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Abstract 

Type Inference and Reconstruction 
for 

First Order Dependent Types 

Neal Nelson, Ph.D. 
Oregon Graduate Institute of Science & Technology, 1995 

Supervising Professor: James Hook, Ph. D. 

This thesis extends a simple ML-style type system by adding type reconstruction for 

first-order dependent product types. Our study concentrates upon a simple type system 

we call TT that includes primitive recursive sequences of types from which we construct 

product types dependent on natural numbers. The T type system is a representation of 

an earlier system by Tait [Tai65] and Martin-Lijf [Mar72a] called T"', postulating infinite 

sequences of terms and types but having unspecified coding for these sequences. We give a 

detailed characterization the TT type system and show that it is possible to type a sensible 

primitive recursive function that is not typable in ML. The first part of the thesis presents 

the TT typing rules, a semantic model with soundness and completeness theorems, and 

examples of how to type representations of tuples and projections as  products dependent 

on the tuple width. The second part of the thesis proves the existence of 'F principal types 

and presents a method for type reconstruction that extends MGstyIe type reconstruction 

to dependent types. 



Chapter 1 

Introduction 

1.1 Dependent Types 

Experience with the ML type inference system has shown that it is possible to have 

both the advantages of a strongly typed programming language and the convenience of 

programming without explicit types [Paugl]. The heart of the technique is the ML type 

inference algorithm that examines programs written without types, and determines the 

types of the terms in the program from the context of their use. Thus, for example, a 

program fragment consisting of a function f applied to the two arguments (4,3) would 

imply the type of f is a function of two integer arguments. A later context might indicate 

that f returns an integer argument. When we collect all the information about all the 

terms and subterms of a program we can either successfully report a type assignment or 

else indicate failure to type. We call this process type reconstruction, and show in this 

thesis how ML-style type reconstruction can be extended to cover dependent types such 

as might be used for variable-length arrays, or variable-dimension matrices. 

Type reconstruction in ML assumes that programs are typed in a well specified type 

system. For example, the simplest type system might consist of just function types and 

natural numbers. 

Nat is the type of natural numbers 

a + T is the type of functions from a to T if a, T are types 

Notice that such a type system supports higher order functions, that is, functions having 

other functions as arguments or results. For example, a function f might have type 

(Nat + Nat) + Nat, accepting arguments of function type Nat + Nat. An ML-style type 



system generalizes the simple type system above with type variables A, B, et cetera, so 

that types can be schemas representing families of types of the same structure or shape. 

The type reconstruction process described above determines the shape of a type. Type 

variables are place-holders standing for any well formed type (including other types with 

variables). Thus the type system becomes 

Nat is a type 

A is a type where A is a type variable ranging over all types (1.1) 

a + T is a type if a, T are types 

The assignment of types to program fragments is specified by a set of rules called the 

type inference system. For the simple type system above, we have the following rules for 

assigning types to the terms of the lambda calculus, where the symbol : is read "has type". 

The resulting set of rules defines the well typed terms in the simply typed lambda calcuZus. 

x : T for x a variable of type T Variable 

Xx.6 : a + T if 6 : T assuming x : a -+ intro (1.2) 

66'  : T if 6 : a + T ,  and 6' : a + el im 

In working with rules for typing, we follow the convention of specifying the rules in the 

form of fractions with the premises of the rule above the line and the conclusion of the rule 

below the line. If the rule has no premise then we call that rule an assumption and leave 

out the line. For rules like -+intro with premises that depend on existing assumptions, 

we place the required assumption in brackets just above the premise. Following these 

conventions for the simply typed lambda calculus, the rules for types 1.1 are expressed as 

in Figure 1.1 and the typing rules for terms 1.2 above are expressed as in Figure 1.2. 

Using these rules we can express the derivation of a well typed term according to the 

method of natural deduction. (See the book by Girard et a1 [GLT89], for an introduction to 

the method of natural deduction.) A derivation is represented as a tree with partial type 

assignments as nodes. Assumption assignments are placed at the leaves and the conclusion 

type assignment at the root with the leaves written above and the root at the bottom. 

Natural deduction trees are easily grasped by example. The following tree represents the 

derivation of the type assignment Xx.Xy.xy : (A + B) -+ ( A  -+ B). 



Nat : n p e  Natural numbers 

A : Type Type variables 

u :  Type 7 :  Type 
Arrow 

u + T : Type 

Figure 1.1 : Rules for Simple Lambda Calculus Types 

x : T Variable 

[x : u] 
6 : 7  + intro 

X2.S : a + 7 

d : o + ~  6 ' : a  + elim 
6 6 ' : ~  

Figure 1.2: Typing Rules for Simple Lambda Calculus Terms 

[x : A + BI2 [y : AI1 - + elim 

Each derivation step corresponds to the use of an inference rule whose premise matches 

the conclusion of the previous derivation step. The rules used are listed to the right of each 

step in the derivation tree. Whenever the +intro rule is used, one or more corresponding 

assumptions at leaves of the tree are discharged. A bracket with a superscript is placed 

around each discharged assumption along with a corresponding superscript on the rule 

that actually discharged them. The root of any derivation tree is a valid type assignment 

provided all the undischarged assumptions are valid type assignments. If all assumptions 

have been discharged, as in the example above, then the final type assignment is valid 

under no assumptions. A finite set l? of all undischarged assumptions in a derivation is 



4

referred to as the context of the final type assignment.!

Given a specification of well typed terms by an inference system, the type reconstruc-

tion algorithm is expected to locate a valid type assignment for an untyped or raw term.

Thus the type reconstruction algorithm may be seen as the search for a derivation of a well

typed term in the type inference system. Raw terms in the simply typed lambda calculus

belong to the untyped lambda calculus described thoroughly by Barendregt [Bar84].

The computational model of the untyped (and untyped) lambda calculus is function

application. Function application in the lambda calculus is expressed by a rewriting system

based primarily on a single equality rule among terms known as the (3 rule. The (3 rule

imitates the action of function application by performing the associated substitution. (See

[Bar84].) If a (3rule applies to a term then we say the term has computational content and

can be reduced by the (3rule to a simpler term. When a term can no longer be reduced it

is considered to be in normal form and represents a final computed value.

The derivation of a well typed term is largely independent of the computational content

of that term. The only expectation is the subject reduction property discussed later: if

there is a derivation for a term, then there is a derivation resulting in the same final type for

any reduction of that term. In systems of natural deduction, computations by (3reductions

correspond to an operation on derivations called cut elimination. See Girard, Taylor and

Lafont [GLT89] for a discussion of cut elimination in natural deduction systems.

The presense of type variables in the type system gives type schemes representing

infinite families of types. If we assume that a type scheme is itself a type, then we can

think of the family of types associated with a type scheme as all those types that can be

obtained by replacing the type variables in the scheme by any other type (possible with

variables). If a type T is obtained from another type a by such a replacement, then we say

that a subsumes T, denoted a ~ T, or that T is an instance of a. This ordering of types is

called the subsumption order and forms the basis of the categorization of types for terms.

Let us examine the type scheme of the following map function that takes as arguments

1Typically contexts are ordered lists, but ours are sets ordered by type dependencies.



a function f , and a list [so, . . . , xn] and applies the function to all elements of the list. 

map f [xo, . . - , zn] = [f ( ~ 0 ) '  . . , f 

If we let A and B be variable types and A-List and B-List be lists of elements of 

variable types A and B respectively, then the map function has the following type scheme. 

Note that the map function is higher order because it is a function that takes another 

function as an argument. 

map : ( A  + B) + (A-List + B-List) 

The map function may take on a variety of instances of its type scheme as a type. 

Working with type schemes implies that program terms may have multiple types, a 

situation that is problematic in programming. Roger Hindley [Hin69] showed that every 

well typed term in the simply typed lambda calculus introduced above has a unique 

representative type known as the principal type scheme. Not all type systems have the 

property of principality. Hindley's proof was constructive, showing the existence of a 

principal type scheme for a term by finding one. The principal type scheme for a term 6 

is the one that subsumes all other legal type schemes for the term 6. We will retain this 

important property for the type system of this thesis. 

Finding principal type schemes for programs is the essence of ML-style type recon- 

struction. It was Robin Milner [Mi1781 who translated Hindley's constructive proof of the 

existence of principal type schemes for the simply typed lambda calculus into an algorithm 

for finding type schemes for ML, a simple programming language variation of the simply 

typed lambda calculus. Milner introduced polymorphic types as encapsulations of type 

schemes by universally quantifying over the type variables. Later, his student Luis Damas 

[DM821 devised type inference rules to succinctly characterize the polymorphic type sys- 

tem for ML. Both Milner and Damas gave a type inference algorithm (what we call a type 

reconstruction algorithm) and Damas proved the soundness and completeness of the type 

inference algorithm with respect to his type inference system. We follow Damas' approach 

and use inference rules as a non-deterministic specification of our type system. We use 

the term type reconstruction to emphasize that the process of reconstructing types from 

raw terms is based on the inference rules. 



ML-style type systems have a collection of reconstructible types that encompass most 

of the standard programming language data structures [Paugl]. The general purpose of 

this thesis is to show that it is possible to extend the ML-style type system and recon- 

struction algorithm to support the typing of variable-length arrays and other related types 

that depend on computed values. The types we use are first-order dependent products, 

introduced by Martin-Lof as a Cartesian product of a family of types [Mar751 in an article 

on intuitionistic type theory. The fundamental assumption that makes dependent type 

reconstruction possible is that we can only express terminating programs. We will sim- 

plify our study by specifically investigating first-order product types dependent on natural 

numbers. 

The motivation of this research is to address the long-standing programming problem 

of coding and assigning a type to functions such as a matrix transpose, whose operation 

and type depend on the dimensions of the matrix arguments. What are the types of the 

arguments and results? Common practice assigns them some maximum dimension array, 

disregarding that the actual argument and result may be a quite different dimension. On 

the other hand, our system will assign first-order dependent types to the matrices, where 

the matrix dimensions will now be part of the type. For example, we would write the type 

transpose : lln.llm.Array(n, m) + Array(m, n) 

indicating that the function accepts three arguments, including two dimension parameters 

n and m plus an n by m array, and produces as a result an m by n array. 

In this approach to typing where types are dependent on values, we have made the 

significant assumption that all programs terminate, or at least all program fragments to 

which we apply our typing system. It is this key termination assumption that opens the 

possibility of much stronger type systems. We call our type system 7 ,  where the n 

suggests products. 

The Tn type system can be viewed as a fragment of Martin-Lijf's type theory, but 

examined from the point of view of type reconstruction and a Curry philosophy where 

types serve to group together untyped terms. Thus, where Martin-Lof's type theory is 

monomorphic, Tn has type variables permitting type schemes, which open the system for 



type reconstruction. On the other hand, for simplicity we stay with monomorphic type 

schemas as in Hindley [Hin69] rather than polymorphic types as in Damas [DM@]. The 

extension of TT to polymorphic types is possible in the same way that Damas extended 

Milner's work, though we do not pursue this extension. For an enlightening discussion 

of Curry's philosophy see Hindley and Seldin [HS86]. For a discussion of an alternative 

Church philosophy, where terms are always introduced with their types, see the discussion 

in Harper and Mitchell on the type structure of standard ML [HM93]. For a comparison 

of the Church and Curry philosophies see Pierce, et a1 [PDM89]. 

Our study actually begins with an examination in the next section of an early and 

relatively obscure type system of Martin-Lof [Mar72a] originally introduced by Tait [Tai65] 

and known as the T* system.* The 7" system was the first to deal with types for possibly 

infinite indexed sequences of terms. In their studies of T", Martin-Lof and Tait were 

interested in the effect of certain transfinite rule schemas on the normalization properties 

of derivations. They proved that it was possible to introduce infinite sequences of terms 

and types dependent on natural numbers and still retain strong normalization properties. 

Tait and Martin-Lijf were not concerned with how infinite sequences of terms and types 

were coded, and it is our focus on representable sequences and products that distinguishes 

Tr from Tm. We will introduce the concept of recursively based sequences to characterize 

the representation property of our product types and the underlying sequences of types. 

Recursively based sequences are sequences that can be specified with finite or well founded 

recursive formulas. 

In the next section we introduce the main concepts of the theisis, exploring them 

in the simplified form of the Too system, abstracted away from the representations of 

infinite sequences that we later require. Following the Introduction, Chapter 2 defines 

the 7n type inference system and then gives a model for it along with soundness and 

completeness theorems. We also elaborate three complete examples, including a function 

that is not typable in ML. Chapter 3 gives a constructive proof of the existence of principal 

type schemes in 7" and then presents the type reconstruction algorithm. Chapter 4 wraps 

2 ~ h e  author thanks Jon Seldin for pointing out that the type system in this thesis is in part a rediscovery 
of the earlier type system 7"'. 



up the results, offering conclusions, comparisons with other work, and future research. 

1.2 Dependent Type Inference and Reconstruction 

Martin-Lof in 1972 [Mar72a] presented Tait's system Tw of infinite terms as a system of 

natural deduction. In this general framework we present the basic concepts of dependent 

type inference and type reconstruction. 

The Tn system realizes all infinite sequences as primitive recursive formulas, whereas 

the Tm system presumes that we have certain infinite rules for dealing with sequences of 

types and terms, but these rules are not specified. Both systems use infinite sequences 

as the basis of constructing first order product types dependent on natural numbers. 

Examining type inference and type reconstruction in Tm gives us an abstract view of 

the the type system without the details required to handle particular finite codings of 

sequences. 

The rules for T* types, shown in Figure 1.3, are those of a simple type system with 

an added product type over infinite sequences of types. We further generalize the system 

with type variables and thus type schemas, as in the previous section. The symbol w 

mentioned in the product rule stands for the natural numbers. 

Nat : Type Natural numbers 

A : Type for A a type variable Qpe  variables 

a :  Type 7 :  Type 
a + T : Type 

TO : Type TI : Type . - 
for a' E w Product ( IT) 

n ( ~ i )  : Type 

Figure 1.3: Rules for Tm Types 

The type inference rules for terms in Tm , shown in Figure 1.4, are the ones for simple 

types given in the introductory section plus product introduction and elimination. In our 

formulation of the + intro rule we use the notation [x : a] to indicate that the premise 



6 : T is derived assuming the variable x in 6 has type a, i.e., x : a, and that the -+ intm 

rule discharges this assumption as discussed in the previous section for the simply typed 

lambda calculus. 

var 

[x : a] 
6 : ~  + intro 

Xx.6 : a -+ T 

6 : a + r  6 ' : a  + elim 
6 6 ' : ~  

Figure 1.4: Typing Rules for Tw Terms 

The contraction rules3 for Tw , shown in Equations 1.3, are 7 and ,f3 reduction as in 

the simply typed lambda calculus plus a projection equation T .  The full equational theory 

of the simply typed lambda calculus and the Tw system both involve other equations, 

for example, there is an a-equality rule for variable name changes and the Too system 

has a distribution-rule not in the simply typed lambda calculus. (See Tait's presentation 

[Tai65].) However, mostly these other equations are not of concern to us in this thesis 

about typing. 

As in Section one, consider a natural-deduction style of representing 7- derivations 

3Equality rules between terms are often referred to as conversion rules. A conversion rule is considered 
a reduction rule or a contraction rule if the equation is intended to be used primarily from left to right, 
that is, substituting the right side for the left side, and the right side is simpler by some measure than the 
left side. 



as trees of formulas having assumptions at the leaves, conclusions at the nodes, and nodes 

labeled by the typing rule used. The derivation of the typing Xx.(bo, dl,. . .) : u + II(ri) 
can be represented by the following natural deduction tree. 

[{x : u}]' [{x : u)]' . . . 

... 

As in the simply typed lambda calculus, discharges only occur at the use of the + intro 

rule. 

Let us investigate the character of the 7- system by studying the typing of a program 

that cannot be typed in the simply typed lambda calculus. The following tautology 

checking function from the SASL language manual [Tur76] will not type in ML. However, 

as shown by Nordstrom, Petersson, and Smith [NPSSO], the taut function can be typed 

with dependent product types.4 

taut 0 f = f 

taut (succ k) f = (taut k (f true)) & (taut k (f false)) 

The principle difficulty in reconstructing a type for taut is that the type of the second 

argument f changes depending on the value of the first argument, a natural number k. 

The ML type synthesizer will fail to unify the type Bool, a single type variable for the 

type of f in the zero case, with the type Bool + X, the type off  in the non-zero case. 

To type taut, postulate a type sequence {Boolo, (Bool + B o ~ l ) ~ ,  (Bool + Bool + 
B ~ o l ) ~ ,  . ..) for f and informally represent this sequence by the expression (Bool +)n Bool. 

Now the type of taut can be informally expressed as a Nat-dependent product, where the 

superscript n can take on any natural number k. 

IIn.((Bool +)nBool) -+ Bool (1.4) 

The term taut 0 would have the type Bool + Bool and the term taut (succ k) would 

4 ~ h e  term succ k stands for the successor of k, that is, k + 1. 



have the type (Bool + (Bool + ) k ~ o o l )  -+ Bool. Combining the typings for these two 

equations gives the type of taut for all natural numbers k expressed uniformly by 1.4. 

Now consider the Tw system as an abstract way to examine type reconstruction for 

dependent products. Define the context I' of any node 6 : T in a derivation as the mapping 

from variables to types representing the collection of all undischarged assumptions at that 

node. We write a sequent in the form k 6 : r to indicate that the type assignment 6 : r 

has context r. Let Tvars be a countable and infinite set of type variables and let Qpes  be 

the set of all types in Tw. Define a type substitution as a total map O : Tvars -+ Types such 

that O(X) # X for finitely many X E Tvars. Extend the type substitution domain to all 

types, O : Types -+ Types in the usual way. (See, for example, the presentation in Snyder 

and Gallier [SG89].) Let O r  denote the application of substitution 8 to type r and let 

02Q1 be the composition of substitutions Q2 and Q1 defined by (0201)(2) = 02(01(x)).5 

The support of a substitution Q, denoted su(O), is the set of type variables A for which 

OA # A. Define Oid as the substitution that maps every type to itself. Finally, extend 

substitutions to apply to contexts, O ( r { x  : 7)) = Or{z : 07). The notation r{x : T )  

means the function I? extended with the assignment of type T to variable x. 

We can imagine extending Hindley's results for simple types [Hi11691 (see also Damas 

and Milner [DM82]) to show that the Tw system supports principal derivations and prin- 

cipal type schemes for terms. To do this we must make sense of infinite compositions of 

substitutions (. . . 020100)  and make sense of constructing an infinite sequence of prin- 

cipal types (TO, r 1 , ~ 2 ,  . . .) for an infinite sequence of terms (60, GI, 62, . . .). For now let 

us suppose such infinite compositions and infinite sequences are somehow sensible and 

postulate a hypothetical method for type reconstruction in Too to gain insight into type 

reconstruction for the TT system. In the remainder of the thesis we will show how the 

explicit coding of infinite sequences in TT makes the reconstruction of principal types both 

sensible and realizable. 

The method of type reconstruction for the simply typed lambda calculus suggests 

how we might reconstruct Too types from untyped terms. Reconstruction is based on 

'We always use application order for composition rather than diagrammatic order. 



structural decomposition of a term in a context to produce a principal derivation for the 

term. The method depends on computing the most general unifier of two type schemes 

using a unification algorithm. Hypothetical methods U and W for unification and type 

reconstruction of Tw are shown in Figure 1.6 and Figure 1.5. We will never be able to 

unify pairs of infinite sequences of types in any reasonable amount of time, so the methods 

for type unification and reconstruction for Tw are simply illustrative as mentioned above. 

The method W takes a context I' and a term 6 as input and returns, if they exist, 

a substitution O and a principle type T such that 6 : T is derivable in context O r .  The 

unification method U returns a substitution called the most general unifier that, when 

applied to either of the two input types, yields their highest common i n s t a n ~ e . ~  The first 

three steps of the W algorithm are the same as the reconstruction algorithm for a simple 

type system. The last two steps handle reconstructing types for sequences. 

We can postulate the soundness for T* type reconstruction assuming the soundness 

of the U algorithm for Tw.  We only conjecture a form of completeness for TW type 

reconstruction in favor of commencing our investigation of the 7" system. 

Theorem 1 (Soundness of W) If W(r,6)  succeeds with result (O,T), then there is a 

derivation of O r  I- 6 : T according to the typing rules of Tw. 

Proof The proof is by a straightforward induction on the structure of 6 following the 

same method as Damas and Milner [DM82]. I 

Conjecture 2 (Completeness of W) Given a context I' and a term 6 ,  i f  there is a 

derivation I" I- 6 : T according to the rules of 7* with I" 5 r, then W(r ,  6) succeeds with 

result (0, T) and furthermore, I" 5 O r  and T 5 u. 

In the methods W and U, notice that type reconstruction can be determined only if the 

reconstruction in steps iv or v of W and the unification of a product in step iv of U are not 

demands for an infinite computation, which, of course, they are. As indicated earlier, the 

'Hindley's term highest common instance is now more commonly called the most general common 
instance. 



W(r ,6 )  = ( 0 , ~ )  where 

(i> W ( r ,  2) = (@id, 7) if {x : 7) E r 
(ii) W ( r ,  Xx.6) = Let ( 0 , ~ )  = W(r{x:  A),6) 

and x $ fv(r) 
in ( 0 ,  OA + 7) 
where A is a new type variable 

= Let ( 0 , ~ )  = W(r,6)  
and (0', a) = W(OI', 6') 
and 0" = U(0'7, a + B) 
in (O"O'O,O1'B) 

(iii) W ( r ,  6 6') 

where B is a new type variable 

(iv) W ( , ( 6 0 7 6 , . . .  ) )  = Let (00 , rh )=W(r ,60)  
and (Oi+l, T:+~) = W(Oi. . . for all i 
and 7i = (. . . Qi+2@i+1)~i for all i 
in ( (. . . O1Oo),II(r,) ) 

( 4  W ( , ( 6 0 , 6 , . . . )  n) = Let ( 0 , ~ )  = W(I',(60,61 ,...)) 
and 0" = U(T, II(Ai) ) 
in (0"0,  ONA,) 
where n is a natural number 
and where Ai are new type variables for all i 

Figure 1.5: Type Reconstruction for Trn 

TT system we study in Chapter 2 is primarily distinguished from by its finite coding of 

sequences of terms, types, rules, and derivations using primitive recursive formulas. This 

means the infinite step of unifying sequences of types can be done by unifying primitive 

recursive formulas for types. Also, the infinite step of reconstructing principal derivations 

for product types from sequences of derivations can be done by constructing the principal 

derivations for the primitive recursive codings of sequences of derivations. 

Before commencing our study of F ,  we briefly investigate how we can actually r e p  

resent the sequences of terms and types of the system and give the typing rules for 

assigning types to programs such as taut. The representation of terms and types in 7 is 

a variation of Godel's theory T of primitive recursive functionals. The terms (i.e. the pro- 

grams) of 7 are coded just as in theory 7. The type system for 'F is the simple system 

of finite types in 7 extended to allow primitive recursive formulations of type sequences 

from which Nat-dependent product types can be constructed. 



U(a, 7) = Q where 
(4 U(r,7) = Qid 
(ii) U(A, r )  or U(T, A) = Qid{A := 7) provided A $! fv(r) 
(iii) U ( a  + r, a' -+ 7') = Let @ = U(r, 7') 

in U (Qa, Qa') 
(iv) U(II(ai), ll(ri) ) = Let Oo = U(ao, TO) 

and Qi+l = U(Qi. . . Ooai,Oi.. . QOri) for all i 
in (. . . Ql@o) 

Figure 1.6: Unification for Too Types 

The programs in 7n (and 7) are coded using the typed lambda calculus extended with 

numerals (i.e., with 0 and a successor operator S) and a primitive recursion operator R. 

The recursion operator R takes three arguments. The first two arguments are the base 

case and the unfolding case of a recursive expression. The third argument is a numeral 

that controls the unfolding of the recursive expression during evaluation. The R operator 

obeys the following equality rules where the term sk is shorthand for the kth numeral. 

For a discussion of theory 7 see Girard, Lafont, and Taylor [GLT89]. 

The taut program in the 7 (or TT) theory is 

taut r R (Xf. f )  (Xnl.Xp.Xf.((p (f true)) & ( p  (f false)))) 

The taut function can be understood, according to the theory 7, in terms of the following 

equations, where 6 stands for an arbitrary expression in the language and we do not make 

use of the bound variable n'. These primitive recursive equations can also be seen as 

defining a well-founded sequence of terms. 

taut 0 = Xf.f (= Zero) 

taut (S 5) = Xf.(((taut 5)(f true))&((taut 5)(f false))) (= Succ) 

Sequences of types used to build product types are also formulated using the theory 7, 

but at the level of type formulas. We assume primitive type constructors Nat, Bool, and 

+, and use the R combinator to extend simple finite type formulas to primitive recursive 



sequences of type formulas. The type of the function argument f of taut, expressed 

informally above as (Bool +)n Bool, can now be formulated as7 

Boolfam E R Bool (Xn'.XX.Bool + X) 

Notice in the definition of Boolfam that the subexpression type Bool + X, which we call 

the successor expression, is abstracted on both X and n', but that the term variable n' 

never appears in the formula. When the successor expression does not depend on a term 

variable, as in the Boolfam example above, then the type formula satisfies one of two 

restrictions that define what we call weak recursion. (We will see the complete definition 

of weak recursion in Chapter 2.) Our results for reconstruction apply only to the weak TT 

system where only weak recursion is allowed in type formulas. 

The elements of the type expressed by the Boolfam formula above can be understood 

according to the following type equality rules that elaborate the sequence of types com- 

prising Boolfam. 

Boolfam 0 = Bool (= IIR-Zero) 

Boolfam (S 6) = Boo1 + (Boolfam 6) (= ITR-Succ) 

The type of the taut program can now be formally expressed as a Nat-dependent 

product using the Boolfam type sequence above. The following typing for the taut program 

can be derived using the typing rules presented in Chapter 2, see Section 2.2 for a detailed 

presentation of this 

taut : IIn.(Boolfarn n) + Bool 

: IIn.(R Boo1 (Xnf.XX.Bool + X )  n) + Bool (= Boolfam) 

We have shown the character of the Tn type system by its relationship with the sim- 

ply typed lambda calculus and the Tw system with dependent products. In studying the 

simple Tw system, we created a framework for understanding dependent type reconstruc- 

tion. We postulated the existence of principal types in Tm, gave a Tw type reconstruction 

'we use the symbol to mean syntactic replacement. This is simply used as a shorthand to make the 
presentation easier to read. 

