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Abstract 

Explicit N-Best Formant Features for 

Segment-Based Speech Recognition 

Philipp Schmid, Ph.D. 

Oregon Graduate Institute of Science & Technology, 1996 

Supervising Professor: Dr. Etienne Barnard 

This thesis investigates the use of explicit speech knowledge in computer speech-recognition. 

Speech knowledge is generally expressed in terms of acoustic events occurring near pho- 

netic segment boundaries and the location, shape and dynamics of formant trajectories. 

This suggests the creation of a segment-based recognition framework and the use of ex- 

plicit formant features in a flexible integration scheme to ultimately improve the phonetic 

recognition accuracy. 

We describe a segmentation algorithm that produces a lattice of segment hypothe- 

ses, each with an associated broad phonetic identity. We build a single phonetic segment 

classifier along with separate vowel/semi-vowel and consonant classifiers based on tradi- 

tional cepstral features paying attention to reducing the mismatch between training and 

deployment conditions. 

We develop a robust, N-best formant tracking algorithm that generates a list of up to 

N consistent formant interpretations. The use of the N-best feature paradigm is based on 

the observation that there are generally only a handful of reasonable interpretation of the 

given formant information. Instead of finding the best formant interpretation through the 

use of a global cost function that includes energy maximization and smoothness terms, 



we delay the selection of the correct formant interpretation until after the segment classi- 

fication and phonetic search. 

We use the formant interpretations to extract features for a vowel/semi-vowel seg- 

ment classifier. The formant trajectories are approximated either by three line segments 

or by a third-order Legendre polynomial. We show that together with formant amplitude, 

formant bandwidth, pitch, and segment durations we can produce a classifier of compa- 

rable performance to a cepstral-based classifier. We further demonstrate the potential of 

the N-best classification paradigm and show that a combination of formant and cepstral 

features further improves the classification accuracy. Finally, the validity of the entire a p  

proach of using a segment-based approach, separate classifiers for vowels and consonants, 
-.- 

and explicit formant features is verified by phonetic recognition experiments. 

xii 



Chapter 1 

Introduction 

Spoken language is the preferred mode of communication among humans, for a variety of 

reasons [71]. Therefore it was only natural for researchers to investigate the use of spoken 

natural language as a way of communicating with machines to access information or to 

issue commands: the field of automatic speech recognition (ASR) was born. 

Numerous real-world deployments of speech-recognition systems are starting to gain 

public acceptance: cellular voice dialers (often used in automobiles), voice routing of calls, 

automatic transcription of medical reports, order entries at insurance companies, and 

limited voice dictation are among the most popular ones. 

The speech-recognition application used by most people at this point is the automatic 

billing function of certain operator services used by AT&T. An estimated 4 billion calls per 

year were handled by machines in 1993 [56].  A study by Voice Information Associates [87] 

determined that the end-user market for ASR in 1994 totaled approximately 350 million 

dollars and projects the sales to increase to 1 billion dollars by the year 1998. 

Despite this impressive list of accomplishments we should not loose sight of the fact 

that these systems' capabilities are a long way away from the science-fiction machines 

with speech-recognition capabilities such as Hal in Kubrik's "2001, A Space Odyssey" or 

the android Data on the TV series "Star Trek the Next Generation". The performance 

of a computer speech recognizer (possibly in conjunction with gesture recognition) will 

have to be near human capabilities before it is widely accepted. Because ASR generally 

does not augment our daily lives with capabilities outside our natural abilities (with some 

exceptions such as paraplegics and typists suffering from carpal-tunnel syndrome) but 

rather replaces something that humans are very proficient at and therefore the machine's 
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performance will be measured against it. Contrast this with the computation of the 

trajectory of the moon rocket which is generally beyond the capabilities of humans but 

which the computer can do in the blink of an eye. 

As more and more research systems are deployed in real-world environments, we realize 

that they are fragile. These initial systems are lacking in basic recognition accuracy, both 

at the phonetic and the word level, in comparison to human standards [58]. Additionally, 

the recognition performance degrades considerably under adverse conditions, such as the 

presence of background noise. 

Researchers have been able to compensate to some extent for these shortcomings by 

taking advantage of improved contextual constraints (language models, dialog models). 

However, we cannot overlook our lack of scientific understanding of those accuracy and 

robustness problems. As the field is moving towards recognizing spontaneous speech, 

we will not be able to rely on grammatical constraints to the degree that the current 

systems do if we want to obtain a reasonable level of naturalness. With the use of large 

vocabularies (10,000 words or more) the acoustic distance between the words decreases and 

hence the confusability increases. The only way to remedy these problems is to improve 

the basic phonetic recognition accuracy of these systems and to increase their robustness 

to background noise. This thesis represents the begining of a line of research focusing on 

improving the phonetic recognition accuracy of automatic speech recognition systems. 

In the absence of syntactic and semantic constraints, expert spectrogram readers 

achieve more than 90% correct identification of phonetic segments [17, 20, 921, whereas to- 

day's best laboratory systems achieve only approximately 70% accurate recognition on the 

same task [31, 591. What is the reason for this big difference in accuracy between experts 

and automatic speech-recognition systems? It is not just the increased accuracy of the 

segmentation done by the human expert, because the segment classification results (when 

the correct segmentation is known to the classifier) are below 80% [14, 521. Therefore, it 

can be argued that one of the major differences between the two is the use of explicit speech 

knowledge by the experts to segment the speech and to classify the phonetic segments. 

This suggests that one way to improve the accuracy and robustness of current systems is 

to incorporate explicit speech knowledge, of the type used by expert spectrogram readers, 
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into the recognition algorithms. Ideally, we would like to model the biological recognition 

system, but unfortunately our understanding thereof has not progressed to a point that 

would allow us to implement the same principles in computer algorithms. Therefore, our 

research will focus on the principles of spectrogram reading, some of which are described 

in the next section. 

1.1 Spectrogram Reading 

Vocal Folds 

Spectrogram 

v Frequency 

t 

Time 
- 

Figure 1.1: This figure explains the creation of speech spectrogram [from top left]: speech 
production model, speech waveform, logarithmic power spectrum, multiple spectra over 
time, and finally a 2-D projection. 

Before we describe the process of spectrogram reading, we briefly explain the construc- 

tion of a spectrogram while at the same time introducing some important terms that will 
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be used throughout this thesis. Figure 1.1 illustrates schematically the contruction of a 

speech spectrogram, starting with the speech production model in the upper left corner. 

Different articulators, such as vocal folds, tongue, jaw, and lips influence the exitation and 

resonance characteristics of the oral and nasal cavities. Depending on the type of activa- 

tion (voiced/unvoiced) and positioning of the articulators different speech sounds, called 

phonemes, can be produced (see [lo, 431 for details on speech production). Phonemes are 

the basic units of speech used to construct words and meaning. There are approximately 

40 phonemes in the English language. This basic phoneme set can be further subdivided 

based on the manner of articlation into vowels, semi-vowels (liquids and glides), nasals, 

fricatives, stops, and closures. 

Information regarding the state of the vocal tract can be captured by recording the vi- 

brations of the exiting air flow using a microphone. The resulting digital speech waveform 

is generally spliced into 5 or 10 millisecond (ms) frames. Next, the frequency compo- 

sition of each frame is analyzed using Fourier analysis [74] and plotted in a frequency- 

(logarithmic) energy plane called a spectrum. For vowel-like sounds, the spectrum will 

generally show several spectral peaks indicating the resonant frequencies of the vocal tract. 

Typically, there are 3 peaks in the range between 300Hz and 4kHz, although in practice 

(as we will discuss later) the number of peaks may vary. Spectra from all speech frames 

are combined into a 3Dsurface display which is finally projected into the time-frequency 

plane encoding the energy as an intensity value. The resulting spectrogram has dark bands 

(stemming from spectral peaks, which in turn are related to resonances in the vocal tract) 

called formants. The three formants of lowest frequency are numbered as F1, F2 and F3. 

The formants play a central role in spectrogram reading, as discussed next. 

We will illustrate the process of spectrogram reading using Figure 1.2. First, the utter- 

ance is segmented into acoustically similar regions, called segments (indicated by vertical 

dashed lines in Figure 1.2). Next, a quick assessment as to the broad-phonetic nature of 

the segment (generally based on the manner of articulation and voicing categorization) is 

performed. Finally, a fine-phonetic analysis is performed to determine the identity of the 

phonetic segment. Consonants are uniquely described in terms of (1) voicing, (2) place of 

articulation, and (3) manner of articulation. Vowels are generally described in terms of 
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.

Figure 1.2: Spectrogram Reading Example of the utterance "We like". The phonetic seg-
mentation is indicated by vertical dashed lines. The place-of-articulation broad-phonetic
classification is shown below the spectrogram for each segment.

(1) the height of the body of the tongue, (2) the front-back position of the tongue, and

(3) the degree of lip rounding [45]. Formants are the primary indicator for the place of

articulation. Additionally, they playa central role in determining the characteristic vowel

features mentioned above. This fact motivates our interest in formants in this thesis.

I

rJ). I
-<

I rJ). I -< I C1 I rJ). I rJ). I -<I
Q
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If we want to mimick the principles of spectrogram reading we need to employ a 

segment-then-classify approach to speech recognition. This approach is best characterized 

by Zue et al. [93]: 

"Therefore, one must explicitly establish acoustic landmarks in the speech 

signal in order to fully utilize these acoustic attributes. Second, ..., we seek 

to make use of the available speech knowledge by embedding such knowledge 

into a formal framework whereby powerful mathematical tools can be utilized 

to optimize its use. Third, the system must have a stochastic component to 

deal with the present state of ignorance in our understanding of the human 

communication process and its inherent variability throughout". 

This research also uses a a segment-and-classify approach to automatic speech recog- 

nition. This approach has been successfully applied to speech recognition and spoken 

language systems as can be seen from our overview (Chapter 2: "Related Workn). We 

will use the term segment-based or segmental system framework to refer to this general 

concept. In the next two sections we discuss the major design decisions underlying this 

thesis research: the segment-based recognition framework and the use of explicit formant 

features in an N-best paradigm. 

1.2 Segment-Based System Framework 

A segment-based recognition framework has the following potential advantages over more 

traditional frame-based approaches: 

a Explicit segmentation allows us to apply acoustic-phonetic knowledge, gained from 

statistical analyses, spectrogram reading, and perceptual experiments, directly to 

the classification task. For example, when classifying stops, the duration of the 

consonant, the presence or absence of voicing in the preceding closure and the for- 

mant transitions at the onset of the following vowel can all be estimated. Explicit 

segmentation allows us to locate and measure those features of the signal that are 

important for perception (and hence possibly useful for the classification as well). 
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The correlation between successive frames within a phonetic segment can be mod- 

elled and used as a powerful classification feature. The Markovian independence 

assumption used by the Hidden Markov models (HMM) (see [73] for a tutorial on 

HMMs) is generally not valid. Hence modelling the state dynamics and statistical 

dependencies is more realistic and will lead to more accurate probability estimates. 

In contrast, HMMs model the speech signal as a sequence of statistically independent 

frames and thus underestimate the likelihood of the sequence1. 

Separate classifiers can be used for different broad phonetic classes, such as different 

classifiers for sonorant and obstruent segments. (However, the proper combination 

their probability estimates might be difficult in practice.) 

The set of feature measurements can be designed and optimized for individual dis- 

criminations (when using different segment classifiers). The important information 

about the nature of a vowel segment for example is contained within the phonetic 

segment, whereas nasals can be distinguished primarily by the formant transitions 

into and out of the nasal segment rather than by the spectral shape within the 

segment. 

Segmental features such as segment duration, average pitch, energy, and zero crossing 

measurements can be defined and extracted in a meaningful manner. 

Because features and classifiers are optimized for individual discriminations, classi- 

fication errors can be analyzed and improved with minimal effect on other discrimi- 

nations. 

At this point we should not overlook the disadvantages of an explicit segmentation step, 

such as the loss of flexibility once a segmentation has been derived. Once the segmentation 

has been fixed, mismatches between expected pronunciations and possible search results 

can cause recognition errors (e.g. the correct word is a sequence of k phonemes where as 

no reasonable sequence through the segment lattice is of length k). Frame-based systems 

'The likelihoods are underestimated since systematic differences from the mean values are penalized at 
each frame. 
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are more flexible in dealing with inaccurate pronunciation modeling since the number of 

frames (segments) per word is not fixed. Additionally, as we will discuss in Chapter 7, the 

definition of the probability of a given segmentation being correct or acoustically plausible 

(as used in the probabilistic framework for most segment-based systems described in 

Section 2.1.3) is difficult and largely an unsolved problem at this point. 

Apart from the segmental features, the most beneficial aspect of this segment-based 

approach is the opportunity to model the dynamics of speech within a phonetic segment 

in a more principled manner as discussed in the next section. 

1.3 Formant Features in an N-best Classification Paradigm 

The above arguments on the importance of formants in spectrogram reading suggest the 

use of formants as the primary feature representation for speech recognition. This idea 

was popular in the late 1970's as part of the ARPA speech recognition program [39]. As 

a matter of fact, some of the main ideas in this thesis, multi-level segmentation (initially 

introduced by Wolf et al. [go]), using multiple, specialized classifiers, and the use of for- 

mant features for sonorant classification were proposed by Weinstein et al. [88]. However, 

the accuracy and consistency of the formant trackers used were below the levels needed for 

speech recognition. Making a final decision (with regard to formant locations) early in the 

recognition process proved to be an obstacle difficult to overcome. Nevertheless, formant 

features were successfully used in the FEATURE system [18] to classify the letters of the 

English alphabet. 

Additionally, perceptual experiments conducted by Klatt [40] showed that formant 

frequency information are more important for vowel perception as compared to other 

factors such as spectral tilt, relative formant amplitudes, high and low-pass filtering). 

In his description of the state-of-the-art formant tracker (for a summary see Section 

2.2.1), Talkin [83] discusses the various options in implementing a formant tracker and 

mentions three particular problems with frame-based formant tracking algorithms: 

1. The identification of formant candidates for each frame: what is the algorithm to do 

if the number of candidates differs from the number of formants to be tracked? 
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formants are close together and couldn't be separated by the visual representation (A), or
nasalization of the vowel is broadening the formant (B).
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2. The enforcement of smoothness constraints across vowel/consonant boundaries: tight 

constraints are desirable within sonorant segments but cause problems in unvoiced 

segments since there are no real formant peaks to follow. 

3. The trade-off problem: formant trajectory smoothness versus maximizing the amount 

of spectral energy explained by the chosen formant locations. 

Chapter 5 describes our implementation of a robust, N-best formant tracker that 

attempts to address the problems outlined above. Firstly, it uses an N-best tracking 

paradigm: instead of finding the single best interpretation given an objective function 

that incorporates energy and smoothness goals, this algorithm finds the N most consistent 

interpretations. In this context, consistency is referred to as desirable behavior, such as 

following energy concentrations, producing a smooth trajectory, and avoiding large jumps 

from one frame to the next. This addresses problem 3 from above. The N-best idea is 

illustrated in Figure 1.3. The broadening of the lowest formant can either be the result 

of two close formants which the visual representation cannot separate or be the result of 

nasalization which tends to increase the bandwidth of the first formant. In our N-best 

paradigm, both possibilities, (A) and (B), would be passed on to the segment-classification 

stage for further consideration, where as in the traditional formant-tracking paradigm only 

one of the two solutions will be considered further. 

The flexibility of our tracking algorithm is further improved by using wild cards in the 

search for the best interpretations. Wild cards are inserted into the search in instances 

where no logical extension of a hypothesis is possible (see Figure 5.6 for an example 

of using a wild card). This allows us to handle cases where fewer than three formant 

candidates2 were detected by the preprocessing stage (problem 1). And finally, we will 

apply the formant tracker only to sonorant regions (as determined by the lattice generation 

process), thus simplifying problem 2 to the proper identification of sonorant speech. 

Separate features are extracted for each of the N interpretations found by the formant 

tracking algorithm, which are then presented to a vowel/semi-vowel classifier (see Chapter 

'In this research, we are only interested in F1, F2, and F3, as they are the primary carrier of information 
for vowel classification. The algorithm however can easily be extended to track more than three formants 
if desired, e.g. for consonant classification. 
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6). The selection of the correct interpretation and phonetic category is thus delayed until 

after the classification stage (or alternatively, in the case of word recognition, until after 

the word search) where the interpretation and phonetic category with the highest posterior 

probability (in the case of phonetic recognition) is selected. Note that we use different 

features for the same segment in this process! The problem will be the comparison of the 

individual probability estimates. 

The use of formant features together with this N-best classification approach (de- 

scribed in more detail in Chapter 6) has several potential advantages over more conven- 

tional classification features (Chapter 4). For instance, as has been pointed out by Allen 

[I], noise in a particular frequency band influences all cepstral and spectral coefficients. 

On the other hand, a formant representation is more robust to such noise. Either the noise 

is in a frequency band not occupied by a formant in which case no distortion is observed, 

or the estimation of the formant is obscured, but will be recovered by using consistency 

constraints with respect to the adjacent frames to estimate the formant location. The 

same process will reduce the problems for heavily glottalized speech as well as strong ex- 

traneous noise events such as clicks. Similarly, principled speaker normalization should be 

facilitated when formant frequencies are known explicitly [65].  

The Mel-frequency cepstral coefficients [64], commenly used in today's speech recogni- 

tion systems, have the advantage that there is no tracking necessary. However, the salient 

information (with regards to spectral shape) is spread over multiple coefficients. Addi- 

tionally, cepstral coefficients form complex featrure trajectories over time [36], requiring 

sophisticated modeling techniques (see Chapter 2 for a summary). 

