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Abstract

Local Models and Gaussian Mixture Models for Statistical Data

Processing

N andakishore Kambhatla, Ph.D.

Oregon Graduate Institute of Science & Technology, 1996

Supervising Professor: Todd Leen

In this dissertation, we present local linear models for dimension reduction and Gaus-

sian mixture models for classification and regression. When the data has different struc-

ture in different parts of the input space, fitting one global model can be slow and

inaccurate. Simple learning models can quickly learn the structure of the data in small

(local) regions. Thus, local learning techniques can offer us faster and more accurate

model fitting. Gaussian mixture models form a soft local model of the data; data points

belong t.o all "local" regions (Gaussians) at. once with differing degrees of membership.

Thus, mixt.ure models blend together the different. (local) models. We show that 10-

callinear dimension reduction approximat.es maximum likelihood signal extraction for a

mixture of Gaussians signal-plus-noise model.

The thesis of this document is that "local learning models can perform efficient (fa..<;t

and accurate) data processing". We propose local linear dimension reduction algorithms

which partition the input space and build separate low dimensional coordinate systems

in disjoint regions of the input space. We compare the local linear models with a global

linear model (principal components analysis) and a global non-linear model (five layered

XVi



auto-associative neural networks). For speech and image data, the local linear models

incur about half the error of the global models while training nearly an order of magnitude

faster than the neural networks. Under certain conditions, the local linear models are

related to a mixture of Gaussians data model.

Motivated by the relation between local linear dimension reduction and Gaussian

mixture models, we present Gaussian mixture models for classification and regression

and propose algorithms for regularizing them. Our results with speech phoneme classi-

fication and some benchmark regression tasks indicate that the mixture models perform

comparably with a global model (neural networks).

To summari7.e, local models or Gaussian mixture models can be efficient tools for

dimension reduction, exploratory data analysis, feature extraction, classification and

regressIOn.
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Chapter 1

Introd uction

In this dissertation, we consider local models for multi-variate data processing. We

present local linear models for dimension reduction and Gaussian mixture models for

cl&,>sification and regression. We develop the relation between local linear dimension

reduction and maximum likelihood signal extraction from a mixture of Gaussians signal-

plus-noise model. Empirical results with speech and image data show that local models

can perform fast and accurate data processing.

Multi-variate analysis is the statistical analysis of data that consists of sets of mea-

surements. For example, for speech processing applications, we may model the frequency

components of a segment of an utterance. and for image processing applications, we may

model the pixel intensities of a digitized image. In both these c&,>es,each pattern is

characterized by a set of variables. Multi-variate analysis methods model the statistical

dependence among these variables.

Unsupervised learning algorithms model the dependencies among the data variables

without any external teacher or target function. In this dissertation, we present un-

supervised algorithms for dimension reduction whose goal is to obtain low dimensional

encodings of data vectors such that the mean squared error between the original vectors

and their reconstructions from the low dimensional encodings is minimized. Dimension

reduction algorithms are often used for extracting features for cl&,>sification (Cottrell &

Metcalfe 1991, Golomb, Lawrence & Sejnowski 1991, Leen, R.udnick & Hammerstrom

1990. Yang & Dumont 1991) and for image coding and compression (Cottrell. Munro &

Zipser 1987, Cottrell 1988). For an n to m dimension reduction, these algorithms learn

1



2

encoding functions f : nn -+ n m and decoding functions g : n m -+ n n, from sample

data points.

Supervised learning algorithms model the dependencies between distinguished input

and output variables. The goal is to predict the output vector for a given input vector.

For cla..<;sification, the output variables represent cla..<;slabels, indicating membership to

one of K categories or classes. Thus, classifiers learn a function f : nn -+ {a, 1}l\ ba..<;ed

on sample data points. Regression algorithms learn a function f : nn -+ nrl! from 12

predictor variables (inputs) to m response variables (outputs), ba..<;edon sample data

points.

In this chapter, we first define global and local models and describe their relation to

Gaussian mixture models. We then describe dimension reduction algorithms and briefly

discuss local linear models for dimension reduction. In section 1.3, we discuss Gaussian

mixture models for cla..<;sificationand regression. Finally, we sketch an outline of the rest

of the thesis.

1.1 Global models, local models and Gaussian mixture
models

I30th unsupervised and supervised learning algorithms learn a function f (.), ba..<;edon

sample data points. Local learning algorithms employ a dividc-and-conquer approach:

they divide a complex problem into simpler problems and combine their solutions to

yield a solution to the complex problem (.Jordan & .Jacobs 1994). A global model builds

a single function for the whole data space, while a local model builds separate functions

in different regions of the data space. For instance, consider learning a function f :

nil -+ nm. A local model partitions nn into Q disjoint regions {RI"'" RQ} and learns

separate local functions fi : Ri -+ nm, for i = 1, . . . , Q. Thus the model is

!

!dX)
f(x) = :

fQ(x) if x E RQ.
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A feedforward neural network (Rumelhart, Hinton & Williams 1986, Hertz, Krogh &

Palmer 1991) builds a global model of the data. Examples of a local model include

the classification and regression trees (CART) algorithm (nreiman. Friedman, Olshcn

& Stone 1984) and Friedman's (1991) multivariate adaptive regression splines (MARS)

algorithm. These algorithms divide the input space into a nested set of regions ami fit.

simple functions (e.g a constant function or a low order polynomial function) wit.hin these

regions. Leen and I propose local linear models for dimension reduction (Kambhatla and

Leen 1993,1994). Hinton et al (Hinton, Revon & Dayan 1995) use local linear models for

handwritten digit recognition.

Global models can be inefficient (slow to learn and inaccurate) whenever the structurc

of thc data is different in different parts of the input space, i.e whencver thc function

.f ( .) is highly complex. For instance, if the n dimensional data lies near an /,~dimensional

curved manifold I.a global model can potentially incur a large error sincc, an inaccurat.c

fit in one region of the input space effects the fit in all of the input space (sce section 2.2.4

for an examplc of this). Simple models (e.g a constant function or a linear function) can

qui~kly learn the structure of the data in local regions of the input. space. Local models

like CART and MARS often have convergence times orders of magnit.ude fa..<;terthan

neural network algorithms (.Jordan & .Jacobs 1994).

In t.erms of the bias/variance tradeoff (Gemen, llienenstock & Doursat 1992), in

gcneraL a local model will have a higher variance than a global model having equal

complexity a..<;each local model, since thc local parameters are estimated ba..<;edon a

smaller number of data points (subsets of the original training set). We can lower the

variance of the local models by using "soft partitions" of the data2, where data points are

allowed to simultaneously belong to multiple regions with differing degrees of membership

(na..<;ford& McLachlan 1985. McLachlan & na..<;ford1988. Nowlan 1991. .Jordan & .Jacobs, "

1This means that the data surface is diffeomorphic to R k in the neighborhood of any data point on
the surface.

250ft partitions are referred to as probabilistic clustering in the statistics community, e.g see (Basford
& McLachlan 1985. McLachlan & Basford 1988).
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1994). A soft local model of the data blends together different (soft local) functions.

Q

f(x) = L hi(x)J;(x) ,
i=1

(1.1)

where Ii(.) are the soft local functions, and hi : nn -+ n represent the probability that

x belongs to the support of Ii ( .). Thus. a soft local model computes a weighted sllln of

(local) functions. .Jacobs, .Jordan et al propose soft local models for supervised learning

as a "mixture of experts" architecture (.Jacobs, .Jordan, Nowlan & Hinton 1991. .Jordan

& .Jacobs 1994). Dregler and Omohundro use soft local linear models to learn non-linear

constraint surfaces from the data (1994) and for '"manifold learning"' (1995). Marroquin

(1995) discusses soft local models and local models for classification and regression.

A model of the probability density function of an n dimensional random vector :r as

a mixture density of Q multi-variate Gaussians defines a soft local model of the data.

Let

Q

p(x) = L (Xi pdx)
i=1

(1.2)

where Pi(X) are the component Gaussian densities, and ILi and L:i are the means and

covariance matrices of the ith component Gaussian. Note the similarity between (1.2)

and (1.1). Each component Gaussian Pi(") is a soft local function of the inputs and the

mixture density p(.) is a weighted sum of the soft local functions.

We can obtain a hard partition from the Gaussian mixture model by a.<;suming that

for any given x, the mixture density p(x) is dominated by only one of the component

Gaussians. Mixture models have been extensively used a.<;a hard clustering technique in

the statistics community (e.g see (Lazarsfeld & Henry 1968, Ganesalingam & McLachlan

1979, Aitkin, Anderson & Hinde 1981, Da.<;ford & McLachlan 1985)). McLachlan and

Da.<;ford (1988) note that one can obtain a hard partition from a mixture model by

allocating each vector x to the component to which x ha.<;the highest posterior probability

of belonging. Nowlan (1991) used this "winner-take-all' a.<;sumption to show the relation



bet.ween Gaussian mixt.ure models and hard clust.ering algorit.hms like vect.or quant.i7.at.ion

(VQ: (Gersho & Gray 1992)) which build a local data model. The relat.ion between VQ

clustering and a mixture of Gaussians model was earlier suggested by Duda and Hart.

(1973). In appendix B, we summarize a derivation of this relation.

In t.his dissertation. we present local linear models for dimension reduction and Gans-

sian mixt.ure models for classification and regression. We show that local linear dimension

reduction algorithms approximate a Gaussian mixture model. Gaussian mixture models

for da.<;sification define a soft local model of the data and Gaussian mixture models for

regression define a soft local linear l"egression function. In the next. section, we describe

the curse of dimensionality and discuss local linear dimension reduction algorit.hms. We

t.hen describe Gaussian mixt.ure models for classificat.ion and regression.

1.2 The "curse of dimensionality"

The "curse of dimensionalit.y" is a phra.<;ecoined by Bellman (19G1) t.o refer to problems

associat.ed wit.h high dimensional dat.a. The ba.<;icproblem is t.hat. dat.a is very sparse

in high dimensions. As Dreiman ct al (1984) not.e in t.heir book, 10 point.s on t.he unit

int.erval are a lot. doser toget.her t.han 10 point.s in a unit 1O-dimensional hypercube. If

we build a hist.ogram with 10 int.ervals in each dimension, we will have 1011cells for n

dimensional data. For large n. a very large number of dat.a points would be required to

obtain a rea.<;onable histogram.

A related problem is the pot.ential over-parametri7.ation of data processing algorithms,

when modelling high dimensional data. For most. commonly used density estimation

procedures, the number of parameters grows much fa.<;ter than O(n) with increa.<;ing

n (input dimensionality). For example, a multi-variate Gaussian density ha.<;O(n2)

parameters, a multinomial density ha.<;0(2n) parameters. and a mixture density of Q

Gaussians ha.<;O( Q *n2) parameters. Unless we regulari7.e these models, we require more

complex models (with many parameters) to model the statistical dependencies among

the dat.a variables for high dimensional data.
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If the number of parameters of a model is large relative to the number of sample data

points used to train the model, the model can over-fit to the training data. Thus, the

model may learn spurious dependencies that do not exist in the population. resulting in

poor generalization ability. In terms of the bia.c;/variance tradeoff (Gemen d at. 1992),

over-parametrized models can have a high model variance, which means that the trained

parameter values vary greatly with the particular training set used. Complex models

with a large number of parameters can also require a long time to train and a large

storage space.

In contra.c;t, low dimensional data is easier to visuali:w and interpret, and is ea.c;ier to

model, since small sample data sets are sufficient to learn the data dependencies of the

population. Moreover, the models are less compute and memory intensive. In the next

section, we describe algorithms for reducing the dimensionality of data.

1.2.1 Dimension reduction algorithms

The objective of dimension reduction algorithms is to obtain a parsimonious description

of the structure underlying a set of multi-variate data. The goal is to obtain compact

encodings which optimi7.e a criterion for "accuracy" of representation. In general, the

criteria will depend upon the specific application.

For instance, for da.c;sification ta.c;ks. we want to extract features from the data which

are most effective for separating the da.c;ses. In this ca.c;e, "accuracy" refers to the "ef-

fectiveness for separating da.c;ses". Linear discriminant analysis (Fukunaga 1972) finds

the optimal linear transformation of the data vectors to extract (linear) features ba.c;ed

on their effectiveness for separating da.c;ses.

Factor analysis (Harman 1976) is a dimension reduction technique, which aims to

obtain low dimensional encodings which maximally account for the correlations between

the original data variables. Multi-dimensional scaling (KruskaI1964) is a technique for

extracting the underlying criteria or dimensions that people use in perceptually mea.c;ur-

ing (dis )similarities between objects (data points).

We mea.c;ure the "accuracy of representation" by the mean squared error induced in
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reconstructing the original data vectors from the low dimensional encodings. This accu-

racy criterion is often used for extracting features for classification (Cottrell & Metcalfe

1991. Golomb et 0.1.1991, Leen et al. 1990, Yang & Dumont 1991) and for image coding

and compression (Cottrell et 0.1.1987, Cottrell 1988). The goal is to obtain compact.

representations of the data, from which we can best recover the original data (in the

mean squared sense). Let f : n n ---*n m define an encoding function from a vector

x E nn to a vector z = .f (x) E nm, where m < n. Let 9 : n m ---*n n define a decoding

function from z to j; = g(J(x)) E nn, a reconstruction of x. The mean squared error in

reconstructing the original data is

£ = E[ II x - g(J(x» 112] (1.3)

where E[.] denotes an expectation with respect to the random vector x.

Principal componcnt analysis (HoteHing 1933, Oja 1983) (PCA) is a dimcnsion rc-

duction algorithm which obtains the lcast error (1.3) among all techniqucs with linear

encoding and decoding functions (J ( .) and 9 ( .) ). PCA builds a global linear model of the

data: an Tn dimensional hyperplanc spanncd by the lcading cigenvectors3 of the data co-

variance matrix. PCA incurs a high error whencvcr thc data has non-linear dependcncics

not eliminatecl by rcmoving corrclations.

Fivc layerecl auto-associativencural networks (FLNs) (Kramer 1991, Oja 1991) are

capable of builcling non-linear cncoding .f ( .) and decoding g(.) functions, by capturing

any non-linear dcpcndencies among the clata variables. Thesc networks have at least one

layer with a smaller number of nodes (m nodes) than the number of inputs (n). The

networks are trained to learn an identity mapping. The activations of the bottleneck

layer nodes form thc low dimensional representation. FLNs can form a global non-linear

moclel of the data: a smooth low climcnsional (possibly curved) non-lincar surface that

approximates the spreacl of the data. A FLN approximates a data point x E n n by

projecting it onto thc lcarncd manifold.

3The leading m eigenvectors of a positive definite matrix are the eigenvectors which correspond to
the largest m eigenvalues.
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Training big five layered networks can be time consuming and inefficient. In general,

a global model can be efficient (inaccurate and hard to fit) when the data lies near

complex curved manifolds. A subset of Rn, X is an m dimensional manifold if it. is

locally diffeomorphic to R m. In other words, X is an rn dimensional manifold, if near

any point x EX, there exists a neighborhood, from which' we can build a smooth,

one-to-one and onto mapping to Rm whose inverse is also smooth. A global model for

dimension reduction applies a single encoding and decoding function .f ( .) to all regions

of the input space. When the data has different structure in different regions of the input

space, this can be very inefficient. I3uilding simple linear models in local region.~ of the

input space can be fa.<;terand more accurate.

We propose the following algorithm:

1. Partition Rn into Q disjoint regions {RI,..., RQ}.

2. Form separate linear encoding and decoding functions .f; (-) : Ri -t R m and gi ( .) :

Rm -t R n in each Ri, i = 1,. . . , Q, using the subset of the training data mapped

ont.o Hi in the first step.

3. To reduce dimension of x E Rn, use t.he encoding function

_

!

,:I(X)
f(x) - :

fQ(x)

(1.4)

The encoding is given by < '/lJ, Z >, where '/lJis the index of t.he local region and z =
.f11)(3;) E Rm is the local m dimensional coordinate vector. The decoding function is

We use a vector quantizer (VQ: a piece-wise constant modelling technique which parti-

tions the input space into a disjoint regions) to partition the input space in step 1 above

and an rn dimensional PCA to build the local encoding and decoding functions. We refer

to the above procedure as VQPCA.
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Algorithms based on PCA in local regions of the input space have been used be-

fore. Fukunaga (1971) and Broomhead (1991) use PCA in local regions to estimate

the intrinsic dimcnsion of the data. We propose the VQPCA model in (Kambhatla &

Leen 1993, Kambhatla & Leen 1994). Bregler and Omohundro (1994, 199G) use PCA in

local regions to learn constraint surfaces of the data and to interpolate between image

sequences. Hinton et 0.1(1995) use an algorithm based on local PCA for handwritten

character recognition.

In summary, we propose local linear models for dimension reduction which build

several low dimensional coordinate systems in disjoint regions of the input space. We

will show that this method is more efficient (more accurate and faster to train) than

learning a global non-linear surface which approximates the data.

In the first part of this thesis, we present PCA, FLNs, and several implementations

of VQPCA which differ in the method used to partition the input space. We derive

the relation of VQPCA to a mixture of Gaussians data model and present empirical

results comparing PCA, FLNs and VQPCA. In the second part of the thesis, we present

GauRsian mixture models for supervised learning algorithms and methods for regulari7.ing

them. In the next s~ction, we briefly describe these algorithms.

1.3 Gaussian mixture models for supervised learning

R.eferences to the use of statistical mixture models a..<;a modelling technique date back to

the late 19th century papers by Newcomb (1886) and Pearson (1894). Mixture models

are extensively used in applications where data can be viewed a..<;arising from several

populations mixed in varying proportions. Gaussian mixture models have been used for

the identification of outliers (Aitkin & Wilson 1980), and for the investigation of robust-

ness of certain statistics to departures from normality (Sriva..<;tava& Lee 1984). Gaussian

mixture models are widely used to tackle the "missing data problem" where one or more

of the data variables may be unavailable (Dempster, Laird & R.ubin 1977, Ghahramani
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1994, Ghahramani & Jordan 1994b). Mixture models have been used a..<;a clustering tech-

nique (Lar.arsfeld & Henry 1968, Ganesalingam & McLachlan 1979, Basford & McLach-

Ian 1985), for supervised learning in the "mixture of experts" architecture (Jacobs rotai.

1991, .Jordan & .Jacobs 1994), for classification using Bayes cla..<;sifiers(Ghahramani &

.Jordan 19940.,Ghahramani & Jordan 1994b, Ormoneit & Tresp 1995, Hinton rotai. 1995),

and for regression (Ghahramani & .Jordan 19940., Ghahramani & Jordan 1994b, Leen

1995). For a much more extensive discussion on mixture models and their myriad ap-

plications, see the books by Everitt and Hand (1981), Titterington rot ai (1985) and

McLachlan and Basford (1988). In particular, the text by Titterington et ai contains a

comparative table of 90 applications of mixture models to real world problems. In this

section, we describe Gaussian mixture models for cla..<;sificationand regression.

1.3.1 Gaussian mixture models for classification

A cla..<;sifierassigns vectors from nn (n dimensional feature space) to one of K cla..<;sesor

categories, partitioning the feature space into K disjoint regions. We model the input

variables for each cla..<;s8epamtely using a mixture of Gaussians (1,2) and build Bayes

cla..<;sifiers(called Gaussian mixture Bayes (G MB) cla..<;sifiers).

Priebe and Marchette (1991) describe a cla..<;sificationalgorithm which uses a recur-

sive technique derived from Gaussian mixture models for each class. They recursively fit

mixture models for each cla..<;s,where the number of components is allowed to grow with

the data. Ghahramani and Jordan (19940., 1994b) and Ormoneit and Tresp (1995) have

previously discussed G MB classifiers. Heck and Chou (1994) use a G MB model to cla..<;-

sify machine failure modes. They classify a signal as containing metallic or non-metallic

transients based on a time frequency representation of the signal using the wavelet trans-

form. Marroquin (1995) describes "local Gaussian cla..<;sifiers"where he models each cla..<;s

conditional density a..<;a mixture of Gaussians, and uses Bayes discriminant functions to

classify input vectors.

In this dissertation, we study GMB cla..<;sifiers,show their relation to clustering ba..<;ed

cla..<;sification algorithms and explore different ways of regularizing them. We train the
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mixture models using the Expectation Maximization (EM) algorithm (Dempst.er ct a.l.

1977) (see appendix C); an iterative algorithm for generating maximum likelihood pa-

rameter estimates of mixture models. We derive winner-take-all approximat.ions t.o GMD

classifiers and show that clustering based cla..c;sifierslike the learning vector quanti7.at.ion

algorithm (Kohonen 1988) (LVQ; see appendix D) approximate a GMD model.

GMD classifiers suffer from the curse of dimensionality. A GMD classifier with a

mixture of Q Gaussians for cach of K cla..c;sesand for n dimensional data ha..c;O(K *Q*n2)

parameters. We explore the following ways of regularizing GMB classifiers:

. A commonly used t.echnique is to assume that all covariance matrices are diag-

onal (Nowlan 1991, Ahmad & Tresp 1993) or sphcrically symmetric (Stensmo &

Sejnowski 1995, Nowlan 1991). This greatly reduces the number of paramet.ers.

However. this a..c;sumption is often invalid. For instancc, when cla..c;sifying images

using pixel intensities, the intensities of neighboring pixels are very highly corre-

lated and hence the covariance matrix is far from diagonal or spherically symmetric.

. Following (Ghahramani & .Jordan 19940., Ormoneit. & Tresp 1995), we add a con-

stant. diagonal matrix dnxn to each covariance matrix in each it.eration of the EM

algorithm for training the mixture model for each cla..c;s. This adds bia..c;t.o t.he

model by imposing an artificial lower bound on the volume elements (determinants

of covariance matrices) of each Gaussian, and can decrease the model variance.

. We propose a new method of regularizing G MD classifiers, which prunes those

eigen-directions of each covariance matrix which induce the lea..c;t(empirically mea-

sured) cla..c;sification error when pruned.

We present. experimental results comparing GMD cla..c;sifiers,regulari7.cd GMD cla..c;sifiers

and a fcedforward neural network for two speech phoncme cla..c;sification ta..c;ks. Our

results indicate that GMD cla..c;sifiersperform comparably to neural net.works and the

performance is improved by regulari7.ation. The diagonal and spherically symmetric

a..c;sumptions resulted in the worst performance among the schemes sketched above.
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1.3.2 Gaussian mixture models for regression

The goal of regression analysis is to predict values of m response variables y, given

observed values of n predictor variables x. We model the joint density of the inputs and

outputs a..<;a mixture of Q Gaussians (1.2), and derive the regression function E[y Ix]

a..<;in (Ghahramani & .Jordan 1994a, Ghahramani & .Jordan 1994b). The regression is a

weighted sum of linear models, where the weights are the probabilities of membership

to the component Gaussians of the mixture model. Thus, a Gaussian mixture model for

regression defines a soft local linear model of the data (see section 1.1).

We present the Gaussian mixture regression (GMR.) algorithm which trains a mixture

of Gaussians model (using the EM algorithm) for the joint density of the predictor

and response variables, and uses the estimated regression function E[y Ix] to predict

the response variables. The mixture of Gaussians model can suffer from the curse of

dimensionality since it ha..<;O(Q * (n + rnf) parameters (the joint density is n + m

dimensional). We propose two new ways (Leen 1995) of regulari7.ing the regression

function:

. local ridge regression, where we regulari7.e each of the local predictor functions

using ridge regression (Draper & Smith 1981) and

. principal components pruning (PC pruning), where we prune those directions of

each local prediction matrix which induce the lea..<;tadditional error when pruned

(similar to (Levin, Leen & Moody 1994)).

We present experimental results comparing GMR., regulari7.ed GMR. algorithms, and a

feedforward neural network for some benchmark regression ta..<;ks. Our results suggest

that the G MR. algorithms performed comparably to the neural networks, and regular-

i7.ation wa..<;useful for high dimensional data, when the sample si7.e wa..<;small.

In this section, we described Gaussian mixture models for cla..<;sification and regres-

sion and algorithms for reglllari7.ing these models. In the next section, we outline this

document.
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1.4 Outline of thesis

In the first part of the thesis. we discuss dimension reduction algorithms. In chapt.ers 2

through 5, we describe global and local models for dimension reduction. a probabilist.ic

framework for the local linear models. and experimental results comparing the different.

models for speech and image dimension reduction. In chapter 2, we discuss t.wo global

models for dimension reduction. We describe principal component.s analysis (PCA), a

global linear model, and five layered auto-associative neural networks (FLNs), a global

non-linear model.

In chapter 3, we present our local linear models for dimension reduction (VQPCA

model) which partition the input space using a vector quantizer (VQ)' and build separate

PCA models in the disjoint. regions. We present several algorithms for implement.ing

VQPCA, which differ in the method used t.o obtain the VQ partition. We propose a new

distortion measure for VQ, called "reconstruction distance" which measures the squared

distance of a data point to the m dimensional (local) PCA hyperplane. Clustering using

the reconstruction distance directly minimizes the squared reconstruction error (1.3)

for VQPCA. We describe efficient algorithms for partitioning the input space using a

hierarchical multi-stage or a tree structured VQ, which trade-off a loss in accuracy for a

reduction in complexity.

In chapter 4, we describe a probabilistic framework for VQPCA based on mixture of

Gaussians signal-plus-noise model. We show that, under certain conditions, the VQPCA

encoding is related to the maximum likelihood signal estimate for a probabilistic signal-

plus-noise model. where

. the signal density is a mixture of Gaussians, each with with n - m eigen-directions

with negligibly small eigenvalues.

. t.he noise density is a spherically symmetric Gaussian.

In chapter 5, we present experimental results comparing the different models dis-

cussed above for speech and image dimension reduction, speech feature extraction and
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speech and image compression. Our results with dimension reduction experiments sng-

gest that local linear models (VQPCA) obtain nearly half the error obtained by global

models (FLNs or PCA) and train nearly an order of magnitude fa..<;terthan a global

non-linear model (FLNs). We show that dimension reduction algorithms can be nsed

for speech feature extraction, by learning mappings from low dimensional representa-

tions of speech spectral coefficients to formant frequencies (resonant. frequencies of the

vocal tract). We compare VQ and VQPCA for lossy compression of speech and image

data. We find that, in general, a VQ performs the most accurate compression for a given

bit-rate.

In chapters 6 and 7, we present regularized Gaussian mixture models for cla..<;sification

and regression. In chapter 6, we present Gaussian mixture models for cla..<;sification

and new ways of regularizing the models. We present Gaussian mixture I3ayes (GMI3)

classifiers which use a mixture of Gaussians model for each cla..<;sconditional density. We

show the relation between G MI3 cla..<;sifiersand hard clustering ba..<;edcla..<;sifierslike t.he

learning vector quantization algorithm-1 (LVQ; see (Kohonen 1988) and appendix D). We

discuss different. ways of regularizing G MI3 cla..<;sifiersand propose a new regulari7.at.ion

scheme, which prunes those eigen-directions of each discriminant function, which induce

the lea..<;t(empirically mea..<;ured) cla..<;sification error when removed. This reduces the

model variance, and induces additional bia..<;.We compare the performance of different

mixture models and a feedforward neural network for t.wo speech phoneme cla..<;sification

ta..<;ks.Our results suggest that GMI3 cla..<;sifiersperform comparably to neural networks

and regulari7.ing t.he mixture models is necessary to prevent singular covariance matrices

and over-parametri7.ation.

In chapter 7, we present Gaussian mixture models for regression and propose new

ways for regularizing them. We model the joint density of the inputs and outputs a..<;

a mixt.ure of Gaussians, and derive the regression function E[y Ix]; a local linear func-

tion of the inputs. We propose two ways of regularizing the regression function: local

4LVQ is a clustering based classifier which adapts the placement of reference vectors based on a set
of class labelled data points.
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ridge regression, where we regularize each of the local predictor functions using ridge

regression and principal components pruning (PC pruning), where we prune those din~c-

tions of each prediction matrix which induce the lea..<;tadditional error when pruned. We

present results of experiments predicting the Boston housing prices, the average monthly

sunspots count and a chaotic time series. Our results suggest that regularizing the local

linear predictors wa..<;useful for high dimensional data, when the sample size wa..<;small.

Finally, in chapter 8, we give a summary of the whole thesis, present our conclusions

and suggest directions for future work.



Chapter 2

Global models for dimension reduction

In this chapter, we describe two algorithms for dimension reduction which build a global

model of the data: principal component analysis and five layered auto-associative neural

networks.

The objective of dimension reduction is to obtain a compact representation of the

data for combating the curse of dimensionality (see section 1.1) while retaining sufficient

accuracy of representation. We define dimension reduction as the transformation of an

n dimensional vector x (x E nn) to an 111,dimensional vector z (z E nTH), where m < n.

Implicit in this definition is an encoding function .f : nn -t nm from the inputs x to

the low dimensional encodings z. The idea of "accuracy of representation" can be made

precise by defining a decoding function g : nm -t nn from the encoding z to the input

space. When 111,is specified. the goal is to minimize some suitably defined error measure

between :1;and g(f (x) ). We use the mean squared error defined as

E = E [II x - g(f(x)) 112]
(2.1)

to characterize the accuracy of representation.

Difi'erent dimension reduction algorithms differ in the mappings .f (.) and g(.) that

they build. Global algorithms .define a single encoding function .f(-) and a decoding

function g(.) for all data points. Local algorithms define different encoding functions in

16
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different regions of the input space. Thus, a local algorithm might define f (.) as

!

fI(x) if x E SI.

f(x)= :

.fQ(x) if x ESQ.

(2.2)

where the sets S I , . . . , SQ define a partition of nn and fI (.), . . . , .fQ(.) are local encoding

functions.

In this chapter, we describe two global algorithms for dimension reduction. We first

present principal components analysis (PCA), a global linear algorithm. We describe

PCA, its optimality properties and various implementations of it. We then describe five

layered auto-associative networks which are capable of forming a global non-linear model

of the data.

2.1 Principal components analysis (PCA)

Principal components analysis (PCA) is a classical technique for dimension reduction.

PCA builds a global linear model of the data; an rn dimensional hyperplane spanned

by the leading Tn eigenvectors of the data covariance matrix. PCA is the optimal linear

technique. since, among all linear techniques, it obtains the minimum expected squared

distance between an input vector and its reconstruction from an Tn dimensional encoding.

PCA was first proposed by HoteHing (1933) for dimension reduction. Anderson

(1958) and Morrison (1976) use PCA to reduce the number of variables by eliminating

linear combinations with small variance. Oja (1983) discusses PCA and related tech-

niques. A closely related orthogonal expansion to PCA is the Karhunen-Loeve (K-L)

expansion (Watanabe 1965) which was originally conceived in the framework of continu-

ous second-order stochastic processes. When restricted to a finite dimensional case and

truncated after a few terms, the K-L expansion is equivalent to a PCA expansion.

PCA is used for feature extraction and data compression (Devijver & Kittler 1982),

image compression (.Jain 1989) and characterization of signals in signal processing (Wax

& Kailath 1985). Fukunaga and Olsen (1971) and Hediger et al (Hediger, Passamante
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& Farrell 1990) use PCA in local regions of the input space to determine the intrinsic

dimensionality of a data set. PCA is widely used as a preprocessor for pattern recognition

applications to reduce the input dimension before building cla..<;sifiers.PCA generated

encodings of images have been used to classify faces, emotions and gender (Cottrell

& Metcalfe 1991), and the sexes of humans (Golomb et 0.1. 1991). Leen ct al (1990)

show that using the principal components of speech data for cla..<;sification reduces the

training time significantly without any adverse effect on the accuracy. Yang and Dumont

(1991) show that the use of PCA as a front end for the cla..<;sificationof acoustic emission

signals reduces the training time for the cla..<;sifier,while preserving the cla..<;sification

accuracy. PCA ha..<;also been used for the coding of gray-scale images (Cottrell ct 0.1.

1987) and image compression (Cottrell 1988). Several artificial neural networks ba..<;ed

implementations of PCA exist e.g (Oja 1989, Sanger 1989, R.ubner & Tavan 1989, Foldicik

1989, Kung & Diamantara..<; 1990, Leen 1991). Karhunen and .Joursensalo (1995) discuss

various generalizations of neural network implementations of PCA.

In this section, we describe the PCA encoding and derive its lea..<;tsquares optimality.

We describe implementations of PCA and discuss some of its shortcomings.

