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Abstract 

Existing methods for predicting latchup in CMOS devices are critically examined 

and a new criterion for latchup is presented. The previous latchup criterion, requiring the 

transient beta product to be greater than one, is discussed and an improved criterion is 

determined. The new criterion is based on finding the unstable, static solution of 

equations for the voltages within the device. If an unstable solution exists, then the 

separatrix through that solution will divide all possible operating states into those that 

return to the off state and those that latch. If an unstable solution does not exist, then a 

stable latch point does not exist and all operating states eventually return to the off state. 

This new criterion has the benefit of matching exactly with numerical solutions for 

minimum pulse times to cause latchup. Furthermore, structures which are latchup immune 

can be quickly identified without exhaustive simulation. Analytical methods of solving the 

system equations are presented which allow quick estimations of minimum pulse times 

which will lead to latchup. The benefit of this is to provide latchup behavior for a given 

CMOS structure in significantly less time than SPICE simulations of similar accuracy 

would take. The new results are then applied to Intel test structures for process margin 

determination. 

vii 



I. Introduction 

A. Section Overview 

The purpose of this section is to review the published papers about modeling latchup 

in bulk CMOS. The intention is to cover the basic mechanisms involved, circuit-equivalent 

models and two-dimensional simulations. In addition, derivations involving both static and 

transient latchup triggering characteristics will be treated. 

Initially, a concise overview is presented. This summary includes a general description 

of latchup--starting with the concepts and definitions and continuing with the static and 

transient latchup characteristics. The material for this section is largely taken from the the 

papers by Estreichlm2, unless otherwise noted. Next, the basic modeling approaches are 

covered, consisting of SPICE-type circuit equivalent models, time-dependent two- 

dimensional numerical simulations (including PISCES), and analytical formulations for 

transient latchup. The overview will be followed by descriptions of significant findings of the 

reviewed papers not covered in the overview. 

B. Concepts and Definitions 

Latchup can be defined as a low resistance path between voltage levels. Usually, the 

circuit function is disrupted, and currents are frequently large enough to cause permanent 

damage. In bulk CMOS circuits, latchup is caused by the triggering of a parasitic p-n-p-n 



structure to its "on" state. A typical p-n-p-n current-voltage characteristic is show in figure 

1. taken from Troutman's book on latchup because it provides a consistent terminology. 

The critical points are the switching point (Vs,Is), which marks the transition from the high 

resistance "off' state to the negative differential resistance region; and the holding point 

(Vh,Ih), which marks the transition £tom the negative differential resistance region to the low 

resistance "on" state. Also indicated is the turn-off point (Vto,Ito), where the center junction 

has no voltage across it; this point is unstable. In all cases, the voltages are measured from 

p-region on one end to the n-region on the other. No internal measurements are included. 

The switching point, also referred to as threshold, is the point where regeneration occurs. 

The holding point is sometimes incorrectly labeled as the lowest current where the p-n-p-n 

is on; however stable points of lower current exist down to the turn-off point, as pointed out 

by Rung and Momose4, albeit using different terminology. The holding point is equivalently 

defined as the point where the slope on the I-V curve is vertical (dV/dI = 0). 

Although many pn-p-n structures paths exist in a typical CMOS IC, the basic building 

block in modeling latchup is a CMOS inverter. Figure 1.2 shows an inverter structure with 

the p-n-p-n path highlighted schematically by two parasitic bipolar transistors. The arrows 

indicate the current flows required to forward bias the emitter-base junctions of the 

transistors. (Although the source diffusions of the MOS transistors also form p-n-p-n 

structures, latchup would not generally be sustained since Vout is not a power supply.) For 

latchup to be sustained, three conditions must be satisfied: 

1. Both parasitic transistors must be biased into the forward active region. 

The emitter-base junctions are forward biased which implies minority carrier 

injection occurs. 

2. The beta gain product must be sufficient to allow regeneration. 

Alternatively, minimum beta product requirements can be recast as minimum 

alpha sum requirements. 

3. The power supply must be capable of supplying current and voltage greater 

than the current and voltage of the holding point. It should be noted, 

however, that momentary latchup could still cause temporary disruption of 



circuit function. 

In order to forward bias the emitter-base junctions, lateral currents causing voltage drops 

must flow as indicated above. Estreich listed four mechanisms for lateral current generation: 

1. Voltage transients -- When Vdd-Vss is increased in magnitude, the well- 

substrate depletion layer widens. Carriers flow away to expose ionized 

donors / acceptors. The resulting displacement current is given by the 

junction capacitance multiplied by the time rate of change of voltage across 

the junction. 

2. Carrier injection -- Nearby junctions that are forward biased could inject 

minority carriers into the region. 

3. Overvoltage stress -- If the difference between Vdd and Vss is large 

enough, avalanche breakdown of the well-substrate junction occurs. 

4. Radiation induced photocurrents. 

The first two of these mechanisms are the ones of concern here. The last two provide an 

interesting means of investigating latchup, but generally will not be unintentionally triggered 

to cause latchup. 

C. Static and Transient Behavior 

Initially, the focus was on developing expressions for sustained latchup, as seen in 

Estreich's three conditions for latchup. In developing expressions for holding voltage or 

holding current, the idea was that latchup could be avoided if the supply voltage was lower 

than the holding voltage. Another justification for focusing on the holding point was that the 

switching point depends on the switching mechanism, but the holding point is independent of 

switching mechanisd. However, as pointed out by Troutman and others, the holding point 

criterion only avoids sustained latchup--momentary latch could still occur. So, what is really 

desired is to guarantee that the switching pint  never be reached by any mechanism. Another 

difficulty is that at the holding point, both sides of the well-substrate junction are flooded with 

carriers. Seitchik6 claims that in this case, it is not correct to model the situation in terms of 



interacting pnp and npn transistors; the existence of a p-n junction is irrelevant, reducing the 

p-n-p-n model to a p-i-n structure. He uses this in developing an analytic model of holding 

voltage. 

Several authors have investigated transient latchup through simulation and 

measurement for various structures7-16. In examining a transient latchup criterion, Troutman 

noted that the previous criteria of the sum of large signal forward gain alphas greater than one 

was, in fact, incorrect. The improved criteria involved small signal gain alphas, defined as the 

derivative of collector current with respect to emitter current. Also, effective injection factors 

accounting for the loss through the shunting resistors modified the gain alphas to arrive at 

effective small signal alphas. The condition for stability becomes the sum of the two effective 

small signal alphas must be less than one. By plotting the npn effective alpha on one axis and 

the pnp effective alpha on the other, then the Iine with a sum of one is unstable. The points 

of this line are switching points and the interior of the triangle formed by this line with the two 

axes are all stable, blocking points. The interior is called SAFE space by Troutman. (SAFE 

is not an acronym, he just capitalized it to emphasize that these points are safe from latchup). 

Different methods of stimulating latchup will take different paths through SAFE space and 

arrive at different switching points; but if the transistor gains are known, the path can be 

calculated. So, in principle, one can guarantee a structure to be free from latchup if all 

switching mechanisms can be constrained to be of short enough duration such that operation 

remains in SAFE space. 

An alternative latchup criterion is proposed by Yang and WU",'~. They suggest that 

the change in charge stored in the junction depletion capacitance of the p-n-p-n structure is 

a constant for any triggering current applied for the minimum regeneration time. 

Unfortunately, no physical basis was given for this phenomena, only that it was consistent 

with SPICE simulations. However, further investigation of the physics would be required to 

adopt this as a legitimate criterion for latchup. 



D. Primary Modeling Approaches 

1. Circuit Equivalent Models 

In this section, the lumped-element circuit equivalent is discussed, starting with 

the features of the parasitic transistors. The transistor whose base is formed by the well 

(the npn in p-well CMOS) is a vertical device that usually has high gain. In contrast, the 

lateral device has low gain due to the wide base dimension. As a side note, lateral flows 

can exist even for the vertical device for special surface  condition^'^. In modeling the 

lateral device, a field aided drift component of the current across the base should be 

considered, instead of just looking at diffusion. This can be simulated in SPICE using a 

current-controlled current source from emitter to collector over small portions of the I-V 

curve. A better choice is to use a simulator like ASTAP (Advanced Statistical Analysis 

Progam), which allows new model equations to be directly input2'. 

At this point, only the parasitic transistors have been discussed, leaving a circuit 

equivalent much like to simple SCR. This would imply regeneration would occur for a 

beta product of the npn and pnp transistors greater than one. However, the existence of 

well and substrate resistances acting to shunt the emitter-base contacts alters the beta 

product requirement to the following: 

Rw and Rs are the well and substrate emitter-base shunting resistances, respectively. I, 

and I, are the currents through the shunt resistors. If these resistances become large, then 

the resistor currents approach zero and the minimum beta product requirement for latchup 

becomes one. If either Rs or Rw approach zero, the required supply current to sustain 

latchup and the minimum beta product both become large. Also, the beta product 

equation can be written in an equivalent form with the beta of the pnp transistor on the 



right-hand side instead of the npn beta. The current flows through the resistor Rs tend to 

be pinched near the contact and spread out from there, indicating the inherent three- 

dimensional nature of latchup. Methods of measuring these resistances physically have 

been suggested by Chen and WuZ'. 

So far, the circuit model had just the two transistors with two emitter-base 

shunting resistors. Additional circuit elements can be added to more accurately simulate 

the structure. Of importance in transient analysis is including the well-substrate 

capacitance, either as a single element or as a distributed RC network by partitioning into 

segments. A typical equivalent circuit including these elements is shown in figure 1.3. In 

the figure, the extra capacitances and resistances are from the partitioning of the well- 

substrate depletion region. The current sources model radiation induced latchup and are 

not part of the actual structure. Since the behavior of the parasitic transistors connected 

to the outputs has been observed to play a rolez2-23, Troutman included these paths. Base- 

emitter capacitances, transistor branch resistances4, the CMOS transistorsz3, and 

transmission line elements24 have all been used to further refine the circuit equivalent 

model. 

2. Time-Dependent Numerical Simulations 

In order to determine current flow patterns and more accurately include capacitive 

effects, time-dependent numerical simulations were used. The two approaches used were 

to determine the solution to a modified set of device modeling  equation^^^'^^^^ or to use 

PISCES~.",~~. An example of the current flows just prior to latchup are shown in figure 

1.4, from Pinto and DuttonZ7. In this case, the vertical npn turns on due to the triggering 

current at the n+ contact. In order to more efficiently trigger latchup using PISCES, 

chatterjeeZ8 used a "charge-triggering" method. If latchup is triggered simply by raising 

the substrate potential, then switching occurs after a delay corresponding to the transit 

time that is difficult to predict accurately. Small time-steps during switching are needed 

for convergence, but large time-steps are desired before and after switching for efficiently- 



-making time-step selection difficult. The "charge-triggering'' method involves 

introducing a large number of electron-hole pairs along a track spanning the well-substrate 

junction so that the response is almost immediate. The time-steps start small and increase 

exponentially; no need to accurately guess the transit time. 