'In our notation, when a term is shown with two type assignments as in the taut example, we are 
expressing the fact that the two types are equivalent and give the reason in parentheses. 



algorithm, and conjectured the soundness and completeness of the algorithm with respect 

to the Tw inference rules. The Tw type system, however, is a mathematical abstraction 

without sufficient basis for computing. We highlighted the coding distinctions required 

to transform the Tw system into the 'F type system for computing, namely, the finite 

representation of sequences of types and terms, and the use of numerals as computed 

representations of natural numbers. The next chapter introduces the 'F type system in 

detail. 



Chapter 2 

Primitive Recursive Funct ionals with 

Dependent Types 

2.1 A Dependent Type System for 7" 

We embark on a detailed description of the F type system, concentrating on a subsystem 

we call the weak T* type system for which we will be able to reconstruct principal types. In 

our philosophy of typing, not all syntactically well formed term formulas are valid terms; 

we use types to identify and group the valid term formulas. There is a subtle distinction 

between this Curry philosophy and a Church philosophy where terms are always introduced 

with their types. We imagine that we are looking for well typed terms in a larger universe 

of untyped terms. See the presentations in Hindley and Seldin, Harper and Mitchell, and 

Pierce et a1 [HS86, HM93, PDM891 for discussions and comparisons of the Curry versus 

Church philosophies and explicit versus implicit typing. 

In this first section we give rules for types and rules for deriving well typed terms, 

that is, what we know as the 7" type inference system. In the next section we present 

some example derivations of well typed terms, and in the final section of this chapter we 

give a simple set model for the T type system, showing that typing statements derivable 

according to the rules correspond to valid set memberships in the semantic domain. 

2.1.1 Terms 

In our discussion of types and terms, we will use the following notation. Metavariables 6 

and v range over terms, and metavariables T,  a, p, and 7 range over types. Other Greek 



Terms 6 ::= 0 Zero 
I s Successor 
I R  Recursion 
I X Variable 
I Xx.6 Abstraction 
I 6 6 Application 

Figure 2.1: Syntax of Terms in 'P 

letters also occasionally stand for types. A subscripted metavariable ri ranges over families 

of types indexed by i E w. The countably infinite set Tvar = {A,  B,  . . . ,Z, A1, B1,. . .) of 

upper case roman letters are type variables. Similarly, the countably infinite set of lower 

case Roman letters Var = {a ,  b, . . . , z, al ,  bl, . . .) are term variables. 

The syntax of terms is given in Figure 2.1. A term replacement 6Ix := 6'1 denotes 

the term formula obtained from 6 by replacing x everywhere in 6 by 6'. Throughout this 

thesis, we assume the usual convention for avoiding the unsound capture of free variables in 

replacements by requiring that the free and bound variables of 6 and 6' be entirely distinct, 

renaming them if necessary to avoid conflicts. We call this the non-interference assumption 

of replacement. For a finite set of variables {xili E w ) ,  a simultaneous replacement is 

denoted 6[xi := di]. In a simultaneous replacement all of the replacements operate in 

parallel on the original 6 rather than sequentially where each substitution operates on the 

result of a previous substitution. The notation fv(6) refers to the set of free variables of a 

term, that is, those variables x that are not in the scope of some lambda binder Xx in 6. 

The notation dom(4) refers to the domain of a function 4. We write an extension of 

a function 4 as +{x := v )  denoting the function 4' that is everywhere the same as 4 but 

extended with the new domain element x $! dom(4) assigned the value v. The restriction 

of a function 4 to a subset S of its domain is denoted 41s. We let 41dom(4)-s be denoted 

414. The empty set {) notation also represents the empty map. 

A term equality statement is a formula 6' = 6. Term equality is also called term 

convertibility and denoted 'sv to distinguish it from other equalities. We assume terms 

obey the usual lambda calculus equality rules (see Hindley and Seldin [HS86]). However, 

for our purposes we are only interested in the /3 and q equality rules of the lambda calculus. 



The terms of T" obey the equations given in Figure 2.2. We define term reduction, 9, as 

the special case of conversion in which the equations r ] ,  P, R-Zero, and R-Succ are used 

only left to right. The term equality rules do not require that the terms be well typed. 

Figure 2.2: Term Equality Rules of Tn 

The set of natural numbers is referred to as w ,  the intended interpretation of the type 

Nat of numerals discussed below. The canonical form for a numeral is skO, indicating the 

kth numeral, where Sk is shorthand for S S . . . S (k times). 

2.1.2 Types 

The rules for weak 'F type formulas are given in Figure 2.3. The weakening of the T type 

system is manifest in the conditions on the Tseq rule, which we discuss in detail shortly. 

Removing the restrictive conditions (b) and (c) on the Tseq rule of Figure 2.3 leaves us 

with the (non-weak) 7" type system. We prove our primary results concerning principal 

types and type reconstruction for the weak system. The 7 model and the soundness 

and completeness for the 7" type inference system given in Section 2.3 are shown for the 

non-weak 7" system. 

The rules for types really specify families of types in the following sense. If T is a type 

formula with free term variables Inl,. . . , n i )  then we say T represents a family of types 

with indices {nl , .  . . ,nil. An index closed type is a family of types 7 with no indices, that 

is, the set of free term variables in T is empty. Notice that in the 7n types we must make 

explicit distinction between a Product, nn.7, and an Arrow type, Nat + 7 ,  by requiring 

that index variables n be manifest in the products. (See the product rule in Figure 2.3.)l 

'The distinction we make between Iln.r and Nat + T is somewhat unusual in that often Nat + T 

is considered to be just a shorthand for the less discriminating product nn.7 where n is not in the free 
variables of 7. 



As we will soon see, all 7n families represent recursively based sequences of types that 

correspond to the sequences of types used in Tm to construct products. (See the premises 

of the Product rule of Tm in Figure 1.3 of Section 1.2.) 

Nat : Type Num 

X : Type for X a type variable Tvar 

a : T y p e  7 : T y p e  
a + T : Type 

[nl : Nat] 
y e  a v p e  n : ~ a t  i f {  (a) X E fv(a) but a # X 

(b) n1 fil fv(a) and 
R T (Xnl.XXaa) n : Type (c) n fil fv(a, 7) and 

[n : Nat] 
T : Type 

if n E ~ v ( T )  
nn.7 : Type 

Tseq 

Product (ll) 

Figure 2.3: Rules for Weak 7n Type Families 

The notation fv(r) denotes the set of free variables of the type expression r (either 

term variables or type variables). We say fvtm(7) to refer specifically to the free term 

variables, and fvty(r) to refer specifically to the free type variables of T. Sometimes we say 

fv(u, T) to mean fv(a) and ~v(T) .  If, by using the rules for 7n type families of Figure 2.3, 

we can derive T as a type under a set of assumptions I' about free term variables, then we 

denote this fact by the sequent r I- T : Type. 

A type replacement 7[X := a] denotes the type formula obtained from T by replacing 

type variable X everywhere in T by a provided the free and bound variables of 7 and a are 

entirely distinct. We have, as with terms, the non-interference assumption of replacement. 

A term replacement in a type is denoted ~ [ n  := 61 and defined similarly. We do not 

demand that the term 6 is well typed, however, we are most interested in the following 

closure theorem where only well typed terms participate in replacements. 

Proposition 3 (Closure of type replacement) ripe replacement is closed in the 'F 
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type system, that is, if r and a are ,T( types then r[X := a] is a ,T( type.

Proof Take a derivation of a and replace the derivation of the premise X : Type by the

derivation of r : Type. I

We can interpret the family of types R r (An'.AX.a) n in the Tseq rule as representing

the following primitive recursive sequence of types.

'° - R r (An'.AX.a) 0

= r llR-Zero
(2.1)

IHI = R r (An'.AX.a)(Sk+l0)

- a[n':= SkO][X := R r (An'.AX.a) (SkO)] llR-Succ

The elements 1O,II , . .. of a recursive type sequence are all distinct, that is, Ii =I: Ij

provided i =I:j for all i,j. The condition (a) X E fv(a) but a =I: X on the Tseq rule

guarantees the distinctness of elements of a recursive type sequence.

All ,T( types are constructed from either finite types such as A, Nat, a --+ r, or

recursive type families, such as R r (An'.AX.a) n. In this way, ,T( type families are finite

constructions ultimately based on the primitive recursive type sequences. We refer to this

property of the ,T( type system by saying that all type families are recursively based. Type

families can be multi-indexed, for example, R r (An'.AX.a) n --+ R r' (Am'.AY.a')m.

To reach our goal of reconstructing recursively based type families, we restrict the kind

of recursion allowed.

Definition 4 (Weak ,T( types) A recursive type sequence R r (An'.AX.a) n is weak

recursive if and only if

(a) X E fv(a) but a =I:X

(b) n' f/.fv(a)

(c) n f/.fv(a, r)

A ,T( type I is said to be weak recursively based, denoted wrb(")'), if and only if every

recursive type sequence subexpression is weak recursive.

The limitation to weak recursively based types is what we mean by the weak ,T( type sys-

tem. Weak recursion is specified in the conditions on the Tseq typing rule in Figure 2.3.



Condition (a) of Definition 4 guarantees that a sequence of types has distinct elements. 

Conditions (b) and (c) simplify the kind of type recursion allowed. Condition (b) disal- 

lows the dependency of the unfolding expression on the unfolding index. This transforms 

recursion into iteration. Girard, Lafont, and Taylor [GLT89] compare iteration with re- 

cursion and show that using iteration alone results in no essential loss in expressive power. 

Condition (c) enforces a restriction on the nesting of recursion indices. We do not know 

what restriction this places on expressive power. 

Weak recursion is the essential limitation on the type system that we assume to prove 

the principal types theorem for 7" and to obtain the completeness of the reconstruction 

algorithm. These restrictions make it possible to eflectively match primitive recursion 

schemes as accomplished by the matching algorithm and theorem in Section 3.2. Our 

restrictions may be too strong, for we have not attempted to prove the matching theorem 

without the restriction to weak recursion. We leave this investigation for later work. 

We will have circumstances in the 7" typing rules for terms where a replacement of 

a numeral s k O  for a free term variable in a type r will arise. For example, the form 

r[n := skO] appears in the conclusion of the ne l im  rule of Figure 2.4 where it is subse- 

quently normalized. These substitution formulas do not yield types, as can be seen by 

examination of the rules for types in Figure 2.3. We call the term skO a projector. When 

we substitute projectors in types, the resulting formula contains subexpressions of the form 

R r (Xnl.XX.u) (skO) that we call sequence projections. Let us introduce extended weak 

Tn types, denoted Type*, that include types resulting from the substitution of projectors. 

Thus, 

Type* = Type U {r[n, := skiO] 1 r E Type, ni E fv(r), and i ,  k; E w )  

An extended type reduction of an extended type T, denoted r 2 o, is the application of 

one of the sequence projections (Equations 2.1), used left to right, to the extended type T 

that results in the extended type a. An extended type normalization of an extended type 

7, denoted 71, is the result of successively reducing r until no further reductions apply. 

There may be many possible ways to reduce a type, with each reduction path consisting of 

a different sequence of one step reductions by one of the reduction rules. A rewrite system 

is called normalizing if there exists a terminating reduction path called a normalizing path 



for every term. The system is strongly normalizing if every reduction path terminates. 

Finally, the system is called confluent if every terminating reduction path results in the 

same normal form. 

The following theorems show that extended type normalization always terminates and 

results in a unique non-extended type in the weak Tr type system. 

Theorem 5 (Strong normalization of weak Tn extended types) For every type p 

in  the extended type system, every sequence of reductions for p$ terminates. 

Proof Define a complexity measure on weak T extended types by assigning IIR-Zero 

redeces R T (Xnl.XX.u) 0 complexity 1 and IIR-Succ redeces R T (Xnl.XX.o) (sk+lO) 

complexity k + 2. There are no other kinds of redeces in weak T extended types. Let 

the complexity of an extended type p be the sum of the complexities of all its redeces. 

We claim that a reduction of any chosen redex in an extended type p strictly de- 

creases its complexity. First note that in weak TT types, redeces cannot propagate in the 

subexpression type a because n' @ fv(u). This means the total number of redeces in any 

reduction step cannot increase. For a IIR-Zero redex R T (Xnl.XX.a) 0, the complexity of 

the result is the complexity of the zero projected type T, strictly less than the complexity 

of p. For a llR-SUCC redex R T (Xnl.XX.o) (sk+'O) with complexity k + 2, we have the 

same strict decrease in complexity because only one new redex arises and it has complexity 

k + 1. Thus every reduction sequence for a weak 'F extended type p corresponds to a 

strictly decreasing sequence of integers. 

We know from standard results in term rewriting theory that a strongly normalizing 

system with no overlapping rules, such as ours, must be confluent. (See Huet [HueSO].) 

Thus we have a proof of the following theorem. 

Theorem 6 (Confluence of weak 7 extended types) Every eztended type T has a 

unique normal form TJ. in the Tn type system. 

For a type T with n E f v ( ~ )  we call the combined operation ( ~ [ n  := SkO])$ a normal- 

izing projection from T. Normalizing projections show up in the lTelzm typing rule for 7 



terms in the next sub-section. When we project and then normalize like this, the resulting 

type is unique by the confluence theorem above. 

The TX type formulas are an elaboration of the rules for Tw described earlier in 

Figure 1.3, Section 1.2. The TX rules Tseq and Product correspond to the 7* Product 

rule and explicitly give a recursive coding of the type sequences used to construct the Tw 

products. 

2.1.3 Typing Rules 

The type system of Tx consists of rules for deriving judgements of the form I' I- 6 : T. A 

type assignment statement or just statement is a formula 6 : r relating the term 6 to the 

type r. 

A statement 6 : T is well typed or provable in context I', if the judgement I' I- 6 : T can 

be derived according to the typing rules for terms in Figure 2.4. In this case, the term 

6 is said to be typable in context r. Judgements are assumed to be derivable and thus 

signify statements about provability, unless otherwise noted. Such judgements are called 

well typings. 

Statements of the form x : r are assumptions. A context is a function I? : Var + Types 

that represents a set of assumptions. A context extension is an extension I'{x := T) which 

is usually written I'{x : T) or, if I' is the empty context, {x : T). If {z  : T) E r then we 

sometimes say r covers x, or that x is covered by I?. The union of two contexts, I' U I" 

is the context r extended by every variable assignment in I", provided the domains of I' 

and I" do not intersect. 

A well formed context, denoted wf(I'), is defined inductively according to the rules: 

(1) wf(0)  

(2) wf(r{x : T } )  provided wf(I'), I' I- T : Type, and fvtm(r) 2 dom(I') 

The next theorem is intended to verify that well formed contexts exactly cover all the free 

term variables in types, that is, we want each such term variable to be in the domain of 

the context once, but not more than once. The theorem also insures that there is not 

circularity in context dependencies. 



Theorem 7 (Well formed contexts) If wf(r{x : 7)) then 

(i) x $! dom(I') 

(ii) fvtm(7) C dom(I') 

(iii) x $! f v ( ~ )  

Proof Statement (i) follows from the definition of function extension. The proof of (ii) 

is covered directly the definition of a well formed context, and (iii) Follows from (i) and 

(ii) directly. ( 

The typing rules for TT terms are shown in Figure 2.4. For comparison, Figure 2.5 

gives the sequent formulation of the typing rules for Too. The rule Cext is not necessary 

in this formulation of the rules, but it is convenient for modularizing proofs in the manner 

given in the examples (it helps avoid unnecessary context information in sub-proofs). The 

Ilintro rule requires a manifest dependency, that is, it can be used only when the +intro 

rule cannot be used. The IIintro-seq typing rule assigns a dependent product to recursive 

sequences whereas the +intro-seq typing rule assigns an Arrow(+) type Nat + 7. In 

the proof of the principal types theorem the +intro-seq typing rule is handled by the 

unification theorem whereas the Ilintro-seq rule is handled by the matching theorem. (See 

section 3.2.) The restrictions on the nelim rule mean that dependent types can only be 

eliminated using closed Nat terms. 

The following theorems verify some important properties that the type system exhibits. 

All of the theorems apply to both the weak and non-weak 7X type systems. The first 

theorem makes sure that the typing rules for terms.do not introduce ill-formed contexts. 

Theorem 8 (Context preservation) The typing rules of 7 preserve the well forrned- 

ness of contexts, that is, whenever I' I- d : T is derivable according to the 7 rules, then r 
is a well fumed context. 

Proof The proof is by induction over the structure of derivations. The only rules which 

could result in improperly formed contexts are those that alter the context in their con- 

clusions, namely, the rules Zero, Succ, Var, Cext, +intro, nintro, and Ilintro-seq. In the 



r I- 0 : Nat if wf(r) 

r t- S : Nat + Nat if wf(I') 

Zero 

Succ 

Var 

Cext 

+ intro-seq 

+ intro 

+ elim 

I? I- 6' : p r{n : Nat) I- 6 : Nat + u -+ T n E fv(&), wrb(a) 
nintro-seq 

l? t- R 6' 6 : lln.a (a[n := 0])J= p 
(o[n := S n]).j.= T 

F i n :  Nat) I- 6 :  T 
if n E ~ v ( T )  r I- Xn.6 : nn.7 

I' b b : nn.7 I' I- 6' : Nat 
if { 6'4= skO for k E w 

nelirn 
I- 6 6' : ( ~ [ n  := 6'])J or 6' = m a Nat variable 

Figure 2.4: Typing Rules for F Terms 

rules Zero, Succ, and Var, well formedness of the context is a condition on the rule. In 

the Cext rule, r is well formed by the induction hypothesis and r' is well formed by the 

condition on the rule, so (I'U I") is well formed because I' and r' do not intersect. Finally, 

in +intro, nintro, and Uintro-seq the context in the conclusion is a restriction of the 

context in the premises so the well formedness of the context in the premises implies the 

well formedness of the context in the conclusion. I 

The following free variables theorem insures that all free term variables are covered by 

the context in derivable typings for TX terms. 



I'{x : 7) I- x : r if wf(I'{x : 7)) Var 

r ~ - 6 : ~  
if wf(I"), dom(r) n dom(I") = 4 Cext 

I ' u r ' l - 6 : r  

+ intro 

r k  JO: 70 r k d l  : 71 . - -  
for i E w 

I' I- (J0, 61, . . .) : II(ri) 

II elirn 

Figure 2.5: Typing Rules for Tm Terms in Sequent Formulation 

Theorem 9 (Free variables) Whenever I? t- 6 : r is derivable according to the TX typing 

rules, then all free term variables in  6 and T are assigned types in I?, that is, fv(r) C 

dom(r) U Tvar and fv(6) C_ dom(r). 

Proof The proof is by induction on the structure of the derivation of I? I- 6 : T .  The 

Var typing rule directly introduces the term variable x, but the context I'{x : r) assigns 

x type 7. The +intro rule could introduce uncovered free variables in the type u coming 

from the context. However, the well formed context theorem guarantees that the free term 

variables of a are in the domain of I'. No other rules can introduce term variables not 

already covered by the context in the premise of the rule. I 

We must not have a well typed term whose type is not well formed! 

Theorem 10 (Well formed types) Whenever I? I- 6 : r is derivable according to the 

7n typing rules, then r is a derivable type in  the 7n type system. 

Proof The proof is by induction on the structure of the derivation of I' F 6 : r. The 

Zero and Succ rules clearly have resulting types that are in F ( i.e. derivable by the 

TX rules for types). The well formed context condition on the Var rule guarantees the 



resulting type is in 7 . The rules Cext and +elim have resulting types in T by the 

induction hypothesis. Each of the rules +intro, -+intro-seq, IIintro, and IIintro-seq have 

resulting types in Tr by applying a corresponding type rule and appealing to the induction 

hypothesis. Finally, the Ilelirn rule has a resulting type in TT by the induction hypothesis 

and Theorem 6. 1 

Finally, we conjecture the following standard theorem showing the invariance of typing 

under term reduction. This theorem is not used in this thesis and we claim its proof closely 

follows similar proofs of subject reduction properties for the simply typed lambda calculus. 

(See, for example, Barendregt [Bar84].) 

Conjecture 11 (Subject reduction) Let I' I- 6' : r be derivable according to the 'TT 

typing rules and suppose 8 9 6. Then I' I- 6 : r is derivable according to the 7 typing 

rules. 

2.1.4 Strong Normalization of 7" Terms 

A T" term is in normal form if it contains no unreduced 7, P, R-SUCC, or R-Zero redeces. 

In our rewrite system for terms, there can be many possible normalizing reduction paths 

for a term. 

We conjecture that terms in the weak TT system are strongly normalizing and con- 

fluent, that is, every well typed term reduces to a unique normal form. Our conjecture is 

based on the similarity of this system with Godel's system T and the system Too, both 

of which are strongly normalizing and confluent. See Girard about strong normalization 

of the system T [GLT89], and see Tait [Tai65] and Martin-Lof [Mar72a] about strong 

normalization of T* . 

Conjecture 12 (Strong normalization of weak TT ) Well typed weak 7 terms are 

strongly normalizing. 

Theorem 13 (Confluence of weak 7X ) If terms in the weak TT system are strongly 

normalizing, then every well typed term 6 in  the weak 7 type system has a unique normal 

form 63.. 



Proof Again, as with types, we know from standard results in term rewriting theory that 

a strongly normalizing system with no overlapping rules, such as ours, must be confluent. 

(See Huet [Hue80].) 

2.2 Dependent Typing Examples 

We give three examples illustrating formal typing in the 'F type system. First we present 

a detailed example of the typing of the taut function introduced in Chapter 1. The taut 

function is an example that is not typable in the ML type system. Secondly, we sketch how 

to type tupler and projection operations consistently dependent on the size of the tuples. 

The tupler and projection examples are intended as evidence that the type system of this 

paper is applicable to typing programming constructs such as arrays and matrices with 

dependent types. Complete details of the latter two examples are included in Appendix A.l 

and Appendix A.2. 

A derivation begins with a list of assumptions followed by a numbered sequence of 

derivation steps. Each step of the derivation is labeled by either (a) the name of a typing 

rule or (b) the name of a type equality rule (implying a type reduction sequence). The 

symbol = is used only as a syntactic shorthand to make the derivations more readable. 

There is no formal logic step associated with a syntactic replacement in a derivation. The 

typing rules are given in Figure 2.4 Section 2.1. The premises of a derivation step are 

identified as part of the label; if no premise is listed, then the rule is an axiom or its single 

premise is the previous step. 

The key step in the typing derivation for taut uses the primitive recursion rule llintro-seq 

of Figure 2.4, Section 2.1, introducing a sequence of terms having a weak recursively based 

type. The first premise of the llintro-seq rule is the zero or base case and the second 

premise is the successor or induction step case. The nintro-seq rule is used in the last step 

of the taut derivation to introduce the final R combination for the entire program. The 

derivation of taut assumes derivations for true, false, and &. To guarantee well formed 

contexts r, our derivation also assumes (Boolfam n) + Boo1 is the well formed dependent 

product type discussed earlier in Section 1.2. We have assumed the abbreviations BooJfam 



and taut from that section. 

Boolfam R Bool (Xn.XX.Boo1 X )  

taut = R ( X f .  f)(Xnt.Xp.Xf . ( ( p  ( f  true))&@ ( f  false)))) 

Theorem 

taut : IIn. (Boolfam n )  -+ Bool 

Assumptions 

A1 - I- true : Bool 

A2. I- false : Bool 

A3 I- & : Boo]+ Bool -+ Bool 

A4.{n : Nat) I- (Boolfam n )  -+ Bool : Q p e  

Proof First derive the base case. 

1. {f : Bool) I- f : Bool ( Var) 

2. I- X f . f  : Boo]+ Bool (-+ intro) 

In the successor case, first derive types for f ,  true, false, f true, and f false. 

3. { n  : Nat){nt : Nat){p : (Boolfam n )  -+ Bool) 

{ f : Bool + (Boolfam n ) )  I- f : Boo14 (Boolfam n )  ( var) 

4. { n  : Nat){nt : Nat){p : (Boolfam n )  -+ Bool) 

{ f  : Bool -+ (Boolfam n ) )  I- true : Bool 

5. { n  : Nat){n1 : Nat){p : (Boolfam n )  += Bool) 

{ f : Bool -+ (Boolfam n ) )  I- false : Bool 

(Cext A1) 

(Cext Az) 

6. { n  : Nat) {n' : Nat) ( p  : (Boolfam n )  + Bool) 

{ f  : Boo]+ (Boolfam n ) )  I- f true : Boolfam n (+ elim 3 4 )  

7. { n  : Nat){nt : Nat){p : (Boolfam n )  += Bool) 

{ f : Bool -+ (Boolfam n ) )  I- f false : Boolfam n (+ elim 3 5) 



Using an element p belonging to the presumed nth projection of the recursion scheme 

(Boolfam n) + Bool, derive the terms p (f true) and p (f false), and combine them with 

the & operator. 

8. {n : Nat) {n' : Nat){p : (Boolfam n) + Bool) 

{ f : Bool + (Boolfam n)) 

F P  : (Boolfam n) + Bool ( var) 

9. {n : Nat){nt : Nat){p : (Boolfam n) + Bool) 

{f : Bool + (Boolfam n)) 

I- P (f true) : Boo1 

10. {n : Nat){nt : Nat) {p : (Boolfam n) + Bool) 

{ f : Boo]+ (Boolfam n)) 

I- p (f false) : Bool 

(+ elim 8 6 )  

(+ elim 8 7 )  

11. {n : Nat){nl : Nat){p : (Boolfam n) + Bool) 

{ f : Boo]+ (Boolfam n)) 

t- & : Bool + Bool + Bool ( Cext AJ) 

12. {n : Nat) {n' : Nat){p : (Boolfam n) + Bool) 

{ f : Boo]+ (Boolfam n)) 

t- (p (f true)) & ( p  (f false)) : Bool (+ elim 11 9 10) 

Finally, abstract on the arguments f ,  n,p and use the llintro-seq rule on the zero and 



successor case proofs to obtain the final typing of taut. 