2.1.1 The PCA encoding

PCA projects a data vector x (x E J<}I) onto the m (m < n) dimensional linear subspace

spanned by the leading eigenvectorsl of the data covariance matrix ~ = E[(X-IJ,)(X-fl,f],

where fl. = E[x] and E[.] denotes an expectation with respect to x. PCA encodes x a..<;

z = .f(x) = V(x - fl')

( T T )
T

el (x - fl'), . . ., em (x - fl') (2.3)=

where V is an rn x n matrix whose rows, e;, are the leading m orthonormal eigenvectors

of ~, and z is the m dimensional encoding. The components of z arc called the principal

) The leading m eigenvectors {e;ji =I, . ... m} of a positive semi-definite matrix are the m eigenvectors
which correspond to the m largest eigenvalues. The indices are assigned such that the corresponding
eigenvalues in increasing order are given by A) 2: A22: . . . 2: Am.
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L

Figure 2.1: This figure shows the projection x of a vector x onto the subspace L. The
PCA subspace L is spanned by the leading m eigen directions of L:. Here x = x + T,

where T is the residual orthogonal to the subspace L.

component.s. PCA reconst.ructs x from z as

x = g(z) = VT z + 11 (2.4)

PCA can also be defined in terms of the eigenvectors of the data correlation matrix

R = E[xxT] (e.g. see (Oja 1983». Throughout this document, we will be using "PCA"

t.o refer to the version which uses the covariance matrix.

From (2.3) and (2.4), the reconstructed vector x is given by,

h P ",m T . .. . 2 (P nnxn )
'

b dwere = L..i=1 CiCi IS a prOjectIOn matnx E 1'1.- mappmg any mean-su tracte

vector (x - I.L)to its projection vector on the subspace L(CI,"" cm) spanned by the

leading m, orthonormal eigenvectors of L:. Figure 2.1 schematically shows the PCA

projection onto the leading eigenspace. Figure 2.2 illustrates a 2-dimensional PCA of a

3 dimensional data set. The PCA defines a plane in n3. The low dimensional encoding

2 P is symmetric (pT =P), idempotent (p2 =P) and Py =0 for any y 1. L(el,"', em).

x = g(f(x))

= 11,+ VTV (x -11)

= 11+ (f:eicT) (X-II)1=1

= 11,+ P (x - 11) , (2.5)
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Figurc 2.2: Global linear coordinates built by a 2 dimensional PCA for a 3-dimcnsional
Gaussian distributed data. Thc grid lines dcnote the hyperplane spanned by thc 2
leading cigenvectors of thc data covariancc matrix. Thc low dimensional cncoding of a
data point is given by coordinates on the hyperplane of thc projection of the data point
onto the hyperplane.

z is given by coordinates on the :mbspace L{ el, . . . ,em} of the projection of a given point

x onto the plane. A comprehensive discussion of the PCA projection and its optimality

propcrtics is given in (Oja 1983). In thc next subsection, wc will outlinc a proof of the

lcast squares optimality of PCA.

2.1.2 Least squares optimality of PCA

In this scction, wc will outlinc a proof of thc lca..<;tsquares optimality of PCA. Any linear

dimcnsion reduction algorithm projects an input vector x onto an m dimensionallincar

manifold3. Thc mean squared error between x and x is given by thc mean squared error

induced by this projection. Suppose {a I , . . . , am, . . . , an} is a set of orthonormal ba..<;is

vectors for Rn such that {al,..., am} is a set of orthonormal basis vectors for the linear

manifold. The mean squared error E[lIx - £112]is then given by the sum of the variances

3An m dimensional linear manifold AI(e) ,em) centered on a is the set of n-vectors {zlz =
a + b where b belongs to the subspace of Rn spanned by the vectors e), . . . , em}. Here, we assume that
the linear manifold is centered on the mean.
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of inputs along the directions {am+I"'" an}:

E [Ux- if] ~ E [llx- ~ - t.a;a; (x - ~{]
= E

[
. t aiaT (x _ ,1,)2

]l=m+1

= E
[

(x - JLf
( . t aiaT)

(x - JL)

]l=m+1
n

= L E [aT (x -I1,)(X -I1,f ai]
i=m+1

11

= L aT2;ai
i=m+l

(2.6)

where E[.] denotes an expectation with respect to the random vector x, and 2; = Ex[(:1;-

11,)(X- 11,)T]is the data covariance matrix.

Using n-m, Lagrange multipliers to enforce the orthonormality constraints aT ai = 1,

we minimize the cost function
n n

C = '"" aT2;a. - '"" A.faT a. - 1)~ 1 1 ~ 1\ 1 1 ~

i=m+l i=m+l

(2.7)

with respect to ai. Taking the derivative of C with respect to ai and equating it to 0,

we obtain

2;ai = Aiai (2.8)

for .i = rn + L . . . ,n. Therefore, am+I,' . . ,an are orthonormal eigenvectors of 2; with

corresponding eigenvalues Am+I,..., An. Substituting (2.8) in (2.6), we obtain
n

E [II X - 5:112] = L aT2;ai
i=m+l

n

= L aTAiai
i=m+l

n

= L Ai
i=m+l

(2.9)

Thus the mean squared error is the sum of n-m, eigenvalues of 2;, and is minimized when

Am+l' .. . ,An are the smallest eigenvalues of 2; and ai are the corresponding orthonormal
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eigenvectors. This implies that the optimal linear dimension reduction algorithm would

project x onto the linear manifold spanned by the leading m eigenvectors of :E. This is

precisely what PCA does. Thus PCA is optimal in the lea..<;tsquares sense.

PCA also optimi7,es other criteria (Oja 1983). The principal components are mutually

uncorrelated and are the components along the directions of maximum variance for the

n-vector x. In chapter 4, we derive the principal components as the maximum likelihood

signal estimate in a probabilistic signal-plus-Gaussian noise model. We will now describe

our implementations of PCA.

2.1.3 Implementations of PCA

In this subsection, we describe implementations of PCA. Let X = {x I, . . . , xN} denote

a training set of N data points, where xi E n n, i = 1, . . . , N. Suppose we are reducing

data from 71.to m dimensions. We estimate It and :E by the sample mean

~ 1 IV
It = - ""' 1N~x1=1

and

the sample covariance matrix

y
~ 1~ 1 ~ 1 ~T

:E = N ~(x - It)(X - It)
1=1

respectively. We reduce t to a tridiagonal form using the Householder algorithm (Golub

& van Loan 1983, Press, Flannery, Teukolsky & Vctterling 1987). We then use the QL

algorithm with implicit shifts (Golub & van Loan 1983, Press ct al. 1987) to compute

the orthonormal eigenvectors Ci of t. Finally, we use (2.3) to obtain low dimensional

encodings.

When the input dimension 71.is very large (of the order of hundreds or thousands), it

is not feasible to compute and store t. This is often the case, for instance, when using

PCA for image analysis (Cottrell et al. 1987). Also, when 71.is very large, we often have

insufficient data to estimate t. In the extreme case when the number of input vectors,

N, is less than 71.,t is singular and we can not compute Ci by diagonali7,ing t.



23

Singular value decomposition (SVD) (Golub & van Loan 1983, Press et at. 1987) is a

robust method for estimating the eigenvectors of t in such cases. Suppose X is an N x n

matrix whose rows are the N mean-subtracted input samples {(xl - i'L)II = 1. . . . , N}.

The n x n matrix XT X is proportional to the sample covariance matrix t

(2.10)

The SVD of an N x n matrix X factors X as the product of an N x n column

orthonormal matrix UT, an n x n diagonal matrix W with positive or 7.eroelements, and

an N x n row orthonormal matrix V

X = UT W V (2.11)

Since U and V are orthonormal matrices,

uuT = VVT = Inxn , (2.12)

where In xn is an n x n identity matrix.

Using (2.10) and the decomposition in (2.11), we comput.e

Thus, the SVD of X diagonali7.es t and we have an alternate procedure for computing

the eigen-system of t. We first compute X. We then use SVD to decompose X int.o the

matrices U, W, and V as in (2.11). The orthonormal eigenvectors of t are given by the

rows of V and the corresponding eigenvalues are given by the corresponding diagonal

clements of the matrix ~~2 (using (2.13)). The decomposition in (2.11) can always be

done, no matter how singular X is. This is particularly useful when the input data is

scarce (N is small). We implement.ed both the methods described above using routines

from "The Numerical Recipes in C" (Press et al. 1987).

= XTX
N

= VTWUUTWV using(2.11),

= VTW2V using (2.12),

= VT W2 V (2.13)
N
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2.1.4 The inadequacies of PCA

As discussed in section 1.1.2, PCA is the optimal linear algorithm for minimi7.ing the ex-

pected squared error between x and its reconstruction x. However, the linear assumption

may be a severe restriction for some data sets.

PCA identifies and removes only linear correlations among the input variables. The

principal components (components of z; (2.3)) are uncorrelated. This does not imply that

they are statistically independent. Since PCA only considers second order statistics (i.e.

correlations) of the data, it is unable to capture any higher order structure (non-linear

dependencies) ofthe data. A non-linear technique can exploit the statistical dependencies

among input variables to remove redundancies not removed by de-correlating the data.

Low dimensional PCA encodings incur high error in the presence of snch non-linear

dependencies.

Looking at this problem from another perspective, consider the ca..<;ewhen the target

dimension m is not specified and we are a..<;kedto reduce the data to some dimension rn

snch that the error is smaller than a given threshold. Since PCA identifies only linear

correlations, for any given error threshold, PCA may retain more dimensions (larger m)

than a non-linear technique, whenever the clata ha..<;non-linear dependencies.

Geometrically, an rn dimensional PCA models the data by an rn climensional hyper-

plane. If the input data lies on or near a curvecl manifold4 of dimension equal to, or

greater than rn, then PCA will incur a high error. In this ca..<;e,non-linear algorithms

which model the input data by a projection onto a (curved) manifold will incur a lower

error than PCA.

To illustrate with an example, consider data distributed on the surface of a hemi-

sphere. Figure 2.3 shows the data and a two dimensional hyperplane defined by the PCA

projection. Though the data set is three dimensional, it can be described using just two

coordinates. The dependencies between the three Cartesian coordinates are non-linear

4 A set 1\11is a k dimensional manifold if it is locally diffeomorphic to nk. A smooth map j : X --+ Y

is a diffeomorphism if it is one. to one and onto, and if the inverse map j-I : y --+ X is also smooth.
Thus. AI is a },,-dimensionalmanifold, if "resembles" nk in the neighborhood of any point.
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Figure 2.3: Global linear coordinates built by a 2 dimensional PCA for data distributed
on the surface of a hemisphere. The PCA model is inaccurate because the input variables
(Cartesian coordinates) have a non-linear functional dependence on each other.

and hence beyond the capability of a two dimensional PCA to detect. However, a non-

linear algorithm should be able to capture this and obtain an accurate two dimensional

encoding. In the next section, we describe auto-associative five layer networks which are

capable of capturing such non-linear structure in the data.

2.2 Five layered auto-associative neural networks

Five layered auto-a..<;sociative neural networks build a global non-linear model of the data.

These nets reduce dimension by projecting the data onto a curved manifold of a smaller

dimension than the input dimensionality.

In this section, we first describe auto-associative neural networks and the relation be-

tween three layered auto-associative networks and PCA. We then describe the motivation

for using five layered networks for dimension reduction. We discuss our implementations

of the network learning algorithms and finally we discuss some of the shortcomings of

using this approach for dimension reduction.
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2.2.1 Auto-associative neural networks

An artificial neural network is a data processing model which consists of a set of weighted

connections between layers of data processing units known as nodes or units or neurons.

In this document, we will consider only feedforward neural networks trained by supervised

learning. Each network ha..<;distinguished input and output nodes. All other nodes are

called hidden nodes. Each node of the network (except the input nodes) computes

a weighted sum of its inputs and may further compute a non-linear function of the

weighted sum. The resulting outputs of nodes are passed along the network connections

to other nodes. Thus, the output nodes compute a well defined function of the inputs.

The network connections (numerical weights) are trained to learn this function based

on examples of input-output pairs. For further details and references to neural network

based data modelling, the reader is referred to the book by Hertz, Krogh and Palmer

(1991) and references therein.

Auto-associative neural networks are feedforward neural networks with a bottleneck

layer trained to learn an identity mapping. Auto-associative neural networks can perform

dimension reduction. These networks have at lea..<;tone bottleneck layer, with a fewer

number of nodes than the input dimensionality. These networks have the same number

of output and input nodes, and are trained to reproduce the input variables at the

output nodes. The networks are are trained to minimize the expected squared distance

E[lIx - x1l2]between the inputs x and the outputs x. In trying to generate an identity

mapping, the networks are forced to obtain a compact representation of the inputs in

the bottleneck layer. Figure 2.4 shows a five layer auto-a..<;sociative network. Here, the

activations of the third layer nodes form a low dimensional encoding of the inputs.

Funaha..<;hi (1990) showed that the dimension reduction capability of three layered

auto-a..<;sociative networks (with or without non-linearities) docs not exceed the capabil-

ity of linear techniques (like PCA). Bourlard and Kamp (1988) showed that the encod-

ings obtained by three layered auto-a..<;sociative networks are equivalent to those obtained

by PCA. Oja (1991) showed that five layer auto-a..<;sociative networks can, in principle,
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Figure 2.4: A five layer feedforward auto-associative network. The network tries to
reconstruct the inputs at the output layer. The activations of the bottleneck (third) layer

form the low dimensional encoding. This network can perform a non-linear dimension
reduction from n to m dimensions.

perform a non-linear dimension reduction. In theory, these nets can compute any con-

tinuous mapping from the inputs to the bottleneck layer (Hornik, Stinchcombe & White

1989, Funahashi 1989), and another mapping from the bottleneck layer to the output

layer.

2.2.2 Five layered networks (FLNs) for dimension reduction

Auto-a..<;sociative five layered networks (FLNs) are capable of exploiting non-linear de-

pendencies among the input variables to generate more accurate encodings than PCA.

FLNs have been used for the analysis of simulated chemical batch reaction data (Kramer

1991), for the learning of psychological color attributes from surface spectral reflectance

data (Usui, Nakauchi & Nakano 1991), and for imagc compression (Namphol, Aro7.Ullah

& Chin 1991).

For reducing dimension from n to m (m < n), a five layered feedforward neural

network ha..<;a bottlcncck laycr containing m nodes (see Figure 2.4). The nctwork ha..<;n

nodes in the input and output laycrs and is trained to perform an identity mapping on its

inputs (auto-a..<;sociation). The second and thc fourth layers are known a..<;thc mapping
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layers since they determine the mapping f ( .) from the input layer to the bottleneck layer

and the mapping gO from the bottleneck layer to the output layer. For simplicity, we will

only consider networks with an equal number of nodes in both the mapping layers. The

activations of the mapping layer nodes are bounded by a sigmoidal non-linear function.

For our purposes, a sigmoid is a monotone, continuous function with a.c;ymptotes of -1

and 1. The activations of the third layer form the m dimensional encoding z of the input

data. The activations of the fifth layer form the n dimensional reconstructed input x.

The network is trained to minimize the mean squared error,

(2.14)

between the inputs and the corresponding reconstructions.

Oja (1991) gives a theoretical analysis of dimension reduction using auto-a.c;sociative

FLNs. Suppose there are q nodes in both the mapping layers of an FLN. Let F : nn -+ nq

denote the FLN mapping from the input nodes to the first hidden layer. Oja showed that

if we consider the activations of the second layer nodes a.c;a modified q dimensional input

vector F (x), then the weights of the second through fourth layers can define ca.c;caded

PCA encoding and decoding functions for the modified input vector F( x). In this ca.c;e,

the activations of the third layer nodes form the m dimensional PCA encoding of the

q dimensional vector F( x) and the activations of the fourth layer nodes form the PCA

reconstruction of F(x). The weights of fourth to fifth layer of the FLN define a mapping

F I : nq -+ nn, which can approximate an inverse mapping to F, if it exists. Thus,

FLNs are, in principle, capable of generating non-linear encodings of the input vectors.

An FLN learns an m dimensional surface (the range of the mapping f from the inputs

to the bottleneck layer nodes) which best represents the data, i.e minimizes the squared

error described above. The reconstructed input x is a projection of x onto this surface

and the low dimensional encoding z is the coordinates on the surface of the projection.

If we vary the activations of the m nodes of the bottleneck layer of a trained network,

the propagated activations of the fifth layer represent the corresponding coordinates in

the n dimensional space. This is illustrated in Figure 2.5 which shows a three to two



29

Figure 2.5: Global curvilinear coordinates built by a five layer network for data dis-
tributed on the surface of a hemisphere. When the activations of the representation
layer are swept, the outputs trace out the curvilinear coordinates shown by the solid
lines.

dimension reduction using a FLN. The data consists of points distributed on the surface

of a hemisphere (this is the same data plotted in Figure 2.3). The grid lines in Figure 2.5

represent two dimensional coordinate axes on the curved surface learned by the FLN. A

given data point x is projected onto the surface. The projection is given by x and the

coordinates of the projection on the surface is given by z.

2.2.3 Implementation details for FLNs

We implemented the FLNs described above using an equal number of nodes and a sigmoid

activation function
I -x-e

s(x)=
1 + e-X

for both the mapping layers. We trained the FLNs using conjugate gradient descent, the

DFGS algorithm and stochastic gradient descent. We computed the gradient of the cost

function using the backpropogation algorithm (R.umclhart et al. 1986).

A learning algorithm is said to be in batch mode when each weight update uses

information from all the data points in the training set. The algorithm is said to on-line,

or stochastic, if each weight update is based on a single data point from the training set.
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The batch mode algorithms compute the exact gradient at each step, but they can incur

large training times when the number of input vectors is large and some of the vectors

are redundant. In such situations, a stochastic algorithm will train significantly faster,

though the gradient estimate at each step is inexact and noisy. This stochastic noise

can be beneficial in helping the network jump out of local minima. We implemented a

stochastic gradient descent (SGD) algorithm with a momentum term (Hert? ct oJ. 1991)

and an annealed learning rate (Darken & Moody 1991).

We also implemented two batch mode optimization schemes: conjugate gradient

descent (CGD) and the Broyden-Fletcher-Goldfarb-Shanno (I3FGS) algorithm. Let p

denote the total number of weights. CGD (Press ct 0.1.1987) finds p mutually conjugate

directions in the weight space. These directions are such that minimi?ation along one of

them does not spoil the previous minimization along the other directions. CGD requires

only O(p) storage and reaches the minimum in p steps if the cost function is quadratic

in the weight space. BFGS (Press ct al. 1987) makes use of the second order Hessian

information of the cost function. The I3FGS algorithm iteratively estimates the inverse

Hessian and uses this curvature information to find new directions for line minimizations.

I3FGS requires O(p2) storage which make it infea..<;iblefor training large neural networks.

We implemented CGD and BFGS using routines from "The Numerical Recipes in C"

We report results with all three algorithms in chapter 5.

2.2.4 Shortcomings of FLNs

Though, in principle, FLNs are capable of obtaining accurate low dimensional encodings,

in practice. FLNs often produce encodings with a high error and take a long time to train.

A global model may be inappropriate for some data sets. Consider a data set which ha..<;

a different structure in different parts of the input space. For example, Figure 2.6(a)

shows data distributed on an orbit a..<;ymptotic to the Lorenz attractor (Guckenheimer &

Holmes 1983). The three dimensional data can be well described locally using only two

dimensions, in most of the input space. However, the data is perhaps more accurately

<lescribcd as three dimensional in the region where the two wings of the attractors meet.
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Figure 2.6: The Lorenz attractor data set: (a) data distributed on an orbit a..<;ymptotic to
the attractor and (b) reconstructed data set from a two dimensional encoding obtained
by an FLN with a configuration 3-45-2-45-3. The darker points represent the input
points for which the FLN had its worst squared error.

Thus the data ha..<;a different structure of the data and different (local) dimensionality

in different regions of the input space. A global model will have to compute a highly

complicated two dimensional manifold to describe the data accurately. This process can

be very inefficient.

Figure 2.6(b) shows the Lorenz data in Figure 2.6(a) reconstructed from a two di-

mensional FLN encoding. We notice that the model is quiet inaccurate near the regions

where the wings meet. Moreover, the inaccurate fit extends well into the wings. Local

models can generate more accurate fits for this type of data sets, since an inaccurate

fit in one (local) region of the input space does not effect the fit in other regions of the

input space for local models. Local models are not constrained to build a smooth m

dimensional surface to fit the data.

Global models are also inefficient to train. Five layer networks have four layers of

weights and hence a large number of parameters, even for moderate input dimensionality.

Thus, FLNs can be memory intensive and can require a long time to train.
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To summarize, global models can be inefficient and time consuming when the data

lies near complex convoluted manifolds. Local techniques may provide more accurate

and more compact encodings in this situation. In the next chapter, we will describe local

linear algorithms for dimension reduction.



Chapter 3

Local linear models for dimension

red uction

In this chapter, we present local linear algorithms for dimension reduction, which par-

tition the input space and build separate low dimensional coordinate systems in local

regions. Suppose we are reducing dimension of a data set from n to rn (m < n). The

goal is to find encoding functions .f : nn -+ nm and decoding functions g : nm -+ n n,

such that the mean squared error in reconstructing an input vector x from ,f( 3;),

E = E [II x - g(.f(x)) 112]

is minimi7.ed. Principal components analysis (PCA; section 2.1) and five layered auto-

associative networks (FLNs: section 2.2) build global models for the encoding and decod-

ing functions. Global models can be inefficient (harder to train, larger error) when the

data has different structure in different regions of the input space (e.g. see the discussion

in section 2.2.4). I3uilding simple linear models in local regions of the input space can

be f&<;terand more accurate.

We propose the following procedure.

1. Partition nn into Q disjoint regions {RI"'" RQ}.

2. Do a separate linear projection onto an rn dimensional space in each "local" region.

33
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Thus, our encoding function is

(3.1 )

if x E RQ.

where the local functions It (.), . . . , IQ(') are linear. This basic procedure defines a class

of local linear algorithms depending upon the specific method used to implement t.he

two steps. We use a vector quantizeI' (VQ) to partition nn in the first. step, and PCA

to obt.ain 'Tn dimensional coordinates in the second step. We refer to t.his model as

VQPCA (Kambhatla & Leen 1993, Kambhatla & Leen 1994). Bregler and Omohundro

use a similar procedure based on local PCA for "learning non-linear constraint surfaces

from the data" (1994) and for "manifold learning" for nonlinear image int.erpolat.ion

(1995). Hinton et al (1995) incorporate image invariance information to a local PCA

model (similar t.o above) for handwritt.en digit recognition.

In the next section, we describe vector quantizers (VQs); algorithms for partitioning

the input. space int.o disjoint regions (also called cells). We define a VQ, discuss optimalit.y

crit.eria for VQs and algorithms for training VQs. Unconstrained VQs wit.h a large

number of cells incur prohibitive computation and memory requirements. We describe

efficient. algorithms for partitioning the input. space using a hierarchical multi-st.age or a

t.ree structured VQ, which trade-off a loss in performance with a reduction in complexity.

In section 3.2, we describe several algorithms for implementing the VQPCA model,

which differ in the method used to obtain the partition. We first describe an approach

using a VQ with Euclidean distance. We then describe a new distortion measure called

'"reconstruction distance" which is optimal for performing a local PCA. We present. a

VQPCA training algorithm which uses a VQ with reconstruction distance. Finally, we

present. algorithms which use multi-stage and tree structured VQs t.o implement VQPCA.
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3.1 Vector quantization (VQ)

Vector quantization (Gersho 1979, Gersho & Gray 1992) is a classical technique for signal

coding and data compression. A vector quantizeI' (VQ) approximates a vector x by one

of a predetermined set of prototype vectors called reference vectors or codebool.: vecto1'S.

With each VQ, there is an associated distance measure or distortion measu.re.

An n-dimensional vector quantizeI' of size Q and distortion measure d( x, l1'i)defines a

mapping 9 : R n ~ C, from a vector in 'Rn. onto a finite set C = (JL],. . . , ILQ),containing

Q reference vectors, where ILi E 'Rn, i = 1,.. . .n. The set C is called the code book. For

Voronoi or nearest neighbor quantizers1. g(.) maps a vector x to the reference vector in

C which is the closest to x with respect to d(x, .). Thus,

g(x) = ILw(x) , (3.2)

where
Q

w(x) = argmin d(x, ILk)
k=]

(3.3)

The mapping g(.) partitions 'RII into Q disjoint regions or ceLLs. The ith cell is defined

Ri = {x E'RII: g(x) = IL;}

= {x E 'Rn : d(:r:,JLi) ::; d(x, ILj)} (3.4)

Thus. a VQ builds a piece-wise constant model of the data. It partitions the input space

into a set of regions and approximates each region by a reference vector.

VQ performs lossy data compression since the index w(x) is sufficient to obtain g(x),

the VQ approximation to x (3.2). The rate of a VQ, R = (log2 Q), measures the number

of bits needed to represent x. The rate R is typically much smaller than the number

of bits needed to specify the components of x. However, the compression is lossy since

d(x,g(x)) is, in general, greater than O. Plotting the expected distortion D induced by a

1In this document. we will restrict our discussion to nearest neighbor quantizers.
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VQ a..<;a function of the rate R (i.e an R(D) curve) is a way of studying the compression

performance of a VQ (Gersho & Gray 1992, Cover & Thomas 1991).

The performance of VQ coding is measured by the expected distortion between :1:.

and g(x),

D = E[d(:1;,g(x))]
Q

= E[min d(x, ILk)]k=l
(3.5)

where E[.] denotes an expectation with respect to x. The goal of VQ training algorithms

is to find the codebook C which minimizes the distortion D (3.5).

3.1.1 Optimality criteria for a VQ

In this section, we describe the necessary conditions for a VQ to achieve optimal per-

formance (minimal D). Given a codebook C, the optimal partition employs a neare.~t

neighbor encoding rule, generating the cells

Hi = {x E nil : d(X,JL;) ::; d(x,JLj) for all j # 'i}

From (3.4), we see that every nearest neighbor VQ generates an optimal partition for a

given codebook.

The optimal codebook C for a given partition is given by the centroid condition.

Gersho and Gray (1992) define the generalized centroid, cent(R), of any set R E nil a..<;

;'that vector y (it it exists) which minimizes the distortion between a point x E Rand

y. averaged over the probability distribution of x",

?/ = cent(R)

= argmin E[d(x, y) 1:1;E R]y
(3.G)

For the squared error distortion mea..<;ure,the centroid is simply the arithmetic mean of

the data in the set R. The centroid condition states that, for a given partition {Ri: 'i =
1. . . . . N}. the optimal reference vectors satisfy

JL;= cent( R;)
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Another condition for optimality is that the collection of points equidistant (with

respect to d(-,.)) from at least two reference vectors should have probability O. All

three optimality conditions listed above are necessary conditions. It is widcly believed

that they are sufficicnt for local optimalit?l (Gersho & Gray 1992), although no general

theorctical derivation of this exists. In the next section, we will describe an iterat.ive

algorit.hm for training a VQ, which is based on the optimality conditions list.ed above.

3.1.2 The generalized Lloyd algorithm (GLA) for training a VQ

VQ t.raining algorithms aim to minimize t.he expected distortion D (3.5) wit.h respect t.o

the codebook vcctors jti ba..<;edon a training sct X = {x I, . . . ,xiV} of N input vectors.

The conditions for optimality discussed above are the basis for an iterat.ive VQ training

algorithm. We first initialize the VQ with random codcbook vectors and cOlnpute the

corresponding optimal part.it.ion. We then compute thc optimal codebook for the new

partition, and re-compute the optimal partition for the new codcbook. We iterate these

two steps till convergence.

This iterative codebook improvement algorithm for training a VQ is called the gen-

erali7.ed Lloyd algorithm (GLA) (Gersho & Gray 1992). It is also known as the k-means

algoTithm after MacQueen (MacQucen 1967) who studicd it as a statistical clustering

tedmique, and as the LI3G algorithm in the signal processing literature after Linde,

I3U7,Oand Gray (1980) who give a detailed description of the algorithm for data com-

pression applications is prescnted. Using the terminology in Gersho and Gray (1992),

we shall refer t.o it as the GLA since it is a direct generalization of Lloyd's treatmcnt in

1957 (Lloyd 1982).

The GLA for training a VQ with Q cells and distortion measure d(x,.) is given below.

1. Start with an initial codebook C1. Initiali7.e the iteration counter, k = 1.

2 A VQ is locally optimal if every small perturbation of the codebook does not lead to a decrease in
D. It is globally optimal if there exists no other codebook that gives a lower values of D (Gersho & Gray
1992).
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2. Partition:: Compute the optimal partition of the training vectors, given a code-

book. Given a codebook Ck = {Ill,. . ., ILQ},partition X into Q disjoint sets as

Ri = {;:r;EX: d(x, ILj) ~ d(x, 11); all j # -i}. (3.7)

This partition assigns a training vector to the cell which corresponds to the nearest

(in the d(x,ILj) sense) codebook vector. If more than one codebook vectors have

the minimum distance to an input vector, use a consistent tic-breaking strategy.

For example, among the tied candidate cells, assign x to the set Rj for which j is

smallest. Let Nj denote the number of vectors in the set Rj.

3. Centroids computation:: Compute the optimal codebook for a given partition

of the training set vectors. Given a partition of X into Q sets Rj, i = 1,..., Q,

compute the generalized centroid for each cell Ri a..<;

ILi= argmin N1 " d(X,IL)
fl . L

1 xERi

(3.8)

Let the new codebook be Ck+I = {,Ll, . . . , ILQ} where ILj are the newly computed

centroids.

4. Compute the distortion Dk+1 (3.5) using the codebook Ck+I. If the fractional

change in error (Dk - Dk+1 )jDk is below some specified threshold, then stop.

Otherwise. set k + 1 -+ k and go to step 2.

Each iteration of GLA reduces the average distortion Dk or leaves it unchanged

(Lemma 11.3.1 in (Gersho & Gray 1992)), and Dk converges in a finite number of it-

erations (Lemma 11.3.2 in (Gersho & Gray 1992)). We can use any distortion mea..<;ure

d(.,.), a..<;long a..<;we can analytically compute the corresponding generalized centroids.

The GLA is a ba.tch mode algorithm, since each parameter update requires access

to the entire training set. This can be very time consuming when the number of input

vectors is large and some of the vectors are redundant. In such situations, stocha.~tic

algorithms can be fa..c;ter. Stocha..c;tic algorithms perform parameter updates ba..<;edon

one randomly selected vector from the training set. In the next section, we describe a
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class of neural network based learning algorithms for training VQs called compctitivc

lcarning, which are stochastic versions of GLA.

3.1.3 Competitive learning algorithms

In this section, we will present stochastic versions of the GLA called compctitivc learning

algorithms (Ahalt, Krishnamurthy, Cheen & Melton 1990, Hertz. ct al. 1991). Stochastic

algorithms can be faster than batch-mode algorithms (like GLA) and can potentially

jump out of local optima of the cost function due to the inherent stochastic noise. By

default, competitive learning algorithms are for the Euclidean distance measure. A

comparison of different competitive learning algorithms is given in (Ahalt ct al. 1990).

A compctitivc lcarning nctwork (Ahalt ct al. 1990, Hertz. ct a.l. 1991) with Q neural

units corresponds to a VQ with Q cells and the weight vectors of the network are the

reference vectors J1.i.In each iteration, a randomly picked input vector :1;is presented to

all the neural units, each of which computes the distortion between its reference vector

and x. The unit with the smallest distortion is designated a "winner", and its reference

vector ILw(n) is updated as

where n denotes the iteration number and f is a learning rate which is annealed 0.<;

learning progresses. All other reference vectors are left unchanged. We iteratively present

randomly chosen input vectors to the network until the network converges (the reference

vectors stop changing above some threshold).

In the above algorithm, sometimes neural units can get under-utiliz.ed (Ahalt ct a.l.

1990). This can lead to situations where some of the reference vectors never "win.'. A

frcqucncy scnsitivc compctitivc lcarning (FSCL; (Ahalt ct al. 1990)) keeps track of how

frequently each unit is the winner, and uses this information to modify the distortion

meo.<;ure d(., .) 0.<;follows. Let 1Li(n) denote the total number of times unit .i ho.<;been the

winner till the nth iteration. The modified distortion meo.<;ure is given by

d(x,JLi(n)) = d(:1;,JLi(n)) *1Li(n)
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The update rule and the training algorithm is exactly identical to standard competitive

learning: the only difference being the distortion measure used.