In measuring actual devices, ~ a n g i o r g i ~ ~  finds that 2D simulations are of 

questionable validity for real structures due to three-dimensional effects. The emitters on 

devices 50 to 200 microns wide were split into a number of sections so measurements 

could be made on each section, while the distance between the p+ and n+ emitters was 

fixed at 8 microns. Only the middle section of the 200 micron device gave good 

agreement with numerical simulations. Otherwise, current densities were non-uniformly 

distributed, with densities higher at the edges than in the middle. Using two-dimensional 

simulations to model real structures, whose widths would be much less than 50 microns, 

would appear to be invalid. However, the number of segments on the emitters was quite 

small; the 100 and 200 micron devices had five emitter sections while the 50 micron 

device had just three emitter sections. 

3. Analytical formulations 

The first analytical model of transient latchup was presented by Troutman and 

~appe". In order to arrive at equations that could be solved explicity, many assumptions 

were made. The response was broken into four regions: both transistors off, one 

transistor on, both on, and both saturated (latchup). The well-substrate capacitance was 

assumed constant. The transistors were assumed to have no current for emitter-base 

voltages below a given on-voltage and a constant forward gain alpha with emitter-base 

voltage locked at the on-voltage. This circuit was analyzed for a powerup voltage with a 

constant ramp rate. In other words, the voltage on the latchup structure was initially zero, 

and increased linearly to some final value, where it remained. The conclusions were that 

the structure was stable if the sum of the forward gain alphas of the two transistors was 

less than one, or if the product of the ramp rate and the capacitance was less than a given 



constant. If both of these conditions were not met, then the structure was unstable if the 

ramp-up time was long enough. The main limitation to this analytical model is that the 

triggering is only for power-on transients, although extending it to transients after the 

structure is already powered is feasible. 



Figure 1.1 I-V curve of pnpn structure, with points of interest 
labeled. 

Figure 1.2 Sideview of typical CMOS latch structure with back-to-back 
transistors overlaid to show their location. 



Figure 1.3 Lumped-element equivalent 
circuit model for pnpn structure. 

Figure 1.4 Illustration of current flows in device approaching the latch 
state. 



II. Overall Approach 

The starting point in considering latchup is to consider a CMOS inverter. Figure 

2.1 shows the p-n-p-n latching path in a cross-sectional view of a CMOS inverter. (P-well 

CMOS is shown, but the choice is arbitrary.) Although the Vout diffusions also form p-n- 

p-n structures, it is assumed they cannot cause sustained latchup since these diffusions are 

not connected to a power supply. This latchup path p-n-p-n structure is modeled by two 

transistors with emitter-base shunting resistors, as is typically done. In order to 

investigate transient responses, the capacitances at each junction are also included. So, for 

this structure, the parasitic structures of interest are: a p+ region at Vdd, n-substrate, and 

p-well forming a lateral pnp transistor; an n+ region at ground, p-well, and n-substrate 

forming a vertical npn; a substrate resistance from the active n-substrate to the n+ contact 

at Vdd; a well resistance from the active p-well to the p+ contact at ground and the 

junction capacitances. The two resistances connect the base region of each transistor with 

an external contact. Since the external base contact is connected to the same potential as 

the emitter for each transis tor, these resistances act to shunt the emitter-base junctions. 

Although latchup has been extensively studied in the past and the pnpn latching 

path will look familiar to anyone even casually familiar with latchup, an exact definition of 

what is meant by "latchup" in this work follows. Latchup is a stable, low-resistance path 

between power and ground. Other authors have attempted to define "momentary 

latchup," which has some vagueness as a concept. A momentary latchup is a pnpn 

structure exhibiting large current flow under the influence of a noise pulse. But, if a noise 

pulse is introduced which forward biases a pn junction, large currents will flow for the 



duration of the pulse and possibly for some time after it, regardless of whether the junction 

is part of a pnpn structure or not. So, "momentary latchup" would be possible in a 

structure that has no stable latchup state. Using the strict definition of latchup, the 

information of interest is whether a given structure has the possibility of a stable, low- 

resistance path between power and ground, and if so, for what pulses would a structure 

intially in a stable off state eventually go to the latch state. 

Figure 2.2 shows the lumped-element equivalent circuit used as a SPICE model for 

the parasitic SCR (semiconductor controlled rectifier = pnpn) structure. More complex 

equivalent circuits can be used, as orginally shown in figure 1.3, by modelling the 

resistances and capacitances in several pieces. However, while conceptually this is simple, 

in practice determining the element values is quite difficult. And, the resulting model 

simulations do not provide additional accuracy over the simpler model. Transient signals, 

which can stimulate latchup, are introduced as noise voltages at the external base contacts. 

For convenience, the polarity is chosen so that positive voltage noises will tend to 

forward-bias the emitter-base junctions. The choice of stimulating latchup with a voltage 

pulse on the external base is equivalent to using a current pulse at the intrinsic base node. 

In figure 2.2, the current sources can replaced by noise voltages on the shunting resistors, 

where I1 =Vnoise,vdd/R 1 and I2=VnOi,, ,,/R2 based on rules of source transformations. The 

advantage of voltage pulses is that, since these are located at external nodes, latchup 

predictions can be physically tested on real devices. Current pulses located below the 

surface of the device, however, can not be accurately introduced in a real device. Hence, 

predictions cannot be satisfactorily verified using internal currents to trigger latchup. In 

general, the noise voltages triggering latchup could be acting simultaneously with 

arbitrarily complex profiles in time. In order to derive analytical expressions and simplify 

analysis, only square pulses on one noise voltage at a time are examined. By taking a 

pulse of a given magnitude, the goal is to be able to calculate the minimum time required 

for that pulse to cause latchup. 

At this point, some comments about the approximations in this circuit model are in 

order. First, distributed resistances and capacitances are lumped into single elements. In 



particular, pinching effects are ignored so that the resistors are constant instead of 

depending on the current flowing through them. By expressing the resistance as a 

function of applied voltage, pinching effects can be incorporated into numerical 

simulations of the circuit equations. However, the analytical solution to be discussed later 

requires constant resistor values. Secondly, it has been suggested that the lateral transistor 

will be affected by lateral electric field aiding effects, which are not explicity addressed by 

the Gummel-Poon model implemented in SPICE. It should be noted, however, that the 

effects are still accounted for in fitting transistor transfer curves to the given model. 

Finally, pulse times are frequently of the same order as the forward transit times. Since 

transit time is a single value based on averaging the velocity distribution, small times 

depend on the detail of the distribution. These approximations tend to make the circuit 

equations as simple as possible while still yielding acceptably accurate results. 

To determine whether or not a given noise pulse will latch using SPICE, the 

emitter-base voltage of both parasitic transistors are tracked as a function of time. Figures 

2.3 and 2.4 show examples of latching and non-latching pulses. (The circuit parameters 

used are given in table 1 .) Unless otherwise indicated, Vdd is taken as five volts above 

ground. Shortly after the 9.72 nanosecond, four volt pulse ends, the emitter-base voltages 

return to the neighborhood of zero, which is the off state. By making the pulse slightly 

longer at 9.74 nanoseconds, the voltages after the pulse ends increase to a stable latched 

state where both transistors are forward active so that large currents are flowing. The 

SPICE input file used to generate these plots is listed at the end of the chapter. These 

simulations illustrate how the voltages change both during and after a transient voltage 

pulse, and the fact that the "arrival" at the latch or off state might not occur until long after 

the pulse ends. This makes using SPICE to determine a critical pulse time somewhat 

inefficient. The simulation must be continued well after the pulse ends, and trying a 

different pulse time requires a separate simulation run. 

Also, obtaining accurate results in SPICE requires small time steps in the transient 

analysis. In both pSPICE and TEKSPICE, the limit on the allowed number of data points 

must be increased using an options statement in order to run the simulation. The effects of 



step sizes on latchup results are shown in figure 2.5. A step size of 0.10 nanoseconds 

leads to latchup in the simulation. This step size is simply too large, latchup results from 

inaccuracies in the numerical approach taken. When the step size is reduced to provide 

more accuracy, the simulation indicates a return to the off state. This example 

dramatically highlights the importance of choosing small step sizes. Of course, the penalty 

for small step sizes is increased solving time and more data points. For example, a 0.01 

nsec step size with an end time of 200 nsec will generate 20,000 data points. 

SPICE input file for the graDhs whichkdkw 
* Ker and Wu Paper's parameters 9.74ns pulse - 0.02 ns step 
.model PNPl PNP(Is=2.833e- 16 Bf= 1.104 Ise=4.250e- 14 Ikf=6.909e-5 Br=0.2 
+ Tf=20n Tr=lOn Cje=0.6p Cjc=2p Mje=0.5) 
.model NPNl NPN(Is=8.112e- 16 Bf=277.2 Ise=1.2 17e- 13 Ikf=4.867e-4 Br=2.0 
+ Tf=0.25n Tr=2n Cje= 1.3p Cjc=0.6p Mje=0.5) 
VDD 1ODC5 
Q1 6 4  1 PNPl 
Q2 7 5 9 N P N l  
RS 11 2 800 
RW 3 125.6K 
R3 9 0 1  
VB1 2 4 0  
VC1 3 6 0  
VB2 5 3 0  
VC2 7 2 0  
VI1 1 1 0 PULSE 5 1 ON ON ON 9.74N 
.PRINT TRAN V(4) V(5) V(9) I(I1) 
.NODESET V(2)=5 
.NODESET V(3)=0 
.TRAN .02N 50N 
.probe 
.END 
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Figure 2.1 Side view of a P-well CMOS inverter with the parasitic p-n-p-n latching path 
indicated. 



- - 

Figure 2.2 Lumped-element circuit representation for the parasitic p-n-p-n SCR structure 
in a CMOS inverter. 



Response to 9.72 nsec, 4 Volt Vdd Noise 
(0.01 nsec step size) 

Time (nsec) 

Figure 2.3 Emitter-base voltages as a function of time for a four volt Vdd noise 
pulse which ends at 9.72 nanoseconds. This is not sufficient to cause latchup. 

Response to 9.74 nsec, 4 Volt Vdd Noise 
(0.01 nsec step size) 

Time (nsec) 

Figure 2.4 Emitter-base voltages for a four volt Vdd noise pulse which ends at 9.74 
nanoseconds. This is sufficient to cause latchup. 



Response to 9.65 nsec, 4 Volt Vdd Noise 
(0.1 nsec step size) 

Time (nsec) 

Figure 2.5 Emitter-base voltages as a function of time for a four volt Vdd noise pulse 
which ends at 9.65 nanoseconds. A large step size of 0.1 nsec was used, which resulted in 
an incorrect latch response. 
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111. General System Behavior 

The notation to be used is as foIlows: vl  refers to the emitter-base voltage of the 

pnp transistor, v2 refers to the base-emitter voltage of the npn transistor. Both quantities 

will be considered positive if the junction is forward biased. The system equations for the 

equivalent circuit are of the form: 

The equation solutions can be found through numerical techniques, but analytical 

descriptions of the latchup behavior are of interest here. The functions depend only on the 

state variables v l  and v2, with no explicit time dependence. These functions are therefore 

autonomous equations and the behaviors of the static points can be qualitatively 

The terms static and equilibrium solutions will be used interchangeably 

and refer to points where the functions f l  and f2 equal zero. At these points, the 

derivatives with respect to time of v l  and v2 are zero, hence the system will not change in 

time--it is static. In the neighborhood of an equilibrium point, the system equations can be 

linearized, yielding: 

where ag=dfjavj, evaluated at the equilibrium point. Writing ai in matrix form, the 

eigenvalues determine the type of equilibrium state for the linearized system. The 



behavior in the neighborhood of the equilibrium point is the same for the nonlinear and 

linearized state equations provided the equilibrium state is not a center. To be a center, 

the eigenvalues are purely imaginary, which will not occur for the latchup equations. In 

additional requirement is that f l  and f2 have continuous first order partial derivatives, 

which is clearly true for the latchup equations. 