1.4 Overview of the Thesis 

The goal of this thesis research is to create a flexible recognition framework for the explicit 

incorporation of speech knowledge into speech-recognition algorithms. As a demonstration 

of the validity of this approach, we will explicitly model the dynamics of speech through 

formant tracking in an N-best feature paradigm. 

In the next chapter we summarize previously published research related to the topics 



CHAPTER 1.  INTRODUCTION 12 

covered in this thesis: segment-based systems, perceptual experiments, and formant- 

tracking algorithms. We have argued above for a segment-based recognition framework. 

Chapter 3 describes the segmentation algorithm, similar to the dendrogram [28], which 

generates a lattice of segment hypotheses each with an associated broad category identity. 

Initial segment classifiers (phones, vowels, and consonants) are constructed in Chapter 

4. We touch on some training issues and show that the classification performance can 

be improved by training the classifiers on hand-labeled as well as machine-segmented 

segments. 

Next, in Chapter 5, we describe our robust, N-best formant tracker which produces 

a list of "consistent" formant interpretations. We experiment with different methods to 

approximate the formant trajectories, and add additional features, such as pitch and for- 

mant amplitude, to construct a vowel/semi-vowel segment classifier, described in Chapter 

6. We present an iterative training algorithm to compensate for the lack of labeled training 

data and show the potential of the N-best classification scheme. 

The different classifiers (based on either cepstral or formant features) are combined 

in phonetic recognition experiments described in Chapter 7, where we also address the 

problems in deriving a probabilistic framework for the segment-based recognition. Finally, 

Chapter 8 summarizes the findings of this research and outlines future work to extend these 

initial findings. 

The publically available TIMIT acoustic-phonetic speech corpus [46] is used for the 

experiments throughout this thesis. Additionally, the spectrogram displays were generated 

using selected utterances from the TIMIT corpus. 

The items in the glossary (Table 1.1) are used throughout this thesis, and are provided 

as a reference here. 
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Table 1.1 : Glossary of Mathematical Symbols 

Glossary of Mathematical Symbols 

{al,aa,...,a~) Phonetic String 

{/ah/, /eh/7- - - 1 Phonetic Labels 

{/closure/, /vowel/, . . . ) Broad-Phonetic Labels 

{~1,x2, . - , X T )  Acoustic Vectors (T Frames) 

{a~1,a~2,. . , ~ S K )  Acoustic Segmentation 

{ x E , x ~ + ~ , . . . , x ~ )  Acoustic Segment from Frame I to 
Frame m 

Boundary between ask and ask+l 

{sl,S27--.,s~) Set of Segmentations 

{SO, 81 . .  , SM) Segment at ion 

{as,, as,+l,. . . , as,) Segment 



Chapter 2 

Related Work: Segment-based Speech 

Recognition Systems and Formant 

Tracking 

There are two major aspects to this research: the segment-based recognition framework 

and the explicit, N-best formant features for segment classification. In the first part of 

this chapter, we discuss various segment-based speech recognition systems reported in the 

literature. A commercially available formant tracker and the work most closely related 

to our own formant tracking algorithm are described in the second part, followed by a 

brief summary of perceptual experiments of vowel recognition. Finally, we summarize the 

phonetic classification and recognition results reported in the literature. 

2.1 Segment-based Speech Recognition Systems 

Segment-based systems can be characterized by three architectural features: segmentation 

method, segment classification technique, and search algorithm. We discuss these three 

components separately using prototypical systems reported in the literature. These sys- 

tems span a wide range of solutions: from the single segmentation and reclassifying OG1 

Alphabet Recognizer [16] to the Stochastic Segment Modelling (SSM) system proposed by 

Ostendorf and Roukos [68], which considers every possible segmentation. Other systems 

represent a compromise between these two ends of the spectrum. 

In the following we are contrasting systems with respect to the three architectural 

features. Table 2.1 summarizes the main features for each of the systems discussed below. 
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In this review of related work, we are not addressing issues related to the classification 

and recognition of context-dependent units (e.g., tri-phones), since we do not perform 

any context-dependent experiments. 

Table 2.1: Overview of the Architectural Features for various Segment-based Systems. 
fsync = Frame-synchronous Viterbi search, bsync = Boundary-synchronous Viterbi 
search. 

Architectural Features 

fsync = Frame-synchronous Viterbi search 

bsync = Boundary-synchronous Viterbi search 

- 

2.1.1 Segmentat ion Methods 

Search 

A* 

fs ync 

fsync 

fsync 

bsync 

N/A 

bsync 

System 

SUMMIT [94] 

Tracks [31] 

SSM [68] 

Digalakis [21] 

SESM 1541 

OGI Alphabet [16] 

SWISS2 [this thesis] 

The purpose of the segmentation step is to provide the classification stage with segment- 

boundary hypotheses that guide the extraction of features spanning potentially an entire 

segment (see Chapter 1 for a discussion of the merits of segment-based features) or larger 

speech units such as syllables or words. We distinguish between implicit and explicit 

segmentation of speech. An explicit segmentation algorithm selects a subset of all possible 

segmentations either in a bottom-up fashion by merging shorter segment hypotheses, or in 

a top-down refinement algorithm. Traditional hamebased systems, such as those using 

Hidden Markov Models implicitly segment the speech into phonetic segments as a result 

of the Viterbi 1251 search or the Forward search 1721. However, they cannot be considered 

Segmentation 

Dendrogram 

Implicit 

Implicit 

Split & Merge 

Boundary Detector 

Viterbi 

Segment Lattice 

Classification Features 

Acoustic Attributes 

Track Models 

Stochastic Segment Models 

Dynamic System 

Cepstral Averages 

Knowledgebased Features 

Formant Features 
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segmental systems since there is no segment-classification step as part of the recognition 

process (only frame "classification" ) . 
A popular approach to segmentation, initially proposed by Bush and Kopec [9], sim- 

ilarly considers all possible segmentations and therefore segments the speech implicitly. 

The idea was further pursued by Ostendorf and Roukos [68] in their work with Stochastic 

Segment Modeling. They proposed a joint segmentation and classification algorithm to 

estimate the parameters of the segment classifier. However, it was acknowledged that 

the performance was not realistic for practical purposes. Therefore Digalakis proposed 

a Split-and-Merge algorithm [22] to reduce the computational requirements. An initial 

segmentation, based on dividing the speech into equally long segments of average segment 

length, is subsequently refined by hypothesizing splits and merges of current segment hy- 

potheses while searching for the maximum joint segmentation and classification likelihood. 

The initial implicit segmentation algorithm (as proposed by Ostendorf and Roukos) is thus 

transformed into a top-down refinement of an explicit segmentation. 

The segmentation process, proposed by Leung et al. [54] as part of the Stochastic 

Explicit-Segment Modeling (SESM) system, is similar in spirit to the implicit segmen- 

tation used in the SSM approach. However, in order to reduce the search space, not all 

possible segmentations are considered. Instead, the same initialization process as in the 

SUMMIT system (see below) is used to hypothesize boundary candidates. Once 23 = {bk), 

the set of boundary candidates, is determined in this way, the boundaries bk are classified 

using a Multi-Layer Perceptron [76] (MLP). The inputs to the MLP are the averaged 

mean rate responses [80] of the adjacent 8 seed regions (4 on either side of bk). The 

output is either a binary (boundary / non-boundary) classification or the label of one 

of the possible 36 broad category boundaries. The boundary bpjpj+, is located between 

the broad category segments pj and Pj+l. (Hence, the boundary bpjpj represents either 

a boundary between two segments of the same broad phonetic category or an inserted 

boundary within a segment of broad category pj.) 

The above is in contrast to bottom-up algorithms, such as the dendrogram or the 

2SWISS = Segmental, Word-Independent Speech Recognition System 
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algorithm proposed in this work (Chapter 3). The dendrogram was initially proposed by 

Glass [28] and successfully implemented by Zue et al. [94] in MIT's SUMMIT system. As 

its first step, the dendrogram algorithm divides the speech into acoustic segments, called 

seed regions, using a sensitive edge detector. This algorithm associates each frame to one 

of its immediate neighbors. Acoustic boundaries are found whenever the direction of the 

association changes from the past to the future. The distance metric D* used for this 

association is the product of three components to avoid problems of local extrema [93]: 

where 

ai = acoustic vector of frame i (and later region i) 

However, this initial acoustic segmentation tends to find too many additional bound- 

aries (e.g. between the stop burst and the aspiration in an unvoiced stop). Therefore 

a hierarchical multi-level representation, the dendrogram, is computed. The association 

algorithm described above is repeated but instead of the frame association, the mean 

acoustic vectors of the initial seed regions are compared and regions are merged in the 

direction of the larger association. This process is iterated until the entire utterance is 

represented by a single region. Finally, an acoustic-phonetic network is created by in- 

cluding all single and paired regions from the dendrogram. The dendrogram algorithm is 

conceptually similar to the one proposed in this work. However, we use broad category 

classification scores as the basis of the level-building algorithm, rather than the difference 

in the mean acoustic vectors. 

Chigier and Brennan [13] use knowledgebased rules to reduce the number of hypoth- 

esized segments in a dendrogram. They use rules based on region durations, similarity of 

region spectra, waveform contour, and region classifications into a set of 19 broad phonetic 

classes to prune the size of the dendrogram. In their work, these rules help reduce the 



CHAPTER 2. RELATED WORK 18 

depth of the dendrogram (total number of segments in the dendrogram divided by the 

total number of segments in the hand labeled transcription) from 4.5 to 1.8 while slightly 

increasing the deletion rate from 5.8% to 6.7%. 

As an alternative to the above systems that either implicitly or explicitly segment the 

speech and generate a hierarchical structure of segment hypotheses, one can use an existing 

frame-based speech recognizer to define one or more segmentations. The OGI Alphabet 

Recognizer [16, 791 uses a 2-pass approach to recognize the letters of the alphabet in 

the respective languages (English and French systems, German and Spanish prototypes 

exist). In the first pass, an MLP classifier, using selected features around the frame to 

be classified, assigns a phonetic probability score to each speech frame. A Viterbi search 

is then used to find the most likely segmentation of the speech into letters and phones 

given pronunciation and durational constraints. The letter pronunciations are expressed 

in terms of either phonemes or a combination thereof (e.g., the nasal phonemes /m/ and 

/n/ are merged into a single category /mn/). Certain acoustically difficult distinctions 

need not be made in the initial segmentation pass since the output of this processing 

step is a likely segmentation and not the unique identification of the letter. The English 

system uses 22 such units, the French version 23. The idea of locating and segmenting the 

letters into the constituents was pushed even further in the German and Spanish prototype 

versions where only broad phonetic categories were used (e.g., vowel, semi-vowel, nasal, 

fricative, voiced stop, aspirated stop, closure / silence). Subsequent work has shown that 

relying on a single segmentation, while feasible for a reasonably constrained task such as 

alphabet recognition, does not scale well to more complex tasks such as large vocabulary 

recognition. Austin et al. [3] use a conventional HMM in a first pass of their BYBLOS 

system to generate N segmentation hypotheses from the N highest scoring recognition 

paths. The parameter N is chosen to assure that the correct segmentation is included in 

the list most of the time (N = 20). 

At this point in time, no single segmentation method has emerged as the solution to 

all problems. There seems to be a trend towards considering a large number of segment 

hypotheses (bounded primarily by duration constraints) and letting the segment classi- 

fier determine the correct ones via appropriate probability estimates for false positives. 
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However, most systems do not explicitly train their classifiers on recognition errors (we 

will outline a method for training on errors in Section 4.4). All systems use a single dis- 

tance function despite the fact that the acoustic nature of segment boundaries (see the 

introduction to Chapter 3 for a discussion) are diverse and sometimes ambiguous (e.g. 

the exact location of a semi-vowel / vowel boundary is largely arbitrary). We outline a 

context-dependent distance function addressing this problem in Appendix A. 

We contend that the role of the segmentation stage should not be restricted to provid- 

ing segment hypotheses, but rather should extract additional information such as broad 

phonetic information or measurements that will help in defining a probability for a par- 

ticular segmentation. This idea is taken up again in Section 7.1. 

2.1.2 Segment Classification 

The main advantage of using a segment-based recognition framework is the added flexibil- 

ity and power of whole-segment classification (as compared to the frame-based paradigm). 

The knowledge of the location of segment boundaries allows for the use of powerful intra- 

and supra-segmental features. It is a well-documented fact (see, e.g., [21]) that there is a 

high degree of correlation among parameters of speech frames of a phonetic segment, both 

in frequency and in time. One of the themes of segment classification research is the mod- 

elling of these correlations by using feature representations that can capture the dynamics 

(trajectories) of the parameters over the duration of the entire phonetic segment. 

In addition to the methods described below, there is another line of research focusing 

on using explicit, knowledge-based features in a rule-based (expert) system framework 

(see for example [81] and [95]). We believe that a combination of features motivated 

by speech knowledge and statistical classifiers will ultimately yield the best performance. 

This approach has been the basis of the research at the Spoken Language Systems Group 

at the Massachusetts Institute of Technology and resulted in the novel feature extraction 

mechanism for SUMMIT (see below). 

The simplest method of modeling the dynamics of parameter evolution over a segment 

is to approximate the trajectories by a piecewise-constant function. Typically, the segment 

is split into thirds (for the same reasons that HMMs use three-state phonetic models to 
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capture coarticulation effects at the beginning and end of a phonetic segment). The mean 

values of the parameters over each third are computed and used as classification features 

(eventually in combination with the segment duration). This approach is used as the 

baseline method in this work. It was also used by Leung in his thesis work on TIMIT 

segment classification [5 11. 

Gish and Ng [27] augmented this basic approach by using a quadratic polynomial to 

model the temporal evolution of the cepstral coefficients c(n): 

c ( n ) = b l + b a - n + b g . n 2 + e ( n )  for n = 1 ,  ... , N ,  e(n)-N(0,C). 

The classification is then done via the maximum a posteriori probability rule: 

m* = argmax l(klm, N )  .p(Nlm) .p(m) , 
m 

where l(klm, N )  is the likelihood of segment k being phoneme m and of length N frames 

estimated using a Gaussian mixture model, and p(m) is the prior probability of phoneme 

m. 

A state-space dynamical system is used by Digalakis [21] to model the trajectories 

of acoustic attributes (Mel-frequency cepstral coefficients). The model parameters are 

estimated using the EM algorithm. The likelihood score estimation for each phoneme is 

based on the innovation process given by the Kalman filtering. 

Similarly, Goldenthal models the trajectories with a non-parametric function [31]. He 

defines tracks, which describe the temporal evolution of acoustic attributes over a segment, 

as a sequence of M state vectors T. The track parameters are then used to generate a 

synthetic segment model G = f (T, N )  of length N which is compared against the speech 

segment S to be classified. The resulting error E = S - G  is used to estimate the likelihood 

of segment S being phoneme a using a Gaussian classifier. 

A slightly different approach is taken by Ostendorf and Roukos [68]: instead of mod- 

eling the observed variable length trajectories X of length L and dimension k, they first 

transform X into a fixed-length representation Y of length M using a linear time-warping 

function T: 

Y = X . T L  . 
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Several methods of resampling are considered: linear time sampling and frequency 

sampling, with and without interpolation. The model does not make any independence 

assumptions among the feature vectors (unlike the HMM) for classification. Theoretically, 

a full covariance matrix of dimension kM x kM could be estimated. However, due to a lack 

of training data, only block-diagonal covariance matrices for the Gaussian classifiers were 

computed in the reported experiments. Depending on the arrangement of the features, 

this means that the block diagonal covariance matrices either model the frequency or the 

temporal correlations among the features. Their experiments show that estimating the 

frequency correlations yields superior classification results over the time correlations and 

complete independence conditions. Using block-diagonal correlation matrices makes this 

approach equivalent to an HMM with a constrained state sequence. 

The uniqueness of the SUMMIT classification mechanism is not the classifier used 

(Gaussian classifier), but the features: a set of generalized algorithms [70]. These algo- 

rithms together with their associated free parameters form a search space. The parameters 

can be adjusted to optimize the segment classification performance. An example of such 

an algorithm is the computation of the spectral center of gravity with the lower and upper 

frequency edges as the free parameters. This measurement tends to follow the second 

formant, an important feature for the front- versus back-vowel discrimination. 

The trend in these classification methods is the modelling of the dynamics of the fea- 

ture trajectories in an attempt to capture the temporal and frequency correlation among 

the features. However, the feature space used in these experiments is in the cepstral do- 

main. We believe that a formant or articulatory feature space is better suited to capture 

the dynamics of speech (see the arguments on spectrogram reading in Chapter 1). Nev- 

ertheless, significant improvements from modeling the dynamics have been demonstrated 

by the above systems. 

2.1.3 Search Algorithms , 

The main design issue facing system designers of segmental systems is the problem that not 

all the paths through the search space of segment hypotheses contain the same number of 

segments. Hence the products of path probabilities of competing search hypotheses consist 
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of different numbers of terms. This would not be a problem if true segment probabilities 

could be estimated. However in practice, special measures have to be taken to avoid that 

solutions with fewer segments will have a higher probability (because it is the product of 

fewer path probabilities). Generally, a global insertion penalty is used to compensate for 

this effect. 

Phonetic recognition finds the most likely sequence of phonetic units A* by maximizing 

the posterior probability of the sequence of phones A = { a l ,  an, ... , aN)  given a sequence 

of acoustic observations X = {xl, x2, ..., xT). In segment-based systems, the search is 

constrained by the segment hypotheses Si E S as follows : 

In practice, the summation in Equation 2.1 is often replaced by the Viterbi algorithm 

[25] which finds the most likely joint segmentation and classification path: 

A* = argmax p(A,SIX) 
A,S 

The basic equation 2.2 can be further decomposed depending on the type of classifier 

used in the segment classification step. 

