
Rapid Speaker Adaptation
for

Neural Network Speech Recognizers

Daniel Clark Burnett

B.S., Harvey Mudd College, 1990

A dissertation submitted to the faculty of the

Oregon Graduate Institute of Science and Technology

in partial fulfillment of the

requirements for the degree

Doctor of Philosophy
III

Computer Science and Engineering

April 1997

The dissertation "Rapid Speaker Adaptation for Neural Network Speech Recognizers"

by Daniel Clark Burnett has been examined and approved by the following Examination

Committee:

Mark Fanty
Associate Professor
Thesis Research Adviser

Ronald Cole
Professor and Director
Center for Spoken Language Understanding

Hylek Hermansky
Associate Professor

"7

J~an Cohen
ember of the Research Staff

Center for Communication Research
Institute for Defense Analyses

11

Acknowledgements

I most gratefully acknowledge the support of the National Science Foundation and the

Office of Naval Research for their financial support on grants GER 9354959 and NOOOl4-

94-1-1154, respectively. In addition, there are many individuals to whom I owe a great

deal of thanks for their support these past few years. In addition to thesis committee

members Jordan Cohen and Hynek Hermansky, extra thanks go to:

Mike Noel, for his help with the Huh? corpus data collection and many, many dis-

cussions during the past six years.

Don Colton, whose behavior gave me many good examples of how to get things done.

Kay Berkling, who pointed me to books on how to write that I should have read five

years ago.

Philipp Schmid, who was always there as a backdrop against which I could splatter

my ideas and rebuild them into a more cohesive whole.

Ronald Cole, who both supported me through difficult times (for both me and CSLU)

and gave me opportunities to show what I could and could not do.

Mark Fanty, who pushed without shoving.

Bill McDonald, who helped me remember and rediscover why.

And my wife, Marina, whose support cannot be measured, cataloged, or even compre-

hended.

iii

Contents

Acknowledgements. .. III

Abstract. x

1 Introduction

1.1 Thesis Outline

1

3

2 Speech Recognition with Neural Networks

2.1 The Speech Recognition Problem

2.2 Hybrid Systems
2.2.1 Architecture

2.2.2 Evaluation and Training .

4

4

7

8

8

3 Review of Adaptation Literature
3.1 SpeakerAdaptation/Normalization.

3.1.1 Speaker Categorization Approaches .
3.1.2 Data/Feature Transformation Approaches

3.1.3 Model Transformation Approaches
3.2 This Thesis in Context

13

13

16

17

19

22

4 Datasets

4.1 The OGI30000 Numbers corpus

4.2 The TIDIGITS corpus.

4.3 The PhoneBook corpus.

4.4 The Huh? corpus. .
4.4.1 Collection....

4.4.2 Transcription..

4.4.3 Corpus statistics

4.4.4 Perceptual Study

23
23

24
24

25
25

25

27
28

iv

5 Rapid Retraining of the Neural Network 31
5.1 Description 31
5.2 Confusable-wordtask 32

5.3 Experiments . .. 34
5.3.1 Experiment 1: Improving target word performance 36

5.3.2 Experiment 2: Reducing training time . 38

5.3.3 Experiment 3: Incremental retraining 46
5.3.4 Final Results 58

5.4 Summary 61

6 ParameterOptimization... ... 62
6.1 Motivation 62

6.2 Bark offset parameter .. . 63
6.2.1 Frequency scale warping 66
6.2.2 Implementation.. 67

6.3 Optimization 71

6.3.1 Implementation. 74
6.4 Experiments 76

6.4.1 Children's digit strings. 76
6.4.2 Normalization using adults' digit strings 79
6.4.3 Medium vocabulary isolated word task - the PhoneBook corpus 82

6.5 Summary . 89

7 Discussion & Conclusions. 91

7.1 Summary and Discussion 91
7.2 Future work. 94

Bibliography .. .101

A Huh? call list and protocol

A.1 Sample call list . .

A.2 Collection protocol

.108

.108

.110

Biographical Note. .113

v

List of Tables

4.1 Number of speakers in the TIDIGITS dataset. . . 24

4.2 Huh? corpus: Desired words and their frequencies. . 26

4.3 Statistics-Huh? corpus. 27
4.4 Huh? corpus perceptual study subject performance. 30

5.1 Divisionof a speaker's utterances into adaptation and evaluation sets. . .. 33
5.2 Development and test adaptation and evaluation set sizes. 34
5.3 (Exp 1) Development set: 50 speaker-dependent, 50 speaker-independent

vectors/category, 10 training iterations. 39

5.4 Development set: 10 vectors/category, learning rate of 0.4, and 5 training
iterations.. .. 45

5.5 (Exp 2) Development set: 50 speaker-dependent, 10 speaker-independent

vectors/category, learning rate of 0.4, and 5 training iterations. 46
5.6 Developmentset: confusablepairs (Exps 1 and 2). 47
5.7 50 development set speakers, retraining progressionof 5-10-15-20:confus-

able pair performance.. 50

5.8 50 developmentset speakers, retraining progressionof 10-20-30-40:confus-
able pair performance.. .. 50

5.9 50 development set speakers, retraining progression of 15-30-45: confusable

pair performance.. .. 51

5.10 50 development set speakers, retraining progression of 20-40-50: confusable

pair performance.. .. 51

5.11 50 development set speakers, retraining progression of 1-5-25: confusable

pair performance.. .. 53
5.12 50 development set speakers, retraining progression of 2-6-18: confusable

pair performance. .. 53

5.13 50 development set speakers, retraining progression of 3-9-27: confusable

pair performance.. .. 54

5.14 Development set, retraining progression of 2-10-20: confusable pair perfor-
mance. 56

vi

5.15 Development set, retraining progression of 3-12-24: confusable pair perfor-
mance. .. 56

5.16 (Exp 3) Development set: 10 speaker-independent vectors/category, re-

training progression of 3-12-24 speaker-dependent vectors/category 57
5.17 Test set: target and non-target results using parameter settings of Experi-

ments 1-3.. .. 59

5.18 Test set: confusable pair performance results using parameter settings of

Experiments1-3. .. 60

6.1 OGI 30000 Numbers-trained recognizer adapted to children's TIDIG-
ITS utterances.. .. 77

6.2 Adult TIDIGITS-trained recognizer adapted to children's TIDIGITS ut-
terances. .. 78

6.3 Normalized adult-speech OGI 30000 Numbers network adapted to and
tested on adults. .. 81

6.4 30 development set speakers: overall performance using median (of 76 ut-

terances)offset. .. 84
6.5 30 development set speakers: varying number of utterances used to select

offset. 88

6.6 PhoneBook test set: final adaptation results. 89

vii

List of Figures

2.1 Components of a Spoken Language System. 5
2.2 Three-layer neural network . 8
2.3 Feed-forwardcomputation. 9

3.1 SpeakerAdaptation. .. 14

3.2 Adaptation vs. Normalization. 15

3.3 Data transformation vs. Model transformation vs. Speaker clustering. .. 16

4.1 Huh? corpus: WWW registration form. 26
4.2 Huh? corpus perceptual study: user interface. 29

5.1

5.2
Speaker #091, varying vector set size: "help" recognition.

Speaker #091, varying learning rate and vectors/category:
tion rate.

40

. 41

5.3 Speaker #077, varying learning rate and vectors/category: "help" recogni-
tion rate. 42

.

"help" recogni-

5.4 Speaker #128, varying learning rate and vectors/category: "help" recogni-
tion rate.

Development set, varying learning rate and number of training iterations:

"help" recognition rate.

5.5

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11

Males and children: sample vowel on Hertz scale.

Males and children: sample vowel on Bark scale.

Males and shifted children: sample vowel on Bark scale.
Plot of Hz-to-Bark conversion function.

Males: sample vowel on Hz and Bark scales.
Criticalband filter.

Effects of different Bark scale offsets on a sample spectrum.

Sample change in recognizer score as a function of Bark offset.

Example of Brent's method. .

Speaker f09: optimal offsets. .

Speaker fOd: optimal offsets. .

viii

. 43

44

64

65

65

68

68

69

70

71

75

85

85

6.12

6.13

6.14

Speaker mh7: optimal offsets. .. 86
Speakermh9:optimaloffsets.. .. 86

30 development set speakers: scatterplot of performance before and after

using median (of 76 utterances) offset. 87
PhoneBook test set: scatterplot of pre- and post-adaptation results. ... 906.15

ix

Abstract

Rapid Speaker Adaptation
for

Neural Network Speech Recognizers

Daniel Clark Burnett

Supervising Professor: Mark Fanty

The most successful speaker adaptation approaches today are, first, designed for use in a

Hidden Markov Model-based recognizer, and second, either too slow or require too much

adaptation speech. This thesis examines approaches for rapidly adapting neural network-

based speech recognition systems to a new speaker using little adaptation speech, in some

cases only a single word.

Two methods are described, both of which are rapid enough to be used on-line. The

first method is a model-based retraining of weights in the neural network, while the second

is a feature-space parameter adjustment. In the first approach, the goal is to improve

performance on a target word for a given speaker without seriously degrading performance

on the other words in the vocabulary. This is accomplished by retraining the hidden-

to-output weights using a combination of original training speech and new target-word

speech. Training only weights to the target outputs dramatically reduces the number

of vectors (and hence time) needed for retraining. To avoid hurting performance on

non-target words, an incremental retraining scheme is developed which trains only after

encountering an error on a target word. The initial retraining only slightly changes the

weights, with each successive retraining being slightly more aggressive. On average, this

x

approach reduced the target word error rate by 84% while increasing the non-target error

rate by 3%.

In the second approach, the recognizer score for the adaptation speech is directly

optimized by varying a Bark offset parameter, a parameter which raises or lowers frequency

components on the Bark scale. In the first of three experiments, adapting an adult-speech

trained recognizer to children's speech reduced the children's error rate on a connected

digit task by 35% using only a single digit as adaptation speech. In the second experiment,

normalization to adults' digits reduced the error rate for adults by 32% using only a

short (3-5 digits) string. A final experiment on a medium-vocabulary isolated word task

produced a word-level error rate reduction of 7.5% using only 8 words as adaptation

speech. For those speakers whose baseline performance was between 40 and 70%, the

improvement was 13.3%.

xi

Chapter 1

Introduction

It is important that real-world speech recognition systems work for as many people as

possible; otherwise someone may be denied a service or a business may lose a customer.

Unfortunately, even high-performance recognition systems occasionally encounter indi-

vidual speakers for whom performance is low. An important strategy for achieving the

maximum user throughput is to rapidly (during one session) adapt the recognizer. Such

rapid adaptation will necessarily be based on a small amount of data-perhaps a single

word.

A simple example is that of a voice-only World Wide Web browser that allows one to

say common commands such as help, back, home, and reload. For the sake of argument,

assume that the recognizer accurately recognizes these words 99% of the time. Now a user

comes along, dials this WWW browser on his phone, and the first time he says back the

system gets it wrong but gives him a chance to correct it. The next time he says back

the system messes up again, and the next time, and the next time, Imagine how

frustrating this is-he will probably hang up after the third time it misses the word! For

this person, the system is useless. In a case such as this, the need to improve performance

for the speaker on this one word is critical. Moreover, the improvement must be done

quickly.

For a slightly different example, consider a system designed to automatically collect

U.S. Census information over the telephone. The goal is to have a phone number that

people can call rather than having to write down information onto a form. For the system

to succeed, it must obtain all of the information and must obtain it correctly. From the

caller's point of view, the system should be easy to use and not require the caller to

1

- -

2

repeat himself or call back later. This system would need to work well for an extremely

large number of people. What happens if the system misrecognizes a word in this case?

After fixing the error, the caller probably will not say the same word again. However, the

system might easily misrecognize a different word. If the system misses too many words,

the caller may just give up. Again, it is critical that the system's performance rapidly

improve for the speaker. Unlike in the previous example, here the system must improve

performance for any word the person might say.

Both of the above examples illustrate the need for speaker adaptation, the first one

in the restricted domain of target word adaptation for a speaker and the second one in

the domain of general speaker adaptation. For Hidden Markov Model-based recognition

systems the problem of speaker adaptation has been studied quite extensively. A common

and successful adaptation approach for these systems is to adjust the means and variances

of the various models. Since each model is typically specified by a few parameters exclusive

to that model, one can individually adjust the different models. Systems following this

approach encounter problems when adapting all of the models, since several examples for

each model are typically required in order to accurately estimate appropriate new values

for the parameters. However, this can be solved by computing and using correlations

between the parameters (e.g., mean and variance differences) for different speakers.

It would be convenient to adapt these techniques for neural network-based recognizers.

Unlike an HMM, though, a single global neural network does not have explicit mean and

variance values for each of the categories being modelled. Speaker adaptation techniques

for neural network-based recognizers have instead focused either on adding additional

input, hidden, or output layers or on completely redesigning the network architecture.

Our goal is to develop adaptation methods that are simple, rapid, and effective for

our neural network-based recognizer. Specifically, we examine two different approaches to

adaptation: a model-based rapid retraining of the network and a parameter-optimization

feature space method. In this dissertation we present descriptions of and experiments

with these two methods. The first approach reduced the target word error rate on a

confusable word task by 84% while increasing non-target word error rates by 3%. The

second approach reduced the error rate for children's speech on an adult-trained recognizer

3

by 35%. In both cases only a single adaptation word was needed.

1.1 Thesis Outline

In this dissertation we first discuss the use of neural networks for speech recognition,

followed by a review of speaker adaptation methods. We then present two methods for

adapting neural network speech recognizers to new conditions: rapid retraining and simple

parameter optimization. After presenting our experiments and associated results, we

discuss our results and present some conclusions and thoughts on ways to extend and/or

combine the two approaches.

Chapter 2

Speech Recognition with Neural
Networks

This chapter describes the speech recognition problem and how it may be addressed using

neural networks as probability estimators. Each description will consist of two parts: a

general description and a detailed description of what is used in the experiments for this

thesis.

2.1 The Speech Recognition Problem

The speech recognition problem is one of decoding. Given a word, phrase, or sentence

spoken by a person, a spoken language system (SLS) must decode the utterance into

a sequence of known words or phrases or determine that such decoding is beyond the

system's capabilities. Most such systems in use today can be described in terms of four

components: signal processing, feature selection, subword modeling, and lexical search.

These components, shown in Figure 2.1, are described below.

Signal Processing

The speech utterance, converted from pressure variations in the air into an electrical

signal, is first digitized. The digitized signal, a simple time vs. amplitude waveform, is

then analyzed to determine the strengths of the frequency components that make up

the signal. Further analysis may be performed to emphasize, de-emphasize, shift, scale,

or otherwise change these frequency component strength values to produce values more

4

5

Input jpeech

Signal Processing

Feature Selection

I Subword Modeling I

1

Lexical Search

Recognized Utterance

Figure 2.1: Components of a Spoken Language System.

suitable for later processing stages. Typically a new set of such values is computed at

regular time intervals.

The recognizers used in this thesis work were originally designed to work with telephone

speech utterances digitized at a rate of 8000 samples per second. Since the recognizers

expect to receive samples digitized at this rate, any dataset used in the experiments

which was not originally sampled at this rate was appropriately filtered and up- or down-

sampled to 8kHz. Each 10ms section of this waveform (a frame) is analyzed for frequency

components using either the PLP[22] algorithm or a variant of the algorithm known as

RASTA-PLP[23]. This seventh-order PLP analysis produces 8 cepstral coefficients that

compactly model a smoothed frequency spectrum.

Feature Selection

The values from the previous stage are then grouped to provide a set of features. To

this set may be added other measures obtained from the original signal such as pitch and

voicing information, energy estimates, change in frequency component strength values,

- ___u ..00.

6

and so on. This grouping is usually either frame-basedor segment-based.Typically frame-

based processing groups identically at regular intervals, while segment-based processing

groups based on the notion of an acoustically or otherwise relevant segment within the

speech. The segment may be a sentence, word, syllable, sub-syllable, or something even

smaller.

The feature grouping in our system is frame-based. Each frame is processed using the

same grouping; specifically, the 8 cepstral coefficients for the current frame, along with

the 8 coefficients from each of six nearby frames (covering a total of approximately 160ms

of speech), are connected to form a 56-element feature vector for the frame.

Subword modeling

Previously-trained subword models are next used to generate emission probabilities for

a set of feature vectors. Typically there is a model for each of the designated subword

units in the system (phone, phoneme, diphone, triphone, syllable, etc.) which estimates

the probability that the set of vectors could have been generated by speech from that

particular subword category. This subword modelling stage thus produces a set of emission

probabilities over time.

Our system models context-dependent (CD) phonemes using a three-layer feed-forward

artificial neural network. The network maps a single feature vector for each frame to a

new vector of CD phoneme posterior probabilities. Dividing each probability by the

corresponding prior probability for the subword category results in a vector of likelihoods

that can be used as emissionprobabilities. Thus the input to the next processingstage is

a set of CD phoneme probabilities over time. The structure and training of this network

are described in Section 2.2.

Lexical Search

Word models and grammars specify how to represent words, phrases, and sentences in

terms of the subword units. This knowledge of the allowed sequences (often with associated

transition probabilities) of subword units, along with the time-varying probabilities for the

subword units just computed, can be used to determine the most likely word, phrase, or

- ___nu_._

7

utterance represented by the speech signal.

In our system, the lexical decoding is accomplished through a Viterbi search.[18] The

search uses the CD phoneme probabilities, empirically-determined minimum and maxi-

mum durations for each CD phoneme, and a dictionary of word pronunciations to de-

termine the most likely utterance. Details of the word models and grammars vary by

experiment and are thus included in the appropriate experiment descriptions.

2.2 Hybrid Systems

Our system is actually a neural network/Hidden Markov Model (HMM) hybrid. Com-

monly, HMM systems model subword unit emission probabilities using multivariate Gaus-

sian distribution functions or mixtures of these functions. This has both advantages and

disadvantages. One advantage is that the statistical formulation of these functions is con-

venient to integrate into the statistical framework underlying the Hidden Markov Model.

The word models and grammar can also be described within the same probabilistic frame-

work, as can the lexical search. This framework allows one to treat the encoding and

decoding of speech as a statistical process from beginning to end. On the other hand, a

disadvantage of using these convenient yet arbitrary statistical distributions and model

topologies is the assumption that the emission probabilities for each speech unit can be

adequately modelled in this way, since the true distributions may in reality be quite non-

Gaussian.

Instead of using these statistical distribution functions to encode the relationship be-

tween input feature likelihoods and individual subword units, one can use an artificial

neural network. In fact, one can actually use a single network to simultaneously compute

the probabilities for all of the subword units, as we do. This hybrid approach allows one

to retain the convenient time sequence modelling properties of HMM's while gaining the

less restrictive feature-modelling characteristics of neural networks. For a more detailed

discussion of such hybrid systems, see[6].

8

Hidden
Layer

0-------

Input Layer

Figure 2.2: This figure shows a three-layer neural network. Weights connect all input units
to all hidden units and all hidden units to all output units. All connections (weights) are
feed-forward only.

2.2.1 Architecture

In this and following sections we give a brief description of our network architecture and

how we train and use it for recognition. Our network architecture is shown in Figure 2.2.

The network has 3 layers: an input layer, a hidden layer, and an output layer. Each layer

consists of a number of units, each of which has a value. There are weights connecting

every input unit to every hidden unit and weights connecting every hidden unit to every

output unit.

All of the networks in our experiments have 56 input units and 200 hidden units. The

number of output units varies for different experiments and is given in the appropriate

experiment sections.

2.2.2 Evaluation and Training

During recognition, the feature vector for a given frame is presented as input to the network

by setting the input units' values equal to their corresponding feature vector values. Feed-

forward computation is illustrated in Figure 2.3. The value of any hidden unit hx is

computed as follows. For each input unit, the product of that input unit's value and the

weight connecting the two units is computed. To the sum of these products is added an

offset value. Finally, the function f(x) = 1+~-x maps this value to one in the range (0,1)

to produce the final value for the unit. The value of an output unit is computed similarly

9

G?

[Z],
IT]
\\
@ @ C9

~ ~ ~

Figure 2.3: [Feed-forward computation.] This figure shows the computation of a hidden
unit's value using the input unit values and the input-to-hidden weights. It also shows
the similar computation of an output unit's value using the hidden unit values and the
hidden-to-output weights. Each value is computed by summing the product of the prior
layer's values with the corresponding weights, then compressing this value with a sigmoid
function to ensure that the final value is within the range of 0 to 1. In the figure, k is
the number of input units, m is the number of hidden units, n is the number of output
units, lz is the activation of the zth unit in the Ith layer (where I is i,h, or 0 for the input,

hidden, and output layers, respectively), and wxy is the weight from the yth unit to the
xth.

10

from the hidden unit values, but no offset is used to adjust the weighted sum before the

sigmoidal compression. The output values, all between zero and one, are treated as an

array of posterior probabilities for the categories modelled by the net. For example, the

first output may represent the probability that the input values for the current frame came

from a silent region of speech, the second output might represent the probability that the

input values for this frame came from an lei (the vowel found in the word "less") and so

on.

Gradient descent (back-propagation) We use gradient descent (the back-propagation

algorithm) to train our network.

The general idea behind the gradient descent algorithm is, first, to compute an error for

the output of the network when given an input pattern and, second, to adjust the weights

in the network in a manner which decreases this error. The change in the output error as

a function of a change in any given weight is referred to as the gradient of the error with

respect to the weight. To decrease the error, each weight is adjusted proportionately to

the negative of its gradient. This is referred to as gradient descent because the repetition

of this process for many input-output pairs results in a gradual "descent" through the

multidimensional error function to a minimum of the function.

