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ABSTRACT

Mixed Mode Failure Analysis of Adhesively Bonded Composite Systems
Using the Modified Iosipescu Test Method

Shiliang Ding
Oregon Graduate Institute of Science & Technology, 1995

Supervising Professor: Maciej S. Kumosa

Adhesive bonding is widely used as a joining method for important structural
components, particularly in aerospace, automotive, and microelectronic applications. The
design of adhesive joints requires an adequate understanding of their ultimate strengths
and failure mechanisms under various combinations of applied shear and normal loads.
There are several test configurations currently available for the testing of adhesive joints
under various loading conditions. However, all of these methods have serious
disadvantages, ranging from a prohibitive cost of specimen preparation and testing to
questionable stress fields in the adhesive layers. Adhesively bonded composite systems
consist of bimaterial interface corners, which are generally a source of singular stress
fields. These singularities lead to premature failure, thereby making it difficult to
characterize the mechanical behavior and to establish the proper failure/fracture criteria
of adhesively bonded composite systems.

During the course of this work, the modified Tosipescu test technique was
analyzed and applied to investigate the strength of different adhesive joints subjected to

biaxial (shear dominated) loadings. The Airy stress function approach, finite element

XX



method (FEM), and the finite element iterative method (FEIM) were applied to
investigate macro- and micro-stress fields in the adhesively bonded Iosipescu specimens
with different geometries. Analytical and numerical schemes for evaluating the interfacial
stress intensity factors, eigenfunctions, eigenvalues, singular zones, and the plastic zones
at interface corners were introduced. In the experimental part of this study, adhesively
bonded losipescu specimens were prepared using a specially designed bonding assembly
and were subsequently tested in the modified Iosipescu test fixture. In addition, the
fractured surfaces of the specimens tested under various biaxial loadings were examined
using optical and scanning electron microscopy.

It was found that there are two independent composite parameters necessary for
characterizing the mechanical properties of a bimaterial interface corner. Furthermore,
there exists a critical interface angle beyond which the stress singularity vanishes for all
material combinations. It was also observed that at a non-linear bimaterial interface
corner, there is a transition zone between the smaller plastic zone and the larger singular
zone. The experimental results obtained in this study strongly indicate that the type of
notch configuration, biaxial loading conditions, and joint strength for rigid and flexible
adhesives are not related. Based on the results obtained in this study, an optimized
adhesive joint Josipescu specimen is proposed. The specimen should be ideal for

mechanical testing of adhesive joints since it is free from stress singularities.
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CHAPTER 1
INTRODUCTION

1.1. Adhesively Bonded Composite Systems

Modern industrial development necessitates the use of functional and efficient
materials. Composites, which have a high specific modulus and strength, are potential
materials for extensive use in structural applications. As a matter of fact, the structural
efficiency of a composite structure is established, with very few exceptions, by its joints,
rather than by its basic structure. There are many joining methods used in structural
engineering such as welding, brazing, soldering, bolting, riveting, fastening, and
adhesive bonding. Among these methods, adhesive bonding has gained considerable
popularity in the manufacture of composite structural systems, especially in the past two
decades.

Adhesive bonding for primary load-bearing structures was developed several
decades ago, but it has only recently gained importance as an economical and effective
method for joining materials. Cage [1] has illustrated the extensive use of adhesives in
the aircraft industry, and Vinson [2] has also been listed several advantages of using
adhesive bonding techniques. Generally, such adhesively bonded materials can be
considered as a composite system that offers superior stiffness, lower density, lower
fabrication cost, and improved damage tolerance when compared to other joining
techniques. Although adhesively bonded structures are extensively used in the aircraft,
automotive, and electronic industries [1-4,38-41,56-70], the mechanism of interface
delamination of adhesively bonded structures and the corresponding criterion are not well
understood. This is primarily due to the absence of a reliable test method to characterize

mechanical properties of the adhesives and joints being used.



1.2. Test of Adhesively Bonded Joints

The ability to predict the mechanical properties and to understand the failure
mechanisms in adhesively bonded joints under mixed mode loading conditions is
important for the further development of adhesively bonded composite structures. Some
of the important requirements for adequate predictions are adhesive properties, joint
shear and tensile strengths, delamination initiation criterion, crack propagation condition,
and response of different adhesives under mixed mode loading situations. Currently,
many adhesive joint test methods are available, including single-lap test, double-lap test,
step-wised-lap test, scarf-lap test, cone and plate test, Arcan test, and Iosipescu-type
specimen test. Unfortunately, none of these methods is able to generate a uniform stress
state (especially pure shear) inside the adhesive layer [71-77] and therefore are unable
to reliably characterize the adhesive properties.

Kumosa [78-79], after an in-depth study of pure shear and mixed mode testing of
composite materials using the modified Iosipescu test fixture, introduced a new method
for adhesive joint mixed mode testing: an Iosipescu specimen with an adhesive joint (to
be mixed-mode tested using the modified Iosipescu test fixture), which is considered to
be capable of generating a uniform stress state inside the adhesive layer. In order to
understand and exploit the potential of this method, extensive study on the global and
local stress distribution of the adhesive joint Iosipescu specimen has been conducted.
Special attention has been given to the interfaces and interface corners where most

failures are initiated.

1.3. Interfacial Stress Singularities

1.3.1. Importance

The majority of recently developed advanced materials and engineering structures



is comprised of more than one phase. Very often, an interface can be defined between
any two phases, for example, an adhesive joint, as a bonding surface where a
discontinuity of some kind occurs. The discontinuity may be sharp or gradual. In general,
the interface is an essentially two-dimensional region through which material parameters
such as concentration of an element, crystal structure, atomic registry, elastic modulus,
density, and coefficient of thermal expansion, change from one side to another. Clearly,
a given interface may involve one or more of these items and plays a major role in the
mechanical and physical properties of the material or structure. Here, the mechanical
behavior, namely the stress singular power, the stress intensity factor, the shape and size
of the singular stress dominating zone, and the plastic zone shape and size (if the
interface consists of elasto-plastic materials) of an interface, is the main concern.

In composite systems, the existence of interfaces is one of the most important
features. The properties of the composite systems are largely determined by the
interfaces. For example, consider an interface of fiber-matrix composite. The large
differences between the elastic properties of the matrix and the fibers have to be
communicated through the interface; or, in other words, the stresses acting on the matrix
are transmitted to the fiber across the interface. The interface is a dominant factor in the
fracture toughness properties of composite materials and in their response to aqueous and
corrosive environments. Composite materials with weak interfaces have relatively low
strength and stiffness but high resistance to fracture, whereas those with strong interfaces
have high strength and stiffness but are very brittle. This is related to the ease of
debonding and pull-out of fibers from the matrix during crack propagation [1].

Interfacial stress singularity is a major problem [4,64] in the manufacture of
electronic components. For example, a silicon integrated-circuit chip is built by
contiguously embedding, butting, and overlaying structural elements of a large variety
of materials with different elastic and thermal properties. Stresses therefore develop from
the thermal cycling of the chip, and large localized stresses are induced in the silicon

substrate near the edges and corners of such structural elements. The stress distribution



inside the elements significantly affects their functions and needs to be understood. Hu
[4] has done an extensive review of stress-related problems in silicon integrated-circuit
chip industry.

In the coating industry, interfaces are created because of the material property
differences between the coating and the substrate. Therefore, the fracture of a coated
surface is always initiated from the interface corner [6,7,71]. Understanding the
mechanical behavior of the interfaces under thermal or external loading is crucial in
obtaining high quality coatings.

In normal metal crystal structures, an interface stress singularity is often
encountered. The precipitate atomic registry is a good example of stresses arising in the
coherent and semi-coherent interface [5]. Twinning is another example, and it is even
more complicated because materials around the interface are anisotropic.

Whenever a structure containing an interface is subjected to external traction or
thermal loadings, a singular stress field is observed at the interface corner. This singular
stress field determines the failure process and failure mode of the structure. Therefore,
it is obvious that in order to fully make use of the benefits of advanced materials or
structural designs, this singular behavior at the interface corner should be thoroughly

understood.

1.3.2. Assumptions

An extensive literature review has revealed that the following assumptions, though
not explicitly stated, have been made by researchers in both theoretical and numerical
investigations with respect to interfacial stress singularities:

(1) The interface is infinitesimally thin; that is, only two types of materials are

involved near the interface.

(2) The bonding between the two materials is perfect, implying that there is no

strain discontinuity across the interface.



(3) The materials close to the interface have the same properties as the materials

in the bulk form respectively.

1.3.3. Some Definitions
A stress field is said to be singular in a regime inside which, theoretically, a
point exists around which the stresses become unbounded as the point is approached. The

first type of such a stress field can be written as

0,;=0r*£,.(6)  (A>0) (1.1)

where r and 6 represent a polar coordinate system; o are the stress components; f;(6) are
trigonometric functions; Q and A are defined below. This type of stress field is referred
to as a power singularity stress field and is the main topic of this investigation. The

second type has the following form:
UiszlH(I) fij(e) (1.2)

which is defined as a logarithmic singularity stress field.

Q in equations (1.1) and (1.2) is a measure of the intensity of a singular stress
field and is called the stress intensity factor.

A in equation (1.1) is called the singular power (or singular strength).

The region inside which equation (1.1) or (1.2) dominates for stress expressions
is defined as the singular stress zone.

The domain inside which the material yields is referred to as the plastic zone.
1.4. Outline of the Dissertation

In Chapter 2, a literature review is presented that focuses on the topics of
adhesive joint test method, modified Iosipescu test method, global stress analysis of

adhesive joints, singular stress analysis, and plastic zone evaluation at the interface



corner. The procedures used and results obtained in this research are presented in
Chapter 3, where global stress analysis of adhesive joint Tosipescu specimen, singular
stress analysis at an interface corner, and evaluation of plastic zones at interface corners
are described in detail. In Chapter 4, discussions are made on the subjects of singular
power calculation, stress intensity factor calculation, singular stress zone evaluation,
plastic zone evaluation, interactions between the singular and plastic zones, and degree
of mode mixing of pure and biaxial stresses of adhesive joint Iosipescu specimens. Based

on these efforts, the conclusions of this study are listed in the final chapter.



CHAPTER 2
BACKGROUND

2.1. Adhesive Joint Test Methods

There are four types of deformations that are important, namely, shear, tension,
cleavage, and peel as shown in Fig. 2.1, when considering adhesively bonded joints [95].
Corresponding to these four types of deformation, there are four types of joint strengths.
Among them, the joint shear strength and shear modulus are of great interest to design
engineers because most adhesive joints are primarily used to bear shear loads. Therefore,

the shear test methods of adhesive joints are the focus of this section.

2.1.1. Single-Lap and Double-Lap Tests

The ASTM standards for single-lap and double-lap joint (Fig. 2.2) tests are
D1002-72 and D3528-76 [96], respectively. The main purpose of these tests is to
determine the shear strength of adhesives for bonding metals. The tests have been
popular for many years and work very well in many industrial applications. However,
they cannot provide the shear characteristics of adhesives under consideration because
the stresses inside the adhesive layer are unevenly distributed. Fig. 2.3 is a typical
example of stress and strain distributions in a double-lap joint under tension loading [57],

where the adhesive is assumed to be elasto-perfectly plastic.

2.1.2. Napkin Ring Test

The napkin ring type of test specimen (Fig. 2.4) relies on an uniform distribution



of the almost pure shear resultant stress when the joint is subjected to torsion as the
bonded cups are twisted [96]. Because the radial thickness of the adhesive layer is small,
the shear stress can be considered to be constant, making the specimen attractive for the
determination of shear properties. However, it should be noted that some structural
adhesives can withstand 80-100% shear strain. Normal stresses are very likely generated
under such conditions so the uniformity and purity of the shear stress state can no longer
be taken for granted. When bond-normal loading of the napkin ring specimen was
considered, large stress concentrations were found because of the sharp, 90° bimaterial
corners formed by the adhesive and adherends at the free surfaces of the specimen [67].

In addition, the bond-line thickness is difficult to control during joint fabrication [96].
2.1.3. Cone and Plate Test

Grant [68,97] proposed the cone and plate specimen (Fig. 2.5) as another
torsional shear testing technique. A closed form solution based on the assumption of rigid
adherends indicated that the cone and plate geometry should provide a more uniform
shear stress than is produced by the standard radial thickness of the napkin ring
geometry. Ratios of the moduli of structural metals to those of structural adhesives
generally range from 50 to 120. Although it might be thought that the rigidity of
adherends would be a reasonable assumption, evidence of combined relaxation and creep
phenomena in adhesively bonded joints indicate that it is not. If the adherends in the cone
and plate specimen are not rigid, some accommodation must be made between the radial
stresses in adherends and the constant stress in the adhesive. FEM analyses [67] have
shown that the shear stress in the adhesive is highly nonuniform for an aluminum/epoxy
joint and that this non-uniformity leads to normal stresses that are highly concentrated
near the center of the specimen, while the solution of a steel/rubber combination
approached the closed form result. This observation indicates that the cone and plate

specimen is suitable for pure shear testing when the adherend-to-adhesive modulus ratio



is high enough.

2.1.4. Arcan Test

The Arcan test fixture and specimen are shown in Fig. 2.6. Originally, Arcan et
al. [98,99] invented this fixture to generate a uniform plane shear stress state in the
center of the specimen to conduct mode II test for conventional and composite materials.
The test was subsequently modified to characterize adhesive shear properties (Fig. 2.6)
[70]. This method gained other researchers’ attention thereafter, and the purity of the
shear stress state in the adhesive layer was also confirmed [67,68]. In addition, this

fixture can be used for mixed mode loading [70].

2.1.5. Tosipescu-Type Specimen Test

By the adaptation of Iosipescu shear testing for metals, Wycherley er al. [69]
developed an losipescu-type specimen (Fig. 2.7) for uniform shear stress-strain
characterization of adhesives. In order to perform precise tests, the authors designed
special instruments and jigs to facilitate sample preparation, bond-line thickness
measurement, and shear displacement determinations. Typical shear stress-strain curves
for FM-1000 film adhesive [69] measured by this method indicated that the results from
this method were reproducible. However, theoretical support (from closed form and/or
numerical analyses) is still needed to account for the residual stresses after curing and

the stress state within the adhesive and adherends during testing.
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2.2, Modified losipescu Test Method for Adhesively Bonded Joints

2.2.1. Modified losipescu Test Fixture

An ideal test method is one that is relatively simple to conduct, employs small,
easily fabricated specimens, and is capable of measuring both shear strength and shear
modulus. In 1967, Tosipescu [100] proposed a method to determine the shear properties
of metals. In this procedure, a state of pure shear stress is obtained at the mid-length of
an isotropic double V-notched planar specimen by the application of two counteracting
force couples (Fig. 2.8). A state of constant shear exists in the mid-section of the
specimen with the induced moments canceling exactly at the mid-length and thereby
producing a pure shear stress state at this location. Fig. 2.8 shows the force, shear and
moment diagrams.

Rod test specimens were originally used, with a 90° circumferential V-notch cut
completely around the mid-section. This specimen geometry transforms the parabolic
shear distribution (associated with beams of constant cross-section) to a uniform shear
distribution in the regions between the notches. The reduced area also promotes shear
failure in this region [72]. The two sides of the angular notches, which are the isostatics
of the stress-free surface, must be inclined at an angle of 45°. Hence, the inclined angle
of the V-notch is 90°. The applied force P divided by the net cross-sectional area A

between the notch roots gives the nominal shear stress:

T=P/A (2.1)

Walrath and Adams [101-102] developed the Tosipescu shear test method to
determine in-plane and through-thickness shear properties of fiber composite materials.
This test used flat rectangular specimens with notches machined at the top and bottom
edges (Fig. 2.9). Shear strain was measured at the center of the notch axis using two

strain gauges oriented at +45° to the longitudinal axis of the specimen. The authors
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[103-106] attempted to optimize the Iosipescu specimen geometry and Iosipescu shear test
fixture. As a result of comprehensive investigations of the stress distribution in the
Tosipescu specimen as a function of the notch geometry and orthotropic ratio, a
re-designed University of Wyoming Iosipescu test specimen and fixture was developed
[12].

In most engineering applications, structural materials are subjected to biaxial or
tri-axial loads. Therefore, it is important to obtain the mechanical properties and failure
criteria under multi-axial-stress conditions. Currently, few testing methods are available
for the biaxial characterization of materials and all of them have drawbacks [72].

As a result of the study conducted by Broughton ez al. [90,107], a new in-plane
biaxial test fixture, based on the Arcan test method (Fig. 2.6) and the Tosipescu shear test
(Figs. 2.8 and 2.9), was designed. The biaxial loading schematic and fixture (marketed

by Instron Corporation) are shown in Fig. 2.10.

2.2.2. Biaxial Test of Adhesive Joints

Structural adhesive joints are usually subjected to multi-axial stress loads, like
bonded structures of steels or composites; therefore, the characterization of joint
mechanical properties and failure procedures under multi-axial stress conditions is crucial
to design engineers and fabricators. As stated in Section 2.1, the only available biaxial
adhesive joint test is the Arcan test method (Fig. 2.6), which has the shortcomings of
fixed loading angles and difficulties in alignment of the specimen and the grip.

Having done comprehensive research on pure shear and mixed mode testing using
the modified Iosipescu fixture [74,78,79,88-91,108-111], Kumosa proposed a new mixed
mode test method for adhesive joints: an adhesive joint Iosipescu specimen (Fig. 2.11)
[78,79]. The specimen can be loaded using the modified Iosipescu fixture in either pure
shear or biaxial stress state to conduct the test. To allow for a full understanding of this

method, an in-depth investigation of the global and local stress fields, both from a
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theoretical and experimental viewpoints, was conducted in the study.
2.3. Global Stress Analysis of Adhesive Joints

Numerous theoretical and numerical analysis methods exist for the global stress
analysis of adhesive joints, the details of which are described elsewhere [2,59]. Shear lag
analysis methods, FEM schemes, and experimental techniques used in this study are

reviewed below.
2.3.1. Shear Lag Analysis

Shear lag analysis was first introduced by Cox [112] for studying the effect of
orientation of the fibers on the stiffness and strength of paper and other fibrous materials.
This theory explains the stresses inside a fiber based on differential straining of the
matrix, with the assumptions of: (1) a perfect bond between the fiber and the matrix, and
(2) no load transfer through the ends of the fiber. Later, Holister and Thomas [113]
developed this method to determine the stresses and strains within discontinuous fibers
in fiber-reinforced materials. However, Hull [3] pointed out that the results from this
analysis were not exact; further, finite element analysis and experimental studies
suggested that it under-evaluated the shear stress concentration at the ends of the fibers
by a factor of at least two [3].

In 1973, Hart-Smith [38,39] used this shear lag concept to develop analysis and
design procedures for single lap and double lap joints. Both methods assumed that the
adherends remained elastic and that the adhesive stresses were constant through the
bond-line thickness. The adhesive was assumed to be elastic or elastic-perfectly plastic
to simplify equation development. For single lag joints, the procedure accounted for the
bending of the adherend resulting from the eccentricity in the load path; for double lap

joints, both balanced and unbalanced adherend combinations were considered. A double
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lap joint is said to be balanced when the thickness of the inner adherend is twice that of
each outer adherend. Long [40] successfully applied this method to study the static
strength of adhesively bonded ARALL-1 joints.

2.3.2. Finite Element Analysis

The FEM has become widely accepted as one of the most popular numerical
techniques. A large number of studies have employed FEM
[2,6-11,28-30,40,43,56-67,69-71] to solve various interface-related problems using
general commercial FEM codes. However, FEM approaches do have certain
disadvantages, namely: (1) the global stiffness matrix resulting from finely meshed
interface wedge corners tends to yield excessively large number of degrees of freedom;
and (2) the validity of the method relies on an accurate input of the adhesive mechanical

properties, which are hard to obtain.

2.3.3. Experimental Analysis

Obtaining the global stress distribution of an adhesive joint by the experimental
method is difficult because the adhesive thickness is very thin and the stress state within
it is generally non-uniform in real applications. However, there have been many attempts
to describe the joint stress distribution. Wycherley er al. [69] used a self-designed
shearometer to measure the stress contours inside an adhesive layer, assuming that
stresses were uniformly distributed. Theocaris [75] employed a pseudocaustic technique
to obtain complex stress intensity factors of interfacial cracks (the stress field was clearly
known when these factors were substituted into the corresponding theoretical formulas).
This technique could be extended to interfacial stress intensity factor measurements.
Moreover, Kumosa [114] has suggested that photo-elasticity is another potential method

for global stress measurement in adhesive joints.
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2.4. Singular Stress Analysis

As mentioned above, failures in adhesive joints are often initiated in a very
localized region near the interface corners. Closed form and numerical analyses indicated
that stresses are singular at these corners [49]. A review with respect to analytical,

numerical, and experimental analyses is given in this section.

2.4.1. Closed Form Analysis

A bimaterial wedge consisting of bonded materials 1 and 2 is shown in Fig. 2.12.
Materials 1 and 2 have been assigned a wedge angle, Poisson’s ratio, and Young’s
modulus of 8,, »,, E, and 0,, »,, E, respectively. A polar coordinate system with its
origin at the bimaterial wedge corner is employed (Fig. 2.12), where the external traction
along the rays =0, and §=0, is assumed to be zero. By taking into account the fact that
at the interface (6=0°) the stresses and displacements are continuous in accordance with
Newton’s third law, the boundary conditions of the 2-dimensional bimaterial wedge in

Fig. 2.12 can be expressed in the following form:

ogs’ (2,0,) =0 (2.2)
o (z.8,) =0 (2.3)
asa’ (r,0,) =0 (2.4)
0@ (r,0,)=0 (2.5)

o’ (r,0) =ada’ (r,0) (2+6)
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alg’ (r,0)=0% (z,0) (2.7)
2 =u,? 2.8
uy - (r,0)=u"" (r,0) (2.8)
ug® (z,0) =uy? (r,0) (2:9)

where o are stress components; u; are the displacement components and the supersuffices
(1) and (2) correspond to the material types.

When both materials in Fig. 2.12 are elastic, stresses at the bimaterial wedge
corner will be mathematically unbounded. This elastic interfacial stress problem has been
examined by many researchers with different analytical methods [6-25]. Knesl et al. [6-7]
classified these methods into two types (the first two of the following three). By taking
into account the Mellin transform method used by Bogy [13,14], there should be three
analytical methods, namely: Airy stress function, complex potentials and Mellin

transform. These analytical methods are reviewed in the following sections.

2.4.1.1. Airy Stress Function Approach

A biharmonic Airy stress function in a polar coordinate system, given by

Williams [34] and employed in [6-11], has the following form:

Y=F(0) r "+ (2.10)

where A is a constant for a specific material combination and fixed geometry and is
denoted as the stress singular power.

