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Abstract 

Confidence and Rejection 

in Automatic Speech Recognition 

Larry Don Colton 

Supervising Professor: Mark Fhnty 

Automatic speech recognition (ASR) is performed imperfectly by computers. For 

some designated part (e.g., word or phrase) of the ASR output, rejection is deciding (yes 

or no) whether it is correct, and confidence is the probability (0.0 to 1.0) of it being 

correct. This thesis presents new methods of rejecting errors and estimating confidence 

for telephone speech. These are also called word or utterance verification and can be used 

in wordspotting or voice-response systems. Open-set or out-of-vocabulary situations are 

a primary focus. Language models are not considered. 

In vocabulary-dependent rejection all words in the target vocabulary are known in 

advance and a strategy can be developed for confirming each word. A word-specific artifi- 

cial neural network (ANN) is shown to discriminate well, and scores from such ANNs are 

shown on a closed-set recognition task to reorder the N-best hypothesis list (N=3) for im- 

proved recognition performance. Segment-based duration and perceptual linear prediction 

(PLP) features are shown to perform well for such ANNs. 

The majority of the thesis concerns vocabulary- and task-independent confidence and 

rejection based on phonetic word models. These can be computed for words even when 

no training examples of those words have been seen. 
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New techniques are developed using phoneme ranks instead of probabilities in each 

frame. These are shown to perform as well as the best other methods examined despite 

the data reduction involved. 

Certain new weighted averaging schemes are studied but found to  give no performance 

benefit. Hierarchical averaging is shown to improve performance significantly: frame scores 

combine to make segment (phoneme state) scores, which combine to make phoneme scores, 

which combine to make word scores. Use of intermediate syllable scores is shown to not 

affect performance. Normalizing frame scores by an average of the top probabilities in 

each frame is shown to improve performance significantly. 

Perplexity of the wrong-word set is shown to be an important factor in computing 

the impostor probability used in the likelihood ratio. Bootstrap parameter estimation 

techniques are used to assess the significance of performance differences. 

xiv 



Chapter 1 

Introduction 

Automatic speech recognition (ASR) is the activity of taking in utterances, processing 

them by computer, and correctly identifying (recognizing) what words were said. Ideally, 

of course, ASR would do a perfect job of identifying those words. But ASR is not perfect. 

Since it falls short of perfection, it would be useful t o  know when the recognition was 

likely correct and when it was not. This capability is called "rejection." Unfortunately 

even rejection cannot be done reliably. It would be useful to  know how likely it is that a 

given recognition event is correct. This capability is called "confidence." 

In the design and implementation of ASR projects, the availability of an accurate con- 

fidence and rejection process would be very useful. Consider the example of a telephone- 

based system that asks, "Will you accept a collect call from (insert name here)?" and 

waits for a "yes" or "no." Because the ASR system is not perfect, one can never be a h  

lutely certain that it has correctly identified the response. But if the system could report 

that there is 95% certainty that the answer is "yes," the telephone company's statisticians 

and business analysts could decide whether to  go along with the answer or not. A ubreak- 

even" threshold could be determined in advance, allowing the ASR system to  perform 

useful work despite the uncertainty that remains. 

1.1 Research Goals 

The goal of this research is to  develop new methods of estimating confidence in order to  

reject errors. 

Two major areas are explored in this thesis. The first area is vocabulary-dependent 
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rejection, where all words in the target vocabulary are known in advance (such as the 

"yes" and "no* example given above) and a strategy can be developed for confirming each 

word. The second area is vocabulary- and task-independent open-set rejection, where the 

words in the vocabulary may be specified a t  recognition time, and may include new words 

for which phonetic models exist, but no training examples have previously been seen. 

One major challenge is the  selection of features used for discrimination between correct 

recognitions and incorrect ones. There are a number of subsidiary issues (including corpus 

selection) that  are also involved. These are presented in detail later in the  thesis. 

As an introduction t o  this thesis the next several sections of the chapter present exam- 

ples of the research problem, the vocabulary used t o  discuss it, and some methodological 

issues. 

1.2 Male/Female Versus Last Names 

The first task in this confidence and rejection research is a simple problem. I t  involves the 

tweword vocabulary "male" and "female'." This vocabulary comes up in the  context of 

census-taking. The  task is t o  discriminate between the true words and other words falsely 

recognized. In particular, the question would be put: "What is your sex, male or female?" 

When answered with either of those two words, the recognizer has an accuracy of 98.8%. 

However in an actual census study (Cole, Novick, Fanty, Vermeulen, Sutton, Burnett, and 

Schalkwyk 1994) 1.6% of the utterances did not contain either target word. The goal is 

t o  reject such non-target utterances. This is open-set out-of-voacbulary rejection. 

Although a careful explanation of the recognition process is presented in section 1.6, 

i t  is useful t o  briefly introduce it here. The recognizer operates by comparing the actual 

utterance (digitally recorded) with a computer model of the target word. This comparison 

results in a score tha t  represents the similarity between utterance and word model. This 

recognition score (also called the Viterbi score) is computed for each of the word models, 

and the model with the best score is selected. Note that  this approach fails t o  account for 

out-of-vocabulary (OOV) pronouncements. 

Two speech corpora were used in this research. The gender corpus is a collection of 
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several thousand actual, valid responses collected in the census study. Because there were 

few invalid utterances in the gender corpus, another corpus was used to provide impostors. 

(Informally, this is like a police lineup where the criminal must be identified from a field 

that includes random people who happened to be available.) The impostor corpus is a 

collection of persons' surnames (family names). Each utterance from either corpus was 

forced to be recognized as "male" or "female." Each utterance from the gender corpus 

was assumed to be correctly recognized. Each utterance from the impostor corpus was 

considered to  be an out-of-vocabulary utterance that had been forced to be (incorrectly) 

recognized as either "malen or "female." Wordspotting (explained in section 4.6.4) was 

used to  allow recognition within simple embeddings such as "I'm male." These embeddings 

occurred in 1.4% of the gender responses. Some errors were expected but believed t o  be 

so uncommon as  t o  not need attention. These include the 1.2% of gender responses that 

are incorrectly recognized but treated as though they were correct, and the occasional last 

name (such a s  "Mailer") that embeds something recognizable as one of the key words but 

which would be treated as though they were incorrect. 

I hypothesized that two word-specific artificial neural networks, each trained to  accept 

or reject a recognition event, could be used to separate true recognitions from false or 

out-of-vocabulary ones. The two outputs of each artificial neural network are "confirm" 

and "deny." Each network is called a "verifier." 

Various feature sets were tested, including phoneme1 duration alone, phoneme center 

energy alone, PLP coefficients equally spaced through the word, PLP taken a t  phoneme 

centers, and PLP from before and after the word. Phoneme centers were especially in- 

teresting because I expected that a t  the central frame the phoneme would be at  its most 

reliable (i.e., recognizable) point. In each case an artificial neural network was trained for 

the word, yielding confirm/deny outputs. 

The most accurate results came from phoneme durations with PLP taken at phoneme 

centers and 50 msec before and after the word. This achieved a 95.2% accuracy rate 

when equal numbers of true words and falsely recognized words were evaluated. This 

'See section 1.7 for definitions of this and other terms 
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confirmed the hypothesis that word-specific neural networks could be used to separate 

true recognitions from false or out-of-vocabulary ones. 

The male/female experiments and results are presented in section 3.3. 

1.3 Scaling Up: 58 Phrases 

The second research task is to improve the recognition rate on a larger but closed set 

of words and phrases. Closed-set verification ignores the possibility of out-of-vocabulary 

utterances. The chosen words and phrases are related to the telephone services industry 

and include "cancel call forwarding," "help," "no," and 55 others. As before, the recognizer 

matches the utterance against various word models and develops a score for each. The 

highest score becomes the putative recognition. 

For this task, when the topscoring recognition was wrong, the true answer was often 

among the next few choices. The engineering goal was to improve the existing 93.5% 

recognition rate on 58 words and phrases. This was to be done by selecting the correct 

answer from among the top three choices returned by the recognizer. The research goal 

is to evaluate the male/female approach of training a separate verifier for each word, not 

just against the out-of-vocabulary option, but as an indicator of relative confidence in each 

recognition. 

I hypothesized that word-specific neural networks, each trained to accept or reject a 

recognition event, can be used to  evaluate the relative confidence of in-vocabulary alter- 

natives better than the original Viterbi recognition scores do. 

To explain why this might be, it is useful to briefly introduce a few more aspects of 

the recognition process. Recognition scores are computed with an equal contribution from 

each "framen of the utterance. For recognition each utterance is divided into frames of 

fixed duration and each frame is recognized separately. Then the recognition results for 

the frames are strung together to match the target word model. Although this method is 

efficient and gives good results, it can be fooled in various ways and I thought that taking 

a more careful look at each of the top contenders might give a more accurate ranking. 

Building on the previous research, 58 individual artificial neural networks (one per 
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word or phrase) were constructed, each giving confirm/deny outputs. As before, each 

artificial neural network took as input the phoneme durations and PLP taken at phoneme 

centers and f 50 msec from the word based on the recognizer output. The top three 

contenders were each evaluated by their individual artificial neural networks, and a winner 

declared based on the original ranking and the newly computed scores. The recognition 

rate improved to 95.5%) which is a 30% reduction in the error rate (from 6.5% to 4.5%). 

This confirmed the hypothesis that word-specific artificial neural networks could be 

used to measure relative confidence of in-vocabulary recognition alternatives. 

The 58-phrase experiments and results are presented in section 3.4. 

1.4 Vocabulary Independence 

The two-word and fifty-eight-phrase experiments provide background leading up to  the 

major research task, which is to study confidence and rejection on the set of all possible 

words. Creating word-specific artificial neural networks is not feasible, so an alternative 

was sought. The hypothesis is that confidence and rejection can be based on the set of 

phonemes from which word models have been defined and on which recognition itself is 

based. 

The advantage of dealing with all possible words is that new words can be added to 

an "active vocabulary" (those words potentially recognizable at a point in time) without 

extra training. (Vocabulary-dependent systems generally require special training on each 

individual word of the vocabulary. This results in higher accuracy rates than a vocabulary- 

independent system can achieve, but does not easily accommodate previously unknown 

words. For speaker-independent systems, such training can require many samples of each 

utterance from a variety of talkers.) It becomes possible to create, for example, a robotic 

telephone attendant for an automatic voice-response-based switchboard that can connect 

incoming calls to a person based on an utterance of the person's name. That is, the 

caller would say the name rather than spelling it on the touch-tone pad. This can be 

made to work even for calls to the new persons that have recently joined the staff of the 

organization and may have been unknown in the system a day before. To minimize the 
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number of wrong connections in such a system it is necessary to have a confidence measure 

for each recognition and a dialogue manager that confirms or re-prompts in the case of 

low-confidence recognitions. 

The present research is primarily an out-of-vocabulary or open-set rejection study. 

Random-vocabulary systems such as those used in this research ignore a large amount of 

vocabulary dependence present in many authentic recognition settings. Language model- 

ing has long been known to provide a substantial improvement to recognizer performance. 

Vocabulary-independence restricts the availability of any language modeling benefits. Fur- 

ther performance improvements can be expected in vocabulary- and task-dependent situ- 

ations. 

My previous research also took advantage of phonemes by looking at characteristics 

a t  the center of each phoneme, and the duration of each phoneme. This new research 

broadens the scope to treat transitional parts of phonemes (i.e., states within phonemes) 

as separate entities. That is, in the word "fox" the first part of the /ah/ sound is "colored" 

by the fact it is following an /f/. It differs from first part of /ah/ as seen in "cox." By 

identifying up to eight different transitions into and out of each phoneme, the total number 

of phonological segment types used in these experiments comes to 544. 

1.5 Thesis Overview 

The experiments summarized above provide a general sense of the content and direction of 

the thesis. The following sections in this chapter give a tutorial introduction to automatic 

speech recognition, and definitions of terms used throughout the thesis. 

Chapter 2 reviews prior research that is related to confidence and rejection. Chapter 3 

examines vocabulary-dependent utterance verification, and reports the experiments with 

vocabularies of two and fifty-eight words. 

In chapter 4 the scope is broadened to examine vocabulary-independent measures of 

confidence and rejection. It covers general and methodological information, such as the 

overall experimental design and a description of the corpora that are used. Each section 

of chapter 5 studies a technique known in the research literature, pushing it to peak 
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performance for comparative purposes. For each experiment it tells the motivation and 

results and provides some discussion and conclusions. 

Totally new research is reported in chapter 6, which examines the area of rank-based 

probability estimation. Chapter 7 completes the discussion of rejection by developing an 

actual confidence score that can be used to guide higher-level decisions about dialogue 

processing. Chapter 8 presents overall results, discussion, and conclusions. 

1.6 Tutorial on Automatic Speech Recognition 

For the benefit of the reader who is less familiar with speech recognition as well as  the 

reader who may be familiar with different terminology than is used in this thesis, it is 

useful to present a tutorial introduction to speech recognition. This section does not give 

a rigorous and carefully referenced treatment. Such a textbook presentation is beyond the 

scope of this thesis, and the interested reader is referred to Rabiner and Juang (1993), 

Deller, Proakis, and Hansen (1993), or other fine textbooks. 

The purpose of this presentation is simply to  establish and illustrate the methodology 

of speech recognition, since it is helpful to  have a concrete and moderately detailed un- 

derstanding of the process, even when those details go beyond what would be required to  

understand the rest of the thesis. Accordingly the presentation is approximately true; less 

important details may be overlooked and simplifications are made in the interest of giving 

a good first approximation to  the speech recognition process. 

Figures 1.2, 1.3, 1.4, and 1.5 were created by John-Paul Hosom and are used by his 

kind permission. They are part of a tutorial on the WWW.' 

1.6.1 A Setting for Automatic Speech Recognition 

Figure 1.1 illustrates automatic speech recognition as a process involving several parts. 

First there is the talker or speaker who is producing the utterance. In this illustration, the 

utterance is captured by a telephone handset. Next there is the speech recognition system 

that is connected t o  the telephone system and is recording the utterance. It performs 

' ~ t  http://www.cse.ogi.edu/CSLU/toolkit/documentation/recog/recog.html, as of July 1997. 
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Typical Automatic Speech Recognition 
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Talker Recog Word Model Decision 
Utterance System Models Scores 

Figure 1.1: A Setting for Automatic Speech Recognition 

an analysis of the utterance and compares i t  t o  the various word models in its active 

vocabulary. There may be other words and word models that  are known by the ASR 

system which are not included in the active vocabulary because they do not represent 

expected inputs a t  this point in time. The word models are indicated by the words "Yes" 

and "No." The full model includes an actual string of phonemes (a  pronunciation) that  

must be present in the utterance for recognition t o  occur. For each of these word models 

a score is computed that  reflects the goodness of the match between the  utterance and 

the word model. The method for calculating the score is given below. All word models, 

even wrong models, will create some score. Finally a decision is made and the  model that  

achieves the highest score is "recognized7' as the (putative) winner. The following figures 

illustrate these steps in greater detail. 

1.6.2 Overview of Speech Recognition 

Figure 1.2 gives an overview of automatic speech recognition. 

Upper Left: The utterance is transformed by the telephone (or microphone) into an 

electric signal. The waveform of the utterance "two" shows the electrical signal from the 
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Figure 1.2: Overview of Speech Recognition. Used by permission. 

microphone as a jagged line. Each corner represents the voltage that  was present at a 

particular moment in time. The samples are taken each & of a second. Two types of 

error are introduced at this stage. First the sampling process does not record a continuous 

history of the original signal, but only takes samples (snapshots) at certain points in time. 

This is called discretization or sampling error. The second error is quantization error. 

Each sample is represented as  an eight-bit number. To do this the entire range of possible 

voltages is divided into 256 ranges and each range is assigned a number. At playback 

time these numbers are converted into a typical voltage for that  range. The actual voltage 

value is lost. These errors d o  not seem t o  be serious problems because the samples occur 

often enough and have a fine enough quantization. Nearly everyone is familiar with the  

fact that  television and movies are produced as a sequence of still frames and that  playing 

them in sequence at a rate of about 30 frames per second gives the appearance of smooth 
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motion; also that  discrete cones and rods in the eye capture the video image so light falling 

between the receptors is lost. This same effect seems t o  apply t o  speech, although the 

speech sampling rate of 8000 per second is much higher than the video sampling rate, 

and the cochlea of the inner ear uses fine hairs t o  detect different frequencies in sound, 

together with their amplitudes, rather than cones and rods. 

The waveform is next divided into frames (not shown), typically 10 msec in length. 

In some research the frames actually overlap. The step size is the number of samples or  

msec between adjacent frame starts. The frame size is the number of samples or msec 

within each frame. For this research the step size and frame size were both 10 msec (80 

samples). Durations and steps as short as 3 msec or as long as 30 msec are used by some 

researchers. 

Upper Middle: The waveform frames are passed through a spectral analysis, yielding 

a spectrogram. The spectrogram shows where the individual frames have been converted 

into a spectral representation using some kind of Fourier transformation. Dark bands 

are shown as energy concentrations or  resonances in the simulated spectrogram. Linear 

Predictive Coding (LPC), Perceptual Linear Prediction (PLP) and Mel-scale Frequency 

Cepstral Coefficients (MFCC) are typical spectral transformations. A set of spectral 

features is created for each frame. 

Experimental measurements suggest tha t  human perception of frequency is not linear, 

but is roughly linear below 1000 Hz, and roughly logarithmic above. Perceptual L P  and 

Mel-scaling account for this. 

The cepstrum is the inverse Fourier Transform of the logarithm of the absolute value of 

the Fourier Transform of the signal. I t  is used t o  separate the speech signal into the glottal 

pulse train (roughly pitch) and the vocal cavity resonances. The word cepstrum is just 

the word spectrum with the first four letters reversed, suggesting that  the  two meanings 

are nearly the same. In the case of cepstrum the taking of the logarithm provides the 

significant additional "twist" for which the letters are reversed. 

The resonances (called formants) shown correspond t o  different parts of the vocal tract. 

These parts include the space from the larynx t o  the back of the tongue, the space from 
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there t o  the hump or t ip of the tongue, and the space from there t o  the teeth or lips. It 

can be helpful t o  think of a trombone or a child's whistle that  produces different pitches 

by moving a rod in or out. As the tongue moves in the mouth, the vocal cavities change 

shape and size resulting in a changed set of resonances. All these simultaneous resonances 

taken together produce a composite sound that  is perceived as linguistic or phonetic. 

The  lowest formant is called f-zero (written Fo or FO). It  corresponds t o  the glottal 

pulse frequency and is generally perceived as the pitch of the  speech. Higher formants are 

numbered from f-one and up, and correspond t o  the resonances from lowest frequency t o  

highest. Formants through f-three are generally transmitted in telephone speech. Higher 

formants exist and are transmitted in radio, television, cinematic, and CD-music speech. 

The higher formants seem less important for speech recognition but contribute t o  speaker 

identification and recognition of whether for instance the  speaker has a cold. 

Upper Right: Context windowing is the process of selecting information from the spec- 

trogram t o  be used in the phonemic classification. In this case, information from five 

frames located a t  offsets of -6, -3, 0, 3, and 6 from the frame to be classified is used t o  

identify the phoneme represented in the central of those frames. 

Lower Right: A neural network converts these features into classification estimates, 

which are probability estimates, telling how likely the frame is t o  be an example of some 

phoneme. Each neural network output gives the probability for a different phoneme. 

Lower Middle: The phoneme scores are shown in a grid where the darkness of each 

cell indicates the probability of that  phoneme a t  that  timeframe. Dark cells are high- 

probability classifications. Viterbi search is used t o  compare various vocabulary possibili- 

ties against this grid. Grammars can be used t o  control the sequence of words recognized. 

Lower Left: The Viterbi search results in a putative recognition. In this case the 

recognition is the word "two." 
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Figure 1.3: Artificial Neural Network. Used by permission. 

1.6.3 Artificial Neural Network 

Figure 1.3 illustrates the artificial neural network that  is used in the recognition process. 

For each frame of input, a 5-frame context window is used, with frames offset -6, -3, 0, 3, 

and 6 from the current frame. The features include MFCC features and delta (first-order 

difference) MFCC features a t  the rate of 26 per frame. The first 12 are mfcc coefficients 

for that  frame of speech, and with those is one energy coefficient indicating the amount 

of energy in the signal a t  that  frame. Energy is the RMS (root mean squared) value for 

the samples in the frame. I t  is computed by squaring all the sample values, summing the 

result, and taking the square root. 

The other 13 numbers are called delta coefficients and give the difference between the 

mfcc and energy in this frame versus the previous frame. Tha t  is, the delta values tell 



1.6 Tutorial on A utomatic Speech Recognition 13 

how much the coefficients have changed. The particular input features used will possibly 

differ from recognizer t o  recognizer. 

This totals 130 inputs (plus one hard-wired t o  a constant value of 1.0). The neural 

network has 200 hidden nodes and 544 outputs. Table 4.1 on page 47 lists the outputs. 

Five frames of feature values are used in building a 130-number feature vector for input 

t o  the neural network. With each frame occupying 10 msec of the input speech, the total 

window is 130 msec, about 1/7 of a second. Half of that  is involved in look-ahead. That  

is, the ANN does not make a decision about the current frame until i t  has seen the next 
. - 

six frames after it. 

The conversion of input features into phoneme probabilities progresses on a frame- 

by-frame basis. On the  top  of the  diagram the input features are indicated. Each input 

value is a real-valued number. Conceptually i t  is loaded into a node in the  top row. To 

compute the value for a node in the center row, each toprow value is multiplied by a 

weight. The results are added together and then run through a sigmoid function t o  limit 

the values t o  the range -1 through 1. The weights correspond t o  the lines tha t  connect 

the nodes. If there are n inputs and m hidden nodes, there will be n x m weights between 

those two layers in a fully-connected neural net architecture. In this way the  values of all 

the nodes in the hidden layer are computed. Then the bottom row is computed from the 

hidden-layer values and the next set of intervening weights. 

The values in the final layer are outputs. In this figure there are only three layers. 

Each output corresponds t o  a single phoneme or t o  a single phoneme state (half or a third 

of a phoneme). Taking the first output, /pau/, for example, the value there might be .34. 

This would indicate that  the inputs provided have about a 34% chance of representing the 

/pau/ (pause or silence) phoneme. A chart showing the phoneme set appears on page 62. 

1.6.4 Context-Dependent Modeling 

Figure 1.4 examines context-dependent modeling. Each context-dependent phoneme is 

divided into one, two, or three parts. For example, the word "yes7' is given as three 

phonemes: / j  E s/. (/j/ is the Worldbet symbol for the "y" sound. See Table 4.3 on page 62 
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Figure 1.4: Context-Dependent Modeling. Used by permission. 

for a presentation of those symbols.) The /j/ phoneme is divided into two parts: j-after- 

silence and j-before-mid-vowel. The /E/ phoneme is divided into three parts: Eafter-  

front-vowel, central-& and E-before-fricative. The /s/ phoneme is divided into two parts: 

s-after-mid-vowel and s-before-silence. Including mid-vowel, front-vowel, and fricative, 

there are eight broad contexts with which t o  identify the previous phoneme and the next 

phoneme. This list of contexts can vary by phoneme for maximum usefulness. 

1.6.5 Viterbi Search Example 

Figure 1.5 illustrates two search paths created by Viterbi search. In this example, the 

search paths for "yes" and %on are shown, on a field of thirteen ANN outputs and twenty 

speech frames. In each cell, the darkness indicates the  probability contribution from that  

cell. The Viterbi algorithm searches through the cells t o  find the path with the highest 
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Figure 1.5: Viterbi Search Example. Used by permission. 

probability. This is the path with the darkest cells. In this figure, the phonetic segments 

of "yes" use 2, 2, 2, 3, 2, 2, and 3 frames respectively. Similarly the segments of "no" 

use 3, 5, 3, 2, and 3 frames respectively. It can readily be seen that  the cells in the "yes" 

path tend t o  be darker than those in the "no" path. This is further reflected in the  final 

probabilities, with "yes" being 90% probable, and "no" being 10% probable. The first and 

last two frames are assigned t o  /pau/, which represents pause or silence. These four cells 

are permitted or required by the grammar, but are not part of the word model for either 

"yes" or "no." 

The rule for aligning the model t o  the utterance is this: each frame must be used. The 

first frame in the  utterance must belong t o  the first phoneme in the model. The last frame 

must belong t o  the last phoneme. Between the frames must be assigned t o  the phonemes 

in the  same order as the phonemes appear in the model. 
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There are many ways the  frames could be assigned t o  the phonemes. Each way has its 

own score. There are a finite number of ways, yielding a finite number of scores, of which 

one is highest (more than one in case of ties). The best-scoring alignment is saved, along 

with its score. 

The number of alternatives may seem quite large. Fortunately there is a dynamic 

programming solution t o  this problem that  finds one of the optimal alignments in linear 

time. Tha t  means of the length of the utterance doubles, then i t  will take twice as long t o  

find the optimal alignment. This is much better than the exponential explosion in running 

time that  occurs using some alternative search algorithms. The dynamic programming 

algorithm used in cases like this is the Viterbi algorithm. (The Viterbi algorithm computes 

the score in cell(i j) as the maximum score from all transitions from cell(i-1,k). This yields 

the best alignment up  t o  any point in the word model, given the ANN outputs seen so 

far. It avoids exponential explosion by keeping only the best path t o  each cell(ij).) Other 

algorithms exist that  are nearly as efficient but experience has shown that  Viterbi performs 

as well as these competitors. 

In an actual recognition attempt there are normally several word models that  are 

evaluated. In this example, the models for "yes" and "no" are evaluated. There can be 

many more such models. Each will have a best alignment and a score t o  go with it. 

The actual computation of Viterbi scores, such as -396 for "yes" and -412 for "no7' 

is done by converting frame probabilities into their logarithms and then adding along 

the path that  gives the highest score. The use of logarithms serves two purposes. First, 

logarithms of probabilities can be added rather than being multiplied. On some computers 

addition is faster than multiplication. Second and more importantly, because all the  

probabilities are smaller than one, when a large number of them are multiplied together 

the result can be very very near zero, with many zeroes in front. This can result in 

"underflow" in the computer, where the number becomes so close t o  zero that  the  computer 

does not represent i t  accurately and makes the answer zero, or stops and complains that  

the numbers are getting too small t o  work with. When logarithms are added the number 

becomes negative but it does not underflow. Remember that  this is not a fundamental 

part of the alignment process, but is an efficiency trick that  is commonly employed. 
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Figure 1.6: Outdid outdid Midafternoon: This example shows a misrecognition. The top  
portion shows the waveform running from the 300 msec point t o  the 1400 msec point. The 
middle part shows a spectrogram for the same time range. The bottom of the spectrogram 
indicates frequencies near zero. The top indicates frequencies near 4000 Hz. The next 
two lines show the correct recognition ("midafternoon") together with i ts  division into 
phonemes. The last two lines show an incorrect recognition ("outdid") together with i ts  
division into phonemes. 