The back-propagation algorithm [51]is a procedure for computing these gradient func-

tions and the corresponding weight updates. For each training input pattern, a forward

evaluation produces output values. The error between the actual and desired outputs is

then computed and "propagated back" to the inputs. The error of the hidden-to-output

weights is based on the error at the outputs. Likewise, the error of the input-to-hidden

weights is based on the error at the hidden units, which is computed using the error at

the outputs and the hidden-to-output weights, hence the term back-propagation. For a

good introduction to this algorithm, see [5, 39]. A more detailed mathematical analysis

of this and other training algorithms can be found in [54].

Specifically, our network is trained as follows. For each feature vector in the training

set,

. This vector is copied to the input units of the network, and the network outputs are

11

computed as described earlier.

. The network error for this vector is computed using the cross-entropy error function

n

E = L dj log(oj) + (1 - dj) log(1- OJ)
j=l

where n = the number of output units, OJis the actual value for output unit j, and

dj is based on the phonetic category c from which the feature vector was generated:

{

1 if the jth category is c
dj =

o otherwise

. For each weight Wji, 8Wji is computed using the back-propagation algorithm. Each

weight is then immediately updated by setting the new value of Wji = R(l) .8Wji.

R(l), the annealed learning rate, is given by

where r = nominal learning rate, t = total number of vectors used in training, and

I = total number of vectors seen so far. For example, after 5 iterations through the

training set the actual learning rate is half the nominal rate.

After the weights are updated, the process repeats for the next training pattern. In this

thesis, a single pass over all of the training examples is referred to as an iteration.

Note that this approach uses stochastic, or on-line, gradient descent to update the

weights and offsets, meaning that weight adjustments are performed after every training

pattern. It is possible to accumulate weight updates over a large number of training

examples and then apply them all at once, producing a more stable descent in the error

space. We have found, however, that combining stochastic training with an annealing

factor to gradually reduce the sizes of the weight adjustments results in more rapid training

with only a slight reduction in performance. In fact, for the large networks used in this

research this approach is the only one that allows training to complete within a reasonable

amount of time.

12

Cross-validation One issue of concern when training neural networks is knowing when

to stop. Given sufficient hidden units, a network will eventually learn the training patterns

perfectly. More desirable for speech recognition, however, is for the network to generalize

such that new unseen inputs will still be matched to the appropriate output values. The

training needs to be stopped after it has (mostly) learned the training patterns but before

it overtrains to a point where performance on new patterns suffers. In our training we

use a cross-validation set to accomplish this. After each iteration, the network is tested

on a separately-generated set of vectors, the cross-validation set. Performance typically

increases on this set up to a point, levels off, and then drops again with more training

iterations. The network with the highest cross-validation set performance is selected as

the result of the training.

- - - - -.- - -

Chapter 3

Review of Adaptation Literature

Although the techniques described in this thesis are not limited in applicability only to

speaker adaptation, the motivation for this work and the experiments performed primarily

fall into this domain. In this chapter we present a review of speaker adaptation approaches,

covering both a description of recent successful approaches and brief comments on why

these methods mayor may not be applicable to the problem we address. We conclude

with an explanation of the context within which this thesis work should be viewed.

3.1 Speaker Adaptation/Normalization

Before discussing the history of speaker adaptation, it is appropriate to present both some

relevant definitions and some dimensions often used to categorize adaptation algorithms.

In Chapter 1, we presented some motivations for speaker adaptation. The process of

adaptation is illustrated in Figure 3.1. The basic idea is to use some amount of speech,

called adaptation or enrollment speech, to improve the recognition accuracy of an existing

SLS on other utterances by the same speaker. The speech may be used in several different

ways: to change other incoming speech from the speaker, to change the internals of the

recognition system, to change the output from the recognition system, or even to select

the ideal from several different recognition systems. With so many varied ways of adapting

to a speaker it can be difficult to categorize any given system. However, there are several

dimensions and distinctions frequently used in the literature:

Normalization or Adaptation For adaptation, one takes an existing trained SLS and,

using some amount of speech from the new speaker, performs a transformation on

13

14

(chan
Input Utterance

Adaptation

Speech

?
change
model ~
(select model) ~

(change outuut
Recognized Speech

Figure 3.1: This figure shows the process of adaptation. Adaptation speech can be used
to modify other incoming speech, the recognition system itself, or the recognizer output.
It can also be used to select the recognition system out of a set.

the system, the new speaker's speech, or both to improve evaluation performance on

the speaker. With speaker normalization, the transformation is performed during

training, i.e. all speakers are normalized to appear to be the same to the 8L8. The

normalization process is, of course, needed for the evaluation of the speech of the

new speaker as well. Note that for a normalized system it would be unnatural not to

perform the transformation. Adaptation, on the other hand, is an extra (optional)

procedure that one executes to improve performance for a given speaker. These two

differences are presented diagrammatically in Figure 3.2.

Supervised or Unsupervised Supervised adaptation approaches require that the iden-

tity of the enrollment speech be known, i.e. the system must know the words the

person said. To know unequivocally the words used in the adaptation speech, it may

be necessary for the system either to direct the speaker in what to say, to confirm

with the user a guess made by the system, or to have the user spell, type, or write

what was said. Unsupervised adaptation approaches, on the other hand, do not re-

quire the system to know what the person said. Unsupervised adaptation is usually

more desirable, since it can be performed without any special requirements on the

15

Training
Set

Test Set

SLS
Nonnalized

SLS

SLS
Nonnalized

SLS
Answers

(Adapted)

Answers

(Nonnalized)

(a) Training (b) Evaluation

Figure 3.2: Adaptation vs. Normalization. This figure shows the difference during (a)
training and (b) evaluation between adapation and normalization. The difference is that
adaptation is also performed when training a normalized system.

speaker.

On-line or Off-line With off-line methods, the adaptation speech is separate from the

speech to be recognized and must be uttered and processed ahead of time. On-

line methods, on the other hand, use the utterances to be recognized as adaptation

utterances.

Data Transformation, Model Transformation, or Speaker Categorization When

adapting to the speech of a given individual, one can generally either transform the

data or the model(s). However, it is also possible to merely build different systems

for different groups of speakers. This distinction is shown in Figure 3.3.

For ease of comparison we will primarily categorize the recent work along the last

16

Input Utterance

!
~

!

Adaptation
Speech

bd

Input Utterance

!
~

!
Recognized Speech

Input Utterance

Adaptation 1
Speech , ,

C1 ~.../~
T

Recognized SpeechRecognized Speech

(a) Data transformation (b) Model transformation (c) Clustering

Figure 3.3: This figure shows the differences between the three primary methods of adap-
tation. One can transform the data or the model, or one can select a system based on a
speaker (or other) clustering.

dimension, commenting on the other dimensions as appropriate. Since speaker categoriza-

tion is not adaptation or normalization in the normal sense of modifying a system, it is a

special case and will be treated first.

3.1.1 Speaker Categorization Approaches

Probably the simplest way to incorporate speaker-specific information into a speaker-

independent system is merely to make several different systems, each trained on a group

of similar speakers. During recognition an utterance by a speaker would be used to identify

the cluster expected to best model that speaker's speech characteristics. Then, the system

corresponding to that cluster would be used to decode that and further speech by that

speaker. One common clustering based loosely on vocal tract length is a gender-based

clustering, such as that done by Abrash, et al.[l] Most recent approaches attempt to share

speaker-independent and -dependent data within their models. Ljolje [40] experimented

with adjusting mixture weights of the Gaussian mixture phone models in his HMM but

found little improvement. A popular approach that is fast and effective is hierarchical

speaker clustering.[31] The primary goal of this approach is to rapidly select a model that

has been trained on speakers similar to that of the new speaker. The system is initially

constructed by creating an HMM model for each of several reference speakers. A model

is also created for the cluster of all speakers together. Then, a distance measure is used

to split, recursively, each cluster into sub-clusters until the individual models are reached.

17

During recognition/adaptation, at every node of this tree the most likely node (using a

maximum likelihood criterion) is selected using the input speech, starting at the top and

stopping at one of the leaves. The HMM associated with the most likely node in the path

is then used for recognition. Thus, the HMM with the best combination of general and

speaker-specific traits is selected with only order log n model evaluations, where n is the

number of reference speakers.

It is also possible to include speaker-identifying information as merely another input

parameter to be modelled. Konig and Morgan [30] have experimented with using neural

networks to provide this information. For each of n clusters, they trained a network to

estimate the probability P(clusterIData) using LPC cepstral values and estimates of the

speaker's fundamental frequency. They then added n binary input units to their phonetic

probability estimator (P(Phonelcluster, Data)). Features generated from an individual's

speech were evaluated once by each of the cluster networks and then n times by the recog-

nizer network to produce outputs that could be used to estimate P(DataIPhone, cluster)

for each cluster. Unfortunately, there was very little performance improvement on the

Resource Management task [46] used for evaluation. Witbrock and Haffner [59], instead

of explicitly clustering speakers, used a neural network to compute a two-dimensional

Speaker Voice Code representing the speaker's location in "speaker space". This vector

was made available as additional inputs to an MS-TDNN recognizer and resulted in a

substantial drop in the error rate on a telephone digit recognition task. There are two

convenient features of this SVC network approach. First, computation of the SVC for a

new speaker can be performed even if some phone categories are not represented in the

available adaptation speech. Second, the value of this code stabilizes after only a few words

of adaptation speech have been presented to the network. The combination of these two

features allows for robust adaptation with only a small amount of (arbitrary) adaptation

speech.

3.1.2 Data/Feature Transformation Approaches

Feature transformation approaches can be either direct or indirect. In a direct approach,

a direct mapping is computed between the features computed from the speech of a new

..- -..-

18

speaker and the features computed from the corresponding speech of a target speaker.

This mapping may then be used either to convert speech examples of the target speaker

for use in training a speaker-dependent recognizer for the new speaker or to convert the

new speaker's speech to that of the target speaker, for whom a trained recognizer already

exists. Probably the oldest technique, spectral mapping is still one of the most popu-

lar. Early work focused on primarily linear methods of creating the mapping between

reference and new speakers (see [17]), although more recent work has focused either on

piecewise linear mappings [3, 41] or explicitly nonlinear mappings such as that provided

by neural networks. [24, 16, 29] One interesting aspect of the work by Fukuzawa, et al.

[16] is that the neural network is segment-based. For either a frame-based or a segment-

based system, it can be tricky to optimally align speech (or feature vectors) between new

and reference speakers, since a different alignment produces a different mapping, which

produces a different alignment, etc. With this in mind, Gong, et al. [20] have devel-

oped an iterative process to minimize the phonetic alignment error during the training of

a spectral-transform neural net. With similar goals in mind, Knohl and Rinscheid [28]

claim that self-organizing feature maps can be used to simultaneously deal with the align-

ment problem and reduce the amount of adaptation data that would normally be required

to train a neural network to map from one speaker's spectral space to another. Various

other models designed explicitly with speaker adaptation in mind have been described in

the literature.[53]

In an indirect approach, the transformation between speakers either occurs earlier

in the computation of the features or is accomplished by adjusting the value of speaker-

specific (possibly speaker-identifying) parameters. Some forms of speaker clustering, espe-

cially those using neural networks, could also be classified as indirect feature transforma-

tion approaches (c/. [30,59] in section 3.1.1). Another example of the indirect approach

can be found in the recent work on frequency axis warping for speaker normalization.

Since this work is closely related to our own, it is presented in Section 6.2.1 after the

introduction of our method.

19

3.1.3 Model Transformation Approaches

HMM

Model transformation approaches, both for HMM- and neural network-based systems, have

enjoyed recent popularity, due in large part to a 1991 paper by Lee, Lin, and J uang [34]

presenting a Bayesian procedure for adapting continuous-density hidden Markov model

parameters to the speech of a new speaker. This widely-cited paper demonstrates how

to adjust model means in a way that optimally integrates new speech data with the

existing speaker-independent models. Note that although adaptation is gradual and hence

slow, this method will asymptotically converge to a speaker-dependent system if given

enough data. Also, the theoretical development of this technique requires that one have

adaptation examples for each speech unit in order to adapt all of the models, which may be

practically impossible for certain adaptation tasks. A more general theoretical expansion

of this work can be found in [19]. Recently a number of researchers have focused on

the problem of lacking or insufficient examples for all models. Cox [11], for example,

models each sound class as a linear regression on a set of different sound classes. Ohkura,

et al. have introduced Vector Field Smoothing [45], a popular technique in Japan, to

accomplish the same task. VFS not only estimates mappings for which there are no data;

it also includes a smoothing step to adjust all mappings based on the surrounding (in

model space) mappings, relying more heavily on mappings for which more examples exist.

Kosaka, et al. [32] have combined this method with two simpler methods to improve

performance when given small amounts of adaptation data. Leggetter and Woodland

[36, 37] have also addressed the no-examples problem, as have Digalakis, et al. [13] and

Zavaliagkos, et al.[61, 62] Earlier work in this area has been done by Stern and Lasry.[55]

Having experimented with both supervised and unsupervised MAP adjustment of the

means of feature vectors in CMU's FEATURE [10] system, they claim to be the first

researchers to have "include[d] statistical correlations across decision classes in a speaker

adaptation procedure explicitly."

There has recently been substantial research on ways to combine various adaptation

methods. After pointing out that most statistical approaches can be categorized into

- --..

20

either Maximum Likelihood feature transformation approaches or Bayesian adaptation

approaches, where the former require little adaptation data but cannot adequately use

more and the latter require more data but asymptotically approach speaker-dependent

performance with increases in the data set size, Digalakis and Neumeyer [12, 44] present a

method of combining the two families to create an adaptation approach with both short-

term and asymptotically good performance. Earlier work by Zhao [63, 64] also focused on

a similar combination of methods.

For a more detailed discussion of this topic, George Zavaliagkos' doctoral dissertation

[60] contains an excellent review of recent HMM speaker adaptation techniques.

Neural Network

The model-based adaptation/retraining methods for neural network-based systems can be

broken down into data/model transformations, new architectures, and new techniques.

Data/model transformation Speech recognition researchers have examined connec-

tionist feature-space transformations for neural network-based systems. Frequently, this

approach allows the feature-space transform to be directly included into the architecture,

training, and/or use of the existing network model. Two such methods can be found in

the European ESPRIT project [21, pp. 38-46] and work by Watrous.[57] In the ESPRIT

project, researchers examined adding a speaker-dependent linear transformation layer to

either the input or the output of the network. Although the linear transformation might

not perform as well as a nonlinear transformation, the former can be directly integrated

into the existing nonlinear weights, thereby eliminating the need for any extra computa-

tion when using the new speaker-dependent system. On the Resource Management (RM)

Task [46], the linear output network reduced the word error rate on the Speaker Dependent

(SD) speakers by 6% using 100 adaptation sentences. The linear input network reduced

the word error rate by about 22%.

Watrous, on the other hand, used a set of second-order units to transform the inputs

to his feedforward network of first-order units. A different transformation layer was cre-

ated for each new speaker. On a ten-vowel classification task with 76 speakers, creating

21

the speaker-dependent layer reduced the vowel error rate from 11.7% to 4.7%. Jointly

optimizing the transformation layer and the rest of the network resulted in an error rate

of 2.5%.

New architecture Also interesting is the work describing different network architec-

tures that are more suited to adaptation or retraining. A notable example in the speech

recognition literature is Hampshire and Waibel's META-PI architecture. [25, 26] The

system consists of a limited number of speaker-dependent subnetworks whose outputs

are combined through other networks to produce a speaker-dependent recognizer for any

speaker. Although they do not explicitly perform adaptation, they claim that this archi-

tecture enables them to obtain approximately speaker-dependent recognition rates on a

voiced-stop discrimination task using only speech from other speakers.

New technique Rather than changing the feature space or the architecture, one can

instead use a new method of training or retraining. There is much work in this area within

the neural network community. Chen developed a network weight optimization algorithm

intended to rapidly locate global minima.[8] Such an algorithm would allow for continuous

on-line training in a way that eliminates the chance of being trapped into a local minimum

during continued training. While not specifically designed for adaptation, this approach

suggests the possibility of a mathematical framework that supports retention of learned

information when presented with new training examples.

The problem of learning new patterns without losing the old has been directly ad-

dressed in the neural network community under the term "catastrophic forgetting". A

recent paper by Robins [50] discussed this problem in detail and presented several so-

lutions. Pedreira and Roehl [47] also discussed this problem. Their solution was the

development of a training algorithm that allowed a network designer to specifically con-

trol the tradeoff "between fitting new incoming data and causing minimum damage to the

information related to the original data set."

22

3.2 This Thesis in Context

Of the above methods, the most popular and most successful by far are the model-based

methods for HMM-based systems. Faced with adapting a neural-network system, however,

it is not immediately obvious how to translate these methods for use in such a system.

Most of the HMM methods perform adjustments to the parameters, e.g. means and/or

variances, of the probability density functions of the subword models. Without changing

the architecture of our network, we do not have the option of changing such parameters.

Unlike the "catastrophic forgetting" research [50], we are not attempting to learn totally

new information. Rather, we are attempting to slightly alter some of the information

that has been learned without affecting other patterns. Thus, we feel that rapid speaker

adaptation using only one or a few words of speech is still a substantial challenge for a

neural network-based system.

In this thesis, we present two methods for adapting an already-trained neural network

recognizer to the speech of a new speaker. The first of these methods, rapid retraining

of the hidden-to-output unit weights, is a model-based method that actually produces a

new network tuned to the speech it has been given. The second method, a parametric

optimization approach, is an indirect feature space-based method that is not necessarily

specific to neural network systems but is nevertheless appropriate because it is rapid and

relies only on the existence of a recognizer score for an utterance. This approach requires

only the tuning of a single parameter based on the final output score of the system and

does not result in a "new" system.

Chapter 4

Datasets

This chapter gives brief descriptions of the datasets used in our experiments. Only the

corpora themselves (along with default divisions into training, development, and test sets)

are described here; descriptions of how they were used or further subdivided for our

experiments are described in the experiment sections themselves (cf. Sections 6.4 and

5.3). Wherever possible, we have included references to more complete descriptions of the

datasets.

4.1 The OGI 30000 Numbers corpus

Release 1.0 of the OGI 30000 Numbers corpus [9] is a telephone speech database

consisting of 15000 number-string utterances. The utterances were taken from birthdates,

phone numbers, zip codes, and street addresses collected in various OGI CSLU data

collections. All calls have been transcribed at the word level (without time alignment)

according to the conventions in [33]. From this corpus we selected all speakers for whom

we had both an address and zipcode that consisted only of (possibly) connected digits,

Le. we only allowed sequences containing the words "oh", "zero", "one", "two", "three",

"four", ''five'', "six", "seven", "eight", and "nine". We then divided these speakers into

training, development, and test speakers based on call number as follows

!

training if call number mod 5 = 0,1,or 2

dataset = development if call number mod 5 = 3

test otherwise

This resulted in 1147 training speakers, 406 development speakers, and 376 test speakers.

23

24

4.2 The TIDIGITS corpus

The TIDIGITS corpus [38]consists of studio-quality connected-digit utterances read by

men, women, boys, and girls. Each speaker (adult or child) read 22 single-digit utterances

and 11 each of 2-, 3-, 4-, 5-, and 7-digit utterances, for a total of 77 utterances per

speaker. To allow us to use our existing telephone speech recognizers, we downsampled

the TIDIGITS data from the original 20kHz sampling rate by upsampling to 40kHz,

low-pass filtering with a 127-point Finite Impulse Response filter, and finally decimating

to the desired 8kHz rate. The numbers of speakers in the training and test sets are shown

in Table 4.1.

Table 4.1: Number of speakers in the TIDIGITS dataset.

4.3 The PhoneBook corpus

The PhoneBook corpus [48]consists of both read speech and spontaneous speech utter-

ances spoken over the telephone. Our experiments used only the read speech portion. In

this portion, each speaker was given a list of either 75 or 76 isolated words to read. There

are a total of 1358 speakers and 106 lists, so a word list was used by several speakers. In

all, the word lists contained 7979 distinct words. Only 5 of these words were present on

more than two lists; all others were present on only one list.

Each word list was labeled with a two-character alphabetic identifier, so we used this

to partition the corpus into train, development, and final test sets based on the second

letter of the identifier as follows

training if letter is an odd-numbered letter (a, c, e, .. .)

dataset = development if letter is an even-numberedletter (b, d, f, . . .)

and is in the range a-I

test otherwise

Number of speakers
Dataset Man Woman Girl Boy
Train 55 57 26 25
Test 56 57 25 25

25

This resulted in 688 training, 316 development, and 354 test speakers.

4.4 The Huh? corpus

There are currently many small-vocabulary tasks for which speech recognizers are being

used. An example of such a task is a voice-only interface to the World Wide Web on the

Internet. Certain words occur very frequently and must be recognized with high accuracy,

even though they may be confusable. To test adaptation under such conditions, we have

collected a database of common, highly confusable words.

We expected baseline recognition performance on this system to be poor since the

words were chosen to be acoustically similar.

4.4.1 Collection

We collected the database over the telephone using digital T1 lines. Callers registered by

filling out a form on our data collection Web page (shown in Figure 4.1) which asked for

the following information: email address, native/non-native, and optionally their mailing

address, age range, and gender. Each caller was then sent, by email.aninstruction sheet

containing the phone number to call and the list of words the person was to say when

prompted. Although the order was different (selected at random) for each caller, the caller

was expected to say the same set of words. The words and their frequencies are given in

Table 4.2.

Thus each caller was supposed to say 125 words. To avoid monotony, the list of words

was broken up into three sections. Section A contained the first 50 words, Section B

contained the next 40 words, and Section C contained the final 35 words. A sample call

list is shown in Appendix A.