This stress function can be used to study singular stress fields in the vicinity of
an interface corner. In equation (2.10), F(f) can be determined from the requirement that

¥ has to be biharmonic, i.e.,
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V2V2 =0 (2::%1)

where V2 is the Laplacian operator and has the following form:

0. d. 3 @&
W“6r2+?§+?_—@ (2.12)

By applying equation (2.11) to equation (2.10) and solving for F(f), then
substituting F(#) back to equation (2.10), the following can be obtained:

Y=r *2[A sinA0+A,cosA0

+A,8in(2-1)0+A,cos (2-1) 6] (2-13)

where A, are constants to be determined from the boundary conditions.

In terms of the Airy stress function, the stress components take the following

form:
o, =10¥,1 ¢ (2.14)
r or r2 9@2
g 2.15
a — .
-9 9y
Or6 ar(:ae) {2mtE)
ou, 2(1+v) 10y, 1 Py (. k+l 2.17
- - o +_r_2 07 (1 4 )VZI]J (2..17)

Oup _Up,10Y; 2(1+v)( 1 Py , 1 0¥ (2.18)
or r r 90 E r 0rd® r2 00
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where E is the Young’s modulus and » is the Poisson’s ratio, u, and u, are the
displacements along the radial and circumferential directions respectively, and k has the

following values:

k=3-4v  for plane strain condition (2.19)
= i;z for plane stress condition (2.20)

After substituting equations (2.14-2.18) into the boundary condition equations
(2.2-2.9), eight linear algebraic homogeneous equations are achieved for the eight
unknown constants A® (i=1,2,3,4 and j=1,2 to represent different materials). If A;? are
denoted as B,, n=1,2,..,8, and the coefficients of A® are denoted as

D,n(0,,0,,v,,1,,E ,E;,N), m=1,2,..,8, the linear equation system can be written as

[Dan][Ba] =0 (2.2%)

where m,n= 1,2,..,8,
The existence of a non-zero solution of equation (2.21) requires that the

determinant of [D,,] equal zero, that is,

|Dpa| =£1(05, 82, 94,V,, By /E;, A) =0 (222)

Equation (2.22) is a transcendental equation, from which the eigenvalues A\ can
be obtained. A may be real or complex and may have infinite number of roots, but only
the real part of A within the interval (0,1) is of interest. _

According to equations (2.21) and (2.22), only the relative relationship between
the intensity factors A,” can be found; the absolute values of A% cannot be calculated
because equation (2.21) is homogeneous. However, A® can be computed when the
boundary conditions on the other parts of the bimaterial body are considered.

With equations (2.13-2.16), the stresses that have a 0~ r* form can be inspected.
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Moreover, taking into account the previous discussion that multiple eigenvalues exist, the

stress distribution at the wedge corner can be expressed as

633=Y Oij(m Lij(m () 27 (2.23)
n

where A, is the nth singular power, which may be real or complex, and 0 <Re(\,) <1
[Re(x) obtains the real part of complex number x] has to be met because of the finite
displacement requirement; also, A, are the same in both materials; Qy, is the nth stress
intensity factor, which is only a function of body dimensions and external traction [6-7].

Another kind of singularity problem, namely, logarithmic singularity, was studied
by Zwiers et al [26] for free-edge stresses in laminated composites under uniform
extension. In this case, the singular behavior has the form of QIn(r). This problem,

however, is beyond the scope of this work: further details can be found in reference [26].
2.4.1.2. Complex Potentials

The method of complex potentials was used by Theocaris [12,82] for solving the
singular stress field at a multi-wedge corner. Knesl [6] also gave a brief description of
the method. The process is shown below.

Two analytical complex functions ¢(z) and y(z) as sums (over all possible values

of A) of the terms of type shown below are selected as

b, (2z) =ajlz‘1”“+aj2zti‘x} (2.24)

Yij{2) =by et +bj2.z”—xl (2.25)

where z is a complex variable, z=x+iy=re”, j is the index of material types and can be
chosen as 1 or 2, % is the complex conjugate of X. The terms a, b,, (,9=1,2) represent

eight generally complex potential intensities.
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Using the functions in equations (2.24) and (2.25), stresses can be expressed as

follows:
a6d +a =2[¢/ (2) +¢ (2) ] (2.26)
all -g @) +2ia§g'}=2ezie[g¢g(2) +¢§(z)] (9. 27
- (P +iugP)=e k0, (2) 28] (2) -T;12T | (2.28)

J

where prime denotes a derivative with respect to z, E; is the Young’s modulus, and »; is
the Poisson’s ratio of material j, respectively. k; had been previously defined in equations
(2.19-2.20).

If the stresses and displacements in equations (2.26-2.28) are substituted into the
boundary conditions (2.2-2.9), which must be valid for any r, eight (generally complex)
linear algebraic homogeneous equations for the eight unknowns a, and b, can be
obtained. If the eight unknowns a,, and b,, are denoted as C,, n=1,2,..,8, the eight linear

homogeneous equations can be rewritten as
[Han] Ca] =0 (2.29)
where the coefficients H,,, (m=1,2,...,8) are known functions of the known values of 6,

v;, E; and of the unknown singular power A.

A non-zero solution of equation (2.29) exists only if the determinant of [H,,]

equals zero, that is,

VLo | 21055 05 ViV B/ B A) =0 (2.30)

where m,n=1,2,..,8. Equation (2.30) can be rewritten as

A=4(0,,0,,v,,v,,E/E) (2.31]
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Equation (2.31) is a transcendental equation. Although it does not have the same
form as equation (2.23), they share the same roots of A. Generally, equation (2.31) can
be solved numerically; only in exceptional cases, can it be solved analytically.

Similar to the case of equation (2.22), the absolute values of the potentials’
intensities a;, and by, cannot be determined using only equation (2.29). However, the
exact values can be obtained from the boundary conditions of the total area of interest.

Knesl [6] suggested that one possible, although complicated, way to find such a
complete solution is to consider the complete solution in polar coordinates as a series of
terms of types (2.24) and (2.25) for all eigenvalues A,, including the non-singular terms
with Re(A\) = 1.

2.4.1.3. Mellin Transform

Mellin transforms have also been used to solve this boundary-value problem in

references [13-17]. The Mellin transform of a function f'is defined by

M{f;s}=ff(r)r5'1dr (2.82)
0

where s is the (complex) transform parameter. In addition, the stress components of the
stress field inside the bimaterial wedge should meet the requirement of the regularity
conditions [13,14]:

0,;=0(r**") as r-w for every h>0 (2.33)

where O(.) means that the dependent and independent variables are of the same order of

infinitesimalness.
With this method, even more complicated problems can be solved as well.

Traction can be applied to the two wedge surfaces (=60, and 6=0,); that is, the boundary
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conditions of equations (2.2-2.5) can be changed to have the following forms:

ods’ (z,0,) =nV (r) (2.34)
o3 (r,0,)=tW (1) (2.35)
ods) (r,0,) =n? (r) (2.36)
0f2 (r,0,) =t @ (1) (2.37)

where n@(r) are the normal traction on the surface 6=0; and t9(r) are the shear traction
on the surface 0=6,.

Let ¥(s,0), S.9(5,0), Su®(s,0), S49(s,60), U,9(s,0), U,2(s,0), NO(s), TO(s) in the
order denote the Mellin transforms with respect to r of y(r,0), r’o,9(r,0), r’o,%(r,0),
r2o,9(r,0), ru9(r,0), ru,9(r,0), r’n?(r), and r’t?(r). A formal application of the Mellin
transform to (2.12) produces an ordinary differential equation for ¥;, the general solution

of which is

‘Pj (s,0) =aj(s) sin(s0) +bj(s) cos (s0)

+c;(s) sin(s0+20) +d; (s) cos (s0+20) (2.38)

Here, functions a;(s), b,(s), ¢;(s) and d,(s) are to be determined through the transforms of
equations (2.14-2.18) and from the transforms of boundary condition equations (2.6-2.9)
and (2.34-2.37). These transformed equations have the following forms when equation

(2.38) is taken into consideration:

2

sﬁf}(s,eh(c‘fg —SJ‘PJ-(S,B) (2.39)



Sed’ (5,0) =s(s+1)¥,(s,0) (2.
CEAEEC N «(s+1)-36‘11r (s,0) (2.
v (s,0) = lgjf[swj(s,e} + (k;+1) ¢, (5) sin (6+26)
+(kj+1)dj(s)cos(56+28)] (2
i (s,0) =- 1;?' -29,(5,0) + ;+1) ¢, () cos (50+20)

—(kj+1)dj(s)sin(80+26)] {3

Seg’ (8,0) =N (s) (2.

sS4 (s5,0) =T (s) (2.

Sea’ (8, 0) =S¢¢ (s, 0) (2.

g4 1g,0) =52 (8, 0) (2.

o (s, 0) =2 18,0) (2.

Uﬁ(l)(SJO)=UB{2}(S,O) (2.
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46)

47)
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If equations (2.38-2.43) are substituted into equations (2.44-2.49), eight linear
equations for the eight unknown functions a;(s), b;(s), ¢;(s) and d;(s) can be obtained. The
eight unknown functions can be determined by solving the eight equations. If these eight
solved functions are substituted back into equations (2.38-2.43), ¥(s,0), S, 9(s,0),
Su?(s,0), S,9(s,0), U9G,0), U2s,0) (k=1,2) can therefore be obtained. Then, by use
of the inversion theorem for the Mellin transform [80], the stress components ¢; and
displacements u,% and u,? can be eventually found:

c+ie=

() o L (7) -5-2
O 5, B sera | Bd (g.0) 7 %%ds (2.50)
21116:[“

where mn=rr, 60, 10 and j=1,2; and

C+ie
u (r,0) ==L f U (4.0)& e de (2.51)
2m1

c-iw=

where m=r, f and j=1,2.
The path of the integration in the complex line integral is critical to finding the
proper solution. The singular power was computed by using the residual theorem.

Detailed discussions of the computation procedure can be obtained from references
[13-15].

2.4.1.4. Composite Parameters

From the previous descriptions of A calculation (equations (2.22) and (2.31)), it
can be clearly seen that whenever the geometry of the bimaterial wedge is fixed; that is,
the angles 6, and 6, are fixed, and A depends only on the three parameters: »,, », and
E,/E,, which are a combination of four elastic constants. However, further studies using

complex potentials by Dunders [27,81] indicated that A actually depends only on two
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non-dimensional combinations of the four elastic constants, which are called composite

parameters and conventionally denoted as « and 8 [81]:

Dl +1) =(k,+1)
=Tk, +1) + (K, 1) (Ena2)

and

=I‘(k1~1)—(k2—1)
I'(k;+1) + (k,+1)

B

(2.53)

where k, and k, have been defined in equations (2.19-2.20); I" is the ratio of the shear
modulus of material 2 to material 1 and can be computed by

_E,(1+v)) G,

| g B
E, (1+v,) G,

(2.54)

where G, and G, are the material shear moduli respectively.

The selection of the composite parameters is not unique; however, this pair has
been recognized as being the most appropriate for the analysis of plane problems
[14,15,25,81]. Consequently, a transcendental equation for A can be found to be of the

following form:

A=A (a,p,0,,0,) (2.55)

If it is assumed that the values of the elastic properties are limited to the range
of:
0<I'<oo (2..56)
and

05V V5505 (2+57)
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then, from the relationships of (2.19-2.20) and (2.52-2.53), it is found that the values of

a and B fall into the parallelogram:

o+l
=

~1<e<1 and “;1sﬁs (2.58)

Bogy [14] and other researchers [6,12,16,82] used these two parameters to

describe N\’s behavior in the parallelogram. An example of this is shown in Fig. 2.13.
2.4.1.5. Special Cases

In addition to the general case discussed in the previous section, there are special
cases which can be further simplified and therefore easily solved. Two examples, an
elastic-rigid bimaterial wedge that resembles an elastic strip bonded to a rigid substrate
and an interface crack which is the case when the biomaterial re-entrant angle is zero,

are reviewed in the following sub-sections.
2.4.1.5.1. A Rigid-Elastic Model

When one of the two materials in Fig. 2.12 is rigid, the singular stress behavior
at the wedge corner is much simpler. This case is often encountered in practical
engineering practices. For instance, when an adhesive joint comprised of metal (steel or
aluminum) adherends and an epoxy adhesive layer is loaded by external forces, the
interfaces between the adherends and adhesive resemble such a case. This case has been
widely studied [8-10,28-30].

If we assume that material 2 is rigid in Fig. 2.12 and 6,=90°, equation (2.22) or
(2.31) can be simplified as

4klcosz[g-(1—2)]—4(l~1)2+(1+k1)2=0 (2.59)
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where k,; has been defined in equation (2.19-2.20).

From equation (2.59), the eigenvalues A\ can be easily calculated by numerical
method.

From another point of view, this problem is a special notch problem with one of
its sides fixed. The solutions of notch tip stress singularities in this case have been
obtained by Williams [34] and can also be found in [35-37]. The eigenvalue function
given in [34] is identical to equation (2.59). Vasilopoulos [37] suggested an algorithm
for the eigenvalue problem solutions.

Reedy [8-9] proposed a formula for calculating stress intensity factor (called

free-edge stress intensity factor in the original papers) for butt adhesive joints:
Q0=0*h*A(v) (2.60)

where Q is the stress intensity factor, ¢" is the characteristic stress, 2h is the layer
thickness, and A(») is a function defined by loading (tension, shear, or temperature) cases
and Poisson’s ratios, which were tabulated and plotted for different loading conditions
and Poisson’s ratios in the original presentations. After an FEM analysis was conducted,

it was concluded that this formula worked well [49].

2.4.1.5.2. Singular Stress Field at an Interfacial Crack Tip

An interfacial crack is a special case of 6,== and 6,=-= in Fig. 2.12, where
equation (2.22) has been drastically simplified and can be found to be of the following
form [6]:

1,: 1, 1+P

g rigring—g and A,=n (2.61)

where n=1,2,3,...; i is the imaginary unit and B is given by equation (2.53), which

depends on the elastic constants. (\,” represent rigid body translation or rotation and will
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not be discussed here.) It is obvious that the singularity is described by A, with the real
part Re(\,)=1/2 and the imaginary part depending on 8. This stress field oscillates when
r approaches the crack tip, which creates an additional stress field overlapping the
o;~ 1//r field, but not the simple o;~ 1A/t stress field in a homogeneous medium,
which is well known [44-45]. Moreover, the oscillatory term in the displacements leads
to a non-realistic crack opening and to an inter-penetration of the crack surfaces.

Different approaches have been suggested to address this problem [6,46-48].

2.4.2. Numerical Analysis

Numerical analysis is a powerful tool for studying the mechanical behavior of
bimaterial wedges. The most popular and effective methods in numerical analysis are the
Finite Element Method (FEM) and the Finite Element Iterative Method (FEIM). They
are reviewed in the following sections from the viewpoint of their ability to extract the
singular power and to simulate singular behavior in both elastic and elasto-plastic

bimaterial wedges.

2.4.2.1. Finite Element Approach

The most popular numerical method used for studying the singular stress problems
at a bimaterial corner is the FEM. Some of these studies are presented in references
[6-11,18-23,28-33,49,61,64,66,73,91]. Application of FEM analysis means that no
special requirements are needed for the boundary conditions, and that various geometries
and dimensions can be treated. If attention is paid to the fineness of the meshes around
wedge corners, both the singular powers and the absolute values of the stress intensity

factors can be calculated by using the following log-log formula [49]:

log(g;;) =log(Q) +log (£;;(6)) -Alog(r) (2.62)
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Equation (2.62) can be obtained by taking logarithmic operations on both sides
of equation (1.1). However, since the FEM is usually based upon assumptions for
displacements and/or stresses that are defined in terms of polynomial functions over finite
elements, it will be impossible to obtain an exact representation of the behavior of the
singular stress region no matter how fine the mesh is. To overcome this difficulty,
several researchers have suggested special element techniques in the singular fields [18-
22,27,31,32,42,46,49-55,72-74].

Walsh [19] suggested a special FEM element for the computation of stress
intensity factors. The special element consists of two regions. The stress and
displacement distribution in the inner region is defined in terms of the singular stress
field associated with the singular domain. The outer region of the special element
contains conventional finite elements that are constrained to satisfy certain equilibrium
and compatibility criteria on the interface between the two regions. Examples in
reference [19] showed that this method is efficient and valid. Tracey and Cook [31]
constructed a three-node triangular displacement element having r'* interpolation
functions. This element can incorporate the designed singular behavior and conform with
standard (linear) elements on the exterior edge, but it does not contain constant strain
fields and hence cannot pass a patch test. Akin [S0] proposed an element family that can
incorporate the existing isoparametric codes with minimal efforts. These elements
conform with the standard isoparametric elements, but they do not contain linear fields
either and are difficult to integrate accurately. Because of the shortcomings of the above-
proposed special elements, Stern [51] constructed families of two- and three- dimensional
finite elements to model fields with singular derivatives. The elements are complete over
linear fields, conform with regular elements, and are easy to program. In summary, it
can be stated that all of the above efforts are aimed at constructing elements with
embedded singularities. Therefore, these techniques cannot be used for general FEM
codes; in addition, the singular power A has to be known a priori for an embedded

singularity FEM program to be written.
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Szabo [22] developed guidelines for prior design of meshes and procedures for
post-solution testing in order to obtain an exact solution. Spilker and Chou [18] invented
a special purpose, hybrid-stress, multi-layer finite element to satisfy the traction-free-edge
conditions for solving a symmetric cross-ply laminate under uniform plane strain.

In crack tip problems, by observing that singular power is always 1/2 and the
characteristics of the quadratic shape functions, Henshell and Shaw [52] and Barsoum
[53] discovered that by moving the mid-node of the standard isoparametric elements to
the quarter position from the standpoint of the crack tip, an exact 1/2 singular field could
be achieved. This method is quite simple and can be readily used with any general FEM
codes. It is shown [54] that the strain components vary as 1//r along the sides of the
quadrilateral but not in the interior. The triangular element exhibits the requisite

singularity along the boundary and in the interior, that is, the strains vary as

1
e~r 2

e (2.63)
and several computations showed that this method is very efficient for calculating stress
intensity factors [52-55]. Unfortunately, this method is valid only for A=1/2 type of
singularities and not for other cases.

Whitecomb ef al. [32] studied the reliability of FEM for calculating the singular
stress field, using it to compute the stress and displacement distributions of discontinuous
stress distribution bending problems and 45°/45° 4-ply composite laminates. They found
that the FEM yielded accurate solutions everywhere except in a region involving the two
elements closest to the stress discontinuity or singularity. They concluded that the
displacement-formulated FEM appears to be a highly accurate technique for calculating
inter-laminar stresses in composite laminates, which implies that FEM is effective in
computing singular stress fields.

However, the use of singularity-embedded elements to solve interfacial singular

stress problems was not encountered in the literature search. This may be due to the fact



30

that the singular power of an arbitrary bimaterial wedge cannot be known a priori,

therefore, a proper singularity-embedded FEM program is impossible.
2.4.2.2. Finite Element Iterative Analysis

For a fairly accurate computation of the singular power of an elastic interface
corner using equation (2.62) to be achieved, the numerical results from the FEM must
be very accurate. This is not a simple requirement. Moreover, this method will fail when
the singular power is complex. To overcome this constraint, Barsoum [20,21,42,46]
invented the FEIM to accomplish this task in the case of separable singular stress fields.

The FEIM relies on the use of general purpose FEM codes to penetrate deep into
the singular stress field as the iterations on a circular mesh proceed. A typical FEIM
mesh representation is shown in Fig. 2.14. Assuming that the finite element equation of

the linear elastic problem in Fig. 2.12 can be written as [20-21,72-74]

Uy
[K] ff; ={0} (2.64)

in
UR

out

where K is the global stiffness matrix and u, is the displacement of the origin of the
singularity, namely the interface corner for a bimaterial wedge; uy, is the displacement
at the inner ring; uy,, is the displacement at the outer ring (the boundary condition); and
Uy is the displacements of the remaining degrees of freedom. With some matrix

manipulation, the following relationship can be obtained [27]:

{uRm}=[T]{URM} (2.65)

where T is called the transfer matrix, i.e., at the mth iteration,
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{ug, e nlug. } (2.66)

and

{ug- = {ug, -ugt (2.67)

where A, is a scalar multiplier for normalizing the vector ugy,. Using the Rayleigh

quotient argument [27], at convergence, it is found that
A A as mee (2.68)

where A is the first dominant eigenvalue of the matrix [T]. It is shown that for the case

of a power singularity A, A has the following form:

Rout 1=
2.69
2t (2.69)

in

A= (

where A is the power of the singular stress field. Therefore, for a self-adjoint case, the

displacement u is given by
u=0ri-1qg(0) (2.70)

This form is referred to as a separable function.

From equations (2.17-2.18), it can be seen that the displacement field at the
vicinity of the wedge corner has the form of equation (2.70), i.e., the displacement
function is a separable function and the FEIM can be used to study the eigenfunctions.
Barsoum applied this method in investigating crack tip stress singularities for both
isotropic [83] and orthotropic materials [20,46], as well as for interfacial cracks [20,46].
Sukumar [72], Erdinc [73] and Sukumar and Kumosa [74] used this method to investigate
sharp notch tip stress singularities of isotropic and orthotropic materials. The problem
of interface corner stress singularities has previously been approached by this method

[21,49,73].
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2.4.3. Experimental Analysis

Experimental analysis of the mechanical behavior of bimaterial wedges was
conducted primarily by use of adhesive joints [10,28-30,43,55,58,59,61-70] and coated
plates [7,71]. Most studies have focused on the local geometrical influences on the
strength of adhesive joints and evaluation of stress intensity factors. Other work can also
be found in the area of energy release rate (G, measurement and experimental

techniques.

2.4.3.1. Geometric Effects

From the analytical and numerical approaches in the previous sections, it can be
seen that the singular power X is a function of the wedge angles 6, and 6, in Fig. 2.12,
i.e., the local terminus geometry of an adhesive joint has a crucial influence on its
strength. Adams and Harris [66] tested three different edge geometries of the overlap in
single-lap joints: one with a square-edged adhesive layer, one with a fillet of adhesive,
and one with an adhesive fillet plus a radiused adherend. They found that significant
strength increments may be achieved in single-lap joints by filleting the adhesive at the
edges of the overlap and rounding the ends of the adherends. It was also postulated that
adhesive joint optimization yields a substantial decrease in the stress levels in the
adhesive layer, and in many cases a much lighter joint can be obtained [56]. After
performing extensive studies of single-lap, double-lap, step-lap and scarf-lap joints,
Hart-Smith [38,39,57] presented some guidelines for adhesive joint design to achieve
higher joint strength.