1.6.6 What Can Go Wrong? 

Figure 1.6 illustrates a recognition gone awry. The utterance is "midafternoon," and 

the correct model is m I dc d (D f tc th &r n u n. This model achieves a recognition 

score (average frame score) of -2.6. Another word in the vocabulary, "outdid," with a word 

model of aU tc th dc d I dc d achieves a recognition score of -1.5, which is higher than 

the true score. This results in a misrecognition. 

The spectrogram shows a steady hum in the lower frequencies. This probably con- 

tributes t o  poor average recognition across the entire utterance. In addition, i t  is just 

the middle of the  word that  is misrecognized. The actual recognition might be closer to 

"mid-outdi-doon." This is an example of a misrecognition that  is difficult t o  identify and 

reject. (This particular recognition error is discussed further in Figure 4.1 on page 52.) 
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Figure 1.7: Wanted: Absolute Probabilities 

1.6.7 Wanted: Absolute Probabilities 

Figure 1.7 points out that a result like "yes scores best" or "no scores -412" is not the 

most desirable result. The meaning of -396 or -412 is not clear. Certainly one is better 

than the other. But can we tell that either is right? Perhaps both are wrong together. 

Instead it is desirable to know that with the inputs provided (that is, the utterance 

from the talker, and the word models stored in the speech recognition system), there is a 

91% chance that "yes" is correct, and a 4% chance that "no7' is correct. The remaining 

5% would represent the total chances for other vocabulary if any, plus the chance that the 

talker did not say any of the words in the vocabulary. Probabilities like these can be used 

in real settings such as the "collect call" example given at the start of this chapter. 

Such percentages as these can be computed by first recognizing and scoring a large 

number of sample utterances called a training set. From the behavior of this group it can 

be determined that when some particular raw score is seen there is a .91 chance that it is 

correct and a .09 chance it is wrong. The exact method of doing this is given in chapter 7. 
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1.7 Definitions Used in This Thesis 

This section contains a list of terms and their definitions as used in this thesis. A small 

amount of discussion is provided where i t  seems appropriate. Terms are presented in a 

conceptual order appropriate for direct reading, and are also mentioned alphabetically in 

the index. 

1.7.1 Speech Recognition 

utterance: Something said or uttered. Sound itself. In the context of this thesis, an 

utterance is meant t o  be recognized as one or more words. 

wavefile: A collection of amplitude samples from a digital recording of an utterance (or 

other sound). 

ASR: Automatic speech recognition. This is speech recognition performed by mechan- 

ical means, especially that  done by computers. Generally it matches an utterance t o  a 

word model, where the utterance is given and the word model must be selected from a list 

called the  active vocabulary. 

ANN: Artificial neural network. A method sometimes used in ASR for computing the 

probability tha t  a particular frame of speech represents a particular phoneme. 

frame: A unit of input signal typically 10 msec in duration. The microphone inputs 

occurring during a frame are converted together to  give a spectral representation of that  

signal. 

HMM: Hidden Markov model. A statistical model of the acoustic production of speech 

used for recognition. States generally represent phonemes or portions of phonemes. 

phonetic units: Units of speech based upon phonemes. The recognizer used for the 

research reported in this thesis uses phonemes, phone halves, and phone thirds as its units 

of recognition. 
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phoneme: A phoneme is a simple sound in some language (in this case English) that 

is used to distinguish between words. The various vowel sounds in "bead," "bid," "bed," 

"bad," L'baud," "bode," "booed," and "bud" are each identified by a different phoneme. 

Diphthongs, such as the vowel sounds in "cute," "kate," "kite," "coat," "couch," and 

"boy" are each generally identified as single phonemes. The /k/ sounds in "king" and 

"kung" are somewhat different but are generally identified in English as being examples of 

the same phoneme (that is, allophones of the same phoneme). Some might argue whether 

there is a significant (i.e., phonemic) difference between the vowels in "suit" and "boot" 

or "caught" and "cot." A phoneme chart appears on page 62. 

allophone: A phoneme variant. A classic example is the /t/ in "struck" versus "truck." 

Following /s/ the sound of /t /  is different than in a word-initial position. Although these 

sounds are acoustically distinct, they are not generally distinguished by native speakers 

of English. 

phone state: A phoneme may be modeled as a sequence of one or more states. The 

word "staten is used in its normal meaning in the subject of automata, state machines, 

regular expressions, and the like. Each state in an ANN recognizer corresponds to  one of 

the ANN outputs. A sequence of frames that are assigned to the same state are called a 

segment in this thesis. 

phone halves: This is a phone state in a phoneme model having two states. The 

durations need not be of equal length. 

phone thirds: This is a phone state in a phoneme model having three states. The 

durations need not be of equal length. 

CI: Context independent. Generally refers to a phone state such as the middle third of 

/A/ that is modeled independently of the phoneme that occurs before or after it. 
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CDL: Context dependent toward the left. Generally refers to a phone state such as the 

first third of /A/ that is modeled differently depending on the phoneme that occurs just 

before it in time (to its left in English orthography). 

CDR: Context dependent toward the right. Generally refers to a phone state such as 

the last third of /A/ that is modeled differently depending on the phoneme that occurs 

next after it in time (to its right in English orthography). 

word model: A phonetic model for a word (or phrase). The model for the word "yes" 

could be / j  E s/, where /j/, /El,  and /s/ are three phonemes from the Worldbet phonetic 

alphabet. 

active vocabulary: The set of word models that will be compared to an utterance. 

The goal of the comparison is to find one that matches best. 

best: In the context of active vocabulary, the best match is the vocabulary word that 

gets the highest recognition score. The Viterbi algorithm is used to find the highest-scoring 

alignment between a word model and the utterance to be recognized. Among all word 

models considered, the model with the highest score is "best." This highest-scoring word 

model is the putative recognition. It is either a true recognition (if correct) or an impostor 

(if incorrect). 

putative: Hypothesized. A putative recognition is a recognition that has been hypoth- 

esized but not yet fully verified, accepted, or rejected. It is under consideration. 

wordspotting: Given the speech signal and the particular target word to be found, 

wordspotting scans the entire signal and finds locations where the target word might 

appear. 

grammars: A grammar specifies the sequence of words that can be decoded from an 

utterance. Each word is defined by its word model. A simplified grammar for time might 
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run something like this: (hour) (minute or  o'clock) (AM or  PM), where hour is a number 

from one t o  twelve, and minute is a number from one t o  fifty-nine. 

filler model: In wordspotting and similar applications, the entire utterance is accounted 

for by assigning each frame t o  a part of some word model. The filler model is a special 

word model that  accounts for any sequence of phonemes. Given a grammar of (filler) 

(hello) (filler), some frames will be assigned t o  the word "hellon and frames before and 

after will be assigned t o  the filler model. 

any model: Another name for the filler model. 

garbage model: Another name for the filler model. 

Worldbet: A phonetic alphabet designed by Jim Heironymus. I t  is presented in detail 

in Table 4.3 on page 62. 

perplexity: For this research, perplexity is defined as the number of words in the active 

vocabulary when an out-of-vocabulary utterance is encountered. In general this is the 

branching factor by which the number of possible alternatives grows across time (without 

pruning). 

pruning: The process of removing some branches from the search tree based on their low 

scores and extremely small likelihood that  they will eventually be found t o  be part of the 

best-scoring interpretation of the utterance. Careful pruning can reduce the running time 

of the search algorithm from exponential time down t o  linear time without introducing 

too much error. 

closed-set rejection: In-vocabulary rejection. Section 3.4 deals with this type of rejec- 

tion. The rest of the thesis is concerned mainly with open-set rejection. 

rejection: The decision that  a putative recognition is wrong. 
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IV: In-vocabulary. 

in-vocabulary : A situation where the true word model for recognition is guaranteed t o  

be in the active vocabulary. 

open-set rejection: Out-of-vocabulary rejection. 

OOV: Ou t-of-vocabulary. 

out-of-vocabulary: The situation where the correct word model for an utterance is 

not among those word models considered (the active vocabulary). Hence the utterance is 

out-of-vocabulary. 

impostor: When an utterance is out-of-vocabulary with respect t o  the active vocabu- 

lary, but a best match is selected anyway, that  best match is called an impostor. Generally 

any of the incorrect words in the active vocabulary may be called impostors, but the best- 

scoring such word is particularly called the impostor. 

impostor score: The score assigned t o  an incorrectly recognized utterance, especially 

the score assigned t o  the impostor. 

true recognition: The recognition of an utterance as a particular word model, when 

that  recognition is correct. 

true score: The score assigned t o  a correctly recognized utterance. 

1 .?.2 Confidence Measurement 

confirm: To state that  something is true. To accept a putative recognition. 

deny: To state that  something is false. To reject a putative recognitions. 

verifier: An algorithm that  evaluates a putative recognition and identifies it as correct 

or wrong. Also such an algorithm that  assigns a confidence score t o  a putative recognition. 
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confidence: The probability of being correct. 

alpha error: Also a error. The error of rejecting (denying) something that is actually 

true. Also called Type I error. 

Type I error: The error of rejecting the truth. Also called alpha error. 

beta error: Also /3 error. The error of accepting (confirming) a falsehood. Also called 

Type I1 error. 

Type I1 error: The error of accepting a falsehood. Also called beta error. 

EER: Equal error rate. 

equal error rate: There is an operating point a t  which the Type I and Type I1 errors 

are equal. The rate of Type I or Type I1 error occurring at that point. 

FOM: Figure of Merit. 

figure of merit: The area beneath the ROC curve. For a perfect verifier it is 1.0. For 

a random verifier it is 0.5. 

TVE: Total verification error. 

total verification error: The sum of the Type I anc 

threshold. 

d Type I1 errors a t  a given operating 

MVE: Minimum verification error; minimum TVE. 

ROC curve: Receiver operating characteristics curve, showing the performance tradeoff 

between signal and noise as the reception threshold is varied. In the context of verifica- 

tion schemes, it shows the proportion of errors remaining and the proportion of correct 

recognitions remaining. 
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1.7.3 Algorithm Names 

pr: Raw probability. p stands for probability, and the superscript r indicates the type 

of probability, which is "raw." 

pn: Normalized probability: all raw probabilities for the same frame are summed, and the  

sum is divided into each of the raw probabilities. This results in normalized probabilities, 

the sum of which is 1.0. 

p n / ( l  - pn): Odds. The normalized probability of success divided by the normalized 

probability of failure. 

fw: Frame, word hierarchical averaging. This is the degenerate case and could also be 

called non-hierarchical averaging. 

fpw: Frame, phoneme, word hierarchical averaging. 

fsw: Frame, segment, word hierarchical averaging. 

fspw: Frame, segment, phoneme, word hierarchical averaging. 

fspsw: Frame, segment, phoneme, syllable, word hierarchical averaging. 

geomet r ic  averaging: The nth root of the product of n quantities. Can be implemented 

as  the anti-logarithm of the average of the logarithms of the quantities in question. 

likelihood ratio: Odds. 

odds: The number of successful (or correct) instances divided by the  number of unsuc- 

cessful (or incorrect) instances of some type of event. 

k n o t  points:  Points at which two segments of a piecewise linear model come together. 
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1.7.4 Miscellaneous Terms 

TTS: Text to speech synthesis. TTS is used in this research to generate word models for 

those words not present in a dictionary of "hand-generated" word models. Hand-generated 

models are those written by humans on a word-by-word basis. 

Bayes rule: A statement of conditional probabilities, ~ (a lb )  = -. It is easily 

derived from p(alb)p(b) = p(a, b) = p(b, a)  = p(bla)p(a). 

ARPA: (US) Advanced Research Projects Agency, also: 

DARPA: (US) Defense Advanced Research Projects Agency. 

DoD: (US) Department of Defense. 

NSF: (US) National Science Foundation. 

DEC: Digital Equipment Corporation. 

NYNEX: New York New England telephone company. 

CSLU: Center for Spoken Language Understanding at OGI. 

OGI: Oregon Graduate Institute. 

CSLUrp: CSLU rapid prototyper. 

CSLUsh: CSLU shell; a collection of Tcl procedures in the CSLU Toolkit. 

toolkit: The CSLU toolkit, which includes CSLUrp and CSLUsh, and is designed to 

make easier research and construction of computer-based speech systems. 

comp.speech: A newsgroup available on the Internet. This newsgroup publishes a FAQ 

each month listing many resources of interest in the field of computer speech recognition. 
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FAQ: Frequently asked questions. Many newsgroups on the Internet publish a message 

each month or so listing frequently asked questions by newcomers t o  tha t  newsgroup, and 

giving the consensus answer of the group. In the comp.speech faq many useful questions 

are addressed, including the location and availability of speech corpora and software. 

mfcc: Mel-frequency cepstral coefficients. Mel-scaling accounts for the experimental fact 

that  human perception of pitch is not linear, but is roughly linear below 1000 Hz, and 

roughly logarithmic above. 

cepstrum: The inverse D T F T  (discrete-time Fourier transform) of the logarithm of the  

absolute value of the D T F T  of the signal. I t  is used t o  separate the speech signal into two 

components: the glottal pulse train (roughly pitch; excitation) and the resonances of the 

vocal chambers. The word cepstrum is just the word spectrum with the first four letters 

reversed, suggesting that  the two meanings are nearly the same. In the case of cepstrum 

the taking of the logarithm provides the significant additional "twist" for which the letters 

are reversed. 

DTFT: Discrete-time Fourier Transform. This is a method for converting a discretely 

sampled time-domain signal into a frequency-domain representation. 

time domain: This is the original form of the digitized signal from the microphone. 

Each sample represents one instant in time, and the value of that  sample is the voltage 

present at the microphone at that  time. 

frequency domain: This is the form of the signal after Fourier transformation has been 

done. In this form each sample represents a frequency band and the value of the sample 

is the amount of energy present in that  frequency band. In this domain the spectrum of 

the signal can be clearly seen. The size of the frequency band depends on the number 

of time-domain samples that  are used in the Fourier analysis. If there are more samples 

used, then the  band is tighter. 
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PLP: Perceptual linear prediction, a method for representing a speech signal as a list of 

perceptual features. PLP coefficients are introduced and defined in Hermansky (1990). 

bootstrap: A procedure for estimating the statistical properties of some measurement 

(Efron and Tibshirani 1993). In this thesis it is used to estimate the variance of the equal 

error rate of a verification algorithm. 

trial: In this thesis a trial is a recognition attempt, with its accompanying confidence 

and rejection computations. In a trial there is exactly one utterance drawn a t  random 

from a corpus. There are also some number of word models drawn from the same corpus. 

Many trials are performed and their results are considered together in the evaluation and 

comparison of confidence and rejection algorithms. 

corpus: A body of recorded speech (or other sounds). Each recording may be tran- 

scribed. 



Chapter 2 

Prior Research 

This chapter provides details of the state of the art surrounding this research on confidence 

and rejection, as available from the research literature. In particular, the focus is on 

measures of confidence, improvement of such measures, performance of rejection, and the 

closely related area of keyword spotting. 

2.1 Major Sources of Research Literature 

For this research area, results are typically reported in the proceedings of the IEEE In- 

ternational Conference on Acoustics, Speech, and Signal Processing (ICASSP) held each 

spring. The major journals are the IEEE Transactions on Speech and Audio Process- 

ing, starting January 1993, and its predecessor, the IEEE Transactions on Acoustics, 

Speech, and Signal Processing. Additional work is reported in the proceedings of the 

European Conference on Speech Communication and Technology (EUROSPEECH) held 

in late summer on odd-numbered years starting in 1989, and in the proceedings of the 

International Conference on Spoken Language Processing (ICSLP) held in late summer on 

even-numbered years starting in 1990, and in the proceedings of annual ARPA / DARPA 

workshops. 

2.2 Scope of Interest 

Confidence and rejection comprise a large field of research. In this present thesis the field 

of interest has been necessarily narrow. Several aspects of that restriction are mentioned 

in this section. 
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2.2.1 Vocabulary Independence 

The majority of this research is dedicated to vocabulary independence. Hon and Lee (1990) 

give a good discussion of such modeling. Hon (1992) presents a vocabulary-independent 

speech recognition system. Hetherington (1995) discusses the problems that lead to the 

need for vocabulary independence. 

Much other research is focused on vocabulary-dependent settings where the words can 

be known in advance and training samples can be acquired. Some research focuses on 

class-based vocabulary dependence, where a city-name class may be treated all at once, or 

where vocabulary words may be classed by their broad-category phonetic spelling. Such 

research is beyond the scope of this thesis. 

It is worth noting that in a vocabulary-independent setting, there are only minor 

differences between in-vocabulary and out-of-vocabulary verification. That is because the 

random selection of individual words makes them independent of each other. This allows 

the in-vocabulary verification problem to be decomposed into the separate problems of 

out-of-vocabulary verification (impostor rejection) and correct-word verification (correct 

acceptance). More is said about this in section 4.11.1 starting on page 77. Note that 

this differs from typical in-vocabulary rejection which is often studied in the context of a 

specific task and therefore of a specific vocabulary. In that typical task-dependent case 

results for in-vocabulary rejection and out-of-vocabulary rejection can be quite different. 

2.2.2 Discriminative Training 

Several researchers have focused on the improvement of the recognition process itself by 

using confidence results in the training of the recognizer. Such integration approaches are 

interesting and promise improved performance, but are beyond the scope of this thesis, 

where the assumption is that a recognition result is to be measured for confidence. 

2.3 Research Results of Interest 

Each of the headings in this section mentions an area of research where an interesting result 

is achieved in this thesis. Each also observes related contributions from other researchers. 
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2.3.1 Logarithmic Averaging 

It will be shown (section 5.3) that  frame scores which are probabilities can be averaged t o  

advantage if they are first converted t o  the logarithmic domain. This same result should 

apply t o  likelihoods as well. Averaging in the linear probability domain was shown t o  

work less well. 

This is not a surprising result, as probabilities are typically combined by multiplication. 

Lleida-Solano and Rose (1996a) average likelihood ratios and demonstrate logarithmic and 

other transformations (see section 2.4.1 below). 

2.3.2 Hierarchical Averaging 

I t  will be shown (section 5.4) that  hierarchical averaging works. Frame scores can be 

averaged across segments (frames with the same ANN output identity, also called phone- 

states) t o  make segment scores, and those can be averaged across phonemes and then 

words t o  make word scores. Figure 5.6 on page 101 illustrates the improved separation of 

true scores from impostors using this scheme. 

It appears that  most researchers use a whole-word approach t o  scoring and threshold- 

ing. This may be motivated by ease of computation (simply subtracting the Viterbi scores 

a t  the s tar t  and the end of the  word). It will be shown that  the whole-word approach 

gives much worse performance than hierarchical averaging for the  corpora and recognition 

methods used in this thesis. 

Rivlin, Cohen, Abrash, and Chung (1996) show that  normalizing by phone durations 

improves performance. They argue tha t  "to get the best recognition match, these [incor- 

rect] phones will have minimal duration in the Viterbi backtrace. . . . Furthermore, since 

these recognized phones are incorrect, they [typically] have very poor likelihood scores." 

This supports a scoring method that  does not dilute the badness of such scores. 

Segment-Based Scoring: Austin, Makhoul, Schwartz, and Zavaliagkos (1991) use an 

HMM for segmentation, and then use an ANN t o  score each entire segment. They call 

this a Segmental Neural Network (SNN). They reported a word error rate reduction from 

9.1% for the HMM system t o  8.5% using the additional SNN stage. Austin, Zavaliagkos, 
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Makhoul, and Schwartz (1992) reports for a different task a reduction from 4.1% to 3.0% 

which is significant at the 95% level. 

Lleida-Solano and Rose (1996a) (see section 2.4.1 below) do whole-word and onestep 

sub-word averaging of frame scores. 

2.3.3 Filler Normalizing 

It will be shown (section 5.5) that normalizing the ANN outputs by an average of the top 

several scores in each frame gives an improved separation of true scores from impostors, 

as compared to not doing this normalization. This resulted in a "best score" among all 

algorithms tested. Normalizing using lower-ranked ANN outputs was shown to worsen 

performance. 

I 
On-Line Garbage: Boite, Bourlard, D'hoore, and Haesen (1993) and later Bourlard, 

D'hoore, and Boite (1994) introduce an on-line garbage model defined for each frame 

"as the average of the N best local scores of the CI or CD phonemic models." In their 

work this average is modified with a word entrance penalty to prevent the garbage model 

from scoring better than the keywords. In the present thesis garbage scores are used to  

normalize keyword phoneme scores rather than to compete against them. This is the same 

as the all-phone model normalization approach if all phonemes are considered in the N 

best list. The all-phone model is also used by Young (1994) as an estimate of p(A), the 

probability of the acoustics, in Bayes equation p(WJA) = p(AJW)p(W)/p(A). 

Filler Normalizing: Cox and Rose (1996) use filler models to normalize keyword model 

likelihoods. They call this a likelihood ratio and show that it approximates a probability. 

(It should be noted that likelihood ratio is multiply-defined throughout the literature, the 

commonality being that likelihoods are similar in nature to probabilities but need not sum 

to 1.0.) They present the use of the highest Viterbi path probability for normalization on 

a whole-word basis, and find this "to exhibit poor discrimination between classes C and 

I ." 
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Other Garbage Models: There are a number of other research efforts using garbage 

models. Specially-trained garbage models do not play a large part in this thesis, and they 

are not discussed further here. 

2.3.4 Rank-Based Schemes 

It will be shown (chapter 6) that throwing away ANN scores and using just the corre- 

sponding ranks also results in a "best score" among all algorithms tested. Review of the 

literature has not identified any similar research using this approach. 

2.3.5 Creative Averaging 

Weighted averaging schemes (triangular, trapezoidal, and parabolic) are examined in sec- 

tion 6.3 and found to give no additional discriminative benefit. Review of the literature 

has not identified any similar research using this approach. 

2.3.6 Role of Perplexity 

It will be shown (section 7.2.1) that perplexity of the impostor set plays an important role 

in computing the impostor probability used in the likelihood ratio. Jelinek (1981) defines 

perplexity and relates it to entropy. 

2.3.7 Creation of Probabilities 

It will be shown that likelihood ratios (odds) and probabilities can be estimated from raw 

scores (section 7.2.3) and that these can be used to solve a typical problem such as might 

be encountered by a real business in a principled and vocabulary-independent way. It is 

important to be able to solve such problems if the technology is to be useful in practice. 

Underlying Theory: Duda, Hart, and Nilsson (1976) and Pearl (1990) provide excel- 

lent treatments of probabilities and odds (likelihood ratios). Deller, Proakis, and Hansen 

(1993) includes a brief discussion and Fukunaga (1990) includes a longer discussion of 

likelihood ratios. Cox and Rose (1996) discuss the creation and evaluation of confidence 

measures in general. 
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Comparison of Distributions: Fetter, Dandurand, and Regel-Brietzmann (1996) dis- 

cusses the use of eigen and fremd distributions on a vocabulary-dependent basis for esti- 

mating probability. Young and Ward (1993) also use vocabulary-dependent distributions 

and word-class distributions t o  estimate confidence. 

2.4 Confidence Work at Other Institutions 

2.4.1 Confidence Work at AT&T and Lucent 

The work presented in Lleida-Solano and Rose (1996a) is similar t o  the work shown in 

this thesis from the standpoint of general approach and methods of measurement. They 

present whol~+word and segment-based confidence measures, and study several methods for 

accumulating frame scores into confidence measures. Their accumulation methods include 

ml linear, ma logarithmic, ms geometric, rnr sigmoidal, and m5 harmonic averaging. 

(Preliminary results following their more exotic approaches did not perform as well as 

other methods, so no final results are developed for this thesis.) 

In Lleida-Solano and Rose (1996b) this work is extended and i t  is shown that  geo- 

metric averaging is superior t o  arithmetic averaging. This is expected because it prevents 

extreme values from dominating the scoring. The sigmoidal transformation is shown t o  

perform equally well compared t o  geometric averaging although they expect the sigmoid 

t o  be better at damping extreme values. Their emphasis is on development of a onepass 

procedure for identifying and scoring word hypotheses. 

Sukkar, Setlur, Rahim, and Lee (1996) and related work uses this same geometric 

averaging t o  combine several scores in the modeling the likelihood of the incorrect recog- 

nitions. 

2.4.2 Confidence Work at Verbmobil and CMU 

Chase, Rosenfeld, and Ward (1994) use negative n-grams as a language modeling step 

t o  prevent the survival of invalid word sequences. The technique is applied t o  out-of- 

vocabulary misrecognition . 



2.5 Conclusions 35 

Schaaf and Kemp (1997) discusses a confidence tagger JANKA for use in the  VERB- 

MOBIL project. The context is large-vocabulary continuous speech recognition for trans- 

lation purposes. The most important feature found was "A-stabil" which measures the 

number of times the  proposed word occurs in a set of alternative hypotheses. 

Both of these approaches make explicit use of language models and is beyond the  scope 

of this present research which is limited t o  acoustic-based information only. 

2.4.3 Confidence Work at SRI 

Rivlin, Cohen, Abrash, and Chung (1996) shows that  normalizing by phone durations 

improves performance. 

Weintraub, Beaufays, Rivlin, Konig, and Stolcke (1997) develops confidence metrics 

based on numerous features combined by an ANN. Some of these features are similar or 

identical in nature t o  those used in the hierarchical averaging approaches of this thesis. 

These features include averaging by word, phone, phone-state, or any combination of 

these. 

2.5 Conclusions 

Based on the work done elsewhere, I concluded that  on-line garbage would be a good 

baseline for comparison, and that  extending the existing hierarchical averaging research 

from two steps t o  many steps was a promising direction. 



Chapter 3 

Vocabulary-Dependent Experiments 

This chapter and those following provide details of a number of experiments that were 

performed. The vocabulary-dependent experiments focus on settings where the active 

vocabulary is known in advance and word-specific verification strategies can be employed. 

The material in this chapter extends results previously reported in Colton, Fanty, and 

Cole (1995). It is further introduced in sections 1.2 and 1.3 of this thesis. 