Native speakers were given one number to call and non-native speakers another.

The collection protocol (list of prompts) is also given in Appendix A.

4.4.2 Transcription

The calls have all been labelled at the word level using the conventions in [33].

26

Speaker Adaptation data collectionparticipation form

To participate in the data collection please complete the following form. Upon submission of this
completed form, we will email you an instruction sheet.

Required. Information

Please enter your email address [r

Are you a native or non-native speaker of American English? 'Notyetsj;afi~ 11

Please select a gift certificate type:

.McDonalds vTCBY vBaskin-Robbins vB. Dalton Books

Please enter the address you would like the gift certificate sent to (US mail format):
'I ...

(Note: this area is for addresses only! For questions, comments, or suggestions please use our Qnnments.
Suggestions. and Questions Form.

Optional Information

What is your gender? .Unspecified 1::11 What is your age range? Unspecified c"'

If you have commenu, questions, or mggestions. please let us know by filling out our Comments.
Su~estions and QlIestions Form. We will reply to all questions as quickly as possible.

Figure 4.1: WWW registration form for Huh? data collection. The form asked for the
following information: email address, native/non-native speaker of American English, and
optionally mailing address, age range, and gender.

Table 4.2: Words collected in Huh? corpus. Also shown next to each word is the number
of times each caller was asked to say the word.

word frequency
east 10

help 15

hope 10
last 10
less 10
low 10
nest 10
next 10
no 15
yes 15

yo 10

27

Table 4.3: Statistics-Huh? corpus.

4.4.3 Corpus statistics

We collected speech from 160 callers. Table 4.3 shows some statistics about the calls

received. It is interesting to note that only about one-third of the callers actually provided

exactly the number of examples of each word that were requested.

We divided the callers into three sets:

Test These were the callers who gave us exactly the requested numbers of examples of

each word. There were 49 in this set.

Development These were the callers who gave us at least one example of each of the

words. Test set callers were not included in this group, which had a total of 100

callers.

Remaining These were the callers who at least missed giving us even one example for

all of the words. There were 11 callers in this group.

lOut of all 160 callers.

20ut of all 120 callers with recognizable ID's.
30ut of all 110 callers who volunteered gender information.
4Percentages are out of all 119 callers who volunteered age information.

.
Category Number of Speakers Percentage of Speakers

Development and test set callers 160 100

Gave at least one example of each word 149 93.1

Gave all desired examples of each word 49 37.5

Callers with recognizable ID's 120 75.01

Native speakers of American English 117 97.52
Males 56 50.93

Age4 < 10 1 0.8
10-15 6 5.0
16-20 19 16.0
21-30 43 36.1
31-40 29 24.4
41-50 8 6.7
51-60 4 3.4
61-70 2 1.7

28

4.4.4 Perceptual Study

Our stated goal in creating the Huh? database was to have a database consisting of a

small set of confusable words. These are common words chosen for their similarity to one

another. Our claim is that these words are difficult for our general-purpose recognizer to

distinguish yet easy for humans to distinguish. In this section we present the results of a

small-scale perceptual study which may help indicate the range of human performance on

this task.

Data The utterances evaluated by the test subjects were randomly selected from the

evaluation utterances of the test set. The 725 utterances, approximately one-fifth of the

available utterances, were chosen to provide the same word frequencies present in the

overall data set. Thus, there were 58 examples each of the words east, hope, last, less,

low, nest, next, and yo and 87 examples of the words help, yes, and no.

The study Ten subjects participated in the study. All subjects were native speakers

of American English. Each subject heard all 725 utterances in a random order, one at a

time, and was asked to decide which of the eleven allowed words the utterance contained.

The graphical user interface, shown in Figure 4.2, allowed the subject to play each word

as many times as desired before deciding which word to select. The word performances

for each speaker are presented in Table 4.4.

Performance on hope and last was noticeably poor, while performance on east and yes

was noticeably good.

29

You are on word number 1

out of 725

b (7) hope t", (8) last L (9) next

(0) lowf (4) yes ((5) no l (6) help L <.) yo
"".~." t,...". .. '"iiO$.

(1) nest I, (2) less r (3) east t

Play I

Quit

Figure 4.2: User interface for Huh? corpus perceptual study. Subjects listened to 725
utterances, one at a time, and clicked on the word contained in the utterance. Subjects
could also play each utterance again as often as desired or stop and continue later.

Table 4.4: Huh? corpus perceptual study subject performance.

wo

Adaptation Percent correct for subject % correct
Word 1 2 3 4 5 6 7 8 9 10 overall
east 100.0 100.0 100.0 100.0 100.0 100.0 100.0 98.3 100.0 94.8 99.3

help 95.4 95.4 94.3 93.1 94.3 93.1 98.9 94.3 97.7 86.2 94.3

hope 98.3 91.4 89.7 96.6 89.7 98.3 91.4 87.9 87.9 86.2 91.7
last 96.6 87.9 96.6 91.4 81.0 89.7 93.1 91.4 94.8 70.7 89.3
less 93.1 96.6 93.1 94.8 87.9 94.8 94.8 87.9 94.8 89.7 92.8
low 100.0 93.1 91.4 96.6 93.1 94.8 100.0 82.8 98.3 82.8 93.3
nest 98.3 93.1 94.8 91.4 82.8 94.8 96.6 96.6 100.0 82.8 93.1
next 96.6 98.3 98.3 98.3 96.6 98.3 98.3 98.3 98.3 98.3 97.9
no 100.0 100.0 100.0 100.0 98.9 98.9 100.0 100.0 100.0 93.1 99.1

yes 100.0 100.0 98.9 96.6 100.0 100.0 100.0 96.6 100.0 93.1 98.5

yo 98.3 98.3 98.3 98.3 91.4 96.6 98.3 96.6 100.0 93.1 96.9
OVERALL 97.9 96.1 96.1 96.1 93.0 96.4 97.7 94.1 97.7 88.6 95.4

Chapter 5

Rapid Retraining of the Neural Network

As described in Section 3.1.3, prior work on model-based adaptation for neural networks

has consisted primarily of ways to add an extra processing layer to the inputs or the

outputs or to add additional hidden units. The thesis work presented in this chapter

focuses instead on ways to directly change the neural network's weights using only a small

amount of speech from a new speaker.

5.1 Description

We are specifically interested in rapid adaptation using only small amounts of adaptation

speech, preferably as little as one word. In particular, we have the following goal: in a

small-vocabulary task, our method shall improve the performance of a single word for a

given speaker

. using only one exam pIe of that word to adapt

. rapidly

. without substantially degrading performance on the other words in the vocabulary

This will be accomplished by adjusting the weights of the neural network. The adaptation

procedure begins with a trained general-purpose, speaker-independent neural network and

trains for a few iterations on a small amount of speaker-dependent data.

There are some difficulties in using only a single word to adapt an entire network. A

single word will only consist of a small number of phonemes and hence be represented in the

31

32

system (more precisely, the neural network probability estimator) by only a few context-

dependent phonemic output categories. The adaptation vectors that can be generated

from this word will only provide positive training examples for a small number of network

output units. Unfortunately, our normal training paradigm for neural networks requires

pattern vectors for all of the outputs in order to adjust all of the weights. Because the

system is only trying to adapt to this one word, though, it is reasonable to consider only

adapting the weights to the outputs for which speaker-dependent training examples have

been computed (the target outputs).

An important issue must be addressed for this to succeed. It is critical that the network

does not unlearn most of the patterns it has learned; in particular, it is unacceptable for

the network to forget how to recognize the other words in the vocabulary. Due to the

structure of the network, however, every output unit's value depends on the values of

all of the hidden units. Adapting all of the weights leading to the target outputs would

require changing the weights from the input to the hidden units as well. This would

change output values for all of the units! Our solution to this problem is to change only

the weights from the hidden layer to the outputs. This provides two benefits: first, it is

possible to change weights only for the target outputs without affecting the other outputs,

and second, the adaptation will be faster (fewer weights to change) and ideally more robust

(fewer parameters to adjust based on the input data).

In the next two sections we describe the adaptation task we have chosen and our

experiments on this task.

5.2 Confusable-word task

For our experiments we collected the Huh? database, a small-vocabulary database of

confusable words. The design, development, collection, and labelling of this database are

presented in Section 4.4.

Developmentand test sets The experiments used the 100development set and 49 test

set speakers from the Huh? corpus. To guarantee that the evaluation utterances were

separate from the adaptation utterances, each speaker's files (utterances) were divided

33

Table 5.1: This table shows the division of a speaker's utterances into adaptation and
evaluation sets.

into adaptation and evaluation portions for both the development and test sets. For each

caller, each word ("less", "east", etc.) was assigned a unique index which counted, in

order, the number of examples of that word spoken by the caller. Thus, each index ideally

ranged between 0 and 9 or 0 and 14, depending on how many examples there were of each

word. Any utterance whose word index mod 5 was

. 0, 2, or 4 was in the evaluation set

. 1 or 3 was in the adaptation set

Each speaker said up to 125 words, so this scheme resulted in up to 50 words in the

adaptation set and up to 75 words in the evaluation set. Word counts are shown in

Table 5.1.

The approximate number of words in the adaptation and evaluation subsets of the

development and test sets are given in Table 5.2. The totals are approximate because

some of the speakers did not give the requested number of examples of each word (see

Table 4.3).

Number of utterances
Word Adapt Eval Total
east 4 6 10

help 6 9 15
hope 4 6 10
last 4 6 10
less 4 6 10
low 4 6 10
nest 4 6 10
next 4 6 10
no 6 9 15

yes 6 9 15

yo 4 6 10
ALL 50 75 125

34

Table 5.2: This table shows the approximate sizes of the development adaptation, develop-
ment evaluation, test adaptation, and test evaluation sets. Sizes are approximate because
not all callers gave all the requested examples of each of the words.

5.3 Experiments

This section describes the experiments performed on the Huh? corpus. The experiments

fall into three groups corresponding to the three subgoals of our overall goal as described

in the previous section. The primary goal of the first experiment was to demonstrate that

it was possible to improve performance on a target word through retraining. The primary

goal of the second experiment was to reduce the computational load (and therefore time)

of the adaptation without adversely affecting performance. The primary goal of the third

experiment was to reduce any adverse effect on non-target words that might easily be

confused with the target word. Although each experiment had a primary goal, it was

important to keep the overall goal in mind. For example, at times it was necessary to

sacrifice performance for speed.

In running the experiments, it rapidly became apparent that there were a number of in-

terdependent parameters that had to be set reasonably to obtain acceptable performance.

Keeping in mind the goals of speed and performance, the various parameters were quickly

adjusted to move the system into the right performance region. The decisions on which

parameters to adjust in any given experiment were made heuristically. The parameters

varied were

Number of speaker-independent vectors It was important to establish the amount

of original speaker-independent data to use. Some early experiments to determine

the best way to train indicated that giving only examples from the new speaker to the

trained net and retraining all of the outputs rapidly destroyed the performance of the

net on all other words. Including some of the original speaker-independent training

data would tend to reduce this effect. In addition, this general-purpose data may

Approximate number of words
Dataset Speakers Adapt Eval Total

Development 100 100 * 50 = 5000 100 * 75 = 7500 100 * 125 = 12500
Test 49 49 * 50 = 2450 49 * 75 = 3675 49 * 125 = 6125

35

be used to recreate the same ratio (for each output) of positive to negative training

examples present during the original training of the network, and more importantly,

can provide the needed variety in negative training examples. We therefore explored

adding various amounts of data selected randomly from the speaker-independent

vectors originally used to train the net.

N umber of speaker-dependent vectors In our experiments presented in this chapter

vectors from the general-purpose speaker-independent set are replaced with speaker-

dependent ones generated from the adaptation utterance. An important issue is

finding a balance between the number of vectors (and the corresponding time needed

to train) and the performance on the target word.

Number of training iterations It usually takes more than one training pass through

the data for the network to learn the patterns. However, training for too many

iterations can cause the network to overlearn the target patterns. In fact, this is

a major concern in these experiments because it is unacceptable for the network

to unlearn all of the input/output patterns already encoded-rather, they should

merely be adjusted slightly. A common way to deal with this problem is to have a

separate cross-validation set that is used to evaluate the performance of the network

after each iteration. When the performance on the cross-validation set reaches a

maximum and then degrades, training is stopped. In the situation presented earlier,

though, no such dataset is available. Ideally, the single word of adaptation speech

will be the only speech used to adapt, and in fact may be entirely used in the

retraining of the network itself.

Learning rate This parameter controls the size of the step taken in the gradient descent

algorithm. When far away from the eventual solution, a large learning rate can help

speed up the rate at which the network nears the eventual solution. If close, though, a

large value may actually delay or even prevent the algorithm from achieving the best

solution by forcing the network weight changes to be larger than necessary, thereby

overshooting the ideal weight values. Clearly the initial setting of this parameter

can affect the rapidity of the retraining (adaptation).

36

It was also discovered early on that the performance on the word "help" was particularly

poor. To ensure that this important case was addressed, many of the analyses described

in this chapter initally focused on the performance of this word.

In Sections 5.3.1-5.3.3 the three development set experiments are described. Sec-

tion 5.3.4 then presents results for the three experiments on the final test set. All exper-

iments used a 3-layer feed-forward neural network with 56 input units, 200 hidden units,

and 534 output units.

5.3.1 Experiment 1: Improving target word performance

An important issue to be addressed immediately was whether to adapt all of the output

units or only the target output units. Given adaptation examples for, say, only 10 of the

output units, it might be more appropriate to only update the weights to these output

units rather than all of the weights. Although it was eventually decided that training all

of the output units was computationally too costly given that the same performance was

achievable by only training target outputs, both the all-output and target-only experiments

are presented here.

Training all outputs

Speaker-independent data We first selected 200, 100,50, and 25 examples per output

category from the speaker-independent data. Then, for the worst-performing speaker in

the dataset, we selected the first example of the word "help" available in the adaptation

set, generated feature vectors, and substituted1 them into the speaker-independent sets.

Training on these different sets showed that at least 50 vectors/category were needed

to keep from destroying performance on all other categories. Using more than 50 did

not make much difference. Hence, we selected 50 vectors per category as the number of

general-purpose examples to use.

lBy substituted we mean that we replaced (at random) existing speaker-independent vectors in our set
with speaker-dependent vectors, for each category. For example, if we started with 50 SI /c/ vectors and
3 SD /c/ vectors our final set would contain 47 SI and 3 SD /c/vectors.

37

Speaker-dependentdata After establishing the number of speaker-independent vec-

tors needed to keep most of the outputs from changing, the next task was to determine the

number of speaker-dependent vectors needed to affect the performance on a designated

word. Since the word "help" was the most poorly recognized word overall, we focused on

improving that word's performance. We first created a list of all the speakers who had

no correct "help" recognitions. Of these we selected speaker #091, the speaker with the

highest performance on all the other words, as our experimentation speaker. Not only

would this point out any improvement in "help" performance; it would also point out any

decreases in performance on the other 10 words.

We retained the 50 vector per category set of speaker-independent data from the

previous experiment. We then generated feature vectors for all six of the "help" utterances

for caller #091 in the adaptation set, duplicated this set of speaker-dependent vectors 10,

100, and 200 times, and substituted them into the speaker-independent set as before. Note

that for the outputs representing the word "help" we would in some cases have notably

more than 50 vectors per category. For all other outputs we would still only have the 50

speaker-independent vectors.

Baseline performance on the evaluation set was zero correct "help" recognitions and

94.2% correct non-help recognitions. Although all four vector sets improved performance

on "help" to 100% correct, recognition performance on all other words went to 92.8%,

88.4%, 69.6%, and 91.3% for lx, lOx, 100x, and 200x, respectively. The 200x result was

a bit surprising, since the trend for the other vectors seemed to indicate that excessive

numbers of target training vectors overbalanced the training enough to hurt performance

on the other words. We concluded that a single copy of the vectors from all six adaptation

examples was sufficient for adaptation.

Training targets only

In the previous experiments all of the output units were trained, even though there were

only adaptation vectors for the outputs used in the word "help". In all following experi-

ments only weights from the hidden units to those output units that would be expected

to change were adjusted. For the word "help", this meant that only 9 of the 534 outputs

38

would have their weights adjusted.

Experiments on the word "help" In this preliminary experiment vectors were still

generated from all six of the adaptation examples of the word "help" from speaker #091.

After training for 7 iterations, the baseline performance (same as before) improved to

perfect "help" recognition and 94.2% non-help recognition.

Since the eventual goal was to adapt using only one utterance, we performed the same

experiment using ten copies of the data from a single adaptation utterance. Post-retraining

performance was perfect "help" recognition with no decrease in non-help recognition. For

this speaker, 10 training iterations were required.

Experimentson all target words (Development set) We then tested on all the

speakers in the development set with the parameters established so far:

. up to 50 speaker-dependent vectors per category obtained by generating feature

vectors from one adaptation word and duplicating them 10 times, with any lacking

(up to 50 total) vectors per category filled in with speaker-independent data

. training target outputs only

. training for 10 iterations

We did this for each of the 11 adaptation words. The results, given in Table 5.3, indicate

that the performance on the target word always improved, in some cases dramatically,

with only a slight degradation in performance on the non-target words.

5.3.2 Experiment 2: Reducing training time

The goal of the second experiment group was to reduce the computational load, and hence

time, of the retraining. An obvious candidate for reduction was the number of speaker-

independent vectors. Remember that the 50 vectors per category (for all 534 outputs!)

of speaker-independent data used in the earlier experiments was established when still

training all of the outputs. In this experiment group we develop a way to reduce the

39

Table 5.3: This table shows target and non-target recognition rates for all speakers in
the development set. One example of the target word was used to generate training
vectors. These vectors were duplicated 10 times to provide up to 50 speaker-dependent
vectors for each category present in the training word, which were substituted into 50
speaker-independent vectors/category. Training (target outputs only) was stopped after
10 iterations. This is the development set result for Experiment 1.

number of training vectors without seriously reducing the target-word performance gain

obtained in Experiment 1.

Varying the numbers of speaker-independent and -dependent vectors The first

experiment again used caller #091. We generated feature vectors from the first example

of the word "help" by the speaker in the adapt set and then duplicated this set of vectors

enough times to obtain at least 50 vectors for each of the nine outputs represented in the

word "help", producing an entirely speaker-dependent vector set. To form the training

set, a given number of vectors per category were selected from the speaker-dependent

set and the rest from the speaker-independent set. We experimented with an overall

number of 5, 10, 15, 20, 25, 30, 35, 40, 45, and 50 vectors for each of the 534 output

categories. For each of these we tried 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, or 50 speaker-

dependent vectors, up to the total number of vectors per category. In other words, we

evaluated dependent/independent combinations of 0/5,5/5,0/10,5/10, 10/10, and so on.

The networks were trained for 5 iterations. As one might expect, the best performances

Percent correct

Adaptation Target Non-target
Word Baseline Expl Baseline Expl
east 96.2 99.3 69.7 70.6
help 35.4 95.1 76.7 75.3

hope 62.6 96.1 72.5 69.8
last 77.6 95.4 71.2 69.4
less 67.6 95.7 72.1 69.1
low 70.5 92.9 71.8 72.5
nest 61.0 95.9 72.6 69.2
next 73.2 94.2 71.6 71.1
no 71.6 96.8 71.7 68.6

yes 91.5 99.0 69.0 66.2

yo 91.5 99.7 70.0 66.8
OVERALL 71.7 96.4 71.7 69.9

40

o
o 5 10 15 20 25 30 35

Vectors per category

40 45 50

Figure 5.1: This figure shows recognition rates for the word "help" for speaker #091 as
a function of the number of training vectors. One example of the word "help" was used
to generate training vectors. These vectors were duplicated to provide 5, 10, ..., 45, 50
speaker-dependent vectors for each category present in the training word. An equivalent
number of vectors/category (for missing categories only) of speaker-independent data were
added to this set. Results are after training for 5 iterations.

occurred for the largest percentages of speaker-dependent data - the 5/5, 10/10, 15/15,

and similar cases. Recognition rates for the word "help" in these cases are plotted in

Figure 5.1. Performance on the non-help words remained near 100%.

Varying learning rate and number of vectors These recognition rates seem to

indicate that a larger number of vectors is better. However, the speaker-dependent vectors

present in all the cases are essentially identical-some datasets merely have more copies.

Since the training algorithm performs weight updates for all of the vectors in the training

set during each iteration, the network will definitely learn the desired mapping in fewer

iterations with more training vectors, even if they are only copies. To reduce this effect,

we examined adaptation performance when varying the learning rate, the multiplier used

to determine how much of a weight's error should be corrected in anyone weight change.

We selected three callers from the list of callers who had no correct "help" recognitions.

100
I

I

/"

80

help score -

'"
c

c 60
CI
0
0
!!!

'0

!!!

