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ABSTRACT 

A SUPERRESOLUTION TELESCOPE THAT USES ABERRATION EFFECTS 

SUPPRESSION, DECONVOLUTION BY DIMENSIONAL REDUCTION, 

OPTIMAL CONVEXITY AND CONVEXITY NORMALIZATION FOR IMAGE 

SIZE AND DARK NOISE 

David Maker 

Supervising Professor: V.S . Rao Gudirnetla 

In this dissertation we claim to have found the solution to the problem of resolv- 

ing beyond the diffraction limit (superresolution). This problem is solved by dimensional 

reduction, convexity optimization, and convexity normalization for image size and dark 

noise. By dimensional reduction we mean deconvolution on isophote ridges, which are 

one dimensional, thus we have reduced the dimensionality of the problem from two to 

one. By optimizing convexity we mean that we choose points to test for image sources for 

which the second derivative (convexity) of the intensity along isophote ridges is the high- 

est. By normalization of convexity for dark noise and image size we are making sure that 

our optimization of convexity is not biased by dark noise at different exposures or differ- 

ent background convexities for images of different sizes. This biasing would create arti- 

facts. 

We also invented ways to speed up our computation and overcome inverse matrix 

errors. For example we found a simple way to solve the illconditioned matrix problem so 

we could use the inverse matrix technique, and we are allowed here to replace explicit 

xi 



least squares with the more convenient minimum of the sum of amplitudes squared. We 

use methods to overcome astigmatism and spherical aberration which are not new. With a 

narrow field of view we don't need to use the usual iterative stochastic methods (such as 

MAP). This is because smoothing is effective here since the scale of the PSF s (point 

spread functions) is much larger than the noise scale. 

In this superresolution telescope we get a narrow field of view by a microscope- 
. .  . 

telescope combination. Pointing errors must be rmnurzlzed to ensure that aberration effects 

are minimized, and astigmatism produced by air turbulence must be corrected for. 

Experiments have produced repeatable 1/10 Rayleigh distance resolution for SNR 

=60 (with no prior knowledge of source configuration assumed). Through sigruficant air 

turbulence over a 400 foot line of sight we get 116 Rayleigh resolution for 1.5 inch reflect- 

ing and refracting telescopes, about a factor of 12 better than you would expect. 
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INTRODUCTION 

Toraldi di  ranc cia', in 1952, proposed that it must be possible to reconstruct details 

of an object smaller than the diffraction limit. We call this supenesolution. Previous theo- 

ries of resolution by ~ b b e ~  and h r d  ~ a ~ l e i g h '  did not allow such resolution. But at least 

in optical microscopy supenesolution has been achieved. What has been shown to be 

important is the information content of the optical signal, including some prior knowledge 

of the signal, but not arbitrary limits on resolution. The key thing in doing superresolution 

is to make use of this information in an intelligent fashion. For telescope superresolution 

localizing the testing of an individual PSF (point spread function) is important.. In confo- 

cal microscopy the extent of the laser beam coverage is known. Many methods have been 

developed for achieving superresolution. For example the MAP (maximum aposteriori) 

m e t h d  involves producing an iteration of an image function, maxh.hing the entropy of 

the image and satisfying the least squares criteria. However all these methods must be 

viewed in the context of Toraldo di Francis's concept of the ambiguous image5. The con- 

cept of an ambiguous image is that two or more different objects can give rise to the same 

image. Much has been written about how this ambiguous image problem will always pro- 

vide a limit to superresolution. 

The original contribution of this dissertation, as discussed in chapter 4, is the intro- 

duction of five new methods that, when used together, overcome this ambiguous image 

problem in the case of narrow field of view, high magnification optical telescopes. The five 

1 
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new methods we have adopted are dimensional reduction, second derivative optimization, 

replacing the Nyquist sampling6 requirement by a requirement for dense symmetrical 

sampling, a method of using the inverse matrix technique without the usual large resulting 

errors and replacing the least squares with a minimum of the sum of amplitudes squared. 

Other more mundane innovations are methods for speedy numerical utilization of the 

Bessel functions. We use ways to overcome astigmatism and spherical aberration which 

are not new. As part of the telescope work we find new ways of overcoming aberrations 

caused by secondary mirror supports. 

More specifically, the dimensional reduction involves testing points that are on iso- 

phote ridges. Tops of ridges form lines so we have reduced this from a two dimensional 

problem to a one dimensional problem, which is what we mean by dimensional reduction. 

Most of the computer algorithm is used to calculate the location of these ridge points. 

We find points on these ridges that have maximum second spatial derivatives in 

intensity. These approximate source locations since the maximum of PDF s (probability 

distribution functions) are at second derivative maxima. 

The Nyquist requirement of sampling of peaks and valleys of sine waves in all loca- 

tions of the image is not used here except in the planet-finder simulation. The convexity 

test causes us to symmetrically sample on either side of a maximum. This also results in a 

large reduction in the illconditioned matrix problem so that the inverse matrix method can 

then be used. Smoothing is also very effective here since the scale of the noise is much 

smaller here than the scale of a PSF because of the narrow field of view. This eliminates 

the need for stochastic methods. The usual Gaussian elimination is used here in the inverse 

matrix calculation. 

We sum the absolute powers of the square of the amplitudes, then test to see if the 

sum is a minimum and, when it is, conclude that particular amplitude and position applies 

to that source. 

The calculation of the Bessel functions involves time consuming numerical inte- 

gration. Here we use a representation that has no singularities and make a file of a 

table of numerical values these functions. This speeded up calculation by thousands of 

times. 



3 

Finally we solve the problem of convexity aberration due to dark noise and varying 

image size. 

Pinhole experiments were done to check the theory. The pinhole experimental 

results imply that the technique is successful but difficult to use. At a SNR=30 (signal to 

noise ratio) we are able to resolve 2,3 and 4 objects with a minimum separation of 1/10 of 

a Rayleigh distance using actual CCD data. For reflector and refractor telescopic superres- 

olution point sources separated by 1/6 of a Rayleigh were resolved through turbulence, 

which is about a factor of 12 better than you could expect. This worked for several very 

different combinations of amplitudes and separations. Patterns such as triangle$ and 

worked with very different intensities for the sources. 

In this thesis we derive our method theoretically and compare and contrast this 

method with other superresolution methods. For example in chapter 2 the standard deriva- 

tion from Maxwell's equations of the Kirchoff integral are reviewed. From there we derive 

the PSF (point spread function) for a circular aperture. We then review the mathematics 

associated with noncoherent PSF's. In chapter 2, alternative superresolution methods are 

discussed such as the maximum entropy deconvolution. We also discuss microscope 

superresolution. We review some of the most recent developments, , namely the Gram- 

Schmidt orthogonalization procedure applied to superresolution. Chapter 3 reviews gen- 

eral considerations about superresolution such as ambiguous image and SNR consider- 

ations. It should be noted that our experimental results are within the theoretical bounds 

set there. Chapter 3 presents a mathematical model of the ambiguous image problem. In 

chapter 4 our method for doing superresolution is outlined. Here we include actual image 

restoration results. Also chapter 4 presents steps that must be taken to make this type of 

superresolution repeatable. In appendix A we include our superresolution code.. Appendix 

B includes our data transfer code. In appendix C we have our planet finder program, and in 

appendix D and E we include our Nyquist sampling programs. In appendix F we discuss 

various miscellaneous hardware techniques that might be helpful in getting superresolu- 

tion such as apodization. 



Thus we begin by noting that the electromagnetic theory of imaging is based on 

Maxwell's equations. Using Maxwell's equations we can find a wave equation for the 

electric (E) and magnetic (B) fields for free space propagation. These equations can be 

solved in the volume between a screen and aperture. This will give the formula for the 

amplitude function for the wave on the screen. Closely related to this amplitude function is 

the Kirchoff diffraction integral. Although not strictly a rigorous solution to this wave 

equation, it provides the basis for the theory of Fraunhoffer and Fresnel diffraction. Here 

we will deal with Fraunhoffer diffraction.We solve the Kirchoff diffraction integral for a 

circular aperture and distant point source and get the PSF (point spread function). Super- 

position of PSF's from many point sources can be used to construct images. The large 

degree of freedom for assignment of these PSF's to an arbitrary image is the basis of the 

ambiguous image problem. 
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CHAPTER 2 

REVIEW OF DECONVOLUTION ALGORITHMS 

This is a discussion of alternative superresolution methods, such as the maximum 

entropy deconvolution, and also a discussion of microscope superresolution. We review 

some of the most recent developments in superresolution, namely the Gram-Schmidt 

orthogonalization procedure. It is important to note that of the methods reviewed here 

almost al l  use standard Fourier transform image processing as in equation (2.3.7) and 

(2.3.10). The method we develop cannot use manipulation of sampling in frequency space 

(involving Fourier transforms) because of the need for ridge sampling in real space as will 

be seen in chapter 4. Also the real space methods introduced here all require Nyquist type 

sampling, whereas our method uses ridge and convexity sampling. Thus our method is 

very different from the standard ways of doing superresolution. Before introducing these 

standard methods, the development of the PSF (point spread function) for light passing 

through a circular aperture, must be reviewed. 

2.1 REVIEW OF KIRCHOFF INTEGRAL 

Recall Maxwell's equations in the Gaussian system1 of units 

d * B  = 4np 

9.13 = 0 

Recall that in f n e  space2 

B = R  

and 

D = E  



Also equation (2.1.1) in free space becomes: 

9 . B  = 0 

so from equation (2.1.6): 

9.8 = o 
and also in free space: 

S = o  
and from equation (2.1.5) and (2.1.2): 

= O  

Recall the vector identity 

d x ( d x 2 )  = d ( 9  2 )  - v22 

Next we take the curl ( d ~ )  of both sides of (2.1.3)and use (2.1.5) to get: 

Then we plug in for the left side3 of (2.1.12) into the identity given by (2.1.1 1). We also 

plug in on the right side of (2.1.12) equations (2.1.4), (2.1.5) and (2.1.9) to get: 

Next we plug in equation (2.1.8) into (2.1.13) and get: 

This is the wave equation. Recall that for a plane wave in a vacuum that o = kc.  We take 

a Fourier component of E, which we write2 as v , to be a plane wave of the form: 

'y(x,t) = A ~ ' ~ ' Y ( X )  (2.1.15) 

We give a transverse component of E the name v(x) . We then plug equation (2.1.15) into 

equation (2.1.14) and get a Hemholtz equation in Y (x) : 

( v 2  + k2)1(x) = 0 .  (2.1.16) 
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Thus we can write the Green's function problem for this Hemholtz wave equation as: 

(v2 + k 2 ) ~ ( x j ' )  = 6 ( x  - x')  (2.1.17) 

Using Green's theorem and equations (2.1.16) and (2.1.17) we get: 

Y ( x )  = Q[Y (xl)n'V'G(x, x') - G(x ,  x')n'V'Y (x') ]do' (2.1.18) 

Here n' is inwardly normal to the surface S which encloses a volume V. Equation (1.1.18) 

is nonzero only within this volume V. Next we take G to be the infinite space Green's 

function for outgoing waves, given by: 

Lets say the surface S consists of a screen and an aperture. If the screen is far away then 

we can say that the main contribution to the integral (2.1.18) comes from the integration 

over the aperture. Also the \y satisfies the radiation condition for intensities that obey the 

inverse square law: 

i k r  

'Y + f (0, $)e r 

Thus equation (2.1.18) can be rewritten as: 

a y  We next make the assumption that Y and - vanish everywhere4 except in the openings 
a n  

and in the openings have the corresponding values of incoming plane wave in the free 

space. It can be shown that these boundary conditions should yield only trivial Y here. In 

any case for infinitely distant object giving waves that are plane waves impinging perpen- 

dicularly at the opening we have that: 

k ikr 
e Y ( P )  = - J -do' 

2ni r 
opening 

Next we use (2.1.22) to derive our basic algorithm. So let xi be a position in the pupil and 



X,Y be a position on the screen. Let D be the axial distance form the pupil to the screen. 

Then 

so that 

The phase factor is just a multiplicative constant and can be ignored. 

In Fraunhoffer diffraction x2 + y2 r xX + yY so we can write: 

r =  xX+yY 2 . t  Rwse = = -  
D D D (2.1.25) 

Here a is the angle from the line drawn perpendicular and through the center of the aper- 

ture, h is the wavelength of the light. Let "a" be the radius of the aperture, b = $sin a . 

Thus we can write5 equation (2.1.22) as: 

y,, eibrmsO rdedr 

so we write equation (2.1.26) as 

2nn2 Y - $ ~ ~ ( b r ) r d r  = -J l (ab)  
a b  

so that: 



2na where R m - sina . Here a is the angle from the line drawn perpendicular to the plane 
h 

of and through the center of the aperture, h is the wavelength of the light. Thus we have 

derived the PSF (point spread function) of a circular aperture from Maxwell's equations. 

The first null of the J1(R) is at the point 

So that we have 

sina = 3.8317h 1.22h -a 
2na a 

Translating the angle a to the dimensions of the screen we define the a to be the angular 

distance. If another PSF of an object of equal brightness was placed so that the center of 

that PSF was located at this angle a from the center of the first PSF, we say that the two 

PSF's are just resolvable by the Rayleigh criterion. 

2.2 INCOHERENT SOURCES 

Next we derive the equation for the intensity of the two dimensional pattern cre- 

ated by incoherent sources. Let us have two sources with fields E and E2 that differ by a 

random phase y since the sources are incoherent. We then take the average of the square 

of the field ET . Thus let 

El = E I O ~ s u t  (2.2.1) 

E2 = E Z O ~ s ( u t  +y) (2.2.2) 

so that 

ET = E I O c o s ~ t  + E 2 0 ~ ~ ( ~ t  + y) (2.2.3) 

Thus: 

2 
E: = ( E l o c ~ ~ u r  + E 2 0 ~ s ( ~ t  + y)) = 



2 2 2 2 =E,,(coswt) + E 20(cos(&t + y)) + 2 E 1 0 ~ ~ ~ o t E 2 0 ~ o s ( ~ t  + y) 

Taking the average o of both sides of equation (2.2.4) we get for the intensity I: 

2 2 I= (E, ) = ((Elowsot + E 2 0 ~ ~ ( o t  + y)) ) = 

2 
=((Elocoswt) ) + ((E20cos(ot + y)f2) + ( 2 E l o c ~ c o t ~ 2 0 ~ ( ~ t  + y)) (2.2.5) 

We note here that for small random phase differences y the last term is small. In our 

experiment such small phase differences existed close the middle of the optical axis of the 

system, but not at the edges. So even though the noncoherence may have been imperfect, 

we still saw phenomena that were close to what we would see for complete noncoher- 

ence. One experimental consequence of residual coherence is that off center images would 

not deconvolve nearly as well as the centered images due to the large phase difference y 

that exists there. 

For complete noncoherence the phase difference y is random and the last term in 

equation (2.2.5) averages to zero. Thus the intensity "I" of the E field is given by: 

The E field on the screen created by a circular aperture is given by (1.1.28) 

where k is the strength of the source and not wave number. Equation (2.2.6) then implies 

that the intensity on the screen is given by: 

J,(R, 
N 

Intensity = Eti(T3 = ',JINC~(R~) 
1 i =  1 

This is the equation for the ideal noiseless pixel electron density in an image on a CCD 

caused by the "i" sources if imaged through a circular aperture. Equation (2.2.8) is the 

fundamental equation used in the inverse matrix part of our algorithm. In fact any image 

created by this aperture can be constructed for these PSP's (see 2.2.8): 



N N J1(R, 
i i ~ ~ I ? ~ 2 ( ~ i )  = I (x, y) = 

ki(T7 
I =  1 i = l  

2 2 
where Ri = J((xi - PX,) + (yi - PYi) ) 

2.3. NONCOHERENT SUPERRESOLUTION TECHNIQUES 

In this section we review some of the standard methods for doing superresolution. 

We will refer to later results in this paper to establish the nomenclature for this literature 

review. 

All supenesolution methods that I know of are based on a version of the inverse 

matrix method or a stochastic application of this method. The inverse matrix method itself 

gives poor superresolution and the other methods are modifications or conections to it. We 

use as an example a circular aperture and begin with equation (2.2.8). 

Let Ri be the distance between the measuring point (x,y) and the point where the 

source is located at (PXi,PYi) so that from the Pythagorean theorem: 

Thus from equation (2.2.8) we have for the intensity at point (x ,~$  

(2.3.2) 

ki is the intensity at point (PXi , PYi ), and J1(R) is the Bessel function of the first kind of 

order 1. We can then define for a circular aperture: 

In the limit as the sources become continuous: 

ki + f (PXQYIi 

which is our irradiance distribution. We define: 



g(x,y) = I ( ~ , Y )  

Thus in the limit of a continuous summation in equation (2.3.2)we have: 

z h(x,~) • f (%Y) (2.3.6) 

Equation (2.3.6) is a convolution integral. H(w, , w,,) is our optical transfer function 

(07°F). Restricting our attention to spatially invariant systems, we can apply a Fourier sig- 

nal processing technique which is a two dimensional convolution. Thus we do a Fourier 

transform of equation (2.3.6) and get: 

G(wx, wy) = H(wx, wy)F(wx, wy) (2.3.7) 

Here G, H and F are Fourier transform pairs of the functions g, h and f respectively. Note 

that now our problem of determining f has been made into a simple algebra problem. Thus 

we solve for F and take the inverse Fourier transform. For example in the case of a circular 

aperture and a &focused lens we have that6: 

J1(aR) 
H(wx,wy) = - aR 

where R = ,,/- 
Another example is the optical transfer function (OW) for atmospheric blur is given by: 

and for uniform motion blur: 

sin a o H(wx, w,,) = - where u, = wxcos 8 + w,,cos 8 (2.3.10) 
0 

To use equation (2.3.7) on a computer the H, OPT, the F and the G become discrete matri- 

ces. All of the rest of the techniques below use (2.3.7).Thus a Fourier transform is 

assumed to have been used here. Including noise we can write: 

g=[HJ f+n (2.3.1 1) 

for a generalization of equation (2.3.7), where n is the noise contribution. 
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2.4 DERIVATION OF LEAST SQUARES ALGORITHM 

Let [$,I be the standard deviation for the quantity "a". We now can use the Bayes 

estimation procedure2 to derive the least squares a1gorithm:The Bayes estimation proce- 

dure applied to the problem given in equation (2.3.11) is that we maximize p( f ) g )  i Bayes 

law says that: 

We use the central limit theorem and say that the image noise is Gaussian and so we can 

write that: 

where [$J is the standard deviation for the noise, n' = n - A .  The &'s here are normal- 

ization constants which can be ignored. Also we have that: 

~ ( f )  = K ~ ~ v I - ( ( ~  - f ) r ) [ + l ~ - l ( f  - nl (2.4.3) 

p ( g )  amounts to a scaling and can be left unspecified. We can plug in the noise in equa- 

tion (2.4.3) into equation (2.4.2) and we get: 

Using equation (2.4.2) and equation (2.4.1) and taking the logarithm, we finally have: 

h ~ ( g )  + K (2.4.5) 

To maximize the p( f Ig) in equation (2.4.2), we take the derivative of equation (2.4.1) 

with respect to the individual fi  s and set it equal to zero. If the first and second terms are 

independent, then for the first term this condition means: 
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where 11 is a constant. This is just the least squares criterion. If furthermore f is a nonran- 

dom quantity then equation (2.4.7) is realised exactly and we have that: 

f =  HI-')^ (2.4.7) 

and this is the Maximum Likehood (ML)estimate or inverse matrix method. 

Given these definitions and equations we can now summarize several of the image 

restoration and superresolution techniques in the following table8. 

Table 1: Sample algorithms 

[ Q ]  is a linear operator matrix that differs for different models, f ( x )  is the apriori charac- 

terization of the object photon emission rate, f  ,(x) is estimate of f ( x )  at the n th itera- 

Name 

Inverse 

ML(Maxi- 
mum Like- 
lihood) 

Constrained 
Least 
Squares 

MAP 

tion, g(x)  is image data, y is a Lagrange multiplier that is chosen to include the fact that 

noise must be added to g in equation (2.3.1 1 )  

Algorithm 

f = ( [ H I '  [ H I ) - ~ [ H I '  g 

f =  HI-')^ 

f = ( [ H I '  [HI + ~ ( [ Q I '  [ Q I ) ) - ~ [ H I '  g 

g ( x )  - I ] H ( ~ ) }  n + 1 = ~ ( x ) ~ x P { L ~ ( ~ ) ~  

2.5 LUCY-RICHARDSON ALGORITHM 

The Richardson-Lucy ~ l ~ o r i t h m ~  works as follows. Let f ( x ,  y) be a model esti- 

mate for an object feasibility filtering g(x, y) in this equation. Thus we rewrite (2.3.6) as 



The Richardson-Lucy deconvolution method gets an estimate f (''')(PX,PY) at 

iterative step according to the algorithm 

[Py2r2 g ( X 9  Y ) ) H ( X  - P X y y  - P Y ) ~ ( P x ) ~ ( P Y )  f r + ' ( p x ,  P Y )  = f r ( p x , p y )  p y ,  p,, - 
s ( X ~ Y )  I 

- 
f r  + is calculated in equation (2.5.2) and the results put into equation (2.5.1). The 

resulting g is calculated again and this result is put into (2.5.2). Note the sum of the g 's 

must be conserved in each interation. The initial estimate f is usually a constant. 