Consider the plot of dvl/dt=O and dv2/dt=O, shown in figure 3.1. The two curves 

will be referred to as C1 and C2, respectively. The intersections of C l  and C2 are the 

equilibrium or static points. At the intersection points, the slopes of both C1 and C2 are 

positive. Also, the direction vectors tend toward the curves, instead of diverging to 

infinity. So, at any equilibrium point, a1 1 is negative and a12 is positive, since the 

gradient of f l  must point in the negative vl ,  positive v2 direction. Likewise, a22 is 

negative and a21 is positive, since the gradient of f2 must point in the positive vl ,  negative 

v2 direction. Solving the characteristic polynomial for a to obtain the eigenvalues, the 

solution is: 

Since the slopes of C1 and C2 at an equilibrium point are positive, it immediately follows 

that the square root term is positive, which implies that the eigenvalues are always real (no 

center points). If the slope of C1 is greater than C2, then al1a2, is greater than a,,+,, and 

both roots are negative. In this case, the equilibrium point is a stable node. If the slope of 

C1 is smaller than C2, then there is one positive and one negative root. In this case, the 

equilibrium point is a saddle point. 

Although the slopes of C1 and C2 can be seen from the plot, it remains to be 

shown that this behavior is in fact generally true, not just for specific cases. Linearizing at 

an equilibrium point, the following relations are determined: 



af2 a a a a -=Ip-(Cc+Cel)+(Cc+Ce2) -I - I  -Cc-Cc-Ifl (5)  
avl, avi avi fr avi av, 

At equilibrium, the first and third terms are zero since If1 and If2 are zero. Derivatives of 

transistor currents with respect to the opposite emitter-base voltage are zero. So, 

expanding the definitions of If 1 and If2 and keeping only the non-zero terms results in: 

Capacitances are always positive, so the first equation is always negative and the second 

always positive if base current, collector current, and current through the resistor increases 

with increasing emitter-base voltage. This will always be the case for physical devices. By 

similar reasoning, a21 is always positive, and a22 is always negative under the same 

conditions. The curves C1 and C2 will always be perpendicular to their gradients, so the 

slopes must be positive at an equilibrium point. This formally shows what was asserted 

from looking at the C1 and C2 plots for one specific example. 

Away from equilibrium points, If1 and If2 are no longer zero. However, the first 

and third terms in the dflIdV1 equation are still approximately zero, because Cc changes 

slowly and Ce2 has effectively no dependence on V1. This means that C1 will be a single- 

valued function of V2. If the gradient always has a positive x=V1 component, then the 

curve, which is perpendicular to the gradient, will always have a positive y=V2 

component. The curve can, and in many cases does, bend "backwards" with respect to the 

Vl  axis, but will always increase along the V2 axis as it goes out from the origin. By 

exactly the same reasoning, the C2 curve will be a single-valued function of V1. This 

means that if a given equilibrium point has slope of C 1 greater than C2, then the next 



equilibrium point will necessarily have slope of C1 less than C2. From the interpretation 

of slopes classifying stability, this means that stable points and saddle (unstable) points will 

alternate. 

At the origin where both voltages are zero, it is assumed that the transistor 

currents are zero. The actual very small leakage from the reverse-biased base-collector 

junction can be ignored for now. Now, by inspection, If1 and If2 are both zero, so the 

origin is always one equilibrium point. By setting the appropriate currents to zero in the 

aij expressions, the slopes of C 1 and C2 at the origin are determined as: 

Since capacitances are always positive, this implies that the origin is always a stable 

solution. This unsurprising result formally shows what is trivially observed in physical 

structures. As V1 and V2 are made very large, it is assumed that the current gains 

become approximately zero, so that collector currents are much, much smaller than base 

currents. Also, since the base current has an exponential dependence on voltage, it will 

dominate the current in the shunting resistor. For large V1 and V2, the slopes of C l  and 

C2 are given by: 

Cl  slope= C C + C ~ ~  . . -  a I B l  aV2 , C2 slope= cc . a',, - a% 
cc av, a',, Cc+Cel av, az,, (9) 

So, for large enough voltages, the slope of C1 will be larger than C2, which implies that 

the last solution must be stable. Since it was already determined that stable and unstable 

solutions will alternate, this means that there will be an odd number of solutions. It is easy 

to show that as long as the slope of the beta curve for the individual transistors decreases 

with increasing emitter-base forward biasing voltage, there will be no more than three 

solutions. This will be true for all real devices. 

From the mathematical model given for modelling a general CMOS latchup 



structure, the following behaviors were derived. First, there will always be a stable 

solution at the origin where the emitter-base voltages of both transistors is zero. Second, 

there will always be either one or three static solutions to the system equations. If only 

one solution exists, then the structure is latchup immune. Otherwise, there will be a 

stable, static latchup solution, the zero solution, and an unstable solution between the two 

stable solutions. 



Static Point Determination for Latchup Circuit 

Vebl 

Figure 3.1 Curves of zero dV/dt, intersections are static points. 
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IV. Analytic Expressions for Latchup (Ker and Wu method) 

The equivalent circuit for the parasitic SCR structure is the starting point for the 

investigation of transient signals causing latchup. Ideally, a method that efficiently yields latchup 

judgements and matches SPICE simulations is sought, and this section will critically examine the 

approach of Ker and Wu. Since SPICE simulations must be continued for some time after the 

pulse ends before a judgment can be made, a latchup criterion which can be applied at the instant 

the pulse ends is beneficial. Ker and Wu suggest such a criterion and also make some simplifying 

assumptions so that the circuit equations can be solved analytically. Unfortunately, their method 

does not agree well with SPICE, despite the authors' claims to the contrary. The latchup criterion 

developed makes use of time-dependent transistor branch currents, which include the transient 

currents of junction capacitances. These currents are defined in Equations 1 through 4, as 

follows: 

' v C B ~  icl(t) = I,, - Ccls- 
at 



The element names are taken from the figure showing the circuit equivalent (figure 2.2). The 

capitol I's represent the static large-signal base and collector currents. The original form for these 

equations placed the capacitance terms within the derivative with respect to time. It was claimed 

that the capacitance will vary much slower than the voltage, and can therefore be moved outside 

the derivative. In fact, this is an instance where two wrongs do make a right; the capacitance can 

vary much faster than the voltage, but capacitance should not be within the time derivative from 

the outset. Time-dependent large signal transient current gains are defined as b,,(t) = i,,(t) 1 i,,(t) 

and b,,(t) = i,,(t) 1 i,,(t). In deriving an expression for total supply current -- the current flowing 

from Vdd, the term b,,(t) times b,,,(t) minus one appears in the denominator. The authors suggest 

that the supply current must be positive after the pulse ends for regeneration to occur and sustain 

latchup, but a rigorous justification is not given. Thus, the latchup criterion is that the transient 

beta product must be greater than one for latchup to occur. As supporting evidence, the criterion 

was claimed to be verified by many SPICE simulations. 

Now that the "transient beta product greater than one" criterion has been defined, it will 

be shown that this is not a precise criterion for latchup. As in initial indication that something is 

amiss, the transient beta product depends on the partitioned values of the well-substrate 

capacitance, Ccl and Cc2. From a circuit perspective, however, these capacitances appear in 

parallel and can be replaced with a single capacitance Cc equal to the sum of the two. So, while 

the circuit behavior can only depend on the sum, the beta's depend on how that sum is split into 



Ccl and Cc2. Also, only positive values for the transient beta product are considered in the 

supply current flow arguments. So, the product must go through a value of one in order to reach 

values greater than one. This suggests that the criterion is satisfied when the supply current 

becomes infinite (the denominator is zero). However, this type of argument for static latchup has 

been discredited by Troutman; since the supply current cannot be made arbitrarily large before 

latchup occurs. Due to the influence of the capacitors, negative beta products are entirely 

possible. In this case, where one beta is positive and the other is negative, the supply current 

could be flowing in either direction. This situation will occur when a base current goes through 

zero. In this case, the transient beta product will flip from negative infinity to positive infinity. 

This is exactly what happens in figure 4.1. The transient beta product immediately at the end of 

the pulse is plotted against pulse time. To state it explicitly, for a 10 ns pulse, the product 

immediately after the pulse ends is -2. For a 12 ns pulse, the product immediately after the pulse 

ends is +2.5. So, in this example, the criterion is met for a pulse width of 10.2 nsec. The 

assertion is that this is the minimum pulse time, for this pulse voltage, that will result in latchup. 

(In actual SPICE simulations, even shorter pulses will latch.) 

While these arguments strongly question the validity of the transient beta product 

criterion, the simplest manner to disprove it is to provide counterexamples. Figure 4.2 shows the 

emitter-base voltages for a one volt, 79 nsec Vdd noise voltage. The transient beta product 

following the pulse is 374, so the criterion is met. However, the emitter-base voltages clearly 

show that the circuit returns to the off state. In order to latch, the pulse would have to be slightly 

more than 82 nanoseconds Iong. For these parameters, the window for which the beta product 

predicts latchup before the actual minimum time to latch is small, so the difference is not very 
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large. However, for certain circuit parameters, it is possible to find a pulse which satisfies the 

beta product after a given time but would in fact never latch no matter how long the pulse is. 

Figure 4.3 shows the emitter-base voltages for a 100 volt, 0.85 nsec Vdd noise voltage. In this 

case, the transient beta product is only 0.22, so the criterion is not satisfied. However, the circuit 

clearly goes to the latch state. (Also of interest is that the second transistor is off when the pulse 

ends and turns on some time later). These two examples clearly show that the transient beta 

product criterion is unable to accurately predict whether or not a given transient pulse will latch. 

The next area to critically analyze is the solution to the circuit equations. After all, if the 

solutions are accurate, then one would only need to use a better latchup criterion to predict 

whether the solution will latch or not. The equivalent circuit of figure 2.2 yields two node 

equations using Kirchhoff s current law, expressed as: 

In these equations, Vbc is the voltage across the well-substrate junction and is negative if the 

junction is reverse-biased. The substitution Vbc = -(Vdd-Vebl-Vbe2) can be made so that the 

only unknown voltages that appear are Vebl and Vbe2. Since there are only two nodes, these 

two voltages completely specify the operation of the circuit. Making the substitution for Vbc and 

rearranging the equations to isolate the time derivatives results in: 



where 

dvml (t) IH.(Cc +Ce2) -I,.Cc 

While the currents and capacitances depend only on Vebl and Vbe2, the dependencies are 

sufficiently complex to make analytical solutions (of Vebl and Vbe2 as a function of time) 

impossible. So, some approximations are made. First, the transistor behavior for a minimum 

latching pulse time is assumed to progress as follows: initially, both transistors are in an off 

mode; then, one transistor is on and one off; finally, both transistors are on until the latchup 

criterion is satisfied. This behavior is not strictly correct; as already shown, it is possible for 

latchup to be imminent yet only one transistor is on when the pulse ends. The second transistor 

does not turn on until later. However, this will only occur for relatively large voltage noise pulses 

and very short minimum pulse times. So, dividing up the circuit behavior into these three modes 

is valid as long as the noise pulses are restricted to small voltage values. For each mode, 



capacitances are taken as constant and set equal to an average value over the voltage range 

applicable to each mode. In other words, the capacitances are constant for each mode, but 

change from one mode to the next. Also, the static collector and base currents are approximated 

as zero below a turn-on voltage and linear beyond it. With these simplifications, the emitter-base 

voltages will appear in the equations in no higher order than linear terms. Now, from given initial 

conditions, the voltages as a function of time can be solved using a Laplace transform. For all the 

modes, the solutions have the form Veb = A, + + A2e-q'. To exit the first two modes, the 

appropriate voltage is set equal to its turn-on voltage. To exit the final mode, the transient beta 

product must be equal to one. One additional point: while analytical expressions for the emitter- 

base voltages as a function of time are derived, inverting this to get a time at which a voltage 

equals some desired value requires numerical techniques. There are no expressions generated for 

the minimum time to latch, just quantities. 