:s 40
0

20

41

100

~~~~

!~

/
:

ro~ /
OO~/

~~

5vecs/cat--
10vecslcat -+--.

90

80

(I)

e
c:
g
'2
C>
o
o
~
a.
Q)
J:

40

30

20
0.05 0.1 0.15 0.2 0.25

LearningRate
0.3 0.35 0.4

Figure 5.2: This figure shows recognition rates for the word "help" for speaker #091
as a function of both the learning rate and the overall number of training vectors per
category. One example of the word "help" was used to generate training vectors. These
vectors were duplicated to provide 5, 10, 15, 20, or 25 speaker-dependent vectors for each
category present in the training word. An equivalent number of vectors/category (for
missing categories only) of speaker-independent data were added to this set. Learning
rates varied between 0.05 and 0.4. Results are after training for 6 iterations.

Specifically, we selected the best-performing (#091), the worst-performing (#077), and

one from the middle (#128). For each of these callers, we simultaneously varied the

learning rate from 0.05 to 0.4 and the overall number of vectors per category from 5 to

25. The results from training for six iterations are shown in Figures 5.2 through 5.4.

For all three speakers, quadrupling the learning rate resulted in a rapid increase in

performance with only a small number of training iterations, suggesting that the earlier

low performance was indeed due to the small weight adjustment steps. Note that for all

three speakers only ten vectors per category were necessary to obtain this performance,

much less than the 50 needed when training all of the outputs.

Varying learning rate and number of training iterations The results on the three

speakers were promising, so we retained the 10 vectors per category setting and varied the

learning rate and number of training iterations for all of the speakersin the development



42

90 4...._______................._ ------

Q>

~
c:
g
'2
0>
o
o
~
Co
a;
:I:

,,,,,,,,,,,,,,,
,

,,,,,,,,,
,,

l

40 I- //

30 I- //

20 ~,/

70

80
5 vecslcat -+-

10 vecs/cat -+--.
25 vecslcat -8--

60

50

10

o
0.05 0.1 0.15 0.2 0.25

Learning Rate
0.3 0.35 0.4

Figure 5.3: This figure shows recognition rates for the word "help" for speaker #077
as a function of both the learning rate and the overall number of training vectors per
category. One example of the word "help" was used to generate training vectors. These
vectors were duplicated to provide 5, 10, 15, 20, or 25 speaker-dependent vectors for each
category present in the training word. An equivalent number of vectors/category (for
missing categories only) of speaker-independent data were added to this set. Learning
rates varied between 0.05 and 0.4. Results are after training for 6 iterations.



43

5vecs/cat-
10 vecs/cat -+--.
25 vecs/cat '8--.

CD

T2
c:
g
'2
0>
oo
~
a.
a;
:I:

40

20

o
0.05 0.1 0.15

~ I

0.2 0.25
LearningRate

0.3 0.35 0.4

Figure 5.4: This figure shows recognition rates for the word "help" for speaker #128
as a function of both the learning rate and the overall number of training vectors per
category. One example of the word "help" was used to generate training vectors. These
vectors were duplicated to provide 5, 10, 15, 20, or 25 speaker-dependent vectors for each
category present in the training word. An equivalent number of vectors/category (for
missing categories only) of speaker-independent data were added to this set. Learning
rates varied between 0.05 and 0.4. Results are after training for 6 iterations.



44

100

80

60

40

20

o
o 2 4 6 8 10

Training iterations
12 14 16

Figure 5.5: This figure shows recognition rates for the word "help" for the speakers in
the development set as a function of both the learning rate and the number of training
iterations. For each speaker, one example of the word "help" was used to generate training
vectors. These vectors were duplicated to provide 10 speaker-dependent vectors for each
category present in the training word. For the missing categories, 10 vectors/category of
speaker-independent data were added to this set. Learning rates varied between 0.2 and
1.6. System was tested after training for 3, 5, 10, and 15 iterations.

set. We used learning rates of 0.2, 0.4, 0.6, 0.8, 1.2, and 1.6 and training iterations of 3, 5,

10, and 15. One example of the word "help" was used to generate features as described in

the previous paragraphs. After training, the new system was tested on all of the evaluation

utterances for the speaker. The results for each condition, averaged over all speakers, are

shown in Figure 5.5. The results clearly indicated that 0.4 was the best learning rate

for this subset of the data. Moreover, the majority of the performance improvement was

obtained with only 5 training iterations. Although there was a slight improvement at 15

iterations, it did not seem worth the added computational cost.

Varying amount of speaker-dependent data A complete test was run on all target

words for all speakers in the development set using 10 vectors per category, a learning

rate of 0.4, and only 5 training iterations. Results are shown in Table 5.4. When com-

paring to the results from Experiment 1, also shown in the table, one can see that the



45

Table 5.4: This table shows target and non-target recognition rates for all speakers in the
development set. One example of the target word was used to generate training vectors.
These vectors were duplicated to provide 10 speaker-dependent vectors for each category
present in the training word. For the missing categories, 10 vectors/category of speaker-
independent data were added to this set. The learning rate was set at 0.4 and training
was stopped after 5 iterations.

target word performance was not quite as good. To fix this, we once again changed the

number of speaker-dependent vectors. We began, as in the previous experiment, by gen-

erating features from one example of the target word. However, this time we duplicated

the resulting vectors enough times to obtain at least 50 examples of each of the target

categories. We then substituted exactly 50 per category into our 10 vectors per cate-

gory of speaker-independent data, producing 50 speaker-dependent vectors for each target

category and 10 speaker-independent vectors for each of the remaining categories. The

results of rerunning the experiment with this set of vectors on the entire development set,

keeping the learning rate at 0.4 and training for only 5 iterations, are shown in Table 5.5.

Performance this time was excellent. It was actually slightly better than that obtained

in Experiment 1, which used 50 vectors for each category. Note that even though the

vector total has increased, there is still a tremendous reduction in computational time

compared to Experiment 1. In each training iteration the system only needs to process

10 * 50 + 524 * 10 = 5740 vectors rather than 50 * 524 = 26200 vectors, a reduction by

Percent correct
Adaptation Target Non-target

Word Baseline Expl lOvec Baseline Expl lOvec
east 96.2 99.3 98.7 69.7 70.6 70.2
help 35.4 95.1 88.2 76.7 75.3 75.8
hope 62.6 96.1 93.4 72.5 69.8 69.8
last 77.6 95.4 89.0 71.2 69.4 71.2
less 67.6 95.7 93.1 72.1 69.1 71.1
low 70.5 92.9 90.9 71.8 72.5 72.5
nest 61.0 95.9 91.0 72.6 69.2 71.0
next 73.2 94.2 91.8 71.6 71.1 72.2
no 71.6 96.8 94.6 71.7 68.6 70.3

yes 91.5 99.0 98.3 69.0 66.2 67.4
yo 91.5 99.7 99.1 70.0 66.8 67.8

OVERALL 71.7 96.4 93.5 71.7 69.9 70.9



46

Table 5.5: This table shows target and non-target recognition rates for all speakers in the
development set. One example of the target word was used to generate training vectors.
These vectors were duplicated to provide 50 speaker-dependent vectors for each category
present in the training word. For the missing categories, 10 vectors/category of speaker-
independent data were added to this set. The learning rate was set at 0.4 and training
was stopped after 5 iterations. This is the development set result for Experiment 2.

approximately a factor of five. In addition, only 5 training iterations are needed instead

of 10, further halving the training time. We have accomplished the goal of Experiment 2:

to reduce the computational load without losing a substantial amount of the target word

gain obtained in Experiment 1.

5.3.3 Experiment 3: Incremental retraining

The performance improvements described so far suggest that the retraining approach as

it currently stands is rather successful. However, remember that the overall goal was to

improve performance on a target word without hurting performance on the other words.

Although the non-target performance numbers for Experiment 2 (Table 5.5) show only a

small degradation from the baseline, a closer look revealed a rather significant problem.

Table 5.6 shows the performance changes on several target words and the corresponding

changes in specific confusable non-target words. It appears that much of the performance

drop is borne by specific words that are difficult to distinguish from the target words.

Percent correct
Adaptation Target Non-target

Word Baseline Exp1 Exp2 Baseline Exp1 Exp2
east 96.2 99.3 99.6 69.7 70.6 70.8
help 35.4 95.1 95.4 76.7 75.3 74.4
hope 62.6 96.1 98.3 72.5 69.8 67.8
last 77.6 95.4 96.7 71.2 69.4 68.0
less 67.6 95.7 97.7 72.1 69.1 66.0
low 70.5 92.9 93.1 71.8 72.5 72.9
nest 61.0 95.9 97.3 72.6 69.2 66.7
next 73.2 94.2 95.4 71.6 71.1 69.3
no 71.6 96.8 96.2 71.7 68.6 68.0
yes 91.5 99.0 99.3 69.0 66.2 64.7
yo 91.5 99.7 99.3 70.0 66.8 66.9

OVERALL 71.7 96.4 97.1 71.7 69.9 68.7



Table 5.6: For each of six target words, this table shows the target word performance (after adapting) and the performance of
a non-target word substantially affected by the retraining. Results are given for the baseline system as well as Experiments 1
and 2

..,.-1

Percent correct

Adapted on last Adapted on less Adapted on nest Adapted on no Adapted on yes Adapted on yo

Tested I Tested Tested I Tested Tested I Tested Tested I Tested Tested I Tested Tested I Testedon on on on on on on on on on on on
Expt. last less less last nest yes no yo yes nest yo no
Baseline 77.6 67.6 67.6 77.6 61.0 91.5 71.6 91.5 91.5 61.0 91.5 71.6
Exp1 95.4 52.7 95.7 56.6 95.9 77.5 96.8 75.5 99.0 36.1 99.7 45.8
Exp2 96.7 39.6 97.7 40.5 97.3 64.0 96.2 65.7 99.3 27.1 99.3 39.7



48

Further examination revealed that this performance drop often occurred for a speaker

whose performance on the target word was already high. In other words, the system was

over-adapting to a target word whose performance, for that speaker, was already good.

The last experiment, then, focused on determining a way to adapt only when necessary.

Rather than explictly attempting to estimate the recognition performance on words from a

new speaker, a modification to the approach would be to retrain on a target word whenever

an error occurs on that word. In addition, it should be possible to initially retrain using

only a fraction of the 50 speaker-dependent vectors per category, increasing this fraction

for each further error that occurs. The benefits to this approach are:

. Adaptation (retraining) only occurs if the word was missed. If the performance is

good, there is no need to adapt and risk damaging the performance on other words.

. Retraining starts off cautiously and increases only as necessary. If only a small push

is needed to nudge the network into better recognition performance, why hit it with

a sledge hammer?

Keep in mind that there are only four or six adaptation examples (per speaker) of any

target word in this corpus (cf. Table 5.1). The consequent effect is that all retraining

decisions must be made based on the correctness of recognition on the first four (or six)

utterances. Experiments exploring this modified approach are described in the next three

paragraphs.

Throughout the remainder of this chapter we will be using the concept of a training

progression. As an example, consider the progression 5-10-15-20. This means that five

speaker-dependent vectors (per category) are used to retrain after the first error, 10 after

the second, 15 after the third, and 20 after the fourth. In each case the speaker-dependent

vectors are substituted into the same 10 vectors per category of speaker-independent

data. After each retraining, the new network is used in the following classifications, so

the chance of errors on the target word should decrease over the course of the progression.

Note, however, that the speaker-dependent vectors are generated, for all retrainings, using

the original unadapted network. As before, the speaker-dependent vectors are generated

from the first example of the target word (whether or not it was correctly classified).



49

Each of the networks produced during the course of the progression is tested on all of the

evaluation utterances for the speaker. This experimental setup was designed to mimic

the effect of being constrained to allow no more than 4 target-word errors within the first

six utterances, with the effectiveness of the new network demonstrated on all utterances

thereafter.

Initial training progressions We first tried several different training progressions on

fifty speakers from the development set. The goal here was to get a general impression for

how many speaker-dependent vectors should be used both early and late in the progression.

Progressions of 5-10-15-20, 10-20-30-40, 15-30-45, and 20-40-50 were tested, with each

training using a learning rate of 0.4 and lasting for 5 iterations. The confusable-pair

results for all four progressions are given in Tables 5.7-5.10. The results show that using

more speaker-dependent data adversely affects the performance on the confusable non-

target words. More importantly, using more data sooner hurts more. In other words, the

system should initially use as little speaker-dependent data as possible and only add more

as necessary.



Table 5.7: For each of six target words, this table shows the target word performance (after adapting) and the performance of
a non-target word substantially affected by the retraining. Scores are averaged over 50 development set speakers. Results are
given for an incremental retraining progression of 5-10-15-20 speaker-dependent vectors for the first, second, third, and fourth
errors.

Table 5.8: For each of six target words, this table shows the target word performance (after adapting) and the performance of
a non-target word substantially affected by the retraining. Scores are averaged over 50 development set speakers. Results are
given for an incremental retraining progression of 10-20-30-40 speaker-dependent vectors for the first, second, third, and fourth
errors

C11
o

Percent correct

Adapted on last Adapted on less Adapted on nest Adapted on no Adapted on yes Adapted on yo
Number Tested Tested Tested Tested Tested Tested Tested Tested Tested Tested Tested Tested
of on on on on on on on on on on on on
vectors last less less last nest yes no yo yes nest yo no
0 78.0 65.7 65.7 78.0 55.9 93.4 70.7 93.3 93.4 55.9 93.3 70.7
5 91.3 58.2 92.8 66.8 91.8 77.2 96.6 83.9 97.9 53.8 98.2 65.5
10 92.4 58.8 94.4 66.1 92.8 77.9 96.4 83.5 97.7 54.1 98.2 65.5
15 92.4 58.8 94.4 66.1 92.5 77.9 97.1 81.8 97.7 54.1 98.2 65.5
20 92.4 58.8 94.4 66.1 92.5 77.9 97.1 81.8 97.7 54.1 98.2 65.5

Percent correct

Adapted on last Adapted on less Adapted on nest Adapted on no Adapted on yes Adapted on yo
Number

Tested I Tested Tested I Tested Tested I Tested Tested I Tested Tested I Tested Tested I Testedof on on on on on on on on on on on on
vectors last less less last nest yes no yo yes nest yo no
0 78.0 65.7 65.7 78.0 55.9 93.4 70.7 93.3 93.4 55.9 93.3 70.7
10 92.8 58.8 95.1 59.2 92.8 76.9 96.6 81.8 98.4 54.5 98.2 63.9
20 93.1 58.5 94.8 59.2 93.5 76.5 97.1 80.7 98.2 54.5 98.2 63.9
30 93.1 58.2 94.8 59.2 93.5 76.5 97.3 80.7 98.4 54.1 98.2 63.9
40 93.1 58.2 94.8 59.2 93.5 76.5 97.3 80.7 98.4 54.1 98.2 63.9



Table 5.9: For each of six target words, this table shows the target word performance (after adapting) and the performance of
a non-target word substantially affected by the retraining. Scores are averaged over 50 development set speakers. Results are

for an incremental retrainine: oroe:ression of 15-30-45 soeaker-deoendent vectors for the first. second. and third errors.

Table 5.10: For each of six target words, this table shows the target word performance (after adapting) and the performance of
a non-target word substantially affected by the retraining. Scores are averaged over 50 development set speakers. Results are
given for an incremental retraining progression of 20-40-50 speaker-dependent vectors for the first, second, and third errors.

<:.11
......

lven . . .
Percent correct

Adapted on last Adapted on less Adapted on nest Adapted on no Adapted on yes Adapted on yo
Number Tested Tested Tested Tested Tested Tested Tested Tested Tested Tested Tested Tested
of on on on on on on on on on on on on
vectors last less less last nest yes no yo yes nest yo no
0 78.0 65.7 65.7 78.0 55.9 93.4 70.7 93.3 93.4 55.9 93.3 70.7
15 92.4 57.2 95.1 53.4 93.2 74.9 96.1 77.5 98.2 54.8 98.2 64.6
30 92.8 56.5 94.8 53.8 94.6 74.7 96.8 77.2 98.2 54.5 98.2 64.6
45 92.8 56.9 95.1 53.8 94.6 74.7 96.8 78.2 98.4 54.8 98.2 64.6

Percent correct

Adapted on last Adapted on less Adapted on nest Adapted on no Adapted on yes Adapted on yo
Number

Tested I Tested Tested I Tested Tested I Tested Tested I Tested Tested I Tested Tested I Testedof on on on on on on on on on on on on
vectors last less less last nest yes no yo yes nest yo no
0 78.0 65.7 65.7 78.0 55.9 93.4 70.7 93.3 93.4 55.9 93.3 70.7
20 93.1 57.2 95.1 59.2 94.6 71.9 97.1 79.3 97.9 52.7 98.2 63.7
40 94.2 56.5 95.1 58.5 95.0 72.1 97.3 80.4 97.9 52.7 98.2 63.3
50 94.2 56.5 95.4 58.5 95.0 72.1 97.3 80.4 98.4 52.0 98.2 63.3



52

Improved training progressions The next set of progressions used a small initial

number of speaker-dependent vectors that rapidly increased. The goal here was to catch

most of the errors with a slight amount of retraining, catch essentially all of the others with

the second retraining, and use the last retraining merely as a mop-up for the stubborn

remainder. Progressions of 1-5-25, 2-6-18, and 3-9-27 were tried using the established

values of 10 speaker-independent vectors/category, a learning rate of 0.4, and 5 training

iterations. These progressions were also tested using only 50 of the development set

speakers. The results, shown in Tables 5.11-5.13, were slightly better. We concluded

that starting with 2 or 3 vectors was approximately correct, but a more rapid increase

thereafter would be better.



Table 5.11: For each of six target words, this table shows the target word performance (after adapting) and the performance of
a non-target word substantially affected by the retraining. Scores are averaged over 50 development set speakers. Results are
given for an incremental retraining progression of 1-5-25 speaker-dependent vectors for the first, second. and third

Table 5.12: For each of six target words, this table shows the target word performance (after adapting) and the performance of
a non-target word substantially affected by the retraining. Scores are averaged over 50 development set speakers. Results are
given for an incremental retraining progression of 2-6-18 speaker-dependent vectors for the first, second, and third errors.

Q-.W

-

Percent correct

Adapted on last Adapted on less Adapted on nest Adapted on no Adapted on yes Adapted on yo
Number Tested Tested Tested Tested Tested Tested Tested Tested Tested Tested Tested Tested
of on on on on on on on on on on on on
vectors last less less last nest yes no yo yes nest yo no
0 78.0 65.7 65.7 78.0 55.9 93.4 70.7 93.3 93.4 55.9 93.3 70.7
1 80.1 68.0 79.7 79.1 73.5 87.7 83.2 87.7 95.4 54.5 95.8 65.1
5 84.1 68.6 89.9 73.6 88.2 80.1 95.2 82.5 97.0 54.8 96.8 65.3
25 88.8 64.7 91.5 72.9 87.8 80.1 94.6 81.4 97.3 54.8 96.8 65.3

Percent correct
Adapted on last Adapted on less Adapted on nest Adapted on no Adapted on yes Adapted on yo

Number

Tested I Tested Tested I Tested Tested I Tested Tested I Tested Tested I Tested Tested I Testedof on on on on on on on on on on on on
vectors last less less last nest yes no yo yes nest yo no
0 78.0 65.7 65.7 78.0 55.9 93.4 70.7 93.3 93.4 55.9 93.3 70.7
2 83.4 67.6 79.7 80.9 89.6 84.0 93.9 81.8 96.6 52.3 97.2 63.3
6 88.8 66.7 89.2 71.8 91.8 82.2 93.4 82.5 97.7 52.7 97.9 63.5
18 91.0 64.7 89.5 72.2 91.8 82.2 93.0 82.1 97.7 52.7 97.9 63.5



Table 5.13: For each of six target words, this table shows the target word performance (after adapting) and the performance of
a non-target word substantially affected by the retraining. Scores are averaged over 50 development set speakers. Results are
given for an incremental retraining progression of 3-9-27 speaker-dependent vectors for the first. second. and third

CJ1~

-

Percent correct
Adapted on last Adapted on less Adapted on nest Adapted on no Adapted on yes Adapted on yo

Number

Tested I Tested Tested I Tested Tested I Tested Tested I Tested Tested I Tested Tested I Testedof on on on on on on on on on on on on
vectors last less less last nest yes no yo yes nest yo no
0 78.0 65.7 65.7 78.0 55.9 93.4 70.7 93.3 93.4 55.9 93.3 70.7
3 83.4 68.3 90.5 69.7 90.3 83.3 91.2 84.6 97.7 52.3 97.9 64.4
9 91.3 66.3 92.8 68.2 91.4 82.4 92.5 84.6 97.5 52.7 97.9 64.6
27 91.7 66.0 92.8 68.2 91.4 82.4 92.5 84.2 97.3 52.7 97.9 64.6



55

Full development set With the range of acceptable progressions narrowed down, we

tried only two progressions on the entire development set. The two progressions were

2-10-20 and 3-12-24. All other parameters were the same. Results on the development set

speakers are given in Tables 5.14 and 5.15. We accepted the progression 3-12-24 as the

most desirable. Overall performance results for this progression were computed on the last

retrained network and are shown in Table 5.16. With this experiment we accomplished

the last of our 3 major goals: we maintained a good performance improvement on target

words and a rapid adaptation while reducing the damage done to confusable non-target

words.



Table 5.14: For each of six target words, this table shows the target word performance (after adapting) and the performance of
a non-target word substantially affected by the retraining. Scores are averaged over all development set speakers. Results are
given for an incremental retraining pro?;ression of 2-10-20 speaker-dependent vectors for the first. second. and third

Table 5.15: For each of six target words, this table shows the target word performance (after adapting) and the performance of
a non-target word substantially affected by the retraining. Scores are averaged over all development set speakers. Results are
given for an incremental retraining progression of 3-12-24 speaker-dependent vectors for the first, second, and third errors.

CJ10'.>

- -
Percent correct

Adapted on last Adapted on less Adapted on nest Adapted on no Adapted on yes Adapted on yo
Number

Tested I Tested Tested I Tested Tested I Tested Tested I Tested Tested I Tested Tested I Testedof on on on on on on on on on on on on
vectors last less less last nest yes no yo yes nest yo no
0 77.6 67.6 67.6 77.6 61.0 91.5 71.6 91.5 91.5 61.0 91.5 71.6
2 84.2 68.9 78.6 79.5 89.0 85.0 93.6 83.5 95.7 57.8 97.4 65.5
10 91.4 67.4 91.1 70.6 91.7 83.8 94.4 82.6 97.0 58.0 97.7 65.5
20 91.6 67.1 91.3 70.6 92.1 83.8 94.2 82.6 97.1 58.0 97.7 65.5

Percent correct

Adapted on last Adapted on less Adapted on nest Adapted on no Adapted on yes Adapted on yo
Number

Tested I Tested Tested I Tested Tested I Tested Tested I Tested Tested I Tested Tested I Testedof on on on on on on on on on on on on
vectors last less less last nest yes no yo yes nest yo no
0 77.6 67.6 67.6 77.6 61.0 91.5 71.6 91.5 91.5 61.0 91.5 71.6
3 82.3 69.6 90.5 70.4 91.2 84.9 90.9 86.1 96.8 56.9 97.7 66.2
12 91.6 67.6 93.0 68.7 92.6 83.9 93.7 84.7 96.8 57.3 97.7 66.2
24 91.2 67.4 93.0 68.7 92.8 83.9 94.0 85.2 96.9 57.3 97.7 66.2



57

Table 5.16: This table shows target and non-target recognition rates for all speakers in the
development set. One example of the target word was used to generate training vectors.