13. { n  : Nat) {n' : Nat){p : (Boolfam n )  + Bool) 

I- Xf.((p ( f  true))& @ ( f  false))) 

: (Boo1 -+ (Boolfam n ) )  + Boo1 (+ intro) 

14. {n : Nat) I- Xnl.Xp.Xf .(@ ( f  true))&@ ( f  false))) 

: Nat + ((Boolfam n) + Bool) 

+ ((Boo]+ (Boolfam n ) )  -+ Bool) (+ intro, + intro) 

15. I- R ( A  f .  f)(Xnf.Xp.Xf.((p ( f  true))&@ (f fdse) ) ) )  

: (TZn.(Boolfam n) -+ Bool) (nintro-seq 2 14) 

I- taut : (nn. (Boolfam n )  + Bool) (- taut) 

where (((Boolfam n )  -+ Bool) [n := O])& 

= Bool + Bool 

and (((Boolfam n) + Bool)[n := S n])& 

= (Boo1 + (Boolfam n))  + Bool 

I 

In our second and third examples we sketch how to type tupler and projection op- 

erations consistently dependent on the size of the tuples. The complete derivations for 

these examples are included in Appendices A.l and A.2.2 The representation of tuples is 

similar to the usual lambda calculus formulation of pairs and projections. (See Hindley 

and Seldin [HS86].) In the untyped lambda calculus an operator pair is defined as 

pair - Xs.Xy.Xz.z x y 

The first two arguments are the elements of the pair and the last argument is a projector 

lSt or and. Projections on pairs can then be defined as 

 h he examples of tuplers and projections are derived in the non-weak 7" type system. 



It is easy to show the following expected interaction between pair and the projections lSt 

and 2nd. 

(pair a b) lSt = a 

(pair a b) znd = b 

In our calculus we define tuples using a tuple combinator similar to pair but having an 

extra argument expressing the tuple size. Thus, for example, pair in our system is defined 

as 

pair tupler 1 

where a 1-tuple has size zero, a Ztuple has size 1, and so forth. In general the combinator 

tupler has a tuple length as first argument, tuple elements as middle arguments and the 

last argument a projector like lSt or 2nd of type Projector. A concrete tuple refers to a 

tupler applied to a tuple length and all of the tuple elements. 

Informally, the family of tupler terms is defined as shown in the following table. The 

tuplerO = Xao.Xz.z a0 1-tupler 
tupler 1 = Xao.Xal.Xz.z a0 a1 2-tupler 

tupler k = Xao . . . Xak.Xz.z a0 . . . ak ( k  + 1) -tupler 

Table 2.1: A Family of Tupler Terms 

following type definitions are useful for typing the tupler. We have introduced a special 

abbreviation to make the Projector type easier to read. 

Projector = R (A + A) (Xk.XX.A + X) 

= IIn.(A +)n(A + A) 

Thple = IIn. (Projector n + A) 

The following typing is derivable using the non-weak F typing rules. Again we have 



introduced a special abbreviation to make the type of the tupler term easier to read. 

tupler : nn.R ( A  -+ Thplen) (Xk.XX.A+ X )  n 

: &.(A +)n(A + Thple n) 

Projections work on concrete tuples and are parameterized by the tuple length in the 

first argument and the projection number in the second argument. As in tupler, a tuple 

length argument of zero means a 1-tuple, a tuple length argument of one means a 2-tuple, 

and so forth. Similarly, the first projection is indicated by zero, the second projection by 

one, and so on. The following table shows the family of projection terms. Any attempt 

to specify a projection number beyond the end of the tuple yields the last element in the 

tuple, so for each row k the term in the (k- l)th column is repeated indefinitely thereafter. 

Notice that row two contains the usual projections for pairs in columns zero and one. 

Tuple size Projection number 
0 1 2 3 . . . 

(1-tuple) 0 Xz.z Xz.2 X2.z Xz.z ... 
(2-tuple) 1 Xz.Xy.z Xy.Xz.z Xy.Xz.z Xy.Xz.z ... 
(3-tuple) 2 Xz.Xx.Xy.z Xx.Xz.Xy.z Xx.Xy.Xz.z Xx.Xy.Xz.z ... 
(4-tuple) 3 Xz.Xw.Xx.Xy.z Xw.Xz.Xx.Xy.z Xw.Xx.Xz.Xy.z Xw.Xx.Xy.Xz.z . . . 

Table 2.2: A family of Projection Terms 

The following type is derivable for projection in the non-weak TT system. 

projection : IIn.(Nat + Projector n) 

It is easy to calculate that for pairs in Tn, the expected interaction between the tupler 

and the projections holds just as in Equations 2.2 above. 

(tupler 1 a b)(projection 1 0) = a 

(tupler 1 a b)(projection 1 1) = b 

2.3 A Term Model Semantics for Tn 

In this section we give a model for the (non-weak) TT type system and prove soundness 

and completeness of type inference. We base the semantics of 'F on what Albert Meyer 



has called an environment model of the untyped lambda calculus [Mey82]. We define 

what it means to be a model for TT in terms of basic elements and behaviors, that is, 

the essential properties of all models of TT,  and then prove the soundness of the F type 

inference system of Figure 2.4 Section 2.1. We then construct a term model and use it 

in the proof of completeness of the 'T type inference system. In our model the semantic 

domain D is the set of equivalence classes of convertible terms together with the natural 

numbers w and the type domain T is a class of sets of terms. Thus we model TT terms by 

numbers or functions, and model TT types by sets of terms along with the set of natural 

numbers w. 

Our model construction is motived by Roger Hindley's work [Hin83] on a simple 

semantics3 for the typed lambda calculus based on sets and functions; we give a sim- 

ple semantics for the Tn system. To understand what it means to be a set and function 

model we give equations that characterize the appropriate behavior of terms as functions, 

and types as sets. Thus, for example, if we have a typing statement S : a + r for a term 

6, then we want the semantic requirements to tell us the behaviorial requirements of 6 

interpreted as a function between sets corresponding to the types a and 7. Generally, we 

interpret typing statements S : r as set memberships, that is, the meaning of the term 6 

belongs to the set of terms intended as the meaning of the type r. 

A decent semantics, according to Hindley [Hin83] is one in which interconvertible terms 

are given the same interpretation. The rule Eq below equates the types of interconvertible 

terms. As Hindley does, we add this rule to the type system before giving a model. This 

rule is used to obtain completeness of the inference system with respect to the term model, 

as we will see in the proof of the completeness theorem later in this section. 

Using the rule Eq in a decent semantics makes it is possible to assign a type to a 

term that is not directly typable otherwise. For example, the term (Xz.Xy.y)(O S) is 

typable, but only after conversion to the term Xy.y.4 Moreover, the Eq rule breaks strong 

3~indley's use of the word simple here is relative to the other semantics presented in his paper. 
4 ~ h e  stronger subject reduction rule of Theorem 11, Section 2.1 will not allow an untypable term to be 



normalization. Consider the equality x = KxQ where K is the combinator Xx.Xy.x and 

S l  is the term (Xx.xx)(Xx.xx). 

0 t her reasonable semantics do not assign the same interpretation to interconvertible 

terms, for example, Ohori's semantics for ML polymorphism [Oho89]. In that semantics, 

type information obtained from terms is significant and used to semantically distinguish 

ML expressions that are otherwise convertible without type information. Thus, the two 

terms above would be distinct, with one typable and the other not. Ohori's model makes 

finer distinctions among terms, not lumping together typable and untypable terms in 

the same semantic set. Harper and Mitchell [HM93] introduce the concept of coherence 

between models and type reconstruction to capture this notion that distinctions made by 

type reconstruction show up as semantic distinctions. Ohorj's model is coherent while 

ours and Hindley's decent semantics are most likely not coherent because of the Eq rule. 

Let us return to the general properties required of a model of the Tr system. Let 

D, the semantic domain, denote a nonempty set that is as yet unspecified except that 

it includes the natural numbers w obeying the Peano axioms. Let T, the type domain, 

denote the set of all subsets of domain elements D. 

An environment is a mapping E consisting of two type dependent functions, one from 

term variables to domain elements and the other from type variables to subsets of D. The 

actual environment function being applied in any situation depends on the kind of the 

argument. 

E : nx.case x of 

x : Vars + D 

X : Tvars -+ T 

The metavariable x is intended as a single symbol ranging over both the metavariables x 

and X. Our use of a type dependent function to express the environment is really just to 

avoid an overly cumbersome notation. The set of all environments is denoted Env. 

A term interpretation is a mapping [ ] : Env + Terms -+ D assigning domain elements 

to every term relative to an environment. We introduce three semantic operators on terms, 

typable. However, we then will not be able to prove completeness using Hindley's method. The Eq rule 
is a more general rule than subject reduction that we cannot prove for our type system. We will not be 
concerned with the Eq rule outside of semantic considerations. 



lSt : D + D, and 2nd : D --+ D, and : D2 + D. The map lSt is intended to project 

out the base case of a recursive term sequence, and the map 2nd is intended to yield the 

functional abstraction component of a recursive term sequence, the one that performs the 

recursive unfolding step. 

Figure 2.6 gives the rules for term interpretations required by all models of T .  The 

rules i, iv, vii, viii and ix are standard rules for any lambda model. See Hindley and Seldin 

[HS86] or Meyer [Mey82] for discussions about lambda calculus models. The requirements 

ii and iii are simple extensions to the standard lambda calculus model that characterizes 

the expected behavior of numerals. (See Friedman's model [Fri75].) The remaining two 

requirements v and vi are for characterizing the necessary semantic structure of terms 

representing sequences. These equations define the behavior of the distinguished semantic 

elements lSt and 2nd that take apart the semantic elements representing sequences. 

A type interpretation is a map [ ]D : Env + Types + T assigning sets of domain 

elements as the meaning of type formulas. Figure 2.7 gives the semantic requirements for 

types in all models of 7*. The requirements i, ii, and vii for type interpretations come 

from Hindley's model of the simply typed lambda calculus [Hin83]. Requirements v and 

vi together define the intended meaning of a recursive type sequence as an inductively 

defined family S1, 5'2,. . . of sets of domain elements. The semantic rules iii and iv each 

split into two parts, a uniform condition on membership and a recursive condition on 

membership. The uniform condition specifies semantic elements that behave like functions 

and represent the semantics of lambda abstractions Xx.6. The recursive condition specifies 

semantic elements that behave like sequences representing the sequence terms R 6' 6. The 

rule iii covers functions and sequences that are non-dependent and rule iv covers functions 

and sequences that are dependent on natural numbers. 

In both term and type interpretations we use, respectively, the subscript notations [ 1, 
and [[ 1, to supply the environment e .  Sometimes we leave out the environment argument 

subscript when it is either empty, not needed, or ranges over all possible environments. 

An R-structure is a tuple M = (D, a, 1St,2nd, [ 1, (8 1) obeying the semantic require- 

ments given in Figures 2.6 and 2.7. An R-structure M is a model for TX when the 



(4  1x1, = +> 
(ii) [OIe = 0 
(iii) ( V k ~ w ) , [ S ] , e k  = k + l  
( 2 ~ )  16 6'11, = [6], [6']€ 
(4 lSt[R 6' 61, = [ S t ] ,  
( v i )  2"d [R 6' 61, = [6]€ 
(v i i )  if (Vx E fv(b)) ,  ~ ( x )  = d(x) then [ d l ,  = [6],1 
(v i i i )  cnv i f6 = 6 then 161, = [6']€ 
(2.1 (Vd E D)[Ax.6], d = [61,{,:=d1 

Figure 2.6: Semantic Requirements for Term Interpretations. 

semantic requirements of terms and types hold for all environments E. In Hindley's ter- 

minology [Hin83] the model M is a simple semantics for the 7n system. 

A model M and an environment E satisfy a typing statement 6 : 7 if and only if 861, E 

i7-1,. A model and an environment satisfy a context I' if and only if they satisfy every 

statement in the context. A statement 6 : 7 is valid in  context I', denoted r + [6] E 171 
if and only if I' is well formed and every model and environment satisfying I' also satisfies 

The following lemmas are used in the soundness and completeness proofs. 

L e m m a  14 ( S u b s t i t u t i o n )  Let M be a model for F and E an environment. The vari- 

ous forms of substitution have the following relationships with semantic interpretation. 

BJ[x := 6'llt = [ ~ l , { z : = ~ * ~ ~ ~ }  
I.[X := 7'1BIc = 17)e{~:=[r ' ] , )  

I ( ~ [ x  := 6'1)L = I~1,{z:=[81~,) 
P r o o f  Each of these substitution equations is proved by a routine structural induction 

on the term or type into which the substitution occurs (e.g. 7 or 6).  See, for example, 

Barendregt [Bar84]. 

The following lemma connects the set w in the domain of a model with the semantics 

of the numeral terms skO E Terms. 

L e m m a  15 (w-Terms)  Let M be a model for 'F and E an environment. Then for all 

k E w,  there exists a t e r n  skO such that [skO], = k E w. 



( 2 )  IXlC = € ( X )  
(ii) [Nat] ,  = w 
(iii) [ a  T ] ,  = { f E D I (Vd E [ a l e ) ,  f d E E T ] ~ )  Uniform condition 

U { h  E D I l S t h  E [ T I ,  and Recursive condition 
(Vkt E w)(Vg E [ T ] , )  (2ndh) kt g E [ T ] ,  

where a = Nat so [amr = W )  
( i v )  Bnn.~], = { h  E D I (t/k E w ) ,  h k E B [ ~ ] 0 ~ { ~ : = k ) )  Uniform condition 

U { h  E D I (Vk E w ) ( l s t h  E [THI,{,:=~} Recursive condition 
and (vkl E w)(vg E [7]r{n:=k}) 

(2ndh) k1 9 E 17]c{n:=k+l))} 

(v) [R 7 (Xnl.XX-0) n]c{n:=o) 

= I ITI!~{~:=O) 
( v i )  (Vk E w )  IR T (Xnl.XX.u) nJ,(n:=k+l) 

- - B[u]e{n:=k+l){nf:=k}{~:=sk) 
where Sk = [R T (Xn'.XX.a) n],{n:=k) 

(v i i )  if (VX E fv(6)), C ( X )  = e l (x )  then IT] ,  = IT],, 

Figure 2.7: Semantic Requirements for Type Interpretations. 

Proof The proof is by a simple induction on k E w. In the base case 0 E w we have 

the term [OD = [S O0] = 0 E w. For the induction step, suppose that for all k E w,  

there exists a term S k~ such that [S k ~ ]  = k E W .  Then for k + 1, create the term 

S (skO) = sk+lO.  The semantics of terms together with the induction hypothesis tells us 

that [s~+'o] = [S (skO)] = [S ] [ s ~ o ]  = [S ] k = k + 1. I 

In Section 2.1.2 we showed that a fundamental property of the TT type system in 

comparison with the Too system is the coding of type sequences. We can now see how this 

is modeled in terms of recursive families of sets. Equation 2.1 in Section 2.1 shows that 

the coding of a recursive type sequence defines a family of types 

(Vk E w )  .y,, = R T (Xnt.XX.a) ( ~ ~ 0 )  

For a model M and environment E, the interpretation of such a recursive sequence is given 

by the family of sets 



where these sets are defined recursively, as shown in the interpretation of types, rules ( v )  

and (ui). 

Our actual model obeying all the semantic rules is a term model having as domain 

elements the natural numbers plus equivalence classes of terms under conversion. Thus, 
1 cnv 

let IS1 = (6' 1 6 = 6) and define D = w U (161 1 6 E Terms). Define the distinguished 

domain operators and elements as follows: 

I4 l J t l  = 16 6'1 

lSt lR 6' 61 = 16'1 

2 " d l ~  6' 61 = 161 

(Vk E "),IS '01 = k 

The term interpretation map is defined by the following rule. 

We can assume a simple environment €0 defined by 

(Vx E Var) , €0 (x) = Ix 1 
(VX E Tvar),eO(X) = (161 1 r k  6 : X  for some F) 

In this environment, [b],, = 161. 

We will prove soundness of inference for all models and environments and then use our 

actual model and simple environment €0 to show the completeness of inferen~e.~ 

Theorem 16 (Soundness) If F I- 6 : T is a well typing, then F + [6] E IT] in the 

simple semantics for Tx . 

Proof The proof is by induction over the structure of the derivation of the typing I? I- 

d : T. According to the Context Preservation Theorem 8, we can assume that F is well 

formed for any derivable typing. We will show that each typing rule in Tn preserves the 

soundness of inference. 

'The proof of completeness begins by assuming a validity statement true in all models and environments 
so we are entitled to choose any particular environment and model to show there is a corresponding well- 
typing derivation. 



Zero. Suppose the last step in the derivation uses the Zero rule and the final sequent 

is I' t- 0 : Nat. Then r + [O] ,  E BNatJc because [On = 0 E w and w = [Nat].  

SUCC. Suppose the last step in the derivation uses the Succ rule and the final sequent 

is I' t- S : Nat -+ Nat. According to the definition IS] we have 

(Vk E w)[S] ,  k = k +  1 

Because k + 1 E n[Nat], and w = [Nat],, we know 

(Vk E n[Nat]ll,) [SIC k E B[Nat], 

This is the definition of [S], E [Nat -+ Natm,. Therefore, 

Var. Suppose the last step in the derivation uses the Var rule and the final sequent is 

I'{x : 7 )  t- x : 7 where I'{x := 7 )  is a well formed context. Then if e is an environment 

satisfying r { x  : 7 )  then we know [x ] ,  E [7Jc and thus r { x  : 7 )  + [x] ,  E [ r l C .  

+ intro-seq. Suppose the last step in the derivation uses the + intro-seq and the final 

sequent is r t- R 6' 6 : Nat -+ 7.  The last step of the derivation must have premises 

From the induction hypothesis we have 

r I= [#I, E 
I' [a] ,  E [Nat + T -+ 

According to the semantic interpretation of Nat and arrow types the validity statement 2.5 

means 

(Vk' E w)(vg E [TIC) r I= [6]c k' 9 E [7]11e (2.6) 

Construct the term R 6' 6 so that 



Using the term R 6' 6 and these equations, combine 2.4 and 2.6 to get 

r ist [R 6' 60, E [ T ] ,  

(Vk' E w)(Vg E 1~1.) r 2 n d [ ~  6' 61, kt g E I T ] ,  (2.7) 

Finally, the validity statements 2.7 form the definition of our desired conclusion according 

to the recursive condition of membership in arrow types. 

r k [R 6' 61, E [Nat + T ] ,  

+intro. Suppose the last step of the derivation uses the +intro rule and the final 

sequent is I' I- Xx.6 : a -+ T .  The last step of this derivation must have premise 

From the induction hypothesis we have 

Now any environment E = E' satisfying the left side must have [x]€I  E [a],),  that is, 

~ ' ( x )  = d E [ U ] ~ I  by the definition of interpretation for variables x. Therefore we can let 

E' = E { X  := d )  with d E [a] ,  and restate 2.8 as 

Note that [T],{,:=~) = [7rn6 because x $? fv(r). Using the semantic rule ( iz)  for terms 

(Vd E D)[Xx.G], d = 1[6],Ix:=d) statement 2.9 becomes 

This equation is the semantic definition of arrow membership in [a + 71, by term [ X X . ~ ] , ,  

therefore we have our desired conclusion 

+elim. Suppose the last step of the derivation uses the +elim rule and the final 

sequent is I' t- 6 6' : r .  The last step of the derivation must have premises 



From the induction hypothesis 

The semantic interpretation for arrow types gives us two possibilities for interpreting the 

operator [6] in the case that a = Nat. First suppose that a is not Nat or else if a is Nat 

then 6 is not a recursive term of the form R 6' 6. Then according to the uniform condition 

of arrow membership of [6], we have 

For d ranging over [6'], for all terms 6', statement 2.13 can be stated as 

( ~ 6 ' )  r k [[a1], E ma], implies r k [6], [Jf]e E 171, (2.14) 

Using statement 2.12 to discharge the implication 2.14 we get 

Finally, according to the semantic interpretation of term application, we have the equality 

[S], [6'], = 86 therefore we can assert our desired conclusion. 

Now consider the case where a is Nat and 6 is a term of the form R 61 d2 so that 

l S t [ ~  61 d2], = [61], and 2 n d [ ~  61 621, = [d2],. According to the recursive condition of 

arrow membership that applies in this case we have 

According to the R-Zero and R-Succ conversion rules on terms, the semantic requirements 

of the lSt and 2nd operators on terms, and the semantics of term application we have the 



equations 

[6],.0 = [ 6 0 ] c  

= [(R 61 62)(o)nc 

= [6l]c 

= 1St[6], 

(Vk E w )  [6lc ( k  + 1)  = i d ] ,  [s~+'o], 
= [a  (sk+lo)], 
= [(R 61 62)(Sk+l0)1, 

= [a2 csko) (6 (sko))], 
= [&], k . ( [6] ,  k )  

= (2nd[6],) k ([6].  k )  

Thus, using these equations and assuming g = [6], k we can restate 2.15 as 

(2.16) 
(Vk E w )  [6], k E g[r]D, implies 

By induction over k E w and then replacing k E w by [6'], we can transform 2.16 into 

(Vb') + [ d l ] ,  E [Nat]D, implies 
(2.17) 

r + B6'DE E [TIC 

We know that a = Nat so using the statement 2.12 to discharge the implication in 2.17 

above we can assert 

r I= [61,*1[6']c E 8[7rnC 

Using the semantics of term application [b], [b'], = 86 6'],, we can transform the state- 

ment 2.18 into our desired conclusion 

IIintro. Assume the last step of the derivation uses the nin tro  rule and that the final 

sequent is r t- Xn.6 : IIn.7 where n E ~ v ( T ) .  The last step of the derivation must have 

premise 

r { n  : Nat) t- 6 : T n E ~ v ( T )  



From the induction hypothesis 

Now any environment e = e' satisfying the left side must have [nJ,, E [Natl,,, that is, 

el(x) = d E n[Natmcr with n[Natm,t = w by the definition of interpretation for variables n. 

Therefore we can let e' = e{n := k) with d E w and restate 2.19 as 

This case is very similar to the +intro case. However, here we know that n E fv(r), so 

that is why the interpretation 0[r] uses the extended environment e{n := [d'],). 

Using the semantic rule (ix) for terms, (Vd E D)[Xz.dJ, d = [6]e{z:=d), and remem- 

bering that w D, the statement 2.20 becomes 

This equation is the semantic definition of product membership in n[IIn.r]D, by term [Xn.d], , 
therefore we have our desired conclusion6 

llelim. Suppose the last step of the derivation uses the IIelim rule and the last sequent 

is r I- d 6' : (r[n := 6'])$ with n E fv(r). The last step of the derivation must have 

premises 

I' I- 6 : lSn.7 

r I- 6' : Nat 

From the induction hypothesis 

'Note that we do not suppose here that dependent products can take on recursive elements of product 
types according to the recursive condition of product membership. Recursive elements of products come 
from the llintro-seq rule below. 



The semantic interpretation of the product type membership stated in validity state- 

ment 2.22 above gives us two possibilities for the operator E BITn.r]llc. 

First, according to the uniform condition of the interpretation of product membership, 

operator [a], must obey 

Let k = [a1], E w and restate 2.24 as the implication 

Using the statement 2.23 to discharge the implication 2.25 we can assert 

By the substitution lemma for types, the semantic equivalence of convertible types, and 

the semantics of term application we have the equalities 

Using these equations we can assert our desired conclusion for uniform terms of product 

types. 

r I= B6 6'1, E := 6'l)J-1Dc 

Now consider the case in which the operator [6], might be interpreted as a recursive 

sequence. According to the recursive condition of product membership we have 

(vk E w)( r C lSt~6lc E [r]c{n:=~) 

and (2.26) 

(vk' E w)(Vg !~]De{n:=*)) r I= (2nd~6]c) k' 9 E ~r]Dctn:=k+ll) 

According to the R-Zero and R-Succ conversion rules on terms, the semantic requirements 

of the lSt and 2nd operators on terms, and the semantics of term application we have the 



equations 

86Dc.o = O l e  

= [(R 61 62)(0)]€  

= [a l l€  

= lSt[6],  

(Vk E w )  ]Ic ( k  + 1 )  = [6], [ s k S 1 0 ] ,  

= [ a ( ~ ~ + l o ) ] ~  

= [(R 61 62)(Sk+10)]€ 

= 162 ( ~ ~ 0 )  (6 ( s - ~ o ) ) B ,  
= [62], k  (1[6]€ k )  

= (znd[4€) .k.([qr a k )  

Using these equations and assuming g = [6], k  we can restate 2.26 as 

and 
(2.27) 

(Vk' E w )  I' k [6]€ kt E [ T ] ~ { , : = ~ )  implies 

I= [61€ (k t  + 1)  E m 4 € { n : = k + l ) )  

By induction over k E w and then letting k = [b'], E w we can transform 2.27 into the 

form 

(Vat) k [bl]€ E [Nat], implies 

r k [ d l ,  [ d l ] ,  E 8[r]ern:=[afp,) 

Using the sequent 2.23 to discharge the implication 2.28 above we can assert 

By the substitution lemma for types, the semantic equivalence of convertible types, and 

the semantics of term application we get the equalities 

8[~lc{n:=[all~> = I(.[. := at1)ple 

= [(.In := CY])J.]~ 

[ J ] ,  [6'], = 16 6'1, 

Finally, using these equations we transform the statement 2.29 into our desired conclusion 



nintro-seq. Suppose the last step of the derivation uses the IIintro-seq rule and the 

final sequent is I- R 6' 6 : IIn.u. The last step of the derivation must satisfy the condition 

on the nintro-seq rule and have premises 

From the induction hypothesis we have, therefore 

r I= BJfIlc E UIPIllc (2.30) 

(Vk E w) r { n  := k )  + [6Ic E [Nat + u + 71e (2.31) 

where n $ fv(6), n E fv(u), wrb(u) (2.32) 

and ( u [ n  := 0])1= p (2.33) 

and ( u [ n  := S n])J= 7 (2.34)  

From the condition 2.33 above, the semantic equivalence of convertible types, and the 

substitution lemma we have the equalities 

[p l r  = [ ( ~ [ n  := O1)11e 

= [ ( u [ n  := O])Ie 

= IIulDe{n:=(og,) 

Therefore, using these equations, 2.30 becomes 

Transform statement 2.31 by shifting the context extension r { n  := k )  into an envi- 

ronment extension ~ { n  := k )  to get the following equally valid statement. Note that by 

condition 2.32 n $ fv(6) , so we do not actually need the extension { n  := k )  on c for S. 