To better illustrate the method of solution, the flow of the computer program written to 

solve for minimum pulse times implementing Ker and Wu's methods is described. The first step is 

to assign values to the pairs of voltage points used to calculate slopes and turn-on voltages for 

both transistors. Also, voltages for the stimulating pulses are chosen. Then, for each operating 

mode, the steps are as follows: 

1. Guess the final voltage values at the end of the mode. 
2.  Calculate the average capacitances over the mode's voltage range. 
3. Calculate the parameters so that the emitter-base voltages as a function 

of time are known. 
4. Solve for the time at which the mode ends. 



4a. For modes other than the final mode, this implies setting the appropriate 
voltage as a function of time equal to a turn-on voltage and solving for 
the end-of-mode time. Then, calculate the other emitter-base voltage at 
the end-of-mode time. 

4b. For the final mode, the mode ends when the transient beta product is one. 
So, the time for which this happens is calculated. 

5 .  Compare the calculated voltages at the end of the mode with the values 
guessed in step 1. If these are not the same, then make a new guess and 
go to step 2. 

6. The calculated end-of-mode voltages become the initial conditions for the 
next mode. 

7. The minimum pulse width to initiate latchup is the sum of the times in 
each mode. 

The simplifying assumptions unfortunately introduce a great deal of inaccuracy. Initially, 

the use of constant capacitances will be discussed. The capacitances, which are functions of the 

voltages, are replaced with average capacitances over a voltage range. If the capacitances were 

fairly constant over the range, this would be a good simplification. However, the diffusion 

capacitance of a forward-biased junction is proportional to the exponential of emitter-base voltage 

and can vary by an order of magnitude over a 50 millivolt range. In addition, the voltages at the 

end of a mode are unknown until the calculations are done. So, the capacitance is based on an 

initial guess as to what the emitter-base voltages will be at the end of the mode. If the initial 

guess does not match what is calculated, then a refined guess is made and new average 

capacitances calculated. This makes the process very iterative, but avoiding iteration is the prime 

motivation for moving away from SPICE simulations. Thus, the average capacitances leads to 

inaccurate results and introduces repetition to the solution method. 

The other simplification was claiming that static collector and base currents were linear 

above some emitter-base turn-on voltage and zero below it. The zero approximation is quite 
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reasonable with a "normal" value chosen for the turn-on voltage. Above the turn-on voltage, the 

currents are exponential functions of the emitter-base voltage, and a linear approximation is quite 

poor. The values for the slope and intercept are going to be critically dependent on where the 

two fitting points are chosen along the exponential curve. Figures 4.4 and 4.5 illustrate exactly 

what is meant here. The net effect is that the minimum time to latch varies widely for different 

linear "fits" for the exponentials. Figure 4.6 shows how the minimum time to latch calculation can 

change for a four volt Vdd noise pulse. With this much variation, the actual SPICE simulation 

result will probably fall within the two extremes, and agreement with SPICE can be claimed if one 

is fortunate in picking the linear fit that matches. 



Transient Beta Product for 4V Vdd Pulse 

Pulse Width (nsec) 
Figure 4.1 Transient beta product immediately after the pusle ends vs. pulse length. A Vdd noise 
of 4 volts was the stimulus. The product changes sign when the base current of the PNP goes 
through zero. 



Response to 79 nsec, 1 V Vdd Pulse 
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Figure 4.2 Emitter-base voltages as a function of time for a one volt Vdd noise puse which ends 
at 79 nonoseconds. The transient beta product at the end of the pulse was 374. 
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Figure 4.3 Emitter-base volatages as a function of time for a 100 volt Vdd pulse which ends at 
0.85 nanoseconds. The transient beta product at the end of the pulse was 0.22. 
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Ic vs Vbe (log scale) 
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Figure 4.4 Log plot of current vs. Emitter-base voltage, clearly showing a linear dependence. 

Figure 4.5 Linear fits to the Ic curve. Any linear approximation is a poor fit to the inherently 
exponential Ic curve. 



Time to Latch Variation for Different Linear Fits 
(4 volt Vdd pulse) 

Figure 4.6 The variation in calculated time to latch based on fitting points chosen. Vebb is equal 
to 0.78 volts, Veba = 0.68 volts. 



V. Latchup Criteria Based on Voltage Instability 

Since the transient beta product criterion is not an exact condition for latchup, the 

problem remains of finding a useful and more accurate criterion. The new rule will be 

based on static solutions of the system equations discussed earlier, in particular the 

unstable static solution that exists for structures that are not latchup immune. Also, the 

new rule will provide exact agreement with numerical simulations such as SPICE. As 

motivation that an unstable, static solution exists; consider the plots of the emitter-base 

voltages for a four-volt noise voltage of 9.72 ns and 9.74 ns respectively, originally shown 

in figures 2.4 and 2.5. The shorter pulse returns to the off state while the longer one 

results in latchup. Note in particular the region in both figures where the slopes in the 

emitter-base voltages are nearly zero. If dVbe/dt is zero, this implies a static solution. It 

appears that these two near critical pulses approach a static solution of the node 

equations, and that the relation between the voltages and the exact position of the unstable 

point will determine whether the circuit latches or not. What is desired is a criteria that 

can be tested at the moment a pulse ends, so that the critical pulse time can be determined 

by simply making the pulse longer until the criteria is met. Such a latchup rule, derived 

from the circuit equations, will be explained. 

Switching the subject temporarily, some discussion of the equations for the dV/dt's 

is in order. The paper by Ker and Wu resorted to forcing the transistor currents to a 

simple, but inaccurate, form in order to solve these equations. However, it should be 

noted that these equations can be solved numerically by using the Runge-Kutta numerical 

technique to integrate them from some initial known  condition^^^-^^. This method is 



effectively the same as using SPICE to calculate voltages as a function of time using 

transient analysis. Actually, the numerical solution of the pnpn system equations will 

provide more accuracy than SPICE for the same step size. Figure 5.1 shows the transient 

response for the same structure and stimulus simulated using TekSpice, pspice, and 

Runge-Kutta integration. For the same step size, the Runge-Kutta solution appears to be 

the best, having less pronounced "kinks" in the curve. When the step size in pSpice is 

reduced to 0.01 ns from 0.05 ns, as shown in figure 5.2, the solutions are almost identical. 

In addition, starting at an arbitrary bias point, the equations can be solved backwards in 

time, giving the path that led to that particular bias point. 

The new criteria is based on the system behavior, summarized in figure 5.3. Here, 

the separatrix through the unstable point has been added, which separates the stable off 

region from the stable latch region. Once any stimulus pulse has ended, all points under 

the separatrix have trajectories that will eventually lead to the neighborhood of the off 

static solution. Likewise, all points on the other side of the separatrix will lead to the latch 

static point. This is precisely the new latchup criteria. Since it is based on the 

mathematical behavior of the system equations, agreement with SPICE is guaranteed. 

This is a significant advantage over a criteria that cannot be derived and merely is 

motivated by the steady-state criteria. Furthermore, this rule can be tested at the moment 

a pulse ends, so that the critical pulse time can be determined by simply making the pulse 

longer until the criteria is met. Using this "voltage instability" criterion, the numerical 

solution will now be discussed, saving the analytical solution for a later chapter. 

The initial step is to determine the emitter-base voltages of the unstable, static 

solution where dVebl/dt=O and dVbe2/dt=O; if one exists. The equations can be 

simplified to solving for Ifl=O and If2=0, since these must both be zero if both dV/dt's are 

zero, which decreases the computational effort. This simplification is equivalent to noting 

that capacitors behave like open circuits in a static situation. Beforehand, we do not know 

the neighborhood of the unstable point, so a Newton-Raphson technique will likely fail to 

converge on the unstable point starting from an arbitrarily chosen seed value. So, the 

procedure being used is to solve for the Vbe2 values which make If1 and If2 zero as a 



function of Veb 1, using a bisection method. Vebl is started from a small value (but larger 

than the off state value), and increased in small steps. The difference in the Vbe2 values is 

checked and the procedure stopped when this difference changes sign. Now, this is in the 

neighborhood of the unstable point, and this value can be used as a seed value in a 

Newton-Raphson routine. It is possible that there is only one solution, namely the off 

state point. Here, the circuit is immune to latchup, since no stable latch point exists. In 

this case, the difference in Vbe2 values never changes sign, and the absence of an unstable 

point is noted. Another possibility is that the unstable point and latch point are so close to 

each other that the Vebl step "skips" past the unstable and the unstable point will appear 

to be absent. This will only happen for a circuit that is very close to being latchup 

immune, and the only remedy is to decrease the step size in the Vebl steps during the 

successive bisection solutions. In terms of the curves of zero dvldt, shown orignally in 

figure 3.1, the bisection is measuring the distance along the Vbe2 axis between the two 

curves at a particular Vebl value. Then, the Vebl is stepped and the process continues 

until the distance along the Vbe2 axis between the two curves changes sign, or the Vebl 

reaches a large cutoff value. 

By zooming in on the region of the unstable solution and plotting the dvldt 

vectors, figure 5.4 illustrates visually how the voltages will change in time in this vicinity. 

Near the upper intersection (the stable latch point), there are two areas where the arrows 

point "inward", indicating stability. The arrows in the other two areas will lead to one of 

these two areas. Near the unstable point, the upper right arrows lead to the latched state, 

while the lower left arrows point away towards the off state. Again, the upper-left and 

lower-right arrows will lead to one of these two areas. With the bisection and Newton- 

Raphson techniques for root finding, the unstable point has been calculated; unless it does 

not exist. 

The next step is to find the separatrix curve going through the unstable, static 

point which separates the off region from the latch region. By starting out at some bias 

points very close to the unstable point, the path which leads there can be calculated using 

Runge-Kutta techniques going backwards in time. An offset of 10 microvolts was 



somewhat arbitrarily chosen since it provided more than sufficient accuracy for the 

separatrix solution without causing loss of precision in the matching floating-point 

representation. One pair of points chosen were Vbe2 equal to its unstable solution value 

plus the offset, which is guaranteed to lead to the latched state; and Vebl equal to its 

unstable solution value minus the offset, which is guaranteed to lead to the off state. 