In order to obtain a more-or-less uniform shear stress distribution in the adhesive
layer to make maximum use of the adhesives, one must eliminate or minimize local
geometry effects. For this purpose, Weissberg and Arcan [70] proposed a versatile stiff

adherend test specimen (Fig. 2.6) to induce a uniform pure shear stress state practically



33

free of tension and compression in the adhesive layer. They assumed that a (M; + Mp)
or (M; + Mj;) mixed-mode stress state could also be arrived at by using this method.
Moreover, after the Arcan test and cone-and-plate test were analyzed using FEM in [68],
it was concluded that both tests show much promise as a constant shear stress in-situ
testing technique. However, after similar analysis of the Arcan test, cone-and-plate test
and napkin test with various modifications to the adherend edges, it was reported that the
stiff adherend specimen having rounded adherend edges provided the greatest degree of
uniformity in adhesive stress under all conditions. Wycherley er al. [69] claimed that
their Iosipescu-type specimen test was able to generate a uniform shear stress state inside
the adhesive layer; however, numerical results in reference [73] imply that the shear
stress in the adhesive layers is still not uniform because singular stress fields exist at the
wedge corners. Following a comprehensive study of the Tosipescu test principle, Kumosa
[78,79] proposed three different types of Iosipescu specimens with adhesive joints (Fig.
2.11) for pure shear and mixed mode testing of geometric effects. Efforts in this

direction have already been initiated [120].

2.4.3.2. Stress Intensity Factor Evaluation

Traditionally, adhesive joints have been evaluated through strength measurements.
However, difficulties arise in the strength evaluation of adhesively bonded structures
because the stress and displacement fields near the bonding edge, where the delamination
starts, exhibit a singularity behavior, and an accurate strength measurement cannot be
made using stress values alone. Considering this point, an alternative approach is to
measure the fracture toughness, i.e., the stress intensity factor Q, which can characterize
the singular stress field and is a material constant, similar to the crack tip problems. The
idea of using stress intensity factors to evaluate adhesive joints was first introduced by
Gradin [10] and subsequently modified by Gradin and Groth [28-30]. Recently, Groth

and Brottare [43] applied this concept to elastic-plastic materials with small scale
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yielding. The techniques used by Gradin, Groth and Brottare [28-30] to measure the
stress intensity factors included both experimental and FEM analyses. In addition, a
single-edge notched-beam (SENB) [61] was used to evaluate the fracture toughness of
ceramic adhesive joints. Some other reports can also be found in references [64,70].
One significant difference in the measurement of stress intensity factors between
an interface corner and a crack tip in an isotropic material is that the stress intensity
factor at the wedge corner may be complex. In the case of complex stress intensity
factors, pseudocaustics can be employed for the evaluation. It has been reported that this

method is very simple, accurate and versatile [75].

2.4.3.3. Other Comments

In addition to the measurement of stress intensity factors, the energy release rate
G, was also evaluated by several authors [40,58,63,70]. Specially, Kinloch and Shaw [63]
used contour-double-cantilever-beam adhesive joint specimen (Fig. 2.15) to conduct their
test and concluded that the adhesive bond thickness, the width of the joint, the test rate
and test temperature had a great influence on G (joint).

Also, some adhesive thickness-effect oriented experiments were done by other
researchers [58,61,62,65]. These results indicated that the strength of the adhesive joint
increases as its thickness decreases. Anderson ef al. [65] attributed this phenomenon to
the fact that when the adhesive layer is thin enough, the singular stress field will be
smaller than a critical value and hence will not affect the strength.

Davidson [75] presented an in-situ method for examining the failure of interfaces
in composites. This method can be expected to be used to verify numerical calculations
as it is able to experimentally determine the strains in the vicinity of an interface crack

tip. Nevertheless, more investigation is needed to fully understand the procedure.
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2.5. Plastic Zone Evaluation at an Interface Corner

Whenever elasto-plastic materials are introduced into a bimaterial wedge, a plastic
zone will appear. In this case, it is of great interest to determine the size of the plastic

zone, and if possible, to apply the elastic solution to the plastic case.
2.5.1. Analytical Approach

Groth and Brottare [43] researched a simple case. The sample they studied is
shown in Fig. 2.16. The adhesive is assumed to be elastic-perfectly plastic and the
adherend to be rigid. A first rough estimation of the plastic zone size may be obtained
by assuming a stress (and strain) field in the vicinity of the bimaterial wedge in the

surface along y-direction having the following form:

= Iy-a
Uy—Qy(E) (2.71)
where Q, is defined as a singular intensity factor and h is the reference length.

As the material begins to yield when o,=0,, the plastic zone size, r,, may be

derived from

(2.72)

GEO
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o
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This case is illustrated in Fig. 2.17, where stresses exceeding o, are simply ignored by
this approximation.
From the case investigated, Groth and Brottare concluded that equation (2.72)

gives a good approximation of the maximum plastic zone size.
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2.5.2. Finite Element Analysis

Generally speaking, numerical methods are always the first choice for nonlinear
analysis because of their versatility in dealing with both geometrical and material non-
linearities. Other than Groth and Brottare [43], who have tried to estimate the size of the
plastic zone, no investigations have dealt with non-linear analysis of interfacial plastic

zone using numerical methods. Further studies are required in this area.

2.5.3. Finite Element Iterative Analysis

As described in Section 2.4.2.2., the FEIM was originally developed for
evaluating singular stress fields in elastic media [20-21,83-85]. Subsequently, it was
extended to nonlinear problems so that the interfacial crack tip stress singularities could
be evaluated successfully [86-87], where Barsoum showed that for perfectly elasto-plastic
materials, the displacement inside the plastic zone followed zero singularity and the
strains in this zone had 1/r singularity. However, no report has been made in the
application of FEIM to general elasto-plastic (power law hardening, Osgood hardening

or even double linear hardening materials) interface problems.
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Fig. 2.1 The four important joint deformations [95].
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(a) single lap

(b) double lap

Fig. 2.2 Single lap and double joints [95].
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Fig. 2.3 Non-uniform shear stress distribution in a double lap joint [39,57].



Fig. 2.4 Napkin ring test specimen [95].
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Fig. 2.6 Arcan test grips and specimen geometry.
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Fig. 2.7 losipescu-type specimen for adhesive shear testing [69].
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Fig. 2.10 Biaxial Iosipescu test [79,91].
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b) test fixture

Fig. 2.10 (continued).
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Fig. 2.11 Adhesive Joint Tosipescu specimen [78,79].
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Fig. 2.12 Schematic of a bimaterial wedge.
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CHAPTER 3
PROCEDURES AND RESULTS

3.1. Global Stress Analysis of Adhesive Joints

Knowledge of stress distributions within an adhesive joint is critical to
understanding mechanical behaviors of joints. In particular, the location of the maximum
stress concentration, the degree of non-uniformity, and the peel-stress allotment should
be adequately characterized. For the joints employed in this investigation, an analytical
approach was used within the framework of static linear elasticity. In addition, the finite
element scheme, a proven, reliable, and accurate method for stress analysis, was used
to re-analyze the stresses of the joints. This numerical solutions also provided an estimate
of the validity of the analytical results. Furthermore, an experimental study was

performed in order to evaluate the mechanical strengths of adhesive joints.

3.1.1. Shear Lag Analysis

Shear lag analysis is a closed-form method based on linear elasticity with some
assumptions to make a theoretical procedure possible and simple. It was first introduced
by Cox [112] to predict paper strengths and later developed to determine stress
distribution inside a composite fiber [113]. In 1971, Hart-Smith used it to compute
stresses inside adhesive layers of single-lap and double lap joints [38-40]. More citations

on shear lag analysis method can be found in references [38-40,112,113].

54



o3

3.1.1.1. Link-Joint Model

A link-joint model, an adhesive joint used primarily as a link rather as a loading
joint, is shown in Fig. 3.1 with the assumption that a uniform external load o, is applied
parallel to the adhesive layer (y-direction). A Cartesian coordinate system is selected to
aid the analysis with its center in the axis-symmetric point of the adhesive layer (Fig.
3.1). The adhesive layer is assumed to be linear elastic, to have a Young’s Modulus E;
and Poisson’s ratio »;, and possess a dimension of t in the x-direction (width), [ in the
y-direction (length) and a unit thickness. The mechanical properties of the adherend are
E, and »,, representing the Young’s modulus and Poisson’s ration correspondingly.

Similar to the assumptions by Cox [112] for calculating the stress distribution
inside a single fiber embedded in a matrix, the following conditions are assumed for

studying the stresses inside the adhesive layer:

1) The bonding between the adhesive layer and the adherend is perfect.

2) There is no load on all the surfaces of the adhesive layer except the bonding
interfaces.

3) The deformation of the adhesive layer is small, viz., small deformation static
elastic theory is applicable.

4) The thickness of the adhesive layer, t, is very small relative to the adherend
dimension.

5) There is no change of stresses inside the adhesive layer along the x-direction,
that is, stresses are uniformly distributed along the x-direction for any fixed y-

coordinate values.

Provided that there is a general strain € along the y-direction in the adherend, at

a point with the load transferred from the adherend to the adhesive layer may be decided

thus,
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LT (3.1)

where
F = load in the adhesive layer
H = positive constant (defined later)
u, = y-direction displacement in the adhesive layer if adhesive is present

u, = y-direction displacement at the same point if adhesive is absent

When equation (3.1) is differentiated with respect to y, the following is obtained:

ﬁim@fﬁi (3.2)

dy? dy dy

From the definition of strain in small deformation elastic theory, we know that
du/dy = strain in the adhesive layer

du,/dy = strain in the adherend = ¢

The strain in the adhesive layer is due to the transfer of load because the adhesive
and adherend have different physical properties. To express this strain in terms of load,
the differences in moduli between the adhesive layer and adherend should be taken into

account. Let

Edaj,:Eers (3.3)
then
dus= F (3.4)

dy AE;
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where A is the cross-sectional area of the adhesive layer. Substituting equation (3.4) into

equation (3.2)

2
f?..f:H( o
dy? AEu

€) (3.5)

The characteristic equation for the above equation is

EZ_BZ:O (3.6)
where
8- H (3.7)
AEdg@f

and £ is the eigenvalue of equation (3.5) with the following values:

E=+f (3.8)

Equation (3.5) is a non-homogeneous second order differential equation [116]. To
obtain a general solution for this equation, one needs first to determine the general

solution for its corresponding homogeneous equation:

IF_gop g (3.9)

a‘yZ

and a special solution for equation (3.5).
With the eigenvalue solutions in equation (3.8), it can be immediately determined

that a general solution for equation (3.9) can be written as

Fho:Pe "ﬁy+Re ﬁy (3. 10)
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where P and R are constants.

A special solution to equation (3.5) can be obtained by inspection:

F_=AE ¢ (3.11)

Therefore, by summing equations (3.10) and (3.11), the general solution for equation
3.5)is

F=F,,+F_=Pe ™ +ReP+AE, ¢ (3.12)

Taking into account the boundary conditions:

F=0 al‘y=:t% (3.13)

and substituting them into equation (3.12), one finds the constants P and R to be

24E ;¢
e L (3.14)
cosh(=Ip)
2
Consequently, the y-direction stress distribution inside the adhesive layer is
_ __cosh(By)
Oy=Eag€ 1 -——1"— (3.15)
cosh(ElB)

The variation of the shear stress 7,, along the adherend-adhesive interface is
obtained by considering the equilibrium of the forces acting on an element of the

adhesive layer as shown in Fig. 3.2
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dF=2t_dy (3.16)
therefore
o .
Y 2dy
_PEyE sinh(By) =
i cosh(1p)

From Fig. 3.1, it can be seen that the strain e in the adherend is generated by the

applied load o,, then:

0,-Ec (3.18)

Substituting equation (3.18) into equations (3.15) and (3.17), the stress distributions

inside the adhesive layer are

6,=0 9(1-_%] )

3.19
cosh(%m) e

r

- E_fjg(l_ g] sinh(By)

3.20
cosh(%lﬁ) L)

r



60

For two-dimensional problems of this type, H can be defined as [113]

y=_ %% (3.21)

In(w/t)

where

G, = shear modulus of the adhesive

w = total length of the joint (x-direction)

t = width of the adhesive layer
A schematic of the stress distributions is plotted in Fig. 3.3, with the following
properties:

/=10 mm, w=20 mm, t=1.0 mm,

E,=2000 MPa, »,=0.35, E,=73000 MPa, »,=0.30
therefore

G=740.74074 MPa, H=247.26533, 3=0.059014
If the adhesive is elasto-plastic, there will be plateaus on the stress curves in Fig. 3.3
when o, or/and 7,, exceed their yield limits (yielding strength). Such an example was
shown by Hart-Smith [57].

3.1.1.2. Butt-Joint Model

Adhesive joints are rarely used as demonstrated in Fig. 3.1. Rather, a frequent
joint type is butt joint (Fig. 3.4). If the adherends are adequately long compared with the
adhesive layer width, the stress distributions inside the adhesive layer still can be
approximately described by equation (3.19) and (3.20) by substituting o, with (-vo,), that

is, the y-direction strain is produced due to the Poisson’s ratio effect. The stresses are
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Uy:-v GD(I —fﬁ ]_—_‘Ell(_ﬁ_-y)_ (322)

(3.23)

The relative stress distributions remain the same as in Fig. 3.3 if the signs are not
considered. For butt joint, however, the most important stress component, the peel stress
0., cannot be predicted using this method. A more sophisticated scheme or numerical

methods is or are necessary to conduct this calculation.
3.1.2. Airy Stress Function

An Airy stress function approach to solve stress distributions inside adhesive
layers of adhesive joint Iosipescu specimens (see Fig. 2.11) is attempted in this section.

A generic configuration for the analysis of stress distributions in an adhesive layer
is shown in Fig. 3.5, a portion cut from within the inner loading points of Fig. 2.11a.
The layer width t is assumed to be very thin. The force loads F, and F,, and moment
load M, can be referred from Figs. 2.8 and 2.11, where the moment will be zero along
the y-axis (i.e., x=0). The convention for the geometric and mechanical properties is
assumed to be the same as in Fig. 3.1.

The major difference between the joints in Figs. 3.4 (or 3.1) and 3.5 is that the

adhesive layers experience different deformation. The dominating deformation in Fig. 3.4
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is tensile while it is shear in Fig. 3.5. As a result, the approach to simulate the
mechanical behavior inside the adhesive joint will be different. Since there is no moment
load along the y-axis, it is legitimate to assume that the shear stress distribution inside

the adhesive layer will take the form:

o =5, de) dfy) (3.24)
P01 de dy

where
F, = the force component in the y-direction (Fig. 3.5)
I = the adhesive layer length (Fig. 3.5)
g(x) and f(y): functions to be determined

In order to guarantee the shear forces being in equilibrium inside the adhesive layer, that

18

—_— =

T, dy=F, (3.25)

y

b |~

f(y) has to be an even function.
If we denote a stress function for the adhesive layer as ¥, as in Section 2.4.1.1,

but using a Cartesian coordinate system, stress components will have the following

expressions:

0, =—* (3.26)
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A (3.27)
7, 2
- A (3.28)

Substituting equation (3.25) into (3.28) and integrating equation (3.28) in terms of x and

y, one can obtain y:

F
V)=~ fDEE +C,(0)+C,0) (3.29)
where C,(x) and C,(y) are functions to be determined. If equation (3.29) is taken into
equation (3.27), o, can be expressed as

dg*@) , 4CI®) (3.30)
dx* dx*

0,=-f0)

By considering the boundary conditions that o, is zero at both ends of the adhesive layer,

one finds

1dg’w  4C® (3.31)

Only y=[/2 is used in equation (3.31) because f(.) is an even function. After some

mathematical operations, equation (3.31) is equivalent to
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C,@)=Dyx+D, AL)8M) (3.32)

where D, and D, are constants. Because all of the first order exponent terms in the stress
function do not contribute to the stress components [36], equation (3.29) now can be

rewritten as

F
lb(x,y)=-—l"xy+[f(~;)-ﬂy)}g(x)+ ,() (3.33)
let
h(y)#%)“ﬁy), (h(i—;)=0) (3.34)

(h(.) is also an even function) and equation (3.33) will become

F
W) =-—22y HhO)W +C0) (3.35)

According to the elastic theory, stress function ¥ has to be biharmonic [equation (2.11)],
that is,

*y, O O, (3.36)
ax* ox?oy* oyt

Substitute equation (3.35) into (3.36)

hop D o d°@ d’O)  dh*G) GO (3.37)
dx‘* dx 2 dy 2 dy 4 dy 4
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and assume that

gR()*0 (3.38)

Divide both sides of equation (3.37) by gx)h(y)

dg*®) ,, dg’@) dh’0) , dh*p) , 1 dG0) . (339
gdx*  gdx® h(y)dy* h(G)dy* 8MR0O) dy*

Notice in the constitution of equation (3.39) that the first term is only a function of x,
the third is only a function of y, and both the second and fourth terms are functions of
x and y. It is therefore necessary to assure that the first and third terms cancel each

other. Hence,

dg*®) _p,
4 =0
df (3.40)
o) __p
dy*

where Dy is a constant. Solving equations (3.40) and taking into account that h(.) is an

even function, we obtain

D
g(x)=T:]x"'+D3x3+D4x2+}l)5x+D3 (3.41)

and

D
h(y)= —-ﬁ-y4+D7y2+D8 (3.42)
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Further substituting equations (3.41) and (3.42) into equation (3.39), we have the

following equation:

4c;0) (3.43)

2(99X2+6D +21)4)(—9_°y=’-+2n )+ =
2 e 2 e

Similar to the principle of treating equation (3.39), it is legitimate to assume

D
(TOX 2+6D,x+2D ) =constant (3.44)

to make equation (3.43) have only one variable y left. With equation (3.44), it can be

seen that

D,=D,=0 (3.45)
therefore, equation (3.43) is simplified as

dC;(y) =0 (3.46)

8D,D,+

Solve equation (3.46) and omit the terms lower than order 2, and one gets

D,D
'; 7_}-“+D9‘y3‘+l)my2 (3.47)

Cz(y) i

where Dy and D, are constants.
With a substitution of equations (3.41), (3.42), (3.45) and (3.37) back into

equation (3.35), the stress function is found to have the following form:



K DD
=iy D +Dyx DYDY D) -—5 Ty 4Dy D, y?

so the tensile stress in the y-direction, referring to equation (3.26) is

0,=2D.(Dx*+Dgx+Dg)-4D,D.y*+6Dgy+2D,

By the principle of equilibrium in the x-direction, one can write

=2D.,(D4x2+D5.x+D6)Z—%D4D7l3+2Dml

Since F, is a constant whenever the external load is fixed, therefore

+=Ds=0

X

D,+D ,=—
671 10 2]
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(3.48)

(3.49)

(3.50)

(3.51)

Further, via the moment equilibrium, the following relationship has to be held:

3 :
M= [ o,ydy= [ (—%+6Dgy)ydy

(3.52)
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where M, a function of x-ordinate, is the bending moment on the corresponding plane

and can be calculated from Fig. 2.8. Consequently, Dy can be determined:

D=== (3.53)

and one can immediately solve for the stress functions by substituting equations (3.51)
and (3.53) back into equation (3.48):

F, F , 2M
q;:-.Tyxy+EIy2+?_y3 (3.54)

so that the stress components can be computed using the following equations:

; F. u
ox—-l—+12?y
{g.= (3.55)
’ F,

o m X

ol

Assuming that an adhesive joint Iosipescu specimen (Fig. 2.11) has a /=10 mm
adhesive layer length along the notch root axis and is under pure shear loading with
P=10 N, stress distributions within the layer can be calculated using formula (3.55) and
depicted in Figs. 3.9-3.11, where these closed form solutions are used to compare with

the numerical results.

3.1.3. FEM Analysis

A schematic of adhesive joint Iosipescu specimens is shown in Fig. 2.11. The
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adherend can be either isotropic or orthotropic. The adhesive layer thickness (t) is
adjustable according to experimental purposes.

The Tosipescu method, originally designed to determine the shear properties of
metals in 1967 [100], has been investigated by many researchers [101-103], then
modified to measure in-plane biaxial mechanical properties of metals and composites
[104-107, 110]. The latest version is the modified biaxial Tosipescu test fixture (Fig.
2.10a) developed at the University of Cambridge [107] and now being marketed by
Instron Corporation. The loading diagram of the fixture is shown in Fig. 2.10b. The
Tosipescu specimen can be tested on this fixture in a pure shear or in-plane biaxial mode.

Figure 3.6 is a schematic drawing of a Type A adhesive joint Iosipescu specimen.
Its finite element representation is shown in Fig. 3.7, which is assumed to be under
biaxial loading conditions. An examination of Fig. 3.7 reveals that if the boundary
conditions are taken into account, no axial symmetry is available; therefore, a whole
specimen mesh is necessary. The interface corner was very finely meshed (Fig. 3.8¢c) so
that the complicated stress state could be adequately simulated. The external loadings
were assumed to be uniformly distributed forces over the loading surfaces (Fig. 3.6),
since force-couple boundary conditions were found to best approximate the experimental
loading configurations [89-91]. The summation of the external loading at any individual
loading location was kept the same, disregarding the loading angles, which would make
the results comparable based on the same external loading magnitude. Eight-node
isoparametric elements were employed. The total number of elements was 5984 and the
total number of nodes 18373. All of the finite element calculations were accomplished
using the software code of ANSYS, Version 4.4A [54].

The other two types of Iosipescu joint specimens were meshed and calculated
similarly. All of these joint root mesh configurations are depicted in Fig. 3.8, where
finer elements were employed at all the interface corners and sharp notch tips in order
to capture the potential singular stress behavior at those points. The degree of freedom

(DOF) or the total number of elements varies, but the schemes are identical.



70

Computations were carried out assuming linear elastic deformation.

Assuming that the loading angle is ¢, the externally applied compressive load is
P (Figs. 2.10a and 2.11), the distance between the inner loads is 4, and the distance
between the outer load is b (Fig. 3.6), the specimen width is 20 mm, the force couples
P, and P, (Fig. 3.7) can be evaluated as follows according to the force and moment

balance requirement:

p - (@+20tand)P (3.56)
¢ a-b+40tand

p A0 caIgIE, (3.57)
a-b+40tand

Obviously, the force components along x- and y-directions along the adhesive

center line (x=0) are

{:}: -Pcosd (3.58)
=-Psind

Therefore, the nominal shear stress along the adhesive center line is

__Pcosd (3.59)

= 10

and the tensile stress in x-direction along this line is

o = Psing (3.60)
T
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The minus signs in equations (3.59) and (3.60) are used to obey the sign convention in
the theory of elasticity [36]. Throughout this analysis, the externally applied compressive
force is fixed at 10 N. Therefore, under pure shear loading conditions, the nominal shear

stress along the adhesive center line will have the value of -1 MPa.
3.1.3.1. Geometric Effects

Three types of notch root configurations (Fig. 2.11b and 3.8) were taken into
account, with an assumption that the distances along the notch root axis would retain the
same value of 10 mm for all three cases. A detailed schematic drawing of the joints of
Type A is shown in Fig. 3.6 with its FEM representation in Fig. 3.7. Stress distributions
of shear and tensile in x- and y-directions inside the adhesive layers are depicted in Figs.
3.9, 3.10 and 3.11 for all three geometries under pure shear loading. The location labels
on these three figures are interpreted as if there is a Cartesian coordinate system placed

at the four-fold center of the adhesive layer for individual specimens (see Fig. 3.5).
3.1.3.2. Loading Angle Effects

When the adhesive layer was assumed to be 0.2 mm of Type A joint, the shear
stress distributions along different paths are shown in Fig. 3.12 under various loading
conditions. Figure 3.13 shows the tensile stresses along x-direction (o,) and Figure 3.14

reveals the tensile stresses along y-direction (o,) under those conditions.
3.1.3.3. Adhesive Thickness Effects

Shear stress distributions along different paths for external loadings in a pure
shear mode are shown in Fig. 3.15 for adhesive layer thicknesses of 0.1, 0.2 and 0.5

mmj in addition, ¢, is shown in Fig, 3.16 and ¢, in Fig. 3.17.
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For loading angles other than pure shear, one typical case of a=-30° loading angle
(shear and tension) is presented along several paths for the three adhesive layer
thicknesses. Figure 3.18 shows the shear stress distributions, Fig. 3.19 the x-direction,
and Fig. 3.20 the y-direction tensile stress configurations. For a direct view of stress
uniformity inside the adhesive layer, equivalent stress contours for different adhesive

layer thicknesses at loading angle 30° (shear and compression) are shown in Fig. 3.21.