Now, we can apply the semantic interpretation of arrow types to statement 2.36 to get 

the family of interpretations 

(Vk E w) [Nat + o + ~ ] 0 , { ~ : = ~ )  
(2.37) 

= ih I (Vk E w)(v9 E [u]c{n:=k))h k 9 E [7lc{n:=k))  



Using the condition 2.34 above, the semantic equivalence of convertible types, the substi- 

tution lemma, and the semantic rules for numeral terms we have the following equations 

Use the definitions 2.37, let semantic element h = [b],, and use the equations 2.38 to 

transform validity statement 2.36 into the statement 

Construct the term R 6' 6 so that 

Using the term R 6' 6 with these equalities and combining the base and successor validity 

statements 2.35 and 2.39 we get 

and 

Finally, the 2.40 is the definition of our desired conclusion according to the recursive 

condition of membership in product types, therefore 

We have covered all of the cases and thus by induction over the structure of derivations 

we have proved the soundness of the inference system with respect to the simple semantics 

of?. 1 

Theorem 17 (Completeness) If r + [6] E [ T H I  in the simple semantics of TT then 

there exists a well typing I? I- 6 : 7 .  



Proof The proof is by induction over the structure of the representative type T in validity 

statements I' [6], E [TI, .  Since the validity statement I' k [ S ] ,  E [T] ,  is true for all 

models, we may certainly assume any particular model to construct our derivation. Thus, 

we use our actual equivalence class model along with the environment E = EQ to construct 

a derivation for an arbitrarily given validity statement. For every structural case of 7 we 

must show 

(V6) F + 161, E [TI ,  implies I' I- 6 : 7 

Natural Numbers [Nat].  Suppose 

According to the semantic requirements for the type Nat we know r [6], E o and 

according to the w-Terms lemma there must be a term skO such that [SkO] = [ S ] ,  E o. 

By the definition of our representative actual model, [Nat] is an equivalence class of terms 

under convertibility, therefore [6] = [skO] implies 6 and skO must be convertible. Finally, 

we know I' I- S k~ : Nat, therefore by the Eq rule we have I' I- 6 : Nat, our desired 

conclusion for this case. 

Type Variables 1x1. Suppose I' [6], E [Xm,. By the the definition of our chosen 

environment E = EQ we have 

[ X ] ,  = E ( X )  = {IS], E D I I' I- 6 : X for some r) 

Therefore we can directly conclude I' t- 6 : X .  

Arrow Types [ a  + r ] .  Suppose I' k [ d l ,  E [ a  + 71,. There are two cases to consider 

depending on whether the semantic element [d] is a member of the semantic domain [a  + 
T I  according to the uniform condition or otherwise according to the recursive condition of 

the semantic interpretation of arrow types. First consider membership according to the 

uniform condition. In this case the interpretation of arrow types gives 

(Val) l7 k [6'], E [a]B, implies 

k [ ~ 1 € 0 [ ( 5 ' g €  E 1.1, 



We know 861, [6']€ = [6 6'1, by definition of the operator therefore using the induction 

hypothesis we can say 

(Q6') r I- 6' : o implies I' I- 6 6' : 7 (2.42) 

Now construct the context r{x : a) and the derivation 

Using the sequent 2.43 with 6' = x to discharge the implication 2.42 we get 

Now by abstraction on x we get 

Finally by q-equality with the Eq rule we get the desired conclusion 

Now for the second case consider r [[dl, E [Nat + according to the recursive 

condition of the semantics of arrow types, that is, 

b lst [nag, E [ ~ m r  

(2.44) 
(Vk' E w)(Vbl') I' + [S"], E [TI, implies 

r c (znd~ag,) kf [aM]. E 1~1. 
Replace the quantification over all k' E w by a quantification over all terms 6' that denote 

a natural number k' E w. According to the semantic interpretation of sequence terms we 

know 861 must have a form to which the operators 1" and dnd can apply. Thus, assume 

161 = [R 61 where [61] = lst[4 and 1621 = 2nd[4 . With these assumptions 2.44 

becomes 
r + [&Be E 171, 

(Vb')(V6'') I' + [6'], E [Nat], implies 

I' + [bl'Be E 11[rBf implies 

r i= ~ 6 ~ 1 ,  v l g e  ~8~1, E 173~ 



Now invoke the induction hypothesis to get 

r k h l : T  

(V6')(V6") I' I- 6' : Nat implies 

I' t- 6'' : T implies 

I' I- 62 6' 6" : T 

Create context r { k t  : Nat){p : T }  and derive 

I'{kl : N a t ) { p :  T }  I- k t :  Nat 

I'(kt : N a t ) { p :  T )  I -p :  T 

Use 2.48 with variable kt  for 6' and 2.49 with variable p for 6" to discharge the implications 

of 2.47 to obtain 

r{kt : Nat}{p : T )  t- 62 kt p : T 

Use abstraction to get 

I' I- Xkt.Xp.62 kt p : Nat + T + 7 

Now use q-conversion twice with the Eq rule to get 

Finally, we can use 2.46 and 2.50 with the (+intro-seq) rule to get 

I? I- R 61 d2 : Nat + T 

which, according to our earlier assumption about the form of 6, gives us our desired result 

Product Types [Bnn.~]. Suppose l? + [6]€ E [nn.~],. There are two cases to consider 

depending on whether the semantic element [b], is a member of the product [nn.Tjc  

according to the uniform condition or otherwise according to the recursive condition. 

First, according to the uniform condition of the semantic requirements for product types 

and the choice of [6'], for k we have the implication 

(vat) I? I= [g], E INat] ,  implies (2.51) 
r ( [ f i j c  g6'1, E [71e{n:=[c~1~) 



Using the substitution lemma, the semantic equivalence of convertible types, the interpre- 

tation of the bullet operator we have the equalities 

With these equalities 2.51 becomes 

(V6') + (6'1, E [Nat], implies 

16 6'1c E [ ( ~ [ n  := b'])lJ, 

Using the induction hypothesis we get 

(Vd') I' t- 6' : Nat implies 

r t- 6 6' : ( ~ [ n  := dl])$ 

Now construct the context r{n : Nat) and the derivation 

I'{n : Nat) I- n : Nat 

Using the sequent 2.54 to discharge the implication 2.53 we get 

I'{n : Nat) t- 6 n : (r[n := n])& 

Finally, we know that n E fv(r) so by the dependent abstraction rule on n and then the 

7-equality Xn.6n = 6 with the Eq rule we get our desired result 

For the second case consider I' t= 161, E B[II~.T]~ according to the recursive condition 

of the semantics of product types, that is, consider 

('jk E 4 C lst [ a l e  E K ~ l c l n : = ~ )  

and 

(Vk' E ~)(tr6")  I' + [6"le E 8[~1~{~:=~) implies 

I' C (2nd~alc) . k' . I6"1c E n71,(,:=*+1)) 



Replace the outer quantification over all k E w by a quantification over all terms 6' 

that denote a natural number k E w. Also we can make use of the equalities 0 = 101 and 

[6'] + 1 = [ S  6'1 that follow from the semantic rules for terms. Next replace the inner 

quantification over all k' E w by a quantification over all terms 6"' that denote a natural 

number k' E w. The statements 2.55 then become 

r I= 1 S t ~ 6 ~ c  E n ~ r n ~ { ~ : = ~ ,  
and 

(V6') (V6111)(V61') l? [6"'], E IIINatJc implies (2.56) 

r I= [6I1]c E [~]D~{n:=[b~] , }  implies 

r C ( z n d m c )  [pl]c [6I11e E I~Je(n:=(s &lie) 

Using the substitution lemma and the semantic equivalence of convertible types, we have 

the following equalities 

O[~IDc{n:=aol> = := 01)le 

= mcdn := 0])3-rnE 

{ : [  = I(7[n := 6'l)lDe 

= [ ( ~ [ n  := 

I ~ l c { n : = [ ~  a l l ]  = [ ( ~ [ n  := s 6'l)Bc 

= [ ( ~ [ n  := S 6'])J.]c 

According to the semantic requirements for sequence terms, we know 161 must have a 

form to which the operators lst and 2nd can apply. Thus, assume [6] = [R 621 where 

[a1] = lst [a] and [ J 2 ]  = 2nd[6] . With this assumption and the equations 2.57, the 

statements 2.56 become 

r I= [ J l ] l c  E I(,[, := 0])3-Ble 

( 6  (VS'")(V6") I' + [6"'], E IIINat]Oe implies 

I' [611]le E [ ( ~ [ n  := 6'])$rne implies 

I' [62], [IY']~ E [ ( ~ [ n  := S 6'])J.1De 

Now invoke the induction hypothesis to get 



(V6') (V6"') (V6") l? I- 6" : Na t implies 

l? I- 6" : ( ~ [ n  := S1])J. implies (2.60) 

I? I- 62 6"' 6" : (7[n := S 6'])$ 

Create context r{n : Nat){kl : Nat){p : 7) and derive 

r{n : Nat){kl : Nat){p : 7) I- k' : Nat 

r{n : Nat){kr : Nat){p : 7) I- p : 7 

Use 2.61 and 2.62 with variable n for 6', variable k' for dl1', and variable p for 6" to 

discharge the implications of 2.60 to obtain 

Use abstraction to get 

r{n : Nat) I- Xkl.X~.6~ k' p : Nat + r + (7[n := S n])$ 

Now use 7-conversion twice with the Eq rule to get 

r { n :  Nat) I- 62 : Nat + 7 + (7[n := S n])$ (2.63) 

Finally, we know n E fv(7), n E fv ( (~ [n  := S n])$), and n @ f v ( ( ~ [ n  := O])J.), so we can 

use 2.59 and 2.63 with the (llintro-seq) rule to get 

which, according to our earlier assumption about the form of 6, gives us our desired result 

Type sequence [R 7 Xnl.XX.u n]. In this case we have a family of types indexed 

by n. Assume that we have a family of domain elements indexed by the same n ,  say 

{[6]lc{n:=k) I k E w ) ,  and that we have the following family of semantic memberships 



We are obliged to show that there is a corresponding family of typing judgements 

(Vk E w )  r I- d[n := SkO] : R T Xnl.XX.u (SkO) 

According to the semantic interpretation of recursive type sequences, the statement 2.64 

represents the following family of semantic memberships. By the definition of recursive 

type sequences we know we are restricted here to weak recursion. 

r k Q6Ic{n:=0) E I ~ l c { n : = ~ )  

( v k  E w )  r b [d]c{n:=k+l) E [oBlc{n:=k+l){n):=k){~:=~~) 

where Sk = [ R  7 Xnl.XX.u n]Dc{n:=k) 

By the w-Terms lemma we can rewrite 2.65 as 

(2.66) 
( v k  E w )  r !IJDc{,:=j~k+lol) E I~]Dctn:=~sk+~oB)tn~:=[sk~g){~:=sk) 

where Sk = [R T Xnl.XX.u n] , tn, , [~kOp) 

Using the substitution lemma on terms and types and the definition of Sk we have the 

following equations 

Using the equations 2.67 on 2.66 we get 

(2.68) 
(Vk E w )  I? + [J[n := Sk+'O]], 

E Bu[n := Sk+'O][nl := S k O ] [ x  := R T Xnl.XX.o ( S k 0 ) ] l ,  



By the induction hypothesis we have 

(Vk E w )  r I- S[n := s~+'o] 

Using the IIR-Zero and IIR-Succ conversion rules for sequence types and factoring replace- 

ments, we get the following equalities. Note that for type R T Xnt.XX.a 0, it does not mat- 

ter what the successor type is, so we choose a .  Similarly, for type R T Xnt.XX.a (SkS1O), 

it does not matter what the zero type is, so we choose T .  

Using the equations 2.70 on the 2.69 we get 

l? I- S[n := 0] : R T Xnl.XX.u n [n := 01 

(Vk E w )  r I- S[n := sk+'O] : R r Xnt.XX.a n [n := sk+'O] 

Finally, combining these two schemes and substituting for n gives us our desired conclusion 

(Vk E w )  r I- 6[n := SkO] : R T Xn1.XX.a ( ~ ~ 0 )  

This completes all the cases for the induction over types and thus completes our proof 

of completeness. I 

We have presented a dependent type inference system called 7n and shown it to be 

sound and complete with respect to a simple term model. Now we are ready to show the 

existence of principal types for TT and develop a type reconstruction algorithm. 



Chapter 3 

Principal Types and Dependent Type 

Reconstruction 

3.1 Type Subsumption and Unification 

To prove the principal type theorem in the next section, we must establish a subsumption 

order of types with a unification theorem in a way analogous to the principal type theorem 

for the simply typed lambda calculus. (See Hindley [Hin69].) 

In this section we define the subsumption order on 7n types and give a unification 

algorithm. The unification algorithm together with the matching algorithm introduced 

in the next section make it possible to prove the existence of principal types and to 

reconstruct T principal types for terms. The results of this section apply equally to both 

weak TT and non-weak 'Tn types because, as we shall see, unification itself has no affect 

on the weak-recursion properties of TT types. 

A type substitution is a total mapping from type variables to types, 8 : T v a r  + Types, 

such that 8(X) # X for only finitely many X E Tvar. Let the identity substitution be 

denoted Bid and let the support of a substitution 8 be the finite, non-identity portion of 

the mapping, su(8) = {X E dom(8) I 8(X) # X). We define the introduced variables 

of a substitution 8 as in(8) = UxEdom(e) fv(B(X)). Often we refer to the substitution 

Oid{X := T )  simply by {X := 7 ) .  Two substitutions 81 and O2 are equal if and only if their 

supports are equal and VX E su(O1), 81 (X) = O2 (X) . Every substitution 8 : Tvars  + Q p e s  

can be estended to a map from types to types, 8 : n p e s  + Q p e s ,  using standard methods. 

(See, for example, Snyder and Gallier [SG89].) We normally assume the appropriate 



domain of the substitution map, either Tvars or Qpes,  from the context of any discussion. 

The composition of substitutions 8 and 8' is denoted 8'0 8, or simply 8'8 by juxtaposition, 

and defined (8' o B)(r) B1(8(r)).l If we are to apply substitution 8 to type r, we always 

assume in(8) n bv(r) = {). If in(8) n bv(r) # {), then we rename the bound variables of r 

to avoid the conflict and insure our assumption always holds. We call this requirement the 

non-interference assumption of substitution, analogous to the non-interference assumption 

of replacement. 

In the 7" type system, we say a type a is more general than or subsumes a type r by 

substitution 8, denoted a 2s r ,  if and only if 8(a) = r. We also say r is an instance of 

a by 8. The relations 20 together induce what we call the subsumption order on types. 

Using the subsumption order on types, we can also order substitutions. A substitution 8 

is more general than or subsumes a substitution 8', denoted 8 2  Or, if and only if there 

exists a substitution 8" such that 8" o 0 = 8'. 

In this section we introduce an additional angle bracket notation, ( and ), for tuples. 

The angle brackets should help in reading the more detailed formulas appearing in the 

following sections. 

Definition 18 (Unifiers) A substitution 8 is a unifier of a pair of types ( a , ~ )  i f  and 

only if 8(a) = 8(r) .  If such a unifier exists, a and r are said to have a common instance, 

namely, the type O(0) = 8(7). A substitution 8 is a unifier for a finite set of pairs of types 

i f  and only i f  it is a unifier for every pair in the set. 

We use the notation U((a, 7)) to refer to the set of unifiers for the pair (a, 7). Similarly, 

if D is a finite set of pairs of types, then U(D) refers to the set of unifiers of D. For our 

purposes, pairs are strictly ordered, so we distinguish between the pair (a, r )  and the pair 

(TO). 

Definition 19 (Most General Unifiers) A substitution 9 is a most general unifier 

(MGU) of a finite set D = {(ao, TO), . . . , (an, rn)) of pairs of types i f  and only if 

1. 8 unifies every pair (ai, ri) in D 

'Note that composition is always given in applicative order, even when using the juxtaposition notation. 



2. The support of 0 is restricted to the free variables of D ,  that is, su(0) C fv(D) 

3. For any other unifier 0' of D,  0 2 0'. 

A n  MGU of a single pair of types (a, T) is simply the MGU of the singleton set {(o ,~ ) ) .  

We say a common instance of a pair of types (a, T) is a most general common instance if 

it subsumes every other common instance of a and 7. It is easy to show that every most 

general unifier determines a most general common instance. It is also easy to see that 

most general unifiers and most general common instances, if they exist, are unique up to 

variable name changes. 

We present the process of finding unifiers for types as a sequence of transformations 

on a system of pairs of types using a method described by Wayne Snyder and Jean Gallier 

[SG89]. Snyder and Gallier credit Martelli and Montanari and originally Herbrand for 

discovery of the method of transformations. We found this method the most suitable for 

extending to the process of finding matchers in the next section. 

Let a disagreement set be a finite set of ordered pairs of types {(a1, rl) ,  . . . , (a,, T~)} .  

We say a disagreement set D is a system of pairs of types that we wish to solve and find a 

unifier for, suggesting that the method comes from the long history of solving systems of 

equations with unknowns. With this notion of equation solving in mind, we will sometimes 

use the letters S and St as well as D and D' to represent a disagreement set for systems 

we wish to solve. A pair of types (X,T) in a system D is in solved form if X is a type 

variable that does not appear anywhere else in D, in particular X $! fv(r). A system 

is in solved form if all its pairs are in solved form. A disagreement set in solved form 

is essentially an MGU, as the following lemma adapted from Snyder and Gallier shows. 

Note that according to our definition of a solved form, Xi # Xj for i # j. 

Lemma 20 (Unifiers for Solved Systems) If D = {(XI, TI), . . . , (X,, 7,)) ds a solved 

system, then the substitution 0 = Oid{X1 := r l )  - - -  {Xn := Tn) constructed from D is an 

MGU of D. 

Proof This proof is adapted from Snyder and Gallier [SG89]. Suppose 0' is a unifier for 

D. Then for every (X;, T ~ ) ,  B1(X,) = O1(ri). But also T, = O(Xi) by the definition of 0. 

Thus Ot(Xi) = O'(T;) = O1(0(Xi)). But this means 0' 5 0 so 0 is an MGU of D. I 



The unification algorithm for 7 types is specified in terms of the simple set of non- 

deterministic rules in Figure 3.1. These rules transform disagreement sets into solved form. 

For a disagreement set D and a substitution 8, we say 8 = Unify(D) if and only if there 

exists some finite sequence of transformations D * . . . * Dl using the transformation 

rules such that D' is in solved form, and 8 is the MGU of the solved system Dl constructed 

according to Lemma 20 above. If no such sequence of transformation of D into solved 

form exists, then the algorithm fails. 

Unify works primarily over type variables, yet we want to deal with term variables 

properly as well. In the transformation rules, note that the product types and the recursive 

types are unified modulo bound term variable names, but that the free projection variable 

n of recursive type sequences in (iv) must match exactly. 

Identity 
( 2 )  { ( 7 7 7 ) ) u D  =+ D 

Decomposition 
( i i )  { ( a i - + 7 i , m + 7 2 ) ) U D  

* { (~ l ,a2 ) , (71 ,72 ) )UD 

(i i i )  ((l ln.0,  l lm.7))  U D 
* { ( a ,  r[m := n ] ) )  U D 

( i v )  { ( R  7 1  (Xni.XX1 .ul) n, R 7 2  (Anh.AX2.02) n ) )  U D 
* ((71 7 2 )  , (a1 , 0 2  [na := nil [X2 := X I ] ) )  U D 

Variable 
( v )  { ( X ,  7 ) )  U D or ( (7 ,  X ) )  U D and X $Z fv(7) 

* { ( X ,  7 ) )  U OD where 8 = (Oid{X := 7 ) )  

Figure 3.1: l'ransformation Rules for the Unification of Tn Types 

The following lemma adapted from Snyder and Gallier is used in the soundness and 

completeness proofs for the unification algorithm. 

Lemma 21 (Preservation of Unifiers) If S * S1 using any of the transfornations of 

Figure 3.1, then U ( S )  = U(S1) .  

Proof First consider the identity and decomposition transformations (i) to (iv) where 



neither of the two types we want to unify is a variable. To unify two non-variable types, the 

head symbols must be the same and then all subterms must unify. But the decomposition 

transformations do the same thing, for they match the head symbols and then expand the 

disagreement set of types that must unify by all corresponding pairs of subterms, with 

appropriate variable renaming. Thus we have for each of the first four cases that 

8' E U(S) if and only if 8' E U(S1) 

For case (v) we have S = {(X, 7)) U D or S = {(T, X))  U D and 8 = Oid{X := T) by the 

construction of the algorithm where we know X ft! fv(r). Also we know that when 8' is a 

unifier of S, then B'X = 8'7. Because 8 is the single assignment 8 = Bid{X := T), then 8' 

and 8'06 differ only a t  X where 8(X) = T. But 8' at  X and T are the same, Of(X) = O1(r), 

therefore 6' = 8' o 8 at  all domain elements. We use this in the third equivalence below. 

Thus we have 

1. e1 E U(S) H of E u({(x,T)) u D) or el E u({(T,x)) u D) 

2. H 8'X = 8'7 and 8' E U(D) 

3. @ 8'X = 8'7 and 8' o 8 E U(D) 

4. H 8'X = 8'7 and 8' E U(8D) 

5. H 8' E U ( { ( X ,  T)) u OD) 

6. H 8' E U(S1) 

Theorem 22 (Unification Theorem) Let D be an arbitrary disagreement set of pairs 

of Tn types. 

1. Termination Unify(D) terminates, either returning successfully with a substitu- 

tion, or else failing. 

2. Soundness and Completeness Unify(D) successfully returns a substitution 8 if 

and only if 8 is the most general unifier of D. 



Proof This proof is adapted from Snyder and Gallier [SG89]. First we show that the 

algorithm always terminates. Define a complexity measure (a, b) on disagreement sets D of 

pairs of types where a is the number of occurrences of free variables in D and b is the sum 

of the sizes of all the types in D. Let the size of a type be the number of nodes in the type 

formula drawn as type expression trees. The identity and decomposition transformations 

(i) to (iv) strictly decrease b because at each decomposition a pair of types have their root 

nodes removed and no new nodes are added. The variable transformation (v) decreases 

a because it removes one variable from the system. All transformation sequences must 

terminate because every sequence corresponds to a strictly decreasing sequence in the 

lexicographic ordering (a, b) of complexity measures on disagreement sets. 

To show soundness, suppose 8 = Unify(D), that is, there is a finite sequence of trans- 

formations on disagreement sets D + . . . =+ D' such that D' is a solved system with 

MGU 8 constructed according to Lemma 20. We can use induction on k, the length of 

the transformation sequences, to show that U(D) = U ( D 1 )  and therefore any unifier of 

the final solved system D' is also a unifier of the original system D. The proof of the 

induction is simple: the basis k = 0 of the induction is trivial and the step cases of the 

induction are given by Lemma 21. 

Finally, to show completeness we have to show that for every unifier 8' of D, 6' < 8 

where 8 = Unify(D). We know Unify terminates on D yielding substitution 8, so there 

must exist a finite sequence of transformations D + . . . + D' with D' in solved form, 

and with 8 the MGU of D' by Lemma 20. By the soundness proof above, we know 8 is 

also a unifier of the original system D. Now let 8' be an arbitrary unifier of D. By the 

preservation of unifiers, Lemma 21, 8' is also a unifier of D'. But 8 is the MGU of D', so 

8' 5 8 in the solved system Dl. But then we also have 8,8' both unifiers of D with 8' 5 8, 

therefore 8 is the MGU of D. 

We noted in the beginning of this section that the unification algorithm has no affect 

on weak-recursion properties. To see this, notice that in in Figure 3.1 the most general 

unifier under construction is composed of replacements that involve only sub-expression 

types of the the original system D. Thus if 8 is a most general unifier of a system D of 



7" types then D is weak recursively based if and only if OD is weak recursively based. 

In the next section we will see that, unlike unification, the completeness of matching is 

restricted to weak recursively based systems of types. 

3.2 Matching 

The Matching algorithm and theorem in this section are concerned with reconstructing 

derivation steps based on the llintro-seq typing rule. Given the premises of the llintro-seq 

rule, the matching algorithm gives a systematic way to find a weak recursively based type 

satisfying the conditions on the Ilintro-seq rule. The conditions on the llintro-seq rule 

specify what we call a weak-recursion scheme. The matching algorithm, and consequently 

the reconstruction algorithm given later, only find weak recursively based types, that is, 

types in the weak 7" type system specified by Definition 4 in Section 2.1. Weak recursion 

is the essential limitation on the type system that we assume to prove the principal types 

theorem for 7" and to obtain the completeness of the reconstruction algorithm. 

Definition 23 (Weak-recursion schemes) A triple of types (a, y,P) is an n-indexed 

weak-recursion scheme if and only i f  

n E fv(y), wrb(y) dependence condition 

(y[n := O]).J= cr zero condition 

(y[n := S n])$= p successor condition 

To give some intuition to the matching of weak-recursion schemes, suppose we are 

seeking to type a sequence of terms 60, . . . , bk, bk+l . . . obtained from the Ilintro-seq rule. 

Fkom the premises of the llintro-seq rule we know that do has some type p, and that some 

a, T are the types of the terms dk , 6k+1, respectively. The matching algorithm will attempt 

to find a substitution 8 such that (Qp, 8a,87) becomes a weak-recursion scheme, where the 

types (Op, 8a,87) are the types a, 7, P in Definition 23 above. If we let 7 k  = (8a)jn := k] 

for all k, then, after matching, the sequence yo,. . . ,7k,. . . will be the types for the sequence 

of terms do,. . . , dk, . . ., respectively. 



Definition 24 (Weak-recursion matchers) A substitution 8 is an n-indexed weak- 

recursion matcher of a triple of weak recursively based types (p, a, T) if and only if (Op, 8 0 , 8 ~ )  

is an n-indexed weak-recursion scheme. 

We have most general matchers (MGMs), like MGUs, by adopting the last two conditions 

for most general unifiers given in Definition 19. 

The weak-recursion matching algorithm works on a single triple of weak recursively 

based types (p, a, T), along with a new index variable n,  and computes an n-indexed weak- 

recursion matcher in two basic steps. First, the algorithm occurs matches (or successor 

matches) a disagreement set { ( a , ~ ) )  of the second two types, yielding a successor matcher 

satisfying the successor condition of Definition 23. Then, roughly speaking, the algo- 

rithm unifies a disagreement set {(p, O1a)) involving the first and second types, yielding a 

unifier 82. The substitution 82 is the zero matcher satisfying the zero condition of Defini- 

tion 23.2 Finally, the successor matcher and the zero matcher substitutions are combined 

into the desired weak-recursion matcher satisfying both the successor matching condition 

and the zero matching condition. 