Switching the signs of the offset produce the other pair of points chosen. These pairs 

trace out paths very close to each other which sandwich a "critical" curve--the separatrix, 

as shown in figure 5.5. The two resulting curves which sandwich the critical curve are 

averaged, and this is output as the best solution to the critical curve. This critical curve is 

used as the new latchup criterion. Specifically, if at the instant a pulse ends, the emitter- 

base biases lie beyond the critical curve, then the circuit will latch. For a given pulse 

amplitude, the voltages can be calculated until the critical curve is crossed, which gives the 

minimum time for the pulse to just cause latchup. This rule no longer requires an iterative 

approach, since the rule is checked at the instant the pulse ends. Simulation with SPICE 

alone, of course, does require many iterations, since the simulation must be continued long 

after the pulse ends before the voltages will settle to either the latch or off region. In 

addition, since the equations are the same as for SPICE, essentially exact agreement with 

SPICE is achieved. 

To further illustrate the equivalence to SPICE simulations, note the path traced to 

the off state in figure 5.5. Near the unstable point, it is in a region where both voltages 

decrease. Then, it crosses the dVbe2/dt=O line and Veb 1 continues to decrease while 

Vbe2 increases slightly. Finally, it crosses the line again and both voltages decrease again 

approaching zero. Now, compare the SPICE simulation shown in figure 5.6, using the 

same latching structure parameters used in generating the previous figure. Here, at the 

instant the pulse ends at 9.7 ns, the voltages are very close to the critical curve, but still in 

the off region. Initially, Vebl decreases and Vbe2 increases until the unstable point is 

almost reached. Now, both voltages remain nearly unchanged for some time and 

eventually both decrease. Then, at approximately 80 ns, Vbe2 has a slight increase before 

both voltages decrease towards zero. This slight bump in Vbe2 in precisely what was 



expected from the critical curve tracing. 

To find the minimum pulse times for given pulse amplitudes, it is possible to run 

SPICE simulations and output node voltages for a sufficient length of time. This time 

would be longer than the suspected minimum pulse time, but would not have to be as long 

as using SPICE alone where the voltages must be traced until they settle. Then, the 

voltages can be checked for when it crosses the critical curve and the minimum pulse time 

is determined. However, it is much more efficient to avoid SPICE altogether. Simply 

solve the equations using the same Runge-Kutta routine used previously, only now with a 

stimulating pulse and starting with zero volts as both emitter-base voltages. The solution 

can be stopped as soon as the critical curve is crossed. If the curve is not crossed after 

some maximum allowed solve time, then the chosen pulse amplitude is not sufficient to 

trigger latchup. Results of using this method compared to using SPICE yield a difference 

of approximately one-tenth of one percent in the minimum pulse times. 
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Figure 5.3 Illustration of three static points and line separating the two stable solutions. 
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Fimre 5.5 Calculation of critical curve. The critical curve will lie between the diamonds and plus signs at the top, and between 
thecircles and multiplication signs at the right. 
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Figure 5.6 Transient response showing slight increase in Vbe of the NPN at Sons, after it 
has started decreasing. 



VI. Latchup Predictions for Intel Devices 

This section will provide numerical results for the method outlined in the previous 

chapters. The IV curves (base and collector currents versus emitter-base voltage) were provided 

for two different CMOS inverter test structures. For the first structure, there was little 

information as to the physical layout, but the IV curves of the two parasitic transistors were 

known (not reproduced here). The structure will be referred to as the " A  structure (the original 

designation referred to the epitaxial layer depth and has been omitted for confidentiality). Points 

were read off of the chart since the numbers making up the plots were unavailable. These points 

were fit to a Gummel curve with a small subset of the parameters. Due to the inaccuracies in 

reading the data off of the chart, doing a statistically precise fit would have been wasted effort. 

Figure 6.1 and 6.2 plots the transistor base and collector actual currents and the model currents 

for the two transistors. Figure 6.3 summarizes the errors between the actual and model currents 

and lists the model parameter values. These parameters were used to compare the simulation 

results for DC latchup versus the previously measured values. For NPN initiated latchup, the base 

trigger current was simulated as 939uA, measured as 650uA. The Vbe at latch was simulated as 

0.85V, measured as 0.847V. For PNP initiated latchup, the base trigger current was simulated as 

5.88mA, measured as 5.75mA. The Vbe at latch was simulated as -1.24V, measured as -1.15V. 

The N-well resistor value was increased by 25% from the layout calculated value to obtain better 

agreement--the DC results were used to calibrate the model for the transient pulse latchup 

predictions. Figure 6.4 is the minimum pulse width versus trigger current curve. Remember that 

the internal trigger current is equivalent to an external trigger voltage. Figure 6.5 through 6.10 

show how the minimum pulse width is affected for varying model parameter values. For all these 



curves, the trigger current was fixed at 20 rnA (equivalent to a 4 volt trigger voltage). From 

these, it is clear that the values of the shunting resistors have the largest effect on the time of the 

latching pulse. The next set of nine figures (6.11-6.19) produces an entire set of minimum pulse 

time curves for all combination of parameter variation, instead of varying just one parameter at a 

time as in the previous figures. Here, the stimulus is a voltage pulse on either the external base 

connection of the NPN or the PNP, representing a noise at that point on Vdd or Vss respectively. 

The values on Rw, Rs, and CjcO were simulated at -30%, nominal, and +30%. Figure 6.20 takes 

just the set of points for a Vdd noise of 1.5 volts and Rs nominal and plots the variation in 

minimum pulse times for varying Rw and CjcO. Clearly, once again the resistance values have the 

largest impact on the pulse times. 

The other structure, referred to as the "B" structure, had a layout as shown in figure 6.21. 

This structure had the silicon doping regions as is found in a CMOS inverter, but there were no 

MOS transistors which would complicate the analysis. A complete table for the collector and 

base currents of the two transistors was provided, and figure 6.22 and 6.23 plots this data and the 

resulting beta curve for the NPN transistor. These curves were then modeled by the usual 

Gummel-Poon model and a least-squares fit for the various regions was performed to determine 

the model parameters, as shown in figure 6.24. Although these figures only show the NPN 

transistor, the same procedure was used for the PNP. In the high current region, a non-linear 

model for the shunting resistance was used to give a better fit than a single resistor value could. 

The excellent agreement between the experimental data and the fit parameters is clear from 

figures 6.25-6.27. The base and collector currents for both the NPN and PNP show the near 

overlap in model and experimental data. The differences are easier to detect on the NPN beta 

curve, but the agreement is still quite good. The statistical parameter fit resulted in a complete 

specification of the equivalent circuit transistors and emitter-base shunting resistances. Junction 

capacitances were estimated from the geometry and doping. Capacitances are not required for 

the (static) determination of whether or not the structure is latchup immune. The capacitance, as 

expected, only enters the equations when solving for voltages as a function of time. 

The first step was to determine if the structure was latchup immune, and to vary the circuit 

parameters to find the range under which it was latchup immune. All of the programs written to 



implement the method are listed in the Appendix. The circuit transistor currents and capacitances 

were calculated using  equation.^, which all of the programs would call. The curves for which the 

derivative of each base-emitter voltage with respect to time was zero were generated using zer0.c; 

the intersection of these curves are the static points. The results, summarized in figures 6.28- 

6.33, clearly indicate that the structure was latchup immune. The structure did not exhibit a stable 

latched point unless the betas of the transistors were increased by a factor of 50 or the shunting 

resistors were increased by a factor of 100. The important feature of this structure which makes it 

so immune to latchup is the extremely low values for the shunting resistors. With such small 

resistances, a large quantity of current must flow through them to sustain a 0.7 volt emitter-base 

voltage drop, required to turn-on the transistors. 

For a structure which does have a stable latch point, the minimum pulse width to cause 

latchup is found in a two-step process. First, the program critcrv.~ determines the coordinates of 

the unstable point and solves the differential equations backwards in time to trace out the critical 

curves separating the stable off and stable latch regions. The Runge-Kutta numerical routines to 

accomplish this are modified versions of the routine appearing in Numerical Recipes in C3'. 

Second, pu1se.c finds the time for a given pulse to cross the critical curve, thus entering the latch 

region, and will generate the results for a range of pulse voltages. As indicated in a previous 

chapter, this is much more efficient than using iterative SPICE simulations. 

The conclusions that can be drawn from these figures is that the latchup immunity of a 

structure can be determined very quickly using the voltage-instability criteria. In a circuit 

simulation, the immunity can be determined by setting the base node to initial values such that the 

transistor on driven extremely on. Then, let the circuit relax to a steady state and see if that state 

is at zero volts or not. While this is not particularly time consuming, it does not give an indication 

of the magnitude of parameter change required to have a latch state. Unlike the previous charge- 

storage criteria, the voltage-instability criteria gives accurate results. 

In order to quantify the difference in time between the new method and the iterative 

SPICE method, benchmarks were performed. For the 54 pulse width versus stimulus voltage 

curves produced in the preceding figures, the computer solve time was recorded for both 

methods. In each case, the same 486 PC was used, running DOS. For the new method, each 
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curve took three minutes, but only for unique parameter variations. The curves for both Vdd and 

Vss pulsing were done at the same time. So the total time was 81 minutes to generate the 54 

curves. By doing SPICE simulations, the 54 curves require about 1000 data points, since about 

20 points per curve are calculated. Each point requires 14 SPICE simulations to narrow down 

the minimum pulse width to acceptable accuracy. Each iteration takes 30 seconds to run. So, the 

total time is about 7000 minutes, or 120 hours to generate the 54 curves. Just to be explicit, these 

comparisons are for generating the identical curves and approximately the same accuracy. The 

factor of about 85 times slower clearly shows the advantage of the new method. 
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Pulse Width vs Substrate Resistance 
(11 =20mA triggering) 
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Figure 6.6 Effect of varying substrate resistance on time to latchup 
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Pulse Width vs Forward Transit Time of PNP 
(1 1 =20mA triggering) 

40 60 80 

Forward Transit Time of PNP (nS) 

Figure 6.9 Effect of varying forward transit time of the PNP transistor on time to latchup 
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Latch Curves for Rs nom, CjcO-30%
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Latch Curves for Rs + 30%, CjcO-30%
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Latch Curves for Rs-30%, CjcO nom
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Latch Curves for Rs nom, CjcOnom
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Latch Curves for Rs + 30%, CjcO nom
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Latch Curves for Rs-30%, CjcO+ 30%
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Latch Curves for Rs nom, CjcO+30%
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Latch Curves for Rs + 30%, CjcO+ 30%
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Pulse Times for Vddd.5 V, Rs Nominal 







NPN Beta Curve for the "9" Structure 
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Figure 6.23 NPN Forward beta gain curve for the "B" structure. 



NPN Ic Parameter fit for the "B" Structure 
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Figure 6.24 NPN Ic curve only and parameter fit for the "B" structure on a log scale. 
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VII. Analytical Solution with Improved Accuracy 

The shortcomings of linearizing the base and collector currents at somewhat 

arbitrary points has already been highlighted in the previous attempt at an analytical 

solution. The purpose of this chapter is to explain a new approach to an analytical 

solution for transient latchup pulses utilizing the voltage instability criterion. The benefit 

of having an accurate analytical solution is just that the speed to solution is faster than 

numerical techniques. Frequently, analytical solutions also provide additional insight into 

the phenomenon being studied. In this case, however, the solutions are sufficiently 

complex that interpretation of the results on physical grounds was not possible. 

