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Abstract 

Intermediate Compiler Analysis 
via Reference Chaining 

Eric James Stoltz, Ph.D. 
Oregon Graduate Institute of Science & Technology, 1995 

Supervising Professor: Michael Wolfe 

When performing data-flow analysis on a compiler's intermediate form of a program, 

sparse representations have proven their value by propagating information only to those 

points that affect or use such information. Static Single Assignment form (where each 

variable use has exactly one reaching definition) is a translation that linearizes reaching 

definitions in a sparse manner. This dissertation extends the concept of Static Single 

Assignment to include information flow other than just reaching definitions, such as  

reaching uses, upward-exposed references, and definition-to-definition links. Information 

is coalesced at confluence points via merge operators. The general process of providing 

pointers (links) between arbitrary pairs of definition and usage sites of a variable is called 

reference chaining. 

A general reference chaining algorithm is developed and presented that allows pa- 

rameters to be set that control the types of information to be propagated throughout the 

intermediate form. By providing this general algorithm, data-flow information (upward- 

or downward-exposed uses or definitions) is shown to be readily accessible in a compiler's 

intermediate representation. Many of the problems solved with reference chains utilize 

xiv 



a demand-driven technique, where classification of any node is often dependent upon its 

data-flow predecessors. Calls are made to classify the predecessors in a recursive manner. 

The information provided by reference chains has led to the development of effi- 

cient intermediate analysis techniques, including demand-driven constant propagation, 

fast scalar dependence analysis, and live variable analysis, all within a unified sparse 

representation. Reference chaining has also been extended to parallel constructs, so 

that many of the same methods used to analyze sequential programs can be adapted to 

parallel programs. 

Complete algorithms both of a general nature and specifically tailored to address 

the applications mentioned above are provided. Experiments have been performed on a 

wide variety of scientific benchmarks to determine the effectiveness of reference chaining, 

and comparative results are given where possible. The results of these experiments have 

shown that the demand-driven approach is both fast and effective, and that reference 

chaining is generally applicable and useful for many data-flow analysis problems. 



Chapter 1 

Introduction 

With the advent of powerful, high performance workstations, coupled with the contin- 

uing pressure to develop parallel computing systems, powerful techniques for analyzing 

programs in their intermediate form is as important as ever. In order to perform aggres- 

sive and profitable (yet safe) program optimization, fast, efficient, and effective analysis 

techniques are required. Once a compiler has transformed a computer program into an 

intermediate form, analysis of its content can begin. At this point, many important 

questions can be posed: 

a What type of intermediate form lends itself to a wide variety of analysis techniques? 

Is the intermediate form malleable to the extent of allowing adjustments that per- 

mit specialized analysis and transformation techniques to be applied? 

How can we represent information within the intermediate form that minimizes 

the cost of building data structures and propagating desired properties? 

Clearly, these questions have no set, absolute answers. In some cases, language models 

may dictate the general structure of the intermediate form, such as lambda notation 

employed for functional languages [FH88, Chapter 8][KH89]. In other cases, special- 

ization may require a particular form upon which to perform transformations, such as 

machine-dependent optimizations that operate on low-level forms during the end of the 

code generation phase. This dissertation, however, is concerned primarily with compiling 

scientific programs, which are mostly written in a procedural, imperative, programming 

style. 



A general intermediate form can support a great many machine-independent analyses 

and optimizations, such as redundancy elimination, constant propagation, code floating, 

etc. Additionally, an intermediate form can be used for a variety of programming lan- 

guages and can target multiple architectures [BCD+92]. Thus, we shall focus on an 

intermediate form that possesses properties of widespread acceptance, ease of portabil- 

ity, and flexibility for enabling analysis and optimization techniques. 

1.1 Static Single Assignment Form 

When performing data-flow analysis on a program's intermediate form, dense represen- 

tations maintain all available information at each point in the program. Sparse repre- 

sentations, on the other hand, propagate information only to those points that affect or 

use such information. In recent years, use of sparse graph intermediate representations 

of programs, combined with methods to eliminate quadratic growth of data structures, 

have demonstrated that intermediate program analysis can be significantly simplified 

and streamlined [ABC+88, CCF91, FOW87, JP93, WCES941. Since the late 1980's 

Static Single Assignment (SSA) [CFR+89] has become a popular intermediate repre- 

sentation with which to analyze programs. Utilizing SSA, many types of analyses and 

optimizations have already been developed, including global value numbering [RWZ88], 

partial redundancy elimination [BC94], constant propagation [WZ91], induction variable 

detection [Wo192b], code optimization [MJ92], and alias analysis [CG93], among others. 

Partial answers as to why SSA has become popular, and why we began using SSA 

in our own research effort, are provided by these points: 

SSA is based upon the abstraction of basic blocks and flow graphs, the most com- 

mon intermediate representation for program flow analysis [ASU86, Hec77, MJ811. 

SSA is well-understood by the compiler community in general, as evidenced from 

the many papers that refer to SSA structure. 

SSA has been demonstrated, via numerous independent implementations, to be a 

viable approach. 



x = o  
y = o  
z = o  
i f  ( P 1 then 

y = y + 1  
endif 

xo = 0  
YO = 0  
20 = 0  
i f  ( P ) then 

Y1 = yo + 1  
endif 
Y2 = 4J ( YO, y1 1 
X l  = y2 
z 1 = 2 * y 2 - 1  

Figure 1.1 Program in (a) standard form and (b) SSA form. 

Many methods have been developed that exploit the properties of SSA, as was 

noted above. 

SSA is a solution to the quadratic growth of data structures and imprecision of 

data-flow solutions found with general reaching definitions. After a program has been 

converted into SSA form, it has two key properties (additional details are provided in 

Chapters 2 and 3): 

1. Every use of a variable in the program has exactly one reaching definition, and 

2. At confluence points in the control flow graph, pseudo-assignments are introduced 

called +-functions. A &function for a variable merges the values of the variable 

from distinct incoming control flow paths (in which a definition occurs along at 

least one of these paths), and has one argument for each control flow predecessor. 

The &function is itself considered a new definition of the variable. 

As an example, examine Figure 1.1. In (a) multiple definitions of y  (at S2 and S5) 

reach its uses at Ss and S9, while in (b) exactly one definition reaches any use. Note that 

at S7 in (b) a pseudo-definition of y  is created that merges downward-exposed definitions. 

This coalescing of reaching definitions is one of the reasons that gives SSA form its appeal. 

One of the major tenets of this dissertation is that the concept of merging reaching 



information can be extended - such as merging upward-exposed references (definitions 

or uses), an idea expounded in Chapter 7. 

1.2 Thesis 

In this work we show that SSA form is a specific instance of a more general method, 

which we call reference chaining. We demonstrate that reference chaining can improve 

upon traditional techniques, can be applied to solve new problems, and can be extended 

into the arena of parallel languages. 

Our thesis is that reference chaining for performing intermediate program analysis: 

- can be eficiently implemented 

- can lead to alternative solutions that can improve upon established methods 

- can be used to develop solutions to problems previously neglected 

- can extend its semantics into the area of parallel languages 

1.3 Contributions of This Work 

The contributions of this work include: 

Using FUD chains to analyze constants. Factored Use and Definition chains (FUD 

chains) are our implementation and extension of SSA form. We demonstrate the effec- 

tiveness of FUD chains coupled with demand-driven analysis for constant propagation, 

and evaluate this technique compared to the previously published methods that em- 

ploy SSA form for constant propagation. By eliminating extra expression evaluation, 

our technique shows a 20% time performance improvement over existing methods that 

utilize SSA form. 

Presenting new techniques for detecting scalar data dependence. We pro- 

vide algorithms specifically tailored for detecting dependences of scalar variables. The 

methods employed are a straightforward application of reference chaining, and remove 



much of the overhead associated with detecting dependences in arrays, since the need to 

perform subscript analysis is eliminated. 

Providing a study of the types of scalar data dependences that occur in 

loops. We have performed experiments on common scientific benchmark codes, and 

have classified the basic types of scalar data dependences that can occur when the source 

and sink of the dependence are in the same loop. 

Developing a general reference chaining algorithm. We have generalized the 

SSA algorithm, originally developed for reaching definitions, for many types of monotone 

data-flow problems. We show the applicability of our method to numerous problems 

other than reaching definitions. 

Presenting a general method for a sparse solution to live variable analysis. 

Other techniques have been presented to solve the live variable problem on sparse graphs, 

but the solutions are based upon a separate sparse graph per variable. We provide a 

unified sparse graph that is an application of reference chaining based on upward-exposed 

definitions and uses. This method also aids in a fast dead code elimination algorithm, 

which dynamically updates which variables are live when eliminating useless code. 

Extending reference chaining to parallel languages. The effectiveness of refer- 

ence chaining on traditional, sequential code, and the current push to develop parallel 

languages has led us to extend the semantics into the parallel realm. Task parallelism 

(explicit parallel sections incorporating the cobegin-coend construct) is examined and 

shown to offer opportunities for reference chaining. 

1.4 Experimental Methodology 

To gather evidence and provide statistics with which to evaluate the methods and al- 

gorithms presented in this work, we have implemented all techniques in our research 

compiler and collected data on numerous scientific benchmarks. 
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2-D fluid flow solver 
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Weather simulation 
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wanall 

Linear algebra routines 
Hvdrodvnamics code 
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1484 
402 

145 
36 

1314 
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Table 1.1 Summary information on the programs in the scientific benchmark suites used 

baro 
euler 
mhd2d 
shear 
vortex 

Total 

984 
1202 
928 
916 
71 1 

123301 

7 
14 
14 
16 
20 

1071 

553 
975 
511 
772 
515 

69827 

2-D shallow water model 
2-D shockwave model 
Hydrodynamics code using FFT 
3-D turbulence code 
Vortex sheet motion 



Nascent, our restructuring research compiler [WGS93], accepts Fortran source code 

and converts it into an intermediate form similar to the abstract model outlined in 

Chapter 2. Since all the techniques given in this dissertation have been implemented in 

Nascent, and our implementation provides valuable feedback on techniques and suggests 

useful coding methods, we shall often report on our efforts with a "Notes on Implemen- 

tation" section within a chapter. 

We have collected a significant number of scientific benchmarks written in Fortran 

to use for experiments in subsequent chapters. The programs come from the following 

three sets of benchmarks: 

Perfect Club The Perfect Club benchmark suite [CKPK9O] is a collection of programs 

designed to evaluate and test modern compilers and advanced architectures. 

RiCEPS The Rice Compiler Evaluation Suite (RiCEPS) is a suite of numerical pro- 

grams collected to test Fortran compilers, chosen to stress compiler analysis and 

transformations for advanced architectures. The RiCEPS suite is available via ftp 

from cs  . r i ce .  edu. 

Mendez This collection of programs was compiled by Dr. Raoul Mendez of the Naval 

Postgraduate School in Monterey, California. Its original intent was to benchmark 

various American and Japanese vector computers. We obtained our copy from the 

National Institute of Standards and Technology (NIST) . 

Altogether, the 26 programs above contain in excess of 123,000 lines of code, and comprise 

over 1000 subroutines and 69,000 statements. Details on these codes are presented in 

Table 1.1. 

1.5 Organization 

This dissertation describes general reference chaining algorithms, together with their 

applications, extensions, and implementations. Chapter 2 presents the groundwork for 

understanding how data-flow problems can be characterized and solved within this frame- 

work. We also provide a detailed examination of related work in that chapter; we examine 



other intermediate representations that are similar to SSA form, including an evaluation 

of their strengths and weaknesses. Chapter 3 presents the details of the most useful 

extension of SSA to date - Factored Use and Definition Chains (FUD chains). We have 

found many applications of FUD chains that admirably fit the demand-driven style of 

analysis described in that chapter. 

Chapter 4 studies a particular analysis, constant propagation, within the FUD chain 

framework, and contrasts this method with both traditional constant propagation and 

a previously published constant propagation algorithm that also uses the SSA form. 

Chapter 5 presents the development of the general reference chaining algorithm, which 

can be used for forward or backward problems, chaining any combination of reference 

types. Chapter 6 presents a solution to the problem of detecting scalar data dependences, 

a problem that has not before been addressed explicitly. We present algorithms and data 

to support the contention that reference chaining can be used to construct new solution 

methods to problems. 

Chapter 7 looks at utilizing reference chains to solve backward data-flow problems, 

notably live variable analysis and anticipatability of expressions. These methods provide 

solutions to problems that before have been considered insoluble on unified sparse data- 

flow representations. The algorithms presented are based upon the general reference 

chaining procedure of Chapter 5. We examine extending the analysis power of reference 

chaining into parallel languages in Chapter 8. Explicitly parallel sections are examined in 

detail, and we show how to provide reaching definitions within these sections in a sparse 

manner. By constructing this extension, we provide a coherent and sound method by 

which to reason sensibly about programs written using parallel syntax. 

Finally, Chapter 9 looks at future work and extensions of the ideas and techniques 

presented in this dissertation. We draw conclusions in this chapter, and give an overall 

assessment of the usefulness and applicability of reference chaining as a method of choice 

for intermediate compiler analysis. 



Chapter 2 

Foundat ions 

2.1 Internal Program Representation 

Most compiler analysis techniques operate on an intermediate representation (IR). When 

the front end of the compiler processes a program, it must translate each statement into 

a form that eventually allows for later code generation. Before emitting code, however, 

transformations to increase speed and improve overall performance of the executable 

program may be desired. There are many possible intermediate forms, some fairly well 

known, such as postfix notation, three-address code representation, and abstract syntax 

trees [ASU86, FL88, TS851. Some local optimizations (such as constant folding) can be 

performed within these forms, but in order to globally optimize a program, general pro- 

gram flow analysis must be employed. To accomplish this task, statements are grouped 

together in basic blocks, straight-line execution sequences with one entry and one exit 

point. The common way to express control flow through a program is to connect basic 

blocks together by constructing a control flow graph (CFG), sometimes just referred to 

as a flowgraph [Hec77]. Other methods will be examined later in this chapter. 

2.1.1 Our Intermediate Representation 

For the purposes of this thesis, our analysis of programs begins within an intermediate 

framework consisting of the control flow graph and a data-flow graph. Precisely, the 

Control Flow Graph (CFG) is a graph G = ( V, E, Entry, Exit), where V is a set of nodes 

representing basic blocks in the program, and E is a set of edges representing sequential 

control flow in the program, where vl + v2 E E means that v2 is a successor of vl in G 



I constant I arith I standard arithmetic constants I 

Tuple Operation Types 

Type 
source 

I vroc-~aram I call are: I one for each argument of a ~rocedure I 

arithmetic 
test 
proc 

Class 
initialize 

I fetch 

Description 
default definition at Entry 

arith 
boolean 
call 

merge 
merge-arg 

I use 

standard arithmetic operations 
used to compare quantities 
procedure call 

I standard load in IR 

pseudoref 
pseudoref 

I inparam use ( indicates a read-only for this procedure parameter 1 

used to collect information at splits or joins 
typically one for each predecessor or successor 

I out-param ( def I indicates a write-only for this procedure parameter I 
write 

read I def I inputs values 
formal 1 def 1 defined at Entw for formal arguments 

use I outputs values 
store I def I standard store in IR 

Table 2.1 Basic tuple types used in our IR 

global 
in-out-param 

de f 
use & def 

- 
defined at Entry for referenced globals 
indicates procedure parameter is readlwrite 



(and vl is a predecessor of v2), with v2 being the head of the edge and vl the tail. The 

set of edges entering and exiting a basic block are sometimes referred to as inedges and 

outedges, respectively. Entry and Exit are nodes representing the unique entry point into 

the program and the unique exit point from the program, respectively. Branch nodes 

have their outedges determined by a predicate. A path in G is a list of nodes in V, 

(vo, vl, . . . , v,), such that vj + vj+l E E V j  E [O, . . . ,7z - 11. A path is simple if vertices 

vo, vl, . . . , v, are distinct. We write vl v2 to mean some, perhaps trivial, path from 

vl to 212, while vl 4 v2 is a nontrivial path. We assume every node in G has a path from 

Entry and a path to Exit. 

Each basic block contains a list of intermediate code tuples, which are linked together 

to form the data-flow graph. Tuples take the form ( type,left,right,link,syrnbol ), where 

type is the operation code and left and right are the two operands (both are not always 

required, e.g., a unary minus). The tuple types available include those given in Table 2.1. 

The left, right, and link fields are pointers: they are all essentially use-def pointers but 

only some types use the link field. The symbol field is optional, and refers to the symbol- 

table name associated with the tuple, if applicable. The data-flow graph (which we will 

conveniently represent as an abstract syntax tree) comprises tuples together with their 

left, right, and link pointers. 

A sample program and its CFG are given in Figure 2.1. Sometimes branch nodes 

will have each outgoing edge labeled according to the predicate value that selects the 

edge. 

Description of Intermediate Code Tuples. Although when actually building a 

compiler there are a large variety of necessary tuple types (to cover special situations, 

such as FORMAT statements in Fortran or the wide variety of supported arithmetic o p  

erations), we will restrict ourselves to the set contained in Table 2.1 for two reasons. 

First, this allows us to describe clearly the manipulations and transformations that we 

wish to perform on the IR. Second, a restricted set is easily expanded in a way that 

loses no validity or precision; essentially it is easy to generalize. Most of the tuple types 

in Table 2.1 are self-explanatory. The source, formal, and global types are necessary 



i f  (PI then 
a = 2  

e l s e  
a = 3  

endif 
i f  (q> then 

b = a + l  
endif 
repeat while (R) 

i f  (S) then 
b = 3  
c = c + 1  

else 
b = c 

endif 
end repeat 
output( a ,b ,c  ) Exit I 

Figure 2.1 A sample program (a), and its Control Flow Graph, (b) 

to correctly provide the link field in SSA form (and, more generally, any chaining r e p  

resentation, which is covered later in this chapter) where initialization of a variable is 

required. In particular, source represents the initial definition of all variables at Entry, 

which will be required by the conversion into SSA form. The formal and global types 

are used as initial definitions when a variable is passed in as a subroutine argument or 

is a referenced global variable, respectively. The param tuples refer to arguments of a 

procedure or function. As more information about those arguments becomes available, 

the default of in-out-param may be changed (for example, as a result of interprocedural 

mod/ref analysis). Finally, the merge tuples are used to represent pseudo references, 

such as +functions (merge) and +arguments (merge-args). 

The distinction between definitions (a statement that modifies, or potentially modi- 

fies, a variable, and typically includes the variables occurring on the left-hand side (LHS) 

of an assignment) and uses (a statement that fetches the value of a variable, typically 

found as variables occurring on the right-hand side (RHS) of an assignment) is usually 

clear. However, sometimes a variable occurrence is not so well-defined, such as a simple 



call-by-reference procedure parameter: 

c a l l  foo(x) 

where no other analysis has been performed on the way x interacts with the program as a 

whole. In this case, we must assume that x may be modified. But x is also (potentially) 

fetched when foo  is called. Since x may be defined, but not certainly, we call this 

an instance of a nonkilling definition. Nonkilling definitions can occur in several other 

contexts, such as indexed variables (arrays), and we shall look at how they are fully 

represented in Chapter 3. 

Tuple Order Within Basic Blocks. The compiler front-end parses the program, 

placing tuples within basic blocks. However, the order of tuples in each basic block 

is not random. Some lexical order must be maintained. For example, in our IR the 

statement x = x + I will be broken down into four tuples: a store (x), an arithmetic 

(+), a fetch (x) , and a constant (1). Since the right hand side of the expression will 

fetch the value of x before the left-hand side stores it, we rely on the lexical ordering of 

the tuples to maintain this property. Thus, the tuples representing the right-hand side 

of the expression (addition, fetch, and constant) will occur (lexically) before the store 

within the basic block. This ordering is handled by standard parsing techniques, and we 

will refer to this important property again when more complicated cases arise, such as 

the order of representing procedure parameters when identifying nonkilling definitions. 

Example. We show in Figure 2.2 how this small program fragment: 

Sl: i f  (P) then 
s2 : x = 3  
s3 : v = x  
Sq: e l se  
s5 : x = 4  
Ss: endif 
s7: y = 2 + x  

is transformed into its CFG basic block components, (a), and its data-flow graph r e p  

resentation, (b). The solid lines in (b) represent left and right pointers while the dashed 
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Figure 2.2 Program fragment shown at (a) basic block level (b) data-flow graph level 



lines represent links. Note that a fetch operation has only a single link field, so in basic 

block D, to maintain the single-assignment property, the fetch points to the pseudo- 

assignment for x at the confluence point, which is a +function. 

In this example, the fetch, store, and &merge utilize the symbol attribute of tuples. 

2.1.2 Basic Control Flow Analysis 

After constructing the CFG, several initial types of analyses are necessary that are relied 

upon heavily for all subsequent phases of the compiler. First, basic blocks are related 

by the dominance relation. Then, using this information, loops within the CFG are 

identified. As we shall see, any cycle within the CFG will not necessarily constitute a 

loop, although this will be the case in structured code. 

Dominance. Within the CFG, node X dominates node Y ( X  dom Y ) if all paths 

from Entry to Y must pass through X. X strictly dominates Y if X dominates Y and X 

# Y. X is the immediate dominator of Y if X strictly dominates Y and all other nodes 

which strictly dominate Y also dominate X. If X does not dominate Y, we denote 
- 

this relationship as X dom Y. We show the dominator relation (which is reflexive, 

antisymmetric, and transitive, thus imposing a partial order upon the nodes of a CFG) 

for Figure 2.1 in Table 2.2. Here, DOM(Node) is the set of nodes dominated by Node 

(where m.. . x represents all nodes, alphabetically, from m to x), while D O M - ' ( N O ~ ~ )  

is the set of nodes that dominate Node. The immediate dominator (idom) relationship 

forms a tree of all the nodes within the CFG. Dominance can be represented in tree 

format (referred to as the dorn tree) since the dominators of any node form a linear 

ordering [Hec77], which implies that a node's immediate dominator is unique, if it exists. 

We show the dom tree for Figure 2.1 in Figure 2.3. 

Computing Dominance. We present here an algorithm for finding the dominators of 

a node within a CFG. This method relies on the property that A dom B if A dominates 

all predecessors of B. Essentially, it iterates the following data-flow equation around the 



Table 2.2 The dominator relation from Figure 2.1 

Figure Dominator tree for nodes in the CFG from Figure 



Given: CFG 
Do: Initialize with lines 1 - 4. - 
Result: The set of dominators for each node in the CFG 

1 : Dom( Entry ) = { Entry ) 
2 : for all N E V  - { Entry ) do 
3 : Dom(N) = V  
4: endfor 

5 : while changes to any Dom(N) occur do 
6 : for all N E  V -  { Entry)  do 
7 : n o r n ( ~ )  = {N)  u n D O ~ ( P )  

P E P W N )  
8 : end for 
9: endwhile 

Algorithm 2.1 Finding dominators of nodes in the CFG 

CFG until a fixed point is reached (where pred represents all predecessors of a node): 

D m ( N )  = { N )  U r) Dom(p) 
P E P ~ ~ ~ ( N )  

Algorithm 2.1 presents the details of this method. The algorithm's running time is 

O(V2 E) when performed as bit vector operations, although Lengauer and Tarjan note 

[LT79] that this asymptotic time bound is pessimistic since the constant term associated 

with these operations is small and the number of passes is usually no more than 2 in 

order to reach a fixed point. 

Algorithm 2.1 does not provide the immediate dominator for each node, important for 

building the dominator tree and used in numerous other analysis techniques. However, 

identification of each node's immediate dominator can be accomplished by keeping track 

of the depth-first numbering (or reverse postordering number) of each node in a spanning 

tree of the CFG - the idom will be the element in the dominator set with highest depth- 

first number. 



Dominance Frontier. An property related to dominance is the dominance frontier of 

a node, important for placing merge operators such as +functions. Z is in the dominance 

frontier of Y if Y does not strictly dominate Z, but Y does dominate some predecessor 

of Z. We show the dominance frontier for all nodes in Figure Z.l(b) in Table 2.3. 

We compute the dominance frontier of all nodes by adapting a method developed 

by Cytron, Ferrante, and Sarkar [CFSSO]. We demonstrate the method by referring to 

the dominator tree in Figure 2.3. Informally, this algorithm works due to several obser- 

vations concerning a CFG and its associated dominator tree. First, only a confluence 

node in the CFG can be in the dominance frontier of any other node. If N has only one 

predecessor, then any node that dominates its predecessor must dominate N. By defini- 

tion of dominance frontier, a single predecessor excludes N from being in the dominance 

frontier of any node. 

Second, assume Z is a confluence node. Then, idom(Z) will dominate all predecessors 

P of Z. This relationship is true because all paths from Entry to Z must pass through 

idom(Z), and each P has a direct edge to 2. Thus, all paths from Entry to P must pass 

through idom(Z). 