To get a preliminary feel for the overall matching process, consider the following match- 

ing problem that arises in reconstructing the type for the taut example of Section 2.2.3 

The taut program is a recursive sequence. 

taut r R (A f .  f )  (Xnl.Xp.X f .((p (f true)) & ( p  (f false)))) 

The base term of the sequence X f .  f has a type N + N. The unfolding term 

Xnl.Xp.Xf.((p (f true)) & ( p  (f false))) 

has a type K + Bool for the variable p representing the kth term of the underlying se- 

quence and a type (Bool + K) + Bool for the sub-expression X f .(@ (f true))&@ (f false))) 

2 ~ o r e  accurately, in the second step we unify (p, 810') where a' is a modified by replacements for every 
occurs variable Xj E fv(o), specifically, a' = a[Xj := ((81Xj)[n := 0])&].  Occurs variables are defined 
following Definition 25 and the matching algorithm is given in Figure 3.3. The technicality here arises 
because we are using unification to find the zero matcher rather than defining a separate zero matching 
algorithm. These details are covered later in this section. 

3For a complete trace of the matching algorithm of Figure 3.3 on this example see Appendix C. 



representing the (k + l ) th term of the sequence. The matching algorithm must find 

a weak recursion scheme matching the triple of types (aO,uk,ok+l) = (N + N, K + 
Bool, (Bool + K )  -+ Bool). 

The algorithm first successor matches the types ( U ~ , U ~ + ~ )  = ( K  + Bool, (Bool + 
K )  + Bool). To do that, the successor matching unifies these two types up to an occurs 

failure arising from the attempt to unify K and Bool + K.  The resulting successor 

matcher is 81 = {K := R Y (Xnl.XK.Bool + K )  n) for entirely new Y and n. The 

matching algorithm then zero matches by unifying the base type a 0  = N -+ N with 

the zero projection of B1ak. That is, zero matching unifies N + N and ( 8 1 ~ k ) 0  J= 

( K  + Bool)O$= ((R Y (Xnt.XK.Bool -+ K )  n) -+ Bool)O$= Y + Bool. This gives 

{Y := Bool){N := Bool) for the final zero matching substitution. 

Combining the zero and successor matching substitutions gives us the final matcher, 

8201 = {Y := Bool){N := Bool){K := R Y (Xnl.XK.Bool + K) n). The final recursion 

scheme is 0201(ak) = 0201(K + Bool) = ( R  Bool (Xnt.XK.Bool + K )  n) + BOO] where 

the zero and successor projections of the recursion scheme are as required by Definition 23. 

'9201 (ak 10-1 = Boo]+ Boo1 

= 02el(00) 

0201 (ak) (S n)$ = (Bool -+ R BOO] (Xnt.XK.Bool + K )  n) + Bool 

= ~ 2 ~ l ( ~ k + l )  

Definition 25 (Zero and  Successor matchers) Let p,a, and T be weak recursively 

based types and let n $! fv(p,a, T). A substitution 8 is called an n-indexed successor 

matcher (SM) for the pair of types (a, T) if and only i f  Ba and 87 satisfy 

n E fv(Ba), wrb(0a) dependence condition 

((8a)[n := S n])$= BT successor condition 

A substitution 8 is called an n-indexed zero matcher (ZM) for the pair of types ( p , ~ )  i f  

and only i f  8a and 8p satisfy 

n E fv(Ba), wrb(8a) dependence condition 

(Ba[n := 0])J= Bp zero condition 



A substitution 8 is a successor matcher (or zero matcher) for a weak recursively based 

system D i f  8 either unifies or successor matches (zero matches) each pair, but does not 

unify all pairs in  D. 

We call the variable n in Definition 25 the dependency index of the zero or successor 

matcher. Most general successor matchers (MGSMs) and most general zero matchers 

(MGZMs) are defined by adopting the the last two conditions for most general unifiers 

given in Definition 19. 

In a disagreement set D, a pair (X, T) with X E fv(r) is called a right-occurs pair and 

the variable X is called a right-occurs variable. Our systems are not symmetric, for we 

have no corresponding left-occurs pairs; whenever we say occurs we mean right occurs. 

The following definition of occurs-solved systems is a simple extension to solved systems in 

the previous section on unification. Most of our focus in matching concerns the handling 

of occurs pairs. 

Definition 26 (Occurs solved systems) An occurs-solved system is a finite set of pairs 

of the form D = {(XI, TI), . . . , (Xn, T ~ ) )  where Xk for each k is a type variable that does 

not appear free anywhere else in  D except that Xk may appear free in  r k  for any occurs 

pair (Xk, rk) E D. 

The following technical lemma contains details of proving the most generality property 

for successor matchers of solved systems with occurs pairs. The intuition behind this 

lemma is that every successor matcher 8' for an occurs pair (X, T) has the form at X 

and the most general successor matcher 8 of (X, T) at X has the very similar form at X 

where o 5 T by 8t1-(x), or equivalently, O1(Xn'.XX.r) = Xnl.XX.u. We are, in a sense, 

solving the occurs pair (X, T) by creating a general sequence form for the substitution. 

We call the newly introduced dependency index n the active dependency index for the 

occurs pair and we refer to the newly introduced type variable Y as the zero variable for 

the occurs pair. 



Lemma 27 (MGSMs for occurs pairs) Let D be any weak recursively based system 

of pairs (not necessarily a solved system), let (X,T) E D be an occurs pair, and let 8 be 

the substitution {X := R Y (Xnl.XX.r) n) with Y and n entirely new, n, n' $! f v ( ~ ) ,  and 

X E fv(r) but r # X.  Then for any successor matcher 8' of (X, T) with dependency index 

n we have the equality Ot(X) = 8"(8X) where 8" = 8'{Y := ((OiX)[n := 0l)J.). 

Proof Let a and T be types with n E fv(a) and n, n' $! fv(y) and X E fv(y) but y # X. 

The definition of the R combinator and its relationship with the R - Succ rule imply the 

following crucial property. 

if and only if 

a = R p (Xn1.XX.7) n 

for some p with n $! fv(p) 

This justifies the third equation immediately below. 

Suppose 8' is a successor matcher for an occurs pair (X, T) E D. Then 

((OIX)[n := S n])J. = 8'7 Definition 25 

= ((8'l-{x))~)[x := O'X] expanding 8' at X 

= ( R  p (Xn'.XX.(8'1-{x))~) (S n))J property 3.3 above 

for some p and where 

n e fv(p, ((~'I-{x))T) 

and n' e f ~ ( ( 8 ' 1 - { ~ ) ) ~ )  

and x E f ~ ( ( e ~ l - { ~ } ) ~ )  

but X # (~'I-{x}). 



These equalities imply 

(8 'X)  = R p Xn'.XX.(8'l-(xl)~ n 

by the equalities immediately above 

where p = ((OtX)[n := 0])J  

= R p 8'(Xnt.XX.r) n 

by factoring 8' out 

note X is now protected by the lambda binder 

= R ( (BIX)[n  := 0])$ 8'(Xn1.XX.r) n 

by the R-Zero rule on the zero component of B1(X), ie, 

by plugging in p from two steps above 

= (Or{Y := ( (OIX)[n  := O])$ ) ) (R  Y (Xnl.XX.r) n) 

by factoring 8' out 

= (O1{Y := ((OrX)[n := o ] ) J ) ) 8 ( x )  

by the definition of B(X)  

Therefore, 0' = 8" o 8 where 8" = O1{Y := ( (OIX)[n  := O])J) 

Lemma 28 (MGSMs for occurs-solved systems) Let D = { ( X I ,  r l ) ,  . . . , ( X n ,  r n ) )  

be an occurs-solved system and be weak recursively based. Let 8 = Bid{Xi := r i ) { X j  := 

R Y J  Xnl.XXj.rj n )  where { X i  := ri)  is an extension for every non-occurs pair ( X i ,  7,) E D 

and where the X j  extensions are for every occurs pair ( X j , ~ j )  E D. Assume the Y J  are 

entirely new variables and for each T j ,  assume n, n' $! f ~ ( 7 j )  and X j  E f v (r j )  but T j  # X j .  

Then 19 is an n-indexed most general successor matcher (MGSM) of D. 

Proof We must show that 

1. 8 is a successor matcher for D 

3. 8' < 8 for every other successor matcher 8' of D 



The second condition holds simply because the domain of 8 as constructed in this lemma 

is exactly the Xk type variables of the first components of the pairs in D. Therefore, 

dom(8) fv(D). 

To show that the substitution 8 constructed according to the lemma is in fact a succes- 

sor matcher we have two cases to consider for each pair (Xkr rk) E D: (a) non-occurs pairs 

(Xi, 7i) with fv(ri)ndom(8) = {) and (b) occurs pairs (Xj, rj) with fv(.rj)ndom(8) = {Xj). 

For the non-occurs pairs (Xi, ri) we must show that 8 unifies the pair, thus we have 

OXi = 7i by Lemma construction of 8 

= Ori because dom(0) n fv(ri) = {) 

For occurs pairs (Xj, 7j) E D we have to show 

We know n E fv(8Xj) by the lemma construction of 8. To see that OXj is weak recursively 

based, observe also by the lemma construction of 8 that OXj is weakly recursive and by the 

lemma assumptions, the constituent types 7j and Yj are weak recursively based. Finally, 

for the occurs pairs (Xj, T ~ )  we have the equality 

((8Xj)[n := S n])$ = R 5 Xnt.XXj.7j (S n)  by Lemma construction of 8 

= rj[Xj := R Xnl.XXj.rj n] by the R-Succ rule 

= rj[Xj = OXj] by definition of 8 at Xj  

= Orj because 

dom(8) n f ~ ( ~ j )  = {Xj) only 

To show the third condition, suppose that 8' is an arbitrary successor matcher of D. 

We must show that there exists a substitution 8" such that 8' = 8"08, thus proving 8' 5 8, 

so 8 is the MGSM of D. We know OXi = ri for non-occurs pairs in D by the definition of 8 

constructed in the statement of this lemma. Therefore we have O1(Xi) = B'(T~) = 01(8Xi) 

so 8' = 8' o 8 and 8' < 8. For occurs pairs (Xj, Tj) E D we have by Lemma 27 that 

8' = 8" o 8 where 8" = 8'{5 := ((OrXj)[n := 0 ] ) $ )  and so 8' 5 8 for the occurs case as 

well as the non-occurs case. 



The occurs-matching algorithm is essentially unification with a special way to handle 

occurs failures. Like the unification algorithm, the occurs-matching algorithm is speci- 

fied in terms of a simple set of non-deterministic rules that transform disagreement sets 

into solved form. These rules are given in Figure 3.2. For a disagreement set D and a 

substitution 0, we say 8 = Smatch(n, D),  where n is the active dependency index, if and 

only if there exists some finite sequence of transformations D + . . . + D' where Dl is 

in occurs-solved form, and 8 is the most general successor matcher (MGSM) of Dl con- 

structed according to Lemma 28 above. If no such transformation of D into solved form 

exists, then the algorithm fails. Notice that the first five cases of the algorithm are exactly 

the same as the transformation rules for unification given in Figure 3.1 of Section 3.1 and 

the sixth case covers the occurs pairs. 

Identity 
(2) { (7 ,7) )UD * D 

Decomposition 
(22) { ( m + ~ 1 , ~ 2 - - + ~ 2 ) ) U D  

* {(01,02),(71,72))UD 

(iii) {(IIn.a, IIm.7)) U D 
+ {(cr, r[ml := nl] . . . [rnk+l := nk+l])) U D 

(iv) { (R 71 (An; .AX1 .ul) n, R 72 (Xni.Xx2.0~) n)) U D 
* {(71,72),(~1,~2[n~:=n~][X2:=Xl]))UD 

Variable 

(v) {(X, 7)) U D or ((7, X ) )  U D and X $Z fv(7) 
* { ( x , 7 ) 1 u e D  

where 8 = (Oid{X := 7)) 

Variable Occurs 
(vi) {(X, 7)) U D where X E fv(7) and T # X and n $Z fv(7) 

* {(X,T)) UeD 
where 8 = Oid{X := R Y Xnt.XX.r n)  

and n is the active dependency index 
and where Y is entirely new and n' fv(7) 

Figure 3.2: Transformation Rules for Occurs Matching 



We let SM(D) denote the set of successor matchers for a system of pairs D. The follow- 

ing lemma shows that the occurs-matching transformations preserve the set of successor 

matchers. 

Lemma 29 (Preservation of successor matchers) If S + S' using any one of the 

transformations in Figure 3.2, then SM(S) = SM(S1). 

Proof First consider the identity and decomposition transformations (i) to (iv) where 

neither of the two types we want to match is a variable. We can argue these cases just as 

we did in the proof of the preservation of unifiers, Lemma 21, Section 3.1. To successor 

match two non-variable types, the head symbols must successor match and all subterms 

must successor match. But the decomposition transformations (i) to (iv) say the same 

thing, for they match the head symbols and then expand the disagreement set of types that 

must match by all corresponding pairs of subterms, with appropriate variable renaming. 

Thus we have for each of the first four cases that 

8' E SM(S) if and only if 8' E SM(S1) 

For case (v) we have S = {(X,r)) U D or S = {(r,X)) U D with X $! ~ v ( T )  and 

8 = Oid{X := r )  by the construction of the algorithm. We know that if 8' is a successor 

matcher of S, and if X is not an occurs variable, then 8'X = 8'7 and the reasoning now 

closely follows case (v) of the proof of preservation of unifiers Section 3.1, Lemma 21. 

Specifically, because 8 is the single assignment 8 = Oid{X := T), then 8' and 8' o 8 differ 

only at X where B(X) = T, that is, we have 8'(X) = 8'(7) = 01(8X) and therefore 8' = 8'08 

at all domain elements. We use this last equality in reaching the third equivalence below. 

Thus we have 

8' E SM(S) e 8' E SM({(X, 7)) u D) or 8' E SM({(r, X)) u D) and X $! f v ( ~ )  

e ((BIX)[n := S n])J.= 8'7 and 8' E SM(D) 

* ((BIX)[n := S n])J.= 8'7 and 8' o 8 E SM(D) 

@ ((8'X) [n := S n])J.= 8 ' ~  and 8' E SM(8D) 

e 8' E SM({(X, T)) u OD) 

e 8' E SM(S1) 



Finally, for the occurs case (vi) we have reasoning similar to case (v), provided we 

take into account the occurs variables. According to the construction in the algorithm, 

S = {(X, 7)) U D where 8 = Oid{X := R Y Xnl.XX.r n) and where n, n' $ fv(r)  and 

X E fv(r) but r # X.  In reaching the second equivalence below we use the fact that 8' is 

a successor matcher of S, so ((BIX)[n := S n])J= O1(r). To justify the third equivalence 

we can appeal to Lemma 27 above to assert 8' = 8'{Y := ((BIX)[n := 0])$) o 8. The last 

equivalence below is justified because the extension assigning Y the zero component of 8' 

does not affect the successor-matching property we are concerned with here.4 Thus we 

have 

0' E SM(S) H 8' E SM({(X, 7)) U D) and X E fv(r) 

e ((BIX)[n := S n])$= 8'7 and 8' E SM(D) 

((OIX)[n := S n])$= 8'7 and 8'{Y := ((OIX)[n := O])J.) o 8 E SM(D) 

# ((BIX)[n := S n])J= 8'7 and 8'{Y := ((B'X) [n := 01) J) E SM(BD) 

H O1{Y := ((BIX)[n := 01)J) E SM({(X, 7)) U OD) 

e O1{Y := ((OIX)[n := O])$) E SM(S1) 

# 8' E SM(S1) 

The following theorem supports the proof of the matching theorem by separately an- 

alyzing t he successor matching. 

Theorem 30 (Successor matching) Let a and r be weak recursively based types. Then 

8 = Smatch(n, { ( o , ~ ) ) )  if and only if 8 is the most general successor matcher of {(a, 7)). 

Proof The Smatch algorithm terminates by the same reasoning as in the proof of ter- 

mination of the Unification Theorem 22. The complexity measure (a,  b) on disagreement 

sets D of pairs of types has a as the number of occurrences of free variables in D and b 

4Note that most general successor matchers always have a unique zero variable Y in the zero position 
of the R sequence type assigned to each each occurs variable X. There are never zero variables Y in the 
successor position of sequence types of MGSMs. 



as the sum of the sizes of the types. Then just as in the proof of the Unification The- 

orem, the identity and decomposition transformations (i) to (iv) strictly decrease b and 

the variable transformations (v) and (vi) strictly decrease a. Therefore all transformation 

sequences correspond to a strictly decreasing sequence in the lexicographic ordering (a, b) 

of complexity measures on disagreement sets. 

The soundness and completeness parts of this proof also closely follow the arguments in 

the proof of the Unification Theorem. To show soundness, suppose 8 = Smatch(n, {(a, T))), 

that is, there is a finite sequence of transformations on disagreement sets D + . . . + D' 

such that D' is a solved system with MGSM 8 constructed according to Lemma 28. 

We can use induction on k, the length of the transformation sequences, to show that 

SM(D) = SM(D1) and therefore any successor matcher of the final solved system D' is 

also a successor matcher of the original system D. The basis k = 0 of the induction 

is trivial and the step cases of the induction are given by the preservation of successor 

matchers, Lemma 29. 

To show completeness we have to show 8' 5 8 for every SM 8' of D = {(a, T ) ) ) ,  where 

8 = Smatch(n, D). We know Smatch terminates on D yielding substitution 8, so there 

must exist a finite sequence of transformations D + . . . + D' with D' in solved form, 

and with 9 the MGSM of D' by Lemma 28. By the soundness proof above, we know 8 is 

also a successor matcher of the original system D, Let 8' be an arbitrary SM of D. By 

the preservation of successor matchers, Lemma 29, 8' is also a unifier of D'. But 8 is the 

MGSM of Dl, so 8' 5 8 in the solved system Dl. But then we also have 8 and 8' both SMs 

of D with 8' 5 8, therefore 8 is the MGSM of D. ) 

The second part of the matching algorithm uses the unification algorithm of Section 3.1 

to find the base case of a recursively specified type after successor matching. The final 

matching algorithm shown in Figure 3.3 is a combination of the algorithms to find the 

occurs case (the successor matcher) and the base case (the zero matcher) of a recursively 

specified type. The only tricky part is the replacement that is applied to a before applying 

in line 2. This trick is used to remove the successor matching assignment for each 

occurs variable Xj, namely {Xj := R 3 Xn'.Xxj.~~ n), and replace it by the assignment 



{Xj := Yj) of just the zero components of 01 Xj. Replacing the Xjs by the 5 s  allows 

us to use our earlier Unify algorithm to  find a substitution for the Yj zero component of 

the sequence type for Xj. Note that for any  occurs variable assignment B1 Xj, the 5 zero 

component variable is just the zero projection, ((BIXj)[n := 0])$. 

Match(n, (p, a, 7)) = Let 81 = Smatch(n, {(a, 7))) 
and e2 = Unify({(p, el (a[Xj := q])))) 
where 77 = ((O1(Xj))[n := 0])J 
in e2 o 

where n $! fv(p, a, r )  

Figure 3.3: Matching Algorithm for Weak-recursion Schemes 

The matching theorem shows termination, soundness, and completeness of the match- 

ing algorithm. According to this theorem, if there exists some matcher, then the algorithm 

is guaranteed to return the most general matcher. This aspect of the matching theorem is 

used in the proof of the principal types theorem for the 'F system. Matching is complete 

with respect to the weak Tr system specified in Definition 4, Section 2.1. 

Theorem 31 (Matching Theorem) Let p, a, r be any three weak recursively based 'F 

types. Then 

1. Termination The matching algorithm Match(n, { ( p ,  a ,  7 ) ) )  always terminates, ei- 

ther successfully returning a substitution 8, or else failing. 

2. Soundness and Completeness If a, r do not unify and fv(p) nfv(a, r )  = {), then 

8 = Match(n, {(p, a, 7))) i f  and only i f  8 is a most general n-indexed weak-recursion 

matcher of {(p, a, 7)). Otherwise Match returns fail. 

Proof of termination and soundness The proof of termination is immediate from 

the termination of Smatch and Unify. To prove soundness, assume that a and 7 do not 

unify and together do not share free variables with p. Let 19 = Match(n, {(p, a, 7))). We 

want to show that 0 is an n-indexed weak recursion matcher for (p, a, r ) ,  that is, 



For item 1 we know that n E fv(I9a) after the call to the Smatch algorithm provided there 

is at least one occurs variable in dom(I9). But there must be at least one occurs variable 

because a ,  7 do not unify and yet Smatch succeeds by our assumption. To show I90 is 

weak recursively based, we must show that 82 o (0)  is weak recursively based. But both 

the Smatch algorithm and the Unify algorithm preserve weak recursion, therefore, 01 (0) 

is weak recursivly based and so is 02(01 (0 ) ) .  

For item 2, the successor-matching case, suppose 19 = 82 o 81 where 81 and 82 are 

computed according to the Match algorithm, Figure 3.3. That is, 191 comes from the 

Smatch call in the first step and O2 comes from the Unify call in the second step. Then 

we have 

( ( h ) [ n  := S n])$ = ( ( ( I92  o O1)u)[n := S n])J 

= ((I92(910)>[n := s n]>$ 

= 192((191u)[n := S n])$ because n is not introduced by O2 

= 92 (917) by the soundness of Smatch, 

Theorem 28, used in 

line one of the Match algorithm 

= (02 0 e1)7 

= I97 

Finally, for item 3, ,the zero matching case, assume again that we have computed 81 

according to the Smatch call in line 1 of the algorithm and computed 82 according to the 



unify in line 2 of the algorithm. Then we have the following equations 

( h [ n  := 0])J = (((e2 0 Ol)~)[n := 0])J 

by the definition of 8 in the algorithm 

= ((ez(ela))[n := 0l)l. 

= e2((el~)[n := 0])$ 

because n is not introduced by e2 
= 82((ell-r+l(a[Xj := O1Xj]))[n := 0])$ 

separating out the occurs assignments 

= &(el l-{x,>(a[xj := ((&Xj)[n := O])J] ) ) 

by distributing the zero projection inward 

note n is not introduced by el except at Xj 

= 02(el(u[Xj := ((SIXj)[n := O])$] ) ) 

because Xj @ a[Xj := ((BIXj)[n := O])J] 

= e2p 

by the soundness of the Unify algorithm 

called in line 2 of the Match algorithm 

to unify p and o[Xj := ((O1Xj)[n := 0])J] 

= e2(elP) 

because dom(el) n fv(p) = {) 

= (82 0 0 1 ) ~  

= ep 

We have covered the three items we wished to prove and so our soundness proof is now 

complete. I 

Now we can conclude the proof of the Matching theorem with the proof of completeness. 

Proof of Completeness 

1. Assume 8 is a weak-recursive matcher of the triple of types (p, a, 7). 

2. Then 0 is a successor matcher (SM) of (a, 7). 



3. By the preservation of SM's, Theorem 29,8 is also an SM of the occurs-solved system 

of the initial pair {(a, 7)). 

4. Let 81 = Smatch((a, 7)). 

5. By the successor-matching theorem, then 81 is the most general SM for the pair 

(u,T) 

6. This implies 0 5 81, that is, 8 = 8' o 81 for some 8'. 

7. Because 8 a weak-recursive matcher of the triple of types (p, a, T), we have that 8 is 

also a zero matcher (ZM) of the pair (p, a), thus ((8a)[n := 0])J= Bp. 

8. From the previous two steps showing that 13 is a ZM and 8 = 0' o 81, we have 

(((8' o O1)a)[n := O])J= (8' o Bl)p that is, ((8'01a)[n := 01) J= t9'81p. 

9. We know Blp = p because dom(O1) fl fv(p) = {) as a result of the assumption that 

fv(p) nfv(a, T) = {). The intuition here is that successor matchers do not affect zero 

case types. 

10. Thus we have that 8' is a ZM for {(p,O1a)) because the previous two steps imply 

((8'81~)[n := 01) J= 8'01p = 8'p, which is the definition of a zero matcher for 

{ (~ ,e la ) I .  

11. If 8' is a ZM for (p, O1a) then 8' must be a unifier for (p, Bl(a[Xj := qj])) for all Xj 

occurs variables in dom(O1), where qj = ((BIXj)[n := 0])$= q, the zero variable 

of the assignment to the occurs variable Xj. To see that 8' is such a unifier, first 

note that the definition of what it means for 8' to be a zero matcher for types (a, 7 )  

collapses to the same definition a s  unify when there are no dependency indices n in 

8'0. Now all dependency indices arise from occurs variables Xj  E dom(B) and we 

are replacing them with non-occurs variables obtained from the zero component of 

8'Xj. Therefore, 8' collapses from a zero matcher to a unifier of p and Ol(a[Xj := qj]) 

for all Xj occurs variables in dom(O1). Thus we have 8'(81(~[Xj := qj])) = 8'p where 

qj = ((OIXj)[n := O])J= 3, the zero variable of the assignment to the occurs variable 

Xj  . 



12. Now, by Lemma 21 (Preservation of Unifiers), 8' is a unifier of the solved system D' 

of D = { ( p ,  81 (a[Xj := qj]))). Again, the variables Xj range over all occurs variables 

in dom(O1) and the qjs are the zero variables of the assignment to the occurs variable 

Xj, that is, qj = ((BIXj)[n := O])& 5. 

13. Let 82 = Unify({(p,Bl(~[Xj := qj])))). By the unification theorem, 82 is the MGU 

of the solved system D' of D and therefore 8' 5 82, that is, 8 = 8" o B2 for some 

substitution 8". 

14. From step 6 we have 8 = 8' o 81 and from the previous step we have 8' = 8" o 82, 

thus 8 =  8 " 0 1 3 ~ 0 8 ~  and so 8 5  02001. 

15. Finally, observe that 82 o is exactly what the Match algorithm computes (see 

Figure 3.3), thus from the soundness part of this theorem we know that 82  o 81 is a 

weak-recursive matcher of (p ,  a, 7) and, from the previous step, it is the most general 

one. 

3.3 Principal Types 

We will prove a principal types theorem for the weak T type system using the weak T 

unification and matching theorems of the previous sections. This theorem is analogous to 

the principal types theorem for the simply typed lambda calculus that relies on unification. 

The proof is constructive and, in fact, the reconstruction algorithm given in Section 3.4 is 

extracted from this proof. The reader may wish to consult the algorithm in Figure 3.4 of 

that section to get a feel for the structure of this proof. 

Let us extend type subsumption to contexts and to sequences of types and contexts. 

We say I" 5 r over a set of type variables V if and only if dom(rl) = dom(r) and 

Vx E dom(r), I"(x) 5 I '(x)~. Extend the subsumption order to sequences by letting 

'~eca l l  contexts are finite mappings. 



( T ~ , .  . . , 7,) 5 (al , .  . . , a,) mean the conjunction of the subsumptions ~i 5 ui by the same 

substitution. 