Section 3.3 reports on utterance verification of putative (hypothesized) recognitions 

in open-set recognition tasks using telephone speech. The focus is on rejection of out-of- 

vocabulary utterances. In a two-keyword task ("male" and "female") using 50% out-of- 

vocabulary utterances, utterance verification reduced errors by 60%, from 12% to 4.8% 

compared to a baseline rejection strategy. 

Section 3.4 reports on utterance verification of putative recognitions in closed-set recog- 

nition tasks using telephone speech. The focus is on reordering the N-best hypotheses. 

In a 58-phrase task, utterance verification reduced closed-set recognition errors by 30%, 

from 6.5% to 4.5%. 

3.1 Introduction 

Recognition based on the combination of phonetic likelihoods from short fixed-width 

frames is the dominate paradigm for speech recognition systems. While this approach 

has numerous advantages, it is reasonable to think that better word-level recognition is 

possible using wholeword classifiers. Building such recognizers presents a number of diffi- 

culties, such as finding word boundaries before performing the classification, and collecting 
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enough data  t o  train the classifiers. 

A frame-based classifier operates in a narrow context, and makes its judgment about 

the class t o  which a frame belongs based on information in that  frame and other nearby 

frames. This classification information must be combined with similar information across 

many frames t o  arrive at a word score. The way the information is combined limits 

the kinds of relationships that  can be seen between frame features and the final word 

recognition accuracy. 

A whole-word classifier operates in a broad context, and makes its judgment about 
f 

the identity of an entire word based on all the frames that  belong t o  that  word. Whole- 

word classifiers can model non-linear effects between word features and word recognition 

accuracy. 

This chapter reports results on experiments with a twepass strategy. The first pass 

uses a frame-based recognizer. The output is the recognized word (putative hit) or  a list of 

the top N recognized words, along with the phonetic segmentation derived from backtrace 

information. This effectively solves the segmentation problem. For these experiments, 

ample training da ta  was available for the entire vocabulary. 

Given a putative match between a test utterance and a reference phrase, the match 

is verified (i.e., confirmed or denied) using word-specific classifiers. These are ANNs 

(artificial neural networks) with input features describing the whole word. Combining 

reclassificatiion with an N-best recognizer allows us t o  improve recognition accuracy if 

the utterance verification score is more reliable than the initial recognition score. Out- 

of-vocabulary utterances can also be rejected by rejecting the entire set of topscoring 

matches from the N-best list. 

This chapter extends prior work at the Center for Spoken Language Understanding 

(CSLU) on two-pass Alphabet recognition by Fanty, Cole, and Roginski (1992). In the 

alphabet system, the frame-based first pass provides letter and broad-phonetic boundaries. 

The second pass uses an extensive set of knowledge-based features specifically designed for 

the alphabet. The second-pass classifier has 27 outputs: the 26 letters and an output for 

"not a lettern which was trained on false positives from the first pass in a development set 

(mostly noise, not extraneous speech). The second pass yielded much better recognition 
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than was achieved with a frame-based recognizer alone. The work presented here differs 

in several ways: the classifiers are word specific, so there are two outputs: word and not- 

word. This contrasts with having the whole vocabulary in a single ANN. Also, the feature 

set is generic and not based on careful study of the vocabulary. 

This work also extends that of Mathan and Miclet (1991). They used word-specific 

ANNs t o  reclassify putative hits in an isolated word recognizer. Their feature vector 

included duration, average energy and the average first Me1 frequency coefficient for each 

segment in the trace of the first-pass recognition as input features. This work is extended 

by examining a variety of feature bundles, and by combining reclassification with an N-best 

search list to  improve keyword recognition accuracy. 

In all these experiments, telephone speech was used. The speech was digitally sam- 

pled a t  8000 Hz. For all these corpora, calls are serially numbered as they arrive, and 

are apportioned into training (60%), development test (20%), and final test (20%) sets 

according to the last digit of the serial number. 

3.2 The Frame-Based Classifier 

For both experiments, the first pass is a frame-based classifier which uses an ANN to  esti- 

mate phoneme probabilities. Speech analysis is seventh order Perceptual Linear Prediction 

(PLP) analysis (Hermansky 1990), which yields eight coefficients per frame including en- 

ergy. The analysis window is 10 msec and the frame increment (shift) is 6 msec. The 

inputs to the ANN are 56 PLP coefficients from a 160 msec window around the frame t o  

be classified. The outputs of the ANN correspond to  the phonetic units of the task. For the 

male/female task the net has only six outputs. For the 58-word task, a context-dependent 

net with subphoneme units (Barnard, Cole, Fanty, and Vermeulen 1995) was used. These 

units correspond to separate phoneme states in a hidden Markov model (HMM) context- 

dependent phoneme model. There were several hundred outputs. Section 4.1.2 describes 

a similar recognizer that is a successor to this one. 

Vocabulary words are initially modeled as a sequence of phonemes. For recognition 

the word model is further refined into a sequence of context-dependent sub-phoneme units 
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each corresponding to one ANN output of the recognizer. The best alignment between 

a word model and the ANN probability estimates is found using a Viterbi search. Back- 

ground sounds are modeled with a simple on-line garbage or filler model (Boite, Bourlard, 

D'hoore, and Haesen 1993). The model selects the nth ranking phoneme and uses its score 

instead of computing a garbage score from a trained garbage model. Background mod- 

eling increases robustness and provides some wordspotting ability. Wordspotting makes 

out-of-vocabulary rejection more difficult, as the vocabulary word need only align with 

part of the extraneous speech. 

3.3 Male/Female: Out-of-Vocabulary Rejection 

The first experiment sought to identify and reject out-of-vocabulary utterances using a 

second-pass, whole-word classifier. The task was gender recognition which consisted of 

two words: "male" and "female." This is an easy task for which the frame based classifier 

does very well, but it is fairly difficult for rejection because the target words are so short. 

All speech data in this experiment are from the OGI Census corpus (Cole, Fanty, Noel, 

and Lander 1994). Gender utterances and last name utterances were used. The gender 

utterances consist of more than 2000 responses to the prompt "What is your sex, male or 

female?" Of these, roughly 70% were the word "female" (including a few examples spoken 

by males!) and 30% were the word "male." The last name utterances consist of responses 

to the prompt "Please say your last name." 

3.3.1 Baseline System 

The baseline system was a frame-based ANN recognizer for the two words "male" and 

"female." This recognizer was developed for and used in the OGI Census system (Cole, 

Novick, Fanty, Vermeulen, Sutton, Burnett, and Schalkwyk 1994). When in-vocabulary 

utterances are used, the baseline system's accuracy is 99.5%. To detect low-confidence 

recognitions, the baseline system takes the ratio of the top two recognizer scores sl and 
a CC 

sz, and compares this to an optimized threshold 8: 2 8. For a recognition of "malen 
re j  

acc acc 
the test would be: % 8. For a recognition of "female" the test would be: z . 8 .  

re j  re3 
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3.3.2 Second Pass Rejection 

The approach is t o  take the  Viterbi backtrace t o  identify the s tar t  and end times for each 

phoneme of the putative utterance. Features based on this time alignment are collected 

and used t o  train two new ANNs (one each for "male" and "female"). The new ANNs 

produce two outputs: "confirm" and "deny." 

The training set contained as many negative examples as positive. The Census corpus 

contained very few extraneous utterances, so the male-female recognizer was run against 

the Census corpus of last names (family surnames), forcing each t o  be recognized as "male" 

or "female," and used these as negative inputs for training and testing. 

The "female" utterance verifier was trained using 2000 examples, and (due t o  less avail- 

able data) the "malen utterance verifier was trained using 1400 examples. In each case half 

of the  training examples represented correct putative hits (drawn from the gender corpus) 

and half represented incorrect putative hits (drawn from the  last name corpus). Similarly, 

half of the test set was "male" or "femalen and half was last names. Using the Viterbi 

backtrace from the first-pass recognition, word and phoneme boundaries were identified 

(three phonemes for "male" and five for "female"). The following feature combinations 

were then examined. 

1. [du] Phoneme durations alone. The durations for the phonemes are expected t o  be 

stable, but for mis-recognized phonemes the durations may be random. Those that  

vary from expected values can be eliminated. 

2. [en] Phoneme center-frame energy alone. As with durations, the energies for the 

phonemes are expected t o  be stable, and those for incorrect phonemes are expected 

t o  be more random and therefore possible t o  identify as wrong. 

3. [du.en.+] Phoneme durations, phoneme center-frame energies, plus the energy in 

the frame 50 msec before and the frame 50 msec after the word. This combines 

duration and energy and also looks a t  the  context in which the word appears. The 

frame 50 msec before "male" is probably different than the frame 50 msec before 

the "male" in "female." Using before and after context may help t o  identify these 
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cases. 

4. [du.lOpJ Phoneme durations plus P L P  from ten frames located at 5%, 15%, 25%, 

. . . , and 95% across the word. This is a baseline approach taken from speech recog- 

nition literature. I t  assumes that  relative durations of phonemes do not change 

much across the corpus. If this is true, then the extra overhead of segmenting the 

utterance can be avoided. 

5. [du.5pJ Phoneme durations plus P L P  from five frames located at 5%, 25%, 45%, 

65%, and 85% across the word. This will show the sensitivity of performance t o  

the number of frames examined. Here five frames are used rather than the ten in 

the [du.lOp] case above. If performance is much different, i t  may suggest using 20 

or more frames instead of just 10 or 5. This approach was also chosen because the 

input features were already available from [du.lOp] thus making this an inexpensive 

thing t o  test. 

6. [du.sp.+] Phoneme durations, PLP from the center-frame of each phoneme, plus 

the P L P  from the frame 50 msec before and the frame 50 msec after the word. This 

is expected t o  perform the best because it uses more information than just duration 

and energy. I t  uses the full PLP from the chosen frames. Also it allows the relative 

durations of phonemes t o  vary as might be expected. 

3.3.3 Results 

Setting the rejection threshold for the best overall performance on a development set which 

had an equal number of examples of in-vocabulary and out-of-vocabulary speech, the best 

performance achieved with the baseline system was 88% overall. 

All but one of the feature sets used for second pass classification scored better than 

the baseline. Phoneme durations alone [du], a very small number of input features, do 

quite well. Durations and energies [du.en.+] scored about the same as durations alone. 

Energies alone [en] scored much worse. As expected, durations plus P L P  from the center 

of each phoneme [du.sp.+] scored best. Sampling PLP equally across the word [du.lOp] 

[du.5p] did not work as well as using the phonetic boundaries from the first pass. 
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Table 3.1: Utterance Verification Accuracy for 6 Feature Sets: Keyword and overall per- 
formance is shown along with its difference from the baseline. Notice that d u . ~ ~ . +  returns 
the best performance. The test set contains 50% in-vocabulary and 50% out-of-vocabulary 
utterances. 

Results 
0. baseline 
1. du 
2. en 
3. du.en.+ 
4. d u . 1 0 ~  
5. du.5p 
6. du.s~.+ 

gain =I 

Table 3.1 shows the utterance verification accuracy for each of the six feature vector 

sets, for each of the two keywords. An overall (weighted) average is also shown, and this 

is compared to the baseline accuracy of 88% to give a measure of error reduction. 

In each case, putative hits for "female" were reclassified more accurately than those 

for "male." This may be due to  the smaller training set for "male" or because there are 

fewer phonemes on which to  base a decision. 

overall 
-880 
.928 
.803 
.927 
.941 
-926 
.952 

I female 
t 

.948 

.875 

.943 

.954 
1 .935 

.965 
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male 

.883 

.635 

.890 

.911 

.906 

.922 

The second experiment used reclassification to re-order an N-best hypothesis list in order 

to improve recognition accuracy. The closed set consisted of 58 words and phrases in the 

telephone services domain. Phrases varied in length from two to twenty-three phonemes. 

The task was t o  reclassify the top three choices and possibly change the identity of the 

recognized utterance. 

More than 1000 callers said each of the 58 target words or phrases. Each utterance 

was verified by a human listener, and mistakes (for example, the wrong phrase or a partial 

phrase) were deleted from the corpus. There was no extraneous speech. 

Similar work is reported in Setlur, Sukkar, and Jacob (1996) where the N-best list (for 

N=2) is re-ordered by confidence score. They report an 11% reduction in error rate using 
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an algorithm similar to  that reported in this present section. 

3.4.1 Baseline System 

The baseline system was a frame based ANN classifier plus Viterbi search. Left and 

right context dependent modeling, with categories chosen specifically for this vocabulary, 

resulted in over 500 outputs. Each base phoneme was divided into three parts: left-context 

dependent, center, and right-context dependent. Using only in-vocabulary test utterances, 

with each of the 58 phrases equally likely, the accuracy is 93.5%. When there is an error, 

the correct phrase is often near the top of the N-best list. This is what prompted us to  

try a second pass classifier. 

3.4.2 Second Pass Rescoring 

An ANN was trained for each of the 58 keywords using a subset of the data. An equal 

number of positive and negative examples were used for each. Negative examples were 

chosen from the utterances for which the target word appeared high in the N-best list (i.e., 

the more easily confused utterances were selected from within the 58-word vocabulary). 

Building on experience from the first experiment, the feature vector was based on the 

segmentation from the Viterbi backtrace on each putative hit in the N-best list. The 

following features were used for utterance verification: 

The average per-frame Viterbi score for the entire word (from the first pass recog- 

nizer) . 

The average per-frame Viterbi score for each sub-phonetic segment. 

The duration of each sub-phonetic segment. 

The PLP from the center of the middle (context-independent) segments. 

The PLP from the frame 50 msec before and the frame 50 msec after the word. 

The last three features are the same as those in the male/female verifiers. Newly added 

are the average Viterbi scores. The Viterbi scores were readily available and I believed 
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that they might give additional help in the classification process, and in any case would 

probably not hurt it. 

By reviewing the development test scores, a manually optimized threshold was devel- 

oped to select the best match from the reclassification scores of the top three outputs of 

the N-best classification: If scores one and two were both below 0.1, and score three was 

above 0.5, then the third match was selected (this was rare). Otherwise, if score two was 

1.7 times greater than score one, the second match was selected. Otherwise the first match 

was selected. 

3.4.3 Results 

On the final test set, the error rate without utterance verification was 6.5%. The verifica- 

tion step error rate was 4.5%, which is a 30% improvement. It is interesting t o  note that 

when an early version of the first-pass recognizer was below 90% accuracy, the verification 

improved the performance to  about 95%. As the first pass improved, the net result after 

the verification held steady. 

3.5 Conclusions 

Word-based reclassification showed promise in both experiments. For rejection, it worked 

better than the default scheme of using ratios. Although the default was no doubt not the 

best possible one-pass rejection strategy, the second pass could probably be improved as 

well. For example, (in the first experiment) no features based on the phonetic probabilities 

from the first pass were used. The biggest drawback of this approach is the large amount 

of training data needed to build the classifiers. It is possible to formulate word acceptance 

as a vocabulary-independent classification problem based on feature sets which can be 

defined for any word. This is investigated in the next few chapters. 
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Vocabulary-Independent Methodology 

This chapter contains three simple experiments. They illustrate the methods by which 

vocabulary-independent research was conducted, and the measures by which experiments 

are compared. The following chapters (5 and 6) present research results based on the 

methodology of the current chapter. 

The purpose of presenting simple experiments is to  focus attention on the research 

methodology. This includes discussion of the recognizers used, the speech recognition cor- 

pora, division of the corpora into training, development test, and final test sets, pronun- 

ciation modeling, recognition perplexity, the actions involved in a single recognition trial, 

the evaluation of results across many trials, computation of statistics by which significance 

can be determined, and the figures and tables by which the results will be presented. 

The ANN-based recognizers used in these experiments represent a different approach 

in comparison to hidden Markov models (HMMs). The role of the recognizer is so crucial 

that it is presented first. Section 4.2 follows with information on the first experiment. 

4.1 ANN-based Recognizers 

A number of ANN-based recognizers have been used in these experiments. They are 

all general-purpose recognizers with dozens of inputs, a single hidden layer, and several 

hundred outputs that represent context-dependent phonemes. A tutorial on ASR including 

discussion of the ANN is given in section 1.6. The Oct 1996 MFCC-based recognizer 

is identified herein as UOct96.n It is the recognizer that was used for all of the final 

experiments reported in this thesis. There are eight other recognizers with which the 
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confidence and rejection technology has been tested. Both " O ~ t 9 6 ~  and "May96" are 

briefly described below. 

One reason for varying the recognizer is to see whether the rejection techniques are 

tied to a particular recognizer or whether they apply generally across several recognizers. 

Another reason is to test confidence and rejection techniques on the best available rec- 

ognizer. The identity of that recognizer has changed periodically over the course of this 

research. 

4.1.1 Phonetic Units 

Three types of phonetic units are modeled: phones, phone halves, and phone thirds. 

Phones model an entire phoneme. They can be context independent (CI) (generally si- 

lence) or context dependent to the right (CDR) (generally stop consonants). (CDL is also 

possible but does not occur in the recognizers used in this research.) Phone halves model 

the left or right half of a phoneme. These are typically consonants. Left halves are con- 

text dependent to the left (CDL). Right halves are context dependent to the right (CDR). 

Phone thirds model the left, center, or right third of a phoneme (typically a vowel). Center 

thirds are context independent (CI). Left thirds are context dependent to the left (CDL). 

Right thirds are context dependent to the right (CDR). Up to eight left and right contexts 

are modeled for each phoneme. 

4.1.2 Oct96: Oct 1996 MFCC-based recognizer 

The October 1996 recognizer has 131 inputs, 200 nodes in the hidden layer, and 544 

outputs. The outputs are listed in Table 4.1. The inputs are 12th-order mfcc (mel-scaled 

frequency cepstral coefficients, normalized using cepstral mean subtraction) plus energy, 

and the differences (deltas) of those values from the prior frame, for a total of 26 inputs 

per frame; taken across five frames (-6 -3 0 3 6) centered on the one to be classified. To 

this is added one input that is hard-wired to 1.0. 

Training: Training was performed with a maximum of 1500 frames per class (for 544 

classes). For each class, 500 examples were sought from the OGI Yes/No corpus, 500 
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Table 4.1: Oct 1996 MFCC-based recognizer ANN Outputs: Three types of phonetic units 
are modeled: phones, phone halves, and phone thirds. Models are context independent 
(CI), context dependent to the left (CDL), or context dependent to the right (CDR). For 
each phoneme, the Worldbet base symbol is given, followed by the numbers of contexts 
modeled. There are 544 total outputs. These are given in ANN order. Phones are defined 
in Table 4.3. 

phone thirds 
phon CI CDL CDR 

phones 
phon CI CDR 

examples from the OGI Numbers corpus, and 500 examples from the OGI Apple corpus. 

If less than 1500 examples had been found, up to 1000 examples were taken from the OGI 

Stories corpus, and the remainder up to 1500 total examples were taken from the NYNEX 

PhoneBook corpus. 

The strategy was to train an initial ANN using zero and one as output objectives. 

Then target reestimation was performed using two iterations of the forwardlbackward 

algorithm on the same training data but without the OGI Stories corpus data. 

phone halves 
phon CDL CDR 

Performance: The closed-set word accuracy of this recognizer is 99.7% on the OGI 

Yes/No corpus (perplexity two), 95.3% on the isolated digits portion of the OGI Num- 

bers corpus (perplexity eleven; zero through nine, plus oh), and 87.3% on the NYNEX 

PhoneBook corpus (perplexity 7979). 
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Table 4.2: May 1996 PLP-based recognizer ANN Outputs: Three types of phonetic units 
are modeled: phones, phone halves, and phone thirds. Models are context independent 
(CI), context dependent to the left (CDL), or context dependent to the right (CDR). 
For each phoneme, the Worldbet base symbol is given, followed by the numbers of con- 
texts modeled. There are 534 total outputs, given in ANN order. Phones are defined in 
Table 4.3. 

--- 

phones 
phon CI 
.pau 1 
.br 1 
vc 1  
uc 1 

phone halves 
phon CDL CDR 

f 8  8  
V 8  8  
T 8  8  
D 8  8  
S 8  8  
z 8  8  
S 8  8  
h 8  8  
m 8  8  
n 8  8  

d, ( 5 5  
1 8  8  
9r 8  8  
j 8  7  
W 8  7  

phone thirds 
phon CDL CI CDR 

I 8  1 8  
i : 8 1 8  
E 8 1 8  
(0 8 1 8  
A 8 1 8  - 8 1 8  

U 7 1 8  
u 7 1 8  
3r 8  1 8  
e i 8 1 8  
> i 8 1 8  
a1 8 1 8  
aU 7 1 8  
OU 8 1 8  

phones 
phon CDR 

b 7  
d 8  

g 8  
t h 8  
ph 8  
kh 8  
t S  8  
dZ 8  

4.1.3 May96: M a y  1996 PLP- based recognizer 

The May 1996 PLP-based recognizer is described here to illustrate the variation in rec- 

ognizers used during the performance of this research. A total of nine different recogniz- 

ers were used, with several of them being the best-performing recognizers of their time 

at CSLU. All recognizers were based on ANN technology and used context-dependent 

phoneme units. The exact definition of those units varied, as did the training regimen. 

By showing a few details of this eighth of nine recognizers it is intended that the reader 

can sense the range of recognizers across which this research was performed, and the 

applicability of these results to other settings. 

The May 1996 PLP-based recognizer has 57 input nodes, 200 nodes in the hidden layer, 

and 534 outputs. The outputs are listed in Table 4.2. The inputs are eight values from each 
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of seven frames centered at the frame to be classified, and one additional input hardwired 

to 1.0. The eight values are the seventh-order PLP (Hermansky 1990) coefficients and one 

measure of energy. 

The recognizer was trained using the OGI Stories corpus, the OGI Yes/No corpus, and 

the NYNEX PhoneBook corpus. 

The Oct96 (nineth) recognizer has much better performance than the May96 (eighth) 

recognizer, but actual performance statistics are not available. 

4.2 Performing One Experiment 

The next few sections present and evaluate a simple algorithm. Section 4.8 evaluates two 

related algorithms, and presents the methodology by which performance is compared. 

4.2.1 pr: raw probabilities 

The goal of every confidence algorithm is to  create a discriminating raw score, meaning 

that true and impostor scores can be identified from among each other easily. 

For the pr algorithm the outputs of the recognizer Artificial Neural Network (ANN) 

are used. Ideally the outputs of an ANN are exactly the a posteriori probability that the 

phoneme is correct, i.e., the probability of a particular phonetic classification given the 

acoustic evidence (Bourlard and Wellekens 1989, Hampshire and Pearlmutter 1990, and 

Richard and Lippmann 1991). This requires that the ANN have an infinite amount of 

training data in natural proportions and an infinite number of hidden units to be trained. 

While the Oct 1996 MFCC-based recognizer ANN has already been used successfully to 

do closed-set recognitions (see section 4.1.2 above), it does not meet any of the conditions 

just mentioned, so at best the outputs only approximate true probabilities. They are 

designated pr for "probability raw." 

p' is used for another reason. It is a simple algorithm, and the purpose of this chapter 

is to illustrate the methodology rather than to  present the best algorithm. 

The raw score is computed as the average of the frame scores across the word model, 

neglecting preceding and following filler frames. Each frame score is simply pr. Averaging 
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is done because it is simple. The performance will be seen to be very bad. Improvements 

will be introduced in the next chapter. 

4.2.2 Hypothesis 

The raw score will be effective a t  discriminating between correct and incorrect recognitions. 

Statistically, the equal error rate will be significantly different from the equal error rate of 

a process that assigns scores at random. 

4.3 Design 

Design is a major theme of this chapter. The design given here is typical of all the 

vocabulary-independent experiments throughout this thesis. The design is motivated by 

a particular recognition scenario. In this scenario, a word has been recognized by an 

ASR system and the confidence system has been asked to make a statement about the 

confidence that should be placed in this particular recognition. 

4.3.1 Scenario 

For simplicity it is assumed that only the utterance and the best word model are available. 

There is substantial challenge in looking at the alternate word models that were considered, 

or that may have been in mind by the talker that produced the utterance, but this challenge 

is beyond the scope of the current research. 

Nothing special is known about the vocabulary or the task. (Of course, in a carefully 

designed application the vocabulary and task would be studied a s  well, but this present 

research seeks to be independent of the specific vocabulary.) 

It is not known whether the recognition is correct. Confidence is the probability of a 

correct recognition, and is the result to be discovered. 

It is not known how often the recognition would be correct. This is called the a pn'on' 

or prior probability of correct recognition. Such information would be helpful but is task 

dependent and can be combined later with the acoustic match confidence. 

The experiments are designed to meet the requirements of this scenario. 
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4.3.2 Algorithm 

The computation of confidence is done in two s t  eps. The first step is t o  compute a rav 

score using some appropriate algorithm. One such algorithm is pr. Then given this raw 

score the second step is t o  convert i t  t o  a probability based on past experience with 

raw scores of that  same value. The creation of a raw score constitutes one trial. The 

accumulation of experience with such raw scores constitutes an experiment. 

4.4 Experiments and Trials 

Figure 4.1 illustrates the recognition trial of an utterance. On the left, the  utterance is 

recognized using a vocabulary of incorrect words. The actual words and pronunciations 

from one recognition trial are shown. Each of these alternatives is scored and the highest 

scoring incorrect word becomes the Impostor. The impostor is that  word that  would 

have been recognized given that  vocabulary and that  utterance. The  goal is t o  reject the 

impostor. On the right, the same utterance is recognized using the correct word only as 

the recognition vocabulary. The recognition score received by this correct word is the same 

score i t  would have received had it been a member of some larger vocabulary; vocabulary 

size does not affect the score of the true word. The goal is t o  accept the true word and 

t o  reject the  impostor. Figure 1.6 on page 17 shows the waveform, spectrogram, and 

segmentations for this recognition trial. 

An experiment is composed of a number of separate trials. Each trial mimics the 

pattern in the scenario just given. A single utterance is chosen a t  random from some 

corpus. A matching word model is determined. Both the utterance and the word model 

are given t o  the confidence algorithm. The algorithm computes a raw score. If the 

probability density function is known for this type of score, the score can be converted 

into a probability. 

The probability density is estimated on the basis of a number of these raw scores 

collected across a training set of utterances and word models. 