The analytical characterization is divided into three parts. First, the emitter-base 

voltage of the two transistors at the unstable point are determined. Second, the minimum 

pulse voltage which will lead to latchup is found. Finally, the curve of minimum pulse 

time versus pulse voltage is approximated. The agreement between the analytical results 

and simulated results will be shown to be sufficiently close to make the analytic approach 

useful. 

The first step of the latchup characterization is to find the unstable point. The 

general static equations are linearized about a point in the vicinity of where the unstable 

point is expected. This point is chosen as the point where the emitter-base voltage is such 

that the base current is equal to the current through the shunting resistor. Simpler metrics 

can be used; the only requirement for better accuracy is that smaller resistances push the 

unstable point guess to higher voltages, and larger resistances move the unstable point to 

smaller voltages. Once the initial guess is determined, the transistor base current and 



current gain (beta) are linearized at that point. Attempts to linearize the base and collector 

currents yielded unacceptable results. By linearizing beta instead of collector current, the 

relation between base and collector current is more accurately modeled. However, the 

penalty for this extra accuracy is that the collector current, which is the product of beta 

and base current, is now a quadratic expression. The new expressions are as follows: 

Ibl  =ail -(Vebl -Vsl) +Ibsl 

where the "Vs" terms are the voltages at which the functions are linearized, the "a" terms 

are slopes at those points, and the "s" terms are the values at Vs. Substituting the 

linearized expressions into the static equations now leads to a quartic expression. This is 

the maximum order for which roots can be derived analytically and the expressions are 

rather long. 

Original static system equations: 

The resulting quartic equation when substituting the linear approximations: 



ail Vsl -lbsl +ab2 V2 ai2-2 ab2 V2 ai2 Vs2 +ab2 V2 Ibs2 +ab2 Vs2 * ai2 
[ a i l [  ab2 Vs2 1bs2 +Bs2 ai2 V2 -Bs2 ai2 Vs2 +Bs2 1bs2 

This results in an equation in V2 of the form: 

The coefficients are each rather complicated expressions, and the solution to the general 

fourth-order equation is a complex expression of the coefficients. Unfortunately, lower 

orders give poor results, as mentioned. There are, of course, four roots to the equation. 

Of these, two are always complex and not of interest. The other two roots give the 

unstable static point and the stable latch point. If these roots are complex, the conclusion 

is that the structure is latchup immune. The degree to which it is immune can be judged 

from the root values. If the imaginary portions are relatively small, the structure is 

"almost latchable". If the roots are real and nearly equal, the structure is "almost 

immune". 

Although the first step is rather complicated, it corresponds to simply defining the 

latchup criterion. The problem of propagating the system equations to find the voltages as 

a function of time remains. It has already been determined that the previous method was 

subject to wide variations based on the linearizing points chosen in linearizing the 

transistor currents. Since no higher order allow solutions to the laplace transform, a 

different approach must be taken. 

The second step of the characterization is to find the minimum pulse voltage which 

will lead to latchup. Equivalently, it could be stated that the second step is to find the 

maximum pulse voltage which will not lead to latchup; the dividing point is the value 

determined. To find this voltage, it is assumed that the emitter-base voltage of the non- 

pulsed transistor is just below its unstable point value, which will be below turn-on. The 



transistor currents of the non-pulsed transistor can be ignored, while a maximum current is 

flowing through its shunting resistor. With these simplifications, the static equations can 

be solved for the minimum pulse voltage leading to latchup. The reason the minimum 

voltage is found is that the static equations with stimulus apply. Since the stimulus is on 

mathematically forever, the static equations determine the voltages at the end of the pulse. 

The general equations with time derivatives are unnecessary. So, the equations to be 

solved are now: 

where I,, and I, have been neglected because V2 will be below turn-on for the minimum 

stimulating voltage across the V1 junction. Alternatively, one could put the stimulus 

across the V2 junction; the solution will be equivalent to the case presented. The 

minimum voltage pulse which can lead to latchup will certainly have a V2 value less than 

the V2 voltage at the critical point at the moment the stimulating pulse will turn off. The 

amount below the critical value is about 0.15 volts, which will be the assumed value of the 

fitting parameter K. So, equation 10 becomes: 

I,, is a function of V1, and the terms on the right are known values. So, this can be 

solved for V1. This step can not be done analytically, due to the exponential expressions 

in I,,, but it is a relatively straightforward numerical procedure. With the value for V1 

known, equation 9 can now be solved for V,,,,,,, the minimum stimulus voltage that will 

lead to latchup. 
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The final step is to approximate the minimum pulse duration which leads to latchup 

for an arbitrary pulse voltage. This is done by modifying the time-domain solution where 

both transistors are off, which can be solved analytically, so that it approximates the 

behavior for the entire range. The time-domain solution with both transistors off gives the 

voltage as a function of time. To simplify the analysis, the critical curve is assumed to be 

equal to the minimum stimulus voltage which will lead to latchup, for either Veb or Vbe 

biasing. The system equations to be solved in the region where both transistors are off 

simplify to the following: 

where 

CfaOp Cc Cel + Cc Ce2 + Cel Ce2 

Initially, both V1 and V2 are equal to zero. Using a laplace transform, the solutions to 

these equations are found to be: 

where 



B = (Cc Rl + Cc R2 + Cel RI + Ce2 R2)'-4 Rl R2 Cfact 

a, = 112 
(Cel RI + Ce2 R2 + CcRl + Cc R2) 

R1 R2 'fact 

By inspection, a, will always be larger than a,; so the exponential decay will always 

dominate the exploding cosh term. At time equal to infinity, the value of the emitter-base 

voltage is equal to the stimulus voltage. By subtracting off the value of the minimum 

pulse voltage to latch, the function will go to zero at time equal to infinity for a stimulus 

equal to the minimum pulse voltage. For other stimulus voltages, the time which makes 

the V1 function zero is calculated. Effectively, the critical curve is approximated as a 

constant equal to the minimum stimulus voltage to cause latchup, which means the V2 

solution can be ignored. This is important since the correct V2 behavior in the vicinity of 

the critical curve would require solving in the region when one transistor is "on". Plotting 

the calculated time against the stimulus voltages approximates the exact minimum pulse 

time-stimulus voltage curve. By subtracting the minimum pulse voltage to latch, it will 

match at the minimum pulse voltage end of the curve. For large pulse voltages, most of 

the time is spent with both transistors off, and extrapolating this solution until it crosses 

the critical curve is an excellent approximation to the minimum pulse time required to 

latch. So, this approach will also provide agreement for the large stimulus voltage end of 

the curve as well. 

To summarize the method of solution, there are basically three steps. The initial 

step is to calculate the unstable point. This will determine whether the structure is latchup 

immune or not. The next step is to approximate the critical curve, using the unstable point 

solution to determine the minimum pulse voltage required for latchup. Finally, for a given 



stimulus, the voltages as a function of time are solved to determine the time at which the 

critical curve is crossed. By approximating the critical curve as a constant equal to the 

minimum pulse voltage required for latchup, the two voltages as a function of time do not 

need to be solved simultaneously in order to determine when the critical curve is crossed. 

The penalty is that high voltage pulses will cross the approximated critical curve before it 

crosses the actual critical curve, but the differences are acceptably small to justify the 

approximation. The only viable alternative is to find a more accurate approximation for 

the critical curve and a solution for the voltages when one transistor is conducting. But, 

numerical integration is easier than an analytical approach of this detail. 

A comparison of the analytic and numerical solutions was done for two different 

sets of structure parameters. For the parameters used by Ker and Wu, the results for the 

unstable point calculation were as follows: (Veb1,VbeZ) equal to (0.747V, 0.776V) using 

numerical techniques, (0.748V, 0.779V) using the analytical approximation. The exact 

minimum pulse voltage to cause latchup was calculated as 0.918 volts and the 

approximation was 0.903 volts. For the Intel 8 . 5 ~  structure, the unstable point was at 

(0.83 1 volts, 0.83 1 volts) with the analytical solution yielding (0.841 volts, 0.847 volts). 

The minimum pulse voltage to latch was 0.959 volts; the approximation was 0.971 volts. 

As can be seen, the agreement is acceptably close. It should be pointed out that the 

method for finding the linearizing point and emitter-base voltage of the non-pulsed 

transistor could be refined to improve the accuracy. But, the variation caused by adjusting 

the parameters is not nearly as great as the variation introduced when linearizing currents 

at two arbitrary voltage points. 



VIII. Summary 

The main goals of this project were to provide a computationally fast and accurate method 

for predicting when latchup will occur in CMOS structures when responding to a voltage 

pulse, to develop better analytical approximations than what are available in the current 

literature for the same case and finally apply these results to specific Intel test structures. 

These goals were accomplished successfully as detailed earlier in this report. Here we 

summarize the main highlights of this report: 

A new condition for latchup to occur was presented. The new condition for 

latchup to occur is based on the possible existence of an unstable solution to the system 

equations of the CMOS structure. This mathematical condition provides latchup 

predictions which exactly match painstaking, trial-and-error SPICE simulations. The new 

latchup criterion is an improvement over previous empirical conditions, such as the 

transient beta product criterion, in terms of both accuracy and ability to justify its use. 

For a given pulse voltage, the minimum pulse time which will lead to latchup can 

be calculated significantly faster using the new voltage-instability condition rather than 

through SPICE simulations. This helps in a rapid estimation of determination of process 

corners avoiding extensive SPICE simulations. 

An improved method of analytically solving the system equations for the device 

was derived which allows an even faster characterization of latchup performance with 

more accuracy than the previous method using Laplace transforms. The analytical 

solution of determining when the system equations satisfy the new latchup condition 



provides an excellent estimation of minimum pulse times without resorting to numerical 

evaluation of the differential system equations. The main advantage over the previous 

analytical solution was avoiding the approximation of transistor currents as having a linear 

dependence on voltage, when the actual dependence is exponential. The only drawback to 

the current solution is the high degree of complexity in the expressions, caused by the 

solution of a fourth-order polynomial. However, lower orders provided unacceptable 

accuracy, and the complexity of the expressions is no worse than the Laplace transform 

solution of the system equations. 

