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ABSTRACT

Mixed Mode Failure Analysis of Adhesively Bonded Composite Systems

Using the Modified Iosipescu Test Method

Shiliang Ding

Oregon Graduate Institute of Science & Technology, 1995

Supervising Professor: Maciej S. Kumosa

Adhesive bonding is widely used as a joining method for important structural

components, particularly in aerospace, automotive, and microelectronic applications. The

design of adhesive joints requires an adequate understanding of their ultimate strengths

and failure mechanisms under various combinations of applied shear and normal loads.

There are several test configurations currently available for the testing of adhesive joints

under various loading conditions. However, all of these methods have serious

disadvantages, ranging from a prohibitive cost of specimen preparation and testing to

questionable stress fields in the adhesive layers. Adhesively bonded composite systems

consist of bimaterial interface comers, which are generally a source of singular stress

fields. These singularities lead to premature failure, thereby making it difficult to

characterize the mechanical behavior and to establish the proper failure/fracture criteria

of adhesively bonded composite systems.

During the course of this work, the modified Iosipescu test technique was

analyzed and applied to investigate the strength of different adhesive joints subjected to

biaxial (shear dominated) loadings. The Airy stress function approach, finite element

xx



method (FEM), and the finite element iterative method (FEIM) were applied to

investigate macro- and micro-stress fields in the adhesively bonded Iosipescu specimens

with different geometries. Analytical and numerical schemes for evaluating the interfacial

stress intensity factors, eigenfunctions, eigenvalues, singular zones, and the plastic zones

at interface corners were introduced. In the experimental part of this study, adhesively

bonded Iosipescu specimens were prepared using a specially designed bonding assembly

and were subsequently tested in the modified Iosipescu test fixture. In addition, the

fractured surfaces of the specimens tested under various biaxial loadings were examined

using optical and scanning electron microscopy.

It was found that there are two independent composite parameters necessary for

characterizing the mechanical properties of a bimaterial interface corner. Furthermore,

there exists a critical interface angle beyond which the stress singularity vanishes for all

material combinations. It was also observed that at a non-linear bimaterial interface

corner, there is a transition zone between the smaller plastic zone and the larger singular

zone. The experimental results obtained in this study strongly indicate that the type of

notch configuration, biaxial loading conditions, and joint strength for rigid and flexible

adhesives are not related. Based on the results obtained in this study, an optimized

adhesive joint Iosipescu specimen is proposed. The specimen should be ideal for

mechanical testing of adhesive joints since it is free from stress singularities.

xxi



CHAPTER 1

INTRODUCTION

1.1. Adhesively Bonded Composite Systems

Modem industrial development necessitates the use of functional and efficient

materials. Composites, which have a high specific modulus and strength, are potential

materials for extensive use in structural applications. As a matter of fact, the structural

efficiency of a composite structure is established, with very few exceptions, by its joints,

rather than by its basic structure. There are many joining methods used in structural

engineering such as welding, brazing, soldering, bolting, riveting, fastening, and

adhesive bonding. Among these methods, adhesive bonding has gained considerable

popularity in the manufacture of composite structural systems, especially in the past two

decades.

Adhesive bonding for primary load-bearing structures was developed several

decades ago, but it has only recently gained importance as an economical and effective

method for joining materials. Cage [1] has illustrated the extensive use of adhesives in

the aircraft industry, and Vinson [2] has also been listed several advantages of using

adhesive bonding techniques. Generally, such adhesively bonded materials can be

considered as a composite system that offers superior stiffness, lower density, lower

fabrication cost, and improved damage tolerance when compared to other joining

techniques. Although adhesively bonded structures are extensively used in the aircraft,

automotive, and electronic industries [1-4,38-41,56-70], the mechanism of interface

delamination of adhesively bonded structures and the corresponding criterion are not well

understood. This is primarily due to the absence of a reliable test method to characterize

mechanical properties of the adhesives and joints being used.

1
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1.2. Test of AdhesivelyBonded Joints

The ability to predict the mechanical properties and to understand the failure

mechanisms in adhesively bonded joints under mixed mode loading conditions is

important for the further development of adhesively bonded composite structures. Some

of the important requirements for adequate predictions are adhesive properties, joint

shear and tensile strengths, delamination initiation criterion, crack propagation condition,

and response of different adhesives under mixed mode loading situations. Currently,

many adhesive joint test methods are available, including single-lap test, double-lap test,

step-wised-lap test, scarf-lap test, cone and plate test, Arcan test, and Iosipescu-type

specimen test. Unfortunately, none of these methods is able to generate a uniform stress

state (especially pure shear) inside the adhesive layer [71-77] and therefore are unable

to reliably characterize the adhesive properties.

Kumosa [78-79], after an in-depth study of pure shear and mixed mode testing of

composite materials using the modified Iosipescu test fixture, introduced a new method

for adhesive joint mixed mode testing: an Iosipescu specimen with an adhesive joint (to

be mixed-mode tested using the modified Iosipescu test fixture), which is considered to

be capable of generating a uniform stress state inside the adhesive layer. In order to

understand and exploit the potential of this method, extensive study on the global and

local stress distribution of the adhesive joint Iosipescu specimen has been conducted.

Special attention has been given to the interfaces and interface corners where most

failures are initiated.

1.3. Interfacial Stress Singularities

1.3.1. bnportance

The majority of recently developed advanced materials and engineering structures
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is comprised of more than one phase. Very often, an interface can be defined between

any two phases, for example, an adhesive joint, as a bonding surface where a

discontinuity of some kind occurs. The discontinuity may be sharp or gradual. In general,

the interface is an essentially two-dimensional region through which material parameters

such as concentration of an element, crystal structure, atomic registry, elastic modulus,

density, and coefficient of thermal expansion, change from one side to another. Clearly,

a given interface may involve one or more of these items and plays a major role in the

mechanical and physical properties of the material or structure. Here, the mechanical

behavior, namely the stress singular power, the stress intensity factor, the shape and size

of the singular stress dominating zone, and the plastic zone shape and size (if the

interface consists of elasto-plastic materials) of an interface, is the main concern.

In composite systems, the existence of interfaces is one of the most important

features. The properties of the composite systems are largely determined by the

interfaces. For example, consider an interface of fiber-matrix composite. The large

differences between the elastic properties of the matrix and the fibers have to be

communicated through the interface; or, in other words, the stresses acting on the matrix

are transmitted to the fiber across the interface. The interface is a dominant factor in the

fracture toughness properties of composite materials and in their response to aqueous and

corrosive environments.Compositematerialswith weak interfaceshaverelatively low

strength and stiffness but high resistance to fracture, whereas those with strong interfaces

have high strength and stiffness but are very brittle. This is related to the ease of

debonding and pull-out of fibers from the matrix during crack propagation [1].

Interfacial stress singularity is a major problem [4,64] in the manufacture of

electronic components. For example, a silicon integrated-circuit chip is built by

contiguously embedding, butting, and overlaying structural elements of a large variety

of materials with different elastic and thermal properties. Stresses therefore.develop from

the thermal cycling of the chip, and large localized stresses are induced in the silicon

substrate near the edges and corners of such structural elements. The stress distribution
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inside the elements significantly affects their functions and needs to be understood. Hu

[4] has done an extensive review of stress-related problems in silicon integrated-circuit

chip industry.

In the coating industry, interfaces are created because of the material property

differences between the coating and the substrate. Therefore, the fracture of a coated

surface is always initiated from the interface comer [6,7,71]. Understanding the

mechanical behavior of the interfaces under thermal or external loading is crucial in

obtaining high quality coatings.

In normal metal crystal structures, an interface stress singularity is often

encountered. The precipitate atomic registry is a good example of stresses arising in the

coherent and semi-coherent interface [5]. Twinning is another example, and it is even

more complicated because materials around the interface are anisotropic.

Whenever a structure containing an interface is subjected to external traction or

thermal loadings, a singular stress field is observed at the interface comer. This singular

stress field determines the failure process and failure mode of the structure. Therefore,

it is obvious that in order to fully make use of the benefits of advanced materials or

structural designs, this singular behavior at the interface comer should be thoroughly

understood.

1.3.2. Assumptions

An extensive literature review has revealed that the following assumptions, though

not explicitly stated, have been made by researchers in both theoretical and numerical

investigations with respect to interfacial stress singularities:

(1) The interface is infinitesimally thin; that is, only two types of materials are

involved near the interface.

(2) The bonding between the two materials is perfect, implying that there is no

strain discontinuity across the interface.
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(3) The materials close to the interface have the same properties as the materials

in the bulk form respectively.

1.3.3. Some Definitions

A stress field is said to be singular in a regime inside which, theoretically, a

point exists around which the stresses become unbounded as the point is approached. The

first type of such a stress field can be written as

(A>O) (1. 1)

where rand 0 represent a polar coordinate system; O"ijare the stress components; fij(O)are

trigonometric functions; Q and Aare defined below. This type of stress field is referred

to as a power singularity stress field and is the main topic of this investigation. The

second type has the following form:

a ij=Qln (r) fij (6) (1.2)

which is defined as a logarithmic singularity stress field.

Q in equations (1.1) and (1.2) is a measure of the intensity of a singular stress

field and is called the stress intensity factor.

A in equation (1.1) is called the singular power (or singular strength).

The region inside which equation (1.1) or (1.2) dominates for stress expressions

is defined as the singular stress zone.

The domain inside which the material yields is referred to as the plastic zone.

1.4. Outline of the Dissertation

In Chapter 2, a literature review is presented that focuses on the topics of

adhesive joint test method, modified Iosipescu test method, global stress analysis of

adhesive joints, singular stress analysis, and plastic zone evaluation at the interface
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corner. The procedures used and results obtained in this research are presented in

Chapter 3, where global stress analysis of adhesive joint Iosipescu specimen, singular

stress analysis at an interface corner, and evaluation of plastic zones at interface corners

are described in detail. In Chapter 4, discussions are made on the subjects of singular

power calculation, stress intensity factor calculation, singular stress zone evaluation,

plastic zone evaluation, interactions between the singular and plastic zones, and degree

of mode mixing of pure and biaxial stresses of adhesive joint Iosipescu specimens. Based

on these efforts, the conclusions of this study are listed in the final chapter.



CHAPTER 2

BACKGROUND

2.1. AdhesiveJoint Test Methods

There are four types of deformations that are important, namely, shear, tension,

cleavage, and peel as shown in Fig. 2.1, when considering adhesively bonded joints [95].

Corresponding to these four types of deformation, there are four types of joint strengths.

Among them, the joint shear strength and shear modulus are of great interest to design

engineers because most adhesive joints are primarily used to bear shear loads. Therefore,

the shear test methods of adhesive joints are the focus of this section.

2.1.1. Single-Lap and Double-Lap Tests

The ASTM standards for single-lap and double-lap joint (Fig. 2.2) tests are

D1002-72 and D3528-76 [96], respectively. The main purpose of these tests is to

determine the shear strength of adhesives for bonding metals. The tests have been

popular for many years and work very well in many industrial applications. However,

they cannot provide the shear characteristics of adhesives under consideration because

the stresses inside the adhesive layer are unevenly distributed. Fig. 2.3 is a typical

example of stress and strain distributions in a double-lap joint under tension loading [57],

where the adhesive is assumed to be elasto-perfectly plastic.

2.1.2. Napkin Ring Test

The napkin ring type of test specimen (Fig. 2.4) relies on an uniform distribution

7
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of the almost pure shear resultant stress when the joint is subjected to torsion as the

bonded cups are twisted [96]. Because the radial thickness of the adhesive layer is small,

the shear stress can be considered to be constant, making the specimen attractive for the

determination of shear properties. However, it should be noted that some structural

adhesives can withstand 80-100% shear strain. Normal stresses are very likely generated

under such conditions so the uniformity and purity of the shear stress state can no longer

be taken for granted. When bond-normal loading of the napkin ring specimen was

considered, large stress concentrations were found because of the sharp, 90° bimaterial

corners formed by the adhesive and adherends at the free surfaces of the specimen [67].

In addition, the bond-line thickness is difficult to control during joint fabrication [96].

2.1.3. Cone and Plate Test

Grant [68,97] proposed the cone and plate specimen (Fig. 2.5) as another

torsional shear testing technique. A closed form solution based on the assumption of rigid

adherends indicated that the cone and plate geometry should provide a more uniform

shear stress than is produced by the standard radial thickness of the napkin ring

geometry. Ratios of the moduli of structural metals to those of structural adhesives

generally range from 50 to 120. Although it might be thought that the rigidity of

adherends would be a reasonable assumption, evidence of combined relaxation and creep

phenomena in adhesively bonded joints indicate that it is not. If the adherends in the cone

and plate specimen are not rigid, some accommodation must be made between the radial

stresses in adherends and the constant stress in the adhesive. FEM analyses [67] have

shown that the shear stress in the adhesive is highly nonuniform for an aluminum/epoxy

joint and that this non-uniformity leads to normal stresses that are highly concentrated

near the center of the specimen, while the solution of a steel/rubber combination

approached the closed form result. This observation indicates that the cone and plate

specimen is suitable for pure shear testing when the adherend-to-adhesive modulus ratio
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is high enough.

2.1.4. Arcan Test

The Arcan test fixture and specimen are shown in Fig. 2.6. Originally, Arcan et

al. [98,99] invented this fixture to generate a uniform plane shear stress state in the

center of the specimen to conduct mode II test for conventional and composite materials.

The test was subsequently modified to characterize adhesive shear properties (Fig. 2.6)

[70]. This method gained other researchers' attention thereafter, and the purity of the

shear stress state in the adhesive layer was also confirmed [67,68]. In addition, this

fixture can be used for mixed mode loading [70].

2.1.5. Iosipescu-Type Specimen Test

By the adaptation of Iosipescu shear testing for metals, Wycherley et al. [69]

developed an Iosipescu-type specimen (Fig. 2.7) for uniform shear stress-strain

characterization of adhesives. In order to perform precise tests, the authors designed

special instruments and jigs to facilitate sample preparation, bond-linc thickness

measurement, and shear displacement determinations. Typical shear stress-strain curves

for FM-lOOOfilm adhesive [69] measured by this method indicated that the results from

this method were reproducible. However, theoretical support (from closed form and/or

numerical analyses) is still needed to account for the residual stresses after curing and

the stress state within the adhesive and adherends during testing.
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2.2. Modified Iosipescu Test Method for Adhesively Bonded Joints

2.2.1. Modified Iosipescu Test Fixture

An ideal test method is one that is relatively simple to conduct, employs small,

easily fabricated specimens, and is capable of measuring both shear strength and shear

modulus. In 1967, Iosipescu [100] proposed a method to determine the shear properties

of metals. In this procedure, a state of pure shear stress is obtained at the mid-length of

an isotropic double V-notched planar specimen by the application of two counteracting

force couples (Fig. 2.8). A state of constant shear exists in the mid-section of the

specimen with the induced moments canceling exactly at the mid-length and thereby

producing a pure shear stress state at this location. Fig. 2.8 shows the force, shear and

moment diagrams.

Rod test specimens were originally used, with a 90° circumferential V-notch cut

completely around the mid-section. This specimen geometry transforms the parabolic

shear distribution (associated with beams of constant cross-section) to a uniform shear

distribution in the regions between the notches. The reduced area also promotes shear

failure in this region [72]. The two sides of the angular notches, which are the isostatics

of the stress-free surface, must be inclined at an angle of 45°. Hence, the inclined angle

of the V-notch is 90°. The applied force P divided by the net cross-sectional area A

between the notch roots gives the nominal shear stress:

T:=P/A (2.1)

Walrath and Adams [101-102] developed the Iosipescu shear test method to

determine in-plane and through-thickness shear properties of fiber composite materials.

This test used flat rectangular specimenswith notchesmachinedat the top and bottom

edges (Fig. 2.9). Shear strain was measured at the center of the notch axis using two

strain gauges oriented at ::1:45°to the longitudinal axis of the specimen. The authors
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[103-106] attempted to optimize the Iosipescu specimen geometry and Iosipescu shear test

fixture. As a result of comprehensive investigations of the stress distribution in the

Iosipescu specimen as a function of the notch geometry and orthotropic ratio, a

re-designed University of Wyoming Iosipescu test specimen and fixture was developed

[12].

In most engineering applications, structural materials are subjected to biaxial or

tri-axialloads. Therefore, it is important to obtain the mechanical properties and failure

criteria under multi-axial-stress conditions. Currently, few testing methods are available

for the biaxial characterization of materials and all of them have drawbacks [72].

As a result of the study conducted by Broughton et al. [90,107], a new in-plane

biaxial test fixture, based on the Arcan test method (Fig. 2.6) and the Iosipescu shear test

(Figs. 2.8 and 2.9), was designed. The biaxial loading schematic and fixture (marketed

by Instron Corporation) are shown in Fig. 2.10.

2.2.2. Biaxial Test of Adhesive Joints

Structural adhesive joints are usually subjected to multi-axial stress loads, like

bonded structures of steels or composites; therefore, the characterization of joint

mechanical properties and failure procedures under multi-axial stress conditions is crucial

to design engineers and fabricators. As stated in Section 2.1, the only available biaxial

adhesive joint test is the Arcan test method (Fig. 2.6), which has the shortcomings of

fixed loading angles and difficulties in alignment of the specimen and the grip.

Having done comprehensive research on pure shear and mixed mode testing using

the modified Iosipescu fixture [74,78,79,88-91,108-111], Kumosa proposed a new mixed

mode test method for adhesive joints: an adhesive joint Iosipescu specimen (Fig. 2.11)

[78,79]. The specimen can be loaded using the modified Iosipescu fixture in either pure

shear or biaxial stress state to conduct the test. To allow for a full understanding of this

method, an in-depth investigation of the global and local stress fields, both from a
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theoretical and experimental viewpoints, was conducted in the study.

2.3. Global Stress Analysis of Adhesive Joints

Numerous theoretical and numerical analysis methods exist for the global stress

analysis of adhesive joints, the details of which are described elsewhere [2,59]. Shear lag

analysis methods, FEM schemes, and experimental techniques used in this study are

reviewed below.

2.3.1. Shear Lag Analysis

Shear lag analysis was first introduced by Cox [112] for studying the effect of

orientation of the fibers on the stiffness and strength of paper and other fibrous materials.

This theory explains the stresses inside a fiber based on differential straining of the

matrix, with the assumptions of: (1) a perfect bond between the fiber and the matrix, and

(2) no load transfer through the ends of the fiber. Later, Holister and Thomas [113]

developed this method to determine the stresses and strains within discontinuous fibers

in fiber-reinforced materials. However, Hull [3] pointed out that the results from this

analysis were not exact; further, finite element analysis and experimental studies

suggested that it under-evaluated the shear stress concentration at the ends of the fibers

by a factor of at least two [3].

In 1973, Hart-Smith [38,39] used this shear lag concept to develop analysis and

design procedures for single lap and double lap joints. Both methods assumed that the

adherends remained elastic and that the adhesive stresses were constant through the

bond-line thickness. The adhesive was assumed to be elastic or elastic-perfectly plastic

to simplify equation development. For single lag joints, the procedure accounted for the

bending of the adherend resulting from the eccentricity in the load path; for double lap

joints, bothbalancedand unbalancedadherendcombinationswere considered.A double
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lap joint is said to be balanced when the thickness of the inner adherend is twice that of

each outer adherend. Long [40] successfully applied this method to study the static

strength of adhesively bonded ARALL-1 joints.

2.3.2. Finite Element Analysis

The FEM has become widely accepted as one of the most popular numerical

techniques. A large number of studies have employed FEM

[2,6-11,28-30,40,43,56-67,69-71] to solve various interface-related problems using

general commercial FEM codes. However, FEM approaches do have certain

disadvantages, namely: (1) the global stiffness matrix resulting from finely meshed

interface wedge corners tends to yield excessively large number of degrees of freedom;

and (2) the validity of the method relies on an accurate input of the adhesive mechanical

properties, which are hard to obtain.

2.3.3. Experimental Analysis

Obtaining the global stress distribution of an adhesive joint by the experimental

method is difficult because the adhesive thickness is very thin and the stress state within

it is generally non-uniform in real applications. However, there have been many attempts

to describe the joint stress distribution. Wycherley et al. [69] used a self-designed

shearometer to measure the stress contours inside an adhesive layer, assuming that

stresses were uniformly distributed. Theocaris [75] employed a pseudocaustic technique

to obtain complex stress intensity factors of interfacial cracks (the stress field was clearly

known when these factors were substituted into the corresponding theoretical formulas).

This technique could be extended to interfacial stress intensity factor measurements.

Moreover, Kumosa [114] has suggested that photo-elasticity is another potential method

for global stress measurement in adhesive joints.
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2.4. Singular Stress Analysis

As mentioned above, failures in adhesive joints are often initiated in a very

localized region near the interface corners. Closed form and numerical analyses indicated

that stresses are singular at these corners [49]. A review with respect to analytical,

numerical, and experimental analyses is given in this section.

2.4.1. Closed Form Analysis

A bimaterial wedge consisting of bonded materials 1 and 2 is shown in Fig. 2.12.

Materials 1 and 2 have been assigned a wedge angle, Poisson's ratio, and Young's

modulus of (}I, VI' £1 and (}2' V2, ~ respectively. A polar coordinate system with its

origin at the bimaterial wedge corner is employed (Fig. 2.12), where the external traction

along the rays (}=(}Iand (}=(}2is assumed to be zero. By taking into account the fact that

at the interface «(}=OO)the stresses and displacements are continuous in accordance with

Newton's third law, the boundary conditions of the 2-dimensional bimaterial wedge in

Fig. 2.12 can be expressed in the following form:

(2.2)

a~~) (r,el) =0 (2.3)

(2.4)

a~~) (r/e2) =0 (2.5)

aJ~) (r I 0) =aJ~) (r I 0 ) (2.6)
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(2.7)

U?) (I, 0) =ui2) (I, 0) (2.8)

(2.9)

where O'ijare stress components; Ujare the displacement components and the supersuffices

(1) and (2) correspond to the material types.

When both materials in Fig. 2.12 are elastic, stresses at the bimaterial wedge

corner will be mathematically unbounded. This elastic interfacial stress problem has been

examined by many researchers with different analytical methods [6-25]. Knesl et al. [6-7]

classified these methods into two types (the first two of the following three). By taking

into account the Mellin transform method used by Bogy [13,14], there should be three

analytical methods, namely: Airy stress function, complex potentials and Mellin

transform. These analytical methods are reviewed in the following sections.

2.4.1.1. Airy Stress Function Approach

A biharmonic Airy stress function in a polar coordinate system, given by

Williams [34] and employed in [6-11], has the following form:

(2.10 )

where A is a constant for a specific material combination and fixed geometry and is

denoted as the stress singular power.

This stress function can be used to study singular stress fields in the vicinity of

an interface corner. In equation (2.10), F(O)can be determined from the requirement that

1/; has to be biharmonic,i.e.,
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(2.11)

where V2 is the Laplacian operator and has the following form:

(2.12)

By applying equation (2.11) to equation (2.10) and solving for F(8), then

substituting F(8) back to equation (2.10), the following can be obtained:

v=r -A+2[A1sinA8+A2coSA8
+A3sin(2-A)8+A4COS (2-A)8]

(2.13)

where Ai are constants to be determined from the boundary conditions.