These vectors were duplicated to provide 3, 12, or 24 speaker-dependent vectors for each
category present in the training word. Speaker-independent vectors were added to bring
the total for each category to 10 (if not already there or higher). This is the development
set result for Experiment 3..

Percent correct

Adaptation Target Non-target
Word Baseline Exp1 Exp2 Exp3 Baseline Exp1 Exp2 Exp3
east 96.2 99.3 99.6 98.4 69.7 70.6 70.8 69.7
help 35.4 95.1 95.4 97.2 76.7 75.3 74.4 70.8
hope 62.6 96.1 98.3 92.3 72.5 69.8 67.8 71.1
last 77.6 95.4 96.7 91.2 71.2 69.4 68.0 70.7
less 67.6 95.7 97.7 93.0 72.1 69.1 66.0 70.9
low 70.5 92.9 93.1 91.7 71.8 72.5 72.9 71.7
nest 61.0 95.9 97.3 92.8 72.6 69.2 66.7 71.5
next 73.2 94.2 95.4 91.4 71.6 71.1 69.3 71.6
no 71.6 96.8 96.2 94.0 71.7 68.6 68.0 70.4

yes 91.5 99.0 99.3 96.9 69.0 66.2 64.7 68.6
yo 91.5 99.7 99.3 97.7 70.0 66.8 66.9 69.0

OVERALL 71.7 96.4 97.1 94.4 71.7 69.9 68.7 70.6



58

5.3.4 Final Results

Having found suitable parameter values, the 3 Experiment approaches were evaluated on

the final test set. Table 5.17 shows the target and non-target recognition performance when

adapting (individually) to each of the eleven words in the dataset. Table 5.18 gives the

performance of a target word and its most-confusable non-target counterpart for several

different target words. The next 3 paragraphs give a brief summary of the parameter

values used in each of the 3 Experiments.

Experiment 1: Improving target word performance Adaptation proceeded as

follows. Features were generated from one example of the target word. These vectors

were duplicated 10 times, and from this set were selected no more than 50 vectors per

category. The training set was formed by adding in enough speaker-independent data

to bring the total for each category up to 50 vectors. With the learning rate set at the

default value of 0.05, the network was trained for 10 iterations (starting from the already-

trained general purpose network). Retraining required approximately 300 seconds on our

workstations.

Experiment 2: Reducing computation time From one example of the target word,

feature vectors were generated as in Experiment 1, then duplicated enough times to obtain

50 of each category. The training set was formed by adding in 10 vectors per category of

speaker-independent data for each of the remaining (non-target) categories. This network

was trained with a learning rate of 0.4, but only for 5 iterations. Retraining required

approximately 30 seconds on our workstations.

Experiment 3: Incremental retraining As in Experiment 2, feature vectors were

generated and duplicated from one example of the target word to produce 50 speaker-

dependent vectors for each category. Sets of size 3, 12, and 24 of these vectors (per

category) were randomly selected to use in the retraining. To each of these were added

enough speaker-independent vectors to ensure that every category had at least 10 vectors.

We evaluated our recognizer on the first of the adaptation utterances. If an error occurred,



59

we retrained and used the new network to evaluate the next utterance. Otherwise, we used

the original network to evaluate the next utterance. We did this for all six of the adaptation

utterances available for a given target word and speaker. We then evaluated each network

on all the evaluation utterances for the speaker. The first retraining used the 3-vector

set, the second the 12-vector set, and the third the 24-vector set. Each training was for

5 iterations with a learning rate of 0.4. The first retraining required approximately 35

seconds, the second 40 seconds, and the third 50 seconds.

Table 5.17: This table shows target and non-target recognition rates averaged over all
speakers in the final test set. Results are shown using the parameter settings of Ex-
periments 1-3. Experiment 1 used 50 speaker-dependent vectors/category substituted
into 50 speaker-independent vectors/category, a learning rate of 0.05, and 10 training it-
erations. Experiment 2 used 50 speaker-dependent vectors/category substituted into 10
speaker-independent vectors/category, a learning rate of 0.4, and 5 training iterations. Ex-
periment 3 used a progression of 3, 12, and 24 speaker-dependent vectors substituted into
10 speaker-independent vectors/category, a learning rate of 0.4, and 5 training iterations.

Percent correct
Adaptation Target Non-target

Word Baseline Exp1 Exp2 Exp3 Baseline Exp1 Exp2 Exp3
east 99.7 99.7 99.7 99.7 72.6 72.8 73.0 72.6
help 32.0 95.2 98.2 97.1 80.6 78.3 77.4 74.8
hope 71.4 99.3 100.0 94.6 75.1 71.8 69.8 73.9
last 78.8 94.9 98.6 93.5 74.8 72.8 71.3 74.9
less 67.3 98.6 99.3 95.9 75.4 72.2 69.6 74.0
low 77.9 94.9 93.2 93.5 74.5 75.5 75.0 75.5
nest 75.2 99.0 99.0 93.5 74.7 71.1 69.3 74.8
next 78.9 97.6 100.0 93.9 74.4 73.6 71.8 75.2
no 73.5 98.0 98.4 95.2 75.0 71.2 71.2 73.9
yes 93.4 99.5 99.8 98.9 72.2 69.5 67.9 71.9
yo 91.2 99.7 99.7 98.6 73.4 69.5 69.4 72.9

OVERALL 74.8 97.8 98.7 96.0 74.8 72.6 71.4 74.1



Table 5.18: For each of six target words, this table shows the target word performance (after adapting) and the performance
of a non-target word substantially affected by the retraining. Scores are averaged over all test set speakers. Results are shown
using the parameter settings of Experiments 1-3. Experiment 1 used 50 speaker-dependent vectors/category substituted into
50 speaker-independent vectors/category, a learning rate of 0.05, and 10 training iterations. Experiment 2 used 50 speaker-
dependent vectors/category substituted into 10 speaker-independent vectors/category, a learning rate of 0.4, and 5 training
iterations. Experiment 3 used a progression of 3, 12, and 24 speaker-dependent vectors substituted into 10 speaker-independent
vectors/category, a learning rate of 0.4, and 5 training iterations.

0')o

Percent correct

Adapted on last Adapted on less Adapted on nest Adapted on no Adapted on yes Adapted on yo

Tested I Tested Tested I Tested Tested I Tested Tested I Tested Tested I Tested Tested I Testedon on on on on on on on on on on on
Expt. last less less last nest yes no yo yes nest yo no
Baseline 74.8 67.3 67.3 74.8 75.2 93.4 73.5 91.2 93.4 75.2 91.2 73.5

Exp1 94.9 51.4 98.6 52.7 99.0 77.1 98.0 72.1 99.5 50.7 99.7 45.6
Exp2 98.6 37.1 99.3 35.7 99.0 66.0 98.4 62.9 99.8 38.8 99.7 37.9
Exp3 93.5 63.6 95.9 65.6 93.5 89.3 95.2 86.1 98.9 68.7 98.6 69.4



61

5.4 Summary

In this chapter we presented our rapid retraining approach to solving the target-word

adaptation problem for a speaker. Our goal was to rapidly improve the performance of a

neural network-based recognizer on a target word for a speaker using only one example of

that word by the speaker without degrading performance on all other non-target words.

We presented the results of applying this approach to the task of recognizing an isolated

word out of a small-vocabulary set of acoustically-similar words. On this task, the ap-

proach resulted in an average 84% reduction in the target word error rate. On average,

the non-target error rate increased by 3%. Even though our software implementation of

the approach was not fully optimized for speed (and in fact was quite inefficient), adap-

tation required approximately 30 seconds of real-time processing on a single workstation.

Using personal computers commercially available today, this processing time is estimated

to drop to 15 seconds without any changes to the algorithm itself.



Chapter 6

Parameter Optimization

The neural network retraining approach described in the previous chapter was both vo-

cabulary and speaker specific. The focus in that chapter was on using target-word speech

from a speaker to improve the performance on just that word for the speaker. The goal

with the experiments in this chapter, on the other hand, is to use a small amount of speech,

preferably a single utterance, to rapidly improve performance of our neural network based

recognizer on all of the utterances by a speaker. We begin this chapter by describing

the motivation for using this parameter optimization approach. The next two sections

then describe the parameter we attempt to optimize and the optimization method itself.

Finally, we present our experiments exploring this method.

6.1 Motivation

Many adaptation methods, especially those for neural networks, attempt to estimate too

many parameters, resulting in poorer estimation and longer adaptation times. A brief

review of our frame-based recognition process illustrates how this can happen. The input

speech is first divided into slices (frames) of a few milliseconds in duration. For each frame,

a signal processing stage then produces a few values that compactly represent spectral

properties of the speech from that frame. These values, along with values from other

frames, are then combined to form a larger vector offeature values. A probability estimator

then generates an even larger set of subword-unit probabilities. These probabilities are

used by a lexical search to produce the final word string. Notice that at each of these

stages the number of parameters has grown.

62



63

Most speaker adaptation approaches modify values at one of three points in this se-

quence: the feature vector itself, the probability estimator, or the output probabilities.

Since these methods change a large number of parameters, they frequently require substan-

tial amounts of adaptation data in order to reliably estimate new values for the parameters.

Rather than adjusting a large number of parameters late in the processing, adjusting only

a single parameter earlier in the computation could be done with less adaptation speech,

perhaps as little as one word. Optimizing this single parameter would have the effect of

appropriately adjusting the necessary parameters appearing later in the analysis process.

For the task addressed in this chapter, an ideal parameter would be one that explicitly

accounts for much of the variability among speakers.

In the next section we describe such a parameter: the Bark offset.

6.2 Bark offset parameter

Originally developed for the objective calculation of loudness, the Bark scale critical band

function was proposed to the International Standards Organization in the late 1950's to

standardize the locations and limits of auditory critical bands.[65] The proposal intro-

duced as a unit the "Bark" (named after the German acoustician Barkhausen), where a

frequency difference of 1 Bark corresponds to the width of one critical band. This Bark

scale function maps the measured critical band locations to the frequency (Hertz) scale

and has thus been described as the "natural" frequency scale of the ear. Note that al-

though the end mapping is similar, this new frequency scale is constructed differently from

the mel scale, a pitch-scaling based function. For a discussion of the critical bands and

their importance in human auditory theory, see [52].

One factor that varies among speakers, especially between adult males, adult females,

and children, is the length of the individual's vocal tract. One effect of the difference

in vocal tract lengths can be seen in the speech spectra of vowels. Bladon, et at. [4]

compared average spectra, for the vowel lEI, for male and female speakers of Northern

British English and noticed that when presented on the Bark scale, the spectra differed,

on average, only in their location on the Bark frequency axis. They hypothesized that by



64

20

19
males -

children __no

18

17

!g 16

15

\
\
\
\

\\ ,\ I
" I

" /' "'~""-14

13

12
o 1000 2000

frequency in Hz
3000 4000

Figure 6.1: This figure shows average spectra for the vowel Icl from males and children.

The average is computed over all male or child speakers in the TIDIGITS training set.
Results are presented on the Hertz scale.

displacing all frequency components of the average female vowel downward by one unit on

the Bark scale, the average spectrum of the same male vowel would be obtained. A more

exaggerated difference can be seenbetween the spectra of males and children. Figures 6.1-

6.3 show average spectra for the vowel Icl for both males and children. The figures

show the spectra on the Hertz scale and the Bark scale and then illustrate how shifting

the children's spectra by -1.5 Barks can produce a good alignment of the fundamental

frequency and first formants and a better alignment of the second and third formants

between the male and child speakers.

The experiments in this chapter explore the useof a Bark offset parameter. Briefly, this

parameter is a single value, representing a number of Bark scale units, that specifies how

to shift frequency components along the Bark axis. In the example shown in the figures,

it is clear that a simple linear shift of spectral information along the Bark axis does not

completely line up the two spectra. However, this kind of shift is both well-motivated and

sufficient to provide some performance improvement. As will be described in Section 6.2.2,

the parameter was also straightforward to implement within our recognition paradigm.



.
l\,I
: \', ,. "I' ,'\ I" I \ I

f \ :' \, /
I \ I ..
I I I
I I I
I \ '
I I I
I "
: \../
I
I

I
I

I

"
1

1

14 ,',,/

20

19

18

17

~ 16

15

13

12
o

65

males -
children uu,

I'
I,

\ ,, 1, 1" I, I" "

2 4 6 8 10
frequency in Bark

12 14 16

Figure 6.2: This figure shows average spectra for the vowel lei from males and children.
The average is computed over all male or child speakers in the TIDIGITS training set.
Results are presented on the Bark scale.

males -
shiftedchildren uu,

:l ,',
1\ v-:: ,'\
I, , \ I \
I 1 1 \ J \
I I 1 \' 1

: \ : '../ \
I 'I \' \, \' " \' , I \

I \ I \' \ I \
I \ I \

I" \ I
I \ II "I ". 1 "' I "

:/ "~I /" " 1' , -.vI' _
\ ,:\, :v .

\
I,
'.,, "

'" J......-,'" \,
\
I
I
I"

o 2 4 6 8 10
frequency in Bark

12 14 16

Figure 6.3: This figure shows average spectra for the vowel lei from males and children.
The average is computed over all male or child speakers in the TIDIGITS training set.
The children's spectra have been uniformly shifted left (downward in frequency) by 1.5
Barks. Results are presented on the Bark scale.

20

19

18

17

16

15

14

13

12
-2



66

Remember that the goal was to identify a parameter and optimization method that would

allow for rapid tuning of a speaker-independent neural network recognizer to the speech

of a specific individual.

6.2.1 Frequency scale warping

Our selection of this parameter was inspired by work done by Andreou, Kamm, and

Cohen.[2] In fact, the idea of warping the frequency axis to normalize for different vocal

tracts is not new. In 1977, Wakita [56] presented a method of vowel formant frequency

normalization which used explicit estimates of the speaker's vocal-tract length and area

functions obtained from the acoustic waveform. In a vowel identification task using steady-

state portions 'ofthe vowels, normalization resulted in a 26% reduction in the identification

error rate. Neuberg [43]examined several different transformations to the frequency scale.

In an experiment on two speakers, he observed that piecewise-linear transformations of

the first, second, and third formant regions of the frequency axis resulted in an improved

correlation between vowel nuclei spectra from the two speakers. Recently, several papers

have reported on experiments with various scalings of the frequency axis. Both Eide

and Gish [14] and Lee and Rose [35] have proposed extensions to the work of Andreou,

et al.[2] This work has also been extended by Kamm, et al.[27], who experimented with

linearly scaling the frequency axis for speakers from the Switchboard corpus. The optimal

scale factor was selected by trying different values and choosing the one that maximized

the a posteriori probability of the data. Although most of the improvement occurred

in this first step (adaptation), they also iteratively retrained their HMM by selecting

an optimal scale factor for each training speaker, retraining using these scale factors,

reselecting the optimal scale factor for each speaker, etc. This normalization reduced

their error rate by approximately 9%. Similarly, Eide and Gish experimented with a

simple exponential warping (designed to allow more adjustment at high frequencies than

at low frequencies) of the speakers' frequency scales. However, to avoid the computational

load of evaluating the system at many (arbitrary) warping parameter values for each

speaker, they attempted to estimate the parameter value based on third formant values

for the speaker relative to those for other speakers. Their error rates, also on Switchboard,



67

showed an 8-10% drop for several different dataset sizes and conditions. Lee and Rose

[35] proposed HMM-based procedures for estimating an appropriate scaling factor and

described a simple implementation of the frequency warping using a direct modification of

the filters in their front-end. Experiments on a telephone-based connected digit recognition

task demonstrated a noticeable reduction in error rate. Wegmann, et al.[58] investigated

an approach to vocal tract normalization based on an explicit voiced speech model. Their

piecewise-linear mapping produced a 12% reduction in error rates on a Switchboard task.

6.2.2 Implementation

Within our system, the Bark offset parameter is implemented through a modification of

the standard PLP [22] analysis. This analysis consists of a Hamming-windowed FFT, a

warping of the power spectrum to the Bark scale, critical-band masking, equal-loudness

pre-emphasis, intensity-loudness conversion, and finally LPC cepstral modelling. The

original Hz-to-Bark transformation (an analytic approximation from Schroeder [15, p.

324]) and its inverse were

nu)

j(n)
6ln { 6&0+ V (~r + 1}

600sinh(n/6)

(6.1)

(6.2)

A plot of this transformation is shown in Figure 6.4. Figure 6.5 shows a spectrum for an

average male lEI when presented on the Hertz and Bark scales. Notice that the lower

frequencies are expanded and the higher frequencies are compressed.

Critical- band masking filters

This transformation is used in the PLP implementation as follows. From each windowed

frame of speech, 128 FFT coefficients are computed. Before the LPC analysis, these

values are converted into 17 filter-bank coefficients. The shape of the auditory filter used

is identical on the Bark scale for all filters, with each filter being separated from its

neighbor by approximately one Bark in order to evenly cover the 15.6 Bark range. The

filter shape is plotted in Figure 6.6. The Bark-to-Hz transformation (Equation 6.2) is

used to precompute a) the range (in Hz) covered by each filter and b) the weighting factor



68

16
Hz to Bark scale conversion

14

12

>-
g 10
Q)
::J
C'"
~ 8

u..
~

~ 6

4

2

500 1000 1500 2000 2500 3000 3500 4000
Power Spectrum (Hz)

Figure 6.4: This figure shows a plot of the function Q(J) = 6ln (-Jso +j (-Jso) 2 +1) which
converts from the Hertz scale to the Bark scale in PLP.

12
o 1000 2000 3000

frequencyin Hz
4000

(a) Hz scale

12
o 4 6 8 10 12 14 16

frequency in Bark

(b) Bark scale

Figure 6.5: This figure shows spectra for the vowel lei from males, averaged over all males
in the TIDIGITS training set. Results are presented on the Hertz and Bark scales.



69

Critical-band curve

0.9

0.8

-0.5 3

0.7

0.6
en
.5
-§,0.5
'0;
:r:

0.4

0.3

o
-2 -1.5 -1

0.2

0.1

o 0.5
Barks

Figure 6.6: This figure shows a plot of the critical band filter used in PLP.

applied to each FFT sample point. Thus a change in the Hz-to-Bark transformation will

affect, for each of the filter banks, both the range of FFT sample values on which the bank

is computed and the actual weighting values for each sample.

Linear shift (offset)

The Bark offset parameter is implemented in our system through a modification of Equa-

tion 6.1:

noffset (f) = n(f) + offset

Thus a negative offset shifts all values to lower frequencies, while a positive offset shifts

all values to higher frequencies. The effect of adding this parameter value is to allow the

filter bank ranges and weightings to vary. At no time was a range allowed to extend

outside of the range of the existing FFT sample points. For ease of implementation, the

range of offset values was restricted to be such that the center portion of the filter (with a

weighting value of 1.0) would remain at least partially within the originally defined range.

For simplicity, this range of (-2.3,3.5) was further constrained to [-2,3]. Thus offsets were



70

offset= -2.0 -----
offset = 0 -

offset = 1.0 ..-...

4 6 8 10
frequency in Bark

12 14 16

Figure 6.7: This figure shows the effects of different Bark offsets on a sample spectrum.
The spectrum is an average for the vowel lei over all males in the TIDIGITS training
set.

only allowed in the range of -2 to +3 Barks. Examples of the effects of different offsets

are shown in Figure 6.7.

20

19

18

17

In 16"

15

14

13

12
0 2



71

1800

400
-2 -1 o 1

offset in Barks
2 3

Figure 6.8: This figure shows the change in recognizer score as the Bark offset is changed
for a seven-digit utterance spoken by a female child. The utterance is from the TIDIGITS
training set.

6.3 Optimization

In the work done by Andreou, et al.[2], the optimal Bark scaling value was selected by

evaluating the space of scale factors at regular intervals. In a preliminary analysis, we

plotted the recognizer score as a function of the bark offset parameter. The plots indicated

that, for each speaker, there was a single clear minimum region in a function that was

approximately parabolic (see Fig. 6.8). This insight led us to select an optimization

method that would take advantage of our knowledge of the general shape of the function.

We selected Brent's algorithm [49, section 10.2], a cross between the golden section search

and inverse parabolic interpolation, to perform the optimization. Given starting locations

a, Xo, and b such that a :::; Xo :::;b, f(xo) :::;a, and f(xo) :::; b, Brent's algorithm is

guaranteed to find, to a specified precision of E, the location Xmin and value Ymin of a local

minimum of a function Y = f(x), where a < Xmin< b, provided that the function has a

continuous second derivative.

Excellent descriptions and analyses for the golden section search, inverse parabolic

interpolation, and Brent's method can be found in Press, et 301.[49,sections 10.1,10.2].

1600

1400
0
0
f/)

Qj 1200N
°2
C)
0
0 1000
.

800......

600



72

However, we present here a synopsis of their discussion and algorithm description. Briefly,

the golden section search is a one-dimensional search for a local minimum within a specified

range. The idea is based on the concept of successively bracketing a minimum. To illustrate

the concept, we first describe how to locate a zero of a function by successively bracketing

the zero. A zero can be bracketed with only two points (a, b) such that f(a) and f(b)

are of opposite sign. Why? For a continuous function there must be at least one abcissa

Xzero between a and b with an ordinate of zero. To find a zero, then, select an abcissa

x between a and b at which to evaluate the function. If f(x) has the same sign as f(a),

the new bracket should be set to (x, b). Conversely, if f(x) has the same sign as f(b), the

new bracket should be set to (a, x). Continuing in this manner will eventually result in

a bracket that is sufficiently narrow. Without any other information, the optimal point

to select for the next function evaluation is the abcissa exactly halfway between the two

bracketing points.

The same procedure may be used to locate a minimum of a function. However, brack-

eting a minimum requires a triplet (a, b,c) such that f(b) is less than both f(a) and f(c).

Why? Because the fact that the middle point is lower than the two outer points provides

the guarantee of at least one point lower than the outer two. As above, the process of

successively bracketing the minimum requires that the function be evaluated at a point