In their SESM system, Leung et al. [54] use neural networks to classify the segment 

hypotheses. Because standard neural networks (e.g., MLP) estimate posterior probabilities 

[6], equation 2.2 gets rewritten as: 

A* = argmax p(AIS,X) . p(S1X) 
A.S - - 

phonetic segmentation 
classification 

Let {bl, bq, ..., bK) be the set of boundaries, generated by the segmentation mechanism, 

within the hypothesized segment si. Then the probability of the segment s i  is the product 

of probabilities p ( & l ~ )  that those internal boundaries are not true boundaries. Hence 

In [55], Leung et al. extended this basic approach to context-dependent phone models 

and broad category boundary classifications. It should be noted at this point that in 



CHAPTER 2. RELATED WORK 23 

equation 2.3 posterior probabilities are multiplied, which does not correspond to the usual 

independence assumption. 

In his Ph.D. work [31], Goldenthal uses Gaussian segment classifiers, which estimate 

likelihoods. Therefore equation 2.2 is transformed into: 

A* = argmax p(XIA,S) p(S1A) - p(A) 
A.S - - (2.4) 

, - 
likelihood Segmentat~~n language 

estimation model 

The term p(S1A) in approximated by p(S), which in his work is a function of the 

number of segments in S ("segment transition weight"). The above basic equation 2.4 is 

further extended to include transition components of the acoustic score. 

Similarly, Ostendorf and Roukos [68] decompose equation 2.2 into the following terms, 

where Y is the fixed-length model of X: 

A* = argmax p(Y1A) . p(A) L - C 
A v - -  

l ikelihood language duration insertion 

estimation model penalty 

The reader should note that in this case the segmentation is implicit. Therefore the 

absence of segment and segmentation probabilities is compensated for by introducing two 

additional terms: L and C. The duration model L simulates the segment probability and 

the insertion penalty term C can be interpreted as an approximation to the probability of 

a segmentation p(S). 

Systems that use a frame-based recognizer to generate segment hypotheses in an N- 

best list typically recombine the original HMM score with the new classification scores 

using a linear function, the parameters of which are experimentally optimized. 

The above overview suggests the following: firstly, the combination of the segmentation 

and the segment classification scores depends on the type of classifier used (posterior- 

probability or likelihood estimator). Secondly, the estimation of p(S), p(SIA), or p(S(X) 

is poorly understood at this point; therefore these terms are generally approximated by 

global constants (except in the case of SESM). 

MIT's SUMMIT system employs yet a different solution to the problem of estimating 

segmentation probabilities. The transition probabilities in the pronunciation dictionary 
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(which in the context of phonetic recognition acts similarly to the language model) are 

estimated in an iterative process. The probabilities are centered around a neutral value 

of 1.0 and are adjusted depending on whether or not the model was chosen correctly or 

incorrectly in a comparison of forced versus unforced recognition. 

In this section, we have described the probabilistic framework for several systems. The 

rightmost column of Table 2.1 lists the type of search algorithms (programming model) 

used to implement the respective probabilistic formulae. The SUMMIT system uses a 

frame-synchronous Viterbi search in the first pass of a two pass search. The second-pass 

A* search uses the estimates from the initial Viterbi search to estimate the remaining 

costs needed to run the A* search efficiently [35]. The SESM system and the system 

described in this thesis (SWISS) advance the search not frame-synchronously7 but rather 

from boundary hypothesis to boundary hypothesis, hence a boundary-synchronous Viterbi 

search. Note that not all the active hypotheses are updated at every search increment. 

2.2 Formant Tracking Algorithms 

In this section we review two formant tracking algorithms in some detail. The first (Section 

2.2.1) is the state-of-the-art formant tracker proposed by Talkin [83] in the mid 1980's 

and implemented as part of the commercial ESPS toolkit [84]. The second algorithm 

(Section 2.2.2), proposed by Laprie et al. [47], is closely related to the formant tracker 

described in this thesis. 

Early work includes formant trackers proposed by McCandless [61] and Kopec [41,42]. 

McCandless' formant tracking algorithm uses the peaks of the linear prediction spectrum 

[60] as initial formant candidates. In order to have a good seeding for the tracking hypoth- 

esis, the algorithm starts in the middle of a voiced segment and works outwards (towards 

the boundaries) by applying editing functions. A special feature of this algorithm is an 

enhancement procedure that is designed to recover missing formants by recomputing the 

spectrum with new parameters. 

Kopec uses Hidden Markov Models to track formants. In his experiments, the n HMM 

states correspond to possible formant values, quantized into n equally spaced bands of 
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width 4kHzln .  The emission symbols are taken from an LPC vector codebook. The state 

transition probabilities may be viewed as an encoding of continuity constraints on for- 

mant motion. He describes both singleformant and multi-formant models and concludes 

from experiments on the a digit database that there is no performance advantage from 

simultaneously tracking multiple formants using his models. 

2.2.1 ESPS Formant Tracker 

In his report, Talkin acknowledges the importance of incorporating non-local constraints 

into the formant tracking algorithm [83]. However, he believes that Kopec's [42] imple- 

mentation of a global constraint that formants be continuous is not the best solution, 

since a global constraint tends to be too weak in sonorant regions and too strong across 

vowel-consonant boundaries. Therefore, in his system, he modulates the transition cost, 

which determines the importance of the continuity constraint, by an estimate of the sig- 

nal's stationarity. He further points out that there are three basic methods of generating 

formant peak candidates: analysis-by-synthesis [66], peak picking in a smoothed spectrum 

obtained by LPC analysis (with cepstral smoothing), and solving for the root of a linear 

predictor polynomial. Specifically, he chose to use the complex roots of the denominator 

polynomial of the z transform of a linear predictor as the source of formant candidates. 

The all-pole, linear model is a reasonable model for vowel sounds, and it tends to slightly 

overgenerate candidates which is desirable because it helps in dealing with noise, spectral 

zeros and other modeling errors. 

The cost function to be optimized by the Viterbi search consists of two parts: local 

mapping costs and transition costs. The local mapping cost is a linear combination of 

formant bandwidth (narrower peaks are better), a bias cost giving preference to lower fre- 

quency formant candidates, and a term measuring the deviation of the proposed formant 

location from the expected location for that formant. The transition cost is a quadratic 

cost function of the relative formant frequency change from the last frame scaled by an 

estimate of the signal's stationarity. This modulation adds flexibility to the continuity con- 

straint and is a major contribution of his work. All the coefficients for the linear function 

are determined empirically by multiple supervised passes through a digit database. 



CHAPTER 2. RELATED WORK 26 

Talkin points out that most of the errors encountered in testing occurred in short vowel 

segments in the context of nasals, strong fricatives and other sounds not well represented 

by a low-order, all-pole model. He further outlines improvements to the stationarity 

measure and the initial signal processing stage to better cope with female voices and 

formant merges. 

2.2.2 CRIN / INRIA 2-Pass Formant Tracker 

The main objective for the formant tracker proposed by Laprie et al. [47] is to find the 

set of formant locations that explains the most energy. The algorithm was later extended 

to add a smoothness term to the objective function [49]. 

The basic algorithm uses five processing steps. First, elementary tracks (formants or 

parts thereof) are identified in a process similar to the first stage of the formant tracker 

described in the thesis (Chapter 5). Next, the elementary tracks are labeled in terms 

of formants using energy and degrees of acoustic constraint satisfaction (constraints on 

F1-F2 and F2-F3). The formant candidates thus labeled are then connected end to end 

to form N 3-tuples of formant interpretation hypotheses. The objective of the formant 

tracking algorithm is to optimize a cost function E that incorporates aspects of closeness 

to the data (explaining the most energy) and regularity of the formant tracks: 

The above functional is minimized by using an algorithm proposed by Kass et al. [38]. 

To avoid formant merges by the regularization algorithm, peak enhancement algorithms 

are applied where needed. Finally, a global assessment of the solutions found by the 

preceding processing steps based on energy, expected domains for F1-F2 and F2-F3, as 

well as formant levels is performed to find the single best interpretation. 

Laprie et al. report encouraging results of their formant tracking algorithm using 

visual inspection of the formant tracks overlayed on a wideband spectrogram for s t o p  

vowel tokens for 4 male speakers. They also report that the algorithm runs in a few times 

realtime on a moderately powerful workstation [49]. 
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2.3 Perceptual Experiments and Formant Theory 

In this section we briefly sketch some results reported in the literature describing vowel 

perceptual experiments and theories of (vowel) perception. This body of work suggests 

some of the perceptually important features which are incorporated into the formant- 

based vowel classifier described in Chapter 4. 

The entire literature on vowel perception is far too extensive for the purpose of this 

review. Therefore, we restrict ourselves to the articles resulting from an Acoustical Society 

of America meeting in 1987 that brought together some of the leading researchers in the 

field. The purpose of the meeting was to contrast the prevelant theories and to outline 

open questions and future work. 

The article by Strange [82] provides a good overview of the major theories of vowel per- 

ception. The classic textbook model of vowel perception describes the vowel characteristics 

in terms of formant targets extracted from the spectral cross section of the steady-state 

portions of the vowel. These target locations are either fully attained in sustained vowels, 

or represent target configurations for the articulators in the case of continuous speech. 

Often the first two formants, F1 and F2 contain the primary and sufficient information 

for the vowel identity. However, this model of formant targets has two major problems 

which Strange terms "speaker normalization" and "target undershoot". The formant- 

ratio theory has been proposed to solve the speaker normalization problem (see Miller [65] 

for a historical review of formant-ratio theories). More recent work has been focusing on 

psychophysically motivated transformations of formants and fundamental frequencies in 

an attempt to create a feature space (mostly in the F1 versus F2 plane) with less overlap 

among the vowel categories for all ages and genders. Miller extends the formant-ratio 

theory by making the interpretation of the formant ratios F2/F1 and F3/F2 dependent 

on the Fl/SR ratio, where SR is a function of the average pitch and tries to capture 

the speaker characteristics. He constructs a three-dimensional auditory-perceptual space 

and shows that sustained monophtongal vowels of American English can be segregated 

with 93% accuracy. (Note: For our own classification experiments, we will use the av- 

erage pitch over the vowel segment as one of the classification features.) Lindblom and 



CHAPTER 2. RELATED WORK 28 

Studdert-Kennedy (571 addressed the target undershoot problem by demonstrating that 

perceptual boundaries shifted as a function of the syllable duration (in a CVC context) 

and the direction of the F2 transition. In related research in the early 1 9 6 0 ' ~ ~  Peterson 

and Lehiste [69] report that vowels differ in their intrinsic durations. They also noticed 

systematic differences in the relative durations of onglides (formant transitions into the 

syllable nucleus), offglides, and quasi-steady-state portions of CVC syllables for tense and 

lax vowels. Tense vowels tend to have on- and offglides of similar, short duration, whereas 

the lax vowels tend to have relatively long offglides. (Note: We will define F1 interval 

features in our classification experiments in Section 6.1.) 

A series of perceptual experiments using the TIMIT database were conducted by Cole 

et al. [15]. They report 54.8% correct vowel identification for the 16 TIMIT vowels when 

played to subjects in isolation. The identification rate improved to 65.9% when acoustic 

context was provided to the listener. A related experiment testing speaker normalization 

effects showed a small but significant increase in listener-labeler agreement. This study 

did not test consonants. In a similar series of experiments reported by Cole et al. [19], 

phonetically balanced TIMIT sentences were altered by replacing the acoustics of either 

the vowel or consonant segments with white noise. Subjects were then asked to identify 

the words contained in the utterance. In this experiment they found vowels to be more 

important than consonants for word recognition. 

2.4 Segment Classification Experiments 

We next review the results reported in the literature for segment classification (vowels and 

phonemes) as well as phonetic recognition. It should be noted that even though all of the 

results reported below were established using the TIMIT database, the training and test 

sets along with the set of recognized phonemes might differ from researcher to researcher. 

Consult [31] for a good overview of these differences. 

Most of the early segment classification experiments focused on vowel classification. 

This is generally considered to be the more difficult task compared to consonant classifica- 

tion. Table 2.2 summarizes the vowel classification results obtained by several researchers. 
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Table 2.2: Overview: Vowel Classification Results 

Researcher Feature Set Accuracy 

Meng Auditory Model 64.5% 

Formants from Analysis-by-Synthesis 62.6% 
Carlson & Glass 

+ gender information 65.6% 

Tracks of cepstral features 66.6% 
Goldent ha1 

+ gender-specific models 68.9% 

Using the outputs of an auditory model, Meng [63] achieved 64.5% on a 13-vowel 

classification task and 65.5% on a 16-vowel task [62]. Carlson and Glass [ll] report a 

62.5% classification accuracy using averaged Bark spectral vectors and an MLP classifier. 

They also describe a formant representation based on an analysis-by-synthesis procedure. 

Averaging the formant locations over segment thirds (3x3 = 9 features) they achieve 56.6% 

accuracy. Adding formant amplitude and measures of the formant transition speed, the 

performance was improved to 62.6%. This result will serve as a point of reference for 

our vowel classification experiments using explicit formant features (see Chapter 4). They 

report further improvements to 65.6% when providing the MLP classifier with (explicit) 

gender information. Even better results are reported by Goldenthal [31]. Using the track 

representation and a Gaussian classifier, he achieves 66.6% correct classification, and 68.9% 

when using gender-specific models, where the gender in unknown during testing. 

Vowels, via the formant structure, carry the most speaker-dependent characteristics 

which tends to make the classification more difficult. Removing them via speaker nor- 

malization techniques or the incorporation of gender information (e.g., gender-specific 

models) can therefore lead to improved classification accuracy as shown above. 

The phonetic segment-classification results for context-independent models are sum- 

marized in Table 2.3. Again, it should be noted that the training and test conditions 

are different among the systems and therefore the results should not be used for direct 
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comparison. 

Table 2.3: Overview: Phonetic Segment Classification Results 

Segment Classification Results : Phonemes 

- 
L 

Leung in his Ph.D. thesis [51] experimented with k-Nearest-Neighbor and Gaussian 

classifiers as well as neural networks in the context of phonetic segment classification. 

He reports achieving 72% correct phoneme classification on TIMIT for 38 phonemes [53] 

using the synchrony envelopes and mean-rate responses of Seneff's auditory model [80] 

along with the segment duration. The best result of 76% is achieved by using 82 acoustic 

attributes as features to a MLP. Chigier et al. [14] and Leung et al. [52] also experimented 

with various signal representations and classifier technologies. Their best result of 78.0% 

was obtained using PLP features [33] and a neural network classifier. Furthermore, on 

male-only training and test sets, Digalakis [23] achieved 73.9% using his Dynamic System 

Models. 

Accuracy 

78.0% 

76.8% 

73.9% 

76.0% 

Researcher 

Chigier et al. 

Goldenthal 

Digalakis 

Leung 

2.5 Phonetic Recognition Experiments 

Feature Set 

MLP & PLP 

Tracks 

Dynamic System Models 

Acoustic Attributes 

Lee initially used the TIMIT [46] database for his phonetic recognition experiments using 

SPHINX [50]. Since then, many researchers have used the same task to compare the 

performance of their own systems. See Goldenthal's Ph.D. thesis [31] for a good overview 

of the best results achieved. He points out the differences in training and test sets used 

by various sites. We summarize the results in Table 2.4 without repeating the differences 

here. 
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Table 2.4: Overview: Phonetic Recognition Results using the TIMIT database. 

Accuracy 
System 

(39 Phones) (47 Phones) 

HMM - Lamel & Gauvin 69.1% 

SUMMIT - Phillips & Glass 68.5% 

Anti-Phones - Glass et al. 69.5% 

STM - Goldenthal 69.5% 

REPN - Robinson 73.9% 64.7% 

CVDHMM - Ljolje 69.4% 

Lately, Ljolje [59] has reported a recognition accuracy of 69.4% on a 49 phone set and a 

slightly different scoring of silence and closure segments. He points out that the REPN [75] 

system achieves 64.7% if the same scoring mechanism would be used. His system, a con- 

tinuous variable duration HMM (CVDHMM) with context clustering of quasi-triphonic 

model states, uses a trigram language model to further improve on the recognition per- 

formance. Additionally, Glass et al. [30] achieved 69.5% recognition accuracy using anti- 

phones in a segment-based recognition framework. Note that the results reported in Table 

2.4 are established using context-dependent phoneme models in combination with either 

bigram or trigram language models. 



Chapter 3 

Segment at ion 

In the introduction to this thesis, we argued for the use of a segment-based speech recogni- 

tion system because of its superior segment modeling capabilities. However, the drawback 

of this approach is a loss of flexibility: once the speech is broken up into segments, it 

is very difficult for the phonetic search to recover from segmentation errors, especially 

segment deletions. Therefore, the quality of the segmentation algorithm is crucial to the 

overall success of the recognition system. 

The purpose of the segmentation process is to establish acoustic landmarks, hypothe- 

size possible segmentations of the incoming speech into phonetic segments, and to provide 

the segment classifier with possible segment boundary locations that can be used to extract 

knowledge-based features (see Chapter 6 for a discussion of the merits of this approach). 

Spectrogram reading experiments have shown [17, 20, 921 that an expert spectrogram 

reader is capable of locating essentially all segments (97% in continuous speech and 100% 

for isolated words) found by phoneticians who had access to the acoustics along with 

the spectrogram. Unfortunately, attempts at mimicking the behaviour of the expert with 

a computer algorithm have failed, partially due to intrinsic difficulties of time scaling. 