In terms of the Airy stress function, the stress components take the following

form:

(2.14)

(2.15)

(2.16)

(2.17)

(2. 18)
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where E is the Young's modulus and p is the Poisson's ratio, Ur and Ueare the

displacements along the radial and circumferential directions respectively, and k has the

following values:

k=3-4v for plane strain condi tion (2.19 )

k= 3-v
l+v for plane stress condi tion (2.20)

After substituting equations (2.14-2.18) into the boundary condition equations

(2.2-2.9), eight linear algebraic homogeneous equations are achieved for the eight

unknown constants A/J)(i= 1,2,3,4 andj = 1,2 to represent different materials). If A/J)are

denoted as Bn, n=I,2,..,8, and the coefficients of A/J) are denoted as

Dmn(OI,02,P"P2,E1>~,A),m=I,2,..,8, the linear equation system can be written as

(2.21)

where m,n= 1,2,..,8.

The existence of a non-zero solution of equation (2.21) requires that the

determinant of [Dum]equal zero, that is,

(2.22)

Equation (2.22) is a transcendental equation, from which the eigenvalues A can

be obtained. A may be real or complex and may have infinite number of roots, but only

the real part of A within the interval (0,1) is of interest.

According to equations (2.21) and (2.22), only the relative relationship between

the intensity factors A/j) can be found; the absolute values of A/J)cannot be calculated

because equation (2.21) is homogeneous. However, Aj(j)can be computed when the

boundary conditions on the other parts of the bimaterial body are considered.

With equations (2.13-2.16), the stresses that have a aij- r->-formcanbeinspected.



18

Moreover, taking into account the previous discussion that multiple eigenvalues exist, the

stress distribution at the wedge comer can be expressed as

(2.23)

where "-nis the nth singular power, which may be real or complex, and 0 < Re(A,J< 1

[Re(x) obtains the real part of complex number x] has to be met because of the finite

displacement requirement; also, Anare the same in both materials; Q;j(n)is the nth stress

intensity factor, which is only a function of body dimensions and external traction [6-7].

Another kind of singularity problem, namely, logarithmic singularity, was studied

by Zwiers et al [26] for free-edge stresses in laminated composites under uniform

extension. In this case, the singular behavior has the form of Qln(r). This problem,

however, is beyond the scope of this work: further details can be found in reference [26].

2.4.1.2. Complex Potentials

The method of complex potentials was used by Theocaris [12,82] for solving the

singular stress field at a multi-wedge comer. Knesl [6] also gave a brief description of

the method. The process is shown below.

Two analyticalcomplexfunctions<I>(z)and y;(z)as sums(overall possiblevalues

of A) of the terms of type shown below are selected as

(2.24)

(2.25)

where z is a complex variable, z=x+iy=rei8, j is the index of material types and can be

chosen as 1 or 2, X is the complex conjugate of A. The terms ajq,bjqG,q= 1,2) represent

eight generally complex potential intensities.
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Using the functions in equations (2.24) and (2.25), stresses can be expressed as

follows:

(2.26)

(2.27)

~ (u (j) + iU 6
(j) )=e-i6[k.~. (z) - Z~/. (z) -'11 . (Z) ]1 +V. I ] ] ] ]

]

(2.28)

where prime denotes a derivative with respect to z, Ej is the Young's modulus, and Vjis

the Poisson's ratio of material j, respectively. Is had been previously defined in equations

(2.19-2.20).

If the stresses and displacements in equations (2.26-2.28) are substituted into the

boundary conditions (2.2-2.9), which must be valid for any r, eight (generally complex)

linear algebraic homogeneous equations for the eight unknowns ajq and bjq can be

obtained. If the eight unknowns ajqand bjqare denoted as Cn, n = 1,2,..,8, the eight linear

homogeneous equations can be rewritten as

(2.29)

where the coefficients Hum(m= 1,2,... ,8) are known functions of the known values of OJ,

Vj, Ej and of the unknown singular power A.

A non-zero solution of equation (2.29) exists only if the determinant of [Hmn]

equals zero, that is,

(2.30)

where m,n=I,2,..,8. Equation (2.30) can be rewritten as

(2.31)
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Equation (2.31) is a transcendental equation. Although it does not have the same

form as equation (2.23), they share the same roots ofA. Generally, equation (2.31) can

be solved numerically; only in exceptional cases, can it be solved analytically.

Similar to the case of equation (2.22), the absolute values of the potentials'

intensities ajqand bjqcannot be determined using only equation (2.29). However, the

exact values can be obtained from the boundary conditions of the total area of interest.

Knesl [6] suggested that one possible, although complicated, way to find such a

complete solution is to consider the complete solution in polar coordinates as a series of

terms of types (2.24) and (2.25) for all eigenvalues An'including the non-singular terms

with Re(AJ ~ 1.

2.4.1.3. Mellin Transform

Mellin transforms have also been used to solve this boundary-value problem in

references [13-17]. The Mellin transform of a function f is defined by

Mf; s}=Jf(r) rS-1dr
o

(2.32)

where s is the (complex) transform parameter. In addition, the stress components of the

stress field inside the bimaterial wedge should meet the requirement of the regularity

conditions [13,14]:

0ij=O(r-1+h) as r-+oo for every h>O (2.33)

where 0(.) means that the dependent and independent variables are of the same order of

infinitesimalness.

With this method, even more complicated problems can be solved as well.

Traction can be applied to the two wedge surfaces (8=81 and 8=(2); that is, theboundary
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conditions of equations (2.2-2.5) can be changed to have the following forms:

(2.34)

(2.35)

(2.36)

(2.37)

where n(j)(r)are the normal traction on the surface O=Ojand t(J)(r)are the shear traction

on the surface O=Oj.

Let Yj(s,O), Srr(J)(s,O), Soo(J)(s,O),Sre(J\s,O), Ur(J\s,O), Uo(J)(s,O), N(J)(s), T(J\s) in the

order denote the Mellin transforms with respect to r of 1fir,O), rUrr(J)(r,O),ruoo(J)(r,O),

r2uro(J)(r,O),rtlr(J\r,O),ru/j)(r,O), r2n(J)(r),and r2t(J)(r).A formal application of the Mellin

transform to (2.12) produces an ordinary differential equation for Yj, the general solution

of which is

+cj(s)sin(s6+26)+dj(s)cos(s6+26) (2.38)

Here, functions aj(s), bis), cj(s) and dj(s) are to be determined through the transforms of

equations (2.14-2.18) and from the transforms of boundary condition equations (2.6-2.9)

and (2.34-2.37). These transformed equations have the following forms when equation

(2.38) is taken into consideration:

(2.39)



+ (k .+1) d. (s) cas (S(}+2(}) ]] ]

sa~) (s,O)=sa~) (s,O)

sit) (s,O)=sr~) (s,O)

u}1) (s, 0) =U;2) (s, 0)

ua(l) (s, 0) =Ua(2)(s, 0)

22

(2.40)

(2.41)

(2.42)

(2.43)

(2.44)

(2.45)

(2.46)

(2.47)

(2.48)

(2.49)
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If equations (2.38-2.43) are substituted into equations (2.44-2.49), eight linear

equations for the eight unknown functions aj(s), bj(s), cj(s) and dis) can be obtained. The

eight unknown functions can be determined by solving the eight equations. If these eight

solved functions are substituted back into equations (2.38-2.43), 'Iris, 0), SrrU)(s,O),

SOOU)(s,O),SrOu)(s,O),Uru)(s,O),Uou)(s,O)(k= 1,2) can therefore be obtained. Then, by use

of the inversion theorem for the Mellin transform [80], the stress components aij and

displacements urU)and uo(j)can be eventually found:

c+ioo

a~) (r, 8) = 2~i J s)1)(s, 8) r-s-2ds
c-ioo

(2.50)

where mn=rr, 00, rOand j=1,2; and

(2.51)

where m=r, 0 and j=I,2.

The path of the integration in the complex line integral is critical to finding the

proper solution. The singular power was computed by using the residual theorem.

Detailed discussions of the computation procedure can be obtained from references

[13-15].

2.4.1.4. Composite Parameters

From the previous descriptions of Acalculation (equations (2.22) and (2.31», it

can be clearly seen that whenever the geometry of the bimaterial wedge is fixed; that is,

the angles 01and O2are fixed, and A depends only on the three parameters: VII V2 and

E1/~, which are a combination of four elastic constants. However, further studies using

complex potentials by Dunders [27,81] indicated that A actually depends only on two
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non-dimensional combinations of the four elastic constants, which are called composite

parameters and conventionally denoted as exand {3[81]:

(2.52)

and

(2.53)

where k1 and k2 have been defined in equations (2.19-2.20); r is the ratio of the shear

modulus of material 2 to material 1 and can be computed by

r= Ez (1+v1) = G1
El (l+vz) Gz

(2.54)

where G1 and G2 are the material shear moduli respectively.

The selection of the composite parameters is not unique; however, this pair has

been recognized as being the most appropriate for the analysis of plane problems

[14,15,25,81]. Consequently, a transcendental equation for A can be found to be of the

following form:

(2.55)

If it is assumed that the values of the elastic properties are limited to the range

of:

(2.56)

and

(2.57)
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then, from the relationships of (2.19-2.20) and (2.52-2.53), it is found that the values of

Q!and {3fall into the parallelogram:

-1::;«::;1 and «~1 ::;p::;«:1
(2.58)

Bogy [14] and other researchers [6,12,16,82] used these two parameters to

describe A's behavior in the parallelogram. An example of this is shown in Fig. 2.13.

2.4.1.5. Special Cases

In addition to the general case discussed in the previous section, there are special

cases which can be further simplified and therefore easily solved. Two examples, an

elastic-rigid bimaterial wedge that resembles an elastic strip bonded to a rigid substrate

and an interface crack which is the case when the biomaterial re-entrant angle is zero,

are reviewed in the following sub-sections.

2.4.1.5.1. A Rigid-Elastic Model

When one of the two materials in Fig. 2.12 is rigid, the singular stress behavior

at the wedge corner is much simpler. This case is often encountered in practical

engineering practices. For instance, when an adhesive joint comprised of metal (steel or

aluminum) adherends and an epoxy adhesive layer is loaded by external forces, the

interfaces between the adherends and adhesive resemble such a case. This case has been

widely studied [8-10,28-30].

If we assume that material 2 is rigid in Fig. 2.12 and 01=90°, equation (2.22) or

(2.31) can be simplified as

(2.59)
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where k1 has been defined in equation (2.19-2.20).

From equation (2.59), the eigenvalues ~ can be easily calculated by numerical

method.

From another point of view, this problem is a special notch problem with one of

its sides fixed. The solutions of notch tip stress singularities in this case have been

obtained by Williams [34] and can also be found in [35-37]. The eigenvalue function

given in [34] is identical to equation (2.59). Vasilopoulos [37] suggested an algorithm

for the eigenvalue problem solutions.

Reedy [8-9] proposed a formula for calculating stress intensity factor (called

free-edge stress intensity factor in the original papers) for butt adhesive joints:

(2.60)

where Q is the stress intensity factor, (/ is the characteristic stress, 2h is the layer

thickness, and A(p) is a function defined by loading (tension, shear, or temperature) cases

and Poisson's ratios, which were tabulated and plotted for different loading conditions

and Poisson's ratios in the original presentations. After an FEM analysis was conducted,

it was concluded that this formula worked well [49].

2.4.1.5.2. Singular Stress Field at an Interfacial Crack Tip

An interfacial crack is a special case of 01=7r and 02=-7r in Fig. 2.12, where

equation (2.22) has been drastically simplified and can be found to be of the following

form [6]:

A.=n-.! +i ~ ln~ and A.~=n
n 2 21t 1-P

(2.61)

where n=I,2,3,...; i is the imaginary unit and {3is given by equation (2.53), which

depends on the elastic constants. (Au'represent rigid body translation or rotation and will
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not be discussedhere.) It is obviousthat the singularityis describedby Alwith the real

part Re(AI)= 112and the imaginarypart dependingon (3.This stress fieldoscillateswhen

r approaches the crack tip, which creates an additional stress field overlapping the

aij- 1I.Jr field, but not the simple aij-1I.Jr stress field in a homogeneous medium,

which is well known [44-45]. Moreover, the oscillatory term in the displacements leads

to a non-realistic crack opening and to an inter-penetration of the crack surfaces.

Different approaches have been suggested to address this problem [6,46-48].

2.4.2. Numerical Analysis

Numerical analysis is a powerful tool for studying the mechanical behavior of

bimaterial wedges. The most popular and effective methods in numerical analysis are the

Finite Element Method (FEM) and the Finite Element Iterative Method (FEIM). They

are reviewed in the following sections from the viewpoint of their ability to extract the

singular power and to simulate singular behavior in both elastic and elasto-plastic

bimaterial wedges.

2.4.2.1. Finite Element Approach

The mostpopularnumericalmethodusedfor studyingthesingularstressproblems

at a bimaterial corner is the FEM. Some of these studies are presented in references

[6-11,18-23,28-33,49,61,64,66,73,91]. Application of FEM analysis means that no

special requirements are needed for the boundary conditions, and that various geometries

and dimensions can be treated. If attention is paid to the fineness of the meshes around

wedge corners, both the singular powers and the absolute values of the stress intensity

factors can be calculated by using the following log-log formula [49]:

log(oij)=log(Q)+log(fij(6))-Alog(r) (2.62)
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Equation (2.62) can be obtained by taking logarithmic operations on both sides

of equation (1.1). However, since the FEM is usually based upon assumptions for

displacements and/or stresses that are defined in terms of polynomial functions over finite

elements, it will be impossible to obtain an exact representation of the behavior of the

singular stress region no matter how fine the mesh is. To overcome this difficulty,

several researchers have suggested special element techniques in the singular fields [18-

22,27,31,32,42,46,49-55,72-74].

Walsh [19] suggested a special FEM element for the computation of stress

intensity factors. The special element consists of two regions. The stress and

displacement distribution in the inner region is defined in terms of the singular stress

field associated with the singular domain. The outer region of the special element

contains conventional finite elements that are constrained to satisfy certain equilibrium

and compatibility criteria on the interface between the two regions. Examples in

reference [19] showed that this method is efficient and valid. Tracey and Cook [31]

constructed a three-node triangular displacement element having rl-A interpolation

functions. This element can incorporate the designed singular behavior and conform with

standard (linear) elements on the exterior edge, but it does not contain constant strain

fields and hence cannot pass a patch test. Akin [50] proposed an element family that can

incorporate the existing isoparametric codes with minimal efforts. These elements

conform with the standard isoparametric elements, but they do not contain linear fields

either and are difficult to integrate accurately. Because of the shortcomings of the above-

proposed special elements, Stern [51] constructed families of two- and three- dimensional

finite elements to model fields with singular derivatives. The elements are complete over

linear fields, conform with regular elements, and are easy to program. In summary, it

can be stated that all of the above efforts are aimed at constructing elements with

embedded singularities. Therefore, these techniques cannot be used for general FEM

codes; in addition, the singular power A has to be known a priori for an embedded

singularity FEM program to be written.
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Szabo [22] developed guidelines for prior design of meshes and procedures for

post-solution testing in order to obtain an exact solution. Spilker and Chou [18] invented

a special purpose, hybrid-stress, multi-layer finite element to satisfy the traction-free-edge

conditions for solving a symmetric cross-ply laminate under uniform plane strain.

In crack tip problems, by observing that singular power is always 1/2 and the

characteristics of the quadratic shape functions, Henshell and Shaw [52] and Barsoum

[53] discovered that by moving the mid-node of the standard isoparametric elements to

the quarter position from the standpoint of the crack tip, an exact 1/2 singular field could

be achieved. This method is quite simple and can be readily used with any general FEM

codes. It is shown [54] that the strain components vary as 1/.Jr along the sides of the

quadrilateral but not in the interior. The triangular element exhibits the requisite

singularity along the boundary and in the interior, that is, the strains vary as

(2.63)

and several computations showed that this method is very efficient for calculating stress

intensity factors [52-55]. Unfortunately, this method is valid only for A= 1/2 type of

singularities and not for other cases.

Whitecomb et al. [32] studied the reliability of FEM for calculating the singular

stress field, using it to compute the stress and displacement distributions of discontinuous

stress distribution bending problems and 45°/45°4-ply composite laminates. They found

that the FEM yielded accurate solutions everywhere except in a region involving the two

elements closest to the stress discontinuity or singularity. They concluded that the

displacement-formulated FEM appears to be a highly accurate technique for calculating

inter-laminar stresses in composite laminates, which implies that FEM is effective in

computing singular stress fields.

However, the use of singularity-embedded elements to solve interfacial singular

stress problems was not encountered in the literature search. This may be due to the fact
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that the singular power of an arbitrary bimaterial wedge cannot be known a priori,

therefore, a proper singularity-embedded FEM program is impossible.

2.4.2.2. Finite Element Iterative Analysis

For a fairly accurate computation of the singular power of an elastic interface

comer using equation (2.62) to be achieved, the numerical results from the FEM must

be very accurate. This is not a simple requirement. Moreover, this method will fail when

the singular power is complex. To overcome this constraint, Barsoum [20,21,42,46]

invented the FEIM to accomplish this task in the case of separable singular stress fields.

The FEIM relies on the use of general purpose FEM codes to penetrate deep into

the singular stress field as the iterations on a circular mesh proceed. A typical FEIM

mesh representation is shown in Fig. 2.14. Assuming that the finite element equation of

the linear elastic problem in Fig. 2.12 can be written as [20-21,72-74]

[K]

!

~:,

1

={OJ
R,n

U
Rout

(2.64)

where K is the global stiffness matrix and Uois the displacement of the origin of the

singularity, namely the interface comer for a bimaterial wedge; URinis the displacement

at the inner ring; uRoUlis the displacement at the outer ring (the boundary condition); and

uRi is the displacements of the remaining degrees of freedom. With some matrix

manipulation, the following relationship can be obtained [27]:

(2.65)

where T is called the transfer matrix, i.e., at the mth iteration,
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(2.66)

and

(2.67)

where Am is a scalar multiplierfor normalizing the vector URiD.Using the Rayleigh

quotient argument [27], at convergence, it is found that

A -A as m-oom (2.68)

where A is the first dominant eigenvalue of the matrix [f]. It is shown that for the case

of a power singularity A, A has the following form:

(2.69)

where A is the power of the singular stress field. Therefore, for a self-adjoint case, the

displacement u is given by

(2.70)

This form is referred to as a separable function.

From equations (2.17-2.18), it can be seen that the displacement field at the

vicinity of the wedge corner has the form of equation (2.70), i.e., the displacement

function is a separable function and the FEIM can be used to study the eigenfunctions.

Barsoum applied this method in investigating crack tip stress singularities for both

isotropic [83] and orthotropic materials [20,46], as well as for interfacial cracks [20,46].

Sukumar [72], Erdinc [73] and Sukumar and Kumosa [74] used this method to investigate

sharp notch tip stress singularities of isotropic and orthotropic materials. The problem

of interface corner stress singularities has previously been approached by this method

[21,49,73].
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2.4.3. Experimental Analysis

Experimental analysis of the mechanical behavior of bimaterial wedges was

conducted primarily by use of adhesive joints [10,28-30,43,55,58,59,61-70] and coated

plates [7,71]. Most studies have focused on the local geometrical influences on the

strength of adhesive joints and evaluation of stress intensity factors. Other work can also

be found in the area of energy release rate (GJ measurement and experimental

techniques.

2.4.3.1. Geometric Effects

From the analytical and numerical approaches in the previous sections, it can be

seen that the singular power A is a function of the wedge angles 81and 82in Fig. 2.12,

i.e., the local terminus geometry of an adhesive joint has a crucial influence on its

strength. Adams and Harris [66] tested three different edge geometries of the overlap in

single-lap joints: one with a square-edged adhesive layer, one with a fillet of adhesive,

and one with an adhesive fillet plus a radiused adherend. They found that significant

strength increments may be achieved in single-lap joints by filleting the adhesive at the

edges of the overlap and rounding the ends of the adherends. It was also postulated that

adhesive joint optimization yields a substantial decrease in the stress levels in the

adhesive layer, and in many cases a much lighter joint can be obtained [56]. After

performing extensive studies of single-lap, double-lap, step-lap and scarf-lap joints,

Hart-Smith [38,39,57] presented some guidelines for adhesive joint design to achieve

higher joint strength.

In order to obtain a more-or-Iess uniform shear stress distribution in the adhesive

layer to make maximum use of the adhesives, one must eliminate or minimize local

geometry effects. For this purpose, Weissberg and Arcan [70] proposed a versatile stiff

adherend test specimen (Fig. 2.6) to induce a uniform pure shear stress state practically
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free of tension and compression in the adhesive layer. They assumed that a (Mr + M.J

or (Mr + Mrr.) mixed-modestress state could also be arrived at by using this method.

Moreover, after the Arcan test and cone-and-plate test were analyzed using FEM in [68],

it was concluded that both tests show much promise as a constant shear stress in-situ

testing technique. However, after similar analysis of the Arcan test, cone-and-plate test

and napkin test with various modifications to the adherend edges, it was reported that the

stiff adherend specimen having rounded adherend edges provided the greatest degree of

uniformity in adhesive stress under all conditions. Wycherley et at. [69] claimed that

their Iosipescu-type specimen test was able to generate a uniform shear stress state inside

the adhesive layer; however, numerical results in reference [73] imply that the shear

stress in the adhesive layers is still not uniform because singular stress fields exist at the

wedge corners. Following a comprehensive study of the Iosipescu test principle, Kumosa

[78,79] proposed three different types ofIosipescu specimens with adhesive joints (Fig.

2.11) for pure shear and mixed mode testing of geometric effects. Efforts in this

direction have already been initiated [120].

2.4.3.2. Stress Intensity Factor Evaluation

Traditionally, adhesivejoints have been evaluated through strength measurements.

However, difficulties arise in the strength evaluation of adhesively bonded stmctures

because the stress and displacement fields near the bonding edge, where the delamination

starts, exhibit a singularity behavior, and an accurate strength measurement cannot be

madeusing stress values alone. Consideringthis point, an alternative approach is to

measure the fracture toughness, i.e., the stress intensity factor Q, which can characterize

the singular stress field and is a material constant, similar to the crack tip problems. The

idea of using stress intensity factors to evaluate adhesive joints was first introduced by

Gradin [10] and subsequently modified by Gradin and Groth [28-30]. Recently, Groth

and Brottare [43] applied this concept to elastic-plastic materials with small scale
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yielding. The techniques used by Gradin, Groth and Brottare [28-30] to measure the

stress intensity factors included both experimental and FEM analyses. In addition, a

single-edge notched-beam (SENB) [61] was used to evaluate the fracture toughness of

ceramic adhesive joints. Some other reports can also be found in references [64,70].