Third, if node Z is in the dominance frontier of node Y, then Y is not an ancestor 

of Z in the dominator tree. Thus, starting at each predecessor of Z and moving up the 

dominator tree until reaching idom(Z) we will find nodes that have Z in their dominance 

frontier. Algorithm 2.2 gives the details for computing the set of nodes in the dominator 

frontier for each node in a CFG. 

Postdominance. We may also need the concepts of postdominator and postdominance 

frontier. Node X postdominates node Y ( X  pdom Y )  if all paths from Y to Exit must 

pass through X. Strict postdominance, immediate postdominator and postdominance 

frontier are analogously defined as for dominance. In fact, postdominance properties 

are exactly the corresponding dominance properties on the Reverse Control Flow Graph 

(RCFG), the CFG with all edges turned around and Entry and Exit interchanged. 



Given: CFG and DomTree 
Do: Initialize dominance frontier of each node as empty - 
Result: List of dominance frontier nodes for each basic block 

1 : for all nodes N # Entry do 
2 : I = idom(N) 
3 : for each predecessor P of N in  CFG do 
4 : M = P  
5 : while M # I do 
6 : DF(M) = DF(M) U {N)  
7 : M = idom(M) 
8 : endwhile 
9 : endfor 

10: endfor 

Algorithm 2.2 Computing dominance frontier sets 

Dominance Frontier & Control Dependence Sets for sample CFG 

Node 1 DF(Node) 1 CDTred(Node1 I CDSucc(Node) 

I r l  0 I 0 I 0 1 

1 Exit 1 8 I 8 I 8 

Table 2.3 The dominance frontier and control dependence for nodes in the CFG from Figure 2.1 



Control Dependence. A useful concept for representing possible execution paths 

within the CFG is that of control dependence. Intuitively, node X is control dependent 

upon node Y if some outedge of Y guarantees that X will be reached, while another 

outedge from Y may avoid X. Clearly, if X is control dependent upon Y, then Y must 

be a branch node. Formally, CFG node X is control dependent upon CFG node Y if X 

postdominates every node along some path from a successor of Y to X, and X does not 

strictly postdominate Y. It has been demonstrated that control dependence in a CFG 

is equivalent to the dominance frontier of the RCFG [CFR+91], which also implies that 

control dependence for node N is equal to the postdominance frontier of N. 

The control dependence predecessors of node N,  CDJ?red(N), are those nodes that N 

is control dependent upon (and that above was simply referred to as control dependence 

on N), while the control dependence successors of N, CD-Succ(N), are those nodes 

control dependent upon N. We show the control dependence predecessor and successor 

sets for our sample CFG (Figure 2.1) in Table 2.3. 

We note that a node may be control dependent upon itself, such as node s. One 

outedge of s (the edge s+t) guarantees that s will be visited again, while another outedge 

(the edge s+x) definitely will not visit s before reaching Exit. It is also important to 

note that x is not control dependent upon s, although it appears that if the edge s+t 

was always taken when leaving s, x would never execute. However, we assume for 

general program flow analysis that all programs terminate, thus an infinite loop is not a 

consideration. 

Loop Identification. For scientific, high performance codes, loops offer fertile o p  

portunities for optimization. This opportunity is because much of the computationally 

intensive code is within these loops, which often iterate over the kernel of the routine, 

especially when there exist nested loops. Thus, correct identification of loops is critical 

in a high performance compiler. 

We classify loops based upon the definition of a natural loop [ASU86], which identifies 

an edge in the CFG (the backedge of the loop) such that the head dominates the tail. 

We visit each basic block, bb, within the CFG, checking to see if bb dominates any 



predecessor, p. If so, a natural loop is found, and we can label the header of the loop as 

bb and start adding p and all the predecessors of p as members of the loop until we reach 

bb. For example, in Figure 2.1, s dominates predecessor w, so a natural loop is found 

with header s, and loop members w,u,v, and t. 

We mark each node of the CFG as belonging to the innermost loop of which it is a 

member. By traversing the dominator tree bottom-up, we are able to find inner loops 

first. Identifying loops inner to outer is convenient when adding members of a loop, since 

if a basic block is already a member of a loop it must be in an inner loop, and we can 

immediately go to its header node and continue the process of adding nodes to the outer 

loop. 

The technique used for finding natural loops is provided by Algorithm 2.3. The 

recursive calls in lines 2 - 4 insure that the dominator tree is walked from the bottom 

up. Loops not identified by this algorithm are due to irreducible flow graphs, discussed 

in 54.4.3. 

2.1.3 Control Flow Adjustments 

There are also several modifications that we routinely make to the standard CFG. These 

modifications enable analysis to proceed more easily, with a more uniform applicability 

of techniques. 

A n  Additional Edge Within  t h e  CFG. For each control flow graph we insert an 

extra edge from Entry to Exit, called the slice edge.+ This edge is important for several 

reasons: 

1. To have the control dependence tree rooted at Entry, this edge is added for tech- 

nical reasons, as described by Cytron et al. [CFR+89]. It also allows the control 

dependence graphs of while and repeat loops to be distinguishable. 

2. The Exit node will be in the iterated dominance frontier of a CFG for variable v if 

and only if there is a definition of v within the CFG (which is explained further and 

 h his extra edge is also called the technical edge. 



Given: CFG and its DomTree 
Do: forall basic blocks bb do bb.loop = NULL enddo - 

call FindLoops( Entry ) 
Resu1t:All natural loops with node membership 

Find-Loops (basic block bb ) 
for all children c of bb in  Domfiee do 

Find-Loops( c ) 
end for 
for all predecessors p of bb in CFG do 

if bb dom p then 
mark bb as header of a natural loop L 
bb.loop = L 
Loop- WorkList = NULL 
add p to Loop- WorkList 
while Loop- WorkList # NULL do 

remove n from Loop- WorkList 
if n.loop = NULL do 

n.loop = L 
for all predecessors q of n do 

add q to Loop- WorkList 
endfor 

else if n.loop # L do /* n.loop is nested in L */ 
h = header of n.loop 
for all predecessors r of h do 

if ?-.loop # n.loop then 
add r to Loop- WorkList 

endif 
endfor 

endif 
endwhile 

endif 
enddo 

end Find-Loops 

Algorithm 2.3 Finding natural loops in the CFG 



is proved in Chapter 3). This property of CFGs is extremely useful for propagating 

definitions outside of a local CFG in the case of nested control flow graphs, which 

may occur when translating parallel syntax into intermediate form (see Chapter 

8). 

3. Due to item 2, we can find the last definition of a variable within a CFG by 

following the correct link from the &function at the Exit node. This property 

has proven invaluable for work on interprocedural analysis [Aut94], specifically for 

interprocedural mod/ref analysis. 

Loop Preheaders. It is convenient for analysis purposes that each loop header has 

exactly two inedges. We insure this property by adding two new nodes to the CFG. 

The first is a loop preheader, a node outside the loop, which collects all inedges to the 

header from nodes not within the loop [ASU86]. We would like to simply adjust the 

information gathered as a result of analysis performed in 52.1.2 incrementally, such as 

dominator computation, without having to repeat those procedures a second time. This 

procedure is accomplished by creating a new node for each natural loop and making the 

following adjustments to the CFG and immediate dominator tree: 

label the new node as the preheader of the loop. 

all nodes not inside the loop that have the header as a successor now instead have 

the preheader as their successor. 

the successor of the preheader is the header. 

idom(header) = preheader 

It is trivial to prove the properties above regarding the idom of the header and 

preheader . 

Loop Postbodies. The second node we need to add to each loop is the postbody. The 

postbody collects edges from any node within the loop that has the header as a successor 



Given: A loop in the CFG 
Do: Link postbody node to its successors and predecessors - 
Result: The unique immediate dominator of postbody 

1 :  pb-idom = any predecessor of postbody 
2 :  for all predecessors P of postbody - 
3 : while pb-idom d m  P 
4 : pb-idom = idom( pb-idom ) 
5 : endwhile 
6 :  endfor 

Algorithm 2.4 Finding the immediate dominator of a loop's postbody node 

(the postbody is not strictly necessary if only one node within the loop has the header as 

a successor). We create a new node within the loop and make the following adjustments: 

all nodes inside the loop which have the header as a successor now have the post- 

body as a successor. 

the successor of the postbody is the header. 

use Algorithm 2.4 to find pbidom, the immediate dominator of the postbody. 

idom(postbody) = pbidom 

Theorem 2.1 Algorithm 2.4 correctly identifies the unique immediate dominator of the 

postbody node. 

Proof: 

Following the chain of immediate dominators from any predecessor of node N in a CFG, 

one must eventually reach idom(N). If not, then there would be a path from Entry 

to N avoiding idom(N), an obvious contradiction. Thus, starting with any predecessor 

of the postbody, successive application of line 4 will eventually reach idom(postbody). 

Algorithm 2.4 identifies idom(postbody) by relying on the property that X dom Y if X 

dominates all the predecessors of Y. 1 



Figure 2.4 CFG from Figure 2.1 after modifications: y is the loop preheader and z is the loop 
postbody. There is now also a slice edge from Entry to Exit. 

CFG Effects. Making the preceding modifications to the CFG will affect analysis 

such as the dominator relationship (now only Entry dominates Exit), and the set of 

basic blocks contained within a loop (the postbody is a new member of each loop). 

Although dominator information can be incrementally updated when adding preheader 

and postbody nodes, simple updates are not sufficient when adding the slice edge, since 

this additional edge fundamentally changes the possible paths through the CFG. Thus, 

it is customary to add the slice edge before any analysis begins. Loop preheaders and 

postbodies obviously cannot be inserted before the loop analysis phase commences. 

The CFG from Figure 2.1 looks like Figure 2.4 after the modifications above have 

been made. The inserted preheader node, y, was not strictly necessary in this case, since 

loop header node s only had a single predecessor to start with (similarly with postbody 

node z). However, the preheader provides a convenient location to float code out of a 

loop in all cases, and adding these two nodes assures us that the loop header will always 

have exactly two predecessors, a property which we shall exploit frequently. 



2.1.4 Notes on Implementation 

Computing Dominators. The method presented earlier for computing dominators 

is nonoptimal, albeit easy to understand. In production-quality compilers, however, one 

desires the most efficient method available. Thus, we actually compute the immediate 

dominators of all nodes using an algorithm by Lengauer and Tarjan [LT79]. The asymp- 

totic complexity of this algorithm is O(Ea(E,  V)) (where a is the functional inverse of 

Ackermann's function [HS78]), although it is close to linear in practice. Another advan- 

tage of this algorithm is that it provides the immediate dominator (idom) for each node, 

thus allowing a compact representation of the dominator tree to be stored (each node 

just stores its immediate dominator). Although a linear time algorithm for computing 

dominators has been published [Har85], to our knowledge it has not been implemented. 

Computing Dominance Frontier. Algorithm 2.2 provides the details of building 

dominance frontier sets for each node in the CFG. When implementing this algorithm, 

one needs to decide how to maintain the set of dominance frontier nodes. Since the size 

of the dominance frontier set for any CFG node from a structured program containing 

only i f  -then-else and while-do constructs is no larger than two [CFR+91, Theorem 41 

(although unstructured code can result in quadratic space size), we store the dominance 

frontier for each node as a list, since bit vectors in this case would be space inefficient. 

Line 6 from Algorithm 2.2 requires a union operation. This operation is important, 

since just appending N to the dominance frontier list of M could result in duplicate 

entries. To see why, examine Figure 2.5. When considering node E, idom(E) = A, and 

if we visit the predecessors of E in the order C followed by Dl  we first find that E is 

in the dominance frontier of C and B. When D is considered, we find that E is in 

the dominance frontier of D and B. Since we do not want to add E to the dominance 

frontier list of B twice, we use a constant time test for membership. Although a linear 

search would usually not be slow, "ladder graphs" create dominance frontier sets that 

are quadratic in size [CF93, SG931. Since each node in the CFG is analyzed and added 

to the dominance frontier in turn, each node has a pointer, point, which is set to the 

last node added to its dominance frontier set. Thus line 6, for implementation purposes, 



CFG Dominator Tree 

Figure 2.5 Simple CFG and its dominator tree 

gets expanded to: 

6a : if M.point # N then 

6b : append DF-Iist(M) with N 

6c : M.point = N 

6d: endif 

In this way, we never have to reset point, and in constant time we can check to see if 

N has already been added to the dominance frontier list of any node. 

2.2 Other Control Representations 

In this section we review alternate intermediate representations. All the alternatives 

start with a CFG, so while the CFG may have limitations, it clearly is recognized as a 

fundamental abstraction for intermediate program analysis. 



2.2.1 Program Dependence Graphs 

The Program Dependence Graph (PDG) [FOW87] is a unifying framework in which 

the nodes are individual statements, and the edges reflect control and data dependence. 

This representation grew out of earlier work [F083] on program regions represented 

by control and data dependence. One underlying principle is that the standard CFG 

imposes a fixed sequencing of operations that may not be necessary. In a CFG, basic 

blocks contain straight-line execution statements, based upon the structure given by 

the programmer. However, if no dependence exists between statements, they may be 

executed in any order. Thus, by making a graph with one statement (or predicate 

expression) per node, and superimposing all constraints in the form of edges, more 

optimizations may be discovered. Additionally, this form is intended to allow greater 

extraction of parallelism, since control dependence equivalence is one of the key factors 

in permitting code to be executed in parallel. 

An interesting feature of the CFG that influences control dependence is the idea of a 

hammock [Kas75], which essentially identifies single-entry, single-exit (SESE) regions in 

a directed graph. One optimization used in the PDG representation to reduce the size of 

the graph is to create region nodes, where multiple statements are in the same region if 

they have control dependent equivalence. These regions contain a set of hammocks and 

some number of exit edges. The strength of this approach is shown by the demonstration 

that if two programs have PDGs that are isomorphic, then they are strongly equivalent 

(for any initial state, either both programs diverge or both halt with the same final 

state) [HPR88]. The PDG has also been used as an intermediate representation for 

vectorization [BB89], instruction scheduling [BRSl], and as the basis for a new register 

allocation routine [NP94]. 

Although the PDG has received much attention, proving its universal applicability 

is not easy [CF89, Se1891. Essentially, it is quite a difficult task to correctly determine 

the exact meaning, in all instances, to assign to a program once it is represented just 

as a set of control and data dependences. Our feeling is that it is a useful construct, 

but must be built from the CFG in the first place, thus incurring some extra cost for its 



construction. However, the PDG can be built in worst case time of O(V2), where V is 

the number of nodes in the CFG, so for some applications it may be the intermediate 

form of choice. 

2.2.2 Dependence Flow Graphs 

The Dependence Flow Graph (DFG) [JP93] is intended to be a generalization of SSA 

form. The DFG combines control information with def-use SSA chains by defining 

control regions that consist of SESE areas of the CFG (similar to the hammocks referred 

to above, except that the original definition of hammock [Kas75] allowed exit nodes of 

the hammock to have predecessors not in the hammock). The DFG form contains both 

branch and confluence edges between variables, bypassing SESE regions that contain no 

assignment to the variable. 

A number of analysis techniques (both forward and backward) are possible using 

DFGs, which have recently been defined in terms of Quick Propagation Graphs [Joh94], 

a sparse representation of the CFG. Since the construction of a DFG is O(E) per variable 

V, the overall complexity is O(VE) time. It appears that the constant on this time bound 

is fairly high, since for each variable a base-level DFG is built by adding V dependence 

edges in parallel with each control flow edge. Then, edges are removed when they are 

determined to be unnecessary, such as when bypassing SESE regions. Quite a nice result 

was demonstrated in this work: that of determining control dependence regions in linear 

time [JPP93, JPP941. Although this method does not determine on what nodes a region 

depends, it identifies which nodes have equivalent control dependence, an important 

component for extracting parallelism. 

2.2.3 The Program Dependence Web 

One problem with SSA form is that the inserted pseudo-assignment +function is not 

interpretable. That is, when analyzing a &function within a confluence node, no in- 

formation is available as to which path was taken to reach this node. In may be that, 

at compile time, no information is known about the predicate that determined which 

branch was taken earlier. However, if the predicate is determinable, that information is 



not captured by +functions. 

The Program Dependence Web (PDW) [BM090] introduces a more sophisticated 

method of implementing SSA, which they term Gated Single Assignment (GSA), since 

values that flow along control paths are gated by the status of predicates at branch 

points. Essentially, GSA separates +functions into two classes: those at the headers of 

loops, called yfunctions, and those at control confluence nodes, called y-functions. In 

addition, there is an additional operator (the q-function) added at exit nodes of loops 

for each variable. This function controls values of variables computed within loops. 

By inserting p-, 7-, and 7-functions, a much more interpretable intermediate form 

is available for analysis. In particular, using a demand-driven style of analysis, more 

precise information is computed for such problems as constant propagation. We shall 

look at how to use GSA form for the constant propagation problem in Chapter 4. 

The initial work on PDW and GSA [BM090, OBM891 required a program to be in 

PDG form before the algorithms could translate it into GSA form. It was also targeted 

at pure data-flow architectures, such as the Monsoon [ADNP88] project at MIT. The 

PDW attempted to bridge control-, data-, and demand-driven models within a single 

framework. The result was a difficult representation. We will use a simplified GSA form 

that is based upon the CFG and control dependence only; in Chapter 4 a method that 

avoids the transformation into a PDG is given. The first algorithms to directly translate 

a CFG into GSA form were provided by Havlak [Hav93]. 

2.2.4 Value Dependence Graphs 

The Value Dependence Graph (VDG) [WCES94] is a functional representation that 

expresses the computation of a procedure solely as value flow. Selection among control 

paths is performed in a manner analogous to that of GSA, but looping is represented by 

recursive function calls. A CFG is converted to a VDG by way of a Store Dependence 

Graph (SDG) using SESE analysis as described above for DFGs. Optimizations that 

can be performed independent of the final order of execution are then performed on the 

VDG. For code generation, the VDG is converted to a demand-based PDG and back 

into the CFG. 



Weise et  al. [WCES94] point out that the VDG is very similar to a simplified GSA, 

with the major difference being that VDGs represent looping through a procedure call 

and return, while a GSA uses special functions ( p  and q). They also concede that 

the presence of 7-functions allows conditional analysis, such as constant propagation, 

to performed within a GSA. Chapter 4 details just such an approach within a GSA 

structure. 

2.3 Reference Chaining 

At this point, we are able to begin analyzing the content of the intermediate form. 

SSA, which has already been described, is an intermediate program representation that 

presents a solution to the quadratic nature of the reaching definitions The 

reaching definitions problem can be stated as follows: at each point in the program, 

what is the set of all definitions that can reach this point? 

Many other kinds of information flow through programs, such as reaching uses, live 

variables, links between potential aliases, links from definitions to definitions, etc. We 

would like to extend the technique employed to solve the reaching definitions problems 

via SSA by generalizing its method. In order to accomplish this goal, we need to define 

explicitly how to link information between program points and how to merge information 

at points where links which represent information from two or more different paths come 

together. 

We next look more closely at some of the important concepts alluded to in the last 

several paragraphs regarding how information flows through a CFG. 

2.3.1 Data-Flow Analysis 

Data-flow analysis is a general method of collecting information about a program, such 

as those problems described above [ASU86, MJ811. Some problems, such as reaching 

definitions or computing dominance, are forward data-flow problems, since the flow of 

t1n SSA form, each variable use has a single reaching definition, as opposed to the many reaching 
definitions possible with traditional reaching definition analysis. A detailed explanation is provided in 
53.1.1. 



information is in the same direction as control flow. Live variable analysis is an example 

of a backward data-flow problem, since the information at the end of each basic block 

is dependent upon the information at the entry of control flow successors. Thus, with 

backward data-flow problems information flows in the direction opposite that of control 

flow. 

A set F of transfer functions, with an fN E F at each node N in a flow graph, sum- 

marizes the data-flow effect about the desired information at that node. F contains an 

identity function a, which is used when a node has no affect on the data-flow information 

that enters the node; i.e., the information that leaves the node is identical to the infor- 

mation that enters that node. The elements of F are closed under function composition. 

Often, the only "interesting" nodes that affect the solution to a data-flow problem are 

those which have a nonidentity transfer function [CCFSl]. 

For each f E 3, f takes the general form of f (X) = A U (X - B). For each node 

N in the CFG, X represents in(N), the information which reaches the beginning of N, 

while f (X) represents out(N), the information leaving N after the effect of f has been 

computed. A and B represent how information within N is combined with X. For 

example, in solving the reaching definitions problem, A represents gen(N), the set of 

definitions defined within N,  while B is the set kill(N), those definitions killed within 

N. For the problem of computing dominators in a CFG (as discussed in §2.1.2), A is N, 

while B is empty. 

A typical method of extracting information from the CFG is to iterate a set of data- 

flow equations until the information available at each point (typically the beginning and 

end of each control flow node) has converged, such as the algorithm we gave to find domi- 

nators. When information comes together at confluence nodes, a meet operator combines 

the information from all predecessors via operations on a semi-lattice. A semi-lattice L 

is a pair (E,n), where E is a nonempty set of elements and I l  is a binary operation (the 

meet) on E, which is idempotent, commutative, and associative. E contains a distin- 

guished zero element, I, usually called "bottom". Although "top" (T), a distinguished 

one element, is not theoretically required for a semi-lattice, it often is useful for defining 

data-flow problems. E is assumed to be finite, and the elements of E are related to each 



other through a reflexive partial order, 5.  Semi-lattice t = (E,n) (which includes T )  

has the following properties for a, b E E [Mar89]: 

a 5 b  a f l b = a  

a n a  = a  

a n b  5 a 

 an^ = a  

a n 1  = 1 

In general, a data-flow framework for forward problems consists of W, the set of values 

to be propagated, F, the set of transfer functions, and a binary meet, the confluence 

operator. After the following initializations have been made (where, depending upon the 

problem, out(Entry) may be initialized to either I or T): 

for all N E {CFG - Entry) do 

in(N) = T 

= ~N(T) 

end for 

the following set of equations are iterated over the CFG until no changes occur: 

For the reaching definitions problem, W is the powerset of the set of nodes of the 

CFG, and the meet operator is set union. (The partial order relationship is that of 

superset, so for sets T and Q, T 1: Q if T 2 Q.) These data-flow equations are then iterated 

until convergence: 

Most data-flow problems are solved using a monotone data-flow framework. A frame- 

work is monotonic if: 



It has been observed [KU77] that an equivalent definition of monotonicity is: 

Iterating over a monotone data-flow problem cast on a flow graph will always converge 

to a maximum fixed point (mfp) [Hec77], which is the solution to equations 2.1. The 

mfp is a conservative approximation to the "true" solution, and we will return to the 

precision that it provides in Chapter 4. 

2.3.2 Reaching Definitions in a CFG 

In terms of reaching definitions, a definition of v at node A reaches node B if there 

exists a path in the CFG from A to B in which no other definition of v occurs. For 

reaching definitions, the interesting nodes are those that define a particular variable. All 

other nodes will have a transfer function that is the identity: the information leaving the 

node is the same as the information entering the node. The meet operator for reaching 

definitions is set union. Definitions along a straight-line path in a CFG can be killed by 

another definition for the same variable. If nodes X and Y both lie along a straight-line 

path with X preceding Y, and both define variable v ,  then the definition at Y kills any 

definitions at X. Note that (degeneratively, in this case) every path to Y passes through 

X. In more complicated cases, nonkilling definitions of a variables can exist. This occurs 

when a new definition nay occur at a particular point, but we are not certain of it. An 

example would be a procedure call, where a procedure parameter is passed by reference. 

In this case, both the definition arriving at the node which has the procedure call and the 

nonkilling definition of the procedure parameter must be passed as reaching definitions 

to the next use of the variable. Nonkilling definitions can also be used for analysis of 

more complicated data structures, such as arrays and records, and we will discuss this 

application in more detail in the next chapter. 

We introduce one new concept which is useful for analyzing how information in a 

data-flow framework can be killed: that of shields. If every path from A to C must 

pass through B, we say that B shields A from C, or that B E shield(A,C). We note 

that B dom C is just a particular instance from the set of shields for C, where B E 



shield(Entry, C) =$ B dom C .  

Shielding is important when dealing with the flow of information in a CFG, since 

B E shield(A, C) means that B can kill any information generated from A on all paths 

to C. In particular, any definition of v within B prevents all definitions of v in A from 

reaching C. It  is not our intent to exhaustively investigate the properties of shielding in 

this work, but it will be a useful concept when closely examining the details of linearizing 

reaching definitions, and it will have a dual definition with respect to parallel graphs in 

Chapter 8. 

2.3.3 Initial Specifications 

Figure 2.6 An example highlighting Definitions 2.1 - 2.4. 

We now begin the investigation of how to represent abstractly the sequence of informa- 

tion which flows from point to point in a data-flow graph. In order to maintain such 

information in a sparse manner, we must understand how a particular piece of informa- 

tion, such as a variable definition, is propagated through the CFG. We start with several 

basic definitions: 

Definition 2.1 A reference (ref) is any definition, use, or merge operator of a given 

symbol. 



Figure 2.7 The &function merges downward-exposed definitions. 