Certain (phonetic) boundaries can be characterized by a large change in the spectral 

shape, mostly prompted by a change in the manner of articulation (silence, frication, 

voicing, nasalization). However, there are also boundaries that only change in the place 

of articulation (e.g. velar, alveolar, or palatal), by L'slowly" moving the articulators. This 

process results in a definite, but "slow" (approximately 30 - 50 ms in comparison to 

the common frame rates of 5 or 10 ms), change in the spectral characteristic. A typical 

example is the semi-vowel/vowel boundary shown in Figure 3.1; one can argue that the 

32 
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transition from the retroflex /r/ into the front vowel /iy/ starts at time 140ms and ends

at 180ms. In contrast, the /s/-/iy / boundary falls in the time range of 360ms to 370ms.

ISpectrogram I

I I

I TIHILTranscription I

Figure 3.1: Example of "slow" (fr/-/iyf) and "fast" (fs/-/iy/) boundaries

A popular approach to segmentation, initially proposed by Bush and Kopec [9], is to

consider all possible segmentations. While this is theoretically the optimal solution, it has

been acknowledged that the computational requirements make an implementation thereof

impractical at this time [22]. Therefore, a subset of the potential boundary locations

is generally selected for further processing. In this work, such a segmentation is called

an Acoustic Segmentation (AS). In the context of the dendrogram algorithm [28], these

segments are called seed regions.

Most of the segmentation methods rely on some sort of distance measure to detect

spectral changes which would indicate the presence of a phonetic boundary between two

adjacent frames (see Appendix A for a discussion of commonly used distance metrics).

The boundaries between adjacent acoustic segments are then proposed at local maxima of

this distance function. As can be seen from the examples above, distinguishing between

true boundaries and false positives using a distance function is a difficult problem. Often,

the spectral change (from frame to frame) within a segment can be larger than across

segment boundaries. In practice, this problem is generally solved by setting a low detection

threshold and accepting an oversegmentation of the utterance, followed by a grouping or
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level building stage. MIT7s SUMMIT system [94] uses the average spectral distance to 

merge adjacent regions into a hierarchical structure called a dendrogram [28] (see Section 

2.1.1 for a summary). 

The segmentation algorithm developed in this research is similar to the dendrogram 

algorithm . However, instead of using distances between mean acoustic vectors to decide 

on merging adjacent segment hypotheses, we classify the initial acoustic segments into 

6 broad phonetic categories and use a set of rules based on the classification scores to 

make merging decisions. The resulting segment lattice contains segment hypotheses with 

associated broad phonetic identities. This fact can be used for classifier selection (e.g., 

separate vowel and consonant classifiers), feature extraction (e.g., provide broad phonetic 

estimates for quasi-triphone models), and segment lattice enhancement (e.g., insertion of 

deleted voiced stop segments by rule), as described in Section 3.4. 

In the next section, we describe the segmentation of an utterance into acoustic seg- 

ments. The rules used in the construction algorithm are based on broad phonetic classifi- 

cation results, which are described in Section 3.3. Finally, the construction of the lattice 

containing the segment hypotheses is described in Section 3.4 and evaluated in Section 

3.5. 

3.1 Acoustic Segmentation 

Most of the segmentation methods rely on some sort of distance measure d(2, y3 to detect 

spectral changes. The most common metric is the Squared Difference Function: 

4 2 ,  y3 = ( 2  - g T ~ ( 2  - y3 Squared Difference Function 

where 2 and y' are feature vectors representing the spectrum to the left and the right 

of the potential boundary respectively. The matrix A defines the distance metric used. 

Popular choices are A = I for the Euclidian distance and A = Cow-' (the inverse of the 

feature covariance matrix) for the Mahalanobis distance [26]. 

In the past, we have experimented with other distance metrics, such as the Spectral 

Variation Function and a context-dependent extension thereof. Appendix A contains 
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an overview and discussion of those alternatives. Initial experiments with the context- 

dependent spectral variation function were encouraging, but failed to yield any substantial 

performance improvements. Therefore, we decided to use the squared difference function 

with the Euclidian metric as the basis of the segmentation algorithm in this work: 

T 
do (t) = d(t, x,T) = (x:-L - (x:- - x:+~) 

where X; is the vector of acoustic feature vectors (Mel-Frequency Cepstral Coefficients 

in this work) from frame 0 up to but excluding frame T and XtyL the subset of feature 

vectors starting at frame (t - L) and ending before frame t. 

It should be noted that the choice of a suitable distance function has to be made 

in the context of the segmentation algorithm. The lattice generation algorithm used in 

this research for example is able to insert missing /stop/ segments and omitted /vowel/- 

/vowel/ boundaries by rule and hence doesn't require the distance function to reliably 

extract those boundaries (both of which are difficult cases, either due to the short duration 

or the small frame-to-frame changes). 

The acoustic segmentation is subsequently constructed by a peak picking algorithm on 

the distance function do(t) with thresholding on the height of the peak. It should be noted 

that one of the consequences of this choice (finding maxima) is that phonetic segments of 

length one (frame) will not be identified by this algorithm, something which occasionally 

occurs for short voiced stops such as /b/ or /d/ in front of vowels. As will be explained 

in the next section, short stop segments will be inserted by rule into the lattice wherever 

there is a /closure/-/vowel/ transition without an intervening /stop/ segment. 

In practice, we have observed a considerable number of false positives (incorrectly pro- 

posed segment boundaries) in silence and fricative segments. Therefore, we have modified 

the original distance function do to include square difference terms of energy ( E )  and zero 

crossing (ZC) information: 

dl = f (do, E?, ZCT) 
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3.2 Evaluation of Boundary Detection 

Normally, the efficiency of a boundary detection algorithm is evaluated by observing how 

many times there was a machine generated boundary within e.g. 10 ms of the hand la- 

beled phonetic segment boundary. Since we are interested in assessing the usefulness of a 

particular boundary detection algorithm as a basis for a segment building algorithm, we 

are interested in the number of useful segments that we will be able to construct based on 

the initial segmentation. Therefore, we chose to adopt a different scoring scheme, wherein 

each machine generated boundary is associated with the nearest hand-labeled phonetic 

segment boundary. Thus, all segmentation errors are counted as deletions, rather than 

insertions errors. Figure 3.2 shows an example of such an assignment. 

-- 

Handlabels I Stop I Vowel I Nu I 
4 ', 

Machine Generated 
Boundaries i I 

Figure 3.2: Illustration of the Boundary Detection Scoring Process 

In this case (Figure 3.2), the phonetic boundary between the vowel and the nasal 

segment doesn't have a corresponding machine generated boundary hypothesis and would 

thus be counted as a missed boundary. The same figure also shows that there might 

be more than one hypothesized boundary per true boundary. By assigning the machine 

generated boundaries to true boundaries and then counting the number of boundaries 

that were left uncovered, we can estimate the degree to which we will be able to build a 

segment lattice that has the same structure as the true (hand labeled) segmentation. 

We have observed that most of the boundary deletions happen when "slow" phonetic 

boundaries remained undetected and a single long acoustic segment was constructed in- 

stead. Adding a post-processing rule that splits each acoustic segment longer then a 

global threshold ASSplitDur resulted in a markable improvement as can be seen in Table 

3.1, which summarizes the boundary detection results. 

The overgeneration (number of proposed acoustic boundaries per true hand-labeled 
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Table 3.1: Acoustic Segment Boundary Detection Results (overgeneration is the number 
of acoustic boundaries per TIMIT boundary). 

Distance Function Overgeneration Missed Boundaries 

dl 1.82 7.0% 

+ ASSplitDur = 3 frames 3.27 2.8% 

+ ASSplitDur = 5 frames 2.32 3.9% 

phonetic boundary) is inverse proportionally to the deletion rate: the higher the overgen- 

eration, the lower the deletion rate will be. For our further experiments in this thesis, we 

set ASSplitDur = 5. 

3.3 Acoustic Segment Classification 

The neural network used to classify acoustic segments computes the probability bi that 

the acoustic segment asi is part of a phonetic segment with broad category identity Bk: 

The broad categories are based on the manner of articulation categorization: 

pk E {closure, vowel, semi-vowel, nasal, fricative, stop} . 

Figure 3.3 summarizes the classification features for the neural network classifier re- 

sulting in a 62-dimensional feature vector. 

The classifier was trained on every 4th utterance and evaluated on every 8th utterance 

of the training part of the TIMIT database. The correct label for each acoustic segment 

was inferred from the phonetic label of the TIMIT segment overlapping it the most. The 

overall classification accuracy was 84.0% with individual performances varying from 45% 

for semi-vowels to 93% for vowels. 
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Acoustic Segment Classification Features 

average MFCC over each half of asi (14+14 features) 

average MFCC over the left and the right neighboring acoustic segments asi-1 
and asj+l (14 + 14 features) 

average energy and zero crossing over asi-1, asi and asi+l (6 features) 

Figure 3.3: List of the acoustic segment classification features. 

It should be noted at this point that the classification accuracy is not crucial to the 

quality of the segment lattice as long as the classification score (network output activation) 

of the correct category is above a certain threshold (see Section 3.4 for more details). 

3.4 Construction of the Segment Lattice 

As pointed out earlier, the acoustic segmentation algorithm might break a phonetic seg- 

ment into multiple acoustic segments. Hence the purpose of the lattice construction algo- 

rithm is to reassemble the acoustic segments into phonetic segments l. 

We realize that it is virtually impossible to generate an unique true segmentation. This 

processing step therefore constructs a lattice of segment hypotheses containing alternate 

segmentations in regions where the acoustic signal is ambiguous. The segment classifier is 

expected to produce low phoneme classification scores for those segments that either span 

multiple true phonetic segments or only parts of a segment, which would result in them 

not being considered favorably by the phonetic search. 

Because of the nature of the search algorithms used in this research (modified Viterbi 

search, see Chapter 7), we will have to ensure that the lattice-building algorithm generates 

the start of at least one segment hypothesis whenever the end of a segment is hypothesized. 

This is required because the search algorithm will have to account for exactly one phonetic 

'There is the possibility of using the acoustic segments directly for recognition similar as in [91]. In 
this work however, we will use phonemes as the sub-word units for recognition. 
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identity for each speech frame (no overlap of phonetic segments and no frames without a

covering phonetic segment).

The basic idea of the lattice generation algorithm is to maintain a stack of active

hypotheses about the start time and the broad phonetic identity of possible segments. The

algorithm considers one acoustic segment at a time and decides for each of the hypotheses

on the stack if the new acoustic segment further supports the hypothesis or if it should

be terminated. This decision is based on the classification scores of the broad-category

segment classifier.

The lattice-building algorithm uses a simple thresholding mechanism as a decision

criterion. Therefore, the acoustic segment classification accuracy is not as important, as

long as the classification score of the correct category is above the global threshold ().

Let 1£ = {hk} be the set of active hypotheses hk at any given time. The lattice-building

algorithm is summarized in terms of 1£ in Table 3.2.

AS 1 2 3 [!
stop
fricative
nasal
semi-vowel
vowel
closure

Broad
Phonetic

Classification

Lattice

Segments

by Rule

1°1

I-;; ~~ I
1 closure !.rtODI vowell~ ~_.L ~

Figure 3.4: Illustration of the Lattice Generation Rules: (from top to bottom) Acoustic
Segmentation, Broad Phonetic Classification of AS (the darkness of the bar representing
bi, the higher the output activation of the AS classifier for bd, Segment Lattice with
segment hypotheses A-F, and additional segment hypotheses a-e inserted by applying the
stop-insertion rule.

IA closure B vowel F
closure I

C vowel D vowel

-I E nasal
el
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Table 3.2: Lattice Generation Rules 

Lattice Generation Rules 

1. Initialize the set of hypotheses 3t by generating hypothesis ho as starting at 
time 0 and having the broad category identity equal to the index of the highest 
output within the acoustic segment ao. 

2. Advance to the next acoustic segment as,. 

3. For each hypothesis hk currently on the stack determine if the classification 
score of the broad category of hk in as, is below the threshold 8. Then 
terminate hk, otherwise continue the hypothesis. 

4. For each hypothesis hk currently on the stack terminate it if the maximal 
duration SplitDur is exceeded (currently there is just one global maximal 
duration of 5 frames). 

5. For each broad category pj not considered in step 3 check if the classification 
score in as, is above the threshold 8. If true then add a new hypothesis onto 
the stack with start time b, and identity pj. 

6. Make sure that if a hypothesis was terminated then at least one new hypothesis 
was generated. If that is not the case then start a new hypothesis, using the 
highest scoring broad category. 

7. Make sure that if a new hypothesis was generated then at least one active 
hypothesis was terminated. If that is not the case then hypothesize the termi- 
nation of all hypotheses currently on the stack as well as keeping them on the 
stack. 

8. Repeat step 2 until the end of the utterance is reached. 

9. Terminate all remaining active hypotheses. 
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Figure 3.4 illustrates the operation of the lattice generation algorithm. Initially, hl = 

(0, closure) is hypothesized because for the acoustic segment as1 the /closure/ category 

has the highest probability. No other hypothesis is generated at this point since no other 

category's activation is above the threshold (Rule I). Next, the algorithm is advanced to 

as2 (Rule 2), where we check whether or not the hypothesis ho still holds, that is whether 

/closure/ is still a viable hypothesis. Since this is not the case, hl is terminated and 

segment A is inserted into the segment lattice (Rule 3). However, the classification scores 

indicate that as2 belongs to /vowel/ and hence we hypothesize ha = (1,vowel) (Rule 

5). The conditions in Rules 6 and 7 are satisfied and so the search is advanced to ass. 

Similarly, segment hypotheses D, E, and F are created and added to the segment lattice. 

After extensive browsing of the training data, the activation threshold 8 was set to 0.1 

and the maximal duration SplitDur to 5 frames. 

We have observed that many of the short, voiced stops (/b/ and Id/) are omitted by 

this segmentation algorithm. Since these deletions occur mostly in a /closure/-/vowel/ 

context, they can easily be reinserted by rule at this point. Whenever a /closure/ segment 

is terminated and no /stop/ segment is started at the same time, a possible /stop/ segment 

is inserted by rule. This is illustrated again in Figure 3.4. The segment hypotheses a-e 

are added to the lattice as a result of the application of the stop-insertion rule. 

Additionally, we augment the lattice using the following two mechanisms: splitting 

long segment hypotheses (to anticipate missed "slow" boundaries), and merging adjacent 

segments if the lattice only contains a single, short segment (to reduce insertion errors). 

See Section 7.2.2 for an example. 

3.5 Evaluation 

In this section, we assess the quality of the segment lattices generated by the algorithm 

described above. The assessment has to consider two competing goals of a segmentation al- 

gorithm: on one hand, each true (hand-labeled) segment should be maximally overlapped 

by a machine-generated segment hypothesis, but on the other hand, the total number of 

hypothesized segments should be small to minimize the number of false positives in the 
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phonetic search. 

As with the formant tracker described in Chapter 5, the true measure of the quality of a 

segment structure, such as the segment lattice described in this chapter, is reflected by the 

success of the phonetic recognition. As an approximation, Chigier and Brennan [13] use 

statistics of insertions, deletions, correct segments, and depth to assess the performance 

of segmentation algorithms. Depth is defined as the total number of segments hypoth- 

esized by the algorithm divided by the total number of segments in the hand-labeled 

transcriptions. They compute insertions and deletion statistics of the best path through 

the network, where the best path is defined as the path that minimizes the boundary 

differences to the hand-labeled transcription as well as the insertions and deletions of seg- 

ments. Table 3.3 summarizes the statistics for the lattice generation algorithm described 

in this chapter. The results were computed on 460 utterances from the training set not 

used to train the acoustic segment classifier. There were a total of 18327 TIMIT segments 

contained in this evaluation set. 

Table 3.3: Lattice segment alignment statistics. The dendrogram numbers were computed 
by Chigier and Brennan. 

System Insertions Deletions Correct Depth 

Baseline 2.48% 1.60% 98.3% 6.0 

+ Stop insertions 2.53% 0.98% 98.9% 6.6 

+ Augmentation 1.22% 1.08% 98.9% 7.0 

Chigier & Brennan [13] 11.00% 6.60% 93.3% 1.8 

Dendrogram 2.20% 5.80% 94.2% 4.5 

The performance numbers by Chigier and Brennan for their rule set and the original 

dendrogram (computed on a different test set) are provided as a reference. Note that they 

chose different operating points (low depth) than this work, which is aimed at reducing 

deletion errors while achieving a high degree of overlap with the true labels. 
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Additionally, we also performed a straightforward alignment of the hand-labeled tran- 

scription with the segment lattice. If we require 70% overlap between a hand-labeled 

segment and a machine-hypothesized segment then the analysis shows that 93% of all 

TIMIT segments do have a corresponding overlapping machine-generated segment. 

3.6 Summary 

In this work, we propose to use an explicit-segmentation algorithm. We use a distance 

function based on the Euclidian Squared Difference metric to segment the utterance into 

acoustic segments which are subsequently classified into 6 broad phonetic categories. The 

lattice construction algorithm uses rules to merge acoustic segments into phonetic seg- 

ments and to insert additional segment hypotheses as needed (stop insertions). This al- 

gorithm produces a lattice containing segment hypotheses with a broad phonetic identity 

that substantially overlap (by more than 70%) 93% of the TIMIT hand-labeled phonetic 

segments. Applying a stop-insertion process and augmenting the lattice with additional 

segments in places of likely segmentation errors, we can generate segment lattices with rea- 

sonable insertion and deletion rates while keeping the total number of segment hypotheses 

manageable. 



Chapter 4 

Segment Classification 

In this thesis, we report on phoneme classification experiments using the TIMIT [46] 

database. A series of classifiers with increasing complexity, from a baseline system using 

static features to separate vowel and consonant classifiers using explicit formant features, 

are described. 