The Lucy Richardson method is made famous by its common use now in astronomy 

deconvolution softwarelo. 

2.6 VAN C m R T  DECONVOLUTION 

Next we introduce the Van Cittert deconvolution'' method. This method is based on 

the iterative equation 

f" ' ( P x ,  P Y )  = f r ( p x ,  P Y )  + 

we set g=f initially. b is a parameter that is set to get the best image fit. 

2.7 MAP AND MAXIMUM LIKELIHOOD METHOD 

We next just summarize derivations of 2  other standard superresolution methods. 

For example to derive the MAP method12 you maximize 

where p(f1  g )  is the Poisson density with parameter f and M is the number of pixels in 

the image plane. This is a stochastic method. 
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To derive the maximal likehood we use the MAP method and assume that 

~ ( f  It?) = ~ ( g l f )  (2.7.2) 

which means that f is a nonrandom quantity. 

Here we note that we sample in a Nyquist fashion equally over the whole image. But 

we note in chapter 4 that superresolution demands that we sample densely on either side of 

the maximum. Thus this "MAP" method can never achieve a great degree of superresolu- 

tion. Also we note here that our method of doing superresolution involves only a few Airy 

disks in each CCD image. Thus the scale of the PSF's is much larger than the scale of the 

noise. Thus smoothing is a very effective way of minimizing the effect of noise with our 

method. Thus we do not have to rely on these type of stochastic methods to achieve super- 

resolution. 

This concludes our derivations of standard telescope superresolution methods 

2.8 MICROSCOPE SUPERRESOLUTION 

Abbe's theory deals with the resolution of a grating with spacing d, angular radius of 

stop u and wavelength h . If at least two diffraction orders are transmitted by the stop we 

say that is true resolution. The smallest grating for which this is the case is: 

We note that a hidden assumption in this theory is that the field of view of the micro- 

scope is unbounded. Because sin(u) cannot exceed 1, the smallest detail resolvable by a 

microscope has a size of about half a wavelength. The way to overcome the problem of 

limited resolution here is to use a "d" and a h that in fact makes sin(u) more than 1. In that 

case only evenescent waved3 will be transmitted through the boundary. These waves have 

an amplitude that drops off exponentially with distance from the boundary. If a submicron 

fiberoptic is moved over the surface then details are detected that are much smaller than a 

half wavelength and we then have superresolution. Note that we have apriori knowledge of 

the object size (given by the tip diameter) and so Abbe's analysis doesn't apply 
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here. It is important to note that analysis of Abbe's theory in terms of the uncertainty prin- 

ciple is inherently flawed. Vigoureux and ~ o u j o n "  have shown that these evanescent 

waves have an impulse component in the object plane larger that h/h so that the uncer- 

tainty principle is obeyed15 and the Abbe criterion for resolution is overcome. 

Dislocation of wavefront methods are also used here to obtain superresolution. 

Another method of obtaining superresolution is through phase microscopy. 

The important thing in the above review for our purposes is that superresolution has 

been achieved in microscopy in a very significant way. Thus there is the strong implication 

that in teloscopy the same kind of advance can be achieved as we claim we have done 

here. 

2.9 COHERENT SUPERRESOLUTION 

Here we review one recent method16 that achieves coherent supemsolution. 

Let there be the function: 

We note that the fi(x) is really camposed of discreet values which we will call & 

Let H be some basis function, we shall call H(X) which is related to the(continuous) inte- 

gral limit of (2.9. I), where X is a function of both the point source center location and the 

x position of the data point. Thus we will rewrite equation (2.9.1) as: 

Using the least squares formalism that we derived and using equation (2.9.2), we have: 

where q is a constant. We take the partial derivative with respect to Hi. We then get: 



If the functions f are orthogonal16 then we can write: 

c fi(.t ,),fk(?) = o for i + k 
j =  1 

Thus equation (2.9.5) becomes: 

Thus we have that: 

where here: 

Thus the amplitude coefficients of the image are easily found if the f functions are orthog- 

onal. If the f functions are not orthogonal we can make them so by Gram-Schmidt orthog- 

onalization. 

2.10 GRAM SCHMIDT ORTHOGONALIZATION 

Here we review the most important recent work on superresolution. We seek to 

orthogonalize the" f " function if it is not already orthogonal. We use the technique of 

Gram-Schmidt orthogon~ationl'. Let w be the weight function. Given 

a, = go 

with no previous f's to worry about. We normalize thus 



For n=l, let 

= 81 + b,ofo 

We ask that Q, be orthogonal to fo. Thus we have that: 

jQlf * w ( W  = j g l f  oh + bl0jf 2 o w h  = 0 

Since fo is normalized to 1, 

bl* = -1glfOh 

This gives us the value of blo. We will next normalize: 

or in general we have that: 

in general: 

Note that we: 

This is a new procedure18 for doing supemsolution in signal processing. We note 

that the J1(R)/R functions are not orthogonal as are the cosine and sine functions in signal 

processing. Thus this technique is not useful in doing the superresolution we need to do 

here. Also coherent superresolution is out of the question since in astronomy almost all 

sources are strongly incoherent. Furthermore in laboratory work the arbitrary phase differ- 

ences require us to apply much more difficult algorithms and experimental procedures. 
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SUMMARY 

In this chapter we developed, from first principles, the fundamental formula for the 

Fraunhoffer image created by a circular aperture. This will is the core of our superresolu- 

tion algorithm. 

Then we reviewed various other superresolution methods. We note that these meth- 

ods al l  use frequency sampling tricks (as in equation (2.7.10)) with Fourier deconvolution. 

Our method of finding ridges in chapter 4 cannot use Fourier transforms but nonetheless is 

required to overcome the ambiguous image problem. Thus this distinguishes our method 

of superresolution from the other methods. 
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REVIEW OF CONSIDERAmONS CONCERNING AMBIGUOUS 

IMAGE FORMATION AND SNR 

INTRODUCTION 

As stated in the introduction, the purpose of this present work is to find a way to 

overcome the ambiguous image problem. In this chapter we describe what that problem is. 

In the next chapter we show how it is overcome. 

The ambiguous image problem was first proposed by G. Toraldo Di Francia in 

1952. The concept of an ambiguous image is that two or more different objects can give 

rise to the same image. This arises because many PSF (point spread function) source fits 

may give the same data function. We state the Nyquist sampling theorem and relate the 

ambiguous image problem to that sampling theorem. As an example of the ambiguous 

problem let us be given an image function data set of points. Let us say that we have a two 

dimensional imaging problem so that we use the Jinc squared function for our point PSF. 

It is the case that if the ML method is used to find an image then, in general, many differ- 

ent test fits of the Jinc squared functions over the whole X Y plane will give a very close fit 

to the same image intensity function. This is illustrated in the figures. Below this is illus- 

trated with a one dimensional case as originally proposed by Di Francia. We have figures 

for one dimensional ambiguous image formation and two dimensional ambiguous image 

formation. The main thing to be gleaned from this chapter, though, is that our 1/10 Ray- 

leigh resolution that we claimed is within the bounds set by theory. 

Here we will also try to explain how it can be determined when a given SNR will 

allow you to have few ambiguous images. Thus we will set the bounds of the allowed res- 

olution of our system. 
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3.1 NYQUIST SAMPLING THEOREM 

If a continuous-time signal q( t )  has a bandlimited Fourier transform X (Q ) that 

satisfies the condition lX,(Q)(  = 0 for i2 > 2nF, then +(t) can be uniquely recon- 

structed without error, from equally spaced samples x(n) -(nT) at sampling rate F,, 

- ~ u I < ~  , if F, 2 2F, where F,=l/T. 

This is the Nyquist sampling theorem1. Fc is the critical sampling frequency. Note that in 

practice we should use a sampling rate that is as close to the critical rate 2Fc as possible. 

Also X( Q ) is not in general zero. 

3.2 AMBIGUOUS IMAGE CREATION 

Now we follow Di Francia and will choose as an example the one dimensional 

image2 produced by a microscope. The one dimensional diffraction pattern will have the 

form . Thus the image will be a summation of these fonns given by the 
nx 

convolution (recall (2.1.6) equation form): 

But recall the identity: 

a so that no frequencies exist outside the range -- < f < a. This is especially obvious if 
h h 

(3.2.2) is to be looked on as a Fourier transform type integral. Note that as a consequence 

of the Nyquist theorem that the image is completely determined by giving its complex 



h 
amplitudes at a square lattice of points spaced - apart. It can also be shown that the2 

2 a  

degrees of freedom. "S" equals the area of the image. Equation (3.2.3) gives the maximum 

amount of independent data that can be found in the image. 

The image has only a finite number of degrees of freedom. But the degrees of free- 

dom of the object is infinite. Thus a given image may correspond to a whole set of differ- 

ent objects. In other words, our image reconstruction procedure will generate "ambiguous 

images". Here we will illustrate this fact with the below figs 3-1 to 3-4. 

3.3 SOLUTION TO THE AMBIGUOUS IMAGE PROBLEM 

Chapter 4 explains how to solve this ambiguous image (artifact) problem. The solu- 

tion leads to resolution beyond the diffraction limit (superresolution) using an optical tele- 

scope. Any solution must have the effect of disentangling all the pmsible intensity 

functions whose superposition gives the detected intensity function. The key is not to test 

for a fit everywhere in the two dimensional plane but to restrict our testing to those regions 

where it is most likely to get a correct least squares fit. We can reduce the dimensions of 

the problem to just those lines (one dimension) along which the peaks of the sources are 

most likely to be. To further restrict our choices we also look for regions that have high 

convexity. In other words our dcconvolution is done by dimensional reduction, and con- 

vexity (second derivative of intensity) optimization. By dimensional reduction we mean 

deconvolution on isophote ridges, which are one dimensional, thus we have reduced the 

dimensionality of the problem from two to one. The deconvolution on ridges allows us to 

avoid testing where there are regions of the image that will give us artifact images allowed 

by the degrees of freedom given by equation (3.2.3). The convexity test caused us to only 

test approximately equal distances on either side of a local maxima. This even further 

restricts our test choices and makes it harder to choose the images for which the degrees of 

freedom in (3.2.3) allows us. Thus the Toraldo di Francia problem of the ambiguous 

image posed in this chapter is solved in the next chapter. 



Pixel Index 

Fig. 3-1 Three sources in a row. 



Fig. 3-2 Three sources that give the same image as Figure 3-1. 



o=Combined Images of Sources at 3.5(A=1.52), 6(A=.9), 7.5(A=.57) 

Pixel Index 

Fig. 3-3 Three sources that give the same image as figure 3-1. 



Fig. 3-4 Three sources that give the same image as figure 3-1. 
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Fig. 3-5 Ambiguous image problem in two dimensions. Algorithm includes sources A

and B as images even though they are not real sources.



3.4 SIGNAL TO NOISE RATIO AND THE CRITERIA FOR THE USE OF 

SUPERRESOLUTION 

Here we review methods that determine the SNR bounds on supemsolution3. Thus 

given a certain error tolerance, how much SNR do we need to get superresolution? To 

answer this let us define: 

T=Tolerance in terms of spectrum magnitude of the second peak as a percent of the 0 fre- 

quency level (first peak) in the spectrum. This value the astronomer sets. Might be 5. 

C1 = the ratio of the peak of the sidelobe to the central peak for the null object which we 

take to be about 1/14 for a source image that occupies a small field of view. 

o, = the cutoff frequency for the object 

a, = noise power. For a good receiver system this is just shot noise. 

x = object extent. 

a, = maximum extrapolation frequency. This is the largest spacial frequency that you can 

meaningfully extrapolate to. 

Using methods discussed elsewhere3 that take into account the ambiguous image 

problem we can show that: 

where the (a, - a,) term on the right side represents the bandwidth extension. The 

larger it is, the better the superresolution. Note also the presence of the tolerance T func- 

tion. 

Also note though that if the noise a, is very small (long integration times) then 

the second sinc function is very nearly zero and the T tolerance plays no role. For example 

1 if a, and C = - we get: 
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Note (pen the properties of the sinc function) that for a given tolerance, if 

noise on is very small (so the second term in (3.3.2) is replaced by O), one should be able 

6.8 
to get a bandwidth extension of 1.5 . - = 1-0. If the cutoff frequency is of the order of 

X X 

1 / ~  which in our applications it probably is (i.e., the whole Rayleigh criterion region is in 

our field of view) then essentially the bandwidth extension is about loo, and basically 

you have about 10 times the Rayleigh criterion resolution. We note here that our claimed 

1/10 Rayleigh resolution is within the limits of this rule. Also a four meter telescope 

would have the resolution usually stated for a 40 meter telescope! 

* n Note that equation (3.3.2) is only valid if T S - and so: 
c 1 

Wiith C,  at about 114 for a small image and T = 0.05 ' we can specify the allowable 

noise in our system for meaningful superresolution. So 14*.05=.7 times the maximal sig- 

nal power is our noise power. In our algorithm we find it convenient to put our own noise 

in the system using a random number generator to simulate an SNR. In a noisy system it 

may possible to use the standard superresolution algorithms after we have applied our 

own. One limitation we must state here is that the instrument sampling rate a, must 

be at least twice the cutoff frequency o, for accurate extrapolation to be possible. So if 

the cutoff frequency is 200 then the number pixels along a line should be 200. 



3.5 RESOLUTION DEPENDENCE ON SNR 

For a one dimensional image we could consider the intensity 

c2 /E is like the signal to noise ratio since the Gaussian shape is caused by noise.Note this 

SNR is not the astronomers SNR= Jelec tron .count.for.screen 

Note that this equation has two zeros at d and -d. "w" is the Gaussian beam width and is 

much larger than d. Equation (3.4.1) is the sum of Hermite functions of order 1 and 

2 and a Gauss function. The zeros keep their relative location in propagating to the far field 

for these types of functions. 

In the 1960 s it was shown4 that the calculation of S N R  dependence of resolution 

can be done with prolate spheroidal functions since sincs can be split into prolate spheroi- 

dal functions. If the total energy is kept constant then the field intensity at x=O depends lin- 

early on d2. Set x=O in (3.4.1) and we note that: 

Resolution a && 
3.6 PHASE SPACE REPRESENTATION OF SOLUTION OF AMBIGUOUS IMAGE 

PROBLEM 

We recall that one of the new methods we use is to find points PX, PY and k that 

minimize the sum of k's. Let us graph our minimum of the sum of k s versus a "phase 

space" consisting of k and PX and PY. 
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Let point C be the correct image point. Because of the ambiguous image problem 

there are local minima in the sum of k s at point C (the actual image point), point B and 

point A, the global minima. The dimensional reduction makes it so that we need not test 

over all of region I, which would result in choosing the global minimum A, an ambiguous 

image artifact. It restricts our tests to let say region II. Because of the inaccuracy of the 

convexity test we introduce noise that causes us to test in the whole region III. Thus we 

can find the correct point C. This implies that a noiseless computer simulation actually 

will give us more artifacts then CCD images with significant noise! Also the restriction of 

the phase space test region has deep implications concerning the uncertainty principle as 

we see in the next section. 

SUMMARY 

In this chapter we reviewed various considerations concerning the ambiguous 

image problem and its relationship to the SNR. Thus we determined limits to superresolu- 

tion. 

We note that up to now this ambiguous image problem has not been solved.We 

illustrated a simple phase space method for solving the problem. In chapter 4 we will solve 

the ambiguous image problem. 
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A SUPERRESOLUTION TELESCOPE THAT USES ABERRATION EFFECTS 

SUPPRESSION AND DECONVOLUTION BY DIMENSIONAL REDUCTION, 

OPTKMAL CONVEXITY AND CONVEXITY NORMALIZATION FOR IMAGE SIZE 

AND DARK NOISE 

INTRODUCTION 

This chapter provides an explanation of each of the contributions of this disserta- 

tion. 

The original contribution of this dissertation is the introduction of five new methods 

that, when used together, overcome the ambiguous image problem in the case of narrow 

field of view, high magnification optical telescopes. The five new methods we have . 

adopted for overcoming this problem are dimensional reduction, second derivative (con- 

vexity) optimization and normalization for image size and dark noise, replacing Nyquist 

sampling with symmetrical peak sampling, a method of using the inverse matrix technique 

without the usual large resulting errors and replacing the least squares with a minimum of 

the sum of amplitudes squared. Other more mundane innovations are methods for speedy 

numerical utilization of the Bessel functions. We use methods for overcoming astigmatism 

and spherical aberration which are not new. As part of the telescope work we find new 

ways of overcoming aberrations caused by secondary mirror supports. We also have ways 

for compensating for the effects of different levels of dark and shot noise at different expo- 

sure times and intensities. 

Here we also discuss the practical knowledge needed to make our superresolution 

results repeatable. Care must be taken, especially on the experimental side, to ensure that 

various types of distortions do not occur. In the telescope work pointing errors must be 

minimized to ensure that aberration effects are minimized. Astigmatism must be corrected 

for and care must be used in sampling. 
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4.1 PSF Calculations 

Here we explain the algorithm theory we used to achieve deconvolution by dimen- 

sional reduction. We note that PXi, PYi is the source position, (x,y) is the point at which 

we measure the intensity "I(x,y)" on the screen and k is the amplitude of the source at 

PX, PY. The Pythagorean theorem tells us that the distance between these points is: 

and the theory of noncoherent imaging through a circular aperture says that6: 

J1(R) is the Bessel function of the first kind of order 1. N is the number of (possible) 

sources. Since we use the J1(R)/R PSF functions repeatedly it is necessary to have access 

to these functions instantaneously. So we make a table (computer file) of the values of 

J1(R)/R. The computer algorithm must then calculate JI(R)/R. One formula1 we can use to 

calculate this is: 

1 
with Re(v) > -- 

2 

r ( z )  is the gamma function, J, ( z )  is the Bessel function of the first kind of order v . 

For the case of v = 1 we note that this term has no singular points. Thus we have: 

This is what we used in our algorithm. To numerically integrate this equation most 

speedily we use Simpson's rule. See Bessel function subroutine near the end of appendix 

A. We note that series representations of J1(R)/R are not of much use here. The radii of 
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convergence for some series are not large enough or don't overlap. For alternating series 

that last term is very important if the series is taken very near the radii of convergence. 

Thus as many terms in the series are required as we used in the above numerical integra- 

tion. Also some series (such as Chebyschev's) have singularity problems. 

4.2 WHAT IS DECONVOLUTION? 

In our title we noted that we are doing deconvolution. We need to explain what is 

meant by this. Thus we show here that equation (4.1.2) is a convolution integral in the 

limit of continuous sources. Thus in equation (4.1.2) let: 

Recall that the ki 's were amplitudes of individual sources. Thus we go to the continuous 

source so that in (4.1.2): 

ki + f (PXPYIi (4.2.2) 

which is our radiance distribution. Also in (4.1.2) we make the substitution: 

g ( 4 ~ )  I(x9Y) (4.2.3) 

Thus in the limit of a continuous summation (4.1.2) becomes: 

= h(x9y) f (X'Y) 

Note the subtractions in the arguments. This clearly has the form of a convolution integral. 

"Working backwards" to find f (PXQ Y) is what we call deconvolving the convolution 

integral. In chapter 2 we noted that most of the standard deconvolution algorithms use 

Fourier transform of equation (4.2.4). But Fourier transforms do sampling manipulations 

in frequency space. We show our dimensional reduction requires sampling in real space. 



4.3 SOLVING MATRIX EQUATION FOR ki 's 

To be able to solve equation (4.1.2) on the computer we need to write it for individ- 

ual points (x,y) in the image plane. Thus write equation (4.1.2) as a square matrix equa- 

tion. 

where i and j are the rows and columns respectively of the matrix and 

2 R..  21 = J((ri-PXj) +(yi-PY,) 

Choose a source point P5, PYi at a point where we measure intensity at xi,yi. Thus 

is determined in this step. 4(x,y) is determined since it measured intensity. 

Use Gaussian elimination to find k j. Recall that Gaussian elimination is a standard ele- 

mentary method of solving N linear equations for N unknowns. Then sum these kj s. If 

N 
is smaller than any previous C ki then record that set of $ 's and (PX., PYj s). 

j =  1 

See lines 220-222 in program 1 of appendix A. This method is roughly equivalent to least 

squares but is much faster and easier to implement. We have an upper limit of 9 for our N. 