3.1.4. Experimental Approach

Adhesive joint specimens were made for experimental studies. All three types
were considered; their photographs are shown in Figs. 3.22-3.24. A schematic of
specimen of Type A is shown in Fig. 3.6 to demonstrate the specimen dimensions. The
adherends are aluminum, and adhesives are 3M" brand brittle DP 100 and ductile DP 190

[92-94]. All tests were conducted at room temperature.

3.1.4.1. Procedure

To conduct adhesive joint Iosipescu specimen tests, three steps are necessary:

adherend preparation, specimen making, and joint testing.

Adherend Preparation:

1 Machine the aluminum adherends into a shape as in Fig. 3.22-24 with a surface
finish of about grade 16L.

2. Polish the to-be-glued surfaces with #C600 emery paper.

3. Rinse the adherends sufficiently in running tap water.

4, Degrease them using Acetone in a supersonic tank for 5 minutes.

' 3M is a trademark.
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5. Clean them in Oakite? Aluminum Cleaner solution (see below) at 88+5°C for
about 15 minutes.

Rinse them in running tap water immediately.

Put them in acid etch solution (see below) for 10 minutes at 65+3°C.

Rinse them in running tap water immediately.

o & &

Dry them in the air for 15 minutes.

10.  Dry forcefully at 65+5°C for 10 minutes.

Oakite* Aluminum Cleaner Solution [115]

Preparation: Add total required quantity of Aluminum Cleaner 164 to half
the volume of water, cold, while stirring and heat to about 82°C. Then, add the
remaining half of water and adjust solution to operating temperature.
Application: Itis normally used at 45 to 75 g/l of water in the temperature
range of 52 to 82°C.

Acid Etch Solution [92-94]

Chemicals wt%
Sodium dichromate 1
Sulfuric acid, 66°Be 9
2024-T3 aluminum (dissolved) 0.04
Tap water 24.8

Specimen Making:

1. Load the well-cleaned adherends on the Bonding Assembly® (Fig. 3.25) with

2 Qakite is a trademark.

* Bonding Assembly is a jig made in OGI for making adhesive joint Iosipescu specimens.
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teflon tape laid under the adherends to prevent them from being bonded to the jig.
Apply the appropriate adhesive to the (joint) gap.

Let the specimens cure at room temperature (234 1°C) for 24 hours (DP 100
adhesive) or 7 days (DP 190 adhesive).

Modify the root geometries to the desired shape using a sharp surgical blade.
Polish all the surfaces with #C600 sandpaper.

Measure all the dimensions of a specimen. At least three points should be
evaluated for each dimension and the average value is the one used as its namely

measure.

Joint Testing:

L

Load the specimen on the Modified Iosipescu Fixture (Fig. 2.10) and set the
loading angle as desired.

Connect all the sensors and recording equipment.

Set the loading displacement speed at 0.0025 mm/sec for rigid adhesive joints or
0.0125 mm/sec for flexible adhesive specimens.

Conduct the test on an Instron* mechanical testing machine.

Save the data and broken specimens for further processing and examinations.

3.1.4.2. General Observations During Testing

Typical load-displacement diagrams for adhesive joint Tosipescu specimen testing

are shown in Fig. 3.26a, b and ¢, which are the three categories classified according to

the following:

(1) The force load went up almost linearly with an increase in the displacement

until the specimen was broken (Fig. 3.26a). The percentage of specimens broken

* Instron is a trademark.
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in this manner was about 32%.

(2) The load rose almost linearly when the displacement increased until a kink
point was observed (Fig. 3.26b). This kink indicates that there was an instant
unloading at that moment. Afterwards, the load incremented again up to the
breaking point. This category took place in about 38% of the specimens.

(3) The load ran up almost linearly when the displacement increased until a kink
point was noticed; however, one or more kinks would appear as the external
displacement load kept going up until the final rupture of the joint (Fig. 3.26¢).
About 30% of the specimens tested failed this way.

Both the first kink and the final rupture loads were recorded. These loads was
used to analyze the mechanical behavior of the joints. However, for the first case, it is
obvious that the first kink and the rupture loads were the same (Fig. 3.26a).

After the first kink popped up, a small crack at the notch root was initiated, most
of the time at the interface corner (Figs. 3.58, 3.60 and 3.62) and sometimes at the notch
sharp tip for Type B geometry (Fig. 3.59). Sudden crack propagation was found to occur
with the appearance of multiple kinks. In this scenario, the crack surfaces were generally
step-wise (Fig. 3.63) for rigid adhesive joints. For joints bonded by flexible adhesives,
the fracture surfaces were flat from a macroscopical viewpoint (Fig. 3.65) since the
failure pattern was peel-off for these types of joints. More observations and discussions

on crack surfaces will be given in later sections.

3.1.4.3. Experimental Results

Results of tests for different notch root geometries and loading angles are
presented in Figs. 3.27 and 3.28, in which only the rigid adhesive was used with an
adhesive layer thickness being kept at 1.0 mm. Two types of adhesives, DP 100 and DP

190, were employed to conduct another set of tests so that the effects of adhesive
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properties could be observed. The data obtained are plotted in Figs. 3.29 and 3.30.
Thickness effect can also be considered through comparison of Figs. 3.27 to 3.30 in
terms of rigid adhesive (DP 100).

3.2. Singular Stress Analysis at an Interface Corner

The stress singularity at an adhesive interface is a major problem for joint
designs. In evaluating the asymptotic field for corner stress singularity, it is essential to
consider various joint geometries, adhesive and adherend elastic properties, and nonlinear
material effects. The asymptotic singular fields for many adhesive joint geometries are

not available due to the complexity of the analytical formulations.
3.2.1. Composite Parameter Calculation Using Williams’ Stress Function

In light of the literature review in Chapter 2, it can be deduced that when the
geometry of a bimaterial wedge is fixed (for instance, Fig. 2.12), the singular power A
can be simplified as a function of a pair of composite parameters « and 3 [equation
(2.55)] [27,81]; however, the parameters were obtained using complex potentials that
generally are difficult to understand without a mastery of complex functions and integral
transformations. In this section, the simple Williams’ stress function will be used to
extract these two parameters.

A bimaterial wedge with an arbitrary geometry as in Fig. 2.12 is assumed. In
addition, all the geometrical and physical property conventions remain the same as in
Section 2.4.1. Therefore, from equations (2.13)-(2.16), the individual stress components

in the polar coordinate system can be written as

0,=(1-2)r *[(2+1)sin(16)4, +cos(16)4,)

. (3.61)
=(2-2)(sin((2-2)0)A; +cos((2-1)0)A,)]
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Oge=(2-A)(1-A)r H[(2+A)sin(A6)A, +cos(A0)4,) (3.62)
+sin((2-1)0)4,+cos((2-1)0)4,]

0,4=(1-A)r *[A(-cos(AB)4, +sin(A6)4,) (3.63)
+(2-2)(-cos((2-1)0)4, +sin((2-1)6)4,)]

From the theory of elasticity, the relationship between displacements and strains

can be written in the following form:

_ S, (3.64)
rr ar
. N (3.65)
% 90 r
ou, Oug Uy
= r+_._,_--_ (3.66)
Tro ro@ or r

where ¢,, €, and +v,, denote the radial strain, circumferencial strain, and total shear
strain, respectively.

In accordance with Hooke’s law for a generalized plane stress case, the strains

can be expressed in terms of stresses:

err=~}1§(0"~vaee) (3.67)
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eﬁf%(aee“" a,) (3.68)
) (3.69)

ro E o

where E is the Young’s modulus and » denotes the Poisson’s ratio in a generalized plane

stress condition. If a plane strain condition is assumed, E and » should be replaced by

g-—E (3.70)
1-v?
and
S (3.71)
1-v

By using equations (3.61)-(3.71) and assuming no rigid body motion, the

displacement components are

ri-t ;
u,=T[((2 +4)-v(2-1))(sin(A0)A4, +cos(10)4,) (3.72)
~(2-A)(1+v)(sin((2-1)0)d; +cos(2-2)0)A,)]

and

1-A
U= —’?[(vx +(A-4))(cos(AB)A, -sin(A6)A,) 3.73)
+#2-2)(1+v)(cos((2-1)6)A,-sin((2-1)6)4 )]
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In addition, when all the stress expressions [equations (3.61-3.63)] and
displacement components [equations (3.72) and (3.73)] are substituted into the boundary

conditions in equations (2.2)-(2.9), eight linear equations are obtained:

sin(16,)4," +cos(18,)4,"

1) m_ (B
+sin(2-1)0,)45" +cos((2-1)0 DA
sin(A6, +cos(AB (2) 3.75)
+sin(2-1)0,)A 1 ® +cos((2-1)8,)4 7=
(1)
—lcos(lﬂi)A +lsm(lBI)A (3.76)
~(2-1)cos(2-1)0,)4:"+(2-A)sin((2-1)0 )4 <=0
—Acos(lﬂz)zzmdsin(lﬂz)flm 2 3.77)
~(2-2)cos(2-1)0,)4.2 +(2-1)sin((2-1)8,)4 =0
AD+40-4P 4P (3.78)
AP +2-04P-242-2-04P=0 (3.79)
T(A+k,-1)A; +T(A-2)A" - (A +k, - 1A -(A -2)47 =0 (3.80)

T(A -k, -DAP-TO-24"-(A -k, - DAL+ -2)4P=0 (3.81)
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where k, and k, are defined as in equations (2.19) and (2.20), and I" by equation (2.54).
With an algebraic manipulation of equations (3.77) and (3.80), it is found that

(Tky +1) +k,+1) = (ky 1)

3.82
+@-1)A-2UL+T-D(-2AL-(k,+1)4P =0 (52

while using equations (3.78) and (3.81), one obtains
((-T'(k; +1) +k, +1) +(k, +1) -

HT-DAL-C-1)(A-2)45"+(k,+1)4;7=0

A close inspection reveals that if two composite parameters « and 3 are defined

as in equations (2.52) and (2.53), then equations (3.82) and (3.83) can be rewritten as:

(1+a+(a-B)A 25"+ (a-B)(A-2)A;"-(1-0)4;” =0 (35
and

(-1-a+(@-BAA " ~(a-B)(A-2A45"+(1-a)4;”=0 (a8

The composite parameters « and 8 were first introduced by Dunders [27]. In this
section, the parameters were determined by the direct application of Williams” Airy stress
function. It should be noted that only two independent composite parameters (such as
o and B) can exist. However, the choice of these two parameters is not unique; any two
independent parameters (which would be functions of T, k; and k;) can be selected
depending upon convenience for the application being considered. In this case, the two
parameters [« and @ in equations (2.52) and (2.53)] have been widely recognized as the

most appropriate for the analysis of two-dimensional interface problems [81].
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3.2.2. FEM Approach

3.2.2.1. Stress Concentration Observation

To obtain preliminary knowledge about a problem, it is often necessary to begin
studying a problem from one of its simplest forms. A rectangular plate comprised of two
different linear-elastic materials, shown in Fig. 3.31, was employed to conduct an initial
macro-scale analysis of the asymptotic stress field. The plate had a length of 40 mm and
a width of 20 mm. The interface between Point A and Point B was at an angle of a=45°.
The properties for Material 1 were: Young’s modulus E; = 10000 MPa and Poisson’s
ratio »,=0.3. For Material 2, Young’s modulus E, was 1000 MPa, and Poisson’s ratio
v, took the value 0.35. Plane strain loading condition with evenly distributed tensile
stresses (20 N/mm?) on both ends DC and EF (Fig. 3.31) was assumed. Eight-node
quadrilateral and six-node triangular isoparametric elements were used with isotropic
elastic properties. The finite element model is illustrated in Fig. 3.32, which was meshed
with relatively small elements at the interface corners. Seven rings of elements
surrounded each corner. The mesh consisted a total of 522 elements and 1646 nodes. The
computation was carried out via FEM software code ANSYS 4.4A [54].

The deformed structure superimposed with its original contour is shown in Fig.
3.33. This figure clearly shows that Material 1 tends to elongate less when compared to
the lower softer material (Material 2). In addition, the von Mises equivalent stress [see
equation (3.89)] distribution is presented in Fig. 3.34. Maximum stress concentration can
be found at wedge corner A. It is surprising, however, that the minimum value of the
equivalent stress exists at another interface corner, point B. This may imply that no stress
singularity takes place at this corner for the current material combination and structural
geometry. This is a very important observation: if a bimaterial interface can be such
designed that no singularity exists at its interface corner, this bimaterial wedge will

surely have the highest strength; therefore, a micro-scale study is conducted in a later
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section to reveal the truth.
3.2.2.2. Asymptotic Field at Interface Corners

A linear elastic, two-dimensional finite element analysis of an adhesive butt joint,
shown in Fig. 3.35, was conducted to investigate the eigenfunctions around an interface
corner. This joint was assumed to be made of a layer of softer adhesive and two stiffer
adherends, as may be the case for an adhesively bonded steel or aluminum joint, and to
be subjected to traverse tension loading, which was a prescribed uniform displacement
on the adherends along the y-direction to induce a nominal strain 0.0001 inside the
adhesive layer. No load was applied along the x-direction. The width of the joint
analyzed was 400 mm with the thickness 2t ranging from 0.1 to 200 mm. A state of
plane strain was assumed in the analysis.

Given the four-fold symmetry of the model, only one quarter of the joint was
discretized (Fig. 3.36) using two-dimensional six-node triangular and eight-node
quadrilateral isoparametric plane strain elements. It can been seen from Fig. 3.36 that
a very fine mesh was used in the vicinity of interface corner in order to capture the
singular stress fields in this area. The finite element code ANSYS Version 4.4A [54] was
employed in this analysis.

As a matter of convenience, equations (3.61)-(3.63) may be expressed in the

following form [same as equation (1.1)] [8,9,49]:

0,=Qr :(6) (3.86)

where Q, in analogy with the K-parameter used in linear elastic fracture mechanics, is
defined as the stress intensity factor and f;(f) is a bounded function that defines the
trigonometric component of equations (3.61)-(3.63). With a combination of Q and f;(6)
as Q;(6), equation (3.86) can be written as:
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a;=Q,(®)r B (3.87)

where Qy(f) is defined as the radial stress intensity factor. Taking logarithmic

operations on both sides, equation (3.87) becomes

logo;=logQ,(6)-Alogr (3.88)

Figure 3.37 shows a plot of log(c,) versus log(r) for varying thicknesses of the
adhesive layer at the interface (8 = 0°), where o, is the equivalent stress (as defined by
von Mises [36])

20;=(0,-0,)"+(0,-05)"+(05-0,) (3.89)

where ¢y, 0, and o, are the principal stresses. Equivalent stress ¢, can be obtained from
the finite element analysis. The parameters Q.(f) and A can be easily obtained from the
curves presented in Fig. 3.37, since, as can be seen from equation (3.87), A is the slope
of the lines and Q.(0) is the value of o, for r equal to 1.

From Fig. 3.37, it is seen that when r goes to zero, the equivalent stress o,
increases exponentially, except when r is too small as in this case the shape functions
used to form the finite element code are unable to accurately describe these exponential
changes. Taking these facts and the observations in Section 3.2.2.1 into account, it is
obvious that around the interface corner there exists a singular stress field (asymptotic
field).

The normalized angular displacement eigenfunction distributions, u, and u, inside
the asymptotic field, are shown in Figs. 3.38a and b correspondingly at the radii of 0.1
and 1.0 mm. These FEM-based eigenfunctions will be used to compare with those from
analytical and FEIM approaches in later sections, and hence to find out the advantages

and disadvantages of individual schemes.
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3.2.2.3. Computation of A and Q Using log-log Approach

Assuming the principle in Fig. 3.37, a logo,-logr plot was used to extract the
numerically computed singular powers and the radial stress intensity factors defined by
equation (3.87). Substituting the subscript ij with e (equivalent) in both equations (3.87)
and (3.88), we obtain

0,=Q,(6)r ™ (3.90)

where Q.(f) denotes the equivalent radial stress intensity factor, and

logo,=1ogQ,(6)-Alogr (3.91)

Consequently, with the results of the finite element calculation of an adhesive joint, it is
easy to extract the singular power A\ and the radial equivalent stress intensity factor Q.(6)
of this joint by using equation (3.91). To ensure high accuracy levels, a linearized least

square fitting method was employed in this study.
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Table 3.1 Comparison of analytical and numerical singular powers and normalized
radial equivalent stress intensity factors (»=0.3, t=10 mm)

E (MPa) [} 0 18° 36° 54° T2 90°

A .28882 28882 28882 28882 .28882 .28882
analytical

solution Q. 1.0000 1.1346 1.2572 1.3283 1.3283 1.2555
A .28939 .28960 28838 28877 .29000 .29065
300 Q.0 10245 11620 .12963 13672 13596 12825
Q. (M 1.0000 1.1342 1.2654 1.3345 1.3271 1.2519
A 28919 .28960 .28925 .28927 .28927 .29336
2632 Q.0 .89960 1.0195 1.1320 1.1960 1.1928 1.1485
Q. () 1.0000 1.1338 1.2583 1.3295 1.3132 1.2767
A .28931 .28929 .28905 .28910 .28938 29372
21000 Q.0 1.0151 1.1963 1.3429 1.4124 1.3808 1.2843
QM 1.0000 1.1785 1.3229 1.3914 1.3602 1.2651

* Q.(6) is the normalized value with respect to its zero degree angle, that is,

Qe (0) =Qe(6)/Qc(0).
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Table 3.2 Comparison of analytical and numerical singular powers and normalized
radial equivalent stress intensity factors (v=0.3, E=2632 MPa)

t (mm) ] g 18° 36° 54° 72° 90°

analytical A .28882 .28882 .28882 .28882 .28882 28882
solution

Q. (0 1.0000 1.1346 1.2572 1.3283 1.3283 1.2555

A .28903 .28932 .28894 .28889 28925 .28906

50 Q) 1.4319 1.6325 1.8030 1.9058 1.9011 1.8007

Q. (0 1.0000 1.1401 1.2592 1.3310 1.3277 1.2576

A 28919 28960 28925 28927 28927 29336

10 Q. .89960 1.0195 1.1320 1.1960 1.1928 1.1485

Q. () 1.0000 1.1338 1.2583 1.3295 1.3132 1.2767

A .28952 28899 .28935 .28946 29409 .29994

1.0 Q.(0) 46159 .52493 58102 .61384 .59929 55149

Q. () 1.0000 1.1372 1.2587 1.3299 1.2983 1.1948

A .28898 .28870 28838 29374 30575 32070

0.1 Q.0 23830 27097 .29950 30541 28442 24762

Q. () 1.0000 1.1371 1.2568 1.2816 1.1935 1.0391

The FEM model used for this purpose is the same as in Fig. 3.35; however, both
adherends are assumed to be rigid (E,gea= ) With a external prescribed y-direction
uniform displacement to generate a nominal strain of 0.0003 inside the adhesive layer.
Only one quarter of the adhesive layer is necessary to be discretized (Fig. 3.39) for the
entire computations because of the four-fold symmetry. The adhesive layer thickness,
Young’s modulus, and Poisson’s ratio were treated as the independent variables. For
different cases, the numerical results of A and Q,(6) are listed in Tables 3.1, 3.2, 3.3 and
3.4 respectively, where the analytical data were obtained via equation (2.59) with the
Newton-Raphson method [49,117], and the normalized equivalent radial stress intensity
factor is labeled as Q,’(f) through normalizing Q.(f) with respect to its value at zero

degree angle, Q.(0).
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Table 3.3 Comparison of analytical and numerical singular powers and normalized
radial equivalent stress intensity factors (»=0.26, t=10 mm)

E (MPa) o o 18° 36° 54° 72° 90°
A 26184 26184 .26184 .26184 .26184 .26184
analytical
solution Q. (0 1.0000 1.1050 1.2099 1.2774 1.2872 1.2348
A .26232 .26249 .26234 .26235 26318 26374
2632 Q. .84150 .92964 1.0194 1.0765 1.0814 1.0354
Q. ) 1.0000 1.1048 1.2115 1.2792 1.2851 1.2304

Table 3.4 Comparison of analytical and numerical singular powers and normalized

radial equivalent stress intensity factors (»=0.35, t=10 mm)

E (MPa) 0 0 18° 36° 54° 72 90°
A .32030 .32030 32030 .32030 .32030 .32030
analytical
solution Q. O 1.0000 1.1730 1.3135 1.3826 1.3639 1.2600
A 32185 32086 32048 32077 32271 32164
2632 Q. 1.0151 1.1963 1.3429 1.4124 1.3808 1.2843
Q, (0 1.0000 1.1785 1.3229 1.3914 1.3602 1.2651

3.2.2.4. Free Edge Stress Intensity Factor

A free edge stress intensity factor calculation formula, based on dimensional
analysis, was proposed by Reedy [8-9]. When the ratio of the adhesive length to its
thickness is greater than 20, Q,(0), defined as the free edge stress intensity factor, can

be evaluated by the following equation [8-9]:

Q,(0)=0"(20)*4(v) (3.92)

where 2t is the adhesive layer thickness, o° is defined as the characteristic stress at the

center of the adhesive in the x-direction (¢° = o, at the center), and A(») is a function
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of » and loading conditions, whose values for different » in pure tension and pure shear

loading conditions have been characterized by Reedy [8-9].

For a plane strain case, ¢" is

vE

o'=—————¢, (3.93)
(1+v)(1-2v)
where ¢, is the nominal strain at the center of the adhesive [8-9].
Table 3.5 Numerical and predicted free edge stress intensity factors
v E A t a A(r) Q™ Q0 error
26 2632 2618 10 3394 1.736 1.077 1.056 1.9%
30 300 2888 10 05192 1.32 1333 1326 5%
30 2632 2888 10 4555 1.32 1.169 1.159 9%
30 21000 2888 10 3.635 1.32 9.329 9.279 5%
30 2632 2888 50 4555 1.32 1.861 1.851 5%
30 2632 2888 1 4555 1.32 6013 5883 2%
35 2632 3203 10 6823 948 1.352 1.342 7%
#7Q,™ by Ready's formula; Q,™ via numerical methods.

