1
Cases in matched pairs: 66.1 % 
             simdata3.order 
simdata3.true   4  2   3   1 
            1 248  0   2   0 
            2   0 21   0 229 
            3  98  0 152   0 
            4   0 10   0 240 

[1] "KMEANS1"
Direct agreement: 4 of 4 pairs 
Cases in matched pairs: 99.6 % 
             simdata3.order 
simdata3.true   4   2   3   1 
            1 249   0   1   0 
            2   0 248   0   2 
            3   0   0 250   0 
            4   0   1   0 249 
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