Definition 32 (Principal Types) A type T is a Principal Type (PT)  for a term S if 

and onlg if for some r 

2. for every other I" and T' such that I" 5 I' and I" I- 6 : 7' then T' 5 T .  

Definition 33 (Principal Derivations) A derivation D in  the weak Tn type system is 

a Principal Derivation (PD) for a term 6 if and only i f  for every other I" I- 6 : T' for term 

6, then (I.", T ' )  5 (l?, 7). 

If I- 6 : T is a principal derivation for 6, then T is a principal type for 6 by examination 

of the definitions above. The existence proof for principal types is therefore a corollary of 

the existence proof for principal derivations. Principal types and derivations are unique 

modulo variable name changes, should they exist. 

The proof of the principal derivation theorem is constructive and and uses the con- 

structive proofs for the unification and matching theorems. We will extract from these 

proofs an algorithm for constructing principal weak 7 types for untyped Tn terms in 

Section 3.4. 

Theorem 34 (Existence of Principal Derivations) If there is a derivation I?' I- 6 : T' 

for a term 6 in  the weak Tn type system, then there is a principal derivation r t- 6 : r for 

6. 

Proof The proof is by induction on the structure of the given derivation I" I- 6 : T' and 

depends on the weak 7 unification and matching theorems. The most interesting cases 

are the +elim and llintro-seq rules, which are covered here along with the cases llintro 

and nelim. The remaining cases follow standard proofs of principal derivations for the 

typed lambda calculus. 

+elim case. Suppose the last step in the given derivation uses the +elim rule, so the 

form of the final sequent is 

r ' t a 6 ' : p  (3.4) 



and the form of the immediate premises are 

By the induction hypothesis, 6 and 6' have principal derivations that we can suppose have 

the following forms, where we assume the variables in each of these derivations do not 

overlap 

By the definition of principal derivations, we can infer the following subsumptions for the 

principal derivations 3.7 and 3.8. 

1 ,  l e ,  (r l ,  a -+ P)  

(r2,<) 2 0 2  (rl,a) 

We know that the type 7~ must have an arrow structure or else itself be a type variable, 

so consider unifying the following pairs 

where B is an entirely new type variable, specifically, B is not in 7~ or <. We know these 

sequences are unifiable according to the unification theorem for Tn types because they 

both share a common instance (r ' ,o  + P). To see how 3.9 and 3.10 share a common 

instance, examine the following subsumption constructed from the subsumptions 3.9 and 

3.10 above with an extension to the substitution 82 by the assignment of the new variable 

B. 

Rewriting the subsumptions 3.9 and 3.13 we get 



Note that the free type variables of .rr and ( do not overlap by our assumed conventions 

in 3.7 and 3.8 above, and neither .rr nor ( include B. Therefore, dom(O1) ndom(02) n {B) = 

{), that is, the substitutions are independent and can be combined to form a single 

substitution 8 ef + 02{B := P) where the + is disjoint set union. Now we can apply 6 

to each of 3.11 and 3.12 to get the common instance (I", a + P). 

Because 3.11 and 3.12 have a common instance by a single substitution 8, we can 

now appeal to the unification theorem for weak TT types and assert the existence of a 

most general common instance ( r ,  a + r )  by a most general unifier 8. Therefore, by the 

definition of most general unifiers, 8 = 9' o 9 for some 9' and we have the following desired 

subsumptions by 9 and 9'. 

By applying the substitution 9 to the principal derivations 3.7 and 3.8 of the induction 

hypothesis we get the following derivations. 

Using the + elim rule, we can construct a new derivation from 3.16 and 3.17 

We now claim that the derivation 3.18 is a principal derivation. To show derivation 3.18 

is principal, we must show that for all other derivations I'3 I- 6 6' : 7-3 with r3 5 r then 

( r3 ,  73) 5 (I?, 7). In as much as the original derivation 3.4 was completely arbitrary, it is 

enough to show that (I", P) 5 (r, 7). But (r', P) 5 ( r ,  7) follows directly from 3.15 where 

The proof of the +elim case is complete, that is, I' I- 6 6' : T is a principal derivation for 

6 6'. 

IIintro-seq case. Suppose the last step in the derivation uses the nintro-seq rule so 

that the form of the conclusion of the final step is the sequent 



The form of the immediate premises and conditions of this last step are 

r1 I- 6' : a 

r l{n:  Nat) I- 6 :  Nat - + y  -+ p 

where n $ fv(d), n E fv(r), wrb(7) 

and where (y[n := O])J.= a 

(r[n := S n])J.= p 

By the induction hypothesis, 6 and 6' have principal derivations that we can suppose have 

the forms 

where we assume that the free variables of these two derivations do not overlap. We can 

infer from the properties of principal derivations that the following subsumptions hold 

We expect to construct the next step of the principal derivation using the nintro-seq 

rule and therefore the type 7r must have the form Nat + a -+ 7, so consider unifying the 

following sequences, where A, B, and C are entirely new. 

( r 1 , t J )  

( r2 ,C,  Nat + A -+ B) 

We know these sequences are unifiable according to the unification theorem because they 

both share the common instance 

(rl{n : Nat), a, Nat + -y + p) 



To see this, examine the following subsumptions constructed from equations 3.26 and 3.27. 

ri >el rl{n : Nat) 

r2 2 e z  r'{n : Nat) 

7~ Lo2 Nat + 7 + p 
Nat + A -+ ?eid { A : = ~ ) { B : = ~ )  Nat --$ 7 -+ P 

By our assumptions on the derivations 3.24 and 3.25, we know the type variables of 7r 

and J do not overlap and do not contain the new type variables A, B,  or C so that dorn(Ol)n 
- def 

dom(O2) n {A, B,  C)  = {). Therefore we can define 8 = 81 + 82 + Oid{C := cr){A := 

y){B := P) ,  where + is disjoint set union, and get the same subsumptions as above, but 

with the single unifier 8. Therefore, the two type sequences ( r l ,  t, K) and (r2,  C, Nat += 
A + B )  of 3.28 and 3.29 above have a common sequence (rl{n : Nat), a, Nat + y -+ /3) 

by the unifier 8. 
According to the Theorem 22 Section 3.1 (Unification) we can assert the existence of a 

most general common sequence of types, (r{n : Nat), p, Nat + a -+ T), by a most general 

unifier 8*, where 8 = 8' o 8' for some 8'. Thus we have the following subsumptions. 

The substitution 8* is the most general substitution that gives us the most general 

arrow structure of the premise types. Next we want to find the most general weak-recursion 

matcher 8 that makes (p,a,r )  into a weak-recursion scheme. According Definition 24 

Section 3.2 (Weak-recursion Matchers), finding a weak-recursion matcher 8 for (p,  o, T )  

r2 

t 
C 

r e *  r{n : Nat) rl{n : Nat) 

Lea P Let a 

{ 
7F 

Nat -+ A -+ B 
+ 3 6 .  Nat -+ a -+ T >el Nat + 7 + p 

J 



means finding 8 such that 

n E fv(8u), wrb(8a) 

((8c)[n := 0])5.= 8p 

((Ba)[n := S n])J.= OT 

We know that such a matcher exists, namely 8', because (cr, 7,P) is a weak-recursion 

scheme by 3.23 and according to equation 3.31 

and therefore substituting into our original assumptions 3.23 we get 

These equations tell us that 8' makes the triple of types (p, a, T) into a weak-recursion 

scheme and thus 8' is by definition a weak-recursion matcher. 

Knowing that the weak-recursion matcher 8' exists for (p, a, T) means we can appeal to 

Theorem 31 Section 3.2 (Matching) and assert that there is a most general weak-recursion 

matcher 8 and that (Op, 8a,87) is the most general weak-recursion scheme obeying the 

equations 3.32. 

Now compose the substitution 8* and then the weak-recursion matcher 8 and apply 

them to the principal derivations 3.24 and 3.25 to get the derivations6 

88*r1 I- 6' : Be*< = 8r{n : Nat)  I- 6' : Bp + I- 6' : 8p (3.34) 

88*r2 I- 6 : BB*?r = 8r{n : Nat)  I- 6 : Nat + 80 + 87 (3.35) 

Next use the premises 3.34 and 3.35 and the weak-recursion matching conditions of 3.32 

(that we've shown to hold for 8) and invoke the nintro-seq rule to construct the conclusion 

We now claim that sequent 3.36 is a principal derivation. In as much as the original 

postulated derivation I" I- R 6' 6 : nn.7 was completely arbitrary, we must show that 

'Note in 3.34 the context 8y{n : Nat) can be restricted to 67 because n $$ fv(t9p,df). 



(r', Iln.7) 5 (Or, lIn.00). But this last subsumption (I", IIn. y) 5 (Or, nn.Oa) follows 

directly from subsumptions 3.31, where (Nat + u + T) 2 (Nat + y + P) .  The proof of 

the IIintro-seq case is complete. 

IIintro case. Suppose the last step in the derivation uses the nintro rule, so that the 

form of the final sequent is 

I" I- Xn.6 : IIn.7 

and the form of the immediate premise is 

I"{n: Nat) I- 6 : T 

By the induction hypothesis, 6 has a principal derivation that we can suppose has the 

form 

rl{n : Nat) t- 6 : a (3.37) 

We can apply the IIintro rule to sequent 3.37 and derive 

By the definition of principal derivations we have the subsumption (rl{n : N a t ) , ~ )  2 

(rt{n : Nat), T )  from the premise derivation 3.37. From this last subsumption we can 

immediately infer the required subsumption for the principality of sequent 3.38 

In as much as the original derivation was completely arbitrary, we can conclude that the 

derivation 3.38 is a principal derivation. 

IIelim case. The proof is a simplification of the proof of the +elam case above because 

the types of the operand and the abstraction variable must both be Nat and therefore 

unification is not needed. This case does, however, rely on the following property. 

h . a  >el IIn.7 and 6'$= skO for some k E w 

implies 

(u[n := 6'])$2el ( ~ [ n  := St])$ . 

We have completed proofs for the four relevant cases of the proof of existence of 

principal derivations in TT. 1 



3.4 Type Reconstruction for Dependent Types 

The type reconstruction algorithm for the weak F system is shown in Figure 3.4. The 

algorithm computes a principal type for a term by reconstructing a principal derivation in 

the weak 7" type inference system. Both the unification and matching algorithms from 

earlier sections are used. The algorithm is a realization of the constructive proof of the 

principal derivations theorem, Theorem 34, Section 3.3. 

The algorithm is defined as a non-deterministic set of rules based on cases of the 

syntactic form. Every rule (sometimes we say case) in the algorithm corresponds to a Tr 

typing rule (compare with the typing rules of Figure 2.4, Section 2.1). The reconstruction 

of a type for a term works at each step by attempting to match the outermost syntactic 

form with a rule. If a match succeeds, then the reconstruction continues by attempting to 

solve a set of subcomputations involving unification, matching, or further reconstruction. 

By matching the outermost syntactic form at each step, the algorithm attempts to build 

a derivation for a term from the final conclusion backwards to the assumptions in the 

natural deduction tree. 

Sometimes multiple rules in the algorithm apply to a syntactic form. Each case will 

then generate a separate thread of computation with different subcomputations. Some 

rules in the algorithm depend on the successful completion of unification or matching, or 

special conditions listed in the where clause, for example, there is an implicit fail in the 

Arrow case when x $! fv(r). For each rule of the algorithm, if a sub-computation fails, or 

if any condition fails to hold, then that case fails. 

The algorithm is non-deterministic because we can think of a computation in terms of 

several concurrent sub-computation threads that are seeking success. If none of the cases 

succeeds at any point in the computation, that thread of computation fails. If all threads 

in the computation fail, then the algorithm fails to reconstruct a type for the given term. 

If the algorithm does succeed, then exactly one thread will successfully complete because 

principal derivations are unique. The algorithm can be implemented deterministically by 

using backtracking. 

To see how the algorithm works, consider reconstruction of the type of the taut function 



discussed in Section 2.2. The complete trace of this example is given in Appendix B. Here 

we will highlight the steps that extend the usual ML type reconstruction algorithm. The 

taut program is defined as 

taut = R (A f .  f )  (Xnl.Xp.X f.(@ f true) & (p (f false)))) 

The outermost syntactic form is an R term, so the Ilintro-seq rule applies to this form 

as does the +intro-seq rule. The +intro-seq typing rule results in a non-dependent type 

for taut and we know from the discussion in the introduction (Section 1.2) that a non- 

dependent type for taut is not possible. Therefore the jintro-seq thread will fail and, in 

fact, it fails on an occurs check during unification, as the example of Section 1.2 shows. 

If we follow the alternative Ilintro-seq thread of reconstruction we have four subcom- 

putations to perform. (See the Ilintro-seq rule of the algorithm in Figure 3.4.) The four 

subcomputations help reconstruct the final derivation step for taut using the llintro-seq 

typing rule of Figure 2.4, Section 2.1. 

1. Reconstruct the type for the zero term X f .  f in the first premise of the Ilintro-seq 

typing rule. 

2. Reconstruct the type for the successor term Xnl.Xp.Xf.((p f true)&@ (f false))) in 

the second premise of the Ilintro-seq typing rule. 

3. Use Unify to get the arrow structure of the second premise of the nintro-seq typing 

rule. 

4. Use Matching to satisfy the conditions on the Ilintro-seq typing rule. 

The first two subcomputations succeed with the following types using the rules that 

correspond to the usual ML type reconstruction rules. To follow the details of these 

subcomputations, see the complete reconstruction in Appendix B. 

{) I- Xf.f : N -+ N 

{) t- Xn1.Xp.Xf.((p (f true))&@ (f false))) : C + (K -+ Bool) -+ ((Bool -+ K )  + Bool) 

Subcomputation 3 unifies the type of the second subcomputation to get the proper arrow 

form and obtain the kth and (k + l)st types of the recursive scheme. 

Unify({(C + (K -+ Bool) + ((Bool + K) -+ Bool), Nat + A -+ B))) 



At this stage we have the base type a 0  = N + N, the kth type a k  = K + Boo1 and 

the (k + l )St type a k + 1  = (Bool + K )  + Bool. Finally, subcomputation 4 uses the 

matching algorithm to find an n-dependent recursion scheme based on the base, the kth 

and the (k + types obtained in the first three subcomputations. A completely new 

index variable n is introduced. 

Match(n, {(ao, a k ,  u ~ + ~ ) ) )  = Match(n, {(N + N, K + Bool, (Bool + K )  + Bool))) 

The result of the matching is a substitution 

8 = {N := Bool){Y := Bool){K := R Bool (Xnl.XK.Bool + K )  n)) 

which gives a recursion scheme 

oak = B(K + Bool) = (R Bool (Xnl.XK.Bool + K )  n) + Boo1 

upon which the following final product type for taut is based. 

{) t- taut : ITn.(R Bool (Xnl.XK.Bool + K) n) + Bool 

Conjecture 35 (Reconstruction Theorem) Let r I- 6 : T be a derivation for a term 

b in the weak 7" type system. 

1. Termination The algorithm W terminates. 

2. Soundness and Completeness W(r,  6) = (8, a )  if and only if (8 r )  I- 6 : a is a 

principal derivation for d in the weak TR type system. 

Proof We do not include a proof of this theorem, but it is a straightforward transla- 

tion from the constructive proof of the existence of principle derivations, Theorem 34, 

Section 3.3. Note that we already have the termination, soundness, and completeness 

proofs for the Unify and Match functions from the Unification and Matching Theorems 22 

and 31. 1 

In this chapter we introduced a unification algorithm for Tm types and a matching 

algorithm for constructing recursive families of F types. We used these algorithms to 



prove the existence of principal derivations and principal types for TT. Finally, we ex- 

tracted a type reconstruction algorithm for 7" from the proof of principal derivations and 

conjectured its soundness and completeness. 



W (I?, 6) = (8, T) where 
Zero W ( r ,  0 )  
Succ w(r, S ) 
Var W(r7 4 
+ intro W(r ,  Xx.6) 

+ intro-seq W ( r ,  R 6' 6) 

+ elim w ( r , 6  6') 

(eid, Nat) 
(oid7 Nat + Nat) 
(eid, T) if {x : T) E I' 
Let ( 8 , ~ )  = W(r{x : A), 6) 
and x g! ~ v ( T )  
in (8,8A + T) 

where A is a new type variable 
Let (el, a) = W ( r ,  6) 
and (82, r) = W(OlF, 6') 
and 93 = Unify({(82u, Nat + A + B))) 
and 84 = Unify({(03A, 83 B)  )) 
and O5 = Unify({(0403r, 0403A))) 
in (8584838281, Nat + 858483A) 
where A, B are new type variables 
Let (el, T) = W (r, 6) 
and (82, a) = W (Blr, 6') 
and 193 = Unify({(e2r, a + B))) 
in (038281~83B) 
where B is a new type variable 
Let ( 8 , ~ )  = W(F{n : Nat), 6) 
and n E ~ v ( T )  
in (8, IIn.7) 
Let (01, U) = W(r,  6) 
and (82, T) = W (el r ,dl) 
and 83 = Unify({(020, Nat -+ A + B))) 
and Oq = Match(n, (&T, 03A, 193B)) 
in (84830281, 
where n, A, B are new 
Let (81, T) = W(r ,  6) 
and (82, Nat) = W 6') 
and 83 = Unify({(e2r, IIn.B))) 
and n E fv(O3 B) 
in (038281, (03B[n := 6'1)J) 
where B is a new type variable 

Figure 3.4: Type Reconstruction for Weak 7" Types 



Chapter 4 

Comparisons and Conclusions 

4.1 Summary of Results 

We have presented an extension of an ML-style type inference system called 'Tn supporting 

first order Martin-Lof style dependent product types for Godel's theory 7 of primitive 

recursive functionals. The intent of the work is to demonstrate the theoretical feasibility 

of reconstructing dependent types for functions defined by primitive recursion over well 

founded types. 

By starting with Godel's theory 7 we are able to express primitive recursive families of 

terms indexed by natural numbers using an R combinator. Using a like R combinator at 

the level of types, we define a language specifying how to code primitive recursive families 

of types indexed by natural numbers. Upon these families we specify how to construct the 

TT first-order product types dependent on natural numbers. What we call the 'T type 

inference system is then defined by typing rules for deriving so called well typed terms of 'T 

type including, of course, terms with dependent types. Our study of type reconstruction 

is the problem of finding an algorithm to determine types for untyped terms in a sound 

and complete way with respect to the inference system. 

The 'Tn typing rules are analogous to the type inference rules of Damas and Milner 

[DM821 for an ML-style system. The Damas and Milner system is based on earlier work 

by Milner [Mi1781 and originally Hindley [Hi11691 showing the existence of principal type 

schemes for the simply typed lambda calculus. Godel's theory 7 is exactly the simply 

typed lambda calculus with primitive recursion and natural numbers added, and by ex- 

tension of Hindley's results it is known that the simple type system for theory 7 has 



principal types. 

The rules for the 7" system include all the rules of the simple type system for 7. 

We claim that the 7" type system extends the simple type system for theory 7 with 

dependent types and give an example of a function that can be typed in '7 but not in the 

simple type system (nor for that matter, in the ML type system). We conjecture, though 

do not prove, that T* could easily be enhanced to include the Damas and Milner style 

Let polymorphism in the same way that Damas and Milner enhanced Hindley's work, and 

therefore the 7" system would extend ML style polymorphism with dependent types. 

The system 7" is closely related to an earlier system Tm studied by Tait and by 

Martin-Lof in the context of proof theory [Tai65, Mar72al. Their system has infinite se- 

quences of terms and types but is studied in a mathematical setting where specific codings 

for the sequences are left unspecified. The papers by Tait and Martin-Lof demonstrate 

primarily strong normalization of Too derivations. They indicate that the results hold for 

recursive formulations of sequences, and thus we conjecture that these results carry over 

to the 7* system where we have chosen a specific formulation, however, we do not give a 

formal proof of this. Upon this conjecture of strong normalization of 7" we research the 

type inference system and the reconstruction algorithm. 

To show that the 7" type system is sensible according to standard mathematical 

intuitions, we give a simple set theoretical model closely following a model by Hindley 

[Hin69] and to some extent Friedman [Fri75] for the simply typed lambda calculus. In 

this model we let types denote sets of equivalence classes of terms by convertibility and 

let typing statements represent set memberships. We prove a soundness and completeness 

theorem for the model that verifies typing statements as exactly set memberships in the 

model. 

Our model, like Hindley's model, expects the addition of an Eq rule for terms. The Eq 

rule makes intra-convertible terms members of the same type. We point out an example by 

Ohori [Oh0891 suggesting there are better models, because the requirement of the Eq rule 

allows types to be assigned to terms that should not be typable. In this sense, the model 

does not match the intended behavior of the typing system. Harper and Mitchell recently 

introduced the term coherence to discuss this property of the relationship between models 



and reconstruction [HM93]. We do not further investigate the problem of coherence. 

We claim the Tn type system with its addition of dependent types continues to support 

the principal types of the simply typed lambda calculus - provided we restrict the recursive 

types to what we call weak recursion. Our definition of weak recursion means that neither 

the recursive unfolding nor the base case of a recursively constructed type can depend in 

any way on the recursion index.' We prove a principal type theorem for weak 7. 

The key part of the proof of the principal types theorem relies on extending the unifi- 

cation algorithm to handle dependent types in TT. To handle dependent types, we add a 

specialized matching algorithm that matches triples of type schemes to a primitive recur- 

sive family of types representable in Tn. The triples of type schemes represent the base, 

nth, and n + lSt cases of a potential sequence of types and the matching algorithm actu- 

ally finds a Tn primitive recursive representation of the sequence. We use a combination 

of unification and matching to reconstruct a product type for a recursive sequence term 

similar to the way unification alone is used in the usual way to reconstruct an arrow type 

given an applicative term. 

Our last result is a type reconstruction algorithm extracted from the proof of the prin- 

cipal derivations theorem. We claim in our reconstruction conjecture that this algorithm 

is sound and complete with respect to the weak recursively based TT type system. Our 

claim is left unproved. However, our unification and matching theorems together with 

the principal derivations theorem provide the essential components of the reconstruction 

theorem. 

4.2 Relationships with Other Work 

The Tn system has a historical lineage beginning in the 1930s with work on theories of 

functionality by Curry and Church. In 1958 Godel introduced theory 7 to prove the 

consistency of arithmetic. (See Hindley and Seldin [HS86].) Roger Hindley contributed 

two results we follow closely, namely, his discovery of principal type schemes [Hin69] and 

'We have no reason to believe the restriction to weak recursion is necessary, rather, the restriction was 
chosen to simplify the proof of the principal types theorem. 



his construction of a term model and completeness results for the simply typed lambda 

calculus [Hin83]. Our work applies the methods of Hindley to the new system TT that 

turns out to be closely related to excursions by Tait and Martin-Lof into the theory Tm of 

lambda calculus with infinite sequences of terms and types [Tai65, Mar72bl. The way we 

have formulated sequences of types as primitive recursive formulas follows Martin-Lof's 

early intensional type theory [Mar75]. 

Our work belongs with the family of research on languages without general recursion. 

Under this paradigm, all programs terminate and programs are constructed with a variety 

of powerful systems of well founded recursion. Such languages have the property of strong 

normalization. There is a lively debate about the value of this strong assumption on 

expressing computations. General recursion often offers simplicity of expression, but proofs 

of correctness are more difficult and require separate proofs of termination. On the other 

hand, strong normalization supports much better algebraic properties and supports the 

paradigm known as propositions as types, where programs are strongly correlated their 

proofs of correctness. 

Our model for the 7" system is a very simple set-theoretic term model that we con- 

struct primarily to assure that our system is sensible. The model is an adaptation of 

Hindley's model for the simply typed lambda calculus [Hin83]. There is much research 

in model theoretic constructions for the typed lambda calculi that we have not explored, 

but could be applicable to our system, for example, see the overview on ML models by 

Harper and Mitchell [HM93]. 

In the next few subsections we discuss various ways our research on type systems and 

type reconstruction relates to other work. 

4.2.1 Type Systems and Philosophies 

We have encountered three categorizations that help distinguish type systems. Are we 

typing according to a Church or a Curry philosophy? Do we have explicit or implicit types? 

What kind of polymorphism do we have in the system and do we have impredicativity 

or predicativity? There are good discussions about all of these questions in Hindley and 

Seldin, Harper and Mitchell, and Pierce, et a1 [HS86, HM93, PDM891. We use these 



characterizations as a way to situate our system among others in the literature. 

We assume a Curry philosophy where terms have an existence regardless of whether 

they are typable in our system or any other. We also have entirely implicit types; pro- 

grams have absolutely no type information and we reconstruct all types. With a Curry 

philosophy, the type system becomes a way to categorize terms; either as non-typable, or 

in some type category. Furthermore, types are meta-level constructions; they never ap- 

pear in programs. In the alternative Church philosophy, no term would exist unless it were 

typable and all terms would be assumed to have types associated with them, even if those 

types were not explicitly given. Thus, for example, Harper and Mitchell [HM93] view the 

implicit typing of ML as a shorthand for an explicitly typed variation of ML. Harper and 

Mitchell argue that an explicitly typed ML "scales up" to full ML with type definitions 

and modules and that it is much simpler to model the systems under the Church philos- 

ophy because one does not have to worry about providing meaning to untypable terms. 

Reconstruction for partially typed terms becomes a relevant issue in a Church philosophy. 

Hindley and Seldin [HS86], on the other hand, argue the Curry approach for us - that the 

behavior of terms is fundamental and that typing systems help us categorize behaviors in 

various ways at the meta-level. 

Polymorphism and predicativity or impredicativity can occur many ways in languages 

and type systems. Our system is based on type schemes, or what Leivant refers to as 

quantifier-free universal parametric polymorphism [Leigl]. This polymorphism is, in short, 

implicit quantifiers at only the outermost scope of all type expressions. Because type 

schemes have implicit quantification only at the outermost scope of a type expression, no 

quantified type appears as a constituent in another type, leaving us with effectively only 

one level typing, that is, a first order system. Our F system is related to a very similar 

family of systems that have level-2 types constructed by quantification over level one types 

[Leigl, KT921. Type systems with stratification of types into levels are all essentially 

predicative. At the other extreme are essentially impredicative type systems, such as 

the second order lambda calculus [Gir72, Rey741, that allow types with quantification 

over all types. The T type system is essentially predicative in another sense. The F 

dependent types are based on well founded recursion schemes in contrast to type systems 



witharecursive types that have no finite basis [MPS86, CC911. 