For a validation of equation (3.92), the free edge stress intensity factors, for

several different cases under the loading condition of a nominal strain ¢,=0.0003, were

evaluated using equation (3.90) and compared with the results predicted by equation

(3.92). All data are listed in Table 3.5.

3.2.2.5. Singular Zone Evaluation

rule:

A stress field is said to be singular if the stress distribution obeys the following
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o, ~r* (3.94)

From the previous analytical and FEM analyses (Section 3.2.2.1 and 3.2.2.2), it is clear
that the stress field near the bimaterial corner is singular. The singular power describes
the strength of the singular field, and the stress intensity factor indicates the magnitude
of this field. However, the geometry of the singular zone, inside which the stresses obey
relation (3.94), remains unknown from the aforementioned analyses. Therefore, a new
method for evaluating the geometry of a singular stress zone is necessary.

It is clear that the true stresses within a finite bimaterial wedge (except a very
localized area near the singular point) can be always obtained numerically. If it is
assumed that the stress distribution inside this wedge can be globally described by the
singular stress formula of equation (3.87), the assumed stress distribution should be
identical to the true stress distribution in the close vicinity of the singular stress point
located at the bimaterial wedge corner. However, at points away from the wedge corner,
the assumed stresses will diverge from the true stresses, since the singular zone is only
localized at the corner (see Fig. 3.37). A measure of the degree of divergence can be
defined as

0..-=0
Yq:lm—mlxloo (395)

true

where the sub-index ¢ implies that the degree of divergence is obtained based on the
stress field.
In this study, it was assumed that a point was said to be within the singular zone
if v, at this point was less than 1.0; otherwise, this point was outside the singular zone.
In order that singular stress zone geometries could be investigated from another
point of view, the displacement fields were also employed to calculate the degree of

divergence, which was defined as
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u,. U
yu=|—-—"‘“u aswmed 16100 (3.96)

rue

and the criterion for singular zone determination based on displacement fields was
selected as 1.0 as well.
The singular stress zone geometries, extracted using different parameters under

various conditions, are shown in Fig. 3.40.
3.2.3. FEIM Scheme

From the FEM results in Table 3.2, it was found that when the adhesive layer
thickness (2t) was adequately small, the finite element solutions near the free surface
were not acceptable either because the singular zone seemed to be very localized or the
element sizes at the interface corner were too coarse to determine the singular power A
correctly (see Table 3.2). As a matter of fact, even if t is larger, the FEM solutions near
the wedge corner are not accurate either because of the incapability of the polynomial
shape function to approximate the steeply changing stress field (see Fig. 3.37).
Therefore, the FEIM suggested by Barsoum [83-87] was used to calculate A under

different material combinations and wedge geometries.
3.2.3.1. An Isotropic Elastic-Rigid Bimaterial Wedge

An isotropic elastic-rigid bimaterial wedge was considered with all conventions
being the same as in Fig. 3.35, but with rigid adherends (E,y.;e0a= ). Without losing
generality, only one of the four bimaterial wedges in Fig. 3.35 will be considered in this
section. Thus, the geometry of interest looks like an elastic adhesive layer bonded to a

rigid substrate.
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The basic requirement in applying the FEIM is that the displacements within the

singular field can be written as

u;=Qr' g, (0) (3.97)

that is, this is a separable function [83-87,118]. Therefore, the ratio between the
displacements at an outer ring of r,,, and those at an inner ring of radius r;, along any ray
has the form of

(our) r

i(in) s~ (3-98)
u; Tin

u

By studying equation (3.98), it is obvious that inside the singular stress zone, the
ratio of any two displacements along any ray is only a function of the two radii and the
singular power A, but is not a function of the ray angle §. With this observation, the
singular power can be computed by going through the following procedures. First, the
region of interest, taking into account quarter symmetry, Fig. 3.35 (assuming rigid
adherends) is analyzed by the FEM with a relatively coarse discretization as shown in
Fig. 3.39. Then, a subarea of interest is re-meshed with rings and rays as shown in Fig.
3.41. The global displacement field, computed by the FEM on the outline of the subarea,
is prescribed on the out-most ring to serve as the new boundary conditions for this
sub-domain, and a new iterative computation for this area is carried out using the FEM.
The singular power of this iteration can subsequently be obtained using equation (3.88)
or (3.91). The termination of the iterative procedure is controlled by a relative

convergence criterion, which is defined as

A=A
'; !x100 < const (3.99)

i+l

x:



92

where const is a constant being determined by desiring a light or tight criterion. It is
chosen as 0.001% throughout this presentation unless otherwise specified.

If the first iterative solution is unable to meet the convergence criterion in
equation (3.99), it implies that the subarea is not entirely inside the singular field.
Therefore, further calculations need to be carried out through a scaling of the
displacements on the inner ring with an appropriate factor [20,21,42,46,49,83-87], then
imposing them on the outer ring as the rebuilding boundary conditions, re-computing this
sub-domain using the FEM, extracting the new iterative singular power, and checking
whether the accuracy level is adequate. If not, with repeating the above procedure, the
singular zone may always be deeply approached, and the correct singular power may
therefore be computed. The FEIM analysis in this section was conducted using the mesh
shown in Fig. 3.41, where R, =0.1 mm, R, =0.001 mm. By denoting the original
whole structural analysis as the zeroth iteration and the subsequent iterations as
1,2,3,..., the singular power at the free surface obtained by the FEIM for the case t=1.0
mm in (Table 3.2) is shown in Table 3.6.

Another computation was also carried out for an arbitrarily prescribed
displacement field imposed on the outer ring of Fig. 3.41. The result, listed in Table 3.7,
shows that during the third iteration the computed A\ was accurate to the fourth significant

digii.

Table 3.6 Number of iterations and singular power X at the free surface (»=0.30)

number of iteration A
1 29214
2 28866
3 .28869
4 .28869
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Table 3.7 Number of iterations and singular power A for a arbitrary loading
condition (»=0.30)

number of iteration A
1 .18733
3 28985
3 .28869
4 .28869

3.2.3.2. An Isotropic Orthogonal Elastic Bimaterial Wedge

A more complicated case, an orthogonal elastic bimaterial wedge made from two
isotropic materials, was studied in this section to compare with previous FEM results for
similar geometries. A portion of Fig. 3.36, one bimaterial interface wedge corner from
the four corners in Fig. 3.35, was subtracted to conduct these computations.

The FEIM representation, similar to that in Fig. 2.14 but with different DOF
(degree of freedom), consists of 69 rings. The ratio of the radius of the outer ring R,
to that of the inner ring R, was 10. It was found that if the inner ring was too close to
the singular point, it was difficult to achieve convergence. The scaling factor [49,118]
used was 3.5. An equivalent stress field was employed to compute the singular power.
The convergence criterion used in this analysis was determined as the relative difference
between the singular powers obtained in two successive iterations [equation (3.99)]. The
entire analysis was performed using the macro capabilities of ANSYS 4.4A [54].

The normalized displacement eigenfunctions computed via FEIM with the same
material combinations as in Fig. 3.35 are plotted in Figs. 3.38a and b in comparison with
the functions from analytical analysis or FEM approach. Singular power dependence on
the ratio of Young’s moduli is shown in Fig. 3.42. In addition, the dependence on the
Poisson’s ratios is depicted in Fig. 3.43. The composite parameters, which are very

significant for studying bimaterial interface problems, are employed so that their
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relationship with the eigenvalue under orthogonal bimaterial wedge condition can be

studied. The results are listed in Table 3.8 and illustrated in Fig. 3.44 as well.

3.2.3.3. An Isotropic Skewed Elastic Bimaterial Wedge

As studied in Section 3.2.1.1 with the FEM, it was noted that stress concentration
only emerged at wedge corner A but not wedge corner B in Fig. 3.33, that is, the
bimaterial wedge stress singularity for a skewed interface could be avoided if the skewed
interface angle and material combinations met special conditions. In order that the
general governing law can be discovered, a schematic drawing of the mathematical model
of a bimaterial wedge with a skewed interface is shown in Fig. 3.45 where the interface
is assumed to be straight and perfectly bonded. Both materials involved are isotropic and
linear elastic with the assumption of plane strain loading condition. In addition, surface
CAD in Fig. 3.45, where CA and AD are presumed co-planar, is traction free. The
external loadings are prescribed on the rest of the boundaries and are generally of mixed
mode characteristics.

Various skewed interface angles and mechanical properties were assigned to the
bimaterial wedge in Fig. 3.45 for an investigation of the geometrical and physical
influences on the interfacial stress singularities. Namely, the skewed interface angle were
taken from 11.25° to 168.75° in the step of 11.25° the ratio of Young’s moduli E,/E,
was varied from two to infinity; the Poisson’s ratio of Material 2 (v,) was chosen at
0.275, 0.30, 0.35 and 0.40; and the Poisson’s ratio of Material 1 (»,) was fixed at 0.30
to simulate metallic materials such as steel and aluminum alloys. The step interval of the
interface angle was selected as 11.25° because in ANSYS [54] the tolerable minimum
angle for triangle elements, used to generate the mesh around the wedge corners, was
about 10.5°. Moreover the FEIM, a simple and accurate tool for studying asymptotic
stress fields [42,46,49,72], was employed to conduct the calculation via the ANSYS
program design language (APDL) [54].



Table 3.8 Singular power distribution at a=-0.5

95

il k, k, " " r E,/E, A A
-375 1.00 3.0000 .500 0000000 6666667  .4444444 -.2458 -.2499
-375 1.50 3.6154 375 -.1538462 6153846  .3786982 . -.2499
-375 2.00 4.1429 250 2857144 5714286 3265306 z -.2499
-375 2.50 4.6000 125 4000000  .5333333  .2844444 . -.2499
=475 3.00 5.0000 .000 -.5000000  .5000000  .2500000 2 -.2499
-350 1.00 2.7500 .500 0625000 6250000  .4427083 -.1432 -.1433
-350 1.50 3.2857 375 -0714285 5714285  .3858998 2 -.1433
-350 2.00 3.7368 250 -.1842105  .5263158  .3434903 . -.1433
-350 2.50 4.1220 125 -2804878 4878049 3119836 2 -.1433
-.350 3.00 4.4545 .000 -.3636363 4545454 2892562 - -.1433
-300 1.00 2.3333 .500 1666666  .5555556  .4320988  -.5579%-1  -.5585¢-1
-.300 1.50 2.7500 375 0625000  .5000000  .3863636  -.5579%-1  -.5585e-1
-300 2.00 3.0909 250 -0227273 4545455 3553719 - -.5585¢-1
-300 2.50 3.3750 125 -0937500 4166667 3356481 : -.5585¢-1
-.300 3.00 3.6154 .000 -.1538461 3846154 .3254438 - -.5585e-1
-.250 1.00 2.0000 500 2500000  .5000000  .4166667  .3160e-S 0
-.250 1.50 2.3333 375 1666667  .4444444 3771044  .1587¢-6 0
-250 2.00 2.6000 250 .1000000 4000000 3520000 .0000 0
-250 2.50 2.8182 125 0454545 3636364 3379247  .1773e-6 0
-250 3.00 3.0000 .000 0000000 3333333 3333333 .2378e-S 0
-.200 1.00 1.7273 .500 3181818 4545455 3994491  .4197e-1  .420le-1
-.200 1.50 2.0000 375 2500000  .4000000 3636364  .4197¢-1  .420le-1
-.200 2.00 2.2143 250 1964285 3571429 3418367  .4197e-1  .420le-1
-.200 2.50 2.3871 125 1532258 3225806  .3306741  .4197e-1  .4201e-1
-.200 3.00 2.5294 .000 1176470 2941177 3287197 .4197e-1  .4201e-1
-.150 1.00 1.5000 500 3750000 4166667 3819444  .7554e-1  .7562e-1
-.150 1.50 1.7273 375 3181818 3636364  .3486101  .755de-1  .7562e-1
-.150 2.00 1.9032 250 2741936 3225806 3288241  .7554e-1  .7562e-1
-.150 2.50 2.0435 125 2391304 2898551 3192607  .755de-1  .7562e-1
-.150 3.00 2.1579 .000 2105263 2631579 3185596  .7554e-1  .7562e-1
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-.100 1.00 1.3077 .500 4230769 3846154 3648915 .1033 1034
-.100 1.50 1.5000 375 .3750000 .3333333 3333333 .1033 1034
-.100 2.00 1.6471 250 3382353 2941177 3148789 .1033 1034
-.100 2.50 1.7632 125 .3092105 2631579 3062481 .1033 1034
-.100 3.00 1.8571 .000 2857143 2380952 3061225 .1033 1034
-.050 1.00 1.1429 .500 4642857 3571429 3486395 1267 1268
-.050 1.50 1.3077 375 .4230769 3076923 3184508 1267 .1268
-.050 2.00 1.4324 .250 '.3918919 .2702703 3009496 1267 1268
-.050 2.50 1.5301 125 3674699 .2409639 2928985 1267 .1268
-.050 3.00 1.6087 .000 .3478261 2173913 2930057 1267 .1268
.000 1.00 1.0000 .500 5000000 3333333 .3333333 1466 1468
.000 1.50 1.1429 375 4642857 2857143 3042672 .1466 .1468
.000 2.00 1.2500 250 4375000 .2500000 .2875000 .1466 1468
.000 2.50 1.3333 125 4166667 222222 2798354 .1466 .1468
.000 3.00 1.4000 .000 .4000000 .2000000 .2800000 .1466 .1468
.050 1.00 .8750 .500 .5312500 .3125000 3190104 - 1641
.050 1.50 1.0000 375 .5000000 2666667 .2909091 .1639 1641
.050 2.00 1.0930 .250 4767442 2325581 2747431 .1639 1641
050 2.50 1.1649 125 4587629 2061856 2673536 .1639 .1641
.050 3.00 1.2222 .000 4444445 1851852 .2674897 .1639 1641
.100 1.00 7647 .500 .5588235 2941177 3056517 . 1791
.100 1.50 8750 375 .5312500 .2500000 2784091 - 1791
.100 2.00 9565 250 .5108696 2173913 2627599 - 1791
.100 2.50 1.0192 125 4951923 1923077 2555884 .1788 1791
.100 3.00 1.0690 .000 4827587 1724138 .2556480 .1788 1791
125 1.00 7143 .500 5714285 .2857143 .2993197 - 1858
125 1.50 8182 375 5454545 2424242 2724768 - L1858
125 2.00 .8947 .250 5263158 .2105263 2570637 - L1858
125 2.50 9535 125 5116279 1860465 .2499850 - 1858
125 3.00 1.0000 .000 .5000000 .1666667 .2500000 1856 1858

\, was obtained by the FEIM scheme and A, by the analytical approach.
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Table 3.9 Stress singularity distribution
(»,=0.30 and »,=0.35)

Singular Power (A)
a ()
E/E,=2 E/E;=10 E,/E,=30 E,/E,=70 E/E,=o
11.25 .087 309 .389 417 *
22.50 .109 .289 333 344 -
33.75 .086 213 231 . 425
45.00 .034 .094 * .258 428
56.25 .000 .047 254 341 418
67.50 .000 .169 304 354 396
78.75 .003 .220 309 .340 .365
90.00 .049 227 .286 .306 320
101.25 .070 .200 .238 .250 .257
112.50 .063 139 159 165 .169
123.75 .027 .035 .037 .038 .045
126.00 0 0 0 0 .004
135.00 0 0 0 0 0
146.25 0 0 0 0 0
157.50 0 0 0 0 0
168.75 0 0 0 0 0

* Convergence was nol observed.

The fan-shaped mesh configuration used in this study for the FEIM processes is
depicted in Fig. 3.46. It is comprised of 320 six-node triangular and eight-node
quadrilateral plane strain isoparametric elements and 1001 nodes. No
singularity-embedded element was used because the singular power was not known a
priori. For all analyses, only one physical mesh (Fig. 3.46) was generated and used
because any specific skewed interface could be obtained by assigning the mechanical
properties of the two materials to the corresponding elements through selecting the
appropriate ray, emanating from the bimaterial wedge corner, as the dividing line, which

subsequently became the interface desired. For a different skewed interface angle, one
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only needed to use the ray at this angle as the separating line, and to assign the elements’

properties with the same procedure.

Table 3.10 Stress singularity distribution

(E,/E,=30 and »,=0.30)

Singular Power (A\)
a ()
¥=.275 ¥,=.30 ¥,=.35 »,=.40

11.25 394 393 389 385
22.50 340 338 333 327
33.75 .236 .235 231 223
45.00 - * * *
56.25 .185 216 254 .280
67.50 .259 275 304 328
78.75 265 280 309 335
90.00 .240 256 .286 314
101.25 187 204 238 270
112.50 102 121 159 .196
123.75 0 0 .037 .081
126.00 0 0 0 0
135.00 0 0 0 0
146.25 0 0 0 0
157.50 0 0 0 0
168.75 0 0 0 0

* Convergence was not observed.

The stress singularities were evaluated through consideration of u, displacements

using a linearized least square fitting method. The convergence was assumed when the

relative error between the singular powers of two consecutive iterations was less than

0.1% [equation (3.99)]. When the Poisson’s ratios of Material 1 (v1) and Material 2 (v,)

were held at 0.30 and 0.35 respectively, the stress singularities are listed in Table 3.9

for various skewed interface angles and different ratios of Young’s moduli (E,/E)).
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Similarly, with E,/E, being kept at 30 and », being fixed at 0.30, the values of the
singular powers are presented in Table 3.10, where the skewed interface angles and the
Poisson’s ratio of Material 2 (»,) were treated as the changing parameters.

The data listed in both tables were the averaged values of A evaluated along three
different rays emanating from the wedge corner. The rays were defined on both free
surfaces AC and AD, and along ray AB at an angle 45° (Fig. 3.45). It was not necessary
to redefine these rays for different skewed interface angles since it is well known that,
from analytical and numerical [46,118] analyses, the stress singularities are the same in
both materials at the wedge corner. The value of A in the two tables was rounded off to
three digits after the decimal point. The average number of iterations for convergence
under mixed loadings was obtained after six to seven iterations. However, convergence
could not be observed for certain skewed angles when the ratio of Young’s moduli
(E,/E,) was greater or equal to about 30 (Table 3.9).

The relationship between the stress singularities and the ratios of Young’s moduli
is depicted in Fig. 3.47 for the whole range of skewed interface angles and with the
Poisson’s ratios of Material 1 (»,) and Material 2 (»,) being held at 0.3 and 0.35
correspondingly. Further, the effects of Poisson’s ratio of Material 2 (,) on the stress
intensities, at different skewed angles, is shown in Fig. 3.48, when E,/E, was equal to
30, and », was kept at 0.3. The shaded areas in Figs. 3.47 and 3.48 represented the
places where convergence for real solutions could not be achieved. A typical
non-convergent iteration procedure is presented in Fig. 3.57, where it is evident that the

solution became worse as the number of iterations increased.
3.2.3.4. An Orthotropic Orthogonal Elastic Bimaterial Wedge

In composite applications, materials are anisotropic per se. Therefore, the
understanding of  mechanical behavior of anisotropic bimaterial wedges is of

significance. In this section, efforts will be concentrated on the asymptotic fields of an
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orthogonal bimaterial wedge comprised of isotropic and orthotropic materials.
For convenience in describing the orthotropic material properties, a new

parameter, orthotropic ratio, is denoted as w and defined as

w=—1 (3.100)

Table 3.11 Singular power dependence on orthotropic ratio
(E®,,=E®,,=3000 MPa, »®,,=0.35 and »®,,=0.25)

Singular Power A
0@
E®,,=5.0e2 'y =1.5¢3 E®,=3.0e3 E®,=5.0e3 E?®,=1.0e4 E®,=2.0e4
0.07 2831 1774 .08696 02546 .002147 .07106
0.10 2258 1349 .05541 .006364 .002655 .07260
0.20 1722 .07833 .01162 -.01009 .02706 1074
0.40 .1434 .04256 -.006223 -.0002065 .06346 .1462
0.60 .1332 .02873 -.007425 .01265 .08590 1671
1.00 1250 .01680 -.002369 .03252 1132 .1904
1.50 1209 .01053 .005137 .04955 1332 .2026
2.00 1186 .007230 .01167 .06174 .1463 .2161
3.00 (.1158) (.003969) (.02193) (.07854) (.1631) (.2284)
5.00 (.1120) (.001113) (.03570) (.09848) (.1815) (.2411)
7.50 (.1080) (-.0005245) (.04672) (.1130) (.1940) (.2494)
10.0 (.1046) (-.001492) (.05440) (.1225) (.2018) (.2545)
14.0 (.09976) (-.002507) (.06309) (-1329) (.2100) (:2597)
.): Materials used were physically impossible.

The model employed here is similar in shape to that in Fig. 3.45, with a fixed
value of «=90° to make the wedge orthogonal. The FEM mesh is also similar to Fig.
3.46. Material 1 is assumed to be isotropic with Young’s modulus 3000 MPa and

Poisson’s ratio 0.35 to simulate an adhesive. Material 2 has an orthotropic characteristic
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with a fixed Poisson’s ratio »®,,® of 0.35 and varying Young’s modulus. This model
should be able to reveal the asymptotic field of an adhesive joint made of orthotropic
materials. The effects of orthotropic ratio of Material 2 on the eigenvalues are depicted
in Table 3.11. To show the changing trend visually, Fig. 3.49 illustrates part of the data
in Table 3.11. In addition, the dependence of singular powers on Poisson’s ratio of

Material 2 is represented jointly by Table 3.12 and Fig. 3.50.

Table 3.12 Singular power dependence on Poisson’s ratio
(Eu}n =E(‘}22=3000 MPa and V(l)]2=0.35)

Singular Power A
yo, E?, =1e4 E®, =2e4 E®,,=4e3 E®, =5¢e4 E®, =1e4 E®, =1.4¢5 E®  =le4
E?,=1e4 E®,=4e3 E®,,=2e4 E?,=1e4 E®,,=5e4 E?, =1led E®,,=1.4e5
w?=1 w?=5 wP=12 wP=35 W= w?=14 w?=1/14
.00001 1246 1017 1017 1991 1191 2297 .2297
0.05 1220 .09583 .1010 .1955 .1988 (.2258) .2302
0.10 1196 .08978 1012 .1920 .1993 (.2219) 2324
0.15 1174 (.08349) .1023 (.1885) .2006 (:2179) .2367
0.20 1153 (.07680) .1043 (.1850) .2028 (.2140) 2442
0.25 132 (.06978) 1074 (.1815) .2061 (.2100) .2603
0.30 1110 (.06210) 1117 (.1779) .2109 * *
0.35 1087 (.05363) 1182 (.1744) 2177 * *
0.37 - (.04997) 1218 (.1730) 2214 * *
0.40 .1062 * * * b N *
0.45 .1033 * * * * * *
.49999 09973 * * * * * *

- Not calculated; *: Convergence was not reached; (.): Materials used were physically impossible.