After explaining the training and test sets used for these experiments in Section 4.1, 

we describe the baseline classifier: a phoneme classifier using mel-frequency cepstral coef- 

ficients (MFCC) extracted and averaged over selected regions of the segment, along with 

average energy and zero crossing rate. Next, separate classifiers for sonorants (vowel and 

semi-vowels) and consonants using averages of MFCC, energy and zero crossing rate are 

evaluated. In Chapter 6 we describe classification experiments using explicit formant 

features. 

The classifier architecture used in this research is the Multilayer Perceptron (MLP), 

trained with a conjugent-gradient optimization algorithm ([4, 51). We believe that the 

discriminant nature of this classifier is a major advantage over other classification methods. 

In his Ph.D. thesis, Leung [51] compared various classifier technologies on a phonetic 

segment classification task and found MLPs to perform the best. 

In our work, we have noticed a discrepancy between the training and testing conditions 

for these classifiers. Therefore, in Section 4.3, we report on experiments using machine- 

generated segmentations in training and testing of the baseline classifiers. A few thoughts 

on training on errors in Section 4.4 round off this chapter 
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4.1 Data Sets and Signal Processing . -- 

For our classification experiments, two different training sets are used: in addition to the 

standard NIST training set (NIST-Train), we have further divided NIST-Train into a 

training (OGI-Train) and two development test sets by selecting every second and ev- 

ery fourth speaker, respectively from NIST-Train. This guarantees that the sets contain 

similar speaker distributions from all 8 dialect regions as well as a balanced gender dis- 

tribution. Table 4.1 summarizes the statistics of the training and test sets used in our 

classification and recognition experiments. 
. . 

Table 4.1: Training and Test Set Statistics 

Speakers 
Set Name 

M F T  
Utterances 

OGI Training Set (OGI-Train) 161 70 231 1848 

OGI Development Set 1 (OGI-Devl) 84 32 116 928 

OGI Development Set 2 (OGI-Dev2) 81 34 115 920 

MIT Dev Test (MIT-Dev) 34 16 50 400 

NIST Training Set (NIST-Train) 326 136 462 3696 

NIST Final Test Set (NIST-Core) 16 8 24 192 

The TIMIT labels were reduced to a set of 40 categories (Table 4.2), the 39 phonetic 

categories suggested by Lee [50] and a separate voiced closure class. This division into 

voiced and voiceless closures was made to reduce the within-category variance. Addition- 

ally, the nature of the preceding closure might be used as a feature in a dedicated stop 

classifier. 

In this research, unless stated otherwise, we represent the signal with the mel-frequency 

cepstral coefficients of order 14 with a window size of 25.6 ms and an increment (frame 

size) of 10 ms. The preemphasis factor is 0.97. 
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Table 4.2: Phoneme Set . . 

Vowels and Semi-vowels 

iy ih eh ae ah uw uh aa ey ay oy 

aw ow er 1 y w r 

Consonants 

m n ng ch jh dh dx b d g p 

t k z v f th s sh hh cl vcl 

4.2 Baseline Classification Experiment 

The purpose of the baseline experiments is to establish initial classification performance 

numbers. The classification features are similar to the ones proposed by Leung [51]. 

They are static in nature: the average MFCC, energy and zero crossings of the segment 

thirds and selected frames to the left and right of the current segment (Figure 4.1). The 

dimension of the input feature vector for the neural network classifier is 113. 

Baseline Features 

1. Average MFC, Energy, and Zero Crossing over segment thirds [(14 + 
1 + 1) * 3 = 48 features], 

2. Average MFC, Energy, and Zero Crossing for the two frames 
immediately to the left, respectively right of the segment 
[(I4 + 1 + 1) * 2 = 32 features], 

3. Average MFC, Energy, and Zero Crossing for the three 
frames adjacent (left and right) to the frames in 2 
[(I4 + 1 + 1) * 2 = 32 features], 

4. Segment duration [l feature] 

Figure 4.1: Features for the Baseline Segment Classifier 

Neural network classifiers (MLP) with varying hidden layer sizes were trained and 
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tested on the hand-labeled segmentations. The results reported are the best performances 

achieved for all architectures. In addition to phonetic segment classifiers, we also trained 

separate vowel and consonant classifiers to be used later in recognition experiments in- 

volving multiple classifiers. Therefore, we have trained voweljsemi-vowel and consonant 

classifiers with the same input features as the phonetic classifiers but with 18 outputs (14 

vowels and 4 semi-vowels) for the vowel classifier and 22 outputs for the consonant (and 

closures) classifier. The classification results are summarized in Table 4.3. 

Table 4.3: Classification Results for Baseline Classifiers 

Classifier Training Testing Accuracy 

The classification results for the baseline system are comparable to results reported 

elsewhere (see Section 2.4 for a overview). It is interesting to note the difference in 

performance between the classifiers trained in OGI-Train compared to NIST-Train. The 

effect is mainly due to a difference in the size of the training sets: OGI-Train contains 

half of the training material of NIST-Train. 

4.3 Training and Testing on Machine-Generated Segments 

One of the keys to successful classifier design is the matching of training and testing/deployment 

conditions [85]. To this point, the features for the segment classifiers were extracted with 

the knowledge of the true locations of the phonetic segment boundaries. However, when 
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using the classifiers in a phonetic recognition system, we do not have access to the hand- 

labeled segmentations. Instead we have to use the segmentation mechanism described in 

Chapter 3, which produces segmentations that can be slightly different from the hand- 

labeled ones. In order to account for this mismatch between training and usage conditions, 

we investigate appropriate procedures for the training and testing of our segment classifiers 

on machinegenerated segmentations. 

In order to extract training feature vectors based on machinegenerated segmentations, 

we need to select those lattice segments which have the most overlap with the hand-labeled 

segments and form a legal path through the segment lattice. Doing so should maximize the 

correct network outputs for machine-generated segment hypotheses similar to the TIMIT 

segments, and thus increase the likelihood of finding the correct path in the phonetic 

search. In order to determine the candidates for the machine-generated segments, we 

first constructed the segment lattice (see Chapter 3 for more details) for each training 

utterance. Next, a search through the lattice was done with the objective to minimize 

the distance between the boundary locations of the aligned segmentation with the hand- 

labeled segmentation. At the same time, this forced-alignment process also provides the 

labels for the training of the classifiers. Figure 4.2 shows an example of this procedure. It 

demonstrates the differences between the hand-labeled (TIMIT) and machine-generated 

(ALIGN) segmentations, most notably for the utterance initial nasal In/. 

The phonetic classification performance for various training and testing conditions is 

summarized in Table 4.4. As expected (due to the difference in training conditions), the 

TIMIT-trained classifiers' performance is considerably worse on the machine segmenta- 

tions than on the hand-labeled segmentations. As can be seen from the third and fourth 

columns in Table 4.4, adding machine-generated segmentations to the set of training 

vectors results in improved classification accuracies for the TIMIT and Machine testing 

conditions for all three classifiers. 

It should be noted that the increase in the number of training vectors (from 140,179 

phonetic training vectors for the TIMIT segmentations to the combination using 280,416 

vectors) is achieved using the same amount of speech (NIST-Train). However, a large 
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Figure 4.2: Example for positive and negative training segments. The figure shows
(top to bottom): spectrogram, automatic alignment (ALIGN), hand-labeled transcription
(TIMIT), phonetic recognition (SWISS), and five levels of the segment lattice (latticel-5).

portion of the additional machine-generated segments are identical to the original hand-

labeled segments and hence produce identical training vectors. No attempt was made to

filter out duplicate training examples.

4.4 Training on Errors

Neural networks, which are the classifiers of choice in this work, are discriminantly trained

which will allow us to use false-positive and false-negative examples, generated by the pho-

netic search, during training to improve the recognition (not necessarily the classification)

performance. That is, we can in principle further improve the similarity between training
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Table 4.4: Classification Results using Machine Segmentations, trained on NIST-Train 
and tested on MIT-Dev. The final two columns correspond to different testing conditions: 
either hand-generated segments (TIMIT) or machinegenerated segments (MACHINE) 
were used. 

Classifier Segmentation Accuracy 

Method TIMIT MACHINE 

and recognition conditions by including in the training sets not only those segments which 

correspond to the true cases of the phonemes, but also the wrong segmentations which 

the system will have to reject (via low posterior probabilities for all phonemes of that par- 

ticular segment) during recognition. Figure 4.2 shows the two types of recognition errors 

that can be used in a "train-on-error" scheme: the initial nasal /n/ (lattice segment 9) 

is an example for a false positive, whereas the semi-vowel /y/ is misclassified as /ah/. 

Our initial experiments indicate however, that finding the correct balance between 

error vectors (false positives and misclassifications) and true positive examples for training 

is difficult. Additionally, the confusability between the true phonetic categories and the 

newly created "Not-A-Phoneme" category is high, thus further confounding the training 

problem. We believe the idea of training the classifier on (segmentation and recognition) 

errors to be an important one but we will have to defer a more detailed investigation. 
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4.5 Summary 

In this chapter, we reported on the segment classification experiments using cepstral- 

based features. Table 4.4 contains a summary of the various classifiers trained and tested 

on either TIMIT or machine-generated segmentations. Adding the machine-generated 

segmentations led in all cases to a performance improvement on both the TIMIT and the 

machine-segmentation based test conditions. The overall performance of these classifiers 

are comparable to, albeit slightly inferior to, the best results reported in literature (see 

Table 2.3). We will use the classifiers constructed in this section in phonetic recognition 

experiments described in Chapter 7. 



Chapter 5 

Robust, N-best Formant Tracking 

In this thesis, we propose to use formant features to explicitly model the dynamics of 

speech. The eventual goal is to improve the accuracy of phonetic recognition in a segment- 

based speech recognition system. The success of this approach depends critically on the 

performance of the formant tracker, the algorithm which extracts formant frequency in- 

formation (from now on called "formants"). 

Estimating the formants based on short-term spectral analysis is straightforward if the 

local information is pronounced (e.g. [34]). However, in practice we often have to deal with 

a flat short-time spectrum, where the information regarding the location of the formants 

can only be reconstructed from context by "tracking7' the formants. Taking a global view 

allows the algorithm to compensate for incomplete or ambiguous local information. 

As mentioned in Chapter 1, the idea of using formant features for speech recognition 

has been around for a long time, and despite numerous attempts, nobody (to the best 

of our knowledge) has been able to devise a formant-tracking algorithm which performs 

with sufficient accuracy to compete with cepstrum-based speech recognizers. However, we 

have observed that in virtually all sonorant segments, only a few consistent interpretations 

of formants are possible. Therefore we propose to extend the formant-tracking paradigm 

to find the N best interpretations rather than the single best as has been done in the 

past ([47, 83, 841). The N best interpretations are subsequently presented to a phonetic 

segment classifier. The results of these classifications are then used by a standard phonetic 

search using language constraints (e.g. bigram) to find the single best interpretation, thus 

overcoming the lack of robustness of traditional formant trackers by delaying the final 

decision until after phonemic classification. 
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The formant-tracking algorithm assumes that the speech is already pre-segmented 

into sonorant, obstruent, nasal and silence segments (see Chapter 3 for details). The 

tracking algorithm is only applied to sonorant regions hence avoiding tracking problems 

across sonorant / obstruent boundaries as reported by Talkin [83]. 

The formant tracker uses a two-pass algorithm, similar to the work done by Laprie 

et al. ([47, 481). The first pass finds individual formant tracks or parts thereof, called 

elementary tracks (Section 5.1). The second pass combines the elementary track informa- 

tion into consistent interpretations of F1, F2 and F3 using a wild-card mechanism to cope 

with misleading cues from the signal processing, such as insertions and deletions of parts 

of formants (Section 5.2). Since there might be more than one consistent interpretation 

of formants, the search produces a list of the N best interpretations. 

After describing the algorithm in Sections 5.1 and 5.2 we will evaluate the quality of 

the proposed algorithm. 

5.1 Finding Elementary Tracks 

There are three popular mechanisms for generating formant candidates for a given sonorant 

frame: 

1. computing the complex roots of a linear predictor polynomial [2], 

2. peak picking of a short-time spectral representation [77], 

3. analysis by synthesis 1661. 

Recently, Welling and Ney [89] proposed a formant estimation method based on digital 

resonators (see Section 8.2.1 for a possible application of this idea in the context of this 

work). 

In this work we have chosen to pick peaks of a 20-th order LPC spectrum to generate 

formant candidates for each sonorant frame of speech. We chose a high LPC model order 

to generally generate more formant candidates per frame. The spectrum is discretized 

linearly into 32 frequency bands. Therefore, the formant location is the index of the 

frequency band. 
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Algorithm for Finding Elementary Tracks 

1. Compute the 2&th order LPC and convert it into a 64-point power spectrum 
for each sonorant frame. 

2. For each sonorant frame, find the local maxima in the lower 32 power-spectrum 
values (0 - 4kHz). 

3. Initialize the elementary track hypotheses with the local maxima of the first 
frame of the sonorant segment. 

4. For every active hypothesis, connect the hypothesis to the closest unused max- 
imal point. If there is no such connection then terminate this hypothesis. 

5. Add all unused maximal points to the set of hypotheses. 

6. Repeat steps 4 and 5 for the next frame until the end of the sonorant region 
is reached. 

Figure 5.1: Elementary nack Finding Algorithm 

The algorithm that finds elementary tracks is summarized in Figure 5.1 and an example 

of the elementary tracks generated can be seen in the second display of Figure 5.6. 

The start or the termination of an elementary track (because of an unused maximal 

point or lack of a connector) defines a division of the sonorant region into sub-segments. 

These sub-segments define the step size of the dynamic-programming search (described 

below). 

The example of the word L'brother" in Figure 5.6 shows that the LPC algorithm cannot 

resolve the apparent formant merge of F2 and F3 in the beginning and the end of the 

phoneme /r/ (partly due to the low energy of F3) given the chosen model order. The 

same phenomenon happens at the end of the retroflexed schwa /axr/. As can be seen in 

the bottom display of Figure 5.6, the search will be able to "correct" those inaccuracies of 

the signal processing step by using a wild-card mechanism in a search, based on dynamic- 

programming principles, described next. 



CHAPTER 5. ROBUST, N-BEST FORMANT TRACKING 

5.2 N-best Search 

The search for consistent formant interpretations (joint search for F1, F2 and F3) is a 

dynamic-programming algorithm similar to the Viterbi search. The search nodes contain 

the current score and pointers to the elementary tracks representing the formant frequen- 

cies Fi (i = 1,2,3). The track elements pointed to in turn store information about the 

trajectory of the track, more precisely the location for the track at each frame of the 

sub-segment. In order to make the search algorithm more robust to errors of the previ- 

ous processing stages, a wild-card mechanism was implemented (see below). A wild card 

acts similarly to a real elementary track with the difference that there is no underlying 

track behavior other than the knowledge about the track location in the beginning of the 

sub-segment. 

The search algorithm is summarized in Figures 5.2 and 5.3. As mentioned above, the 

search progresses on a sub-segment by sub-segment basis. 

N-best Search Algorithm 

1. Initialize the search by hypothesizing sets of F1, F2 and F3 locations using 
the elementary tracks of the initial sub-segment and additional initialization 
rules. 

2. Apply the consistency rules to those hypotheses to get an initial score for each. 

3. Expand each hypothesis with elementary tracks of the next sub-segment using 
the expansion rules. 

4. Apply the consistency rules to those extensions and update the scores. 

5. Repeat steps 3 and 4 for all sub-segments until the end of the sonorant region 
is reached. 

Figure 5.2: N-best Search Algorithm 

Generally, formant-tracking algorithms try to find a good trade-off between maxi- 

mizing the amount of energy "explained" (sum of formant amplitudes) by a given inter- 

pretation and some sort of smoothness constraint (e.g. [48], [83]). Our goal is to find 

consistent interpretations of the formant information as represented by the elementary 
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Initialization Rules 

1. Add all elementary tracks of the first sub-segment which are within the ex- 
pected range for the formant Fi to the set of candidates Si. I 

2. If there exists a second sub-segment in the tracking region, then add a wild card 
to Si for every elementary track in this second sub-segment. The beginning 
locations of the wild cards are set to the locations of the elementary tracks in 
the second sub-segment. I 

3. If Si is empty, then add a wild card to Si with the default location for Fi. I 
Figure 5.3: Initialization Rules for the Search 

tracks. Therefore, we "count" the number of consistency violations as well as the number 

of preferred behaviors of a hypothesis. The list of credits is shown in Figure 5.4. A nat- 

ural connection is a continuation of an elementary track of one sub-segment in the next 

sub-segment (given that the track was not the cause for the sub-segment boundary). The 

parameter M A X D E L T A  controls the penalty (negative credit) for considering a large 

difference in formant locations across a sub-segment boundary. The total credit for an 

extension is then multiplied by the number of frames contained in the sub-segment and 

added to the current score for the interpretation. 

Credit  Assignment Rules 

+1 for following a natural connection (not applicable at the beginning of 
the search) 

+1 for using a unique elementary track (versus using a wild card) 

0 for using a wild card 

-2 for not using an elementary track of lower frequency 

-k for connecting 2 tracks further than k * M A X D E L T A  apart 

Figure 5.4: The Credit Assignment Rules for Computing the Score of a Hypothesis. 
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The expansion rules (Figure 5.5) generate reasonable extensions for a given hypoth- 

esis. The rules are designed to apply to each hypothesized formant location separately, 

independent of the location of the other (two) formants. The parameter MAXJUMP 

controls the maximum allowable difference between the end location of the current for- 

mant hypothesis and the elementary track to connect to. Because the search is advanced 

by one sub-segment at a time and the expansion rules are concise, the algorithm works 

efficiently enough to eliminate the need for a special pruning algorithm. 