Within these dimensions of strong normalization versus general recursion, Curry versus 

Church philosophies, explicit versus implicit types, and predicative versus impredicative 

polymorphic constructions we can distinguish our system from others. Thus, for exam- 

ple, we differ from the Calculus of Constructions (COC) [CH88], Martin-Lof type theory 

[Mar75], and the Logical Framework (LF) [HHP93, CH881 because our types are Curry- 

style meta-constructions only implicitly associated with programs via type reconstruction. 

We differ from systems with recursively defined types [MPS86, CC911 because our depen- 

dent types are predicative; either finite or well founded recursions. On the other hand, 

we are similar to other implicitly typed and first order or predicative systems in the ML 

family [KTU93a, Hen93, Lei91, KT92, McC841. 

4.2.2 Polymorphism and Dependent Types 

There are many kinds of polymorphism. To simplify our study, we use monomorphic 

type schemes as in the original work by Hindley [Hin69]. By monomorphic we mean that 

no types are formed using universal quantifiers over type variables. By type schemes we 

mean, as Hindley does, that types have variables that can range over any type. Type 

expressions are implicitly assumed to be universally quantified at the outermost scope, 

but quantifiers never appear within type expressions. Damas and Milner ML-style poly- 

morphism introduces quantified polymorphism in the Let construct to extend Hindley's 

work with type schemes for the lambda calculus. We believe that our work could be easily 

extended along these lines to handle such Let polymorphism. 

Leivant gives an insightful perspective on polymorphism and predicativity in [Leigl]. 

He portrays polymorphic typing systems as ranging between two paradigms: the quantifier- 

free parametric polymorphism of ML typing systems with decidable type inference on one 

hand, and impredicative and explicitly quantified disciplines of the Girard-Reynolds second 

order lambda calculus on the other hand [Gir72, Rey741.. The former systems have prac- 

tical advantages with decidable type inference, yet lack the expressive power of full type 

quantification.2 The latter systems have great expressive power but exceed the bounds of 

 h he lack of expressive power refers to the limitation of allowing quantifiers only at the outermost level. 



practical type reconstruction. Researchers are looking for practical type systems between 

these extremes. Leivant himself proposes a finite stratification of quantificational type 

systems to avoid impredicative abstraction and thus introduce a certain theoretical and 

practical tractability for type systems. In this system of stratification, types are assigned 

levels of quantification, and quantifiers always range over lesser levels. Our research clearly 

rests at the practical end of this spectrum of polymorphic systems, for we have the simplist 

kind of type schemes and concentrate on exploring the addition of dependent types in a 

first order system. 

There are also many kinds of dependent types. Our system introduces product types 

dependent on terms, specifically terms that normalize to numerals representing natural 

numbers. Our formulation of dependent types follows Martin-Lof's early intentional type 

theory, [Mar75]. Like Martin-Lof, our dependent types are well founded recursive expres- 

sions built up from other already-defined type expressions. Like all our types, dependent 

types can have type variables. One type variable is reserved for the recursive unfolding and 

it is bound with a lambda binder to distinguish it from the other schematic type variables. 

As far as we know, the combination of dependent types and type schemas and the study 

of their interaction is new. Usually dependent types are found in systems like LF, COC, 

or Martin-Lof type theory [CH88, HHP93, Mar751, where polymorphism or dependencies 

on either terms or types is represented by explicit abstractions. 

4.2.3 Type Reconstruction 

Much work has been done with enhancing the ML type reconstruction system. The main 

threads of this work cover type reconstruction with subtypes [Wan91 , Sta88,Oho89, FM90, 

~ 8 9 1 ,  type reconstruction with recursive types (CC911, type reconstruction with poly- 

morphic recursion [KTU93a, Hen931, and type reconstruction in stratified polymorphic 

systems [Leigl, KT92, McC841. There has been some work in dependent type inference 

[El1891 that we discuss shortly. There has also been recent work in type reconstruction for 

partially typed programs, where some explicit type information is present and the rest is 

implicit, [TiugO, HM931. There are many and various other special case results associated 

with proposals for new types, where ML type reconstruction is extended to handle those 



types. 

Conal Elliott (El1891 shows how higher order unification (HOU) introduced by Huet 

[Hue751 can be modifed to work with the first-order dependent-product types of the Edin- 

burgh Logical Framework (LF) [HHP93]. He goes on to show how HOU can be used to do 

type reconstruction for object logics encoded in LF. Elliott's technique involves what he 

calls term inference in LF. Because an object logic is encoded in LF, its type system will 

be representable using LF terms, thus an appropriate LF term-inference algorithm could 

reconstruct LF terms representing object logic types. 

Elliott's term inference correlates with our methods of matching recursion schemes 

during the reconstruction of types for recursive sequences. Elliott adapted Huet's second 

order unification algorithm whereas we developed our matching algorithm by adapting a 

special case of Huet and Lang's second-order matching algorithm [HL78]. Some techniques 

of Elliott's algorithm might be applicable to our matching problem. We differ from Elliot's 

work primarily in our formulation of dependent-product types using well founded recursion 

based on our specific object language. Elliott's work in LF, on the other hand, leaves the 

object language dependencies unspecified. Nevertheless, Elliott's paper suggests it would 

be possible to encode our Tr system using LF and then derive our type inference system 

from the term-inference method of his paper. Such an exercise might set our work in a 

more general framework and help with generalizing our results to more complex recursion 

schemes. On the other hand, a complete LF formalization is exceedingly tedious. 

Cardone and Coppo [CC91] present a principal type theorem and a model for a simple 

type system extended with recursive types. Their paper focuses mainly on model theory 

for the system. However, they make it clear that principal types exist and it is possible 

to reconstruct them. In their type system one can formulate recursive types pA.0 where 

A E fvty(a). These types are intended to be interpreted as infinite unfoldings, for example, 

the type pA.Bool -+ A would be the type Bool -+ Bool + Bool + - .  .. Cardone and Coppo 

present rules for type assignment and a principal types theorem, as well as a model with 

completeness results, very similar to the style of our presentation. 

Both our system and Cardone and Coppo's system have types defined by recursive 



forms. The fundamental distinction lies in the interpretation of these forms. In Car- 

done and Coppo's system, the recursive formulas are impredicative and denote a single 

infinitely unfolding type. In our case, recursive formulas are well founded (predicative) 

and define infinite families of finite types over which we build a products. Thus, for exam- 

ple, our system would interpret the above recursive formula pA.0 as the family of types 

{Bool, Bool + Bool, Bool + Bool + Bool, . . .). 
The problem of type reconstruction with polymorphic recursion comes from an anomaly 

in ML-style Let polymorphism and its interaction with mutual recursion. Kfoury, Tiuryn, 

and Urzyczyn [KTU93a] and Henglein [Hen931 both discuss this practical problem and 

prove the undecidability of reconstruction for various solutions to the problem. The inter- 

esting aspect of both of these papers is the demonstration of equivalence between the the 

reconstruction problem and the more general problem of semi-unification. Their undecid- 

ability result for reconstruction is based on the undecidability of semi-unification, shown 

recently in another paper by Kfoury, Tiuryn, and Urzyczyn [KTU93b]. Note that these 

reconstruction problems assume we have general recursion, unlike our system. 

Based on stratified polymorphism discussed above [Leigl], Leivant in earlier work 

[Lei831 and then McCracken [McC84] present papers on type reconstruction for polymor- 

phic systems of two levels. More recently Kfoury and Tiuryn [KT921 complete this work 

by proving that typability in the second order lambda calculus restricted to two levels 

of polymorphism is decidable. Furthermore, Kfoury and Tiuryn prove in the same paper 

that the reconstruction problem for the second order lambda calculus at levels of poly- 

morphism greater than two is undecidable. Leivant, McCracken, and Kfoury and Tiuryn 

are working with explicitly quantified polymorphic types, rather than implicit MLstyle 

parametric polymorphism at the outer level, as we do with type schemes. 

The work on type reconstruction and subtypes covers a range of research that investi- 

gates the extension of ML with properties of object-oriented and database programming 

[Wangl, Sta88, Oho89, FM90, ~ 8 9 1 .  All of these works propose new extensions to ML 

representing general language facilities and then investigate type reconstruction. There 

are also many other miscellaneous extensions to ML for which type reconstruction has 

been extended. 



4.2.4 Unification and Matching 

The heart of the thesis lies in the unification and matching theorems for the recursive 

sequences of types comprising the dependent products. In developing the matching algo- 

rithm we worked with ad-hoc methods, variations of second-order unification [Hue75], and 

variations of second-order matching [HL78] combined with first-order unification. We be- 

lieve there may be a more general framework for our unification and matching that could 

greatly simplify the presentation and clarify the results - in much the same way that 

semi-unification turned out to be a general framework for viewing ML-style unification 

and the enhancements for polymorphic recursion [KTU93a]. In our search for an algo- 

rithm we are walking the boundary of decidability. Huet's second-order unification is only 

semi-decidable [Hue75, Go1811. Semi-unification is also undecidable in general [KTU93b]. 

Yet unification and second-order matching [HL78] are decidable. We hope to clarify the 

general class of matching and unification problems upon which our reconstruction depends. 

4.3 Reflections, Criticisms, and Future Work 

This thesis establishes a new type system about which little is known, so there is much 

research that remains. Most immediately relevant is to determine how useful the language 

and type system are. We have postulated the value of dependent types and proposed a 

way to express them, but we have not experimented with their use. Are the restrictions 

we place on the language and types too strong? Can we write intersting programs with 

dependent types that we cannot write in ML? Can we exclude ill-typed programs that the 

ML type checker does not catch? We must try to program more with our language and 

type system to illustrate the capabilities. 

We also must closely examine the restrictions on the language and type system and 

discover to what extent we have excluded interesting programs. The restrictions with the 

most impact appear to be the requirement for strong normalization of terms and types, 

plus the restriction on type dependencies to closed type indices that reduce to numerals. 

There is an on-going debate about the restriction to terminating programs and we 

are not concerned about being amidst research exploring programming without general 



recursion. We must, however, prove our strong normalization conjecture before continuing 

further. Many of the results depend on this fact. 

It would be prudent to take a close look at our requirements on indices to dependent 

types. What is the effect of restricting the application of terms with product type to 

closed terms that normalize to numerals? Does this restriction too severely constrain the 

kind of functions or function applications that we can type? We do not fully understand 

the implications of this restriction. 

We also want to look closely at the implications of limiting ourselves to weak recursion. 

Our definition of weak recursion means that no dependency index can nest within a recur- 

sive type dependent on another index. What is the practical result of this limitation on 

the nesting of dependencies? Is there some simple way and intuitive way to characterize 

this limitation? Is the limitation serious? Some thought should also be put into these 

limitations before pursuing further research. 

If we successfully address these immediate questions, then there is a long list of elabo- 

rations we wish to pursue. We want to find a simpler framework for presenting the system. 

Perhaps a better syntax; a way to cope with the technical clutter of working with well 

founded recursion. Predicative systems that incorporate realizability within the language 

always seem to have more special cases to handle. 

One approach to the clarifying the presentation would be to look for uniformity by 

examining the TT system within a categorical framework. Some work has been done in 

this area for dependent types [Car86]. Spencer [Spegl] discusses the advantages of the 

categorical approach for strongly normalizing languages. 

Another approach to simplifying the presentation would be to look at basing the system 

on iteration rather than weak recursion. Girard [GLT89] shows that the combinator we use 

can be simulated using an iterator combinator plus pairing. Can we gain some uniformity 

that would simplify the system? 

We have presented in this thesis a type system dependent only on numerals. A natural 

extension to this work is the extension to recursion over richer types, such as lists and 

trees. This leads us to consider type inference over the full range of well founded recursion 

schemes, such as  any of those within the first-level universe of Martin-Lof's type theory 



[Mar75, NPS9Ol. What power of expression do we gain from such a system? Further, what 

about extending the results to multiple levels of universes? A related question concerns 

the possibilities and implications of embedding this system in one with full recursion like 

ML. Is there a sensible way to do this? 

The simple term model we use suffices for our purposes. However, like other term mod- 

els, it is not very informative - it does little more than categorize the syntactic behavior 

of terms. We would like to enhance the semantic treatment with more informative mod- 

els. Harper and Mitchell [HM93] suggest several possible methods of modeling, including 

set-theoretic as well as domain-theoretic models. They introduce the concept of coherence 

also; we should investigate more closely the coherence of our model with respect to our 

reconstruction method. It appears that by assuming a decent semantics like Hindley, we 

gain completeness at the expense of coherence. 

Our models do not need to model non-terminating terms, so we might be able to 

simplify the model by adopting the Church philosophy and viewing our implicit typing 

as a shorthand for a particular explicitly typed system, such as promoted by Harper 

and Mitchell, [HM93]. Our experience with the problems of the Eq rule in semantically 

equating any two convertible terms might be resolved by this approach. On the other 

hand, it is difficult to give up the Curry philosophy that allows us to believe that there are 

meaningful terms out there and our type system just does not quite organize them right. 

Our matching algorithm turns out to be a somewhat ad-hoc adaption of Huet's second 

order matching algorithm [HL78]. We believe there must be more general characteriza- 

tions of our matching problem that would provide a more uniform framework in which 

to express our algorithm. We also want to explore matching more powerful recursion 

schemes such as those proposed above. What are the decidability results? Is there a 

general characterization of the problem? 

It is important to complete the work here by proving the reconstruction conjecture of 

soundness and completeness of the algorithm with respect to our weak recursively based 

type system. Then it would be fun to write an experimental program implementing the 

reconstruction algorithm. 

Finally, from a practical viewpoint we want to look at the potential applications. For 



example, would our dependent typing make a useful abstraction for building libraries of 

size-dependent array operations? Should research results appear promising, we would 

build a test system and experiment with the language. 
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Appendix A 

Dependent Typing Examples 

We show how to type tupler and projection operations in the Tn type system consistently 

dependent on the size of the tuples. For these examples we will be using the letters 

A, B, C, D,  E to stand for simple types. The examples use dependent types of a special 

left linear form like the type IIn.(A +)n B introduced for the taut example (where in 

taut A = B = Bool). We use the symbol s to mean syntactically equal, that is, an 

abbreviation. Abbreviations make the derivation significantly more readable. The usual 

equality symbol = identifies semantic values. In some cases we stretch the notation and say 

((IIn.7) b)J which, strictly speaking, should be ( ~ [ n  := 6])$. We do this to accommodate 

abbreviations for II types, for example, in the type (Swapmn n n)J  that appears below 

we do not want to expand the abbreviation of Swapmn. Also we regularly simplify the 

form ((nn.7) n ) J ,  where the reduction is simply a variable change, by leaving off the J 
symbol for reduction. For example, we often write (Swapmn n )  or (Projector n)  without 

the necessary reduction explicitly indicated. 

A.l  Tuples 

The representation of tuples is similar to the usual lambda calculus formulations. Tuples 

are constructed using a combinator tupler having a tuple length as first argument, tuple 

elements as middle arguments and the last argument a Projector. A concrete tuple, is 

tupler applied to a length and all of its elements up to that length. We have no less than 

one tuples for compatibility with projections in Appendix A.2. Informally, the family of 

tupler terms is given by the following table. 

The tupler combinator is composed of a pretupler operation, which expects a projector 

as the second argument rather than last argument, and a swap operation to reorganize the 

arguments so the projector is correctly the last argument to the tupler. This two stage 

formulation of the tupler makes dependent typing possible according to the T/C rules. We 

do not know if the intermediate swapping construction that complicates this example is 



tuplerO = Xao.Xz.z a0 1-tupler 
tupler 1 = Xao.Xal.Xz.z a0 a1 2-tupler 

tupler k = Xuo . . . Xak.Xz.z a0 . . . ak ( k  + 1)-tupler 

Table A.l: A Family of Tupler Terms 

necessary. Informally, the pretupler terms are: 

pretupler 0 = Xz.Xao.z a0 

pretupler 1 = Xz.Xao.Aal.z a0 a1 

pretupler k = Xz.Xao . . . Xak.z a0 . . . ak 

The swapper terms look like 

swap 0 = Xf.Xao.Xz. f z a0 

swap 1 = X f .Xao.Xal.Xz. f z a0 a1 

swap k = X f Xuo.. . Xak.Xz. f z a0 . . . ak 

To type the swap operation, it seems necessary to formulate a more general swapmn 

to keep track of both recursion indices-the arity of f and the number of swaps. Here is 

the complete formulation of tupler terms. 

pretupler = R (X2.Xa.z a )  (Xk.Xp.Xz.Xa.p ( z  a ) )  

swapmn E Xm.R (A f .Aa.Xz. f z a )  (Xk.Xp.X f .Aa.p (Xz. f z a )  ) 

swap = Xn.swapmn n n 

tupler r Xn.swap n (pretupler n) 

By expansion of the above definitions and the equality theory of 'F types, the following 



equations hold. 

pret upler 0 = X2.Xa.z a (= Zero) 
pretupler(Sk) = Xz.Xa.pretuplerk(za) (= Succ) 

swapmn m 0 = X f.Xa.Xz. f z a (= p, = Zero) 
swapmn m (S k) = X f .Xa.swapmn m k (Xz. f z a) (= p, = Succ) 

swap 0 = X f .Xa.Xz. f z a (= P, = Zero) 

swap (S k) = X f .Xa.swap k (Xz. f z a)  (= p, = Succ) 

The following type definitions are useful for typing the tupler and other terms above. 

Note the abbreviations we introduce for the types Projector and Swapmn. 

Projector - R (A + A) (Xk.XX.A + X )  

= IIn.(A +)n(A + A) 

Pretupler s IIn.(Projector n + Projector n) 

Tuple = IIn.(Projector n + A) 

Swapmn = llm.lln.( (Projector m) + (Projector n) ) 
-+ (R (A + Tuple m) (Xk.Xt.A + t )  n) 

G IIm.IIn.( (Projector m) + (Projector n) ) 
+ ( ( A  +)n(A + Tuple m)) 

From the definition of Projector the equality theory of the type system of Tn the 

following equations hold. 

Projector 0 = A + A  (= IIZero) 

Projector (S k) = A + (Projector k) (= HSucc) 

We will derive the following typings using the non-weak 'F typing rules. Note the 

abbreviation we introduce for the type of tupler. 

pret upler : Pret upler 

swapmn : Swapmn 

swap : IIn.(Swapmn n n)J 

tupler : IIn.R (A + Tuple n) (Xk.XX.A + X )  n 

: IIn. (A +)n (A + Tuple n)  



First assume typings for swap and pretupler and derive the type of tupler. 

Theorem 
tupler : IIn. ( A  +)n(A + Tuple n)  

Assumptions 

A1. I-swap : IIn.(Swapmn n n)$ 
AS. I- pretupler : Iln. (Projector n) + (Projector n)  

Proof 

1. { n : N a t ) t - n  

2. { n  : Nat) I- swap 

3. { n  : Nat) t- swap n 

4. { n : N a t )  t-pretupler 

5. {n:Nat) t-pretuplern : 

6.  { n  : Nat) 
t- swap n (pret upler n)  : 

7. I- Xn.swap n (pretuplern) : 

t- tupler 

Na t 

IIn.(Swapmn n n)$ 

(Swapmn n n)$ 

( (Projector n)  -+ (Projector n)  ) 
+ ( ( A  +)n(A + Tuplen) ) 
Iln.(Projector n) + (Projector n) 

(Projector n )  + (Projector n)  

( A  +)n(A + Tuple n) 

IIn.(A -+)n(A + Tuple n) 

Iln. ( A  +)n ( A  + Tuple n) 

( Var) 
(Cext A1)  

(IIelim 2 1) 

(- Swapmn) 

(Cext A Z )  
(IIelim 4 1) 

(-+ elim 3 5) 

(Ilintro) 

(= tupler) 

Derive a typing for swap assuming a typing for swapmn. 

Theorem 
swap : IIn.(Swaprnn n n)$ 

Assumptions 
A1. t- swapmn : Swapmn 

Proof 

1. { n : N a t ) t - n  : Nat ( var) 
2. { n  : Nat) t- swapmn : Swapmn (Cext A I )  

3. { n  : Nat) t- swapmn n : (Swapmn n)$ (IIelim 2 1) 

4. { n  : Nat) t- swapmn n n : (Swapmn n n)$ (IIelim 3 1)  

5. I- Xn.swapmn n n : IIn.(Swapmn n n)$ (Ilintro) 

t- swap : IIn.(Swapmn n n)$ (= swap) 



Now type swapmn. 

Theorem 
swapmn : Swapmn 

Steps 7a and 7b below, together with steps 16b and 16c, represent the proof of the reduc- 

tion conditions on the IIintro-seq rule used in step 18. 

Proof 

Zero case. 

1. {m : Nat) 

{ f : (Projector m) + (A + A)) 

{z : Projector m){a : A) I- f : (Projector m) + (A + A) ( var) 
2. {m : Nat) 

{ f : (Projector m) + (A + A)) 

{z : Projector m){a : A) I- z : (Projector m) ( var) 

3. {m : Nat) 
{f : (Projector m) + (A + A)) 

{Z : Projector m){a : A) I- f z : A -t A (+ elim 1 2) 

4. {m:Nat)  

{f : (Projector m) + (A + A)) 

{z : Projector m){a : A) I- a : A ( Var) 

5. {m:  Nat) 

{ f : (Projector m) + (A + A)) 

{z : Projector m){a : A) I- f z a : A (+ elim 3 4) 

6. {m : Nat) 

{f : (Projector m) -t (A + A ) )  
I- Xa.Xz. f z a : A + (Projector m + A) (+ intro, + intro) 

7a. { m  : Nat) 

I- Xf.Xz.Xa.f z a : ((Projector m) + (A + A) ) 
+ (A + (Projector m + A) ) (+ intro) 

7b. : (Projector m + (Projector 0) )& 

+ ( (A +)O(A 
+ (Projector m + A)) )J (= IIZero, = IIZero) 

: (Projector m + (Projector 0) )J 
+ ( (A +)'(A + Thple m) )J (= Tuple) 

: (Swapmn m O)J (- Swapmn) 



Successor case. 

8. {m : Nat){n : Nat){k : Nat) 

{p  : (Swapmn m n ) J )  

{ f : (Projector m) + ( A  + Projector n ) )  

{a : A ) { z  : Projector m )  

k f  : (Projector m) 
+ ( A  + Projector n )  

9. { m : N a t ) { n : N a t ) { k : N a t )  

{p  : (Swapmn m n ) J )  
{ f : (Projector m )  + ( A  + Projector n )  ) 
{a  : A ) { z  : Projector m )  
I- z : (Projector m) ( var) 

lo. {m : Nat){n : Nat){k : Nat) 

{p  : (Swapmn m n ) J )  
{ f  : (Projector m )  + ( A  + Projector n ) )  

{a : A ) { z  : Projector m )  

I - f z  : A -+ Projector n (+ elim 8 9) 
11. {m : Nat){n : Nat){k : Nat) 

{p  : (Swapmn m n ) J )  
{ f  : (Projector m )  + ( A  + Projector n ) )  

{a  : A ) { z  : Projector m )  
I- a : A 

12. { m  : Nat){n : Nat){k : Nat) 

( p  : (Swapmn m n ) J )  
{ f : (Projector m) + ( A  + Projector n ) )  

{a : A){z  : Projector m )  

I- ( f  2 )  a : Projector n 
13. {m : Nat){n : Nat){k : Nat) 

{ p  : (Swapmn m n ) J )  
{ f  : (Projector m) + ( A  + Projector n ) )  
{a : A)  

I- Xz.(f z )  a : (Projector m) 
+ (Projector n)  

(+ elim 10 11) 

(+ intro) 



14. { m  : Nat){n  : Nat) 

{ k  : Nat) 

{ p  : (Swapmn m n)$)  

{ f : (Projector rn) 
+ ( A  + Projector n ) )  

{a  : A )  t- p : (Swapmn m n)$ ( Var) 
: ((Projector m) + (Projector n)) 

-+ ( ( A  +)n(A + n p l e  m))  (E Swapmn) 

15. { m  : Nat){n : Nat) 
{ k  : Nat) 

{ p  : (Swapmn m n)$)  
{ f : (Projector m) 
+ ( A  + Projector n ) )  

{ a :  A )  I-p (Az.(f z )  a )  : ( A  +)n (A+ n p l e m )  (+ elim 14 13) 

16a. {m : Nat){n : Nat) 
{ k  : Nat) 

{p  : (Swapmn m n)$) 

!- X f .Xa.p (Xz.(f z )  a )  : ((Projector m) + 
( A  -+ Projector n ) )  

+ A + ( A  -+)n(A -+ Tuple m) (+ intro, + intro) 

16b. : ((Projector m) 
+ (Projector ( S  n))J)  

-+ ( A  +) n$ ( A  + n p l e  m) (= IISucc, = IISucc) 

16c. : (Swapmn m ( S  n))$ (= Swapmn) 

17. { m  : Nat){n : Nat) 
t- Xk.Xp.X f .Xa.p (Xz.(f z )  a )  

: Nat + (Swapmn m n)$)  

+ (Swapmn m ( S  n))$ (+ intro, + intro) 



Recursive sequence introduction. 

18. { m  : Nat) 
I- R ( A  f.Xz.Xa. f z a)(Xk.Xp.X f.Xa.p (Xz.(f z )  a ) )  

: IIn.(Swapmn m n)l (IIintro-seq 7b 17) 

: Iln. ( (Projector m) + (Projector n) ) 
+ ( ( A  +)n(A + Thple m) ) (= Swapmn) 

19. tXm.R(Xf .Xz.Xa. f  za)(Xk.Xp.Xf.Xa.p(Xz.(f z )  a ) )  
: IIm.IIn.( (Projector m) 

+ (Projector n) ) 
+ ( ( A  +)n(A + Thple m) ) (Ilintro) 

: Swapmn (E Swapmn) 

I- swapmn : Swapmn (E swapmn) 

Finally type pretupler. Steps 5b and 12b represent the proof o f  the reduction conditions 

on the IIintro-seq rule in step 14. 