Definition 2.2 A link is a pointer to the nest or previous reference of a symbol. 

Definition 2.3 A chain is a sequence of links that connects two or more references. 

Definition 2.4 A merge operator augments the data-flow graph by collecting multiple 

links at branch or confluence nodes in  the control flow graph. 

In terms of tuples, if symbol(t) = s for some tuple t ,  then t references s. For example, 

examine Figure 2.6. In the four basic blocks depicted, there are five references: three 

definitions, one use, and one merge operator. An example chain would be from the use 

of x in node D, following its link to the merge operator (+function in this case) in node 

C, then following one of its links to either of the downward-exposed definitions in A or 

B. 

A merge operator may point to either downward-exposed (reaching) references or 

upward-exposed references. We have these two cases: 



Figure 2.8 The A-function merges upward-exposed references. 

Downward-exposed References (DXR) - Operators are placed at the begin- 

ning of a confluence basic block, and merge two or more distinct downward-exposed 

references. The function has an argument for each control flow predecessor, which 

points to the most recent downward-exposed reference from the corresponding con- 

trol flow path. 

An example operator which merges downward-exposed references is the +function 

illustrated in Figure 2.7. In this case, (SSA) references are definitions or other 

+functions. 

Upward-exposed References (UXR) - Operators are placed at the end of 

a branch basic block with an argument for each outgoing control flow edge. As 

an example, we consider the A-function, which collects upward-exposed references. 

Each argument of the A-function points to the first upward-exposed reference (use, 

definition, or another A-function) from the corresponding control flow path. An 

illustration of the A-function is given in Figure 2.8. 



2.3.4 Following Chains 

In order to provide clarity for discussion and examples we present convenient notation 

with which to refer to a statement-based program in terms of its references. 

Each variable site will be a reference (ref) for variable v in one of the following ways: 

Dx - a definition of v at statement n in the program. 

Nx - a nonkilling definition v at statement n in the program. 

Ux - a use of v at statement n in the program. 

BK - both a definition and use v at statement n in the program. 

We use the following functions to extract information from a given reference: 

As an example, consider this code: 

Sl: TI = ... 
sz: loop 
s3 : T2 ' $(TlrT7) 
S4 : i f  TEST then 
s5 : T4 = ... 
s6 : endif 
s7 : T6 ' #(T4,T2) 
s8 : ... = T6 
s9 : T7 = ... 
Slo: endloop 

If we start with the use of T at Ss, u:, we can follow its link by examining chain( U: ), 

which is equal to D?, the pseudo-definition of T (a +function ) at ST. Since the chaining 

function at S7 merges two other links, we may choose to follow either. Following the 

first chain ends at the definition of T at S5, while following the second chain results in a 

further +function at S3. Traversing its links leads to the definitions at S1 and S9. 

Since we were following links created by SSA form, we essentially discovered the 

definitions that could reach the use of T at S8. This result is not surprising, since SSA is 



a representation of the reaching definitions that can affect information at a given point 

in the program. 

2.3.5 Applications 

What kind of data-flow problems use reference chains? In general, DXR chains are used 

for forward problems, those in which the information desired at a point is in terms of 

behavior which occurs previously according to control flow or time. Thus, links will point 

to the reference operation of that behavior. 

On the other hand, if information at a point is dependent upon what will happen 

later on ("forward in time with respect to control flow", known as backward problems), 

then the chains based upon UXR will be the reference chain of choice. 

Here are some of the data-flow problems for which we have applied reference chaining: 

DXR functions 

Induction variable detection [GSW]. Uses the SSA graph. 

Constant propagation. Uses SSA graph for scalars, augmented with def-def chains 

for arrays. Constant propagation is covered in detail in Chapter 4. 

Reaching definitions - for variables. Uses SSA graph. 

Availability - for expressions. This problem is the dual of one covered in Chapter 

7: anticipatability. 

Scalar data dependence. The full solution requires many kinds of DXR functions. 

This topic is covered extensively in Chapter 6. 

UXR functions 

Chapter 7 contains details of using UXR functions to analyze backward problems. Ex- 

amples of problems which take advantage of this technique are: 

a Liveness - for variables. Uses UXR for uses and defs. 



Anticipatability - for expressions. In this case, references are extended to include 

complete expressions, rather than just arbitrary symbols. 

Useless code identification (based upon liveness information) 

2.3.6 Extensions to Reference Chaining 

The concepts of reference chaining, while fine for sequential constructs, need to be ex- 

tended to accept the semantics of parallel constructs. We feel that a sound and coherent 

method needs to be provided that allows sensible reasoning about programs written us- 

ing parallel constructs. We would like to use some of the same reasoning methods as 

employed with sequential programs. We must be careful to define the references that 

are exposed in light of these parallel constructs. In particular, is a new merge operator 

needed at a parallel confluence point? How is a parallel confluence point different than a 

sequential confluence point? As this issue is separate from the basic applications of refer- 

ence chaining on sequential programs, we will delay the investigation of these questions 

until Chapter 8. 



Chapter 3 

FUD Chains 

3.1 SSA Construction 

In this chapter we provide details on an extended SSA form, which we call Factored Use 

and Definition Chains (FUD chains), and show how to construct them efficiently. We 

furnish statistics on how expensive, in terms of time and space, it is to build these graphs 

in practice. We also explain how to manage the semantics of FUD chains in the face of 

global variables, procedure calls, and generalized nonkilling definitions. 

3.1.1 Merging Reaching Definitions Within a CFG 

Using a traditional bit-vector method [Ki173] to keep track of data-flow information 

through the CFG is dense: it propagates information for each variable at all nodes, even 

those that do not use or contribute to the solution of a given problem. Alternatively, if 

def-use information is sufficient for a particular problem, the graph utilized is sparse: by 

following the def-use chains, nodes are bypassed that are not part of the solution. 

Sparsity will not prevent multiple chains from converging at the same node. As noted 

in Chapter 1, one of the key properties of SSA form is that every use of a variable symbol 

will have exactly one reaching definition. One way this property becomes important is 

when we examine the general nature of reaching definitions, especially in the presence 

of confluence nodes in the CFG. For example, Figure 3.1 shows 3 definitions of v that 

merge at a confluence node, then split into 3 uses of v. General reaching definitions would 

require 9 def-use chains to express all these possibilities. However, we may coalesce the 

3 definitions at the merge (the other key definition of SSA form) into a +function. The 



Figure 3.1 Reaching definitions can be quadratic in general. 

&function collects multiple definitions of the same variable that reach a confluence node 

along more than one path. In this way, each use has only one chain as its destination (as 

depicted in Figure 3.2), and now only 6 def-use links are required to express the same 

information. This phenomenon has been noted previously in the literature [CCF94, 

CFR+91]. 

To generalize, when n definitions of a variable symbol reach a confluence point then 

split into n uses of v ,  the result is n2 total links. However, if the code is transformed 

into SSA form, the number of def-use links to express the same information is a linear 

function of the number of references (we refer to this phenomenon as linearizing reaching 

definitions), cutting the total number of links from n2 to 2n. 

At what points in the CFG do we insert &functions? Clearly, &functions are only 

needed at confluence nodes, since these are the only possible places where multiple 

definitions of the same variable can reach concurrently. However, &functions are not 

needed at all confluence nodes, since there may not be distinct variable definitions along 

more than one incoming branch. 

To answer the question of &function placement, we look at the concept of the join 

of a set of nodes S.  Informally, the join of S is defined to be the set of all nodes Z such 

that there are two nonnull CFG paths that start at two distinct nodes in S and converge 



Figure 3.2 SSA form can linearize reaching definitions. 

at Z [CFR+91]. Formally, we define the join as fol1ows:t 

Definition 3.1 The join of nodes X and Y, J(X, Y) = 

{Z 1 3Zx, Zy with Zx + Z and Zy --+ Z, 

The join of a set of nodes, S, denoted J(S), is defined to be the union of the pairwise 

joins VX, Y E S, i.e., J(S)  = U J(X,Y). The iterated join, J+(S), is defined as the 
X,YES 

limit of increasing sequences of nodes defined by: 

For reaching definitions, J+(S), the iterated join of the set S of nodes with nonidentity 

transfer functions for variable v (nodes with definitions of v plus Entry), is the correct 

placement for merge operators since it insures the following two properties: 

1. Each join point K for v captures (directly, or indirectly via another join point) all 

 h he intersection of paths pl and pz, pl np2, is the set of nodes in common to pl and pz. 



reaching definitions of v at K. This property was proven recently by Choi et al. 

[CCF94, Theorem 3.31. 

2. Each variable use of v at CFG node A will have a single reaching definition. In 

the set D of nodes that contain variable definitions or join points of v, there exists 

exactly one element E E D such that E dom A and E E shield(d, A), Vd E D. 

Proof of 2: 

Let F D be the set of elements of D that dominate A. We first show that if D 

contains any node C (which can reach A) other than Entry, F will contain a node 

other than Entry. Let L = J(C,Entry). If C dorn A or A E L for any such C, we 

are done. Otherwise, choose any path pl :  C 4 P, where P + A (see Figure 3.3). 

Let Q be the last node on pl such that Q E L. Such a Q must exist since A $! L. We 

first claim that all paths from C to A include Q. If not, consider path pa : C 3 A 

which does not contain Q. pz n {Q 3 A) = 0 since Q is the last node on pl in L. 

But in this case we have paths Entry 3 Q 3 A and p2 that only intersect at A, 

which is not possible because A fZ L. We now claim that Q dom A. If not, some 

path p3 from Entry to A does not pass through Q. Reasoning as above, we would 

then have disjoint paths from Entry to A and from C to A (except for A), which 

implies that A E L. Since we assumed otherwise, we conclude that Q dorn A. 

Since the dominators of A form a linear ordering t [Hec77, Lemma 3.41, choose 

E E F (E is a particular Q in terms of Figure 3.3) such that all other elements of 

F dominate E. Then E E shield(f, A), Vf E F, due to the linear ordering of F. 

Now consider B, any element of D that reaches A but does not dominate A. All 

paths from B to A must pass through E. If not, some path p4 from Entry to A 

passes through E before B (this condition cannot be true for all paths from Entry 
- 

to A, since B dorn A). But then we can construct a path Entry 3 B concatenated 

with B 3 A, which does not pass through E. Since this conclusion contradicts the 

relationship E dorn A, all paths from B to A pass through E, which is equivalent 

to E E shield(B, A).  1 

' ~ i v e n  any nodes P,Q, and R, if P and Q dominate R, either P dominates Q or Q dominates P. 



Figure 3.3 Possible paths to consider regarding the join property 

Calculating the iterated join of S, J+(S), may seem expensive, but it has been shown 

[CFR+91] to be equal to the iterated dominance frontier of S. We define the dominance 

frontier of a set of nodes, S, as  follows: DF(S) = U DF(X ), and DF+ is defined 
XES 

similarly to J+. The iterated DF, DF+(S), is defined as the limit of increasing sequences 

of nodes as follows: 

DF'(S) = DF(S) 

D F ~  (s) = DF(S U DF' (S)) 

DF'" (s) = DF(S U DF~(s)) 

For the relation DF+(S) = J+(S) to hold, the Entry node of the CFG must be in S. 

We next show how to incorporate the ideas of this section into efficient algorithms 

that transform the intermediate form provided by the front end of the compiler (the 

CFG and data-flow graph) into SSA form. 



3.1.2 Building the Graph 

In converting intermediate code into SSA form, we generally follow the algorithm given 

by Cytron et al. [CFRf 911. When performing this conversion, we follow four main steps: 

1. Preliminary analysis. This step includes most of the analysis discussed in Chap- 

ter 2, such as loop identification, loop augmentation, and dominator analysis. 

2. Variable Modification List. We make one pass through the CFG to create a 

linked list of variables modified anywhere in the procedure, and a list of modifica- 

tion sites, A (V), for each variable V. This list is generated by simply examining all 

data-flow tuples that belong to each node of the CFG using a depth-first search, 

although any search algorithm that visits all nodes will suffice. We note that all 

variables are assumed to be initialized (hence defined) at Entry, a property required 

by the equivalence between J+ and DF+, as discussed in the last section. 

3. 4 Placement. For each variable V, we place a +function at the iterated domi- 

nance frontier of all nodes in A(V). This is accomplished by a worklist algorithm, 

as shown in Algorithm 3.1, lines 11 - 25. The number of arguments of each + 
function is equal to the number of predecessors of the CFG node in which it resides. 

A +function is always added to the top of a basic block - in that way, any use of 

the same variable within that basic block will be reached by the +function. All 

details are given in Algorithm 3.1. We should point out that +function placement 

as shown here is asymptotically quadratic in theory but usually linear in practice. 

A new algorithm has recently been developed to place +functions in linear time 

with respect to the number of variables in the procedure [SG93]. 

4. Chaining. A depth-first pass is made of the dominator tree, pushing definition 

sites onto a stack when encountered. Each variable use has its link field filled in with 

a pointer to the current definition of that variable. This step was originally called 

"renaming" [CFR+91], since each variable definition was iteratively numbered, as 

we have shown in examples. However, this numbering reflects the semantics of 

SSA form, and we present our algorithms in terms of pointer references, which 



maintains the single reaching definition property of SSA. 

Flow graph successors are then checked for +functions, filling in the corresponding 

&argument link field with the current reaching definition at that point. This pro- 

cedure is performed recursively on the dominator tree children, logically popping 

definitions off a definition stack when returning. In actuality, this task is performed 

by saving the previous current definition at each tuple that defines a variable (in 

which a +function counts as another definition), then restoring the saved value 

when returning from the Chaining routine. 

A traditional use-def chain would list all definitions of a variable that reach the 

current use. The result of the preceding procedure is the factored form - each use has 

exactly one reaching definition (see Figure 3.6b), thus preserving SSA semantics. 

3.1.3 Construction Algorithms 

In this section we give the details of SSA construction. The methods employed are 

important since we will adjust this basic algorithm to accommodate extensions to SSA 

as well as other reference chaining methods. Step 3 from the previous section is performed 

by Algorithm 3.1, while Step 4 is performed by Algorithm 3.2. We describe here the 

data structures used for the following algorithms: 

A(V) - A list of all nodes with assignments to variable V. 

symbol( tuple ) - A function that returns the variable symbol (name) associated 

with this tuple, if it exists. Returns null otherwise. 

V. CurrentDef - A pointer to the current definition (tuple) of variable V. Logically 

points to the top of a definition stack. Initialized to source. 

t.SavedDef - A pointer to the current definition of syrnbol(t) before processing this 

tuple. Used to logically pop definitions off a stack when returning from recursive 

calls down the dominator tree. 

DFRONT(N) - Dominance frontier for node N. 



WhichPred(N, Q) - An integer indicating which predecessor of Q in the CFG is N. 

a Work-List - An unordered set of CFG nodes. For each variable V, Worklist is 

initialized to A(V), all assignments to V. 

a HasFzmc(*) - A reference field to a variable for each CFG node. HasFunc(N) = 

V means block N already has a +function added for variable V. 

Work(*) - A reference field for each CFG node. Work(N) = V means that node 

N has already been added to the WorkList for variable V. 

3.1.4 Interprocedural Links and Local CFGs 

When transforming the IR into SSA form, we encounter two types of procedures: the 

main procedure of a program and any subroutines. The distinction is how variables are 

initialized, specifically how we handle formal arguments. Other issues include how to 

link variables correctly at call sites and how to deal with global variables. We address 

these issues in this section. 

Formal Arguments. For any CFG, the current definition of a variable is initialized 

to source. This initialization reflects the property noted in 53.1.1 that all variables have 

an assumed definition at Entry. However, a subroutine often has variables passed in as 

formal arguments. Consider this case: 

subroutine f oo( a,  b ) 
integer i 
i = a + b - 3  

end foo 

where a and b presumably have actual values passed into foo. Although it may be that 

neither variable has a known value (which may be determinable through interprocedural 

constant propagation) when entering the subroutine, it may be that they do. We would 

like to accommodate this possibility by providing a placeholder for formal arguments, 

which can be assigned values provided by interprocedural analysis. 



Given: A(V) ,  V V. 
Do: compute DFRONT( N ), V N E CFG. - 
Result: 4-functions inserted into CFG 

1 : for all nodes N do 
2 : HasFunc(N) t 0 
3 : Work(N) t 0 
4 : endfor 

for each symbol V do 
Work-List t 0 
for each N in  A ( V )  

Work(N) t V 
Work-List t Work-List U { N ) 

endfor 
while Work-List # 0 do 

remove N from Work-List 
for each Q E DFRONT(N) do 

if HasFunc(Q) # V then 
HasFunc(Q) t V 
i t number of predecessors of Q 
place V = 4( Vl, V2, ..., V; ) at the beginning of basic 

block Q, where 4 corresponds to the jth predecessor of Q 
endif 
if Work(Q) # V then 

Work(Q) t V 
Work-List t Work-List U { Q ) 

endif 
endfor /* each Q in  DFRONT */ 

endwhile 
endfor /* each symbol V */ 

Algorithm 3.1 Placement of &functions 



Given: Initialized data structures. 
Do: Call Chain( Ent y ) - 
Result: SSA form 

1: Chain(N) 
2 : for all tuples t E N, in forward order do 
3 : V t symbol(t) 
4 : if t is an ordinay use of V then 
5 : link(t) t V. CurrentDef 
6 : endif 
7 : if t defines V then 
8 : t.SaveDef t V. CurrentDef 
9 : V. CurrentDef t t 
10 : endif 
11 : endfor /* all tuples of N */ 
12 : for each Q E Succ(N) do /* Successors in  CFG */ 
13 : j t WhichPred(N, Q)  
14 : for each &function merge tuple f in  Q do 
15: V t symbol(f) 
16 : link( jth argument of f ) t V. CurrentDef 
17 : end for 
18 : endfor 
19 : for each Q E Children(N) do /* children in dom tree */ 
20 : Chain (Q) 
21 : endfor 
22 : for all tuples t E N, in reverse order do 
23 : if t is a definition tuple do 
24 : V t symbol(t) 
25 : V. CurrentDef t t.SaveDef 
26 : endif 
27 : endfor 
28 : end Chain 

Algorithm 3.2 Chaining: linking each use to its unique definition and correctly inserting 
&function arguments 



The solution in this case is to create tuples ( formal,0,0,0,a ) and ( foma1,8,8,8,b ), 

which are inserted into Entry after source, which is always the first tuple. In this way, 

lines 7 - 10 in Algorithm 3.2 sets the current definition of each variable ( V. CurrentDefi 

to the formal tuple. The use of a and b in our example will have their link fields set to 

these formal tuples in lines 4 - 6 of Algorithm 3.2. The formal tuples thus provide a 

convenient location through which to pass interprocedural information. 

Procedure Parameters. Special care is needed when handling procedures in SSA 

form. As noted in 52.3.1, procedure arguments represent references of variables that are 

treated as nonkilling definitions. These references are also uses of that variable, since 

they potentially pass values to the called procedure. In this case: 

S1: X = ... 
S2: call bar(  x ) 
s3: ...= X 

the use of x at S3 will have its reaching definition point to the definition (potentially 

nonkilling) at S2. But the reference of x at S2 is also a use (potentially) of x defined 

at S1. So it needs its link field to point to the definition at S1. The work by Cytron 

et al. [CFRf 911 suggests adding another assignment statement, essentially x = x in this 

case, to create the proper LHS and RHS behavior for linking into SSA form. In order to 

accomplish this task, a procedure argument essentially needs to be split into two phases: 

one that represents potential use of the variable, and one that represents a potential 

definition of the variable. One way to accomplish this goal is described later in this 

chapter under Notes on Implementation, 53.1.5. 

Global Variables. Global variables present a special problem since they are visible 

within all routines, even though they are defined only in a program's main procedure. 

The solution we adopt is two-fold. First, for all global variables v that are referenced 

within a local procedure we create the tuple ( global,$,0,0,symbol v ). This tuple is 

inserted into the Entry node, similarly to tuples created for formal arguments. Again, 

lines 7 - 10 in Algorithm 3.2 will set v. CurrentDef to this global tuple. 



Second, for interprocedural analysis, a particular global variable may not be refer- 

enced in some procedure (hence, it is, in some sense, invisible to that procedure), but 

may be referenced by both a callee procedure and caller procedure. As an example, as- 

sume we have the following call graph: A + B + C,  where procedure A calls procedure 

B ,  which in turn calls procedure C. If A and C reference v, but not B,  then analysis 

of global variables can be obfuscated due to the fact that there is no placeholder for v 

when processing B .  We handle this situation by appending an extra argument to each 

parameter list at all procedure call sites. Essentially, an extra proc-param tuple is added 

to the end of each argument list, with the symbol field pointing to a special generic global 

symbol. We have denoted this special symbol as symbol-invisible, since it represents the 

set of all global variables within the called procedure that are not referenced within that 

procedure. In this way we provide a placeholder for any analysis that contains symbols 

invisible to a particular procedure. 

Local CFGs. Normally, and certainly the case for the scientific codes described in 

Table 2.1, there are numerous procedures that together comprise the entire code. Since 

our intermediate form is essentially intraprocedural, each procedure has its own CFG 

constructed, with the methods (analysis and modifications) described in Chapter 2 ap- 

plied to that CFG. Since there is a slice edge from Entry to Exit in each local CFG, a 

useful property of SSA form is that a &function for variable v will be placed in the local 

Exit node if and only if there is a definition of v within the body of the procedure. The 

advantages of this property were listed in 52.1.3, and we now prove the correctness of 

this statement. 

Theorem 3.1 Within any CFG G containing a slice edge, there exists a $-function for 

v at the Exit of G if and only if u is defined within G - {Entry, Exit). 

Proof: 

a Given that a &function for u exists at Exit, one of its arguments must point to 

the last definition of v within Entry, since an edge exists from Entry to Exit and there 

exists an argument within a +function for each control flow predecessor. By definition, 

&functions for v are placed at DFS(S), where S is the set of nodes that define v. Entry 



always has an empty dominance frontier, since it dominates all nodes within the CFG. 

Thus, no definition within Entry can result in the creation of &functions. We also note 

for completeness that the dominance frontier of Exit is empty, since it has no outedges 

by definition. Thus, at least one other argument of a &function for v at Exit must point 

to a definition of v within G - {Entry, Exit). 

+ Given that v is defined within G - {Entry, Exit), and choosing node M from G - 
{Entry, Exit) ( M  may not be unique), we must show that Exit E DF+(M). We know 
- 

that M dom Exit , since there exists a direct path from Entry to Exit via the slice edge. 

We also know that there exists a path from M to Exit by the original definitions in $2.1.1. 

Since the path from M to Exit and the slice edge converge at Exit, Exit is in the join of 

M and Entry by Definition 3.1. This result also uses the assumption that every variable 

used within a CFG has an initial definition at Entry. But, J({Entry , M)) C J+({Entry 

, M)) = DF+({Entry , M)). Since &function are placed at DF+ of nodes that define a 

variable, a &function for v will be placed at Exit . 1 

3.1.5 Notes on Implementation 

Initialization. In order for DF+(S) = Jf (S), Entry E S. This property is accom- 

plished by setting V. CurrentDef = source, as noted in the description of the data struc- 

tures for Algorithm 3.2. However, there is now no need to add Entry to the Work-List of 

Algorithm 3.1 (which computes the DF+(V) for +function placement) for any V, since 

the dominance frontier of Entry is always empty. 

Handling Procedure Parameters. Since procedure parameters must be regarded 

as nonkilling definitions and also as uses of a variable, we noted that each procedure 

argument must be split into two parts. Here, we describe one method to accomplish this 

task. We first illustrate the idea with the same simple example used before: 

S1: X = ... 
Sz:  ca l l  bar( x 
S3: ...= X 

Figure 3.4 shows the code above in its data-flow representation. We treat the 

proc-param tuple as a definition of x if its right operand (an arbitrary choice) is an 



in-out-param x 

Y 

fetch x 
Figure 3.4 Data-flow graph for simple procedure call. 

out-param or in-out-param; in that case we know or must assume that x gets modified 

(defined) by the call to bar. Similarly, the right operand of a proc-param tuple is treated 

as a variable use if it is of type in-param or in-out-param; in this case lines 4 - 6 of 

Algorithm 3.2 will fill in the link field with a pointer to the current definition of x. 

The compiler front-end sets all right operands of proc-params as an in-out-param. 

This initialization is the default for Fortran, and is the conservative choice in the absence 

of more precise information. More information may be found by performing interpro- 

cedural mod/ref analysis prior to the translation into SSA form. In this way, we can 

change the type of an in-outqaram when more precise information becomes available. 

For example, if mod/ref analysis provides the information that bar  will not modify x, 

the in-out-param in Figure 3.4 is changed to in-pamm. Now, the Chaining routine will 

not consider the argument to bar a definition of x, so when the use of x at S3 is processed 

by lines 4-6 of Algorithm 3.2, x.CurrentDef will be equal to the store at S1. The result 

of the extra precision is shown in Figure 3.5. 