Because the goal is t o  assign a given recognition t o  the class "true" or  the class "im- 

postor," these two probability density functions are estimated. From this the  odds or 
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Vocabula ry  o f  Incor rec t  Words 
bonzo bc b A n  z oU 

chevrolets S E v 9 r  8 1 ei z 
clarifications kc kh 1 O 9r  & f  & 

kc kh e i  S & n z 
cook kc kh U kc kh 

drugstore 
handouts 

kessler 
leafing 

legwork 
lonesome 
makeshift 
northland 
occupying 

outdid 
springfield 

standoff 

dc d  9 r  ^ gc g  s t c  t h  > 9r  
h  Q n dc d  aU t c  t h  s  
k c k h E s l & r  
l i : f & N  
l E g c g w 3 r k c k h  
l o U n s % m  
m e i  kc kh S I f  t c  t h  
n > g r T l Q n d c d  
A k c l c h j  % p c p h a I & N  
aU t c  t h  dc d  I dc d  
s pc ph 9r  I N f i: 1 dc d  
s t c  t h Q n d c d > f  

textiles t c  t h  E kc kh s t c  t h  a1 1 z 
undershirts ^ n dc d  %r S 3r  t c  t h  s 

unused n  j u z dc d  
wherever h  w ei 9r  E v &r 

C o r r e c t  Word O n l y  
midafternoon m I dc d  Q f 

t c  t h  &r n  u n 

Figure 4.1 : Illustration of Experimental Design: A single utterance (in this case, urnidafter- 
noon") is matched t o  twenty impostor candidates shown on the left. The best scoring 
candidate is then returned as the designated impostor. The spectrogram and impostor 
phonetic alignment are shown in Figure 1.6 on page 17. The same utterance is also 
matched t o  the  correct word model, shown on the right. 

Top Recogni t ion = I M P O S T O R  
outdid aU t c  t h  dc d I dc d  

likelihood ratio for any given raw score can be computed easily. 

Top Recogni t ion = TRUTH 
midafternoon m I dc d  Q f  

t c  t h  &r n u n  

4.4.1 Density Function for nues  

The density function for the true class is estimated by collecting scores from true recog- 

nitions. In this case the utterance is selected at random, with each utterance having an 
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equal chance of being drawn. Next the correct word model is determined by looking a t  

the human transcription for that  utterance. The transcription is converted into a word 

model by dictionary lookup, where the dictionary may be hand built (as in the case of the 

CMU dictionary) or machine generated using a TTS algorithm. 

4.4.2 Density Function for Impostors 

The density function for the impostor class is estimated by collecting scores from impostor 

recognitions. In this case both the utterance and the word models are selected at random 

subject t o  the restriction tha t  no word model actually matches the utterance. This is 

done as follows. First the utterance is selected a t  random, with each utterance having an 

equal chance of being drawn. Next some number of word models are selected at random 

without replacement, with each word model having an equal chance of being drawn. If 

the true word model happens t o  be among those word models drawn yet another word 

model is drawn and is substituted for the true model. The result is a random collection of 

incorrect word models. These word models are submitted as the active vocabulary and the 

recognizer selects the  one tha t  best matches the utterance. I t  is designated the  impostor 

and its raw score is used t o  estimate the density function for the impostor class. 

The density function for the impostor class is known t o  depend on the  number of 

incorrect word models competing in the recognizer. As more word models compete, the 

chance of getting a good match improves. This is shown in chapter 7. 

4.4.3 Comparison to OOV Rejection 

An alternate formulation is t o  select the word model first and use i t  t o  recognize a correct 

utterance. Then the utterance could be changed and recognition attempted again for the 

impostor case. This is the natural approach because the scenario (section 4.3.1) for a 

stable recognition task uses a fixed vocabulary across a large number of utterances. 

The method used in this thesis was chosen for its substantially greater computational 

efficiency and theoretical equivalence with the alternate, natural formulation. 

Comparative experiments were also performed using actual recognition scenarios t o  

prove empirically that  both methods yield the same results. The same performance was 
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observed when the vocabulary was assembled first and then an utterance chosen as when 

the utterance was chosen first and then a vocabulary was assembled. 

The theoretical equivalence is demonstrated by the fact that  the word models and 

utterances are selected independently and at random, so it cannot matter which is selected 

first. Thus the impostor selection scheme used in this thesis is exactly equivalent t o  

the typical out-of-vocabulary recognition case where the active vocabulary is specified in 

advance and the utterance does not match any of the  word models in that  vocabulary. 

Taking a more complex example, suppose that  a 20-word vocabulary were constructed, 

and that  40 utterances were recognized, using 20 correctly-matching utterances and 20 out- 

of-vocabulary utterances. Each correct recognition would belong t o  the  same distribution 

of correct recognitions as for all other correct recognitions in this part of the thesis. Further 

each incorrect recognition would belong t o  the same distribution of incorrect recognitions 

as for all other incorrect recognitions in this part of the  thesis. Except for statistical 

problems that  would result from the lack of independence among these recognitions (i.e., 

using the same word models over and over) the problem could be formulated either way 

and would give the same results. The formulation used in this thesis was Chosen t o  avoid 

the independence problems present in the example of this paragraph. 

4.4.4 Implications of Random Vocabulary 

Notice also that  vocabulary independence imposes a condition that  is unlike natural recog- 

nition, where the active vocabulary can be inferred by context. Thus for example in the 

sentence "Let's meet at four p.m. on (word)" the active vocabulary would probably con- 

sist of days of the week. Given knowledge of the speaker the list might change t o  include 

&&my yacht," exclude weekends, or  favor certain days over others. Such task dependencies 

must play an important role in natural recognition but are beyond the scope of this re- 

search, which is limited t o  vocabulary independent recognition as a first approximation t o  

unlimited vocabulary natural recognition. 
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4.4.5 Summary 

In summary, an experiment involves a confidence and rejection algorithm (such as pr). The 

algorithm is evaluated by using it to score a number of recognitions from some corpus. 

Some of the recognitions are constrained to  be wrong, and involve impostors that are 

generated using a randomized process. The scores from true and impostor recognitions 

are compared and the algorithm is characterized by the classification error rate that can 

be achieved. 

4.5 Corpora 

Each experiment uses some corpus. For this experiment the OGI Names corpus is used. 

It is expected to be particularly difficult mainly because name pronunciations generated 

by TTS tend to  be less accurate than pronunciations for other words. 

Corpora are collected bodies of recorded speech. The speech is encoded into wavefiles. 

For the present research, the corpora are required t o  have a word-level transcription, 

allowing evaluation of recognition results. 

Telephone Speech: The present research has been directed towards telephone speech. 

An important characteristic of telephone speech is reduced frequency bandwidth. Tele- 

phone speech is filtered to occupy the frequency spectrum from 300 Hz to  3400 Hz (more 

or less) and is typically sampled a t  8000 Hz. 

Channel characteristics play a role with telephone speech. The quality of transmission 

has improved with the use of digital signaling on switch-to-switch connections, but analog 

segments remain in the telephone network, especially in the "first-mile" wiring from the 

customer to the local switch. 

The corpora used in this research are actual telephone speech collected across the 

public telephone network in the US and Canada. 

Two Extremes: Judging from recognizer performance the Names corpus presents a 

fairly difficult task, while the PhoneBook corpus presents a fairly easy recognition task. 
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This is attributed t o  the tendency of ,names t o  be shorter, more confusable, and more 

difficult t o  model from their spellings, whereas PhoneBook consists of longer words that  

are less confusable and for which the pronunciation models are provided with the corpus. 

Together these mark out interesting limits for the evaluation of confidence and rejection 

algorithms. 

Par t i t ion ing  to T r a i n  a n d  Test: Each corpus is divided into several sets. Calls in the 

training set are used t o  train the parameters used in confidence and rejection algorithms. 

Calls in the development test set are used t o  evaluate and compare algorithms, arriving 

at preliminary conclusions. Calls in the final test set are "new" utterances never before 

seen by the system, and are used once a t  the end of research t o  verify the preliminary con- 

clusions and create final results. Performance figures reported in this thesis are generally 

based on final results. Each table or figure tells which partition of the da ta  was used. 

To avoid tuning t o  the final test set, all evaluations and research were done using the 

development test set for scoring. Thesis writing, including comparison of algorithms and 

resulting in tentative conclusions was done using the development test set. Immediately 

before making the final copy of this thesis, the experiments were rerun using the final test 

set. The performance numbers from the final test set were cut into the thesis a t  that  time, 

and it was seen that  the conclusions based on development test set da ta  continued t o  be 

reliable. 

Most results from the final test set do not differ significantly from those for the devel- 

opment test set. For all results with a t value of 2.0 or greater, the final test set produces 

the better results. This suggests that  the final test set is easier t o  recognize or confirm. 

The most significant difference was for perp 20 Mixed - log(pn) fsw Various, where test 

set scored .l75Of -0014, which is 5% (t=3.34, df=78, a=.0013) better than dev set which 

scored .l84Of .OO26. Across the many experiments that  were performed i t  is expected that  

a deviation this large could occur in a few cases. The next most significant difference had 

an a value of .0036. The huge majority of differences were insignificant. 
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4.5.1 Names: OGI Names corpus 

The OGI Names Corpus1 is described on its web page as follows: "The . . . N ames Corpus 

is a collection of first and last name utterances. The utterances were taken from many 

other telephone speech data collections that have been completed at the CSLU, during 

which callers were asked to say their first and last names, or asked to leave their name and 

address to receive an award coupon. Each file in the Names corpus has an orthographic 

transcription . . . ." 
Its internal documentation states: "There is a large variability in the spelling of English 

names. In the case of common names, plausible spellings were intuitive. However, for the 

rarer names, we transcribed using an orthography which resembled the pronunciation as 

closely as possible. We have not attempted to standardize the name spellings. Over the 

whole corpus there are about 10570 unique names. No standard spellings are used so 

names such as 'kerri' and 'kerry' will be counted as two separate tokens. The corpus 

. consists of about 6.3 hours of speech." 

This corpus is further described in Cole, Noel, Burnett, Fanty, Lander, Oshika, and 

Sutton (1994) and Cole, Fanty, Noel, and Lander (1994). 

The current version (release 2) of the OGI Names corpus has 24 000 utterances dis- 

tributed as follows: firstname 9727, lastname 11431, whole 2659, other1 151, other2 29, 

other3 2, other4 1. These labels are designated in the corpus and generally mean as fol- 

lows. Firstname is the single first name of a person. Lastname is the single last name 

(family name) of a person. Whole is the entire name (first name and last name) of a 

person. Each label was used at most once per call, due to the way that file naming was 

done for the corpus. The "other" categories represent subsequent names whose category 

(firstname, lastname, or whole) was already in use for that call. 

Special Characteristics: The OGI Names corpus is relatively difficult for recognition 

and confidence. Following are some possible reasons. Utterances may be excised from flu- 

ent speech rather than being isolated pronouncements. The mapping from orthographic 

'http://www.cse.ogi.edu/~~~~/corpora/names.html in July 1997 
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letter sequences to uttered phoneme sequences is less direct than for ordinary English 

words because of the ethnic origin and diversity of many names that have not been regu- 

larized for English pronunciation. The average file length is 943 msec. 

Training and Test: The corpus is divided into several sets. By convention a t  CSLU 

(the Center for Spoken Language Understanding at Oregon Graduate Institute (OGI)) 

this division is made by call number. As each call arrives it is assigned a serial number. If 

the last digit is 0, 1, 2, 5, 6, or 7, the call is assigned to the training set. If the last digit 

is 3 or 8 the call is assigned to the development testing set. If the last digit is 4 or 9 the 

call is assigned to the final testing set. 

From a total of 24000 utterances, there are 14380 utterances (60%) in the training set, 

4854 utterances (20%) in the development test set, and 4766 utterances (20%) in the final 

test set. This partition is standard for CSLU, and allows different researchers here to  share 

recognizers and other software without the risk of accidentally testing on the training set 

and thereby getting artificially inflated performance values. 

All utterances in the same call are assumed to be by the same person. Each call is 

assumed to be by a different person. There are known to be exceptions. The actual 

amount of duplication is unknown but believed to be inconsequential. 

4.5.2 PhoneBook: NYNEX PhoneBook corpus 

PhoneBook is announced in Pitrelli, Fong, Wong, Spitz, and Leung (1995). As de- 

tailed in the PhoneBook Final Report (Pitrelli, Fong, and Leung 1995), "PhoneBook 

is a phonetically-rich, isolated-word, telephone-speech database . . . of American English 

word utterances incorporating all phonemes in as many segmental/stress contexts as are 

likely to produce co-articulatory variations, while also spanning a variety of talkers and 

telephone transmission characteristics. . . . The core section of PhoneBook consists of a 

total of 93,667 isolated-word utterances, totaling 23 hours of speech. This breaks down 

to 7979 distinct words, each said by an average of 11.7 talkers, with 1358 talkers each 

saying up to 75 words. All data were collected in 8-bit mu-law digital form directly from 

a T1 telephone line. Talkers were adult native speakers of American English chosen to be 
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demographically representative of the U.S." 

The words were organized into about 100 word lists, and each list was read by about 

15 talkers. Five words ("examiners," "hire," "hutchins," "sports," and "your") appear on 

more than one list. 

With the exception of the five repeated words, there is no overlap between sets, either 

in the vocabulary words used or in the speakers themselves. This provides both speaker 

independence and vocabulary independence between the three sets. 

Special Characteristics: The PhoneBook corpus is relatively easy for recognition and 

confidence. Following are some possible reasons. Utterances are isolated pronouncements. 

The pronunciations are screened to  avoid rare or surprising variations. A pronunciation 

dictionary (modified from the CMU dictionary) is included with the corpus. The apparent 

randomness of the words themselves may cause the talker to enunciate them more carefully 

so as to avoid misrecognition as another word. The words were generated in a way that 

maximizes the phonological coverage of English, and guarantees that each word contains 

a unique phonological context not present in any of the other words. This unique context 

may make it easier to  discriminate between correct and incorrect word models. The words 

also tend to be long because long words provide more phonological contexts. This tends 

to  give more phonemes that will be wrong for an incorrect recognition. The average file 

length is 884 msec (about the same as OGI Names). 

Training and Test: At CSLU the word lists are divided into a training set (50%), a 

development test set (25%), and a final test set (25%). AK68,MlO is a typical PhoneBook 

filename. Its second letter (e.g., K) is used to partition the corpus. Odd letters (A, C, 

E, G, I, K, M, 0, Q, S, U, W, and Y) are assigned to the training set. The first half 

of the even letters (B, D, F, H, J ,  and L) are assigned to the development test set. The 

remaining letters (N, P, R, T, V, X, and Z) are assigned to the final test set. This partition 

is standard for CSLU, and allows different researchers here to share recognizers and other 

software without the risk of accidentally testing on the training set and thereby getting 

artificially inflated performance values. 
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4.5.3 Corrections 

No wavefiles were eliminated from either corpus. Transcriptions were regularized in an au- 

tomated way to  facilitate the generation or lookup of pronunciation models. This involved 

removal of informative markings such as <br> (indicates the  presence of breath noise) and 

hypothesized portions of words (jonathCan1 indicates the end of this name was cut off 

but believed t o  be as shown). 

Sampling and Trials: In this thesis a trial is a single recognition attempt, with i ts  

accompanying confidence and rejection computations. In a trial there is exactly one ut- 

terance drawn at random from a corpus. There are also some number of word models 

drawn from the same corpus. Many trials are performed and their results are considered 

together in the evaluation and comparison of confidence and rejection algorithms. 

A randomized sample of utterances and word models is drawn from the corpus. The 

sample size (number of trials) is chosen t o  be large enough that  measured differences will 

be statistically valid. Section 4.11.1 presents more information. A short overview is given 

here. 

In each of the n trials an utterance is selected at random. The word model is generated 

for the correct word, recognition is performed, and a raw word score is computed by 

averaging the frame scores. An impostor (section 4.9.2) is also generated and scored. The 

true word score and the impostor word score are kept. Eventually there are n of each 

score. 

Note that  it does not matter whether the utterance is chosen first or the impostor 

candidates are chosen first. In any case, the impostor score represents an out-of-vocabulary 

speech recognition event, where the candidates represent the active vocabulary and the 

utterance is out-of-vocabulary with respect t o  that  set. 

Impostors and Perplexity: Impostors are drawn from a best-of-20 pool, where each 

of the 20 candidates is drawn a t  random from words actually present in the corpus. 

The number of possible alternatives is called the perplexity of the task. The creation 

of impostors is further discussed in section 4.9.2. Effective use of impostors is made 
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difficult by the fact that  this is open-set rejection. 

ANN-based  Recognizer: Each experiment uses a recognizer t o  identify what phoneme 

is being uttered at each point in time. The Oct 1996 MFCGbased recognizer is used in 

this and all other experiments. Preliminary research was conducted with a variety of other 

recognizers, including the May 1996 PLP-based recognizer. 

4.6 Pronunciation and Word Modeling 

This experiment uses word models from Orator TTS (described in section 4.6.2). 

For each recognition attempt the Viterbi search algorithm aligns all available word 

models against the ANN outputs from the utterance. The model tha t  scores best is 

declared winner. Word models that  are not provided with the corpus must be derived in 

some other way. 

Recognition (described more fully in section 4.10) is done by matching ANN outputs 

t o  a word model. The word model is specified as  a list of phonemes. The  Worldbet 

phoneme set (Table 4.3) is used t o  express word models and t o  identify phonemes. Using 

this scheme a word model can be constructed based on the pronunciation of the  word. For 

example, the  word "yesn can be modeled as /j E s/ and the  word "no" can be modeled 

as /n oU/. 

When phonetic word models are needed they are retrieved from a dictionary or  gen- 

erated using a Text- t~Speech (TTS) algorithm.2 For the Names corpus Orator pronun- 

ciations are used. Other possibilities were also tried, including DECTalk and Rsynth 

pronunciations, but their performance did not surpass that  of the Orator pronunciations. 

For the PhoneBook corpus CMU pronunciations (provided with the  corpus) are used. 

Phonetic word models must be further modified t o  produce ANN-specific word models 

2Available public-domain or free dictionaries include the CMU dictionary and the Moby dictionary. 
Available TTS algorithms include Orator from Bellcore, DECtalk from Digital Equipment Corporation, 
and Rsynth from the University of Cambridge (UK). Other dictionaries and TTS programs exist, and 
a number of them are listed in the FAQ (frequently asked questions) of the compspeech newsgroup. 
Alternately pronunciations could be gathered from phonetically labeled corpora such as the OGI Stories 
corpus, and with practice ordinary people could create word models just as they can now spell, but these 
approaches are not pursued in this research. 
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Table 4.3: Worldbet Symbols: The Worldbet symbols are used to form word models. 
OGI symbols are also given because they are familiar to many researchers. The samples - 
are common English words that exhibit the specified phoneme. 

Worldbet OGI Sample Worldbet OGI Sample Worldbet OGI Sample 
i : iy beet iU few 
I ih 
E eh 
0 ae 
& ax 
u UW 

U uh 
ah 

> a0 
A aa 
3r er 
&r axr 
e i  eY 
a1 aY 
> i OY 

bit 
bet 
bat 
above - 
bmt 
b a k  
above 
c m h t  
father 
bird 
butt= 
bay 
bve 

about 
b-t 
Pan - 
tan - 
can - 
ban - 
d an - 
gander - 
me - 
knee - 

N ng sing - 
d, ( dx rider 
f f fine <s I T th thigh 1 

uc unvoiced closure (before ph, th, kh, tS) 
vc voiced closure (before b, d, n, and dZ) I 

sign - 
assure 
sign - 
assure 
hope - 
vine 
& 
resign 
azure 
church 
judge - 
lent 
rent - 
Yes - 
went - 

breath noise 
Dause or silence 

that identify the exact sequence of ANN outputs needed for that word. For instance, the 

transition /j E/ may be modeled as "first half of j after silencen followed by "second half 

of j leading into E" followed by "first third of E starting after j" followed by "central 

third of E." Each of these context-dependent phonemes would correspond to some specific 

output of the ANN. These ANN outputs are presented in tables 4.1 and 4.2. 

4.6.1 Worldbet Symbols 

Table 4.3 shows Worldbet symbols used to specify word models. 
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4.6.2 Orator: word models from Orator TTS 

The Orator web page3 presents the following information (June 1997). "Bellcore's ORA- 

TOR(tm) Speech Synthesizer provides the tools for high quality, highly accurate telephone 

access to database-driven information services through the process of text-to-speech syn- 

thesis. ORATOR'S first commercial use is a popular reverse-telephone-directory service, 

currently available in Illinois. 

"ORATOR'S Features Include: * Highest accuracy for name pronunciation available 

for American people, places, and businesses. * A high level of speech intelligibility - 

resulting in clear and natural sounding speech. * Excellent acronym pronunciation. * 
Words spelled out upon request, with human-like letter grouping. * Flexible, powerful 

facilities for customized pronunciation and intonation. * Ports to a variety of platforms." 

Orator is used with each name to produce a word model for that name. The word 

model consists of the sequence of phonemes that would have been uttered by Orator if it 

were attempting to pronounce that name. 

4.6.3 CMU: word models from CMU dictionary 

The CMU dictionary is described on its web page as follows (June 1997): "The Carnegie 

Mellon University Pronouncing Dictionary is a machine-readable pronunciation dictionary 

for North American English that contains over 100,000 words and their transcriptions. 

This format is particularly useful for speech recognition and synthesis, as  it has mappings 

from words to their pronunciations in the given phoneme set. The current phoneme set 

contains 39 phonemes ..." It is also cited in the comp. speech FAQ. 

A version of the CMU dictionary is provided with the NYNEX PhoneBook corpus. 

Word models are determined by dictionary lookup for the words in this corpus. 

4.6.4 Wordspotting Grammars 

Before and after each word, a filler model is required by the grammar. It is sometimes 

referred to as the "any model" because it matches anything. It models the context around 

3http://www.bellcore.com/O~~TOR/ in July 1997 
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the word in question. If the utterance were "I'm John (breath)" and the word model were 

"dZ A n" the filler model would need t o  account for the frames belonging t o  the preceding 

"I'm" and t o  the following breath noise. The  grammar requires the first frame of the 

utterance t o  belong t o  the leading filler model, and the last frame t o  belong to  the trailing 

filler model. More frames can be assigned t o  the filler models by the Viterbi search if i t  

improves the overall word score. 

In general, grammars are composed of word models, just as word models are com- 

posed of phonemes. Words are modeled as formal regular expressions, and grammars as 

formal context-free grammars. Grammars are particularly useful for specifying recogniz- 

ers of connected-digit strings, dates, times, or other multi-word objects where repetition 

or branching are important within the model. In the context of the current research, 

grammars are used only t o  support wordspotting. 

Filler Modeling: A typical wordspotting grammar is <.any> word < .any>. With this 

model the utterance is divided into three parts using an artificial phoneme <.any> in 

the scoring process. This phoneme is defined as having the  same neural network output 

value a s  the median of the top n other phonemes (typically n defaults 30 or 50) or  of 

the silence phoneme, whichever scores better. (The median approach is based on HMM 

work by Bourlard e t  al. 1994). In each frame, the phoneme with (counting from one) the 

16th highest value (3012 + 1) is identified, and the  value is copied to  become the value 

of the <.any> phoneme. If silence scores better, then it is copied instead. <.any> is 

used t o  account for phonemes outside the target word, and thus provides wordspotting 

capability. 

4.7 Results: Raw Score Histogram 

The results of these trials are shown by the histograms in Figure 4.2. (Section 4.11.5 gives 

details on histogram creation and smoothing.) The  true scores have a median value of 

0.12 and the impostors have a median value of 0.06. (These values are not important 

in themselves. I t  is important that  they are different by a relatively large amount.) It 

is clear t o  see that  there is a substantial difference between the two distributions, and 
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Figure 4.2: Histogram for p': from 0.0 to 0.4 in 128 steps. Details: impostors a t  perplexity 
20, Oct 1996 MFCC-based recognizer, OGI Names corpus, raw probabilities, frame-to- 
word averaging, word models from Orator TTS, 16000 trials, final test set. 

that the simple algorithm does distinguish to some extent between correct and impostor 

recognitions. The overlap seems rather large but improvements will be made in subsequent 

experiments. (The emphasis in this chapter is to identify the methodology.) 

4.7.1 Total Verification Error 

Figure 4.3 presents error rates at various raw score values. Three error rates are presented: 

Type I, Type 11, and total (TVE). Two performance statistics are presented: the MVE 

(minimum point on the TVE curve) and the EER (the cross-over point on the Type I 

and Type I1 curves). The Type I error rate (defined for example in Spence, Cotton, 

Underwood, and Duncan 1992) is the proportion of true word scores that would be rejected 

a t  that threshold. It is also called the cr error. The Type I1 error rate is the proportion 

of impostor word scores that would be accepted at that threshold. It  is also called the P 
error. The sum of these is the Total Verification Error (TVE). 
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Figure 4.3: Various Error Rates for pr: from 0.0 to 0.4. Details: impostors at perplexity 
20, Oct 1996 MFCC-based recognizer, OGI Names corpus, raw probabilities, frame-to- 
word averaging, word models from Orator TTS, 16000 trials, final test set. Type I error 
is rejection of truth. Type I1 error is acceptance of falsehood. 

TVE dips and rises with a minimum verification error (MVE) of .6396 near a raw score 

of 0.085. MVE is the minimum point on the Total Verification Error curve. 

In both figures (4.2 and 4.3) the better scores are toward the right. Scores to the right 

of a threshold would be accepted while those to  the left of the threshold would be rejected. 

At one extreme (in this case a threshold of 0.0) all scores are accepted. The Type I 

error rate is 0.0, since no true recognitions are rejected. The Type I1 error rate is 1.0, 

since all imposters are accepted. 

At the other extreme (in this case a threshold of 1.0) all scores are rejected. The 

Type I error rate is 1.0 since all true recognitions are incorrectly rejected. The Type I1 

error rate is 0.0 since all imposters are correctly rejected. 

Between these two extremes there is a raw-score threshold (say 0.085) a t  which the 

error rates are equal. This rate is .3200. That means that .3200 of the true recognitions 
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Table 4.4: Mean, Standard Deviation, and 95% Confidence Interval for the pr Algorithm. 
Details: impostors a t  perplexity 20, Oct 1996 MFCC-based recognizer, OGI Names corpus, 
frame-to-word averaging, word models from Orator TTS, 16000 trials, final test set, equal 
error rates. 

Algorithm I meanf  sz n 95% confid 
vr 1 .3200f .0023 200 .3155-.3245 

would be incorrectly rejected, and .3200 of the impostor recognitions would be incorrectly 

accepted at that  threshold. This is the Equal Error Rate (EER). 

EER is used as the primary decision statistic in this research, but some interesting 

alternatives are discussed in section 4.1 1.6. 