4.4 SPEEDY CALCULATION OF ki s 

We can speed up numerical calculations of (4.3.3) by thousands of times. One way 

to do this is to make a (Fortran) file table of (J~ (R) /R)~  values which can be instantly 

referred to. This saves having to calculate each and every Bessel function in every calcula- 

tion and in fact this is one of the main things that makes this method practical. See Bessel 
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function subroutine in program 1 of appendix A for the computer code that does this. 

4.5 PROOF THAT (4.4.1) SHOULD BE MINIMIZED 

Next mathematically prove equation (4.3.3). We sample data at as many points as 

there are sources. Thus (4.3.1) becomes a square matrix. 

Jl(Rij) 2 
Let i(xa, Y ,) = , Rij ) where I ( x ,  Y ,) is the measured data intensity at 

j = 

the point (X,, Y,) . Write the square of the error using equation (4.3.1) as 

2 Then take the extrema of q with respect to test choices of PX or PY in equation 

(4.5.1). 1 is not minimized with respect to PX and PY. Thus we have to take the derivative 

with respect to PX or PY or: 

and 

. .  . Since 7 ( ~ , ,  Y ,) is not dependent on PX or PY I (X , ,  Y ,) is mumwed with respect 

to PY and PX. If the X, and Ya are the same as the associated PX and PY, then 



J l ( R i l 2  - = 1 so that we have a square matrix of just ki 's. So we can say that when the 
R; 

function 

is minimized with respect to the test PX and PY. Then 

. .  . is mmumzed and the PX s and PY s are the positions of the points of the objects. We have 

also determined the amplitude of the point source. Thus our method is a hybrid inverse 

matrix and the least squares. The inverse matrix technique was used in the inversion of the 

matrix to find the position and amplitude, and the least squares was used in equations 
. .  . (4.5.4) and (4.5.5). It may take many iterations before the fwction F is rmnuruzed. 

4.6 U-CONDITIONED MATRICES AND TEST SAMPLING 

If small changes in the data result in large changes in the solution then the problem 

is ill-conditioned. Here for example the illconditioned matrix problem can cause the 

inverse matrix calculations to be rendered useless. Thus this problem needs to be 

addresses since we use this method (our Gaussian elimination subroutine mentioned 

above).For example2 let g k the data and f the actual source. As a micw we can pase the 

problem as in (4.2.5). So let: 

Hf=g (4.6.1) 

If "f "is changed by a small amount and the corresponding change in g is large the 

problem is ill-conditioned. If "f" is changed by a small amount and the corresponding g is 

then changed by a small amount we say the problem is not ill-conditioned. 

. We can define and illustrate the condition number by perturbing equation (4.6.2). Have 

6g be a perturbation of g and 6f be a perturbation off so that 

H ( f  +6f) = 8+6g (4.6.2) 



Hf +H6f = g+6g  

Subtract equation (4.6.2) from equation (4.6.3) and multiply by K' to get: 

sf = H - ' G ~  (4.6.4) 

We next take the norm of equation (4.6.1) and equation (4.6.4) and get the Cauchy- 

Schwarz inequalities: 

wl If 11 2 llgll (4.6.5) 

and 

n ~ n  5 lI~-'1 n6g1 (4.6.6) 

Then take the ratio of inequalities in (4.6.6) and (4.6.5) and we find that: 

The condition number r ( H )  of the matrix equation (4.6.7) is given by: 

r ( H )  H ~ ~ l l l f f - ~ I  (4.6.8) 

K(H)  clearly relates the relative uncertainty of the measured value g to the calculated 

value "f". Note that r ( H )  is large if there are large relative differences in the sizes of the 

values of g in the PDF (probability distribution function). 

The main observation made here is that the convexity optimization method used 

below usually picks both test and data points near the tops of the PDF so that K ( H )  is 

small and so we do not have an ill-conditioned matrix problem here. Thus one can use the 

inverse matrix technique described in chapter 2 without serious problems. Also for region- 

ally normalized PDF's this method surprisingly doesn't cause any problems with discard- 

ing dim images. 



4.7 DEALING WITH THE AMBIGUOUS IMAGE PROBLEM 

Recall that ambiguous images are caused by combinations of functional PSF fits to 

the image intensity versus position function that give a least squares fit as good as the 

actual image function. If we could somehow restrict our choices of sampling to avoid the 

ones that give us ambiguous images then we would not get any ambiguous images. For 

example it is to be noted that PSF's have isophote ridges connecting them in this intensity 

space. 

Also we note that the second space derivative of the intensity is largest at the top of 

PSF's. See figure 4- 1. Thus if we could sample only places on isophote ridges where there 

were the largest second derivatives then we would be avoiding a lot of the ambiguous 

images. 

4.8 SAMPLING OF TEST DATA FROM ISOPHOTE RIDGES 

Recall that ambiguous images are caused by combinations of functional PSF fits to 

the image intensity versus position function that give a least squares fit as good as the 

N 

actual image function. In our case they give a minima in C ti that is as good as the cor- 
i= 1 

rect images. It is also to be noted that these PSF's have isophote ridges connecting them in 

this intensity space. We illustrate this in figures 4-1 to 4-4 below. Also we note that the 

second space derivative of the intensity is largest at the top of PSF's. See figure 1.5. 

Claims for using dimensional reduction in signal processing have been made by others7. 

We first constrain x and y choices to constant R around a local maxima in intensity. Thus: 

R = This is done in lines 27-28 of program1 in appendix A. 

We increment in angle until we find a maximum of intensity (I) along circle of radius R 

I(s) = Maximum (4.8.1) 

We then pick x, y and I(x,y) when I (s) is maximized. We then repeat at the next incre- 

mented R. The set of points x,y thus found will form a ridge. 

Also we take intensity data that has been smoothed two times. This smoothing is 
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done in lines 10 through 11 of program 1 from appendix A. That this is an optimal method 

is seen only by trial and error. If there is no smoothing isolated noise jumps in intensity 

will be taken to be ridges. Too much smoothing and evidence of images within a small 

region will be erased. 

If the intensity is Iarger than the intensity at the next angle and the previous angle 

we record the X,Y coordinate of that point. The points for which these maxima occur form 

isophote ridge lines. Next list the maxima that occur consequitively along a ridge. Then 

find the second spatial derivative of the intensity along a ridge. 



lsophotes For Three Sources Lined Up In A ROW. Sources Are Separated 

Fig. 4-1 Ridge line for three point sources line up in a row. 
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Intensity 

Intensity vs X,Y For Three Sources 
Lined Up In a Row Parallel To the 

X Axis. Sources Separated 8/ 1/4 
Rayleigh Distance 

Fig. 4-2 Intensity for three point sources lined up in a row. 



lsophotes For Three Source Points Forming An Elongated Triangle 

The Elongation Is Along The Y Axis. The LWer TWO Points Are Separated 

By 1/4 Rayleigh Distance. Lines Are Ridge Points To Be Sampled. 

Line 

Fig 4-3 Ridge lines for three point sources forming a triangle. 



Intensity 

Intensity vs X,Y For Three Sources Forming An Elongated 

Trongle.The Two Sources lined Up Along The X Axis Are 1/4 

Royleigh Distance Apart 

Fig.4-4 Intensity vs X,Y for three point sources forming a triangle. 
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4.9 SAMPLING TEST DATA FOR OPTIMAL SECOND DERIVATIVES OR OPTIMAL 

CONVEXrrY 

Let I(x,y) be the intensity at the point (x,y) and "s" to be a displacement along an 

isophote ridge. The peaks of PSF's are obviously regions of highest second derivative. 

We plotted the magnitude of the second derivatives in figure 4-1 below. Note that the sec- 

ond derivatives are about 2X larger at the middle than at the edges. Then we sample 

regions of higher second derivatives in which: 

a2 -+(x, y) = LARGEST = PSEC 
as 
where "s" is along an isophote ridge. PSEC stands for second derivative parameter. We 

pick only the points where the intensity has largest second derivative. See lines 34-38 of 

program 1 in appendix A. This method of sampling seems best for images that are closer 

than about a third a Rayleigh separation. The strong negative value for the second deriva- 

tive beyond that distance can actually cause our deconvolution method to fail. This further 

restricts the choices of x,y. 



Magnitude Of Second Derivative 
Of PSF As A Function Of Radial 
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Fig. 4-5 Second derivative of intensity as a function of radial distance from the ten- 

ter of the PSF. The center of the PSF is at the origin. 



50 

4.10 PSF CAUSED BY ANNULAR APERTURES 

Most types of reflecting telescopes have secondary mirrors located in the path of 

light that is incident on the primary mirror. We call these "annular" apertures. Here we 

outline a way to incorporate annular aperture3 PSF's into our algorithm. The amplitude of 

the PSF given by one aperture for a point source is: 

2 
were R = J((x - P X ) ~  + (y - P Y )  ) in which (PX, PY) is the source location and 

(x,y) is an arbitrary location on the screen. Subtract the contribution of the annulus to the 

amplitude at the point x,y. Let E =the ratio of the secondary mirror diameter to the primary 

mirror diameter. Thus we have for the amplitude: 

In our computer code for the PSF we replace J1(R)/R in equation (2.2.8) and (4.10.1) with 

(4.10.2). In this way we can incorporate optical systems with large secondary mirrors into 

the algorithm. This is used since the secondary mirror blocks paraxial light. If this method 

is ever to be used on a Hubble or NGST space telescope this apodization correction pro- 

gram will have to be used since these telescopes use large secondary mirrors. 

4.1 1 CLASSIFICATION OF ABERRATIONS 

Let z=W(x,y) describe a two dimensional surface of height z at point x,y which here 

is a wavefront height4. Such a wavefront surface can be expressed in general form as: 

m n - m  
W(X,Y) = C C cm,x y 

Here k is the degree of the polynomial. We can express this wavefront in more general 

form by use of Kingslake formalism4: 



where A=Spherical aberration coefficient, 

B =coma coefficient, 

C=astigrnatism coefficient, 

D=defocusing coefficient, 

E==t about the x axis and 

F=tilt about the y axis 

Our choice of the PSF clearly only deals with spherical, defocus5 and astigmatic a h a -  

tions. Thus coma is not accounted for here. Only the A and D coefficients are associated 

with spherically symmetrical aberrations. 

4.12 ASTIGMATISM CORRECTION 

The surface- to-volume ratio of smaller turbulent cells is larger than that for the 

larger turbulent cells. The smaller turbulent cells lose their energy much more easily than 

the larger ones. Thus the energy carried by turbulence is mostly in the larger turbulent 

cells so that most aberrations are caused by the larger turbulent cells. These are displace- 

ment (tilt), and astigmatic aberrations. The spherical aberrations apparently do not cause 

many problems here in practice so we will discuss astigmatic aberrations. To take into 

account astigmatic aberrations we rotate the image (by angle ast) using standard vector 

rotation algorithms. We assume that we are doing this rotation about the highest intensity. 

We stretch the x coordinate using some magnitude of stretch function. For our CCD 

stretch aberration: stretch=. 8 and as t= 10 degrees. Therefore: 

XI = (Xcosast - Y sinast)stretch (4.12.1) 

Then rotate back. 

Y = XI sin(-ast) + Y cos (-ast) (4.12.4) 

Proceed as above to test to see if we have a minimum of Cabs(k)  in (4.3.3). Note that if 

minCabs(k) isn't satisfied, then in almost all cases the resulting amplitudes 
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are extremely large and easily ignored. Thus we should be able to find the correct k's and 

PX's and PY's in (4.3.1). 

4.13 DARK NOISE AND SHOT NOISE 

Dark noise in a CCD is caused by some electrons having high random kinetic 

energies due to thermal motion and being recorded on the CCD as if photons had given 

them that energy. You can assume that the thermal velocity v in the dark noise obeys a 

Maxwell-Boltzman distribution 

Here f(v) is the velocity distribution is momentum space, "v" is the velocity, N is particle 

number, V is volume, T is absolute temperature, k is Boltzman's constant and m is mass. 

The longer the time of exposure the more electrons interact in this manner and give rise to 

false photon signals. Thus dark noise is clearly larger for longer time exposures. Also for 

small intensities the dark noise contribution is relatively large. These last two observations 

lead to the convexity problem we will discuss in the next section. Dark noise presents the 

biggest "noise" challenge to superresolution as we will see. 

Shot noise is a result of quantum mechanical Fermi-Dirac distribution of the 

Fermi sea in the metal component of the CCD detector and is given by: 

were E is the energy, B is a constant and is a function of the Fermi energy, f(E) is the phase 

space density. This is a Fenni-Dirac distribution over whatever intensity is given. Thus 

shot noise is larger for higher intensities. We can minimize the effects of shot noise by nor- 

malizing the highest intensities to some fixed amount. That normalizes the shot noise com- 

ponent as well. 
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4.14 CONVEXITY ABERRATION CAUSED BY DARK NOISE AND DIFFERENT 

IMAGE SIZES 

In our algorithm we normalize all of our maximum image intensities. This mini- 

mizes shot noise problems due to our superresolution. Also the convexity we are optimiz- 

ing is: 

where I(x, y ) is the raw image intensity and IB(x, y ) is the background intensity. Thus 

a* -l(x, y) is the image convexity we need. But our convexity check thinks that 
as2 

a2 a2 +,(x, y) is what we are trying to find. If the background convexity Y) for 
as  as  

a some reason such as a background object or noise is large, then the -I(x, y) will 
as2 

appear to be larger than it really is and spurious artifact images will appear. Dark noise 

and a small background image can cause this to occur. For images that are spread out over 
m 

most of the CCD the average convexity %I (x, y) of the intensity surf- is clearly less 
as  

than it is for more localized surfaces. The test (4.14.1) is a test for convexity differences 

a2 -l(x, y) . For localized surfaces the convexity due to a source plus the convexity due to 
a2 
a nearby (perhaps smaller size) source (in 4.14.1) is larger than for a more spread out sur- 

face. Thus the convexity PSEC (see 4.8.1) setting in the program must be set smaller for 

more spread out images. 
- 

0 For longer exposures the contribution of dark noise to -+B(x, y) "noise spikes" 
as 

becomes more important as discussed in section 15. These noise spikes give false second 



a derivative peaks since they make - l (x ,  y ) appear larger than it is. The PSEC setting 
as2 

also has to be a strong function of the duration of the exposure. This can be guaranteed by 

conditional statements in the program. Apparently the contribution of dark noise has a 

somewhat weaker dependence on image intensity. Thus one can also set PSEC according 

to the intensity. But for very short exposures (as in telescope work 11100 sec. exposures 

through air turbulence) the dependence of convexity on intensity is negligible since the 

dark noise contribution is negligible. All of the above observations have been verified by 

experiments. 

Thus calibration of the images is a combination of the stretch calibration and the 

PSEC calibration. The "stretch" calibration time can be shortened by mapping the width 

of the A q  disk (point source) at 45 degree increments. The PSEC, as the above illus- 

trates, takes a lot more effort. 

4.15 PARAMETER SPACE 

We can plot the parameters PSEC vs. stretch vs. useful airy disk diameter in three 

dimensions. In the calibration stage we manipulate these three parameters until we find the 

location of the region for which a given calibration image takes on the appearance it is 

known to have. You do this for as many nominal calibration images as you can. Then find 

the region for which all of these regions in parameter space intersect and we set all of the 

above parameters for the centroid of this region. This is surprisingly easy for very high 

SNR, low aberration images. In the case of a low SNR and /or high aberration there may 

be no intersection region at all! In this case we probably should search for the source of 

the CCD aberration and/or noise, fix it, and try again. It is noted that in the case of labora- 

tory pinhole aperture work that there are certain types of images that will never have an 

intersecting region in parameter space. On the ST-6 SBIG CCD it is noted that images that 

don't have thin film diffraction patterns overlaying them (and that also have about a 7 pixel 

thick hazy region around them) consistently allowed for a large parameter space intersec- 

tion region. Thus they were good superresolution candidates. Images that appeared 

"milky" on the edges and had thin film diffraction patterns on them and that abruptly 



terminated never allowed superresolution to work on them. All of the above statements 

have been verified experimentally. 

Note also that only after the dimensional reduction, convexity optimization and 

convexity normlization for dark noise and astigmatic corrections does the program apply 

the inverse matrix algorithm of section I .  Thus the resulting restricted values of x,y are the 

choices of PX, PY that we will put in equation (4.1.1) (and therefore (4.1.2)) of section 1 .  

For example proceed as in section 1 to test to see if there is a minimum of z k  in 

(4.3.1). We note that if m i n x  k isn't satisfied then in almost all cases the resulting ampli- 

tudes are extremely large and easily ignored. Thus we should be able to find the 

correct k s and PX s and PY s in (4.3.1). Note that in the high SNR cases with no air turbu- 

lence evident we need only one setting of AST and stretch and do not need to follow the 

above procedure of resetting the AST and stretch. 

4.16 SAMPLING AND LARGE IMAGES 

Doing superresolution on more than just a small diffraction ringed smudge is pos- 

sible. We simply need to include at least four Rayleigh distances across the image. The 

only part of the result used is the inner 2 Rayleigh distances. Image displacement caused 

by air turbulence would be intolerable here so this would be a useful space telescope appli- 

cation only. We use our method of amplitude addition of overlapping sampled images to 

find the approximate location of an assumed point sources in each 2 Rayleigh distance 

region. Do this only for one individual PSF island at a time. We finally get a map of the 

location of point objects in the formerly hazy region. Also we sample at distances one 

Rayleigh distance in from the edges. Thus we make a mosaic of these inner regions to 

fonn a picture of our nebula. Nebulosities smaller than a Rayleigh distance (but much 

larger than a point) create a "buck shot" effect. Such a nebulosity appears composed of 

many dots. Care must be made to determine the actual resolution of the telescope (pen 

the SNR and aperture) so that these "dots" have about the same size allowed by this reso- 

lution and thus are not really dots. This wuld also be useful for "resolving".details of the 

surface of a star. 



4.17 EXPERIMENTAL DATA 

We used an SBIG ST-6 CCD manufactured by Santa Barbara Instrument Company. 

The CCD receiver window has dimensions of 8 mm by 6 mm. It was thermoelectrically 

cooled. We used pinhole apertures in the 60 SNR experiments and in the rest we used 

1.5 inch reflecting and refracting telescopes with a 400 foot line of sight. The reflecting 

telescope was off axis and had a lOOX microscope attached to it so that the CCD window 

only covered an area of about three Airy disks. With this narrow field of view the scale of 

the noise was much smaller than the scale of the PSF's so that moothing was very effec- 

tive. But with the narrow field image movements (displacement) due to atmospheric turbu- 

lence appeared much larger than without the larger field of view. For example jerky image 

movements (about113 second duration) with a standard deviation of about 1 mm were evi- 

dent due to air turbulence. Yet we attained a superresolution of about 1/6 Rayleigh dis- 

tance in this "accentuated" turbulence. 

The results below in fig.4-5 to fig. 4- 18 illustrate the outcome of one set of exper- 

iments. Included here is are actual photomicrographs of the pinholes, the raw image out- 

put from the CCD camera and the deconvoluted images. Also we have included a scale, in 

Rayleigh lengths @ven the aperture), of our image sizes. Fig. 4- 17 is the raw image of the 

pinholes seen in the photomicrograph in Fig. 4-5. The deconvoluted image is seen in 

Fig.4-18. Note the objects are about 1/10 of a Rayleigh distance apart. This is at least a 

factor of 5 better than the best results that have been achieved so far7. Note that 

Fig.4-2 1 is a deconvolved image of two objects separated by 1/10 Rayleigh. Also in Fig. 

4- 17 the 4 source configuration is maintained even for a 1/4 Rayleigh separation. 
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Fig. 4.6 Photo (XIOO)of three pinhole point sources.
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+-- l.Rayleigh ~

Distance

Fig. 4-7 Raw image from three point sources, 1/4 Rayleigh distance apart, SNR ::::60.

See figure 4-6. No air turbulence evident.
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f-- 1 Rayleigh ~
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Fig.4.8 Restorationof figure4.7achievedwithdeconvolution.Seefigure4-6.
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Fig. 4-9 Photo (XIOO)of two pinhole point sources.
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f- 1 Rayleigh-7

Distance

Fig. 4-10 Raw image of two point sources placed 1/4 Rayleigh distance apart,

SNR = 60. See figure 4-9. No air turbulence evident.
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Fig.4.11Restorationof figure4.10 achievedwith deconvolution.See figure4-9.
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Fig 4.12 Photo (X100) of three pinhole point sources in triangular configuration.
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Fig 4-13 Raw image three point sources in triangular configuration about 1/4 Ray-

leigh distance apart, SNR z 60. See Fig. 4.12. No air turbulence evident.
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Fig.4-14Restorationof figure4-13achievedthroughdeconvolution.Seefigure4-12.
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Fig. 4.15 Photo (X100) offour pinhole point sources.
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Fig. 4-16 Raw image of four point sources about 1/4 Rayleigh distance apart,

SNR z 60. See figure 4-15. No air turbulence evident.
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Fig 4.17 Restoration of figure4.16 achieved through deconvolution.See figure 4.15.
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Fig. 4.18 Photo (X100) of two pinhole point sources.
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Fig. 4-19 Raw imageof two point sources placed 1/10Rayleighdistance apart,

SNR ::= 60. Seefigure4-18. No air turbulence evident.
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Fig. 4.20 Restoration of figure 4.19 achieved by deconvolution.See figure4-18.