Finally the accomplished results were applied to several Intel test structures. The 

physical layout and electrical data for the Intel test structures was provided by Dr. Shariar 

Ahmed and Mr. Jim Chen, for which the author is grateful. This allowed the use of actual 

device parameters in determining latchup behavior. For those structures that were found 

to be latchup immune, the device parameters were varied until latchup was possible so that 

the degree of latchup immunity could be judged. An extension of this would translate the 

device parameter changes back to process changes so that critical process corners could 

be determined. 
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Appendix 

Progam listing for equati0n.c: 

#include unath. h> 
#define BF p[ 1 ] [x] 
#define BR p[2] [x] 
#define IS p[3][x] 
#define IKF p[4] [x] 
#define ISE p[5] [x] 
#define ISC p[6][x] 
#define TF p[7] [x] 
#define TR p[8] [x] 
#define CJC p[9] [x] 
#define CJE p[ 1 O] [x] 
#define VAF p[l l][x] 
#define VAR p[12] [x] 
#define NF p[13] [x] 
#define NE p[14][x] 
#define NC p[15] [x] 
#define NR p[ 1 61 [x] 
#define MJE p[17] [x] 
#define MJC p[18] [x] 
#define PHI 0.75 
#define FC 0.5 

extern float p[20][2],Vt; 

float Ibe 1 (float Vbe,int x) 
I 

if (Vbe > -5.0*Vt*NF) 
return( IS/BF*(exp(Vbe/(Vt*NF))- 1) ); 

else 
return( IS/BF*(- 1 .O*((Vbe+5.O*Vt*NF)/(NF*Vt)+l .O)*exp(-5.0)) ); 

1 

float Ibe2(float Vbe,int x) 
{ 

if (Vbe > -5.0*Vt*NE) 
return( ISE*(exp(Vbe/(Vt*NE))-1) ); 

else 
return( ISE*(-1 .O*((Vbe+5.O*Vt*NE)/(NE*Vt)+l .O)*exp(-5.0)) ); 

} 



float Ibcl(float Vbc,int x) 
{ 

if (Vbc > -S.O*Vt*NR) 
return( IS/BR*(exp(Vbc/(Vt*NR))-1) ); 

else 
return( IS/BR*(- 1 .O*((Vbc+S.O*Vt*NR)/(NR*Vt)+l .O)*exp(-5.0)) ); 

1 

float Ice(float Vbe,float Vbc,int x) 
{ 

float Kb(float,float,int); 
return( (BF*Ibel(Vbe,x)-BR*Ibcl (Vbc,x))/Kb(Vbe,Vbc,x) ); 

1 

float Kb(float Vbe,float Vbc,int x) 
{ 

float q 1 ,q2; 

float Cbe2(float Vbe,float Vbc,int x) 
{ 

float Kb(float,float,int); 

return( TF*BF*(Ibel(Vbe+le-4,x)/Kb(Vbe+le-4,Vbc,x)- 
Ibe 1 (Vbe- le-4,x)/Kb(Vbe- le-4,Vbc,x))/2e-4 ); 

1 

float Cbe 1 (float Vbe,int x) 
{ 

if (Vbe c FC*PHI) 
return( CJE*pow(l .O-Vbe/PHI,-MJE) ); 

else 
return( CJE*pow(l-FC,-MJE)*(l+MJE*(Vbe-FC*PHI)/(PHI*(l-FC))) ); 

1 

float Cbcl(float Vbc,int x) 
{ 

if (Vbc < FC*PHI) 
return( CJC*pow(l .O-Vbc/PHI,-MJC) ); 



else 
return( CJC*pow( 1 -FC,-MJC)*(l+MJC*(Vbc-FC*PHI)/(PHI*(l -FC))) ); 

I 

float Cbc2(float Vbe,float Vbc,int x) 
{ 

float Kb(float,float,int); 

return( TR*BR*(Ibcl(Vbc+le4,x)/Kb(Vbe,Vbc+le-4,x)- 
Ibc 1 (Vbc- le-$,x)/Kb(Vbe,Vbc- 1e-4,x))l2e-4 ); 

I 

#include unath.h> 
#include <stdio. h> 
#include <string.h> 
#include "nr.hW 
#include "equation.hV 
#define DEL le-4 

float p[20] [2],Rs,Rw,Vt,Il ,I2; 
float v[3],result[3]; 
float **yp,*xp,dxsav; 
int kmax,kount; 

void main() 
{ 

void readpararns(v0id); 
I* float rtbis(float (*func)(float),float,float,float);*/ 

float fn 1 (float); 
float fn2(float); 
float (*fnptr[3])(float); 
float **matrix(int,int,int,int); 
float *vector(int,int); 
void derivs(float *,float *); 
float temp 1 ,temp2; 
int i; 



for (i= 1 ;i<=2;i++) { 
for (v[2]=0.01;~[2] <= 1.001; v[2] += 0.01) { 

v[l]=-0.1; 
derivs(v,result) ; 
temp1 =result[i]; 
for (v[l]=-0.09; v[l] <= 1.1; v[l] += 0.01) { 

derivs(v,result); 
if (result[i]*templ < 0.0) { 

temp 1 =result[i] ; 
temp2=rtbis(fnptr[i],v[l]-O.Ol,v[l],le-6); 
printf(ll%d %f %h",i,tempZ,v[Z]); 

1 
1 

1 
1 

I 

/* file starts with temp, then transistor params, finally resistances *I 
void readparams(void) 
{ 

FILE *in; 
char inline[255]; 
int i; 

in=fopen("params.dat","r"); 
for (i=O;i<20;i++) { 

fgets(inline,255,in); 
sscanf(inline,ll%f %f ',&(p[i] [O]),&(p[i] [I])); 

1 
Rs=p[l9][0]; 
Rw=p[l9][1]; 
Vt=(p[0][0]+273.15)*8.617384436e-5; I* convert temp to volts *I 
fclose(in); 

1 

float fn 1 (float vv) 
{ 

void derivs(float *,float *); 



float fn2(float w )  
I 

void derivs(float *,float *); 

void usrfun(float *x, float **alpha, float *beta) 
{ 

void usrfn2(float *,float *); 
float temp[5] [3]; 
int i j ;  

~ [ l ]  -= DEL; 
usrfn2(x,temp[l]); 

x[l] += 2*DEL; 
usrfn2(x,temp[2]); 
~ [ l ]  -= DEL; 
x[2] -= DEL; 
usrfn2(x,temp[3]); 
x[2] += 2*DEL; 
usrfn2(x,temp[4]); 

x[2] -= DEL; 
usrfn2(x,beta); 
beta[l] = -beta[l]; 
beta[2] = -beta[2]; 

for (j= 1 ;jc=2;j++) 
for (i= 1 ;ic=2;i++) 
alpha[i]u]=(tempu*2][i]-tempu*2- l][i])/(2*DEL); 

1 

void usrfn2(float *v, float *if-) 
{ 

float vbc,ibl ,ib2,icl ,ic2; 



ic l=Ice(v[l],vbc,O)-Ibc l(vbc,O); 
ibl=Ibe 1 (v[l],O)+Ibe2(v[l],O)+Ibc 1 (vbc,O); 
ib2=Ibe 1 (v[2], 1)+Ibe2(v[2], l)+Ibc 1 (vbc, 1); 
if-[l]=ic2-ib 1-v[l]/Rs; 

if-[2]=ic 1 -ib2-v[2]/Rw; 
1 

void derivs(float *v, float *dvdx) 
{ 

float delc,cc 1 ,cc2,cel ,ce2,vbc,if[3]; 

Program list in^ for critcrv.~ 

#include anath.h> 
#include <stdio.h> 
#include <string.h> 
#include "nr.hW 
#include "equation.hW 
#define DEL le-4 

float p[20] [2],Rs,Rw,Vt,Il ,I2; 
float v[3],result[3]; 
float **yp,*xp,dxsav; 
int kmax,kount; 

void main() 
{ 

void readparams(void); 
void odeint2(float *ystart, int nvar, float xl ,  float x2, float eps, 

float hi, float hrnin, int *nok, int *nbad, 



void (dderivs)(float,float *,float *) , 
void (*rkqc) (float *,float *,int,float *,float,float,float *, 

float *,float *,void (*) (float,float *,float *)),int i) ; 
I* float rtbis(float (*func)(float),float,float,float);*/ 

float fn 1 (float); 
float fn2(float); 
float **matrix(int,int,int,int); 
float *vector(int,int); 
void derivs(float,float *,float *); 
float vla,vlb,crit[3],y lsav[100],y2sav[100]; 
float lookup(float,float *,float *,int); 

int flag= 1 ,nok=O,nbad=O,i,savcnt=O; 
FILE *out; 

for (v[2]=0.01;~[2] <= 1.001 && flag; v[2] += 0.01) { 
vla=rtbis(fnl ,-0.1,l. 1,le-6); 
vlb=rtbis(fn2,-0.1,l. 1,le-6); 

I* printf("%f %f %f\n",v[2],vla,vlb); *I 
if ( (vl a>vlb) && (flag) ) { 

flag=O; 
crit[l]=vlb; 
crit [2] =v [2] ; 

1 
I 
if(flag) t 

printf("No critical point solution found"); 
exit(0); 

1 
printf("1nitial critical point at %f,%f\n",crit[l],crit[2]); 

v[l]=crit[l]; 
v[2]=crit[2]; 
mnewt(25,v,2,1e-6,O.O); 
printf(" Final critical point at %f,%f\nW,v[l],v[2]); 

/* now, v[l] & v[2] should have the critical voltage's to be 
solved backward in time using Runge-Kutta *I 



out=fopen("critcrv.dat","w "); 
for (i=O;i<4;i++) { 

crit[l]=v[l]-le-S*sin(i*M-PI-2); 
crit[2]=~[2]+1e-5*cos(i*M-PI-2); 
odeint2(crit,2,0.0,- 1 .O, le-6,le-l0,0.0,&nok,&nbad,derivs,rkqc,l+i/2); 
if ( k 2 )  I* invert order so vl 's increasing wlindex *I 

for (nok= 1 ;nok<=2;nok++) 
for (flag=l ;flag <= kount/2;flag++) { 

v 1 a=yp[nok] [flag] ; 
yp[nok] [flag]=yp[nok] [kount+l -flag]; 
yp[nok] [kount+ 1 -flag]=v 1 a; 

1 
if (i & 1) 

for (flag= 1 ;flag<=kount;flag++) { 
vla=lookup(yp[l] [flag],y 1 sav,y2sav,savcnt); 
fprintf(out,"% l2.7f 

% 12.7h",yp[l][flag],(yp[2][flag]+vla)/2.0); 
1 

else ( 
savcnt=kount; 
for (flag= 1 ;flag<=savcnt;flag++) { 

Y lsav[flagl=yp[ ll[flagl; 
y2sav[flagl=yp[21 [flag]; 

1 
1 
if (i== 1) 

fprintf(out,"% l2.7f % 12.7f\n",v[l],v[2]); 
1 
fclose(out); 

1 

/* file starts with temp, then transistor params, finally resistances *I 
void readparams(void) 
{ 

FILE *in; 
char inline[255]; 
int i; 

in=fopen("params.datl',"r"); 
for (i=O;i<20;i++) { 

fgets(inline,255,in); 



sscanf(inline,"%f %f ',&(p[i][O]),&(p[i][l])); 
1 
Rs=J?[ 191 101; 
Rw=p[l91[11; 
Vt=(p[O][0]+273.15)*8.617384436e-5; I* convert temp to volts *I 
fclose(in) ; 

1 

float fn 1 (float w) 
{ 

void usrfn2(float *,float *); 

float fn2(float vv) 
{ 

void usrfn2(float *,float *); 

void usrfun(float *x, float **alpha, float *beta) 
{ 

void usrfn2(float *,float *); 
float temp[5] [3]; 
int i j ;  

x[l] -= DEL; 
usrfn2(x,temp[l]); 
x[l] += 2*DEL; 
usrfn2(x,temp[2]); 
x[l] -= DEL; 
x[2] -= DEL; 
usrfn2(x,temp[3]); 
x[2] += 2*DEL; 

usrfn2(x,temp[4]); 
x[2] -= DEL; 

usrfn2(x,beta); 



for Q=l;j<=2;j++) 
for (i= 1 ;i<=2;i++) 
alpha[i]u]=(temp~*2][i]-templj*2-l][i])/(2*DEL); 