One significant difference in the measurement of stress intensity factors between

an interface corner and a crack tip in an isotropic material is that the stress intensity

factor at the wedge corner may be complex. In the case of complex stress intensity

factors, pseudocaustics can be employed for the evaluation. It has been reported that this

method is very simple, accurate and versatile [75].

2.4.3.3. Other Comments

In addition to the measurement of stress intensity factors, the energy release rate

G, was also evaluated by several authors [40,58,63,70]. Specially, Kinloch and Shaw [63]

used contour-double-cantilever-beam adhesive joint specimen (Fig. 2.15) to conduct their

test and concluded that the adhesive bond thickness, the width of the joint, the test rate

and test temperature had a great influence on G'cGoint).

Also, some adhesive thickness-effect oriented experiments were done by other

researchers [58,61,62,65]. These results indicated that the strength of the adhesive joint

increases as its thickness decreases. Anderson et aI. [65] attributed this phenomenon to

the fact that when the adhesive layer is thin enough, the singular stress field will be

smaller than a critical value and hence will not affect the strength.

Davidson [75] presented an in-situ method for examining the failure of interfaces

in composites. This method can be expected to be used to verify numerical calculations

as it is able to experimentally determine the strains in the vicinity of an interface crack

tip. Nevertheless, more investigation is needed to fully understand the procedure.
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2.5. Plastic Zone Evaluation at an Interface Corner

Whenever elasto-plastic materials are introduced into a bimaterial wedge, a plastic

zone will appear. In this case, it is of great interest to determine the size of the plastic

zone, and if possible, to apply the elastic solution to the plastic case.

2.5.1. Analytical Approach

Groth and Brottare [43] researched a simple case. The sample they studied is

shown in Fig. 2.16. The adhesive is assumed to be elastic-perfectly plastic and the

adherend to be rigid. A first rough estimation of the plastic zone size may be obtained

by assuming a stress (and strain) field in the vicinity of the bimaterial wedge in the

surface along y-direction having the following form:

(2.71)

where Qy is definedas a singular intensityfactor and h is the reference length.

As the material begins to yield when ay=as, the plastic zone size, rs, may be

derived from

(2.72)

This case is illustrated in Fig. 2.17, where stresses exceeding as are simply ignored by

this approximation.

From the case investigated, Groth and Brottare concluded that equation (2.72)

gives a good approximation of the maximum plastic zone size.



36

2.5.2. Finite Element Analysis

Generally speaking, numerical methods are always the first choice for nonlinear

analysis because of their versatility in dealing with both geometrical and material non-

linearities. Other than Groth and Brottare [43], who have tried to estimate the size of the

plastic zone, no investigations have dealt with non-linear analysis of interfacial plastic

zone using numerical methods. Further studies are required in this area.

2.5.3. Finite Element Iterative Analysis

As described in Section 2.4.2.2., the FEIM was originally developed for

evaluating singular stress fields in elastic media [20-21,83-85]. Subsequently, it was

extended to nonlinear problems so that the interfacial crack tip stress singularities could

be evaluated successfully [86-87], where Barsoum showed that for perfectly elasto-plastic

materials, the displacement inside the plastic zone followed zero singularity and the

strains in this zone had lIr singularity. However, no report has been made in the

application of FEIM to general elasto-plastic (power law hardening, Osgood hardening

or even double linear hardening materials) interface problems.
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Fig. 2.1 The four importantjoint deformations [95].
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(a) single lap

(b) double lap

Fig. 2.2 Single lap and doublejoints [95].
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Fig. 2.3 Non-uniform shear stress distribution in a double lap joint [39,57].



40

Fig. 2.4 Napkin ring test specimen [95].
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Fig. 2.5 Cone and plate specimen.
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Fig. 2.7 Iosipescu-type specimen for adhesive shear testing [69].
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b) test fixture

Fig. 2.10 (continued).
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Fig. 2.16 Butt joint geometry [43].
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Fig. 2.17 Normal stress along the interface and approximation of plastic zone [43].



CHAPTER 3

PROCEDURES AND RESULTS

3.1. Global Stress Analysis of Adhesive Joints

Knowledge of stress distributions within an adhesive joint is critical to

understanding mechanical behaviors of joints. In particular, the location of the maximum

stress concentration, the degree of non-uniformity, and the peel-stress allotment should

be adequately characterized. For the joints employed in this investigation, an analytical

approach was used within the framework of static linear elasticity. In addition, the finite

element scheme, a proven, reliable, and accurate method for stress analysis, was used

to re-analyze the stresses of thejoints. This numerical solutions also provided an estimate

of the validity of the analytical results. Furthermore, an experimental study was

performed in order to evaluate the mechanical strengths of adhesive joints.

3.1.1. Shear Lag Analysis

Shear lag analysis is a closed-form method based on linear elasticity with some

assumptions to make a theoretical procedure possible and simple. It was first introduced

by Cox [112] to predict paper strengths and later developed to determine stress

distribution inside a composite fiber [113]. In 1971, Hart-Smith used it to compute

stresses inside adhesive layers of single-lap and double lap joints [38-40]. More citations

on shear lag analysis method can be found in references [38-40,112,113].

54
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3.1.1.1. Link-Joint Model

A link-joint model, an adhesive joint used primarily as a link rather as a loading

joint, is shown in Fig. 3.1 with the assumption that a uniform external load CTois applied

parallel to the adhesive layer (y-direction). A Cartesian coordinate system is selected to

aid the analysis with its center in the axis-symmetric point of the adhesive layer (Fig.

3.1). The adhesive layer is assumed to be linear elastic, to have a Young's Modulus Es

and Poisson's ratio Ps,and possess a dimension of t in the x-direction (width), I in the

y-direction (length) and a unit thickness. The mechanical properties of the adherend are

Er and Pp representing the Young's modulus and Poisson's ration correspondingly.

Similar to the assumptions by Cox [112] for calculating the stress distribution

inside a single fiber embedded in a matrix, the following conditions are assumed for

studying the stresses inside the adhesive layer:

1) The bonding between the adhesive layer and the adherend is perfect.

2) There is no load on all the surfaces of the adhesive layer except the bonding

interfaces.

3) The deformation of the adhesive layer is small, viz., small deformation static

elastic theory is applicable.

4) The thickness of the adhesive layer, t, is very small relative to the adherend

dimension.

5) There is no change of stresses inside the adhesive layer along the x-direction,

that is, stresses are uniformly distributed along the x-direction for any fixed y-

coordinate values.

Provided that there is a general strain Ealong the y-direction in the adherend, at

a point with the load transferred from the adherend to the adhesive layer may be decided

thus,
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dF =H(us-ur)
dy

(3.1)

where

F = load in the adhesive layer

H = positive constant (defined later)

Us = y-direction displacement in the adhesive layer if adhesive is present

Ur = y-direction displacement at the same point if adhesive is absent

When equation (3.1) is differentiated with respect to y, the following is obtained:

d2F aus dUr
-=H(---)
dy2 dy dy

(3.2)

From the definitionof strain in smalldeformationelastic theory, we know that

du/dy = strain in the adhesivelayer

du/dy = strain in the adherend = E

The strain in the adhesive layer is due to the transfer of load because the adhesive

and adherend have different physical properties. To express this strain in terms of load,

the differences in moduli between the adhesive layer and adherend should be taken into

account. Let

(3.3)

then

(3.4)
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where A is the cross-sectional area of the adhesive layer. Substituting equation (3.4) into

equation (3.2)

(3.5)

The characteristic equation for the above equation is

and ~ is the eigenvalue of equation (3.5) with the following values:

(3.8)

Equation (3.5) is a non-homogeneous second order differential equation [116]. To

obtain a general solution for this equation, one needs first to determine the general

solution for its corresponding homogeneous equation:

(3.9)

and a special solution for equation (3.5).

With the eigenvalue solutions in equation (3.8), it can be immediately determined

that a general solution for equation (3.9) can be written as

(3.10)

2_p2=O (3.6)

where

(3.7)p= -
AEdiff
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where P and R are constants.

A special solution to equation (3.5) can be obtained by inspection:

(3. 11)

Therefore, by summing equations (3.10) and (3.11), the general solution for equation

(3.5) is

(3.12)

Taking into account the boundary conditions:

1
F=O at Y=:f:2

(3.13)

and substituting them into equation (3.12), one finds the constants P and R to be

P=R= 2AEdiff-

cosh(11P)
2

(3. 14)

Consequently, the y-direction stress distribution inside the adhesive layer is

aY=Ediff

[

l- cosh(PY)

]
cosh(lIP)2

(3.15)

The variation of the shear stress Txyalong the adherend-adhesiveinterface is

obtained by considering the equilibrium of the forces acting on an element of the

adhesivelayer as shownin Fig. 3.2
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(3.16)

therefore

1 dF
't =--
xy 2dy

_ _ PEd~ sinh(Py)

- 2 cosh(!lP)2

(3. 17)

From Fig. 3.1, it can be seen that the strain € in the adherend is generated by the

applied load ao, then:

a =Eeo r (3.18)

Substituting equation (3.18) into equations (3.15) and (3.17), the stress distributions

inside the adhesive layer are

(3.19)

(3.20)
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For two-dimensional problems of this type, H can be defined as [113]

Gs

H= In(wlt)
(3.21)

where

Gs = shear modulusof the adhesive

w = total lengthof the joint (x-direction)

t = width of the adhesivelayer

A schematic of the stress distributions is plotted in Fig. 3.3, with the following

properties:

1=10 mm, w=20 mm, t= 1.0 mm,

E.=2000 MPa, ".=0.35, &=73000 MPa, "h=0.30

therefore

G=740.74074 MPa, H=247.26533, {3=0.059014

If the adhesive is elasto-plastic, there will be plateaus on the stress curves in Fig. 3.3

when ay or/and 7xyexceed their yield limits (yielding strength). Such an example was

shown by Hart-Smith [57].

3.1.1.2. Butt-Joint Model

Adhesive joints are rarely used as demonstrated in Fig. 3.1. Rather, a frequent

joint type is butt joint (Fig. 3.4). If the adherends are adequately long compared with the

adhesive layer width, the stress distributions inside the adhesive layer still can be

approximately described by equation (3.19) and (3.20) by substituting aowith (-"ao), that

is, the y-direction strain is produced due to the Poisson's ratio effect. The stresses are
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(3.22)

(3.23)

The relative stress distributions remain the same as in Fig. 3.3 if the signs are not

considered. For butt joint, however, the most important stress component, the peel stress

(Jx,cannot be predicted using this method. A more sophisticated scheme or numerical

methods is or are necessary to conduct this calculation.

3.1.2. Airy Stress Function

An Airy stress function approach to solve stress distributions inside adhesive

layers of adhesive joint Iosipescu specimens (see Fig. 2.11) is attempted in this section.

A generic configuration for the analysis of stress distributions in an adhesive layer

is shown in Fig. 3.5, a portion cut from within the inner loading points of Fig. 2.11a.

The layer width t is assumed to be very thin. The force loads Fx and Fy, and moment

load M, can be referred from Figs. 2.8 and 2.11, where the moment will be zero along

the y-axis (i.e., x=O). The convention for the geometric and mechanical properties is

assumed to be the same as in Fig. 3.1.

The major difference between the joints in Figs. 3.4 (or 3.1) and 3.5 is that the

adhesive layers experience different deformation. The dominating deformation in Fig. 3.4
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is tensile while it is shear in Fig. 3.5. As a result, the approach to simulate the

mechanical behavior inside the adhesive joint will be different. Since there is no moment

load along the y-axis, it is legitimate to assume that the shear stress distribution inside

the adhesive layer will take the form:

_ Fy + dg(x) dj(y)
'txy-T dx dy

(3.24)

where

Fy = the force component in the y-direction (Fig. 3.5)

1 = the adhesive layer length (Fig. 3.5)

g(x) and fey): functions to be determined

In order to guarantee the shear forces being in equilibrium inside the adhesive layer, that

IS

(3.25)

fey) has to be an even function.

If we denote a stress function for the adhesive layer as 1/;,as in Section 2.4.1.1,

but using a Cartesian coordinate system, stress components will have the following

expressions:

(3.26)
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(3.27)

(3.28)

Substituting equation (3.25) into (3.28) and integrating equation (3.28) in terms of x and

y, one can obtain 1/;:

F
W(x,y):;-2xy-fty)g(x) +C1(x)+CiY)1

(3.29)

where C\(x) and C2(y) are functions to be determined. If equation (3.29) is taken into

equation (3.27), ay can be expressed as

(3.30)

By considering the boundary conditions that ay is zero at both ends of the adhesive layer,

one finds

(3.31)

Only y=l/2 is used in equation (3.31) because f(.) is an even function. After some

mathematical operations, equation (3.31) is equivalent to
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(3.32)

whereDl and D2are constants.Becauseall of the first order exponentterms in the stress

function do not contribute to the stress components [36], equation (3.29) now can be

rewritten as

(3.33)

let

1 1
h(y) =fl.2) -fly), (h(:I:2) =0)

(3.34)

(h(.) is also an even function) and equation (3.33) will become

F
W(x,y)=-2xy+h(y)g(x) +Cz(y)1

(3.35)

According to the elastic theory, stress function 1/;has to be biharmonic [equation (2.11)],

that is,

(3.36)

Substitute equation (3.35) into (3.36)
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and assume that

g(x)h(y) *0 (3.38)

Divide both sides of equation (3.37) by g(x)h(y)

(3.39)

Notice in the constitution of equation (3.39) that the first term is only a function of x,

the third is only a function of y, and both the second and fourth terms are functions of

x and y. It is therefore necessary to assure that the first and third terms cancel each

other. Hence,

(3.40)

where Do is a constant. Solving equations (3.40) and taking into account that h(.) is an

even function, we obtain

(3.41)

and

(3.42)
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Further substituting equations (3.41) and (3.42) into equation (3.39), we have the

following equation:

(3.43)

Similar to the principle of treating equation (3.39), it is legitimate to assume

D
( !!.X2+6Dr+2D,J=constant2

(3.44)

to make equation (3.43) have only one variable y left. With equation (3.44), it can be

seen that

D =D=0o 3 (3.45)

therefore, equation (3.43) is simplified as

8D D dci(y)4 7 + =0
dx4

(3.46)

Solve equation (3.46) and omit the terms lower than order 2, and one gets

(3.47)

where D9 and DIOare constants.

With a substitution of equations (3.41), (3.42), (3.45) and (3.37) back into

equation (3.35), the stress function is found to have the following form:



so the tensile stress in the y-direction, referring to equation (3.26) is

By the principle of equilibrium in the x-direction, one can write

I
2

Fx= J axdy
I
2

=2D7(D4X2+Dr+ D~/-..!.D 4Di3 +2DlOI
3

Since Fx is a constant whenever the external load is fixed, therefore

Further, via the moment equilibrium, the following relationship has to be held:

I I- -
2 2 F

M= Ja~dy=J(2+6D~)ydy
I I 1-- --
2 2

=..!.D 13
2 9
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(3.48)

(3.49)

(3.50)

(3.51)

(3.52)
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where M, a function of x-ordinate, is the bending moment on the corresponding plane

and can be calculatedfrom Fig. 2.8. Consequently,D9 can be determined:

DIJ=2M
13

(3.53)

and one can immediately solve for the stress functions by substituting equations (3.51)

and (3.53) back into equation (3.48):

(3.54)

so that the stress components can be computed using the following equations:

Fz M
(J =-+12-y
z 1 13

(J=0
y
F

't =2
zy 1

(3.55)

Assuming that an adhesive joint Iosipescu specimen (Fig. 2.11) has a 1= 10 mm

adhesive layer length along the notch root axis and is under pure shear loading with

p= 10 N, stress distributions within the layer can be calculated using formula (3.55) and

depicted in Figs. 3.9-3.11, where these closed form solutions are used to compare with

the numerical results.

3.1.3. FEM Analysis

A schematic of adhesive joint Iosipescu specimens is shown in Fig. 2.11. The
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adherend can be either isotropic or orthotropic. The adhesive layer thickness (t) IS

adjustable according to experimental purposes.

The Iosipescu method, originally designed to determine the shear properties of

metals in 1967 [100], has been investigated by many researchers [101-103], then

modified to measure in-plane biaxial mechanical properties of metals and composites

[104-107, 110]. The latest version is the modified biaxial Iosipescu test fixture (Fig.

2.lOa) developed at the University of Cambridge [107] and now being marketed by

Instron Corporation. The loading diagram of the fixture is shown in Fig. 2. lOb. The

Iosipescu specimen can be tested on this fixture in a pure shear or in-plane biaxial mode.

Figure 3.6 is a schematic drawing of a Type A adhesive joint Iosipescu specimen.

Its finite element representation is shown in Fig. 3.7, which is assumed to be under

biaxial loading conditions. An examination of Fig. 3.7 reveals that if the boundary

conditions are taken into account, no axial symmetry is available; therefore, a whole

specimen mesh is necessary. The interface corner was very finely meshed (Fig. 3.8c) so

that the complicated stress state could be adequately simulated. The external loadings

were assumed to be uniformly distributed forces over the loading surfaces (Fig. 3.6),

since force-couple boundary conditions were found to best approximate the experimental

loading configurations [89-91]. The summation of the external loading at any individual

loading location was kept the same, disregarding the loading angles, which would make

the results comparable based on the same external loading magnitude. Eight-node

isoparametric elements were employed. The total number of elements was 5984 and the

total number of nodes 18373. All of the finite element calculations were accomplished

using the software code of ANSYS, Version 4.4A [54].

The other two types of Iosipescu joint specimens were meshed and calculated

similarly. All of these joint root mesh configurations are depicted in Fig. 3.8, where

finer elements were employed at all the interface corners and sharp notch tips in order

to capture the potential singular stress behavior at those points. The degree of freedom

(DOF) or the total number of elements varies, but the schemesare identical.
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Computations were carried out assuming linear elastic deformation.

Assumingthat the loadingangle is cP, the externallyappliedcompressiveload is

P (Figs. 2. lOa and 2.11), the distance between the inner loads is a, and the distance

between the outer load is b (Fig. 3.6), the specimen width is 20 mm, the force couples

Pa and Pb (Fig. 3.7) can be evaluated as follows according to the force and moment

balance requirement:

P _ (a+20tan<J»P
a a-b+40tan<J>

(3.56)

P _ (b-20tan<J»P
b a-b+40tan<J>

(3.57)

Obviously, the force components along x- and y-directions along the adhesive

center line (x =0) are

JFy = - Pcos<J>

rx =- Psin<J>

(3.58)

Therefore, the nominal shear stress along the adhesive center line is

Pcos<J>

"txy=- 10
(3.59)

and the tensile stress in x-direction along this line is

Psin<J>

°x=--W
(3.60)
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The minus signs in equations (3.59) and (3.60) are used to obey the sign convention in

the theory of elasticity [36]. Throughout this analysis, the externally applied compressive

force is fixed at 10 N. Therefore, under pure shear loading conditions, the nominal shear

stress along the adhesive center line will have the value of -1 MPa.

3.1.3.1. Geometric Effects

Three types of notch root configurations (Fig. 2.11b and 3.8) were taken into

account, with an assumption that the distances along the notch root axis would retain the

same value of 10 mm for all three cases. A detailed schematic drawing of the joints of

Type A is shown in Fig. 3.6 with its FEM representation in Fig. 3.7. Stress distributions

of shear and tensile in x- and y-directions inside the adhesive layers are depicted in Figs.

3.9, 3.10 and 3.11 for all three geometries under pure shear loading. The location labels

on these three figures are interpreted as if there is a Cartesian coordinate system placed

at the four-fold center of the adhesive layer for individual specimens (see Fig. 3.5).

3.1.3.2. Loading Angle Effects

When the adhesive layer was assumed to be 0.2 mm of Type A joint, the shear

stress distributions along different paths are shown in Fig. 3.12 under various loading

conditions. Figure 3.13 shows the tensile stresses along x-direction (aJ and Figure 3.14

reveals the tensile stresses along y-direction (ay) under those conditions.

3.1.3.3. Adhesive Thickness Effects

Shear stress distributions along different paths for external loadings in a pure

shear mode are shown in Fig. 3.15 for adhesive layer thicknesses of 0.1, 0.2 and 0.5

mm; in addition, CTxis shown in Fig. 3.16 and CTyin Fig. 3.17.
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For loading angles other than pure shear, one typical case of a=-30° loading angle

(shear and tension) is presented along several paths for the three adhesive layer

thicknesses. Figure 3.18 shows the shear stress distributions, Fig. 3.19 the x-direction,

and Fig. 3.20 the y-direction tensile stress configurations. For a direct view of stress

unifo~mity inside the adhesive layer, equivalent stress contours for different adhesive

layer thicknesses at loading angle 30° (shear and compression) are shown in Fig. 3.21.

3.1.4. Experimental Approach

Adhesive joint specimens were made for experimental studies. All three types

were considered; their photographs are shown in Figs. 3.22-3.24. A schematic of

specimen of Type A is shown in Fig. 3.6 to demonstrate the specimen dimensions. The

adherends are aluminum, and adhesives are 3M! brand brittle DP 100 and ductile DP 190

[92-94]. All tests were conducted at room temperature.

3.1.4.1. Procedure

To conduct adhesive joint Iosipescu specimen tests, three steps are necessary:

adherend preparation, specimen making, and joint testing.

Adherend Preparation:

1. Machine the aluminum adherends into a shape as in Fig. 3.22-24 with a surface

finish of about grade 16L.

2. Polish the to-be-glued surfaces with #C600 emery paper.

3. Rinse the adherends sufficiently in running tap water.

4. Degrease them using Acetone in a supersonic tank for 5 minutes.

1 3M is a trademark.
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5. Clean them in Oakite2 Aluminum Cleaner solution (see below) at 88:t5°C for

about 15 minutes.

6. Rinse them in running tap water immediately.

7. Put them in acid etch solution (see below) for 10 minutes at 65+3°C.

8. Rinse them in running tap water immediately.

9. Dry them in the air for 15 minutes.

10. Dry forcefully at 65+5°C for 10 minutes.

Oakite2Aluminum Cleaner Solution [115]

Preparation: Add total required quantity of Aluminum Cleaner 164 to half

the volume of water, cold, while stirring and heat to about 82°C. Then, add the

remaining half of water and adjust solution to operating temperature.

Application: It is normallyused at 45 to 75 g/l of water in the temperature

range of 52 to 82°C.

Acid Etch Solution [92-94]

Chemicals wt%

Sodium dichromate 1

Sulfuric acid, 66°Be 9

2024-T3 aluminum (dissolved) 0.04

Tap water 24.8

Specimen Making:

1. Load the well-cleaned adherends on the Bonding Assembly3 (Fig. 3.25) with

2 Oakite is a trademark.

3 BondingAssemblyis ajig madein 001 for makingadhesivejoint Iosipescuspecimens.
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teflon tape laid under the adherends to prevent them from being bonded to the jig.

2. Apply the appropriate adhesive to the (joint) gap.

3. Let the specimens cure at room temperature (23:f:1°C) for 24 hours (DP 100

adhesive) or 7 days (DP 190 adhesive).