Multiple procedure parameters that reference the same variable create another diffi- 

cult situation regarding the correct generation of the V. CurrentDef field for V and filling 

in the link field on all uses of V. We illustrate the problem again with an example: 
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in-param x ,#' 

proc bar 

fetch x 
Figure 3.5 Data-flow graph with more precision about the procedure parameter. 

S1: X = 1  

S2: call subl( X + 2 ,  X, X  + 3 
S3: Y = X  

Here we want all the uses of X  at S2 to fetch the definition at S1 and the use of X  at S3 to 

fetch the definition from the second argument in sub1 (assuming that mod/ref analysis 

has not determined that the second argument is unmodified). If we are not careful, the 

third argument of sub could fetch the definition created from the second argument. 

This problem is essentially an engineering issue. One solution (the one that we 

adopted) is to rely on the tuple ordering in the abstract syntax tree as constructed by 

the compiler front-end. The front-end builds a representation in which all the proc-pann 

tuples occur lexically after their right operands. For the second and third arguments 

from S2, the right operands will be an in-out-parm and an arith (a '+' sign will be at 

the base of the abstract syntax tree representing this expression), respectively. Thus, all 

uses are processed before any definitions change V. CuwentDef. 

While this solution works fine in this instance, a more insidious problem can occur 

in this case: 

sr: X = l  
S 2 :  call sub2( X  + 2, X, X ) 
S3: Y'X 



Now, which definition of X in S2 should the link field of the use of X in S3 point to? We 

note that in some languages, notably Fortran, the call to sub2 represents nonconforming 

code, since such aliases are not allowed. Nonetheless, this situation would seem to impose 

an arbitrary order upon the modifiable arguments of a procedure call. One solution is 

to use lexical ordering, but this method essentially chooses a solution by fiat. Another 

solution is to merge the second and third arguments into a &function before the use at 

S3. We believe that to some extent this question is best left to language developers, and 

can be answered for each language implementation. We will return to this problem in 

a different guise when we look at other chaining methods, notably when we solve the 

reaching uses problem in Chapter 6. 

SSA Representation When translating a program into SSA form, it is convenient, 

as was shown in Figure 1.1, to denote each definition as a new variable. This method 

is useful for readability, and is the one described in the original work by Cytron et al. 

[CFR+91]. 

Although this traditional SSA form renames variables uniquely at every definition 

point, it is not really practical (and certainly not desirable) to add new names to the 

symbol table for all assignments. Thus, the common implementation [JP93, WZ91] 

actually provides def-use links [ASU86] for each new definition (see Figure 3.6). Since 

each use is the head of exactly one link, the semantics of SSA are preserved. 

This def-use chain style of SSA implementation lends itself well to iterative forward 

data-flow problems (such as constant propagation [WZ91]) due to consistency of direction 

between program flow and def-use links. However, a demand-driven data-flow problem 

will typically request information at a program point from its data-flow predecessors. 

As we shall see, use-def chains admirably match the demand-driven style of data-flow 

analysis. 

We maintain the semantics of SSA by providing use-def links, so that each use (fetch in 

the intermediate representation) has a link to its single reaching definition. The contrast 

in providing use-def versus def-use links is shown in Figure 3.6, and its advantages for 

data-flow analysis are covered in Section 3.3. 
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Figure 3.6 Comparison of standard SSA implementation employing (a) def-use links and (b) 
use-def links. 

Another advantage of our approach is that it requires only constant space per node 

to implement. Since each variable use has exactly one reaching definition, it has only 

one link field. A traditional def-use implementation, however, must have the capability 

to dynamically expand its use list at each definition site, since an unbounded number 

of uses can be dependent upon that site. Contrast Figure 3.6(a) with 3.6(b): since the 

arrows in (b) are stored with the node at the tail of each link, at most one link need be 

stored with each tuple. 

Keeping Track of +function Placement. Since +functions are constructed per 

variable, Algorithm 3.1 needs a mechanism to determine whether a +function for a 

particular variable has already been placed at any node (a node may be in the DF+ 

of numerous other nodes), since it is clearly undesirable, as well as unnecessary, to 

place more than one +function at a node for the same variable. The original algorithm 



number of referenced variables 

10000 

9000 

8000 

7000 

number 
6000 

of 5000 
+functions 

4000 

3000 

2000 

Figure 3.7 Comparing the number of &functions for each referenced variable 
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[CFR+91, Figure 111 renamed instances of variables by incrementing a counter. As 
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we have already noted, new instances of a variable in our implementation are logically 

distinguished by keeping pointers to the most recent definition of that variable. Thus, 

we maintain a pointer Hasfinc for each node which is filled in with a link to the last 

symbol (if any) which has had a +function placed at that node. In this way, lines 14 

- 15 of Algorithm 3.1 do all the work that is necessary for insuring unique +function 

placement for every node in the CFG. 

Measurements On Building the SSA Graph 

We would like to compare our implementation with that of the original work by Cytron 

et al. We implemented Algorithms 3.1 and 3.2 in Nascent, running on a Sun IPX with 

64 MB RAM, and upgraded with a Weitek 80 MHz clock-doubled chip. The code was 

compiled using GNU C++ version 2.5.8, optimization level -02. 

We counted the number of +functions generated in each of the benchmark programs 

from 51.4. Figure 3.7 shows the number of &functions for each of these programs as a 

function of the number of referenced variables, where a '0' represents a data point for 
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Figure 3.8 Comparing the number of &functions to program statements 

time (sec) 
6 

to build 5 
SSA graph 

4 

number of program statements 
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Figure 3.10 Comparing front-end compiler time with SSA build time 

each of the 26 programs. We note that the relationship seems to be linear, with the ratio 

usually between 2 and 2.5. This result confirms earlier work that, in practice, the SSA 

graph is linear in the number of variables [CFR+91, Hav941. The outlier, with a ratio 

of 3.4, is the boast program from the RiCEPS suite. Most of its behavior is due to the 

subroutine master with a ratio of 5.4, which includes one top-level loop with 9 exits, and 

a nest-level of 4 that contains 22 inner loops. This behavior of master was also noticed 

by Havlak [Hav94]. 

The original work by Cytron et al. built a statement-level CFG, where each basic 

block node contained a single statement. In our implementation, we have tried to create 

maximal basic blocks, maintaining a minimal increase in graph size. Thus, a straight 

comparison of the number of basic blocks to the number of &functions would be meaning- 

less: multiple variables can be used and defined within a maximal basic block. Instead, 

we compared the number of program statements to the number of &functions, with our 

results shown in Figure 3.8. This graph confirms the previous result, with boast again 

being the outlier. 

Next, we wanted to gather data on the amount of time necessary to build the SSA 



graph structure. These results are given in Figure 3.9. Here, we compared the number 

of program statements to the time required to build the SSA form. It again appears 

linear, with the anomalous data point due to ocean in the Perfect suite. This anomaly 

in ocean is due primarily to our implementation, which accommodates interprocedural 

mod/ref analysis. We append to the parameter list of each procedure call a list of 

all global variables that are referenced within the local routine. This addition allows 

accurate determination of mod/ref usage, but may result in additional overhead when 

the number of global variables and call statements is large. In the main routine of ocean 

(941 lines and 640 statements) 135 of the 148 referenced variables are globals, with 204 

subroutine calls being made. 

Finally, since parsing the front end is somewhat constant for all compilers (they all 

must examine the entire program character by character), we compared the time taken 

to parse each program as compared to the time to build SSA form. The results given 

in Figure 3.10 are almost identical to those of Figure 3.9, which may just indicate that 

parsing time is directly proportional to the number of statements in a program. 

3.2 Constructing FUD Chains 

In this section we describe how to expand the principles of SSA form to allow greater 

analysis of programs. While one of the two principles of SSA is that each use of a variable 

has precisely one reaching definition, we extend this concept to include unique reaching 

definitions for definitions as well. That is, each use or  definition of a variable will point 

to its last unique reaching definition. In this way we can continue an analysis phase, if 

desired, when a definition is encountered. 

3.2.1 Definition 

This expanded form of SSA will permit following definition chains through definitions 

themselves, if desired. Since these links create a sparse graph for any variable, we name 

these chains Factored Use and Definition Chains, or FUD chains. 

Essentially, FUD chains consist of SSA form with extra links: those from definitions to 



Figure 3.11 Use-def links plus def-def links make FUD chains. 

definitions. How do we incorporate the extra def-def links via the construction algorithms 

already presented? The placement of +functions is unchanged, hence Algorithm 3.1 is 

unaltered. The chaining algorithm, Algorithm 3.2, needs minor adjustments. Since we 

already have the mechanism for linking available (each tuple contains a link field, which 

so far has only been utilized for variable uses), we simply modify line 4 of Algorithm 3.2 

to read: 

if t is an ordinary use or ordinary def of V then 

The reason we specify that the use or def must be ordinary is that we want to exclude 

+functions. They are pseudo-definitions that effectively operate as both a definition 

(other definitions and uses may point to a &function as the unique reaching definition) 

and several uses (via the &arguments that collect those definitions that reach the node 

containing the &function). We illustrate the extra def-def links in Figure 3.11. The 

dotted arrows represent use-def links while the solid arrows are def-def links. The first 

definition of both x and y have empty def-def links, since they logically point to the 

assumed definition of each variable in Entry, the source tuple.+ 

' ~ o t e  that we have omitted the link from P. 



3.2.2 Additional Analysis 

We now discuss some of the benefits of FUD chains over standard SSA form. The 

most notable advantage is in the additional precision offered for analyzing nonkilling 

definitions: arrays, structures, procedure parameters, aliases. They also are necessary 

for detecting scalar output dependence. 

Arrays. Arrays have been a difficult data structure to incorporate into SSA form. The 

original work by Cytron et al. suggested creating new operators (Access and Update) for 

each array definition and use, so that they could be modeled as scalar variables [CFR+91]. 

For example A Cjl = k could be transformed into A = Update ( A ,  j ,k). In this way the 

subscript (which is actually a use of j) and the array name, along with the original RHS 

value, could be treated as uses. 

Each use of an array could be transformed into a scalar access function via a scalar 

temporary. For example, J = A (i) would become: 

Temp = Access(A,i) 

J = Temp 

After separating the components, SSA renaming proceeds as before. 

This approach leaves much to be desired. It requires an extra amount of manip- 

ulation, and results in extraneous references that did not previously exist. A similar 

strategy was suggested to handle structures or records. 

We treat definitions to arrays (and similarly, structures) as nonkilling definitions 

of the array name, since any definition of an array element modifies only a portion of 

the entire data structure. Utilizing def-def links provided by the FUD chain framework 

allows us to leave array statements unchanged. Instead, each LHS array reference points 

to the downward-exposed reaching definition of that same array. Analysis can proceed 

past any particular LHS array definition by following the def-def links. 

As an example of following def-def links when analyzing an array, examine Fig- 

ure 3.12. When processing the use of A ( 5 )  at the last statement we first follow the chain 

to its unique reaching definition, the definition of A (  J). Depending upon the analysis of 



, A ( 1 )  = K:' 
\ * - , 
\ ---.- ; 
"., ENDDO - - -' 

J = A ( 5 )  

Figure 3.12 Following def-def links when analyzing an array. 

the subscript J, we may choose to follow def-def links to the previous reaching definition, 

which in this case is a &function. We can continue to follow links, if desired, reaching 

both the definition of A inside the loop and the definition of A before the loop. We will 

see a direct application of this idea when we look at constant propagation in Chapter 4. 

Procedure Parameters. As noted, the default assumption for variables that are for- 

mal procedure parameters is that they are both potentially a definition and a use of that 

variable. We discussed the methods for maintaining SSA properties in 53.1.4. When 

constructing FUD chains, this approach implies that each parameter will have both a 

use-def link and a def-def link. Although not obvious, both links may not point to the 

same tuple. Consider an example similar to one used previously: 

S1: X =  1 
Sz: call sub2( X + 2, X, X ) 

S3: X'Z 
S4: Y = X  

If we follow FUD chains from the use of X in 5'4, we will first reach the definition of 

X at S3. Now, where does its def-def link point to? This problem is the same one we 

encountered in 53.1.4, and let us tentatively assume we choose a syntactic ordering of 

the arguments to sub2. Then  chain(^:) will be the third argument of sub2. As we saw 



earlier for this third argument, its use-def link becomes: c h a i n m )  = DT. However, 

given our arbitrary ordering for the definitions of the parameters in sub2, the def-def 

link for the third argument will point to the second argument of sub2, which in turn will 

point to DF . 
This situation can impose artificial dependencies between variables used as formal 

arguments to procedures, so an awareness of the problem is critical. 

Scalar Output Dependence An output dependence for a variable occurs when two 

definitions of a variable must be sequentially ordered. It seems clear that following def- 

def chains is necessary to detect these dependencies. We present details of a method 

that detects these dependences in Chapter 6. 

Alias Analysis. Due to potential aliases (may-alias sets), as opposed to known aliases 

(must-alias sets), a definition of one variable may change the value of another variable. 

Thus, the modification of a variable can become a nonkilling definition of another vari- 

able. By following the FUD chain of these potential aliases (starting at a definition's 

def-def link and the links of its alias sets), we hope to add more precision to the analysis 

of may-alias sets. We examine this problem in Chapter 9. 

3.2.3 Notes on Implementation 

We performed experiments to determine what additional overhead, if any, is incurred by 

adding additional links from every definition to the last downward-exposed definition. In 

other words, is there an additional time cost for constructing FUD chains instead of just 

SSA form? In fact, for all the benchmarks we found no extra overhead in constructing 

FUD chains as opposed to straight SSA form. 

Upon reflection, this result is unsurprising, since all tuples are examined on lines 2 - 
11 of Algorithm 3.2, and the modification of line 4 for constructing FUD chains (discussed 

in 53.2.1) simply replaces the link field with the current definition of a variable, which is 

a constant time operation. 



3.2.4 Related Work 

Factored Static Single Assignment. A recent paper [CCF94] discusses concepts 

similar to FUD chains, which the authors call Factored SSA (or FSSA). FSSA uses def-use 

chains to link up definitions to uses, while we utilize use-def links, as noted in 53.1.5. They 

also utilize def-def chains, but where each definition points to the next (upward-exposed) 

definition of that symbol, as opposed to the unique reaching definition of FUD chains 

(downward-exposed). However, the authors discuss a constant propagation algorithm 

that seems to imply that use-def links of some sort must be available for a backward 

traversal of the CFG. We explicitly describe how to perform constant propagation using 

FUD chains in the next chapter. 

Also, details of FSSA construction is not provided, so it is a little unclear exactly 

how the semantics of their method is to be guaranteed. In particular, although they 

refer to the original SSA papers [CFR+91, CFR+89] (which several of them coauthored) 

that describe how to construct SSA form (similar to Algorithms 3.1 and 3.2), no mention 

is made of how to provide the def-def links. Additionally, while using def-def links to 

process procedure parameters and aliases is mentioned, no details are provided on how 

to maintain the SSA semantics in these cases. 

A very nice and useful result is provided by the authors, however. They demonstrate 

that linearizing reaching definitions with &functions and def-def links (in the case of 

nonkilling definitions) is equivalent to a full-blown set of reaching definitions (which may 

be of quadratic size). 

Sparse Evaluation Graphs. An alternate method with which to extract data-flow 

information from a CFG is provided by Sparse Evaluation Graphs (SEG) [CCF91]. Given 

a data-flow problem to solve on the CFG, the SEG method selects, for each variable, 

the set of nodes (NSG) in the CFG that have nonidentity transfer functions. It then 

computes which nodes are in the iterated dominance frontier of NsG, setting NSG = 

NSG U DF+(X) .  All nodes in the original flow graph are mapped to those nodes in 
XESG 

NSG that have the same data-flow solution. 

Thus, sparsity is obtained by solving a data-flow problem on a smaller set of nodes 



(either nodes that have nonidentity transfer function or nodes that may merge infor- 

mation) than those in the original CFG. This procedure works for both forward and 

backward problems. For backward problems, the RCFG is used. 

SEGs differ from SSA form (and, more generally, Reference Chaining as described 

in Chapter 5) in two ways. First, a separate SEG needs to be built for each variable, 

whereas we encapsulate the information for all variables within the original CFG, but 

link references together in a sparse manner using chains. Although chaining functions 

are placed in the CFG on a per variable basis, the linking is done in one pass through 

the CFG, as we have seen in this chapter. Second, with Reference Chaining the solution 

to a problem is only computed at desired nodes, while SEGs map a solution for each 

variable back to all the original nodes in the CFG. 

3.3 Demand-Driven Analysis 

In this section we look at one of the main methods that we have employed to solve 

monotonic data-flow problems. In this case, abstraction merges with implementation 

due to the manner in which FUD chain links mesh with data-flow operator-operand 

links. That is, we are able to traverse the entire data-flow graph (all tuples, plus left, 

right, and FUD chain links) within a single framework. 

Traditional iterative data-flow analysis, such as constant propagation, require multi- 

ple passes over all nodes in the CFG, recomputing information as needed for all tuples 

within each node until a fixed point is reached [ASU86, FL88, Ken811. For a forward 

data-flow problem, after any node in the CFG is processed its successors are next exam- 

ined. This behavior is due to information flowing from predecessors to successors. 

In reality, however, tuples can be connected within the data-flow graph in a manner 

that spans basic block nodes. This phenomenon occurs when using FUD chains with 

the link field, which creates a sparse graph with respect to all variables. Often, when 

attempting to classify a tuple (such as the type of induction variable or whether a variable 

is a constant), its classification depends on that of its data-flow predecessors. One way to 

propagate information from data-flow predecessors to successors is the iterative approach 



on the CFG, as discussed above. It certainly works, but may be slow since it propagates 

information through nodes that have no effect on that information. 

Our approach is to classify each tuple in terms of its predecessors in the data-flow 

graph. In some sense, the CFG is of no consequence. We simply examine a tuple 

at any point, and make a recursive call on its data-flow predecessors when we need 

that information to classify the current tuple. For example, when classifying a binary 

operator such as '+', we typically want to examine its two operands, left and right. If 

one of these operands is a fetch of a variable, we follow the link of the fetch. In this 

way we follow FUD chain links, and we now see a major advantage of use-def links as a 

means to maintain SSA semantics. The key is that FUD chain links point in the same 

direction as operator-operand links, such as we saw in Figure 2.2. Thus, they match the 

demand-driven style of data-flow analysis that we would like to exploit. 

We do make one pass through all basic block nodes, and look at all tuples within 

each node, so that we can be sure that all tuples have been processed. However, the 

blocks can be examined in any order, since the sole purpose is to classify each tuple. In 

fact, any other mechanism, such as traversing the data structure that creates tuples in 

the compiler front-end, would work equally well. The basic procedure, where classify() 

is the method for a particular data-flow problem, is given as  Algorithm 3.3. 

Algorithm 3.3 will solve all monotonic data-flow problems in one pass of the tuples, 

in the absence of cycles in the data-flow graph. It is naive, however, to think that 

no cycles will occur. Sometimes, such as the way we handle constant propagation in 

Chapter 4, a separate solver has already dealt with cycles. In the more general case, 

however, a more sophisticated method is needed. We use Tarjan's well-known algorithm 

[Tar721 in this case, which detects maximal strongly connected components with a linear 

depth-first search. It serves both as a means of cycle identification and as a mechanism 

to perform the traversal over all tuples. When a cycle is detected, separate solvers are 

typically invoked to classify all its elements [GSW]. In fact, a cycle solver can classify all 

its members by visiting each only once when the problem is uniformly monotonic. ( A  

data-flow framework is defined as uniformly monotonic when the meet operator (n) is 

commutative and associative, and for each node N in the flow graph there is some value 



Given: Data-flow graph initialized with lines 1 - 3 
Do: Execute lines 4 - 8 - 
Result: Data-flow solution at each tuple 

1 : forall tuples t do 
2 : t. visit = false 
3: endfor 

4 : forall tuples t do 
5 : if t. visit = false then 
6 : Demand( t ) 
7 : endif 
8: endfor 

9: Demand ( t )  
10 : t.visit = true 

11: if link( t ) # 0 €9 link( t ).visit = false 
12: Demand ( link( t ) ) 
13 : endif 

14 : if left( t ) # 8 €9 left( t ).visit = false 
15: Demand ( left( t ) ) 
16 : endif 

17 : if right( t ) # 0 €9 right( t ).visit = false 
18 : Demand ( right( t ) ) 
19 : endif 

20 : classify( t ) 
21 : end Demand 

Algorithm 3.3 Basic method for solving data-flow problems on demand 



in the abstract domain VN such that the transfer function is fN(x) = x fl VN.) 

Examples of this demand-driven analysis style include induction variable detection 

[GSW], constant propagation (covered in detail in Chapter 4), and bindings for global 

references [WGS94] (which uses the call binding graph instead of the CFG). 



Chapter 4 

Demand-Driven Const ant Propagat ion 

4.1 Introduction 

Constant propagation is a static technique employed by the compiler to determine values 

of variables that do not change regardless of the program path taken. In fact, it is a 

generalization of constant folding [TS85], the deduction at compile time that the value 

of an expression is constant. Constant propagation is frequently used preliminary to 

other optimizations. The results can often be propagated to other expressions, enabling 

further applications of the technique. This recursive nature of the data-flow problem 

suggests using a demand-driven method instead of the more usual iterative techniques. 

In the following example, the compiler substitutes the value of 5 for x in S1, which 

is a canonical instance of constant folding. Since the value of x is now constant, the 

compiler can propagate this value into S2, which, after applying constant folding once 

again, results in the determination that y is the constant 20. It should be noted that 

constant propagation for this work focuses on scalar integer values. Propagation of 

real-valued expressions can be performed, but special care is required since operations 

on real-valued expressions are often architecturally dependent and rounding methods 

may be dynamic. The method outlined in this work also allows for arbitrary symbolic 

expression propagation [G S W] . 



Figure 4.1 Standard constant propagation lattice L: 

Although constant propagation is an undecidable problem [KU77], it is nonetheless ex- 

tremely useful and profitable for a number of optimizations. These include dead code 

elimination [WZSl], array and loop-bound propagation, and procedure integration and 

inlining [GT93]. Due to these benefits, constant propagation is an integral component 

of modern commercial optimizing compilers [BCD+92, LFK+93, Muc881. 

This chapter will first look at constant propagation within the data-flow framework. 

We will show how the constant propagation problem fits into the FUD chain struc- 

ture, and look at the extension of FUD chains to the more interpretable Gated Single 

Assignment representation required to implement conditional constant propagation. A 

comparison of our method with other recent sparse techniques is presented, with an eval- 

uation of the strengths and weaknesses of each approach. We also present experimental 

evidence that shows the number of constants found in scientific benchmark codes as well 

as the time needed to perform the analysis. 



T n any = any 
I n any = I ( ynstant, if i =  j 

constanti l l  constantj = 
otherwise 

Table 4.1 Rules for meet (n) operator. 

4.2 Background for Constant Propagation 

4.2.1 Iterative Solutions 

As a data-flow problem, constant propagation can be cast into the monotone data- 

flow framework given in Chapter 2. Here, W, the set of information to be propagated, 

represents all the possible mappings from the set of variables in a program to the values 

that can be assigned to any variable. The possible values that can be assumed by any 

variable are represented by the semi-lattice t (shown in Figure 4.1), introduced by Kildall 

[Ki173] and standard for many constant propagation methods [CCKT86, GT93, WZ911. 

This lattice is three-tiered, with distinguished 1 (T) and Q (I) elements. In the most 

general terms, each element of W is a set that contains all possible sets of assignments 

from L to the variables in a program. Hence, the size of W is 2IVxRI, where V is the 

number of variables and R is the number of possible constants (both potentially infinite).t 

When comparing two lattice element values, the meet operator (n)  is applied, as given 

in Table 4.1. Since 5 is a partial order, we notice that with this simple lattice a 4 b 

is true only when a is I or b is T. The set T of transfer functions represent the effect 

each basic block node has on the information that enters at the beginning of each node. 

A complete description of these functions for solving the constant propagation problem 

using Equations 2.1 would be quite complicated, and depends on the type of operations 

that can be performed on W, such as assignment, copy, etc.; a "basis" for these functions 

is provided elsewhere [ASU86, Section 10.111. 

t1n this general case V x R is a cross-product, with 2IvXRI being the size of the powerset of this 
cross-product. 



The reason that we do not go into the details here is that solving constant propa- 

gation using a standard iterative technique is quite inefficient. The general method of 

Equations 2.1 carries around the information of all variables within a program at both 

the beginning and end of each node N (in(N) and out(N)) in a CFG. Consider Figure 4.2. 

If information on both x and y is retained and passed through each node, all 8 nodes 

(with in and out sets for each) would need to maintain information on these two vari- 

ables. However, half the nodes for each variable have identity transfer functions. We will 

instead use the method given in Chapter 3, FUD chains, which provides a sparse graph 

upon which to perform analysis, as well as linearization of the chains. In this example, if 

we wanted to evaluate z, we could just follow a total of 6 links as opposed to propagating 

information to nodes that are not involved in the data-flow solution. We conclude that 

the complete iterative solution is overly consumptive of space (and is clearly no faster) 

when compared to a sparse graph solution. 