4.7.2 EER Statistics 

Table 4.4 presents the  estimated mean, standard deviation, and 95% confidence interval 

for algorithm pr . Each of the  terms used in the table and caption is explained below. 

meanf sa: The mean is the mean equal error rate for the algorithm in question. I t  is 

defined as the equal error rate of the original raw scores before bootstrapping (see below) 

is performed. s~ is the standard deviation of the mean, which is the square root of the 

variance of the bootstrap estimates. 

bootstrap iterations: The bootstrap procedure (Efron and Tibshirani 1993) is a sta- 

tistical method for estimating the variance of quantities that  may otherwise be hard t o  

evaluate. Briefly the procedure involves treating the sample as though it were a population, 

and repeatedly drawing same-size samples from it (with replacement). The  variance of 

these secondary (bootstrap) samples is an estimate of the true variance. See section 4.11.8, 

page 83 for more on bootstrapping. 

n: This is the number of bootstrap iterations. Each iteration produces an estimate of 

the mean. (This is not the number of trials performed.) 
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95% confid: The estimated ERR is a random variable. The true EER is not known, 

and must be estimated by statistical means. The estimate may also be wrong, but i t  is 

possible t o  state a range (a confidence interval) in which the truth is likely t o  lie. For the 

confidence interval tables, these ranges indicate that  95 times out of 100 the truth will lie 

within the range given. This is a central range, which means that  half the errors will be 

on each side of the range. 

These central confidence intervals are computed by the standard-deviation method 

using Student's t distribution. See section 4.11.8 for more details. 

impostors at perplexity 20: This is the perplexity used in these experiments. I t  is 

the number of randomly selected word models from which the best was chosen t o  be the 

impostor. This is described in section 4.9.3. 

Initial experiments used a range of perplexity values: 2, 3, 5, 10, 20, 50, 100, 200, 

500, 1000, and 2000. I saw that  performance varied smoothly across perplexities, and 

that  the comparison of one algorithm t o  another seemed stable even when perplexity was 

varied. Therefore it did not seem very important what perplexity was used. To increase 

the experimental throughput and t o  decrease the total number of experiments, perplexity 

was held a t  20 for the experiments that  are reported in this thesis. 

In terms of the final application of this research, one major area would be confidence 

measurement among sets of alternatives that  might be typed in by hand using the CSLUrp 

rapid prototyper. 1 believe that  the number of alternatives present in these systems tends 

to  be 20 or less. Therefore i t  seemed best t o  have performance measurements that  are at 

their most accurate point near the  perplexity that  would be actually used in applications, 

all other things being equal. 

Finally, the running time for experiments was a consideration. For larger and larger 

perplexities, the running time grew with about the square of the perplexity. (This is an 

empirical result.) Whether for memory page faulting or  other reasons, the much longer 

completion time for experiments did not seem t o  justify the higher perplexities. But a 

perplexity of 20 executed about as fast as a perplexity of 2, due t o  fixed costs of running 

each trial within an experiment. 20 appeared t o  be at about the knee of the execution-time 
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curve, with perplexity 10 taking about as long; and perplexity 50 taking much longer. 

For all these reasons the final experiments were conducted at perplexity 20, although 

earlier experiments were conducted a t  a wide range of perplexities. 

Oct 1996 MFCC-based recognizer: This is the recognizer used in these experiments. 

It is described in section 4.1.2. 

OGI Names corpus: This is the corpus is used in these experiments. It is described 

in section 4.5.1. 

frame-to-word averaging: This is the method by which frame scores were accumulated 

into word scores. In this case the word scores were computed directly by averaging the 

individual frame scores within the word. Other ways of accumulating the word score are 

presented in section 5.4. 

word models from Orator TTS: Word models are generated using the Orator text- 

to-speech system. It is described in section 4.6.2. 

16000 trials: 16000 recognition trials (or some other number) are used to  collect ex- 

amples for scoring. This process is described in section 4.11.1. A larger number of trials 

generally results in a better estimate of the mean, as the standard deviation of the mean 

tends to decrease with the square root of the number of trials performed. 

final test set: This is the test set used in these experiments. Test sets are described in 

section 4.5. 

4.8 Comparing Several Experiments 

How can comparison be made among several algorithms? The basic approach is to  compare 

their equal error rates to identify the algorithm that performs best. To illustrate this 

comparison two additional algorithms are discussed and evaluated. 
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4.8.1 Hypothesis 

Here I will speak in general terms. Throughout the next chapters many algorithms will be 

presented and discussed. The general hypothesis will be tha t  such-and-such an algorithm 

is better than all others that  have been considered. Some intuition will be given for why 

i t  is reasonable t o  expect i t  t o  be better. The hypothesis will be tested statistically by 

looking at the equal error rate (EER)  of the varying algorithms, using bootstrap analysis 

t o  estimate how significant the differences actually are, or whether the differences are 

adequately accounted for by random chance. The EER measurement shows how good an 

algorithm is at discriminating between true recognitions and impostor recognitions. 

Specific t o  the current chapter, two new algorithms are introduced next. They are pn 

and p n / ( l  - p n ) .  I t  is hypothesized that  pn will be an improvement upon the pr algorithm 

already seen, and that  p n / ( l  - pn) will be a further improvement. 

4.8.2 pn: normalized probabilities 

The  first of these algorithms modifies the  pr raw score by normalizing each frame so the 

scores sum t o  1.0. These new scores are called pn for "probability normalized." The 

intuition for normalizing the raw scores is that  true probabilities sum t o  1.0, and a t  least 

t o  the extent the pr probabilities do not sum t o  1.0, they are flawed as probabilities. When 

the sum is one 1.0, it is not immediately clear whether the  fault is localized t o  a few of 

the phoneme estimates or is general t o  the entire frame. Assuming that  it is general t o  

the entire frame, then normalization makes sense. The effect of normalization is to  put all 

frames on a equal basis. Otherwise, frames with a total probability over 1.0 are weighted 

more heavily than frames with a total probability less than 1.0. 

The methodology is exactly as stated for the pr algorithm. 

Table 4.5 shows a substantial decline in performance compared t o  pr. In section 5.3 

a variation on this algorithm will be shown, but even there a substantial decline in per- 

formance is seen. This indicates that  something important has been lost or  masked due 

t o  this normalization. I can reject the hypothesis that  putting all frames on a equal ba- 

sis helps discrimination. Instead, i t  appears that  frames with a total probability over 
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Table 4.5: Mean, Standard Deviation, and 95% Confidence Intervals for Algorithms in the 
pr Family. Details: impostors a t  perplexity 20, Oct 1996 MFCC-based recognizer, OGI 
Names corpus, frame-to-word averaging, word models from Orator TTS,  16000 trials, final 
test set, equal error rates. For more explanation see page 67. 

1.0 should be weighted more heavily than frames with a total probability less than 1.0, 

and tha t  the  probabilities supplied by this ANN (Oct96) are more reliable when their 

frame-wise sum is greater. 

Algorithm 

P' 
P" 
pn/(l - pn) 

4.8.3 ~ ~ / ( l  - pn): IikeIihood ratio (odds) 

mean* sz n 95% confid 
.3200f .0023 200 .3155-.3245 
.3421f .0023 200 .3376-.3466 
.362lf .OO24 200 .3573-.3669 

The second of these algorithms uses a likelihood ratio or odds formulation. The likelihood 

ratio is defined as the probability of truth (p) divided by the  probability of error (1 - p). 
In this case the truth is represented by pr and error by the sum of all other ANN scores 

in the  same frame. This is mathematically equivalent t o  6. Since i t  is easy t o  convert 

both ways between pn and pn/(l - pn) no information is lost. However, the emphasis 

changes t o  favor frames with high likelihoods and discount frames with low ones. 

The intuition for using likelihood ratios is that  such ratios taken individually are opti- 

mal decision boundaries, as shown in Fukunaga (1990). Additionally likelihood ratios are 

a transformation of scale with respect t o  the normalized probabilities. Using a likelihood- 

ratio formulation will tend t o  give strong positive scores a large emphasis, while weak 

scores will receive less emphasis. The result will be t o  favor the strong scores. 

The  same methodology is used. The results (given in Table 4.5) show a further decline 

in comparison t o  the performance of pn. The decline in performance must be due t o  the 

change in emphasis which has resulted in scores that  do not accumulate as accurately. 

Instead of emphasizing the strong positive scores it might be better t o  emphasize the 

weak scores, such as by using the reciprocal. In section 5.3 a variation on this algorithm 

will be shown t o  avoid this substantial decline in performance relative t o  pn, and also t o  



4.8 Comparing Several Experiments 

Table 4.6: Distance Chart for Algorithms in the pr Family. Details: impostors at perplex- 
ity 20, Oct 1996 MFCC-based recognizer, OGI Names corpus, frame-to-word averaging, 
word models from Orator TTS, 16000 trials, final test set, equal error rates. 

improve performance dramatically in comparison t o  the algorithm of this current section. 

4.8.4 Mean, Standard Deviation, and Confidence Intervals 

Table 4.5 presents the estimated mean, standard deviation, and 95% confidence interval 

for the three simple algorithms considered in this chapter. 

4.8.5 Distance Chart 

Table 4.6 presents a distance chart for the three simple algorithms considered in this 

chapter. It is styled after the distance (or mileage) charts often found on road maps, 

which give the distance in miles between cities. This distance chart gives a statistical 

"distance" between algorithms, telling how rarely such a difference in performance would 

arise by chance. This is explained below. 

The caption information is described on page 67. Performance figures (mean* sz), 

algorithm names, and other information that  varies from case t o  case is listed along the  

main diagonal, best first, starting in the upper left corner. The distance between two 

algorithms is shown a t  the intersection of their respective row and column. Low numbers 

indicate the  difference could be due t o  chance. High numbers indicate the  difference is 

significant. A distance of 0 means that even when no difference exists in the true means, 

these estimates will have such a difference by accident more than 1 time in 10. 1 means 

1 in 10 or less (two-tailed a 5 .I). 2 means 1 in 100 or less (.001 < a 5 .01). n means 

between 1 chance in lon and 1 chance in lon+'. 

Table 4.6 indicates that  pr is better than pn since that  is their order on the main 

diagonal. The 9 indicates that  their difference could happen by chance only 1 time in 10' 
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Table 4.7: Differences Across Selected Algorithms in the pr Family. Details: impostors 
at perplexity 20, Oct 1996 MFCC-based recognizer, OGI Names corpus, frame-to-word 
averaging, word models from Orator TTS, 16000 trials, final test set, equal error rates. 

I Better I Difference I Worse 
Algorithm EERf sZ 
P' .3200f .0023 

or less. Further, pr is better than pn/( l  - pn). 18 means the chance of getting such a 

difference by unlucky sampling is less than 1 in 1018. And pn is shown to  be better than 

pn/ ( l  -pn) unless a 1 in 10' mistake occurred. It is normally safe to trust numbers greater 

than 2. Distance numbers are computed by taking the two-tailed a value based on the 

computed t score4, and then reducing it by taking its logarithm to base 10. 

.3200f .OO23 12% 12.61 398 .0000 I", .3421f .0023 I 6% 5.98 398 .0000 

4.8.6 EER Across Algorithms 

diff t df a 
6% 6.85 398 -0000 

.362 l f  .OO24 pn/(l - pn) 

.3621f .0024 pn/(l - pn) 

The distance chart presents a large amount of information in a very compact format. 

For some pairs of algorithms a more detailed presentation may be appropriate. This is 

provided in the "EER Differences Across Algorithms" tables. 

Table 4.7 compares the Equal Error Rate between pairs of algorithms in the set consid- 

ered in this chapter. Each line in the table lists two algorithms and tells how they compare 

to each other. The algorithm mentioned first (on the left end of the line) has a better (or 

equal) EER than the the algorithm mentioned last (on the right end of the line). The 

percentage difference (improvement) over the algorithm on the right is shown, together 

with the statistical t score for such a difference, the number of degrees of freedom, and 

the probability of getting that difference or more by random chance (two-tailed cu level). 

EERf sp Algorithm 
.3421f .0023 P" 

The Rest of the Chapter: The remaining sections of this chapter present issues al- 

ready touched upon, but do so in more depth. These details were deferred until now to 

' t  score tail area is computed using the public-domain algorithm 27 from UApplied Statistics, Volume 
19, number 1." 
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make the initial presentation easier t o  follow. 

4.9 Impostors and Perplexity 

Closed-set means tha t  the utterance is guaranteed t o  match one of the word models. With 

closed-set rejection, each word model can be considered in turn and if two word models 

both match well (e.g., "Doug" and "dogn) this fact can be known and used. 

Open-set rejection is more difficult. Say for example that  the active vocabulary is 

"dog," "cat," and "bird." Say also that  the actual utterance is "Doug." What should be 

done? Is it close enough t o  be called "dog"? 

Since one does not know which other words might be uttered, i t  is difficult t o  decide 

just how similar the utterance must be t o  the word model. The problem is approached 

here by the creation of impostors based on a perplexity parameter. 

4.9.1 True Words 

For each utterance the true identity of the word is recorded by a trained human listener. 

Since there is only one true word for each utterance, scoring is straightforward. The  scores 

of randomly selected true words provide a histogram of the frequency distribution of all 

true words. 

4.9.2 Impostors 

There are some difficulties surrounding the generation of impostors. Ideally they would 

mimic the distribution of real-world impostors. This is much more difficult t o  know than 

for true words. It varies from task t o  task in ways that  are beyond the scope of this thesis. 

The approach taken here is illustrated in Figure 4.1 on page 52. I t  is t o  select impostors 

from the same corpus that  provided the correct word. The actual selection of impostors 

is done by first selecting several word models at random, together with one utterance 

wavefile that  does not match any of the word models. Viterbi search is used t o  identify 

the best-matching word model and i t  is declared to  be "then impostor for tha t  utterance. 

I t  is scored as though it were a true word. 
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For simplicity all incorrect utterances and word models are assumed to be equally likely. 

This is a fairly gross simplification, as some names are rather frequent and others quite 

rare, However, all algorithms are tested under the same assumption and it is expected 

that relative rankings would be stable across any reasonable variation in the frequency of 

particular names. (To examine this hypothesis the algorithms are evaluated in section 5.1 

with other corpora. The relative results appear to  be stable.) 

In the vocabulary-independent setting of this research it does not seem obvious how 

one might account for the varying likelihoods of different words in the vocabulary. These 

likelihoods can also vary by the task that is being undertaken. One example using prior 

probabilities is given in the collect-call scenario presented earlier, but detailed examination 

of such settings is beyond the scope of this thesis. 

Scores from true words and impostors must be distributed differently in order for 

confidence and rejection to be better than random chance. It is the job of the algorithm 

to  create such scores. 

4.9.3 Perplexity 

The term "perplexityn is used to refer to  the number of word models from which the 

impostor was chosen. In a perplexity-20 setting, each impostor is the best match from a 

set of 20 word models drawn at random. 

As the perplexity increases, the average goodness-of-match for the impostor also im- 

proves. With a large enough vocabulary it becomes almost certain to find an impostor that 

scores as well or better than the true word model does. In section 7.2.1 it is estimated that 

the Oct96 recognizer reaches a limit at 2795 i-andom words. With that many words, the 

average impostor will score just as well as the correct word. This limit probably depends 

on the particular recognizer that is being used. At perplexity 2795 the average acoustic 

confidence score for true recognitions is 0.5. This is also the average acoustic confidence 

score for impostor recognitions. 

This is important because the target scenario (section 4.3.1) involves a random list of 

word models and a random utterance all from the same corpus. The number of incorrect 

word models has a direct effect on the probability of getting a good score from an incorrect 
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model. 

4.10 Recognit ion by Vit erbi Alignment 

The recognizer operates by aligning the actual utterance (digitally recorded) with a com- 

puter model of the target word. This alignment process creates (as a side effect) a score 

that gives the relative likelihood that the word model is correct for that utterance. This 

recognition score (also called the Viterbi score) is computed for each of the word models, 

and the model with the best score is selected. 

4.10.1 Frames and Words 

Each utterance is divided into frames of fixed length. This length is 10 msec. Researchers 

use a variety of frame sizes. The 10 msec length is inherited from the recognizer and is 

taken as  a given. It is not optimized in any way for this confidence and rejection research. 

Viterbi search is the process by which each frame is assigned to  one of the parts of the 

word model. An example may help. Say an utterance is "yes" and has a duration of 0.90 

seconds. The word model is "j E s" (word models and the phonetic alphabet are explained 

more fully in section 4.6) and the grammar is "any yes any." At 10 msec per frame there 

are 90 frames in this utterance. They are numbered from 0 to 89. By Viterbi search, 

frames 0-7 are assigned to the filler model, frames 8-11 are assigned to the phoneme "j," 

frames 12-26 to the phoneme "El" and frames 27-44 to the phoneme "s." The remaining 

frames, 45-89, are again assigned to the filler model. Each of these five parts is called a 

segment. 

4.10.2 ANN Probability Profiles 

The recognizer ANN is employed to estimate a score pr for each frame of the utterance. 

This score is computed for all possible phonemes, giving not just a single score but an 

entire profile of scores at each moment in time. In the example above, the Viterbi search 

algorithm uses the ANN scores from "j" and "En in frame 11 to assign that frame to 

the "j" segment. Note that the probability for "j" must be higher than the probability 
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for "En or else the frame would have been assigned to  the "En segment i n ~ t e a d . ~  These 

probabilities approximate the true a posteriori probability of the phoneme classification 

given the acoustic evidence. 

4.1 1 Stat istical Issues 

4.11.1 Sampling and Trials 

A randomized sample of utterances and word models is drawn from the corpus. The 

sample size n (number of trials) is chosen to reduce the variance of performance statistics 

so that measured differences will be statistically valid. In each of the n trials an utterance 

is selected a t  random. The word model is generated for the correct word, recognition is 

performed, and a raw word score is computed by averaging the frame scores. An impostor 

(section 4.9.2) is also generated and scored. The true word score and the impostor word 

score are kept. Eventually there are n of each score. 

Note that it does not matter whether the utterance is chosen first or the impostor 

candidates are chosen first. In any case, the impostor score represents an out-of-vocabulary 

speech recognition event, where the candidates represent the active vocabulary and the 

utterance is out-of-vocabulary with respect to that set. 

4.11.2 Controlling Recognizer Error 

If the task is to  decide when the recognizer is right and when it is wrong, a simple decision 

can be rendered by simply looking at the recognizer accuracy based on past performance 

using training data. If it is highly accurate, then guess it is always accurate. If it is not as 

accurate, then guess it is always wrong. To normalize for recognizer accuracy the standard 

approach in this field is to look at correct and incorrect recognitions separately, and to 

compute a verifier error rate for each of these cases. 

5This is a simplification. Segment duration and other constraints can also afiect the score and segmen- 
tation assignments. There is a penalty applied for segments that are too short or too long compared to 
the proper duration for a segment of that type. For instance, if the proper duration is given as 30 to 200 
msec, and the modeled duration is 250 msec, there will be 50 msec of too-long penalty applied to the word 
score. Similarly if the modeled duration is only 10 msec there will be 20 msec of too-short penalty applied 
to the word score. 
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In this thesis, a recognition event consists of matching a recorded utterance with a 

phonetic word model. The word model may be correct or  incorrect. In any case, a 

score is generated. In a typical recognition setting the correct word model is not known 

in advance, and a number of possible word models (called the active vocabulary) are 

scored or partially scored until the best-scoring model can be determined. The score of 

any particular word model does not depend on the alternatives available. Each score is 

independent of all other scores, except that  pruning of the search tree is performed t o  

eliminate unlikely alternatives as soon as possible. Thus, some word models may not be 

scored at all. Pruning improves the speed of the search algorithm in return for a small 

risk of eliminating the true answer. 

Because the score of any word model does not depend on the alternate word models, the  

correct word model score can be computed through a simple forced alignment procedure 

whereby the active vocabulary is restricted t o  just the correct word model. Scores from 

such alignments are called "true scores." 

Among incorrect recognitions, two a1 ternatives are interesting. First is the case where 

the word that  was spoken is not among the alternatives that  were considered. Tha t  is, the 

word model that  actually matches this utterance is not present in the active vocabulary. 

Second is the case where some incorrect word was recognized even though the correct word 

was also considered. 

In the first case the utterance is called "out of vocabularyn because i t  does not match 

any of the models in the active vocabulary. In this thesis the word models and utterances 

are selected a t  random, and therefore it does not matter whether the utterance is selected 

first, and wrong word models are paired with it, or the word models are selected first and 

a wrong utterance is paired with them. In either case the recognition will result in the 

identification of one word model as  "best." This best word model, called the impostor, is 

still incorrect, but will be submitted t o  the verifier as though it might actually be correct. 

The research task is t o  build, study, and improve verifiers that  identify whether a 

recognition event represents a true recognition or the recognition of an impostor. 
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4.11.3 Out-of-Vocabulary versus In-Vocabulary Recognition Errors 

The second case is where the word spoken is present in the active vocabulary, but one of 

the other word models (an incorrect one) scores better than the true word model. Such 

errors are called "in vocabulary" errors. 

For word models and utterances taken a t  random, this second alternative is a subset 

of the first alternative. That is, the impostor score does not depend on the true score and 

vice versa. An impostor score does not depend on whether the true word is present in the 

vocabulary. The in-vocabulary recognitions simply represent a portion of one tail of the 

out-of-vocabulary distribution. 

This is much different than recognition in a task-specific domain, where word models 

are not taken a t  random, but are related to the task. However it is the aim of this present 

research to look a t  the task-independent and vocabulary-independent evaluation of recog- 

nitions. No task-specific information is available. Therefore in-vocabulary recognition 

scores can be seen as a randomly generated subset of the out-of-vocabulary recognition 

scores, subject to  the constraint that the impostor scores better than the true word. It is 

sufficient therefore to  model the simple out-of-vocabulary case. 

The fact that it is sufficient to  model the simple out-of-vocabulary case may seem 

surprising until it is remembered that the research is restricted to vocabulary-independent 

and task-independent recognition. In this research each word model is independent of all 

others, including the correct word model. 

In this thesis, performance is measured by the scoring of a large number of correct 

and incorrect recognitions. Each correct recognition is drawn at random from one of the 

corpora used (see sections 4.5.1 and 4.5.2). The corpora consist of recorded utterances 

and corresponding transcriptions created by skilled human listeners. The score for a word- 

model/utterance pair does not depend on what other word models or utterances might 

exist, so scoring can be done independently. In fact the score for the correct model and 

the score for the impostor are calculated separately, and indicated in Figure 4.1. 

In this thesis the recognizer is forced to be right half the time (recognition is by 

forced alignment with only the correct word in the active vocabulary) and wrong half the 
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time (the active vocabulary does not have the correct word, but the size of this incorrect 

vocabulary can be set a t  various levels or "perplexities"). 

This simplification avoids the confounding effects of recognizer accuracy. Some re- 

searchers attempt t o  measure the quality of a confidence measure by looking at confidence 

accuracy and then normalizing it for recognizer accuracy. This is reasonable since i t  is 

obvious that  for a perfect recognizer, the confidence measure is trivial: always indicate 

100% confidence in the recognition. By forcing some recognitions t o  be wrong in this 

research, I avoid the need to  account for recognizer accuracy. Instead the performance of 

confidence and rejection algorithms is measured by the ROC curve which is independent 

of the  recognizer accuracy. 

4.11.4 Out-of-Vocabulary versus In-Vocabulary Recognition Errors 

Several researchers distinguish between out-of-vocabulary (OOV) errors and in-vocabulary 

(IV) recognition errors. This may occur in a setting such as digit recognition. The present 

research does not make this distinction because the  distributions of error scores do not 

seem t o  require such a split t o  account well for score distribution behavior. For example, 

the error distributions shown in Figure 7.1 on page 128 do not indicate bi-modality that  

requires separate underlying distributions. The uniformity of these curves may be a result 

of the vocabulary independence enforced in this research, and bi-modal distributions may 

apply in vocabulary-dependent task domains. 

If the decision is made t o  distinguish between OOV and IV misrecognitions, several ef- 

fects will naturally follow. The IV confusions will tend t o  have much better scores because 

they have been identified on the basis of having better recognition scores than the correct 

word models do. The OOVs (whatever is left over) will tend to  have correspondingly 

worse scores. (This is simply the principle of adverse selection so familiar in the insurance 

industry.) 

4.11.5 Histogram Creation 

Histograms such as those in Figure 4.2 on page 65 are created in the following manner. All 

raw scores are reviewed and the  highest and lowest are identified. The interval between 
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them is divided into n bins. Each raw score is examined and the appropriate bin count is 

incremented. 

For the final histogram, smoothing is performed as follows. The count in each bin is 

reallocated with 25% going to the bin on the left, 50% to the original bin, and 25% to the 

bin on the right. This is done simultaneously for all bins. 

The presentation of the histogram is done by connecting center-points of each bin. 

This method is chosen instead of the more common drawing of square corners for each 

bin because the squared histogram proved much more difficult to read, especially in areas 

where two lines were close to each other. 

For some histograms the highest and lowest scores were not used, but a top and bottom 

of the range was chosen to better focus on the region of interest. This was helpful in cases 

where outliers caused the histogram to be compressed, thus obscuring interesting details. 

4.11.6 The ROC Curve 

The receiver operating characteristic (ROC) curve shown in Figure 4.4 arches from (0,O) 

to ( I l l ) ,  showing the tradeoff between the Type I and Type I1 errors. The minimum 

verification error (MVE) is at the point of tangency on a 45" line that is tangent to the 

ROC. The equal error rate (EER) is at the point of intersection on a 45" line from (0,l) 

to (1,O). The figure of merit (FOM) is the area under the ROC curve. 

Because the axes are error rates the presentation is normalized which makes it possible 

to visually compare two ROC curves to identify the better performance. Each raw score 

corresponds to some point on the curve, but raw scores are not presented explicitly. 

Geometric characteristics of the ROC curve are used in comparing algorithms. The 

aspect used throughout this thesis is the equal error rate (EER). The MVE and FOM 

serve as alternatives to the EER in the comparison of algorithms. 

In-depth discussion of ROC curves and likelihood ratios can be found in chapter 2 of 

Van Trees (1967). 
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Figure 4.4: Annotated ROC Curve: The ROC arches from (0,O) to  (I l l ) ,  showing the 
tradeoff between the two types of errors. The MVE is the point of tangency on a 45' line 
tangent to the ROC. The EER is the point of intersection on a 45' line from (0,l) to (1:O). 
The FOM is the area under the ROC curve. 