4. Modify the root geometries to the desired shape using a sharp surgical blade.

5. Polish all the surfaces with #C600 sandpaper.

6. Measure all the dimensions of a specimen. At least three points should be

evaluated for each dimension and the average value is the one used as its namely

measure.

Joint Testing:

1. Load the specimen on the Modified Iosipescu Fixture (Fig. 2.10) and set the

loading angle as desired.

2. Connect all the sensors and recording equipment.

3. Set the loading displacement speed at 0.0025 mm/sec for rigid adhesive joints or

0.0125 mm/sec for flexible adhesive specimens.

4. Conduct the test on an Instron4 mechanical testing machine.

5. Save the data and broken specimens for further processing and examinations.

3.1.4.2. General Observations During Testing

Typical load-displacement diagrams for adhesive joint Iosipescu specimen testing

are shown in Fig. 3.26a, band c, which are the three categories classified according to

the following:

(1) The force load went up almost linearly with an increase in the displacement

until the specimen was broken (Fig. 3.26a). The percentage of specimens broken

4 Instronis a trademark.
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in this manner was about 32%.

(2) The load rose almost linearly when the displacement increased until a kink

point was observed (Fig. 3.26b). This kink indicates that there was an instant

unloading at that moment. Afterwards, the load incremented again up to the

breaking point. This category took place in about 38% of the specimens.

(3) The load ran up almost linearly when the displacement increased until a kink

point was noticed; however, one or more kinks would appear as the external

displacement load kept going up until the final rupture of the joint (Fig. 3.26c).

About 30% of the specimens tested failed this way.

Both the first kink and the final rupture loads were recorded. These loads was

used to analyze the mechanical behavior of the joints. However, for the first case, it is

obvious that the first kink and the rupture loads were the same (Fig. 3.26a).

After the first kink popped up, a small crack at the notch root was initiated, most

of the time at the interface corner (Figs. 3.58, 3.60 and 3.62) and sometimes at the notch

sharp tip for Type B geometry (Fig. 3.59). Sudden crack propagation was found to occur

with the appearance of multiple kinks. In this scenario, the crack surfaces were generally

step-wise (Fig. 3.63) for rigid adhesive joints. For joints bonded by flexible adhesives,

the fracture surfaces were flat from a macroscopical viewpoint (Fig. 3.65) since the

failure pattern was peel-off for these types of joints. More observations and discussions

on crack surfaces will be given in later sections.

3.1.4.3. Experimental Results

Results of tests for different notch root geometries and loading angles are

presented in Figs. 3.27 and 3.28, in which only the rigid adhesive was used with an

adhesive layer thickness being kept at 1.0 mm. Two types of adhesives, DP 100 and DP

190, were employed to conduct another set of tests so that the effects of adhesive
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properties could be observed. The data obtained are plotted in Figs. 3.29 and 3.30.

Thickness effect can also be considered through comparison of Figs. 3.27 to 3.30 in

terms of rigid adhesive (DP 100).

3.2. Singular Stress Analysis at an Interface Corner

The stress singularity at an adhesive interface is a major problem for joint

designs. In evaluating the asymptotic field for comer stress singularity, it is essential to

consider various joint geometries, adhesive and adherend elastic properties, and nonlinear

material effects. The asymptotic singular fields for many adhesive joint geometries are

not available due to the complexity of the analytical formulations.

3.2.1. Composite Parameter Calculation Using Williams' Stress Function

In light of the literature review in Chapter 2, it can be deduced that when the

geometry of a bimaterial wedge is fixed (for instance, Fig. 2.12), the singular power A

can be simplified as a function of a pair of composite parameters ex and (3 [equation

(2.55)] [27,81]; however, the parameters were obtained using complex potentials that

generally are difficult to understand without a mastery of complex functions and integral

transformations. In this section, the simple Williams' stress function will be used to

extract these two parameters.

A bimaterial wedge with an arbitrary geometry as in Fig. 2.12 is assumed. In

addition, all the geometrical and physical property conventions remain the same as in

Section 2.4.1. Therefore, from equations (2.13)-(2.16), the individual stress components

in the polar coordinate system can be written as

0rr=(1-A)r-J..[(2+A)sin(A6)Al +cos(A6)A2)

-(2 - A)(sin«(2 - A)6)A3+cos((2 - A)6)A,J]
(3.61)
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aee=(2-A)(1-A)r-~[(2+A)sin(A6)Al +cos(A6)A2)

+sin«2- A)6)A3+COS«2-A)6)AJ
(3.62)

are=(l-A)r-~[A( -cos(A6)Al +sin(A6)A2)
+(2- A)(-cos«2 - A)6)A3+sin«2 - A)6)AJ]

(3.63)

From the theory of elasticity, the relationship between displacements and strains

can be written in the following form:

aUr

Err=ar
(3.64 )

aUe ur--+-
€ee- ra6 r

(3.65)

au aUe ue_ r +___
Yre- ra6 ar r

(3.66)

where Ern Eooand 'YrOdenote the radial strain, circumferencial strain, and total shear

strain, respectively.

In accordance with Hooke's law for a generalized plane stress case, the strains

can be expressed in terms of stresses:

(3.67)
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(3.68)

(3.69)

where E is the Young's modulus and 11denotes the Poisson's ratio in a generalized plane

stress condition. If a plane strain condition is assumed, E and 11 should be replaced by

E=~
I-v2

(3.70)

and

vv=-
I-v

(3.71)

By using equations (3.61)-(3.71) and assuming no rigid body motion, the

displacement components are

I-A.

ur=~[((2+A)-v(2-A»(Sin(A6)AI +cos(A6)A~E

-(2- A)(1+v)(sin((2- A)6)A3+cos((2- A)6)A,J]

(3.72)

and

I-A.

Uo=-~[(v A+(A-4»(COS(A6)AI-sin(A6)A~E

+(2 - A)(1+v)(cos((2- A)6)A3-sin((2- A)6)A,J]

(3.73)
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In addition, when all the stress expressions [equations (3.61-3.63)] and

displacement components [equations (3.72) and (3.73)] are substituted into the boundary

conditions in equations (2.2)-(2.9), eight linear equations are obtained:

sin(A61)A:l) +cos(A61)A~1)

+sin(2- A)61)A~1)+cos«2- A)61)A~1)=0

(3.74)

sin( A6JA?> +cos( A62)A?)

+sin(2 - A)62)A?) +cos«2 - A)6JA~2> =0

(3.75)

- ACOS(A61)A:l)+ ASin(A61)A~1)

-(2 - A)cos(2 - A)61)A~1)+(2- A)sin«2 - A)61)A~1)=0

(3.76)

- ACOS(A62)A :2) + ASin( A6JA?)

-(2 - A)cos(2 - A)62)A?) +(2 - A)sin( (2 - A)62)A~2) =0

(3.77)

(3.78)

(3.79)

(3.80)

(3.81)



80

where kl and k2are defined as in equations (2.19) and (2.20), and r by equation (2.54).

With an algebraic manipulation of equations (3.77) and (3.80), it is found that

«(I'(k1 + 1) +A2 + 1)-(A2 + 1)

+(I'-I)(A -2»A~1) +(I'-I)(A -2)A11) -(A2 +l)A~2) =0
(3.82)

while using equations (3.78) and (3.81), one obtains

« -f(k1 + 1) +A2+1) +(A2+1)

+(I'-I)A)A~l) -(I'-I)(A -2)A11) +(k2+l)A~2) =0
(3.83)

A close inspection reveals that if two composite parameters exand {3are defined

as in equations (2.52) and (2.53), then equations (3.82) and (3.83) can be rewritten as:

(3.84)

and

(3.85)

The composite parameters exand {3were first introduced by Dunders [27]. In this

section, the parameters were determined by the direct application of Williams' Airy stress

function. It should be noted that only two independent composite parameters (such as

exand (3)can exist. However, the choice of these two parameters is not unique; any two

independent parameters (which would be functions of r, kl and k2) can be selected

depending upon convenience for the application being considered. In this case, the two

parameters [exand {3in equations (2.52) and (2.53)] have been widely recognized as the

most appropriate for the analysis of two-dimensional interface problems [8I].
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3.2.2. FEM Approach

3.2.2.1. Stress Concentration Observation

To obtain preliminary knowledge about a problem, it is often necessary to begin

studying a problem from one of its simplest forms. A rectangular plate comprised of two

different linear-elastic materials, shown in Fig. 3.31, was employed to conduct an initial

macro-scale analysis of the asymptotic stress field. The plate had a length of 40 mm and

a width of 20 mm. The interface between Point A and Point B was at an angle of a=45°.

The properties for Material 1 were: Young's modulus E. = 10000 MPa and Poisson's

ratio "1=0.3. For Material 2, Young's modulus ~ was 1000 MPa, and Poisson's ratio

"2 took the value 0.35. Plane strain loading condition with evenly distributed tensile

stresses (20 N/mm2) on both ends DC and EF (Fig. 3.31) was assumed. Eight-node

quadrilateral and six-node triangular isoparametrlc elements were used with isotropic

elastic properties. The finite element model is illustrated in Fig. 3.32, which was meshed

with relatively small elements at the interface corners. Seven rings of elements

surrounded each corner. The mesh consisted a total of 522 elements and 1646 nodes. The

computation was carried out via FEM software code ANSYS 4.4A [54].

The deformed structure superimposed with its original contour is shown in Fig.

3.33. This figure clearly shows that Material 1 tends to elongate less when compared to

the lower softer material (Material 2). In addition, the von Mises equivalent stress [see

equation (3.89)] distribution is presented in Fig. 3.34. Maximum stress concentration can

be found at wedge corner A. It is surprising, however, that the minimum value of the

equivalent stress exists at another interface corner, point B. This may imply that no stress

singularity takes place at this corner for the current material combination and structural

geometry. This is a very important observation: if a bimaterial interface can be such

designed that no singularity exists at its interface corner, this bimaterial wedge will

surely have the highest strength; therefore, a micro-scale study is conducted in a later
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section to reveal the truth.

3.2.2.2. Asymptotic Field at Interface Comers

A linear elastic, two-dimensional finite element analysis of an adhesive butt joint,

shown in Fig. 3.35, was conducted to investigate the eigenfunctions around an interface

corner. This joint was assumed to be made of a layer of softer adhesive and two stiffer

adherends, as may be the case for an adhesively bonded steel or aluminum joint, and to

be subjected to traverse tension loading, which was a prescribed uniform displacement

on the adherends along the y-direction to induce a nominal strain 0.0001 inside the

adhesive layer. No load was applied along the x-direction. The width of the joint

analyzed was 400 mm with the thickness 2t ranging from 0.1 to 200 mm. A state of

plane strain was assumed in the analysis.

Given the four-fold symmetry of the model, only one quarter of the joint was

discretized (Fig. 3.36) using two-dimensional six-node triangular and eight-node

quadrilateral isoparametric plane strain elements. It can been seen from Fig. 3.36 that

a very fine mesh was used in the vicinity of interface corner in order to capture the

singular stress fields in this area. The finite element code ANSYS Version 4.4A [54] was

employed in this analysis.

As a matter of convenience, equations (3.61)-(3.63) may be expressed in the

following form [same as equation (1.1)] [8,9,49]:

(3.86)

where Q, in analogy with the K-parameter used in linear elastic fracture mechanics, is

defined as the stress intensity factor and fij(8) is a bounded function that defines the

trigonometric component of equations (3.61)-(3.63). With a combination of Q and fjj(O)

as Qjj(O),equation (3.86) can be written as:
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(3.87)

where Qjj(O)is defined as the radial stress intensity factor. Taking logarithmic

operations on both sides, equation (3.87) becomes

(3.88)

Figure 3.37 shows a plot of 10g(O"Jversus log(r) for varying thicknesses of the

adhesive layer at the interface (0 = 0°), where O"cis the equivalent stress (as defined by

von Mises [36])

(3.89)

where 0"\, 0"2 and 0"3 are theprincipalstresses.Equivalentstresso"ccan be obtainedfrom

the finite element analysis. The parameters Qc(O)and Acan be easily obtained from the

curves presented in Fig. 3.37, since, as can be seen from equation (3.87), Ais the slope

of the lines and Q.,(O)is the value of o"cfor r equal to 1.

From Fig. 3.37, it is seen that when r goes to zero, the equivalent stress o"c

increases exponentially, except when r is too small as in this case the shape functions

used to form the finite element code are unable to accurately describe these exponential

changes. Taking these facts and the observations in Section 3.2.2.1 into account, it is

obvious that around the interface comer there exists a singular stress field (asymptotic

field).

The normalized angular displacement eigenfunction distributions, Uxand uyinside

the asymptotic field, are shown in Figs. 3.38a and b correspondingly at the radii of 0.1

and 1.0 mm. These FEM-based eigenfunctions will be used to compare with those from

analytical and FEIM approaches in later sections, and hence to find out the advantages

and disadvantages of individual schemes.
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3.2.2.3. Computation of ). and Q Using log-log Approach

Assuming the principle in Fig. 3.37, a logue-logr plot was used to extract the

numerically computed singular powers and the radial stress intensity factors defined by

equation (3.87). Substituting the subscript ij with e (equivalent) in both equations (3.87)

and (3.88), we obtain

(3.90)

where Q~(e)denotes the equivalent radial stress intensity factor, and

(3.91)

Consequently, with the results of the finite element calculation of an adhesive joint, it is

easy to extract the singularpower). and the radialequivalentstress intensityfactor Q~(e)

of this joint by using equation (3.91). To ensure high accuracy levels, a linearized least

square fitting method was employed in this study.
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Table 3.1 Comparison of analytical and numerical singular powers and normalized
radial equivalent stress intensity factors (v=0.3, t= 10 mm)

5 Q/«()) is the normalized value with respect to its zero degree angle, that is,
QeoCO) =QeCO)/QeCO).

E (MPa) 8 0" 18° 36° 54° 72° 90"

A .28882 .28882 .28882 .28882 .28882 .28882

analytical
solution Q:(8f' 1.0000 1.1346 1.2572 1.3283 1.3283 1.2555

A .28939 .28960 .28838 .28877 .29000 .29065

300 Q.(8) .10245 .11620 .12963 .13672 .13596 .12825

Q;(8) 1.0000 1.1342 1.2654 1.3345 1.3271 1.2519

A .28919 .28960 .28925 .28927 .28927 .29336

2632 Q.(8) .89960 1.0195 1.1320 1.1960 1.1928 1.1485

Q;(8) 1.0000 1.1338 1.2583 1.3295 1.3132 1.2767

A .28931 .28929 .28905 .28910 .28938 .29372

21000 Q.(O) 1.0151 1.1963 1.3429 1.4124 1.3808 1.2843

Q;(O) 1.0000 1.1785 1.3229 1.3914 1.3602 1.2651
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Table 3.2 Comparisonof analyticaland numericalsingularpowers and normalized
radial equivalentstress intensityfactors (v=0.3, E=2632 MPa)

The FEM model used for this purpose is the same as in Fig. 3.35; however, both

adherends are assumed to be rigid (Eadhcrend=00) with a external prescribed y-direction

uniform displacement to generate a nominal strain of 0.0003 inside the adhesive layer.

Only one quarter of the adhesive layer is necessary to be discretized (Fig. 3.39) for the

entire computations because of the four-fold symmetry. The adhesive layer thickness,

Young's modulus, and Poisson's ratio were treated as the independent variables. For

different cases, the numerical results of Aand Qc(lJ)are listed in Tables 3.1,3.2,3.3 and

3.4 respectively, where the analytical data were obtained via equation (2.59) with the

Newton-Raphson method [49,117], and the normalized equivalent radial stress intensity

factor is labeled as Qc'(lJ) through normalizing Qc(lJ)with respect to its value at zero

degree angle, Qc(O).

t (mm) 8 0" 18° 36° 54° 72° 90"

analytical A .28882 .28882 .28882 .28882 .28882 .28882
solution

Q:(O) 1.0000 1.1346 1.2572 1.3283 1.3283 1.2555

A .28903 .28932 .28894 .28889 .28925 .28906

50 Q.(O) 1.4319 1.6325 1.8030 1.9058 1.9011 1.8007

Q:(O) 1.0000 1.1401 1.2592 1.3310 1.3277 1.2576

A .28919 .28960 .28925 .28927 .28927 .29336

10 Q.(O) .89960 1.0195 1.1320 1.1960 1.1928 1.1485

Q:(O) 1.0000 1.1338 1.2583 1.3295 1.3132 1.2767

A .28952 .28899 .28935 .28946 .29409 .29994

1.0 Q,(O) .46159 .52493 .58102 .61384 .59929 .55149

Q:(O) 1.0000 1.1372 1.2587 1.3299 1.2983 1.1948

A .28898 .28870 .28838 .29374 .30575 .32070

0.1 Q,(O) .23830 .27097 .29950 .30541 .28442 .24762

Q:(O) 1.0000 1.1371 1.2568 1.2816 1.1935 1.0391
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Table 3.3 Comparison of analytical and numerical singular powers and normalized
radial equivalent stress intensity factors (1'=0.26, t= 10 mm)

Table 3.4 Comparison of analytical and numerical singular powers and normalized
radial equivalent stress intensity factors (,,=0.35, t= 10 mm)

3.2.2.4. Free Edge Stress Intensity Factor

A free edge stress intensity factor calculation formula, based on dimensional

analysis, was proposed by Reedy [8-9]. When the ratio of the adhesive length to its

thickness is greater than 20, Qy(O),defined as the free edge stress intensity factor, can

be evaluated by the following equation [8-9]:

(3.92)

where 2t is the adhesive layer thickness, (l is defined as the characteristic stress at the

center of the adhesive in the x-direction (u. = Uxat the center), and A(v) is a function

E (MPa) 6 0" 18° 36° 54° 72° 90"

A .26184 .26184 .26184 .26184 .26184 .26184

analytical
solution Q;(8) 1.0000 1.1050 1.2099 1.2174 1.2872 1.2348

A .26232 .26249 .26234 .26235 .26318 .26374

2632 Q.(8) .84150 .92964 1.0194 1.0765 1.0814 1.0354

Q;(8) 1.0000 1.1048 1.2115 1.2792 1.2851 1.2304

E (MPa) 6 0" 18° 36° 54° 72° 90"

A .32030 .32030 .32030 .32030 .32030 .32030
analytical
solution Q;(8) 1.0000 1.1730 1.3135 1.3826 1.3639 1.2600

A .32185 .32086 .32048 .32017 .32271 .32164

2632 Q.(o) 1.0151 1.1963 1.3429 1.4124 1.3808 1.2843

Q;(O) 1.0000 1.1785 1.3229 1.3914 1.3602 1.2651
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of v and loading conditions, whose values for different v in pure tension and pure shear

loading conditions have been characterized by Reedy [8-9].

For a plane strain case, CT-is

_ vEa - €

(1 +v)(1-2v) n
(3.93)

where Enis the nominal strain at the center of the adhesive [8-9].

Table 3.5 Numerical and predicted free edge stress intensity factors

, EAt (I. A(') Q,oo' Q,fNI' error

.26 2632 .2618 10 .3394 1.736 1.077 1.056 1.9%

.30 300 .2888 10 .05192 1.32 .1333 .1326 .5%

.30 2632 .2888 10 .4555 1.32 1.169 1.159 .9%

.30 21000 .2888 10 3.635 1.32 9.329 9.279 .5%

.30 2632 .2888 50 .4555 1.32 1.861 1.851 .5 %

.30 2632 .2888 1 .4555 1.32 .6013 .5883 2 %

.35 2632 .3203 10 .6823 .948 1.352 1.342 .7%

: a.'''' bY ReadY's formula: o.,n, Ylanumencal methods.

For a validation of equation (3.92), the free edge stress intensity factors, for

severaldifferentcases under the loadingconditionof a nominalstrain En=0.0003, were

evaluated using equation (3.90) and comparedwith the results predicted by equation

(3.92). All data are listed in Table 3.5.

3.2.2.5. Singular Zone Evaluation

A stress field is said to be singular if the stress distribution obeys the following

rule:
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(3.94)

From the previous analytical and FEM analyses (Section 3.2.2.1 and 3.2.2.2), it is clear

that the stress field near the bimaterial corner is singular. The singular power describes

the strength of the singular field, and the stress intensity factor indicates the magnitude

of this field. However, the geometry of the singular zone, inside which the stresses obey

relation (3.94), remains unknown from the aforementioned analyses. Therefore, a new

method for evaluating the geometry of a singular stress zone is necessary.

It is clear that the true stresses within a finite bimaterial wedge (except a very

localized area near the singular point) can be always obtained numerically. If it is

assumed that the stress distribution inside this wedge can be globally described by the

singular stress formula of equation (3.87), the assumed stress distribution should be

identical to the true stress distribution in the close vicinity of the singular stress point

located at the bimaterial wedge corner. However, at points away from the wedge corner,

the assumed stresses will diverge from the true stresses, since the singular zone is only

localized at the corner (see Fig. 3.37). A measure of the degree of divergence can be

defined as

_ °true -oassumed Ixl00Yo-I °true

(3.95)

where the sub-index a implies that the degree of divergence is obtained based on the

stress field.

In this study, it was assumed that a point was said to be within the singular zone

if 'Yaat this point was less than 1.0; otherwise, this point was outside the singular zone.

In order that singular stress zone geometries could be investigated from another

point of view, the displacement fields were also employed to calculate the degree of

divergence, which wasdefinedas
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=IUtrue -U tI£fUIfIed Ixloo
Yu Utrue

(3.96)

and the criterion for singular zone determination based on displacement fields was

selected as 1.0 as well.

The singular stress zone geometries, extracted using different parameters under

various conditions, are shown in Fig. 3.40.

3.2.3. FEIM Scheme

From the FEM results in Table 3.2, it was found that when the adhesive layer

thickness (2t) was adequately small, the finite element solutions near the free surface

were not acceptable either because the singular zone seemed to be very localized or the

element sizes at the interface corner were too coarse to determine the singular power A

correctly (see Table 3.2). As a matter of fact, even if t is larger, the FEM solutions near

the wedge corner are not accurate either because of the incapability of the polynomial

shape function to approximate the steeply changing stress field (see Fig. 3.37).

Therefore, the FEIM suggested by Barsoum [83-87] was used to calculate A under

different material combinations and wedge geometries.

3.2.3.1. An Isotropic Elastic-Rigid Bimaterial Wedge

An isotropic elastic-rigid bimaterial wedge was considered with all conventions

being the same as in Fig. 3.35, but with rigid adherends(Eadhcrmd=(0). Without losing

generality, only one of the four bimaterial wedges in Fig. 3.35 will be considered in this

section. Thus, the geometry of interest looks like an elastic adhesive layer bonded to a

rigid substrate.
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The basic requirement in applying the FEIM is that the displacements within the

singular field can be written as

(3.97)

that is, this is a separable function [83-87,118]. Therefore, the ratio between the

displacements at an outer ring of routand those at an inner ring of radius rinalong any ray

has the form of

(out)
U. T0Ul

)
1-A.