4.2.2 Relative Precision of Solutions 

Although constant propagation is a monotonic data-flow problem, the solution obtained 

may not be as precise as other data-flow problems. To understand why, we define what 

is known as the meet-over-paths (mop) solution. Given a node M, let PM represent the 

set of all paths from Entry to M. Then, mop(M) is defined as: 

where f p  is the composition of the transfer functions along each path p.t 

One obvious problem with the mop solution is that when cycles are involved there 

are an infinite number of paths from Entry to some of the basic blocks in the CFG. The 

true data-flow solution is the meet over all fp(T) of paths that actually are taken in some 

program execution. Since the set of paths in the true solution is a subset of all possible 

paths, the meet operator assures us that the mop solution is lower in a lattice theoretic 

sense than the true solution, i. e., mop 5 true. Thus, mop is a conservative approximation 

'1n fact, according to the data-flow problem, it may be right to compute f,(l). 



Figure 4.3 Example showing that constant propagation is not distributive 

to the true solution, and is referred to as  safe.+ How does the mfp (maximum fixed 

point, discussed in 52.3.1) solution, which we know how to compute using Equations 2.1, 

compare to the mop solution? If the monotone data-flow problem is distributive, then it 

has been established that mfp = mop, where a distributive system obeys this property: 

(It is not hard to show that distributivity implies monotonicity [Hec77].) 

However, constant propagation is not distributive, which we show by counterexample. 

In Figure 4.3, where the meet function obeys Table 4.1, the transfer function f R  for the 

assignment to c takes a and b from in(R) and computes their sum. Here, x and y in 

Equation 4.1 are sets of values for nodes P and Q, respectively. Thus, x = {(a,l),(b,4)) 

and y = {(a,2),(b73)). (Technically, x and y contain all variables in a program, including 

c, but for convenience we omit them here.) We now make the following calculations: 

+ A  solution in(B) is a safe solution if in(B) 3 mop(B) for all nodes B [GW76]. 



Since the two computations are not identical, we have shown that constant propa- 

gation is not distributive. Essentially, nondistributivity for constant propagation means 

that the data-flow problem cannot "remember" the resulting information after applying 

the transfer function. Here, the sum is constant, even though neither of its addends is 

constant. This problem shows that confluence operators (meet for constant propagation) 

can lose precision, and it follows that in a data-flow framework which is not distribu- 

tive mfp 5 mop. In fact, the mop solution to any nondistributive, monotone data-flow 

problem is undecidable [Hec77]. 

4.2.3 Optimistic vs. Pessimistic Solvers 

Lattice L: is shown in Figure 4.1. The constant propagation algorithms we shall con- 

centrate on have the lattice value for each symbol initialized to T, which indicates that 

it has an as yet undetermined value. After analysis is complete, all symbols will have 

lattice value equal to I (it cannot be determined to be constant), a constant value, or 

T (unexecutable code). We note that values can only move down in the lattice, due to 

the meet operator. 

By initializing lattice values to T ,  an optimistic approach is taken, which assumes 

all symbols can be determined to be constant until proven otherwise. A pessimistic 

approach, on the other hand, initializes all variables as I and never propagates a constant 

until it can be determined to actually be constant. Thus, if analysis of an iterative 

pessimistic method is halted prematurely, all variables labeled constant are provably 

constant. With an optimistic approach, however, a value may be propagated as constant 

but later get lowered to I. Thus, halting an iterative optimistic solver before completion 

may yield incorrect results. 

A pessimistic solver will not propagate an expression as being constant until each 



S1: j = 9  
Sz: do 
s3 : k = j - 1  
s4 : . . . 
S5 : j = k + l  
Ss: enddo 
s,:  i = j  

Figure 4.4 Constants can be missed with pessimistic solvers 

operand has been classified as constant. This requirement can result in missing constants, 

as we see in the program fragment along with its CFG in Figure 4.4. In this case, the 

lattice value of all variables starts off as I. First, j at Sl is determined to be the constant 

9. Next, when processing k at S3 (basic block B), its classification is dependent upon 

the possible values of j ,  which come from S1 and S5 (basic blocks A and D). Since all 

lattice values are initialized to I, 9 n I = I, and the lattice value of k at S3 stays at 1. 

When processing S5, the value of k comes from S3, which we have seen is I, so j at S5 

stays at I .  Finally, to process i at S7, the lattice value of j comes from the top of B,  

which has remained at I after applying the meet function. Thus, though all program 

paths result in the constant 9 for i in S7 (which means, of course, that the mop solution 

for i at E is 9), we see that pessimistic solvers can reach a nonoptimal fixed point. 

An iterative optimistic solver would begin the same way at S1, but each tuple is 

initialized to T. Now when processing S3, j is 9 n T = 9. Thus, k at S3 has its lattice 

value lowered to 8. When S5 is now processed, the lattice value of j gets set to 9. For 

this example, we have reached a fixed point for the cycle B-C-D, and further iteration 

will not change any of the lattice values contained within these nodes. Finally, S7 in 

node E inherits the lattice value of j from B, which is 9 n 9 = 9. In this way, optimistic 



s1 : 2 = 3 s7 : z =  3 
s2 : i f  ( P ) then s8 : i f  ( z  < 5 ) then 
S3 : y  = 5  sg : y = 5  
S4 : e l s e  slo : e l s e  
s5 : y = z + 2  $1 : y = 2  
s6 : endif s 1 2  : endif 

Figure 4.5 Constant propagation with (a) simple, and (b) conditional, constants 

solvers find a larger class of constants than pessimistic methods. 

4.3 Using FUD Chains for Simple Constants 

We need to make one change to the tuple structure when performing constant propa- 

gation. A new field, lattice, is added to each tuple. The lattice element of each tuple 

can assume T, I, or any of the constant values of Figure 4.1. The lattice element is 

initialized to T for optimistic solvers, such as the ones we shall focus upon. 

4.3.1 Constants Within the FUD Chain Framework 

We first show how to implement simple constant propagation within our framework. The 

distinction between simple (all paths) constants and conditional constants can be seen 

in Figure 4.5. The simple value of y  is determined to be constant only if both branches 

which merge at Sf, are constant with identical value, as is the case in (a). A conditional 

constant, however, may be identified when a predicate which controls branching can be 

determined to be constant, since in that case only one of the branches will be executed, 

allowing not only y  to be recognized as constant in (b), but also identifying the other 

path to be dead code. 

The first constant propagation algorithm we present detects simple constants in a 

demand-driven manner. Algorithm 4.1 efficiently propagates simple constants in the SSA 

data-flow graph by demanding the lattice value from the unique definition point of each 

use. We essentially use Algorithm 3.3 where the classify() routine assigns constant values 



to the lattice when appropriate and takes the meet of lattice values at confluence points. 

We visit all CFG nodes, examining each of its tuples, calling Propagate() recursively on 

any unvisited left or right tuples. Expressions are evaluated by calling Propagate() on 

all references with a nonnull link field. When a +function is encountered, recursive calls 

to the arguments are made, followed by taking the meet of those arguments. In the case 

of data-flow cycles, characterized by +functions at loop-header nodes, I is returned. 

We look at a simple example, with Figure 4.5(a) transformed into SSA form and 

slightly augmented. The resulting code and its CFG is shown in Figure 4.6. If we first 

call Propagate( store x ) at S8, recursive calls are made to Propagate( fetch y ) at S8 

and Propagate( merge y ) at S7. Since the merge tuple is a &function, recursive calls 

are made to both its arguments, which will both eventually return 5. Applying the meet 

rules of Table 4.1, x at S8 will have its lattice value assigned the constant 5. 

Although we began with basic block F, we could have started with any node in the 

CFG. For example, had we started with node Dl the store to y would get lattice value 

5 after a recursive call is made to the assignment of x in A. If node E was processed 

next, the left link would get the constant 5 from C, while the right link would return the 

already computed value from D. Finally, when F is visited, only one call to Propagate() 

is made, since y has already been visited and classified as the constant 5 in E. The 

order of visitation of basic blocks never affects the result of the algorithm or its time 

complexity, since all tuples and links are visited exactly once. 

4.3.2 Discussion of Algorithm 4.1 

We discuss several important issues relating to Algorithm 4.1. 

Memoization of lattice values. By storing the lattice value at each tuple, we insure 

that recomputation of lattice values is never needed. This property is valid since the 

demand-driven approach guarantees that each tuple will be visited exactly once. 



Given: Data-flow graph, initialized with lines 1 - 4 
Do: Execute lines 5 - 7 - 
Result: Simple constants assigned to lattice elements 

forall tuples t do 
lattice( t ) t T 
t.visited t false 

endfor 

Visit all basic blocks B i n  the program 
Visit all tuples t within B 

if t.visited = false then Propagate( t ) 

Propagate ( t ) 
t.visited t true 
if link( t ) # 0 then 

if link( t ).visited = false then Propagate( link( t ) ) 
lattice( t ) t lattice( t ) n lattice( link( t ) ) 

endif 
if left( t ).visited = false then Propagate( left( t ) ) 
if right( t ).visited = false then Propagate( right( t ) ) 
case on type of t 

constant C: lattice( t ) t C 
arithmetic operation: 

if all operands have constant lattice value then 
lattice( t ) t arithmetic result of 

lattice values of operands 
else 

lattice( t ) t l 
endif 

store: lattice( t ) t lattice( RHS ) 
merge ($-function): 

if loop-header 4 then 
lattice( t ) t l 

else 
lattice( t ) t tl of $-arguments o f t  

endif 
default: lattice( t ) t l 

end case 
end Propagate 

Algorithm 4.1 Demand-driven propagation of simple constants 



2 = 3 
i f  ( P ) then 

y1 = 5 
e l se  

y 2 = 2 + 2  
endif 
y3 = 46(~i, ~ 2 )  
x = Y3 

Figure 4.6 Example of demand-driven constant propagation 

Only scalar integral constants are found. Since at this point in our implemen- 

tation we only look for scalar constants, we have been a little imprecise on how Algo- 

rithm 4.1 is applied. If tuple t does not operate on a scalar integer object, we need 

consider it no further for most of the algorithms in this chapter (it effectively gets set to 

1). 

This method is not an iterative solver. It  is a recursive demand-driven technique 

that will completely solve the graph in the absence of cycles. The order in which basic 

blocks are visited is not important. 

How multiple definitions are merged. When at a confluence node, we take the 

meet of the demanded classification of the +arguments. By Table 4.1, this will result in 

a constant if and only if all +arguments are constant and identical. 

Class of constants found. This is an optimistic solver since all tuples are initialized 

to T. We find the same class of simple constants as other nonconditional solvers, such 

as Kildall [Ki173] and Reif and Lewis [RL77], in the absence of data-flow cycles. In 



the presence of data-flow cycles (due to loops in the CFG), the solver will fail to classify 

constant valued tuples, even if it remains constant throughout the loop. In a case such as 

Figure 4.4, even though the mop solution for i at S7 is 9, lines 27 - 28 of Algorithm 4.1 

return I. We can improve on this simple demand-driven constant propagation algorithm 

by identifying the data-flow cycle and calling a separate solver on that component. In 

fact, Algorithm 4.1 uses a simple depth-first search when traversing the data-flow graph 

comprised of tuples. Instead, we could use Tarjan's algorithm [Tar72], a depth-first 

search method with additional functionality, which identifies maximal strongly connected 

components of a graph with the same time complexity, O(V + E), as the simple depth- 

first search method presented here. A separate solver for data-flow cycles may be the 

method of choice since it can also be used to classify induction variables for natural loops 

in general. A technique has been outlined in detail elsewhere [GSW] using a demand- 

driven SSA form. Details on how to interface between the induction variable loop solver 

and constant propagation are provided in 54.4. 

Expression Evaluation. When requesting the lattice value of a store operation, line 

25 of Algorithm 4.1 states that the lattice value of the store inherits the lattice value of 

its right hand side (RHS). To evaluate the expression, each RHS operand is classified just 

once, either immediately or after recursive calls on its left, right, or link fields. Hence, 

each expression is evaluated once, since the node containing the expression will only 

be evaluated after all referenced variables are classified. This feature of demand-driven 

classification will become important when we look at other sparse methods of performing 

constant propagat ion. 

Complexity. The asymptotic complexity is proportional to the size of the data-flow 

graph, since it requires each link, left and right edges to be examined once. Hence its 

time complexity is O(V + E) within the data-flow graph. 



x = 0 
y = o  
z = o  
i f  ( P ) then 

y = y + 1  
endif 

xo = 0 
YO = 0 
20 = 0 
i f  ( P ) then 

Y l  = yo + 1 
endif 
Y2 = 4 ( YO, Y 1  

X l  = y2 
z 1 = 2 * y 2 - 1  

xo = 0 
YO = 0 
zo = 0 
i f  ( P ) then 

Y1 = yo + 1 
endif 
y2 = 7 ( P, true+ yl , false-, yo ) 

x1 = y2 
21 = 2 * y 2 - 1  

Figure 4.7 Program in (a) normal form, (b) SSA form, and (c) GSA form 

4.4 Constants Within Conditionals and Loops 

4.4.1 Extending the Interpretability of $-Functions 

When demanding the classification of a variable at a confluence node, we take the meet 

of the demanded classification of its &arguments, as noted in the last section. However, 

if only one of the branches will, in fact, be taken, we would like to only propagate the 

value along that path. 

With conditional constant propagation, if a symbol demands the value from a conflu- 

ence node, we want to process the predicate that determines the path to follow. Examine 

Figure 4.7(b). When attempting to classify xi,  the value is demanded from the use-def 

SSA link of y2, which points to the &function. However, a &function is not interpretable 

[BM090]. Thus, we have no information about which path may or may not be taken. 

Since the predicate P in our example determines the path taken, if P is constant, we can 

determine which argument of the &function to evaluate. If P is not constant, the best 

we can do is to take the meet of the +arguments. 

Augmentation of the +function is needed to include this additional information. We 

extend the SSA form to Gated Single Assignment form (GSA), introduced by Ballance 

et al. [BM090], which allows us to evaluate conditionals based upon their predicates. 

Figure 4.7 shows a simple program converted to GSA form. Briefly, &functions are 



TEST P 

Q v =  v =  R 

Figure 4.8 The two types of &functions: (a) p, and (b) y 

reclassified into two types: p- and 7-functions. All &functions contained within loop- 

header nodes are renamed p-functions, while most other &functions are converted to 

7-functions. Additionally, a new operator, the q--function, is introduced at loop exit 

points for each variable defined within the loop. We now provide the details of GSA 

form and its construction. 

4.4.2 GSA Form 

The p- and  7-functions. Although +functions represent the merging of reaching 

definitions at confluence points, in truth there are two distinct types of merges in the 

control flow sense. We illustrate this distinction in Figure 4.8. In (a) the merge of the 

distinct definitions of v at nodes A and D occurs at node B, which is a loopheader node. 

The use of v at C has its reaching definition from A on the first iteration of the loop, and 

from D on all subsequent iterations. We rename +functions at loop-header basic blocks 

p-functions. In (b), the definitions of v at Q and R meet at S ,  which is a confluence 



node created by branch node P. The path taken from P is determined by some predicate 

within the TEST condition. The merge operator at S needs to encapsulate the predicate 

that determines the branch at P as well as the possible reaching definitions from Q and 

R. We transform &functions at these confluence points into 7-functions to reflect this 

additional information. 

There is typically a predicate of some sort also at the loopheader that determines 

whether control is passed to the loop body or not. In the original work by Ballance 

et al. the p-function was of the form p = (P, vinit, viter), where P is the predicate to 

determine whether the loop will trip, and vinit and vite' are the values for v entering 

the loop and after at least one iteration, respectively. For the applications in this work, 

we do not need the additional overhead in determining the trip condition of the loop. 

Although we want a more interpretable SSA form, we do not need a complete dataflow 

executable model, as was the original intent of Ballance et al. The method of loop 

detection outlined in Chapter 2 (with details given by Algorithm 2.3) does not distinguish 

between loops created by implicit control constructs (such as IF-GOT0 style) and those 

provided explicitly as language features (such as a traditional DO loop). The method of 

encapsulating the predicate condition would add complexity that we would not utilize. 

Thus, we distinguish &functions that occur at loop-header nodes by renaming them 

p-functions, with the form for variable v being v = p(vinit, viter). We easily accomplish 

this transformation in Algorithm 3.1 by expanding lines 16 - 19 to become: 

16a: if Q is the header of Q.loop then 

16b : place V = p(Knit, Kt,,) at the beginning of basic block Q 

17 : else 

18a: i t number of predecessors of Q 

18b: place V = 4( Vl ,  V2, ..., V, ) at the beginning of basic block 

18c : Q,  when V, corresponds to the jth predecessor of Q 

19 : endif 

We know that a p-function will have precisely two predecessors due to the preheader and 

postbody nodes added to the CFG in the preliminary analysis discussed in Chapter 2. 



While p-functions are identified during the placement phase of FUD chain construc- 

tion, we must translate the remaining &functions into y-functions separately. This is 

due to the predicate that controls a ?-function (which we left out in p-functions), and 

because ?-functions can become nested, essentially relying on a chain of predicates to 

determine the control flow path taken to reach a confluence node. In its most basic 

form, the y-function v = y(P, true + vl,false -+ v2) means if P then v=vl else v=vz. 

In this simple form, the y-function represents an i f  -then-else construct, but it is also 

extended to include more complex branch conditions, such as case statements. 

The q-function. One further operator is added to the GSA form - the q-function. 

The purpose of q-functions is to capture or summarize the value of each variable at exit 

points of a loop. Effectively, an q-function gates the effect of the loop from code outside 

the loop. The original work by Ballance et al. included a loop predicate that indicated 

under what conditions the value being gated would be used. As with the p-function, we 

will not need the predicate information. Our methods use the q-function as a placeholder 

to summarize the exit value for each variable when the loop terminates. We discuss in 

54.4.5 how the q-function interfaces with FUD chains and is used by a separate loop 

solver. 

In order to provide 7-functions, we augment the CFG for each edge exiting a loop 

with a postexit node placed outside the loop between the source of the exit edge (within 

the loop body) and the target (outside the loop). An q-function is then inserted into 

postexit nodes for each variable defined within the loop. After completing the loop 

identification phase of a CFG, such as given by Algorithm 2.3, a separate pass can be 

made through the loop structure to add the postexit nodes. The q-functions are easily 

inserted when creating the variable modification list, A(V),  as preparation for the FUD 

chain construction algorithms. Each q-function has a single associated q-argument as a 

placeholder for the summary information at that loop exit point. 



4.4.3 Converting &Functions Into y-Functions 

Flow Graph Reducibility. We start by defining a reducible flow graph. Informally, 

a general flow graph is reducible if there is only one entry point for every loop. Es- 

sentially, reducibility of a flow graph guarantees that control cannot "jump" into the 

middle of a loop from outside the loop. There are numerous equivalent definitions of 

flow graph reducibility, such as those based upon interval analysis (where the intervals 

are often referred to as Allen-Cocke intervals) [AC76] or Tl-T2 analysis, in which a flow 

graph graph is collapsed via two transformations. A flow graph is considered collapsible 

if successive applications of T1 (removing self-cycles) and T2 (turning a node with a 

unique predecessor into one node) result in a single node. Collapsibility has been proven 

equivalent to reducibility [Hec77, HU721. 

Since we find natural loops (using Algorithm 2.3), and since for 7-function construc- 

tion we will need a topological sort of the CFG, we use a third method of determining 

flow graph reducibility. Algorithm 4.2 performs a depth-first search of a CFG, pushing 

nodes onto a stack during their initial visit of the search. 

This algorithm, using standard depth-first techniques, visits each node in the CFG 

exactly once (if it is a reducible graph), yielding an O(V + E) time bound. Since it 

recursively is called on successors that have not been visited, a node is only pushed onto 

stack S (line 17) when all nodes in the same maximal strongly connected component 

(SCC) have been visited, a property used by Tarjan to classify all nodes in a directed 

graph into SCCs [Tar72]. 

Using Algorithm 4.2, we identify a flow graph as reducible if all the edges of the CFG 

can be divided into two classes [ASU86]: 

1. Forward edges of the CFG. These are identified on line 12 in Algorithm 4.2, since 

the target node of a forward edge in a topological sort will not yet have been 

visited. 

2. Back edges in which the head dominates the tail. These are precisely the same edges 

identified in Algorithm 2.3 as determining a natural loop. Line 9 of Algorithm 4.2 

detects nodes that are the target of back edges (they have already been visited), 



Given: CFG and empty stack S 
Do: Initialize with lines 1 - 5. - 

call Topsort( Entry ) 
Result: Topological sort of nodes determined by forward edges if graph reducible 

1 : Reducible t true 
2 : forall nodes V do 
3 : V.visited t false 
4 : V.pushed c false 
5 :  endfor 

6 : Topsort( basic block bb ) 
7 : bb. visated t true 
8 : forall successors succ of bb do - 
9 : if succ.visited = true €9 succ.pushed = false €d succ dom bb then 
10 : Reducible t false 
11: Exit TopSort 
12 : else if succ.visited = false then 
13 : Topsort( succ ) 
14 : endif 
15 : end for 
16 : bb.pushed t true 
17 : push bb onto 5' 
18: end TopSort 

Algorithm 4.2 Constructing a topological sort of nodes and detecting reducibility 



Figure 4.9 Irreducible graph that has a cycle with multiple entry points 

are in the same SCC as the source node of that edge (their pushed field is false), 

but are headers of natural loops (they dominate the source node). Thus, these 

edges are ignored altogether by Algorithm 4.2. 

If any edge fails to fall into one of the two categories above, the graph is classified as 

irreducible on line 10, and we will not be able to transform FUD chains for that graph 

into GSA form. However, if the graph is reducible, all its nodes are pushed onto stack 

S. Popping S provides a topological sort of the CFG nodes ignoring backedges. 

The canonical irreducible flowgraph is shown in Figure 4.9. The cycle containing 

nodes B and C has two entry points from node A. If TopSort is called on this graph, it 

will identify the multiple entry loop when TopSort is called on B (or C) as a successor 

of C (or B). 

Immediate Dominators and Control Dependence. To convert #-functions into 

?-functions we rely heavily on the concept of control dependence, which was defined and 

described in 82.1.2. In Figure 4.8(b), Q and R are control dependent upon P, since one 

branch from P will definitely pass control to Q, while another branch from P may (in this 

case, definitely will) bypass Q (and similarly for R). In translating Figure 4.8 to GSA 

form, we essentially want the 7-function at S to look like: v = y(TEST, t + VQ, f + vR). 

After Algorithms 3.1 and 3.2 have processed the CFG and data-flow graph, S will have a 

#-function that looks like: v = ~ ( v Q ,  vR). We start at each predecessor of S, and process 



all its control dependence chains until the immediate dominator of S is reached, where a 

control dependence chain (CD-chain) for node N = Nl is defined as a sequence of nodes 

Nl, N2,. . . , Ni such that Nj E CDl'red(Nj-l),j E [2.. . i]. If i > 2, we say that N is 

transitively control dependent on Ni . 
We now prove two properties of CFGs that are important to the algorithms we 

present. The first shows that for any confluence node, the immediate dominator of that 

node must be a branch node, and the second demonstrates that every CD-Chain of its 

predecessors includes the immediate dominator of the confluence node. 

Theorem 4.1 Given any node N in a CFG that is not the header of a natural loop and 

that has more than one predecessor, idom(N) must have more that one successor. 

Proof: 

Let I = idom(N). Then, for all paths p: I 4 Q 4 N, I dom Q (if not, then there is a 

path Entry f, Q -+ N that does not pass through I). Assume I has only one successor, 

S. There are two possibilities: 

1. S # N. In this case, I dom S and S dorn N. Thus, some node on a path S 4 P ,  

with P + N,  is the immediate dominator of N (recall the definition of immediate 

dominator from 52.1.2). This conclusion contradicts the assumption that I = 

idom(N) . 

2. S = N. Consider predecessors PI and P2 of N. Without loss of generality, let 

Pl # I .  Since I dom N, I dom PI. Because the only successor of I is N, N dom 

P I .  But in this case the edge PI + N is a backedge by definition, which makes N 

the header of a natural loop, a contradiction of hypothesis. 

Since the assumption that I has only successor leads to a contradiction in all cases, we 

conclude that I has more than one successor. 1 

Theorem 4.2 In a reducible flow graph, i f  node N ,  which is not the header of a nut- 

urn1 loop, has more than one predecessor, then given any predecessor P of N and any 

CD-Chain(P), idom(N) E CD-chain(P). 