° The superscript (2) denotes Material 2, and the subscript 12 indicates orientation of the
parameters and corresponds to xy in a Cartesian system. This notation will be employed through
this presentation unless specified otherwise.
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It should be pointed out that, in a generalized two-dimensional situation, the
mechanical properties for orthotropic materials have to meet a special condition [3,5]:

E E

2V21

(3.101)

uvn~

Therefore, whenever three of the four parameters in equation (3.101) are fixed, the
fourth is defined by this relation.

By substituting equation (3.100) into (3.101), the following can be obtained:

v,y =0V, (3.102)

Taking column 2 in Table 3.12 as an example, w=35, physically »;, cannot exceed 0.1
because the maximum value »,, being able to hold is 0.5. However, numerically or
artificially, »,, can have a higher value than 0.1. From the point of pure academic
interest, values of »,, greater than 0.1 were considered, but the resultant data were
parenthesized in Tables 3.11 and 3.12 to distinguish them from those whose material

properties had physical backgrounds.

3.2.3.5. Singular Zone Evaluation

In Section 3.2.2.5, the singular stress zone was investigated using the FEM.
However, it was stated in Section 3.2.2.3 that the evaluation of the singular power and
the stress intensity factor for very small thicknesses of the adhesive layer was fairly
inaccurate when the conventional FEM was used. Therefore, as an alternative approach,
the singular stress zone was semi-quantitatively evaluated in this section by applying the
FEIM.

The specimen geometry was kept the same as shown in Fig. 3.35 with t=0.25
mm. The singular stress zones were assumed to be quarter circles in both materials and

are represented by their radii ry and 1y, as shown in Fig. 3.51. The procedure
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employed to evaluate the radii of the singular zones was as follows:

(1) Conduct a whole structural finite element analysis.

(2) Design an FEIM mesh similar to the one shown in Fig. 2.14 with R_,=0.1
mm and R, =0.01 mm using six-node isoparametric triangular and eight-node
isoparametric quadrilateral elements with an assumption of plane strain
deformation.

(3) Begin the FEIM routine (see Section 3.2.3.1).

(4) If the convergence criterion, defined in equation (3.99), is satisfied, it can be

assumed that the singular stress zone is reached.

The dependence of the singular stress zone on the ratio of Young’s moduli is
shown in Fig. 3.52 for the case »;=0.3 and »,=0.35. The singular stress zone size as

a function of the Poisson’s ratios of the two materials is presented in Fig. 3.53.

3.2.3.6. FEIM Convergence Rate Dependence on Material Properties

In this study, the criterion of convergence required that x in equation (3.99) be
less than or equal to 0.001%. This ensures a match to the fourth significant digit of two
successive iterative solutions. Fig. 3.54 shows a relationship between the value of the
singular power and the corresponding numbers of iteration for this case. Clearly,
preliminary iterations produced significantly different values of A along the three different
rays presented in Fig. 3.54. However, as the procedure continued, the value of A\ along
all directions converged to the fourth significant digit. In order that the effects of material
properties on the convergence rate could be observed, two more studies, convergence

rate dependence on the Young’s modulus ratio and the values of Poisson’s ratio, were

" unless specified otherwise.



104

conducted. The results are presented in Figs. 3.55 and 3.56.

In special circumstances, convergence may not be attained with the present
scheme. The reason is speculated to be either that the eigenvalue is too small for the
employed numerical method or that it is complex. For the latter case, a special evaluation
scheme must be employed [84]. A typical non-convergence procedure is shown in Fig.
3.57, which came from the skewed interface bimaterial wedge studies in section 3.2.3.3.

The eigenvalue was believed to be complex in this particular situation [119,120].

3.2.4. Experimental Analysis

Theoretical prediction from analytical and numerical analysis suggests that crack
initiation point should be located at the interface wedge corners or sharp notch tips
because stresses are mathematically singular at these points. Mechanical tests (Section
3.1.3) have provided such an observation from a more or less macro-scale standing point.
Investigations from a micro-scale point of view should be carried out to reveal more
details of the crack initiation and propagation driving forces. Under such a motivation,
examinations of the fracture surfaces of broken specimen from the Iosipescu tests were

performed with an optical microscope and scanning electronic microscope (SEM).

3.2.4.1. Procedure

After the mechanical tests were completed, the two parts of each broken specimen
were paired and photographed under an optical microscope to identify the failure path.
Then, the broken surfaces were coated with Au-Pt by way of spray coating equipment
to ensure conductivity of the fractured adhesive surfaces. The prepared specimens were
thereafter examined using a Zeiss DSM 960 digital scanning electronic microscope
(SEM). Areas of interest on the fractured surfaces were photographed for future
analyses.
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3.2.4.2. Observations

Generally, fracture paths for rigid adhesive joints varied from zig-zag routines to
a peel-off pattern (separation along the adhesive-adherend interface). The zig-zag paths
occurred more often than peel-off. Typical zig-zag failure patterns are shown in Figs.
3.58-3.60 for geometry Type A, B and C respectively. A typical peel-off fracture
specimen is depicted in Fig. 3.61. All of these failures were initiated at the vicinity of
singular stress points, viz., interface wedge corners (all joint types) or sharp notch tips
(Type B only).

For Type A adhesive joint Iosipescu specimens made of flexible adhesive, only
the peel-off pattern was observed.

When a crack started from an interface wedge corner, there were two possibilities
for the propagation route, namely, through the adhesive layer (zig-zag) or straight along
the interface (peel-off). For the first case, after a crack emerged at one notch root, it
began to advance along the interface for some distance, then deviated into the adhesive
layer, propagated to the other interface, and finally went along this interface all the way
to the other notch root to separate the two adherends (Figs. 3.59-3.60). In the second
case, the crack started, developed, and failed only at one interface (Fig. 3.61).

If a crack initiated at the notch tip, which was only possible for Type B joint

specimen, the separation process would always be as following:

starting at a notch tip — propagating to one interface with a inclined angle with
respect to the notch root axis -» advancing to the interface wedge corner on the

other notch root - having totally damaged this joint.

The fracture route was a zig-zag path. No fracture path encompassed only within the

adhesive layer has ever been observed.

A typical zig-zag cracked joint was examined using the SEM. The two portions
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are shown in Fig. 3.62. It seemed that the crack started at the left-top corner of the left
part in Fig. 3.62 (or the right-top corner of the right portion). It went into the specimen
along the interface for a small distance, then changed the crack route into the adhesive
layer till reached the other interface, and finally advanced all the way along the latter
interface to fail. The right portion was extensively examined. All photos are presented
in Figs. 3.63a--f, where the crack initiation, propagation, step-wise surface profiles,
secondary cracks, and delamination surfaces were depicted. The left part of Fig. 3.62
was also inspected and is illustrated in Figs. 3.64a and b to aid the understanding of the
formation of the fractured surfaces.

The peel-off fractured surfaces for rigid adhesive joints can be readily seen from
Figs. 3.62-3.64. A typical peel-off surface for a flexible adhesive joint is shown in Fig.
3.65.

3.3. Plastic Zone Evaluation

An elastic-perfectly plastic model, shown in Fig. 3.66, was used for the analysis,
and small displacement theory was employed. The loading condition was a prescribed
displacement field, and the dimensions of the model were the same as in the elastic case,
Fig. 3.35. However, in order to have a bigger plastic zone for easier visualization and
better accuracy, the adhesive layer was assumed to be 50 mm thick and in a plane strain

condition for the FEM analysis.
3.3.1. First Analytical Approach

In a polar coordinate system, it is known that the equivalent stress at a point of
radius r and angle § may be calculated using equation (3.91). For a fixed angle 6, the
relationship between the stress and radius r is graphically represented in Fig. 3.67a. By

denoting the yield strength of the adhesive oy, the boundary between the elastic and
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plastic zone can be found by comparing the equivalent stress o, and yield strength o,,
where the equivalent stress is defined in equation (3.89). If it is assumed that the plastic
zone radius ty is the point where o, equals o, (see Fig. 3.67a), rp can be obtained from

the following relationship:

0,=0,=Q,r;" (3.103)
that is,
0.1
rp=8=(=5) A (3.104)
a)’

3.3.2. Second Analytical Approach

It is evident that the plastic zone size in Fig. 3.67a, estimated using equation
(3.104), is conservative when it is noted that the area above o, (Fig. 3.67a) was
neglected. Therefore, an improved interface plastic zone geometry evaluation, similar to
that for cracks by Irwin [44], was derived as follows. First, the stress-distance curve in
Fig. 3.67a was translated to the right direction by a distance of 5 (Fig. 3.67b), that is,
the plastic zone radius (rp) increment was also equal to . In order to satisfy the force
balance requirement, the two shadowed areas in Fig. 3.67b should be equal to each

other. The following equation was therefore obtained:

[
n0y=f(Q¢r"*—0’)dr (3.105)
0

with which n can be obtained, and thus the total rp is



108

r,=8+1 =L(%)% (3.106)
E 1-A ¢

By use of equations (3.104) and (3.106), and the linear elastic analysis data in
Table 3.1, the theoretical plastic zones at the interface corner were computed and plotted

in Fig. 3.68 in a loading condition resulting in a nominal strain &,=0.0003.
3.3.3. Numerical Scheme

Numerically, the plastic zone at the interface corner can be computed by the
FEM. With a plot of the equivalent stress contours of a bimaterial wedge from the FEM
results, the plastic zone at the wedge corner can easily be represented. This technique
was used in the present study. The numerical results under the loading condition of
£,=0.0003 are shown in Fig. 3.68.

Let rpy,, be the maximum radius of the plastic zone and 0,,,, be the angle between
the interface and rp,,,. The variations of 6,,,, with g, and rp,,, with &, were plotted in
Fig. 3.69 and Fig. 3.70 respectively, where the analytical data was obtained from
equation (3.106) and the numerical data from the FEM calculations.

3.3.4. Interactions of Plastic and Singular Zones

Whenever non-linear materials exhibiting elasto-plastic behavior are introduced
at a bimaterial wedge, the material at the wedge corner will yield, that is, a plastic zone
will emerge. Theoretically, at this stage, no singular stress zone exists at all around this
corner as the stresses are bounded. However, a singular stress zone can be extensively
defined at the wedge corner as an area inside which all stresses obey relation (3.94).

Therefore, by computing the singular power A distribution along a ray from the
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numerical data, it is possible to determine whether there exists a singular stress zone and
how big it is. Fig. 3.71 shows the singular power distribution along the ray §=36° for
elastic and plastic cases at €,=0.00025. In addition, the entire area has been divided into
four zones (Fig. 3.71) according to the value of A. Fig. 3.72 shows the A distributions
along the ray 6=36° for different loads, and Fig. 3.73 shows the distribution along
different rays at ¢,=0.0003. Further, the relationship between r, and r, along the ray
0=36° is shown in Fig. 3.74.
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Normal stress distributions for Type A specimen under various loading
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a) t=0.1 mm
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¢) t=0.5 mm

Fig. 3.21 Equivalent stress contours for Type A specimen with different adhesive
layer thicknesses under tension-compression loading condition (¢=-30°).
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a) specimen overview

b) notch root geometry

Fig. 3.22 Adhesive joint Iosipescu specimen (Type A, t=1.0 mm).
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a) specimen overview

b) notch root geometry

Fig. 3.23 Adhesive joint Iosipescu specimen (Type B, t=1.0 mm).
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a) specimen overview

b) notch root geometry

Fig. 3.24 Adhesive joint Iosipescu specimen (Type C, t=1.0 mm).
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Fig. 3.25 Bonding assembly for making adhesive joint Iosipescu specimen.
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Fig. 3.26 Typical load-displacement diagrams (vertical: force load; horizontal: displacement).
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Fig. 3.31 A rectangle with a skewed interface.
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Fig. 3.32 FEM representation of figure 3.31.
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Fig. 3.33 Deformed structure superimposed on its original outline (dashed line).
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Fig. 3.34 Equivalent stress contour.
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Fig. 3.39 Finite element representation of a butt

joint made of elastic adhesive and
rigid adherends (resembling an elastic

layer bonded to a rigid substrate).
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Fig. 3.40 Stress singular zone geometry at bimaterial wedge corners of figure 3.39.
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Fig. 3.45 Schematic of a bimaterial wedge with a skewed interface-.
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Fig. 3.51 Schematic drawing of singular stress zones
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Fig. 3.58 Zig-zag crack path (rigid adhesive, t=1.0 mm, ¢=15°).

Fig. 3.59 Zig-zag crack path (rigid adhesive, t=1.0 mm, ¢=-30°).
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Fig. 3.60 Zig-zag crack path (rigid adhesive, t=1.0 mm, ¢=-30°).

Fig. 3.61 Peel-off crack path (rigid adhesive, t=1.0 mm, ¢=30°).
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Fig. 3.62 Fracture surface profile (rigid adhesive, t=0.2 mm, ¢=15°).
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b) adhesion between adhesive (glossy surface) and adherend (scratched surface)

Fig. 3.63 Fracture surface profile (rigid adhesive, t=0.2 mm, ¢=15°).



172

OGI—-NMSE

d) secondary cracks

“Fig. 3.63 (continued).
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Fig. 3.63 (continued).
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Fig. 3.64 Fracture surface profile (rigid adhesive, t=0.2 mm, ¢=15°).
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Fig. 3.65 Fracture surface profile (flexible adhesive, t=0.2 mm, ¢=-15°,
right: Aluminum surface; left: Adhesive surface).
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CHAPTER 4
DISCUSSIONS

4.1. Macro-Stress Distributions Inside Adhesive Layers

4.1.1. Selection of Calculation Method

As described in the fore sections of Chapter 3, three methods have been employed
to calculate the stress distributions inside adhesive layers of various joints. Generally
speaking, closed form solutions are simple, neat and elegant, but cannot capture the
features of asymptotic fields. In contrast, numerical methods tend to require more work,
to necessitate special facility, to generate many data to process, and to need
knowledgeable numerical engineers. In return, numerical work can reveal every detail
of the stress distribution as long as the discretization is adequately fine. Concerning the
three methods used in this dissertation, comparisons and guidelines can be made as
below.

Equations (3.19) and (3.20) from shear lag analysis should be valid for link-joint
structures from which they were obtained. Unfortunately, the strength of adhesive joints
in link-joint structures is generally not a problem. These two equations are indeed useful
to predict transverse tensile and shear stresses for butt joints, but they cannot be used to
compute the peel stress (o, in Fig. 3.4), which is the dominating stress component in this
type of joint. However, the formulae are very useful in fiber pull-out analysis in
composites since the linking interface between matrix and fibers is actually the load
transfer media. In addition, it suffices to point out that Hart-Smith [38,39] used shear lag
principle in conjunction with the plate theory to obtain his closed form solutions for

single- and double-lap joints. Because the bending effects have been considered, the
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formulae obtained are valid for these situations [57].

Considering the characteristic of adhesive joint Iosipescu specimen, equation
(3.55) is applicable for these geometrically special adhesive joints, though it seems that
the problem is over-simplified. It is clearly seen from Figs. 3.9-3.11 that the closed-form
solutions [equation (3.55)] and the FEM results have an excellent agreement, except for
the interface corners where asymptotic fields exist.

Numerical methods, as aforementioned, are the most accurate scheme available
to analyze stress distributions in the adhesive layer of different type of adhesive joints.
This is because numerical methods do not have to use many assumptions to over-simplify
the configuration of the original problem, and they can meet the real boundary conditions
to a fairly, if not perfectly, accurate extent. Consequently, many figures plotted from the
FEM solutions have been presented in this study to reveal the macro-scale stress behavior

of adhesive joint Iosipescu specimens.
4.1.2. Pure Shear Loading

Under pure shear loading, the shear stress component is the dominating, or most
interesting, stress for an adhesive joint specimen. Its distribution along the adhesive layer
center line and the adherend-adhesive interface can be inspected from Figs. 3.9a, 3.9b,
3.15a and 3.15b. With external force load P of 10 N, the shear stress distribution
calculated from finite element analysis (Section 3.1.3) approaches -1 MPa (Figs. 3.9a and
3.15a), which was also obtained from closed form solutions of equation (3.55). However,
the shear stresses go to zero at the free surface due to the boundary conditions. Figures
3.9b and 3.15b also show that shear stress is quite uniform along the adherend-adhesive
interface except that it deviates from the theoretical value (-1 MPa) when the interface
wedge corners are approached because of the singular stress behavior at the interface
corners (excluding Type B geometry).

Tensile stresses in the x- (o) and y-direction (o,) inside the adhesive layers are
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shown in Figs. 3.10, 3.11, 3.16 and 3.17. As postulated from theoretical analysis
(Section 3.1.2), they are almost zero under pure shear loading condition (¢ =0), except
at the vicinity of the interface corners because of the singularity stated in the previous
paragraph.

By viewing Figs. 3.9-3.11 and 3.15-3.17, it is clear that all of the stress
components inside the adhesive layers are quite uniformly distributed under pure shear
loading cases. However, with stresses at the interface corners showing their asymptotic
behavior (except Type B, more discussion later), it is difficult to obtain, from a

mathematical point of view, a uniform stress distribution in adhesive joints.
4.1.3. Biaxial In-Plane Loading

Effects of different loading angles on the stress distributions are illustrated by
Figs. 3.12-3.14. From these figures, it is evident that the larger the absolute value of the
loading angle, the lower the absolute shear stress (Figs 3.12a and b) but the higher the
absolute tensile stresses (Figs. 3.13-3.14). The stress concentrations at wedge corners
show the same trend. The shear stress is almost the same inside the adhesive layer
irrespective of the sign of the loading angle ¢; however, the tensile stresses are opposite,
with reverse signs at the same loading angles. This can be best interpreted using
equations (3.55), (3.59) and (3.60), where it is shown that shear stress is an even
function of loading angle ¢, while tensile stress is an odd function of this angle.

Experimental results on loading angle effects can be viewed in Figs. 3.27-3.30.
At the adhesive layer thickness t=1.0 mm, the failure load is higher at ¢ =15° than that
under other angles for Type A and B specimens. This observation has also been observed
for composite Iosipescu specimens [91], but for type C specimens, the first kink load
increases slightly as loading angle ¢ increases while the rupture loads is lowest at ¢ =0°.
When t=0.2 mm, both the first kink and final failure loads increase with larger ¢ (Figs.
3.29 and 3.30) for both flexible and rigid adhesive joints (Type A). At a positive ¢
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value, the failure load increase may be due to the fact that the loading mode is
compression plus shear, of which the compressive component is beneficial. However, the
lack of such an effect for Type C joint requires further investigation to clarify.

A typical case of stress distribution inside the adhesive layer of an adhesive joint
Iosipescu specimen under mixed mode loading (¢ =-30°) is presented in Figs. 3.18, 3.19
and 3.20. The theoretical stresses along the notch root axis in this case are: 7,,=-0.866,
0,=0.500 and 0,=0.000 MPa [from equation (3.55)]. Generally speaking, the numerical
results coincide well with the closed form solutions inside the adhesive layer, but at
interface corners noticeable stress concentrations are observed for Type A specimen. This
stress concentration is responsible for crack initiation at these corners. In particular, point
B is more likely to be the initial failure spot because stresses are the highest at this point
(Figs. 3.18b, 3.19b and 3.20b). Experimental observation has confirmed this prediction
(Sections 3.1.4.2 and 3.2.4.2, see Figs. 3.58--3.60).

Equivalent stress [by von Mises definition, equation (3.89)] contours of adhesive
joint Iosipescu specimens under mixed mode loading condition of ¢=30° (shear and
compression, Fig. 3.21) show that stress distributions within the adhesive layers are
fairly uniform, even if the thicknesses of the adhesive layers are different; however,

interface corner B still possesses the maximum value.

4.1.4. Degree of Biaxial Stress Mode Mixing

In the previous section, it was shown that stress distributions inside adhesive
layers are intrinsically mode mixed under biaxial loading conditions. In order for the
degree of mode mixing of a biaxial stress distribution to be quantitatively evaluated, a

measure £ is proposed for generalized plane stress cases:
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min (|a,], |0,])

§=sign(c,0,) o llc 1o (4.1)
where

sign(x) =[] {5%0) (4.2)

mntsn {5 ) 8.2

max (x, ) ={ ¥ () (4.4)

and o, (i=1,2) are the principal stresses in a two-dimensional case (The third dimension
is not considered here).

By this definition, it is clear that the value of £ is within the interval [-1,1]. When
£=1, it means that o, equals o,, that is, a static water pressure in a two-dimensional
sense. With £=-1, ¢, and o, have the same value but opposite signs, that is, a pure shear
loading situation (equally tensile and compressive biaxial stress state). If £ =0, this is a
uniaxial tensile or compressive loading; in other words, no biaxial stress exists.

Using the proposed measure of degree of mode mixing of biaxial stresses, one can
easily determine the uniformity of any stress distributions. For instance, using Figs. 3.12-
3.14, a plot of the degree of mode mixing of the stresses inside the adhesive layer of a
Type A adhesive joint Iosipescu specimen is shown in Fig. 4.1 in the case of t=1.0 mm
under various loading angles.

From Fig. 4.1a, it can be seen that, under pure shear loading, the numerical value

of £ is close to the theoretical result (-1) along the adhesive center line OH. For the other
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cases, the degree of mode mixing does not change if the loading angles have the same
absolute values (Fig. 4.1a). { is close to zero along the free surface because of the
boundary condition and varies much near the interface corners (Fig. 4.1b), where stress
states are complicated. Even under pure shear loading case (¢=0), ¢ deviates drastically
from the theoretical value -1 in the vicinity of the interface corner. Moreover, £ is
around -0.17 at both interface corners A and B irrespective of the loading mode (angle).
This may imply that the stress state at a bimaterial wedge corner is mixed mode per se
no matter what the loading mode is. Also, o, is about 0.17 times of o, at the wedge
corner, or vice versa and of opposite sign, which suggests that the stress state is of
tension-compression.

Based on these observations, it is evident that £ in equation (4.1) is a good
parameter for measuring the degree of biaxial stress mode mixing, since it is capable of

reflecting the characteristic of the mixed mode stress fields.

4.1.5. Notch Root Geometry

Stress distribution dependence on notch root geometries is depicted numerically
in Figs. 3.9-3.11 and experimentally in Fig. 3.27. For notch root types A and C (see
Fig. 2.11b), the only effect along the notch root axis (x=0) that can be seen is that all
stress components decrease to zero as the free surface is approached because there is no
geometric or physical discontinuity at these points. However, the same argument is not
true for the geometry of Type B, where both tensile stresses (o, in Fig. 3.10a and o, in
Fig. 3.11a) are singular at the notch tip which is assumed to be mathematically perfectly
sharp (Fig. 3.8b). The shear stress (Fig. 3.9a) at the tip does not exhibit any strong trend
of asymptotic behavior. The observation may be explained by Sukumar and Kumosa’s
work on sharp notch tips [72,74,108]. They have found that, under pure in-plane shear
loading condition, the notch root tip singularity disappears if the re-entrant angle of an

isotropic notch is greater or equal to 103°. The re-entrant angle for Type B notch is 105°.
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The tensile stresses still show some singular behavior, which may be caused by the
numerical round-off or truncation errors during the process of computations. These
errors, of course, may change a pure mode II loading to a mixed mode loading
condition.