4.18 SIMULATIONS 

There are three main simulations included here, a planet- finding program that 

sampled a grid of points and checked for a second or third object (Appendix B), programs 

that essentially Nyquist sampled one dimensional data (appendix C), and the simulations 

that ran as the program does in chapter 4 (appendix A). The methods of appendix B and C 

are discussed. The "planet-finder" program (appendix B) sampled the data in a grid pat- 

tern. The matrix equation (4.3.1) was solved for ki and PY;, P q ,  and the test given by min- 

imizing (4.3.3) was used to see if the solution was acceptable. The center sun was given a 

coordinate so that only choices were made as to where the planets were located. A random 

number generator picks new values of ki, PXi, PYi and if the equation (4.5.5) has a smaller 

value then these values are picked. It was noted that this method gave very good contrast 

as opposed to the method used in appendix A. This contrast was on the order of about 200 

to one. The other method (appendix A) had better resolution but at most gave these results 

if there was better than 3 to 1 contrast. This planet-finder program is definitely worth 

doing continued research on. Unfortunately it was obvious from the outset 

the SNR and aberration effects were much too large to make this method practical using 

this particular experimental setup. 

In the Nyquist sampling method (appendix C) we take two sets of points along a 

line and sampling the region outside the PDF in a Nyquist fashion. The inside region was 

sampled in a way that accentuated the bends in the data (i.e., high second derivatives). We 

inverted equation (4.3.1) again. Then the results from the first set of data points were com- 

pared with a least squares fit of the second set of data. The best fit choice of ki7 PX iyPYi 

was then chosen. 

4.19 CCD MEASUREMENTS 

We used an SBIG ST-6 CCD manufactured by Santa Barbara Instrument Group 

(SBIG), 1482 East Valley Rd., Santa Barbara California, 93 108. The CCD receiver win- 

dow has dimensions of 8 mm by 6 mrn. It was thennoelectrically cooled so that much of 

the bulk of the CCD consisted of radiator metal sheets. Care must be taken in pointing the 
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CCD. Bright spots appear on the CCD image from diffraction of light through the baffles. 

They have the appearance of Arago bright spots because of the Babinet's principle. These 

bright spots must be made as sparse as possible by suitable baffling. Then the image 

region must be located in the region with the fewest Arago bright spots. 

The CCD data calculation results were better in some ways than the simulations. 

Here we present the data. The data indicates that we achieved a 1/10 Rayleigh distance 

resolution for two objects. 

4.20 ASTIGMATISM INTRINSIC TO THE CCD 

There is a mystery in the pointing of the CCD itself. Apparently stronger-than- 

expected astigmatism results from pointing the CCD in certain directions. The image 

seems elongated in a diagonal fashion. This is tentatively caused by reflections in the CCD 

tube. The images gained from this kind of setup are useless. To fight this effect many trial 

and error eyepiece direction changes must be done with a point source PSF until the prob- 

lem is taken care of. Even when this effect is corrected there is about a 2Wo level of astig- 

matism left. This leftover astigmatism must be corrected for on the computer. See lines 

23-25'of program 1 in appendix A. To use these lines of code, CCD images must be taken 

of specific configurations of sources, such as the three-in-a-row source. l k o  tests should 

be given at 90 degrees apart for each test. This is much easier than testing using a PSF. 

Also the images should be taken on one section of the CCD screen with approximately the 

same set maximum number of electrons per pixel. Thus any corrections for astigmatism 

will be set for any picture of that intensity and position on the screen. We do this because 

the CCD seems to give very different aberrations for different screen positions and differ- 

ent intensities and different pointing directions of the CCD. On the CCD we were using 

the region in the upper left middle seemed to be the most aberration-free area on the 

screen. The stretch number is reset until all of the image satisfy our criteria that F (in 

4.5.5) is minimized and then the points come out in the configuration given (such as the 

three points). This is done with several configurations of wide ranging PDF sizes (i.e., 

wider ranging stretch values). Once this is all done, then CCD images can be taken of new 

objects and the images will turn be correct. All this would not be necessary if one could 



make a permanent setup that was mechanically stable, such as a space telescope. 

4.21 COMA 

In the telescope measurements pointing errors result in a strong Coma aberration. 

Also blooming caused by too high electron count per pixel can result in an electronic 

coma. Much trial and error pointing is needed so that coma is reduced as much as possible 

due to optical aberrations. For off axis telescopes it is best to have the eyepiece as close to 

the edge of the telescope tube as possible. This is because apparently in parabolic reflec- 

tors coma is almost impossible to eliminate especially off axis. Blooming in our CCD 

became a problem if too much dust accumulated on the CCD plate. Thus periodic dust 

removal is important. Blooming is also a problem if the CCD is left on too long. Thus the 

CCD must be shut down at frequent intervals to limit this effect. 

4.22 SCATTERED LIGHT 

The lenses and mirrors must be cleaned thoroughly. Scattered light from surfaces is 

a strong source of distortion of a PSF and creates an anomalously large Airy disk. It also 

cuts down on the resolution significantly. It must be noted that several practical steps must 

be done to guarantee a result with high SNR. 

4.23 EXPERIMENTAL CONSIDERATIONS 

In the pinhole experiment all surfaces must be painted flat black. Even the areas 

around the pinholes must be black. Light reflected off the CCD camera must be reflected 

away by glossy black paint so that it does reenter the CCD. 

The CCD must have the glass covering removed. In the pinhole experiment, thin 

wedge type diffraction patterns caused by this plate makes our deconvolution algorithm 

useless. If the these patterns are visible, then the deconvolution will not work. 

To create a incoherent image the light coming through the object pinholes must be 

incoherent. Also ordinary incoherent sources such as incandescent light bulbs create many 

problems such straylight and heating. They also require light filters to be used since our 

deconvolution algorithm requires monochromatic light. Reflecting light off rotating 
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disks and such will not achieve a high enough SNR. Putting in random motion a nonpolar- 

izing transparent material close to the pinholes and in the beam path seems to be the best 

method for doing this. I did this by attaching thin sheets of translucent plastic to an electric 

motor rotor, with the motor causing the plastic to rotate in the path of the laser beam. To 

test for noncoherency one must observe at the aperture whether there are multiple slit dif- 

fraction patterns caused by multiple pinholes. If these patterns are observed than the light 

is not incoherent. The rotating plastic sheet must then be placed closer to the pinholes. 

Also exposure times must be such that the plastic sheets rotate at least once during an 

exposure. The plastic is a polarizer and so many orientations must be sampled for polar- 

ization effects to be averaged out. The rate of rotation must be large and the number of 

plastic sheets must also be large. In my opinion the uncertainty in the effect of choosing 

different types of plastic sheets here is the most fickle part of this work. If all this is cor- 

rectly done the light that then enters the pinholes is certainly spatially incoherent and with 

long time exposures also gives the appearance of temporal incoherence. Thus we are 

allowed to use the assumption of incoherence that is made in equation (4.3.1). 

D. Avoid Arago bright spots. Make sure the baffling is large enough so that only a small 

amount of light gets diffracted around the baffles. If the baffles are too small, a small 

bright spot appears on the PSF making it nearly impossible to use our deconvolution algo- 

rithm. The CCD surface that was used here had to be pointed away from m e  perpendicu- 

lar at angle of about 5 degrees. This pointing step is probably the trickiest part of this 

procedure. The baffles must be placed so that the Arago bright spots are not close to the 

region of the CCD screen that has the least aberrations since that is where we will take our 

images. 

Care must be taken in making the pinholes.The objective pinholes should be tested 

to see that the diffraction rings around the maxima are not splotchy for a beam of mono- 

chromatic light that has passed through the pinholes. Spinning the needles as they are 

stuck in thick aluminum foil seems to give very good pinholes. The pinhole aluminum 

must be painted flat black as well to avoid light being reflected back into the CCD and 

causing more spotting of the image. 

If the CCD work is done using an SBIG CCD, which uses DOS, we must convert f 



76 

from DOS to Unix and from Unix to DOS if the Fortran analysis is done on a Unix sys- 

tem. Our algorithm code is nearly 2000 lines long and the runs are very time-consuming 

so the Unix system is needed. Special software must be written to convert from Unix to 

DOS and from DOS to Unix since the number formats are different. This software is 

included in the appendix. 

Our pixel coverage is only a few rayleigh lengths in size. Thus there is a great deal 

of information to deal with in doing the deconvolution.The images for this kind of pixel 

coverage are very small at the telescope focal point so that we need to attach a powerful 

microscope to our telescope to get this pixel coverage on the CCD. 

For telescope applications this means that the light intensity requirements are large. 

For the configuration we used we needed about - 10 apparent magnitude to get an image 

that could be used for deconvolution with 1/100 second exposure. A dim image that nor- 

mally would occupy one pixel is now spread out over about ten thousand pixels and must 

be about 30000 electrons per pixel in intensity at its brightest. For 100 electrons per pixel 

noise this a factor of 300 times the minimum intensity observable. Thus we have about a 

15 magnitude difference between the dimmest object a telescope can observe and objects 

that can use this deconvolution for a given exposure time. For optimization purposes this 

could can be lowered to about a 10 magnitude difference. Also noise levels for advanced 

telescope applications seem to be a lot less than what we had in our experimental setup so 

this intensity requirement should be reduced another large factor (to an order of 8 apparent 

magnitude difference). Furthermore we did not make take advantage of the flat field capa- 

bilities of our software and further reduce our need for bright objects to get a high SNR. 

Thus we see here an eventual magnitude difference of about 7. Thus if a given space tele- 

scope has a limiting magnitude of about 25 at a given exposure than with that same expo- 

sure magnitude 18 objects could be superresolved, which would allow us to resolve 

millions of objects in the sky. Of course deep sky cosmological objects on the order or 25+ 

apparent magnitude are far beyond the reach of this apparatus. 

Comparatively dim objects (but probably not planets) orbiting nearby stars may be 

observable with this device. To do this one must fix the number to be observed with the 

PSEC parameter to two. Then great care is needed to adjust for astigmatism in the manner 



discussed in the above sections. 

4.24 PINHOLE SETUP REQUIREMENTS 

Here we illustrate how we can use a pinhole setup (figure 4-20 to 4-23) to test 

deconvolution. From equation (2.1.30) we have that: 

0 s  imageheight - 1.22h -- 
imagedistance D 

We define image height here to be 1 Rayleigh distance. Note that a Rayleigh dis- 

tance is dependent on the aperture diameter D. For h = 6338.311 10-lorn, D=.363 mm and 

image distance=.94 m we have from (4.24.1) that the image height=2 mm. Thus on the ST- 

6 CCD screen (which has dimensions 6.5 mm X 8.6 mm) we see that 1 Rayleigh dis- 

tance=2 mm.We will call the D=.363 mm distance the aperture diameter. If two pinholes 

are 1 rnm apart.94 rnin front of the aperture then we see from similar triangles that they 

will form images that are 1 rnrn apart at the CCD which is 112 a Rayleigh distance apart. 

Thus in this setup we know what fraction of a Rayleigh distance ow images should be sep- 

arated. Since the laser beams are on the order of.75 mm diameter we have a convenient 

testbed and we can very easily judge the resolution provided by our deconvolution algo- 

rithm. 

4.25 TELESCOPES 

Here we try to apply the methodology of section 4.24 to telescopes. We note that 

aberrations caused by pointing errors (see figure 4-28) motivates us to build an entirely 

new type of telescope just to do superresolution. We wish to determine the effective reso- 

lution of this telescope when our deconvolution algorithm is used to restore its images. Let 

1.22h - @ = -  - h 
D Distance 

where Distance equals distance to object from the telescope mirror, h is the height of the 

object and D is the aperture diameter (.0381 m), which in this case is a telescope instead of 

pinhole. Let A = 6 3 3 8 . 3 ~  10-'~rn, Distance=l16 my D=.0381 m. Then we can write: 



Thus h = 2.35 mm=pinhole separation for one Rayleigh length. We will next use the 

high radius of curvature mirror equation: 

Here p is the above term called Distance. Let the focal length of the mirror be f=.83 m, 

then 

Thus q=2.014 m. So the difference from the normal focus is about 2.014-1.98=3.4cm. 

Because of the closeness of the object, we must extend our CCD 3.4 cm beyond the nor- 

mal focus. 

M M  - imageheight - 0.002' - = 0.85 - objectheight 0.d235 

so that 

M2 = 81 

If the image is about 3.81 mrn cm in front of the center of the eyepiece then 

Length 
M2 = = 0.0381 

= 81 

Thus Length=3.1 m. The extension onto the eyepiece that attaches to the CCD is 3.1 m 

long. Note that M2 is the magnification of the image at the eyepiece. The image at the 

focus of the primary mirror must be magnified 8 1 times. Thus we must attach a large 

microscope to our telescope to allow the telescope to do superresolution with our &con- 

volution algorithm. 

It initially appeared that the reflecting telescope method would not work here as 

well as the refracting telescope method. Slight misalignments cause aberrations to be 
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amplified because of the magnification stage. Nonetheless we got it to work as well as the

reflector. Note the "Spot" diagram of figure 4-26 for the off axis telescope we designed.

This is to be contrasted with figure 4-28 in which there is secondary mirror in the beam

path. Our telescope design has reduced the aberration effects to a minimum. Apparently

the amount of aberrations is low enough here for this method to work. This is the motiva-

tion for the hardware design stage of our work. Also note the CODE V ray trace in figure

4-25. Note the actual pictures of the telescope in figure4-23 and hallway "straylight cham-

ber" .

Fig. 4.21 PC setup for pinhole experiment.
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Fig.4.22CCDsetup for pinholeexperiment.
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Fig. 4-23Laser source, pinhole object and pinhole aperture.
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Fig.4-24Pinhole experimental setup.
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Fig. 4.25 Photo of superresolution telescope design in hallway.
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85

Fig. 4-27 Spotdiagramfor superresolutiontelescope.
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Fig. 4-29 Actual PSF with aberrations in ordinary Newtonian telescope. These PSF's

are unusable for superresolution. A special superresolution telescope is needed.
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f- 1 Rayleigh ~

Distance

Fig. 4-30 Raw image of two point sources about 1/4 Rayleigh distance apart,

SNR ::::30. Image taken reflecting telescope having 1.5 inch aperture in 130 meter

line of sight. Air turbulence was evident. See figure 4.9.
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~ LRayleigh ~

Distance

Fig 4-31 Restoration of figure 4-30 achieved through deconvolution. Air turbulence

was evident. See figure 4.9.
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f- 1 Rayleigh -7

Distance

Fig. 4-32Raw image of three point sources about 1/6Rayleigh distance apart,

SNR ~ 30, forming a triangle (seefigure 4-13and 4-31).Image taken through a

reflecting telescope of 1.5 inch aperture in 130 meter line of sight. Air turbulence was

evident.
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~ 1 Rayleigh ~

Distance

Fig 4-33 Restoration of telescope image figure 4-32 achieved through deconvolution.

Triangular appearance is not evident but the number of objects is still counted cor-

rectly. Air turbulence was evident. See figure 4.13.
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f- 1 Rayleigh -4

Distance

Fig. 4-34 Raw image of four point sources about 1/6 Rayleigh distance apart,

SNR ::::30. See figure 4-15. Image taken through a reflecting telescope of 1.5 inch

aperture in 130meter line of sight. Air turbulence was evident.
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~ 1 Rayleigh ~

Distance

Fig 4-35 Restoration of telescope image figure 4-34 achieved through deconvolution.

Imagetakenthroughair turbulence.Seefigure4.15.



4.26 COMPARISON WITH OTHER RESULTS 

In our review of the literature in chapter 2 we tried to compare what was done with 

what we are trying to do. Here we review some of the remarks that were made there. 

First we note that any amount of resolution is possible if there is complete knowl- 

edge of the intensities and numbers for let us say, two objects. For a high SNR image sim- 

ple geometry will do a decent job in joining perpendicular bisecting sagittas to image 

points. Thus the type of superresolution we are talking about is for situations in which we 

neither know how many objects there are nor do we know the intensities. In this case no 

other method known can go much beyond about 1/2 a Rayleigh without giving ambiguous 

artifacts. 

For example we note that one samples in a Nyquist fashion equally over the whole 

image for the Lucy Ftichardson8, Van titter? and MAP'' methods which are the best 

methods for doing superresolution. The CLEAN algorithm doesn't do this but it only 

achieves about 1/2 Rayleigh superresolution. But we note in this chapter that unlimited 

superresolution demands that we sample densely on either side of the maximum and that 

we dimensionally reduce the problem while paying attention to convexity problems 

caused by dark noise and image size. Chapter 3 and 4 showed why image ambiguity 

results if this is not done. Thus these other methods can never achieve a gnat degree of 

superresolution much beyond about 1/2 of a Rayleigh distance, and I have not seen claims 

to the contrary in the literature. Also note here that our method of doing supwesolution 

involves only a few Airy disks in each CCD image. Thus the scale of the PSF's is much 

larger than the scale of the noise. Thus smoothing is a very effective way to minimize the 

effect of noise in our method. So we do not have to rely on stochastic methods such as the 

MAP method to achieve superresolution. Also Wavelet deconvolution is useless here 

because the scale of the Auy disk is so large relative to the noise. Thus using standard 

superresolution methods about 1/2 Rayleigh distances are resolvable without prior knowl- 

edge of the distribution or intensities of the sources. Also in our experiments we noted that 

about 2 Rayleigh resolution is possible in the kind of atmospheric turbulence (again with- 

out prior knowledge of the object) we experienced. But we got about 1/10 Rayleigh super- 

resolution without air turbulence and about 1 /6 Rayleigh superresolution in significant air 



turbulence. 

SUMMARY 

We developed a way of implementing superresolution that addresses the ambiguous 

image problem. Ours is a inverse matrix method which restricts testing to only those 

points on ridges of isophotes. Thus a two dimensional deconvolution problem has been 

reduced to a one dimensional problem: we are doing deconvolution by dimensional 

reduction. We have added second derivative (convexity) optimization and smoothing. 

This "dimensionally reduced" localization of the inverse matrix testing results in the elim- 

ination of the ambiguous images and minimization of the i l l c o n e d  ma& problem. 