(A) 

Figure 4.10 Irreducible graph does not have well-defined CD-chains 

Pro0 f: 

Let I = idom(N). Since I dom N, we know that I dom P .  If P pdom I, then all paths 

from I to N pass through P, and P dom N. (None of these paths from I can pass 

through N before reaching P, otherwise either (i) N would be the header of a natural 

loop with backedge P + N or (ii) P and N are in a cycle of an irreducible graph. Both 

possibilities are excluded by hypothesis.) In this case I = P, and the claim is trivially 

true. 

Now consider the case where P pdom I, and any path pl : (I = Ro, R1,. . . , R,-1, 

R, = P) .  If P = R1, P is control dependent on I (some path from I to Exit avoids 

P ,  since P pdom I). Otherwise, for the largest i on pl, choose Ri such that P pdom 

R,. Then P pdom and P is control dependent of Ril which means that R, E 

CD-Chain(P). Consider path pz : (I = Ro, R1,. . . , Rm-l, R, = Ri)- R, will be control 

dependent upon some Rj, j E [0 . . . m-11, for the largest j on pz such that Ri pdom Rjl  

which adds Rj  to CD-Chain(P). Continued application of this process results in I E 

CD-Chain(P). If not, there will be a smallest k such that Rk E CD-Chain(P) and Rk 

pdom I. Since Rk # I, Rk dom N ( a .  above, no cycles involving Rk and N can exist) 

and I # idom(N). We have reached a contradiction of hypothesis, and thus conclude 

that I E CD-Chain(P). I 



x = 2  
i f  ( P ) goto 30 
i f  ( Q goto 50 
e l s e  goto 40 

3 0 x = 3  
4 0 y = x  

50 continue 

( 4  

xo=2 
i f  ( P ) goto 30 
i f  ( Q goto 50 
e l se  goto 40 

30 x1=3 
40 xz = y(  P ,  t+xl, f+y( Q ,  t + T ,  f+xo))  

y1 =x2 
50 continue 

(b) 

Figure 4.11 Conditional code that results in nested 7-functions 

We illustrate why reducibility is necessary for Theorem 4.2 in Figure 4.10. This 

graph is irreducible due to the cycle consisting of N and C, which has multiple entry 

points. N is a confluence node with idom(N) = B. We note that B is a branch node as 

Theorem 4.1 asserts. But for node N ,  taking C as a predecessor of N ,  CD-Chain(C) = 

{C) U CDPred(C) = {C, A) ,  which does not include B. 

We use Theorems 4.1 and 4.2 to establish the correctness of the algorithms that fol- 

low. Essentially, the y-function provides interpretability of the data-flow graph through 

control dependence relations. Theorem 4.1 tells us that the starting point for calculating 

the path that leads to a confluence node is its immediate dominator, while Theorem 4.2 

assures us that by following CD-Chains of each predecessor of the confluence node we 

will always reach that immediate dominator node. 

We can only translate reducible CFGs with merge &functions into y-functions, since 

cycles not identified as loops would create infinite nested referencing within a ?-function. 

No unique identification of back-edges is possible within an irreducible graph, thus mak- 

ing a topological sort of the nodes with respect to their forward edges impossible. In 

Figure 4.9 neither edge B + C or C + B can be classified as a backedge since the head 

does not dominate the tail. 

The Conversion Algorithm. We now provide the complete algorithm to translate 

a program from FUD form into GSA form. A topological sort of the CFG nodes with 

respect to forward edges is necessary, since y-functions may refer to other 7-functions, 

and in this way the references will always be in terms of functions that exist. Since this 



translation is only possible with reducible flow graphs, +functions at loopheader nodes 

have already been renamed p-functions. The remaining +functions at confluence nodes 

are the result of conditional branches, and Theorem 4.1 tells us to start at the immediate 

dominator of that confluence node to evaluate predicates that determine which path (or 

paths if some predicate is not constant) are taken to reach the &function. Processing 

CD-chains starting at predecessors will always include the immediate dominator, as 

Theorem 4.2 showed. The details of translating &functions to ?-functions are given in 

Algorithm 4.3, and we describe here the data structures used: 

stack S - A list of all basic blocks in CFG, produced by TopSort 

stack T - A list of 7-arguments used by the Reduce function 

last-4(*) - Previous +function processed at this basic block (Initialized to NULL) 

current-y(*) - The 7-function under consideration for this basic 

block (Initialized to NULL) 

labels - Branch values that correspond to outedges from a basic block; 

if there is only one successor, the branch label is true 

Discussion of Algorithm 4.3. This algorithm is an adaptation of an earlier version 

by Havlak [Hav93] that converts +functions at confluence nodes to 7-functions. Prior to 

Havlak's algorithm, it was necessary to convert the source program into an SSA-based 

Program Dependence Graph form [BMOSO]. Our algorithm differs from Havlak's in that 

we do not require a preprocessing pass over the CFG to initialize each of the branch ar- 

guments to determine when all paths that reach that branch node have been processed. 

Havlak's algorithm utilizes a counter, which increments during the preprocessing phase 

and decrements during processing. When counter = 0 during processing, all paths to a 

branch have been examined, and a recursive call to process each of its control predeces- 

sors is invoked. We recursively make calls to Process() on the first visit to any node per 

+function being processed, which we detect using last-4. When each call to Process() 



Given: Reducible CFG 
Do: compute Topsort( Entry ) - 

Execute lines 1 - 12 
Result: &functions converted to 7-functions 

while S # 0 do 
B t pop S 
idom t immediate dominator of B 
for each &function f in B do 

for each CFG predecessor pred of B do 
lab t branch label of edge from pred to B 
param t &argument o f f  that corresponds to pred 
Process( f ,  pred, lab, param ) 

end for 
replace f with Reduce( current-?( idom ) ) 

endfor 
enddo 

Process(function f ,  basic  block bb, labe l  lab, link point ) 
if last-$( bb ) # f 

last-+( bb ) t f 
if bb has more than 1 successor 

send t current-7( bb ) t Build-Gamma( bb ) 
else 

current-7( b b ) t 0 
send t point 

endif 
if bb # idom then 

for each cp E CDSred( bb ) do 
cp-lab t branch label from cp that executes bb 
Process( f ,  cp, cp-lab, send ) 

end for 
endif 

endif 
if current-y( bb ) # 0 

for argument a of current-7( bb ) 3 label a = lab do 
link( a ) t point 

end for 
endif 

end Process 

Algorithm 4.3 Converting +functions to 7-functions 



Build-Gamma( basic block bg ) 
7-predicate t branch predicate i n  bg 
for each successor succ of bg do 

e t label from bg to succ 
add y-argument with label e and with link( y-argument ) e Top 

enddo 
return 7 

end Build-Gamma 

Reduce( t up le  r ) 
if r is  not a y-function return r 
predicate t branch operator of 7-function r 
if predicate already on stack T 

arg t 7-argument of r whose label matches the branch value of predicate 
return reduce( link( arg ) ) 

endif 
for all y-arguments a of r do 

push onto T (predicate, label of a ) 
link( a ) t Reduce( link( a ) ) 
pop 08 T( predicate ) 

enddo 
if all ?-arguments a of r have identical link return link( a ) 
else return r 

end Reduce 

Algorithm 4.3 (cont.) Build-g.() and Reduce() routines 



returns, we fill in arguments of its y-function, if it exists. If a node has multiple suc- 

cessors, current-y saves the corresponding y-function for that node. Each y-argument is 

initialized to T, so that if not replaced it will not affect the meet operator within the 

constant propagation algorithms. 

An Example of Algorithm 4.3 Examine Figure 4.12. TopSort could produce the fol- 

lowing ordering of nodes for stack S : A, B,  C, D, E, F, G. Lines 1 - 12 of Algorithm 4.3 

will pop S and do nothing until E appears. Then, with idom = B, each predecessor of 

E will call Process() on line 8: 

1. Process( vg, C, t, v2) 

Here, last_6(C) # f (vg), and since C has only one successor, the following single 

recursive call (because CDPred(C) = {B)) is made on line 25: 

Process( vg , B, t, v2) 

Now, current-y(B) is created with its branch predicate set to Q, and two y-argu- 

ments initially set to T: 

Since B = idom, line 22 insures us that no further calls are made to Process(). At 

this point, line 31 sets one of the y-arguments: 

2. Process( vg, D, f, vl) 

This call is analogous to the call above. Note that even though C has a definition 

of v and D does not, reaching definitions have already been resolved within the 

+function at E during the Chaining routine of Algorithm 3.2. When the recursive 

call to Process() is made at B, however, last~#~(B) = vs, so no y-function is created, 

and no further calls to Process() are needed. (In this case B = idom, so no further 

calls would be invoked in any case. But if not, a previous invocation of Process() 

for the same +function would have made any necessary calls.) After filling in the 

second 7-argument, vg at E get replaced on line 10 by current-y(B): 



V1 = ... 
i f  ( P ) then 

i f  ( q ) then 
V2 = ... 

else 
. . . 

endif 
v3 = 4(v2,v1) 

e lse  
vq = .. .  

endif 
v5 = 4(v3,v4) 

Figure 4.12 How to convert &functions to 7-functions. 



Figure 4.13 Predicates that affect constants in unstructured code 

Popping F creates no work, but popping G off S will create a y-function at A, 

the idom of G. When Process() is called on predecessor E, it will have v3 as point, 

which is the y-function built when processing E. After calling Process() on F, the other 

predecessor of G ,  the completed y-function at A, which will replace v5 at G, becomes: 

Unstructured Code. Multiple levels of conditionals result in nested y-functions, as 

we just saw in an example of structured code. Unstructured code can also have this 

effect, as seen in Figure 4.11. Figure 4.11(b) shows the program in (a) translated into 

GSA form, with its CFG shown in Figure 4.13. It is quite an interesting example for 

constant propagation, since if we know the value of predicate P we always know what 

possible value of x can reach the merge at 40. However, if we do not know P, then the 

value of predicate Q becomes crucial: 

a If Q is true, only x i  can reach 40. 



Figure 4.14 Example of how the Reduce() routine works 

If Q is false, we have no clear information on what value of x to propagate. 

Reducing 7-functions. When nested y-functions occur, they can often be reduced. 

We have noticed empirically that roughly half the y-functions can be reduced. This 

reduction can occur in two ways: 

1. The same predicate occurs more than once in a y-function. In this case, the value of 

the first occurrence of the predicate can prune the nested predicate. The Reduce() 

function of Algorithm 4.3 accomplishes this task. This optimization is not handled 

by the methods of Havlak [Hav94]. 

2. If all 7-arguments have the same value, then the ?-function can be replaced by the 

value of the arguments. 

The routine Reduce() is linear in the size of the 7-function passed in as an argument, 

which itself is linear in terms of the CD-Chain subtree. As an example of Reduce(), 

examine the following code fragment (whose CFG is shown in Figure 4.14): 



Before reduction, the 7-function at 10 will be: 

And the 7-function at 40 will be: 

After applying the first reduction rule, the ?-function at 40 (7,) becomes: 

x3 = yc(P,t + %(Q,t -+ xi, f + xi) , f  + xo) 

Next, the second reduction rule is applied, yielding: 

A Related GSA Form. A method employed by Havlak [Hav93], aimed at value- 

numbering, thins the 7-function to eliminate paths that cannot reach a confluence node. 

Essentially, if all arguments save one are T, then the entire argument structure is reduced 

to the one non-T argument. Thinning is directed at an efficient implementation of 

value-numbering, but misses identifying constants in some situations, such as shown in 

Figure 4.11. If thinning were used, the 7-function at 40 would reduce to: x2 = 7(  P, 

t-+xi, f+ xo). If P is not constant, the meet of its arguments is I. However, if Q is 

known to be true, the constant value xi will be missed using thinning, since the false 

side of predicate P is prematurely reduced to xi, instead of T. 
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4.4.4 Conditional Constant Propagation

Once converted into GSA form, we can improve upon the PropagateO routine in Al-

gorithm 4.1 to take advantage of predicates that can be determined to be constant at

compile time. When encountering a ,-function, we first attempt to evaluate the predi-

cate. If constant, we follow the indicated branch, propagating constant values as found.

If not constant, we take the meet of its arguments. The revised routine, CondProp(), is

given in Algorithm 4.4.

Several comments are in order regarding Algorithm 4.4:

. Simple extensions allow us to detect constants other than integers, such as logical

or enumerated types.

. Special cases can detect additional constants, even when one of the operands is .L
These include:

- Zero times anything (including 1..)equals zero.

- With logical types, true V * = true, where * is any lattice value, including 1...

- Likewise, false 1\ * = false.

. Reaching a j.L-functionreturns 1... This result is due to the separate solver used for

loops, discussed next. We may encounter if>-functionsin a program with irreducible

loops. In this case, if>-functionscannot be converted to ,-functions, but we can still

detect simple constants.

. The number of intraprocedural constants based upon conditionals is quite small -

Section 4.5 provides experimental data.

4.4.5 Loops

Cycles in the GSA data-flow graph are the result of loops within the original program.

The variables defined within these cycles are classified with a separate solver: induction

variable analysis. Induction variables are traditionally detected as a precursor to strength

reduction, and more recently have been used for dependence analysis with regard to

subscript expressions. We have developed methods for detecting and classifying induction

variables (including nonlinear induction variables [EHLP92, HP92, Wo192b], where the

general class of all induction variables are referred to as sequence variables) based on



1:
2:
3:
4:

5:
6:
7:

8:

9:

10:

11:

12:
13:

14:

15:

16:
17:

18:

19:

20:

21:
22:

23:

24:

25:

26:

27:

28:

29:

30:

31 :
32:

33:

34:

35:

36:
37:

Given: Data-flow graph, initialize with lines 1 - 4
Do: Execute lines 5 - 7

Result: Simple and conditional constants assigned to lattice elements

foraB tuples t do
lattice( t ) +- T
t.visited +- false

endfor

Visit all basic blocks B in the program
Visit all tuples t within B

if t.visited = false then CondProp( t)

CondProp ( tuple t )
t.visited +- true

if link( t ) =I 0 then
if link( t ).visited = false then CondProp( link( t ) )
lattice( t ) +- lattice( t ) n lattice( link( t ) )

endif

if left( t ).visited = false then CondProp( left( t ) )
if right( t ).visited = false then CondProp( right( t) )
case on type (t )

constant C: lattice( t ) +- C
arithmetic operation:

if all operands have constant lattice value
then lattice( t ) +- arithmetic result of

lattice values of operands
else

lattice ( t ) +- ..L
endif

store: lattice( t ) +- lattice( RHS)
cjJ-junction: lattice( t ) +- n of cjJ-argumentsof t
,-function:

if lattice( ,-predicate) = constant C then
lattice( t ) +- lattice value of
,-argument corresponding to C

else lattice( t ) +- n of all,-arguments of t
endif

p-function: lattice( t ) +- ..L
TJ-function: lattice( t ) +- lattice ( TJ-argument )
default: lattice( t ) +- ..L

end case
end CondProp

Algorithm 4.4 Demand-driven propagation with conditional constants
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strongly connected components in the SSA data-flow graph [GSW]. Using Tarjan's 

algorithm [Tar721 for detecting maximal strongly connected components (SCCs) of an 

arbitary directed graph, we employ a variant of Algorithm 3.3 to detect an SCC within 

the data-flow graph. We then classify the SCC based on the number of merge operators 

and the operations that are applied to the variables involved in the SCC. For example, 

an SCC that involves only one variable and one p-function is classified as linear if the 

only operations of the variable are addition or subtraction of integers within that cycle. 

Typically, for reducible flow graphs, the number of yfunctions is indicative of the type 

of induction variable which exists. 

These techniques make use of an exit function, the 11-function, that holds the exit 

value of a variable assigned within the loop. An exit expression is held by the q-argument, 

which if constant can be used to propagate values outside the loop. The exit value may 

be a function of the loop tripcount (which may itself be an expression determined to be 

constant), or may be invariant with respect to the loop, as this simple example shows: 

il = 3 

loop 

1 2  = ~ ( 1 1 ,  i3) 

i 3  = 3 

endloop 

1 4  = 11(i2) 

j = i4 

Since the value of i entering the loop and the last definition within the loop are identical, 

the value of i is easily determined to be constant and can be propagated to the store for 

j. This case is the easiest and simplest for resolving cycles. 

If the exit value does depend on the loop tripcount, which can be determined constant 

at compile time, we can employ path-sensitive analysis, since the determination of the 

actual path taken by the program (in this case the precise number of times a loop will 

be executed) is instrumental in computing the result. In fact, path-sensitive analysis 

may not depend on such strong knowledge; sometimes knowing just that the tripcount 

is positive is sufficient to determine an exit value for a variable. Consider the loop above 

with a different value assigned to i within the body of the loop: 



i l  = 3 

loop 

1 2  = ~ ( i l , i 3 )  

i3 = 2 

endloop 

i 4  = rl(i2) 
j = 1 4  

If we have no information on the tripcount of the loop, the exit value for i, stored in 

the 7-argument, must be I since the p-function cannot resolve its initial and iterative 

values for i .  But if the tripcount can be determined to be positive, the exit value for i 

must be 2, and j can be classified as constant. 

If the exit of a loop is not at the loopheader basic block, then it may still be possible 

to determine a constant since some of the code of the cycle is always executed. Examine 

this code: 

i l  = 1 

10 loop 

1 2  = p(i1, is)  

i f  (PI then 

i 3  = 2 

e l s e  

i4 = 3 

endif 

i 5  = 4(i3i 14) 

i f  (Q) goto 10 

endloop 

1 6  = q(i5) 

j = i 6  

Regardless of Q, if P can be determined constant, the exit value of i is constant on 

all paths, and can be propagated to j . In this case the exit value for i points to the 

&function inside the loop, not the loop-header p-function. That is because the last 

reaching definition of i at the exit point is i g .  Multiple exit points &om a loop greatly 

complicate this analysis. 



il = 5 
while (PI 

12 = ~(11, 13) 

if ( i2 = 5 ) then 
jl = 1 

else 
j2 = 2 

endif 

j3 = ~ ( 1 2  = 5 , t  + jl,f -) jz) 
i3 = j3 + 4 

endwhile 

14 = v(i2) 
k = i4 

5 

store i 
f 

store k 
Fi 

Figure 4.15 Where the conversion to GSA form is necessary to detect a data-flow cycle 



A separate paper describes in detail the workings of our specialized solvers that 

detect and classify a large assortment of linear and nonlinear sequence variables [GSW]. 

Keeping in mind that these demand-driven solvers operate on the data-flow graph, we 

obviously only detect general sequences when a cycle is formed in the data-flow graph. 

Figure 4.15 shows conditional code inside of a while loop and its associated data-flow 

graph. Inspection reveals that the store to k is constant since all paths (including or not 

including the loop) maintain the value of i as 5. However, without y-functions, there is 

no cycle in the data-flow graph, since the &function at the conditional merge points to 

two killing definitions of j. The conversion to a GSA form correctly introduces a cycle 

via the y-predicate. Our current methods have not categorized the class of sequences 

based upon finding y-functions in the data-flow graph. This area is a fruitful source of 

future research. 

Another method would be to design a separate cycle solver specifically for constant 

propagation. By symbolically executing a loop, the pattern of its variables might be 

found. The number of iterations to execute the loop would vary, however. In the 

following example 

i = l  

loop: N = 1 to M 

if ( N < 7 ) then 
i = i + l  

endif 

endloop 

i changes on the first 6 iterations, and becomes constant on the 7th and succeeding 

iterations. This is a technique similar to that used in the Parafrase-2 compiler [HP92], 

where the number of iterations symbolically executed to try and detect a pattern can be 

arbitrarily set by the user. 

4.4.6 Notes on Implementation 

Irreducible Graphs. Although we have discussed some of the effects that irreducible 

flow graphs have on intermediate analysis, we would like to discover how often such 

graphs occur. Table 4.2 shows the programs from the benchmark suite that contain 

procedures that translate into irreducible CFGs. Only a total of 8 routines out of 1071, 



Program I Number of Routines I Number Irreducible 

PERFECT club 

RiCEPS 
boast 1 58 1 1 

spice 
others 

128 
504 

ccm I 145 

5 
0 

1 
wanall 
others 

Table 4.2 Scientific codes that contain irreducible loops 

all 

Total 

less than 1 percent, contain irreducible CFGs. While certainly minimal, those scientific 

Mendez 

11 
154 

codes with such structure are much more difficult to analyze with techniques that rely 

on a reducible flow graph structure. Node-splitting [ASU86, Hec771 is a solution that 

1 
0 

71 

1071 

can transform any irreducible graph into a reducible one by cloning some of the basic 

blocks and adding additional control flow. 

0 

8 

GSA and D a t a  Structure Size. How is the size of the data-flow graph affected 

by conversion to GSA form? Table 4.3 shows the increase in the number of tuples for 

data-flow graphs beginnning with the basic form, with no sparse representation, to FUD 

chain form and GSA form. Since GSA form requires one more argument for 7-functions 

as opposed to &functions (for the predicate), and nesting can occur in tracing control 

flow, we expect the GSA form to be somewhat larger than the FUD form. Table 4.3 

bears this out. Severely unstructured code can result in 100% or 200% increase for the 

GSA data-flow graph, as was noticed in spice, boast, and sphot. 

4.5 Experimental Results 

To gauge the effectiveness of our routines, we measured the number of constants (both 

simple and conditional) on Fortran scientific codes found in the PERFECT, RiCEPS, and 

Mendez benchmark suites, as discussed in 51.4. Counting constants can be a misleading 

statistic. Counting tuples with constant lattice value does not indicate a constant has 

been propagated, since the statement i = 1 will result in a constant store operation. 



1 Total 1163713 11 1469248 1 26 11 1813994 1 57 ] 

Program 

Table 4.3 Number of tuples for the different data-flow forms 

PERFECT club 

basic data- 
flow graph 

FUD 
form 

% increase 
over basic 

GSA 
form 

% increase 
over basic 



Program Total 
Fetches 

shear 
vortex 

Total 

Simple 
Constants 

Table 4.4 Constant fetch tuples and predicates found using Algorithms 4.1 and 4.4 

1398 
521 

92924 

Conditional 
Constants 

58 
34 

4709 

Constant 
Predicates 

Nonconstant 
Predicates 

58 
34 

4808 

3 
0 

6 7 

39 
17 

5506 



Similarly, j = 2 + 3 is an example of constant folding, but not of constant propagation. 

For the purposes of this work, a constant is considered propagated if there is a fetch of 

a tuple whose lattice value is constant. 

Results are shown in Table 4.4. The Simple Constants column shows the number of 

simple constants identified by Algorithm 4.1. The Conditional Constants column reflects 

constants found using Algorithm 4.4, which includes those found using Algorithm 4.1. 

The vast majority of constants (97%) are simple constants. Most conditional constants 

were as a result of loop analysis. The Constant Predicates and Nonconstant Predicates 

columns show the number of predicates controlling branch nodes determined to be con- 

stant using Algorithm 4.4. Although a few predicates are determined intraprocedural 

constants, these are mainly due to guards; with interprocedural analysis and inlining 

[Hal911 we expect to see many more conditional constants propagated [MS93]. 

It is important to note that since we have performed our experiments on benchmark 

programs, there may be a number of static initializations added to the codes. This condi- 

tion could skew the data slightly when compared to code not targeted for benchmarking. 

4.6 An Extension to  Arrays 

Can demand-driven constant propagation be extended to arrays? If so, is it a useful 

analysis technique? In this section we apply FUD chains to arrays in order to determine 

if a significant number of constants exist for particular array values. Essentially, FUD 
chains consider an array to be a monolithic data structure, even though it is composed 

of many parts. We need to analyze particular index values if a constant is able to 

be propagated. Thus, while a definition of any array value is treated as a nonkilling 

definition with respect to the entire structure, we can follow links of the array and check 

for a match of indices. By following def-def links, and testing whether each index value 

is constant, we are able to follow particular array elements until either I is reached or 

another definition for that element occurs. 

The idea is illustrated in this example: 



When we encounter the store to j, its value comes from array A. If the index value of A, 

i, was not constant, I would be assigned to the lattice of j. However, i is the constant 

2 in this case, so we follow the link to the store of A(4). Again, if the lattice value of 

this index value was nonconstant, I would be returned. Since it is constant but not 

equal to 2, the def-def link is followed. Finally, the store to A(2) is encountered, which 

is constant. Thus, j is classified as the constant 7. This procedure is easily extended to 

accommodate multi-dimensional arrays. 

We did not expect scientific programs to be written in such a way that arrays would 

have many constant values, since their most common use is within an iterative looping 

structure, resulting in nonconstant indices. This expectation was borne out in our ex- 

periments, where on all the benchmarks from 51.4 we only found a dozen propagated 

array constants, where the average number of links followed to detect these constants 

was 1.5. 

It is possible to perform array constant propagation on array references where the 

index value is an arbitrary expression, but this extension may require general symbolic 

analysis as the indices could be quite complex.+ The idea is explained in this code 

fragment: 

s1 : .. .  
S2 : A(n+m) = C 

S3: {no writes to n ,  m,  or A ) 
S4: ... = A(n+m) 

S5 : . . . 