Expansion Rules 

1. Add all elementary tracks which are within MAXJUMP bands of location of 
Fi to S,. 

2. If S, is empty, add a wild card with the same location as the last know hy- 
pothesis to Si. 

3. Discard all extensions which violate the ordering constraint on the formant 
locations: 

location of Fl 5 location of F2 < location of F3. 

Figure 5.5: Expansion Rules for the Search 

An example of the search output is shown in the bottom display of Figure 5.6. The 

lighter grey color indicates the presence of a wild card as part of the best-scoring hy- 

pothesis. In a post-processing step, the wild-card locations are replaced by a linear 

interpolation between the last known points (indicated by a dashed line in Figure 5.6). As 

can be seen in this example, the wild-card mechanism was able to cope with the formant 

merges in the retroflexed parts of both sonorant regions tracked. Figure 5.7 further shows 

the second and third solution found by the formant tracking algorithm for the example 

word "brother". 
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Figure 5.6: Display of (top to bottom): Spectrogram (0 - 8kHz), Elementary Tracks
(0 - 4kHz), Best Search Hypothesis (dashed line indicates the wild card interpolation),
Phonetic Transcription of the word "brother".

5.3 Evaluation

Because the role of our formant tracker is simply to pass N reasonable hypotheses to

the segment classifier, we have restricted ourselves to a few informal tests of our for-

mant tracker. The real tests lie in the application of the tracking algorithm in segment

classification and phonetic recognition described in Chapters 6 and 7.

In a preliminary study [78], we evaluated the formant tracker on 10 test utterances

from the TIMIT database containing 148 sonorant segments (vowels, liquids and glides)

for a total of 101 sonorant regions. The analysis shows that for all but 3 segments the best

scoring hypothesis was judged correct 1, with the remaining 3 cases being ranked second

IThe correctness was judged by the author by comparing the solution to the ESPS formant tracks and
inferring the expected correct location from the knowledge of the phonetic labels.
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Best Interpretation 2nd best Interpretation 3rd best Interpretation 

Figure 5.7: Top 3 Formant Interpretations of the word "brother" (as in Figure 5.6). The 
dashed lines are indicating the use of wild cards. 

in the N-best list. 

Due to the lack of a database with labeled formant information, we restrict ourselves 

at this point to analyze the diversity of the N-best list. For this purpose, we applied the 

formant tracker to all the sonorant regions of 3698 utterances of the training set, producing 

a 10-best list for each region. For each phonetic segment contained within that region we 

measured the diversity by counting the number of identical solutions among the top N 

interpretations. The results are tabulated for various values of N in Table 5.1. 

Table 5.1: Diversity of the N-best Formant Tracker. For example, 12.2% of all vowel and 
semi-vowel segments had exactly 2 unique formant interpretations. 

N 1 2 3 4 5 

Diversity 48.1% 12.2% 6.1% 4.9% 4.3% 

N 6 7 8 9 1 10 

Diversity 4.3% 4.0% 3.9% 3.7% 8.6% 

The relatively high number of identical solutions among the top N interpretations has 

two causes. Firstly, due to the fact that the formant tracker was applied to an entire 

sonorant region instead of a single segment, there are N interpretations per region, not 

segment, and therefore less diversity per segment is seen. Secondly, it also suggests that 
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a more efficient pruning mechanism for the algorithm is needed. 

5.4 Summary 

In this chapter, we have described a new robust, N-best formant tracker. This 2-pass 

algorithm first defines elementary tracks which are subsequently combined into N con- 

sistent interpretations of the formant information using a dynamic-programming search 

with a wild-card mechanism. The primary objective of the search is not to maximize the 

energy explained by a single hypothesis. The goal of this formant tracker is to find up 

to N consistent interpretations which are then passed on to the next processing step, the 

segment classification. This proposed algorithm gains its robustness from using wild cards 

to overcome limitations of the earlier processing steps and from the fact that more than 

one alternative is retained. 

In this thesis, we will use the formant-tracking algorithm to produce dynamic fea- 

tures for vowel classification described next in Chapter 6. Other applications for formant 

tracking information include: 

parameter extraction for a text-to-speech system 

analysis component for a formant based vocoder 

speaker identification, adaptation or normalization 



Chapter 6 

Explicit Formant Features for Segment 

Classification 

After describing segment classification experiments using cepstral features in Chapter 4, 

we will now examine feature sets based on explicit formant features and other knowledge- 

based features. The experimental conditions (trainingltest sets) are identical to the pre- 

vious vowel/semi-vowel classification experiments. 

This chapter describes one of the key contributions of this thesis research: vowel 

classification using explicit formant features in an N-best framework. Before we explain 

the basic trajectory approximation methods investigated in this thesis, piecewise-linear 

regression (Section 6.2) and Legendre polynomials (Section 6.3), we describe knowledge- 

based features in Section 6.1 that will be used in conjunction with the features capturing 

the formant trajectories to build vowel/semi-vowel classifiers. Finally, in Section 6.4, we 

describe the N-best classification framework. 

6.1 Knowledge-Based Features 

Perceptual experiments using natural and synthetic vowels (see Section 2.3 for an overview 

of some of the literature) suggest that the following features are important for identifica- 

tion: intrinsic vowel duration, fundamental frequency, relative duration of onglides and 

offglides (for discrimination of tense and lax vowels). Additionally, we also included for- 

mant amplitude and formant bandwidth in our experiments, despite the fact that Klatt has 

concluded from his experiments [40] that these features are less important than formant 

location. 
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The classification performance including these additional features in combination with 

either basic approximation (line segments, Legendre polynomials) are summarized in Ta- 

bles 6.1 and 6.3. The classifiers were trained on the NIST training set and tested on the 

MIT development test set. The performance of the MFCC-feature based classifier (see 

Section 4.2) is provided as a point of reference. 

Pitch Feature 

In this work, we use a pitch tracker based on the cepstrum method of pitch extraction. 

This tracker, developed by Van Vuuren, [86]) allows the analysis window length to be 

changed adaptively for greater dynamic range. We use a lOms increment and allow a 

window size of 10-30ms. The pitch track of each utterance is smoothed by a 5-point 

median filter. The pitch feature is defined as the the averaged pitch estimates over the 
a- -. . 

middle 80% of the segment. 

Onglides and Offglides (F1 Intervals) 

As suggested by Peterson and Lehiste [69], symmetry and duration of the onglides (formant 

transition into the vowel nucleus) and offglides of F1 in particular are important features 

for the tensellax vowel separation. We measure the relative distance of the end of first 

line segment from the beginning of the segment, as well as the beginning of the last line 

segment from the end of the phonetic segment. This feature was only used in conjunction 

with the line-segment baseline features; since an interpretation in the context of Legendre 

polynomials is not directly available. 

Formant Amplitude and Bandwidth 

It has been argued by Bladon et al. [7], among others, that the formant locations are not 

sufficient for vowel perception. They argue that capturing the spectral shape is essential 

in describing the nature of the vowel sound. To investigate this possibility, we used 

the formant amplitudes (energy at formant locations for the middle of the segment) and 

formant bandwidth (distance between 3db points) as additional features. Again, the 

individual feature measurements are averaged over the middle 80% of the segment. Even 
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Piecewise Linear Regression 

1. Initialize the algorithm by dividing the track into k equally long segments. 

2. Compute slopes and intercepts for each segment given the current segmenta- 
tion. 

3. Using a dynamic programming search, find the segmentation which minimizes 
the overall regression error given the current slopes and intercepts. 

4. Repeat Step 2 until either the segment boundary locations are no longer chang- 
ing or until the regression error is below a threshold. 

Figure 6.1: Piecewise Linear Regression Algorithm 

though these features are redundant with one another in a cascaded formulation of vowel 

production [67], we find them to contribute independently in our system. 

6.2 Piecewise-Linear Regression 

A variety of methods to capture the dynamic shape of trajectories in the parameter space 

have been proposed in the past. The literature review in Chapter 2 explains some of the 

methods used by other researchers to approximate the trajectories of cepstral or spectral 

features. In this work, we use the Piecewise Linear Regression (PLR) algorithm proposed 

by Krishnan and Rao [44] to approximate each formant track by three line segments. 

The PLR algorithm, summarized in Figure 6.1 generally converges to the optimal solution 

within 3 to 5 iterations. In practice, we have found the computational load to be negligible. 

The boundary locations for the line segments are chosen independently for each formant 

track. 

Figure 6.2 illustrates the application of the PLR algorithm. The second formant of the 

phoneme lay/ has been approximated by 3 line segments (the line segments are extended 

beyond the connection points for better visualization). 

The features for the vowel segments are determined by measuring the start and end 

points of the line segments for each formant (marked by dots in Figure 6.2). Additionally, 
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Figure 6.2: Piece-wise Linear Regression Formant Features: the second formant of the
phoneme /ay/ is approximated by 3 line segments using the PLR algorithm. The dots
indicate the locations of the formant features for this particular segment.

if the neighboring segments also contain formant information we add the locations of the

last and first line segments of the left and right adjacent segments respectively. After

adding the segment duration to the list of features, we end up with 19 features describing

the dynamics of the segment (see Figure 6.3).

In choosing to approximate the formant trajectories by three line segments, we intended

to create a "direct" feature representation, providing the classifier with features describing

the important information directly, rather than encoded, as is the case for polynomial

approximations (see the next section for such a polynomial fit). The vowel/semi-vowel

classification results using the PLR features in conjunction with knowledge-based features

described in the previous section are reported in Table 6.1.

It should be noted that the amount of contextual information is limited to the case

of adjacent sonorant segments, whereas the cepstral-based classifiers are always given

contextual information. This might be a contributing factor to the considerably worse

classification performance for PLR features (66.0%) compared to the MFCC-based clas-

sifier (71.6% and 73.1%) as reported in Table 6.1.
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PLR Formant Features 

1. For each formant: 

left (right) end point of the first (third) line segment, 

connection points (averaged) between the first and second resp. 
second and third line segments, 

If there is a sonorant segment to the left (right) of the current 
phonetic segment: 

- first (last) point of the last (first) line segment of the prior 
(next) phonetic segment 

otherwise 

- default value 

2. Segment duration 

Figure 6.3: Piecewise-Linear Regression Formant Features for Sonorant Segments 

Table 6.1: Vowel Classification Results For PLR Feature Sets. The codes for the 
knowledge-based features (Section 6.1 are: Duration (D), Amplitude (A), Pitch (P), Band- 
width (B), and F1 Intervals (I) 

Feature Set # Features Accuracy 

PLR (3 Line Segments) + D 19 66.0% 

PLR + D + A 22 68.1% 

P L R + D + P  20 67.9% 

P L R + D + B  22 66.5% 

P L R + D + I  2 1 67.2% 

P L R + D + A + P  23 68.2% 

MFCC + D 113 71.6% 

MFCC + D + P 114 73.1% 
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6.3 Legendre Polynomials 

In this section we describe an alternative method for approximating the trajectory of the 

formant tracks using third-order Legendre polynomials (LEG). We chose the Legendre 

polynomials because they constitute an orthonormal basis set, which results in more ro- 

bust parameter estimations. The third-order polynomials in Table 6.2 are taken from 

1121, where M is number of formant trajectory data points {yl,.. . , yM) available for the 

parameter estimation. The Legendre coefficients aj are computed as follows: 

An arbitrary point x E (0,l) within the scaled segment can be reconstructed by: 

The average prediction error can then be computed as: 

As can be seen from Table 6.3, using the Legendre coefficients aj together with the 

average prediction error per formant trajectory significantly improves the classification 

performance from 66.0% for the PLR features to 69.6%. 

From the vowel/semi-vowel classification results in Table 6.3 it can be seen that the 

combination of Legendre coefficients and knowledge-based features perform virtually iden- 

tically to the cepstral features without pitch information. However, if we add the pitch 

feature to the cepstral features, we can improve the classification performance to 73.1%. 

The combination of MFCC features with the Legendre approximation and knowledge- 

based features (including pitch) cannot further improve the classification performance 

significantly. This result reflects the fact that there is a high degree of similarity between 

formant-based features and cepstral features. Additionally, TIMIT contains high-quality 

read speech, for which pitch extraction is easier than for spontaneous, telephone-quality 

speech. As indicated earlier (Chapter I) ,  the advantages of formant-based featrures are 

in their use of global constraints in more appropriate feature space for principled speaker 

normalization. 
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Table 6.2: Legendre Polynomials 

Table 6.3: Vowel Classification Results For LEG Feature Sets 

LEG Vowel/Semi-Vowel Classification Results 

- 

Feature Set 

LEG + PE + D 

LEG + PE + D + A 

L E G + P E + D + A + P  

L E G + P E + D + A + P + B  

MFCC + D 

MFCC + D + P 

MFCC + LEG + PE + D + A + P + B 

# Features 

22 

25 

26 

29 

113 

114 

141 

Accuracy 

69.6% 

70.6% 

71.3% 

71.8% 

71.6% 

73.1% 

73.4% 
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As in Chapter 4, we augmented the training vectors with examples based on machine- 

generated segmentations. Table 6.4 summarizes the results. 

Table 6.4: Vowel/Semi-Vowel classification results using classifiers trained on TIMIT and 
machine-generated segmentations 

Classification Results Using Machine-Generated Segmentations 

- 

6.4 N-best Classification Paradigm 

Features 

LEG + MFCC 

LEG + MFCC 

The formant tracker described in Chapter 5 produces a list of N consistent interpretations. 

The decision on the correct interpretation is delayed until after the classification stage. 

Because we are interested in phonetic recognition, we do not attempt to determine whether 

or not the correct interpretation was found. Our objective is to classify the segments in 

question correctly. Therefore, each interpretation is used to estimate phonetic classification 

probabilities using a neural network classifier. The phonetic category a* with the highest 

probability over all N interpretations Interpi, is used to label the segment: 

Segmentation 

Method 

TIMIT 

TIMIT + Machine 

Accuracy 

TIMIT MACHINE 

a* = argmax p(al Interpk) fork = 1 ... N 
a,k 

(6.1) 

In essence, the question is: "Assuming this is the correct formant interpretation, which 

phoneme would it be?" Note that we propose to use more than one set of features per 

segment in the classification process! This is a novel concept, as far as we know. 

Unfortunately, we do not have access to previously-labeled formant data (for the 

TIMIT database) for training and testing purposes. Therefore, instead of labeling the 

73.4% 

74.1% 

70.8% 

71.7% 
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entire training set by hand, we elected to employ an iterative training procedure described 

in Figure 6.4. 

Iterative Training Procedure 

1. Train an initial set of segment classifiers (with different numbers of hidden 
nodes and weight initializations) assuming that the highest scoring formant 
interpretation is the correct one. 

2. Choose the classifier among the newly trained ones which performs best on 
development test set 1. 

3. Use the classifier from Step 2 to select the interpretation with the highest 
classification probability for the correct category for the training set and 
development test set 2. 

4. Train a new set of segment classifiers. 

5. Repeat Steps 2 through 4 with reversed roles for the two development test 
sets until no further improvement in the overall classification accuracy can 
be found. 

Figure 6.4: Iterative Training Procedure for Sonorant Segment Classifier 

The experiments using the iterative training procedure were conducted using the OGI- 

Train, OGI-Devl, and OGI-Dev2 training and test sets (see Table 4.1) because we needed 

multiple, independent development test sets. As a consequence of the smaller initial 

training set (OGI-Train), our initial classifier only achieved 63.4% classification accuracy. 

Table 6.5 summarizes the results of the iterative training process. The number of 

formant interpretations per segment was set to 3. The iterative process reduced the error 

rate by 2.5%. This small decrease is mainly due to the fact that most of the interpretations 

are actually identical (see Section 5.3) therefore reducing the choice for the selection of 

training patterns. An improvement of the pruning strategy of the formant tracker (see 

Chapter 8) should lead to a higher performance gain for the iterative training procedure. 

Unfortunately, we were unable to achieve any improvement with N > 1 when starting 

with the best classifier (N = I), trained on the entire TIMIT training set NIST-Train, 

and using N = 5. See the discussion at the end of this section for a possible explanation 
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Table 6.5: Classification Results for Iterative Training Procedure 

Iteration Training Sets Test Set Accuracy 

of this negative result. 

"Oracle Experiment" 

As mentioned above (Equation 6.1), the correctness of the classification in the above 

experiments was measured by comparing the label of the category with the highest classi- 

fication probability of all the formant interpretations with the TIMIT transcriptions. To 

check how often an interpretation of lower classification score corresponded with the true 

TIMIT label, we evaluated the performance of the best iteratively-trained vowel classifier 

under the assumption that a classification is correct, if for any of the N interpretation the 

segment was classified correctly: 

3k a* = argmax p(alInterpk) AND a* correct classification 
a,k 

(6.2) 

Table 6.6 summarizes the results of this analysis where we have used the PLR features 

along with the segment duration for a total of 19 features to classify the vowels and semi- 

vowels of the OGI-Devl set. It shows, that if we had an "Oracle" inside the recognizer, 
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which could determine the correct interpretation, we could improve the classification ac- 

curacy from 71.8% to 76.3% which corresponds to an error reduction of 17%! This result 

suggests that k > 1 is often the correct interpretation. 