A stocha..c:;ticalgorithm related to competitive learning algorithms is Kohonen.s self-

organizing feature map (KSFM) (Kohonen 1988). Kohonen initially formulated KSFM

to illustrate the formation of topological feature maps in the brain, though it is often

used to train a VQ. The KSFM updates the winning reference vector ILwfor a given input

::/;and all other reference vectors ILj which are in a topologically defined neighborhood

N (111) a..c:;sociatedwith unit w. The neighborhood is shrinked a..c:;learning progresses.

Thus, the update rule is

ILj(n + 1) = ILj(n) + f(X -ILj(n)) for all j E N(w),

for all reference vectors in the neighborhood N (1lJ), and all other reference vectors are

left intact. Both the learning rate f and the neighborhood N (1lJ)are annealed as learning

progresses. The update rule given above is iterated for randomly presented input patterns

until convergence (the reference vectors stop moving above some threshold).

All of the above algorithms are stochastic and avoid accessing all the training data

vectors for each parameter update. This is useful when the training data is huge and

parameter updates are relatively inexpensive. However, batch algorithms like GLA may

be preferable when each parameter update incurs a lot of computation (e.g. this is the

case when the distortion measure contains covariance matrices).

We have presented batch (GLA) am1.stocha..c:;tic(competitive learning) algorithms for

training a VQ. For all of these algorithms, the training time is dominated by distance

computations of the VQ. When the number of cells is large, training a VQ can incur

prohibitive training times and memory requirements. Moreover, we may not have enough

data points to obtain good estimates of the reference vectors. It is possible to train VQs

with large codebook sizes by applying constraints to the structure of the VQ codebook.

These methods compromise performance, but significantly reduce the computational

complexity of VQ. In the next two sections, we describe structurally constrained VQ

algorithms.
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Figure 3.1: Figure showing the structure of a two-stage MSVQ. The first stage VQ
quantizes an input vector x as gl (x). The second stage VQ quantizes the residual el
of the first stage (el = x - xI) as g2(eI). The MSVQ approximates x as Xl + €l. An
MSVQ with I stages continues the process of quantizing residuals from previous stages
for I stages.

3.1.4 Multi-stage VQ

An important technique for reducing the computational complexity of a VQ is cascaded

or residual or multi-stage VQ (MSVQ) (Juang & Jr. 1982, Barnes & Frost 1990, Frost,

Barnes & Xu 1991, Gersho & Gray 1992). The idea is to build the partition of the

input space in cascaded stages, each of which uses a VQ. The first stage performs a

crude quantization into a relatively small number of cells. A second stage quantizer uses

the error vectors (called residuals) between the input vectors and their first stage VQ

approximations (closest codebook vectors) as its inputs. This process is repeated; the

second stage residuals are used as inputs for a third stage VQ and so on. Thus, we obtain

a series of approximations to the original input vectors which are better with increasing

number of stages. Figure 3.1 illustrates this process for a two stage MSVQ.

Training several small quantizers is computationally more efficient than training a

single large unconstrained VQ. For example, training a two stage MSVQ with Q cells
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Figure 3.2: Figure showing a partition into Q2 cells induced by a two-stage MSVQ with
Q (here Q = 6) cells at each stage. The bold lines indicate the partition into Q cells
induced by the first stage VQ. The shaded region in the center is one cell of the first stage
partition. The narrow lines indicate the sub-partition of each first stage cell into Q sub-
cells induced by the second stage VQ. The shaded region at the bottom left of the figure
is one of the Q2 cells in the second stage partition. Note the identical sub-partitions
within all first stage VQ cells.

at each stage effectively produces Q2 cells, though finding the closest reference vector at

each stage involves comparisons with only Q vectors. If we had trained an unconstrained

VQ with Q2 cells, finding the closest reference vector would incur a comparison with Q2

vectors. This is computationally much more expensive, especially when Q is large.

However, the Q2 effective cells of the MSVQ are constrained since the second stage

quantizer pools together the residuals from all the first stage cells. Figure 3.2 schemat-

ically shows a partition of n2 into Q2 cells induced by a two-stage MSVQ with Q cells

at each stage. The bold lines in the figure represent the partition induced by the first

stage VQ. The residuals from all first stage cells are pooled together and quantized by

the second stage VQ. This implies that the sub-division of each first stage cell into Q

sub-cells is identical (in Figure 3.2, note the identical sub-partitions within all first stage

cells). The constraint imposed by the identical sub-partitions within first stage cells can

increase the average distortion induced by a two-stage MSVQ with Q cells at each stage,

with respect to an unconstrained VQ with Q2 cells.



43

MSVQ provides a tradeoff between a decrease in computational complexity and some

loss in accuracy. For applications with a paucity of data, MSVQ allows us to train

quantizers with a larger number of cells than an unconstrained VQ, since MSVQ ha.c;a

much smaller number of parameters.

Let X = {xl,. . . ,xN} denote a training set. For an 1 stage MSVQ with Q cells at

each stage, the MSVQ training algorithm is as follows:

1. Set the stage counter 8 = 1. Let Xs = X.

2. 8th stage clustering:: Train a VQ with Q codebook vectors and a distance mea-

sure d(x, IIi) for the data set Xs using the GLA (see section 3.1.2). Let the resulting

codebook be Cs = {/If, . . . , II~}.

3. 8th stage residuals:: Compute the residuals of Xs with respect to Cs. The resid-

uals are the error vectors between the input vectors :rl E Xs and the closest (with

respect to d(., .)) codebook vectors from Cs,

where W is given by
Q

W = argmin d(:J/, 14,) .k=1

Set the training data set Xs+ I for the (8 + 1)th stage to be the residual vectors of

the 8th stage. Increment the stage counter 8 = 8 + 1.

4. R.epeat steps 2 and 3 until we have trained VQs for 1 stages, i.e. until 8 > 1.

5. For each data point x, compute the indices Wi, 'i = 1,...,1 of the closest codebook

vectors for each of the 1 stages a.c;follows. For the first stage VQ, compute the

index of the cell

q 1
WI = argm

k
III d(x, Ilk) ,=1

and the residual vector
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For stage i, i = 2,. .. ,l, compute the index of the cell as

Q .
Wi = ar~in d( Ci-I ,J-Lk),k=1

and the residual vector as

,
ei = ei-I - J-Lwi

After computing the closest reference vectors at each stage, an MSVQ maps an

input vector x to one of QI effective reference vectors a.."follows:

I

g(x) = L JJ,~'j
j=1

For transmission or storage purposes, the indices of the closest codebook vectors

at each stage (WI,... ,WI). are sufficient to recover g(x).

Note that. we can use any distortion mea.."ure for the VQs, provided we can compute

the generalized centroid for the GLA. In the next section, we will describe another

algorithm for reducing the VQ search complexity, which can generate codebooks with a

lower distortion than MSVQ.

3.1.5 Tree structured VQ

A tree structured vector quantizer (TSVQ; (Gersho & Gray 1992)) avoids the high com-

putational cost of building an unconstrained VQ and tries to build more accurate en-

codings than a MSVQ. A TSVQ trains several VQs in tree structured stages. Suppose

we are building a TSVQ with a depth d and a branching factor Q. We start at the

root of the tree (level 1) and train a VQ with Q cells. We partition the training set

into Q subsets using the codebook at the root.. We train a separate VQ with Q cells for

each of the t.raining subsets and partit.ion each of these subsets into Q sub-subsets. We

cont.inue this process for d levels of the t.ree. The final partition is determined by the

reference vectors at the leaves (terminal nodes) of t.he tree. Thus, a TSVQ of depth d

and a branching factor of Q effectively partitions the input space into Qd cells. Figure

3.3 illustrat.es a two level TSVQ with a branching factor Q. A given input vector is com-

pared with the Q reference vectors at each level of the tree. The nearest (with respect
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to a distance measure d(., .)) codebook vector determines which of the Q paths to take

while descending the tree to the next level. The process continues until we reach a leaf

of the tree.

A TSVQ of depth d and a branching factor of Q (which generat.es Qd cells) is com-

putationally more efficient than an unconstrained VQ with Qd cells, since. in order t.o

determine the cell membership of an input vect.or. the TSVQ needs only d * Q compar-

isons, while the unconstrained VQ needs Qd comparisons. However, TSVQ increa.<;es

the storage requirements, since we need t.o store the codebook vectors at each node of

t.he tree. Also, the effective partition built by a TSVQ is sub-optimal since the final

placement. of the la.<;tlevel reference vectors is not optimi7.ed ba.<;edon on all of the data.

For an effective partition into the same number of cells. a TSVQ incurs more compu-

tation than an MSVQ since we need to train more VQs. However, the resulting partition

may be more accurate (lower distortion) than that generated by an MSVQ. Compare

a two stage MSVQ with Q cells at. each stage and a two level TSVQ with a branching

factor Q. Both these schemes generate Q2 cells. The MSVQ partition is shown in Figure

3.2. .As mentioned earlier, for the MSVQ, the sub-partitions within each cell of the first.

stage VQ are constrained to be identical. This is because the residuals from all cells

of the first stage VQ are pooled together for the second stage VQ. In contra.<;t, no such

constraint exists for TSVQ, since we train Q separate VQs at the second level of the

tree. Hence, the TSVQ partition can be more accurate than the MSVQ partition.

Suppose we are training a TSVQ of depth d, a branching factor Q, and a distortion

. 3 d( ) L X - {
IN

} d . . r Th TSVQ t . . rmea.<;Ule ','. et - x,..., x enote a trammg set. e rammg

algorithm proceeds a.<;follows:

\

1. Train a VQ with Q codebook vectors and a distance mea.<;ured(., .) for the data

set X using GLA (see section 3.1.2). This induces a partition of the training data

X into Q disjoint sets XI,..., XQ.

2. Separat.ely train a VQ of si7.e Q with a distance mea.<;ure d(.,.) for each of the data

3As before. we can use any distortion measure as long as the generalized centroids are computable.
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Rll

VQo .

Figure 3.3: Figure showing the structure of a two level TSVQ with a branching factor
Q. We first train a top level VQ (VQo) which partitions the training set into Q sets. We
then train Q VQs (VQl,..., VQQ) to sub-partition each of the Q training sub-sets into
Q cells. The Q2 cells {Rll, . . . , RIQ, . . . , RQI, . . . , RQQ} define the final partition of the
TSVQ. The terminal nodes of the tree (the partitioned Q2 cells) are shown in white.
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sets Xi using GLA. We obtain codebooks for level 2 of the tree.

3. Partition each training set Xi into Q training subsets Xij using the codebooks

generated in step 2 and the distance measure d(., .). Use these new training sets

Xij to train Q2 separate VQs for level 3.

4. Continue this process until we reach level d. Since each path from the root to a

terminal node defines a cell of the VQ, the above process partitions the input data

X into Qd local regions. Let us denote these regions (cells) a..c;R I, . . . , RQd .

;). For each data point x, traverse the tree from top to bottom to determine the local

region Rk. This is achieved by determining at each node (starting at the root).

the closest codebook vector (say, the 10th vector) to x, and descending the tree

along the wth path from that node, until we reach a terminal node. A TSVQ

approximates a vector x by

f(x) = ILw,

where x E R-u.in the final (dth level) partition at the leaf node.

In this section, we have described vector quantization, a piece-wise constant modelling

technique which partitions the input space into a set of regions (cells) and approximates

each local region with a reference vector. We have presented batch and on-line algo-

rithms for training a VQ. We described multi-stage and tree structured quantizers which

partition the input space in separate stages, thus reducing the computational complexity

of a flat VQ.

In the next section, we will present our local linear algorithms for dimension reduc-

tion. These algorithms use a VQ to partition the input space into a set of regions. They

then build a linear model using a PCA in each of the local regions.

3.2 Local linear dimension reduction

In this section, we present local linear dimension reduction algorithms which partition

the input space using a VQ and build a PCA model in each local region. Suppose we



48

are reducing dimension of a data set from n to m dimensions. Global models (such a..<;

PCA and FLNs) can incur a large error when the data ha..<;different structure in different

regions of the input space (e.g see the discussion in section 2.2.4). Building simple linear

models in local regions of the input space can be fa..<;terand more accurate.

We propose the following model.

. Partition nn into Q cells {R 1,. . . , RQ} using a VQ with distortion mea..<;ured(., .).

. For i = 1, . . . , Q, collect all training vectors in R; and build an m dimensional PCA

model.

. To reduce dimension of any vector x E nn, compute its closest cell Rw (with

respect to d(.,.)).

. Project x onto the PCA hyperplane for Rw.

We refer to this model a..<;VQPCA (Kambhatla & Leen 1993, Kambhatla & Leen 1994).

A VQPCA pieces together local linear coordinate patches (see Figure 3.4). The VQPCA

encoding is < w, z > where w is the index of the closest local region and z is the local

7n dimensional PCA encoding.

The VQPCA model is an extension of a standard VQ. VQPCA partitions the input

space into a set of regions and approximates each region by a linear hyperplane (defined

by PCA), while a standard VQ approximates each region by a codebook vector.' Thus,

VQPCA defines a local linear model of the dat.a.

In this section, we describe algorithms for implementing the VQPCA model, which

differ in the method used to obtain the partition. We first describe an approach using a

VQ with Euclidean distance. We then describe a new distortion mea..<;urecalled "recon-

struction distance" which is optimal for performing a local PCA. We present a VQPCA

training algorithm which uses a VQ with reconstruction distance. Finally, we present

algorithms which use multi-stage and tree structured VQs to implement VQPCA.
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Figure 3.4: Local coordinates built by our algorithm (dubbed VQPCA) for data dis-
tributed on the surface of a hemisphere. The solid lines represent the two principal

eigen-directions in each Voronoi cell. The region covered by one Voronoi cell is shown
shaded.

3.2.1 Clustering with Euclidean distance

We first implement the VQPCA model using a VQ with Euclidean distance clustering.

We use a GLA to train the VQ and partition the input space into Q regions. We then

do a local PCA in each region. Suppose X = {x I, . . . ,xi\'} denotes a training set of N

input vectors, where xl E nn, I = 1,..., N. For a dimension reduction from n to m

dimensions (m < n), and using Q local regions, the algorithm, dubbed VQPCA-Eucl,

proceeds as follows:

1. Train a VQ with Q reference vectors (tLJ, /1-2,. . . ,ILQ) and with the Euclidean dis-

tance measure using a GLA or competitive learning (see sections 3.1.2 and 3.1.3).

This partitions the training set X into Q disjoint sets, Rl,"', RQ (3.7). Let Ni

denote the number of inputs mapped to Ri.

2. For each cell of the VQ, compute the local covariance matrix Bk defined a..<;
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Compute the orthonormal eigenvectors4 (ekl, . . . , ekn) of each L;k. Figure 3.4 shows

two leading eigen-directions of disjoint VQ cells for data distributed on the surface

of a hemisphere.

3. To reduce dimension of any vector x E nn, compute the index w, of the cell closest

(Euclidean distance) to x

(3.9)

and project x onto the leading m eigenvectors5 of L;w to obtain the local linear

coordinates

Z = f w (x) = ( ew 1 . (x - ILw), . . . ,ewm . (x - JLw)) . (3.10)

Thus, the VQPCA encoding function is a local linear function,

!

fl(x)

f(x) = :
fQ(x)

if x E RI'

(3.11 )

if x E RQ.

where the local encoding functions are given by (3.10). After training, low dimensional

encodings of any n dimensional data points can be obtained by using step 3 above. The

encoding of x consists of the index W of the winning cell for x (3.9), together with the

m < n component vector z (3.10).

The decoding is given by

m

X = g(x,w) = ILw+ L Ziewi
;=1

(3.12)

where l.Lwis the reference vector for the cell w, and ewi are the leading eigenvectors of

the covariance matrix of the cell w. The distortion induced by a VQPCA encoding is

4\Ve assume that the indices of the eigenvectors eki are ordered such that the corresponding eigenvalues

are in decreasing order, Akl ;:: . . . ;:: Akn for all k.

5The leading Tn eigenvectors of a real symmetric matrix C are the Tn orthonormal eigenvectors which
correspond to the Tn largest eigenvalues of C.
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measured by the mean squared reconstruction error

[
A 2

]D = E IIx-XIl

= E [llx- I'..- ~(x - ~wf ew;cw;II'] "sing (3.12) and (3.10).

E

[
.t (X_JLw)TCwiCwi 2

]
sincecwi,i=l,...,nspanRI1,

l=m+1

E

[
(x - JLw)T

(
. t CWiC~i )

(x - JLW)

]I=m+l

E [(x - JLw)TPt;; (x - JLw)] ,

=

- (3.13)

where E[.] denotes an expectation with respect to x, 11)is the index of the closest (Eu-

clidean distance) cell of the VQ, given by (3.9), and Pj; == L:7=m+l CwiCwi is a local

projcction matrix which projects the data onto a subspace orthogonal to the local Tn

dimensional PCA hyperplane. Thus, the expected reconstruction error of VQPCA is

given by the expected squared projection onto the subspace orthogonal to the local PCA

hyperplane.

3.2.2 Clustering with "reconstruction distance"

The VQPCA-Eucl algorithm is not optimal because the clustering is done independently

of the PCA projection. The goal is to minimize the expected error in reconstruction

(3.13). We can realize this by using reconstruction error as the distortion me~<;ure for

The expression for the VQPCA error in (3.13) suggests the distortion me~<;ure

(3.14)

6\Ve also implemented a VQ using the Mahalanobis distance

d(x, J1d = (x - J1k)T~;;l (x - J1k)

as its distortion measure. This is the clustering scheme suggested by a mixture of Gaussians probability

model (see chapter 4) and previously used by Fraser and Dimitriadis (1993). In our experiments. we
obtained a higher error than any of the schemes reported here.
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Figure 3.5: This figure illustrates the difference between clustering using Euclidean dis-
tance and clustering using the reconstruction distance. Suppose we want to determine
the membership of a data point x to one of two regions. The figure on the left shows
a partition based on Euclidean distance which is the distance to the centers J.Li. The
point x gets assigned to RI using this distance measure. The figure on the right shows a
partition based on reconstruction distance which is the distance to the local hyperplanes
(in this case a line) defined by the local principal eigenvectors c~; x now gets assigned to
R2. Cell assignment using the reconstruction distance is step 2 of the generalized Lloyd
algorithm (GLA) described in section 3.2.2.

We call this the reconstruction distance. The reconstruction distance d(x, P'k) is the error

incurred in approximating x using only m local PCA coefficients (of cell k). It is the

squared Euclidean distance to the linear manifold defined by the local PCA in the kth

local region. The distance is defined a.c;the squared projection on the trailing n - m

eigenvectors of the covariance matrix. The Euclidean distance between x and P'k is the

sum of distances between x and P'k along all eigen-directions of the covariance matrix,

while the reconstruction distance is the sum of distances between x and P'k along only

the trailing n - rn eigen-directions.

. Figure 3.5 illustrates the difference between Euclidean distance and the reconstruc-

tion distance. Suppose we want to determine the membership of a data point x to one of

two cells' with reference vectors 11.(and J.L2and principal eigenvectors ej and cy respec-

tively. Further suppose that we want to reduce the dimension of the data from two to

one dimension. The data point x is closer to 11.)than to J.L2(Euclidean distance to J.LIis

smaller). However, x is closer to the local hyperplane (in this case, a line) defined by cy

'i\ote that when considering membership of data points to VQ cells with respect to the reconstruction
distance. the cells may not be connected sets.
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than to the line defined by e~. Thus, the point x gets assigned to cell Rl using Euclidean

distance and to cell R2 using reconstruction distance. Thus the membership to cells

defined by the reconstruction distance can he different than that defined by Euclidean

distance. This is because the reconstruction distance does not penalize any spread of

the data in the leading eigen-directions. This is exactly what is required since we retain

all information in the leading directions while doing a PCA.

Suppose X = {xl,..., xN} denotes a training data set. Using (3.13), where w is

defined by the minimum reconstruction distance, the cost function to be minimized is

~

[

.

]

11 q 1 T.l1
£ = - L m~n(x - p'k) Pk (x - J1.k) .

N 1=1 k-I
(3.15)

The VQPCA-R.econ algorithm with Q cells for dimension reduction from n to Tn is:

1. Initialize J1.kto random input vectors from the training data set. Initialize L;k to

identity matrices.

2. Partition:: Partition X into Q sets RI,..., RQ, where

Ri = {x EX: d(x, ILi) :S d(x, 11j);all j # i} , (3.16)

lU'nng the reconstruction distance (d(.,.) defined in (3.14)). Let Ni denote the

number of clements in Ri. Figure 3.5 shows an example of a partition using recon-

struction distance.

3. Centroids computation:: The generalized centroid (3.8) of a VQ cell Rk with

respect to the reconstruction distance is

(3.17)

where we explicitly write the eigenvectors Cki as functions of 11. In appendix A, we

give a detailed derivation of the generalized centroids for reconstruction distance

by computing the derivative of the right hand side of (3.17) with respect to 11(note
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that the eigenvectors ei are functions of II). Equating the derivative of the right

hand side of (3.17) with respect to JL(see appendix A) to 0, we obtain

and hence,

(3.18)

where x = (i\~k LXERk x)' is the arithmetic mean of elements of Rk' Thus, any

vector 11'whose projection along the trailing eigen-directions (with respect to 11,)

equals the projection of x along the trailing eigen-directions is a generali7,ed centroid

of Rk with respect to reconstruction distance. Here, we take II = x, which is a

solution of (3.18) to be the generalized centroid.

For each cell, compute Ilk 0..<;the mean of all the training set vectors o..<;signedto

that celL

and the covariance matrices ~k 0..<;,

Next, compute the orthonormal eigenvectors e7 of each ~k'

4. Iterate Steps 2 and 3 until [C-L~C+l.the fractional change in the average recon-

struction error (3.15) is below some specified threshold, where c is the iteration

number.

5. To reduce dimension of any vector x E nn, compute the index w, of the cell closest

(reconstruction distance) to :1;

q T .1
w = argmin (x - Ilk) Pk (x - Ilk)k=l (3.19)
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and project x onto the leading 1"11,eigenvectors of 2:w to obtain the local linear

coordinates

The encoding of x consists of the index wand the m component vector z. The

decoding is given by
m

j; = fLw+ I:: ZiCwi .
i=1

(3.20)

The algorithm presented above is a generalized Lloyd algorithm (GLA (Gersho &

Gray 1992); see section 3.1.2) with reconstruction distance as the distortion measure.

Training in batch-mode avoids recomputing the eigenvectors Cki (which depend on ILk)

after each input vector is presented. The algorithm directly minimi:ws the expected

reconstruction error D (defined in (3.13)), where 'l1Jis now defined by (3.19).

The training time of both the local linear algorithms described above (both VQPCA-

Eud and VQPCA-Recon) is dominated by the distance computations for the VQ. In

the following two sections, we describe implementations of VQPCA which use multi-

stage and tree structured VQs to partition the input space, to reduce the computational

complexity.

3.2.3 Multi-stage clustering

Here, we use a multi-stage vector quantizer (MSVQ; see section 3.1.4) to partition the

input space for VQPCA. Let X = {xl,..., xN} be the training set, where xi E R't, i =

1. . . . . N. For reducing dimension ti'om n to m with an l stage MSVQ with Q cells for

each stage, the VQPCA-MS algorithm proceeds as follows:

1. Train an l stage MSVQ with Q cells at each stage and with a distortion mea.<mre

d(.,.) using the data set X (see section 3.1.4 for details of training an MSVQ).

Let RI,. .. ,RQ denote the partition of the data set for the lth stage, Xl, using the

codebook of the lth stage VQ. Let Ni denote the number of clements in Ri.
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2. For each cell Rk, compute the local covariance matrices

For each 2:k, compute all the orthonormal eigenvectors Cki, i = L. . . ,n, and the

corresponding eigenvalues.

3. For any vector x E nn, compute the indices Wi, i = 1, . . ., 1of the closest codebook

vectors for each of the 1 stages a..c;follows. For the first stage VQ, compute the

index of the cell
Q

WI = arg~r d(x, ILk) ,
and the residual vector

I
r I = X - ILW1 .

For stage i, i = 2,. .. ,l, compute the index of the cell a..c;

Q .
Wi = argmin d(ri_l, 11",,),k=1

and the residual vector as

I

1'i = 1'i-1 -'Lw; .

The local coordinates are obtained by projecting r[, the lth stage residual onto the

leading rn eigen-directions of 2:w/

The low dimensional encoding of VQPCA-MS consists of the indices of the closest

code book vectors at each stage (w I , . . . , w d and the m dimensional vector z. The

decoding is given by
[ m

X = L IL{vj+ L ZiCw/i ,
j=1 i=l

We can use either Euclidean distance or reconstruction distance for clustering in

the algorithm described above. If we use Euclidean distance a..c;the distance mea..c;ure

d(.,.) for the VQ at all stages, we call the algorithm VQPCA-E-MS. An alternative
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approach is to use Euclidean distance as the distance measure for the VQ for all but

the la..c;tstage and train the [th stage VQ using reconstruction distance as the distance

mea..c;ure. This can lower the overall error since clustering using reconstruction distance

directly minimizes the local PCA error. We call this algorithm VQPCA-R-MS. In the

next section, we describe algorithms for performing a tree structured codebook search

for the VQ which can provide more accurate partitions than a multi-stage VQ.

3.2.4 Tree structured clustering

We now describe algorithms for training VQPCA using tree structured VQs (TSVQ; see
.

3 I !':
) L v

{
I ,v

} d . . D d
..

sectIOn ..u. et ("\.= x,..., X' enote a trammg set, .£'01'an n to m, ImcnSlOn

reduction using a TSVQ with depth d and a branching factor Q, the VQPCA-Tree

algorithm proceeds as follows:

1. Train a.TSVQ of depth d, with a branching factor Q, and with a distortion mea..c;ure

d(.,.) using the data set X (see section 3.1.5 for details of training a TSVQ). Since

each path from the root to a terminal node defines a cell of the VQ, the above

process partitions the input data X into Qd local regions. Let us denote these

regions (cells) as RI,. .., Rqd. Let Ni denote the number of clements in Ri.

2. For each local region Rk, k = 1,..., Qd, compute the local data covariance matrix,

For each ~k, compute the orthonormal eigenvectors Cki, -i= 1,... ,n and the cor-

responding eigenvalues.

3. For any vector x E Rn, traverse the tree from top to bottom to determine the local

region Rk. This is achieved by determining at each node (starting at the root), the

closest codebook vector (say, the wth vector) to x, and descending the tree along

the wth path from that node, until we reach a terminal node. Once the local region

Rw is determined (x E Rw for the partition in the leaf node), the local coordinates
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Table 3.1: Notation used for the names of different algorithms presented in this chapter.

ALGORITHM
NAME

VQPCA-Eucl
VQPCA-Recon
VQPCA-E-MS
VQPCA-R-MS
VQPCA-E-Tree
VQPCA-R-Tree

CLUSTERING
SCHEME

Flat VQ
Flat VQ
Multi-stage VQ
Multi-stage VQ
Tree structured VQ
Tree structured VQ

DISTANCE
MEASURE
Euclidean
reconstruction
Euclidean
reconstruction
Euclidean
reconstruction

are given by the projection onto the leading rn eigen-directions of Rw

Z = (Cwl' (x -'Lw),. ",Cwm' (x - Pw)).

The low dimensional encoding of VQPCA-Tree is given by the -ind'ices of all the

nodes in the path from thc root to the given terminal node (local region) and the

rn dimensional vector z. The decoding is given by

m

j; = ILw+ L ZiP-wi
i=1

We can use any distance mea.<;ure in the algorithm described above. Using Euclidean

distance at all nodes ha.<;the advantage that we do not have to store sets of eigenvectors

for each node of the tree. We call this algorithm VQPCA-E-Tree. An alternative is

to use the reconstruction distance for the VQ at all the nodes of the tree. This is very

VQPCA-R-Tree.

expensive storage wise, but can produce more accurate encodings. We call this algorithm

In this section, we have presented several algorithms for local linear dimension re-

duction. All of these algorithms build a piece-wise linear model of the data. Table 3.1

shows the nomenclature used to refer to these algorithms through the rest of the thesis.

Unless specified otherwise, we will use the word VQPCA to refer to VQPCA-Recon,

the algorithm which performs clustering with reconstruction distance. This notation will

be used through the rest of the thesis. In the next section, we will summari7,e all the
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algorithms discussed in this chapter. In chapter 4, we will present a probabilistic model

for PCA and VQPCA based on a signal-pIus-Gaussian noise model. In chapter 5, we will

present experimental results with speech and image data, comparing all the algorithms

discussed in this section with PCA and FLNs.

3.3 Summary

In this chapter, we described VQ, a piece-wise constant modelling technique which parti-

tions the input space into a set of regions and approximates each region with a reference

vector. We discussed optimality criteria for VQs and batch and on-line algorithms for

training VQs. We also discussed multi-stage and tree structured VQs which can reduce

the computational complexity of a VQ.

We then presented local linear algorithms for dimension reduction. All of these

algorithms partition the input space into disjoint regions using a VQ. They then build

local low dimensional coordinate systems using a PCA. Thus, they form a local linear

model of the data.

The algorithms differ in the method of training the VQ. Clustering using Euclidean

distance is the simplest, but can be suboptimal because the clustering is done indepen-

dently of the PCA projection. Clustering using the reconstruction distance, which is

the distance to the local PCA hyperplane, directly minimizes the VQPCA error. We

presented a generalized Lloyd algorithm (GLA) to train the VQ with the new distortion

measure. We also presented multi-stage and tree structured quantization schemes for

reducing the computational cost of the above algorithms. These schemes trade-off some

loss of accuracy for faster training and search times.

In the next chapter, we will present a probabilistic framework for PCA and VQPCA

based on signal plus Gaussian noise models. We will show that PCA and VQPCA

encodings approximate the maximum likelihood signal estimates for different signal-

plus-noise models.



Chapter 4

A probabilistic framework for local

linear dimension reduction

In this chapter, wc present a prQbabilistic framewQrk for principal components analysis

(PCA: section 2.1) and our local linear dimension reduction algorithms (VQPCA: sec-

bon 3.2.2) using signal plus Gaussian noise models. In this dissertation, we consider

dimcnsion rcduction algorithms which reduce the dimension of a vector x (:1;E nn) from

n to m (m < n), such that the mean squared error bctween x and its reconstruction

5: is minimi;>;ed (sce chapter 1). The PCA reconstruction is a projection of x onto the

leading m eigen-space of the covariance matrix of x. The VQPCA reconstruction is a

lor;a.lprojection of x onto the the leading m cigcn-space of the covariance matrix for

the local region with the smallest "reconstruction distance" to x (the distance to the m

dimensional hyperplane spanned the m lcading eigen-directions).

In the next section, we show that the PCA projcction of x approximates the maximum

likelihood signal estimate for a signal-plus-noise model, where

. the signal density is a Gaussian with n - rn eigen-directions with negligibly small

eigenvalues,

. the noise density is a spherically symmetric Gaussian, and

. the noise variance is much smaller than the signal variances.

We discuss the relation of this model to factor analysis.

60
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In section 4.2, we show that, under certain conditions, a VQPCA projection of x

a.pproximates the maximum likelihood signal estimate for a probabilistic signal-pIus-noise

modeL where

. the signal density is a mixture of Gaussians, each with n - m eigen-directions with

negligibly small eigenvalues,

. the noise density is a spherically symmetric Gaussian, and

. the noise variance is much smaller than the signal variances.

In section 4.2.4, we discuss the conditions under which this approximation holds. In

section 4.2.4, we show the relation between VQPCA clustering using the reconstruction

distance and maximum likelihood parameter estimation for the signal-pIus-noise model.

4.1 A maximum likelihood model for PCA

In this section, we show that the PCA projection of :1;onto the leading eigen-space of

the covariance matrix ((2.5) in section 2.1.1) is a maximum likelihood signal estimate

of a Gaussian signal-pIus-noise model. We will present the signal-pIus-noise model for :1;

and derive its correspondence to the PCA projection.

We assume that x is a sum Of a signal vector 5: and a noise vector E,

(4.1 )

where :1:,5:,E E nn. and 5: lies very close to an rn dimensional hyperplane. We assume

that the signal and noise processes are statistically independent.