If C has constant lattice value, the store to A(n+m) in S2 can be assigned a constant 

value. When there are no writes to n, m, or A between S2 and S4, this constant can be 

propagated to the use of A (n+m) in Sq, even though n and m are not known. However, this 

analysis would unlikely be profitable since, as we saw experimentally with constant array 

indices, candidates for constant propagation are usually assigned to scalar variables, not 

array elements. 

t ~ h e  process of analyzing general array index expressions is covered in the work on recurrence vari- 
ables [GSW]. 



4.7 Comparison With Other Work 

Previous methods perform constant propagation analysis as an iterative data-flow prob- 

lem [ASU86], in which iterations continue until a fixed point is reached [GT93, WZ911. 

We will see that our demand-driven algorithm offers advantages over the traditional 

approach. 

4.7.1 Classification of Methods 

As explained by Wegman and Zadeck [WZ91], constant propagation algorithms can be 

grouped in two ways: (i) using the entire graph or a sparse graph representation, and 

(ii) detecting simple or conditional constants. This classification naturally creates four 

classes of algorithms. We have seen that propagating information about each symbol to 

every node in a graph is inefficient, since not all nodes contain references or definitions of 

the symbol under consideration. Sparse representations, on the other hand, such as def- 

use or use-def chains [ASU86], SSA [CFR+91], Dependence Flow Graphs (DFG) [JP93], 

or Program Dependence Graphs (PDG) [FOW87], have all shown the virtue of operating 

on a sparse graph for analysis. 

The distinction between the four types of algorithms is explained well by Wegman 

and Zadeck [WZ91], and essentially shows (as one would expect) that a combination of 

detecting conditional constants on a sparse graph is the most efficient method with the 

largest class of constants detected. We will look at the algorithm that they present, since 

it incorporates both sparse graph representation and conditional code. The sparse graph 

employed in their method is based on SSA form. 

4.7.2 A Closer Look at One Algorithm 

The algorithm used by Wegman and Zadeck operates on CFG edges. SSA def-use edges 

are added to the graph once the program has been transformed into SSA form. 

Their algorithm works by keeping two worklists, a FlowWorkList and an SSAWork- 

List. Flow edges are initially marked unexecutable. Edges are examined from either 

worklist until empty, with those examined from the FlowWorkList being marked exe- 

cutable. The destination node for these edges also have their +functions evaluated by 

taking the meet of all the arguments whose corresponding CFG predecessors are marked 

executable. Expressions are evaluated the first time a node is the destination of a flow 

edge, and also when the expression is the target of an SSA edge and at least one incoming 



flow edge is executable. This algorithm is iterative, following CFG paths and SSA edges 

until both worklists are empty. More detail can be found in the original paper [WZ91]. 

This algorithm finds all simple constants, plus additional constants that can be dis- 

covered when the predicate controlling a switch node is determined to be constant. The 

time complexity is proportional to the size of the SSA graph, and each SSA edge can be 

processed at most twice. 

Since q5-functions are reevaluated each time an edge with that node as a destination 

is examined, Wegman and Zadeck note that expressions that depend on the value of a 

&function may be evaluated twice for each of its operands. For example, in this program 

fragment: 

if ( P )  

then 

10 Y1 = 1 

21 = 2 

else 

20 y2 = 1 

22 = 3 

endif 

30 Y3 = ~ ( Y I ,  y2) 

23 = 4421, 22) 

Xl = y3 + 23 
if P is not constant, the expression for xl may be evaluated many times. If the flow 

edge from 10 is processed first, then xi equals 3, and it may stay at 3 if the SSA edges 

for y are examined next. Eventually, xi will evaluate to I, as the merge for z becomes 

nonconstant. It is this multiple expression evaluation that we seek to avoid by using a 

demand-driven technique. 

4.7.3 An Evaluation of Methods 

Both our demand-driven approach and the Wegman-Zadeck method have their advan- 

tages and disadvantages. We will highlight the differences, then report on performance 

studies of both methods. 

Features of Wegman-Zadeck Technique 



Works on all CFGs, including those that are irreducible. 

Does not need additional data-structure support past the SSA graph construction. 

Automatically identifies unreachable code due to constant predicates. 

Given a loop in the CFG with the exit at the loop header, it requires that the 

incoming value is equal to the iterative value - essentially that the meet of the 

p-function arguments is constant. 

Reevaluates +functions and expressions - this can lead to slower performance, es- 

pecially when there are numerous, complex calculations involving constants. We 

expect this effect to be exacerbated with interprocedural constant propagation, 

since the number of constants certainly increases [MS93], leading to more expres- 

sion evaluation. 

Needs explicit management of control flow information, and manages two worklists 

to achieve interpretability, one for following control flow edges, and the other to 

follow data-flow edges. This approach is traditional with iterative methods. 

After converting to SSA form, the Wegman-Zadeck method needs to insert both 

def-use SSA edges and use-def SSA edges to correctly implement the algorithm. 

Lends itself to an incremental interprocedural technique. After intraprocedural 

analysis, control flow and SSA data-flow edges are only added to worklists when 

interprocedural analysis produces additional information. Then it solves the in- 

traprocedural problem again, but in this phase it is a pessimistic solver, since 

it will only detect additional constants that had previously been classified as I 

[Aut94]. 

Features of Demand-Driven Technique 

Convert to FUD form with just use-def edges. 

Need to augment FUD chains with 7-functions. While we will consider this cost 

totally attributable to the demand-driven constant propagation method in our 

experiments, in fact the cost may be amortized in a high performance compiler 

that employs valuenumbering. Havlak [Hav94] has shown that the GSA data-flow 

graph enables powerful symbolic pattern-matching and rewriting techniques. 
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Figure 4.16 Comparison of times just for constant propagation analysis 

Each &function (or its converted form as a p- or y-function) and expression are 

evaluated exactly once. 

Demand-driven constant propagation blends well with other important analysis 

phases, such as induction variable detection. 

Only need to operate on the data-flow graph, since interpretability of the CFG is 

captured symbolically in the 7-functions. 

4.7.4 An Empirical Comparison 

We ran both algorithms on the scientific benchmarks discussed in Chapter 1. We 

compiled both algorithms using the parameters discussed in 53.1.5. A straight com- 

parison of times to perform constant propagation is provided in Figure 4.16. The 26 

benchmark programs are linearly displayed according to the order given in 81.4. If we 

add the total time needed to convert FUD chains into GSA form for the demand-driven 

approach, the results are as shown in Figure 4.17. 

Even when we factor in the time for 7-function conversion to GSA form, our demand- 

driven method is faster than the Wegman-Zadeck approach, with 4 exceptions: spice, 

track, boast, and sphot. However, if GSA form is used for other applications, such 
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Figure 4.17 Comparison of times for constant propagation analysis with 7-functions 
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Figure 4.18 Time to perform Wegman-Zadeck algorithm as a function of the the number of 
statements in each program 

as value-numbering, we can amortize the cost of building the GSA graph over multiple 

applications. 

In an attempt to provide some normalization to these results, Figures 4.18 and 4.19 

show the time to perform constant propagation for the two approaches as a function of 

the number of statements in each program. These graphs show that constant propagation 

processing is fairly linear in the size of the program, where the demand-driven approach 

has a slope that is not as steep as the Wegman-Zadeck method. The one anomalous 

program for both methods is ocean, which has complex structure due to large numbers 

global variables and subroutine calls. In fact, within the basic data-flow graph of ocean, 

with 82278 tuples as shown in Table 4.3, tuples involving global variables as procedure 

parameters comprise 61% of its entire structure. 

The times displayed in these graphs include optimizations for intraprocedural analy- 

sis of the Wegman-Zadeck approach not suggested in their original work. When applying 

their technique incrementally (as discussed in the previous subsection) these optimiza- 

tions are no longer valid. Without the additional optimizations, the Wegman-Zadeck 

method is two to three times slower. 
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Figure 4.19 Time to perform demand-driven constant propagation as a function of the number 
of statements in each program 

4.8 Further Extensions of Constant Propagation 

Numerous extensions to this work are possible. One important topic is interprocedu- 

ral analysis and procedure integration. Although some work has already been done in 

this area [GT93, Ha191, MS931, we would like to apply our demand-driven style to the 

problem. In particular, once intraprocedural constant propagation has been performed, 

interprocedural mod/ref analysis may provide information on procedure arguments. A 

reapplication of intraprocedural analysis using this information would be most efficient 

if the analysis can be performed incrementally. Investigation [Aut94] has suggested that 

a method such as the Wegman-Zadeck approach may be best suited for the second 

intraprocedural pass. By managing worklists of only those control flow edges and defini- 

tions affected by the interprocedural information, an efficient incremental solver may be 

designed. As pointed out earlier in this chapter, such an incremental solver is necessarily 

pessimistic. 

Unreachable code can be identified with our demand-driven technique, but we have 

not yet developed the algorithm fully. It may well be that unreachable code is best 

identified using edges instead of nodes, as pointed out by Wegman and Zadeck [WZ91]. 

Traditional SSA form has been criticized for lacking a method to propagate constants 



determined by predicate analysis [JP93]. In the following fragment: 

i f  (xl = 1) then 

i o  = x l  

e l se  

j o  = X I  
endif 

it is desirable to be able to assign i o  a constant value. A sophisticated compiler may 

analyze the guard and determine that under the range of the true side of the conditional, 

xi will always be 1. This notion of a derived assertion is not new [LFK+93], but to 

our knowledge has not yet been integrated into the SSA form. Using demand-driven 

FUD form, derived assertions can easily be captured by inserting dummy assignments. 

We propose a new reference chaining operator, the pfunction, which serves as the new 

definition of its variable. By examining the right-hand side of the predicate, the fragment 

above becomes: 

i f  (xi = 1) then 

x2 = ~ ( 1 )  
io = x2 

e l se  

j o  = X I  
endif 

Now constant propagation may easily be performed via the argument of the pfunction, 

which may be constructed of actual operations in the intermediate form. 

In addition to constant propagation, the explicit representation of derived assertions 

may be advantageous if bounds information can be expressed. In this fragment, 

i f  (no > 0) then 

for i = l ,  no 

... 
endf or 

endif 

if the compiler cannot determine any value for no, then it cannot be determined if the 

body of the loop will ever be executed within the range of the i f .  However, analysis of 



the guard condition assures the loop will be executed at least once. If limit information 

can be encoded in the argument of the pfunction, the loop may be transformed: 

if (no>O) then 

nl = p(>O) 

for i = l ,  nl 

... 
endf or 

endif 

Now it is clear from the expression describing the tripcount that the loop will be executed 

at least once, since the lower limit of n is known. We have seen how knowing that a loop 

will trip at least once can permit the detection of additional constants. 

Another approach is to merge constant propagation with induction (in its most gen- 

eral form, sequence) variable detection and classification. When separate, each phase 

must be rerun to maximize effectiveness. Constant propagation can detect conditional 

constants, which may control loop tripcounts. A general sequence solver can find loop 

invariant values, which can be utilized by the constant propagation algorithms. Thus, 

we feel that an integrated approach holds promise for achieving greater precision of both 

analysis phases. 

Other possible extensions include run-time analysis and value numbering (the process 

of finding congruent expressions by assigning unique integers to each set of congruent 

value graph nodes [Hav94]). It is important to obtain timing results that demonstrate 

how much execution time is saved for the increased analysis done at compile time. These 

are interesting tradeoffs, and remain an open question. Although not constant propa- 

gation per se, the structure of GSA lends itself particularly well to implementing value 

numbering, as has been shown by Havlak [Hav94]. Finally, more work can be done in 

the area of noninteger and symbolic expression propagation. 



Chapter 5 

General Reference Chaining 

5.1 A Generalized Reference Chaining Algorithm 

Numerous data-flow problems require information other than reaching definitions, such 

as reaching uses or, more generally, reaching references. While these problems imply 

downward-exposed references, other problems may require upward-exposed references 

to solve such problems as live variables. Specialized algorithms, such as those for SSA 

and FUD chains, could be developed for each problem. However, the method of linking 

arbitrary references is similar in all cases, so it makes sense to develop a generalized 

reference chaining algorithm, and use parameters specific to the data-flow problem to be 

solved as inputs to the algorithm. We will pattern the general reference chaining (GRC) 

algorithm after Algorithms 3.1 and 3.2, with several modifications. 

Monotonic data-flow problems that utilize GRC must merge information at conflu- 

ence nodes in the CFG when paths from two or more nodes with nonidentity trans- 

fer functions converge. For reaching definitions, these merge operators are called q5- 

functions. Other specific operators are used depending on the problem, but for our GRC 

algorithm we designate the Q-function as the generic merge operator. 

The minimal placement of merge operators for GRC is at DF+(S)t, where S is the set 

of nodes containing any tuples that produce a nonidentity transfer function. However, 

as we have seen, DF+(S) is computationally equivalent to J+(S). For this equivalence 

to hold, an initial reference is required at Entry (more generally, at the START node, 

as explained below). With FUD chains this initial reference is an assumed definition 

of all variables (designated as source), but with GRC the initial reference is set to 0, 

indicating that there is no initial reference. 

+TO be specific, merge operators are placed at DF+(S) for forward data-flaw problems. For backward 
data-flow problems they will be placed at PDF+(S). 



The reaching definition solution using FUD chain form has simple transfer functions 

based upon each tuple type. If tuple t is a definition of variable V then V. CurrentDef = 

t. If not, V. CurrentDef is unchanged. This dichotomy of tuple types does not generalize 

to GRC, since for a given problem some tuples block all reaching references, effectively 

setting V. CurrentDef = 0. We call this set of tuples BlockTuples, where BlockTuples 

= 0 for the problem of reaching definitions. An example of a problem with a nonempty 

BlockTuples set is reaching uses, where killing definitions block all previous uses from 

reaching past the definition. 

Since GRC can be applied to both forward and backward problems, in some ways 

it is analogous to sparse evaluation graphs (SEGs) [CCFSl]. However, as noted in 

53.2.4, sparse evaluation graphs are constructed per variable, whereas GRC graphs are 

an augmentation of the already extant CFG and data-flow graph. Another difference is 

that SEGs are constructed on a per-problem basis, which solves the data-flow problem 

on a sparse graph and maps the solution back to each node in the CFG. The merge 

functions and links created by the GRC algorithm encapsulate information that can be 

extracted on demand when desired at just those points that need the data-flow solution. 

As with the FUD chain algorithm, GRC is performed in two phases: function place- 

ment and chaining. Algorithm 5.1 provides the details for placing %functions in the 

correct nodes, and Algorithm 5.2 fills in the correct links for a given data-flow problem. 

For a given data-flow Problem input parameters to GRC are: 

Direction: Problem is either a forward or backward data-flow problem. 

RefLink: which references for each variable V, from the set {use, def}, get linked 

to V. CurrentRef 

RefTuples: tuple types that imply a nonidentity transfer function for the basic 

block node in which they reside 

BlockTuples: tuple types that for Problem block all previous references for V, 

setting V. CurrentRef = 8 



Based upon Direction, we set the following variables: 

Direction 

forward I backward 

I NEIGHBORS I predecessors I successors I 1 NEXT I successor I predecessor I 

Exit 

pdom frontier 

START 

FRONT 

Entry 

dom frontier 

We use the following data structures for GRC: 

LOCATION 

R(V)  - A list of all nodes N that reference V, where N contains any tuples in 

Reflhples. 

symbol(tup1e) - A function that returns the variable symbol (name) associated with 

this tuple, if it exists. Returns null otherwise. 

I beginning 

V .  CurrentRef - A pointer to the current reference (tuple) of symbol V .  Logically 

points to the top of a reference stack. Initialized to 8. 

end 

t.SavedRef - A pointer to the current reference of symbol(t) before processing this 

tuple. Used to logically pop references off a stack when returning from recursive 

calls down the dominator or postdominator tree. 

Children(N) - A pointer to the children of N in the dominator tree if Direction = 

forward, and children of N in the postdominator tree if Direction = backward. 

WhichNeighbor(N,Q) - An integer indicating which predecessor of Q in the CFG 

is N if Direction = forward, and which successor in the CFG is N if Direction = 

backward. 

Work-List - An unordered list of CFG nodes. For each variable V, Work-List is 

initialized to R (V). 

HasFunc(*) - A reference field to a variable for each CFG node. HasFunc(N) = 

V means node N already has an a-function added for variable V. 

Work(*) - A reference field for each CFG node. Work(N) = V means that node 

N has already been added to WorkList  for variable V .  



Given: R(V) ,  V V 
Do: compute FRONT( N ), V N E CFG - 
Result: R-functions inserted into CFG 

1 : for all nodes N do 
2 : HasFunc(N) t 0 
3 : Work(N) t 0 
4 : endfor 

for each symbol Vdo 
Work-List t 0 
for each N in  R(V)  

Work(N) t V 
Work-List t Work-List U { N )  

end for 
while WorkList  # 0 do 

take N from Work-List 
for each Q E FRONT(N) do 

if HasFunc(Q) # V then 
HasFunc(Q) t V 
i t number of NEIGHBORS of Q 
place V = R(  Vl, V2, ..., & ) at LOCATION of basic 

block Q, where 6 corresponds to the jth NEIGHBOR of Q 
endif 
if Work(Q) # V then 

Work(Q) t V 
WorkList  t WorkJIist U { Q ) 

endif 
endfor /* each Q in  FRONT */ 

endwhile 
endfor /* each symbol V */ 

Algorithm 5.1 Placement of R-functions 



Given: Initialized data structures 
Do: Call Refchain( START ) - 
Result: GRC form 

1 : RefChain(N) 
2 : for all tuples t E N, in direction order do 
3 : V t symbol(t) 
4 : if t E RefLink of V then 
5 : link( t ) t V. CurrentRef 
6 : endif 
7 : if t E {RefTuples U 0-functions) for V then 
8 : t.SaveRef t V. CurrentRef 
9 : if t E Blocklhples then 

10 : V. CurrentRef t 0 
11: else 
12 : V. CurrentRef t t 
13 : endif 
14 : endif 
15 : endfor /* all tuples of N */ 
16 : for each Q E NEXT(N) do /* Neighbors in CFG */ 
17 : j t WhichNeighbor(N, Q) 
18: for each a-function merge tuple f in Q do 
19 : V t symbol(f) 
20 : link( jth argument o f f  ) t V.CurrentRef 
21 : end for 
22 : endfor 
23 : for each Q E Children(N) do /* children in dom or pdom tree */ 
24 : Ref Chain (Q) 
25 : endfor 
26 : for all tuples t E N, in reverse direction order do 
27 : if t E {Reflhples U 0-functions) for V do 
28 : V t syrnbol(t) 
29 : V. CurrentRef t t.SaveRef 
30 : endif 
31 : endfor 
32 : end RefChain 

Algorithm 5.2 Reference Chaining: linking each reference to the next exposed reference and 
correctly inserting R-function arguments 



5.2 Applications of GRC 

5.2.1 Reaching Definitions. 

One obvious example of GRC is the reaching definitions problem, solved with FUD 

chains. FUD chains are built with Algorithms 5.1 and 5.2 by specifying the parame- 

ters (where the merge operator is specified as +functions) for the Problem of reaching 

definitions: 

Direction: forward 

a RefLink: {use,def} 

RefI'uples: any killing or nonkilling definition 

5.2.2 Live-Range Splitting 

For an example of how GRC can aid in the solution of specific data-flow problems, 

we examine an application of live-range splitting for register allocation. The method 

advocated by Kolte and Harrold relies on detecting ranges (a set of tuples) from each 

variable use V to its downward-exposed reference, if it exists [KH93]. Their technique 

iterates a standard set of data-flow equations until a fixed point is reached. They compute 

the set load-range[a,b] for V as follows (where a is a definition or use of V and b is a use 

of V): 

load-range[a,b] = {tuples t 1 t E reaching(a) A t  E reachable(b)) (5.1) 

In Equation 5.1, t E reaching(a) means that a is the downward-exposed reference 

of V at t and t E reachable(b) means that b is the upward-exposed use of V at t. We 

note that this equation contains an expensive combining operation, and Equation 5.1 is 

applied to all tuples for all possible pairings of a and b. Examine Figure 5.1, which has 

two distinct load-ranges, A + C + D ( [ A ,  Dl) and B + C -+ D ([B, Dl). 

This situation is ideally suited for reference chaining. We invoke the GRC algorithm 

on the Problem of downward-exposed references with these parameters: 

Direction: forward 

RefLink: {use} 



Figure 5.1 Computing load-ranges with GRC graphs 

Refhples: any use or definition 

From each use of V, tuples are processed in reverse order within a basic block node, 

adding it to the load-range until reaching link(V). Additional ranges are generated when 

an R-function is encountered, creating a separate load-range for each argument. An 

undefined variable use is easy to spot since its link will be 0. For Figure 5.1, we start at 

the use of V in D and add all tuples to the load-range until we reach le'nk(V), which is 

an R-function in this case. Now, two load-ranges are created, each extending the range 

which already exists until its link(V) is reached. This results in load-ranges [A, D] and 

[B, Dl. 
The use of GRC should improve the efficiency of load-range identification in two 

ways: (1) eliminating expensive operations, and (2) only considering range [a,b] that 

may be nonempty, instead of all possible pairings, which may often result in an a and b 

that have no path between them. 



Figure 5.2 Comparing (a) FUD chains with (b) complete Reference Chaining 

5.2.3 Other Applications. 

For several of the algorithms we develop in the next chapter we need to solve the reaching 

uses problem: at each point what is the downward-exposed use, if it exists? Reaching 

uses is also a forward problem, with the details provided in Chapter 6. The examples 

of GRC that we have seen so far are forward problems. Chapter 7 will examine a very 

common backward problem, which we solve using GRC: live variable analysis. 

We may inquire as to the reason for specializing reference chains. Why not, for for- 

ward problems, chain every reference to its nearest upward-exposed reference? Construc- 

tion would depend upon these parameters for GRC, with the Problem being downward- 

exposed references in this case: 

Direction: forward 

RefI'uples: any use or definition 

While this may be the method of choice if the chains are used for multiple purposes, 

specialization creates additional sparsity. For example, in Figure 5.2(a) the use of x at 

S5 is directly linked to the definition at Sl. However, if we chained every reference to 

its nearest downward-exposed reference as in (b) (where the superscript represents the 

line number of the next downward-exposed reference), the use of x at S5 would have to 

follow four links to reach its reaching definition. Thus, each problem should be carefully 

studied in order to determine what information is needed. This information will result 

in Reference Chains which are as efficient as possible. 



Chapter 6 

Scalar Data Dependence 

Precise value-based data dependence analysis for scalars is useful for advanced com- 

piler optimizations. The new method presented in this chapter for flow and output 

dependence uses FUD chains. It is precise with respect to conditional control flow and 

dependence vectors. Our method detects dependences which are independent with re- 

spect to arbitrary loop nesting, as well as loop-carried dependences. If a loop-carried 

dependence is known to be from the previous iteration, we say its distance is 1 (where 

the distance of a dependence is the number of iterations between the source and sink of 

the dependence). If the distance cannot be determined exactly a dependence direction 

may be used, where direction '<' means any previous iteration. This precision cannot be 

achieved by traditional analysis, such as dominator information or reaching definitions. 

To compute anti- and input dependence, we need to solve the reaching uses problem. 

A variant of reference chains is employed, Factored Redef-Use chains, in which each 

definition's link points to the closest downward-exposed reference. We are not aware of 

any prior work that explicitly deals with scalar data dependence utilizing a sparse graph 

representation. 

6.1 An Introduction to Scalar Data Dependence 

Data dependence analysis is usually presented in terms of array references in nested loops. 

A great deal of work has also been done to find dependence due to pointer aliasing. Little 

has been written about data dependence analysis for scalar references, except to refer to 

standard data-flow analysis [Tse93], to treat a scalar as a degenerate array [Fea91], or 

to use simple methods based on the dominator relationship or the syntactic structure of 

the program. 

We begin with definitions of the four types of address-based dependences. A flow 



dependence (sometimes referred to as a t rue  dependence) ( 6f ) appears between a defi- 

nition of a variable (scalar, array element, or other memory location) and a use of that 

variable when the definition precedes the use in execution. An output  dependence ( 6 O  ) 

appears between two definitions of a variable when one definition precedes the other in 

execution. In a loop, the two definitions might each precede the other, so there can easily 

be a cycle of dependence. In fact, in a loop there may be an output dependence from 

a definition to itself. An antz-dependence ( 6a ) appears whenever a use of a variable 

precedes a definition of that variable in execution. Finally, an i npu t  dependence ( 6j ) 

appears between two uses of a variable. An input dependence does not represent poten- 

tial memory conflicts as do the other types of dependences, but can be useful for certain 

optimizations. 

The compiler can only approximate the actual dependence relations in a program, 

since it does not know the actual paths that will be taken in the control flow graph of the 

program. Thus, the compiler must conservatively assume that a flow dependence might 

exist whenever there is a path from a definition to a use, and so on for the other types of 

dependence. These common address-based definitions of flow, output, anti-, and input 

dependence can be found in many references [A1183, AK87, Wo182, WB87J. 