x between a and c. Then a new triplet is selected such that the range is smaller yet the

center point is still lower than the outer two. Again, without any other information about

the shape of the function, the best point at which to evaluate next is the one located at

a fraction 0.38197 into the larger of the two intervals (a, b) and (b, c), measuring from b,

the center point of the triplet. Interestingly, this fraction (actually 3-2V5)of 1.0 and its

complementary 0.61803 are the fractions of the golden mean or golden section. Hence the

name of the search.

It would be convenient to have a more informed way of selecting each successive point

for evaluation. Remember that the golden section search assumes no other knowledge

about the shape of the function. Many functions, however, are parabolic, at least in the

neighborhood of the minimum. If the function is parabolic in the region of the minimum

being sought, why not fit a parabola through the three points of our triplet and jump



73

straight to the minimum of the parabola, which should be close to the minimum of the

function? This is the concept underlying inverse parabolic interpolation. (In this case,

inverse merely refers to the fact that the abcissa corresponding to the minimum ordinate

is desired, rather than the ordinate value itself.) Unfortunately, the equation giving the

abcissa of the minimum of a parabola through 3 points will instead give the maximum

of the parabola if the function is so shaped. Thus inverse parabolic interpolation should

only be used along with a check to ensure that the new value is lower than (or equal to)

the lowest of the three points.

The dilemma here is that inverse parabolic interpolation is fast but potentially inac-

curate, while the golden section search is much slower but will definitely converge to the

minimum. Which is best to use to set the next evaluation point? Brent's algorithm solves

this problem by using built-in heuristics to decide when one approach is better than the

other. Not only that, but it is spartan in its use of function evaluations. For the task

at hand this is critically important, since a "function evaluation" corresponds to a com-

plete recognizer pass over the adaptation utterance, including signal processing, feature

generation, probability estimation, and Viterbi search to produce the function value. For

information on the actual heuristics used in Brent's algorithm, see [7, Chapter 5].

We have illustrated the search procedure on a simplified example in Figure 6.9. Notice

in this particular example that only parabolic interpolation is used to set the next eval-

uation point. For a less-parabolic (but more likely) function the algorithm would likely

switch back and forth between interpolation and golden section. In summary, here is the

procedure for Brent's algorithm:

1. Three points which bracket a minimum are given as the three starting points. In the

diagram, these points are located at a, Xi = Xo, and b. The function is evaluated at

Xo.

2. A new point, Xi+!, is selected either through a golden section division or by finding

the minimum of a parabola through the three points.

3. The function is evaluated at this point.



74

4. Three new points are selected based on the location of the new point and the value

of the function at the point. Intuitively, we select the lowest of the four points as the

middle and keep the two that are closest to this middle one as the bounding points.

Mathematically, if Xi+! < Xi, then

!

(Xi+!' Xi, b)

(a, X, b) = (a, Xi+!,Xi)

heuristic

if f(Xi+l) > f(Xi)

if f(Xi+d < f(Xi)

otherwise

Otherwise (i.e., if Xi+l > Xi), then

!

(a, Xi, xi+d

(a, X, b) = (Xi, Xi+!,b)

heuristic

if f(Xi+d > f(Xi)

if f(Xi+!) < f(Xi)

otherwise

In either case the search continues back at step 2 with the new points. Of course, if

Xi+! = Xi or the two outer points are equal to within :1::£. Xi the search terminates

with Xi as the answer.

Notice that the function is never evaluated at the original two endpoints. All the

search needs to know when it starts is that the function values at those two points are

both higher than that of the middle point.

6.3.1 Implementation

We have implemented Brent's method as a new Tcl function in the OGI Toolkit. This

function takes as input a function to be minimized, a range within which to search, a

starting value, and a tolerance value £ that determines when to quit searching. The

search terminates when the outside points are less than 2 x X X £ apart, where X is the

best abcissa found so far.

The adaptation must be both simple and rapid. Practically, a single utterance by

a speaker will be used to estimate Poptimal,the optimal value of the parameter. This

parameter value will then be used to recognize all of the remaining utterances by the

speaker. In all experiments, the optimization is performed on the negative of (the log

likelihood of) the recognizer score for the adaptation utterance.



75

Brent's Method

'.

.' .:...' .:

.: :.:
~ .. .

!. .. .. .. .. ......

a b

Parameter VaIue

Figure 6.9: This figure shows an example optimization using Brent's method. In this
example a parabola is fitted through the initial three points at a,xo, and b. The minimum
of this parabola is at Xl' A new parabola through xo,xl,and b gives a new minimum at
X2. This is the final value.

Note that the success of this method for rapid adaptation depends on several assump-

tions:

1. Brent's algorithm requires the initial specification of a range [a,b] for the parameter

value p within which the recognizer score R( u, p) has a minimum.

2. For speed purposes, it must be possible to estimate Poptimalwith a small number of

function evaluations (recognizer passes over the utterance).

3. The estimate of Poptimalmust be accurate enough to improve the recognizer perfor-

mance on the remaining utterances for the speaker. Note that this implies that the

score produced by the recognizer is fairly well correlated with the accuracy of the

recognizer.



76

6.4 Experiments

This section describes the experiments in which a Bark offset parameter was optimized

for each speaker as described in the previous section. Experiments were performed both

on children's speech and adults' speech. All of the digit string adaptation experiments

were unsupervised, meaning that the system did not presume to know the identity of the

digit string. The utterance was, however, assumed to be a string of digits. Conversely, all

experiments on the PhoneBook corpus were supervised-the system used its knowledge

of the word's identity during adaptation.

6.4.1 Children's digit strings

Children's vocal tracts tend to be shorter than those of adults. Since the Bark offset

parameter is intended to provide a rough normalization for the vocal tract length of the

speaker, it is conceivable that with an appropriate setting of this parameter for each

speaker the performance of an adult-trained recognizer on children's speech could be sub-

stantially improved. This was the goal in these experiments. The TIDIGITS corpus

(described in Sec. 4.2) was selected for the experiments because it provides children's tele-

phone speech in a controlled environment on a constrained task. The test set utterances

from this corpus were used for all evaluations. There were 51 children in the test set.

The networks used in these experiments had 209 output units, one for each of the

context-dependent phonemes present in the eleven allowed digit words ("zero" through

"nine" plus "oh"). It had 56 inputs and 200 hidden units as described in Section 2.2.1.

The language model allowed the recognized string to consist of one or more of the digit

words, optionally separated by silence.

Recognizertrained on Numbers corpus

For this experiment the recognizer was trained on digits from the OGI 30,000 Numbers

corpus (c/. Sec. 4.1). No age analysis was performed on this corpus, but the vast majority

of callers appear to have been adults. Remember that the goal was to adapt an adult-

trained recognizer.



77

The following procedure was performed for each child:

. For each I-digit utterance (out of 11 spoken by the child), Brent's algorithm was used

to obtain the offset that maximized the recognizer score for that utterance. The offset

was then used to test, for digit-level accuracy, the remaining 76 utterances spoken

by the child. For Brent's algorithm, an offset range of [-2.0,3.0] with a starting value

of 0.0 was used.

. An average of these eleven accuracy scores was computed.

Computing the average, across all of the children, of these averaged accuracy scores pro-

duced the overall system error rate. The same procedure was followed using 7-digit ut-

terances to adapt. The baseline performance was obtained by evaluating each child's

utterances using the default offset of 0.0. Baseline, I-digit adaptation, and 7-digit adap-

tation results are presented in Table 6.1. In comparison, the adult TIDIGIT performance

was 96.17% digit accuracy. Also shown in the table is the average number of function

evaluations, Le. the number of times the recognizer evaluated the adaptation utterance

during the search for the best offset. Although only presented for comparison, the table

also includes the average CPU time (in seconds) needed to perform these evaluations. In

general, longer strings required more time and more evaluations required more time.

Table 6.1: This table presents results for an OGI 30000 Numbers-trained recognizer
adapted to children's TIDIGITS utterances. Results are shown both for using a single
digit to adapt and for using seven digits to adapt. Also shown are the average number
of recognizer evaluations required to obtain the optimal offset and the average number of
seconds needed on our hardware to perform these evaluations.

Recognizer trained on TIDIGITS corpus

In the previous experiment the baseline performance for children was extremely poor. To

see how much improvement was possible for a network trained on task data, we retrained

-

Digit String Average Average time
Condition Correct Accuracy Correct recog. evals (seconds)
Baseline 89.95% 75.41% 57.64% N/A N/A
I-digit 92.33% 83.52% 69.02% 10.4 21.8

7-digit 97.98% 89.41% 76.65% 9.6 34.5



78

Table 6.2: This table presents results for an adult TIDIGITS-trained recognizer adapted
to children's TIDIGITS utterances. Results are shown both for using a single digit to
adapt and for using seven digits to adapt. Also shown are the average number of recognizer
evaluations required to obtain the optimal offset and the average number of seconds needed
on our hardware to perform these evaluations.

the neural network using speech from the adult training speakers in the TIDIGITS

corpus. After training, baseline performance for adults on the test set (still TIDIGITS)

was 99.3% digit accuracy.

We then performed the same adaptation procedure for children's speech as in the

previous experiment. Results are in Table 6.2. There was still a substantial reduction in

the average error rate. The number of recognizer evaluations increased slightly as well.

The CPU time needed for the adaptation was approximately the same.

-

Digit String Average Average time
Condition Correct Accuracy Correct recog. evals (seconds)
Baseline 95.74% 90.42% 80.21% N/A N/A
I-digit 96.98% 93.79% 87.41% 10.8 20.3

7-digit 99.00% 96.52% 90.96% 10.1 36.4



79

6.4.2 Normalization using adults' digit strings

In the last set of experiments the goal was to demonstrate that the same method could be

used to improve performance on any speaker-not just children. Because the unsupervised

adaptation performance improvement was not as large as expected, normalization was

examined as well. The next paragraph describes this.

Normalization In the earlier experiments with children's speech there was a mismatch

between the training and testing conditions. In both experiments the network was trained

without any Bark offset parameter at all, which corresponds to a parameter value of 0.0.

However, after adaptation the system was tested on Bark-shifted speech. While this may

have been appropriate for the voiced regions of speech, the shift likely changed other

regions of speech in ways never seen by the neural network. Essentially, the network

had not been trained on appropriately-shifted speech. To account for this, a speaker-

normalized recognizer was created by iteratively retraining the digit recognizer on adults'

speech using the optimal offset for each adult speaker. The training procedure was as

follows:

1. The original recognizer used in the adaptation experiment was set as the initial

recognizer.

2. This recognizer was used to select the optimal offset for each utterance in the training

and cross-validation sets.

3. Along with the known word transcription of the utterance and pronunciation models

for the eleven allowed words in the dataset, this optimal offset for the utterance was

used in the recognizer to automatically generate feature vectors for the utterance.

4. The new training vectors were used in our standard on-line stochastic training algo-

rithm (see Section 2.2.2) to produce a new recognizer (network). The training started

from random weights and was stopped as soon as the maximum performance on the

cross-validation set was reached.



80

5. This new recognizer was the "norm1" recognizer. Repeating steps 2-4 produced the

"norm2" recognizer.

Practically, one can envision using the speaker-independent baseline recognizer to initially

recognize a few utterances by the speaker. In the background, the system would adapt

the normalized recognizer using the initial speech (by selecting an apppropriate offset) to

produce a much better recognizer which would then be used to recognize the remaining

utterances by the speaker.

In the next section we present details of the experiment and the results obtained.

OGI 30000 Numbers

Since the baseline performance for adults on the TIDIGITS corpus was already 99.3%

digit accuracy, this experiment was performed on the OGI 30000 Numbers corpus,

which is noisy telephone speech rather than merely downsampled high-quality lab speech.

As described in Section 4.1, only the address and zip code number strings were used.

During evaluation, one utterance was used to adapt and one to test. During the iterative

retraining, though, the optimal offset value for each utterance was found and subsequently

used to generate features for the utterance.

For each of the three recognizers (unnormalized, norm1, and norm2), performance on

the 376 speakers was evaluated both before and after adaptation. Adaptation was per-

formed using Brent's algorithm to optimize the score for the adaptation utterance. The

offset obtained was then used to recognize the test utterance, producing a binary cor-

rect/incorrect classification for the utterance. The same process was repeated by adapt-

ing to the second utterance and testing on the first. These two utterance scores together

formed the score for the speaker. All speaker scores were averaged together to obtain the

overall utterance score. Results for the three recognizers are shown in Table 6.3. The street

addresses performance refers to the performance on street address utterances when using

zip codes to adapt, and vice versa. The best result was obtained by adapting after only

one normalization pass. The drop in baseline performance for the normalized recognizers

was to be expected, since the "baseline" for each system is to use a Bark offset of 0.0

for all utterances. After training a normalized network, any unnormalized (unadapted)



81

Table 6.3: This table presents results for a normalized adult-speech OGI 30000 Num-
bers network adapted to and tested on adults. The street addresses performance refers
to the performance on street address utterances when using zip codes to adapt, and vice
versa.

speech the system processes will not match the training conditions and should therefore

not be as well recognized.

Digit level accuracy (%)
Unnormalized Norm1 Norm2

Eval set Base Adapt Base Adapt Base Adapt
Street addresses 97.9 98.2 97.2 98.2 96.6 97.9

Zip codes 95.8 96.8 95.7 97.7 94.7 96.6
Overall 96.9 97.5 96.4 97.9 95.7 97.3



82

6.4.3 Medium vocabulary isolated word task - the PhoneBook corpus

We also performed experiments using isolated words from the PhoneBook corpus. This

corpus has a larger vocabulary than the digit corpora used in the previous experiments.

The training, development, and test sets were partitioned in a way that for the most

part ensured different training words than test. A description of the corpus can be found

in Section 4.3. After training, the experiments used only the development and test set

speakers.

Bark offset adaptation

The baseline recognizer used the same PLP input features as in the other experiments.

The neural network was a three-layer network with 56 inputs, 200 hidden units, and 534

context-dependent phonemic outputs. Since each utterance consists of only a single word,

the grammar (language model) was simple. It would accept a single word, which could

be any of the allowed vocabulary words, optionally preceded and/or followed by silence or

noise.

The goal was to use the same general adaptation approach used on the TIDIGITS

utterances. For each of the callers, an optimal offset for the speaker would be deter-

mined using Brent's algorithm and then used when recognizing the evaluation utterances

for the speaker. A major difference, however, between these experiments and the digit

experiments is that this adaptation was supervised. Although unsupervised adaptation is

possible, in this task it would require a vocabulary search for each recognizer evaluation.

Since several recognizer evaluations are needed in order to determine the optimal offset

value, this could be rather time-consuming. For this reason the experiments described

here assume that the identity of the adaptation word(s) is known.

Some preliminary analyses indicated that the following issues would be important:

Using overall vs. just word score The overall utterance includes not only the word

but silence and noise. Since the Bark offset parameter is really applicable only to

speech, including non-speech noise into the calculation of the recognizer score to

be optimized is not appropriate. This concern applied to the earlier digit string



83

experiments as well, but the digit strings were typically longer than the isolated

words (resulting in a larger percentage of the utterance that is speech) and the

earlier adaptation was unsupervised (meaning that a change in the recognized word's

identity as the parameter was varied could result in drastic, abrupt changes in the

word score). In contrast, supervised adaptation allows the system to compare the

changing scores of a fixed word. For these reasons, both the utterance and word

scores were examined as values to optimize with Brent's algorithm.

Number of adaptation utterances It quickly became apparent that due to the in-

creased vocabulary and number of network output categories, one utterance was

typically not sufficient to provide an accurate estimate of the optimal offset value

for a speaker. Thus, one of the areas explored was the number of adaptation utter-

ances needed to obtain a successful offset value.

Offset-combination methods When using more than one utterance to adapt, an obvi-

ous question arises as to how to combine them. One possible approach is to concate-

nate the utterances into one adaptation utterance. Having to optimize several digit

strings at once might produce a more robust offset estimate. Another approach, and

the one taken in these experiments, was to assume that the optimal offset values for

most of the individual utterances are close to one another. In that case, optimal

offset values can be computed for each adaptation utterance and then combined.

The following paragraphs describe the experiments performed using the speakers in the

development set. Note that only in the final experiments is adaptation actually being

performed. The purpose of the preliminary experiments is to find out, first, whether it

is possible to achieve a performance improvement using any number of utterances, and,

second, to determine how few are needed.

Overall vs. word score The first experiment used a 3D-speaker subset of the develop-

ment set. For each of the (up to) 76 utterances by each speaker, Brent's algorithm was

used to compute the offset that maximized the recognizer score for the utterance. This

was done both when using the overall utterance score and when using only the word score.



84

Table 6.4: This table shows the percentage of utterances (words) correctly recognized
when using the median offset for each of 30 development set speakers. The median is
computed over all (potentially 76) utterances by a speaker. Both utterance score and
word score were optimized. Results for both are shown.

Figures 6.10-6.13 show sorted plots of the optimal offsets found for the utterances of two

female and two male speakers. The horizontal dashed line is at an offset of zero. The two

things to note here are

1. For each of the speakers, there is a definite offset value region into which most of

the offsets fall. Assuming that an offset value close to the optimum will still improve

the score for a word, these plots suggest that there is an offset (or a narrow range

of offsets) that will result in improved scores for most of the words.

2. The offset value range is much narrower when using the word-only score than when

using the overall utterance score.

The median offset The narrow offset range containing most of the optimal offsets sug-

gested that finding a way to select a value within this range would be useful. Assuming

that the optimal offset values for more than half the utterances fall in the desired range,

simply selecting the median value should work. This experiment used the same 30 speak-

ers. Both for the utterance-score and word-score approaches, all of the utterances for a

speaker were tested using the median of the optimal offsets for the speaker's utterances.

The summary results are shown in Table 6.4. Clearly, these results show a large difference

in performance between the utterance-score and word-score methods, with the word-score

approach showing a small improvement over the baseline. More interesting, however, are

the individual performance changes shown in Figure 6.14. This figure is a scatter plot

contrasting the before (offset of zero) and after (median offset) recognition rates for all 30

speakers. Although the average recognition rate is only slightly better after than before, it

appears that most of this improvement is concentrated in a few of the poorer-performing

Condition Percent correct
Baseline 74.6
Utterance 68.7
Word 76.7



85

3 3

2 2

-1

'Qj
II)=o
iii
E
E. 0
o

'Qj
II)

'5
iii
E
"E. 0
o

-1

-2
o 10 20 30 40 50 60 70 80

Utterance number

-2
o 10 20 30 40 50 60 70 80

Utterancenumber

(a) Utterance (b) Word

Figure 6.10: This figure shows the optimal offsets individually obtained for each of speaker
f09's utterances using Brent's method on the recognizer score for the utterance.

2

3

~o
iii
E
~ 0
o

JmJ'
~

-11- ~

~
-2~' , ,

o 10 20 30 40 50 60
Utterance number

70 80
-2

o 10 20 30 40 50 60
Utterancenumber

70 80

(a) Utterance (b) Word

Figure 6.11: This figure shows the optimal offsets individually obtained for each of speaker
fOd's utterances using Brent's method on the recognizer score for the utterance.

3

2

I "
'Qj
£ I0 "
iii
E

oL- ....... ...-----P...c-
o

-1



'$
.,

<$>,
~

~
~

8f*><it?....

-11-/ ~
<$)<>..

-2~
o 10 20 30 40 50 60 70 80

Utterance number

(a) Utterance

86

Figure 6.12: This figure shows the optimal offsets individually obtained for each of speaker
mh7's utterances using Brent's method on the recognizer score for the utterance.

-.- ,

<$>

uuu ~...

#>$

.,011'"
~I I I I I I

10 20 30 40 50 60 70 80
Utterance number

(a) Utterance

Figure 6.13: This figure shows the optimal offsets individually obtained for each of speaker