The smoothing eliminates the need for stochastic methods since the scale of the noise is 

much smaller than the width of a PSF, which is about 150 pixels here. Using a pinhole 

"telescope" CCD experiment we show that this deconvolution technique results in a 1/10 

Rayleigh distance at SNR s 30, which is at least a factor of 5 better than the other known 

superresolution techniques allow for. We built a 1.5 inch superresolution telescope that 

incorporated optics with minimum aberration effects. Using a 1.5 inch superresolution 

reflecting telescope we showed that we could achieve about 116 Rayleigh length resolution 

through air turbulence, which is on the order of a factor of 12 better than expected. 
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APPENDIX A 

Deconvolution programs 

PROGRAM SMOOTHPSFSANDRUXiE 
INTEGER NNN,NN,N,SS,S,SU,ST,SV,NYL~,XL,YL,m,II 
INTEGER X(100000),Y(100000),GGGX(1000),GGGY(1000) 
INTEGER GGY(1000,100),GGX(1000,100),SQFX(300) 
INTEGER SQFY(300),SQX(300),SQY (300),SQQX(300) 
INTEGER RH1 ,RL1 ,Ml,M2,Rl,RR 1 ,X2C,YY,XXX,DATUM 
INTEGER SQQY(300),GX(500),GY(500),NNY,LNN9NyY 
INTEGER QX,QY,RLN,MM,RI(3) ,NXLmmWH 
INTEGER XXL(4),YYL(4),XXS(300),QQ$mfiON(20) 
INTEGER nim,in,DA,U,SRCE,SRC,UUU,ABC,RRRRR 
INTEGER IMM(100000) ,SMUTH,El ,MSEP,psfdata 
INTEGER I,N 1 ,N2fi3,N,S,N0(30O),MINSSIXPSF9finn 
INTEGER NN0(9),N5,N6,N7,RUNS,RE,COH,REAP 
INTEGER TELEAB,TURB,HEIGHT,WIDTHmJli,wi 
INTEGER YYS (300),II,DA,HH,CAL,infin 1 ,fin,pin 
INTEGER FINISH( lO),POINTS ,SOURCE,RAP,ANNULAR 
DOUBLE PRECISION DY ,DBY ,B ,AA,PSF(100000),AIR 
DOUBLE PRECISION AB(2000),LLG,LG,LGGGGG,vd 
DOUBLE PRECISION GGG(20000),GGG1(1000),HS(100000) 
DOUBLE PRECISION GG1(1000,100),GG(1000,100),AV,PP 
DOUBLE PRECISION SQF(400),Al,B 1,Cl ,ABCD,large 
DOUBLE PRECISION X1 ,Y 1 ,HSS(100000),yint, slope 
DOUBLE PRECISION SQQ(300),SQ(300),LGG(lO),astigmatism 
DOUBLE PRECISION R,U 1 ,B ,E,E8,LINEX(300),LINEY(200) 
DOUBLE PRECISION AN,ARG,lTG,PL,GFX(100),GFY(100) 
DOUBLE PRECISION INTl,INT2,INT3,E2,PT2,P77,TEL 
DOUBLE PRECISION T(20,20),C(20),Z(20),S8,S9 
DOUBLE PRECISION PX,PY ,PPX,PPY ,ABCDE,ALLISON,E55 
DOUBLE PRECISION S3,S2,LGGG,DELX,DELY ,LGT,R 1 1 
DOUBLE PRECISION MMM,BB,AIRJR(20000),STI',kount 
DOUBLE PRECISION CX(20),CY(20),YP(20),AT9BT,str 
DOUBLE PRECISION R,ZZ(20),IT,BBB,SEP,LGT,G(1000) 
DOUBLE PRECISION A(300),XP(20),SEPP,DD,TURX,par 
DOUBLE PRECISION MMM,IM(100000)SSEC~adius,SMR(100) 
DOUBLE PRECISION hir,wir,inr,finr,inrl,ES, SMMM 
DOUBLE PRECISION stretch jot 1 ,rot2,ast,Ell ,E22,str 
open(l2,file='fort.3 12',status='old') 
open(l4,file='fort.82',status='old') 



open(l6,file='fort.8 1 ',status='old') 
NAME=3 12 

C Fast JINCs 
C This program calculates the position 
C and brightness of planets or 
C brown dwarfs orbiting brighter stars 
C ThedatamustbeinthefomofalOOXlOO 
C data array that appears as in the read 
C statement just above line 4 . 
C HA is the CCD electron number per pixel 
C GX is the X coordinate, GY is the Y coordinate 
C of the pixel measured in number of pixels 
C N is the counter. This data is in a separate 
C file we call fortran.57 

GOT0 2 
1 write(5 13,*) IMM(N) 

GOT0 870 
2 print *,'runs= 1 ,fort.',NAME 

C Experimental PSF image file=62 
C Actual image file=61 
C If apodizing, comment out GOT0 907 
C in BES(FF,B) subroutine 
C RlN= 1 for tiny blobs 
C RIN=2 for field filling nebula 
C Set value of pp 
C For planet finder set PP4.0, PL4.O 
C (.0224 +DD)*A=argument of trig function 

DD=O.O 
C Set psfdata=l if using psf from psf data file% 
C data could be simulated or real data. Otherwise 
C fort.82 J 1 (r)/r squared file and use psfdarta4 

psfdata4 
C If using experimental data set DATUM=l. For 
C simulated data use DATUM4 

DATUM=l 
C PIXPSF is rayleigh size in pixels, 38 is usual 
C 76 is double. For data put in correct psf width. 

PDCPSF=90 
C Set number of smooths 

SMUTH=2 
C If coherent source set COH= 1 

C O H 4  
C Auy disk size as fraction of 38 in final image=AIR 

AIR=.2 
C f6 l : s e p = 8 . 0 , p p = . ~ l  



f65: sep=9 .O ,pp=.000000 1 
f66:sep= ,pp= 
Number of random runs on small number 
of data points=RUNS 
RUNS= 100 
SEPP= 1.5 
PSEC=.00173 
RUNS to minimize S3 
MSEP= 10 
MINS=lO 
astigmatism= 1.0 !either 1.0 or 0.0 
str=0.006 
stretch=1.004 !Doesn't stretch if 1.0, this is 
rot 1 = 1.0 !rotates individual sample,doesn1t rotate 
rot2=1.005 !rotates whole thing, doesn't rotate if 
E55=1.0 
Number of globs in CCD field that 
are being deconvoluted 
SOURCE=l 
Lower limit on source intensity 
as fraction of max=PL 
PL=.3 
FT4.0 
If fmt run then set CAL=l.Comrnent out open(l4 
CAGQ 
If reverse apodization used, set RAP= 1, 
otherwise set RAP* 
RAP* 
If annular apodization used then set 
ANNULAR=l, otherwise set ANNULAR=O 
ANNULAR* 
Both ANNULAR and RAP cannot be 1 at the same time 
Set TELEAB=l if doing telescope abberations 
Otherwise set TELEAB=O 
Set telescope intensity PT2 at .25 Rayleigh and PT7 
.75 Rayleigh using actual electron# ccd output 
Set largest value in psf =LGT 
TELEAB=O 
LGT=25000.0 
m=20000.0 
m=i800.0 
If doing gaussian turbulence set TURB=l 
Otherwise TURB=O 
Set TURX= to value of "r" at which there is 
112 maximum intensity. Use units of distance in 



C x=3.83 or 7.66 are used for rayleigh distance 
TURB=O 
m = 2 . 0  

C Set CCD HEIGHT and WIDTH and INITIAL Pixels 
HEIGHT=242 
WIDTH=375 
INlTMk2048 
fin=92798 
wi=WIDTH 
hi=HEIGHT 
pin=INITIAL 
wir=wi* 1 .O 
inr=pin* 1 .O 
fin=(wi*hi)+pin 
FINISH(l)=(wi*hi)+pin 
FINlSH(2)=pin 
FINISH(3)=wi 
FINISH(4)=hi 
fin=92798 
fk=fii* 1 .o 
inl=pin+l 
inrl=inl*l.O 
in=pin 
STT= 1.45*TURX*TURX 
RRRRR=l 
REAP=l 
print *, 'REAP=',REAP 

c ................................................... 
C RE for writing in by hand. Set RE=1 and comment 
C to write in. Write in pixel coordinates and 
C as read on the PC screen ' 

RE=O 
GOT0 5 
GX(1)=117 
GY(1)=117 
A(1)=43700.0 
GX(2)= 120 
GY (2)s 120 
A(2)=44200 
GX(3)= 142 
GY(3)=137 
A(3)=22524 
GX(4)=133 
GY(4)=133 
A(4)=34000 



S=4 
DO 3 N=l,S 
IF(N.GT. 1)THEN 
M=N- 1 
PX=GX(N)-GX(M) 
PY =GY (N)-GY (M) 
P=(PY *PY)+(PX*PX) 
P=P**.5 
PT=P+PT 
ENDIF 
IF(A(N) .GT.LG)THEN 
LG=A(N) 
XG-GX(N) 
%-GY(N) 
ENDIF 

3 CONTINUE 
FT=PT/((S* 1 .O)+ 1 .O) 
DO 4 N=l,S 
LINEX(N)=(GX(N)-Xb100)*. 1 
LINEY (N)=(GY (N)-YL+ loo)*. 1 

4 CONTINUE 

5 RIN=1 
FINISH(6)=SOURCE+ 1 
PPPP=PSEC 
MM= 1 
kount= 1.0 
FINISH(9)= 1 
FINISH(8)=SOURCE 
u=9 
UUU=u 
BBB =38.3/(PIXPSF* 1.0) 
PT2=(Pn/LGT)*.25 
PT7=(PT7/LGT)* .25 
AT=(7.87*PT2)-(9.62*PT7)-1.4 
BT=(-2.73*PT2)+(10.0*PT7)+3.66 
AIR= 1 .O/AIR 
IF(RE.EQ. 1)THEN 
GOT0 63 
ENDIF 
LG4.0 
DO 6 SU=1,90750 



C print *,'SU=',SU 
read(l2,*) DA 

C print *,'SU=',SU,'DA=',DA 
HS(SU)=DA* 1.0 
rn(N)=O 
IF(SU.LT.in 1)THEN 
IMM(N)=DA 
ENDIF 
IM(N)=O.O 
IF(SU.LT.inl)THEN 
HS(SU)=O.O 
ENDIF 
IF(HS(SU) .GT.LG)THEN 
LG=HS (SU) 
ENDF 

6 CONTINUE 
print *,'DO 6 complete','first LG=',LG 
RI(1)=1 
m - L G  

7 LG4.0  
NNN=1 
DO 10 N+l,fm 
NNY=(N-pin) /wi 
X(N)=N-(in+(NIW*wi)) 
Y(N)=NNY+l 

C print *,'X(N)=',X(N),'Y (N)=',Y (N) 
C print *,'NNY=',NNY,'N=',N 

IF(Y(N).LT.60)THEN 
GOT0 10 
ENDIP 
lI=hi-80 
IF(Y .GT.II)THEN 
GOT0 10 
ENDIF 
IF(X(N).LT.70)THEN 
GOT0 10 
ENDF 
I I 4  
II=wi-75 
IF(X(N).GT.II)THEN 
GOT0 10 
ENDIF 

C print *, 'Got to IF(HS(N)..','N=',N 
IF(HS(N) .GT.(PL*LLG))THEN 
NNN=NNN+ 1 



ENDIF 
NON(l)=NNN 
IF(HS(N) .GT.LG)THEN 
LG=HS(N) 
D N -  (pin+(NNY*wi)) 
b N N Y + l  
ENDIF 

10 CONTINUE 
XXL( l)=xL 
YYL( l)=YL 
LGG(l)=LG 
IF(NNN.GT.20000)THEN 
RI(1)=2 
ENDIF 
print * ,'NNN=',NNN 

C SMOOTHING 
DO 13 NN=l,SMUTH 
DO 1 1 N=in 1 ,fin 
NYH=N 
NYL=N-(2*wi) 
NMN=N- wi 
NXH=NMN+l 
m N M N -  1 
SS=pin+(2*wi) 
YYY=((N-pin)Mi)+l 
XXX=N- (((N-pin)/wi)*wi) 
IF(NN.EQ. 1)THEN 
PSF(NMN)=HS(NMN) 
PSF(N)=HS(N) 
PSF(NXH)=HS (NXH) 
PSF(NY H)=HS(NYH) 
PSF(NXL)=HS(NXL) 
PSF(NYL)=HS (NYL) 
ENDIF 
IF(XXX.EQ. 1)THEN 
HSS(NMN)=HS (NMN) 
GOT0 11 
ENDIF 
IF(XXX.EQ.wi)THEN 
HSS (NMN)=HS (NMN) 
GOT0 11 
ENDIF 
IF(YYY.LT.2)THEN 
GOT0 11 
ENDIF 



IF(YYY.EQ.2)THEN 
HSS (NMN)=HS (NMN) 
GOT0 11 
ENDIF 
S2=PSF(NXL)+PSF(NXH)+PSF(NY L) 
HSS (NMN)=(S2+PSF(NYH)+PSFOVMN))/S .O 
PSF(NYL)=HSS(NYL) 

11 CONTINUE 
13 CONTINUE 

print *,'DO 11 complete' 
LLL=.OS*ffi 
GOT0 16 
print *,'ffi=',LG,'XL=',XL,'YL=',YL 

16 SRC=SOURCE+2 
SRCEA 
LGGG= 100.0 
sMMMa.0 
print *,'SRC=',SRC,'LGGG=',LGGG 
DO 20 MM=2,SRC 
print *,'SRC=',SRC 
NNN=1 
FU(MM)= 1 
DO 18 N=2049,97298 

C print *, 'Got to DO 18' 
NNY =(N-pin)/wi 
X(N)=(N-pin)-(NNY*wi) 
Y(N)=NNY+l 
NN=MM-1 
PX= 1 .O*(X(N)-XXL(NN)) 
PY= 1 .O*(Y ( N ) - Y Y L O )  
E=(PX*PX)+(PY *PY) 
E=E** .5 
IF(E.LT.76.0)THEN 
SMMM=SMMM+HS (N) 

C print *,'SMMM=',SMMM 
ENDIF 
IF(Y(N).LT.7O)THEN 
GOT0 18 
ENDIF 
II=hi-72 
IF(Y (N) .GT.lI)THEN 
GOT0 18 
ENDIF 
IF(X(N) .LT .70)THEN 
GOT0 18 



ENDIF 
1 1 3  
II=wi-75 
IF(X(N).GT.II)THEN 
GOT0 18 
ENDIF 
Ml=MM-1 
DO 17 NN=l,Ml 
PX=1 .O*(X(N)-XXL(NN)) 
PX=abs(PX) 
PY= 1 .O*(Y(N)-YYL(NN)) 
PY=abs(PY) 
IF(PX.LT.5 1 .O)THEN 
GOT0 18 
ENDIF 
IF(PY .LT.5 1 .O)THEN 
GOT0 18 
ENDIF 
IF(HS (N) .LT.LLL)THEN 
GOT0 18 
ENDIF 

17 CONTINUE 
IF(HS(N).GT.(PL*LG))THEN 
NNN=NNN+l 
ENDIF 
NON(MM)=NNN 
IF(HS(N) .GT.LGGG)THEN 
LGG(MM)=HS(N) 
LGGG=HS(N) 
XXL(MM)=(N-pin)-(NNY*wi) 
YYL(MM)=NNY+ 1 
SMR(NN)=(SMMM/LGG(NN))/1225.5 
print *,'SMR(NN)=',SMR(NN), 'NN=',NN 
ENDIP 

18 CONTINUE 
SMR(NN)=(SMMM/LGG(NN))/1225 -5 
print *,'SMR(NN)=',SMR(NN), 'NN=',NN 
IF(LGGG.LT.(. 1 *LG))THEN 
GOT0 21 

. ENDIF 
SRCE=SRCE+l 
FINISH(7)=SRCE 
IF(NNN.GT.20000)THEN 
RI(MM)=2 
ENDIF 



20 CONTINUE 
print *,'SMR(l)=',SMR(l) 
print *,'SMR(2)=', SMR(2) 

2 1 SRCE=FINISH(7)+1 
C STOP 
c ........................................................ 
C STARTLOOPS 

SRCE=SOURCE 
DO 700 MMMM= 1 ,SRCE 
MM=(SRCEMMMM)+ 1 
u=UUU. 
-XXL(MM) 
YIsYYL(MM) 
RIN=RI(MM) 
PSEC=PPPP 
PP=PSE€ 
S2=100000.0 
S3= 10000000000000.0 
SEP=SEPP 

23 DO 243 NTI'=O,MSEP 
C SEP=SEP-1.0 
C ARG=.0224*A 

G G H = r n  
DD=.00000 1 *GGH 
GGGG=- l*INT((. l*GGH)+.S) 
PP=PSEc 
ALLISON=DD+.0224 
DO 242 NT=l,MINS 
IF(DATUM.EQ. 1)THEN 
GOT0 24 
ENDIF 

C Dataangle samplesettingsfor normalaperture 
24 IF(PP.GT. 1 .O)THEN 

F(S3 .GT .lOOOOOO.O)THEN 
xF'(1)=10.0 
YP(l)=lO.O 
zz(l)=l .o 
F(N.GT. 1)THE.N 
zz(N)=o.O 
ENDIF 
ENDIF 
GOT0 242 
PP=PSEC 
ENDIF 

25 PP=PP*5.0 



ENT=l 
PTa.0  
S=l 
RRl=l 
DO 27 NN=1,1000 
DO 26 N=1,100 
GG 1 (NN,N)=O.O 
GG(NN,N')=O.O 

26 CONTINUE 
27 CONTINUE 

DO 38 R1=1,69,RIN 
M=l 
LN=1 
F(R 1 .EQ. 1)THEN 
RlT=90 
ENDIF 
IF(R 1 .EQ.2)THEN 
RTT=26 
ENDIF 
IF(R 1 .EQ.3)THEN 
RlT= 18 
ENDIF 
R1 l=l.O/Rl 
El  l=(l.O-ROTl)*MSEP 
E22=ROT2 
R1 l=E22*atan(Rll) 
Rl l=R11*180.0/3.14159 
IF(R 1 .GT.3)THEN 
RlT=INT(Rll+.S) 
ABC=ABC/3 
ENDIF 
DO 31 AN=1,360,RlT 
ast=MSEP*.3 14*astigmatsrn 
E=(NT-5)*(str) 
Xl=l.O*R 1 *cos((.017453*AN)+Ell) 
Y 1=1 .O*Rl*sin((.O17453*AN)+Ell) 
PX=(X 1 *cos(ast))-(Y 1 *sin(ast)) 
PY=((Xl*E55*sin(ast))+(Y 1 *cos(ast)))*(stretch-E) 
Xl=(PX*cos(-st))-(PY*sin(-at)) 
Y l=(PX*sin(-ast))+(PY*cos(-st)) 
Xl=X1+.5 
Y l=Y 1+.5 
XXl=INT(Xl) 
XX=XL+XXl 
YYl=INT(Y 1) 



YY=YYl+YL 
DA=(YY-1)*wi 
N=((YY - l)*wi)+XX+pin 
GGG(M)=HSS(N) 
GGG l(M)=HS(N) 
GGGX(M)=XX 
GGGY(M)=YY 

C print *,'Y (N)=',Y (N),'GGGY (M)=',GGGY (M),'M=',M 
IF(M.LT.3)THEN 
GOT0 30 
ENDIF 
Ml=M-1 
M2=M-2 
IF(GGG(M) .LT. GGG(M 1 ))THEN 
GOT0 28 
ENDIF 
GOT0 30 

28 IF(GGG(M2).LT.GGG(Ml))THEN 
GG(RR 1 ,LN)=GGG(Ml) 
GGX(RR 1 ,LN)=GGGX(M 1) 
GGY(RR1 ,LN)=GGGY (MI) 
GG1 (RR1,LN)--GGGl(Ml) 

C print 
LN=LN+l 
ENDIF 

C print *,'LN=',LN 
30 M=M+l 
C print *,'Got past line 30f,'M=',M 
31 CONTINUE 

LMM=LN 
NO(RR l)=LMM 

C print *,'DO loop 3 1 completet,'R 1=',R 1 
32 RHl=RRl 

RMl=RRl-1 
RLlzRRl-2 
RRl=RRl+l 
IF(= 1 .LTd)THEN 
GOT0 38 
ENDIF 
DO 37 LNN=l,LMM 
PPP= 1000.0 
NNN=NO(RMl ) 
DO 33 N=l,NNN 
PX=(GGX(RMl ,N)-GGX(RH1 ,LNN))* 1.0 
PY=(GGY (RM1,N)-GGY (RH l,LNN))* 1 .O 



P=(PX*PX)+(PY *PY) 
P=P** .5 
IF(P.LT.PPP)THEN 
Nl=N 
PPP=P 
Pl=P 
ENDIF 

33 CONTINUE 
dis t=RIN*S EP 
PPP=10000.0 
NNN=NO(RL 1) 
DO 35 N=l,NNN 
PXs(GGX(RL1 ,N)-GGX(RM1 $TI))* 1 .O 
PY=(GGY(RLl,N)-GGY(RMl$Tl))*l.O 
P=(PX*PX)+(PY *PY) 
P=P**.5 
IF(P.LT.PPP)THEN 
N2=N 
P2=P 
PPP=P 
ENDIF 

35 CONTINUE 
IF(P1 .GT.dist)THEN 
GOT0 37 
ENDIF 
IF(P2.GT.dist)THEN 
GOT0 37 
ENDIF 

36 IF(GG(RLl,N2).LT..00000000001)THEN 
GOT0 37 
ENDIF 
IF(GG(RH1 ,Nl).LT..0000000001)THEN 
GOT0 37 
ENDIF 
DIF=(P l+P2)/2.0 
DIF=DIF+(. 1 *DIF*DIF) 
AV=(GG(RHl ,LNN)+GG(RLl ,N2))/'2.0 
AV=AV+(PP*RIN*LG*DIP) 
IF(GG(RM1 ,N1 ).LT. AV)THEN 
GOT0 37 
ENDIF 
IF(GG(RM1 ,Nl).GT.(.3*LG))THEN 
G(S)=GG 1 (RM 1 ,N 1) 
GX(S)=GGX(RM 1 ,N 1) 
GY(S)--GGY(RMl,Nl) 



PT=PT+DIF 
C print *,'G(S)=',G(S), 'GY(S)=',GY(S),'GX(S)=',GX(S) 
C print *,'S=',S,' PP=',PP 

S=S+l 
ENDIF 

37 CONTINUE 
C print *,'S=',S,' PP=',PP 
38 CONTINUE 

print *,'S=',S ,' PP=',PP,'SEP=',SEP 
IF(S.GT.43)THEN 
GOT0 25 
ENDIF 
IF(S.LT.2)THEN 
GOT0 242 
ENDIF 
IF(S .LT.27)THEN 
GOT0 42 
ENDIF 
GOT0 43 

42 IF(S5 .GT.26)THEN 
GOT0 242 
ENDIF 

43 FT=PT/((S* 1.0)+1 .O) 
S 5 4  
DO 45 N=l ,S 
SQ(N)=G(N) 
SQX(N)=GX(N) 
SQY(N)=GY(N) 

C print *,'SQY(N)=',SQY(N),'SQX(N)=',SQX(N) 
45 CONTINUE 

DO 55 M=l,S 
LL=1000000000.0 
DO 50 N=l ,S 
IF(SQ(N).LT.U)THEN 
SQQ(M)=SQ(N) 
SQQX(M)=SQX(N) 
SQQY(M)=SQY(N) 