~=(-
(in) Till

'U.1

(3.98)

By studying equation (3.98), it is obvious that inside the singular stress zone, the

ratio of any two displacements along any ray is only a function of the two radii and the

singular power "A,but is not a function of the ray angle 8. With this observation, the

singular power can be computed by going through the following procedures. First, the

region of interest, taking into account quarter symmetry, Fig. 3.35 (assuming rigid

adherends) is analyzed by the FEM with a relatively coarse discretization as shown in

Fig. 3.39. Then, a subarea of interest is re-meshed with rings and rays as shown in Fig.

3.41. The global displacement field, computed by the FEM on the outline of the subarea,

is prescribed on the out-most ring to serve as the new boundary conditions for this

sub-domain, and a new iterative computation for this area is carried out using the FEM.

The singular power of this iteration can subsequently be obtained using equation (3.88)

or (3.91). The termination of the iterative procedure is controlled by a relative

convergence criterion, which is defined as

A.I-A.
X= 1+ 1 xlOO< const

Ai+1
(3.99)



.. -..-.. ..- '-.... ----

92

where const is a constant being determined by desiring a light or tight criterion. It is

chosen as 0.001 % throughout this presentation unless otherwise specified.

If the first iterative solution is unable to meet the convergence criterion in

equation (3.99), it implies that the subarea is not entirely inside the singular field.

Therefore, further calculations need to be carried out through a scaling of the

displacements on the inner ring with an appropriate factor [20,21,42,46,49,83-87], then

imposing them on the outer ring as the rebuilding boundary conditions, re-computing this

sub-domain using the FEM, extracting the new iterative singular power, and checking

whether the accuracy level is adequate. If not, with repeating the above procedure, the

singular zone may always be deeply approached, and the correct singular power may

therefore be computed. The FEIM analysis in this section was conducted using the mesh

shown in Fig. 3.41, where Rout=0.1 mm, Rin =0.001 mm. By denoting the original

whole structural analysis as the zeroth iteration and the subsequent iterations as

1,2,3,..., the singular power at the free surface obtained by the FEIM for the case t= 1.0

mm in (Table 3.2) is shown in Table 3.6.

Another computation was also carried out for an arbitrarily prescribed

displacement field imposed on the outer ring of Fig. 3.41. The result, listed in Table 3.7,

showsthatduring the thirditerationthecomputed).. wasaccurateto the fourthsignificant

digit.

Table 3.6 Number of iterations and singular power).. at the free surface (v=0.30)

number of iteration A

1 .29214

2 .28866

3 .28869

4 .28869
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Table 3.7 Number of iterationsand singularpower A for a arbitrary loading
condition(,,=0.30)

3.2.3.2. An Isotropic Orthogonal Elastic Bimaterial Wedge

A more complicated case, an orthogonal elastic bimaterial wedge made from two

isotropic materials, was studied in this section to compare with previous FEM results for

similar geometries. A portion of Fig. 3.36, one bimaterial interface wedge corner from

the four comers in Fig. 3.35, was subtracted to conduct these computations.

The FEIM representation, similar to that in Fig. 2.14 but with different DOF

(degree of freedom), consists of 69 rings. The ratio of the radius of the outer ring Rout

to that of the inner ring Riowas 10. It was found that if the inner ring was too close to

the singular point, it was difficult to achieve convergence. The scaling factor [49, 118]

used was 3.5. An equivalent stress field was employed to compute the singular power.

The convergence criterion used in this analysis was determined as the relative difference

between the singular powers obtained in two successive iterations [equation (3.99)]. The

entire analysis was performed using the macro capabilities of ANSYS 4.4A [54].

The normalized displacement eigenfunctions computed via FEIM with the same

material combinations as in Fig. 3.35 are plotted in Figs. 3.38a and b in comparison with

the functions from analytical analysis or FEM approach. Singular power dependence on

the ratio of Young's moduli is shown in Fig. 3.42. In addition, the dependence on the

Poisson's ratios is depicted in Fig. 3.43. The composite parameters, which are very

significant for studying bimaterial interface problems, are employed so that their

number of iteration A

1 .18733

2 .28985

3 .28869

4 .28869
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relationship with the eigenvalue under orthogonal bimaterial wedge condition can be

studied. The results are listed in Table 3.8 and illustrated in Fig. 3.44 as well.

3.2.3.3. An Isotropic Skewed Elastic Bimaterial Wedge

As studied in Section 3.2.1.1 with the FEM, it was noted that stress concentration

only emerged at wedge corner A but not wedge corner B in Fig. 3.33, that is, the

bimaterial wedge stress singularity for a skewed interface could be avoided if the skewed

interface angle and material combinations met special conditions. In order that the

general governing law can be discovered, a schematic drawing of the mathematical model

of a bimaterial wedge with a skewed interface is shown in Fig. 3.45 where the interface

is assumed to be straight and perfectly bonded. Both materials involved are isotropic and

linear elastic with the assumption of plane strain loading condition. In addition, surface

CAD in Fig. 3.45, where CA and AD are presumed co-planar, is traction free. The

external loadings are prescribed on the rest of the boundaries and are generally of mixed

modecharacteristics.

Various skewed interface angles and mechanical properties were assigned to the

bimaterial wedge in Fig. 3.45 for an investigation of the geometrical and physical

influences on the interfacial stress singularities. Namely, the skewed interface angle were

taken from 11.25° to 168.75° in the step of 11.25°; the ratio of Young's moduli E/~

was varied from two to infinity; the Poisson's ratio of Material 2 (V2)was chosen at

0.275, 0.30, 0.35 and 0.40; and the Poisson's ratio of Material 1 (VI)was fixed at 0.30

to simulate metallic materials such as steel and aluminum alloys. The step interval of the

interface angle was selected as 11.25° because in ANSYS [54] the tolerable minimum

angle for triangle elements, used to generate the mesh around the wedge corners, was

about 10.5°. Moreover the FEIM, a simple and accurate tool for studying asymptotic

stress fields [42,46,49,72], was employed to conduct the calculation via the ANSYS

program design language (APDL) [54].
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Table 3.8 Singular power distribution at a=-O.5

(j k. ", "2 I' E.IE. A. X.

-.375 1.00 3.0000 .500 .00000oo .6666667 .4444444 -.2458 -.2499

-.375 1.50 3.6154 .375 -.1538462 .6153846 .3786982 - -.2499

-.375 2.00 4.1429 .250 -.2857144 .5714286 .3265306 - -.2499

-.375 2.50 4.6000 .125 -.400000O .5333333 .2844444 - -.2499

-.375 3.00 5.0000 .000 -.500000o .500000o .2500000 - -.2499

-.350 1.00 2.7500 .500 .0625000 .6250000 .4427083 -.1432 -.1433

-.350 1.50 3.2857 .375 -.0714285 .5714285 .3858998 - -.1433

-.350 2.00 3.7368 .250 -.1842105 .5263158 .3434903 - -.1433

-.350 2.50 4.1220 .125 -.2804878 .4878049 .3119836 - -.1433

-.350 3.00 4.4545 .000 -.3636363 .4545454 .2892562 - -.1433

-.300 1.00 2.3333 .500 .1666666 .5555556 .4320988 -.557ge-1 -.5585e-1

-.300 1.50 2.7500 .375 .0625000 .500000o .3863636 -.557ge-1 -.5585e-1

-.300 2.00 3.0909 .250 -.0227273 .4545455 .3553719 - -.5585e-1

-.300 2.50 3.3750 .125 -.0937500 .4166667 .3356481 - -.5585e-1

-.300 3.00 3.6154 .000 -.1538461 .3846154 .3254438 - -.5585e-1

-.250 1.00 2.0000 .500 .2500000 .500000o .4166667 .3160e-5 0

-.250 1.50 2.3333 .375 .1666667 .4444444 .3771044 .1587e-6 0

-.250 2.00 2.6000 .250 .100000o .400000o .3520000 .0000 0

-.250 2.50 2.8182 .125 .0454545 .3636364 .3379247 .1773e-6 0

-.250 3.00 3.0000 .000 .00000oo .3333333 .3333333 .2378e-5 0

-.200 1.00 1.7273 .500 .3181818 .4545455 .3994491 .4197e-l .420Ie-l

-.200 1.50 2.0000 .375 .2500000 .4000000 .3636364 .4197e-1 .420Ie-l

-.200 2.00 2.2143 .250 .1964285 .3571429 .3418367 .4197e-1 .420Ie-l

-.200 2.50 2.3871 .125 .1532258 .3225806 .3306741 .4197e-1 .420Ie-1

-.200 3.00 2.5294 .000 .1176470 .2941177 .3287197 .4197e-l .4201e-l

-.150 1.00 1.5000 .500 .3750000 .4166667 .3819444 .7554e-1 .7562e-l

-.150 1.50 1.7273 .375 .3181818 .3636364 .3486101 .7554e-1 .7562e-1

-.150 2.00 1.9032 .250 .2741936 .3225806 .3288241 .7554e-1 .7562e-1

-.150 2.50 2.0435 .125 .2391304 .2898551 .3192607 .7554e-1 .7562e-1

-.150 3.00 2.1579 .000 .2105263 .2631579 .3185596 .7554e-1 .7562e-l
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-.100 1.00 1.3077 .500 .4230769 .3846154 .3648915 .1033 .1034

-.100 1.50 1.5000 .375 .3750000 .3333333 .3333333 .\033 .1034

-.100 2.00 1.6471 .250 .3382353 .2941177 .3148789 .\033 .1034

-.100 2.50 1.7632 .125 .3092105 .2631579 .3062481 .\033 .1034

-.100 3.00 1.8571 .000 .2857143 .2380952 .3061225 .1033 .\034

-.050 1.00 J.l429 .500 .4642857 .3571429 .3486395 .1267 .1268

-.050 1.50 1.3077 .375 .4230769 .3076923 .3184508 .1267 .1268

-.050 2.00 1.4324 .250 .3918919 .2702703 .3009496 .1267 .1268

-.050 2.50 1.5301 .125 .3674699 .2409639 .2928985 .1267 .1268

-.050 3.00 1.6087 .000 .3478261 .2173913 .2930057 .1267 .1268

.000 1.00 1.0000 .500 .500000o .3333333 .3333333 .1466 .1468

.000 1.50 J.l429 .375 .4642857 .2857143 .3042672 .1466 .1468

.000 2.00 1.2500 .250 .4375000 .2500000 .2875000 .1466 .1468

.000 2.50 1.3333 .125 .4166667 .222222 .2798354 .1466 .1468

.000 3.00 1.4000 .000 .400000O .200000o .2800000 .1466 .1468

.050 1.00 .8750 .500 .5312500 .3125000 .3190104 - .1641

.050 1.50 1.0000 .375 .500000o .2666667 .2909091 .1639 .1641

.050 2.00 1.0930 .250 .4767442 .2325581 .2747431 .1639 .1641

.050 2.50 J.l649 .125 .4587629 .2061856 .2673536 .1639 .1641

.050 3.00 1.2222 .000 .4444445 .1851852 .2674897 .1639 .1641

.100 1.00 .7647 .500 .5588235 .2941177 .3056517 - .1791

.\00 1.50 .8750 .375 .5312500 .2500000 .2784091 - .1791

.100 2.00 .9565 .250 .5108696 .2173913 .2627599 - .1791

.100 2.50 1.0192 .125 .4951923 .1923077 .2555884 .1788 .1791

.100 3.00 1.0690 .000 .4827587 .1724138 .2556480 .1788 .1791

.125 1.00 .7143 .500 .5714285 .2857143 .2993197 - .1858

.125 1.50 .8182 .375 .5454545 .2424242 .2724768 - .1858

.125 2.00 .8947 .250 .5263158 .2\05263 .2570637 - .1858

.125 2.50 .9535 .125 .5116279 .1860465 .2499850 - .1858

.125 3.00 1.0000 .000 .500000o .1666667 .2500000 .1856 .1858
'\ n__ L..__ _'___AL r""ro.,.. . , ..
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Table 3.9 Stress singularity distribution
(PI =0.30 and P2=0.35)

'g

The fan-shaped mesh configuration used in this study for the FEIM processes is

depicted in Fig. 3.46. It is comprised of 320 six-node triangular and eight-node

quadrilateral plane strain isoparametric elements and 1001 nodes. No

singularity-embedded element was used because the singular power was not known a

priori. For all analyses, only one physical mesh (Fig. 3.46) was generated and used

because any specific skewed interface could be obtained by assigning the mechanical

properties of the two materials to the corresponding elements through selecting the

appropriate ray, emanating from the bimaterial wedge comer, as the dividing line, which

subsequently became the interface desired. For a different skewed interface angle, one

Singular Power (A)
IXr)

E.tE:=2 E./E:=lO 1E:=30 B.IE:=70 E.IE:= co

11.25 .087 .309 .389 .417 .
22.50 .109 .289 .333 .344 .
33.75 .086 .213 .231 . .425

45.00 .034 .094 . .258 .428

56.25 .000 .047 .254 .341 .418

67.s0 .000 .169 .304 .354 .396

78.75 .003 .220 .309 .340 .365

90.00 .049 .227 .286 .306 .320

101.25 .070 .200 .238 .250 .257

112.50 .063 .139 .159 .165 .169

123.75 .027 .035 .037 .038 .045

126.00 0 0 0 0 .004

135.00 0 0 0 0 0

146.25 0 0 0 0 0

157.50 0 0 0 0 0

168.75 0 0 0 0 0
... --
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only needed to use the ray at this angle as the separating line, and to assign the elements'

properties with the same procedure.

Table 3.10 Stress singularity distribution
(E.t~=30 and VI=0.30)

· Convergence was not observed.

The stress singularities were evaluated through consideration of uydisplacements

using a linearized least square fitting method. The convergence was assumed when the

relative error between the singular powers of two consecutive iterations was less than

O.1% [equation(3.99)]. When the Poisson's ratios of Material 1 (VI)and Material2 (V2)

were held at 0.30 and 0.35 respectively, the stress singularities are listed in Table 3.9

for various skewed interface angles and different ratios of Young's moduli (E/~).

Singular Power (A)
a (")

'2= .275 '2=.30 '2=.35 '2=.40

11.25 .394 .393 .389 .385

22.50 .340 .338 .333 .327

33.75 .236 .235 .231 .223

45.00 . . . .
56.25 .185 .216 .254 .280

67.50 .259 .275 .304 .328

78.75 .265 .280 .309 .335

90.00 .240 .256 .286 .314

101.25 .187 .204 .238 .270

112.50 .102 .121 .159 .196

123.75 0 0 .037 .081

126.00 0 0 0 0

135.00 0 0 0 0

146.25 0 0 0 0

157.50 0 0 0 0

168.75 0 0 0 0
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Similarly, with EI/~ being kept at 30 and PI being fixed at 0.30, the values of the

singular powers are presented in Table 3.10, where the skewed interface angles and the

Poisson's ratio of Material 2 (pJ were treated as the changing parameters.

The data listed in both tables were the averaged values of Aevaluated along three

different rays emanating from the wedge corner. The rays were defined on both free

surfaces AC and AD, and along ray AB at an angle 45° (Fig. 3.45). It was not necessary

to redefine these rays for different skewed interface angles since it is well known that,

from analytical and numerical [46,118] analyses, the stress singularities are the same in

both materials at the wedge corner. The value of A in the two tables was rounded off to

three digits after the decimal point. The average number of iterations for convergence

under mixed loadings was obtained after six to seven iterations. However, convergence

could not be observed for certain skewed angles when the ratio of Young's moduli

(E/~) was greater or equal to about 30 (Table 3.9).

The relationship between the stress singularities and the ratios of Young's moduli

is depicted in Fig. 3.47 for the whole range of skewed interface angles and with the

Poisson's ratios of Material 1 (v.) and Material 2 (vJ being held at 0.3 and 0.35

correspondingly. Further, the effects of Poisson's ratio of Material 2 (V2)on the stress

intensities, at different skewed angles, is shown in Fig. 3.48, when EI/~ was equal to

30, and VIwas kept at 0.3. The shaded areas in Figs. 3.47 and 3.48 represented the

places where convergence for real solutions could not be achieved. A typical

non-convergent iteration procedure is presented in Fig. 3.57, where it is evident that the

solution became worse as the number of iterations increased.

3.2.3.4. An Orthotropic Orthogonal Elastic Bimaterial Wedge

In composite applications, materials are anisotropic per se. Therefore, the

understanding of mechanical behavior of anisotropic bimaterial wedges is of

significance.In this section, efforts will be concentratedon the asymptoticfields of an
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orthogonal bimaterial wedge comprised of isotropic and orthotropic materials.

For convenience in describing the orthotropic material properties, a new

parameter, orthotropic ratio, is denoted as w and defined as

(3.100)

Table 3.11 Singular power dependence on orthotropic ratio
(E(I)l1=E(I)22= 3000 MPa, ,,(1)12=0.35and v(2\2=0.25)

pnYSlcally Imp

The model employed here is similar in shape to that in Fig. 3.45, with a fixed

value of a=90° to make the wedge orthogonal. The FEM mesh is also similar to Fig.

3.46. Material 1 is assumed to be isotropic with Young's modulus 3000 MPa and

Poisson's ratio 0.35 to simulate an adhesive. Material 2 has an orthotropic characteristic

Singular Power h
w(2)

E!2'21=5.0e2 E'2)21= 1.5e3 E(2)21=3.0e3 EI2I21= 5 .0e3 E'2'21= 1.0e4 E(2)21=2.0e4

0.07 .2831 .1774 .08696 .02546 .002147 .07106

0.10 .2258 .1349 .05541 .006364 .002655 .07260

0.20 .1722 .07833 .01162 -.01009 .02706 .1074

0040 .1434 .04256 -.006223 -.0002065 .06346 .1462

0.60 .1332 .02873 -.007425 .01265 .08590 .1671

1.00 .1250 .01680 -.002369 .03252 .1132 .1904

1.50 .1209 .01053 .005137 .04955 .1332 .2026

2.00 .1186 .007230 .01167 .06174 .1463 .2161

3.00 (.1158) (.003969) (.02193) (.07854) (.1631) (.2284)

5.00 (.1120) (.001113) (.03570) (.09848) (.1815) (.2411)

7.50 (.1080) (-.0005245) (.04672) (.1130) (.1940) (.2494)

10.0 (.1046) (-.001492) (.05440) (.1225) (.2018) (.2545)

14.0 (.09976) (-.002507) (.06309) (.1329) (.2100) (.2597)
, ,-. -.- -- -- - --- ........:1..1...
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with a fixed Poisson's ratio ,,(2)126of 0.35 and varying Young's modulus. This model

should be able to reveal the asymptotic field of an adhesive joint made of orthotropic

materials. The effects of orthotropic ratio of Material 2 on the eigenvalues are depicted

in Table 3.11. To show the changing trend visually, Fig. 3.49 illustrates part of the data

in Table 3.11. In addition, the dependence of singular powers on Poisson's ratio of

Material 2 is represented jointly by Table 3.12 and Fig. 3.50.

Table 3.12 Singular power dependence on Poisson's ratio
(E(1)1I=E(I)22=3000 MPa and ,,(1)12=0.35)

-' Not calculated; .: Convergence-was not reached; (.): Mateoals used were physically impossible.

6 The superscript (2) denotesMaterial2, and the subscript 12 indicatesorientationof the
parameters and corresponds to xy in a Cartesian system. This notation will be employed through
this presentation unless specified otherwise.

Singular Power >.

p(2) E(2)II=le4 E(2)1I=2e4 E(2'..=4e3 E(2)1I=5e4 E(2)II=le4 E!2)II= 1.4e5 E(2)II=le4'1
E(2)n= le4 E(2)n=4e3 E(2)n=2e4 E(2)n=le4 E!2)n=5e4 E(2)n= le4 E(2)n= 1.4e5

w(2'=1 w(2'=5 w(2'=.2 w(2)=5 w(2)=.2 w(2)=14 w(2)=1114

.00001 .1246 .1017 .1017 .1991 .1191 .2297 .2297

0.05 .1220 .09583 .1010 .1955 .1988 (.2258) .2302

0.10 .1196 .08978 .1012 .1920 .1993 (.2219) .2324

0.15 .1174 (.08349) .1023 (.1885) .2006 (.2179) .2367

0.20 .1153 (.07680) .1043 (.1850) .2028 (.2140) .2442

0.25 .1132 (.06978) .1074 (.1815) .2061 (.2100) .2603

0.30 .1110 (.06210) .1117 (.1779) .2109 . .
0.35 .1087 (.05363) .1182 (.1744) .2177 . .
0.37 - (.04997) .1218 (.1730) .2214 . .
0.40 .1062 . . . . . .
0.45 .1033 . . . . . .

.49999 .09973 . . . . . .
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It should be pointed out that, in a generalized two-dimensional situation, the

mechanical properties for orthotropic materials have to meet a special condition [3,5]:

(3.101)

Therefore, whenever three of the four parameters in equation (3.101) are fixed, the

fourth is definedby this relation.

By substitutingequation(3.100) into (3.101), the followingcan be obtained:

(3.102)

Taking column2 in Table 3.12 as an example, w=5, physically "12cannot exceed0.1

because the maximumvalue "21being able to hold is 0.5. However, numerically or

artificially, "12can have a higher value than 0.1. From the point of pure academic

interest, values of "12 greater than 0.1 were considered, but the resultant data were

parenthesized in Tables 3.11 and 3.12 to distinguish them from those whose material

properties had physical backgrounds.

3.2.3.5. Singular Zone Evaluation

In Section 3.2.2.5, the singular stress zone was investigated using the FEM.

However, it was stated in Section 3.2.2.3 that the evaluation of the singular power and

the stress intensity factor for very small thicknesses of the adhesive layer was fairly

inaccurate when the conventional FEM was used. Therefore, as an alternative approach,

the singular stress zone was semi-quantitatively evaluated in this section by applying the

FEIM.

The specimengeometrywas kept the same as shownin Fig. 3.35 with t=0.25

mm. The singularstress zoneswere assumedto be quarter circles in both materialsand

are represented by their radii rQ1and rQ2as shown in Fig. 3.51. The procedure
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employedto evaluatethe radii of the singularzones was as follows:

(1) Conduct a whole structural finite element analysis.

(2) Design an FEIM mesh similar to the one shown in Fig. 2.14 with Rout=O.1

mm and Rm=O.OI mm using six-node isoparametric triangular and eight-node

isoparametric quadrilateral elements with an assumption of plane strain

deformation.

(3) Begin the FEIM routine (see Section 3.2.3.1).

(4) If the convergencecriterion, defined in equation (3.99), is satisfied, it can be

assumed that the singular stress zone is reached.

The dependenceof the singular stress zone on the ratio of Young's moduli is

shown in Fig. 3.52 for the case "1=0.3 and "2=0.35. The singular stress zone size as

a function of the Poisson's ratios of the two materials is presented in Fig. 3.53.