mh9's utterances using Brent's method on the recognizer score for the utterance.

3

2

Q;
:¥1
0

(ij
E

0
0

3

2

I .,
Q;'"
'IS
(ij
E
E. 0
0

-1

-2
0 10 20 30 40 50 60 70 80

Utterancenumber

(b) Word

3

2

Q;

(ij
E

""5- 0
0

-1

-2
0

3

2

Q;'" 'r .,
'IS ..,
(ij
E
E. 0
0

-1

-2
0 10 20 30 40 50 60 70 80

Utterancenumber

(b) Word



87

100 100

20

80

<> 20

80
<>

60 60

~=«
40

~=«
40

20 40 60
Before

80 100 20 40 60
Before

80 100

(a) Utterance (b) Word

Figure 6.14: This figure shows a scatter plot of the percentage of utterances (words)
correctly recognized before (offset of zero) and after using the median offset for each of 30
development set speakers. The median is computed over all (potentially 76) utterances
by a speaker. Both utterance score and word score were optimized. Results for both are
shown.

speakers. Two conclusions that can be drawn from this experiment are

1. Using the median of the optimal offsets for a speaker's utterances will result in a

performance improvement (when optimizing the word-only score).

2. This improvement is the result of a dramatic improvement for a few of the worst-

performing speakers with little change for the rest.

Number of adaptation utterances Since the eventual goal is rapid adaptation, prefer-

ably using only a single utterance, it is not reasonable to have to estimate an offset for

76 utterances by a speaker. This next experiment therefore focused on determining the

approximate number of offsets (utterances) needed in order for the median to provide a

good performance improvement. Note that this is not yet adaptation-it is merely another

step towards identifying a method of obtaining the optimal offset value (for a speaker).

For each of the 30 speakers, seven utterance subsets of sizes 64, 32, 16, 18, 4, 2, and 1,

respectively, were randomly selected. For each subset the median offset value was com-

puted and then used to test on all the utterances by the speaker. In this experiment the

word score was optimized. Results, averaged over all 30 speakers, are shown in Table 6.5.



88

Table 6.5: This table shows the percentage of utterances (words) correctly recognized
when using different numbers of utterances to select the offset for a speaker, for each of
30 development set speakers. The median offset for a speaker is computed using offsets
from 1,2,4,8,16,32,or 64 utterances. Optimal offsets were obtained using word score.

It appears that a set of 32 words is sufficient to reach the final performance, while a set

of 8 words is sufficient to achieve most of the performance gain.

Number of

Adaptation Percent correct
Utterances

Baseline 74.6
1 74.7
2 75.2
4 76.2
8 76.6
16 76.4
32 76.7
64 76.7
76 76.7



89

Final results

This approach was tested on the final test set. Each speaker's data was partitioned

by randomly selecting 8 utterances to be adaptation utterances, with the rest used as

evaluation utterances. The optimal offset for each of the 8 utterances per speaker was

obtained using Brent's algorithm on the word score. The median of these 8 offsets for

each speaker was then used when testing on the evaluation utterances for the speaker. For

comparison only, the median offset for each speaker was also computed from randomly-

chosen subsets of 1, 2, and 4 of the adaptation utterances. Results for all adaptation-

set sizes are shown in Table 6.6. The table also shows the results on the 64 speakers

whose baseline performance was between 40% and 70%. Although the overall error rate

only declined from 22.6% to 20.9% (7.5% reduction), the average error on speakers with

medium-level baseline performance decreased from 39.8% to 34.5% (13.3% reduction).

This effect is easier to see in Figure 6.15. This figure shows a scatterplot of pre- vs.

post-adaptation performance for all of the speakers in the test set.

Table 6.6: This table shows adaptation results on the test set for the PhoneBookcorpus.
Results are shown for the condition of computing the median offset using 1,2,4, or 8
utterances by a speaker. Results for the subset of speakers whose baseline performance
was between 40% and 70% are shown in column 3. Word score was optimized when

obtaining individual offsets.

6.5 Summary

This chapter examined a parameter optimization approach to solving the speaker adapta-

tion problem. The goal was to rapidly improve the performance of a neural network-based

Number of

Adaptation Percent correct
Utterances Entire set Middle

Baseline 77.4 60.2
1 78.0 63.3
2 77.7 63.1
4 78.6 64.8
8 79.1 65.5



90

Before

Figure 6.15: This figure shows a scatterplot of pre- and post-adaptation results on the test
set for the PhoneBook corpus. Results are shown for the condition of computing the
median offset using 8 utterances by a speaker. Word score was optimized when obtaining
individual offsets.

recognizer on the speech of a new speaker using only one or a few utterances by the

speaker. This approach was applied in three different tasks. First, a recognizer trained

on connected digit speech from adults was adapted to children speaking connected digit

strings. On average, the digit error rate decreased by 35% using only 1 digit to adapt

(65% when using seven digits). Second, a recognizer trained on connected digits (spoken

by adults) was normalized to new adult speakers by iteratively optimizing the training fea-

tures and retraining. This resulted in a decrease of 32% in the digit error rate when using

only a few digits to adapt. Third, a recognizer trained on isolated words was adapted to

the speech of other speakers using eight words from the new speaker. Over all of the test

speakers, the word error rate decreased by 7.5%. For speakers whose baseline performance

was between 40% and 70%, the reduction was 13.3%. In each task, the time to perform

adaptation was proportional to the time needed to recognize the adaptation words. In the

experiments performed, this multiplier varied between 8 and 12.



Chapter 7

Discussion & Conclusions

7.1 Summary and Discussion

In this thesis work we investigated methods for rapidly adapting neural network-based

speech recognition systems to new conditions. Specifically, we examined both a model-

based approach and a feature space-based approach and found both to be successful within

certain domains.

Rapid retraining

We tested our model-based approach, rapid retraining of the hidden-to-output layer weights

of the neural network, in the domain of improving poorly-recognized words. We first col-

lected the Huh? corpus, a collection of highly inter-confusable words spoken multiple

times by over 100 callers. On this corpus we demonstrated that, indeed, it was possible

to improve performance for a caller on a given word by combining feature vectors from a

single example of the desired (target) word and feature vectors originally used in train-

ing the network, then retraining all of the hidden-to-output weights outputs. We then

demonstrated that by training only weights to the target outputs, those corresponding to

the phonemes present in the target word, one could reduce the overall number of training

vectors while still maintaining the performance improvement. This dramatically reduced

the time needed to train. These first two approaches had the drawback of decreasing

performance on certain non-target words, some of which were initially well-recognized.

To remedy this, we developed an incremental adaptation scheme that adapted only af-

ter misrecognizing an example of the target word. The first retraining used only a small

91



92

amount of speaker-specific data, with each subsequent retraining using substantially more.

This incremental approach had the desired behavior of minimizing the effect on non-target

words while retaining most of the improvement on the target word by only doing as much

adaptation as was necessary to improve the target word. On average, incremental retrain-

ing reduced the error rate on the target word by 84% while increasing the non-target error

rate by only 3%.

The two greatest strengths of the rapid retraining approach are its speed and accu-

racy. The first retraining (in the incremental-retraining method), which covered most of

the cases, was extremely fast. With optimization and/or hardware support, it would be

possible to do the retraining within a few seconds, i.e. between utterances in a human-

computer dialogue. This is tremendously useful. Typically during a telephone interaction

the computer system is only working between the time it begins to receive the person's

speech and the time it sends a reply back. Once the reply has been started, the computer

is idle. If the reply only takes 1 or 2 seconds, it would be possible to adapt to a missed

word within that time. The impressive accuracy obtainable with this approach is also of

great benefit. Practically speaking, there are many tasks for which certain words must

not be missed. On a voice-only Web browser, two extremely important words are back

and help. In most tasks, yes and no are important. The ability to immediately boost

performance on a given word can help improve error recovery.

The two greatest limitations of this approach are the requirement of supervised adap-

tation and the method's potential lack of scalability. In order to train the network, the

system requires a time-aligned transcription of the adaptation word. Although the align-

ment can be automatically determined, the identity is more difficult to obtain, especially if

only retraining when recognition errors have occurred. The system needs to know not only

when an error occurred but also what the person intended to say, placing a heavy burden

on the dialogue (error-recovery) component of the system. For many small-vocabulary

tasks this may not be a problem, but it is important to consider. The scalability issue

is a bit more serious. One reason the method is so rapid is that the system only needs

to adjust weights going to outputs whose phonemes are present in a single target word.

Although it is unclear whether simultaneously adapting to more than one target word



93

would be successful, it is clear that adjusting more weights will take more time. The very

factors responsible for the method being fast and effective also make it unlikely that the

method will be useful outside the domain of rapid target-word adaptation.

Parameter optimization

Our feature space-based approach, parameter optimization based on the output score of

the recognizer, is one that has enjoyed some popularity recently with the HMM community.

We presented a motivation for the use of a specific simple parameter, the Bark offset, and

then described our implementation of this parameter. We described a simple optimization

method and then showed that it and the parameter were appropriate for the task of rapid

adaptation of an adult speech trained recognizer to children's speech. We reduced the digit

error rate on children's speech by over 30% using only a single digit to adapt. Directly

performing this adaptation on adults' speech was only partially successful, so we adapted

to the training set and retrained. Using this retrained network, adapting to adults' digits

produced a 32% reduction in the error rate. Finally, we briefly examined the effectiveness

of the technique on a medium-vocabulary isolated-word task. Although a single adaptation

utterance was insufficient for adaptation in this domain, using 8 adaptation utterances

(words) we reduced the error rate by 7.5%. Interestingly, this performance improvement

was concentrated among speakers for whom the baseline performance was neither excellent

nor terrible. For these average speakers, the error reduction was 13.3%.

The major strength of this approach is that it uses an extremely small amount of

speech to adapt to a speaker. Even the 8 words required in the later experiments are

not unreasonable for adaptation. For speakers encountering many recognition errors, one

could just retain the speech for all words spoken so far and begin adapting after 8 words.

If each new utterance could be processed between prompts, the minimal time needed

for the adaptation itself (merely a parameter selection) would allow this approach to be

used in a real interaction. Unfortunately, the greatest limitation of this approach is that

the time to process an adaptation utterance depends on the recognizer speed. For all of

the experiments (digits and isolated words), the time needed to process one adaptation

utterance was 8-12 times the time needed to run the recognizer over the utterance. Thus,



94

for a digit recognizer that could process an utterance in one-half real-time it would take

about 2 seconds to adapt based on a single digit of approximately a half-second in length.

Adaptation of longer words would take correspondingly more time.

7.2 Future work

There are of course many opportunities and avenues for extending this research. This final

section presents a few ways each for both the rapid retraining and parameter optimization

approaches and concludes with some suggestions on ways to combine the two approaches.

Rapid retraining

Throughout this thesis we have referred to the vectors generated from the target words as

speaker-dependent, implicitly assuming that much of the benefit of retraining comes from

a normalization to the speaker. Our goal, of course, was improved performance on a target

word for a target speaker, and, while there may have been some benefit from adaptation

to the speaker, it is more likely that the effective adaptation was to the vocabulary (in

this case, the word). Even within the same task, it would be interesting to examine

both vocabulary-dependent but speaker-independent adaptation and speaker-dependent

but vocabulary-independent adaptation.

It might be possible to train outputs for which the system has no data by determining

correlations between weight changes. These correlations could be estimated as follows.

For each speaker in a designated dataset, separately adapt to target words spoken by the

individual. After retraining is complete for a word, save the changes in the weight values.

Over all speakers, these values (for a given target word) can be used to estimate each

weight's average change as a function of the other weights' changes using any standard

function estimation technique. These functions (one per output category) can then be

used when adapting to a new speaker. After retraining to a target word for the speaker,

the functions for that word can be used to estimate appropriate changes for the other

(non-target) outputs. Although this approach might be simple to implement and execute

for a small-vocabulary task, there may be some difficulties in extending it to larger or



95

more-general recognition tasks because of the number of functions to be estimated.

Even when using 50 speaker-dependent vectors per output category, these 50 vectors

were obtained by duplicating the vectors generated from only one utterance. This typically

resulted in a maximum of only 10 unique vectors per category and sometimes only 1 vector

for some categories. To provide greater robustness, it would be reasonable to select the

50 vectors per category from multiple examples of the target word. In the incremental

retraining approach, this could be accomplished by saving all examples of the target

word heard so far, whether or not they were correctly recognized. When the time came to

retrain, the system would then generate features from all of the words saved so far. Further

retrainings would use not only a larger ratio of speaker-dependent to generic data, but a

larger variety of speaker-dependent vectors as well.

Although the goal of the experiments was to improve the performance on only a single

word, one might want to use the retraining approach to improve either several words that

are consistently being misrecognized or even all of the words. Earlier (Section 7.1) we

pointed out that this will definitely increase the time needed to retrain. However, it would

be most interesting to see how performance on the first target word is affected by adding

other words.

In Section 5.3.3 we pointed out a critical implicit assumption made in deciding to

retrain only after errors. In the dataset used, there were either four or six examples of

each target word in the adaptation set. This meant the system could only retrain three

times if there were three errors within the four or six utterances. We implicitly estimated

the overall target-word error rate based on a sample of size four (or six)! While this is

appropriate if the system user cannot accept three errors that close together, there may

be tasks where the errors are preferable to overlearning a specific word. A dataset with

fewer targets but more examples of each target per speaker would allow one to investigate

this issue.



96

Parameter optimization

On the TIDIGITS task, there is a clear gap between the baseline adult and adapted

child error rates not accounted for by the adaptation. Two obvious suspects are the ac-

curacy of our estimate of the optimal offset and the optimality of our warping function

(the Bark shift) itself. As described in Section 6.2.1, other researchers have investigated

various different warping functions. We did perform one preliminary experiment with scal-

ing (rather than shifting) that displayed an interesting effect-although the performance

was slightly worse than for the comparable offset experiment, only about half as many

recognizer evaluations were required to determine the optimal scaling factor! Even if the

performance is not quite as good, it might be better to use a scaling factor just for speed

purposes. This is clearly an important issue, but it is likely that there are prosodic or

other differences between the speech of adults and children as well. A careful study of the

effects of different warping functions and different optimization functions would help to

show what can and cannot be accomplished through a simple warping.

All of our experiments used a search ending tolerance of 0.01 for Brent's algorithm.

This means that the algorithm would finish whenever the range spanned by the two outer

values of the triplet was within ::f:0.01of the location of the middle point. For most speakers

this required between 10 and 12 recognizer evaluations. This value was set at 0.01 because

the preliminary examination of the variation in recognizer score for different offset values

indicated that a resolution of 1.0 or even 0.1 Barks might not be sufficient. However,

the later experiments on the PhoneBook corpus seemed to indicate that the optimal

offset for a speaker was less sensitive. It is our expectation that a more careful study to

determine the appropriate tolerance value would suggest a larger tolerance value, most

likely requiring significantly fewer recognizer evaluations and thus less time for adaptation.

Our approach to optimizing a parameter is of course not limited to the specific pa-

rameter we chose or even the domain of speaker adaptation. The technique is applicable

to any task for which there is a single value that must be set appropriately for a speaker,

phone line, etc. using only a small amount of speech. As an example, one such parameter



97

would be the J in J-RASTA. J-RASTA[42] is a modification of the RASTA algorithm de-

signed to overcome the latter's difficulties in handling additive noise. It turns out that the

optimal J factor for any utterance is dependent upon the level of noise in the utterance.

In the paper decribing this algorithm [42], the authors explicitly estimated the noise in the

signal and set the value of J accordingly. Instead, using our approach one would directly

find the value that optimizes the overall recognizer score. This reduces the risk of errors

that might otherwise have been introduced by the noise estimation algorithm.

One implicit assumption made in the use of the Bark offset parameter was that shifting

all of the speech would be acceptable. The motivation for using this parameter, however,

was that it would help to account for differences in vocal tract lengths; in particular, it

would normalize formant frequencies across speakers. However, unvoiced speech (frica-

tives, silence, etc.) is in general less affected by vocal tract length. A more appropriate

use of this parameter would be to compute it based only on voiced regions of speech and,

likewise, only to apply the corresponding shift to voiced regions. It might even be that a

simple energy measure would be sufficient to determine the applicability of the shift. Our

iterated normalization experiments accounted for this somewhat by guaranteeing that the

network would have seen unvoiced regions shifted by varied amounts, but it would have

been better not even to have shifted these regions of speech.

As mentioned in Section 6.4.3, only supervised adaptation was attempted for the

PhoneBook experiment. An identical experiment using only the recognizer score for

the top-scoring word (Le., unsupervised), though, would be worthwhile to run. Another

issue brought up in our experiments which should be addressed more thoroughly is the

optimization of an overall utterance score vs. just the word score when searching for the

correct offset. In our preliminary experiments it appeared as if the overall utterance score

was less appropriate for our adaptation. However, that may be due to the fact that the

score includes silence or noise, which may have been adversely affected by our shift. A

more careful comparison of these two optimization scores could easily provide important

insights into the usability of the scores for adaptation or other purposes.

The adaptation experiments on connected digit strings were unsupervised in the sense

that the system did not know what digits the person spoke in the adaptation utterance,



. _. . "-- --".

98

although the system did know that it was a string of digits. In addition, only one utterance

was used to set the optimal offset. In experiments with the PhoneBook corpus, on the

other hand, the adaptation was supervised and used multiple utterances to set the offset

value. It would be interesting to see what effects these changes would have on the digits

corpus. An experiment using supervised adaptation might help to point out the cases

where maximizing the overall recognizer score is not as beneficial as maximizing the score

for the correct word, or vice versa. An analysis of the number of utterances needed

to accurately estimate the optimal offset, on the other hand, might illustrate that this

number is indicative of the variability in the task, with a larger number indicating more

variability. Although it should be clear that there is more phonetic and lexical variability

in PhoneBook than in TIDIGITS, it might be more difficult to judge between two

isolated word tasks or two short-utterance tasks.

In establishing the optimal offset for a speaker, the (one or more) utterance(s) selected

for the adaptation set were selected at random. It would be interesting to see whether

incorrectly-recognized utterances provide more reliable information about the optimal

offset value. If so, a better tack might be to adapt only on errors. This would have the

added advantage of only requiring adaptation for those speakers whose performance is not

already good; the others would be unaffected.

Combinations

In the above sections we have separately discussed ways to extend the work done on the

rapid retraining and parameter optimization approaches, but we have not discussed the

possibility of combining the two approaches. Given both a general speaker adaptation

approach and one designed only to improve speaker performance for a single target word,

it is reasonable to consider first performing general adaptation and then, if appropriate

for the task, to adapt to a specific word.