The findings are totally different along the interfaces. From Figs. 3.9b, it can be
seen that shear stress (7,,) for specimens A and B displays a “negative" singular
behavior, but shear stress in the notch root of Specimen C demonstrates a "positive"
singularity. In Figs. 3.10b and 3.11b, tensile stresses (o, and o,) in the vicinities of the
notch roots of geometry Type A and C increase as the wedge corner is approached. They
show only limited stress concentration at the interface corner from the viewpoint of the
entire interface. In-depth discussions will be addressed in the section of non- and weak-
singular bimaterial wedge (Section 4.2.5).

Preliminary experimental results in Figs. 3.27 and 3.28 may demonstrate that
notch root geometries do not play an important role in either the first kink load or
rupture load, although it seems that Type C is slightly inferior compared with Type A
or B. Because the adhesive layer is fairly thick (1 mm), it may contain small defects such
as bulbs and micro-cracks. Also, since notch root geometries cannot be made well
enough to represent the mathematical roles, more work is necessary before a correct

conclusion can be drawn.

4.1.6. Adhesive Type

From the analytical results in equation (3.55), it can be concluded that adhesive
type has no influence on the stress distributions inside the adhesive layer, since no
material property appears in this equation. Nevertheless, the adhesives used for joints
will certainly have an impact on the stress distributions and mechanical behavior. This
can be postulated from the asymptotic analysis at bimaterial interface wedge corners
(Section 3.2). Equation (3.55) does not consider the mechanical property effects of the
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adhesives used because it does not take into account the singular behavior at the interface
corners in the analytically deducing process.

From the limited experimental data in Figs. 3.29-3.30, no obvious effects of
adhesive types on the joint strength could be inspected. This is rather unusual since the
two adhesives used had different mechanical properties, in particular, failure strengths.
For the real effects of adhesive types on the joint strengths to be identified, more testings
by varying the adhesive types and the adhesive layer thicknesses should be conducted.

4.1.7. Adhesive Layer Thickness

Numerically, shear stresses inside the adhesive layer of a Type A adhesive joint
Tosipescu specimen do not change significantly with the adhesive thicknesses under pure
shear loading (Fig. 3.15a and b). However, the thinner the adhesive layer, the higher the
absolute values of the tensile stresses in the vicinity of the notch root but the lower those
values at the adhesive center (Figs. 3.16a and 3.17a). Along the interface, the thickness
of the adhesive layer does not show any significant effect on the stress distributions.
From these figures (Figs. 3.15-3.17), it is evident that, under pure shear loading mode,
adhesive thickness is not a dominant factor in terms of the stress distributions inside the
adhesive layer of Type A adhesive joint Iosipescu specimen.

Stress distributions, under a typical mixed mode loading situation of loading angle
¢ =30°, are shown in Figs. 3.18-3.20. The observation is similar to that in the pure mode
IT loading condition. Namely, shear stress does not vary much with respect to the
adhesive thicknesses (Figs. 3.18a and b). In contrary, tensile stresses change quite a bit
when the adhesive thickness varies. The thicker the adhesive layer, the less the variation
along the center line OH (Figs. 3.19a and 3.20a); however, little difference is seen along
the adherend-adhesive interface (Figs. 3.19b and 3.20b). This also demonstrates that the
stresses inside the adhesive layer do not change significantly when the adhesive layer

thickness is varied under mixed mode loading conditions for Type A adhesive joint
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Iosipescu specimens. Therefore, from the aforementioned observations in this section,
it may be deduced that the experimental results will not change significantly when the
layer thicknesses are different for Type A adhesive joint Iosipescu specimens.
Adhesive layer thickness effects on the joint strength can be seen from the
experimental data in Figs. 3.27-3.30. Here, it is found that both the first kink and
rupture loads from the t=0.2 mm group are greater than that from the t=1.0 mm set for
Type A specimen made of rigid adhesives. In particular, this effect is more obvious when
the loading angle is larger. From the asymptotic analysis on bimaterial wedge interfaces
(Section 4.2.3), it has been postulated that a joint with a thinner adhesive layer would
have a higher strength than that with a thicker layer because the former would have a
higher stress intensity factor. In reality, the higher stress intensity factor at the wedge
corners may be easily released by the plastic deformation at the corners with adhesive
layer thickness being 1 or 0.2 mm, so that the effect is not as dominant as
mathematically predicted. However, if the adhesive layer is thin enough, it may be

expected to have such an impact as predicted in Section 4.2.3.
4.2. Asymptotic Fields At Bimaterial Interface Corners
4.2.1. Angular Eigenfunction

The normalized angular displacement eigenfunctions along the x- and y-directions
obtained from three methods can be seen in Figs. 3.38a and 3.38b. The normalization
in this case assumes the value of the displacement eigenfunction (u, and u,) to be unity
at a point with §=0° and a particular radius r from the wedge corner. Radius r was
selected to be 1.0 mm for the analytical calculations, and 1.0 or 0.1 mm for the FEM
analysis; for the FEIM computations, it was taken as the maximum distance where
convergence was achieved. The analytical data were obtained via a coordinate transform

of u, and u, in equations (3.72) and (3.73). The FEM modeling in this study assumed
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2t=100 mm in order to create a sufficiently large singular stress zone. The external
displacement loads (u,) were selected such that they were capable of generating a nominal
strain of 0.0001 along the y-direction, while the traction along the x-direction was
assumed to be zero. The FEIM results of eigenfunctions were extracted when the
pre-defined convergence criterion 0.001 % [by equation (3.99)] was satisfied. Clearly, the
normalized displacement eigenfunction solutions from the analytical and FEIM schemes
are in excellent agreement. The FEM results from the r=0.1 mm ring, however, are not
as accurate and are even worse along the r=1.0 mm ring. It seems that the ring localized
very close to the wedge corner (r=0.1 mm) provides more information about the singular
stress field than the other ring (r=1.0 mm). However, when r is too small, the FEM
results are also inaccurate and are therefore unacceptable (Fig. 3.37), as will be discussed
in Section 4.2.2. It may be stated that whereas the FEM approach has certain drawbacks
regarding accuracy, it is capable of generating the absolute value of eigenfunctions with
a reasonable degree of accuracy. On the other hand, the FEIM scheme and the theoretical
analysis can yield only the relative displacement eigenfunctions. The accuracy of the

eigenfunction solutions based on these two methods is excellent.

4.2.2. Singular Power

Initially, focus will be confined to the simplest case: an elastic-rigid bimaterial
wedge corner (Figs. 3.39 and 3.41).

An examination of Table 3.1 reveals that the singular power A does not depend
on Young’s modulus. It does not depend on the specimen thickness (2t) either, as
indicated by the data in Table 3.2 and Table 3.5. When t is 10 or 50 mm, it is obvious
that \ remains constant, but when t is smaller, from the FEM results in Table 3.2, it
seems that the adhesive layer thickness and the loading conditions do influence the
singular power \. As a matter of fact, they do not have any effect on A (see Table 3.6),

because when t is small, the solution at the interface corner is not accurate enough to
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properly model the singular power.

The FEIM results in Tables 3.6 and 3.7 indicate that the singular power A is an
intrinsic characteristic of the interface for a definite material combination. Moreover, it
holds the same value no matter how small the thickness or what the loading conditions
may be. It may also be inferred that the FEIM is a good and practical method for
obtaining stress singular powers in complex conditions. Combining the data in Tables
3.1-3.4, 3.6 and 3.7, it is obvious that N is only a function of Poisson’s ratio for an
elastic-rigid bimaterial wedge with a fixed wedge angle.

The second case being discussed is an orthogonal bimaterial wedge made of two
elastic isotropic materials (Figs 6.35 and 6.36). The FEIM is the only method used to
extract the singular powers because the singular zone in this case is too small to be
accurately captured using the FEM (see Section 4.2.4). Attention will be paid to the
singular power dependence on singular elastic parameters, namely, Young’s modulus
ratio E,/E, and Poisson’s ratios (», and »,) of the two materials forming the wedge. The
resultant data are presented in Figs. 3.42 and 3.43.

Figure 3.42 shows that the ratio of Young’s moduli (E,/E,) has a significant
influence on the value of the singular power when E,/E, approaches unity. For E,/E,
values greater than 1000, the singular power is found to be approximately equal to that
of the rigid-elastic case just discussed. However, it should be noted that the assumption
of a perfectly rigid adherend is generally not valid from an engineering standpoint since
the ratio E,/E, would rarely exceed 1000.

The singular power dependence on Poisson’s ratios of the bonded materials is
presented in Fig. 3.43. Clearly, a varying value of », (while keeping »,=0.35) does not
seem to influence the value of A\; on the other hand, if », is held constant at 0.3, the
singular power steadily increases with increasing values of v,. This observation seems
to suggest that the Poisson’s ratio of the so-called "stiffer" material has a relatively
smaller effect on the singular power, while that of the "softer" material has a

considerably more significant effect on the singular power. Furthermore, comparison of
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Figs. 3.42 and 3.43 shows that the ratio of Young’s moduli has a larger influence on the
singular power than the Poisson’s ratios of the individual materials. This is probably
caused by the fact that the ratio of Young’s moduli E,/E, can undergo considerably large
variations while the Poisson’s ratios are limited in the range of 0.0 to 0.5. Clearly, the
results presented in this case should be taken into account in practical engineering design
problems in order to create more tolerant "fail-safe" adhesive joints.

The factors that influence the eigenvalues at the wedge corners for skewed
bimaterial wedges, the third case, are addressed separately in Section 4.2.5 because of
their complexity and specialty.

In the last case, orthotropic orthogonal bimaterial wedges, more factors exist to
influence the singular power, namely, the ratio of Young’s moduli, the orthotropic ratios
[defined by equation (3.100)] and the Poisson’s ratios, than those for the first three cases.
In order that the goal of this research dealing with adhesive joints could be met, an
orthogonal bimaterial wedge comprised of isotropic (adhesive) and orthotropic (composite
adherend) materials, to simulate a joint bonded two elastic orthotropic composite
adherends by an elastic adhesive, was considered (Section 3.2.3.4). The results are listed
in Tables 3.11 and 3.12 and partly graphed in Figs. 3.49 and 3.50.

When the orthotropic ratio @ is greater than 0.5, from Fig. 3.49, it is found that
the singular power A does not change noticeably irrespective of the "base value" (kept
constant during corresponding computation) of the y-direction Young’s modulus E@,,.
However, the ratio of E,/E®,, has shown an impact on the eigenvalues, viz., the closer
it is to unity, the smaller (approaching zero) the eigenvalue; the farther away from unity,
the higher the eigenvalue. This is similar to the observations in isotropic bimaterial
wedges (Fig. 3.42) where the orthotropic ratio is unity for both materials. When @ is
less than 0.5 and decreases, A goes up if E,, is smaller than 5000 MPa but decreases in
the case of E®, being greater than 5000. Further, it is observed that the ratio of E,/E®,,
has a reverse impact on the eigenvalues compared to those if w® is greater than 0.5. For

the artificial materials in Table 3.11, the dependence of the eigenvalues on these
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parameters has demonstrated the same trend.

Poisson’s ratio ¥®;, does not demonstrate any significant influence on eigenvalue
distributions (Fig. 3.50). Recalling the findings of singular power dependence on
Poisson’s ratios in case 2 of this section (Fig. 3.43) and considering that both E?;, and
E®,, are greater than E,, it is clear that this phenomenon is due to Material 2 having
stiffer than Material 1. Nevertheless, it can be expected that Poisson’s ratio »@;, will

affect A when Material 2 is softer.

4.2.3. Stress Intensity Factor

An accurate description of the singular stress fields in the adhesive butt joint
analyzed in this study (Fig. 3.36) requires an accurate solution of the displacement
eigenfunctions. From the previous analytical analysis, it is evident that the displacement
eigenfunctions can be determined only when the absolute value of the stress intensity
factor Q is known a priori. However, since Q is a function of the singular power A\ and
the external boundary conditions, determination of Q remains impossible without taking
the boundary conditions into account. Therefore, only in very special cases (for instance,
rigid adherend, orthogonal wedge, and simple boundary conditions [8-9]) can Q be
determined analytically. The only other recourse are numerical schemes. Among the
existing numerical approaches, the absolute values of the displacement eigenfunctions can
be determined only by FEM [and making use of equation (3.88)] to arrive at the solution
for Q when the singular stress field is sufficiently large. The FEIM approach, however,
fails in this respect since a method for evaluating the stress intensity factor Q, and
consequently the displacement eigenfunction, is not presently available for the FEIM
schemes. However, all of the aforementioned approaches are capable of producing the
relative eigenfunctions of the displacement fields at the terminus of the interfaces in Fig.

3.39.

In addition, from Table 3.5, it is evident that adhesive layer thickness and loading
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conditions affect stress intensity factors, and the free edge stress intensity factor is

accurately expressed by Reedy’s formula [same as equation (3.92)]:

0,(0) =a*(2t)*Aa(v) (4.5)

Reedy’s free edge stress intensity factor formula characterized the nature of the
singular stress field, with A(») being a function of the loading condition, whose nature
needs to be explored. Moreover, from equation (4.5), it may be speculated that the free
edge stress intensity factor will decrease if the adhesive layer becomes thinner. This may
explain the common experience that "the best strength of an adhesive joint is no
adhesive." However, the fact that experiments conducted so far do not support this effect
(Figs. 3.27-3.30) may be because the adhesive layer at the bimaterial wedge corner is
not perfectly elastic, rather, plastic deformation at the corner takes place to ease this

effect. More experimental work is needed to address this problem correctly.
4.2.4. Singular Zone

It is apparent that when r is very small or fairly large, the data in Fig. 3.37
diverges from the linear relationship. For small values of r, the finite element solutions
are not accurate since the polynomial interpolation functions used in the FEM do not
represent the r* curve adequately. On the other hand, when r is large, it is outside the
singular stress zone; therefore, equation (3.86) is unable to accurately describe the stress
field. Taking these facts into account, it is clear that around the interface corner there
exists a singular stress zone, inside which the stresses can be adequately described by
equation (3.86).

First, let us analyze a simpler case — the rigid-elastic model (Fig. 3.39)
computed in Section 3.2.2.5. As indicated earlier, the singular power is conly a function
of Poisson’s ratio in this situation; thus, the singular zone geometries must also be

affected by ». Figure 3.40a, drawn from the equivalent stress field, shows such an effect.
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If Iome is denoted as the maximum radius of the singular stress zone and 0y, as the
angle between the ry,,, and the interface, it can be seen that as v increases, Oqp.
decreases, as does the singular radius along the interface. ry,,,, however, does not
change appreciably. Figure 3.40b shows the negligible effect of Young’s modulus on the
singular field, as depicted by the numerical data. Also, the eigenvalue does not depend
on the Young’s modulus. Figure 3.40c shows that the singular zone shapes and sizes will
be different if they are extracted from different field parameters, although the wedge
geometry, material mechanical properties, external loadings, and boundary conditions are
the same. It is found that the equivalent stress field results in the biggest singular zone,
while the displacement field along x-direction generates the smallest, and the
displacement field along y-direction yields an intermediate value. Figure 3.40d shows a
similar trend in the t=50 mm case, implying that the singular stress field differs in
different senses. Taking into account the fact that it is necessary to use the equivalent
stress to evaluate the plastic zone, it is suggested that the singular zone obtained from the
equivalent stress field be treated as the generic one in order to make it convenient to
study the interactions between the singular zone and the plastic zone.

For a more complicated case, elastic-elastic bimaterial wedges shown in Figs.
3.35 and 3.36, it is evident from the results shown in Fig. 3.37 that when t is too small,
the linearity of the relationship is lost and therefore the singular power A\ and the radial
stress intensity factor Q;(f) cannot be accurately computed. It appears that the singular
stress zone in this case is too small to be adequately described by conventional FEM, as
used for the rigid-elastic case. Therefore, as an alternative approach, the singular zone
was semi-quantitatively evaluated in Section 3.2.3.5 by applying the FEIM.

The dependence of the singular stress zone on the ratio of Young’s moduli is
shown in Fig. 3.52 for the case of »,=0.3 and »,=0.35. Clearly, irrespective of the
value of E,/E,, the zone in Material 1 is invariably found to be larger than or equal to
that of Material 2. The zone is found to be the smallest when E,/E, approaches unity.

However, for E,/E,>5, the zones in both materials do not show any change. An analysis
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similar to the rigid-elastic (assuming that Material 1 is rigid, i.e., E,/E,~>), shows that
the singular stress zone in Material 2 remains the same for all values of E,/E, greater
than 5 (Fig. 3.52).

The singular stress zone size as a function of Poisson’s ratios of the two materials
is presented in Fig. 3.53. Clearly, for »,=0.35, a variation in the value of », does not
lead to any change in the singular zones. However, when », is held at 0.3 and », is
varied from 0.05 to 0.495, the singular zone size in Material 1 shows an initial increment
to attain a maximum in the region »,=0.30-0.35 and then decreases rapidly; the singular
stress zone in Material 2 on the other hand shows an initial increment and then holds
steady at approximately 0.0001 mm.

Taking into account the above results (Figs. 3.52 and 3.53), it may be stated that
for adhesive butt joints, when the E,/E, ratio is generally greater than 5 and »,, », are
close to 0.3, the singular stress zones do not exhibit any significant change as a result
of variation of elastic properties of the bonded materials (adhesive and adherend).
Moreover, the singular stress zone in the adherend (Material 1 in this case) is always

larger than that of the adhesive.

4.2.5. Non- and Weak-Singular Bimaterial Wedge

The deformed structure of the rectangle with a skewed interface (Fig. 3.33) tends
to bend toward the left under uniform tensile loadings if viewed from the left bottom
corner, where the dashed line is the contour of the original structure. This is because
the upper material (1) is stiffer than the lower one (2), and the slope of the skewed
interface is positive with respect to the Cartesian coordinate system used (Fig. 3.31).
Consequently, the stiffness of the left edge of the structure is higher than that of the right
one. Therefore, it is intuitive by observing that the major deformation will take place in
Material 2, the lower portion, since it is softer. Considering the positive slope of the

skewed interface, it can be anticipated that the effective strain on the left edge of
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Material 2 will be greater than that on the right edge of the same material. That is,
during deformation, more energy is dissipated on the interface corner of the left edge
(Point A) and less energy is consumed in the near field at Point B in Fig. 3.31. This
hypothesis is verified by Fig. 3.34. The highest stress concentration is located in the
bimaterial wedge A and the equivalent stress is the smallest at wedge B, which may
suggest that the stress field at Wedge B should not be singular. This observation
obviously indicates that the initiation point of a failure is most likely to begin from Point
A but least probably from Point B. Therefore, it will be desirable to design a bimaterial
wedge having the mechanical behavior of the area around Point B.

Further investigations (Tables 3.9 and 3.10, and Figs. 3.47 and 3.48) make it
known that a critical interface angle «,, beyond which the asymptotic stress field totally
disappears, universally exists for all material combinations. This angle is about 126°,
provided that the convention in Fig. 3.45 and the condition of ratio E,/E, being greater
than one are met. This is a very important finding because it means that the bimaterial
wedge, with a skewed interface angle greater than the critical angle, will never suffer the
stress singularity problem any more, and therefore, is not prone to initiate interfacial
cracks and should have a higher safe-failure strength. As a matter of fact, this kind of
bimaterial wedge is geometrically similar to and mechanically has the same behavior of
Wedge B in Fig. 3.31. In addition, it is also observed that within the range of
40° < o < 65°, the value of the stress singularity has a regional minimum point (Figs. 3.47
and 3.48). By the general principle that the smaller singular stress power the higher
interfacial strength, this regionally minimum point (in the range of 40° <« < 65°) can be
used as the second choice, for designing bimaterial structures with skewed interfaces, if
the skewed interface angle can not be selected greater than the critical value 126° in
engineering practices. However, the first choice, to choose « being greater than «, is
always preferred.

The ratio of the Young’s moduli (E,/E,) has shown effects not only on the value

of the stress intensities but also on the critical skewed interface angles, although the latter
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is smaller (Table 3.9). From Fig. 3.47, it is noted that the value of A is higher if ratio
E,/E, has a bigger number, and vice versa. This suggests that, from the viewpoint of
minimizing the singular power, closer values of Young’s moduli (E,/E, approaching
unity) between the two materials under consideration are more desirable in real
applications. Further, it may suggest a general rule that the smaller the difference
between the two materials making up a bimaterial wedge, the smaller stress singularity
or the weaker asymptotic stress field at the wedge corner. The Young’s modulus ratio
E,/E, has such an effect on the critical skewed interface angle «, that when the ratio
approaches infinity, the critical angle is about 126°; otherwise, the critical angle is about
125° (Table 3.9). As a universal result, the former value 126° is taken to be the globally -
valid critical angle.

With the relationship between the stress singular power A and the Poisson’s ratio
of Material 2 in Fig. 3.48, it is found that, only within the range of 40° <« < 125° and
under the given conditions, A\ is noticeably altered while », is changed. The singular
power increases as the Poisson’s ratio is increased. When the skewed interface angle is
outside the above range (40°<a<125°), no significant difference between the A’s can
be observed for various values of », under consideration. The Poisson’s ratio of Material
2 (»,) also has an influence on the critical skewed interface angle «, (Table 3.10). When
v, was equal to 0.35 or 0.40, o, arrived at 126° but if », took the value of 0.275 or
0.30, «a, ended up at about 123.75°. However, this does not affect the conclusion that the
universal critical angle is 126° from a conservative standpoint. In addition, by comparing
Figs. 3.47 and 3.48, it is clear that E,/E, has a greater influence on the stress intensities

A than p, does. This phenomenon coincides with what was observed in Section 4.2.2
[49,118].

4.2.6. Convergence of FEIM

Figure 3.54 shows a typical convergence procedure for the bimaterial wedge
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studied in Section 3.2.3.2, from which one can see that the eigenvalues obtained in the
first several iterations may diverge, but they will finally converge to the correct value
as the iteration procedure proceeds .

In addition, it is noticed that not only the value of the singular power but the
convergence rate is also a function of the elastic properties of the bonded materials.
Figure 3.55 shows the total number of iterations required to arrive at a converged value
of \ as a function of the ratio of Young’s moduli (E,/E,) of the materials considered.
Convergence is also found to be slowest when the ratio (E,/E,;) approaches unity. It is
already shown in Fig. 3.52 that the size of the singular stress zone is smallest for
E,/E,—1 thereby leading to a slower convergence rate. Fig. 3.56 presents the dependence
of convergence rate on the Poisson’s ratios of the materials considered. For a constant
value of », (held at 0.35), a varying », does not seem to influence the convergence rate.
However, when v, is fixed at 0.3 and », is increased from 0.05, the convergence rate
shows an initial acceleration until »,=0.2, beyond which it remains constant. Again,
comparison with Fig. 3.53 further reinforces the idea of smaller singular stress zones
requiring a large number of iterations to achieve convergence.