1 

void usrfn2(float *v, float * i f3  

float vbc,ibl,ib2,icl ,ic2; 

void derivs(float t, float *v, float *dvdx) 
{ 

float delc,cc 1 ,cc2,cel ,ce2,vbc,if-[3]; 

vbc=-5.O+v[l]+v[2]; 
cc l=Cbc 1 (vbc,O)+Cbc2(v[l],vbc,O); 
cc2=Cbc 1 (vbc, l)+Cbc2(v[2],vbc, 1); 
cel=Cbel (v[l],O)+Cbe2(v[l],vbc,O); 
ce2=Cbe 1 (v[2], l)+Cbe2(~[2],vbc, 1); 
delc=(cc 1 +cc2)*(ce l+ce2)+ce 1 *ce2; 
usrfn2(v,ifJ; 

#define MAXSTP 10000 
#define TINY 1.0e-30 

void odeint2(float ystart[],int nvar,float x l  ,float x2,float eps,float h l ,  
float hmin,int *nok,int *nbad,void (*derivs)(float,float *,float *), 
void (*rkqc)(float *,float *,int,float *,float,float,float *,float *, 



float *,void (*)(float,float *,float *) ),int loop ) 
1 

int nstp,i; 
float xsav,x,hnext,hdid,h; 
float *yscal,*y,*dydx,*vector(int,int); 
void nrerror(char *),free-vector(float *,int,int); 
extern float **yp,*xp,dxsav; 
extern int kmax,kount; 

y=vector( 1 ,nvar); 
dydx=vector( 1 ,nvar); 
x=xl; 
h=(x2>xl) ? fabs(h1) : -fabs(hl); 
*nok=(*nbad)=kount=O; 
for (i= 1 ;i<=nvar;i++) 

y[i]=ystart[i]; 
if (kmax > 0) xsav=y[loop]-dxsav*2.0; 
for (nstp= 1 ;nstp<=MAXSTP;nstp++) { 

(*derivs)(x,y ,dydx); 
for (i= 1 ;i<=nvar;i++) 

ysca.[i]=fabs(y [i])+fabs(dydx[i] *h)+TINY; 
if (krnax > 0) { 

if (fabs(y[loop]-xsav) > fabs(dxsav)) { 
if (kount < kmax-1) { 

xp[++kount]=x; 
for (i= 1 ;i<=nvar;i++) 

yp[i] [kount]=y [i] ; 
xsav=y [loop]; 

1 
} 

1 
if ((x+h-x2)*(x+h-xl) > 0.0) h=x2-x; 
(*rkqc)(y,dydx,nvar,&x,h,eps,yscal,&hdid,&hext,derivs); 
if (hdid==h) ++(*nok); 

else +t(*nbad); 
if ( (y[1]<0.01) II (y[2]<0.01) I1 (fabs(x)>2e-7) ) { 

for (i= 1 ;i<=nvar;i++) 
ysta.t[i]=y [i] ; 

if (kmax) { 
xp[++kount]=x; 
for (i=l ;i<=nvar;i++) yp[i] &ount]=y [i]; 

1 



free-vector(y , 1 ,nvar) ; 
free-vector(y seal, 1 ,nvar); 
return; 

1 
if (fabs(hnext) <= hrnin) nrerror("Step size too small in ODEINT"); 
h=hnext; 

I 
nrerror("To0 many steps in routine ODEINT"); 

I 

float lookup(float y,float *yy 1 ,float *yy2,int count) 
{ 

int i=2; 

while (yyl[i]<y && iccount) u i ;  
return ( (y-yy 1 [i])*(yy2[i]-yy2[i- ll)l(yyl [il-yy 1 [i- 1 l)+yy2[il ); 

1 

#include <math.h> 
#include <stdio.h> 
#include <string.h> 
#include "nr.hU 
#include "equation.hU 
#define DEL le-4 

float p[20] [2],Rs,Rw,Vt,Il ,I2; 
float v[3],save[6],cv1[100],cv2[100]; 
float **yp,*xp,dxsav; 
int kmax,kount,ccount ; 

void main() 
I 

void readparams(v0id); 
void odeint2(float *ystart, int nvar, float xl ,  float x2, float eps, 

float hi, float hrnin, int *nok, int *nbad, 
void (dderivs)(float,float *,float *) , 
void (*rkqc) (float *,float *,int,float *,float,float,float *, 
float *,float *,void (*) (float,float *,float *)) ) ; 

float **matrix(int,int,int,int); 



float *vector(int,int); 
void derivs(float,float *,float *); 
float vla,vlb,start[3],ylsav[100],y2sav[100]; 

float d[3],mid[3], temp[3],vnoise,del ta; 
float v2lookup(float); 

int nok=O,nbad=O,ij,k; 
FILE *out; 
char *fname; 

for (i=O;i<2;++i) { 
vnoise4.5; 
delta=0.5 ; 
++fname [5]; 
out=fopen(fname,"w "); 
do { 

vnoise -= delta; 
I1=(1-i)*vnoise/Rs; 
12=i*vnoise/Rw; 
odeint2(start,2,0.0, 1 .O, 1e-6,0.2e- 1O,O.O,&nok,&nbad,derivs,rkqc); 
if (save[3]<2e-7) { 

for (j=O;j<3;j++) { 
du]=saveu+3]-savelj] ; 
midu]=savefi]; 

1 
for (k=l; k<=30 && d[O]>le-12 ;k++) { 

for (j=Oj<3gtt) 
ternplj]=midlj]+(dlj] *= 0.5); 

if (temp[2] < v21ookup(temp[l]) ) 
for (j=O;j<3;j++) 

midCj]=templj]; 



I 
if (fabs(vnoise-3.0) < .01) deltaa.2; 
if (fabs(vnoise-2.0) < .01) delta=O. 1 ; 
if ( (save[3] >= 2e-7) && (delta>=O. 1 )  ) { 

vnoise += delta; 
delta *= 0.2; 
save[3]=0.0; 

1 
I 
while (save[3] < 2e-7); 
fclose(out); 

I 
I 

/* file starts with temp, then transistor params, finally resistances *I 
void readpararns(void) 
{ 

FILE *in; 
char inline[255]; 
int i; 

in=fopen("params.datt',"rt'); 
for (i=O;i<20;i++) { 

fgets(inline,255,in); 
sscanf(inline,"%f %f',&(p[i][O]),&(p[i][l])); 

1 
Rs=p[l9][0]; 
Rw=p[l9][1]; 
Vt=(p[O] [0]+273.15)*8.6 17384436e-5; I* convert temp to volts *I 
fclose(in); 

in=fopen("critcrv.datt',"r"); 
i=O; 

while (fgets(inline,255,in) != NULL) { 
if ( sscanf(inline,"%f %f ',&(cvl[i]),&(cv2[i]))==2 ) 

void usrfun(float *x, float **alpha, float *beta) 
{ 

void usrfn2(float *,float *); 



float temp[S] [3]; 
int i,j; 

~ [ l ]  -= DEL; 
usrfn2(x,temp[l]); 
x[l] += 2*DEL; 
usrfn2(x,temp[2]); 

~ [ l ]  -= DEL; 
x[2] -= DEL; 
usrfn2(x,temp[3]); 
x[2] += 2*DEL; 

usrfn2(x,temp[4]); 
x[2] -= DEL; 

usrfn2(x,beta); 
beta111 = -beta[l]; 

beta[2] = -beta[2]; 

for (j= 1 ;j<=2;j++) 
for (i= 1 ;i<=2;i++) 
alpha[i]~]=(temp~*2][i]-templj"2-l][i])/(2*DEL); 

1 

void usrfn2(float *v, float *if-) 
I 

float vbc,ibl,ib2,icl ,ic2; 

void derivs(float t, float *v, float *dvdx) 
{ 

float delc,cc 1 ,cc2,ce 1 ,ce2,vbc,if-[3]; 

vbc=-5.O+v[l]+v[2]; 
cc l=Cbcl (vbc,O)+Cbc2(v[l],vbc,O); 
cc2=Cbc 1 (vbc, l)+Cbc2(v[2],vbc, 1); 
cel=Cbel(v[l],O)+Cbe2(v[l],vbc,0); 



#define MAXSTP 450 
#define TINY 1.0e-30 

void odeint2(float ystart[],int nvar,float xl ,float x2,float eps,float h l ,  
float hmin,int *nok,int *nbad,void (*derivs)(float,float *,float *), 
void (*rkqc)(float *,float *,int,float *,float,float,float *,float *, 
float *,void (*)(float,float *,float *) ) ) 

{ 
int nstp,i; 
float xsav,x,hnext,hdid,h; 
float *yscal,*y,*dydx,*vector(int,int); 
void nrerror(char *),free-vector(float *,int,int); 
float v21ookup(float); 
extern float * *yp,*xp,dxsav; 
extern int kmax,kount; 

y=vector( 1 ,nvar); 
dydx=vector(l ,nvar); 
x=x 1 ; 
h=(x2>xl) ? fabs(h1) : -fabs(hl); 
*nok=(*nbad)=kount=O; 
for (i= 1 ;i<=nvar;i++) 

y[i]=ystart[i]; 
if (kmax > 0) xsav=y[l]-dxsav"2.0; 
for (nstp= 1 ;nstp<=MAXSTP;nstp++) { 

(*derivs)(x,y ,dydx); 
for (i= 1 ;i<=nvar;i++) 

yscal[i]=fabs(y [i])+fabs(dydx[i] *h)+TINY; 
save[O]=x; 
save[l]=y[l]; 
save[2]=y[2]; 

I* if (krnax > 0) { 
if (fabs(y[l]-xsav) > fabs(dxsav)) { 

if (kount < kmax- 1) { 



xp[++kount]=x; 
for (i= 1 ;i<=nvar;itk) 

yp[i] [kount]=y[i]; 
xsav=y[l]; 

1 
1 

1 
*I if ((x+h-x2)*(x+h-xl) > 0.0) h=x2-x; 

(*rkqc)(y,dydx,nvar,&x,h,eps,yscal,&hdid,&hnext,derivs); 
if (hdid==h) ++(*nok); 

else ++(*nbad); 
if ( ( y[2]>v21ookup(y[l]) ) II (fabs(x)>2e-7) ) { 

I* for (i= 1 ;i<=nvar;i++) 
ystart[i]=y [i]; 

if (kmax) { 
xp[++kount]=x; 
for (i=l ;i<=nvar;i++) yp[i] [kount]=y [i]; 

1 

free-vector(dydx, 1 ,nvar); 
free-vector(y, 1 ,nvar); 
free-vector(ysca1, 1 ,nvar); 
return; 

I 
if (fabs(hnext) <= hmin) nrerror("Step size too small in ODEINT"); 
h=hnext; 

1 
save[3]=1 .O; 
free-vector(dydx, 1 ,nvar); 
free-vector(y, 1 ,nvar); 
free-vector(ysca1, 1 ,nvar); 

I* nrenor("Too many steps in routine ODEINT");*/ 
1 

float v21ookup(float vl)  
I 

int i=l; 
while (cv 1 [i]<v 1 && icccount) u i ;  
return ( (v 1 -cv 1 [i])*(cv2[i]-cv2[i- l])/(cvl [il-cvl [i- l])+cv2[i] ); 
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