4.11.7 Alternatives to  EER: MVE and FOM 

Figure of Merit: The figure of merit (FOM) is defined as the average accuracy across 

all Type I or Type I1 error rates. More simply this is the area under the ROC curve. Ideal 

performance produces a score of 1.0. As such it reflects total performance and not just 

the performance at one specific threshold. Random performance produces a score of .5. 

The residual error rate is 1-FOM. 

Minimum Verification Error: The MVE generally occurs at or near the EER and is 

therefore approximately twice as great. The optimal decision point to minimize overall 

error depends on the relative frequency of impostor recognitions. When impostors occur 

half of the time the optimal point is the MVE. It lies on the equal-cost line which is 

ec = TI + T2, where ec is chosen to make the line tangent to the ROC. 
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Minimum Cost Point: The optimal decision point t o  minimize overall cost depends 

on the relative costs of Type I and I1 errors. This varies by task and is beyond the scope 

of the current research. However, a variation in costs also has a geometric interpretation 

on the ROC curve. If the cost of a Type I error is $5 and the cost of a Type I1 error is $10, 

the equal-cost line will be ec = 5T1 + 10T2, where ec is chosen t o  make the line tangent 

t o  the ROC. 

4.11.8 Bootstrap Parameter Estimation 

In order t o  evaluate the  stability of computed performance rates i t  is helpful t o  estimate 

the variance of the  comparison metric. Because of the way the  EER, MVE, and FOM 

are constructed i t  is difficult t o  give a closed-form specification of the variance. Instead 

statistical bootstrapping (Efron and Tibshirani 1993) is used t o  estimate variances and 

evaluate the difference in performance of two algorithms. 

Bootstrap parameter estimation is performed as follows. Given a collection of n sam- 

ples from which a single summary is computed (e-g., 16000 recognitions from which an 

EER is computed), select n samples from among the original n samples with replacement. 

Then compute the summary value again. Repeat this process a number of times (e.g., 200 

times). The summary values thus computed can be examined t o  determine their distribu- 

tion. In particular the  summary values can be used t o  estimate their variance or a Monte 

Carlo confidence interval. 

In the current research, central confidence intervals are computed by the  standard- 

deviation method using Student's t distribution. Figure 4.5 shows the distribution in this 

one case is approximately normal. Due t o  the expense of computation only a limited 

number of experiments were evaluated to  200 bootstrap iterations, but in each case the 

distribution appeared t o  be normal. It is possible that  by looking a t  more cases some 

non-normal distributions might be discovered. 

i t  is seems reasonable t o  believe that  most of the distributions are approximately 

normal. Further, the  significance numbers reported in this thesis tend t o  extremes. They 

are either inconclusive ( a  is large) or highly conclusive ( a  is almost zero). The Monte 

Carlo confidence-interval method is not used because the distributions are believed to 
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Figure 4.5: Bootstrap EER distribution for pr: 200 bootstrap samples plotted from 0.31 
to 0.33 in 32 steps. Details: impostors at perplexity 20, Oct 1996 MFCC-based recognizer, 
OGI Names corpus, raw probabilities, frame-to-word averaging, word models from Orator 
TTS, 16000 trials, final test set. 

be approximately normal and the added cost of computing enough bootstrap scores was 

prohibitive. 



Chapter 5 

Baseline Vocabulary-Independent 

Experiments 

In this chapter each section studies a technique known in the research literature, pushing i t  

t o  peak performance for comparative purposes. For each experiment it tells the motivation 

and results and provides some discussion and conclusions. 

The general methodology was described in chapter 4 and is not repeated here except 

to  point out variations. 

The following chapter (6) reports on new research in the area of rank-based probability 

estimation. The experiments in the present chapter form a baseline against which the 

performance of the rank-based approaches will be compared. 

5.1 Different Corpora 

Ideally the particular choice of a speech recognition corpus would not have any effect 

upon the ultimate evaluation of confidence or choice of thresholds for rejection. As much 

as possible the goodness of a particular raw score must be independent of the corpus from 

which it was drawn. One corpus may contain utterances that  are difficult t o  recognize, 

due t o  recording conditions or t o  the nature of the utterances themselves. Another corpus 

may contain utterances that  are enunciated more clearly and recorded under favorable 

circumstances. Among the best confidence and rejection algorithms, i t  is desirable that  

the ranking not depend upon the choice of corpus. 

The two experiments in this section attempt t o  determine whether the results from 

sections 4.2 and 4.8 were likely t o  have been affected by the choice of the OGI Names 
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Table 5.1: Differences Across Corpora for Algorithms in the pr Family. Details: impostors 
a t  perplexity 20, Oct 1996 MFCC-based recognizer, frame-to-word averaging, 16000 trials, 
final test set, equal error rates. OGI Names corpus uses word models from Orator TTS. 
NYNEX PhoneBook corpus uses word models from CMU dictionary. 

PhoneBook I Difference I Names 

corpus to perform the experiments. The first experiment in this section looks at the 

NYNEX PhoneBook corpus, and the second looks a t  an equal mix of OGI Names corpus 

and NYNEX PhoneBook corpus. It is concluded that the Mixed corpus is an appropriate 

base upon which to compare algorithms. 

Algorithm EERfs5 
Pr .2216&.0021 

5.1.1 An Easier Corpus 

The NYNEX PhoneBook corpus (see 4.5.2) provides another perspective from which mea- 

surements can be made. This corpus presents a relatively easy recognition task with 

utterances that are enunciated more clearly and recorded under more favorable circum- 

stances than the OGI Names corpus. 

diff t df cu 
31% 31.60 398 .0000 

Hypothesis: When experiments are rerun using the NYNEX PhoneBook corpus, the 

absolute results may vary but the relative results (one algorithm versus another) will be 

the same. 

EERf sZ Algorithm 
.3200*.0023 Pr 

Results: Figure 5.1 shows a histogram of scores from the pr algorithm on Names and 

PhoneBook. The impostor curves do not vary much, but the true curves do vary substan- 

tially. The PhoneBook corpus gives much better true scores. Does this translate into a 

better equal error rate? 

Table 5.1 shows that performance on PhoneBook is 31% to 38% better than perfor- 

mance on Names by these algorithms. This indicates that PhoneBook is substantially 

easier to confirm or reject than Names. 
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Figure 5.1: Distribution variation across Names and PhoneBook for Algorithm p'. Trues 
show a large change in distribution between corpora. Details: impostors a t  perplexity 
20, Oct 1996 MFCC-based recognizer, frame-to-word averaging, 16000 trials, final test 
set, equal error rates. OGI Names corpus uses word models from Orator TTS. NYNEX 
PhoneBook corpus uses word models from CMU dictionary. 

Table 5.2 shows that the relative results (one algorithm versus another) are not the 

same: p' and pn swap positions in the lineup, although both beat pn/(l -pn). This shows 

that the best-scoring algorithm may vary by corpus. Clearly there is some risk in doing 

all evaluations within just one corpus. 

5.1.2 An Averaged Corpus 

The relative performances of p' and pn are affected by the evaluation corpus used. Judging 

from the histograms the raw scores are compatible across corpora because the distributions 

almost coincide. A linear combination of the two corpora might serve better than either 

one alone. An equal mix will be examined. 
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Table 5.2: Corpus Differences Change Algorithm Rankings in the pr Family. Note that 
pr and pn change positions in the rankings. Details: impostors a t  perplexity 20, Oct 1996 
MFCC-based recognizer, frame-to-word averaging, 16000 trials, final test set, equal error 
rates. For more explanation see page 72. 

NYNEX PhoneBook corpus using word models from CMU dictionary 
.2121f .0020, pn 

OGI Names corpus using word models from Orator TTS 

2 
17 

equal mix of OGI Names corpus and NYNEX PhoneBook corpus 
.2755&.0014, pr 

Design: For this experiment no new recognitions are performed. Instead the raw scores 

.2216&.0021, pr 
11 1 .2453f.O02O1 p n / ( l  - pn) 

- 
2 
20 

from Names and PhoneBook are combined into a single list from which overall performance 

.2814f.0015,pn 
16 1 .3063f.0015, p n / ( l  - pn) 

J 

figures are determined. This analysis is equivalent to doing class-based recognitions where 

the separate corpora each represent a large class and the recognition is constrained to 

be within that class but the rejection thresholds are controlled globally. The results may 

have been different if the two corpora were mixed at recognition time because a different 

set of impostors might have been chosen. 

5.1.3 Conclusions 

Table 5.2 shows that the NYNEX PhoneBook corpus performs much better than the 

equal mix of OGI Names corpus and NYNEX PhoneBook corpus, which in turn performs 

much better than the OGI Names corpus. This shows that the rankings of algorithms one 

against another can change significantly based upon the corpus with which evaluations 

are done. (This may be an accident of the poor rejection capabilities of the algorithms 

viewed thus far.) 
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Compared t o  true performance in the field using real vocabularies, Names is believed 

to  be too pessimistic and PhoneBook too optimistic. The combined corpus may more 

closely represent the actual recognition conditions that  will prevail beyond the laboratory. 

I t  is not clear how this conjecture might be tested, so i t  will be taken as an assumption. 

Combined performance is used hereafter for comparison among algorithms 

because it is believed t o  be closer t o  expected real-world performance. Although some 

other linear combination of the two corpora is probably even better, it is not clear how t o  

select the best combination. Therefore an equal mix (same amount from each) combination 

has been used. 

The performance of pr (.2755f ,0014) is the best thus far. 

5.2 On-Line Garbage Modeling 

I t  is useful t o  compare rejection performance with existing methods. CSLU has an existing 

rejection mechanism installed in i ts  CSLUsh toolkit and in CSLUrp, the  CSLU Rapid 

Prototyper. The rejection system is based upon research by Boite, Bourlard, D'hoore, 

and Haesen (1993) using HMMs and has been in use a t  CSLU for several years. The 

experiments in this section are an attempt t o  express the CSLU rejection algorithm with 

a confidence score rather than a straight yes/no decision. Accordingly the score is defined 

as the threshold at which the yes/no decision changes. Except for that  change, this is the 

CSLUrp rejection model. 

The justification for examining this approach is that  it works and is currently imple- 

mented. By measuring i ts  performance i t  is expected that  a baseline performance standard 

will be set against which future improvements can be compared. 

In the discussion that  follows, two word models will be considered. One is called the 

target word model. I t  represents a real word that  is being evaluated for acceptance 

or rejection. I t  is scored by the recognizer and its Viterbi score becomes the target word 

score." The other is called the <garbage> word model. This is an artificial word composed 

of a sequence of <garbage> phonemes which are created similarly t o  the <any> model 

discussed in section 4.6.4. The <garbage> phoneme is defined as having the same neural 
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network output value as the median of the top n other phonemes (typically n defaults to 

22). This is called the garbage median rank1 or garbage rank. In each frame, the phoneme 

with the 12th highest value is identified, and its value is copied to  become the value of the 

<garbage> phoneme. 

Acceptance or rejection of the target word is based upon its whole-word Viterbi score, 

which includes all frames in the utterance. Specifically the frames that map to the <;inv> 

model (see section 4.6.4) are included in the score. Also since the score is made by 

adding the logarithms of the frame scores across the whole word and each frame score is a 

probability (i.e., usually less than 1.0) the scores tend to  become more and more negative 

for longer and longer words. 

To most closely follow the implementation of the CSLUrp system for rejection deci- 

sions, the <garbage> score is computed in the same way as  the target word score, using 

the same number of frames. Then if the resulting target score is better than the garbage 

score the recognition is accepted. Otherwise it is rejected. For example, if the garbage 

median rank is 22, then the utterance will receive a garbage score based upon median 

rank 22. This utterance-specific score is the threshold for acceptance or rejection of any 

particular target word score for that utterance. 

Adjustment of the rejection rate is achieved by changing the garbage median rank. 

To compare this approach to others by using equal error rates it is necessary to convert 

each target word score to a common base. The most accurate way to do this is to  compute 

for each target word the "garbage" median rank a t  which the word would be at the 

threshold between acceptance and rejection. This is called the "targetn median rank. 

These estimated target median ranks are the unit of comparison across various utterances 

and target word models. 

5.2.1 Estimating the Target Median Rank 

One could compute the garbage score for all possible garbage median ranks, and then take 

the two scores closest to the target word score. Between these a simple linear interpolation 

'Median rank (mr) is related to rank (r) as follows: mr/2+1=r. 2(r+l)=mr. 
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will result in an accurate estimated target median rank. (Alternately the closer, higher, or 

lower garbage median score could have been used. This would have resulted in quantization 

error and a loss of resolution, so it was not done.) In CSLUrp this is not done. Instead 

CSLUrp makes a simple acceptlreject decision based on the threshold selection. 

Computing several hundred garbage scores may be unnecessary. To discover exactly 

how many garbage scores should be computed, the actual plan is to select several different 

sets of ranks from which to interpolate, and then compare results. These chosen ranks are 

called "knot points" (or sample points) because they form the vertices along a piecewise 

linear curve that stretches from garbage median rank zero to garbage median rank 1000 

(depending upon the number of ANN outputs in the recognizer). That is, they are the 

points at which the linear interpolation segments are "tied" together. 

The intuition is that interpolation based on some knot-points may be more reliable 

and have higher rejection performance than interpolation based on other knot-points. This 

would be because some ranks are more reliable than others. In particular, a middle range 

of ranks, for example 10 and 30, might be more reliable than the top ranks (2, 4,6) or the 

bottom ranks (beyond 40). Scores based on the top ranks are feared to jump around (be 

too variable). Scores based on bottom ranks are masked by the effects of the <any> and 

<garbage> models. This intuition will be tested to see whether accuracy differs depending 

on the set of knot-points employed. 

The two knot-point garbage scores closest to the Viterbi score of the target word are 

used in linear interpolation (or extrapolation) to estimate the equivalent garbage rank, 

which is the threshold at which the word score would equal the garbage score. 

The piecewise linear model may not perform as well as a fitted smooth curve might, 

but it is monotonic and relatively easy to compute. Since all scores are derived in the 

same way the piecewise nature is not expected to have a large effect upon the final results. 

To specifically explore the sensitivity of this approach in terms of the "knot-points" at 

which the piecewise linear model is constructed, a variety of knot-point sets is examined. 

It is shown that the performance is not sensitive to the choice of points. That is, different 

point sets yield the same rejection performance. 
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Figure 5.2: Histogram of Algorithms, 1: g(O,2,4,8 ...); 2: g(0,10,20 ...); 3: g(O,2,4,6 ...). 
Notice that the histograms are nearly coincident for all three cases. Details: impostors 
a t  perplexity 20, Oct 1996 MFCGbased recognizer, equal mix of OGI Names corpus 
and NYNEX PhoneBook corpus, whole-utterance on-line garbage scoring, word models 
depending on corpus, 32000 trials, final test set, equal error rates. 

5.2.2 Initial Knot-point Experiments 

The following experiments were performed. 

g(O,2,4,6 ...) : on-line garbage piecewise linear interpolation with knot-points at 

0, 2, 4, 6, 8, 10, 14, 18, 22, 30, and 50: The best-estimate approach is to  compute 

the garbage score for all possible median values. Due to  the way the median value is 

mapped to  an actual rank (right-shift by one) only even numbers need be tried. For each 

utterance, a Viterbi score is computed using a garbage model a t  each of the following 

median ranks: 0, 2, 4, 6, 8, 10, 14, 18, 22, 30, and 50. By observation it was discovered 

that most wrong scores are less than median rank 50. A histogram is shown in Figure 5.2. 

Performance is shown in Table 5.3 to  be .l557f .OOl4. 
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Table 5.3: Mean, Standard Deviation, and 95% Confidence Intervals for Algorithms in 
the g(a,b,c ...) Family. Notice that performance is nearly identical for all cases. Details: 
impostors at perplexity 20, Oct 1996 MFCC-based recognizer, equal mix of OGI Names 
corpus and NYNEX PhoneBook corpus, whole-utterance on-line garbage scoring, word 
models depending on corpus, 32000 trials, final test set, equal error rates. For more 
explanation see page 67. 

Algorithm meanf s3 n 95% confid 

g(4i16) .1554f .0013 50 .1528-.I580 

g(O,2,4,8 ...) : on-line garbage piecewise linear interpolation with knot-points at 

0, 2, 4, 8, 16, 32, and 64: This next selection of knot points is exponentially spaced 

across the region where scores are expected to fall. For each utterance, a Viterbi score 

is computed using a garbage model a t  each of the following median ranks: 0, 2, 4, 8, 16, 

32, and 64. A histogram is shown in Figure 5.2. Performance is shown in Table 5.3 to be 

.1556f .OOl4. This spacing seems to improve the accuracy slightly, but the difference is 

not statistically significant. 

g(0,10,20 ...) : on-line garbage piecewise linear interpolation with knot-points 

at 0, 10, 20, 30, 40, and 50: This selection of knot points is spaced equally (rather 

than exponentially) across the region where scores are expected to fall. For each utterance, 

a Viterbi score is computed using a garbage model at each of the following median ranks: 

0, 10, 20, 30, 40, and 50. A histogram is shown in Figure 5.2. Performance is shown in 

Table 5.3 to be .l557f .OOl4. 

5.2.3 Dramatically Fewer Knot Points 

None of the preceding knot-point sets varied much in its final performance result. A much 

smaller number of knot points may affect performance. It is not clear a priori whether 
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Figure 5.3: Histogram of Algorithms, 1: g(4,16); 2: g(0,4,16); 3: g(0,lO). Notice that  the 
histograms are much different from those in Figure 5.2, which shows that  the choice of 
knot points has a big influence on the eventual raw scores. However the performance does 
not change significantly. Details: impostors at perplexity 20, Oct 1996 MFCC-based 
recognizer, equal mix of OGI Names corpus and NYNEX PhoneBook corpus, whole- 
utterance on-line garbage scoring, word models depending on corpus, 32000 trials, final 
test set, equal error rates. 

the performance will be better or worse, as fewer points cannot follow the da ta  as well, 

but more points may be overfitting. And ultimately i t  may not be statistically significant 

either way. 

g(0,4,16): on-line garbage piecewise linear interpolation with knot-points at 0,  

4, and 16: This selection of three knot points is spaced exponentially across the region 

where most scores are expected t o  fall. For each utterance, a Viterbi score is computed 

using a garbage model at each of the  following median ranks: 0 ,4 ,  and 16. The histograms 

in Figure 5.3 are much different from those in Figure 5.2, which shows that  the choice 

of knot points has a big influence on the eventual raw scores. However the performance, 
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Table 5.4: Distance Chart for Algorithms in the g(a,b,c ...) Family. Notice that per- 
formance is nearly identical for all cases. Details: impostors at perplexity 20, Oct 1996 
MFCC-based recognizer, equal mix of OGI Names corpus and NYNEX PhoneBook corpus, 
whole-utterance on-line garbage scoring, word models depending on corpus, 32000 trials, 
final test set, equal error rates. For more explanation see page 72. 

shown in Table 5.3 to be .l554f .OOl3, has not changed significantly. 

g(4,16): on-line garbage linear interpolation with knot-points at 4 and 16: 

This selection of two knot points is spaced exponentially across the region where most 

scores are expected to fall. For each utterance, a Viterbi score is computed using a 

garbage model a t  each of the following median ranks: 4 and 16. A histogram is shown in 

Figure 5.3. Performance is shown in Table 5.3 to  be .l554f .OOl3. 

g(0,lO): on-line garbage linear interpolation with knot-points at 0 and 10: 

This selection of two knot points is spaced linearly across the region where most true 

scores are expected to fall. 10 is near the dividing point between trues and impostors, 

For each utterance, a Viterbi score is computed using a garbage model at each of the 

following median ranks: 0 and 10. A histogram is shown in Figure 5.3. Performance is 

shown in Table 5.3 to be .l555f .OOl4. The apparent slight loss in performance might be 

attributable to using 0 instead of 4 as the first knot-point. 

5.2.4 Conclusions 

The selection of knot points does not seem to affect the accuracy of the on-line garbage 

modeling technique. Table 5.4 tells the story. None of the differences is significant. In 

fact, each of the differences has better than 8 chances in 10 of occurring naturally even if 
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no actual difference exists. Because it is impossible to tell apart these performances based 

upon equal error rate alone, g(4,16) is designated as the representative of this group based 

upon its simplicity of implementation, using only a single line to remap any Viterbi score 

into its estimated target median rank. 

The on-line garbage approach of g(4,16) achieves a performance of .l554f .OOl3, which 

is dramatically better than the performance of pr (.2?55f -0014). This is probably due to 

the summing of logarithms in computing the recognition score, as  opposed to the simple- 

minded averaging of raw probabilities. Section 5.3 looks into this question. 

5.3 Log Averages 

The three simple algorithms presented in chapter 4 and in section 5.1 averaged probabil- 

ities directly. The impostor histograms in Figure 5.1 are sharply skewed, and the true 

histograms are somewhat skewed also. A logarithmic transformation may render curves 

that are more normal. Independent probabilities are always combined by multiplication 

to create joint probabilities, which suggests averaging in the logarithm domain. This 

type of averaging is also called geometric averaging. Because positive numbers are more 

convenient2 for computation and logarithms of probabilities are not positive, the minus 

logarithm will be used. 

The simple algorithms from chapter 4 will each be modified by taking the minus 

logarithm of the probability for the frame score. (Gillick, Ito, and Young (1997) refer to 

- log(pn/ (1 - pn)) as the "logit" or uloglikelihood" function.) 

This is shown to improve performance dramatically and will become a standard oper- 

ation on probability-like frame scores. 

Hypothesis: When experiments - log(pr), - log(pn) , and - log(pn/(l - pn)) are run, 

the histograms will be more normal and the performance will improve in comparison to 

P', pn, and P"/P - pn)- 

2e.g., for taking another log, raising to a power, or geometric averaging of various types. 
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Table 5.5: Distance Chart for Algorithms in the log(pr) Family Details: impostors at 
perplexity 20, Oct 1996 MFCC-based recognizer, equal mix of OGI Names corpus and 
NYNEX PhoneBook corpus, frame-to-word averaging, word models depending on corpus, 
32000 trials, final test set, equal error rates. For more explanation see page 72. 

Because they are so different from each other, no hypothesis is made about the com- 

parison of - log (pr) with the g(a,b,c ...) algorithms. 

Results: Table 5.5 shows that - log(pr) is clearly ahead of the other algorithms, and 

that - log(pn) and - log(pn/(l - pn)) are practically equal. It also shows that taking the 

logarithms of probabilities has produced a substantial improvement in rejection perfor- 

mance. 

The histograms in Figure 5.4 show the raw scores the three algorithms. The curves 

are much more normal in shape than those in Figure 5.1. Notice that - log(pn) and 

- log(pn/(l - pn)) are very nearly equal. Transformation to the log domain has washed 

out most of the differences between normalized probability and odds. - log(pr) has higher 

variance but is much better separated than the other two. The normalized probabilies 

reduce the variance but increase the overlap between trues and impostors. 

The performance of - log(pr) (.l639f .0012) falls 5% behind the equal error rate of 

g(4,16) (.1554-+.0013), the top whole-word on-line garbage model ( t  = 4.82, a 5 10'~). 

The performance of g(a,b,c ...) algorithms is hurt by the use of the utterance frames 

before and after those in the word model. That is, the score is based upon the entire 

utterance, including frames that are assigned to the <any> model before and after the 

word. It does not seem reasonable that the <any> model portions of on-line garbage 

are helping. At best the <any> model portions would provide random noise into the 
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Histogram Variation for log(p) Algorithms 

0 2 4 6 8 10 
Raw Score 

Figure 5.4: Distribution Variation for Algorithms in the log(pr) Family. log(pn) is 
- log(pn); log(odds) is - log(pn/(l - pn)); log(pr) is - log(pr). Notice that pn and 
pn/(l  - pn) are nearly identical, and that p' is substantially better. Details: impostors 
at perplexity 20, Oct 1996 MFCC-based recognizer, equal mix of OGI Names corpus and 
NYNEX PhoneBook corpus, frame-to-word averaging, word models depending on corpus, 
32000 trials, final test set, equal error rates. 

measurements. It must be something else. 

The other aspect is the normalization that is taking place in the g(a,b,c ...) algorithms 

by using <garbage> phoneme scores as a point of comparison. This is examined further 

in section 5.5. 

5.4 Segment a1 Averaging 

Whole-word scoring is simple and effective, but there are alternatives that may perform 

better. Following is a list of ways that frame scores can be combined to make word scores. 

The method of averaging does make a substantial difference in performance, and is the 

focus of this section. 
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Hierarchical Averaging 

Figure 5.5: Hierarchical Averaging: The pronunciation model for the word "cattle" is 
shown. Below it frames are marked off. Three methods of averaging are illustrated. The 
first is frame-word averaging. In this method the scores from all frames are pooled directly 
to create one overall average. The second is frame-phone-word averaging. In this method 
the scores from all frames in a phoneme are pooled to create a phoneme average. These 
phoneme scores are then pooled to  create the word score. The third is frame-segment- 
phone-word averaging. In this method the scores from all frames in a segment (phone 
state) are averaged to  yield a segment score. The segment scores are averaged to yield a 
phone score. The phone scores are averaged to  yield a word score. 

Subsequent to  the work done in this thesis, Weintraub, Beaufays, Rivlin, Konig, and 

Stolcke (1997) reported confidence metrics based on numerous features combined by an 

ANN. Some of these features are similar or identical in nature to those used in the hier- 

archical averaging approaches of this thesis. These features include averaging by word, 

phone, phone-state, or any combination of these. The interested reader is referred to  

section 6.1.1 of their paper. 

Figure 5.5 shows three ways t o  accumulate frame scores into a final word score. The 

example shown is the word "cattle" using a word model of /k/, /ae/, /t/, /I/. Below 
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the word model there is marked off individual frames, with vertical lines separating the 

frames. 

The simplist approach is t o  directly combine all the frame scores into a word score. 

This is illustrated by the oval that  extends from the first frame t o  the last. This is called 

frame-word (fw) averaging. 

Another approach is t o  average the frames across each phoneme, and then t o  average 

these phoneme scores across the word. The four smaller ovals represent phone averages. 

The larger oval below them represents a word average. This approach is called frame- 

phone-word (fpw) averaging. I t  illustrates a hierarchy of averages, where scores are rolled 

up a level a t  a time. 

The final approach shown in this figure is fspw (frame-segment-phone-word) averaging. 

Each segment is a part of a phoneme. The /k/ is divided into two parts: closure (silence) 

and burst. The /ae/ is divided into three parts: ae following a k-class phoneme, central 

ae, and ae  preceding a t-class phoneme. I say k-class and t-class because there are eight 

contexts used in the latest recognizer involved in this research. All possible phonemes that  

can precede ae are grouped into eight classes based on the similarity of their effect on the  

first part of the ae. The  /t/ and /1/ are each modeled as two-state phonemes, with the 

frames of each state being collected into a unit called a segment. 