Table 6.6: Classification Results for Oracle Experiment 

1 

Classification Results: Omcle Experiment 

The potential performance improvement for the N-best paradigm could also be due 

to the fact that up to N different classification results are compared to the correct label, 

which naturally increases the chance of producing a correct classification. In order to be 

able to rule out this possibility, we counted the number of different classification answers 

proposed for each N. The results in row 3 of Table 6.6 indicate that only in selected 

cases the subsequent classifications were different from the answer for N = 1. This result 

suggests that the N-best paradigm has considerable potential. The problem of not being 

able to improve on the N = 1 case (see above) might hinge on the fact that the outputs 

of the MLP classifier are not strictly comparable to each other since they are estimated 

using different feature vectors (only a comparison among the categories for the same 

feature vector are permissible). In theory, the outputs of the MLP classifiers are posterior 

probabilities 1321 and should be comparable, but in practice the assumptions regarding 

size of training data and classifier resources are not met and hence the outputs are not true 

posterior probabilities. Future research into the rescaling of MLP outputs is needed to 

solve this problem properly. Initial experiments using MLPs for a recombination of either 

the classifier outputs or presenting all N feature representation to a classifier have not 
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resulted in any improvement over the N = 1 case. Additionally, the experiment suggests 

that the relatively small number of training examples poses a problem for the iterative 

training procedure. 

6.5 Summary 

In this chapter, we have created vowel/semi-vowel classifiers that used features based on 

the N-best formant tracker described in Chapter 5. When approximating the formant 

trajectories by third order Legendre polynomials and adding formant amplitude, formant 

bandwidth, as well as pitch and segment duration, we can achieve a comparable level of 

classification accuracy (71.8%) to the MFC-based classifier (71.6%) developed in Chapter 4 

for N = 1, using only 29, albeit expensive (in terms of computation requirements) features 

compared to the 113 features for the MFC-based classifier. The best classification results 

are achieved by combining the MFCC and formant features yielding a 73.4% accuracy, 

which were further improved by adding machinesegmented training examples to 74.1%. 

Subsequent experiments with larger Ns show only a small improvement. This is most 

likely due to the improper estimation of posterior probabilities by the MLP classifiers 

across different feature vectors. When ignoring the level of the classification scores (and 

only considering the classification result), we notice that there is a considerable potential 

for improvement (up to 76.3% classification accuracy) if the scaling problem can be solved. 

The experiments in this chapter demonstrate that satisfactory classification perfor- 

mances can be achieved using formant-based features, despite the shortcomings of the 

current implementation of the formant tracker. The feature configuration is an initial 

attempt at exploring the power of formant-based features. We hope that future im- 

provements will add additional credibility to the idea of using explicit formant features 

for classification. Additionally, similar improvements can be anticipated for consonant 

classification. 



Chapter 7 

Phonetic Recognit ion 

In this chapter, we report on the phonetic recognition experiments using the segment 

lattice described in Chapter 3 and the segment classifiers developed in Chapters 4 and 

6. We concentrate in this thesis on phonetic recognition experiments without the use 

of phonotactic constraints. While using a language model can significantly improve the 

recognition accuracy, it can also hide weaknesses of the recognizer. 

First we introduce the probabilistic framework that underlies the search algorithm. 

Next, in Section 7.2, we discuss some implementation issues, i.e. modifications to the 

segment lattice and the basic search formula. Finally, the recognition results are reported 

and discussed. 

7.1 Probabilistic Framework 

The objective of phonetic recognition is to find the most likely sequence of phonetic units 

A* = {al, a2,. . . , a N )  given the acoustic observations X = {XI, 22,. . . , XT): 

A* = argmax p(A1X) 
A 

(7.1) 

In the case of a segment-based framework, Equation 7.1 has to take into account all 

possible segmentations S of X: 

A* = argmax C p(AISiIX) 
A S i E S  
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For the sake of efficiency, most speech recognition systems identify the most likely state 

sequence. Therefore, Equation 7.2 is simplified to find the most likely joint segmentation 

and labeling: 

A* = p(A, SijX) 
A S ,  

(7.3) 
- - 

Because our segment classifiers (MLP) estimate posterior probabilities, we can expand 

Equation 7.3 as follows (analogous to the expansion of Leung et al. [55]): 

A* = argmax p(AISi7 X) - p(Si1.X) 
A,Si - - 

phonetic segmentation 
classification 

The first term in Equation 7.4 represents the segment classification task. The second 

term, the probability of a segmentation, is generally computed as the product of the 

individual segment probabilities p(si I X )  : 

The estimation of the segment probability, however, is difficult. Unlike in the case 

of the segment classification, we do not have an intuitive notion of a probability for a 

segmentation, much less a feature representation for training a probabilistic estimator. 

Therefore, this problem has received little attention in the research on segment-based 

systems to date. The term p(SIX) or alternatively p(S) is generally approximated by 

a global constant. This constant is used to control the insertion and deletion rates of 

a recognizer'. One notable exception are Leung et al. [54]. They propose to estimate 

the probability of a segment by multiplying the probabilities of the external and internal 

boundaries of a segment. They estimate the boundary probabilities using a separately 

trained MLP classifier. 

'Insertions and deletions factor into the recognition accuracy score. See Section 7.3 for details. 
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In this work, we are using the same approach of multiplying acoustic segment (AS) 

boundary probabilities; that is, the probability of a segment si = {as,, . . . , asn) is: 

However, we are taking advantage of previously computed information (while con- 

structing the segment lattice) rather than training a separate classifier. The probability 

of the boundary bk between the acoustic segments ask and ask+l is computed as the dif- 

ference in the broad category probability distributions, where NB is the number of broad 

categories pi: 

The sum in Equation 7.7 ranges from 0.0 (in the case of identical probability distribu- 

tions for ask and ask+l) to 2.0 (in the case the two distributions are disjoint, indicating 

the presence of a phonetic boundary)2; this explains the factor in front of the sum. 

7.2 Implement at ion Issues 

The search for the optimal path (in the sense of Equation 7.2) through the segment lat- 

tice is implemented as a dynamic programming algorithm, similar to the Viterbi search 

algorithm [25] used in most speech recognition systems. The fundamental algorithm is 

modified to be used in a segment-based framework in the following way: instead of ad- 

vancing the search horizon one frame at a time, the search hypotheses are updated at each 

boundary bk. Each search hypothesis terminating at this boundary is extended with all 

segment hypotheses starting at this boundary. 

'Ideally, there are 2 differences in the sum of size 1.0 for the two categories which are the unique winners 
in ask and  ask+^ respectively. 
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All of our recognition experiments will be in a context-independent mode, since all 

of our classifiers model context-independent units (phonemes). See Goldenthal [31] for a 

discussion of implementation issues related to context-dependent recognition. 

The selection of the appropriate segment classifier in the case of specialized version 

for vowels and consonants is guided by the information attached to each segment by 

the lattice-generation algorithm. The segment-classification probability p(alsi, X )  in the 

basic search Formula 7.4 has to be modified to include the probability of the classifier 

p(C) :  

Experiments will show that this does not introduce any degradation since the results 

are virtually identical for the cases of separate and single classifiers (using the same clas- 

sification features). 

Similarly, the sonorant regions used for the formant tracker are inferred from the lat- 

tice. The system enforces consistency of formant interpretations across adjacent segments 

within the same sonorant region. That is, each sonorant segment is not treated separately 

if it is adjacent to another sonorant segment. 

While experimenting with the system, we have found two simple modifications that 

improve the recognition performance. Firstly, the relative weighting of the components of 

the basic search formula (Equation 7.4) can be modified by introducing a scaling factor 

0. Secondly, the segment lattice can be augmented by inserting additional segments in 

places of likely omissions by the original lattice generation algorithm. 

7.2.1 Modified Boundary Probabilities 

While Equation 7.4 defines the best scoring path through the segment lattice, we have 

observed that often the probabilities in Equation 7.4 are not estimated properly and 

therefore lead to incorrect paths being found. Figure 7.1 illustrates this problem. 

Assuming that in this case the hypothesis H2 = {B, C) is the correct path, it can 

lose to hypothesis HI = { A )  based on the simple fact that fewer terms are multiplied in 
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Figure 7.1: Search Hypotheses 

determining the score S for each path: 

From Equation 7.9 we can see that the probability of the middle boundary p ( h )  plays 

a pivotal role. Even if the product of the segment classification probabilities for segments 

B and C are higher than p(alA, X), the boundary probability p ( b )  still has to be larger 

than 0.5 for H2 to win over H I .  In practice, we have observed that this is not always the 

case, especially for boundaries between two sonorant segments. We can try to correct this 

problem by rescaling the boundary probabilities; we have had success with a rescaling of 

the form: 

p s ( b ) = l - ( l - ~ ( b ) ) ~  - 
Additionally, we can control the influence of the boundary probabilities on the search 
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path by introducing a scaling factor 8 in Equation 7.4: 

7.2.2 Augmented Segment Lattice 

Another source of recognition errors is the production of insertions in the case where only 

a single (incorrect) segment spans a region of speech. Systematically augmenting the 

segment lattice with combinations of the adjacent segments with the single segment gives 

the search an alternative. Figure 7.2 illustrates this process. 

Figure 7.2: Augmentation of Segment Lattice due to single Segment D 

In the original segment lattice (segments A,. .., G) contains a single segment D, which 

forces the addition of segments A', C', E', and F'. This process is applied to single short 

segments, and reduces the insertion rate as can be seen in Table 3.3. 

7.3 Recognition Results 

Evaluating the performance of a speech-recognition system is more complex than scoring 

a segment-classification experiment. The speech-recognition system generates a tran- 

scription which is compared against the reference transcription provided by the TIMIT 
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database. An alignment program3 is used since in general the number of tokens in these 

two strings are different. When comparing the two transcriptions, we can observe three 

types of errors, summarized in Table 7.1. 

Table 7.1: Types of Recognition Errors 

Types of Recognition Errors 

Substitutions: Segments in both transcriptions are lined up, but the 
labels are different 

Insertions: an additional segment is proposed by the search 
algorithm 

Deletions: a true segment is missed by the search algorithm 

The scoring program finds the alignment which minimizes the sum of segment inser- 

tions, deletions, and substitutions over an utterance. However, since theoretically, one 

can always achieve 100% correct classification by generating all possible sequences, an 

additional measurement, the recognition accuracy, is generally used as the significant per- 

formance number (Table 7.2). 

Table 7.2: Definitions of Performance Measurements 

Performance Measurements 

number of phones correct 
Percent Correct = 

number of phones in the reference transcription 

Accuracy = Percent Correct - Percent Insertions 

The phonetic recognition experiment using different classifiers developed in Chapters 

4 and 6 are summarized in Table 7.3. The language model is an implicit unigram, since 

the posterior probabilities estimated by the MLP classifiers contain the prior probabilities. 

3 ~ ~ S ~  provides a reference implementation 
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The selection of the appropriate segment classifier in the case where separate vowel/semi- 

vowel and consonant classifiers were used (experiments C-G in Table 7.3) was based on 

the broad-phonetic tagging by the lattice-construction algorithm. Experiment G used 

the combination of formant and MFCC features. The context-independent, unigram 

recognition result obtained by Glass et al. [29] is provided as a point of reference. 

Table 7.3: Phonetic recognition results for various classifiers using a unigram language 
model. "T" and "M" refer to the training segmentations obtained from either TIMIT or 
our automatic process respectively (see Section 4.3). The experiments are labeled A-H 
for easier reference in the text. Cons = Consonant. Fmt = Formant. 

MIT-Dev NIST-Core 
Classifier 

Correct Accuracy Correct Accuracy 

A Phoneme T 63.6% 59.8% 62.0% 58.2% 

B Phoneme T+M 64.5% 61.1% 63.2% 60.1% 

C MFC Vowel/Consonant T 63.5% 59.6% 62.4% 58.5% 

D MFC Vowel/Cons T+M 64.9% 61.0% 63.1% 59.4% 

E Formant-Vowel/ Cons T 65.5% 60.6% 62.5% 57.1% 

F Formant-Vowel/ Cons T+M 65.5 % 61.1% 63.2% 58.4% 

G Fmt/MFCC-Vowel/ Cons T+M 66.8 % 62.0% 64.5% 59.7% 

H Glass et al. [29] 61.8% 

As can be seen from Table 7.3, the phonetic recognition results are slightly worse at 

this point than the state-of-the-art performance (H). Overall, the performance on the 

NIST-Core test set is lower by about 1.5 to 2 percentage points. This is a well known fact 

resulting from the lack of vocabulary overlap of NIST-Core with the training set, NIST- 

Train, whereas MIT-Dev does have a considerable overlap with NIST-Train in terms 

of orthographic transcriptions. This indicates that today's phonetic recognition systems 

(tested on TIMIT) are not yet vocabulary-independent. We suspect that the implicit esti- 

mation of the apriori class probabilities (equivalent to using a unigram language model in 
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the phonetic search) is not estimated accurately enough by our MLP classifiers, especially 

in the multi-classifier case. 

The performance of the multi-classifier experiments using cepstral features (C & D) 

are virtually identical to the experiments using a single classifier (A & B). This is not 

surprising considering that all three classifiers are using the same set of classification 

features. There are two main effects that could affect the recognition performance in a 

system using multiple classifiers. On one hand, more accurate classifiers could be built 

by separating the acoustically distinct consonants from the vowels and semi-vowels, and 

hence enabling the classifiers to create more powerful representations in the hidden layers. 

On the other hand, recognition error might be created due to the explicit selection of one 

of the classifiers by the lattice construction algorithm (tagging of the segment hypotheses 

with a broad phonetic identity). 

Additionally, it should be noted that the results using the formant-based vowel/semi- 

vowel classifiers (E, F, & G) are comparable to the results using only cepstral-based 

classifiers (C & D), largely explainable by the almost identical classification performances 

(on hand-labeled test data). This is not self-evident however since the formant-based 

classifiers use additional features such as formant amplitude and pitch which cannot be 

computed as robustly as in the case of known segmentations. We have found that aver- 

aging the amplitude, pitch, and bandwidth features over the middle 80% of the segments 

increases the performance on machine-generated segments and hence also the phonetic 

recognit ion accuracy. 

7.4 Summary 

The phonetic recognition experiments, using context-independent phoneme models, de- 

scribed in this chapter demonstrate the validity of our segment-based approach. We 

discussed issues related to the probabilistic framework and noted that the estimation of 

p(S) ,  the probability of a segmentation is largely an unsolved problem. We proposed to 

use the broad category information of the acoustic segments used in the construction of 

the segment lattice to calculate boundary probabilities p(bk) .  As Glass et al. [30] have 
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pointed out, our approach (along with most others described in Chapter 2) is not consider- 

ing the probability of all the competing hypotheses when computing the best-scoring path 

through the segment lattice. The issue of a proper probabilistic framework, taking into 

account the inaccuracies of the probability estimations by the segment classifiers, clearly 

deserves more attention in the future. 

The context-independent phonetic-recognition results for unigram language models 

reported in this chapter are sIightly below the state-of-the-art performance (under similar 

conditions). Nevertheless, these results are very encouraging and give credit to the idea 

of incorporating explicit speech knowledge into the recognition process. 



Chapter 8 

Conclusions and Future Work 

The goal of this thesis was to create a flexible recognition framework for the explicit in- 

corporation of speech knowledge into speech recognition algorithms. Below we summarize 

the major results from our research that demonstrate the partial accomplishment of this 

ambitious goal. This work should of course not be viewed as the definite answer to the 

question of the integration of speech knowledge into the recognition process, but rather 

as a step towards the goal of improving the accuracy and robustness of future speech 

recognition systems to a level that will allow for the technology to be used ubiquitously 

in everyday life. Section 8.2 contains an outline of future work we hope that will extend 

this body of work accordingly. 

8.1 Thesis Summary and Contributions 

The segment-based framework described in Chapter 3 provides a useful basis for integrat- 

ing knowledge into speech-recognition systems. By using broad-phonetic classification 

scores as the basis for merging decisions, we were able to construct a segment lattice that 

contained on the average 6.0 segments (Table 3.3) for every segment of the hand-labeled 

transcription. The best aligned path through the lattice (using a dynamic programming 

search technique) has 2.5% insertions and 1.6% deletions with respect to the TIMIT tran- 

scription. We take advantage of the fact that each segment hypothesis in the lattice has 

a broad phonetic identity by inserting additional voiced stop segment hypotheses into the 

lattice structure in places where a closure-vowel transition was detected. After applying 

additional correction rules to the segment lattice, the alignment error was reduced to 1.2% 
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insertions and 1.1% deletions with an overgeneration of 7.00 segments per hand-labeled 

TIMIT segment. 

Next, we trained a set of segment classifiers using static MFC-based features (Section 

4.2). Three different classifiers were trained: 

a phonetic segment classifier with 40 phonetic categories performing at 74.0% correct 

classification on the MIT development test set, 

a a vowel/semi-vowel classifier for 14 vowel and 4 semi-vowel categories with a clas- 

sification accuracy of 71.6%, and 

a consonant classifier with the remaining 22 consonant categories which performs 

78.8% correct classification. 

We noted that there exists a mismatch between the development conditions of the 

classifiers and the usage thereof. The segment classifiers are trained and tested on hand- 

labeled segmentations, and used in a recognizer that does not have access to those per- 

fect segmentations. When we evaluated the performance of the classifiers on machine- 

generated segmentations (using a search algorithm to find the best alignment of the seg- 

ment lattice with the hand-labeled transcription) we observed a significant drop in classifi- 

cation accuracy, e.g. from 74.1% to 70.4% for the phonetic segment classifier (Section 4.3). 

Therefore, we added training examples based on machine-generated segmentations. The 

classifiers trained in this manner showed an improvement in accuracy on both the TIMIT 

and machine-segmented test vectors, e.g. the phonetic classifiers improved to 75.1% on 

TIMIT-segmented and to 72.8% on the machine-segmented ones. This demonstrates a 

general method for increasing the amount of training data (which generally results in 

better classification performance) while at the same time reducing the mismatch between 

training and usage conditions. 