We assume that the signal density function p(5:) is a multivariate n-dimensional

Gaussian,
_
(

_
)

1
px =

[

1

(2,,)n/2JiEi exp -2(;0 - I')T t-1 (x - 1'1]

(4.2)

where the covariance matrix i; ha..<;m statistical degrees of freedom with a large variance

C;, i = 1,. .. . rn, and n-m degrees of freedom with a small variance tJ;,i = m+ 1,... ,n.
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Let. t = VT Av, where the rows of V are the orthonormal eigenvectors of 2;. The

diagonal eigenvalue matrix A (by model assumption) is given by

o

o

o

A=
o
o

(4.3)

o o o 8n

We assume that 8;, i = rn + 1,..., n are very small (later we will take the limit 8; -+ 0).

This implies that the signal is lying very close to an rn dimensional hyperplane. Finally,

we assume that the density function of f. is a spherically symmetric zero mean Gaussian

with variance (j2.
1

[

1 T

]
P£(f.) = . exp -- f. f. .

(27!")n/2(j2yn/2 2(j2

I3ased on the model described in (4.1-4.4), and using the independence of i: and f.,

(4.4)

the input density function p( x) is

p(x) = J dni: J dnf. p(x Ii:, f.) p(i:) P£(f.)

J dni: J dnf. 8(x - i: - f.) p(i:) p£(f.)

= J dni: p(i:) p£(x - i:)
1

[

1 T _I
]= /\/ffl exp --(x - 11,) 2; (x - 11,)(27!")n:' 12;1 2

(4.5)

where 2; = t + (j2 In xn has the orthonormal eigenvector matrix V and the diagonal

0 0

Cm 0

0 8m+l
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o o o

To obtain the maximum likelihood estimate of the signal ba.c;edon the observed

pattern x and the model, we compute the x which maximizes the conditional signal

likelihood p( x Ix),

£ = argm!lJ( p(x Ix)x

Pf(X - x)j)(x) . . _= argm!lJ( usmg Bayes rule and the mdependence of x and f,
x p(x)

= argm~xPf(X-X)j)(x) (4.7)x

We evaluate (4.7) by taking the derivative of the Pf(X - x)j)(x) with respect. t.o j; and

equat.ing it t.o O. We obtain

m C- n ~
~ '"" iT,"" Ui T

x = It + ~ C. CiCi (x - It) + ~ r , _.)CiCi (:7: - It) ,i=1 I i=m+1

(4.8)

where ci, i = 1, . . , ,n are t.he orthonormal eigenvectors of both E and E, and the indices

are a.c;sumed t.o be ordered such that the corresponding eigenvalues are in a decrea.c;ing

order a.c;i increases. We take the limit 8i -+ 0 for i = m, + 1, . . ., n and obtain

m C
-

~ '"" i T ( )
x = It + ~ C. CiCi X - It ,

i=1 I

(4.9)

Thus, the maximum likelihood signal estimate is a .~calcdprojection of x onto the leading

m. eigen-space of t.he covariance matrix of x. The projection of x along Ci is scaled by
C C _(T2 Th

'

1
" ,.

h
.

( h
.

11~ = C-:-. IS sca mg IS a contractlOn smce x a.c;nOise components sp enca y

distributed with variance (72) in all directions.

eigenvalue matrix A,

CI = 61 + (72 .. . 0 0 .. . 0

0 - .) 0 0.. . Cm = Cm +(7- .. .
A=I I (4.G)

0 0 .) 0.. . 8m+1 + (7- .. .
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If we assume that the noise variance (12is negligible compared to the signal variances.

(12 ~ Ci for i = 1. . . . . m, (4.9) reduces to

m

:J;~= J-L+ L ejcT (x - Ii,) ,
i=l

(4.10)

the PCA projection ((2.5) in section 2.1.1). Thus. the PCA projection of x onto the

leading rn eigen-space of the covariance matrix of x is the maximum likelihood signal

estimate (4.10) for our Gaussian signal-plus-noise model.

4.1.1 The relation between factor analysis and the maximum likelihood
model for PCA

The above model is very similar in spirit to the "the basic factor-analytic model" used

in fa.ctor analysis (Harman 1976, Gnanadesikan 1977, Dillon & Goldstein 1984). In this

subsection. we show the relation between factor analysis and the probabilistic model

described above. The basic model in factor analysis is

x = Af + f , (4.11)

where x, f E nn, A E nnxm. and f E nm for m < n. The components of f are called the

r;ommon factors, the components of f are called the unique factors and the components

of the matrix A are called the factor loa.dings. The unique factors are assumed to be

independent of the common factors and are assumed to have a zero mean and a diagonal

Factor analysis techniques (Harman 1976, Gnanadesikc'Ul 1977, Dillon & Goldstein 1984)

estimate the factor loadings and values of unique factors from sample observations of

the random vector x. This is similar to signal estimation for a signal-plus-noise model,

where j; = Af denotes a "signal" vector and € denotes a "noise" vector.

covariance matrix

(12 0 .. . 01

0 2 0
E[uT] = =

(12 .. .
I (4.12)

0 0 .. . (12n
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We now derive the maximum likelihood signal estimate for the factor analysis model.

Let x = Af E'Rn. Let N(JL, E) denote a multi-variate normal distribution with mean

It and covariance matrix E. We assume a signal plus noise model 3; = X + f. == A.f + f..

where x, x, f. E 'Rn and the noise vector f. and f are statistically independent. We a..<;sume

that .f is N (JLf' 1mxm) (this is a standard a..<;sumption: see (Harman 1976, Gnanadesikan

1977)). Therefore, x is N(JL = AILf,t = AAT). We a..<;sumethat f. is N(O.Do) (Harman

1976, Gnanadesikan 1977), where Dois given by (4.12). The maximum likelihood signal

estimate is

XW = argmg.x p(x Ix)
x

= argmg.xp£(x - x)p(x)x (4.13)

There is no solution to (4.13) unless t is invertible. The factor analysis model assumes

that t = AAT, where A E 'R n x m and 'Tn < n. Therefore, t is rank rn and hence not

invertible. Thus, we ca.nnot obtain the maximum likelihood signal estimate starting from

the factor analysis model. In order to do so, we need to assume that x ha..<;variances in

all eigen-directions as shown in section 4.1.

4.2 A maximum likelihood model for local linear dimen-

sion reduction

In this section. we derive the correspondence between the VQPCA algorithms for local

linear dimension reduction (section 3.2.2) and a mixture of Gaussians signal-plus-noise

model. We use a similar analysis to that given in section 4.1 to show how the VQPCA

projection relates to the maximum likelihood signal estimate for the signal-plus-noise

model. We also show the relation between clustering with reconstruction distance and

maximum likelihood clustering under this model.

We first describe our mixture of Gaussians signal-plus-noise model. We derive the

input density p(x), a mixture of Gaussians. We derive the maximum likelihood signal
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estimate for the signal-plus-noise model and discuss its relation to the VQPCA projec-

tion. Finally we discuss maximum likelihood parameter estimation for our model and

its relation to VQ clustering using reconstruction distance (section 3.2.2).

4.2.1 The signal-plus-noise model

We model the vector x as a sum of a mixture of Gaussians distributed signal vector 5:.

and a spherically symmetric Gaussian distributed noise vector c. We a..<;sumethat

(4.14)

where x, i, c E nn, and i and c are statistically independent. We a..<;sumethat the signal

density function p(i) is a mixture of Q multivariate n dimensional Gaussians,

(4.15)

where all the component covariance matrices tk have Tn large variance directions with

variance Ci, and n - m small variance directions with variance 6j. Thus, if we diagonalize

- - T- .-
I:A'as I:k = Vk AVA" where the rows of Vk are the orthonormal mgenvectors of I:k, then

We assume that all the mixture components have identical covariance eigenvalues, though

their eigenvectors may differ. This implies that Itklis the same for all mixture compo-

nents.

We assume that all 6j are very small (later we will take the limit 6i -+ 0). This implies

that the signal is lying very close to an m. dimensional manifold. We further a..<;sumethat

the eigenvalue matrix A is given by

/ -
Cl .. . 0 0 .. . 0

0 .. . Cm 0 .. . 0
IA=I (4.1G)

0 .. . 0 6m+1 .. . 0

0 ., . 0 0 .. . 6n
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the noise density p((E) is given by a spherically symmetric zero mean Gaussian with

variance a2
1

[

IT

]p((E) = /2 exp --2 0) E E .
(271")n/2(a2t a-

We assume that the noise variance a2 is much smaller than the signal variances, i.e

(4.17)

? - "
a- « C;, for "t= 1, . . . , m..

4.2.2 The input density p(x) given the signal-plus-noise model

Using (4.15), (4.17) and the independence of x and E,we derive the input density p(x)

p(x) = J dllX J dllE p(XIX,E)fi(x)p((E)

= J dllX J dIlE<5(:r - x - E) j'1(x) p((E) using (4.14).

= Jdnx fi(x) p((:r- x)
Q

'"' CXk

[

IT _I
]= ~ /2~ cxp --(x - P'k) ~k (x - P'k)k=1 (271")n I~kl 2

(4.18)

where the component covariance matrices ~k = tk + a2I IIxn have the same eigenvectors
- - ?

as ~k, and an eigenvalue matrix A = A+ a- IlIxII,

o o o

A=
o
o

o o
(4.19)

Note that the determinant I~kl = ni~1 C; TIi=m+l (<5;+a2) ~ a2(n-m) TI~1 C; is identical

for all mixture components.

A winner-take-all approximation of p(x)

To derive the relation to VQPCA, we assume the following.
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. The mixing proportions (ak) are equal, i.e. ak = 1/Q \;Ik= L..., Q,

. For any given x, the density p(x) (4.18) is dominated by the largest term in the

summation. Thus, we obtain a hard partition of the data from the Gaussian

mixture model. Such a probabilistic clustering has been extensively used in the

statistics community (e.g see (Lazarsfeld & Henry 1968, Ganesalingam & McLach-

lan 1979, Aitkin et al. 1981, Basford & McLachlan 1985, McLachlan & Basford

1988)). Nowlan (1991) uses the above assumption, called the "winner-take-all"

(WTA) a..c;sumption, to show the relation between Gaussian mixture densities and

VQ clustering. This relation wa..c;earlier suggested by Duda and Hart. (1973). In

appendix I3, we summarize a derivat.ion of the relation bet.ween Gaussian mix-

t.me models and VQ clustering. Ba..c;ically, the WTA a..c;sumpt.ion a..c;signsall the

responsibilit.y for an observation to t.he Gaussian component which best explains

it.

Using these a..c;sumptions,

Q

[

1 T I

]
p(x) = max Z exp --(x - ILk) Ek- (x - ILk)k=l 2

(4.20)

where Z = 1/(Q(21!")n/2JI1i~1 C;a(n-m)). The "winning" (dominant) Gaussian for a

given x is the Gaussian wit.h the smallest. Mahalanobis distance t.o x,

(4.21)

where Ck;, 'i = 1,..., n are the orthonormal eigenvectors of Ek'



G9

4.2.3 The maximum likelihood signal estimate

We now derive the maximum likelihood signal estimate for a given x. We compute the

j; which maximizes the conditional signal likelihood p(i Ix).

x~ = argm!l-x p(i Ix)
x

p( x Ii) fi(i) .
= aq,'1ll?-x usmg Bayes rule.

x p( x)

Pf(X - i) fi(x) .
= argm?-x ( \ usmg (4.14).x p x

= argm?-x Pf(X - i) fi(i)
x

(4.22)

We apply the winner-take-all (WTA) a..<;snmptionto the mixture fnnction {maxi Pf(:1:-

i)fi(i)}. We a..<;snmethat for a given x, the same mixture component (11Itl1term (4.21))

dominates the mixture for both p(x) and {maxi Pf(X - i)fi(i)}. This is a rea..<;onable

a..<;snmption, since from (4.18),

p(x) = J dni Pf(X - i) fi(i) .

The density Pf(X - i) is a spherically symmetric Gaussian with variance (12 which has

a maximum value when i = x. If we a..<;sumethat the noise variance is negligibly

small, i.e (72 -t 0, then, p(x) ~ fi(x), and we can assume that the mixtures p(x) and

{maxi Pf(X - i)jj(i)} are dominated by the same term (11Itl1term) for a given x.

Using these assumptions in (4.22), we get

x~ = argm?-x Pf(X - i) fi(i)
x

~ argm?-x Pf(X - i) )_x Q(27T)n/2 Cmo(n-m)

where 11)is the winner given by (4.21).

exp [-~(i -ILuJT t;;;1 (i - ILw)]

(4.23)

(4.24)

Taking the limit Oi-t 0, i = m + L . . . ,17.,we obtain,
m C

-
~ ,",i T )X ~ ILw + L -ewiCwi (x - P'w.

l Ci1=
(4.25)
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Thus, the maximum likelihood signal estimate is a scaled projection onto the leading m

eigen-space of the wth Gaussian component of the mixture density p(x). The projec-
. . . C C'_(12. .

tlOn along Cwi, 'l = 1,..., rn IS scaled by .=c . = ~ ( " SInce our model postulates nOIse. 'I
components (spherically symmetric Gaussian noise with variance a-2) in all directions.

If we assume that the noise variance a-2 is much less than the signal variances, l.e

a-2« C;, .i= 1,.. ., m. we obtain

m

XX ~ J.Lw + L CwiC~; (x - p.w)
i=l

(4.26)

Thus, the maximum likelihood signal estimate for our model under the above a.<;sump-

tions is a PCA projection onto the leading rn eigen-space of the wth Gaussian component

of the mixture density p(x). The index 'IVis the index of the Gaussian component with

the smallest Mahalanobis distance (4.21) to x.

4.2.4 The relation between VQPCA encoding and the maximum like-

lihood signal estimate

The maximum likelihood signal estimate is of the same form as the VQPCA projection

x (3.20 in section 3.2.2). For VQPCA, the local region 'IJJis the Gaussian component

with the smallest reconstruction distance (3.19) to x, which is the squared projection

along only the trailing eigenvectors of the covariance matrix L:k,

(4.27)

For the maximum likelihood signal estimate (section 4.2.3), the local region w is defined

as the Gaussian component with the smallest M ahalanobis distancc to x,

Q

(

111 TnT

)
. T Ck;C . Ck;C .'

W = argm~n (x - P.k) L 1£ + L ,p (x - P.k) ,k-I .
1 C, ' + I

a-
1= 1=111

(4.28)

as derived in section 4.2.3. The Mahalanobis distance is the sum of squared projections

along all the eigenvectors of L:w, where each projection is scaled by the corresponding

eigenvalue. Thus, the VQPCA projection can be interpreted a.c;a maximum likelihood
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signal estimate for which excursions within the local m-dimensionalleading eigen-space

are cost-free.

The a..c;signment of local regions using Mahalanobis distance and using reconstruction

distance will be nearly the same whenever the Mahalanobis distance in (4.28) is dom-

inated by the terms corresponding to the trailing eigen-directions. Thus, the VQPCA

projection is also the maximum likelihood signal estimate whenever the inequality

n

L
i=m+1

(x - J.Lw)T CU'iC~;(x - J.Lw)

a2

holds. This condition is equivalent 'to the inequality

(x - ILw)T CwiC~;(x - ILu.)
(72

(4.29)

where k is a very small constant (k --+0).

Let Al = C],...,Am = Cm,Am+1 = a2,...,An = (72 denote the eigenvalues (in

decrea..c;ing order) of Ew. We change coordinates from x to y,

(

~

)

v'AI

?I=H(x - ILw) == ; (x - JLw)
5t:n...
.;>:;:

(4.30)

In the changed coordinates, (4.29) reduces to

m n

L?lT < k L YT
;=1 i=m+1

(4.31 )

The probability ma..c;sof the data points violating (4.29) is the same a..c;the probability

ma..c;sof the data points violating (4.31). Therefore, the probability ma..c;sof the data

points violating (4.29) is independent of Ci, i = 1, . . . , m and a2 and depends only upon

the relative values of k, the input dimensionality n, and the reduced dimension m.

We performed Monte Carlo simulations to study the dependence of the fraction of

points violating (4.31) on nand m. I am grateful to Steven R.ehfuss for suggesting

this approach, writing the initial code and help with the simulations. We performed

Monte Carlo simulations sampling 500,000 data points uniformly distributed in a unit n
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Figure 4.1: Plots showing the fraction of points violating the inequality (4.31) for 500,000
points uniformly sampled from a unit n dimensional hypersphere. Each plot is for a
different value of k in (4.31) and shows 9 curves for different values of n. The horizontal
axis plots the ratio m/n and the vertical axis plots the fraction of points violating (4.31).
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dimensional sphere and recording the fraction of points for which (4.31) is violated. We

performed experiments varying n from 2 to 10 and with all possible values of rn (for a

given n). Figure 4.1 plots m/n versus the fraction of points violating (4.31) for different

values of k. Each plot in Figure 4.1 is for a different value of k. Each plot shows 9 curves.

one for each n.

We notice from Figure 4.1 that, in general, the reduced dimension rn should be

much smaller than n for the condition (4.31) to hold most often. If we just consider

the relative magnitudes of terms instead of dominance (i.e. considering the ca.<;ewith

k = 1.0), the condition is violated lea.<;toften when rn is very small compared to nand

when n is large. Thus, our Monte Carlo simulations suggest that the VQPCA projection

approximates the maximum likelihood projection whenever m is much smaller than n

and the approximation holds better for larger n (with fixed m/n).

4.2.5 Maximum likelihood clustering for the winner-take-all model

We will now derive maximum likelihood estimates of the parameters fJ = {,J'k,Ck} re-

quired to obtain the signal encoding in (4.26). The parameters Ci, i = 1,..., rn and

(j2 are not considered here, since, by model a.<;sumption these are the same for all mix-

ture components and they are not needed to compute the signal encoding (4.26). Let

X = {x I, . . . , xX} denote a training set of N data points. Assume that the samples

in X are independent and identically distributed. The maximum likelihood parameter

estimates can be obtained by maximizing the likelihood of the data set X a.<;follows:

fJ = argmax p(X IfJ)o
X

= argmax II p(xll fJ) using i.i.d,
o l=1

X Q

[

1

]= argmax II m~x Z exp __(xl - P'k)T L:k-I (xl - ILk) using (4.20),
o l=1 k-I 2

X

[

Q

(

m TnT

) ]

. CbC . CbC .

= argmin L m~n (xl -'Lk)T L C b + L ,}2. (xl - ILk) (4.32)o l I k-I ./. I (j
= . .=m+
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after taking a log, and having discarded tcrms that do not dcpend on (). The above

expression for the data likelihood is the summed Mahalanobis distance to the closest

(Mahalanobis distancc) ccntroid or rcference vector.

Thus, the maximum likelihood estimates of the mixture density parameters can be

obtained by minimizing the summed Mahalanobis distancc. If we assume, as discussed

earlier, that the Mahalanobis distancc is dominated by the terms corrcsponding to the

trailing eigen-directions for most of the data ((4.29) and (4.31)) then the maXImum

likelihood parameter estimates are givcn by

(4.33)

The cost function to be minimizcd above is the summed "reconstrnction distance". Thus

we can approximate the maximum likelihood estimates by minimizing the summed re-

construction distance. This is prccisely what the VQPCA algorithm docs. The resulting

parameter estimates can be considered to be maximum likelihood estimates provided

(4.31) holds for most of the data points. or equivalently (a..c;discussed in the previous

section), rn is much smaller than n.

4.3 Discussion

In this chapter, we have presented a probabilistic framework for PCA and VQPCA algo-

rithms ba..c;edon signal plus Gaussian noise models. We showed that the PCA projection

of x is the maximum likelihood signal estimate for a signal-pIus-noise model, where

. the signal density is a Gaussian with n - rn eigcn-directions with negligibly small

eigenvalues.

. the noise density is a spherically symmetric Gaussian and

. the noise variance is much smaller than the signal variances.

Though this model is related to a factor analysis model, we showed that we can not

derive a maximum likelihood signal estimate directly from the factor analysis model.
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We showed that a local PCA projection of x onto the leading eigen-space of the '/11th

local region approximates the maximum likelihood signal estimate for a signal-plus-noise

model. where

. the signal density is a mixture of Gaussians, each with n - m eigen-directions

with negligibly small eigenvalues, and all component Gaussians have the same

eigenvalues,

. the noise density is a spherically symmetric- Gaussian,

. the noise variance is much smaller the the signal variances, and

. 1lJis the index of the Gaussian component with the smallest Mahalanobis distance

to x for the mixture density p(x).

We showed that the VQPCA projection of 3;approximates the maximum likelihood signal

estimate whenever the reconstruction distance approximates the Mahalanobis distance.

We hypothesi:w, ba..c;edon Monte Carlo simulations that the partitions generated by the

two distance mea..c;ures are nearly the same whenever m ~ n. Under this a..c;sumption,

the parameter values obtained by clustering using reconstruction distance approximate

the maximum likelihood parameter estimates.

In the next chapter, we compare PCA, FLNs and VQPCA for the ta..c;ksof speech and

image dimension reduction, speech feature extraction and speech and image compression.



Chapter 5

An empirical comparison of dimension

reduction algorithms

In the preceding chapters, we described several algorithms for dimension reduction. In

this chapter, we present the results of experiments comparing these algorithms applied

to real world speech and image data. We compare principal components analysis (PCA,

section 2.1), five layered networks (FLNs, section 2.2), and our local linear algorithms

(VQPCA, section 3.2) for speech and image dimension reduction and speech feature

extraction. We also compare VQ and VQPCA for lossy compression of speech and

image data.

First, we present results of experiments with the dimension reduction of spectral

speech data and image pixel data. We compare the different algorithms based on the

accuracy of reconstructions obtained from low dimensional encodings and the training

times. The local linear algorithms obtain nearly half the error of FLNs or PCA while

training much faster than FLNs.

We then present results showing the potential application of dimension reduction

algorithms for speech feature extraction. We estimate formants (resonant frequencies

of the vocal tract) of vowels from spectral features using the low dimensional encodings

obtained by the dimension reduction algorithms. Finally, we compare VQ and VQPCA

for lossy data compression. We compare rate/distortion R(D) curves for speech and

image compression. In general, VQ obtains the lea.<;tdistortion for a given bit rate.

76
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5.1 Dimension reduction experiments

In this section. we apply PCA, five layer networks (FLNs), and VQPCA to dimension

reduction of speech and images. We compare the algorithms using four performance

criteria: training time, the distortion in the reconstructed signal, the number of floating

point operations (FLOPS) required to encode an input vector (encode time) and the

number of FLOPS required to reconstruct the input vector from the encoding (decode

time).

Suppose we are reducing data from n to m dimensions where m < n. The distortion

measure is the squared reconstruction error normalized by the data variance,

E = Erecon = E [ II x - x 112 ]
E [ IIx - JLII2 ] E [ Ilx - JLII2] ,

(5.1 )

where JL= E[x] is the mean of the data, E[.] denotes an expectation with respect to x.

and x denotes a reconstruction of x from an m dimensional encoding. The normalization

gives us the fraction of the total data variance accounted by the rn dimensional encodings.

For example, E = 0.01 indicates that 1% of the data variance is not accounted for by the

rn dimensional encodings. Let X = {x I, . . . ,xN} denote a test set of input vectors. We

estimate (5.1) ba..c;edon X a..c;

""N
II

1 Al
11

2

E _L.d=1 x -xnO/om- ""N
II

1 _ _
11

2
L...I=l x x

h - I ""N 1. h
.

h
.

f h d t twere x == N L...I=IX IS t e arlt metlc mean 0 tea a se .

(5.2)

5.1.1 Experimental setup

For speech data. we trained PCA using the Householder reduction followed by QL algo-

rithm (see section 2.1.3). For image data, our training set ha..c;fewer data points than

the input dimensionality. Therefore, the auto-covariance matrix is singular and we can-

not use Householder reduction. For image data, we trained PCA using singular value

decomposition (SVD: see section 2.1.3).

We trained the FLNs using three optimization techniques: conjugate gradient descent

(CGD), the nFGS algorithm (a qua..c;i-Newton method (Press et al. 1987)), and stocha..c;tic
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gradient descent (SGD). In order to limit the space of architectures, we only considered

FLNs with the same number of nodes in both of the mapping (second and fourth) layers.

See section 2.2 of chapter 2 for more details of the FLN training procedure.

We trained the local linear algorithms using Euclidean distance clustering (VQPCA-

Eucl). reconstruction distance clustering (VQPCA-R.econ), and multi-stage and tree

structured clustering for both distance measures. We trained the VQ partition for

VQPCA-Eucl using competitive learning (section 3.1.3; a stocha..c;tic learning algorithm)

with an annealed learning rate (Darken & Moody 1991). We trained the VQ partition

of VQPCA-R.econ using a GLA (section 3.1.2: a batch-mode algorithm), since stocha..c;-

tic learning with reconstruction distance entails computing the covariance matrices and

their eigenvectors after each randomly drawn input vector is presented. We implemented

all the multi-stage and tree structured VQ algorithms using GLA. Further details of the

clustering algorithms are given in section 3.2 of chapter 3. We will use the notat.ion

described in Table 3.1 to refer to different algorithms.

For det.ermining the values of free parameters of different algorithms, we divided the

dat.a into t.raining, validation and test sets. We varied the parameters over a range of

values. and chose the value for which the validation set error wa..c;the lea..c;t.We varied the

nnmber of nodes in the mapping layers (second and fourth layers) of the FLN s from 5 to

50 in increments of 5. Thus, we tried network configurations from n - 5 - rn - :) - n to

n-50-m-50-n. We picked the net.work configuration with the lea..c;tvalidation set error

for each optimillation scheme (DFGS, CGD and SGD). We monitored the validation set

error while training the FLNs and stopped t.raining when the validation set error started

t.o increa..c;e (early stopping: (Hertll ct al. 1991)). For stocha..c;tic gradient descent (SGD).

we used Darken and Moody's (1991) annealed learning rate schedule with a momentum

(Hertll ct al. 1991) term and stopped training the net.works when the validation set error

st.opped decrea..c;ing apart from the fluctuations due to the inherent stocha..c;tic noise.

Similarly, we varied the number of local regions of VQPCA-Eucl and VQPCA-R.econ

from 5 to 50 in increments of 5. We varied the number of local regions at each stage

for VQPCA-E-MS and VQPCA-R.-MS from 5 to 50 in increments of 5 for a two level
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multi-stage quantizer. We varied the branching factor ofVQPCA-E-T and VQPCA-R-T

for two and three level tree structured quantizers from 2 to 9. We did not train some

of these configurations, which resulted in prohibitive memory and/or computation time

requirements. For example, for the image data described later in the chapter. training a

three level tree structured quantizer with a branching factor of 10 for a 50 to 5 dimension

reduction required around 50 megabytes memory.

In the next subsection. we discuss the results of our experiments with speech vowel

data. We then discuss the results of experiments with image data.

5.1.2 Dimension reduction of speech

In our first set of experiments, we performed a dimension reduction of the discrete Fourier

transform (DFT) coefficients of speech data. We used examples of the twelve nionothon-

gal vowels extracted from continuous speech drawn from the TIMIT database (Fisher &

Doddington 1986). Each input vector consists of the lowest 32 DFT coefficients (span-

ning the frequency range 0-4kHz), time-averaged over the central third of the utterance.

We partitioned the data set into a training set containing 1200 vectors. a validation set

containing 408 vectors and a test set containing 408 vectors. The validation set was used

for architecture selection as described earlier. The test set utterances are from speakers

not represented in the training set or the validation set. Motivated by the desire to

capture formant structure in the vowel encodings. we reduced the data from 32 to 2

dimensions.

We trained each algorithm with four different random initializations of the free pa-

rameters. Figure 5.1 shows the mean test set reconstruction errors (5.2) averaged across

the random initializations, with 20"error bars symmetric about the mean. Here 0" is the

standard deviation of the errors across the different initializations. Figure 5.2 shows the

mean training times with 20" limits. and Table 5.1 gives the reconstruction errors and

the training times numerically.

In generaL the VQPCA encodings have about half the reconstruction error of global

PCA or five layer nets. The FLNs failed to obtain a significantly lower error than a global
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Figure 5.1: The test set reconstruction errors (5.2) for a 32 to 2 dimension reduction of
TIMIT speech vowels (see text for details). The errorbars shown denote 20- limits on
either side of the mean for four different random initializations of the parameters for each
algorithm. See Table 5.1 for the numerical values of the reconstruction errors plotted
here.

PCA I. The FLNs seem to have a high variance in the reconstruction errors with respect

to different random initializations of the weights. In fact, several nets have a higher error

than PCA, indicating that these nets trapped into poor local optima. In contra.<;t, all the

local linear algorithms seem to be relatively insensitive to different random initializations

of the training parameters.

IThere is insufficient evidence to reject a null hypothesis that the mean reconstruction error for any
of the FL:\ algorithms is the same as the PCA error using the students t test.
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Figure 5.2: A plot of the time taken in seconds to train algorithms (on Sun Sparc 2
workstations) to reduce the dimension of TIMIT speech vowels from 32 spectral features
to 2 dimensions. The errorbars shown denote 20- limits on either side of the mean for

four different random initializations of the parameters for each algorithm. The range of
the variation in the training times was between 2622 - 3843 for FLN-CGD and between
4,536 - 12,964 for FLN-BFGS. The errorbars can be misleading in these two ca..<;essince
they indicate a possible training time which is lower than the range of variation.
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Table 5.1: Speech data test set reconstruction errors (5.2) and training times. The train-
ing times are reported in seconds to train on a Sun Sparc 2 workstation. The numbers in

the parentheses are the values of the free parameters for the algorithm represented (e.g
5LN-CGD (5) indicates a network with 5 nodes in both the mapping (2nd and 4th) lay-
ers, while VQPCA-Eucl (50) indicates a clustering into 50 Voronoi cells). The errorbars
shown represent 2<7limits symmetric about the mean (2<7away from the mean on either
side) for four different random initializations of the parameters. Note that the error bars
for the training times can be misleading for FLN-CGD and FLN-BFGS since the actual
range of variation is between 2,622 - 3,842 for FLN-CGD and between 4,536 - 12,964
for FLN-BFGS.

From Figure 5.1, we note that clustering with reconstruction distance produced en-

co dings with a lower error than those produced by clustering with Euclidean distance.

We obtained the most accurate encoding (least error) using VQPCA-R-MS. Both the

multi-stage algorithms obtained a lower error than the corresponding fiat quantizer algo-

rithms. This may be because of the regularizing effect of the constraints imposed on the

quantization when using a multi-stage VQ. A two level multi-stage VQ with Q cells at

each stage effectively quantizes the input space into Q2 cells (see section 3.1.4), but the

shape of the Q2 cells is constrained or restricted. This regularizing effect can be helpful

when training with a large number of parameters.

From Figure 5.2, we note that FLNs are very slow to train. VQPCA algorithms with

a multi-stage or tree structured architecture (except for VQPCA-R.-MS) train more than

ALGORITHM £norm TRAINING TIME

(seconds)
PCA 0.443 11

FLN-CGD (35) 0.496 :l: .103 7,784 :l: 7442

FLN-BFGS (20) 0.439 :l: .059 3,284 :l: 1206

FLN-SGD (35) 0.440 :l: .016 35,502 :l: 182

VQPCA-Eucl (50) 0.272 :l: .010 1,915 :l: 780

VQPCA-E-MS (40x40) 0.244 :l: .008 144 :l: 41

VQPCA-E-T (15x15) 0.259 :l: .002 195 :l: 10

VQPCA-Recon (45) 0.230 :l: .004 864 :l: 102

VQPCA-R.-MS (45x45) 0.208 :l: .005 924 :l: 50

VQPCA-R.-T (9x9) 0.242 :l: .005 484 :l: 128
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Table 5.2: The encode and decode times for different algorithms for a 32 to 2 dimension
reduction of TIMIT speech vowels.

an order of magnitude faster (sometimes more than two orders of magnitude fa..<;ter)than

the FLNs, and achieve nearly half the error incurred by the FLNs. VQPCA-Eucl, which

uses competitive learning is slower than VQPCA-Recon, which uses a batch-mode GLA.

However. both are much fa..<;terthan most of the FLNs.