The on-line garbage approaches of section 5.2 do not immediately lend themselves t o  

a different accumulation strategy. Algorithm - log(pr) is used as a baseline in this section 

because i t  is the best-performing other algorithm seen t o  this point. 

Results for the - log(pr) algorithm across five accumulation methods are presented in 

Figure 5.6 (histograms), Table 5.6 (pairs), and Table 5.7 (Distance Chart). 

fw: frame-to-word averaging: Thus far raw word scores have been computed by 

averaging across whole words, with each frame contributing the same amount t o  the final 

score. This method is denoted fw for "frame t o  word." Figure 5.6 shows that  although fw 

has the smallest variances, i t  also has the worst separation of trues from impostors. 
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Histogram Variation across Accumulation Methods 
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Figure 5.6: Histogram variation across accumulation methods for the  - log(pr) Algorithm. 
Details: impostors a t  perplexity 20, Oct 1996 MFCC-based recognizer, equal mix of OGI 
Names corpus and NYNEX PhoneBook corpus, minus logarithm of raw probabilities, word 
models depending on corpus, 32000 trials, final test set, equal error rates. fw gets poor 
separation, fpw is better, and the best three are nearly identical. 

fpw: frame/phoneme/word averaging: RivIin, Cohen, Abrash, and Chung (1996) 

used a two-step averaging process t o  improve results. Their research averaged within 

phonemes t o  create a phoneme score, and then averaged the phoneme scores t o  get a word 

score. A phoneme is defined as a sequence of one or  more frames that  are associated with 

the same phoneme of the word model. This method is denoted fpw for "frame t o  phoneme 

t o  word." 

Figure 5.6 shows that fpw is dramatically better than fw, but all three of the other 

alternatives (fsw, fspw, and fspsw) are better still. Table 5.6 shows that  fpw averaging 

improves results by 21% compared t o  fw averaging. This is a nice improvement. Table 5.7 

shows that  fpw is among the top group, and varies from the best methods by only a small 

amount. 
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Table 5.6: Accumulation methods pairwise comparison of performance for the - log(pr) 
Algorithm. Details: impostors a t  perplexity 20, Oct 1996 MFCC-based recognizer, equal 
mix of OGI Names corpus and NYNEX PhoneBook corpus, minus logarithm of raw 
probabilities, word models depending on corpus, 32000 trials, final test set, equal error 
rates. For more explanation see page 73. 

Better 
Accum EERf sr 
fspw .l233f .OOU 

I fspw .l233f .OOl3 
fspw .l233f .OOl3 
fspw .l233f .OOH 
fspsw .l252f .OOl4 
fspsw .l252f .OOl4 
fspsw .l252f .OOl4 
fsw .1252f .0013 
fsw -1252f .0013 
f ~ w  .1294f .0013 

I Difference 
I diff t df a 
I 1% 0.96 98 .3418 
I 1% 0.98 98 .3303 
5% 3.18 98 .0020 
25% 22.35 98 .OOOO 
0% 0.00 98 1.0000 
3% 2.16 98 .0331 

Worse 
EERfsz Accum 

.1252f .OOl4 fspsw 

.1252f .0013 fsw 

.1294f ,0013 fpw 

.1639f .0012 fw 

.1252f .0013 fsw 

.1294f .OOl3 fpw 

.1639f .0012 fw 

.1294f .DO13 fpw 

. 1639f .0012 fw 

.1639f .0012 fw 

fsw: frame/segment/word averaging: Phonemes work well as an intermediate av- 

eraging point, but there are several other alternatives, including segments (ANN outputs) 

and syllables. Recognition itself is performed on the basis of ANN outputs which are 

subphonetic segments rather than directly with phonemes. A segment is defined a s  a 

sequence of one or more frames that  are associated with the same ANN output in the 

word model. Segments may represent phonemes, phoneme halves, or phoneme thirds. 

Table 4.1 presents a list of these segments for the Oct96 recognizer. Computationally i t  is 

more convenient t o  work directly with segments. This method is denoted fsw for "frame 

t o  segment t o  word." Table 5.6 shows that  fsw averaging improves results by about 3% 

compared t o  fpw averaging. 

fspw: frame/segment/phoneme/word averaging: Recognition can be viewed as 

a multi-level hierarchical activity, with frames collected in t o  segments, segments into 

phonemes, phonemes into syllables, syllables into morphemes, morphemes into words, 
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Table 5.7: Distance Chart comparing accumulation methods for the - log(pr) Algorithm. 
Details: impostors at perplexity 20, Oct 1996 MFCC-based recognizer, equal mix of OGI 
Names corpus and NYNEX PhoneBook corpus, minus logarithm of raw probabilities, 
word models depending on corpus, 32000 trials, final test set, equal error rates. For more 
explanation see page 72. 

and words into compound words. Method fspw moves further in this direction by averag- 

ing frames to get segment scores, averaging those to get phoneme scores, and averaging 

those to get word scores. Table 5.6 shows that fspw results are not significantly different 

from those for fsw. 

fspsw: frame/segment/phoneme/syllable/word averaging: Moving closer to the 

full hierarchical structure, it is interesting to consider averaging across syllables. This is 

more difficult because the word models do not always give syllable divisions. Instead an 

algorithm was used to  cluster phonemes into syllables. The algorithm is based upon rules 

by Kreidler (1989) and run as  follows. 

1. Vowel phonemes ( ~ ~ ~ u ~ u I o u ~ ~ u I A ~ ~ I I > ~ ~ - I ~ D I E ~ ~ ~ ~ I I ~ : ) ~  are designated to 

be proto-syllables. Diphthongs are not divided because they already represent a single 

phoneme. Adjacent vowels in different phonemes are established as separate syllable nu- 

clei. 

2. Zero or one liquids ( j 19s l w 11) that occur immediately before proto-syllables are 

merged in, making those proto-syllables larger. 

3. Zero or one (bIdlglphlthlkhltSldZIf lSITIDlvlzlhld,(I j Imln) that occur im- 

mediately before proto-syllables are merged in next. 

4. Zero or one (s) that occur immediately before proto-syllables are merged in next. 

3For a definition of the phonemes, please see Table 4.3. 
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5. Zero or one (S) that  occur immediately before (mln) in proto-syllables are merged 

in next. These occur in words like Schneider. 

6. All unused (bIdlglphlthlkhlt~ld~lslf l~l~I~lv~zlhld,(lj l9rlwlllmln) tha t  

occur immediately after proto-syllables are merged in. At this point all phonemes have 

been merged into proto-syllables, which can now be called syllables. 

7. Occurrences of (9r 1) are split into separate syllables. These occur in words like 

girl, charles(ton), and carl. This is a dialect-specific issue and could be done with or 

without a syllable boundary in these contexts. This seemed a good place t o  start.  

This overall algorithm as stated seems t o  work well with word models from Orator T T S  

and word models from CMU dictionary, which are used with the Names and PhoneBook 

corpora respectively. I t  was spot-tested on a number of words and seemed t o  have a high 

accuracy rate. This suggests tha t  it would give a performance indicative of its full value 

had greater care been taken. The algorithm was not extensively tested. 

Table 5.6 shows that  fspsw results are about 1% worse than fspw (a = -1252) which 

is not a significant difference. This performance did not seem t o  justify additional careful 

study of syllable clustering algorithms at this time. 

Conclusions: Table 5.7 shows that  for the - log(pr) algorithm any type of sub-word 

averaging is clearly a big win in comparison t o  fw averaging. This is believed t o  be 

due to  the presence of insertion-type errors which have been observed during review of 

impostor segmentations. The review is not dramatically conclusive and is not presented 

in this thesis but suggests that  impostor segmentations often contain short phonemes 

with very bad scores amid much longer phonemes that  are largely correct. By averaging 

across phonemes each phoneme or segment is treated equally so the longer ones no longer 

overpower the short ones. 

By extension this conjecture would imply that  averaging across sub-word units will 

help if the units are of substantially varying length. (With units of roughly equal length 

averaging will have no effect.) This seems t o  be borne out by the good performance of 

fspw which continues t o  be unsurpassed among the results yet t o  be reported in this thesis. 

I t  merges a widely varying number of frames into each segment, and merges from one t o  
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three segments into a phoneme. 

However it is disappointing that  the fspsw method with syllables of greatly varying 

length does not make a further improvement. This could be due t o  an incorrect approach 

t o  identifying syllable boundaries, or an inappropriate choice of test corpora. In any event, 

the difference is not significant nor is i t  large. 

Based on these conclusions p e r f o r m a n c e  us ing f spw is presen ted  hereafter f o r  

compar i son  a m o n g  algor i thms.  

The frame/~egment/~honeme/word averaging performance of - log(pr) ( . l233f .OOl3) 

is better than its frame-teword averaging performance ( . l639f .0012). The use of seg- 

mental accumulation strategies accounts for this improvement. The performance even sur- 

passes the whole-utterance on-line garbage scoring performance of g(4,l6) f. l 5 5 4 f  .OOl3), 

the top whole-word on-line garbage modeI. I t  seems possible that  segmental accumulation 

coupled with <garbage>-based normalization might create a further improvement. This 

is examined in section 5.5. 

5.5 On-Line Garbage Improved 

The concept here is t o  normalize each frame score pr by some identifiable score or group 

of scores in the frame. This is like comparing t o  the whole-word garbage score at an 

estimated rank (section 5.2), but differs in several respects. First, the normalization 

occurs on a frame by frame basis rather than a whole word (or whole utterance) at a 

time. The use of frame-based normalization makes it possible t o  average within segments, 

which has been shown in section 5.4 t o  improve performance. Second, the equivalent rank 

is not computed, but rather by how much the frame score differs from some specified score. 

Third, the <any> modeled portions of the utterance are not included in the calculation, 

thus removing any noise they may have been contributing. 

Normalization in this way bears a resemblance t o  acoustic normalization required 

by Bayes rule: p(WJA) = p(AIW)p(W)/p(A). In this formulation p(A1W) is normally 

provided by an HMM and is often called a likelihood. p(W) is the  (a pn'on') probability 

of occurrence for word W and is often provided by a language model. The probability 



5.5 On-Line Garbage Improved 106 

p(A) of the observed acoustics A is often neglected in choosing the best word hypothesis 

because it is the same for all word hypotheses for that utterance (i.e., the acoustics are 

the same no matter what words are hypothesized). In theory p(A) can be computed by 

summing all the p(AJW)p(W) since the total probability is 1.0 by definition. In practice 

there are too many words W to be considered. If phonemes or sub-phonetic units are 

used instead of words it becomes possible to sum them all. p(A) might also be estimated 

(modulo an unknown constant multiplier) by the methods of this section. 

Because of restrictions in the training of the ANNs used as  recognizers in this thesis 

(see section 4.1.2), it is possible that the a posteriori probabilities generated by the ANN 

are not fully a posteriori at all, but could still benefit from such a normalization as  this. 

If on the other hand they are true a posteriori probabilities, the value p(A) estimated by 

the methods of this section should be approximately constant and will therefore have little 

or no effect on performance. 

5.5.1 Initial Experiments 

The first experiments were performed normalizing against scores at median 10, 20, and 

50 (ranks 6, 11, and 26 respectively).  LOW^ median values were chosen because they were 

expected to be more stable, and thus better normalization factors. Part A of Table 5.8 

shows that the EER varies across these experiments and that log(pr/g(R6)) performed 

the best of the three at .ll38f .OOl3.  

5.5.2 High Ranks 

Because the highest rank seemed to perform better, additional experiments were performed 

at ranks 1, 2, 3, 4, and 5, to study how performance varies with rank. Part B of Table 5.8 

shows that log(pr/g(R2)) performs the best (nominally) a t  .1118f .OOl3, but that there is 

not a statistically significant difference among these normalization alternatives. 

4Rank 1 is the highest rank. 
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Table 5.8: Distance Chart for Algorithms in the log(pr/g(low)) and log(pr/g(high)) Fam- 
ilies. Notice that higher ranks seem to produce better performance, but the top ranks 
all performed about the same. Details: impostors a t  perplexity 20, Oct 1996 MFCG 
based recognizer, equal mix of OG1 Names corpus and NYNEX PhoneBook corpus, 
frame/segment/phoneme/word averaging, word models depending on corpus, 32000 trials, 
final test set, equal error rates. For more explanation see page 72. 

Part A: log(pr/g(low)) Family 
' .1 l38f.0013, log(pr /g (R6)) ' 

5.5.3 Averages of High Ranks 

1 
10 

Part B: log(pr/g(high)) Family 
.1118f.O013,log(p~g(R2)) 

Because averaging several numbers tends to reduce variability (e.g., improves the relia- 

bility), averaging the top few ranks seemed to promise further performance gains. Ex- 

periments were performed averaging ranks (1..2), (1..3), (1..4), and (2..3). Averaging was 

performed in the logarithm domain (the average of the log-probabilities of the specified 

ranks was subtracted from log(pr)). Part A of Table 5.9 shows log(pr/g(R1..4)) with per- 

formance of . l l l5f  .OOl3 emerging as the new nominal leader. The marginal improvement 

over log(pr/g(R2)) at .1 ll8f .OOl3 is not significant. 

.1178f.OOl3, log(pr/g(R1l)) 
6 1 .1292f.O014,log(p'/g(R26)) 

o' 
0 
0 
0 

- 0 

5.5.4 Wider Averages 

The log(pr/g(R1 ..4)) average gave the most promising results, but the other averages were 

almost identical. Additional experiments were then performed averaging across ranks 

(1 ..lo), (1..20), (1..30), (l..4O), and (1..50) to assess the usefulness of larger groupings and 

the effects of lower ranks for computing the normalization factor. Part B of Table 5.9 

shows that performance suffers significantly as the lower ranks become involved in the 

.11 l8f.0014, log(pr/g(R3)) 
0 
0 
0 
0 

.1 l28f .OOl4, log(pr/g(R4)) 
0 
0 
0 

.1133f.0013,10g(pr/g(R5)) 
0 
0 

.1138f.0013,10g(pr/g(R6)) 
0 ) .1143f.0014, log(pr/g(R1)) 
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Table 5.9: Distance Chart for Algorithms in the log(pr/g(few)) Family. Notice that 
ranges of the top ranks performed about the same, but that as lower ranks become 
involved performance declines. Details: impostors at perplexity 20, Oct 1996 MFCC- 
based recognizer, equal mix of OGI Names corpus and NYNEX PhoneBook corpus, 
frame/segment/phoneme/word averaging, word models depending on corpus, 32000 trials, 
final test set, equal error rates. For more explanation see page 72. 

Part A: log(pr/g( f ew)) Family 
.ll l5f .OOl3 ,  log(pr/g(R1..4)) 

.11 l7f.OOl5, log(pr/g(R2..3)) 

Part B: log (pr /g (many)) Family 
( .1137f.0015, log(pr/g(R1..lO)) 

averaging. This suggests that the lower ranks are not as good a standard for comparison 

as are the upper ones. These experiments substantiate a steady trend with (1..10) being 

best and (1..50) being worst. 

5.5.5 Experimental Details 

Motivation: On a frame-by-frame basis the frame probability can be normalized by 

another score to accentuate how much better or worse it is. The intuition is that ANN 

performance can be affected by the acoustic quality of the utterance. A noisy utterance 

can be expected to have worse scores overall than a clean utterance. An unusual speaker 

can be expected to have worse scores overall than a speaker who is similar to those used 

in training. It is hypothesized that all important scores will rise or fall together with 

the acoustic quality of the utterance, and that this fact can be exploited for reliable 

normalization. If the normalizing score is a consistent baseline (such as the on-line garbage 

score) then the revised score should indicate improvement over random chance, given the 

waveform present in that frame. 
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Definition: The individual frame score f is computed by dividing the raw a posteriori 

probability pr by a normalizing factor (the nth ranking score or an average of such scores 

in that  same frame). The identities of the normalizing scores are varied across experi- 

ments. Specifically the f = log(pr) minus the mean of the logarithms of the scores at the 

normalizing ranks. 

Hypothesis 1: Normalizing by a garbage score computed in this manner allows dis- 

crimination between correct and incorrect recognitions. 

Hypothesis 2: Segment-based averaging is more accurate than whole-word averaging. 

Hypothesis 3: Performance varies significantly as a function of the normalizing scores 

used. 

5.5.6 Discussion and Conclusions 

Performance varies significantly as a function of the normalizing scores used. Across s i n g b  

rank algorithms, the top ranks consistently outperform the lower ranks, except that  rank 1 

is apparently worse than ranks 2 through 6. The cause for this reversal is not understood. 

Among rank-range algorithms, those concentrated in the highest ranks consistently 

perform best. The specific choice of ranks involved does not seem t o  be very sensitive. 

As anticipated the combination of segmental accumulation and <garbage>-based nor- 

malization has created a further improvement. The performance of log(pr/g(R1 ..4)) 

( . l l l5 f  .OOl3) is 10% better than the performance of - log(pr) (.l233f -0013). 



Chapter 6 

Vocabulary-Independent Rank-Based 
Algorithms 

This chapter presents new research in the area of rank-based probability estimation. These 

experiments represent new research in the field of speech recognition. I t  continues the 

format of the previous chapter where baseline performance results were developed. It uses 

the general methodology described in chapter 4. 

At the end of this chapter, a section of final results presents the top results from all 

the experiments that  have been reported. 

Rank by itself is an indicator of recognition quality. On a frame-by-frame basis, the 

ANN output used will have some rank R with respect t o  all ANN outputs pr in that  frame. 

(Note that  R will be used t o  signal "rank." This should not be confused with the  use of 

r for "raw" which occurs in the context pr.) 

It is hypothesized that  a rank of 1 means the same thing whether the  absolute score pr 

is 0.6 or 0.2. In particular, rank should be robust t o  acoustic variations in the incoming 

speech signal. The intuition is that  background noise, microphone quality, and speaker 

enunciation affect the absolute scores much more than they affect the relative scores or 

rankings of the phonemes. If this is true then rank will be a better indicator of recognition 

accuracy than the  absolute score is. This section will examine a family of algorithms based 

solely on the frame-by-frame rank of the phonemes in the word model. 

Rank is computed in the most simple and obvious way. The ANN output value pr is 

compared t o  all other values in tha t  frame, and the number of values that  are equal or 

greater becomes the rank. Ranks range from 1 (high) t o  544 (low) for the  Oct96 recognizer. 



6.1 Estimating Probability Three Ways 

Given the rank, it is desirable t o  convert i t  back into some form of probability for ac- 

cumulation, since I have already shown that  averaging the logarithms of probabilities (see 

section 5.3) across segments and then phonemes (see section 5.4) gives a good performance. 

The conversion t o  probability will be done using the a priori probabilities of observing 

those ranks in correct words or in impostors. This allows me t o  directly model the accuracy 

of phoneme ranks in the correct-word and out-of-vocabulary settings. The probabilities 

are trained using a corpus. The value pr is not used except t o  determine the rank. Only 

the rank and the identity of the phoneme are used in computing the frame scores. 

6.1 Estimating Probability Three Ways 

Three ways are used t o  formulate probability for these experiments. The most obvious 

way is the likelihood ratio o r  odds (p(true)/p(false)). Other ways are simple probability 

 true)) and cumulative probability. 

The probability of truth and falsehood are defined differently than they were for pn/(l-pn) 

in section 4.8.3. There the ANN output values were normalized in each frame, and the 

phoneme used by the word model (pn) represented truth while the sum of all the  rest 

(1 - pn) represented falsehood. 

p(true): Here the probability of truth is defined as the frequency of occurrence of some 

rank R across a training set of correctly recognized words. If the phoneme x occurs in 

1000 frames in that  training corpus, and if it has a rank of 1 in 270 of those frames, then 

p(rank=i I truth) is .27. 

To compile these statistics, all utterances in the training set were used. Each word 

was recognized using i ts  correct word model. For each frame two things were noted: (a) 

what is the correct phoneme (ANN output), and (b) what rank does it have. 

After performing this forced alignment process for all words in the training set, the  

results were separated by phoneme (ANN output). Since there are 544 ANN outputs, 

this resulted in 544 separate lists. Each list gives the ranks that  were observed when that  
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Phoneme 21 (n=650) 

10 
Rank 

Figure 6.1: Cumulative Probabilities c ~ ( R )  for Phoneme 21. Notice the close fit for 
higher ranks. Ranks not shown had zero cumulative frequency. Details: Oct 1996 MFCC- 
based recognizer, all training set words from OGI Names corpus and NYNEX PhoneBook 
corpus, word models depending on corpus. 

ANN output was actually true. The largest portion of the ranks were 1. Figure 6.1 shows 

the distribution of these ranks for ANN output 21, where there were 650 frames in the 

training set that  were found t o  match that  ANN output. 

Figure 6.2 shows the distribution of these ranks for ANN outputs 3, 23, and 36. 

Phoneme 36 commonly gives inaccurate rankings even when the phoneme is correct. 

Phoneme 3 changes from accurate rankings at the high end t o  inaccurate rankings at 

the low end. Phoneme 23 gives consistently accurate rankings through the full range 

shown. This suggests that  phoneme 23 is well trained in the ANN, but phoneme 36 is 

poorly trained. 

p(fa1se): The probability of falsehood is estimated across a training set as well. In this 

case, each utterance was falsely recognized as the best-matching word from a list made of 
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Figure 6.2: Variations Among Phonemes in Cumulative Probability c ~ ( R )  per Rank. 
Notice that  phoneme 36 commonly gives inaccurate rankings even when the phoneme is 
correct. Phoneme 3 changes from accurate rankings at the  high end t o  inaccurate rankings 
at the low end. Phoneme 23 gives consistently accurate rankings through the full range 
shown. Details: Oct 1996 MFCGbased recognizer, all training set words from OGI Names 
corpus and NYNEX PhoneBook corpus, word models depending on corpus. 

random incorrect words. 

Because of the time required t o  collect this list (many times longer than for the true 

words) some preliminary experiments were done t o  determine the best number of wrong 

words t o  place in the set from which the impostor would be drawn. Experiments were 

done with perplexity 2, 20, and 1000. It was seen that  between 2 and 20, there was 

improvement at 20, but between 20 and 1000 the  performance was not much different. 

This could be checked further but due t o  the time cost of the experiments I concluded 

based on early results that  perplexity 20 would give an adequate indication of the merits 

of this approach. 

For each impostor word, the frames were examined individually. The designated 
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phoneme (ANN output) was either correct or not. This was determined by compari- 

son t o  the alignment of the correct word model for that  utterance. If the impostor and 

the correct word model specified the same phoneme, then the phoneme was correct, even 

though it appeared in the impostor word. This occurred in the  word pair "foil" versus 

"coil," where the majority of the frames in the impostor were actually correct. 

After the correct frames were eliminated, the remaining (incorrect) frames were again 

examined. For the phoneme used in the impostor, the rank was computed and added t o  a 

list for that  phoneme. This resulted in 544 lists of ranks, where each rank was an actual 

observed rank for the phoneme in question, in an impostor word, and was not the true 

correct phoneme for tha t  frame. 

Choice of Impostors An important question remains unanswered. Tha t  is the  question 

of how best t o  select impostors. Ideally the impostors would follow the same distribution 

what would occur naturally when an out-of-vocabulary utterance is given t o  a randomly 

chosen task-specific recognizer. Unfortunately i t  is not known how t o  create task-specific 

recognizers a t  random, and how t o  create the kinds of OOV utterances tha t  such recog- 

nizers might encounter. Even the selection of a random set of tasks for which task-specific 

recognizers could be constructed seems intractable. 

Therefore as a first approximation the utterances were chosen at random and applied 

t o  a task-independent vocabulary also chosen at random. However, this cannot be more 

than a first approximation due t o  the problems with correctly characterizing impostor 

recognitions. 

Summary: The probability of falsehood is estimated across a training set of impostors 

at perplexity 20. Other perplexities were examined but the results do not seem t o  be 

particularly sensitive t o  this choice. The choice of impostors remains an important and 

unsettled issue. 

If the phoneme x occurs in 1000 frames in that  training corpus, and if i t  has a rank of 

1 in 80 of those frames, then p(ra.k=l  If alsehood) is .08. 

In any frame where the impostor phoneme is the same as the true phoneme, the 
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phoneme 21 (t=602, f=398) 
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Figure 6.3: Likelihood Ratios !'(R) for Phoneme 21. Notice the poor fit for lower ranks. 
Ranks not shown had zero frequency. Details: impostors a t  perplexity 20, Oct 1996 
MFCC-based recognizer, all training set words from NYNEX PhoneBook corpus, word 
models depending on corpus. 

impostor is ignored. This helps prevent foil/coil problems, where the true word is "foil," 

the impostor is "coil," and the "oil" frames should not be counted as both true and 

impostor. Instead they are counted only as true. 

6.1.2 Cubic Polynomial Smoothing 

Few trues occur a t  low ranks. For that matter few falses occur at low ranks either. 

Smoothing is critical t o  estimate reasonable probabilities in the low-rank tail of these 

distributions. For each ANN output a separate probability curve was fitted, using a cubic 

polynomial taking the logarithm of rank as the independent variable and returning the 

logarithm of the probability. Examples are shown in figures 6.3 and 6.1. 
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6.1.3 Likelihood Ratio 

Likelihood Ratio is denoted by c ~ ( R ) .  (The P indicates PhoneBook training.) It identifies 

a set of 544 cubic polynomials trained t o  estimate the logarithm of the likelihood ratio of 

the PhoneBook corpus training set given the logarithm of the rank. 

The likelihood ratio in the above case would be $, which combines with the prior 

likelihood $ t o  yield the likelihood given the observed rank. The typical assumption is 

that  truth and falsehood are equally likely so # = 1 and i t  cancels out of the equation 

leaving just $ as the likelihood given the observed rank. 

Figure 6.3 illustrates the fit between da ta  observed and the cubic polynomial. For 

most of the 544 phonemes the fit was better and n was larger but the tail of righthand 

the curve still came up. Much more da ta  may be required t o  get a reliable distribution. 

6.1.4 Simple Probability 

Simple Probability is denoted by SP(R) (for PhoneBook training) or S M ( ~ )  (for Mixed 

training). The simple true probability in the  above case would be -27. The probability of 

falsehood does not enter into the calculation. This is expected t o  be less accurate than 

the likelihood ratio, but given the fundamental problems with generation of impostors, 

simple probability is an interesting alternative worth examining. 