Here is an example, for an isolated-word task, of how a supervised version of this

process might work. As each word (any word, i.e., not just the target) by the speaker is

recognized, the system uses Brent's method to compute the optimal Bark offset for the

utterance. Once several (an empirically-determined number, 8 in the case of PhoneBook)



.. _. .....

99

words have been processed in this manner, the median of these offset values can be used to

process all remaining words. Offsets computed for succeeding words could then be included

into the computation of the median to increase the robustness of this estimate of the

optimal offset for the speaker. Concurrently with determining and using new offset values,

the system will check to see if any of these wordsare target words. Upon encountering the

first target word that is misrecognized, the system will retrain the network using speaker-

dependent vectors generated from the first utterance of the target word by the speaker

as described in Section 5.3.3. The system will then use this new network to classify all

the following utterances until it misrecognizes a second target-word, at which point it will

retrain again and the process will repeat.

What is missing from the sample process above is the interactions between the two

approaches. Here is a list of the events that would require special action:

Retraining the network Since the optimal Bark offset for each of the utterances im-

plicitly depends upon the network weights, all of the offsets computed so far would

need to be recomputed. The median offset would need to be recomputed as well.

Changing the offset The features generated for use in retraining were generated using

a specific Bark offset value. If this value changes (e.g., the median offset is recom-

puted), the features would have to be regenerated for use in the next retraining.

The sample process described above is simplistic, leaving out issues which would need

to be addressed through experimentation. One concern is whether or not the retraining

progressions should be restarted after changing the offset value. After changing the median

offset, it might be appropriate to again only use a small percentage of speaker-dependent

data on the next error rather than increasing the percentage from the last retraining.

Another subtle issue is that of the implicit normalization that will happen by retraining

after each adjustment to the offset value. Over time, the weights from the hidden units

to the target outputs of the network will gradually be trained on features computed using

an offset estimate based on earlier weight values (which were computed using an earlier

offset estimate, etc. ). As the adult digit string normalization experiments demonstrated

(Table 6.3), it is possible that too many iterations in an iterative normalization scheme



... ---

100

can actually reduce recognition accuracy. Finally, there is one other issue that is extremely

important in any practical implementation: speed. Notice that this combination system

now needs to perform both adaptation procedures within the timespan of a single prompt.

In addition, they might need to be performed after each utterance. Remember that the

median offset determination by itself only requires the estimation of one new offset value

for each new utterance. With this combined system, any time the system retrains a

network it needs to recompute the offset values for all of the utterances seen so far (or

used in the computation of the median). For the combined system to be practically useful,

these increased computation issues must be solved.

In this closing chapter we have summarized this thesis research and suggested possi-

bilities for future extensions. Alone or in combination, these methods appear promising

and suggest that rapid adaptation for neural network recognition systems may be feasible

today within appropriate domains.



Bibliography

[1] ABRASH, V., FRANCO,H., COHEN,M., MORGAN,N., ANDKONIG,Y. Connec-
tionist gender adaptation in a hybrid neural network / hidden Markov model speech

recognition system. In Proceedings of the 1992 International Conference on Spoken

Language Processing, Banff, Alberta, Canada, Oct. 12-16 (1992), vol. 2, pp. 911-914.

[2] ANDREOU, A., KAMM, T., AND COHEN, J. Experiments in vocal tract normal-

ization. In Proceedings of the CAIP Workshop: Frontiers in Speech Recognition II

(CAIP, P.O. Box 1390, CoRE Building, Rutgers University, Piscataway, NJ 08855,

1994), Center for Computer Aids for Industrial Productivity.

[3] BELLEGARDA,J. R., DE SOUZA,P. V., NADAS,A. J., NAHAMOO,D., PICHENY,

M. A., ANDBAHL, 1. R. Robust speaker adaptation using a piecewise linear acoustic

mapping. In Proceedings of the 1992 IEEE International Conference on Acoustics,

Speech, and Signal Processing, San Francisco, Mar. 23-26 (1992), vol. 1, pp. 445-448.

[4] BLADON,R. A. W., HENTON,C. G., ANDPICKERING,J. B. Towards an auditory

theory of speaker normalization. Language fj Communication 4, 1 (1984), 59-69.

[5] BOURLARD,H., AND MORGAN, N. Connectionist Speech Recognition-A Hybrid

Approach. Kluwer Academic Publishers, 1994.

[6] BOURLARD,H., MORGAN,N., AND RENALS,S. Neural nets and hidden Markov

models: Review and generalizations. Speech Communication 11, Nos. 2 and 3 (June

1992), 237-246.

[7] BRENT, R. P. Algorithms for Minimization without Derivatives. Prentice-Hall,

Englewood Cliffs, NJ, 1973.

[8] CHEN, 1. A global optimization algorithm for neural network training. In Proceedings

of the 1993 International Joint Conference on Neural Networks, Nagoya, Japan, Oct.

25-29 (Oct. 1993), vol. 1, pp. 443-446.

101



102

[9] COLE, R. A., NOEL, M., LANDER,T., ANDDURHAM,T. New telephone speech

corpora at CSLU. In Proceedings of the 4th European Conference on Speech Commu-

nication and Technology, Madrid, Sep. 18-21 (Sept. 1995), vol. 1, European Speech

Communication Association, pp. 821-824.

[10] COLE, R. A., STERN, R. M., PHILLIPS, M. S., BRILL, S. M., PILANT, A. P.,

ANDSPECKER,P. Feature-based speaker-independent recognition of isolated English

letters. In Proceedings of the 1983 IEEE International Conference on Acoustics,

Speech, and Signal Processing (1983), pp. 731-734.

[11] Cox, S. Predictive speaker adaptation in speech recognition. Computer Speech and

Language 9, 1 (1995),1-17.

[12] DIGALAKIS,V., AND NEUMEYER,L. Speaker adaptation using combined trans-

formation and Bayesian methods. In Proceedings of the 1995 IEEE International

Conference on Acoustics, Speech, and Signal Processing, Detroit, Michigan, May 9-

12 (1995), vol. 1, pp. 680-683.

[13] DIGALAKIS,V., RTISCHEV,D., ANDNEUMEYER,L. Fast speaker adaptation using

constrained estimation of Gaussian mixtures. IEEE Transactions on Speech and

Audio Processing 3, 5 (Sept. 1995), 357-366.

[14] EIDE, E., ANDGISH, H. A parametric approach to vocal tract length normalization.

In Proceedings of the 1996 IEEE International Conference on Acoustics, Speech, and

Signal Processing, Atlanta, Georgia, May 7-10 (1996), vol. 1, pp. 346-349.

[15] FOURCIN,A., AINSWORTH,W., FANT, G., FUJIMURA,0., FUJISAKI, H., HESS,

W., HOLMES,J., ITAKURA,F., SCHROEDER,M., AND STRUEBE,H. Speech pro-

cessing by man and machine: Group report. In Recognition of Complex Acoustic

Signals, T. H. Bullock, Ed., no. 5 in Life Sciences Research Report. Abakon Verlag,

1977, pp. 307-351.

[16] FUKUZAWA,K., KOMORI,Y., SAWAI,H., AND SUGIYAMA,M. A segment-based

speaker adaptation neural network applied to continuous speech recognition. In Pro-

ceedings of the 1992 IEEE International Conference on Acoustics, Speech, and Signal

Processing, San Francisco, Mar. 23-26 (1992), vol. 1, pp. 433-436.

[17] FURUI, S. A training procedure for isolated word recognition systems. IEEE Trans-

actions on Acoustics, Speech, and Signal Processing 28 (1980), 129-136.

[18] G. DAVIDFORNEY,J. The Viterbi algorithm. Proceedings of the IEEE 61,3 (Mar.

1973), 268-277.



103

[19] GAUVAIN,J.-L., ANDLEE, C.-H. Maximum a Posteriori estimation for multivariate

gaussian mixture observations of markov chains. IEEE Transactions on Speech and

Audio Processing 2, 2 (1994),291-298.

[20] GONG, Y., SIOHAN,0., ANDHATON,J.-P. Minimization of speech alignment error

by iterative transformation for speaker adaptation. In Proceedings of the 1992 Inter-

national Conference on Spoken Language Processing, Banff, Alberta, Canada, Oct.

12-16 (1992), pp. 377-380.

[21] H. BOURLARD, E. Wernicke esprit project 6487: 1993-1994 progress report. Obtained

from author at the International Computer Science Institute, Berkeley, CA.

[22] HERMANSKY,H. Perceptual linear predictive (PLP) analysis of speech. Journal of

the Acoustical Society of America 87, 4 (Apr. 1990),1738-1752.

[23] HERMANSKY,H., MORGAN, N., BAYYA,A., AND KOHN, P. Compensation for

the effect of the communication channel in auditory-like analysis of speech (RASTA-

PLP). In Proceedings of the 2nd European Conference on Speech Communication and

Technology, Genova (1991), European Speech Communication Association, pp. 1367-
1370.

[24] HUANG, X. Speaker normalization for speech recognition. In Proceedings of the

1992 IEEE International Conference on Acoustics, Speech, and Signal Processing,

San Francisco, Mar. 23-26 (1992), vol. 1, pp. 465-468.

[25] II, J. B. H., AND WAIBEL, A. H. The Meta-Pi network: Building distributed

knowledge representations for robust pattern recognition. Tech. Rep. CMU-CS-89-

166, School of Computer Science, Carnegie Mellon University, Aug. 1989.

[26] II, J. B. H., AND WAIBEL, A. H. The META-PI network: Connectionist rapid

adaptation for high-performance multi-speaker phoneme recognition. In Proceedings

of the 1990 IEEE International Conference on Acoustics, Speech, and Signal Process-

ing, Albuquerque, New Mexico (Apr. 1990), pp. 165-169.

[27] KAMM, T., ANDREOU,A. G., ANDCOHEN, J. Vocal tract normalization in speech

recognition: Compensating for systematic speaker variability. In Proceedings of the

15th Annual Speech Research Symposium (Johns Hopkins University, June 1995),

pp. 175-178.

[28] KNOHL, 1., AND RINSCHEID,A. Speaker normalization and adaptation based on

feature-map projection. In Proceedings of the 3rd European Conference on Speech

Communication and Technology, Berlin (1993), pp. 367-370.



104

[29] KOBAYASHI,T., UCHIYAMA,Y., OSADA, J., AND SHIRAI, K. Speaker adaptive

phoneme recognition based on feature mapping from spectral domain to probabilistic

domain. In Proceedings of the 1992 IEEE International Conference on Acoustics,

Speech, and Signal Processing, San Francisco, Mar. 23-26 (1992), vol. 1, pp. 457-
460.

[30] KONIG, Y., ANDMORGAN,N. Supervised and unsupervised clustering of the speaker

space for connectionist speech recognition. In Proceedings of the 1993 IEEE Inter-

national Conference on Acoustics, Speech, and Signal Processing, Minneapolis, Min-

nesota, Apr. 27-30 (1993), vol. 1, pp. 545-548.

[31] KOSAKA,T., ANDSAGAYAMA,S. Tree-structured speaker clustering for fast speaker

adaptation. In Proceedings of the 1994 IEEE International Conference on Acous-

tics, Speech, and Signal Processing, Adelaide, Australia, Apr. 19-22 (1994), vol. 1,

pp. 245-248.

[32] KOSAKA,T., WILLEMS, E., TAKAMI,J.-I., AND SAGAYAMA,S. A dynamic ap-

proach to speaker adaptation of hidden Markov networks for speech recognition. In

Proceedings of the 3rd European Conference on Speech Communication and Technol-

ogy, Berlin (1993), pp. 363-366.

[33] LANDER,T. The CSLU labeling guide. Tech. Rep. CSLU-014-96, Center for Spoken

Language Understanding, Oregon Graduate Institute, June 1996.

[34] LEE, C. H., LIN, C. H., AND JUANG, B. H. A study on speaker adaptation of

the parameters of continuous density hidden Markov models. IEEE Transactions on

Signal Processing 39 (1991),806-814.

[35] LEE, L., ANDROSE, R. C. Speaker normalization using efficient frequency warping

procedures. In Proceedings of the 1996 IEEE International Conference on Acoustics,

Speech, and Signal Processing, Atlanta, Georgia, May 7-10 (1996), vol. 1, pp. 353-
356.

[36] LEGGETTER, C. J., AND WOODLAND,P. C. Speaker adaptation of continuous

density HMMs using linear regression. In Proceedings of the 1994 International Con-

ference on Spoken Language Processing, Yokohama, Japan, Sep. 18-22 (1994), vol. 2,

pp. 451-454.

[37] LEGGETTER, C. J., ANDWOODLAND,P. C. Maximum likelihood linear regression

for speaker adaptation of continuous density hidden Markov models. Computer Speech

and Language 9, 2 (Apr. 1995),171-185.



...-..........

105

[38] LEONARD, R. G. A database for speaker-independent digit recognition. In Pro-

ceedings of the 1984 IEEE International Conference on Acoustics, Speech, and Signal

Processing (1984), vol. 3, p. 42.11.

[39] LIPPMANN, R. P. An introduction to computing with neural nets. IEEE SSSP

Magazine (Apr. 1987),4-22.

[40] LJOLJE, A. Speaker clustering for improved speech recognition. In Proceedings of the

3rd European Conference on Speech Communication and Technology, Berlin (1993),

pp. 631-634.

[41] MATSUKOTO,H., ANDINOUE,H. A piecewise linear spectral mapping for supervised

speaker adaptation. In Proceedings of the 1992 IEEE International Conference on

Acoustics, Speech, and Signal Processing, San Francisco, Mar. 23-26 (1992), vol. 1,

pp. 449-452.

[42] MORGAN, N., AND HERMANSKY,H. RASTA extensions: Robustness to additive

and convolutional noise. In Proceedings of the Workshop on Speech Processing in

Adverse Environments, Cannes, France (Nov. 1992). Obtained from Hermansky at

the Oregon Graduate Institute, P.O. Box 91000, Portland, OR 97291.

[43] NEUBERG, E. P. Frequency-axis warping to improve automatic word recognition.

In Proceedings of the 1980 IEEE International Conference on Acoustics, Speech, and

Signal Processing (1980), pp. 166-168.

[44] NEUMEYER, L., SANKAR,A., ANDDIGALAKIS,V. A comparative study of speaker
adaptation techniques. In Proceedings of the 4th European Conference on Speech

Communication and Technology, Madrid, Sep. 18-21 (1995), pp. 1127-1130.

[45] OHKURA, K., SUGIYAMA,M., AND SAGAYAMA,S. Speaker adaptation based on

transfer vector field smoothing with continuous mixture density HMMs. In Proceed-

ings of the 1992 International Conference on Spoken Language Processing, Banff,

Alberta, Canada, Oct. 12-16 (1992), vol. 1, pp. 369-372.

[46] PALLETT,D., FISCUS,J., ANDGAROFOLO,J. DARPA resource management bench-

mark test results June 1990. In DARPA Speech and Language Workshop. Morgan

Kaufmann, 1990, pp. 298-305.

[47] PEDREIRA, C. E., AND ROEHL, N. M. On adaptively trained neural networks. In

Proceedings of the 1993 International Joint Conference on Neural Networks, Nagoya,

Japan, Oct. 25-29 (Oct. 1993), vol. 1, pp. 565-568.



106

[48] PITRELLI, J. F., FONG, C., WONG, S. H., SPITZ, J. R., AND LEUNG, H. C.

Phonebook: A phonetically-rich isolated-word telephone-speech database. In Pro-

ceedings of the 1995 IEEE International Conference on Acoustics, Speech, and Signal

Processing, Detroit, Michigan, May 9-12 (1995), vol. 1, pp. 101-104.

[49] PRESS, W. H., TEUKOLSKY,S. A., VETTERLING,W. T., ANDFLANNERY,B. P.

Numerical Recipes in C: The Art of Scientific Computing, second ed. Cambridge

University Press, 1994.

[50] ROBINS, A. Catastrophic forgetting, rehearsal and pseudorehearsal. Connection

Science 7, 1 (1995), 123-146.

[51] RUMELHART,D., HINTON, H., AND WILLIAMS,R. Learning internal representa-

tions by error propagation. In Parallel Distributed Processing: Explorations in the

Microstructure of Cognition, D. Rumelhart and J. McClelland, Eds., vol. I. The MIT

Press, Cambridge, 1986.

[52] SCHARF,B. Critical bands. In Foundations of Modern Auditory Theory, J. V. Tobias,

Ed., vol. I. Academic Press, 1970, ch. 5.

[53] SCHMIDBAUER,0., ANDTEBELSKIS,J. An LVQ based reference model for speaker-

adaptive speech recognition. In Proceedings of the 1992 IEEE International Confer-

ence on Acoustics, Speech, and Signal Processing, San Francisco, Mar. 23-26 (1992),

vol. 1, pp. 441-444.

[54] SIMPSON,P. K. Artificial Neural Systems. Pergamon Press, New York, 1990.

[55] STERN, R. M., AND LASRY,M. J. Dynamic speaker adaptation for feature-based

isolated word recognition. IEEE Transactions on Acoustics, Speech, and Signal Pro-

cessing 35, 6 (June 1987), 751-763.

[56] WAKITA, H. Normalization of vowels by vocal-tract length and its application to

vowel identification. IEEE Transactions on Acoustics, Speech, and Signal Processing

25,2 (Apr. 1977), 183-192.

[57] WATROUS,R. L. Speaker normalization and adaptation using second-order connec-

tionist networks. IEEE Transactions on Neural Networks 4, 1 (Jan. 1993),21-30.

[58] WEGMANN,S., McALLASTER, D., ORLOFF, J., ANDPESKIN, B. Speaker normal-

ization on conversational telephone speech. In Proceedings of the 1996 IEEE Inter-

national Conference on Acoustics, Speech, and Signal Processing, Atlanta, Georgia,

May 7-10 (1996), vol. 1, pp. 339-341.



107

[59] WITBROCK, M., AND HAFFNER, P. Rapid connectionist speaker adaptation. In

Proceedings of the 1992 IEEE International Conference on Acoustics, Speech, and

Signal Processing, San Francisco, Mar. 23-26 (1992), vol. 1, pp. 453-456.

[60] ZAVALIAGKOS,G. Maximum A Posteriori Adaptation Techniques for Speech Recog-

nition. PhD thesis, Northeastern University, Boston, Massachusetts, May 1995.

[61] ZAVALIAGKOS,G., SCHWARTZ,R., AND MAKHOUL,J. Batch, incremental and

instantaneous adaptation techniques for speech recognition. In Proceedings of the

1995 IEEE International Conference on Acoustics, Speech, and Signal Processing,

Detroit, Michigan, May 9-12 (1995), vol. 1, pp. 676-679.

[62] ZAVALIAGKOS,G., SCHWARTZ,R., McDONOUGH, J., ANDMAKHOUL,J. Adapta-

tion algorithms for large scale HMM recognizers. In Proceedings of the 4th European

Conference on Speech Communication and Technology, Madrid, Sep. 18-21 (1995),

pp. 1131-1134.

[63] ZHAO,Y. Self-learning speaker adaptation based on spectral variation source decom-

position. In Proceedings of the 3rd European Conference on Speech Communication

and Technology, Berlin (1993), pp. 359-362.

[64] ZHAO, Y. An a.coustic-phonetic-based speaker adaptation technique for improving

speaker-independent continuous speech recognition. IEEE Transactions on Speech

and Audio Processing 2, 3 (July 1994), 380-394.

[65] ZWICKER,E. Subdivision of the audible frequency range into critical bands (frequenz-

gruppen). Journal of the Acoustical Society of America 33, 2 (1961),248.



Appendix A

Huh? call list and protocol

This appendix presents both a sample call list and our collection protocol/prompts for the

Huh? corpus data collection described in Section 4.4.

A.I Sample call list

Date: Tue, 19 Mar 96 14:26 PST

From: nobody@cse.ogi.edu (uid no body)

To: burnett@cse.ogi.edu

Subject: Speaker Adaptation data collection instructions

To participate in this data collection call the following toll-free

telephone number and follow the instructions. You will be asked to

tell us your 1D number, so please locate it below. You will also be

asked to say each word in the following three sections so it is

important that you have this list with you when you call.

Once again, thank you for helping us with our research.

The number to call is 1-800-123-4567 (native)

Your 1D number is: 1787

*** Word List ***
-----------------

108



109

Section c:
---------

Section A:

---------

1. last 41. next

2. next 42. east

3. yes 43. east

4. last 44. yes
5. last 45. nest

6. east 46. next

7. less 47. east

8. less 48. next

9. nest 49. yes
10. last 50. east

Section B:
---------

1. last 36. no

2. east 37. no

3. less 38. hope
4. nest 39. yo
5. nest 40. no



If you have any questions or comments, feel free to contact Mike Noel

at:

noel@cse.ogi.edu

(012) 345-6789

A.2 Collection protocol

Thank you for calling the Center for Spoken Language Understanding

data collection system. For this data collection we will need you to

read from the list of words you received. If you do not have your

prompt sheet, please hang up now and call back later. After you have

finished all the prompts from your sheet, please leave your name and

the address to which you would like your gift certificate sent. This

call will take about 15 minutes.

This data collection is for native (non-native) speakers of

American English only. If you are not (are) a native speaker,

please hang up now.

At the beep, please say the 4-digit I.D. number given on your

instruction sheet.

110

1. no 31. help
2. no 32. help
3. help 33. hope
4. yo 34. help
5. no 35. help



We will now ask you to say the words in section A. You will be

prompted for each word. Please say the word after the beep.

Say word 1.

Say word 2.

Say word 3.

Say word 48.

Say word 49.

Say word 50.

You have finished section A. We will now ask you to say the words in

section B. You will be prompted for each word. Please say the word

after the beep.

Say word 1.

Say word 40.

You have finished section B. We will now ask you to say the words in

the last section, section C. You will be prompted for each word.

Please say the word after the beep.

Say word 1.

111



Say word 35.

You have completed the data collection. At the beep, please leave

your name and the address to which we should send your gift

certificate. Thank you.

112



Biographical Note

Daniel Burnett was born in Phoenix, Arizona on November 29th, 1968. A National Merit

Scholar, he attended Hermann Hesse Gymnasium in Calw, West Germany as an exchange

student for a year before entering Harvey Mudd College in the fall of 1986. He received

the Bachelor of Science degree in Mathematics in May, 1990.

Daniel's interests, both research and personal, have arisen from a desire to enhance

our daily lives by appropriate application of computer technology. Personally, this desire

has manifested itself in attempts to demonstrate to others ways in which the computer

can be used to automate tedious and repetitive tasks. Professionally, his focus has been

on methods of bringing human-like capabilities to computers, with research interests in

artificial intelligence, neural networks, and most recently automatic speech recognition.

Daniel has authored or co-authored the following papers:

D. C. Burnett and M. Fanty. Rapid unsupervised adaptation to children's speech on

a connected-digit task. In Proceedings of the 1996 International Conference on Spoken

Language Processing, Philadelphia, Pennsylvania, volume 2, pages 1145-1148, 1996.

R. A. Cole, D. Novick, P.J .E. Vermeulen, S. Sutton, M. Fanty, L. Wessels, J. de Villiers,

J. Schalkwyk, B. Hansen, and D. Burnett. Experiments with a spoken dialogue system

for taking the U.S. Census. International Journal of Human-Computer Interaction, 1995.

R. A. Cole, D. G. Novick, M. Fanty, P. Vermeulen, S. Sutton, D. Burnett, and J. Schalk-

wyk. A prototype voice-response questionnaire for the U.S. Census. In Proceedings of the

1994 International Conference on Spoken Language Processing, Yokohama, Japan, Sep.

18-22, pages 683-686, 1994.

R. A. Cole, M. Noel, D. C. Burnett, M. Fanty, T. Lander, B. Oshika, and S. Sutton.

Corpus development activities at the Center for Spoken Language Understanding. In

Proceedings of the ARPA Workshop on Human Language Technology, Plainsboro, NJ,

113



114

Mar. 8-11, pages 31-36,1994.

R. A. Cole, D. G. Novick, D. Burnett, B. Hansen, S. Sutton, and M. Fanty. Towards

automatic collection of the U.S. Census. In Proceedings of the 1994 IEEE International

Conference on Acoustics, Speech, and Signal Processing, Adelaide, Australia, Apr. 19-22,

pages 93-96, 1994.

R. A. Cole, D. Burnett, and V. Weatherill. An evaluation guide for emergent tech-

nologies in automatic speech recognition. Technical Report CSLU-005, Center for Spoken

Language Understanding, Oregon Graduate Institute, December 6, 1993.

R. A. Cole, D. G. Novick, M. Fanty, S. Sutton, B. Hansen, and D. Burnett. Rapid

prototyping of spoken language systems: the Year 2000 Census Project. In Proceedings

of the International Symposium on Spoken Dialogue, Tokyo, Japan, Nov. 10-12, pages

19-23, 1993.