Table 5.2 shows the encode and decode times for different algorithms. We note that

the VQPCA algorithms (especially those using reconstruction distance clustering) re-

quire many more FLOPS to encode an input vector than five layer networks. However

the decoding is much fa..<;terand comparable to PCA. The results indicate that VQPCA

encoding may not be suitable for some real time applications (like video conferencing)

where very fa..<;tencoding is desired. However, when only the decoding speed is of con-

cern (e.g multi-media image retrieval). VQPCA algorithms are desirable because of the

accuracy of their encodings, small training times and fa..<;tdecoding.

In order to test whether the results described above were specific to a particular

training data set, we shuffled all the data and repartitioned it into new training, val-

idation and test sets of the same size a..<;above. Figure 5.3 summarizes the results of

experiments using the new data sets. Note the close correspondence of all the numbers

between Figure 5.1 and Figure 5.3. This indicates that the results discussed in in the

ALGORITHM ENCODE TIME DECODE TIME
(FLOPS) (FLOPS)

PCA 158 128
5LN-CGD (35) 2,380 2,380
5LN-BFGS (20) 1,360 1,360
5LN-SGD (35) 2.380 2,380
VQPCA-Eucl (50) 4,957 128
VQPCA-E-MS (40x40) 7,836 192
VQPCA-E-T (15x15) 3,036 128
VQPCA-Recon (45) 87,939 128
VQPCA-R-MS (45x45) 96,578 192
VQPCA-R- T (9x9) 35,320 128
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Figure 5.3: Plot showing the normalized test set reconstruction errors (5.2) of TIMIT
speech vowels for a different a..c;signment of the data into training. validation and test sets.
The plot shows the average test set errors across four different random initializations of
the parameters for each algorithm along with 2<7error bars symmetric about the mean.
Note the close correspondence between this plot and the plot in Figure 5.1. This indicates
that the results in Figure 5.1 were not specific to some training set.
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preceding pages are not particular to a specific training set.

5.1.3 Dimension reduction of images

In our next set of experiments, we reduced the dimension of of grayscale image data. The

data consists of 160 images of the faces of 20 people. Each person wa..c:;a..c:;kedto feign 8

different emotional states (astonished, happy, pleased, relaxed, sleepy, bored, miserable

and angry). Each image is a 64x64, 8-bitjpixel grayscale image. We obtained the data

from Gary Cottrell and David DeMers at UCSD (Cottrell & Metcalfe 1991, DeMers &

Cottrell 1993). Cottrell and Metcalf (1991) generated this data and used it to cla..c:;sify

the identity, gender and emotions of humans using a neural network classifier.

We consider each image to be a point in a 4096 dimensional face space. We extracted

the first 50 principal components of each image and use these a..c:;our experimental data.

This is the same data and preparation that DeMers and Cottrell used in their study

of dimension reduction with five layer auto-associative nets (DeMers & Cottrell 1993).

They trained auto-a..c:;sociators to reduce the 50 principal components to 5 dimensions.

We divided the data into a training set containing 120 images, a validation set (for

architecture selection) containing 20 images and a test set containing 20 images. We

reduced the images to 5 dimensions using PCA, FLNs2 and VQPCA. Each algorithm

was separately trained with four different random initializations of the free parameters.

Figure 5.4 shows the mean test set reconstruction errors (5.2) averaged across the random

initializations, along with 20" error bars symmetric about the mean, where 0" is the

standard deviation of the errors across the different initializations. Figure 5.5 shows the

mean training times with 20"limits and Table 5.3 gives the reconstruction errors and the

training times numerically.

We note from Figure 5.4 that the five layer networks obtain about a 30% lower error

than the PCA. Among the FLNs, FLN-SGD obtained the lowest error. Both VQPCA-

Eucl and VQPCA-R.econ obtain a 40% lower error than FLN-SGD. Though on average,

2\Ve tried FLKs with a configuration of 50 - n - 5 - n - 50, n varying from 5 to 40 in increments of
5. The memory requirements were prohibitive for n > 40.
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Figure 5.4: This figure plots the test set reconstruction errors (5.2) for a 50 to 5 dimension
reduction of the faces data (see text for details). Each algorithm was trained with four
different random initializations of the parameters. The plot shows the mean of the four
trials along with 2/7 limits on either side of the mean. See Table 5.3 for the numerical
values of the reconstruction errors plotted here.

VQPCA-Recon obtained a lower error than VQPCA-EucL there is not much difference

in the errors obtained by VQPCA-Eucl and VQPCA-Recon. The multi-stage and tree

structured quanti7.ers obtained lower errors than FLNs, but higher than VQPCA-Eucl

or VQPCA-Recon.

Comparing the training times of different algorithms in Figure 5.5, we note that

the local linear techniques take a significantly shorter time to train than the FLNs.

FLN-CGD trains fast relative to the other network optimization schemes3 but seems to

3We were unable to train the FLK-BFGS (35) reported in Table 5.3 on a Sun Sparc 2 because of
prohibitive memory requirements. \Ve trained the network on a Sparc 10 and converted the recorded
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Table 5.3: Reconstruction errors and training times for a 50 to 5 dimension reduction of
the faces data. We report only those architectures which obtained the least validation
set error over the parameter ranges explored. The training times arc reported in seconds
for training on Sun Sparc 2 workstations. Note that the errorbars for the training times
can be misleading for FLN-CGD and FLN-BFGS, since the actual range of variation of
training times is between 593 - 1,093 for FLN-CGD and between 8,452 - 25,031 for
FLN-BFGS.

generate inferior encodings (with respect to reconstruction errors). We again note that

VQPCA-Eucl which uses a stocha..<;ticparameter update takes a significantly longer time

to train than VQPCA-Recon (which uses a batch-mode GLA) with the same number

of cells. Both VQPCA-Recon and VQPCA-Eucl are more than an order of magnitude

fa..<;terthan the best FLNs.

Table 5.4 shows the encode and decode times for different algorithms in FLOPS. We

again note that VQPCA algorithms using reconstruction distance clustering (VQPCA-

Recon, VQPCA-R-MS and VQPCA-R-T) use a much larger number of FLOPS to encode

an input vector than FLNs or VQPCA algorithms using Euclidean distance clustering.

However, the decode time is much smaller and comparable to other algorithms. As we

noted earlier. this may indicate that these algorithms are not applicable to real time

data processing applications like video conferencing, etc. However, when the encoding

time to the (roughly) corresponding time on a Spare 2.

ALGORITHM £norm TRAINING TIME

(seconds)
PCA 0.463 5

5LN-CGD (35) 0.441 ::I::.090 698 ::1::533

5LN-BFGS (35) 0.377 ::I::.127 18,905 ::1::15,081
5LN-SGD (25) 0.327 ::I::.027 4,171 ::1::41

VQPCA-Eucl (20) 0.179 ::I::.048 202 ::1::57

VQPCA-E-MS (5x5) 0.307 ::I::.031 14 ::1::2

VQPCA-E-Tree (4x4) 0.211 ::I::.064 31 ::1::9

VQPCA-Recon (20) 0.173 ::I::.050 62 ::1::5

VQPCA-R-MS (20x20) 0.240 ::I::.042 78 ::1::32

VQPCA-R-Tree (5x5) 0.218 ::I::.029 79 ::1::15
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Table 5.4: The encode and decode times (in FLOPS) for a 50 to 5 dimension reduction
of the faces data.

can be slow and only real time decoding is desired, VQPCA algorithms are preferable.

particularly the ones using reconstruction distance clust.ering.

To test t.he sensitivity of the results with respect. to the specific data set. used. we

collected all the data. shuffled it., and rcpartitioncd it int.o training, validation and t.est.

sets of the same si7.~.a..<;above. We trained all the algorithms using the new data. The

resulting test set (the new test. set) reconstruction errors are shown in Figure 5.6. Note

the close correspondence between the errors reported in Figure 5.4 and those in Figure

5.6. This indicates that the results discussed above are not particular to some specific

dat.a set. used.

For comparison with DeMers and Cott.rell's (1993) work. we also conducted exper-

iment.s training with all the data. The results are summari7.ed-1 in Table 5.5. Doth

non-lineal' t.echniques (FLNs and VQPCA) produce encodings with lower error than

PCA, indicating significant non-linear structure in the data. With the same data, and

with a FLN with 30 nodes in each mapping layer, DeMers (1993) obtains a reconstruction

4For FL::\s. we only show results with SGD in order to compare with the experimental results of De-
:'vIers. For this data. FLX-CGD produced encodings with a higher error and FL::\-BFGS posed prohibitive
memory and computational requirements.

ALGORITHM ENCODE TIME DECODE TIME
(FLOPS) (FLOPS)

PCA 545 500

5LN-CGD (35) 3,850 3.850
5LN-BFGS (35) 3,850 3.850

5LN-SGI:):(25) 2,750 2,750
VQPCA-Eucl (20) 3,544 500

VQPCA-E-MS (5x5) 2,043 600
VQPCA-E-T (4x4) 1.743 500

VQPCA-Recon (20) 91.494 500

VQPCA-R-MS (20x20) 97.493 600

VQPCA-R-T (5x5) 46,093 500
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Table 5.5: Reconstruction errors and training times for a 50 to 5 dimension reduction of
images (training with all the data). The training times are reported in seconds to train
on a Sun Sparc 2 workstation. We report architectures which obtained the least error
over the parameter ranges explored.

Figure 5.7: Two representative images: Left to right - Original 50 principal components
reconstructed image. reconstruction from 5-D encodings: PCA, 5LN-SGD(40), VQPCA-
Eucl(25), and VQPCA-Recon(30). The normalized reconstruction errors and training
times for the whole data set (all the images) is given in Table 5.5.

error t'norm 0.13175. We note that the VQPCA algorithms achieve an order of magni-

tude improvement over five layer nets in terms of speed of training while obtaining more

accurate encodings.

Figure 5.7 shows two sample images from the data set and their reconstructions

from 5 dimensional encodings using different algorithms. The algorithms represented

are the same ones reported in Table 5.5. Looking at Figure 5.7. it is clear that the PCA

encoding is inadequate, since it is hard to (perceptually) recognize gender or identity

5De:Vlersreports half the :viSE per output node, E = (1/2) * (1/50) * MSE =0.001. This corresponds
to Ennrm =0.1317

ALGORITHM t'norm TRAINING TIME
(in seconds)

PCA 00405 7

5LN-SGD (30) 0.103 25,306
5LN-SGD (40) 0.073 31,980
VQPCA-Eucl (25) 0.026 251

VQPCA-Recon (30) 0.022 116
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from the reconstructed image. Both the FLN and the VQPCA algorithms produce very

(perceptually) good quality reconstructions. The difference between the reconstructions

produced by the FLN and the VQPCA algorithms seems to be minor. Thus, we have

been able to encode 4096 dimensional inputs (image pixels) using 5 real numbers with

very little perceptually noticable degradation!

5.1.4 Summary of dimension reduction experiments

Our results with dimension reduction experiments were as follows.

. VQPCA algorithms obtained about half the error (40%-50%) obtained by global

PCA or FLNs.

. VQPCA algorithms trained nearly an order of magnitude fa..<;ter(sometimes more

than two orders of magnitude faster) than the best FLN.

. Several FLNs trapped into poor local optima, generating encodings with a higher

error than PCA encodings.

. For speech data, clustering with reconstruction distance (VQPCA-Recon) produced

a lower error than clustering with Euclidean distance (VQPCA-Eucl). There was

not much difference for image data which had much fewer data points.

. VQPCA algorithms require more floating points operations (FLOPS) to encode

a vector than FLNs, in particular, the algorithms using reconstruction distance

clustering.

We conclude that the local linear algorithms can generate more accurate encodings

than FLNs while training much faster than FLNs. In the next section, we describe an

application of the dimension reduction algorithms for speech feature extraction. We show

the low dimensional encodings of speech vowels obtained by PCA, FLNs and VQPCA

are capturing the formant frequency information in an encoded form.
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5.2 Experiments with speech feature extraction

In this section, we build three dimensional encodings of spectral coefficients of speech

vowels using dimension reduction algorithms. The goal is to study whether the low di-

mensional representations are able to capture the formants information in some encoded

form.

Formants are the resonant frequencies of the vocal tract. As the speech articulators

such as the tongue move towards different target positions on the roof of the mouth,

the corresponding formant frequencies change and vary over a wide range. The formants

appear as characteristic peaks in vowel spectra. We are particularly interested in the first

three formants (F1, F2 and F3) since they provide the most discriminatory information

about vowels (e.g see (Pols, Tromp & Plomp 1973)).

Peterson and Barney (1952) showed that vowel categories are well separated by for-

mant frequencies in a perceptual study. Pols, Tromp and Plomp (1973) performed a

statistical analysis of hand-labelled formant frequencies and formant levels of 12 Dutch

vowels and concluded that "F1 and F2 are the most appropriate two distinctive parame-

ters for describing the spectral differences among the vowel sounds". D. O'Shaughnessy

showed (1987) that the lowest three formants are sufficient for producing intelligible

speech.

Plomp cd al (1967) performed a 4 dimensional PCA of 18 dimensional feature vectors

(sound pressure levels in 18 frequency bands) of 15 Dutch vowels and noted similarities

between scatter plots of the first two principal components and a scatter plot of the first

two hand-labelled formant frequencies plotted by Peterson and Barney (1952). Pols et

al (1969) report finding strong correlations between the principal components of spectral

features and coefficients derived from a perceptual study for discriminating 11 Dutch

vowels.

In this section, we first build three dimensional encodings of the raw spectral data

(lowest 32 DFT coefficients) using PCA, FLNs and VQPCA. We then build a linear map

from the encodings to hand-labelled formant frequencies.
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5.2.1 Experimental setup

For the formant mapping experiments, we used vowels extracted from spoken letters.

The data is from isolated utterances of the letters A,E,F,O and R by females only from

the ISOLET database (Cole, Muthusamy & Fanty 1990). Utterances of A,E,F,O and

R contain the phonemes, ley I ,jiy /,1 eh/,j owI and I aal respectively. Thc input data

consists of the lowest 32 DFT coefficients (from 0 to 4KHz frequency range), time-

averaged over the central third of the vowel. Each utterance of a letter corresponds to

one pattern in the training set. We partitioned the data into a training set containing 225

patterns, a validation set containing 75 patterns, and a test set containing 75 patterns.

We hand-labelled the formant frequencies of both the test sets. We reduccd the data

from 32 to 3 dimensions using PCA, FLNs and VQPCA. We thcn built linear maps using

linear ridge regression (see section 7.1) from the low dimensional encodings t.o thc hand-

labelled formant frequencies. This is similar to thc approach described by Broad and

Clermont (1989) who present a method of est.imating formant frequencies from linear

combinations of cepstral coefficients.

Dimension reduction algorithm

PCA

FLN-BFGS (32-?5-3-25-32)
VQPCA-Recon (15 cells)

0.137

0.109

0.084

Table 5.6: Results of dimension reduction experimcnts with the ISOLET speech vowel

dat.a:: This t.able shows the normalized mean squared reconstruction errors (5.2) for the

test. set for the dimension reduction of the ISOLET vowel data (see text for details) from

32 t.o 3 dimensions using different algorithms.

We t.rained PCA, FLNs and VQPCA to reduce dimension of the data from 32 to 3

dimensions. We trained several FLN-BFGS net.works varying the number of nodes in

the mapping layers from 5 to 50 in increments of 5. We obtained the lea..c;tvalidation

set. error for an FLN with a configuration of 32-25-3-25-32. We trained VQPCA-Recon

varying the number of local regions from 5 to 50 in increments of 5. We obtained the
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lea..<;tvalidation set error with 15 local regions. Table 5.6 summarizes the normalized

test set reconstruction errors (5.2) obtained for PCA, FLNs and VQPCA. From Table

5.6, we see that both FLN and VQPCA produced more accurate (lower error) encodings

than PCA and that VQPCA has a lower error than the FLN.

5.2.2 Formant estimation

In the next phase of our experiment, we built a linear map from the low dimensional

encodings obtained above to hand-labelled formant frequencies. A mapping is necessary

because the low dimensional encodings may represent a function of the formant frequen-

cies rather than F1, F2 and F3 directly. We measure the the "closeness" of t.he low

dimensional encodings to formant frequencies by the average squared error incurred by

the linear maps from the encodings to the hand-labelled frequencies6.

For building the linear map, we hand-labelled t.he first three formants of each vowel in

our data set. We used the low dimensional encodings of the validation set. a..<;the training

set for building the mapping, and we used the low dimensional encodings of the test. set

a..<;the test set. for the mappings. Suppose /; and .Ii are the vectors of hand-labelled

and estimated formant frequencies for the ith input pattern. We mea..<;urethe quality of

formant estimation by the normalized estimation mean square error,

] ""v Ilf f".
11

2
7i! L i=I i - . I

£estimate = i "",':1Ilf. - f
-

11

2
N L I=I I .

(5.3)

-_ 1 N .
w~ere .f = N L:i= I/;' and N IS the number of patterns.

We used linear ridge regression t.o obtain the linear mappings. For VQPCA, we

used an input. representation consisting of a unary representation of the index of the

local region (c.g cell number 2 out of 4 cells corresponds to 0.0,1.0,0.0,0.0) followed by

the local three dimensional coordinat.es. Note that a linear map not be able t.o extract

the locality information from the VQPCA encoding and hence may generate a higher

6\Ve also trained non-linear maps using feedforward neural networks from the low dimensional encod-
ings to hand-labelled formant frequencies. We obtained the same ranking of algorithms in terms of the
formants estimation error as using linear maps.



error. For comparison, we also built a linear map from the 32 raw spectral coefficients

to hand-labelled formant frequencies.

Dimension reduction algorithm I £estimate

Table 5.7: R.esults of formant mapping experiments :: This table shows the normal-

i7.ed test set formant estimation ermrs (5.3) for a linear map from the low dimensional

encodings obtained by different dimension reduction algorithms to hand-labelled for-

mant frequencies. The last row represents a direct linear mapping from the 32 spectral

coefficients to formant frequencies.

Table 5.7 shows the test set formant estimation errors (5.3) for the linear mappings

discussed above. The direct map from the 32 spectral coefficients to the formant frequen-

cies obtained the least error. All three dimension reduction algorithms (PCA, FLN and

VQPCA) obtain a slightly higher error than the direct mapping. All algorithms obtain a

normali7.ed error £estimate less than 0.25. We note that both the global techniques (PCA

and the FLN) obtain a lower error than the local linear technique (VQPCA) and the

FLN has a lower error than PCA. The VQPCA encoding of x E n32 is < w, z > whcre

w is a representation of the index of local region and z E n3 is the local coordinate vec-

tor. A linear map may be unable to extract the locality information from the VQPCA

encoding. From the low estimation errors, we conclude that PCA, FLNs and VQPCA

are all encoding the first three formants in some form.

Figure 5.8 shows scatter plots for the test set of hand-labelled formants and formants

estimated by an FLN (configuration: 32 - 25 - 3 - 25 - 32) dimension reduction followed

by a linear mapping to the formant space. The normali7.ed test set error was £estimate =
0.151 (as reported in Table 5.7). Note that the cluster of estimated formant frequencies

seems to approximate the cluster of hand-labelled formant frequencies quiet well, except

for the letter "0", for which the estimated frequencies are way off.

PCA 0.171

FLN (32-25-3-25-32) 0.151

VQPCA (15 cells) 0.218

Direct map 32 =?-3 0.129
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Figure 5.8: Overlaid scatter plots of F1 vs. F2 for hand-labelled formant frequencies
(circles: o's) and the estimated formant frequencies (dots; *'s) for the test set. From
top left, the plots are for the letters, A, E, F, 0 and R respectively. We used an FLN
(32-25-3-15-32) to obtain 3-D encodings and a built a linear map from the 3-D encoding
to the formant space.
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We were successful in estimating the formant frequencies from 3 dimensional en-

co dings of 32 raw spectral coefficients using PCA, FLN and VQPCA. We obtained a

low normalized error ([estimate < 0.25) for all three algorithms. We conclude that PCA,

FLNs and VQPCA were encoding the first three formants in some form. Thus. dimension

reduction algorithms can be used for speech feature extraction.

Dimension reduction algorithms can also be used for lossy data compression. In the

next section, we present rate-distortion curves comparing the compression performance

of VQ and VQPCA for lossy speech and image compression.

5.3 Data compressionexperiments

In this section, we compare VQ and VQPCA for lossy compression of speech and image

data. We are interested in the accuracy of encodings obtained by data compression

algorithms for a given bit-rate. Thus, data compression differs from dimension reduction.

Lossy data compression algorithms cannot recover the original data exactly from the

compressed representation. The goal is to minimize the distortion for a given bit-rate of

encoding. We define the bit-rate &<;the number of bits used to encode an n dimensional

vector x and the distortion measure D as the expected squared error between :1;and its

reconstruction x. normalized by the data variance.

(5.4)

where II,= E[x] is the mean of the data.

We compare the data compression performance of the algorithms by plotting the

average distortion as a function of the bit-rate. These curves, known as the rate-distortion

curves (Gersho & Gray 1992, Cover & Thomas 1991) or R(D) curves, enable us to identify

the best compression algorithm i' for a specified bit-rate (or alternatively, for a specified

distortion threshold).

71 am grateful to Professor Andrew Fraser (PSlJ) for pointing this out.



In the next subsection, we describe data compression using VQ. We then describe

a data compression algorithm using local linear dimension reduction (VQPCA: section

3.2.2). We present experimental results comparing R(D) curves of VQ and VQPCA for

speech and image data. When there is ample training data, VQ seems to always provide

a lower distortion than VQPCA. When there is a paucity of data, for some bit-rat.es.

VQPCA obtains a lower distortion than VQ.

5.3.1 Data compression using VQ

Vector quanti7.ation (VQ (Gersho & Gray 1992): section 3.1) is a standard technique

for lossy data compression. Recall that a VQ with Q cells approximates a data vector

x (x ERn) as one of Q prot.otype vectors called code book vectors {ILI , . . . , ILQ}. A

VQ using Euclidean distance as its distortion measure approximates x as t.he codebook

vector closest (Euclidean distance) to x,

x = ILt!' (5.5)

where

')
'W= argmm Ilx - ILkll- .k=1 (5.6)

We pre-compute the codebook vectors using a VQ training algorithm (e.g the GLA: see

section 3.1). The index w (5.6) of the closest codebook vector is sufficient to obtain

x (5.5). the VQ approximation of x. Thus, VQ reduces the storage for x from n real

numbers t.o log2(Q) bits needed to specify 7J1.The bit-rate of compression is R = log2(Q)

and the distortion is

(5.7)

where J1.= E[x].

5.3.2 Data compression using VQPCA

We propose the following procedure for data compression.
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. Reduce the dimension of x from n to Tn (Tn < n) using VQPCA (section 3.2.2).

Let z = f (x) denote the Tn dimensional encoding.

. Quanti7.e z using a VQ as in section 5.3.1.

Recall that VQPCA (section 3.2.2) with Q cells builds a local linear model of the data

and represents a vector x E nn a..<;< w, z >, where w is the index of the local region and

z E nm is a vector of the local coordinates. VQPCA approximates 1; as

m m

x' = l.Lw+ L CwiC;'i(X - l.Lw) = l.Lw+ L ZiCi
i=] i=]

(5.8)

where l.Lwis the centroid for the wth local region, Cwi are the orthonormal eigenvectors

of the covariance matrix for the wth region, z is a vector of the Tn local coordinates,

(5.9)

and 1lJis the index of the local PCA hyperplane closest to x,

q
1lJ = argmmk=l (5.10)

We propose quantizing the rn dimensional vector z (5.9) using a VQ with Euclidean

distanceS with K codebook vectors {CI, . . . , Cf(}, where Ci E nm. This VQ approximates

z with the codebook vector closest to z,

(5.11)

where

(5.12)

We reconstruct x a.<;
m

. ",.
X = l.Lw+ ~ZiCi

i=1
(5.13)

using the quanti7.ed local encoding z instead of the local encoding z.

SAn alternative is to scalar quantize each component of z separately as in transform coding (Gersho
& Gray 1992). However. a VQ is more efficient and will induce smaller quantization error.
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Quantizing the local encoding z enables us to compress the VQPCA representation

of x. The index d (5.12) of the codebook vector closest (Euclidean distance) to z is

sufficient to obtain z (5.11). The quantized VQPCA encoding is < 7lJ,d >. where '/JI

(5.10) is the index of the local region for VQPCA and d (5.12) is the index of the closest.

codebook vector to z. The bit cost of specifying < w,d > is log2(Q) bits for specifying

w, plus log2(K) bits for specifying d. Thus, the bit-rate of VQPCA compreSSiOn IS

R = log2 (Q) + log2 (K) and the distortion D is

(5.14)

where x is defined in (5.13), and 11= E[x].

We train the model using a training set X = {xl,..., xiV}, where xl E nn, &<;follows:

. We train a VQPCA with Q cells (section 3.2.2) to reduce clements of X from n to

Tn dimensions. Separate the training vectors into Q sets {XI,. . . , XQ} using the

VQPCA partition into Q local regions. Let {ZI, . . . , ZQ} denote the corresponding

sets of m dimensional encodings (i.e let Zi denote the encodings of clements of Xi)

obtained using (5.9).

. For the it/! local region of the VQPCA partition, we train a VQ with Euclidean

distance with K cells (section 3.1) to quantize Zi. We do this for all 'i = 1,..., Q.

After training is complete, we compress a vector x E nn &<;follows:

. We compute the VQPCA encoding < w, z > using (5.10) and (5.9).

. We quantize the local coordinate vector z using (5.11) and (5.12).

. The compressed encoding consists of 1lJ,the index of the VQPCA local region and

d, the index of the quantization cell for z.

. We reconstruct x from the compressed encoding using (5.11) and (5.13).

Note that for the algorithm sketched above, several combinations of values of Q and

K will result in the same bit-rate of compression. If the rate R is specified to us, we can
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choose to have more local regions for VQPCA dimension reduction (larger Q) or we can

choose to quantize the local encoding z at a finer resolution (larger K).

VQPCA approximates a two level tree structured VQ (TSVQ; see section 3.1.5) with

Q cells in the first level and K second level cells in each first level cell. If we retain all the

principal components in each first level cell (instead of reducing dimension). VQPCA is

equivalent to a two level TSVQ or a two level tree structured transform coding (Gersho

& Gray 1992). Reducing the dimension induces additional distortion. Hence a VQPCA

approximates a TSVQ, and the approximation is better when the data lies near an 111.

dimensional manifold and the distortion induced by the dimension reduction is small.

We now compare VQ and VQPCA for compression of speech and image data. For

VQ compression, we vary the number of cells Q over a range of values and compute the

distortion D for each Q. We plot the R(D) curve. For VQPCA, we vary the number of

local regions Q over a range of values, and for each Q, we vary K over a range of values.

We compute the distortion D for each combination of Q and K. Thus, we get a family

of R(D) curves for VQPCA.

5.3.3 Speech compression

Our first data set consists of spectral coefficients of speech vowels extracted from con-

tinuous speech utterances from the TIMIT databa..<;e(Fisher & Doddington 1986). This

is the same data as in section 5.1.2. Here, we partitioned the 32 dimensional data into

a training set containing 1200 vectors and test set containing 816 vectors.

We trained VQs with the number of cells Q varying from 1 to 256. We trained

VQPCA models for a 32 to 5 dimension reduction, with the number of local regions

Q varying from 1 to 20, and the number of cells for quantizing the local encoding, K,

varying from 1 to 20.

Figure 5.9 shows the R(D) curves of VQ and 5-D VQPCA for the average test set

performance, averaged across three different random initializations of the parameters of

VQ and VQPCA. The curve for VQ is shown dotted with *'s. Each solid line represents

a VQPCA with fixed Q and varying K. The lines represent Q = 1,...,20 from left to
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Figure 5.9: Rate distortion (R(D)) curves for TIMIT speech vowels for VQ (the curve
dotted with *'s) and 5-D VQPCA (the set of lines) data compression. The figure plots
the bit-rate on the horizontal axis and the mean normalized test set distortion on the

vertical axis, averaged over three different random initializations of the parameters of
the algorithms. The solid lines arc the R(D) curves of VQPCA with reconstruction
distance clustering, with Q varying from 1 to 20, from left to right. Each line (VQPCA
configuration) shows the decrease in distortion a.c;we increa.c;e K from 1 to 20.

right.

From Figure 5.9, we note that

. for VQPCA, the R(D) curve with Q = 1 obtains the least distortion at all bit-rates.

Note that VQPCA with Q = 1 is just a global PCA. For a fixed R, as we increa.c;e

Q. we are left with fewer bits (smaller K) for quantizing the local encodings. Thus,

PCA (VQPCA with Q = 1) obtains a lower distortion since it can quantize the

5-D encodings at a finer resolution.

. The R(D) curves of VQ and 5-D PCA (VQPCA with Q = 1) arc almost identical.

The former quantizes the 32 dimensional vector x, while the latter quantizes the

5 dimensional vector z = f(x). The results suggest that most of the data points
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Figure 5.10: Rate distortion (R(D)) curves for TIMIT speech vowels for VQ (the curve
dotted with *'s) and a TSVQ (the set of lines) with Q first level cells and K second level
cells within each first level cells. We vary Q from 1 to 20 (the solid curves from left to
right), and for each Q, we vary K from 1 to 20. The figure plots the bit-rate on the
horiwntal axis and the mean normalized test set distortion on the vertical axis, averaged
over three different random initializations of the parameters of the algorithms.

lie near a 5-D subspace and hence quantizing x E n32 is as effective as quantizing

z E n5. However, for large R, we expect the R(D) curve for PCA to asymptote to

the distortion induced by the dimension reduction.

Our results suggest that, for data compression using VQPCA with a specified R, we

can lower the distortion by choosing a smaller Q (number of local regions for dimension

reduction) and a larger K (number of codebook vectors for quantizing the local encod-

ing). In other words, it is more advantageous to increa..c;ethe precision of quantization of

the local encodings than to increa..c;ethe precision of dimension reduction. The extreme

ca..c;eis when Q = 1 (PCA),when all R bits are used for quantizing the encoding. Though

the R(D) curve of PCA approximates a VQ, it a..c;ymptotesto the distortion induced by

the dimension reduction.
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As discussed earlier, for data compression, VQPCA approximates a two level tree

structured VQ (TSVQ; see section 3.1.5) with Q cells in the first level and K second

level cells in each first level cell. Figure 5.10 shows a family of R(D) curves, with Q

varying from 1 to 20 (one curve for each Q) and for each Q, K varying from 1 to 20.

Note that the TSVQ curves perform better than the VQPCA curves but worse than

the VQ curve. For the same bit-rate, a TSVQ has a larger distortion than a VQ (see

the discussion in section 3.1.5) because of the structural constraints imposed by TSVQ

(second level cells are within first level cells; see section 3.1.5). Thus, since VQPCA

approximates a TSVQ, for a given bit-rate, a VQ always obtains a lower distortion than

VQPCA.

However, when the sample data size is limited, the structural constraints of a TSVQ

or a VQPCA can have a regularizing effect, leading to a lower test set distortion than

a VQ for the same bit-rate. In the next subsection, we present R(D) curves for image

data.

5.3.4 Image compression

Our image data consists of the leading 50 principal components of 64x64 8-bit grayscale

images of the faces of people. This is the same data described in section 5.1.3. For R(D)

experiments, we partitioned the 50 dimensional data into a training set containing 120

vectors and a test set containing 40 vectors.

We trained several VQs with the number of cells Q varying from 1 to 120. We trained

5-D VQPCA with the number of local regions Q varying from 1 to 20, and the number

of cells for quantizing the 5-D encoding, K, varying from 1 to 20. Figure 5.11 shows

the R(D) curves of VQ and 5-D VQPCA for the average test set performance, averaged

across three different random initializations of the parameters of VQ and VQPCA. The

curve for VQ is shown dotted with *'s. Each solid line represents a VQPCA with fixed

Q and varying K. The lines represent Q = 1,.. . ,20 from left to right.