The second goal of this thesis was to demonstrate the potential of explicit formant 

features for the purpose of vowel classification. To that end, we developed a robust, N- 

best formant tracker which is described in Chapter 5. The tracking algorithm is based on 

the following assumptions: 
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execute tracking only in sonorant regions, 

use a wild-card mechanism to compensate for errors in previous processing steps, 

a find up to N "consistent" interpretations of the formant information, and 

delay the selection of the correct formant interpretation until after the classification 

and search. 

In Chapter 6 we described vowel and semi-vowel classification experiments using these 

formant interpretations. We experimented with two methods for approximating the for- 

mant trajectories and found that using third-order Legendre polynomials outperformed 

(in terms of classification accuracy) the piecewiselinear regression method. Together 

with formant amplitude, formant bandwidth, pitch, and segment durations the Legendre 

coefficients and prediction error form a feature representation that classified the vowels 

and semi-vowels of the MIT development test set with virtually the same accuracy as the 

MFCC-based vowel/semi-vowel classifier (71.8% for the formant features versus 71.6% 

for cepstral features) for N = 1. Increasing N to 5 did not result in an improvement in 

classification accuracy. We discussed possible causes for this negative example in Section 

6.4. In an additional "Oracle" experiment we demonstrated the potential for the N-best 

approach: by ignoring the magnitude of the posterior probabilities we achieved a 76.1% 

correct classification. Further research will have to investigate the possibility of either scal- 

ing the probability estimates or improvements to the pruning mechanism of the formant 

tracking algorithm to harness some of this potential for improvements in classification 

and recognition accuracies. In a final vowel classification experiment, we combined the 

above formant features with the cepstral-based features (for a total of 141 input features) 

and achieved the highest vowel/semi-vowel classification accuracy of 74.1%, when adding 

training vectors based on machinegenerated segmentations. 

The phonetic recognition experiments reported in Chapter 7 further demonstrate the 

validity of our segment-based framework with explicit formant features. Recognition 

accuracies of 62.0% on MIT-Dev and 60.1% on NIST-Core for unigram searches are 
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slightly worse than the best reported results under similar conditions (using context- 

independent models with unigram and bigram language models respectively). The re- 

sults using vowel/semi-vowel classifiers based on explicit formant features showed a slight 

improvement in performance, although it is still below the performance of the state-of- 

the-art system. Nevertheless, these results are very encouraging and give credit to the 

idea of incorporating explicit speech knowledge into the recognition process. The chapter 

includes a discussion of search issues pertaining to segment-based systems. 

The contributions of this thesis research are summarized in Table 8.1. 

Table 8.1: Thesis Contributions 

Thesis Research Contributions 

Creation of a segment-based recognition framework with broad category in- 
formation, 

Demonstration of the benefits of including training vectors based on machine 
generated segmentations, 

Creation of a robust, N-best formant tracker using a wild card mechanism, 

Demonstration of the potential of the N-best classification paradigm, 

Construction of vowel/semi-vowel classifiers based on explicit formant fea- 
tures, 

Validation of the segment-based recognition framework using multiple, spe- 
cialized segment classifiers, and knowledgebased features, through phonetic 
recognition experiments. 

Next, we describe some of the many possible extensions of this thesis research, in the 

hope that the reader will find inspirations for his or her own research. 

8.2 Future Work 

This research is meant to lay the foundations for a line of research exploring the use of 

explicit speech knowledge in a segment-based speech recognition paradigm. Our initial 



CHAPTER 8. CONCLUSIONS AND FUTURE WORK 87 

focus was on using explicit formant features for vowel classification. We elected to work 

with the TIMIT database as an accepted standard to develop the basic technology. How- 

ever, we realize that the true test for this technology lies in the performance under more 

difficult conditions, especially for telephone-quality speech. Therefore, in the first part of 

this section on future work, we will discuss anticipated research challenges and possible 

solutions to adapting the proposed technology to telephone-quality speech. In the second 

part, we outline other possible extensions to this basic paradigm. 

8.2.1 Porting to Telephone-Quality Speech 

There are several steps that have to be taken when porting our system, trained on the 

TIMIT database, to an acoustically distinct environment, listed in Table 8.2. Note that 

steps 3 and 4 are only necessary if formant-based features are used. 

Table 8.2: Steps necessary to port the system from one environment to another. 

Porting Steps 

1. redefine the acoustic segmentation function, 

2. retrain the acoustic-segment classifier, 

3. adjust procedure to find formant candidates, 

4. find pitch tracker for new environment, and 

5. retrain segment classifier (s) 

Research Challenges 

From the list in Table 8.2 it can be seen that the biggest research challenges for porting 

SWISS to telephone-quality speech are the construction of an adequate pitch tracker and 

the reliable detection of formant candidates (steps 3 and 4). Contrary to popular belief, 

reliable and accurate pitch tracking is not a solved problem for telephone speech. Addi- 

tionally, initial experiments with telephone speech show unreliable detection of formant 

candidates, especially for F3, using the peak-picking method described in this thesis. In 
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telephone speech, F3 can either vanish from the spectrum due to the bandwidth limitation 

(F3 > 3400 Hz) or channel distortions that tend to affect the weakest spectral peaks (i.e. 

F3) the most. 

Possible Solutions 

Recently, Welling and Ney proposed a formant estimation method based on digital res- 

onators [89]. The dynamic programming algorithm reliably finds exactly k formant candi- 

dates per frame (by placing k resonators along the frequency axis). The drawback of this 

method is that there is not direct estimation of the correct number of formants present 

in the spectrum. The prediction error is always smaller of higher values of k. Initial 

work with this resonator method showed that in the cases where the number of formants 

present in the spectrum matches the number of resonators, the estimates are reliable. In 

the mismatched cases the following was observed ( M  is the number of formants in the 

spectrum): if M = 3 and k = 2 then the higher formant estimate tends to be placed 

between the true F2 and F3 unless F2 is considerably more prominent than F3. In the 

reverse situation, M = 2 and k = 3, the first formant tends to be approximated by two 

resonators. We expect that by combining the candidates found for k = 2 and for k = 3, 

resulting in 3-5 distinct formant candidates per frame, and using our N-best tracking 

algorithm, we should be able to overcome the assignment problems and produce a reli- 

able formant tracker for telephonequality speech. Additionally, some perceptual data 

suggests that measurements of F1 and F2 alone are able to separate the majority of the 

vowel categories (with the exception of the retroflexed vowels), leading to the speculation 

that simply using formant features based on F1 and F2 might prove powerful enough for 

the basic vowel classification. 
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8.2.2 Extensions to the Basic Paradigm 

The following list of possible extensions to the basic paradigm are in no particular order. 

Context-Dependent and Gender-Specific Modeling 

The most obvious extension of the research presented in this thesis is the creation of 

context-dependent models. It has been observed numerous times that the accuracy of pho- 

netic recognition improves when going from context-independent to context-dependent 

models. In the context of this research, context-dependent modelling could be achieved 

the "traditional" way [50] by creating triphonic models. Alternatively, the broad phonetic 

labeling of the segment lattice can be used to create (intermediate) broad-phonetic tri- 

phones (e.g. [closure]-/b/-[vowel]). In that case, it might be necessary to refine the choice 

of broad-phonetic categories by, for instance, splitting the [vowel] category into [front], 

[mid], and [back] vowels, to provide more detailed contextual information (especially with 

respect to place of articulation). Using broad-phonetic contexts will also limit the num- 

ber of recognition units (compared to full phonetic triphone models). At the same time, 

using precomputed broad phonetic context will simplify the search algorithm because the 

application of segment and language model scores does not have to be delayed until after 

evaluating the next segment. 

After adding the pitch feature to the set of classification features, we were unable to 

achieve further improvement using gender-specific classifiers and hence we did not pursue 

this issue further at this point. In light of potential difficulties of extracting reliable 

pitch information in different acoustic environments, we might want to reconsider using 

gender-specific models. 

Biphone Models 

A second suggested modification of the recognition inventory (along with the context- 

dependent models described above) is designed to address a typical segmentation problem: 

we have observed that certain boundaries, especially semi-vowel/vowel boundaries, are 

difficult to detect and place consistently. We therefore propose a data-driven biphone 



CHAPTER 8. CONCLUSIONS AND FUTURE WORK 90 

creation algorithm. Such an algorithm would analyze segmentation and misclassification 

errors in context (e.g. frequent deletions of /w/ in front of back vowels) and then propose 

a set of biphones (e.g. /w/-/aa/ + /w-a/)  to be added to the recognition inventory. 

In this case, biphones span two phonetic segments, in contrast to phonemes in left and/or 

right context which are sometimes referred to as biphones in the literature. 

Consonant Classifier using Formant Features 

In this thesis, we have concentrated our research on using formant features for vowel classi- 

fication. As we have pointed out in the introduction, formants also play an important part 

in consonant identification. For example, while it is difficult to distinguish /n/ from /m/ 

by comparing the spectrum within the segment (nasal murmur), we can easily determine 

the nature of the nasal sound by detecting the place of articulation (via formant locations) 

in the adjacent segment(s): for /m/ F2 generally drops to about 1200Hz, whereas in the 

case of /n/, F2 moves closer to 1600Hz. Additionally, Weinstein et al. [88] use features 

based on spectrogram reading experience to classify consonant segments (nasals, frica- 

tives, and stops). In particular, for their stop classification, they use a detailed analysis 

of the stop burst along with voicing information in the silence part preceding the burst, 

and formant transitions (F2 and F3) out of and into adjacent vowels as their classification 

features. 

Relative Durations as Classification Features 

It has been observed in the literature that the speaking rate is an important source of 

recognition errors. Normalization schemes for speaking rate in form of post-processing 

algorithms have been proposed [37]. Having access to the structure of the segment lat- 

tice would allow for the direct incorporation of relative duration information into the 

classification process. 

Training on Errors 

As suggested in Section 4.4, training the segment classifiers on false positives should result 

in a better phonetic recognition performance. During the training of the classifiers, we 
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generally present only positive examples of a category (along with training examples for 

all the other categories which indirectly act as negative examples). However, the classifier 

has never seen hypothesized segments that span more than one phonetic segment during 

training and hence we rely on the generalization capabilities of the classifier to assign low 

probabilities to all outputs. Training on errors is meant to remedy this by explicitly pre- 

senting the classifier with training examples of false positive along with enhanced features 

that will make it easier for the classifier to deduce that the current segment hypothesis 

is spanning more than one phonetic segment. Such features can be extracted either from 

the segment lattice structure or the classification scores of the acoustic segments. The 

difficulty will be to balance the training examples with positive and negative examples 

while maintaining low within-category variance and high inter-category variances. 

Robustness to Noise 

As indicated in the introduction to this thesis, we expect formant features to be more 

robust to ambient noise than cepstral features due to their focus on spectral peaks and 

the incorporation of global constraints. To realize this potential, we need to examine the 

detailed behaviour of the formant tracker in noisy conditions. Given the contextual infor- 

mation provided by the physical nature of formants, it should be relatively straightforward 

to develop algorithms to improve noise robustness. 

Improving the Performance in the N-best Paradigm 

The N-best experiments in Section 6.4 showed only modest improvements for N = 3 as 

compared to N = 1. We concluded that one of the reason is the lack of an efficient pruning 

mechanism for the list of interpretations produced by the current implementation of the 

formant tracker. Another is the problem of incorrect output levels of the MLP which 

prevents correct classifications from "winning" because incorrect classifications for other 

interpretations produce a higher output level. Rescaling of the outputs to better mimic the 

true probability densities is a major problem that requires fundamental advances in the 

study of neural networks. In the meantime, a combination of training on error procedures 
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might improve the N-best performance. Such schemes as introducing "Not-Phoneme- 

/xx/" units into the recognition vocabulary might help in suppressing high output levels 

for incorrect formant interpretations. 

Segmentation of Sonorants based on Formant Information 

Weinstein et al. [88] described a two-stage method for segmenting the speech: the first 

stage segments the speech into one of four broad acoustic categories: vowel-like, volume 

dip within vowel-like sound, fricative-like, and stops. The information of the formant 

tracking are then used to further segment the vowel-like sound regions. We envision a 

similar process based on our own formant tracking algorithm, and expect that this may 

help with the continued difficulties we have in segmenting between adjacent sonorant 

phonemes. 

8.3 Famous Last Words 

The above list of possible extensions to the research described in this thesis is by no means 

intended to be complete. We hope that the reader has found enough inspiration in this 

work to suggest further additions to the list. We intend this to be the beginning rather 

than the end in our quest to improve the accuracy of today's speech recognition systems. 

The two quotes below have provided the guidance for this research: 

"Garbage in - garbage out!" 

"No risk - no gain!" 
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Appendix A 

Distance Functions 

A.l  Overview 

As mentioned in Chapter 3, most segmentation methods rely on a distance measure d(d, 3 
to detect spectral changes; for instance: 

d(Z, 8 = (d - g T ~ ( Z  - 9 Squared Difference Function 

where Z and y' are feature vectors representing the spectrum to the left and the right 

of the potential boundary respectively. 

It has been observed that this function is sensitive to changes in signal gain. Therefore, 

the Spectral Variation Function [8,24], which measures the angle between the two feature 

vectors, has been proposed: 

~ A Y '  
S V F  = d ( Z , g =  1 - 7  SpectralVariationFunction (A.l) 

1x1 Id 
Both distance functions use a matrix A to define the distance metric to be used: 

Identity Matrix Euclidian Distance 

Diagonal Matrix + Mahalanobis Distance 

49 + Context-dependent Distance Function 

(where the vector z' represents the current acoustic environment). 
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A.2 Context-Dependent Spectral Variation Function 

The estimation of the context-sensitive weighting coefficients ci = aii (the diagonal ele- 

ments of the distance matrix A) is an ideal application for a Mulitlayer Perceptron (MLP). 

The input to the neural network is the context vector Z and the outputs are the coeffi- 

cients ci as shown in Figure (A. l ) .  The nodes in the input and the output layer are linear 

whereas the nodes of the hidden layer use a sigmoidal activation function. 

S V F  

Figure A. l :  MLP for computing the context-sensitive weighting coefficients 

In order to perform the weight updating we need to compute the gradient of the total 

error with respect to the coefficients ci. Unfortunately, there are no target values of the 

ti's for computing the total error. However, for any given i? , y' and 2' we know what the 

desired value of SVF is namely: 

1 there is a phonetic 

SVF(5, y', Z') = boundary between d and y' 

0 otherwise . 
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Using the chain rule, we can compute the gradient for the output layer nodes as follows: 

where T is the desired function value of SVF,  0 the actual function value of SVF, 

and M S E  the back-propagated error to the output layer of the MLP. 

Using the following definitions: 

we can rewrite the equation (A.1) as: 

S V F  = S.Y 
(sx.sy)? . 

Computing the partial derivative then becomes: 

We can further simplify equation (A.5) to: 

Figure A.2 shows an example of the context-dependent SVF. 

A.3 Discussion 

Initial experiments with the context-dependent SVF segmentation function showed a 

mixed picture. On one hand, the scaling mechanism was able to approximate the de- 

sired boundary probabilities (1.0 for the boundary frames and 0.0 elsewhere) more closely 

than SVF alone, and hence can potentially be beneficial in a probabilistic framework that 

estimates segment probabilities p(si) .  On the other hand, in cases where the "generat- 

ing function", in this case the SVF, did not detect any significant spectral change, the 

context-dependent extension was not able to rectify the situation and generate the cor- 

rect boundary probabilities. As a matter of fact, doing so would require the classifier 
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Figure A.2: Example of a context-dependent SVF screen dump. The figure shows from top
to bottom: speech waveform, spectrogram, PLP coefficients, outputs of the SVF network
(the scaling values for the distance function, CD-SVF function values, initial segmentation
based on the above function values, and the TIMIT hand labels.

to basically detect the presence of a boundary and generate very large scaling terms to

compensate for the missing boundary indications from the SVF. This is equivalent in

complexity to the original task of detecting phonetic boundaries.

However, we nevertheless believe in the potential of the basic idea (estimating pa-

rameters of a distance function from data). Future research involving other "generating

function" will show if our optimism is justified.



Biographical Note 

Philipp Heinz Schmid was born on September 4, 1964 in Bern, Switzerland. After graduat- 

ing from secondary school in Vechigen in 1979, he went on to attend the Realgymnasium 

Neufeld in Bern. In 1982/83 he participated in a student exchange program organized 

by American Field Service in which he spent a year at Wilson High School in Portland, 

Oregon. A year later, he graduated from the Realgymnasium and entered academia by 

enrolling as a student in computer science (informatics) at the University of Bern. Dur- 

ing his first 3 years, he interspersed studying with service in the Swiss Army, where he 

currently holds the rank of Lieutenant. 

The highlight of his undergraduate academic career was the presentation of a research 

paper at the International Neural Network Conference in Paris in 1990. He graduated 

from the Department of Informatics and Applied Mathematics in December 1990 with a 

thesis on a two-stage learning algorithm for neural networks. 

Encouraged by the previous positive experience of living in America, he decided to 

return to America to pursue a Ph.D. degree in computer science. Prof. Ron Cole convinced 

him that Oregon Graduate Institute was a special place to work. He started studying for 

the qualifying exams at OGI in the summer of 1991, which he passed in the fall of 1991 

without having attended any preparatory classes. The following summer, he won the first 

prize for the best student research paper and presentation. 

Initial research into automatic pronunciation learning convinced him that the future of 

speech recognition lay in segment-based speech recognition systems. This led to a series 

of research projects that culminated in his Ph.D. thesis in October 1996. In the process, 

he published in and attended several national and international conferences, collaborated 

with international companies, and travelled throughout the United States and the world. 