6.1.5 Cumulative Probability 

This is denoted by c'(R) (for PhoneBook training) or c ~ ( R )  (for Mixed training). Each 

identifies a set of 544 cubic polynomials trained t o  estimate the logarithm of the cumulative 

probability of the training corpus set given the logarithm of the rank. 

The cumulative true probability is perhaps the most interesting alternative. I t  takes 

into account the  belief that  higher rank implies a better match. This seems obvious, but 

i t  is not used in either the likelihood ratio formulation nor in the simple probability for- 

mulation. In the cumulative formulation, probability is the sum of the simple probability 

a t  that  rank and at all lower (worse) ranks. Thus by definition the cumulative probability 

of truth a t  rank 1 is always 1.0. In the above case, the cumulative probability a t  rank 2 
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Table 6.1: Distance Chart for Algorithms in the fP(R)  Family. Notice that  cumulative 
is nominally better but only by an insignificant margin. Details: impostors at perplexity 
20, Oct 1996 MFCC-based recognizer, equal mix of OG1 Names corpus and NYNEX 
PhoneBook corpus, frame/segment/phoneme/word averaging, word models depending on 
corpus, 32000 trials, final test set, equal error rates. For more explanation see page 72. 

would be 1.0-.27=.73. Figure 6.1 illustrates the fit between da ta  observed and the cubic 

polynomial. For most of the 544 phonemes the  fit was better and n was larger. 

6.1.6 Estimating Simple Probability 

To get the simple (non-cumulative) proportion of scores a t  a certain rank a "delta cu- 

mulative" approach is convenient. Because of sparse data  in the lower ranks, and the 

convenience of having the cumulative curve already fitted, the probability at any rank R 

is estimated as the cumulative probability at that  rank minus the cumulative probability 

at rank (R + 1). This is exactly the original probability a t  that  rank, but smoothed t o  

adjust for sparsity of data. 

6.2 Probability Training Corpus Selection 

It is not immediately clear which approach should yield the best performance. The frame 

scores play together in complicated ways. A variety of experiments will be performed t o  

try t o  create some intuition about the relative behaviors. The first experiment tests t o  see 

which of these probability formulations is best, or whether they are not distinguishable. 

The probabilities are trained using PhoneBook. Table 6.1 shows that  cumulative is better 

by an insignificant margin. ~ e a n ( t ~ ( R ) )  was eliminated from consideration at this point 

because the approach is very computationally expensive, requiring 500 times more impos- 

tors t o  train compared t o  the cumulative approach, and not yielding any improvement in 

performance. Therefore, results were generated for tP(R) but not tM(R). 



6.2 Probability Training Corpus Selection 

Table 6.2: Distance Chart for Algorithms in the f M ( ~ )  Family. Notice that Mixed train- 
ing is significantly better than PhoneBook training. Details: impostors a t  perplexity 
20, Oct 1996 MFCGbased recognizer, equal mix of OGI Names corpus and NYNEX 
PhoneBook corpus, frame/segment/phoneme/word averaging, word models depending on 
corpus, 32000 trials, final test set, equal error rates. For more explanation see page 72. 

Table 6.3: Distance Chart for Algorithms in the f ( R )  Family. Notice that Mixed training 
' still appears to  be better than the PhoneBook training, although the results are not 
as significant. Details: impostors a t  perplexity 20, Oct 1996 MFCC-based recognizer, 
NYNEX PhoneBook corpus, frame/segment/phoneme/word averaging, word models from 
CMU dictionary, 16000 trials, final test set, equal error rates. For more explanation see 
page 72. 

The second experiment tests whether using NYNEX PhoneBook corpus is better, 

or whether equal mix of OGI Names corpus and NYNEX PhoneBook corpus is better. 

Table 6.2 shows that Mixed provides significantly better training for both C(R) (a=.0089) 

and S(R)  (a=.0024). This indicates that "more data is better." However, it also raises a 

question on whether this result is due to  testing with the Mixed corpus. 

The third experiment tests whether these results hold up when tested against the 

PhoneBook corpus. That is, when the probabilities are trained on corpus x do they 

simply perform better on corpus x? Table 6.3 shows that Mixed training still appears 

to  be better than the PhoneBook training, although the results are not as significant. It 

is still reasonable to  believe that Mixed training is better. The Mean(tP(R)) turns in a 
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particularly poor showing on this set, which does not bode well for its long-term abilities. 

6.3 Weighted Alternatives to Mean Accumulation 

Up t o  this point averaging has been done in the ordinary way, with perhaps a change 

to the logarithmic domain to  get a geometric mean. The geometric averaging has been 

shown to  contribute to  performance for the averaging of probabilities. 

Review of the actual ranks obtained on a segment by segment basis showed that a t  

the beginning and end of correct segments the ranks tended to be poor, but in the middle 

of each segment the ranks were high. This indicates that the ANN transitions are still a 

problem as the processing moves from segment to  segment. 

This section of experiments looks at several alternative ways t o  perform averaging. It 

is motivated by examination of the actual probabilities that make up the scores for trues 

and impostors. Based on visual observation it was hypothesized that impostors have a 

higher proportion of bad frame scores. To test this hypothesis three alternate forms of 

averaging were created. For each of these forms of averaging the raw probabilities are first 

sorted within the segment, and are then weighted according to  their position in the sorted 

sequence. Better scores appear first and are weighted more lightly. Worse scores appear 

last and are weighted more heavily. Following are the weighting schemes used. 

6.3.1 Mean Averaging 

In mean averaging the weights are constant. For n frames, each is weighted by 1. The 

sum is divided by the sum of the weights (n). This is common, ordinary averaging. It is 

the baseline for comparison with the experimental forms of averaging. 

The mean average score is roughly equal to one of the middle score in the set. 

6.3.2 Triangular Averaging 

In triangular averaging the weights increase by one for each additional item, starting from 

a base of zero. For n frames, the best is weighted by 1, the next by 2, then 3, and so on to  

the last which is weighted by n. The sum is divided by the sum of the weights (-1. 



6.3 Weighted Alternatives to Mean Accumulation 

By doing a triangular form of averaging, the worse scores have much more effect on 

the final segment score than do the better scores. The idea is that better scores are simply 

expected and should not be rewarded, but the worse scores are a violation of expectations 

and should be penalized. 

The triangular average score is roughly equal to one of the worse scores in the set. 

6.3.3 Trapezoidal Averaging 

In trapezoidal averaging the weights increase by one for each additional item, starting 

from a base of n. For n frames, the best is weighted by n + 1, the next by n + 2, and so 

on to the last which is weighted by 2n. The sum is divided by the sum of the weights. 

By doing trapezoidal averaging the good scores make a larger contribution to the 

average than under triangular averaging. Trapezoidal is a compromise between triangular 

and mean averaging. 

The trapezoidal average score is roughly half way between the mean average score and 

the triangular score. 

6.3.4 Parabolic Averaging 

In parabolic averaging the difference between weights increases by one for each additional 

item. For n frames, the best is weighted by 1, the next by 2, then 4, then 7, then 11, and 

so on. The nth is weighted by $x2 - ix+ 1. The sum is divided by the sum of the weights. 

By doing parabolic averaging the bad scores make a larger contribution than under tri- 

angular averaging. This is yet more extreme than triangular averaging, and approximates 

selecting the next-to-worst score as the representative for the entire segment. 

6.3.5 Usage 

Mean, triangular, trapezoidal, and parabolic forms of averaging are evaluated in the next 

two sections. In section 6.4 the rank numbers (1,2,3,  . . .) are averaged before converting 

t o  the probability domain. In section 6.5 the ranks are converted to probabilities first and 

then the averages are computed. 



6.4 Averaging Ranks 

Table 6.4: Distance Chart for Algorithms in the f (av(R))  Family. Notice that  more exotic 
averaging (trapeziodal, triangular, parabolic) has not improved performance. Details: 
impostors at perplexity 20, Oct 1996 MFCC-based recognizer, equal mix of OGI Names 
corpus and NYNEX PhoneBook corpus, frame/segment/phoneme/word averaging, word 
models depending on corpus, 32000 trials, final test set, equal error rates. For more 
explanation see page 72. 

6.4 Averaging Ranks 

In this experiment the ranks themselves were averaged before computing the probability. 

For those cubic polynomials that  are largely straight across the range of ranks involved, 

this will be the same as averaging the logarithms of the probabilities. In other cases i t  

will make a difference. This experiment is motivated by the visual observations made 

while examining the phoneme ranks for trues and impostors. Those observations seemed 

t o  indicate tha t  incorrect alignments had more bad scores than correct alignments did. 

I hypothesized tha t  averaging the ranks would perform differently from averaging the 

probabilities (discussed in section 6.5). 

Table 6.4 shows that  exotic averaging (trapezoidal, triangular, parabolic) has not im- 

proved performance. In fact, as  the  weighting becomes more extreme the performance 

appears t o  drop more. Thus mean with the  least weighting difference performs best, and 

parabolic with the most weighting difference performs worst. Unfortunately there is not 

enough accuracy in the numbers to draw solid conclusions. Therefore this observation is 

preliminary. 

6.5 Averaging Probabilities 

In this experiment the logarithms of probabilities were averaged. For those cubic polyno- 

mials that  are largely straight across the  range of ranks involved, this will be the same 
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Table 6.5: Distance Chart for Algorithms in the av(f(R)) Family. Table 6.4 results 
are included for comparison. Notice that computing probabilities before averaging 
seems to improve performance. Details: impostors at perplexity 20, Oct 1996 MFCC- 
based recognizer, equal mix of OGI Names corpus and NYNEX PhoneBook corpus, 
frame/segment/phoneme/word averaging, word models depending on corpus, 32000 trials, 
final test set, equal error rates. For more explanation see page 72. 

as averaging the ranks as reported in section 6.4. In other cases it will make a differ- 

ence. I hypothesized that averaging the ranks would perform differently from averaging 

the probabilities (discussed in section 6.5). 

Table 6.5 shows that computing log-probabilities before averaging seems to improve 

performance, and the exotic averaging (trapezoidal and triangular) still seem to fall behind 

the simple mean average. However, the differences between all these results are too weak 

to be conclusive. 
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6.7 Vocabulary-Independent Final Results 

Cumulative probabilities show promise in comparison to  simple probabilities and like- 

lihood ratios, but the results are not conclusive. A larger number of trials is required to  

see whether these apparent differences are real. 

6.7 Vocabulary-Independent Final Results 

Table 6.6 presents the top results from all the experiments that have been reported in the 

previous several chapters on vocabulary-independent experiments. They are shown using 

three separate evaluation sets: Names, PhoneBook, and Mixed. To be concise only the top 

performers are presented, using the fspw and fw accumulation strategies and impostors at 

perplexity 20. Preliminary results using the development test set show that the algorithms 

best at  this perplexity are also best a t  other perplexities. Final results were limited to 

perplexity 20 only. 
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Table 6.6: Distance Chart for the Top Algorithms. Details: impostors at perplexity 20, 
Oct 1996 MFCC-based recognizer, final test set, equal error rates. For more explanation 
see page 72. 
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Chapter 7 

Confidence 

Rejection by raw thresholds may be a completely adequate solution for many situations 

in automatic speech recognition. But "tuning" to find the right setting can be difficult. 

It can depend on the makeup and size of the impostor vocabulary, as well as the cost 

analysis of making different types of errors. Vocabulary independence and integration 

with higher processes such as a dialogue manager further increases the difficulty of using 

raw thresholds. Confidence provides a uniform approach to these issues. 

This chapter completes the discussion of rejection by developing an actual confidence 

score that can for example guide higher-level decisions about dialogue processing. 

7.1 Continuous Versus Discrete 

The final use of any confidence and rejection calculation is probably a discrete decision 

to do one thing or do something else. It seems useful to  view "confidence" as a contin- 

uum of scores with some designated threshold such that computed scores on one side are 

"good enough7' (accepted) for some purpose, and on the other side they are "not good 

enough" (rejected). What information should be returned from a confidence and rejection 

calculation? Is a confidence measure necessary? 

7.1.1 Accept, Verify, or Try Again 

One approach to confidence and rejection is to set two thresholds. The best-scoring 

recognitions are automatically accepted. The worst-scoring recognitions are automatically 

rejected. In a voice response system, rejection would generally cause the prompt to be 
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repeated. The middle-scoring recognitions might be verified by a dialogue such as, "Did 

you say (the thing recognized)?" 

At any given threshold there is some proportion of correct recognitions that will be 

rejected, and some proportion of incorrect recognitions that will be accepted. Depending 

upon the application, there may be different penalties for different system errors. For 

example, if the question is, "Did you say 'Delete all files'?", one might wish to err on the 

side of caution and only accept a "yesn that is clearly a "yes." But if the response seems 

to be "no," one might wish to generously accept it, possibly requiring a frustrated user 

to repeat the command. To err on the side of caution, it is clear that the making of an 

accept-verify-reject decision requires task-specific information. 

The scope of this thesis is to develop general techniques that are applicable in a broad 

variety of settings. Therefore the verification (or "confidence") component is designed to 

report the probability of some specified answer. Other components can be constructed as 

needed to respond to  that assessment. 

7.2 True Confidence 

The goal is to create a confidence measure that can be used by other processes in a 

straightforward way. One obvious definition for confidence is the posterior probability 

that a given recognition event is correct. Because probabilities are equivalent to likelihood 

rat ios,bnd because prior probabilities and task-specific cost information may not be 

known, confidence will instead be presented as a likelihood ratio .t. Specifically l(score) = 

,-. These probabilities can be estimated from a training set. 

Notice that prior probabilities for words and larger constructs are not available for 

the analysis of this thesis. The availability of prior probabilities is limited to the occur- 

rence of phonemes and strings of phonemes in English. Task-based or vocabulary-based 

prior probabilities together with updating information from the acoustic reliability scores 

(confidence measures) created here can be used to generate posterior probabilities. Such 

use is illustrated in the collect-call example of this thesis, but a detailed consideration of 

'For probability p, the likelihood ratio I is I = *. Similarly p = 6. 
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posterior probabilities is beyond the scope of this thesis. 

7.2.1 Estimating p(1mpostor) 

Impostors are generated from random lists of incorrect words. As more words are used in 

each list, the chance of getting a better impostor is improved. With a list of one word, that 

word becomes the impostor. With the addition of a second word, there is a 50% chance 

the second word will have a better score than the first word did, and will thus become the 

new impostor. When the nth word is added to the list, there is a 1-in-n chance that the 

new word will become the impostor. Thus perplexity is logically related to  the goodness 

of fit for the impostor. 

Figure 7.1 shows log-frequency histograms at various perplexities. Notice that the his- 

tograms are roughly parabolic, indicating normalcy in the underlying distribution. Notice 

also the even spacing of the parabolas, suggesting that the impostor curve is a simple 

function of the logarithm of the perplexity. Figure 7.2 shows the same histograms on a 

linear-frequency scale. Notice the spacing and goodness of fit. The distributions of scores 

for impostors are found to be roughly normally distributed. By taking the logarithm of 

the histogram, a normal distribution becomes a parabola open downward and can be fitted 

using ordinary statistical methods. 

It can be seen that the top of the distribution for "impostor 2" is at a raw score of about 

-4. The top of "impostor 10" is at a raw score of about -3. The top of "impostor 50" is at 

a raw score of about -2. From this it is conjectured that each multiplying of the perplexity 

for the impostor moves the peak of the distribution by one point. It must be stressed 

that this is only a first approximation. Using this rule, "impostor 250" would be expected 

to peak at -1, "impostor 1250" would be expected to peak at 0, and "impostor 2795" 

(1250 x 5°.5) would be expected to peak a t  0.5. Recall that these curves and datapoints 

are specific to the Oct96 recognizer, and would be different for other recognizers. 

From this information log(p(score)impostor,perplexity)) can be estimated for any 

score and perplexity. 
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Figure 7.1: Log-Scale Histograms a t  Various Perplexities. Notice that the histograms are 
roughly parabolic, indicating normalcy in the underlying distribution. Notice also the 
even spacing of the parabolas. Details: Oct 1996 MFCC-based recognizer, equal mix of 
OGI Names corpus and NYNEX PhoneBook corpus, development test set, probability 
normalized by rank 6, frame/segment/phoneme/word averaging, 8000 trials, word models 
depending on corpus. 

7.2.2 Estimating p(True) 

Perplexity does not play a role in true scores. Figure 7.3 confirms this. It shows the 

histograms for six different perplexities (2, 3, 5, 10, 20, 50) for the same dataset. Notice 

that the six histograms are nearly identical. 

The histograms for true scores appear to peak at a raw score of about 0.5. 

The histograms of true values are not as normal as the histograms for the impostors. 

It is not clear what the underlying distribution might be. The Weibull distribution has 

been suggested but not evaluated. However the variation from normal is only pronounced 

for positive raw scores, at which point the impostor scores become insignificant. Therefore 

although fitting by a normal distribution does affect the final likelihood ratio, all likelihoods 
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Figure 7.2: Histograms at Various Perplexities. Notice the spacing and goodness of 
fit. Details: Oct 1996 MFCC-based recognizer, equal mix of OGI Names corpus and 
NYNEX PhoneBook corpus, development test set, probability normalized by rank 6, 
frame/segment/phoneme/word averaging, 8000 trials, word models depending on corpus. 

are quite large, so it does not substantially affect the final probability since large likelihoods 

all yield probabilities near 1.0. (Doubling the likelihood hardly affects the probability.) 

The final goal is a probability rather than a likelihood. 

If the conjecture in the previous section about impostors holds, then when the per- 

plexity is about 2795, the score of the impostor is likely to be as good as the score of 

the true word, and it will become impossible to discriminate them based on this present 

technology. It will then be necessary to use other sources of knowledge, such as language 

models, or a better recognizer. However as the accuracy of the recognizer improves, this 

limit of 2795 should also increase because the true scores should become better while the 

impostor scores should become worse, thus increasing the separation between the p(true) 

and p(fa1se) alternatives. 
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Figure 7.3: True Histograms at Various Perplexities. Notice that the histograms are 
nearly identical, and that they are only slightly skewed away from the fitted normal 
curve. Details: Oct 1996 MFCGbased recognizer, equal mix of OGI Names corpus 
and NYNEX PhoneBook corpus, development test set, probability normalized by rank 6, 
frame/segment/phoneme/word averaging, 8000 trials, word models depending on corpus. 

7.2.3 Estimating the Likelihood Ratio 

Given p(scorelimpostor, perplexity) and p(score1true) the likelihood ratio is immediate. 

Figure 7.4 shows probabilities derived from likelihood ratios for several perplexities, based 

on the fitted curves. Outside the displayed range of 4 to  -10 the components of the 

likelihood ratio are so small as to  produce surprising effects, such as p(true) overtaking 

p(impostor) for raw scores around -30. Such raw scores would be rare indeed in practice. 

7.3 Application to a Real-World Problem 

As in the case of the "collect call" system mentioned on page 1 it would also be useful to 

know what decision should be made. The likelihood ratio can be converted to  a probability 
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Figure 7.4: Probabilities from Likelihood Ratios. Details: Oct 1996 MFCGbased 
recognizer, equal mix of OGI Names corpus and NYNEX PhoneBook corpus, development 
test set, probability normalized by rank 6, frame/segment/phoneme/word averaging, 8000 
trials, word models depending on corpus. 

so the system can report that there is, for instance, 95% certainty that the answer is "yes." 

When the likelihood ratio is combined with the prior probabilities of true and impostor, 

the result can be used to derive the final confidence or probability of truth. For example, 

if the likelihood ratio is 35 to 1 and the overall probability of a true recognition is 0.8, 

then the updated likelihood becomes 35(*) = 140. The final probability of truth is 

- = .9929. 

The cost of a decision can be computed in a straightforward manner also. There are 

four parameters: the cost of accepting the truth (at), the cost of rejecting the truth (Type 

I error) (rt) , the cost of accepting a falsehood (Type I1 error) (a f )  , and the cost of rejecting 

a falsehood (rf) .  When the probability of truth is t, the expected value of accepting (a) 

or rejecting ( r )  the decision are: 
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Thus it is shown that an accurate measure of confidence expressed as a probability or 

as a likelihood ratio provides a uniform approach to decision making and rejection under 

a variety of possible conditions. 



Chapter 8 

Conclusions 

Several forms of utterance verification were presented. The majority of the research is 

concerned with vocabulary-independent confidence and rejection. Vocabulary indepen- 

dence means that  the words in the vocabulary can be supplied after the algorithms are 

developed; the algorithms d o  not depend on any particular choice of vocabulary words. 

8.1 General Conclusions 

It was shown (section 5.3) that  frame scores which are probabilities can be averaged t o  

advantage if they are first converted t o  the logarithmic domain. This same result should 

apply t o  likelihoods as well. Averaging in the linear probability domain was shown t o  work 

less well. Averaging in the log domain is believed t o  work better because the underlying 

scores resemble probabilities, and the combination of them is best done by multiplication 

in the linear domain or by addition (or averaging) in the log domain. 

It was shown (section 5.4) that  hierarchical averaging works. Frame scores can be 

averaged across segments (frames with the same ANN output identity) t o  make segment 

scores, and those can be averaged across phonemes and then words t o  make word scores. 

Figure 5.6 illustrates the improved separation of true scores from impostors using this 

scheme. This is expected because of an intuition that  human perception occurs in a 

hierarchical manner at these same levels, and that  normalization for time may need t o  

occur on a routine basis. 

I t  was shown (section 5.5) that  normalizing the ANN outputs by an average of the top 

several scores in each frame gives an improved separation of true scores from impostors, 



8.1 General Conclusions 134 

as compared t o  not doing this normalization. This resulted in a "best score" among all 

algorithms tested. Normalizing using lower-ranked ANN outputs was shown t o  worsen 

performance. The intuition here is that  higher-ranked phonemes make up the actual 

alternate hypothesis for a recognition. Lower-ranked phonemes are irrelevant. A favorable 

comparison between the aligned (putative) phoneme and these topranked alternatives is 

the thing that  is of key importance. 

I t  was shown (section 6) that  throwing away ANN scores and using just the corre- 

sponding ranks also results in a "best score" among all algorithms tested. The intuition 

here is that  rankings should be more robust t o  noise and other disturbances. When all 

scores go up or down with changes in acoustic quality of the utterance, the rankings should 

remain stable. This is perhaps just a different way of looking at the comparison between 

the aligned phoneme and topranked alternatives, but in this case it is the number of 

topranked alternatives that  is important, rather than the ratio of their scores. 

Weighted averaging schemes (triangular, trapezoidal, and parabolic) were examined in 

section 6.3 and found t o  give no additional discriminative benefit. It was expected that  

some form of weighted averaging would yield better performance. The failure in finding 

such an improvement may simply indicate that  within a segment (phoneme state) the  

ranks vary in a random manner that  is not biased by whether or  not the alignment is true, 

at least with respect t o  impostor recognitions. 

It was shown (section 7.2.1) that  perplexity of the impostor set plays an important 

role in computing the impostor probability used in the  likelihood ratio. This is because 

the impostors are generated from random lists of incorrect words. As more words are used 

in each list, the chance of getting a better impostor is improved. This also suggests that  

a given recognizer has some maximum perplexity limit beyond which out-of-vocabulary 

utterances cannot be discriminated on the basis of acoustics alone. 



8.2 Noteworthy Points 

8.2 Noteworthy Points 

Bootstrap parameter estimation techniques (section 4.11.8) were utilized t o  assess the 

strength of performance differences. The earlier use of these techniques would have pre- 

vented some incorrect conclusions that  wrongly guided some decisions and conclusions in 

early phases of the research. Had these mistakes been corrected earlier, the research would 

have been completed sooner. 

I t  was shown that  likelihood ratios (odds) and probabilities can be estimated from raw 

scores (section 7.2.3) and that  these can be used t o  solve typical business problems in a 

principled way. 

8.3 Future Work 

Combining Best Methods: The best two methods were the new rank-based approach 

and the procedure of normalizing scores by the average score of the  top several phonemes 

in a frame. The  intuition for combining the approaches is that  I suspect they use different 

information and in combination the performance would improve compared t o  either one 

alone. The combination would first normalize ANN outputs according t o  their performance 

on a training set. This is similar t o  the rank-based approach in that  each of the 544 segment 

types has its own performance accuracy that  varies by rank or by absolute score. The 

differences in performance are probably due t o  inadequate training of the ANN (insufficient 

examples or  poor clustering of examples). After this normalization a second normalization 

would occur based on the average of the topscoring phonemes in the frame. 

Utterance Length: It would be interesting t o  take into account the length of an ut- 

terance in computing the probability of an impostor utterance. If an utterance is long 

enough there is a high probability of finding a strong impostor by wordspotting. 

Vocabulary Confusability: I t  would be interesting t o  take into account the confus- 

ability of the vocabulary when computing the probability of an impostor. 
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Hierarchical Accumulation: It would be interesting to look further into the segmen- 

tal accumulation of frame scores. Why is it that frame/segment/phoneme/word averaging 

seems to perform better than frame/segment/phoneme/syllable/word averaging? The in- 

tuition is that frame/segment/phoneme/syllable/word averaging should give the better 

performance. Is the failure due to poor modeling of syllable boundaries? Is human per- 

ception seated in some other construct like the syllable but not equal to it? 

Un-Pipelining: Pipelined recognition using a lookahead of no more than about 150 

msec was used throughout. Pipelining sacrifices some accuracy in exchange for faster 

recognition. It would be interesting to trade back some lookahead for additional accuracy 

if the recognition is of low confidence. In particular, the entire utterance (or relevant 

portion) could be used to  initialize the filters, and then could be reused in recognition. 

This can be justified on the basis that humans may use short-term memory to re-parse an 

utterance that was not initially understood. 

Phonological Rules: It would be interesting to use phonological rules (as in Oshika, 

Zue, Weeks, Neu, and Aurbach 1975) to modify the standardized pronunciation from a 

Text-to-Speech system so that it more properly represents the variety in pronunciations to  

be expected. Using improved word models one might hypothesize a more accurate match 

between the correct word model and the utterance waveform. On the other hand, it may 

be true that the increased perplexity due to allowing phonological variation will also allow 

incorrect word models to match better. It is to be hoped that the net effect would improve 

recognition and confidence measurement. 

Word Boundaries: Word modeling was done with the assumption that the recognized 

word was surrounded by silence. This is certainly not true for most embedded utterances. 

There are several ways that this might be improved. One would be to discount the scores 

coming from the first and last segment of the word model, since these would be the 

segments affected by bad assumptions about context. Another more difficult way would 

be to extend the context by identifying part or all of the surrounding utterance. 
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