The fact that, under special conditions, convergence could not be arrived at after
many iterations (Fig. 3.57) may imply that the singular powers in these cases are
complex [21]. From the analysis of skewed bimaterial wedges, it is evident in Fig. 3.57
that the oscillation of the singular power A becomes even more severe after the number
of iterations is greater than 18. Therefore, a more sophisticated technique is required to
extract complex stress singularities [84]. In addition, from Tables 3.9 and 3.10, it is
found that as E,/E, becomes smaller, the range with which convergence was not
achieved, decreases until it totally disappears; that is, the convergence will be regained
when ratio E,/E, declines to the value of 10. The Poisson’s ratio of Materials 2 (»,),
however, does not exhibit any effect on the non-convergent region (Table 3.10 or Fig.
3.48). This is an additional evidence, as stated in the previous paragraph, that Poisson’s

ratios have less influence on the asymptotic field in the vicinity of a bimaterial wedge
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than the ratio of Young’s moduli does.

When the solution was real and not close to the non-convergent region, the
number of iterations to reach convergence was found to be six or seven, irrespective of
the skewed interface angle, the ratio of Young’s modulus, and the Poisson’s ratios. This
may suggest that, provided the conditions, the singular stress zone should not be
noticeably influenced by the geometrical and physical properties. However, when the
skewed interface angle was near the range of the non-convergent area, the number of
iterations needed to arrive at convergence was much larger. It may be speculated that the
size of the singular zone of complex stress singularities is much smaller than that of real
asymptotic stress field. Nevertheless, further investigation on complex interfacial stress

singularities is needed to verify this hypothesis.

4.2.7. Application of Composite Parameters

It was concluded in Section 3.2.1 that for a particular geometry of an isotropic
bimaterial wedge, the singular power is only a function of two independent composite
parameters « and B as defined by equations (2.52) and (2.53). This could be further
verified by the results from the finite element iterative analysis shown in Table 3.3,
where »=0.00001 is used to represent »=0 and »=.49999 to represent »=0.5 in order
to conduct the computations. The results demonstrate that any combination of elastic
properties of the two media that yield a common set of composite parameters o« and 8
give rise to the same singular power \. There is one exception, namely, when a=-0.5
and 8=-0.25, the \’s obtained by the FEIM scheme are not constant. This is caused by
the fact that when N\ approaches zero, the numerical errors introduced in the FEIM
analysis are large enough to disturb the accuracy of the singular power calculation. This
observation indicates that when X is too small, even the FEIM scheme fails to yield a
reasonably accurate result. Nevertheless, perturbations in the values of the singular power

become insignificant when A has a non-trivial value.
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A diagram showing the distribution of N for different composite parameters is
shown in Fig. 3.44. It can be seen that the diagram is symmetric about the =0 axis.
This observation can be supported by equations (3.52) and (3.53), where an interchange
of the subscripts leads to a change in the sign of the composite parameters. In addition,
it is found that the singularity tends to vanish when « is zero, i.e., material property
combinations yielding very small value of « give rise to very small values of the singular
power. Therefore, an appropriate selection of bonding materials could prove crucial in
enhancing the fracture strength of the adhesive joint. In contrast, the larger the absolute
value of «, the larger the singular power A. Therefore, an adhesive butt joint yielding
a large o value may not be a good choice.

From the above observations, it may be concluded that the analytical model
described in Section 3.2.1 is valid and the pair of the composite parameters is capable
of describing the elastic mechanical behavior of bimaterial media adequately. This
conclusion has, in fact, more significance from a practical standpoint because it can be
employed in the design of experimental simulations for state-of-the-art materials using
relatively inexpensive materials that could give rise to the same composite parameters.
Moreover, the fact that a smaller value of « gives rise to a weaker singular power A may
be used as a guideline by design engineers to select material combinations that yield a

trivial value of «.
4.3. Plastic Zone at Bimaterial Interface Wedge Corners
4.3.1. Plastic Zone Evaluation Methods
Figure 3.68 demonstrates that the theoretical plastic zone of the second estimation
is much larger than the numerical (real) one. Even the area of the plastic zone from the

first estimation is larger than that of the numerical one. The shape of the theoretical

plastic zone also differs considerably from the numerical one at ,=0.0003. From Fig.
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3.69, it can been seen that when ¢,=0.00007, the numerical 6®,,, almost equals the
theoretical 69,,,.,. However when ¢, becomes bigger, 6®,,... decreases until it reaches 36°
and holds this value. The critical load is about ¢,=0.00015. This observation shows that
as the load increases, the plastic zone develops toward the interface. This may suggest
that the initial failure may take place near the interface since the strain energy of this
area is very high. When 6,,,, equals 36°, the plastic zone (Fig. 3.68) is in a fingertip
shape, as reported in reference [121]. It is also similar to that of the singular zone (Fig.
3.40). Thus, when the load is big enough, the singular zone controls the plastic zone,
which controls the plastic deformation and thus controls the failure path. Although the
shapes of the theoretical and numerical plastic zones differ significantly, the theoretical
maximum plastic zone radius r®,,, matches the numerical one r®,,,, very well before
€, exceeds 0.0007 (as shown in Fig. 3.70). Therefore, r®,,, can be used to represent

r'™pmax When this value is required in the condition of ¢, <0.0007.

4.3.2. Transition Zone

The effects of the plastic zone on the singular zone can be clearly seen in Fig.
3.71, from which it is convenient to distinguish the wedge corner into a singular zone
(I, IT and III) and a normal zone (IV) in the elastic case, while in the elastic-plastic case,
it appears in four regions: the plastic zone (I), A=0; the transition zone (II),
A #constant; the singular zone (III), A=0.2888; and the normal zone (IV), A decreases.

From Fig. 3.72, it is found that the singular zone becomes smaller as ¢, increases
since the plastic zone expands. Also, it can be seen that when the load is large enough
the singular zone does not exist at all. The critical load is ¢,=0.00035, beyond which a
plateau of A=0.2888 cannot be found at all, but the normal zone does not show a notable
influence on A with the load up to ¢,=0.0004. Furthermore, it seems that after the
singular zone disappears, a critical ring of the radius exists with a value of r,=0.97 mm

and a critical angle 6,=36°. The following observation can be made from a fairly large
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area, the transition, singular, and regular zones, around r,,

r<r, 0<6,, \>0.288
r<r, 0>0,, \<0.2888
r>r1,, 6 <6, A< O0.2888
r>r,, 0>0,, \>0.2888

A schematic drawing displaying this trend is presented in Fig. 4.2.

Larger N\ means that stresses change faster (higher |doy/or|) and are more
localized, that is, it is expected that failure will be more likely to occur in the area of
r<r, and 6 <6, which is very close to the interface. Singular power XA is also greater
than 0.2888 in the region of r>r_ and 6> 6., but because the absolute values of stresses
are relatively small, failure is unlikely to occur in this area. The fact that all the cracks
initiated at the vicinity of the interface corners (except at notch tips of Type B specimen)
may be best explained using this hypothesis irrespective of adhesive types.

As 1, increases, r, decreases at first, then stops decreasing until the transition
zone wholly overlaps the singular zone (Fig. 3.74). This is because, when the plastic
zone emerges, the constraint at the wedge corner is released, resulting in a stress
concentration decreasing and hence a smaller singular zone. Although the singular zone
geometry change at this stage is not significant, it may still be very beneficial for plastic
adhesives to bear higher loads because the stress concentration at the wedge corner is
relatively low. However, after the plastic zone expands to a critical value, the singular
zone size does not change at all until it disappears. It may be implied that the constraint
of the wedge corner is holding at a certain level before the singular zone diminishes; that
is, it is possible to use the elastic fracture criteria to predict this type of small yielding
plastic layer failure. For the case of t=50 mm, in Fig. 3.35, the critical maximum plastic
radius is 0.063 mm and the load at this time is ¢,=0.00035, beyond which no singular

zone exists.
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4.4. Failure Pattern of Adhesive Joint Iosipescu Specimen

4.4.1. Crack Initiation

Direct observation during mechanical testing or from the optical photographs
(Figs. 3.58-3.61) indicated that cracks were initiated at the vicinity of the stress singular
points. SEM examinations of the fractured surface further verified this assertion.

From Figs. 3.62 and 3.63, the fractured topography strongly implied that the
crack started from a point on the line of adhesive-adherend interface intersecting the
notch root plateau. Analytical and numerical investigations have already revealed that
stresses along this line are very high. Although the stresses in reality could not possess
infinite values along this line as mathematically suggested, it is certain that stresses at
some points on this line could easily exceed the strength of the joint. Consequently, a
crack was initiated. In the case of Type B specimen, the mechanism is the same when

a crack was induced at a notch tip as a singular stress field existed there as well.

4.4.2. Crack Propagation

At the tip of a newly formed crack, a more severe stress singularity would drive
the crack to propagate [44] if the energy accumulated at the crack tip was greater than
that needed to generate new crack surfaces. The crack propagation process would
temporarily stop when the strain energy at the tip became smaller than the critical energy
release rate. This was caused by the dynamic effect of propagating cracks. In the load-
displacement diagram, a kink would be observed. If the speed of consuming energy by
the crack propagation was less than or equal to the rate of energy provision by external
load, a crack would go all the way from one end to the other end; that is, no kink could
be seen. Whether a crack would develop along only a single plane (Fig. 3.65) or step-

wise surfaces (3.62--3.64) is determined by many factors, such as loading mode, void
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volume percentage, adhesive type, and surface finish grade. Flexible adhesive has such
a high critical energy release rate that cracks could not penetrate into it but would
develop only along the interface since the adherend (aluminum) also has a higher fracture
toughness than the interface. However, rigid adhesive joints showed various fracture
profiles (Fig. 3.62--3.64). This may indicate that the interface strength is at the same
level as the adhesive. The step-wise and secondary-crack-filled fracture surfaces (Fig.
3.63) of the rigid adhesive may suggest that damage mechanics should be employed to
interpret correctly the fracture process of adhesive joint, which is beyond the scope of

the present study but will be addressed in the future.

4.5. Optimization of Adhesive Joint Tosipescu Specimen

An optimized adhesive joint Tosipescu specimen, shown in Fig. 4.3, is proposed,
based on the investigations on the asymptotic stress fields at bimaterial interface corners
(in this presentation) and at sharp notches by Sukumar and Kumosa [72,74,108]. This
geometry (Fig. 4.3) consists of both the sharp notch root (in the adhesive) and two
bimaterial wedges (involving adhesive and adherend). Based upon Sukumar and
Kumosa’s work [72,74,108], under pure mode II loading, a critical re-entrant angle of
103° exists. That is, the stress singularities will disappear if the re-entrant angle of an
isotropic sharp notch is greater than this critical value, 103°. Since the re-entrant angle
of the notch in Fig. 4.3 is 105°, the notch root at Point B will be free of singular
stresses. Furthermore, from simple geometric principles, the bimaterial wedge, Point A
in Fig. 4.3, would take up a skewed interface angle of 127.5° according to the
conventions in Fig. 3.45. That is, this angle is greater than the censorious value of 126°
aforementioned. The asymptotic stress field will therefore never appear at the corner of
the bimaterial wedges in Fig. 4.3, irrespective of the mechanical properties of the
adhesive and adherend. In summary of the discussions in this paragraph, it can be

concluded that the adhesive joint Iosipescu specimen proposed in Fig. 4.3 is capable of
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introducing a uniform pure shear stress field within its adhesive layer from the standpoint
of being free of stress singularities; that is, this geometry will be free of singular stresses
both at the notch root and at bimaterial wedges, under pure mode II loading.

In a re-examination of the dimension of the notch root geometry of Type B
specimen in Fig. 3.8b, it will be noticed that both Figs. 3.8b (or. Fig. 3.23) and Fig. 4.3
look similar. As a matter of fact, they share exactly the same re-entrant angle of 105°.
Therefore, the specimen in Fig. 3.23 should be the ideal specimen for adhesive joint
testing.

However, finite element results in Figs. 3.9-3.11 showed that, for specimen B,
the tensile stresses at the notch tip were singular and were concentrated at the bimaterial
wedge corners under pure shearing loading condition. It appears that the numerical
observations are against the prediction from asymptotic analysis. Further examination of
the conditions of using Sukumar and Kumosa’s finding [72,74,108] shows that there is
no such contradiction between the FEM (Figs. 3.9-3.11) and asymptotic (Fig. 4.3)
outcomes.

It was emphasized that under pure mode II loading conditions, the singularity
would disappear when the re-entrant angle was greater than 103°. Incidentally, prescribed
displacement boundary conditions were employed there [72,74]. In the FEM analysis in
Section 3.1.3.1, force couple boundary conditions were used, which may not be able to
force the loading condition into a pure shear since theoretically, from Iosipescu’s
proposal (Fig. 2.8), the pure shear mode only exists at the notch root axis.

If viewing the stress distributions along the notch edge (Fig. 4.4), one can see that
there is no stress concentration at the interface corner. From the equivalent stress
contours inside the adhesive layer of the optimized specimen under pure shear loading
(Fig. 4.5), it can be seen that the maximum equivalent stress occurs a small distance
away from the notch tip rather than at the notch tip or the bimaterial wedge corner; that
is, no stress singularity exists for this specimen under pure mode II loading. In addition,

the distributions of the degree of biaxial stress mode mixing inside the adhesive layer are
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presented in Figs. 4.6a and b for different loading conditions. From these diagrams, it
is evident that the biaxial stress state within the adhesive layer is fairly uniform under
any loading condition, although it is expected that stress singularities will appear at the
notch tip when the loading mode is not pure shear. Actually, the singular stress zone at
the notch root is almost negligible in Figs. 4.7a, b and c, which are stress contours of
Type B specimen from the FEM analysis in Section 3.1.3. From these figures, it can be
said that along the notch root axis the stresses are fairly uniform, at least from the view
point of practical engineering.

It should be noted that even if the notch tip stress singularity can be avoided by
adjusting the loading angle, it is impossible to get such a loading condition in reality
anyway. All of these analyses were conducted based on two-dimensional in-plane
assumptions, if, more practically, three-dimensional effect [122-124] is taken into
account, interface stress singularity inevitably exists at the orthogonal interface wedges.
This will mathematically make it impossible to design an adhesive joint free of
asymptotic behaviors.

From the above arguments, it is clear that, from the engineering point of view,
the new geometry proposed in Fig. 4.1 is capable of generating a quite uniform biaxial
stress state inside the adhesive layer. Taking into account the global stress analysis and
experimental approaches, Specimen A in Figs. 3.6-3.8 will be another candidate to
perform such a task. Specimen C is not a desired choice because of its strong singular
behavior at its interface wedge corners.

A modified version of Fig. 4.1, produced by rounding off the sharp tip at the
notch root into a small radius but keeping the skewed interface angle as it is, may
improve the stress state at the notch root and therefore produces a more uniform stress

state within the adhesives. Future work will be focused in this direction.
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4.6. Difference Between Micro- and Macro-Mechanical Behavior

Although it was predicted that the optimized specimens of Type B should have
a much higher strength compared with those of Type A and C, experimental results did
not clearly show such an evidence. Rather, it was found that the joint strengths of all
three types of adhesive joint Iosipescu specimens were not strongly affected by the
adhesive types, notch root configurations, and adhesive layer thicknesses. Only the
loading angle had a slight influence on the joint strength. This is becauset some
significant differences exist between the micro- and macro-mechanical behavior at
bimaterial wedge corners, which determines the ultimate strength of the adhesive joints.

The analytical or numerical models obviously are in a micro-scale since
everything in the bimaterial wedge is assumed to be perfect (see Section 1.3.2), namely,
ideally linear elastic materials, straight bondline, perfect interface, smooth notch edge
surfaces, and in-plane mechanical behavior. However, the test specimens used in the
experiments are in a macro-scale since, the bonding surface is not a perfectly straight line
but a zig-zagged surface; there are always some invisible bulbs inside the adhesive layer;
the notch edge surfaces are not ideally smooth, rather many micro-cracks and sharp
notches exist and the materials that made up the wedge are not 100% elastic but present
nonlinear behavior when the equivalent stress exceeds their yield strength. All of these
factors make the real test specimen impossible to be accurately simulated by the models.
That is, there is a gap between the micro- and macro-mechanical behavior at bimaterial

wedge corners. How to fill this gap remains a great challenge in the future studies.
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Fig. 4.2 X\ distribution inside the plastic and transition zones
(E=2632 MPa, ¢,=0.0003, t=50 mm, »=0.35).
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Fig. 4.3 Optimized root geometry of adhesive joint Josipescu specimen.
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CHAPTER 5
CONCLUSIONS

A shear lag analysis of adhesive joints was conducted in a two-dimensional
situation. The results can best be used to simulate fiber pull-out process in

composite materials.

The Airy stress function approach to the stress analysis inside the adhesive layers
of adhesive joint Iosipescu specimens can yield fairly good results. It is the only

closed form solution so far.

A concept of degree of mode mixing of biaxial stresses has been proposed:

min(lallslozl)

(.1
max(|a,|,|0,])

§ =sign(o,0,)

This formula has been found to be capable of characterizing the biaxial stress

state very well.

The singular stress zone geometry at a bimaterial wedge corner is a function of
the mechanical properties of the materials, the wedge geometry, and the applied
external loads. It can be numerically determined using the proposed criterion of
degree of divergence by the FEM or semi-quantitatively estimated by the FEIM
with a determined criterion. It is also found that the singular zone in the adherend

(stiffer material) is always greater than that in the adhesive (softer material).

The plastic zone geometry at a bimaterial wedge corner can be obtained by

222
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1-1 "o,
when the load is small. If the load is large, however, the plastic zone resembles
the singular zone and should be determined numerically. A transition zone exists
between the plastic and the singular zone. When the plastic zone is small, the
stress field at the wedge corner can still be described by the elastic solutions. The
singular stress field becomes smaller as the plastic zone grows larger. However,
when the plastic zone is large enough, the stress field at the wedge corner cannot
be said to obey a simple singular rule; rather, it is a more complicated stress

field, and at this point, it can be said that the singular stress zone vanishes.

Composite parameters « and 8 were obtained using simple Williams’ Airy stress
functions. It had also revealed that the singular behavior of a bimaterial wedge
with a fixed geometry can be adequately described by the two independent
parameters. Also, in practice, an adhesive joint composed of materials leading to
a value of « approximately equal to zero is always desirable since it minimizes
the strength of the singular stress field. The observation is very significant in that
the eigenvalues will be the same if, for a fixed bimaterial wedge geometry, the
material combinations yield the same pair of composite parameters irrespective
of the mechanical properties of individual materials, since from a practical point
of view it can be used to design experimental simulations for state-of-the-art
materials by using relatively inexpensive materials that give rise to the same

composite parameters.

A universal critical skewed interface angle 126° has been discovered for a skewed

bimaterial interface problem. If the skewed interface angle is greater than 126°,
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the asymptotic stress field at the bimaterial wedge will totally disappear
irrespective of the mechanical properties of the materials making up the wedge.
This finding has corrected the conventional intuition that stresses are singular at

any bimaterial wedge with any material combinations.

An optimized adhesive joint Iosipescu specimen has been proposed. This
specimen is free of any stress singularity under pure mode II loading conditions.
It has also been found that the biaxial stress state inside the adhesive layer of this
specimen is uniform. Therefore, this optimized specimen is idea for adhesive joint

testing.

Stress singular power at bimaterial wedges depends on, besides geometry, the
material properties. The singular power generally increases when E,/E, gets
away from unity. The Poisson’s ratio of the softer material influences the
eigenvalues, but no noticeable change in the singular power can be observed when
the Poisson’s ratio of the stiffer material is varied. However, the Young’s
modulus ratio E,/E, has a bigger impact on the variation of the eigenvalue than

the Poisson’s ratios.

An orthotropic bimaterial wedge has been investigated. It has been observed that
the orthotropic ratio of the materials appreciably affects the asymptotic field at the

wedge corner.
The FEM can be used to compute the eigenvalues only when the singular stress
zone is big; otherwise, this method is unable to represent the asymptotic field

accurately. In this case, the FEIM is the best alternative.

The FEIM is an effective numerical scheme to extract bimaterial interface
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singular power. However, the stress intensity factor Q can only be obtained by
the FEM via the scheme invented in this presentation. Only in the simplest case,
an elastic layer bonded to a rigid substrate, can the free edge stress intensity

factor be analytically computed from Reedy’s formula.

Both the analytical and FEIM approaches are capable of determining the relative
displacement eigenfunction solutions and the singular power A for bimaterial
wedge problems with an excellent degree of accuracy. However, only the FEM
scheme is capable of extracting the absolute displacement eigenfunctions for

generalized bimaterial problems.

The FEIM convergence rate is found to be closely related to the elastic properties
of the bonded materials. Specifically, convergence is slowest if E,/E, approaches
unity but increases when E,/E, deviates from unity. However, the convergence

rate doesn’t change if the absolute value of log(E,/E,) is greater than one.

From the global stress analyses, it has been observed that the newly proposed
adhesive joint Iosipescu specimens are capable of producing a fairly uniform pure
shear or biaxial stress state inside the adhesive layer. Among them, optimized

Type B should be the first choice in conducting adhesive joint testing.

From closed form and numerical analysis, the loading angles and adhesive layer
thicknesses do not show significant effects on the uniformity of stress distributions
inside the adhesive layer. But experimental results show that failure loads reach
maximum at 15° loading angle for Specimen A and B with adhesive layer
thickness of 1.0 mm. Further, for specimen Type A with adhesive layer thickness
t=0.2 mm, both the first kink and rupture loads go up slightly as the loading
angle is increased.
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The present experimental data do not clearly indicate any relationships between
the joint strengths and the other testing parameters, namely, adhesive types, notch
root configuration, and adhesive layer thicknesses. Although it seems that loading
angle has a slightly effect on the strength. This is because the model used for the
analysis is in a micro-scale while the specimens tested are actually in a
macro-scale, which are not even close to the analytical model since micro-cracks
and micro notches always exist at the notch root surfaces as well as the bonding
line is not straight but zig-zagged. These micro-defects greatly influence the

ultimate strength of the joints.

Experimental analysis confirmed that cracks initiate their failure from interface
corners or sharp notch tips due to the stress singularity. The crack would
propagate in a peel-off or zig-zag pattern for rigid adhesive joints. In particular,
the fracture topography is of a step-wise manner inside the adhesive layer.

However, only the peel-off pattern can be seen for flexible adhesive joints.

Future work should be directed to delicate experimental analyses by varying all
influencing parameters, and finding the links between micro- and macro- models,

complex stress singularities, and anisotropic adherends.
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