Theorem 
pretupler : IIn.(Projector n)  + (Projector n)  

Proof 

Zero case. 
1. { z : A + A ) { a : A ) I - z  : A + A  ( var) 

2. { z : A + A ) { a : A ) I - a  : A ( var) 
3. { z : A - t A ) { a : A ) I - z a  : A (+ elim 1 2) 
4. { z : A + A ) t - X a . z a  : A + A  (+ intro) 
5a. t Xa.Xz.z a : ( A  4 A )  + ( A  + A )  (+ intro) 
5b. : (Projector 0)$ 

+ (Projector O ) J  (= IIZero, = IIZero) 

: (Pret upler 0 )J  (r Pretupler) 



Successor case. 
6 .  { n  : Nat){k : Nat) 

{ p  : Pretupler n )  
{ z  : A + (Projector n ) ) {a  : A )  

F P  : Pretupler n ( Val.) 
: (Projector n) 

+ (Projector n)  (- Pretupler) 

7. { n  : Nat){k : Nat) 
{ p  : Pret upler n )  
{ Z  : A + (Projector n ) ) { a  : A )  
F z : A + (Projector n) ( var) 

8. { n  : Nat){k : Nat) 
{ p  : Pret upler n )  
{ Z  : A + (Projector n ) ) { a  : A )  
I- a : A ( Var) 

9. { n : N a t ) { k : N a t )  
{ p  : Pretupler n )  
{ Z  : A + (Projector n ) ) { a  : A )  
I- z a : Projector n (+ elim 7 8 )  

10. { n  : Nat){k : Nat) 
{ p  : Pretupler n) 

{ z  : A + (Projector n ) ) { a  : A )  

P ( 2  a )  : Projector n (+ elim 6 9) 
11. { n  : Nat){k : Nat) 

{p  : Pret upler n )  
{ z  : A + (Projector n ) )  
I- Xa.p ( z  a )  : A + (Projector n)  (+ intro) 



12a. {n : Nat){k : Nat) 

{p : Pretupler n) 

I- Xz.Xa.p (z a)  : ( A  + (Projector n)) 

-+ ( A  + (Projector n)) (+ intro) 

12b. : (Projector (S n))J 
+ (Projector (S n))$ (= IISucc, = IISucc) 

: Pretupler (S n)J (E Pretupler) 

13. {n : Nat) 

t Xk.Xp.Xz.Xa.p (z a) : Nat + 
(Pretupler n)J 

+ Pretupler (S n)J (+ intro, + intro) 

Recursive sequence introduction. 

14. I- R (Xa.Xz.z a) 

(Xk.Xp.Xz.Xa.p (z a)) 

t pret upler 

: IIn.(Pretupler n)J (llintro-seq 5b 13) 

: IIn.(Projector n) 

-+ (Projector n) (E Pretupler) 

: IIn.(Projector n) 

-+ (Projector n) (= pretupler) 

A.2 Projections 

Projections work on concrete tuples and are parameterized by the tuple length in the first 

argument and the projection number in the second argument. Recall from Appendix A.1 

that tuples of length one are indexed by zero, tuples of length two are indexed by one, 

and so forth. Thus in a projection, if the tuple length parameter is zero, then we are 

projecting from one tuples. Likewise, the first projection is indexed by zero, the second 

projection is indexed by one, and so forth. Any attempt to project beyond the length of 

the tuple is equivalent to a projection of the last element of the tuple. The following table 
shows the entire family of projection terms. 

Preproj terms look like the following. 

(1-tuple) preproj 0 = Xz.z 

(2 -tuple) preproj 1 = Xz.Xal .a 

((k + 1)-tuple) preproj k = XzXal . . . Xak.z 



Tuple size 
0 

(1-tuple) 0 Xz.z 
(2-tuple) 1 Xz.Xy.z 
(3-tuple) 2 Xz.Xx.Xy.z 
(4-tuple) 3 Xz.Xw.Xx.Xy.z 

Projection number 
1 2 3 ... 
Xz.2 Xz.2 X2.z . . . 
Xy.Xz.z Xy.Xz.z Xy.Xz.z . . . 
Xx.Xz.Xy.z X2.Xy.Xz.z X2.Xy.Xz.z . . . 
Xw.Xz.Xx.Xy.z Xw.Xx.Xz.Xy.z Xw.Xx.Xy.Xz.z ... 

Table A.2: A family of Projection Terms 

Pswap terms look like the following. The role of pswap is to adjust the preproj terms, 

which are essentially all first projections, into j-projections for some projection number 

j. The pswap is similar to the swap term of tupling, except that the number of swapping 

steps is dependent on the projection-number second argument rather than the tuple size. 

Interestingly, the type of pswap is dependent on the tuple length first argument that is 

not actually used in the pswap terms. 

pswap n 0 = Xf.Xz.f z 

pswap n 1 = X f.Xal.Xz. f z a1 

pswap n 2 = X f.Xal.Xa2.Xz. f z a2 a1 

pswap n 3 = X f .Xal.Xa2.Xa3.Xz. f z a3 a2 a1 

pswapn k = Xf.Xa l...Xak.Xz.f z ak ... a1 

The projection, preproj, and pswap terms are constructed according to the following 

definitions. 

preproj - R (Xz.2) (Xk.Xp.Xz.Xa.p z )  

PSWaP Xn.Xj.R (Xf.Xz.f z )  (Xk.Xp.Xf.Xa.O, (Xz.f z ) )  a) j 

projection = Xn.X j.pswap n j (preproj n )  

The following type definitions are convenient for typing projections. We borrow the 
definitions for Projector from Appendix A.1. 

Projector G R ( A  + A) (Xk.Xt.A + t )  - l l n . ( A + ) n ( A + A )  

Pswap = nn. (Projector n + Projector n )  



We will derive the following typings in the non-weak 717 type system. 

preproj : Projector 

PsWaP : Iln.(Nat + Pswap n) 

projection : Iln.(Nat + Projector n) 

First derive the typing for projection assuming typings for preproj and pswap terms. 

Theorem 
projection : Iln. (Nat + Projector n)  

Assumptions 
A1 I- preproj : Projector 

Az I-pswap : Un.(Nat+Pswapn) 

Proof 

{n  : Nat) { j  : Nat) I- preproj 

{ n  : Nat){j  : Nat) k n 

{n  : Nat){j  : Nat) I- preproj n 

{ n  : Nat){ j  : Nat) I- pswap 

{ n  : Nat){j  : Nat) k pswap n 

{ n  : Nat){j  : Nat) I- j 

{ n  : Nat){ j  : Nat) I- pswap n j 

{ n  : Nat){j  : Nat) 

I- pswap n j (preproj n)  

{n  : Nat) 

I- Xj.pswap n j (preproj n) 

I- Xn.Xj.pswap n j (preproj n) 

I- projection 

: Projector 

: Nat 

: Projector n 

: nn.(Nat + Pswap n) 

: Nat +Pswapn  

: Nat 
: Pswap n 

: Projector n + Projector n 

: Projector n 

: Nat + Projector n 

: Iln. (Nat + Projector n) 

: IIn.(Nat + Projector n) 

Now derive a typing for the preproj term. 

(Cext A1) 

( Var) 
(nel im 1 2) 

( Cext A z )  
(Ilelim 4 2) 

( Va7-1 
(+ elim 5 6 )  

(= Pswap) 

(+ elim 7 3) 

(+ intro) 
(nintro) 

(= projection) 

Theorem 
preproj : Projector 



Proof 

Zero case. 

1. { z :  A) I-z 

2a. t- Xz.z 

2b. 

Successor case. 

3. {n : Nat){k : Nat){p : Projector n) 

{z :  A){a: A) I-p 

: A ( Var) 

: A + A  (+ intro) 

: (Projector 0)$ (= nzero) 

4. {n:Nat){k:Nat){p:Projectorn) 

{ z :  A){a: A) I- z 

5 .  {n : Nat){k : Nat){p : Projector n) 

{z :A){a:A)  t p z  

6. {n : Nat){k : Nat){p : Projector n) 

{z : A) I- Xa.p z 

7. { n : N a t ) { k : N a t ) { p : P r o j e c t o r n )  
t- Xz.Xa.p z 

7b. 

Projector n 

(A +)n(A -+ A) 

(A +)n(A + A) 

Projector n 

A + Projector n 

Projector (S n)$ 

( Var) 
(G Projector) 

(+ elim 3 4) 

(+ intro) 

(= Projector) 

(+ intro) 

(= ~ ~ U C C )  

8. {n : Nat) I- Xk.Xp.Xz.Xa.p z : Nat -+ (Projector n)$ 

-+ (Projector (S n))$ (-+ intro, + intro) 

Primitive recursion introduction. 

9. t- R (Xz.2) (Xk.Xp.Xy.Xx.p y) : Iln.(Projector n)J (nintro-seq 2b 8) 
: Projector (= p, = Projector) 

I- preproj : Projector (E preproj) 

I 

Finally, derive a typing for the pswap term. 

Theorem 
pswap : nn .  (Nat -+ Pswap n) 



Proof 

Zero case. 
1. {n  : Nat){j  : Nat){f  : A + A )  

{ z  : A )  I- f 

2. { n  : Nat){j  : Nat){f  : A + A )  
{ z  : A )  I- z 

3. { n  : Nat){ j  : Nat){f  : A + A )  
{ z : A ) l -  f z 

4. { n :  N a t ) { j :  N a t ) { f :  A + A )  
I- Xz. f z 

5. { n :  Nat){ j  : Nat) I- Xf.Xz.f z 
5a. 

A (+ elim 1 2) 

: A + A  (+ intro ) 
: ( A  + A )  + ( A  + A )  (+ intro) 
: (Projector 0)$ 

+ (Projector O)$ (= nzero, = EZero) 
: Pswap 0 (- Pswap) 

Successor case. 
6 .  { n  : Nat){j  : Nat){k : Nat) 

{ p  : Pswap n )  { f : Projector n )  
{ a :  A ) { z :  A )  I- f 

7.  {n : Nat){j  : Nat){k : Nat) 
{ p  : Pswap n )  { f : Projector n )  
{ a :  A ) { z :  A )  I- z 

8. { n : N a t ) { j : N a t ) { k : N a t )  
{ p  : Pswap n ) {  f : Projector n )  
{ a :  A ) { z :  A )  I- f z 

9. { n  : Nat){j  : Nat){k : Nat) 
{ p  : Pswap n )  { f : Projector n )  
{ a  : A )  I- Xz. f z 

lo. { n  : Nat){j  : Nat){k : Nat) 
{ p  : Pswap n ) {  f : Projector n )  

{ a : A ) l - p  

Projector n 

( A  +)n(A + A )  

( A  +)n(A + A )  
Projector n 

Pswap n 

Projector n + Projector n 

( Var) 
(- Projector) 

(+ elim 6 7 )  

(+ intro ) 
(E Projector) 

( Var) 
( Pswap) 



11. { n : N a t ) { j :  N a t ) { k : N a t )  

{ p  : Pswap n )  { f : Projector n )  

{a : A )  I- p (Xz. f z )  : Projector n 

: ( A + ) n ( A + A )  

12. { n  : Nat){ j  : Nat){k : Nat) 
{ p  : Pswap n )  { f : Projector n )  

{a  : A )  I- a : A 

13. {n  : Nat){ j  : Nat){k : Nat) 

{ p  : Pswap n ) { f  : Projector n )  

{a  : A )  I- p (Xz. f z )  a : ( A  +ln-l(A + A )  

14. {n  : Nat){ j  : Nat){k : Nat) 
{ p  : Pswap n )  { f : Projector n )  

t- Xa.p (Xz. f z )  a : ( A - q n ( A + A )  
: Projector n 

15. { n  : Nat){ j  : Nat){k : Nat) 
{ p  : Pswap n )  

I- X f .Aa.p (Xz. f z )  a : Projector n 

+ Projector n 

: Pswap n 

16. { n  : Nat ) { j  : Nat) 

I- Xk.Xp.X f .Xa.p (Xz. f z )  a : Nat + Pswapn 

+ Pswap n 

Primitive recursion introduction. 

17. { n  : Nat){ j  : Nat) 

I-R (Xf.Az.f z)  (Xk.Xp.Xf.Xa.p (Xz.f z )  a )  
: Nat 4 Pswapn 

18. { n : N a t ) { j : N a t ) I - j  : Nat 

19. { n  : Nat){ j  : Nat) 

t- R (Xf.Xr.j z)  

(Xk.Xp.A f .Xa.p (Az. f z )  a )  j : Pswap n 

20. { n  : Nat) 
I- Xj.R (A  f .Xz. f z )  
(Xk.Xp.X j.Aa.p (Xz. f z )  a )  j : Nat + Pswap n 

21. { n  : Nat) 
I- Xn.Xj.R (Xf.Xz.f z )  
(Ak.Xp.X f .Xa.p (Xz. f z )  a )  j : IIn.(Nat Pswap n) 

I- pswap : nn.(Nat + Pswap n) 

(+ elim 10 9 )  
(r Projector) 

(+ elim 11 12) 

(+ intro) 
(r Projector) 

(+ intro) 

(G Pswap) 

(+ intro, + intro) 

(+ intro-seq 5a 16 

( Var) 

(-+ elim 17 18) 

(-+ intro) 

(nintro) 
(z pswap) 



I 

Here's an exercise for the reader. Try typing a concrete tuple applied to a projection. 



Appendix B 

Reconstruct ion Example 

To improve readability of this example execution of the algorithm W, we let the notation 

W : I? t- S stand for W(r,6) .  Numbered items state a reconstruction problem to be 

solved. For each problem, a list of the sub-problems is given, and then the sub-problems 

are attempted in turn. We are reconstructing a TT type for the following taut program 

of Section 2.2. 

taut - R (Xf. f )  (Xnl.Xp.Xf.((p f true) & (p (f false)))) 

For this example we have three assumptions that hold for all contexts r 

A~ r I- & :  BOO^ -+ BOO] + BOO] 

A2 l7 I- true : Bool 

A3 r I- false : Bool 

1 W : {) I- R (A f .  f )  Xn1.Xp.X f .& (p (f true)) (p (f false)). Apply the Ilintro-seq rule to 

get the following sub-problems. Return (B4B3B2B1, nn.B403A) 

1.1 (B1,a) = W :  {) I-Xnl.Xp.Xf.& (p (f true)) (p (f false)) 

1.2 (e2,7) = w :el{) I- ~ f . f  

1.3 B3 = Unify(B2u, Nat + A 4 B). The variables A and B are new. 

1.4 8 4  = Match(n, (6'3~) 03A, B3B)). The variable n is new. 

1.1 (81, a) = W : {) I- Xnl.Xp.X f .& (p (f true)) (p (f false)). Apply the +intro rule three 
times to get the following sub-problem. Return (el, a )  = (0, BC 4 OD 4 BE + 7).  

1.1.1 (0, T) = W : {nl : C){p : D){f : E) t- & (p (f true)) (p (f false)) where 

variables C, D, and E are new. 



1.1.1 ( O , 7 )  = W : {n' : C )  {p  : D){ f : E )  I- & (p ( f  true)) (p ( f  false)) where variables 

C ,  D ,  and E are new. Apply the +elirn rule to get the following sub-problems. 

Return ( 8 , ~ )  = (030201, O3 F )  

1.1.1.1 ( 0 1 , ~ )  = W : {n' : C ) { p :  D){ f  : E )  I- & ( p  ( f  true)) 

1.1.1.2 (02 ,a)  = W :  O1{nl : C ) { p :  D ) { f  : E )  I- (p ( f  faJse)) 

1.1.1.3 83 = Unify(02r, a + F) .  Variable F is new. 

1.1.1.1 ( 8 1 , ~ )  = W : {n' : C ) { p :  D){f : E )  t- & (p ( f  true)). Apply +elzm rule to get 

the following sub-problems. Return ( O I , ~ )  = (030201, 03G) 

1.1.1.1.1 (O1,r) = W : {n' : C ) { p  : D ) { f  : E )  t- & 

1.1.1.1.2 (02,a)  = W : O1{nl : C ) { p  : D ) { f  : E )  I - p  ( f  true) 

1.1.1.1.3 O3 = Unify(027, a + G). Variable G is new. 

1.1.1.1.1 (01,7)  = W : {n' : C ) { p  : D ) { f  : E )  I- &. Return (01,7) = (Oid,BooJ + 
Boo]+ Bool) by Assumption A1 

1.1.1.1.2 (02 ,a)  = W : Oid{nl : C ) { p  : D ) { f  : E )  t- p ( f  true). Apply the +elirn rule 
and generate the following sub-problems. Return (82, a )  = (030201, 03H)  

1.1.1.1.2.1 ( O 1 , 7 )  = W : {n' : C ) { p  : D ) { f  : E )  I -p  

1.1.1.1.2.2 (02,a)  = W :O1{nl: C ) { p :  D ) { f :  E )  I- ( f  true) 

1.1.1.1.2.3 O3 = Unify(02.r,a + H ) .  The variable H is new. 

1.1.1.1.2.1 (81, 7 )  = W : {n' : C ) { p  : D ) { f  : E )  I- p. Apply the Var rule and return 

( O l , 7 )  = (Oid ,  D )  

1.1.1.1.2.2 (82, a )  = W : Oid{nl : C){p  : D ) { f  : E )  t- ( f  true). Apply the +elim rule 

and generate the following sub-problems. Return (82, a )  = (030201, 0 3 K )  

1.1.1.1.2.2.1 (O1,r) = W :  {n': C ) { p :  D ) { f :  E )  t- f 

1.1.1.1.2.2.2 (02,a)  = W : O1{nl : C ) { p  : D){ f  : E )  t- true 

1.1.1.1.2.2.3 83 = Unify(02r,a + K ) .  The variable K is new. 

1.1.1.1.2.2.1 (01,7)  = W : {n' : C ) { p  : D ) { f  : E )  I- f .  Apply the Var rule and return 

(01, .) = (Oid ,  E )  

1.1.1.1.2.2.2 (82, a )  = W : eid{nl : C ) { p  : D ) { f  : E )  t- true. Return (62, a )  = (Oid,Bool) 
by Assumption A2. 



1.1.1.1.2.2.3 O3 = Unify(OidE, Boo1 + K ) .  The variable K is new. Return 93 = { E  := 

Boo]+ K )  

1.1.1.1.2.2 Return (02,0) = (030201,03K) = ( { E  := BOO] + K)OidOid, { E  := BOO] -+ 
K ) K )  = ( { E  := Bool+ K ) , K ) .  End of 1.1.1.1.2.2 

1.1.1.1.2.3 O3 = Unify({E := Boo1 -+ KID,  K -+ H )  = Unify(D, K -+ H).  Return the 
result of the Unify, that is, return 93 = { D  := K -+ H) .  

1.1.1.1.2 Return (82, a )  = (030201, 03H) = ( { D  := K -+ H ) { E  := Bool + K)Oid, { D  := 

K + H ) H )  = ( {D  := K + H ) { E  := Bool -+ K ) ,  H) .  End of 1.1.1.1.2. 

1.1.1.1.3 O3 = Unify({D := K -+ H ) { E  := Bool + K)Bool -+ Boo1 + Bool, H + G )  = 

Unify(Bool + (Bool + Bool), H -+ G )  = {H := Bool){G := Boo]+ Bool) 

1.1.1.1 Return ( 8 1 , ~ )  = (O3O2O1,O3G) = ( {H := Bool){G := Bool -+ Bool){D := K + 
H ) { E  := Boo1 + K)Oid, {H := Bool){G := BOO] + B0ol)G) = ({G := Boo1 -+ 

Bool){D := K -+ Bool){E := Boo1 -+ K ) ,  Boo1 + Bool) End of 1.1.1.1. 

1.1.1.2 (02,a) = W : Ol{nt : C){p  : D){f  : E )  I- p ( f  false) = W : ({G := Bool + 
Bool){D := K + Bool){E := Boo1 + K){n t  : C){p : D){f  : E )  I- p ( f  false) = 

W : {n' : C )  { p  : K + Bool) { f : Boo]+ K )  I- p ( f  false). Apply the +elim rule 
and generate the following sub-problems. Return (82, a )  = (030201, 03L) 

1.1.1.2.1 (O1,r) = W : {n' : C ) { p :  K -+ Bool){f : Boo]+ K )  k p  

1.1.1.2.2 (02,0) = W : Ol{nl : C){p : K + Bool){f : Boo]+ K )  I- ( f  false) 

1.1.1.2.3 O3 = Unify(02r,u -+ L). The variable L is new. 

1.1.1.2.1 (81, T )  = W : {n' : C){p : K + Bool){ f : Bool -+ K )  I- p. Apply the Var rule 
and return (01,7) = (Oid, K -+ Bool) 

1.1.1.2.2 (02,a) = W : Oid{nt : C ) { p :  K -+ Bool){f : Boo1 -+ K )  k ( f  false). Apply the 
-+elim rule and generate the following sub-problems. Return (02, a )  = (030201, 03M) 

1.1.1.2.2.1 ( 9 1 , ~ )  = W :  {n': C ) { p :  K + Bool){f : Bool-+ K )  I- f 

1.1.1.2.2.2 (&,a)  = W : O1{nl : C ) { p :  K -+ Bool){f : Boo]+ K )  I- false 

1.1.1.2.2.3 O3 = Unify(02r, a -+ M).  The variable M is new. 

1.1.1.2.2.1 (81, T )  = W : {n' : C){p : K + Bool){ f : Bool -+ K )  I- f .  Apply the Var 
rule and return (el ,  7 )  = (Oid,  BOO] -+ K )  



1.1.1.2.2.2 (02,a) = W : Oid{nl : C){p : K + Bool){f : Bool -+ K )  I- false. Return 

(02, 6) = (Oid, Bool) by Assumption A2. 

1.1.1.2.2.3 83 = Unify(Oid(Bool + K), Bool + M). The variable M is new. Return 

03 = {M := K )  

1.1.1.2.2 Return ( 8 2 , ~ )  = (030201,03M) = ({M := K)OidOid, {M := K I M )  = ({M := 

K), K) .  End of 1.1.1.2.2 

1.1.1.2.3 83 = Unify({M := K ) K  + Boo1,K -+ L) = Unify(K + Boo1,K + L) = 

{L := Bool). Return the result of the Unify, that is, return 133 = {L := Bool). 

1.1.1.2 Return ( 8 2 , ~ )  = (838281,83L) = ({L := Boo~){M := K)Oid,{L := B0ol)L) = 

({L := Bool){M := K), Bool) End of 1.1.1.2. 

1.1.1.3 83 = Unify(O2r, a -+ F) = Unify({L := Bool){M := K)(Bool -+ Bool), Bool + 
F) = {F := Bool). 

1.1.1 Return ( 0 , ~ )  = (838281, B3F) = ({F := Bool){L := Bool)(M := K){G := Bool -+ 
Bool){D := K -+ Bool){E := Bool -+ K),  {F := Bool)F) = ({F := Bool){L := 

Bool){M := K){G := Bool -+ Bool){D := K + Bool){E := Boo]+ K), Bool). 

End of 1.1.1. 

1.1 Return (&,a)  = (8,OC + OD + OE + 7) = {F := Bool){L := Bool){M := 

K){G := Bool + Bool){D := K + Bool){E := Boo]-+ K),  C -+ (K + Bool) -+ 
(Bool + K )  + Bool). End of 1.1. 

1.2 (02, 7) = W : 01{) I- X f .  f .  Apply +intro once to get the following sub-problem. 

Return (02,7) = (O,ON + T) 

1.2.1 ( 8 , ~ )  = W :  {f : N) I- f where N is new. 

1.2.1 ( 0 , ~ )  = W : { f : N )  I- f .  Apply the Var rule and return (8, T) = (Oid, N). 

1.2 Return ( 8 2 , ~ )  = (Oid, N + N). 

1.3 83 = Unify(02a, Nat + A + B), where A and B are new. So 133 = Unify(Oid(C + 
(K + Bool) + ((Bool + K )  + Bool))),Nat + A -+ B), thus 83 = {C := 

Nat){A := K + Bool){B := (Bool -+ K )  + Bool) 

1.4 O4 = Match(n,(O3rrO3A,e3B)) = Match(n,(N + N , K  + Bool, (Bool K) + 
Bool)). See Appendix C for the trace of this match. The result is 132 o O1 = {N := 

Bool){Y := Bool){K := R Y (Xnl.XK.Bool -+ K) n) Note at this point we could 



instead try to unify the triple of types 837, 03A, and 03B and attempt to apply the 

+ intro-seq rule. But that unify fails due to an occurs. 

1. Return (040302e1,11n.e4e3A) = ({N := BooJ){Y := BooJ){K := R Y (Xnl.XK.BooJ -+ 
K )  n ) { C  := Nat){A := K + BooJ){B := (Boo] + K )  + Bool)Bid{F := 

BooJ){L := BooJ){M := K ) { G  := Bool + BooJ){D := K + BooJ){E := 

Boo1 -+ K ) ,  IIn.{N := BooJ){Y := Bool){K := R Y (Xnl.XK.BooJ + K )  n) {C  := 

Nat){A := K -+ BooJ){B := (Boo] + K )  + BooJ)A) = (04030201,11n.R Boo1 
(Xnl.XK.BooJ + K )  n )  + BooJ) 



Appendix C 

Matching Example 

In this appendix we trace the matching algorithm of Section 3.2 Figure 3.3 on an example 
that appears as a required step in the example reconstruction of the dependent type for 

taut. (See Appendix B.) 

1. 8 = Match(n, ( N  + N, K + Bool, (Bool + K )  + Bool)). Compute the following 

sub-problems. Assume n is a new term variable of type Nat. Return 02d1. 

1.1 Do successor matching. = Smatch(n, (K -+ Bool, (Bool -+ K )  + Bool)). 

1.2 Do zero matching. 82 = Unify(N + N, q + Bool), where q = (BIXj)[n := 015. 

for all X j  occurs variables in {(N + N, K + Bool, (Bool + K) + Bool)). 

1.1 Use Smatch to fine the successor matcher. Return el. 
81 = Smatch(n, (K + Bool, (Bool + K )  + Bool)) 

= Smatch(n, {(K, Bool + K ) ,  (Bool, Bool))) Smatch rule ii 

= Smatch(n, {(K, Bool -+ K)))  Smatch rule i 
= {K := R Y (Xnt.XK.Bool + K )  n) Smatch rule vi 

1.2 Use Unify to find the zero matcher. Return 02. 

Unify((N + N, 7 + BooJ)) 
where q = (el K )  [n := 014 for K an occurs variable 
Unify({(N + N, (R Y (Xnf.XK.Bool + K) n)[n := O]$+ BooJ)) 

Unify({(N + N, (R Y (Xnl.XK.Bool -+ K )  0)$+ Bool) 
Unify({(N -+ N, Y + Bool))) 

Unify ({ (N, Y), (N, Boo]) ) Unify rule ii 

Unify({(N, Y), {N := Y}(N, Bool))) Unify rule v 

Unify({(Y, Bool), {Y := Bool)(N, Y))) Unify rule v 

{N := Bool){Y := Bool) 

1. Return 0201 = {N := Bool){Y := Bool){K := R Y (Xnt.XK.Bool + K )  n) 
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