C print *,'SQQX(M)=',SQQX(M),'SQQY (M)=',SQQY (M) 
LL=SQ(N) 
NN=N 
ENDIF 

50 CONTINUE 
SQ(NN)= 1000000000.0 

55 CONTINUE 
M=l 



DO 60 N=l,S,2 
IF(SQQ(N).LT..Ol)THEN 
GOT0 60 
ENDIF 
SQF(M)=SQQ(N) 
SQFX(M)=SQQX(N) 
SQN(M)=SQQY(N) 
A(M)=SQF(M) 
XXS(M)=SQFX(M)-XLt100 
YYS(M)=SQFY(M)-YLtl00 
LINEX(M)=XXS(M)*. 1 
LINEY(M)=YYS(M)*. 1 
M=M+l 

60 CONTINUE 
XXS(M)=100 
YYS(M)=100 
m = L G + . s  
A(M)=N(LGGGGG) 
IF(A(M).LT. 1)THEN 
GOT0 61 
ENDlF 
LINEX(M)=10.0 
LINEY(M)=lO.O 
M=M+l 

61 DO 62 N=2,S,2 
IF(SQQ(N).LT. .00l)THEN 
GOT0 62 
ENDlF 
SQF(M)*QQ(N) 
SQFX(M)=SQQX(N) 
SQWM)=SQQY(N) 
XXS (M)=S QFX(M)-XL+ 100 
YYS(M)=SQFY(M)-m100 
A(M)=SQWM) 
LINEX(M)=XXS(M)* .1 
LINEY (M)=YYS(M)* . 1 
M=M+l 

62 CONTINUE 
S=M-1 

63 DO 64 SS=l,S 
print *,'LINEX(M)='&INEX(SS),'LINEY (M)=',LINEY (SS) 
print *,'A(M)=',A(SS),'Allison=',ALLISON 
print * ,'SMR(MMMM)=',SMR(MMMMM),'MMMM=',MMMM 

64 CONTINUE 
in=pin 



print *,'S=Number of points on line=',S 
print *,'S=limit of DO 5 read statement in ridge2' 
in=sp 
IF(in.GT.5)THEN 
in=5 
ENDIF 
NN=1 
nim=l 
DO 70 SS=1,10 
DO 69 ST=1,2 
NO(NN)=nim+(ST-2) 
F(SS .EQ. 1)THEN 
GOT0 65 
ENDIF 
GOT0 66 

65 IF(ST.EQ. 1)THEN 
GOT0 69 
ENDIF 

66 IF(SS .EQ. 1O)THEN 
GOT0 67 
ENDIF 
GOT0 68 

67 IF(ST.EQ.2)THE.N 
GOT0 7 1 
ENDIF 

68 print * ,'NO(NN)=',NO(NN) 
SU=NO(NN) 
NN=NN+l 

69 CONTINUE 
nim=nirn+in 

70 CONTINUE 
S=SU 

71 SU=1 
C Put in for spherical sampling 
C keep tests along lines 
C DO 75 NN=1,8 
C E=(2*3.14159)/8.0 
C U1=2O.O*cos(E*NN)) 
C XX=INT(U1+.5) 
C CX(NN)=(XX* 1 .O)+(XL* 1 .O) 
C CY (NN)=((20*20)-(XX*XX))* 1 .O 
C 75 CONTINUE 
C C(9)=LG 
c CX(9)=LX 
c CY(9)=LY 



print *,'in=',in,'Nim=',nim 
in=pin 
IF(psfdata.EQ. 1)THEN 
GOT0 84 
ENDIF 
IF(MMMM.GT. 1)THEN 
GOT0 143 
ENDIP 
IF(RRRRR.GT. 1)THEN 
GOT0 143 
ENDIP 
GOT0 143 

C Comment out next line if still using simulation psf 
C Change E to DA when using real data 
C DA=O 
84 N=l 
85 M . 0  

IF(RRRRR.GT. 1)THEN 
GOT0 89 
ENDIP 
read(l6,*) E 
PSF(N)=E* 1.0 

89 N=N+l 
IF(N.GT.92798)THEN 
GOT0 90 
ENDIP 
GOT0 85 
RRRRR=RRRRR+ 1 

90 L G a . 0  
RRRRR=RRRRR+ 1 
DO 100 N=inl,fiin 
NNY =(N-pin)/wi 
X(N)=N-((NNY *wi)+in) 
Y(N)=NNY+l 
E2=PSF(N) 
IF(Y (N) .LT.60)THEN 
GOT0 100 
ENDIF 
II=hi-60 
IF(Y (N) .GT.II)THEN 
GOT0 100 
ENDIF 
IF(X(N) .LT. 122)THEN 
GOT0 100 
ENDIF 



II=O 
II+-135 
IF(X(N) .GT.II)THEN 
GOT0 100 
ENDIF 
IF(E2 .GT.LG)THEN 
LG=E2 

C print *,'LG=',LG,'X(N)=',X(N) 
DN-(in+(NNY*wi)) 
YL=NNY+ 1 
ENDIF 
E2a.O 

100 CONTINUE 
print *,'LG='u,'XL=',XL,'YL=',YL 

C If not using linear interpolation remove 
C "C" in next line 
C GOT0 110 

SU=1 
107 DO 109 XX=1,200 

N=((YL- l)*wi)+XL+XX+in 
AB (XX)=PSF(N) 
NNY=(N-pin)/wi 
XXX=XX-1 
slope= 1 .O*(AB (XX)-AB (XXX)) 
yint=((AB(XX)* 1 .O)-(slope*XX))* 1 .o 
IF(XX.GT. 120)THEN 
AF3 (XX)=O .o 
ENDIF 
DO 108 NN=1,100 
PX=(XX* 1 .O)+(NN*.Ol) 
E=(slope*PX)+yint 
GGG(SU)=O.O 
GGG(SU)=(E/Lc)* .25 
SV=SU-2 
S T 4 U -  1 
IF(SU.GT.3)THEN 
JR(ST)=(GGG(SV)+GGG(ST)+GGG(SU))/3 .O 
ENDIF 
SU=SU+ 1 

C print *,'ST=',ST,'JR(ST)=',JR(ST) 
108 CONTINUE 
C print * , I D  (XX)=',AB(XX),'LG=',LG 
109 CONTINUE 

JR(l)=(AB(l)/LG)*.25 
JR(2)=(AB(l)/LG)*.25 



C STOP 
GOT0 143 

110 DO 111 XX=1,200 
N=((YL- 1)* wi)+XL+XX+pin 
AB (XX)=PSF(N) 

111 CONTINUE 
NNN=1 
DO 120 N=3,197 
SS=N+2 
ST=N+l 
SU=N- 1 
SV=N-2 
DY=AB (SV)-(4*AB (SU))+(6*AB (N)) 
DY=DY-(4*AB(ST))+AB (SS) 
Al=AB(N)-((3.0/35 .O)*DY) 
DBY=(-2*AB(SV))-AB (SU)+AB (ST) 
B l=(DBY+(2*AB(SS)))/lO.O 
CCCCY =AB (SS)+AB(ST)+AB(N)+AB (SU)+AB(SV) 
C l=(CCCCY-(5*Al))/lO.O 
DO 1 15 NN=-50,49 
Xl=NN*.Ol 
NNN=(N* 100)+NN 
E=Al+(B l*Xl)+(Cl*Xl*Xl) 
GGG(NNN)=O.O 
GGG(NNN)=(E/LG)* .25 
SS=NNN-2 
ST=NNN- 1 
IF(NNN.GT.3)THEN 
TR(ST)=(GGG(SS)+GGG(ST)+GGG(NNN))/3.0 
ENDIF 
El=(E/LG)*.25 

C write(82,*) E l  
C print * ,'NNN=',NNN,' JR(NNN)=',JR(NNN) 
115 CONTINUE 
120 CONTINUE 

JR(l)=(AB(l)/LG)*.25 
TR(2)=(AB ( l)/LG)* .25 
JR(3)=(AB(l)/LG)*.25 
print *,'PSF done' 

c stop 
143 RRRRR=RRRRR+l 

IF(psfdata.EQ. 1)THEN 
GOT0 203 
ENDIF 
IF(ENT.GT. 1)THEN 



GOT0 203 
ENDIF 
IF(REAP.GT. 1)THEN 
GOT0 203 
ENDIF 
DO 202 m=i ,20000 
RRRRR=RRRRR+l 

C Get rid of next 2 lines when 
C using instrument PSF. Add read(l6,*) line 

IF(CAL.EQ.O)THEN 
GOT0 150 
ENDIF 
CALL BES(R,III) 
write(82,*) R 

C print *,'III=',III,' BES=',R 
IF(psfdata.EQ. 1)THEN 
BBB=1.0 
ENDIF 

150 II=INT((III*BBB)+.S) 
C Comment out next line 
C II=m 

IF(II.GT. 12000)THEN 
JR(II)=O.O 
GOT0 202 
ENDIF 
IF(CAL.EQ. 1)THEN 
GOT0 155 
ENDIF 

156 IF(REAP.GT.1)THEN 
GOT0 160 
ENDIF 
read(l4,*) R 

155 JR(II)=R 
160 lTrrTT=l 
202 CONTINUE 
c stop 

print * ,'REAP=',REAP 
203 REAP=REAP+l 

print *,'S3=',S3,'S2=',S2,'NNN=',NON(MM) 
C s 2 = 1 m . o  
C S3= 10000000000000000.0 

IF(S .LT2)THEN 
GOT0 204 
ENDIF 
GOT0 207 



204 fin=FINISH(l) 
DO 206 N=in 1 ,fin 
IMM(N)=O.O 

206 CONTINUE 
N=(wi* (YL- l))+XL+pin 
IMM(N)=LG 
GOT0 720 
REAP=REAP+l 

207 IF(S.LT.9)THEN 
u=S 
GOT0 210 
ENDIF 
NlB=NO(l) 
N 1 &NO (2) 
N2B=N0(3) 
N2E=N0(4) 
N3B=N0(5) 
N3E=N0(6) 
N4B=N0(7) 
N4E=N0(8) 
N5B=N0(9) 
NSE=NO(lO) 
N6B=NO(11) 
N6E=N0(12) 
N7B=N0(13) 
N7E=NO (1 4) 
N8B=N0(15) 
N8E=N0 (1 6) 
N9B=N0( 17) 
N9E=N0(18) 

C Our set of simultaneous equations 
C is solved similar to that below for 
C K1 and K2 given C(X1) 
C 
C N N 
C I I 
C v v 
C C(X1) = KlF(X1-PI) + K2F(X1-P2) <----I 
C C(X2) = KlF(X2-PI) + K2F(X2-P2) 

DO 239 N9=N9B,N9E 
DO 238 N8=N8B,NSE 
DO 237 N7=N7B,N7E 
DO 236 N6=N6B,N6E 
DO 235 N5=N5B,N5E 
DO 234 N4=N4B,N4E 



DO 233 N3=N3B,N3E 
DO 232 N2=N2B,N2E 
DO 231 Nl=NlB,NlE 
NNO(l)=Nl 
NNO(2) =N2 
NN0(3)=N3 
NN0(4)=N4 
NN0(5)=N5 
NN0(6)=N6 
NN0(7)=N7 
NN0(8)=N8 
NNO(9)=N9 

C For planet finder 
C LINEX(l)=lO.O 
C LINEY(l)=lO.O 
C A(l)=LGG(MM) 
210 POINTS=9 

ST=1 
IF(nim.GT.26)THEN 
RUNS=l 
ST4 
ENDIF 
F(S .LT9)THEN 
POINTS=S 
ENDIF 
FINISH(S)=POINTS 
DO 228 NPP=l,RUNS 
DO 215 I=l,POINTS 
DO 214 N=lQOINTS 
NN=NNO(N) 
II=NNO(I) 
IF(S.LT.9)THEN 
NN=N 
II=I 
ENDIF 
C(I)=A(II)/LG 
X1=30054432160.3245345 123*1I*NN*N+(NPP*NPP*5.16432*1) 
Xl=X1+129383.3482372*NPP*NPP+1.234*NPP+I*4.2 
QXl=cos(Xl) 
QX2=abs(QXl) 
RANDX4.0 
RANDX=abs(QX2)*QXl/(QX2+.-1) 
PX=O.O 
DELX=O.O 
DELX=O. 16*RANDX*ST*2* ((RUNS- 1 )/(RUNS* 1 .O)) 



DEW[=(. l*INT((DELX* 10.0)+.5))+.00000001 
SQ(NN)=LINEX(NN)+DELX 
PX=SQ(NN) 

Y 1=9067475667050.32423432*II*I*N*NPP+(NPP*2.16932*NN) 
Y l=Y 1+43029.3213*IWP*NPP+N*234.2 
QY l=cos(Yl) 
QY2=abs(QY 1) 
RANDYd.0 
RANDY=abs(QY2)*QY l/(QY2+.0000000001) 
PY=O.O 
DELYd.0 
DELY=O. 16*RANDY*ST*2*((RUNS- l)/(RUNS* 1.0)) 
DELY=(. l*INT((DELY* 10.0)+.5))+.00000001 
SQQ(NN)=LINEY (NN)+DELY 
PY=SQQ(NN) 
CX(I)=LINEX(lI)+DELX*( 1 -RE) 
CY (I)=LINEY (II)+DELY * (1 -RE) 
JJ=((YL- lOl)+(CY(I)* lO))*wi 
JJ=JJ+((CX(I)* lo)+(=- loO))+in 
C(I)=(A(II)*RE/LG)+(HS S(JJ)*( 1-RE)/LG) 

C C(I)=A(II)/LG 
C PX=LINEX(NN) 
C PY=LINEY(NN) 

RRRd.0 
RRR=(CY(I)-PY)*(CY(I)-PY) 

C print *,'RRR=',RRR 
T(I,N)=O.O 
RRR=((CX(I)-PX)*(CX(I)-PX))+RRR 
RRR=RRR**.5 
radius=RRR 
RRR=(999.0*RRR)+1.001 
S S d  
S S =INT(RRR) 
E=JR(SS) 
IF(COH.EQ. 1)THEN 
A1 =C(I) 
Al=A1**.5 
E=E** .5 
C(I)=Al 
ENDIF 

C print *,'JFt (SS)='JR(SS) 
TEL=(AT*radius)+(BT*radius*radius) 
IF(TELEAB .EQ.O)THEN 
TEL= 1 .O 
ENDIF 



E=E*TEL 
IF(TURB.EQ. 1)THEN 
E=..25*exp(-radius*radiusBm 
ENDIF 
T(I,N)=E 

C IF(SEP.GT.6.0)THEN 
C print *,'JR(SS)=',JR(SS),'RRR=',RRR,'SS=',SS 
C print *,'I=',I,'C(I)=',C(I) 
C print *,'I=',I,'CX(I)=',CX(I),'CY(I)=',CY(I) 
C print * ,'N=',N,'PX=',PX,'PY =',PY 
C print *,'T(I,N)=',T(I,N) 
C ENDIF 
214 CONTINUE 
215 CONTINUE 
C stop 

Z( 1)=0.0 
Z(2)=0.0 
Z(3)d.O 
Z(4)d.O 
Z(5)=0.0 
Z(6)=0.0 
Z(7)d.O 
Z(8)=0.0 
Z(9)a.O 

220 CALL GAUSS(T,C,U) 
CALL BSOLVE(T,Z,C,U) 
S24.0  
val4.0 
DO 222 N= 1 ,POINTS 
S2=S2+abs(Z(N)) 
val=val+Z(N) 

c print *,'Z(N)='Z(N) 
222 CONTINUE 

E=SMR(MM)*2.0 
C print *,'SMR(MM)=',SMR(MM) 

IF(val.LT.E)THEN 
IF(ENT.GT.5)THEN 
GOT0 245 
ENDIF 
ENDIF 

C IF(SEP.GT.6.0)THEN 
C print *,'S3=',S3,' S2=',S2,' SEP=',SEP,' PP=',PP 
C ENDIF 
C print *, 'S2=',S2,'S3=',S3 
223 DO 224 N=1,9 



IF(abs(Z(N)).GT.200.O)THEN 
GOT0 228 
ENDIF 
IF(Z(N).LT.-20.0)THEN 
GOT0 228 
ENDIF 
IF(S2.GT..000 1)THEN 
GOT0 224 
ENDIF 
GOT0 228 

224 CONTINUE 
S4=S3 
IF(S2.GT.S3)THEN 
GOT0 228 
ENDIF 
S3=S2 
DO 225 N= 1 ,POINTS 
NN=NNO(N) 
IF(S .LT9)THEN 
NN=N 
ENDIF 
XP(N)=S Q(NN) 
YP(N)=S QQ(NN) = (N)=Z (N) 
IF(COH.EQ. 1)THEN 
zz(N)==(N)*=(N) 
ENDIF 
GFX(N)=loo*(((xL-loo)*.l)+XP(N)) 
GFY(N)=loo*(((YL- loo)*. l)+YF'(N)) 
PPX=GFX(N)* .O 1 
PPY=GN(N)*.Ol 
print *,'S3=',S3,' SMR(MM)=',SMR(MM), ' M M = ' W  

225 CONTINUE 
print * ,'NAME=',NAME 

228 CONTINUE 
ENT=ENT+l 
IF(S.LT.9)THEN 
GOT0 242 
ENDIF 

231 CONTINUE 
232 CONTINUE 
233 CONTINUE 
234 CONTINUE 
235 CONTINUE 
236 CONTINUE 



237 CONTINUE 
238 CONTINUE 
239 CONTINUE 
242 CONTINUE 
243 CONTINUE 
245 S=S 
C DO 246 N=1,92798 
C IM(N)=O.O 
C print * ,'IM(N)=',IM(N) 
a 4 6  CONTINUE 

DO 246 SU=lflnn 
IM(SU)=O.O 

246 CONTINUE 
M=l 
large=O.O 
DO 248 N=l,POINTS 
PPX=GFX(N)* .O 1 
PPY=GFY(N)*.Ol 
IF(S2.LT..0000 1)THEN 
XP(1)=10.0 
YP(1)=10.0 
zz(l)=l .O 
S3=S4 
ENDIF 
IF(SEP.GT.9.0)THEN 
XP(l)=lO.o+XXL(MM) 
YP(l)=lO.o+YyL(MM) 
zz(l)=l .o 
IF(N.GT. 1)THEN 
zz(N)=o.O 
ENDIF 
GOT0 247 
ENDIP 
IF(S3.GT. 1000000.O)THEN 
XP(l)=lO.O 
YP(l)=lO.O 
zz(l)=l .o 
IF(N.GT. 1)THEN 
zz(N)=O.O 
ENDIF 
ENDIF 
IF(S3.GT. 100000.O)THEN 
IF(PP.GT. .5)THEN 
GOT0 247 
ENDIF 
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GOTO 251
ENDIF
IF(S3.GT.100000.0)THEN
M=1
IF(PP.GT..5)THEN
GOTO 247
ENDIF
GOTO 251
ENDIF

247 IF(ZZ(N).GT.large)THEN
large=ZZ(N)
X1=PPX
Y1=PPY
ENDIF
write(507,*) 'X=',XP(N),'Y=',YP(N),'K',N,'=',ZZ(N)

C print *,'X=',PPX,'Y=',PPY,'K',N,'=',zz(N)
E=«(YYL(MM)-101)* 1.0)+(YP(N)*10»*375.0
E=E+(XP(N)* lO)+«XXL(MM) -100)*1.0)+2048.0
NN=INT(E+.5)
finn=fm
IM(NN)=ZZ(N)*LGG(MM)
G(N)=ZZ(N)*LGG(MM)
NNY=(NN-pin)/wi
GX(N)=NN-( (NNY*wi)+pin)
GY(N)=NNY+1

C print *,'G(N)=',G(N)
C write(507,*) E
C print *,'NN=',NN,'IM(NN)=',IM(NN),'N=',N
248 CONTINUE

X1=XP(1)
Y1=XP(1)
DO 250 N=1,POINTS
IF(SMR(MM).LT.1.0)THEN
ZZ(1)=large
ZZ(2)=O.0
ZZ(3)=O.0
ZZ(4)=O.0
ZZ(5)=O.0
ZZ(6)=O.0
ZZ(7)=O.0
ZZ(8)=O.0
ZZ(9)=O.0
ENDIF
E=SMR(MM)
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IF(E.L T.1.1 )THEN
XP(1)=1O.0
YP(1)=1O.0
ENDIF