We note that the R(D) curves for VQPCA are much closer to the R(D) curve for

VQ than they were for speech data. In fact, for certain bit rates, the lea..<;tdistortion
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Figure 5.11: The rate distortion R(D) curves for the faces data for VQ (shown dotted
with *'s) and 5-D VQPCA data compression. The horizontal axis is the rate R, and
the vertical axis is the normalized mean test set distortion, averaged over three different
random initializations of parameters.
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Figure 5.12: R.ate distortion (R(D)) curves for the image data for VQ (the curve dotted
with *'s) and a TSVQ (the set of lines) with Q first level cells and K second level cells
within each first level cells. We vary Q from 1 to 20 (the solid curves from left to right),
and for each Q, we vary K from 1 to 20. The figure plots the bit-rate on the horizontal
axis and the mean normalized test set distortion on the vertical axis, averaged over three
different random initializations of the parameters of the algorithms.
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is obtained by VQPCA. This data set has very few training vectors. As mentioned

above, the structural constraints of a TSVQ can have a regularizing effect, leading to

a lower test set distortion than an unconstrained VQ for the same bit-rate. Since a

VQPCA approximates a TSVQ and has similar structural constraints (the second level

quantization is for subsets of the data), a VQPCA can have a lower distortion than VQ

when the training sample size is limited. Figure 5.12 shows a plot of R(D) curves for a

TSVQ with Q cells in the first level and K sub-cells within each first level cell (we vary

Q from 1 to 20, and for each Q, we vary K from 1 to 20). Note the similarity between

the R(D) curves for VQPCA and the corresponding curves for TSVQ.

5.3.5 Summary of rate-distortion experiments

In this section, we compared VQ and VQPCA for lossy compression of speech and image

data. We compress data using VQPCA as follows:

. We reduce dimension of the data from n to m < n using a VQPCA with Q cells.

. We quanti7,e the m-D encodings using a VQ with K cells.

The compression ha..<;a bit-rate R = log2(Q)+log2(K). Data compression using VQPCA

approximates data compression using a. two level tree structured VQ (TSVQ; section

3.1.5) with Q first level cells and K second level cells within each first level cells.

Based on our results with speech and image data, we conclude that

. In general, a VQ always obtains a lower distortion than VQPCA for the same rate.

This follows from the fact that VQPCA approximates a TSVQ.

. For VQPCA data compression, for a given rate R, using a smaller number of local

regions for dimension reduction and larger number of cells for quantizing the local

encodings (smaller Q and larger R) seems to obtain a lower distortion.

. When we have limited data, a TSVQ or a VQPCA sometimes obtain a lower

distortion than VQ for the same rate. This may be due to the structural constraints
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of TSVQ and VQPCA, which may have a regularizing effect, thus lowering the test

set distortion.

5.4 . Discussion

In this chapter, we presented experimental results comparing global dimension reduction

algorithms (PCA and FLNs) with our local linear algorithms (VQPCA) for dimension

reduction of speech and image data and speech feature extraction. We compared VQ

and VQPCA for lossy compression of speech and image data.

Based on our results with dimension reduction experiments we conclude that:

. The local linear (VQPCA) algorithms can produce more accurate encodings than

FLNs or PCA while training much faster than FLNs.

. The VQPCA algorithms (especially the ones using reconstruction distance cluster-

ing) require a higher number of FLOPS than FLNs to encode a vector. However

decoding is much faster and comparable to PCA. This suggests that VQPCA al-

gorithms may not be the best choice for applications requiring real time encoding.

However, for applications which can tolerate slow encoding and require real time

decoding, VQPCA algorithms would be the method of choice because of their fa..c;t

training, high accuracy and fa..c;tdecoding.

Thus, local linear algorithms (VQPCA) can produce more accurate encodings than FLNs

while training much faster than FLNs.

In section 5.2, we estimated the resonance frequencies of the vocal tract (formants)

using 3 dimensional encodings of 32 raw spectral coefficients using PCA, FLNs and

VQPCA. For all three algorithms, we obtained a low error suggesting that all the algo-

ri thms are encoding the first three formants in some form.

In section 5.3, we presented rate-distortion curves (R(D) curves) comparing VQ

and VQPCA for lossy compression of speech and image data. Data compression using

VQPCA approximates data compression using a two level TSVQ. In general, a VQ always
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obtains a lower distortion than VQPCA for the same rate. However, when trained with

small data sets, VQPCA sometimes obtains a lower test set distortion than VQ for the

same bit-rate. This may be because of the regularizing effect of the structural constraints

of a VQPCA (analogous to the structural constraints of a TSVQ).

Thus, we have shown that local linear algorithms (VQPCA) perform very fast a.nd

accurate model fitting. They can be used for dimension reduction, feature extraction,

exploratory data analysis and lossy data compression. In the next two chapters. we

present local linear algorithms for supervised learning.



Chapter 6

Gaussian mixture models for

classification

In this chapter, we present Gaussian mixture models for cla..<;sification; S1L]}c1'1}'i.~cdlearning

ta..<;kswhere we predict the membership (output variable) of data points (input variables)

to one of several cla..<;sesor categories. In preceding chapters, we presented local linear

algorithms for dimension reduction and showed their relation to a mixture of Gaussians

data model. These algorithms are 1Lnsnpc1'1Jiscd,where the goal is to learn the statistical

dependencies among the data variables, all variables are treated alike and learning is

not forced by a teacher function. In contra..<;t, supervised learning algorithms use "la-

belled" data to learn statistical dependencies between designated "input" and "output"

variables.

In this chapter and in the next chapter, we present Gaussian mixture models for

supervised learning based on similar idea..<;that lead to the probabilistic framework for

dimension reduction algorithms (chapter 4). In this chapter, we apply a mixture of

Gaussians model for cla..<;sification ta..<;ksand present a new method of regularizing the

mixture model. In the next chapter, we apply a mixture model to regression ta..<;ksto

derive local linear algorithms and present regularization techniques for these algorithms.

Mixture models are widely used in applications where data can be viewed a..<;arising

from several populations mixed in varying proportions. Mixture models have been used

a..<;a clustering technique (Lazarsfeld & Henry 1968, Ganesalingam & McLachlan 1979,

Da..<;ford& McLachlan 1985). Gaussian mixture models are used to tackle the "missing

111
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data problem" (Dempster et 0.1.1977, Ghahramani 1994, Ghahramani & Jordan 19941>,

Ghahramani & Jordan 19940., Ormoneit & Tresp 1995) where the values of one or more

of the data variables may be unavailable. Bregler and Omohundro (1994, 1995) use

constrained Gaussian mixture models for interpolating between specified images in a

image sequence. Jordan et al (1991, 1994). use mixture models for supervised learning

in the "mixture of experts" architecture. Hinton et al (1995) use constrained Gaussian

mixture models for handwritten character recognition. Ghahramani and Jordan (1994,

19941>, 19940.) use mixture models for density estimation for classification, regression

and clustering. For a much more extensive discussion on mixture models and their

applications, see the books by Everitt and Hand (1981), Titterington et al (1985) and

McLachlan and Basford (1988).

We present Gaussian mixture Bayes (GMB) classifiers, which use a mixture of Gaus-

sians model for each class-conditional density (we model the input variables for each.

class separately using a mixture model). Priebe and Marchette (1991) have described

a classification algorithm which recursively fits a separate Gaussian mixture model for

each class, where the number of components is allowed to grow with the data. Heck

and Chou (1994) 11se a GMB model to classify machine failure modes. Ghahramani

and Jordan (19940., 1994b) and Ormoneit and Tresp (1995) have previously discussed

GMB cla.<;sifiers. Marroquin (1995) also describes GMB cla.<;sifiers, which he calls "local

Gaussian cla.<;sifiers".

In this chapter, we study GMB cla.<;sifiers, show their relation to clustering ba.c;ed

cla.c;sification algorithms and explore different ways of regularizing them. A mixture

of Gaussians model soft partitions the data. We can obtain a hard partition by ap-

plying a winner-take-all a.c;sumption a.c;discussed in chapter 1 and chapter 4. Proba-

bilistic clustering using a mixture of Gaussians model is discussed in (Ganesalingam &

McLachlan 1979, Duda & Hart 1973, Basford & McLachlan 1985, McLachlan & Ba.c;ford

1988. Nowlan 1991). Nowlan (1991) showed that a winner-take-all mixture of Gaussians

model with certain a.<;sumptions approximates a VQ clustering with Euclidean distance.

Duda and Hart (1973) have previously suggested this relation. Using a similar approach,
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we derive winner-take-all approximations to GMB classifiers and show their relation to

hard clustering based classifiers like the learning vector quantization algorithm (LVQ;

see appendix D).

Gaussian mixture cla..<;sifiersand their winner-take-all approximations suffer from the

curse of dimensionality (see chapter 1). A mixture model with Q Gaussians has O(Q*n2)

parameters where 11.is the input dimensionality. In section 6.2, we discuss the following

schemes for regularizing G MB classifiers;

. assuming that all covariance matrices are diagonal or spherically symmetric,

. bounding the covariance matrices by adding a constant diagonal matrix dn x1/ to

each covariance matrix in each iteration of the EM algorithm (Ghahramani &

Jordan 19940.,Ormoneit & Tresp 1995).

. We propose a new regularization scheme which prunes those directions of each

covariance matrix, which induce the lea..<;tbias when pruned.

In section 6.3, we compare the performance of the different mixture models and multi-

layer perceptrons (MLPs) for two speech classification ta..<;ks.Our results indicate that

. GMI3 classifiers perform comparably to MLPs, and

. regularizing the mixture models is necessary to prevent singular covariance matrices

and over-parametrization. In particular, bounding the covariance matrices while

training the mixture models works best.

6.1 Gaussian Mixture Bayes (GMB) classifiers

A classifier a..<;signsvectors from Rn (11.dimensional feature space) to one of K cla..<;ses,

partitioning the feature space into K disjoint regions. The input vectors, called feature

vectors or observation vectors, consist of sets of measurements that distinguish between

the cla..<;ses.Let x denote a feature vector (x ERn), and {O T, I = 1, . . . ,K} denote the

classes. We denote the a priori probability of observing a feature vector from class OT
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as p(OT). This probability reflects our prior knowledge of how likely we are to observe

feature vectors from the class OT. Let p( x lOT) denote the class-conditional probability

density function for x, i.e, the probability density function for x given that J: belongs to

class nT. We denote the a posterior'i probability of x belonging to class OT a..c;p(oJ IJ;).

For a given feature vector x of unknown cla..c;s,the probability of error in da..c;sa..c;-

signment is minimized by choosing the class OL, where

F
L = argm1.x p(OT 1 x)T=1

T\ p(OT) p(x lOT) .
= argmax. ( \ usmg Bayes ruleT=l p x

r
= argm1.x p(OT) p(x lOT)T=1

since p( x) is independent of I. The functions

(6.1)

(6.2)

are known as the discriminant functions and a feature vector x is assigned to cla..c;sI if

5T(x) > 5J (x) \if.! # I . A Bayes cla..c;sifier (Duda & Hart 1973) a..c;signs classes to feature

vectors ba..c;edon a model of the cla..c;sconditional densities, using the discriminant func-

tions (6.2). Given the class conditional densities, this choice minimizes the cla..c;sification

error rate (Duda & Hart 1973).

We model each cla..c;sconditional density, p(x lOT), by a mixture composed of QT

component Gaussians,

QI T
T "" aj [ IT T T-l T ]p(x 10 ) = L ~ exp --(x -11) 2:j (x - l1'j) ,

j=l (27r)n/2y l2:jl 2

where 11')and 2:} are the mean and the covariance matrix of the /h component of the

mixture density for the Ith cla..c;s.The Bayes discriminant functions using this model are

QI T
AT _ T "" aj [ IT T T-I T ]5 (x) - p(O ) L ~ exp --(x - 11) 2:j (x - l1'j) , (6.3)

j=l (27r)n/2y 12:51 2

We will refer to a classifier using the above discriminant functions as a Gaussian mixture

Bayes (GMB) cla..c;sifier. Figure 6.1 shows an example of a class a..c;signment using a GMB

cla..c;sificr for a two cla..c;sproblem.
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Figure 6.1: Figure showing the decision rule of a GMB classifier for a two class problem
with one input feature. The horizontal axis represents the feature and the vertical
axis represents the Bayes discriminant functions. In this example, the cla..<;sconditional
densities are modelled a..<;a mixture of two Gaussians and equal priors are a..<;sumed.

To implement a GMB classifier we first separate the training data into the different

cla..<;ses.We then use the EM algorithm (Dempster et al. 1977, Nowlan 1991) to determine

the parameters of the Gaussian mixture density for each class. The EM algorithm or the

Expectation Maximization algorithm is widely used (Dempster et al. 1977, Nowlan 1991,

Ghahramani 1994, Ghahramani & .Jordan 1994a, Ghahramani & .Jordan 1994b, .Jordan

& .Jacobs 1994, Ormoneit & Tresp 1995) to iteratively generate maximum likelihood

parameter estimates of mixture models. Appendix C describes an EM algorithm for

estimating the parameters of a mixture of Gaussians model.

A mixture of Gaussians model builds a soft "local" model of the data, since each

component Gaussian dominates the mixture density for some of the data points. In the

next. section, we derive winner-t.ake-all GMB cla..<;sifiersand show their relation to VQ

clustering ba..<;edclassifiers. The winner-take-all cla..<;sifierspartition the feature space for

each da88 8eparately into disjoint regions using only the dominant Gaussian component

for each data point.
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6.1.1 The relation between GMB and VQ clustering based classifiers

We will now derive the relationship between G MB classifiers and VQ (see section 3.1)

clustering based classifiers like the learning vector quantization (LVQ (Kohonen 1988):

appendix D) algorithm. We will use a similar approach to Steven Nowlan's derivation

showing the relation between Gaussian mixture models and unsupervised VQ clustering

(see (Nowlan 1991) and appendix B).

The winner-take-all (WTA) assumptions relating VQ clustering to Gaussian mixtures

(see (Nowlan 1991) and appendix B) are:

. p(x IOJ) are mixtures of Gaussians a..<;in (6.3).

. The summation in (6.3) is dominated by the largest term.

These a..<;sumptions are "equivalent to assigning all of the responsibility for an observation

to the Gaussian with the highest probability of generating that observation" (Nowlan

1991). We apply the above assumptions to the GMB discriminant functions (6.3). These

assumptions imply that the discriminant functions effectively partition the input space

sepa.rately for each class into disjoint regions.

To draw the relation between G MI3 and VQ clustering ba..<;edcla..<;sifiers,we further

assume that the mixing proportions (a}) are equal for a given cla..<;sand the number of

mixture components QJ is proportional to p(OJ). Applying all of the above a..<;sumptions

to (6.3), taking logs and discarding the terms that. are identical for each class, we get

the discriminant functions

(6.4)

If we further assume that for each cla..<;s,the mixture components are spherically sym-

metric wit.h covariance matrix ~} = (721, with (72 identical for all cla..<;ses,we obtain the

discriminant functions

(6.5)

The discriminant functions in (6.5) are identical to those used by the LVQ algorithm

((Kohonen 1988): see appendix D). LVQ is a clustering based cla..<;sification algorithm
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which adapts the placement of reference vectors (or means) based on a set of cla..<;s

labelled data points. Though LVQ employs a discriminatory training procedure (i.e. it

directly learns the class boundaries and does not explicitly build a separate model for

each class), the implicit model corresponds to a GMB modeL where we a..<;sumethat for

each cla..<;s,

. p(x I0/) is a mixture of spherically symmetric Gaussians (2:J = (j2 I), where the

largest term dominates the mixture for any given x, and

. aJ are equaland Q/ is proportional to p(O/).

This is also the implicit model underlying any classifier which makes its cla..<;sification

decision based on the Euclidean distance mea..<;urebetween a feature vector and a set of

prototype vectors (e.g. a VQ or k-Means (see section 3.1) clustering followed by cla..<;si-

fication ba..<;edon (6.5)). In fact, we can reduce a GMB classifier to any VQ clustering

ba..<;edclassifier which uses a quadratic distance measure for discrimination by making

appropriate assumptions about the structure of the covariance matrices.

6.2 Regularized GMB classifiers

In the previous section, we presented GMI3 cla..<;sifiersand WTA approximations to a

G MI3 cla..<;sifier. G MI3 classifiers (and WTA approximations) suffer from a quadratic

increa..<;eof the number of parameters with input dimensionality. A mixture model with

Q Gaussians ha..<;O(Q * n2) parameters where n is the number of input variables. This

exacerbates the "curse of dimensionality!, (a phra..<;eattributed to Bellman (1961)) for

high dimensional data sets. Data is very sparse in high dimensional spaces and model

parameter estimates from small data sets are likely to be inaccurate. We use regular-

ization procedures to constrain and/or reduce the effective number of model parameters

and improve the generali~>;ation performance of the modeL In this section, we discuss

different methods of regularizing Gaussian mixture classifiers.

One of the standard techniques used to regularize Gaussian mixture models is to
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assume that all the covariance matrices are diagonal or spherically symmetric (Nowlan

1991, Ahmad & Tresp 1993, Stensmo & Sejnowski 1995). The diagonal assumption ha.<;

been effectively used for classification tasks (Nowlan 1991) and for solving the missing

data problem (Ahmad & Tresp 1993). The spherically symmetric assumption ha.<;been

widely used for classification and regression tasks (Stensmo & Sejnowski 1995, Nowlan

1991). These assumptions greatly reduce the number of parameters of the mixture

models. Stensmo and Sejnowski (1995) and Nowlan (1991) have argued that the loss in

flexibility due to the diagonal or spherical symmetry assumptions can be compensated for

by using more mixture components. However, for many tasks, the diagonal or spherically

symmetric assumptions are not valid because of correlations among the data variables.

In this section, we first describe a scheme for regularizing Gaussian mixture densities

which also provides numerical stability to the EM algorithm. We then present another

technique which prunes eigen-directions from the mixture discriminant functions and

can be used in tandem with the former technique for regulari7.ation.

6.2.1 Bounding the covariance matrices

A problem with Gallssian mixture models is that, the likelihood function has a maximum

whenever any of the covariance matrices is singular. One way to obtain numerical sta-

bility (avoid singularities) is to impose an artificial lower bound on the volume clements

(determinants of covariance matrices) of each Gaussian (Ghahramani 1994, Ormoneit &

Tresp 1995) during parameter estimation. This is achieved by adding a small diagonal

matrix dnxlt to each covariance matrix in each iteration of the EM algorithm. Adding

dnxn avoids singularities and also regularizes the mixture model.

Ormoneit and Tresp (1995) define a Bayesian prior distribution p(O) for the param-

eters 0 of a mixture of Gaussians model and build Bayes classifiers. They derive EM

update rules for maximizing the a posterior parameter probability. If X denotes a sample

data set. the a po.9terior parameter probability is

prO IX) = prO)p(X I0)
p(X)
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They implement the prior for the covariance matrices and obtain a modified EM update

rule which corresponds to adding a diagonal matrix EIn xn in each iteration. They note

that tointroduces a bias which favors large variances. They vary toover a range of values

and choose the value for which the validation set classification error is the least.

In our experiments, we add an EInxn matrix to each covariance matrix in the M-step

of every EM iteration. We also add toto (and renormalize) all the posterior probabilities

of Gaussian component membership during each iteration of EM to further regularize

the model. Adding toto posteriors prevents the Gaussians from being too far from all

data points I. We choose the value of toby varying it over a range of values and picking

the value for which the validation set classification error is the least.

In the next subsection, we discuss our method for regularizing GMD classifiers. We

still use the toapproach described above to enforce stability of the EM algorithm. We also

constrain the discriminant functions to only look at certain directions of each covariance

matrix to improve generalization performance.

6.2.2 Pruning eigen-directions from mixture discriminant functions

In this subsection, we will present our method of regularizing GMB classifiers. For each

eigen-direction of each covariance matrix in the mixture discriminant functions (6.3), we

empirically estimate the classification error induced by pruning that direction. For each

covariance matrix in each discriminant function, we prune those p eigen-directions which

induce the least classification error when removed. Thus, we remove p eigen-directions

from each Gaussian such that the pruning induces the least bias (based on empirical

estimates of the bias). R.emoving eigen-directions reduces the overall model variance

and can improve the generalization performance. This pruning procedure is similar to

the principal components pruning (PC pruning) (Levin et al. 1994) used for regularizing

regression models.

In section 6.1, we assumed that the class conditional densities of the feature vectors

11am grateful to Zoubin Ghahramani (MIT) for pointing this out.
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x are mixtures of Gaussians and obtained the discriminant functions

where p,} and L:} are the means and covariance matrices for the yth component Gaussian.

e}i and >'}i are the orthonormal eigenvectors and eigenvalues of L:} (ordered such that

>'}I 2: ... 2: >'}n)' In (6.6), we have written the Mahalanobis distance in terms of the

eigenvectors.

We assume that we do not have enough data points to accurately estimate the dis-

criminant functions (6.6). We are interested in constraining or regularizing the model to

improve generalization performance. We ask the question; "which directions of a covari-

ance matrix are most relevant for cla..<;sification1". We mea..<;urethe relevance (saliency)

of an eigen-direction e}i by removing the corresponding term in the mixture discriminant

function (6.6) and computing the cla..<;sification error for a validation data set with the

modified discriminant functions. For each mixture component for each class, we prune

p eigen-directions with the lea..<;tsaliency.

The GMB-pruned classification algorithm is a..<;follows:

. For each cla..<;sOT, i = 1, . . . ,K, we train a mixture model of QT Gaussians using

the EM algorithm. Thus, we obtain estimates of the discriminant functions (6.6).

. For each component j, j = 1,..., QT, of the mixture discriminant function (6.6)

for class OJ, 1= 1,..., K,

- for each eigen-direction l = 1, . . . , n,
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* prune the terms corresponding to the lth eigen-direction from the Maha-

lanobis distance and the determinant in (6.6),

[ (

11 J J T

) ]
CYj 1 J T CjiCji . J

exp --(x - 11)) L J (x - Ilj)

(211")n/2 Vl1i~1),}i 2 i~l \i

Modify the discriminant function lJ (x), for class OJ (6.6) replacing the

the lh component Gaussian with the above expression,

Compute the validation set classification error using the discriminant

functions (6.6) for all classes except OJ and the discriminant function

(6.7) for class OJ. Define the saliency Sl of the lth eigen-direction (1.<;the

classification error obtained for the validation set.

* Let EJ denote the set of p directions with the least saliency and S5 denote

the set of n - p directions with the largest saliency.

. For each class 0 J, for each component j, j = 1, . . . , QJ of the discriminant function

lJ (x), prune the p directions with the least saliency (clements of EJ). The modified

discriminant functions are

QI

pJ(x) = p(OJ) L
j=l

. Classify inputs using the above discriminant functions.

We choose the value of p by cross-validation over the validation set. To reduce the

complexity of cross validation search, we use the same value of p (number of directions

pruned) for all mixture component for all classes. For each class and for each mixture

component, the pruning procedure can be improved by the following technique.
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. Prune the direction c[ with the least saliency.

. Re-estimate the saliencies of the other directions Ck (k =PI) a..<;the cla..<;sification

error induced by pruning ek in addition to C/.

. Iterate the above steps p times, pruning the lea..<;tsaliency direction and re-estimating

saliencies with the modified discriminant functions (which do not have the newly

pruned direction).

This procedure can generate better estimates of the classification error induced by prun-

ing p eigen-directions than the GMB-pruned algorithm, since it computes the saliencies

by pruning combinations of directions. However, this procedure is O(K * QI * 71,2)which

is prohibitively expensive2.

6.3 Experimental Results

In this section we compare the different mixture models discussed above and a multi

layer perceptron (MLP) for two speech phoneme cla..'>sification ta..<;ks. The comparison

measure is the cla..<;sification accuracy. We divided the data sets into separate training,

validation and test sets. We varied the free parameters of different algorithms over a

range of values, and chose the value for which the validation set error wa..<;the lea..<;t.

We trained several three layered MLPs (feedforward neural networks (see section 2.2

or (Hertz et al. 1991))) with different number of nodes in the hidden layer. The MLPs

had sigmoid non-linearities in the hidden layer with a..<;ymptotes 0 and 1. Each network

had K (number of cla..<;ses)binary target outputs indicating cla..<;smembership. The

networks were trained using a conjugate gradient descent (see section 2.2.3 and (Press et

al. 1987)) optimization scheme to minimize the mean squared error between the targets

and the network outputs. We monitored the validation set error while training the MLPs

2For our data sets described in the next section, we estimated a training time of several weeks to use

this procedure to prune eigen-directions.
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and stopped training when the validation set error started to increase (early stopping;

(Hertz et al. 1991)).

We trained several GMB classifiers using the EM algorithm, varying the number

of components, the number of directions pruned (section 6.2.2) and the regularization

parameter E (section 6.2.1). We also trained G MB classifiers with a diagonal covariance

approximation and the LVQ model. For all algorithms, we selected the value of free

parameters by varying them over a range of values and picking the value for which the

validation set error was the least.

6.3.1 TIMIT data

The first task is the classification of 12 monothongal vowels from the TIMIT database

(Fisher & Doddington 1986). Each feature vector consists of the lowest 32 DFT coeffi-

cients, time-averaged over the central third of the vowel. This is the same data set used

in section 5.1.2 and section 5.3.1 earlier in this document. We partitioned the data three

times into different training sets (1200 vectors), validation sets (408 vectors), and test

sets (408 vectors). The training sets contained 100 examples of each da..c;s. We report

the a.veraged (over the three different partitions) test set cla..c;sification accuracies with

20" error bars where 0"2is the variance across the three test sets.

We varied the values of free parameters over a range of values and chose that value

which generated the lea..c;taverage (over the three different partitions) validation set

cla..c;sification error. We varied the number of hidden layer nodes of the MLP from 10

to 50 in increments of 5. For GMD cla..c;sifiers(GMD-full and GMD-diagonal), we varied

the number of mixture components, Q, from 1 to 5 and E from 0.1 to 10-7. Figure

6.2 shows a plot of the average validation set cla..c;sification accuracy for the GMD-full

model, for different values of E for three component mixtures (Q = 3). For GMB-full,

we obtained the lea..c;t (average) validation set error with Q = 3 and E = 0.01. For a

GMD-pruned model with this configuration, (Q = 3, E = 0.01), we varied the number

of directions pruned from 2 to 27 in increments of 5 (in other words, we conducted

experiments reta.ining 5 to 30 dimensions in increments of 5). For the LVQ, we varied
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Figure 6.2: This plot shows the variation of the average classification accuracies of GMB
classifiers with 3 component mixtures and full covariance matrices with respect to f..
Each point is the average value of the cla..c;sification accuracies for the three validation
sets.

thenumber of components from 15 to 90 in increments of 5.

Table 6.1 shows the results obtained with different algorithms. Since this data set

contains very few data points per class, we expect regularization algorithms to perform

well. For comparison, a GMB classifier (GMD-full) with 3 component mixtures and with

a very small f. (f. = 0.000001) obtained a classification accuracy of only 21.2%. We were

unable to train a GMD classifier with zero f. (we obtained singular covariance matrices).

We note from Table 6.1 that the difference in cla..c;sification accuracies among the MLP

and GMB algorithms is not statistically significant. A GMD with diagonal approximation

has nearly four times the model variance as the other algorithms, and LVQ performs the

worst. As noted above, we were unable to train totally unregularized mixture models

with 3 components for this data. The rank reduction algorithm (GMB-pruned) prunes

around G% of the eigen-directions of each Gaussian and obtains a comparable accuracy

to the full rank model.
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Table 6.1: The averaged test set classification accuracies for the TIMIT vowels data for
different algorithms with 2<7error bars. For GMB-pruned algorithm, "30-D" indicates
that 30 of the original 32 eigen-directions were retained for each Gaussian.

ALGORITHM ACCURACY

6.3.2 CENSUS data

The next task we experimented with was the cla..<;sification of 9 vowels (found in the

utterances of the days of the week). The data was drawn from the CENSUS speech

corpus (Cole, Novick, Burnett, Hansen, Sutton & Fanty 1994). Each feature vector wa..<;

70 dimensional (perceptual linear prediction (PLP) coefficients (Hermansky 1987) over

the vowel and surrounding context). We partitioned the data into a training set (8997

vectors), a validation set (1362 vectors) for model selection, and a test set (1638 vectors).

The training set had close to a 1000 vectors per class.

We varied the values of free parameters of algorithms over a range of values and

chose those values which obtained the lea..<;tvalidation set cla..<;sification error. We varied

the number of hidden layer nodes of MLPs from 10 to 90 in increments of 5. We varied

the number of mixture components of G MD classifiers (with full and diagonal covariance

matrices) from 1 to 6 and f. from 0.01 to 0.0001. For GMB-full, we obtained the largest

cla..<;sification accuracy for the validation set with 4 mixture components and f. = 0.01.

For the GMD-pruned algorithm, we used 4 mixture components and f. = 0.01, and varied

the number of directions pruned for each Gaussian from 5 to 65. For LVQ, we varied

the number of components from 10 to 90 in increments of 5.

Table 6.2 gives a summary of the cla..<;sificationaccuracies obtained using the different

algorithms. This data set ha..<;a lot more data points per class than the TIMIT data set.

The best accuracy is obtained by an MLP. We were unable to train an unregularized

MLP (40 nodes in hidden layer) 45.8 ::I::3.4%

GMB-full (3 components; f. = 0.01) 46.7 ::I::3.0%

GMB-pruned (3 components: 30-D; f. = 0.01) 43.5 ::I::3.3%

GMB-diagonal (2 components; € = 0.00001) 44.3::1:: 7.5%

LVQ (70 cells) 38.5 ::I::4.8%



126

Table 6.2: The test set classification accuracies for the CENSUS data for dift'crent

algorithms.

ALGORITHM ACCURACY

mixture model (GMB-full with f. == 0) with 4 components (some of the covariance ma-

trices became singular after a few EM iterations). We note that the accuracies obtained

by the full rank mixture model (GMB-full) and the MLP are very close. The reduced

rank model (GMB-pruned) obtains a lower accuracy than GMI3-full or the MLP. I30th

the regularized GMB models (using € and reducing the rank) obtain higher accuracies

than GMB-diagonal and LVQ. We hypothesize that the diagonal or spherically symmet-

ric a.<;sumption for the covariance matrices was not appropriate for this data set. The

rank reduction procedure prunes roughly 7% (chosen by cross validation) of the eigen-

directions of each covariance matrix and does not obtain a high classification accuracy.

We hypothesize that estimating the saliencies of eigen-directions by pruning combina-

tions of directions as sketched in section 6.2.2 can generate better results, since the

estimates of the error induced by pruning will be more accurate. We were unable to per-

form experiments with pruning combinations of directions, since it entailed prohibitive

computation time requirements (on the order of several weeks for one experiment).

6.4 Discussion

In this chapter, we presented Gaussian mixture Bayes (GMI3) classifiers, where we as-

sume that the class conditional densities are mixtures of Gaussians and derive Bayes

discriminant functions. We showed that winner-take-all approximations to GMB classi-

fiers are related to hard clustering ba.<;edcla.<;sifierslike the learning vector quantization

MLP (80 nodes in hidden layer) 88.2%

GMB-full (4 components; € = 0.01) 86.0%

GMB-pruned (4 components; 65-D; € = 0.01) 81.8%

GMB-diagonal (6 components; € = 0.01) 79.6%
LVQ (55 cells) 67.3%
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(LVQ) algorithm.

We discussed several methods of regularizing GMI3 classifiers:

. The models are regularized by a..c;sumingthat all covariance matrices are diagonal

(GMB-diagonal) or spherically symmetric (a..c;in LVQ).

. Following (Ghahramani & Jordan 1994a), a constant diagonal matrix (Elr/x,,) is

added to each covariance matrix in each iteration of the EM algorithm (for training

the mixture models). This enforces numerical stability and regularizes the mixture

model. Applying a Bayesian prior to the parameters, Ormoneit et at (1995) obtain

the same EM update rule. In our implementation, we also add E to (and renor-

malize) the posterior probabilities of Gaussian component membership during each

iteration of the EM algorithm a..c;in (Ghahramani & Jordan 1994a).

. We propose a new method of regularizing GMI3 cla..<;sifiers. Using idea..c; from prin-

cipal components pruning (PC pruning; (Levin et at. 1994)), we regularize mixture

discriminant functions by pruning eigen-directions of Gaussian components which

induce the lea..c;tclassification error (empirically mea..c;uredfor a validation set) when

pruned. This can improve the generalization performance by decreasing the overall

model variance (at the expense of added bia..c;).