3.2.3.6. FEIM Convergence Rate Dependence on Material Properties

In this study, thecriterion of convergencerequiredthat X in equation(3.99) be

less than or equal to 0.001 %7.This ensures a match to the fourth significant digit of two

successive iterative solutions. Fig. 3.54 shows a relationshipbetween the value of the

singular power and the corresponding numbers of iteration for this case. Clearly,

preliminary iterations produced significantly different values of Aalong the three different

rays presented in Fig. 3.54. However, as the procedure continued, the value of Aalong

all directions converged to the fourth significant digit. In order that the effects of material

properties on the convergence rate could be observed, two more studies, convergence

rate dependenceon the Young's modulusratio and the valuesof Poisson'sratio, were

7 unlessspecifiedotherwise.
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conducted. The results are presented in Figs. 3.55 and 3.56.

In special circumstances, convergence may not be attained with the present

scheme. The reason is speculated to be either that the eigenvalue is too small for the

employed numerical method or that it is complex. For the latter case, a special evaluation

scheme must be employed [84]. A typical non-convergence procedure is shown in Fig.

3.57, which came from the skewed interface bimaterial wedge studies in section 3.2.3.3.

The eigenvalue was believed to be complex in this particular situation [119,120].

3.2.4. Experimental Analysis

Theoretical prediction from analytical and numerical analysis suggests that crack

initiation point should be located at the interface wedge comers or sharp notch tips

because stresses are mathematically singular at these points. Mechanical tests (Section

3.1.3) have provided such an observation from a more or less macro-scale standing point.

Investigations from a micro-scale point of view should be carried out to reveal more

details of the crack initiation and propagation driving forces. Under such a motivation,

examinations of the fracture surfaces of broken specimen from the Iosipescu tests were

performed with an optical microscope and scanning electronic microscope (SEM).

3.2.4.1. Procedure

After the mechanical tests were completed, the two parts of each broken specimen

were paired and photographed under an optical microscope to identify the failure path.

Then, the broken surfaces were coated with Au-Pt by way of spray coating equipment

to ensure conductivity of the fractured adhesive surfaces. The prepared specimens were

thereafter examined using a Zeiss DSM 960 digital scanning electronic microscope

(SEM). Areas of interest on the fractured surfaces were photographed for future

analyses.
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3.2.4.2. Observations

Generally, fracture paths for rigid adhesive joints varied from zig-zag routines to

a peel-off pattern (separation along the adhesive-adherend interface). The zig-zag paths

occurred more often than peel-off. Typical zig-zag failure patterns are shown in Figs.

3.58-3.60 for geometry Type A, B and C respectively. A typical peel-off fracture

specimen is depicted in Fig. 3.61. All of these failures were initiated at the vicinity of

singular stress points, viz., interface wedge comers (all joint types) or sharp notch tips

(Type B only).

For Type A adhesive joint Iosipescu specimens made of flexible adhesive, only

the peel-off pattern was observed.

When a crack started from an interface wedge comer, there were two possibilities

for the propagation route, namely, through the adhesive layer (zig-zag) or straight along

the interface (peel-off). For the first case, after a crack emerged at one notch root, it

began to advance along the interface for some distance, then deviated into the adhesive

layer, propagated to the other interface, and finally went along this interface all the way

to the other notch root to separate the two adherends (Figs. 3.59-3.60). In the second

case, the crack started, developed, and failed only at one interface (Fig. 3.61).

If a crack initiated at the notch tip, which was only possible for Type B joint

specimen, the separation process would always be as following:

starting at a notch tip - propagating to one interface with a inclined angle with

respect to the notch root axis - advancingto the interfacewedgecomer on the

other notch root - having totally damaged this joint.

The fracture route was a zig-zag path. No fracture path encompassed only within the

adhesive layer has ever been observed.

A typical zig-zagcrackedjointwas examinedusing the SEM. The two portions
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are shown in Fig. 3.62. It seemed that the crack started at the left-top comer of the left

part in Fig. 3.62 (or the right-top comer of the right portion). It went into the specimen

along the interface for a small distance, then changed the crack route into the adhesive

layer till reached the other interface, and finally advanced all the way along the latter

interface to fail. The right portion was extensively examined. All photos are presented

in Figs. 3.63a--f, where the crack initiation, propagation, step-wise surface profiles,

secondary cracks, and delamination surfaces were depicted. The left part of Fig. 3.62

was also inspected and is illustrated in Figs. 3.64a and b to aid the understanding of the

formation of the fractured surfaces.

The peel-off fractured surfaces for rigid adhesive joints can be readily seen from

Figs. 3.62-3.64. A typical peel-off surface for a flexible adhesive joint is shown in Fig.

3.65.

3.3. Plastic Zone Evaluation

An elastic-perfectly plastic model, shown in Fig. 3.66, was used for the analysis,

and small displacement theory was employed. The loading condition was a prescribed

displacement field, and the dimensions of the model were the same as in the elastic case,

Fig. 3.35. However, in order to have a bigger plastic zone for easier visualization and

better accuracy, the adhesive layer was assumed to be 50 mm thick and in a plane strain

condition for the FEM analysis.

3.3.1. First Analytical Approach

In a polar coordinate system, it is known that the equivalent stress at a point of

radius r and angle 0 may be calculated using equation (3.91). For a fixed angle 0, the

relationship between the stress and radius r is graphically represented in Fig. 3.67a. By

denoting the yield strength of the adhesive uY' the boundary between the elastic and
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plastic zone can be found by comparing the equivalent stress Ucand yield strength uY'

where the equivalent stress is defined in equation (3.89). If it is assumed that the plastic

zone radius rp is the point where Ucequals uy (see Fig. 3.67a), rp can be obtained from

the following relationship:

(3.103)

that is,

(3.104)

3.3.2. Second Analytical Approach

It is evident that the plastic zone size in Fig. 3.67a, estimated using equation

(3.104), is conservative when it is noted that the area above uy (Fig. 3.67a) was

neglected. Therefore, an improved interface plastic zone geometry evaluation, similar to

that for cracks by Irwin [44], was derived as follows. First, the stress-distance curve in

Fig. 3.67a was translated to the right direction by a distance of 71(Fig. 3.67b), that is,

the plastic zone radius (rp) increment was also equal to 71.In order to satisfy the force

balance requirement, the two shadowed areas in Fig. 3.67b should be equal to each

other. The following equation was therefore obtained:

6

110,=f(Qer-A.-o)dr
o

(3. 105)

with which 71can be obtained, and thus the total rp is
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(3.106)

By use of equations (3.104) and (3.106), and the linear elastic analysis data in

Table 3.1, the theoretical plastic zones at the interface corner were computed and plotted

in Fig. 3.68 in a loading condition resulting in a nominal strain eo=0.0003.

3.3.3. Numerical Scheme

Numerically, the plastic zone at the interface corner can be computed by the

FEM. Witha plot of the equivalentstresscontoursof a bimaterialwedgefrom the FEM

results, the plastic zone at the wedgecorner can easily be represented. This technique

was used in the present study. The numerical results under the loading condition of

eo=0.0003 are shownin Fig. 3.68.

LetrPmaxbe the maximumradiusof the plasticzoneand (JPmaxbe the anglebetween

the interface and rPmax.The variations of (JPmaxwith eo and rPmaxwith eo were plotted in

Fig. 3.69 and Fig. 3.70 respectively, where the analytical data was obtained from

equation (3.106) and the numerical data from the FEM calculations.

3.3.4. Interactions of Plastic and Singular Zones

Whenever non-linear materials exhibiting elasto-plastic behavior are introduced

at a bimaterial wedge, the material at the wedge corner will yield, that is, a plastic zone

will emerge. Theoretically, at this stage, no singular stress zone exists at all around this

corner as the stresses are bounded. However, a singular stress zone can be extensively

defined at the wedge corner as an area inside which all stresses obey relation (3.94).

Therefore, by computing the singular power A distribution along a ray from the
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numerical data, it is possible to determine whether there exists a singular stress zone and

how big it is. Fig. 3.71 shows the singular power distribution along the ray 0=36° for

elastic and plastic cases at €n=O.00025. In addition, the entire area has been divided into

four zones (Fig. 3.71) according to the value of A. Fig. 3.72 shows the Adistributions

along the ray 0=36° for different loads, and Fig. 3.73 shows the distribution along

different rays at €n=O.OOO3.Further, the relationship between rQ and rp along the ray

0=36° is shown in Fig. 3.74.
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Fig. 3.1 A link-joint model.
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Fig. 3.2 An element of adhesive layer.
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Fig. 3.3 Stress distribution inside the adhesive layer of a link joint.
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Fig. 3.4 A butt-joint model.
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Fig. 3.5 Schematic of portion of Type C adhesive joint Iosipescu specimen.
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Fig. 3.8 Mesh configurations of different types of joint root geometries.
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Fig. 3.9 Shear stress distributions for different specimens under pure shear loading
condition (cJ>=oo,t= 1.0 mm).
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Fig. 3.10 Normal stress distributions for different specimens under pure shear
loading condition (cJ>=oo,t= 1.0 mm).
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Fig. 3.11 Normal stress distributions for different specimens under pure shear
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Fig. 3.13 Normal stress distributions for Type A specimen under various loading
conditions (t= 1.0 mm).
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Fig. 3.14 Normal stress distributions for Type A specimen under various loading
conditions (t= 1.0 mm).

1.00

0.75

0.50

Q.,

0.25

b

0.00

-0.25

0.5
Q.,-.G
b

0.0



124

G--€) t=O.1 mm
8---0 t=0.2 mm
<)---0 1=0.5 mm

-~':".:=-~:.-;:-= -

1.0 2.0 3.0 4.0 5.0
o

distance, mm

a) along the notch root axis (x =0)

G--€) 1=0.1 mm
8---01=0.2 mm
()---0 1=0.5 mm

I

I

I

-1.2
-1.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0

A B

distance, mm

b) along the adhesive-adherend interface (x=tl2)

Fig. 3.15 Shear stress distributions for Type A specimen with different adhesive
layer thicknesses under pure shear loading condition (4)=00).
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Fig. 3.18 Shear stress distributions for Type A specimen with different adhesive
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a) t=O.l mm
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Fig. 3.21 Equivalent stress contours for Type A specimen with different adhesive
layer thicknesses under tension-compression loading condition (4)=-300).
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a) specimen overview

b) notch root geometry

Fig. 3.22 Adhesive joint Iosipescu specimen (Type A, t= 1.0 mm).
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a) specimen overview

b) notch root geometry

Fig. 3.23 Adhesivejoint Iosipescuspecimen(Type B, t= 1.0 mm).
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a) specimen overview

b) notch root geometry

Fig. 3.24 Adhesivejoint Iosipescuspecimen(Type C, t= 1.0 mm).
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Fig. 3.25 Bonding assembly for making adhesive joint Iosipescu specimen.
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Fig. 3.27 First kink loads for different specimens (rigid adhesive, t= 1.0 mm).
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Fig. 3.28 Rupture loads for different specimens (rigid adhesive, t= 1.0 mm).
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Fig. 3.29 First kink loads for different adhesives (Type A, t=O.2 mm).
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Fig. 3.30 Rupture loads for different adhesives (Type A, t=0.2 mm).

400.0 I I

6

6
0

300.0
6

6 66
6

z 6
§"tJ 0

§
co
.Q 200.0 0Q) 6...

6 0::J
'(\1 0-

100.0
I

o Rigid adhesive
6 Flexible adhesive

I

0.0
-40.0 -20.0 0.0 20.0 40.0

loading angle, degree



D

20

c

B

Fig. 3.31 A rectangle with a skewed interface.
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Fig. 3.32 FEM representation of figure 3.31.
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Fig. 3.33 Deformed structure superimposed on its original outline (dashed line).



Fig. 3.34 Equivalent stress contour.
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Fig. 3.36 Finiteelementrepresentationof a buttjoint.
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Fig. 3.37 Equivalent stress distributions along bimaterial interface corners
(EI=21000 MPa, ~=3000 MPa, PI =0.30 and P2=0.35).
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Fig. 3.38 Normalized displacement eigenfunctions
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Fig. 3.39 Finite element representation of a butt joint made of elastic adhesive and

rigid adherends (resembling an elastic layer bonded to a rigid substrate).
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Fig. 3.45 Schematic of a bimaterial wedge with a skewed interface.
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Fig. 3.46 FEIM representation for a skewed interface wedge corner. .
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Fig. 3.47 Singular power A dependence on skewed interface angle a with varying
Young's modulus ratio E/~ ( PI=0.3, P2=0.35).
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Fig. 3.58 Zig-zag crack path (rigid adhesive, t=1.0 mm, <1>=15°).

Fig. 3.59 Zig-zag crack path (rigid adhesive, t=1.0 mm, <1>=-30°).
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Fig. 3.60 Zig-zag crack path (rigid adhesive, t=1.0 mm, 4>=-30°).

Fig. 3.61 Peel-off crack path (rigid adhesive, t= 1.0 mm, 4>=30°).
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Fig. 3.62 Fracture surface profile (rigid adhesive, t=O.2 mm, <1>=15°).
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a) crack initiation comer

b) adhesion between adhesive (glossy surface) and adherend (scratched surface)

Fig. 3.63 Fracture surfaceprofile (rigid adhesive, t=O.2 mm, 4>=15°).
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c) ragged fracture surface and secondary cracks

d) secondary cracks

Fig. 3.63 (continued).
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e) step-wise surfaces near the interfaces

f) step-wise fracture surfaces

Fig. 3.63 (continued).
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a) crack initiation comer

b) step-wise surfaces and secondary cracks

Fig. 3.64 Fracture surface profile (rigid adhesive, t=O.2 mm, 1> = 15°).
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a) crack initiation comer and delamination surface
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CHAPTER 4

DISCUSSIONS

4.1. Macro-Stress Distributions Inside Adhesive Layers

4.1.1. Selection of Calculation Method

As described in the fore sections of Chapter 3, three methods have been employed

to calculate the stress distributions inside adhesive layers of various joints. Generally

speaking, closed form solutions are simple, neat and elegant, but cannot capture the

features of asymptotic fields. In contrast, numerical methods tend to require more work,

to necessitate special facility, to generate many data to process, and to need

knowledgeable numerical engineers. In return, numerical work can reveal every detail

of the stress distribution as long as the discretization is adequately fine. Concerning the

three methods used in this dissertation, comparisons and guidelines can be made as

below.

Equations (3.19) and (3.20) from shear lag analysis should be valid for link-joint

stmctures from which they were obtained. Unfortunately, the strength of adhesive joints

in link-joint structures is generally not a problem. These two equations are indeed useful

to predict transverse tensile and shear stresses for butt joints, but they cannot be used to

compute the peel stress (CTxin Fig. 3.4), which is the dominating stress component in this

type of joint. However, the formulae are very useful in fiber pull-out analysis in

composites since the linking interface between matrix and fibers is actually the load

transfer media. In addition, it suffices to point out that Hart-Smith [38,39] used shear lag

principle in conjunction with the plate theory to obtain his closed form solutions for

single- and double-lap joints. Because the bending effects have been considered, the

185
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formulae obtained are valid for these situations [57].

Considering the characteristic of adhesive joint Iosipescu specimen, equation

(3.55) is applicable for these geometrically special adhesive joints, though it seems that

the problem is over-simplified. It is clearly seen from Figs. 3.9-3.11 that the closed-form

solutions [equation (3.55)] and the FEM results have an excellent agreement, except for

the interface comers where asymptotic fields exist.

Numerical methods, as aforementioned, are the most accurate scheme available

to analyze stress distributions in the adhesive layer of different type of adhesive joints.

This is because numerical methods do not have to use many assumptions to over-simplify

the configuration of the original problem, and they can meet the real boundary conditions

to a fairly, if not perfectly, accurate extent. Consequently, many figures plotted from the

FEM solutions have been presented in this study to reveal the macro-scale stress behavior

of adhesive joint Iosipescu specimens.

4.1.2. Pure Shear Loading

Under pure shear loading, the shear stress component is the dominating, or most

interesting, stress for an adhesivejoint specimen. Its distribution along the adhesive layer

center line and the adherend-adhesive interface can be inspected from Figs. 3.9a, 3.9b,

3.15a and 3.15b. With external force load P of 10 N, the shear stress distribution

calculated from finite element analysis (Section 3.1.3) approaches -1 MPa (Figs. 3.9a and

3.15a), which was also obtained from closed form solutions of equation (3.55). However,

the shear stresses go to zero at the free surface due to the boundary conditions. Figures

3.9b and 3.15b also show that shear stress is quite uniform along the adherend-adhesive

interface except that it deviates from the theoretical value (-1 MPa) when the interface

wedge comers are approached because of the singular stress behavior at the interface

comers (excluding Type B geometry).

Tensile stresses in the x- (O"Jand y-direction (O"y)inside the adhesive layers are
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shown in Figs. 3.10, 3.11, 3.16 and 3.17. As postulated from theoretical analysis

(Section 3.1.2), they are almost zero under pure shear loading condition (4)=0), except

at the vicinity of the interface comers because of the singularity stated in the previous

paragraph.

By viewing Figs. 3.9-3.11 and 3.15-3.17, it is clear that all of the stress

components inside the adhesive layers are quite uniformly distributed under pure shear

loading cases. However, with stresses at the interface comers showing their asymptotic

behavior (except Type B, more discussion later), it is difficult to obtain, from a

mathematical point of view, a uniform stress distribution in adhesive joints.

4.1.3. Biaxial In-Plane Loading

Effects of different loading angles on the stress distributions are illustrated by

Figs. 3.12-3.14. From these figures, it is evident that the larger the absolute value of the

loading angle, the lower the absolute shear stress (Figs 3.12a and b) but the higher the

absolute tensile stresses (Figs. 3.13-3.14). The stress concentrations at wedge comers

show the same trend. The shear stress is almost the same inside the adhesive layer

irrespective of the sign of the loading angle 4>;however, the tensile stresses are opposite,

with reverse signs at the same loading angles. This can be best interpreted using

equations (3.55), (3.59) and (3.60), where it is shown that shear stress is an even

functionof loadingangle 4>, while tensile stress is an odd functionof this angle.

Experimental results on loading angle effects can be viewed in Figs. 3.27-3.30.

At the adhesive layer thickness t=1.0 mm, the failure load is higher at 4>=15°than that

under other angles for Type A and B specimens. This observation has also been observed

for composite Iosipescu specimens [91], but for type C specimens, the first kink load

increasesslightlyas loadingangle4> increaseswhilethe ruptureloads is lowestat 4>=0°.

Whent=0.2 mm, both the first kink and finalfailureloadsincreasewith larger 4> (Figs.

3.29 and 3.30) for both flexible and rigid adhesive joints (Type A). At a positive 4>
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value, the failure load increase may be due to the fact that the loading mode is

compression plus shear, of which the compressive component is beneficial. However, the

lack of such an effect for Type C joint requires further investigation to clarify.

A typical case of stress distribution inside the adhesive layer of an adhesive joint

Iosipescu specimen under mixed mode loading (cj>=-300)is presented in Figs. 3.18, 3.19

and 3.20. The theoretical stresses along the notch root axis in this case are: Txy=-0.866,

ux=0.500 and uy=O.OOOMPa [from equation (3.55)]. Generally speaking, the numerical

results coincide well with the closed form solutions inside the adhesive layer, but at

interface comers noticeable stress concentrations are observed for Type A specimen. This

stress concentration is responsible for crack initiation at these comers. In particular, point

B is more likely to be the initial failure spot because stresses are the highest at this point

(Figs. 3.18b, 3.19b and 3.20b). Experimental observation has confirmed this prediction

(Sections 3.1.4.2 and 3.2.4.2, see Figs. 3.58--3.60).

Equivalent stress [by von Mises definition, equation (3.89)] contours of adhesive

joint Iosipescu specimens under mixed mode loading condition of cj>=30°(shear and

compression, Fig. 3.21) show that stress distributions within the adhesive layers are

fairly uniform, even if the thicknesses of the adhesive layers are different; however,

interface comer B still possesses the maximum value.

4.1.4. Degree of Biaxial Stress Mode Mixing

In the previous section, it was shown that stress distributions inside adhesive

layers are intrinsically mode mixed under biaxial loading conditions. In order for the

degree of mode mixing of a biaxial stress distribution to be quantitatively evaluated, a

measure ~ is proposed for generalized plane stress cases:
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(4.1)

where

sign (x) ={-i
(x~O )
(x<O)

(4.2)

min (x, y) ={ ~
(x~y)
(x> y)

(4.3)

max (x, y) ={ ~
(x~y)
(x<y)

(4.4)

and (1j (i=1,2) are the principal stresses in a two-dimensional case (The third dimension

is not considered here).

By this definition, it is clear that the value of ~ is within the interval [-1,1]. When

~= 1, it means that (11equals (12'that is, a static water pressure in a two-dimensional

sense. With ~=-1, (11and (12have the same value but opposite signs, that is, a pure shear

loading situation (equally tensile and compressive biaxial stress state). If ~=0, this is a

uniaxial tensile or compressive loading; in other words, no biaxial stress exists.

Using the proposed measure of degree of mode mixing of biaxial stresses, one can

easily determine the uniformity of any stress distributions. For instance, using Figs. 3.12-

3.14, a plot of the degree of mode mixing of the stresses inside the adhesive layer of a

Type A adhesive joint Iosipescu specimen is shown in Fig. 4.1 in the case of t= 1.0 mm

under various loading angles.

From Fig. 4.1a, it can be seen that, under pure shear loading, the numerical value

of ~is close to the theoretical result (-1) along the adhesive center line OH. For the other



190

cases, the degree of mode mixing does not change if the loading angles have the same

absolute values (Fig. 4.1a). ~ is close to zero along the free surface because of the

boundary condition and varies much near the interface comers (Fig. 4.1b), where stress

states are complicated. Even under pure shear loading case (cJ>=0),~ deviates drastically

from the theoretical value -1 in the vicinity of the interface comer. Moreover, ~ is

around -0.17 at both interface comers A and B irrespective of the loading mode (angle).

This may imply that the stress state at a bimaterial wedge comer is mixed mode per se

no matter what the loading mode is. Also, CT2is about 0.17 times of CTIat the wedge

corner, or vice versa and of opposite sign, which suggests that the stress state is of

tension-compression.

Based on these observations, it is evident that ~ in equation (4. 1) is a good

parameter for measuring the degree of biaxial stress mode mixing, since it is capable of

reflecting the characteristic of the mixed mode stress fields.

4.1.5. Notch Root Geometry

Stress distribution dependence on notch root geometries is depicted numerically

in Figs. 3.9-3.11 and experimentally in Fig. 3.27. For notch root types A and C (see

Fig. 2. 11b), the only effect along the notch root axis (x=O) that can be seen is that all

stress components decrease to zero as the free surface is approached because there is no

geometric or physical discontinuity at these points. However, the same argument is not

true for the geometry of Type B, where both tensile stresses (CTx in Fig. 3. lOa and CTy in

Fig. 3.lla) are singular at the notch tip which is assumed to be mathematically perfectly

sharp (Fig. 3.8b). The shear stress (Fig. 3.9a) at the tip does not exhibit any strong trend

of asymptotic behavior. The observation may be explained by Sukumar and Kumosa's

work on sharp notch tips [72,74,108]. They have found that, under pure in-plane shear

loading condition, the notch root tip singularity disappears if the re-entrant angle of an

isotropic notch is greater or equal to 103°. The re-entrant angle for Type B notch is 105°.
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The tensile stresses still show some singular behavior, which may be caused by the

numerical round-off or truncation errors during the process of computations. These

errors, of course, may change a pure mode n loading to a mixed mode loading

condition.