IF(S3.GT.1000000.0)THEN
XP(1)=1O.0
YP(1)=1O.0
ZZ(1)=1.0
IF(N.GT.1)THEN
ZZ(N)=O.O
ENDIF
ENDIF

G(N)=(ZZ(N)/large)*LGG(MM)
249 E=«(YYL(MM)-101)* 1.0)+(YP(N)*10»*375.0

E=E+(XP(N)* 10)+«XXL(MM)-100)* 1.0)+2048.0
NN=INT(E+.5)
IM(NN)=(ZZ(N)/large)*LGG(MM)*30000/LGG(1)
NNY=(NN-2048)1375
PY=.1*(NNY+1)
PX=.1*(NN-««NN-2048)1375)*375)+2048»
print *,'X=',PX,'Y=',PY,'K',N,'='.zz(N)
print *,' IM=',IM(NN)

250 CONTINUE
M=M-1
GOTO 252

251 SEP=SEP+.5
PSEC=PSEC
print *,'S3=',s3,'PSEC=' ,PSEC
GOTO 24

252 E=SOURCE*.9
C kount=1

E=SOURCE*.9
SOURCE=FINISH(8)
IF(kount.GT.E)THEN
IF(S3.GT.1000000.0)THEN
DO 698 N=1,POINTS
XP(1)=1O.0
YP(1)=1O.0
ZZ(1)=1.0
IF(N.GT.1)THEN
ZZ(N)=O.O
ENDIF
GOTO 248

698 CONTINUE
ENDIF
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print *,'This is the output from fort.',NAME
JP(S3.GT.100000.0)THEN
E=«(YYL(MM)-101)* 1.0)+(YP(N)*10»*375.0
E=E+(XP(N)*10)+«XXL(MM)-loo)* 1.0)+2048.0
NN=INT(E+.5) ,

IM(NN)=(ZZ(N)/large)*LGG(MM)*30000/LGG(1)
~=(NN-2048)1375
PY=.l*(~+l)
PX=.1*(NN-««NN-2048)1375)*375)+2048»
print *,'X=',PX,'Y=',PY,'K',N,'='.zz(N)
ENDJP
GOTO 710
ENDJP
kount=kount+1.0

C FINISH(9)=kount
print *,'This is the output from fort.',NAME
JP(S3.GT.100000.0)THEN
E=«(YYL(MM)-101)* 1.0)+(YP(N)*10»*375.0
E=E+(XP(N)* lO)+«XXL(MM)-loo)* 1.0)+2048.0
NN=INT(E+.5)
IM(NN)=(ZZ(N)/large)*LGG(MM)*30000/LGG(1)
~=(NN-2048)1375
PY=.l*(~+l)
PX=.l *(NN-««NN-2048)1375)*375)+2048»
print *,'X=',PX,'Y=',PY,'K',N,'='.zz(N)
ENDJP
JP(S3.GT.1000000.0)THEN
DO 699 N=l,POINTS
XP(1)=lO.O
YP(1)=lO.O
ZZ(1)=1.0
JP(N.GT.1)THEN
ZZ(N)=O.O
ENDJP
GOTO 248

699 CONTINUE
ENDJP

JP(RE.EQ.1)THEN
GOTO 710
ENDJP

700 CONTINUE
710 M=1

DO 720 N=1,92798
E=IM(N)+.5
IF(E.GT..6)THEN
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G(M)=IM(N)
NNY=(N-pin)/wi
GX(M)=N-((NNY*wi)+pin)
GY(M)=NNY+l

C print *,'G(M)=',G(M)
M=M+l

C write(507,*) E
ENDIF

720 CONTINUE
N3=M-l
M=O

721 print *,'POINTS=',POINTS
Nl=FINISH(4)
N2=FINISH(3)
NN=in1
DO 850 NYL= 1,242
DO 840 NXL=1,375
XI =«NXL-NYL) *.1)+16.9
Yl=NYL*.1
E=O.O
DO 820 N=I,N3
PX=GX(N)*.1
PY=GY(N)*.1
AA=O.O
AA=G(N)

C print *,'AA=',AA,'PX=',PX,'PY=',PY,'POINTS=',POINTS
R=(XI-PX)*(XI-PX)
R=«YI-PY)*(YI-PY»+R
R=(R ** .5)* .5* 15.0
R=(999.0*R)+I.001
SS=O
SS=INT(R)
E8=JR(SS)*AA

C print *,'E8=',E8,'SS=',SS,'JR(SS)=',JR(SS),'AA=',AA
IF(SS.GT.20000)THEN
E8=O.O
ENDIF
E=E+E8

820 CONTINUE
E=E+.5
NNY=NYL-l

NN=(NNY*375)+NXL+2048
IMM(NN)=INT(E)

C print *,'PX=',PX,'PY=',PY,'IMM(NN)=',IMM(NN)
840 CONTINUE



850 CONTINUE 
Nl=FINISH(l) 
DO 870 N=1,92798 
NNY =(N-2048)/375 
PX= 1 .O*(N-((NNY*375)+2048)) 
PY=l.O*(NNY+l) 

C print *,'PX=',PX,'PY=',PY,'IMM(N)=',IMM(N) 
GOT0 1 

870 CONTINUE 
900 STOP 

END 
SUBROUTINE BES(FF,B) 
INTEGER o,B,UU 
DOUBLE PRECISION ARG,AN 
DOUBLE PRECISION INT 1 ,INT2,INT3,ITG 
DOUBLE PRECISION Jl,kl,k2,k3,RRP 
DOUBLE PRECISION ua,u2,~4,~6,~8,ku 

C If apodizing, comment out next line 
GOT0 907 
UU=INT(B+.S) 
ua=.OOl *B 
u2=ua*ua 
u4=ua*ua*ua*ua 
~~a*ua*ua*ua*ua*ua  
u8=u4*u4 
k 1 =(sin(ua)/ua)* ((2 .O/u4)- (36.01116)) 
k2=(cos(ua)/u2)*((14.O/u4)- (36.01~6)) 
k3=(.5/~4)+(4.0/~6)+(36.0/~8) 
ku=288 .O*(kl+k2+k3) 
IF(UU.LT.49)THEN 
ku= 1 .O 
ENDIF 

C JR(UU)=ku*ku 
FF=ku*ku* .25 

C print *,'u=',u,'ku2=',ku 
905 CONTINUE 

GOT0 9 1 1 
907 RR=B*.001 

Jl=O.O 
DO 910 o=-50 JO 
AN=o* .03 14159 
ARG=RR*sin(AN) 
INT l=cos(ARG)*cos(AN)*cos(AN) 
AN=AN+.015708 
ARG=RR*sin(AN) 



IN?Z=cos(ARG)*cos(AN)*cos(AN)*4.0 
AN=AN+.015708 
ARG=RR*sin(AN) 
INT3=cos(ARG)*cos(AN)*cos(AN) 
ITG=INT 1 +INT2+INT3 
Jl=ITG+Jl 

910 CONTINUE 
FF=Jl*J1/360000.0 

91 1 FF=FF 
RETURN 
END 
SUBROUTINE BSOLVE(V,HI,D,Q) 
INTEGER I, J,Q 
DOUBLE PRECISION V(20,20), HI(20), D(20),SUM 
DO 200 I=Q, 1 ,- 1 
SUM =DO) 
DO 100 J=I+l,Q 
SUM=SUM-V(I,J)*HI(J) 

100 CONTINUE 
HI(I)=S UM/(v(I,I)+.0000000000 1 ) 

C print *,'HI=',HI,'V(IJ)=',V(I,I) 
200 CONTINUE 

RETURN 
END 
SUBROUTINE GAUSS(L,M,Q) 
INTEGER J,K,PIVOTJ,INDEX,Q 
DOUBLE PRECISION TEMP,L(20,20),M(20),RATIO,ABS 
DO 100 I=l,Q 
INDEX=I 
PIVOT=INT(ABS(L(I,I))) 
DO 200 J=I+l ,Q 
IF (AE S(L(J,I)) .GT.PIVOT) THEN 
PIVOT=INT( AE S (L( JJ))) 
INDEX=J 
ENDIF 

200 CONTINUE 
IF (INDEX.GT.1) THEN 
DO 400 K=I,Q 
TEMP=L(I,K) 
L(I,K)=L(INDEX,K) 
L(INDEX,K)=TEMP 

400 CONTINUE 
TEMP=M(I) 
M(I)=M(ZNDEX) 
M(INDEX)=TEMP 



ENDIF 
DO 300 J=I+l ,Q 
RA~O=L(J,I)l(L(I,I)+.0000000000 1) 
DO 500 K=I+l,Q 
L(J,K)=L(J,K)-L(I,K)*RATIO 

500 CONTINUE 
M(J)=M(J)-M(I)*RATIO 

300 CONTINUE 
100 CONTINUE 

RETURN 
END 



APPENDIX B 

Data transfer code 

C In this appendix we convert from dos data to 
C unix data file. 
C Thus the images taken on the ccd using the PC will be 
C transfered to the sun unix system. 

character cdata(250000)* 1 ! raw data 
character cheader(50)*42 ! 

C file header lines 
character*40 fname 
character charin, CR, LF 
integer fgetc, status 
integer*2 ilow, ihigh 
integer mdata(150000),ccdata( 1000000) ! data file 
write(*,*) "Enter name of IMAGE file to process" 
read(*,*) fnarne 
open(unit=9, file=fnarne, form='unformatted') 
CR = CHAR(13) 
LF = CHAR(10) 
nline= 1 
np = 1 
do i= 1,2048 
status = fgetc(9, charin) 
if (cheader(nline)( 1 :3) .ne. 'End' ) then 
if (charin .ne. CR .and. charin .ne. LF ) then 
cheader(nline) (np:np) = charin 
np = n p +  1 
elseif (charin .eq. CR ) then 
cheader(nline)(np:np) = In' 
nline=nline+l 
np = 1 
endif 
endif 
end do 
write(*,*) (cheader(j),j=l,nline) 

C now get the integer data 
. idata-no = 0 
C do i = 2049,400000 

do while ( status .eq. 0) 
status = fgetc(9, charin) 
idata-no = idata-no + 1 
cdata(idata-no) = charin 



end do 
idatago = idata-no -1 ! account for reading 

C EOF 
write(*,'("No of bytes read is ", 2i10)') idata-no 
if ( idata-no mod 2 .ne. 0 ) then 
write(*,*) "Error in no. of data points odd no read 

C BYE" 
stop 
endif 

C now convert data 
k=O 
do i = 1, idata-no, 2 

C do i  = 1,100,2 
k = k + l  
ilow = cdata(i) 
if ( ilow .lt. 0 ) then 
ilow = ilow + 256 
endif 
if (ihigh .It. 0 )  then 
ihigh = ihigh + 256 
endif 
ihigh = cdata(i+l) 
mdata(k) = ilow + 256 * ihigh 

C write(*,'(2~4.3,3i6)') 
C 1 cdata(i), cdata(i+ 1), ilow, ihigh, mdata(k) 

end do 
DO 5 N=1,90750 
M=N+2048 
ccdata(M)=mdata(N) 

5 CONTINUE 
DO 6 N=1,2048 
d t a ( N ) = O  

6 CONTINUE 
DO 10 N=1,92798 
write(3 15,*) ccdata(N) 

10 CONTINUE 
C write(*,'("No of data pts is ", 5)') k 

stop 
end 
Program Change 
character cdata(250000)* 1 
character charin ! raw data 
character*40 fname 1 
character*40 fname2 
integer fputc, status 



integer*2 ilow, high 
integer mdata(150000) 
write(*,*) "Enter name of input file" 
read(* ,*) fname 1 
print *,'92798=data point number' 
write(*,*)"Enter number of data points" 
read(*,*) idata-no 
write(*,*)"Enter name of output file" 
read(*,*) fname2 
open(unit=8,file=fname 1) 
open(unit=9,file=fname2,form='unformatted') 
do k= 1 $data-no 
read(8,*) mdata*) 
end do 
i=O 
DO k= 1 $data-no 
ihigh=mdata(k)/25 6 
ilow=mdata(k)-256*ihigh 
IF(ilow.GT. 128)THEN 
ilow=ilow-256 
ENDIF 
IF(ihigh.GT. 128)THEN 
ihigh=ihigh-256 
ENDIF 
i=i+l 
cdata(i)=char(ilow) 
i=i+ 1 
cdata(i)=char(ihigh) 
END DO 
DO i= 1,2*idata_no 
charin--cdata(i) 
status=fputc(9,charin) 
END DO 
stop 
end 



APPENDIX C 

PLANET FINDER PROGRAM 

C Planets is the name of this program 
INTEGER W,II,S,QQ,width,QQQ,m,NNNN,~,fl 
INTEGER SS,ST,SU,SV,WW,N,NO(10000),Q 
DOUBLE PRECISION T(300300)3(300),R,HX,HY,NN 
DOUBLE PRECISION E,C(3OO),PP,SUM,SUM3,GG 
DOUBLE PRECISION NX(10000),NY(10000),RRVRAND 
DOUBLE PRECISION X(10000),Y(10000),A(10000)QX,PY 
DOUBLE PRECISION NNY(10000),NNX(10000),HH(10000) 
DOUBLE PRECISION JJ(20000),RAND,NNNX(10000) 
DOUBLE PRECISION NNNY ( 10000),abs,cos,GX(10000) 
DOUBLE PRECISION GY (10000),GA(10000),kPO 
DOUBLE PRECISION El,E2,E3,E4,HA(10000),FH 
open(12file='fort.57',status='old') 

C Fast JINCs 
C This program calculates the position 
C and brightness of planets or 
C brown dwarfs orbiting brighter stars 
C ThedatamustbeinthefomofalOOXlOO 
C data array that appears as in the read 
C statement just above line 4 . 
C HA is the CCD electron number per pixel 
C GX is the X coordinate, GY is the Y coordinate 
C of the pixel measured in number of pixels 
C N is the counter. This data is in a separate 
C file we call fortran.57 

DO 3 S=1,20000 
CALL BES(E,S) 
JJ(S)=E 

3 CONTINUE 
print *,'BESSEL DONE' 
width=lOo 
FHd.0 
FO4.O 

C write to write(5 I,*) X,A 
DO 4 N=1,10000 

c ....................................... 
read( l2,*) N,GX(N),GY(N),HA(N) 

4 CONTINUE 
c ..................................... 



print *,'HA(1375)=',HA(1375) 
DO 5 N=1,10000 
II=N/width 
III=N- @*width) 
IF(IIt.LT.2)THEN 
GA(N)=HA(N) 
GOT0 5 
ENDIF 
SS=N-width 
IF(SS .LT.2)THEN 
GA(N)=HA(N) 
GOT0 5 
ENDIF 
ST=N+width 
IF(ST.GT.9999)THEN 
GA(N)=HA(N) 
GOT0 5 
ENDIF 
SU=N+l 
SV=N- 1 
E 1 =HA(SS)+HA(ST)+HA(SU)+HA(SV) 
GA(N)=((E1+(2*HA(N)))/6.0)+(FH*GA(N)) 
GA(N)=GA(*(((GA(N)*FO)+ l)*FH) 

5 CONTINUE 
S=l 

C Density of Data 
DO 7 YY=5,95,15 
DO 6 XX=5,95,15 
NNNN=((width*~Y- 1 ))+XX) 
NO(S)=NNNN 
S=s+l 
NNN=NO(S) 

6 CONTINUE 
7 CONTINUE 

Q=S- 1 
S=Q 
DO 9 N=1,10000,10 
II=N/width 
m=N-@*width) 
IF(III.LT.2)THEN 
GOT0 9 
ENDIF 
SS=N-width 
ST=N+width 
SU=N+ 1 



SV=N- 1 
El  =HA(SS)-HA(N) 
E2=HA(ST)-HA(N) 
E3=abs(El+E2) 
E4=abs(El -E2) 
IF(E3 .GT.E4)THEN 
NO(S)=N 
S=S+l 
GOT0 9 
ENDIF 
E l=HA(SU)-HA(N) 
E2=HA(SV)-HA(N) 
E3=abs(El+E2) 
E4=abs(E 1 -E2) 
IF(E3 .GT.E4)THEN 
NO(S)=N 
S=S+l 
ENDIF 

9 CONTINUE 
QQQ=S- 1 
QQQ=Q 
sUM3=1OOOOOOOOOOOOOOOOOOO00000000000.0 
m=i 
DO 15 II= 1 ,QQQ 
NN=NO(II) 
N=INT(NN) 
PP=HA(N) 
IF(PP.GT.. 1)THEN 
C(III)=PP 
NmJJ=GX(N) 
W(II[I)=GY(N) 
X(II[I)=GX(N) 
Y@I)=GY(N) 

C print * ,'X(IJI)=',X(m),'Y (III)=',Y (IU) 
A@I)=GA(N) 
m=m+i 
ENDIF 
QQ=III-1 

15 CONTINUE 
C Set duration of program run here 

DO 30 NN=1,1000000 
W=l 
DO 18 II=l,QQ 
PP=A(II) 
C(W)=PP 



R4.O 
RR4.0 
HX=X(II) 
HY=Y (11) 
DO 16 III=l,QQ 
El=abs(NX(III)-5 .O) 
E2=abs(NY(III)-5 .O) 
GG=1 .o 
IF(E1 .LT..OOl)THEN 
IF(E2.LT..OO 1)THEN 
GG=.O 1 
ENDIF 
ENDIP 
RAND=3207604736.9830*II*NN+m*m 
RAND=cos(RAND) 
RAND=(3.14159/2.0)*RAND 
RAND=abs(RAND) 
RAND=cas(RAND)-.5 