We presented experimental results for two speech phoneme cla..c;sification ta..c;ks. Both

the regularization schemes obtain higher cla..c;sification accuracies than an unregularized

G MI3 model. a diagonal approximation (G MB-diagonal) or a spherically symmetric ap-

proximation (LVQ). We conclude that

. the diagonal or spherically symmetric covariance matrices a..c;sumptionwa..c;invalid

for the data sets we experimented with, since GMB cla..c;sifierswith full covariance

matrices performed better than GMI3 with diagonal or spherically symmetric a..c;-

sumptions. This suggests that the data variables are locally (in the input space)

correlated.
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. Some regularization is necessary for training the mixture models to prevent singu-

lar covariance matrices and to prevent over-parametrization in high dimensional

spaces. Regularizing the mixture models by bounding the covariance matrices us-

ing cIn xn while training seems to be the best technique. Pruning eigen-directions

of covariance matrices does not perform as well. The pruning technique may be

improved by pruning combinations of eigen-directions while generating saliency

estimates.

In the next chapter, we describe local linear regression algorithms ba..c;edon a mixture

of Gaussians model for the joint density of input and output variables.



Chapter 7

Gaussianmixture models for regression

The goal of regression analysis is to predict values of response variables y, given observed

values of predictor variables x. In this chapter, we describe Gaussian mixture models

for regression. We model the joint density of the predictor and response variables a.<;

a mixture of Gaussians, and derive the least squares regression estimate E[y Ix]. This

is also the approach taken by Ghahramani and Jordan (19940., 1994, 1994b). The re-

gression E[y Ix] is a local linear function of the predictor variables; a weighted sum of

linear models, where the weights are the probabilities of membership to the component

Gaussians of the mixture model.

We propose two new ways of regularizing the local linear regression function:

. local ridge regression, where we shift the local prediction matrix, inducing bia.<;and

possibly reducing model variance, and

. principal components (PC) pruning (similar to (Levin et ai. 1994)), where we prune

those directions of each prediction matrix which induce the lea.<;tadditional error

when pruned.

We present results of experiments predicting the housing prices in Boston, the average

monthly sunspots count and a chaotic time series. The best technique wa.<;ta.<;kdepen-

dent. However, regularizing the local linear predictors seemed to be useful whenever the

problem wa.<;high dimensional and the sample size was small.

In the next section, we will define regression analysis and describe the standard linear

model. We will then present Gaussian mixture models for regression and techniques

129
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for regularizing them. Finally we present empirical results comparing all the models

discussed here.

7.1 Introduction

R.egression analysis (Draper & Smith 1981, Breiman et al. 1984, Seber & Wild 1989)

predicts the values of m random variables called response variable.~ (denoted here by a

vector y E nm) given the values of n other random variables called regressor or predictor

variables (denoted here by a vector x E nn). The standard model (Draper & Smith

1981, Seber & Wild 1989) is

y=f(X)+E, (7.1 )

where f ( .) is a mapping from nn to nm, and E is generated by an unobservable 7.ero-

mean noise process (i.e E[E] = 0). The components of x are observable or functions of

observable variables.

The response vector y is predicted using a function g(x) parametri7.ed bye. The

accuracy of prediction is usually mea..<;uredby the mean squared error

(7.2)

where the expectation E[.] is over both x and E. The mean squared error (7.2) is min-

imi7.ed by the function g-(x) = E[yIx] = f(;];), the conditional expectation of the re-

sponse, which is called the regression of y on x (Draper & Smith 1981, llreiman et

at. 1984). Given N sample pairs of the predictor and response variables {Xi,y; Ii =
1... ., N}, the least squarese.~timateof e minimizesthe averagesquared error See) which

is an estimate of [.,

{} = argmin See)o

1 IV

- argmjn N L I!Yi- g(x;; e)112,
1=1

(7.3)

If we assume that the noise vectors E; (corresponding to Xi, ?Iipairs) are independent

and identically Gaussian distributed with a 7.ero mean and a covariance matrix (721mxm,
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then the least squares estimate of (J is also the maximum likelihood estimate (Draper &

Smith 1981, Seber & Wild 1989). Let Y = {Yl,. .. ,YN} denote the set of sample values

of y. The likelihood of Y given our model is

=

(7.4)=

The parameter estimates which maximize p(Y I(J,(72) are (J = iJ(the least squares esti-

mate) and ;2 = S(iJ)fm (Seber & Wild 1989).

7.1.1 Linear regression model

In the standard linear model (Draper & Smith 1981, l3reiman et al. 1984, Seber & Wild

1989), g(x) is restricted to g(x) = wx where w E nmxll. The optimal least squares

estimate of w is the solution of the Widrow-Hoff equations (Widrow & M. Hoff, .11'.

1960, Haykin 1994)

wR=r, (7.5)

where R == E[xxT] is the auto-correlation matrix of the predictor vectors x and r ==

E[yx T] denotes the cross-correlation matrix between the response and predictor variables.

Given N sample pairs of predictor and response variables {Xi, Yi Ii = 1,..., N}, the

op"timal (least squared error) w is

w = f R-I

[

N

] [

N

]

-1

~ LYiXT ~ LXiXT
N i=1 N i=1

- (7.6)

where f is the sample cross correlation matrix between the predictor and response vari-

abIes and R is the sample predictor auto-correlation matrix.

When the predictor variables are statistically dependent on each other, the auto-

correlation matrix R can be close to singular, resulting in unstable parameter estimates.
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Ridge regression (Draper & Smith 1981), a method originally conceived to tackle this

problem, changes the lea.<;tsquares solution w by shifting the predictor correlat.ion matrix

from R to R + plnxn,

]
-1

w=f[R+plnxn ., (7.7)

where p is a parameter. As p is increa.<;ed, the estimat.es become smaller in absolut.e

value. In general, this biases the estimate, and decrea.<;es the model variance. For the

optimal value of p, this effect can decrease the mean squared (generalization) error, even

when t.he auto-correlation mat.rix is not. close to singular. In practice, the optimal value

of p is est.imated by varying it over a range of values and picking the value for which the

averaged square error S( 8) for a separate validation data set is the lea.<;t..

For linear regression, the least squares estimate, E[y Ix] is derived by assuming a

functional form for g(x). Another approach is to assume a parametric model of the joint

density of the predictors and the response variables and directly comput.e the optimal

least. squares solut.ion E[y Ix]. In the next section, we describe a local linear regression

model based on a mixture of Gaussians model for the joint. density.

7.2 The Gaussian mixture regression (GMR) model

We model the joint density of the the response variables y E n11! and the predictors

x E nn as a mixture of Q multivariate (m + n)-dimensional Gaussian functions,

where z = (y, x)T and ILj and L:j denote the means and covariance matrices of the

Gaussian components. The conditional density p(y Ix) is also a mixture of Gaussians

and the regression E[y Ix] is

E[ylx] jdyyp(yIX)

fdyyp(y,x)
p(x)

=
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Jdyyp(y,x)

Jdyp(y,x)
Q_ '" h . ( ) [ Y ",yx",xx-I ( x

)]- ~ J X ILj + LJ j LJ j X - ILj
j=1

=

(7.9)

where the weighting function hj (x),

(7.10)

denotes the probability that the lh Gaussian component of the marginal predictor den-

sity p(x) generated the predictor vector x. Here we use y and x superscripts to denote

subvectors and submatrices which correspond to the response and predictor variables.

For example, ~j is divided into

~yy
J

~xyJ

~yx

)

J

~xxJ

where

. ~JY denotes the rn x rn submatrix formed by the first m rows and columns of ~j,

. ~yx denotes the rn x 11,submatrix formed by the first m rows and the last 11,columnsJ .

of ~j'

. ~? denotes the 11,x m submatrix formed by the la..<;t11,rows and the first rn columns

of ~j, and

. ~jX denotes the 11,x 11,submatrix formed by the la..<;t11,rows and columns of ~j'

Similarly, p'J and p.j denote the subvectors of the means corresponding to the response

and predictor variables respectively.

Ghahramani and Jordan (1994b, 1994a, 1994) use a mixture of Gaussians model

for the joint density of predictor and response variables to derive the regression function

(7.9). Tresp et al (1994) mention using a mixture model to derive the regression function.

Marroquin (1995) uses a soft local linear model for regression which is similar to (7.9).
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However, Marroquin assumes that the covariance matrices of the mixture model are

spherically symmetric. The regression function (7.9) (also see (Ghahramani & Jordan

1994b, Ghahramani & Jordan 1994a)) is a weighted sum of standard linear regression

functions discussed in section 7.1 3.<;follows:

Q

= L hj(x)[wj x] ,
j=1

(7.11 )

h . - - ( 1)
.

( 1) d
. . I I t d '1')1J1x(n+I). h :th

were x =X, ISan n + ImenSlOna co umn vec or an Wj E I~ IS t e]

local prediction matrix

(7.12)

I3y substitution, we verify that Wj is the solution to the Widrow-Hoff equations

Wj Rj = Tj , (7.13)

where

Rj - E[hj(x) xxT]

[ E[hj(x) xxT] E[hj:X) xl ]

=
E[hj(:1;}xT]

=
[ l;j' + I'jl'jT I;]IlxTJ

(7.14)

and

Tj - E[hj(x) ?lXT]

=
(E[hj(x) ?lXT],Il])

=
(yx+llY.JlX IlY) (7.15)J J J' J
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are the weighted I autocorrelation and cross-correlation matrices of x for the /12 Gaussian

component. R.ecall that the weighting hj(x) denotes the probability that the /h Gaus-

sian component of the marginal predictor density p(x) generated the predictor vector :1:.

Ghahramani and Jordan (1994b, 19940.) note that "the mixture of Gaussians competi-

tively partitions the input space, and learns a linear regression surface in each partition" .

They also note the similarity of the model presented above to classification and rcgrcs-

.'lion trces (Breiman et 0.1.1984) and the mixture of experts (Jacobs et 0.1.1991, Jordan

& Jacobs 1994) which also soft partition the data to build local models.

The Gaussian mixture regression (GMR) algorithm is:

. Train a mixture of Gaussians model for the joint density of z = (y,:r) using the

EM algorithm (see appendix C).

. After training. for any given x, compute the prediction of y using (7.9).

The GMR. algorithm can generate unstable parameter estimates whenever any of

the local auto-covariance matrices 1:j is close to singular. As discussed in chapter 6

(see section 6.2). the log likelihood function for a mixture of Gaussians ha.<;a maximum

whenever any of the covariance matrices is singular. Moreover, the number of parameters,

(O[Q * (11.+ m)2] parameters), scales fa.<;terthan linearly with input dimensionality. This

can lead to inaccurate parameter estimates for small data sets of high dimensional data.

One way to ensure numerical stability of parameters is to add a constant diagonal

d(m+n)x(m+n)matrix in each EM iteration (see section 6.2). This is also a regularization

scheme for mixture models. For all the results presented in this chapter for mixture mod-

els, we use this method. However, this does not solve the potential over-parametrization

problem.

IThe weightings are a result of the mixture density: e.g. Bj is a weighted auto-covariance matrix
of all the predictor vectors. where the weighting for x, hj(x), is the posterior probability that the /1.
component Gaussian generated x.
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One way to reduce the number of parameters is to assume that the covariance ma-

trices I:j are diagonal. The least squares regression (7.11) becomes

Q

E[y Ix] = L hj(x)JL] ,
j=l

(7.IG)

a locally constant model of the data. We will refer to regression using (7.16) a..<;the

G MR-const algorithm. The regression function is a weighted average of the means of

the response variables, where the weights represent the closeness to the corresponding

predictor means. As Ghahramani (1994a) notes, this function ha..<;an identical form

to normalized radial basis functions (Moody & Darken 1988, Poggio & Girosi 1990).

The GMR.-const procedure can generate high errors whenever the diagonal assumption

is incorrect due to correlations between the predictor and response variables, which is

often the case.

We propose two new ways of regularizing the local linear regression (7.11). The first

method uses local ridge regression. The second method prunes the directions of each

local linear predictor which contribute the least towards lowering the mean squared error.

7.2.1 GMR with local ridge regression

We apply ridge regression (see section 7.1) to each local prediction matrix in (7.11)

(Leen 1995). Let Wj, ilj, and f j denote estimates of Wj, Rj and rj based on a data

set Z = {(Yi, Xi), i = 1,..., N} after training a mixture model for the joint density of

z = (y, x). We change each local prediction matrix Wj by shifting the local predictor

correlation matrix ilj from Rj to ilj + pI(n+l)x(n+l),

]
-1

Wj = Tj [ilj + pI(n+l)x(n+l) (7.17)

where p is a parameter. Just a..<;in linear ridge regression, increasing p makes the estimates

smaller in magnitude. bia..<;esthem, and decrea..<;esthe model variance. For the optimal

value of p. this can reduce the mean squared error. We estimate the optimal value of p by

varying it over a range of values and choosing the value for which the averaged squared

error S(B) is the least for a validation data set. We call this procedure GMR-ridge.
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7.2.2 GMR with principal components pruning

Wc now present another method of regularizing the GMR. rcgression function (7.11),

which computes thc components of each local prcdiction matrix Wj along thc cigcn-

directions of ilj, and prunes those p components which inducc thc least bias whcn rc-

moved (Leen 1995). This proccdure is an application of the principal componcnts pruning

(PC pruning) technique (Levin et al. 1994) applied to mixture regression models.

The GMR. algorithm with PC pruning (GMR-prune) is as follows.

. Train a mixture of Gaussians model for the joint density of thc rcsponse and

predictor variables using the EM algorithm.

. Computc thc local prediction matrices Wj (7.12) and the local auto-correlation

matriccs ilj (7.14).

. For cach response variable yk, k = 1, . . . ,m,

for cach local predictor vector Wjk, j = 1, . . . ,Q,

* computc the components of Wjk along the eigen-directions of ilj. Lct

{C1, . . . , Cn+I} and {AI,..., An+I} denote the orthonormal eigenvectors

and corresponding eigenvalues of ilj respectively. Note thc these cigcn-

vectors span nn+l. Compute fh, thc component of Wjk along C[,

n+1 n+1

Wjk = L {3[C[ == L (WJkCz)C[
[=] [=1

(7.18)

for 1 = 1, . . . , n + 1.

* Define the saliency, S[ ofthe lth component above as the local I-component

(for thc response variable Jl) bias induced by setting (3[ = 0,

S[ =
Ehj(x) [II {1[cTj; 112]

= E [(32 T --T ]hj(x) [ c[ xx c[

= (12 TE [--T][C[ hj(x) xx e[

2 T A.....,

{1[ C[ RjC[
.....,
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2= fJI)...1 . (7.19)

Here, Ehj(x) [.J denotes an expectation with respect to the probability

density function of membership of x to the ph Gaussian component.

Therefore, by definition, Rj is an estimate of Ehj(x)[xxTJ. Since CI is
. . T .

an eigenvector of Rj, el RjcI = )...1. For each l = 1, . . . , n + 1, compute 81-

* For the p directions with the least saliency, set f31= O. Compute the new

(regularized) estimate of Wjk a.c;

n+!

Wjk = L f3ICi
1=1

(7.20 )

This effectively prunes the p directions with the least saliency for the ph

local predictor for the kth response variable.

. For each data point x, compute the prediction of 1/ (7.11) using the regularized Wj

matrices.

We choose the number of directions to prune, p, by cross validation. We vary p over

a range of values (including 0) and choose the value for which the validation data set

error is the lea.c;t.

7.3 Experimental results

In this section, we compare the local linear regression algorithms discussed above (GMR-

const, GMR-ridge and GMR-prune) and a multi-layer perceptron (MLP or a feedforward

neural network; see section 2.2) for three benchmark regression ta.c;ks: predicting the

Boston housing prices, average monthly sunspot activity and a chaotic time series. Let

{(Yi,:1:i),'l = 1,...,N} denote the test set for a ta.c;k. For each algorithm, we compute

the normalized error,

(7.21)
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the average squared error S(O) normalized by the variance in the response variables.

Here, J.LY= ,~ L{~I Yi. A normalized error of 1.0 implies that the squared error is

equal to that of a trivial predictor which always predicts the mean value of the response

variables.

We varied the free parameters of all algorithms over a range of values and chose the

value for which the validation set error is the least. For all the local linear models, we

added a diagonal matrix d(m+n)x(m+n)to each local covariance matrix in each iteration

of the EM algorithm. We trained multi-layer perceptrons (MLPs) with one hidden layer

using a qua..c;i-Newton BFGS (Press et 0.1.1987) optimization scheme.

7.3.1 Prediction of Boston housing prices

Our first task is the prediction of housing prices in Boston (the response variable) from 13

factors (the predictor variables) (Breiman et 0.1.1984, Moody & Yarvin 1992). We trained

the algorithms with four different partitions of the data into training sets containing 380

vectors. validation sets containing 63 vectors and test sets containing 63 vectors. We

varied the number of hidden layer nodes of the MLPs from 2 to 40 in increments of 2.

For the local linear algorithms, we varied the number of mixture components from 1 to

10, and the regulari7.ation parameter E, from 10-6 to 0.01. We varied the number of

directions pruned using PC pruning from 0 to 12 and the ridge regression parameter p

from 10-5 to 10. For all algorithms, we report results with those parameter values which

obtained the least average (across the 4 permutations of training, validation and test

sets) validation set error.

In Table 7.1, we report the average normali7.ed test set errors (7.21) for different

algorithms with 2a error bars. Here a2 is the variance of the test set error across the

four different permutations of training, validation and test sets.

Dreiman et al report a normali7.ed error £norm ~ .22 (in Table 8.8 on page 249 of

(Dreiman et al. 1984)) using the classification and regression trees (CART) algorithm.

Moody and Yarvin (1992) train feedforward neural networks with different activation

functions and report an error between £norm = 0.15 and £norm = 0.20. Our results are
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Table 7.1: The average (across 4 different permutations of training, validation and test
sets) normalized test set error (7.21) for the prediction of Boston housing prices using
different algorithms. We chose the values of free parameters by cross validation over the
average validation set error (see text for details). For the mixture models. we report the
number of components, the regularization parameter €, the number of directions pruned
using principal components pruning p, and the ridge regression parameter p.

comparable t.o all the results quoted above. We note from Table 7.1 that the difference

between the error using linear regression and the error using an MLP or any of the G MR.

algorithms except GMR.-const is statistically insignificant. Also, all the GMR. algorithms

(unregulari7.ed, using PC pruning and using ridge regression) perform comparably. The

GMR.-const procedure (which is related to radial basis functions: see section 7.2) performs

the worst with a statistically significant margin.

7.3.2 Prediction of the average monthly sunspots count

Our next. ta..<;kis the prediction of the average monthly sunspot count in a given year

from the values of the twelve previous years (Moody & Yarvin 1992). We use the data

from the years 1712 to 1880 a..<;the training set (169 data points), the data from the years

1881 to 1920 a..<;the validation set. (40 data points) and the data from the years 1921 to

1955 a..<;the test set (35 data points).

We varied the number of hidden layer nodes of the MLPs from 2 to 7. We varied the

number of mixture components of all the local linear algorithms from 1 to 10, and the

regulari7.ation parameter €, from 10-6 to 0.01. We varied the number of directions pruned

using principal components pruning from 0 to 11 and the ridge regression parameter p

ALGORITHM £norm

MLP (2 nodes in hidden layer) .20::1: .19

Linear R.egression .28::1: .13

GMR. (6 comps; € = 10-6) .24::1: .14

GMR.-pruned (6 comps: € = 10-6: p = 4) .24::1:.14
GMR.-ridge (6 comps; € = 10-6; p = 10-5) .24::1: .14

GMR.-const. (5 comps: € = 10-6) .88::1: .16
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Table 7.2: The normalized prediction errors (7.21) for the test set for predicting the
average monthly sunspot count using different algorithms.

from 10-5 to 10. For all algorithms, we report results with those parameter values which

obtained the least validation set error. We summarize our results in Table 7.2.

For the same test set a..<;ours, Moody and Yarvin (1992) obtain an error between

£norm = .105and £norm = .111 using feedforward neural networks (MLPs) with different

activation functions. They note that the best test set error achieved by them or previous

testers wa..<;about £norm = .085 (Moody & Yarvin 1992). Our results are comparable to

theirs. The GMR-prune algorithm (which uses PC pruning) prunes 5 directions from each

local prediction matrix, and seems to provide the best performance among all algorithms

tested. Note that the unregularized local linear algorithm with 6 components (GMR)

obtains a much larger error than linear regression. Both the regularization schemes

(PC pruning and ridge regression) successfully reduce the error obtained by GMR.. The

GMR-const algorithm again performs worst obtaining nearly 4 times the error of any of

the other algorithms.

7.3.3 Prediction of the Mackey-Glass time series

Our next task is to predict data points from a chaotic time series generated by integrating

the Mackey-Gla..<;s differential-delay equation,

d x(t - T)-
d x(t) = a 10. - bx(t)t l+x (t-T)

ALGORITHM £norm

MLP (3 nodes in hidden layer) .116

Linear Regression .118

GMR (6 comps: to= 10-6) .136

GMR-pruned (6 comps: to= 10-6; 8-D) .108

GMR-ridge (6 comps; to= 10-6: p = 0.01) .125

GMR-const (5 comps: to= 10-6) .411
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Table 7.3: Prediction errors (7.21) for the test set from the Mackey-Glass t.ime series
using different. algorithms (see text. for details).

With 0. = 0.2, b = 0.1, and T = 17, the trajectory is chaotic and t.he time series is

a benchmark for prediction algorit.hms (Farmer & Sidorowich 1987, Moody & Darken

1989, Moody & Darken 1988, Hartman & Keeler 1991). Following (Moody & Darken

1989, Moody & Darken 1988, Hartman & Keeler 1991), the goal is to predict x(t + 85)

given x(t), x(t - 6), x(t - 12) and x(t - 18). We divided the t.raining set containing 500

vectors used by Hartman and Keeler (1991) into a training set containing 350 vectors,

and a validation set containing 150 vectors. We use the same test set a..<;Hartman and

Keeler (1991) which contains 500 vectors2.

We varied the number of hidden layer nodes of the MLPs from 2 to 40 in increments

of 2. We varied the number of mixture components of the local linear algorithms from 5

t.o 80 in increments of 5, and the regularization parameter E, from 10-6 to 0.01. Figure

7.1 shows t.he variation of the normalized squared error for the validation set for G MR.

with 60 components and full covariance matrices, for different values of E. We varied

the number of directions pruned using PC pruning from 0 to 3. We obtained the lea..<;t

validat.ion error with Q = 60 components, E = 0.0001 and with one direction pruned

for every local prediction matrix. We used these values of Q and E (60 and 0.0001

respectively) for all remaining experiments. We varied the ridge regression parameter p

from 10-6 t.o 10. For all algorithms. we report results with those parameter values which

obt.ained the lea..<;tvalidation set error. We summarize our results in Table 7.3.

21 am grateful to Thorsteinn Rognvaldsson of OGI for providing me with this data set.

ALGORITHM £norm

MLP (38 nodes in hidden layer) .02

Linear R.egression .31

GMR. (60 comps: E = 0.0001) .04

GMR.-pruned (60 comps; E = 0.0001: 4-D) .04

GMR.-ridge (60 comps; E = 0.0001; p = 10-6) .04

GMR.-const (60 comps: E = 0.0001) .14
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Figure 7.1: This plot shows the variation of the normalized squared error for the vali-
dation set for GMR with 60 components and full covariance matrices, with respect to
E.

Lapedes and Farber (1987) trained an MLP with 2 hidden layers (each containing

20 nodes with a sigmoidal activation function) and with 500 data points to do the

above prediction. They obtained a normalized prediction error (v'Enorm) of 0.05. This

corresponds to Enorm = 0.0025. Moody and Darken (1989, 1988) used radial ba..<;is

functions with about a 1000 Gaussian units and with 7 times more training data to

obtain a comparable error. When they used around 100 Gaussian units, they obtained

an error of 0.25 (Enorm= 0.0625). Hartman and Keeler (1991) report an error of 0.08

(Enorm = 0.0064) using RBFs with 300 units and sigmoid MLPs (2 hidden layers: 10

nodes in each).

We obtained a much higher error than the best results discussed above. However, we

obtain a much lower error (with most of the algorithms) than RBFs with 100 Gaussian

units (Moody and Darken (1989, 1988): Enorm ~ 0.06 and Hartman and Keeler (1991):

Enom! ~ 0.08). The performance of our algorithms can probably be improved by using

more parameters, since this data set does not have any noise.

Note from Table 7.3 that all the non-linear algorithms obtain a substantially lower
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Table 7.4: The averaged test set classification accuracies for the TIMIT vowels data for
different algorithms with 20"error bars.

error than linear regression, indicating a significant non-linearity in the problem. The

MLP obtains the best performance. Both the regularization schemes (PC pruning and

local ridge regression) for local linear regression obtain nearly the same error as the

unregularized algorithm (GMR). This might be because the sample size wa..<;large enough

to obtain good estimates of the 5 dimensional joint density. The GMR-const algorithm

again obtained a lower error than any of the other local linear algorithms.

7.3.4 GMR applied to classification

In this subsection, we apply the GMR algorithms for classification ta..<;ks.We consider a

one-of-K cla..<;sification ta..<;ka..<;a regression task with K response variables. We denote

the response vector of a predictor vector belonging to cla..<;sc a..<;Yl = 0, . . . , Yc-I = 0, Yc =

1, Yc+1 = 0,..., YT, = O.

Our first task is the cla..<;sificationof 12 monothongal vowels from the TIMIT databa..<;e

(Fisher & Doddington 1986). There are 32 predictor variables belonging to 12 cla..<;ses

(12 response variables). This is the same data set used in sections 5.1.2, 5.3.1 and 6.3.1

of this document. We summarize our results using GMR algorithms in Table 7.4 along

with our previous results with GMI3 cla..<;sifiers. Plea..<;esee chapter 6 for a description

of GMB cla..<;sification algorithms. We note that GMR-prune and GMR.-ridge perform

comparably to the GMB cla..<;sifiers.GMR-const performs much worse.

ALGORITHM ACCURACY

MLP (40 nodes in hidden layer) 45.8 ::I:3.4%

GMB-full (3 components; E = 0.01) 46.7 ::I:3.0%

GMI3-pruned (3 components; 30-D; E= 0.01) 47.3 ::I:3.9%

GMB-diagonal (2 components: E = 0.00001) 44.3 ::I:7.5%

LVQ (70 cells) 38.5 ::I:4.8%

GMR-prune (1 component; E = 10 -4, 22-D) 43.2 ::I:4.4%

GMR-ridge (1 component; E = 10-4, P = 10-5) 42.6 ::I:3.9%

GMR-const (1 component: E = 10-4) 8.3 ::I:0.0%
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Table 7.5: The test set classification accuracies for the CENSUS data for different

algorithms.

We also experimented with using GMR. for classifying 9 vowels using data from the

CENSUS speech corpus (Cole et at. 1994). For this task, there are 70 predictor variables

and 9 response variables. We summari7.e our results with GMR. algorithms in table

7.5, where we also show the previous results using GMB algorithms (see chapter 6).

We note that all the GMR. algorithms obtain a substantially lower accuracy than the

GMI3 algorithms. This may be because using GMR., we are fitting a continuous density

function to binary response variables. Among the GMR. algorithms, GMR.-const again

performs much worse than GMR.-prune or GMR.-ridge.

7.4 Discussion

In this chapter, we described Gaussian mixture models for regression. Using a similar

approach to Ghahramani and Jordan (19940.,1994, 1994b), we modelled the joint density

of the response variables y and predictor variables x a..<;a mixture of Gaussians and

derived the lea..<;tsquares regression E[y Ix]: a weighted sum of linear regression functions,

where the weights are the probabilities of membership of x to the components of the

mixture density of x. Modelling the joint density instead of a prediction function ha..<;

the advantage that, for any given x, we have a model for the density p(y Ix) instead

of just the mean value of this density. This enables us to generate variance estimates

ALGORITHM ACCURACY

MLP (80 nodes in hidden layer) 88.2%

GMB-full (4 components: f.= 0.01) 86.0%

GMB-pruned (4 components: 55-D; f.= 0.01) 85.9%

GMB-diagonal (6 components; f.=0.01) 79.6%

LVQ (55 cells) 67.3%

GMR.-prune (1 component; f.= 10-4,35-D) 67.1%

GMR.-ridge (1 component; f.= 10-4,P= 10-5) 67.3%

GMR.-const (1 component; f.= 10-4) 11.1%
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conditioned on the predictor variables; estimates of the model uncertainty.

We propose two new ways of regularizing the local linear regression function:

. local ridge regression, where we shift the local prediction matrices, inducing bia.<;

and possibly reducing model variance, and

. PC pruning, where we prune directions of local prediction matrices which induce

the least bias when removed.

We call the unregularized model and the above methods of regularizing them a.<;GMR,

GMR-ridge and GMR-prune respectively.

We compared linear regression, GMR algorithms, and a multi layer perceptron (MLP)

for three standard regression tasks: predicting the housing prices of Boston, the average

sunspots count and a chaotic time series. For the Boston housing data, which ha.<;only

mild non-linearity, there was no significant difference between the errors obtained by a

linear regression, MLP, GMR, GMR-ridge and GMR-prune. For the sunspots data, both

the regularized predictors (GMR-ridge and GMR-prune) obtained a much lower error

than unregularized GMR.. For the Mackey-Gla.<;s time series data, GMR and regularized

GMR algorithms obtained nearly identical errors, and the MLP obtained nearly half the

error obtained by the GMR algorithms. We hypothesize that since the data wa.<;only 5

dimensional, there were enough data points to obtain good estimates of the joint density

(for the parameters explored) and there wa.<;no need to regularize the GMR model.

Since the data does not have any noise, the performance of all algorithms can probably

be improved by increasing the number of parameters.

We also experimented with using G MR algorithms for cla.c;sification for two speech

da.c;sification tasks. The GMR algorithms obtained a lower accuracy than Gaussian

mixture cla.c;sifiers (GMB algorithms: see section 6.1). This may be because, when using

GMR, we model the density of discrete binary variables using a continuous density

function. An alternative approach proposed by Ghahramani and Jordan (1994b) uses

a mixture density where for each component of the mixture, the predictor variables

are Gaussian distributed and the response variables are multinomial distributed. This
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approach might improve results for mixture regression models applied to cla..<;sification

tasks.

Ba..<;edon our results, we conclude that

. the best technique is problem dependent,

. in general, the Gaussian mixture regression (GMR) algorithms perform comparably

to multi-layer perceptrons,

. the diagonal covariance matrices assumption is not valid in general and can lead to

very poor prediction (e.g see the performance of GMR-const in section 7.3), and

. regularizing the local linear models seems to be effective when the data is high

dimensionaL the data dependencies are non-linear and the sample data size is

limited. Regularizing the models by bounding the covariance matrices and PC

pruning seems to work best.



Chapter 8

Conclusions and future work

In this dissertation, we have described local linear models for dimension reduction and

Gaussian mixture models for classification and regression. We developed the relation

between local linear dimension reduction and maximum likelihood signal extraction for

a mixture of Gaussians signal-plus-noise model. Empirical results with speech and image

data show that local linear models can be faster and more accurate than global models.

In this chapter, we summarize the whole document, present our conclusions and describe

directions for future work.

8.1 A synopsis of the dissertation

In this section, we summarize the whole document. We first describe models for dimen-

sion reduction and then discuss Gaussian mixture models for classification and regression.

8.1.1 Local linear models for dimension reduction

In high dimensions, training data is sparsely distributed and it is difficult to train models

which generalize well from small data sets. One way to combat this "curse of dimen-

sionality" (section 1.2) is to reduce dimension of the data and build models in the low

dimensional (feature) space. Dimension reduction algorithms are also useful for feature

extraction for cla..<;sification, exploratory data analysis, and data compression. The goal

of dimension reduction algorithms is to obtain compact encodings which optimize a cri-

terion for accuracy of representation. We focus on unsupervised algorithms whose goal

148
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is to obtain 111dimensional encodings of n dimensional data vectors (rn < n) such that

the mean squared error between the original vectors and their reconstructions from m

dimensional encodings is minimized.

Principal components analysis (PCA: section 2.1) is a cla..<;sical technique for di-

mension reduction. PCA builds a global linear model of the data: an m dimensional

hyperplane spanned by the leading eigenvectors of the data covariance matrix. PCA

can incur a high error whenever the data variables have non-linear dependencies among

them. Five layered auto-a..<;sociative neural networks (FLNs; section 2.2) can represent

non-linear dependencies among data variables to form a global non-linear model of the

data: a smooth m dimensional (possibly curved) manifold that approximates the spread

of the data.