The findings are totally different along the interfaces. From Figs. 3.9b, it can be

seen that shear stress (Txy)for specimens A and B displays a "negative" singular

behavior, but shear stress in the notch root of Specimen C demonstrates a "positive"

singularity. In Figs. 3. lOb and 3.11b, tensile stresses (O"xand O"y)in the vicinities of the

notch roots of geometry Type A and C increase as the wedge comer is approached. They

show only limited stress concentration at the interface comer from the viewpoint of the

entire interface. In-depth discussions will be addressed in the section of non- and weak-

singular bimaterial wedge (Section 4.2.5).

Preliminary experimental results in Figs. 3.27 and 3.28 may demonstrate that

notch root geometries do not play an important role in either the first kink load or

rupture load, although it seems that Type C is slightly inferior compared with Type A

or B. Because the adhesive layer is fairly thick (1 mm), it may contain small defects such

as bulbs and micro-cracks. Also, since notch root geometries cannot be made well

enough to represent the mathematical roles, more work is necessary before a correct

conclusion can be drawn.

4.1.6. Adhesive Type

From the analytical results in equation (3.55), it can be concluded that adhesive

type has no influence on the stress distributions inside the adhesive layer, since no

material property appears in this equation. Nevertheless, the adhesives used for joints

will certainly have an impact on the stress distributions and mechanical behavior. This

can be postulated from the asymptotic analysis at bimaterial interface wedge comers

(Section 3.2). Equation (3.55) does not consider the mechanical property effects of the
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adhesives used because it does not take into account the singular behavior at the interface

comers in the analytically deducing process.

From the limited experimental data in Figs. 3.29-3.30, no obvious effects of

adhesive types on the joint strength could be inspected. This is rather unusual since the

two adhesives used had different mechanical properties, in particular, failure strengths.

For the real effects of adhesive types on the joint strengths to be identified, more testings

by varying the adhesive types and the adhesive layer thicknesses should be conducted.

4.1.7. Adhesive Layer Thickness

Numerically, shear stresses inside the adhesive layer of a Type A adhesive joint

Josipescu specimen do not change significantly with the adhesive thicknesses under pure

shear loading (Fig. 3.15a and b). However, the thinner the adhesive layer, the higher the

absolute values of the tensile stresses in the vicinity of the notch root but the lower those

values at the adhesive center (Figs. 3.16a and 3. 17a). Along the interface, the thickness

of the adhesive layer does not show any significant effect on the stress distributions.

From these figures (Figs. 3.15-3.17), it is evident that, under pure shear loading mode,

adhesive thickness is not a dominant factor in terms of the stress distributions inside the

adhesive layer of Type A adhesive joint Iosipescu specimen.

Stress distributions, under a typical mixed mode loading situation of loading angle

cp =30°, are shownin Figs. 3.18-3.20. The observationis similarto thatin thepure mode

II loading condition. Namely, shear stress does not vary much with respect to the

adhesive thicknesses (Figs. 3.18a and b). In contrary, tensile stresses change quite a bit

when the adhesive thickness varies. The thicker the adhesive layer, the less the variation

along the center line OH (Figs. 3.19a and 3.20a); however, little difference is seen along

the adherend-adhesive interface (Figs. 3.19b and 3.20b). This also demonstrates that the

stresses inside the adhesive layer do not change significantly when the adhesive layer

thickness is varied under mixed mode loading conditions for Type A adhesive joint



193

Iosipescu specimens. Therefore, from the aforementioned observations in this section,

it may be deduced that the experimental results will not change significantly when the

layer thicknesses are different for Type A adhesive joint Iosipescu specimens.

Adhesive layer thickness effects on the joint strength can be seen from the

experimental data in Figs. 3.27-3.30. Here, it is found that both the first kink and

rupture loads from the t=0.2 mm group are greater than that from the t= 1.0 mm set for

Type A specimen made of rigid adhesives. In particular, this effect is more obvious when

the loading angle is larger. From the asymptotic analysis on bimaterial wedge interfaces

(Section 4.2.3), it has been postulated that a joint with a thinner adhesive layer would

have a higher strength than that with a thicker layer because the former would have a

higher stress intensity factor. In reality, the higher stress intensity factor at the wedge

comers may be easily released by the plastic deformation at the comers with adhesive

layer thickness being 1 or 0.2 mm, so that the effect is not as dominant as

mathematically predicted. However, if the adhesive layer is thin enough, it may be

expected to have such an impact as predicted in Section 4.2.3.

4.2. Asymptotic Fields At Bimaterial Interface Corners

4.2.1. Angular Eigenfunction

The normalized angular displacement eigenfunctions along the x- and y-directions

obtained from three methods can be seen in Figs. 3.38a and 3.38b. The normalization

in this case assumes the value of the displacement eigenfunction (uxand uy) to be unity

at a point with 8=00 and a particular radius r from the wedge comer. Radius r was

selected to be 1.0 mm for the analytical calculations, and 1.0 or 0.1 mm for the FEM

analysis; for the FEIM computations, it was taken as the maximum distance where

convergence was achieved. The analytical data were obtained via a coordinate transform

of Urand Uoin equations (3.72) and (3.73). The FEM modeling in this study assumed
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2t= 100 mm in order to create a sufficiently large singular stress zone. The external

displacement loads (uy)were selectedsuchthat they were capableof generating a nominal

strain of 0.0001 along the y-direction, while the traction along the x-direction was

assumed to be zero. The FEIM results of eigenfunctions were extracted when the

pre-defined convergence criterion 0.001 % [by equation (3.99)] was satisfied. Clearly, the

normalized displacement eigenfunction solutions from the analytical and FEIM schemes

are in excellent agreement. The FEM results from the r=O.l mm ring, however, are not

as accurateand are even worse along the r= 1.0 mm ring. It seemsthat the ring localized

very close to the wedge comer (r=O.l mm) provides more information about the singular

stress field than the other ring (r= 1.0 mm). However, when r is too small, the FEM

results are also inaccurate and are therefore unacceptable (Fig. 3.37), as will be discussed

in Section 4.2.2. It may be stated that whereas the FEM approach has certain drawbacks

regarding accuracy, it is capable of generating the absolute value of eigenfunctions with

a reasonable degree of accuracy. On the other hand, the FEIM scheme and the theoretical

analysis can yield only the relative displacement eigenfunctions. The accuracy of the

eigenfunction solutions based on these two methods is excellent.

4.2.2. Singular Power

Initially, focus will be confined to the simplest case: an elastic-rigid bimaterial

wedge comer (Figs. 3.39 and 3.41).

An examinationof Table 3.1 reveals that the singularpower Adoesnot depend

on Young's modulus. It does not depend on the specimen thickness (2t) either, as

indicated by the data in Table 3.2 and Table 3.5. When tis 10 or 50 mm, it is obvious

that A remains constant, but when t is smaller, from the FEM results in Table 3.2, it

seems that the adhesive layer thickness and the loading conditions do influence the

singularpower A. As a matterof fact, theydo not haveany effecton A(see Table 3.6),

because when t is small, the solutionat the interfacecomer is not accurate enough to
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properly model the singular power.

The FEIM results in Tables 3.6 and 3.7 indicate that the singular power 'Ais an

intrinsic characteristic of the interface for a definite material combination. Moreover, it

holds the same value no matter how small the thickness or what the loading conditions

may be. It may also be inferred that the FEIM is a good and practical method for

obtaining stress singular powers in complex conditions. Combining the data in Tables

3.1- 3.4, 3.6 and 3.7, it is obvious that 'Ais only a function of Poisson's ratio for an

elastic-rigid bimaterial wedge with a fixed wedge angle.

The second case being discussed is an orthogonal bimaterial wedge made of two

elastic isotropic materials (Figs 6.35 and 6.36). The FEIM is the only method used to

extract the singular powers because the singular zone in this case is too small to be

accurately captured using the FEM (see Section 4.2.4). Attention will be paid to the

singular power dependence on singular elastic parameters, namely, Young's modulus

ratio EI/~ and Poisson's ratios (PI and pJ of the two materials forming the wedge. The

resultant data are presented in Figs. 3.42 and 3.43.

Figure 3.42 shows that the ratio of Young's moduli (E';~) has a significant

influence on the value of the singular power when EI/~ approaches unity. For E';~

values greater than 1000, the singular power is found to be approximately equal to that

of the rigid-elastic case just discussed. However, it should be noted that the assumption

of a perfectly rigid adherend is generally not valid from an engineering standpoint since

the ratio E';~ would rarely exceed 1000.

The singular power dependence on Poisson's ratios of the bonded materials is

presentedin Fig. 3.43. Clearly, a varyingvalueof PI (while keeping P2=0.35) does not

seem to influence the value of 'A;on the other hand, if PI is held constant at 0.3, the

singular power steadily increases with increasing values of P2.This observation seems

to suggest that the Poisson's ratio of the so-called "stiffer" material has a relatively

smaller effect on the singular power, while that of the "softer" material has a

considerably more significant effect on the singular power. Furthermore, comparison of
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Figs. 3.42 and 3.43 shows that the ratio of Young's moduli has a larger influence on the

singular power than the Poisson's ratios of the individual materials. This is probably

caused by the fact that the ratio of Young's moduli E/~ can undergo considerably large

variations while the Poisson's ratios are limited in the range of 0.0 to 0.5. Clearly, the

results presented in this case should be taken into account in practical engineering design

problems in order to create more tolerant "fail-safe" adhesive joints.

The factors that influence the eigenvalues at the wedge comers for skewed

bimaterial wedges, the third case, are addressed separately in Section 4.2.5 because of

their complexity and specialty.

In the last case, orthotropic orthogonal bimaterial wedges, more factors exist to

influence the singular power, namely, the ratio of Young's moduli, the orthotropic ratios

[defined by equation (3.100)] and the Poisson's ratios, than those for the first three cases.

In order that the goal of this research dealing with adhesive joints could be met, an

orthogonal bimaterial wedge comprised of isotropic (adhesive) and orthotropic (composite

adherend) materials, to simulate a joint bonded two elastic orthotropic composite

adherends by an elastic adhesive, was considered (Section 3.2.3.4). The results are listed

in Tables 3.11 and 3.12 and partly graphed in Figs. 3.49 and 3.50.

When the orthotropic ratio w(2)is greater than 0.5, from Fig. 3.49, it is found that

the singular power A does not change noticeably irrespective of the "base value" (kept

constant during corresponding computation) of the y-direction Young's modulus E(2)22'

However, the ratio of E1/E(2)22has shown an impact on the eigenvalues, viz., the closer

it is to unity, the smaller (approaching zero) the eigenvalue; the farther away from unity,

the higher the eigenvalue. This is similar to the observations in isotropic bimaterial

wedges (Fig. 3.42) where the orthotropic ratio is unity for both materials. When w(2)is

less than 0.5 and decreases, Agoes up if ~2 is smaller than 5000 MPa but decreases in

the case of E(2)22being greater than 5000. Further, it is observed that the ratio of E/E(2)22

has a reverse impact on the eigenvalues compared to those if w(2)is greater than 0.5. For

the artificial materials in Table 3.11, the dependence of the eigenvalues on these
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parameters has demonstrated the same trend.

Poisson's ratio ,,(2)12does not demonstrate any significant influence on eigenvalue

distributions (Fig. 3.50). Recalling the findings of singular power dependence on

Poisson's ratios in case 2 of this section (Fig. 3.43) and considering that both E(2)lland

E(2)22are greater than Ett it is clear that this phenomenon is due to Material 2 having

stiffer than Material 1. Nevertheless, it can be expected that Poisson's ratio ,,(2)12will

affect A when Material 2 is softer.

4.2.3. Stress Intensity Factor

An accurate description of the singular stress fields in the adhesive butt joint

analyzed in this study (Fig. 3.36) requires an accurate solution of the displacement

eigenfunctions. From the previous analytical analysis, it is evident that the displacement

eigenfunctions can be determined only when the absolute value of the stress intensity

factor Q is known a priori. However, since Q is a function of the singular power A and

the external boundary conditions, determination of Q remains impossible without taking

the boundary conditions into account. Therefore, only in very special cases (for instance,

rigid adherend, orthogonal wedge, and simple boundary conditions [8-9]) can Q be

determined analytically. The only other recourse are numerical schemes. Among the

existing numerical approaches, the absolute values of the displacement eigenfunctions can

be determined only by FEM [and making use of equation (3.88)] to arrive at the solution

for Q when the singular stress field is sufficiently large. The FEIM approach, however,

fails in this respect since a method for evaluating the stress intensity factor Q, and

consequently the displacement eigenfunction, is not presently available for the FEIM

schemes. However, all of the aforementioned approaches are capable of producing the

relative eigenfunctions of the displacement fields at the terminus of the interfaces in Fig.

3.35.

In addition, from Table 3.5, it is evident that adhesive layer thickness and loading
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conditions affect stress intensity factors, and the free edge stress intensity factor is

accurately expressed by Reedy's formula [same as equation (3.92)]:

(4.5)

Reedy's free edge stress intensity factor formula characterized the nature of the

singular stress field, with A(v) being a function of the loading condition, whose nature

needs to be explored. Moreover, from equation (4.5), it may be speculated that the free

edge stress intensity factor will decrease if the adhesive layer becomes thinner. This may

explain the common experience that "the best strength of an adhesive joint is no

adhesive." However, the fact that experiments conducted so far do not support this effect

(Figs. 3.27-3.30) may be because the adhesive layer at the bimaterial wedge comer is

not perfectly elastic, rather, plastic deformation at the corner takes place to ease this

effect. More experimental work is needed to address this problem correctly.

4.2.4. Singular Zone

It is apparent that when r is very small or fairly large, the data in Fig. 3.37

diverges from the linear relationship. For small values of r, the finite element solutions

are not accurate since the polynomial interpolation functions used in the FEM do not

represent the r-Acurve adequately. On the other hand, when r is large, it is outside the

singular stress zone; therefore, equation (3.86) is unable to accurately describe the stress

field. Taking these facts into account, it is clear that around the interface comer there

exists a singular stress zone, inside which the stresses can be adequately described by

equation (3.86).

First, let us analyze a simpler case - the rigid-elastic model (Fig. 3.39)

computedin Section3.2.2.5. As indicatedearlier, the singularpower is only a function

of Poisson's ratio in this situation; thus, the singular zone geometries must also be

affected by JI. Figure 3.40a, drawn from the equivalent stress field, shows such an effect.
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If rQmaxis denotedas the maximumradius of the singular stress zone and (JQmaxas the

angle between the rQmaxand the interface, it can be seen that as " increases, (JQmax

decreases, as does the singular radius along the interface. rQmax,however, does not

change appreciably. Figure 3.40b shows the negligible effect of Young's modulus on the

singular field, as depicted by the numerical data. Also, the eigenvalue does not depend

on the Young's modulus. Figure 3.40c shows that the singular zone shapes and sizes will

be different if they are extracted from different field parameters, although the wedge

geometry, material mechanical properties, external loadings, and boundary conditions are

the same. It is found that the equivalent stress field results in the biggest singular zone,

while the displacement field along x-direction generates the smallest, and the

displacement field along y-direction yields an intermediate value. Figure 3.40d shows a

similar trend in the t=50 mm case, implying that the singular stress field differs in

different senses. Taking into account the fact that it is necessary to use the equivalent

stress to evaluate the plastic zone, it is suggested that the singular zone obtained from the

equivalent stress field be treated as the generic one in order to make it convenient to

study the interactions between the singular zone and the plastic zone.

For a more complicated case, elastic-elastic bimaterial wedges shown in Figs.

3.35 and 3.36, it is evident from the results shown in Fig. 3.37 that when t is too small,

the linearity of the relationship is lost and therefore the singular power A and the radial

stress intensity factor Qij«(J)cannot be accurately computed. It appears that the singular

stress zone in this case is too small to be adequately described by conventional FEM, as

used for the rigid-elastic case. Therefore, as an alternative approach, the singular zone

was semi-quantitatively evaluated in Section 3.2.3.5 by applying the FEIM.

The dependence of the singular stress zone on the ratio of Young's moduli is

shown in Fig. 3.52 for the case of "1=0.3 and "2=0.35. Clearly, irrespective of the

value of EI/~, the zone in Material 1 is invariably found to be larger than or equal to

that of Material 2. The zone is found to be the smallest when E';~ approaches unity.

However, for EI/~ > 5, the zones in both materials do not show any change. An analysis
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similar to the rigid-elastic (assuming that Material 1 is rigid, i.e., E1/~-oo), shows that

the singular stress zone in Material 2 remains the same for all values of E.t~ greater

than 5 (Fig. 3.52).

The singular stress zone size as a function of Poisson's ratios of the two materials

is presented in Fig. 3.53. Clearly, for "2=0.35, a variation in the value of "1 does not

lead to any change in the singular zones. However, when "1 is held at 0.3 and P2is

varied from 0.05 to 0.495, the singular zone size in Material 1 shows an initial increment

to attain a maximum in the region "2=0.30-0.35 and then decreases rapidly; the singular

stress zone in Material 2 on the other hand shows an initial increment and then holds

steady at approximately 0.0001 mm.

Taking into account the above results (Figs. 3.52 and 3.53), it may be stated that

for adhesive butt joints, when the E.t~ ratio is generally greater than 5 and "h "2 are

close to 0.3, the singular stress zones do not exhibit any significant change as a result

of variation of elastic properties of the bonded materials (adhesive and adherend).

Moreover, the singular stress zone in the adherend (Material 1 in this case) is always

larger than that of the adhesive.

4.2.5. Non- and Weak-Singular Bimaterial Wedge

The deformed structure of the rectangle with a skewed interface (Fig. 3.33) tends

to bend toward the left under uniform tensile loadings if viewed from the left bottom

corner, where the dashed line is the contour of the original structure. This is because

the upper material (1) is stiffer than the lower one (2), and the slope of the skewed

interface is positive with respect to the Cartesian coordinate system used (Fig. 3.31).

Consequently, the stiffness of the left edge of the structure is higher than that of the right

one. Therefore, it is intuitive by observing that the major deformation will take place in

Material 2, the lower portion, since it is softer. Considering the positive slope of the

skewed interface, it can be anticipated that the effective strain on the left edge of
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Material 2 will be greater than that on the right edge of the same material. That is,

during deformation, more energy is dissipated on the interface corner of the left edge

(Point A) and less energy is consumed in the near field at Point B in Fig. 3.31. This

hypothesis is verified by Fig. 3.34. The highest stress concentration is located in the

bimaterial wedge A and the equivalent stress is the smallest at wedge B, which may

suggest that the stress field at Wedge B should not be singular. This observation

obviously indicates that the initiation point of a failure is most likely to begin from Point

A but least probably from Point B. Therefore, it will be desirable to design a bimaterial

wedge having the mechanical behavior of the area around Point B.

Further investigations (Tables 3.9 and 3.10, and Figs. 3.47 and 3.48) make it

knownthat a critical interfaceangle O!e, beyondwhichthe asymptoticstress field totally

disappears, universally exists for all material combinations. This angle is about 126°,

provided that the convention in Fig. 3.45 and the condition of ratio E/~ being greater

than one are met. This is a very important finding because it means that the bimaterial

wedge, with a skewed interface angle greater than the critical angle, will never suffer the

stress singularity problem any more, and therefore, is not prone to initiate interfacial

cracks and should have a higher safe-failure strength. As a matter of fact, this kind of

bimaterial wedge is geometrically similar to and mechanically has the same behavior of

Wedge B in Fig. 3.31. In addition, it is also observed that within the range of

40°< O!< 65°, thevalueof the stresssingularityhasa regionalminimumpoint (Figs. 3.47

and 3.48). By the general principle that the smaller singular stress power the higher

interfacialstrength, this regionallyminimumpoint (in the range of 40°< O!<65°)can be

used as the second choice, for designing bimaterial structures with skewed interfaces, if

the skewed interface angle can not be selected greater than the critical value 126° in

engineeringpractices. However, the first choice, to choose O! being greater than O!e, is

always preferred.

The ratio of the Young's moduli (E/~) has shown effects not only on the value

of the stress intensities but also on the critical skewed interface angles, although the latter
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is smaller (Table 3.9). From Fig. 3.47, it is noted that the value of A is higher if ratio

E';~ has a bigger number, and vice versa. This suggests that, from the viewpoint of

minimizing the singular power, closer values of Young's moduli (El/~ approaching

unity) between the two materials under consideration are more desirable in real

applications. Further, it may suggest a general rule that the smaller the difference

between the two materials making up a bimaterial wedge, the smaller stress singularity

or the weaker asymptotic stress field at the wedge corner. The Young's modulus ratio

E/~ has such an effect on the critical skewedinterface angle ac that when the ratio

approaches infinity, the critical angle is about 126°;otherwise, the critical angle is about

125° (Table 3.9). As a universal result, the former value 126° is taken to be the globally

valid critical angle.

With the relationship between the stress singular power Aand the Poisson's ratio

of Material 2 in Fig. 3.48, it is found that, only within the range of 40°< a < 125° and

under the given conditions, A is noticeably altered while "2 is changed. The singular

power increases as the Poisson's ratio is increased. When the skewed interface angle is

outside the above range (400<a< 125°), no significant difference between the A'S can

be observed for various values of "2under consideration. The Poisson's ratio of Material

2 ("2) also has an influence on the critical skewed interface angle ac (Table 3.10). When

"2 was equal to 0.35 or 0.40, ac arrived at 126°; but if "2 took the value of 0.275 or

0.30, ac ended up at about 123.75°. However, this does not affect the conclusion that the

universal critical angle is 126°from a conservative standpoint. In addition, by comparing

Figs. 3.47 and 3.48, it is clear that E1/~ has a greater influence on the stress intensities

A than "2 does. This phenomenon coincides with what was observed in Section 4.2.2

[49,118].

4.2.6. Convergence of FEIM

Figure 3.54 shows a typical convergenceprocedure for the bimaterial wedge
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studied in Section 3.2.3.2, from which one can see that the eigenvalues obtained in the

first several iterations may diverge, but they will finally converge to the correct value

as the iteration procedure proceeds .
In addition, it is noticed that not only the value of the singular power but the

convergence rate is also a function of the elastic properties of the bonded materials.

Figure 3.55 shows the total number of iterations required to arrive at a converged value

of A as a function of the ratio of Young's moduli (EtlEJ of the materials considered.

Convergence is also found to be slowest when the ratio (EJ/EJ approaches unity. It is

already shown in Fig. 3.52 that the size of the singular stress zone is smallest for

EJ/~-l thereby leading to a slower convergence rate. Fig. 3.56 presents the dependence

of convergence rate on the Poisson's ratios of the materials considered. For a constant

value of "2 (held at 0.35), a varying "1does not seem to influence the convergence rate.