C Set Random Number size here 
PX=NX(III)+(RAND* 1.5 *GG) 
NNX(m)=PX 
~~~~=9337470372.3207*~~*rn+n*n 
RAND=cos(RAND) 
RAND=(3.14159/2.0)*RAND 
RAND=abs(RAND) 
RANDxos(RAND)- .5 
PY=NY(III)+(RAND* 1.5*GG) 
GG=l.O 
NNX(III)=PX 
NNY(m)=PY 
R=(HX-PX) *(HX-PX) 
R=R+((HY-PY)*(HY-PY)) 
R=R**.S 
RR=(999.0*R)+1.001 
S 4  
S=INT(RR) 
T(~,W=O.O 
E=JJ(S ) 
T(W,III)=E 

16 CONTINUE 
W=W+l 

18 CONTINUE 
20 CALL GAUSS(T,C,QQ) 

CALL BSOLVE(T,Z,C,QQ) 
SUM4.0 



DO 24 N=l ,QQ 
SUM=SUM+abs(Z(N)) 

24 CONTINUE 
IF (SUM.GT.SUM3)THEN 
GOT0 30 
ENDIF 
DO 25 N=l ,QQ 
IF(abs(Z(N)).GT+SUM3)THEN 
GOT0 30 
ENDIF 

25 CONTINUE 
SUM3=SUM 
print *,'SUM3=',SUM3 
DO 26 N=l,QQ 
HH(N)=Z(N) 
NNNx(N)=NNx(N) 
N N N y ( N ) = ~ ( ' )  

26 CONTINUE 
DO 27 N=l ,QQ 
PRINT *,'K=',Z(N),'PX 1 =',NNNX(N) 
print *,'PY 1 =',NNNY (N) 
print *,' ' 

27 CONTINUE 
30 CONTINUE 

DO 40 N=l,QQ 
k=HH(N) 
Write(53,*)NNNX(N)m(N),k 

40 CONTINUE 
STOP 
END 
SUBROUTINE BES(FF,B) 
INTEGER B,o 
DOUBLE PRECISION RRR,FT,W 
DOUBLE PRECISION J1 ,ITG,ARG,AN 
DOUBLE PRECISION I N T l , r n , I r n  
WW=l.O 
RRR=B*0.001*W 
Jl=O.O 
DO 2 o=-50,50 
AN=o*.0314159 
ARG=RRR*sin(AN) 
INT l=cos(ARG)*cos(AN)*cos(AN) 
AN=AN+.015708 
ARG=RRR*sin(AN) 
INT2=cos(ARG)*cos(AN)*cos(AN)*4.0 



AN=AN+.015708 
ARG=RRR*sin(AN) 
INT3=cos(ARG)*cos(AN)*cos(AN) 
ITG=INT 1 +INT'+INT3 
J 1 =KG+ J 1 

2 CONTINUE 
FF=(J1*.00166667)*(J1*.001666667) 
RETURN 
END 
SUBROUTINE BSOLVE(V,HI,D,QQQQ) 
INTEGER I,J,=,QQQQ 
DOUBLE PRECISION V(300,300),HI(300) ,D(300),SUM 
EE=QQQQ 
DO 200 I==, 1 ,- 1 
SUM=D(I) 
DO 100 J=I+l ,EE 
SUM=SUM-V(I,J)*HI(J) 

100 CONTINUE 
HI(I)=SUM/V(I,I) 

200 CONTINUE 
RETURN 
END 
SUBROUTINE GAUSS(L,M,QQQ) 
INTEGER J,K,I,INDEX,PIVOTP,QQQ 
DOUBLE PRECISION TEMP&(300,300),M(300),RATIO,ABS 
m=QQQ 
DO 100 I = l P  
INDEX=I 
PIVOT=ABS (L(1,I)) 
DO 200 J=I+l ,IT 
IF (ABS(L(J,I)).GT.PIVOT)THEN 
PIVOT=ABS (L(J,I)) 
INDEX=J 
ENDIF 

200 CONTINUE 
IF(INDEX.GT.I)THEN 
DO 400 K = I P  
TEMP=L(I,K) 
L(I,K)=L(INDEX,K) 
L(INDEX,K)=TEMP 

400 CONTINUE 
W - M ( I )  
M(I)=M(INDEX) 
M(INDEX)=TEMP 
ENDIF 



DO 300 J=I+ 1- 
RATIO=L(JJ)/L(I[,I) 
DO 500 K=I+l,W 
L(J,K)=L(J,K)-L(I,K)*RATIO 

500 CONTINUE 
M(J)=M(J)-M(I)*RATIO 

300 CONTINUE 
100 CONTINUE 

RETURN 
END 



APPENDIX D 

NYQUIST SAMPLING PROGRAM FOR KNOWN SOURCE NUMBERS 

PROGRAM RESOLUTION 
IN'IEGER I,U,G,Nl,N2,N3,N,S 
DOUBLE PRECISION T(20,20),C(20)Z(20),X(20) 
DOUBLE PRECISION E,Y ,K 1 ,K2,K3,P,P1 ,P2,P3 
DOUBLE PRECISION H(20),F(20),SQ,PP,Xl ,X2,X3 
DOUBLE PRECISION S l,S2,S3,Al&,A3,PP,SNR 
DOUBLE PRECISION JR(20000),R,SUMM,S4,S2 
DO 3 1=1,20000 
CALL BES(R,I) 
JR(I)=R 

3 CONTINUE 
u=3 

C Use Bessel Function 0 extrapolation 
C from the amplitude graphs to 
C set do loop limits. Find that one can 
C estimate the positions of the outer two 
C objects . Thus that is how the outer two limits are 
C set in DO 30 and DO 28 

S4=1000000000000.0 
S3= 1000000000.0 
S1=10000.0 

DO 30 N1=-210,-195 
DO 29 N2=- 194,194 
DO 28 N3=195,205 

C X=-2,1,2 
C A= 1,.3,2 

H(l)=-8.6 
F(l)=-.0337 
H(2)=-6.8 
F(2)=.005569 
H(3)=-4.8 
F(3)=. 1 11 
H(4)=-3.8 
F(4)=. 1972 
H(5)=- 1.8 
F(5)=.548 1 
H(6)=.8 
H(6)=1.126 
H(7)=1.8 
F(7)=1.137 



H(8)=2.6 
F(8)= 1.0068 
H(9)=4.8 
F(9)=.284 
H(10)=6.0 
F(10)=-0.02335 
H(l l)=7.2 
F(l l)=-. 12 
H(12)=10.0 
F(12)=.048216 
X(l)=-3.8 
C(l)=. 1972 

C Keep H s and X s approximately same for 
C accurate sampling for least squares 
C algorithm to work properly 

X(2)= 1.4 
C(2)=1.1554 
X(3)=3.8 
C(3)=.6364 
DO 15 I=l,U 
PP=N1*0.01002 
P=PP 

T0, l )d .O 
RRR=(X(I)-P)*(X(I)-P) 
RRR=RRR**.S 
RRR=(999.0*RRR)+ 1.00 1 
S=O 
S=INT(RRR) 
E=JR(S) 
T(I, l)=E 
PP=N2*0.01001 
P=PP 
T(I,2)=0.0 
RRR=(X(I)-P)*(X(I)-P) 
RRR=RRR* * .5 
RRR=(999.0*RRR)+ 1.00 1 
S=O 
S=INT(RRR) 
E=JR(S) 
T(I,2)=E 
PP=O.O1006*N3 
P=PP 
T(I,3)=0.0 
RRR=(X(I)-P) * (X(1)-P) 
RRR=RRR**.5 



RRR=(999.0*RRR)+ 1.00 1 
S 4  
S =INT(RRR) 
E=JR(S) 
T(I,3)=E 

15 CONTINUE 
Z(l)=O.O 
Z(Z)=O.O 
Z(3)a.O 

20 CALL GAUSS(T,C,U) 
CALL BSOLVE(T,Z,C,U) 
SOM=O.O 
S Q 4 . 0  
DO 27 G=1,10 
P=N1*.01002 
RRR=(H(G)-P)*(H(G)-P) 
RRR=RRR** .5 
RRR=(999.0*RRR)+1.001 
S=O 
S=INT(RRR) 
E=JR(S) 
Al=E*Z( 1) 
PP=N2*0.01001 
P=PP 
RRR=(H(G)-P)*(H(G)-P) 
RRR=RRR** .5 
RRR=(999.0*RRR)+ 1.001 
S=O 
S =INT(RRR) 
E=JR(S) 
A2=(E*Z(2))+A 1 
PP=N3*0.01006 
P=PP 
RRR=(H(G)-P)*(H(G)-P) 
RRR=RRR** .5 
RRR=(999.0*RRR)+ 1.001 
S=O 
S=INT(RRR) 
E=JR(S) 
A3=(E*Z(3))+A2 
SOM=(A3-F(G)) * (A3-F(G)) 
SQ=SOM+SQ 
IF(abs(SQ).LT. 1O.O)THEN 
GOT0 23 
ENDIF 



GOT0 27 
23 DO 24 N=1,3 

IF(abs(Z(N)).GT. 10.O)THEN 
GOT0 27 
ENDIF 
IF(Z(N) .LT.O.O)THEN 
GOT0 27 
ENDIF 

24 CONTINUE 
C print *,'Pl=',N1*.1002,'P2=',N2*. 1001,'P3=',N3*. 1006,'SQ=',SQ 
C print *,'S3=',S3,'S4=',S4 

Sl=l.O*SQ 
SQ4.0  
IF(S 1 .GT.S3)THEN 
GOT0 27 
ENDIF 
S2=abs(Z(l))+abs(Z(2))+abs(Z(3)) 

C IF(S 2 .LT.2.998)THEN 
C GOTO27 
C ENDIF 

S3=S 1 
S4=S2 
Kl=Z(l) 
K2=Z(2) 
K3=Z(3) 
X1=N1*0.01002 
X2=N2*0.01001 
X3=N3*0.01006 
print *,'Pl=',Xl,'P2=',X2,'P3=',X3 
print *, 'S3=',S3,'S4=',S4 
print * ,'K 1 =',K1 ,'K2=',K2,'K3=',.K3 

27 CONTINUE 
28 CONTINUE 
29 CONTINUE 
30 CONTINUE 

write(52,*) 'kl=',Kl,",'Pl=',Xl,'K2=',K2,",'P2=',X2 
write(52,*) 'K3=',K3,'P3=',X3 
write(52,*) 'X=-2,0,2 Equal Arnplitude,SNR>lOOO' 
PRINT *,'Kl=',Kl ,'P 1 =',XI ,' ','K2=',K2,'P2=',X2 
print * ,'K3=',K3,'P3=',X3," 
STOP 
END 
SUBROUTINE BES(FF,B) 
INTEGER o,B 
DOUBLE PRECISION J1 ,ARG,AN 



DOUBLE P m I S I O N  RR,INTl ,INn,INT3 
DOUBLE PRECISION I T G P  
RR=B*.001 
J 1 4 . 0  
DO 2 o=-50,50 
AN=o*.0314159 
ARG=RR*sin(AN) 
INT 1 =cos(ARG)*cos (AN) *cos (AN) 
AN=AN+.O15708 
ARG=RR*sin(AN) 
INT2~os(ARG)*cos(AN)*cos(AN)*4.0 
AN=AN+.O 15708 
ARG=RR*sin(AN) 
INT3=cos(ARG)*cos(AN)*cos(AN) 
ITG=INT 1 +INT2+INT3 
Jl=ITG+Jl 

2 CONTINUE 
FF=J1*.00166667 
RETURN 
END 
SUBROUTINE BSOLVE(V,HI,D,Q) 
INTEGER I,J,Q ' 

DOUBLE PRECISION V(20,20), HI(20), D(20),SUM 
DO 200 I=Q, 1 ,-1 
SUM =D(I) 
DO 100 J=I+ 1 ,Q 
SUM=SUM-V(I,J)*HI(J) 

100 CONTINUE 
HI(I)=SUM/(V(I,I)+.00000000001) 

C print *,'HI=',HI,'V(I,I)=',V(I,I) 
200 CONTINUE 

RETURN 
END 
SUBROUTINE GAUSS(L,M,Q) 
INTEGER J,K,PIVOT,I,INDEX,Q 
DOUBLE PRECISION TEMP,L(20,20),M(20),RATIO,ABS 
DO 100 I=l,Q 
INDEX=I 
PIVOT=INT(ABS(L(I,I))) 
DO 200 J=I+ 1 ,Q 
IF (ABS(L(J,I)) .GT.PIVOT) THEN 
PIVOT=INT(AB S (L(J,I))) 
INDEX=J 
ENDF 

200 CONTINUE 



IF (INDEX.GT.1) THEN 
DO 400 K=I,Q 
TEMP=L(I,K) 
L(I,K)=L(INDEX,K) 
L(INDEX,K)=TEMP 

400 CONTINUE 
TEMP=M(I) 
M(I)=M(INDEX) 
M(1NDEX) =TEMP 
ENDF 
DO 300 J=I+l ,Q 
RATIO=L(J,I)/(L(I,I)+.0000000000 1) 
DO 500 K=I+l,Q 
L(J,K)=L(J,K)-L(r,K)*RATIO 

500 CONTINUE 
M(J)=M(J)-M(I)*RATIO 

300 CONTINUE 
100 CONTINUE 

RETURN 
END 



APPENDIX E 

NYQUIST SAMPLING WITH EDGE POSITIONS KNOWN 

PROGRAM RESOLUTION 
INTEGER I,U,G,Nl,N2,N3,N,S 
DOUBLE PRECISION T(20,20),C(20),Z(20),X(20) 
DOUBLE PRECISION E,Y,Kl ,K2,K3,P,P1 ,P2,P3 
DOUBLE PRECISION H(20),F(20),SQ,PPJ[l ,X2,X3 
DOUBLE PRECISION S 1 ,S2,S3,A1 ,A2,A3,PP,SNR 
DOUBLE PRECISION JR(20000),R,SUMM,S4,S2 
DO 3 1=1,20000 
CALL BES(R,I) 
JR(I)=R 
CONTINUE 
u=3 
Use Bessel Function 0 extrapolation 
from the amplitude graphs to 
set do loop limits. Find that one can 
estimate the positions of the outer two 
objects . Thus that is how the outer two limits are 
set in DO 30 and DO 28 
S4=1000000000000.0 
S3=1000000000.0 
S 1 = 1 m . o  
DO 30 N1=-210,-195 
DO 29 N2=- 194,194 
DO 28 N3=195,205 
x=-2,0,2 
A= 1,2,3 
H(l)=-7.8 
F(1)=.02642 
H(2)=-5.4 
F(2)=- -0307 
H(3)=-4.0 
F(3)=. 1 17 
H(4)=-1.8 
F(4)=1.1538 
H(5)=-.2 
F(5)=2.0762 
H(6)= 1.8 
H(6)=2.14 
H(7)=3.0 
F(7)=1.48 1 
H(8)=4.8 



F(8)=.305 
H(9)=6.8 
F(9)=-. 1757 
H(10)=10.0 
F(lO)=.078 
H(l l)=-10.0 
F(l I)=-.017836 
H(12)=1.2 
F(12)=2.2953 
X(l)=-3.2 
C(1)=.3806 

C Keep H s and X s approximately same for 
C accurate sampling for least squares 
C algorithm to work properly 

X(2)= .8 
C(2)=2.3 14 
X(3)=3.8 
C(3)=.9223 
DO 15 I=l,U 
PP=N1*0.0 1002 
P=PP 
T(I,l)=O.O 
RRR=(X(I)-P)* (X(I)-P) 
RRR=RRR**.5 
RRR=(999.0*RRR)+1.001 
S=O 
S =INT(RRR) 
E=JR(S) 
T(I, l)=E 
PP=N2*0.01001 
P=PP 
T(I,2)=0.0 
RRR=(X(I)-P)*(X(I)-P) 
RRR=RRR** .5 
RRR=(999.0*RRR)+ 1.00 1 
S=O 
S =INT(RRR) 
E=JR(S) 
T(I,2)=E 
PP=O.O1006*N3 
P=PP 
T(I,3)=0.0 
RRR=(X(I)-P)*(X(I)-P) 
RRR=RRR** .5 
RRR=(999 .O*RRR)+ 1.00 1 



S=O 
S=INT(RRR) 
E=JR(S) 
T(I,3)=E 

15 CONTINUE 
Z(1)d.O 
Z(2)=0.0 
Z(3)=0.0 

20 CALL GAUSS(T,C,U) 
CALL BSOLVE(T,Z,C,U) 
SOMd.0 
SQd.0  
DO 27 G=1,10 
P=N1*.01002 
RRR=(H(G)-P)*(H(G)-P) 
RRR=RRR**.5 
RRR=(999.O*RRR)+1.001 
S=O 
S=INT(RRR) 
E=JR(S) 
Al=E*Z(l) 
PP=N2*0.01001 
P=PP 
RRR=(H(G)-P)*(H(G)-P) 
RRR=RRR** .5 
RRR=(999.0*RRR)+1.001 
s=O 
S=INT(RRR) 
E=JR(S) 
A2=(E*Z(2))+Al 
PP=N3*0.01006 
P=PP 
RRR=(H(G)-P)*(H(G)-P) 
RRR=RRR**.5 
RRR=(999.0*RRR)+ 1.00 1 
S=O 
S=INT(RRR) 
E=JR(S) 
A3=(E*Z(3))+A2 
SOM=(A3-F(G))*(A3-F(G)) 
SQ=SOM+SQ 
IF(abs(SQ).LT. 10.O)THEN 
GOT0 23 
ENDIF 
GOT0 27 



23 D024N=1,3 
IF(abs(Z(N)).GT. 1O.O)THEN 
GOT0 27 
ENDIF 
IF(Z(N).LT.O.O)THEN 
GOT0 27 
ENDIF 

24 CONTINUE 
c print 
C print *,'S3=',S3,'S4=',S4 

Sl=l.O*SQ 
SQ=O.O 
IF(S 1 .GT.S3)THEN 
GOT0 27 
ENDIF 
S2=abs(Z(l))+abs(Z(2))+abs(Z(3)) 

C IF(S2 .LT.2.998)THEN 
C GOTO27 
C ENDIP 

S3=S 1 
S-2 
Kl=Z(l) 
K2=Z(2) 
K3=Z(3) 
Xl=N1*0.01002 
X2=N2*0.01001 
X3=N3*0.01006 
print *,'P 1 =I$( 1 ,'P2=',X2,'P3=',X3 
print *, 'S3=',S3,'S4=',S4 
print * ,'K 1 =',K1 ,'K2=',K2,'K3=',K3 

27 CONTINUE 
28 CONTINUE 
29 CONTINUE 
30 CONTINUE 

write(52,*) 'kl=',Kl,",'Pl=',Xl ,'K2=',W,",'P2=',X2 
write(52,*) 'K3=',K3,'P3='$(3 
write(52,*) 'X=-2,0,2 Equal Arnplitude,SNR>loOo' 
PRINT *,'Kl=',Kl,'Pl=',Xl ,' ','K2=',K2,'P2=',X2 
PRINT *,'K3=',K3,'P3=',X3," 
STOP 
END 
SUBROUTINE BES(FF3) 
INTEGER o,B 
DOUBLE PRECISION J1 ,ARG,AN 
DOUBLE PRECISION RR,INTl ,INT2,INT3 



DOUBLE PRECISION l T G m  
RR=B*.001 
Jl=O.O 
DO 2 o=-50,50 
AN=o* .03 14159 
ARG=RR*sin(AN) 
INT 1 =cos(ARG)*cos(AN)*cos(AN) 
AN=AN+.O15708 
ARG=RR*sin(AN) 
~=cos(ARG)*cos(AN)*cos(AN)*4.0 
AN=AN+.015708 
ARG=RR*sin(AN) 
INT3=cos(ARG)*cos(AN)*cos(AN) 
lTG=INT 1 +INT'+INT3 
Jl=ITG+Jl 

2 CONTINUE 
FF=J 1 * .OO 166667 
RETURN 
END 
SUBROUTINE BSOLVE(V,HI,D,Q) 
INTEGER 1,J.Q 
DOUBLE PRECISION V(20,20), HI(20), D(20),SUM 
DO 200 I=Q, 1 ,- 1 
SUM =D(I) 
DO 100 J=I+l,Q 
SUMzSUM-V(I,J)*HI(J) 

100 CONTINUE 
HI(I)=SUM/(v(I,I)t.0000000000 1) 

C print *,'HI=',HI,'V@,I)=',V(I,I) 
200 CONT'KNUE 

RETURN 
END 
SUBROUTINE GAUSS(L,M,Q) 
INTEGER J,K,PIVOT,I,INDEX,Q 
DOUBLE PRECISION TEMP,L(20,20),M(20),RATIOMS 
DO 100 I=l,Q 
INDEX=I 
PIVOT=INT(ABS (L(1,I))) 
DO 200 J=I+l,Q 
IF (ABS(L(J,I)) .GT.PIVOT) THEN 
PIVOT=INT( AB S (L(J,I))) 
INDEX=J 
ENDIF 

200 CONT'KNUE 
IF (INDEX.GT.1) THEN 



,
I

151
DO 400K=I,Q
TEMP=L(I,K)
L(I,K)=L(INDEX,K)
L(INDEX,K)=TEMP
400 CONTINUE
TEMP=M(I)
M(I)=M(INDEX)
M(INDEX)=TEMP
ENDIF

DO 300 J=I+1,q
RA TIO=L(J,I)/(L(I,I)+.OOOOOOOOOO 1)
DO 500 K=I+1,Q
L(J,K)=L(J,K)-L(I,K)*RA TIO

500 CONTINUE
M(J)=M(J)-M(I)*RATIO

300 CONTINUE
100 CONTINUE

RETURN



APPENDIX F 

OTHER SUPERESOLUTION TECHNIQUES 

INTRODUCTION 

Here we introduce miscellaneous techniques that are related to the issues addressed 

in the previous chapters. Apodization is introduced as a possible method of increasing 

superresolution. Recall the second derivative technique from the introduction. The non 

PSF ring images would tend to add substantial second derivatives to the intensity and thus 

be counted as sources. But the method of apodization here eliminates these rings around 

the PSF s and so you would think that the second derivative technique would be enhanced. 

The magnification used here is rather large since one PSF fills the whole field of 

view which is about 242 by 375 pixels. Recall that the scale of the noise is on the order of 

the scale of a pixel so the noise can be easily suppressed by smoothing without greatly dis- 

torting the PDF. Thus we review the method of fourth differences as a way to smooth the 

data. Thus we do not need the iterative stochastic techniques that dominate optical decon- 

volution these days. See chapter 2 for a discussion of these techniques. 

F. 1 PSF CAUSED BY APERTURE OF VARIABLE OPACITY 

Here we discuss the situation in which there is a varying opacity1. 

We pick as the normalized pupil function 



enough in space so that the second derivative doesn't change very much over a few mea- 

surements. We next assume that over 5 measurements that the points fit on a parabola of 

the form 

Since we are dealing with 5 data (not 3) we must here use the principle of the least 

squares. Thus we write: 

We minimize this quantity with respect the a,b,c coefficients in equation (F.2.1). The data 

points here are x=-2,-1,0,1,2. These we simply plug into equation (F.4.2)and get: 

We take the derivative of equation (F.2.3)with respect to c and equate it to zero to get the 

condition of a minimum of equation (F.2.3) with respect to c. This condition is then: 

We next take the derivative of equation (F.2.2) with respect to a and get: 

So we solve equation (F.2.4) and (F.2.5) for a and get: 

We next plug in this and solve for c in equation (F.2.5) and get: 



Next we take the derivative of equation (E2.8) with respect to c and set that equal to zero. 

The result for minimum gives us that 

Thus the key is to smoothing the PSF's is to plug in the results of equations 

(F.2.7), (F.2.4) and (F.2.10) into equation (F.2.1) at each data point. Then we fill in the 50 

points on each side of the data PSF to create the PSF table. Recall that we needed this 

table to get computer speed fast enough to solve our coherent superresolution problem. 

This also allows us to take into account some optical system aberrations as well. This 

method was not used here. Discontinuities occur at the end of each polynomial evaluation 

which cause false ridges to appear in the data. Here we just connect the data points by 

straight lines instead of using the above technique 

SUMMARY 

Here we analysed some techniques for doing superresolution using apodization. 

We found in the simulations that they don't work. We also tried to smooth our data using 

the method of fourth differences. We found in our simulations that didn't work also. 
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