Global models for dimension reduction can be inefficient (inaccurate and hard to

fit) when the data lies near complex curved manifolds. When the data ha..<;different

structure in different regions of the input space, a local linear model can be fa..<;terand

more accurate. We propose the VQPCA model (section 3.2) which partitions the input

space into a set of regions using a vector quantizer (VQ) and builds 111dimensional PCA

coordinates in each local region. In chapter 3, we described several ways of obtaining

the VQ partition for VQPCA.

In chapter 4, we showed that local linear dimension reduction approximates maximum

likelihood signal estimation for a signal-plus-noise model, where

. the signal density is a mixture of Gaussians, each with n - rn negligibly small

eigenvalues,

. the noise density is a spherically symmetric Gaussian and

. the noise variance is much smaller than the signal variances.

We presented experimental results comparing PCA, FLNs, and VQPCA for speech

and image dimension reduction (section 5.1) and speech feature extraction (section 5.2).

Our results suggest that local linear models (VQPCA) can be more accurate and fa..<;ter
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than a global non-linear model (FLNs). We showed that linear mappings from the

low dimensional encodings of speech spectral coefficients obtained by PCA, FLNs and

VQPCA can estimate formant frequencies (resonance frequencies of the vocal tract) with

a low error. We compared VQ and VQPCA for lossy compression of speech and image

data (section 5.3), and found that VQ performs the most accurate compression for any

given bit-rate. However, VQPCA performs comparably to a VQ when there is a paucity

of training data.

8.1.2 Gaussian mixture models for supervised learning

In chapters G and 7, we presented Gaussian mixture models for classification and re-

gression and proposed algorithms for regularizing them. We discussed Gaussian mixture

Bayes (GMB) classifiers (section G.l), which use a mixture of Gaussians model for each

class conditional density, and use the EM algorithm (see appendix C) to train the mixture

models. Using a winner-take-all approximation, we showed the relation between GMB

cla.<;sifiers and hard clustering ba.<;ed classifiers (section G.1.1) like the LVQ algorithm

(appendix D).

Gaussian mixture models incur the curse of dimensionality for high dimensional data,

since the models have O( n2) parameters. We discussed different ways of regularizing

GMB classifiers (section G.2): diagonal or spherically symmetric covariance approxima-

tions, adding a constant diagonal matrix to each covariance matrix in each EM iteration

to bound the volume clements (determinants), and pruning those eigen-directions of

each Gaussian which induce the least (empirically measured) cla.<;sification error when

removed. We presented results for two speech phoneme classification tasks (section G.3),

comparing GMB cla.<;sifiers, regularized GMB cla.<;sifiersand a neural network classifier.

Our results suggest that GMB cla.<;sifiers perform comparably to neural networks and

regularization wa.<;necessary to prevent singular covariance matrices and over-fitting to

the training set. In particular, bounding the covariance matrices by adding a constant

diagonal matrix during training seems to work best. The algorithms with the diagonal

or spherically symmetric covariance a.<;sumptions performed the worst.
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We presented Gaussian mixture models for regression and proposed new ways of reg-

ularizing them. We presented the Gaussian mixt.ure regression (GMR.) algorithm which

models the joint density of the inputs and output.s as a mixture of Gaussians. and derive

the regression function E[y Ix] (section 7.2): a local linear function of the inputs. We

propose two ways of regularizing the regression function: local ridge regression (section

7.2.1) and principal component.s pruning (PC pruning: section 7.2.2), where we prune

those directions of each local prediction matrix which induce the lea..<;taddit.ional error

when pruned. We presented results comparing GMR., regularized GMR. algorit.hms and

a neural network (section 7.3). Our results suggest. that the GMR. model performed

comparably with the neural network model and regularization wa..<;effective, especially

for high dimensional data when the sample size wa..<;limited.

8.2 Conclusions

Da..<;edon the experimental results presented in chapters 5, 6, and 7, we conclude that.

local models or Gaussian mixture models provide effective tools for several statistical

data processing applications. In this section, we present our conclusions based on the

experiment.al results for each of these applications.

8.2.1 Dimension reduction, feature extraction, and data compression

In chapt.er 5, we compared PCA, FLNs and VQPCA for the dimension reduction of

speech (vowel) data and image (faces) dat.a, and speech feature extraction. We also

compared VQ and VQPCA for the lossy compression of speech and image data. Da..<;ed

on our result.s. we conclude that.

. local linear models for dimension reduction can generate more accurate low di-

mensional encodings t.han global models. In our experiment.s, VQPCA encodings

incurred nearly half the error incurred by PCA or FLNs.

. local linear models can be trained much fa..<;terthan global non-linear models. In our

experiments, VQPCA algorithms with a multi-stage or tree structured quantizers
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trained more than an order of magnitude faster than the best FLNs (the ones which

obtained the least error), while obtaining a lower error than FLNs.

. For the local linear models, clustering using "reconstruction distance" (the distance

to the local PCA hyperplane) is more effective than clustering using the Euclidean

distance. However, when training data is limited, the two methods seem to be

comparable. This may be because when training data is limited, we do not have

enough data points to accurately estimate all eigen-directions within each local

region. For speech data, VQPCA-Recon obtained nearly 15% lower error than

VQPCA-Eucl. For image data, which had very few training vectors, there was not

much difference between VQPCA-Eucl and VQPCA-Recon.

. Using multi-stage or tree structured VQs to generate the VQPCA pai"tition is an

effective way of reducing the computational complexity relative to an an uncon-

strained VQ. For speech data, the lea.<;terror wa.<;obtained by VQPCA-R-MS.

. The encoding times of VQPCA algorithms (number of FLOPS required to compute

the low dimensional encoding) is higher than that of PCA or FLNs, especially for

algorithms using reconstruction distance clustering. However, the decoding is much

fa.<;terand comparable to PCA. This suggests that VQPCA may not be the method

of choice for applications requiring real-time encoding (e.g video conferencing). For

applications which can tolerate slow encoding but require real time decoding (e.g

multi-media video decoding), VQPCA algorithms are preferable because of their

accuracy of encoding, fa.<;ttraining and fa.<;tdecoding.

. Dimension reduction algorithms can be used for speech fco.tuTe extract'ion. In sec-

tion 5.2, we built linear maps from three dimensional encodings of raw speech

spectral coefficients obtained by PCA, FLNs and VQPCA to the first three hand-

labelled formant frequencies (the resonance frequencies of the vocal tract). We

obtained a low error (normalized squared error (5.3) £norm < 0.25) with all three

methods suggesting that all the algorithms are encoding formants information in
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some form.

. For data compression (as opposed to dimension reduction). a VQ can always gener-

ate lower distortion encodings than VQPCA for a given bit-rate. provided we have

a large training set. VQPCA data compression approximates data compression by

a two level tree structured VQ (TSVQ). since we perform an initial quantization

into Q cells. and build separate VQs with K cells within each of the first level cells

t.o quantize the local m dimensional encodings. When training data is limited. t.he

constraints imposed by the two level quantization can have a regularizing effect.

enabling a VQPCA to generate a lower test set distortion than a VQ for the same

bit rate.

To summarize. local linear models can be fa..c;terand more accurate than global non-

linear models for dimension reduction. All dimension reduction algorithms discussed

here (PCA, FLNs. VQPCA) seem to encode speech formants information in low dimen-

sional encodings. For data compression. a VQ (a local constant model) obt.ains the lea..c;t.

distortion for a given bit. rate.

8.2.2 Classification and regression

In chapt.er G. we presented experimental results comparing Gaussian mixture Bayes

(G MB) cla..c;sifiers, regularized G MB cla..c;sifiersand a neural network cla..c;sifierfor two

speech phoneme cla..c;sification ta..c;ks. In chapter 7. we compared Gaussian mixture re-

gression (GMR), regularized GMR algorithms and a neural network for three benchmark

regression tasks. Ba..c;edon our experimental results, we conclude that

. Gaussian mixture models perform comparably to neural networks for cla..c;sification

and regression.

. Regularizing Gaussian mixture models is necessary to prevent singular covan-

ance matrices during parameter estimation (EM algorithm) and to prevent poten-

tial over-parametrization. Among the regularization techniques we investigated,
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bounding the covariance matrices by adding a constant diagonal matrix during

training was the most effective.

. The diagonal and spherically symmetric covariance matrices a..<;sumption seems t.o

be invalid for several data sets, since Gaussian mixture models with these a..<;sump-

tions perform the worst, obtaining high errors for both regression and cla..<;sification.

. For regression, the best regularization scheme wa..<;adding a constant diagonal ma-

trix to each covariance matrix in each iteration of the EM algorithm in tandem with

PC pruning for each local prediction matrix. For classification, adding a constant.

diagonal matrix to each covariance matrix in each iteration of the EM algorithm

was most effective.

8.3 Directions for future work

In this section, we describe directions for future work suggested by the work presented

in the previous chapters. Several questions suggest themselves.

. What is the. best way to choose the target dimension rn for an n to Tn dimension

reduction of data?

. What is the best way to choose the number of local regions for the local models

and the number of components for the Gaussian mixture models?

. Nowlan's (1991) thesis shows that a mixture of Gaussians model is related to

VQ clustering under certain a..<;sumptions.What is the relation between an EM

algorithm for training the mixture model and the GLA for training a VQ?

. For lossy data compression, what is the relation between a tree structured VQ

(TSVQ), a TSVQ with transform coding and VQPCA? When is a VQ not effective

for data compression?

. For cla..<;sification, can we modify an EM algorithm to train a GMD model in a

discriminative way (i.e train using class labels)?
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. For classification, can we improve the pruning techniques for regularizing G MD

models by pruning combinations of eigen-directions or pruning eigen-directions

ba..c;edon analytic estimates of the classification error induced?

In this section, we elaborate on some of these questions in greater depth.

8.3.1 Choosing the target dimension for dimension reduction

In the first part of this document (chapters 2 through 5), we described several dimension

reduction algorithms. In this dissertation, we view dimension reduction a..c;a process

in which we are specified a target dimension m and we try to generate m dimensional

encodings such that the average reconstruction error is minimized. An alternative view-

point is to choose a target dimension m based on the data and the specific application.

A question arises, "How do we choose rn?". We outline a few approaches to answer this

question.

. If we are specified a threshold of acceptable reconstruction error, we can reduce

dimension to different target dimensions, until the error drops below the specified

threshold.

. For PCA and VQPCA, which are related to Gaussian mixture models (see chapter

4), we can use an approach based on sta.ti.~tical h?JPothesi.~testing. Anderson (1963)

derives statistical confidence intervals and hypothesis tests for various hypotheses

relating to the trailing eigenvalues of an auto-covariance matrix. For determining

m, we can test the hypothesis that the trailing n - m eigenvalues are all equal for

every Gaussian component, for different values of m. and pick that m which best

validates the hypothesis. This hypothesis corresponds to an additive (spherically

symmetric) Gaussian noise model similar to the model described in chapter 4.

Another alternative is to test the hypothesis that the largest of the trailing n - rn

eigenvalues is small enough to be negligible.

. For PCA and VQPCA, if we are specified the number of bits for the low dimen-

sional encoding (the bit-rate for lossy data compression) and the number of local
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regIOns (for VQPCA), we can use local transform coding (Gersho & Gray 1992)

to automatically select the reduced dimension. Transform coding allocates bits

to different PCA coefficients based on the variances (eigenvalues) of the principal

components. Thus, there is a natural pruning of some components with a very

low variance and we implicitly choose m. Note that with this method, m can be

different for different regions.

A related issue is the choice of the number of local regions for local linear models or

the number of mixture components for a Gaussian mixture model. For the algorithms

presented in this document, we vary the number of components over a range of values and

choose the value for which the error (average squared reconstruction error for dimension

reduction, the number of mis-classifications for classification and the average squared

error for regression) for a validation data set is the lea..<;t. For cla..<;sification, a possible

extension is to allow the mixture models for different cla..<;sesto have a different number

of components and do the cross validation search over this larger parameter space.

8.3.2 Algorithms for lossy data compression

In section 5.3.2, we described a VQPCA data compression algorithm and discussed its

relation to a two level tree structured VQ (TSVQ; section 3.1.5). Several questions arise

here. What is the exact relationship between a VQPCA .data compression model, a

TSVQ and a two level tree structured transform coding (Gersho & Gray 1992)? When

are any of these techniques more effective than a VQ for rate-distortion performance? A

possible extension of the work described in section 5.3 would be an empirical comparison

of all the algorithms mentioned above for lossy data compression.

8.3.3 Discriminative training for GMB classifiers

In chapter 6, we described Gaussian mixture Bayes (GMB) cla..<;sifiers,which build a

separate mixture of Gaussians model for eacl1 class conditional density, and use Bayes

discriminant functions for classifying data vectors. GMil cla..<;sifierstrain the mixture



1[j7

models for each class separately using an EM algorithm. The classification accuracy can

potentially be improved by discriminative training using class labelled data to learn the

differences between the structure of the data for different classes. The proposal is to do

a gradient a..c;centon a discriminative cost function which maximizes the spread between

the GMB discriminant functions.

Let x denote a feature vector, {OI,..., OK} denote K cla..c;ses,and {81(x), . . .,81\ (x)}

denote the GMB discriminant functions (6.3). The vector x is assigned to cla..c;s0/ if

for all .J i= I. GMB classifiers use the EM algorithm to maximize the data likelihood

given the mixture model for earll,cla.~sseparately. Let < x, L > denote a class labelled

data point, i.e x E OL. A discriminative training procedure might maximize the expected

value of the cost function,

C(x.L) = c5L(x) - L c5/(x) ,
/~L

(8.1 )

or other cost functions which attempt to increase the magnitude of the discriminant

function for the correct cla..c;sand decrea..c;eit for all other cla..c;ses. Discriminative cost

functions such a..c;the one mentioned above are sometimes used to train hidden Markov

models for speech recognition (R.abiner 1989). A direction for future research would

be to start from GMB discriminant functions, and use the above objective function, to

derive parameter update rules for training the mixture discriminant functions.

8.3.4 The relation between an EM algorithm for training a mixture of
Gaussians model and the GLA

In appendix C, we describe an expectation maximization (EM) algorithm for training

a mixture of Gaussians model. In section 3.1.3, we described the generalized Lloyd

algorithm (GLA) for training a VQ model. From Nowlan's (1991) work (see appendix

B). we know that VQ clustering approximates a winner-take-all mixture of Gaussians

model. It. would be interesting to develop the relation between a EM algorithm for
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training a winner-take-all mixture of Gaussians model and the GLA for training a VQ

with a Euclidean distortion measure. Marroquin (1995) briefly discusses the relation

between EM and GLA for a mixture of Gaussians model with spherically symmetric

covariance matrices.

Both EM and GLA are iterative batch-mode algorithms. An EM algorithm for

estimating the parameters of a mixture of Q Gaussians iterates the following two steps.

. For each data point, compute the posterior probabilities of membership to all

Gaussian components.

. Re-estimate means, covariance matrices, and mixing proportions based upon new

estimates of posterior membership probabilities.

A GLA for estimating the parameters of a VQ with Q cells iterates the following two

steps.

. Partition the data into Q sets using the given distortion mea.'mre. In other words,

a.c;signmembership of each data point to one of Q regions.

. Re-estimate means (and covariance matrices, if required by the distortion mea.c;ure)

using the new partition.

There seems to be a natural connection between the above two procedures. For the

Euclidean distance mea.c;ure, we can show that the GLA is a winner-take-all version

of the EM algorithm for a mixture model of spherically symmetric Gaussians under

certain conditions. Future work here would include deriving the explicit connection and

exploring the relation between EM and GLA for other VQ distortion mea.c;ures.

8.3.5 Improved pruning techniques for GMB classifiers

In section 6.2.2, we proposed a method for regularizing GMB cla.c;sifiers by prunmg

those eigen-directions of each discriminant function, which induce the lea.c;t (empirically
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measured) error when pruned. Based on our experiments, pruning eigen-directions reg-

ularizes the model. but the selection method for picking directions to prune can be

improved.

As we suggested in section 6.2.2, estimating saliency as the validation set error in-

duced by pruning combinations of eigen-directions can produce better results than pnlll-

ing each eigcn-direction in isolation. However, this procedurc is very compute intensive.

Another alternative is to get theoretical estimates of the error induced by pruning an

eigcn-direction.

8.4 Discussion

In this chaptcr, we gavc a synopsis of the whole dissertation, prescnted our conclusions

and described directions for future work.

In summary, wc have shown in this dissertation that local models or Gaussian mixture

models are effective tools for dimension reduction, feature extraction, cxploratory data

analysis. classification and regression. For dimension reduction, the local linear models

can be more accurate and much fa..<;terthan global non-linear models. For classifica-

tion and regression, the Gaussian mixture models perform comparably with feedforward

neuralnctworks.
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Appendix A

The generalized centroid for
"reconstruction distance"

Given a set of data points, X = {Xl,..., XN}, xl E nn for I = 1,..., N, the generali:7.Cd

centroid}1- with respect to a distortion measure d(.,.) (see section 3.1.2) is defined as

1 N
JL= argmin - L d(xI,r)

r N l=1

Given X, a vector TEn n and orthonormal eigenvectors {c I, . . . , Cm, Cm+ I, . . . ,cn} of

the matrix "
1 ~ l l T

E(r) = - L..,.(x - r)(x - r) ,
N l=1

the reconstruction distance is defined (see section 3.2.2) a..<;

d(x,r) = (x - r)T
( . t CiCiT )

(x - r)
.=m+1

The generalized centroid for reconstruction distance is

(A.I)

Let C(r) denote the right hand side of (A.I), the cost function to be minimized with

respect to the vector r,

tV

(

n

)
1 l T T I

C(r) = N L (x - r) L CjCj (x - r)
l=1 j=m+1

(A.2)
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Taking the derivative of C(r) with respect to the kth component of r. rk, we obtain,

(A.3)

In section A.l, we show that the derivative ~ is given by

aei __~
{

eJ(X-r)eik+(X-r)TCiCjk

}
.- ~ ~

ark #i Ai - Aj

where x = i~XI is the arithmetic mean of X. Substituting (A.4) into (A.3), we obtain

(A.4)

2 N

(
/I T

)
I

= --.2: 2: Cici (xk - rk)
N 1=1 i=m+l

2 N /I n

{

T
(
-

) + (
-

)
T

}

~ ~ ~ Cj x - r eik x - r eiCjk I . T . T I .
+ - ~ ~ ~ (x - 1) C)€i (x - 1)

N 1=1 i=m+1 #i Ai - \

= -~ t
(
t cicT

)
(xL - rk)

N 1=1 i=m+1

+ 2 ~ ~
{

cJ(X-r)Cik+(X-r)TCiCjk

}~ ~ A. - A'
i=m+1 j::j;i I)

{

N

}
cJ 2. 2:(xl - r)(xl - r)T Ci (A.5)

N 1=1

I3ut, by definition ~(r) = i~ 2::%:1(xl - r)(xl - r)T, and €i are orthonormal eigenvectors

of ~(r). Therefore eJ~(r)ei = 0 if j # ,i. Using this, the expression (A.5) reduces to
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or in vector form

BC (r ) 2 N

(
n T

)
I

~=-NL .L Ciei (x -r)1=1 l=m+1

Equating the gradient to 0, we get

(A.G)

( . t cicT)
x =

( . t cicT )
r

z=m+1 l=m+1
(A.7)

Any vectors r satisfying (A.7) is a generalized centroid for reconstruction distance. We

use IL= x, the arithmetic mean (which is a solution to (A.7)) a..c;the generalized centroid

in section 3.2.2.

A.I The derivative of ei with respect to the mean r

We compute the derivative of the eigenvector Ci of the matrix B(r) = i~'L:~l (xl -
r)(xl - rf with respect to rk using a first order perturbation expansion of B(r) and Ci.

Perturb r to f = r + ar. The modified matrix E(r) = i~L:~I(XI - f)(xl - f)T can be

approximated to first order in ar a..c;

E(r) ~ B(r) + ~

_ B(r) - (x - r)arT- ar(x - rf (A.8)

where ~ = -(x - r)arT - ar(x - rf is a real symmetric perturbation matrix. The

eigenvectors of a perturbed matrix E(r) = B(r) + ~ in terms of the eigenvectors of B(r)

to a first order approximation. are given by (e.g see Fukunaga's (1972) book or Golub

ana van Loan's (1983) book for a derivation)

(A.9)

Therefore,
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and the derivative ~ is given by

(A.10)



Appendix B

A probabilistic model for VQ clustering

In this appendix, following (Nowlan 1991), we derive the correspondence between vector

quanti7.er (VQ: section 3.1) clustering and a winner-take-all mixture of Gaussians cl.ata

model. In their classic book on pattern recognition, Duda and Hart (1973) mention this

correspondence. They discuss maximum likelihood parameter estimation for a mixture

of Gaussians model and describe "a simple approximate procedure" (section 6.4.4 in

(Duda & Hart 1973)) which is a generalized Lloyd algorithm (GLA: see section 3.1.3)

for VQ clustering using Euclidean distance measure.

In section 3.1.1 of chapter 3, we described VQ clustering and algorithms for t.raining

VQs. R.ecall that. a VQ with Q cells partitions the input space into Q disjoint regions

and approximates each region with a reference vector. When the VQ distance function

(d(x. IL)) is the Euclidean distance. the clustering approximates a maximum likelihood

parameter estimation for a mixture of Gaussians data model. Steven Nowlan. (1991)

cl.erives the precise correspondence between VQ and mixture models in his doctoral thesis.

In this chapter. we give a brief summary of his derivation.

When the distance function of a VQ is the Euclidean distance, then the distortion D

(see 3.5 in section 3.1) is

D = E
[
m~n IIx - J1'kIl2

]
. (ll.1)

k=1

When estimating the parameters f} = {ILl,..., ILQ}from a training set X = {xl,..., xN},

the cost. function to be minimized is

(B.2)
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which is an estimate of (B.1). The least squares estimates of the parameters are

1 N

[

Q

]
fr = argmin N L min IIx - Jlk 112 .

o [=1 k-I

We will show that the least squares estimates fr are the same a..c;the maximum likelihood

(D.3)

estimates for a constrained mixture of Gaussians data model.

We assume that the input density p(x) is a mixture of Q multivariate n-dimensional

Gaussians,

Q
'"' ak

[

IT _I
]p(x) = L.,.; n/2v1EiJexp -2(x - ILk) Ek (x -ILk)k=1 (271") Ek

where ILk and Ek denote the means and the covariance matrices. We assume that for

(DA)

a given x, the summation in (B.6) can be approximated by the maximum term in the

summation,

Q ak

[

IT I

]p(x) = max /2~ exp --(x - ILk) Ek- (x - ILk) .k=l (271")n IEkl 2

This assumption, known a..c;the "llJinner-take-all" (WTA) assumption (Nowlan 1991), en-

(D.5)

abIes us to relate mixture models and hard clustering algorithms. The WTA assumption

assigns all the responsibility for an observation x to the Gaussian which best explains x.

To derive the relation to a VQ clustering, we further a..c;sumethat

. all the component Gaussians are spherically symmetric (i.e Ek = (12Inxn for all k).

. all the mixing proportions are equal (i.e ak = 1jQ for all k).

Using these assumptions, we obtain,

p(x)=m~zexp
[

1I:1:-ILkIl2

]
k= I 2(12

where Z = 1j(Q(271")n/2«(12)n/2).

(13.6)

We obtain the maximum likelihood parameter estimates by maximizing the likelihood

f . . v
{

IV
}

'H h i tV . d d do a trammg set <'1.= x,..., x' . vve assume t at x ,..., X' are m epen ent an

identically distributed. The maximum likelihood estimate of the variance (12 is

, N . Q

(12 = L mmk_1 II x - ILk 112
1=1 Nn
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where N is the number of vectors in X and n is the input dimensionality. The maximum

likelihood estimate of the parameters () = {pol,. . . ,JLQ}is:

f) = argmax p(X)o
IV

= argmax II p(x/) using i.i.d,
o 1=1

IV

= argmax L log(p(x/)) taking logs,
o 1=1

~
[

min~_ II x - JLk 112

]

.
= argmax ~ log(Z) - -I 2 usmg (B.5),

o 1=1 2a

~
[

min~_1 II x - JLk 112

]

. ..
= argmm ~ - 2 smce Z IS mdependent of f),

o 1=I 2a
IV

[

Q

]
= argmm L m~n II x - JLk 112 since a2 is independent of f).

o 1=1 k-I
(B.7)

The maximum likelihood parameter estimates (B.7) are identical to the least squares es-

timates (B.3). Thus, a VQ clustering with Euclidean distance is equivalent to maximum

likelihood parameter estimation for a winner-take-all mixture of Gallssians model when

. the component Gaussians are spherically symmetric and

. the mixing proportions are equal.



Appendix C

An introduction to the EM algorithm

The Expectation Maximization (EM) algorithm is an iterative algorithm for the compu-

tation of maximum likelihood parameter estimates when the observations can be viewed

as incomplete data. Although the EM algorithm is generally attributed to a 1977 paper

by Dempster. Laird and Rubin (1977). different forms of the EM algorithm have been

derived in the context of specific problems much earlier (Hasselblad 1966. Ha..<;selblad

1969. Wolfe 1970. Baum & Eagon 1967, Baum. Petrie, Soules & Weiss 1970) (also see

(N owIan 1991). from where these references are reproduced). I am grateful to Profes-

sor" Andrew Fra..<;erfor pointing out the references (Baum & Eagon 1967, Daum et al.

1970) to me which form the ba..<;isfor the Baum-Welch algorithm used for parameter

estimation of hidden Markov models (HMMs). In their book on pattern recognition,

Duda and Hart (1973) describe an iterative algorithm (section 6.4.3) for maximum like-

lihood parameter estimation of a mixture of Gaussians model, which is an instance of an

EM algorithm. The EM algorithm is widely used for parameter estimation of mixture

models. in particular for a mixture of Gaussians model (Dempster ct ai. 1977, Nowlan

1991. Jordan & Jacobs 1994. Ghahramani 1994, Ghahramani & Jordan 1994b, Ghahra-

mani & Jordan 1994a). The reader is referred to (Dempster et ai. 1977, Nowlan 1991) for

a detailed treatment. Here. we describe the general EM algorithm and a EM algorithm

for maximum likelihood parameter estimation of a mixture of Gaussians model.

Suppose we know observed values of a random variable X and we wish to model the

density of X using a model parametrized by O. We wish to obtain parameter estimates

{}which maximize the likelihood £(0) = p(X 10). We a..<;sumethat this estimation is
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intractable and that values of a missing or hidden random variable Z would make the

problem more tractable.

Let p(X, Z I0) denote the joint probability density of X and Z parametri7.ed by O.

We a.c;sume that X and Z are such that maximizing the complete data likelihood £c(O) =
p(X, Z I0) is more tractable than maximizing £(0). However, we do not know the values

of Z. The EM algorithm tackles this problem by iteratively generating a probability

distribution over the values of Z and estimating the parameters which maximi7.e the

expected value of £c(O) with respect to Z. The algorithm starts with an initial guess 00

of the parameter values. It then repeatedly applies the following two steps to generate

successively better parameter estimates (01.02... .):

E step: Compute the function

(C. 1)

where E[.] denotes an expectation with respect to Z, X denotes a training set of

sample values of X, and Okdenotes the parameter values after k iterations of the

EM algorithm. The function Q(OIOk) is our estimate of the expected value of the

complete data (X and Z) likelihood ba.c;ed on our current best estimate of the

model parameters. The phra.c;e "E step" stands for the expectation step.

M step: Compute the parameters which maximize the function Q(O 10k),

(C.2)

The "M step" or the maximi7.ation step performs a maximum likelihood estimation

of parameters for the expected joint density.

The EM algorithm generates parameter values which maximize (to a local optimum)

both £(0) and £c(O) (Dempster et ai. 1977). We will now present an EM algorithm for

maximum likelihood parameter estimation of a mixture of Gaussians model.
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C.! An EM algorithm for a mixture of Gaussians model

We assume that the probability density function of an n dimensional random vector X

is a mixture of Q multivariate Gaussians,

q
"aj

[

IT -1

]p(X = x 18) = ~ ~ exp --(x - JLj) Ej (x - JLj)
j=l (27r)n/2,/IEjl 2

(C.3)

where 8 = {aj,JLj,Ejlj = 1,...,Q} is the set of parameters of the model, aj are

the mixing proportions, and JLjand Ej denote the means and the covariance matrices

respectively. Suppose we have a sample data set (training set) A' = {x I, . . . . xN} of values

of X. We assume that the elements of A' are independent and identically distributed

(i.i.d) a..<;(C.3). The goal is to obtain parameter values {}which maximise the likelihood

of A' given the data, i.e

8 = argmax p(A' 18)o
N

= argmax Il p(xi 18)
o i=1

(CA)

where we have used the i.i.d a..<;sumption. We assume a generative model of the data,

where each data point xi E A' is generated by one and only one of the component

Gaussians. The hidden random variable Z for the EM algorithm is the label of the

component Gaussian to which X belongs.

We now present an EM algorithm for maximum likelihood parameter estimation for

a mixture of Gaussians data model.

. Initialize the means, JLj,to randomly picked data points from A' and the covariance

matrices, Ej, to unit matrices. Set aj = I/Q for all j. Set the iteration counter

t = O.

. E-step: Compute the posterior probability hij(t) ==E[Zij Ixi, 8] of membership of
; h "th G . ~

11
"

d
.

x to t e] aussmn, lor a ~an ],

(2,,)n~j~ exp [_~(xi - JLj(t))T Ej(t)-l (xi - JLj(t))]
hij(t) =

[ T

]L:~=I (2,,)n~k~ exp -~(xi - JLk(t)) Ek(t)-l (xi - JLk(t))

, (C.5)
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where 8(t) = {aj(t), J.l,j(t),L:j(t)} denotes the set of parameters after the tth itera-

tion.

. M-step: Re-estimate the mixing proportions, means and covariances of t.he Gaus-

sians using the data set weighted by hij (t). First compute the new mixing prop 01'-

tions as

Next, compute the new means as the weighted sum of all the sample data points,

Finally. compute the new covariance matrices as a weighted sum of outer products,

Increment the iteration counter t = t + 1 and go to the E-step.

. Iterat.e the above two steps until the change in the means is below some specified

threshold.

In the above algorithm, a small diagonal matrix is often added to each covariance ma-

t.rix after each M-step to prevent covariance matrices from becoming singular (G hahra-

mani 1994, Ormoneit & Tresp 1995). This is also an effective means of regularizing the

mixture density, especially when the data size is limited. See Chapter 6 for a discussion

of schemes for regularizing Gaussian mixt.ure densities. We have described an EM algo-

rithm for maximum likelihood parameter estimation of a mixture of Gaussians model.

Plea.c;e refer t.o (Dempster et at. 1977, Ghahramani 1994, Ghahramani & Jordan 1994a)

for a discussion of the theory, applications and properties of the EM algorithm.



Appendix D

The learning vector quantization (LVQ)

algorithm

The learning vector quantization (LVQ) (Kohonen 1988) algorithm is a clustering based

cla.c;sification algorithm which adapts the placement of reference vectors (or meails) ba.c;ed

on a set of class labelled data points. Suppose there are K classes and Q reference vectors.

Each of the reference vectors ILjis labelled with a cla.c;sSj. During a training iteration, an

input vector x (say of cla.c;snT). is randomly drawn from the training set and presented

to the quanti7.er. We compute the closest (Euclidean distance) reference vector ILw(x) to

:1:. The update rule moves ILw(x) closer to x if ILw(x) ha.c; the same class label a.c;x and

moves ILw(x) farther from x if it ha.c;a different cla.c;slabel from x. Thus, the update rule

IS

where t is the iteration number and a(t) is a learning rate which is annealed a.c;learning

progresses. After training is complete. a data point x is assigned to the cla.c;snT corre-

sponding to the cla.c;s label of the reference vector ILw(x) closest to x. This a.c;signmcnt

procedure is equivalent to using the discriminant functions of a winncr-take-all Gaussian

mixture Bayes (GMB) cla.c;sifier under certain a.c;sumptions (see section 6.1.1 for more

rletails) .
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IL;( t + 1) = ILj(t)+ a(t)[x(t) - ILj(t)] if.i = w(x) and Sj = nT.

ILj(t + 1) = ILj(t) - a(t)[x(t) - ILj(t)] if i = w(x) and Sj #- nT,

ILj(t + 1) = ILj(t) if i #-w (x ) , (D.1)
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