However, when "1 is fixed at 0.3 and "2 is increased from 0.05, the convergence rate

shows an initial acceleration until "2=0.2, beyond which it remains constant. Again,

comparison with Fig. 3.53 further reinforces the idea of smaller singular stress zones

requiring a large number of iterations to achieve convergence.

The fact that, under special conditions, convergence could not be arrived at after

many iterations (Fig. 3.57) may imply that the singular powers in these cases are

complex [21]. From the analysis of skewed bimaterial wedges, it is evident in Fig. 3.57

that the oscillation of the singular power Abecomes even more severe after the number

of iterations is greater than 18. Therefore, a more sophisticated technique is required to

extract complex stress singularities [84]. In addition, from Tables 3.9 and 3.10, it is

found that as EtI~ becomes smaller, the range with which convergence was not

achieved, decreases until it totally disappears; that is, the convergence will be regained

when ratio EI/~ declines to the value of 10. The Poisson's ratio of Materials 2 ("2),

however, does not exhibit any effect on the non-convergent region (Table 3.10 or Fig.

3.48). This is an additional evidence, as stated in the previous paragraph, that Poisson's

ratios have less influence on the asymptotic field in the vicinity of a bimaterial wedge
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than the ratio of Young's moduli does.

When the solution was real and not close to the non-convergent region, the

number of iterations to reach convergence was found to be six or seven, irrespective of

the skewed interface angle, the ratio of Young's modulus, and the Poisson's ratios. This

may suggest that, provided the conditions, the singular stress zone should not be

noticeably influenced by the geometrical and physical properties. However, when the

skewed interface angle was near the range of the non-convergent area, the number of

iterations needed to arrive at convergence was much larger. It may be speculated that the

size of the singular zone of complex stress singularities is much smaller than that of real

asymptotic stress field. Nevertheless, further investigation on complex interfacial stress

singularities is needed to verify this hypothesis.

4.2.7. Application of Composite Parameters

It was concluded in Section 3.2.1 that for a particular geometry of an isotropic

bimaterial wedge, the singular power is only a function of two independent composite

parameters Ol and {3as defined by equations (2.52) and (2.53). This could be further

verified by the results from the finite element iterative analysis shown in Table 3.8,

where v=O.OOool is used to represent v=O and v=.49999 to represent v=0.5 in order

to conduct the computations. The results demonstrate that any combination of elastic

properties of the two media that yield a common set of composite parameters Oland {3

give rise to the same singularpower A. Thereis oneexception,namely,when0l=-0.5

and {3=-0.25, the A'S obtained by the FEIM scheme are not constant. This is caused by

the fact that when A approaches zero, the numerical errors introduced in the FEIM

analysis are large enough to disturb the accuracy of the singular power calculation. This

observation indicates that when A is too small, even the FEIM scheme fails to yield a

reasonably accurate result. Nevertheless, perturbations in the values of the singular power

become insignificant when A has a non-trivial value.



205

A diagram showing the distribution of A for different composite parameters is

shown in Fig. 3.44. It can be seen that the diagramis symmetricabout the {:J=Oaxis.

This observation can be supported by equations (3.52) and (3.53), where an interchange

of the subscripts leads to a change in the sign of the composite parameters. In addition,

it is found that the singularity tends to vanish when ex is zero, i. e., material property

combinations yielding very small value of exgive rise to very small values of the singular

power. Therefore, an appropriate selection of bonding materials could prove crucial in

enhancing the fracture strength of the adhesive joint. In contrast, the larger the absolute

value of ex, the larger the singular power A. Therefore, an adhesive butt joint yielding

a large exvalue may not be a good choice.

From the above observations, it may be concluded that the analytical model

described in Section 3.2.1 is valid and the pair of the composite parameters is capable

of describing the elastic mechanical behavior of bimaterial media adequately. This

conclusion has, in fact, more significance from a practical standpoint because it can be

employed in the design of experimental simulations for state-of-the-art materials using

relatively inexpensive materials that could give rise to the same composite parameters.

Moreover, the fact that a smaller value of exgives rise to a weaker singular power Amay

be used as a guideline by design engineers to select material combinations that yield a
trivial value of ex.

4.3. Plastic Zone at Bimaterial Interface Wedge Corners

4.3.1. Plastic Zone Evaluation Methods

Figure 3.68 demonstrates that the theoretical plastic zone of the second estimation

is much larger than the numerical (real) one. Even the area of the plastic zone from the

first estimation is larger than that of the numerical one. The shape of the theoretical

plastic zone also differs considerably from the numerical one at En=O.0003. From Fig.
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3.69, it can been seen that when En=0.00OO7,the numerical 8(n)Pmaxalmost equals the

theoretical 8(t)Pmax-However when Enbecomes bigger, 8(n)Pmaxdecreases until it reaches 36°

and holds this value. The critical load is about En=0.OOOI5.This observation shows that

as the load increases, the plastic zone develops toward the interface. This may suggest

that the initial failure may take place near the interface since the strain energy of this

area is very high. When 8Pmaxequals 36°, the plastic zone (Fig. 3.68) is in a fingertip

shape, as reported in reference [121]. It is also similar to that of the singular zone (Fig.

3.40). Thus, when the load is big enough, the singular zone controls the plastic zone,

which controls the plastic deformation and thus controls the failure path. Although the

shapes of the theoretical and numerical plastic zones differ significantly, the theoretical

maximum plastic zone radius r(t)Pmaxmatches the numerical one r(n)Pmaxvery well before

Enexceeds 0.0007 (as shown in Fig. 3.70). Therefore, r<t)Pmaxcan be used to represent

r(n)I'1naxwhen this value is required in the condition of En< 0.0007.

4.3.2. Transition Zone

The effects of the plastic zone on the singular zone can be clearly seen in Fig.

3.71, from which it is convenient to distinguish the wedge comer into a singular zone

(I, II and III) and a normal zone (IV) in the elastic case, while in the elastic-plastic case,

it appears in four regions: the plastic zone (I), A=O; the transition zone (II),

A~constant; the singular zone (III), A=0.2888; and the normal zone (IV), A decreases.

From Fig. 3.72, it is found that the singular zone becomes smaller as En increases

since the plastic zone expands. Also, it can be seen that when the load is large enough

the singular zone does not exist at all. The critica1load is En=0.00035, beyond which a

plateau of A=0.2888 cannot be found at all, but the normal zone does not show a notable

influence on A with the load up to En=0.OOO4.Furthermore, it seems that after the

singular zone disappears, a critical ring of the radius exists with a value of rc~ 0.97 mm

and a critical angle 8c=36°. The following observation can be made from a fairly large
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area, the transition, singular, and regular zones, around re,

A schematic drawing displaying this trend is presented in Fig. 4.2.

Larger A means that stresses change faster (higher IoUij/or I) and are more

localized, that is, it is expected that failure will be more likely to occur in the area of

r < re and (J< (Je,which is very close to the interface. Singular power A is also greater

than 0.2888 in the region of r> re and (J>(Je,but because the absolute values of stresses

are relatively small, failure is unlikely to occur in this area. The fact that all the cracks

initiated at the vicinity of the interface corners (except at notch tips of Type B specimen)

may be best explained using this hypothesis irrespective of adhesive types.

As rp increases, rQ decreases at first, then stops decreasing until the transition

zone wholly overlaps the singular zone (Fig. 3.74). This is because, when the plastic

zone emerges, the constraint at the wedge corner is released, resulting in a stress

concentration decreasing and hence a smaller singular zone. Although the singular zone

geometry change at this stage is not significant, it may still be very beneficial for plastic

adhesives to bear higher loads because the stress concentration at the wedge corner is

relatively low. However, after the plastic zone expands to a critical value, the singular

zone size does not change at all until it disappears. It may be implied that the constraint

of the wedge corner is holding at a certain level before the singular zone diminishes; that

is, it is possible to use the elastic fracture criteria to predict this type of small yielding

plastic layer failure. For the case oft=50 mm, in Fig. 3.35, the critical maximum plastic

radius is 0.063 mm and the load at this time is En=0.OOO35,beyond which no singular

zone exists.

r < re, (J< (Je, A > 0.2888

r < re, (J> (Je, A < 0.2888

r > re, (J< (Je, A< 0.2888

r > re, (J> (Je, A > 0.2888
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4.4. Failure Pattern of AdhesiveJoint Iosipescu Specimen

4.4.1. Crack Initiation

Direct observation during mechanical testing or from the optical photographs

(Figs. 3.58-3.61) indicated that cracks were initiated at the vicinity of the stress singular

points. SEM examinations of the fractured surface further verified this assertion.

From Figs. 3.62 and 3.63, the fractured topography strongly implied that the

crack started from a point on the line of adhesive-adherend interface intersecting the

notch root plateau. Analytical and numerical investigations have already revealed that

stresses along this line are very high. Although the stresses in reality could not possess

infinite values along this line as mathematically suggested, it is certain that stresses at

some points on this line could easily exceed the strength of the joint. Consequently, a

crack was initiated. In the case of Type B specimen, the mechanism is the same when

a crack was induced at a notch tip as a singular stress field existed there as well.

4.4.2. Crack Propagation

At the tip of a newly formed crack, a more severe stress singularity would drive

the crack to propagate [44] if the energy accumulated at the crack tip was greater than

that needed to generate new crack surfaces. The crack propagation process would

temporarily stop when the strain energy at the tip became smaller than the critical energy

release rate. This was caused by the dynamic effect of propagating cracks. In the load-

displacement diagram, a kink would be observed. If the speed of consuming energy by

the crack propagation was less than or equal to the rate of energy provision by external

load, a crack would go all the way from one end to the other end; that is, no kink could

be seen. Whether a crack would develop along only a single plane (Fig. 3.65) or step-

wise surfaces (3.62--3.64) is determined by many factors, such as loading mode, void
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volume percentage, adhesive type, and surface finish grade. Flexible adhesive has such

a high critical energy release rate that cracks could not penetrate into it but would

develop only along the interface since the adherend (aluminum) also has a higher fracture

toughness than the interface. However, rigid adhesive joints showed various fracture

profiles (Fig. 3.62--3.64). This may indicate that the interface strength is at the same

level as the adhesive. The step-wise and secondary-crack-filled fracture surfaces (Fig.

3.63) of the rigid adhesive may suggest that damage mechanics should be employed to

interpret correctly the fracture process of adhesive joint, which is beyond the scope of

the present study but will be addressed in the future.

4.5. Optimization of Adhesive Joint Iosipescu Specimen

An optimized adhesive joint Iosipescu specimen, shown in Fig. 4.3, is proposed,

based on the investigations on the asymptotic stress fields at bimaterial interface comers

(in this presentation) and at sharp notches by Sukumar and Kumosa [72,74,108]. This

geometry (Fig. 4.3) consists of both the sharp notch root (in the adhesive) and two

bimaterial wedges (involving adhesive and adherend). Based upon Sukumar and

Kumosa's work [72,74,108], under pure mode II loading, a critical re-entrant angle of

103° exists. That is, the stress singularities will disappear if the re-entrant angle of an

isotropic sharp notch is greater than this critical value, 103°. Since the re-entrant angle

of the notch in Fig. 4.3 is 105°, the notch root at Point B will be free of singular

stresses. Furthermore, from simple geometric principles, the bimaterial wedge, Point A

in Fig. 4.3, would take up a skewed interface angle of 127.5° according to the

conventions in Fig. 3.45. That is, this angle is greater than the censorious value of 126°

aforementioned. The asymptotic stress field will therefore never appear at the comer of

the bimaterial wedges in Fig. 4.3, irrespective of the mechanical properties of the

adhesive and adherend. In summary of the discussions in this paragraph, it can be

concluded that the adhesive joint Iosipescu specimen proposed in Fig. 4.3 is capable of
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introducing a uniform pure shear stress field within its adhesive layer from the standpoint

of being free of stress singularities; that is, this geometry will be free of singular stresses

both at the notch root and at bimaterial wedges, under pure mode II loading.

In a re-examination of the dimension of the notch root geometry of Type B

specimen in Fig. 3.8b, it will be noticed that both Figs. 3.8b (or Fig. 3.23) and Fig. 4.3

look similar. As a matter of fact, they share exactly the same re-entrant angle of 105°.

Therefore, the specimen in Fig. 3.23 should be the ideal specimen for adhesive joint

testing.

However, finite element results in Figs. 3.9-3.11 showed that, for specimen B,

the tensile stresses at the notch tip were singular and were concentrated at the bimaterial

wedge comers under pure shearing loading condition. It appears that the numerical

observations are against the prediction from asymptotic analysis. Further examination of

the conditions of using Sukumar and Kumosa's finding [72,74,108] shows that there is

no such contradiction between the FEM (Figs. 3.9-3.11) and asymptotic (Fig. 4.3)

outcomes.

It was emphasized that under pure mode n loading conditions, the singularity

would disappear when the re-entrant angle was greater than 103°. Incidentally, prescribed

displacement boundary conditions were employed there [72,74]. In the FEM analysis in

Section 3.1.3.1, force couple boundary conditions were used, which may not be able to

force the loading condition into a pure shear since theoretically, from Iosipescu' s

proposal (Fig. 2.8), the pure shear mode only exists at the notch root axis.

If viewing the stress distributions along the notch edge (Fig. 4.4), one can see that

there is no stress concentration at the interface comer. From the equivalent stress

contours inside the adhesive layer of the optimized specimen under pure shear loading

(Fig. 4.5), it can be seen that the maximum equivalent stress occurs a small distance

away from the notch tip rather than at the notch tip or the bimaterial wedge comer; that

is, no stress singularity exists for this specimen under pure mode II loading. In addition,

the distributions of the degree of biaxial stress mode mixing inside the adhesive layer are
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presented in Figs. 4.6a and b for different loading conditions. From these diagrams, it

is evident that the biaxial stress state within the adhesive layer is fairly uniform under

any loading condition, although it is expected that stress singularities will appear at the

notch tip when the loading mode is not pure shear. Actually, the singular stress zone at

the notch root is almost negligible in Figs. 4.7a, b and c, which are stress contours of

Type B specimen from the FEM analysis in Section 3.1.3. From these figures, it can be

said that along the notch root axis the stresses are fairly uniform, at least from the view

point of practical engineering.

It should be noted that even if the notch tip stress singularity can be avoided by

adjusting the loading angle, it is impossible to get such a loading condition in reality

anyway. All of these analyses were conducted based on two-dimensional in-plane

assumptions, if, more practically, three-dimensional effect [122-124] is taken into

account, interface stress singularity inevitably exists at the orthogonal interface wedges.

This will mathematically make it impossible to design an adhesive joint free of

asymptotic behaviors.

From the above arguments, it is clear that, from the engineering point of view,

the new geometry proposed in Fig. 4.1 is capable of generating a quite uniform biaxial

stress state inside the adhesive layer. Taking into account the global stress analysis and

experimental approaches, Specimen A in Figs. 3.6-3.8 will be another candidate to

perform such a task. Specimen C is not a desired choice because of its strong singular

behavior at its interface wedge comers.

A modified version of Fig. 4.1, produced by rounding off the sharp tip at the

notch root into a small radius but keeping the skewed interface angle as it is, may

improve the stress state at the notch root and therefore produces a more uniform stress

state within the adhesives. Future work will be focused in this direction.
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4.6. Difference BetweenMicro- and Macro-Mechanical Behavior

Although it was predicted that the optimized specimens of Type B should have

a much higher strength compared with those of Type A and C, experimental results did

not clearly show such an evidence. Rather, it was found that the joint strengths of all

three types of adhesive joint Iosipescu specimens were not strongly affected by the

adhesive types, notch root configurations, and adhesive layer thicknesses. Only the

loading angle had a slight influence on the joint strength. This is becauset some

significant differences exist between the micro- and macro-mechanical behavior at

bimaterial wedge corners, which determines the ultimate strength of the adhesive joints.

The analytical or numerical models obviously are in a micro-scale since

everything in the bimaterial wedge is assumed to be perfect (see Section 1.3.2), namely,

ideally linear elastic materials, straight bondline, perfect interface, smooth notch edge

surfaces, and in-plane mechanical behavior. However, the test specimens used in the

experiments are in a macro-scale since, the bonding surface is not a perfectly straight line

but a zig-zagged surface; there are always some invisible bulbs inside the adhesive layer;

the notch edge surfaces are not ideally smooth, rather many micro-cracks and sharp

notches exist and the materials that made up the wedge are not 100% elastic but present

nonlinear behavior when the equivalent stress exceeds their yield strength. All of these

factors make the real test specimen impossible to be accurately simulated by the models.

That is, there is a gap between the micro- and macro-mechanical behavior at bimaterial

wedge corners. How to fill this gap remains a great challenge in the future studies.
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Fig. 4.3 Optimized root geometry of adhesive joint Iosipescu specimen.
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Fig. 4.5 Equivalent stress contours with the adhesive layer under pure shear loading
condition (Type B, t= 1.0 mm)
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CHAPTER 5

CONCLUSIONS

(1) A shear lag analysis of adhesivejoints was conducted in a two-dimensional

situation. The results can best be used to simulate fiber pull-out process in

compositematerials.

(2) The Airy stress function approach to the stress analysis inside the adhesive layers

of adhesive joint Iosipescu specimens can yield fairly good results. It is the only

closed form solution so far.

(3) A conceptof degree of mode mixingof biaxial stresseshas been proposed:

(5.1)

This formula has been found to be capableof characterizingthe biaxial stress

state very well.

(4) The singular stress zone geometry at a bimaterial wedge corner is a function of

the mechanical properties of the materials, the wedge geometry, and the applied

external loads. It can be numerically determined using the proposed criterion of

degree of divergence by the FEM or semi-quantitatively estimated by the FEIM

with a determined criterion. It is also found that the singular zone in the adherend

(stiffer material) is always greater than that in the adhesive (softer material).

(5) The plastic zone geometryat a bimaterialwedgecorner can be obtainedby

222
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(5.2)

when the load is small. If the load is large, however, the plastic zone resembles

the singular zone and should be determined numerically. A transition zone exists

between the plastic and the singular zone. When the plastic zone is small, the

stress field at the wedge comer can still be described by the elastic solutions. The

singular stress field becomes smaller as the plastic zone grows larger. However,

when the plastic zone is large enough, the stress field at the wedge comer cannot

be said to obey a simple singular rule; rather, it is a more complicated stress

field, and at this point, it can be said that the singular stress zone vanishes.

(6) Composite parameters a and {3were obtained using simple Williams' Airy stress

functions. It had also revealed that the singular behavior of a bimaterial wedge

with a fixed geometry can be adequately described by the two independent

parameters. Also, in practice, an adhesive joint composed of materials leading to

a value of a approximately equal to zero is always desirable since it minimizes

the strength of the singular stress field. The observation is very significant in that

the eigenvalues will be the same if, for a fixed bimaterial wedge geometry, the

material combinations yield the same pair of composite parameters irrespective

of the mechanical properties of individual materials, since from a practical point

of view it can be used to design experimental simulations for state-of-the-art

materials by using relatively inexpensive materials that give rise to the same

composite parameters.

(7) A universal critical skewed interface angle 126°has been discovered for a skewed

bimaterial interfaceproblem. If the skewedinterfaceangle is greater than 126°,
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the asymptotic stress field at the bimaterial wedge will totally disappear

irrespective of the mechanical properties of the materials making up the wedge.

This finding has corrected the conventional intuition that stresses are singular at

any bimaterial wedge with any material combinations.

(8) An optimized adhesive joint Iosipescu specimen has been proposed. This

specimen is free of any stress singularity under pure mode II loading conditions.

It has also been found that the biaxial stress state inside the adhesive layer of this

specimen is uniform. Therefore, this optimized specimen is idea for adhesive joint

testing.

(9) Stress singular power at bimaterialwedges dependson, besides geometry, the

material properties. The singular power generally increases when E/~ gets

away from unity. The Poisson's ratio of the softer material influences the

eigenvalues,but no noticeablechangein the singularpowercanbe observedwhen

the Poisson's ratio of the stiffer material is varied. However, the Young's

modulusratio E/~ has a bigger impacton the variationof the eigenvaluethan
the Poisson's ratios.

(10) An orthotropic bimaterial wedge has been investigated. It has been observed that

the orthotropic ratio of the materials appreciably affects the asymptotic field at the

wedge corner.

(11) The FEM can be used to compute the eigenvalues only when the singular stress

zone is big; otherwise, this method is unable to represent the asymptotic field

accurately. In this case, the FEIM is the best alternative.

(12) The FEIM is an effective numerical scheme to extract bimaterial interface
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singular power. However, the stress intensity factor Q can only be obtained by

the FEM via the scheme invented in this presentation. Only in the simplest case,

an elastic layer bonded to a rigid substrate, can the free edge stress intensity

factor be analytically computed from Reedy's formula.

(13) Both the analytical and FEIM approaches are capable of determining the relative

displacement eigenfunction solutions and the singular power A for bimaterial

wedge problems with an excellent degree of accuracy. However, only the FEM

scheme is capable of extracting the absolute displacement eigenfunctions for

generalized bimaterial problems.

(14) The FEIM convergence rate is found to be closely related to the elastic properties

of the bonded materials. Specifically, convergence is slowest if E';~ approaches

unity but increases when E';~ deviates from unity. However, the convergence

rate doesn't change if the absolute value of 10g(E';~) is greater than one.

(15) From the global stress analyses, it has been observed that the newly proposed

adhesive joint Iosipescu specimens are capable of producing a fairly uniform pure

shear or biaxial stress state inside the adhesive layer. Among them, optimized

Type B should be the first choice in conducting adhesive joint testing.

(16) From closed form and numerical analysis, the loading angles and adhesive layer

thicknesses do not show significant effects on the uniformity of stress distributions

inside the adhesive layer. But experimental results show that failure loads reach

maximum at 15° loading angle for Specimen A and B with adhesive layer

thickness of 1.0 mm. Further, for specimen Type A with adhesive layer thickness

t=0.2 mm, both the first kink and rupture loads go up slightly as the loading

angle is increased.
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(17) The present experimental data do not clearly indicate any relationships between

the joint strengths and the other testing parameters, namely, adhesive types, notch

root configuration, and adhesive layer thicknesses. Although it seems that loading

angle has a slightly effect on the strength. This is because the model used for the

analysis is in a micro-scale while the specimens tested are actually in a

macro-scale, which are not even close to the analytical model since micro-cracks

and micro notches always exist at the notch root surfaces as well as the bonding

line is not straight but zig-zagged. These micro-defects greatly influence the

ultimate strength of the joints.

(18) Experimental analysis confirmed that cracks initiate their failure from interface

corners or sharp notch tips due to the stress singularity. The crack would

propagate in a peel-off or zig-zag pattern for rigid adhesive joints. In particular,

the fracture topography is of a step-wise manner inside the adhesive layer.

However, only the peel-off pattern can be seen for flexible adhesive joints.

(19) Future work should be directed to delicate experimental analyses by varying all

influencing parameters, and finding the links between micro- and macro- models,

complex stress singularities, and anisotropic adherends.
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