Value-based dependence relations are a subset of the address-based dependence re- 

lations [Mas94]. The difference is explained by a simple example: 

The address-based definition of dependence includes S1 6f S4 for A and Sl Ja S4 for B. 

Since A is assigned a new value in S3, statement S4 cannot use the value assigned in Sl. 

Similarly, since Sz assigns a new value to B, the assignment in S4 cannot overwrite the 

value that was used in S1. Thus, these two dependence relations are unnecessary. We 

define value-based dependence relations as follows: A flow dependence appears between 

a definition of a variable and a use of that variable when the definition precedes the 

use in execution, and the use fetches the value that was stored at the definition. An 

output dependence appears between two definitions of a variable when one definition 

precedes the other in execution, and the second overwrites the value stored at the first. 

An anti-dependence appears between a use and a definition of a variable whenever the 



use precedes the definition in execution, and the definition overwrites the value that was 

fetched at the use. An input dependence appears between two uses of a variable, if there 

is no killing definition of that definition between the two uses. Essentially, a value-based 

dependence cannot reach past a killing definition of a variable. As always, the compiler 

can only compute an approximation to the actual value-based dependence relations. 

In this chapter we present a new approach to finding data dependence for scalar 

variables. Our approach has several features, one of which is that it computes value- 

based dependence, not just address-based dependence. Value-based dependence is more 

precise [Mas94]; using value-based dependence reduces the number of dependence rela- 

tions and may allow more optimizations. Another feature is that our method computes 

precise dependence distance, when precision is possible, or imprecise dependence vectors 

otherwise. Precise dependence distance is important for many optimizations, such as 

instruction scheduling, software pipelining and parallelization. For instance, knowing 

that the dependence distance is precisely one may simplify communication address cal- 

culation on a parallel machine, since the source and sink of the dependence are likely 

nearest neighbors. In other cases, privatization of scalar variables is possible when they 

are detected as being involved in only loop-independent dependences [BCFH89, Tse931. 

In this example 

loop 

i f  TEST then 

X = ... 
e l s e  

x = ... 
endif 

... = X 

endloop 

all flow dependences for x are loop-independent, so x can be privatized for each loop 

iteration. We note that privatizing x in this example also breaks the loopcarried anti- 

dependence. 

Our method is precise in the presence of conditional control flow, given that the anal- 

ysis is currently path-insensitive: it does not attempt to evaluate predicates to determine 

the paths that will be taken during execution. We show that simple analysis based on 

the dominator relationship cannot take into account conditional control flow precisely. 



Since our analysis is based on the CFG, it is precise even for unstructured programs. In 

some sense, our technique gives the advantages of syntax-based analysis for unstructured 

programs, just as interval methods do for data-flow analysis. 

Using value-based dependence relations is especially important within loops. Most 

dependence representations in loops use some abstraction to describe the iterations where 

the source and target of the dependence occur. As usual, we assume each iteration of 

a loop is identified by an integral iteration vector (often the index variable values). For 

example, vector (2 , l )  would refer to the iteration instance of i = 2 ,  j = 1 for a doubly 

nested loop with i being the outer and j being the inner loop index variable. 

One common dependence abstraction is a distance vector, which is the vector dif- 

ference between the iteration vectors of the source and target iterations; if there is a 

dependence from iteration is to iteration it, the dependence relation has distance d if 

is +d = it. Sometimes an exact distance cannot be computed; in that case, a less precise 

abstraction is used, called a direction vector [Wo178, Wo1891. The direction vector is 

a vector of relations from the set {<, =, >, <, #, >, *); if there is dependence from 

iteration is to iteration it, the dependence relation has direction O if i i  Or, i;, for loop 

nest level k. We allow a generalized dependence vector, where each element is either 

an integer value, if the exact distance for that loop nest level is known, and a direction 

relation if not. We could instead find the maximum and minimum dependence distance 

for each loop nest level; exact distance would be represented when the maximum equaled 

the minimum, and imprecise information would be represented with maximum distance 

of -oo or +oo. However, our method suffices for the scalar analysis presented here. 

The detection of scalar dependences within a loop requires careful analysis to get the 

precise dependence vector. We explain using the following loop: 



T = O  

1 = 1  

loop 

I = I + 1  

CCI] = V + T 

i f  TEST [I] then 

T = B[I+11 

V = T + 1  

e l se  

V = BCI] 

endif 

endloop 

There is a loop-carried flow dependence relation S7 Sf S5 for variable T, and two more 

loop-carried flow dependence relations S8 Sf S5 and Slo Sf S5 for variable V. However, 

the dependence distance for the V dependences is exactly one; since V is assigned on every 

iteration, any loop carried dependence relation must come from the previous iteration. 

We call this situation loop-carried(l), to identify the dependence carried by a loop with 

a distance of one, and it is denoted as S8 6;) & for this example. For the T dependence 

carried by the loop, however, the distance can be any positive integer, since T might 

not be assigned on every iteration. We call this case loop-carried(<), and is denoted 

S7 6[,) S5. Finally, the flow dependence Sl Sf S5 for T is not carried by any loop. It  is 

loop-independent. A dependence within the same loop, but not carried by any loop, such 

as S7 df S8 for T, is also loop-independent. We denote a loop-independent dependence 

using the common terminology S,, such as S1 S& S5. 

Simple dominator-based analysis will find precise dependence relations when the 

assignment dominates the use in the body of the loop (to give loop-independent depen- 

dence) or when the assignment dominates the back edge (to give loop-carried dependence 

with distance one). In this example, however, neither S8 nor Slo dominates the loop back 

edge, so such simple analysis will fail. We will show this situation occurs frequently in 

our benchmark programs. 

Our analysis is based on FUD chains from Chapter 3. Other intermediate representa- 

tions, such as dependence flow graphs [JP93] or the program dependence web [BM090], 

could also be used with similar algorithms; those representations contain enough infor- 

mation to find the actual dependences, though they do not represent the dependence 



relations explicitly. We note that reaching definitions are not sufficient, since they do 

not take into account how definitions on conditional branches are carried by loops. 

The algorithm for finding flow dependence starts at a use and follows the chain of 

links to all reaching definitions. We want more information than just the reaching def- 

initions; we also want the most precise dependence distance information possible. This 

method is described in Section 6.2, along with experimental data from common scientific 

benchmarks. We rely on the fact that each natural loop header has exactly two prede- 

cessors: the preheader and postbody. Control flow merges at loop headers (p-functions) 

are treated specially: analysis at this point lets us know whether the dependence is 

loop-carried, loop-entering, or loop-exiting dependence. 

The algorithm to find output dependence is essentially the same as that for flow 

dependence. The only difference is that the initial call is from definition sites, rather 

than usage sites, of a variable. This algorithm is presented in Section 6.2.5. 

However, the algorithm to find anti- and input dependence cannot use FUD chains. 

The information needed for these dependences is the set of uses that are overwritten 

by a definition. We generalize the FUD chain construction algorithm to create the 

reference chaining algorithm in Section 5.1, then use this algorithm to implement Fac- 

tored Redef-Use (FRDU) chains. FRDU chains link each definition to the most recent 

downward-exposed use, and that use to the next most recent downward-exposed use. 

Their applications to input and anti-dependence is described in Section 6.3. 

6.2 Flow and Output Dependence 

6.2.1 Necessary Ingredients 

At first glance, it may appear that scalar flow dependence information could be gath- 

ered by applying traditional data-flow techniques, e.g., dominator analysis and reaching 

definitions. When the source of the dependence dominates the sink, or the loop post- 

body does not lie on any path from the definition to the use, the dependence must be in 

the current loop iteration, hence it would be loop-independent. If the definition domi- 

nates the postbody, the distance would be one, while remaining cases would indicate a 

direction of < or unknown. 

However, these observations are not sufficient to capture either precise distance nor 

correct classification. Referring to the last example presented in 56.1, and represented 

graphically but in simplified form for variable V as Figure 6.1(F), we notice that the flow 



Figure 6.1 The eight kinds of scalar flow dependence that occur within a single loop, grouped 
by related pairs. Solid lines represent loop-independent(oo) or loop-carried(1) dependences, while 
a dotted line represents a loop-carried(<) dependence. 

dependence distance from either definition of V to the use of V is precisely one. We also 

note that in this example neither definition of V dominates the postbody, but since all 

paths through the postbody contain a definition to V, the distance must be one. 

Thus, to correctly classify flow dependences, we follow the chain from each use, which 

will lead to either a definition, a &function, or a yfunction. (We assume that loop-header 

+functions have been renamed p-functions, as per GSA form.) When encountering a 

&function, we follow the chains of each argument. Intuitively, a loopindependent flow 

dependence will be discovered by following use-def links in the current loop body (or to a 

definition site outside the loop in which the use occurs), while loop-carried dependences 

must always flow through a y function. 

When a chain reaches a yfunction, we conceptually continue to follow the links 
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around the loop. To prevent infinite cycling, each p-function has a flag, self (initially 

set to false), which indicates whether following chains around the loop can reach back to 

the p-function. If the self flag is set, a +-function (or a nonkilling definition) must have 

been encountered while following chains for that loop instance; this condition indicates 

a conditional branch that may or may not be taken during any particular iteration, but 

where on at least one of the branches there exists a chain reaching the p-function. Thus, 

while the dependence is loop-carried, we do not know its precise distance, so we denote 

its direction as (<). If the self flag is not set, then all paths must encounter a killing 

definition for the variable being analyzed; this condition means that the flow dependence 

must be to the subsequent iteration, and its distance is 1. 

6.2.2 Algorithm 6.1: Precisely Detecting Scalar Flow Dependence 

An algorithm for detection of scalar flow dependences within a single loop has been 

presented previously [SGW94]. To extend this algorithm to nested loops, several issues 

need to be addressed. First, we must provide a recursive routine, to allow arbitrary 

nesting. Second, distance and direction of the dependence must be accurate in terms 

of all loops containing the dependence. This second point implies that a dependence 

relation between two references may in fact be more than one dependence: it can be a 

dependence with respect to an inner loop as well as another dependence with respect to 

an outer loop. 

Data Structures 

We use the following data structures for the algorithms in this chapter (where f [n] refers 

to the nth argument of & or p-function f ) :  

=e- yfunctions: 

self - A flag representing whether a p-function can transitively reach itself. 

Initialized to false. 

Reaching-set - A set of definitions which can be reached by following 

chaan( p[2] ). Initialized to 0. 

* loops: 

nest( loop ) - A function that returns the nest level of loop 



loop( ref) - A function that returns the innermost loop containing ref 

nl( ref ) - A function that returns nest( loop(ref) ) 

common( refl,ref2 ) - A function that returns the most deeply nested loop 

containing both ref1 and ref2 

* references: 

marked( ref) - A value such that marked( ref) = u indicates ref has already 

processed use u in Find-Dependence(). Initialized to NULL. 

Reached( ref ) - A set where r E Reached( ref ) indicates ref has already 

processed p-function T in Find-Reaching. Initialized to 0 

For each dependence (excluding loop-independent dependences) we build a depen- 

dence vector to describe the most precise information available for all loops, from the 

outermost loop containing the dependence to the most deeply nested loop containing 

both references of the dependence. A nest level is associated with each loop, starting at 

1 for outermost loops. 

When building the dependence vector, we must first find the most deeply-nested loop 

(corn) containing both the source and sink of the dependence, since we do not consider 

loops at a nest level greater than corn. Next, the nest level of com is compared to the 

nest level of the loop containing the p-function being processed (mu-loop), since all loop- 

carried dependences are as a result of processing p-functions, as noted above. If the 

nest levels of com and mu-loop are equal, then the mu-loop will carry the dependence. If 

the nest level of corn is greater than the nest level of mu-loop, mu-loop still carries the 

dependence, but loops between mu-loop and corn have unknown information, and their 

entry into the dependence vector is denoted *. Finally, if the nest level of mu-loop is 

greater than the nest level of con, mu-loop clearly does not carry the dependence, hence 

the dependence is loop-independent (00). 

6.2.3 Discussion of Algorithm 6.1 for Flow Dependence 

Figures 6.2 and 6.3 provide the basis for Algorithm 6.1, which detects scalar flow de- 

pendences. Algorithm 6.1 first calls Find-Dependence() on each scalar use, its link, and 

type f (flow dependence). Encountering a scalar definition results in a loopindependent 

dependence, while a +function results in a recursive call on the links from each argu- 

ment. When a p-function is encountered, the set of references reachable within that 



Given: A program converted to FUD chain form 
Auxiliary data structures initialized 

Do: V scalar uses U, - 
Find-Dependence( chain(U), U, f ) 

Result: A list of statement-based flow dependences, and a dependence 
vector for any dependence which is not loop independent 

Algorithm 6.1 Identifying scalar flow dependences 

Find-Dependence( d,  u, t ) 
if type( d ) = source then return endif 
if marked( d ) = u then return endif 
marked( d ) t u 
if d is a p-function then 

Find-Dependence( Chain(d[l]), u, t ) 
if Reaching-Set(d) # 0 then 

Find-Reaching( Chain(d[2]), d ) 
endif 
for c E Reaching-Set( d ) do 

if self( d ) = true then 
dep-vec t Build- Vector( d ,  c,u,< ) 

else 
dep-vec t Build- Vector( d,c,u, 1 ) 

endif 
ht Snum(c) (dep-vec) S n U m ( U )  

endfor 
else if d is a #-function then 

for each argument j of d do 
Find-Dependence( Chain(d[j]), u, t ) 

endfor 
else 

output Snurn(d) Snun(u) 
if d is a nonkilling definition then 

Find-Dependence( Chain(d), u, t ) 
endif 

endif 
end Find-Dependence 

Figure 6.2 Procedure for identifying scalar dependences 



Find-Reaching( d,  f ) 
if d = f then 

self( f )  t true 
return 

endif 
i ff  E Reached( d ) then return endif 
Reached( d ) t Reached( d ) U f 
if d is a p-function then 

Find-Reaching( Chain(d[l]), f ) 
Find-Reaching( Chain(d[2]), d ) 
add Reaching-Set( d ) to Reaching-Set( f ) 

else if d is a &function then 
for each argument j of d do 

Find-Reaching( Chain(d[j), f ) 
endfor 

else 
add d to Reaching-Set( f ) 
if d is a nonkilling definition then 

Find-Reaching( Chain(d), f ) 
endif 

endif 
end Find-Reaching 

Build- Vector( func,def,ref, entry ) 
com t common( def, ref)  
if nest(com) = nl(func) then 

dep-vec[l . . . nl(func) - I ]  t 0 
dep-vec[nl (func)] t entry 

else if nest(com) > nl(func) then 
dep-vec[1 . . . nl(func) - I ]  t 0 
dep-vec[nl(func)] t entry 
dep-vec[nl(finc) + 1 . . . nest(com)] t * 

else 
dep-vec t oo 

endif 
end Build- Vector 

Figure 6.3 Routines for Find-Reaching and Build- Vector 



loop are calculated with an on-demand call to Find-Reachingo, which determines what 

definitions of a particular variable can reach around the loop. Then, each element in this 

set results in a dependence with a dependence vector computed by Build-Vector(). 

Since p-functions are distinguished from +functions occurring at other merge points 

in the CFG, cycles in the call graph for Find-Dependence() are fairly rare. However, 

redundant calls may occur in two ways. First, there may be an irreducible flow graph. 

Second, a nonkilling definition along one branch of a conditional for the variable being 

processed may result in repetitious calls to Find-Dependence() for the same use of that 

variable. Since Find-Dependence0 processes one use of a variable at a time, we associate 

a marked field with each reference point. By checking this field, we eliminate extra calls 

due to nonkilling definitions and potential infinite loops as a result of irreducible flow 

graphs. We illustrate how the marked field is used with this example: 

S1: v1 = ... 
S2: i f  ( P ) then 

S3 : cal l  sub( Vz 

S4: endif 

s 5 :  V 3 = 4 ( V 2 , V 1 )  

s6: ...= v3 

We call ~2nd-Dependence(chain(@), q , f )  to find the flow dependences for this code 

fragment. Since chain(@), equivalent to D:, is a &function, recursive calls are made on 

both arguments. The call to ~ind-~ependence(~Y, @,f) finds the dependence S1 6f Ss, 

while the call to ~ind-Dependence(D:, g,f) finds the dependence S3 6f S6. However, 

D; is a nonkilling definition, so another call to ~ indl )e~endence(D~,  q ,  f) is made from 

line 25 of Find-Dependence(). Since Ur has already been marked at DY, this call will 

immediately return, preventing a redundant dependence from being detected. 

The situation is similar for the routine Find-Reaching(), except that the Reaching-Set 

is associated with particular yfunctions, and not in terms of a processed usage site. In 

this case we keep, for each definition site, a list of p-functions that have already processed 

that site. 

We illustrate Algorithm 6.1 with two examples. First, we show a single loop in which 

the dependence distance of one cannot be ascertained by conventional analysis: 



TI = . . .  
loop 

T2 = p(Ti,T5) 

...= T2 
i f  TEST then 

T3 ' ... 
else 

Tg = ... 
endif 

T5 = $(T3,T4) 

endloop 

For the use of T at S4 a call is made to Find-~e~endence(chain(rrT),~~,f), which is 

equivalent to ~ind-~ependence(D~,~~,f). A further call to Find-Dependence(DT,UT,f) 

is made on the first argument of DT, since it is a p-function, resulting in this flow 

dependence from line 23 in Find-Dependence() (Figure 6.2): 

A call to F i n d - ~ e a c h i n ~ ( ~ T ~ , ~ T )  is made on the second argument of D:, since 

this is the first time this p-function is encountered. Find-Reachango recurses on the 

two arguments of DG, returning when finding the killing definitions of T at S6 and S8. 

Thus, ~ e a c h i n ~ - ~ e t ( ~ T )  = { D ~ , D ~ ) ,  and self(DT) stays at false. Lines 10 and 14 of 

Find-Dependence() output these two flow dependences of distance one: 

As previously noted, simple dominator analysis will not discover these dependences of 

distance 1, since neither killing definition of T within the conditional construct dominates 

the postbody of the loop, although jointly they do so. 

We now show how Algorithm 6.1 operates for scalar flow dependences in nested loops 

with this example (in which we assume the exit is at the top of each loop): 



v1 = ... 
loop1 

v2 = p(Vl,v3) 

loop2 

V 3  = p(V2,V5) 

i f  TEST then 

Vq = ... 
endif 

v5 = 4(V3,V4) 

... = v5 

endloop2 

endloopl 

Within the above loop, the only use of V occurs at  Slo. Thus, we make the call 

Find-~ependence(chain(~~),~g, f ), which is equivalent to Find-~ependence(DX,v,",, f ). 

Since D: is a &function, recursive calls are made to ~ i n d - ~ e ~ e n d e n c e ( ~ r , ~ g , f )  and 

Find_Dependence(Dy,~~,  f ). From the second of these calls we get the loopindependent 

dependence 

from line 23 of Figure 6.2. 

The other call, F ind_Dependence(Dl ,~~,  f )  points to a p-function, thus Find-De- 

p e n d e n c e ( D F , ~ ~ , f )  is called on the first argument in S5, while the second argument 

invokes a call to Find-Reaching(D:,Dr), setting the self flag for D: and discovering its 

Reaching-Set = (0:). Lines 10 - 12 and 16 of Figure 6.2 give us the dependence 

Finally, the call to ~ i n d - ~ e p e n d e n c e ( ~ ; , ~ & , f )  from the first argument of the p- 

function a t  S5 is a reference to another yfunction, thus Find-~e~endence(DY,U$, f) is 

called on the first argument in S3, and ~ i n d - ~ e a c h i n ~ ( ~ ~ , ~ ~ )  is called by the second 

argument, setting the self flag for D r  and discovering its Reaching-Set = {DY) (by 

merging with the Reaching-Set of DY). We then output these last two dependences: 



6.2.4 Measuring Algorithm 6.1 on Scientific Benchmarks 

How often do the cases in Figure 6.1 occur? To discover the usefulness of our method, we 

ran our algorithm over the scientific benchmarks contained in the Perfect Club, RiCEPS, 

and Mendez suites. In order to keep the investigation at a level that is easy to analyze, 

this set of data only counted flow dependences in which the source and sink of the 

dependence were within the same inner loop. As shown in Figure 6.1, there are eight 

categories of dependences within a single loop, although cases F and G are statistically 

grouped together since they are semantically equivalent. We show F and G in Figure 6.1 

separately because the eight cases form a coherent pattern of matching pairs. 

Table 6.1 shows the result of our analysis. To be widely useful, cases other than 

those where the source dominates the sink (case A) need to occur with some frequency. 

Case F corresponds to the second example from the previous subsection, where no defi- 

nition dominates the use, but all paths reaching the postbody contain a definition. This 

case comprises 7% of all loop-carried(1) dependences where the source and sink of the 

dependence lie within the same inner loop. In some codes, such as spice and flo52 

from the PERFECT Club suite or sphot from the RiCEPS suite, the percentage ranges 

from 17% to 68%. These results demonstrate that traditional data-flow techniques are 

not sufficient to achieve the precision captured with our algorithms. 

Case H also includes subroutine calls where we know no information about the ar- 

guments, such as that available from interprocedural mod/ref analysis. Any particular 

iteration of this loop 

loop : 

call f (x) 

endloop 

may modify I, hence it will be detected as a 6[,) dependence. In terms of Algorithms 6.1 

and 6.2, the reference to x represents a nonkilling definition. 

Note that D is the case that will result in both a loop-independent and Ioopcarried(<) 

dependence. This case is correctly analyzed by our algorithm, since a &function for V 

will be placed immediately after the endif statement, resulting in recursive calls to 

the FindDependenceO routine; one will discover the loopindependent flow dependence, 

and the other will discover the loop-carried(<) flow dependence. An examination of 

Table 6.1 reveals that some codes possess structure in which this class of dependence is 

quite significant. 



routine I lines 11 # loop-independent 11 # loop-carried (<) 11 # loop-carried (1) 

11 A I B I C I D I I D I  H 11 l3 I F f 3 G  
PERFECT club 

I Total 1 123301 11 50802 1 4662 1 126 1 2112 11 2112 1 9647 11 7776 1 620 ] 

Table 6.1 A count of the different kinds of scalar flow dependences detected in scientific codes, 
classified according to the type of loop structure from Figure 6.1. The source and sink of the 
dependence are within the same inner loop. 



Given: A program converted to FUD chain form 
Auxiliary data structures initialized 

Do: V scalar definitions D - 
Find-Dependence( chain(D), D, o ) 

Result: A list of statement-based output dependences, and a dependence 
vector for any dependence which is not loop-independent 

Algorithm 6.2 Identifying scalar output dependences 

It is interesting to wonder what percentage of the case A loopindependent depen- 

dences are uses within the loop of the loop index variable. We measured this relationship, 

and found a low of 6% in spice from the Perfect Club suite, to a high of 87% in baro 

from the Mendez suite. The mean over all benchmarks was 16%. This figure is somewhat 

deflated due to the fact that 18% of all scalar flow dependences came from spice. The 

median over all benchmark programs was 55%. 

6.2.5 Algorithm 6.2: Output Dependence 

Figures 6.2 and 6.3 also provide the method for computing scalar output dependence. 

The differences are that definitions are used for input, and we pass the dependence type 

o (output dependence) to Find-Dependence(). Computing output dependence for scalars 

is a fairly trivial modification to Algorithm 6.1, since def-def links have been inserted as 

a component of FUD chains. 

To illustrate Algorithm 6.2, we present a simple example. The following loop has two 

definitions of W, at S4 and S7. 

loop 

W2 = p(Wo,W7) 

if TEST then 

W4 = ... 
endif 

w6 ' 4(w4, w2) 

W7 = ... 
endloop 



The first call is to Find-~e~endence(chain(D~),~~,o), which is equivalent to Find-De- 

p e n d e n c e ( ~ ~ , ~ ~ , o ) .  Since DT is a p-function, a call to Find-Dependence is made on 

its first argument, which we shall consider no further here, restricting our attention to 

dependences contained within the loop body. The second argument invokes a call to 

~ i n d - ~ e a c h i n ~ ( D y , D ~ ) ,  discovering DT'S Reaching-Set = {Dy) .  Since the self flag is 

not set, we get the following loop-carried dependence: 

The second definition generates the call to ~ i n d _ ~ e p e n d e n c e ( D ~  ,DY ,o), which re- 

cursively follows chains to S4 and S2, resulting in the two dependences (Find-Reaching 

for S2 has already been calculated): 

S4 6& S7 and S7 6;) S 7  

6.2.6 Complexity Analysis 

A useful measure of complexity for the scalar dependence algorithms is the number 

of links followed during the analysis to find the dependence. We counted the average 

number of links followed for each detected dependence on all the benchmark programs. 

The information is displayed in Table 6.2 for both flow and output dependence. As 

expected, most programs exhibit a structure where following several links in a chain is 

sufficient to detect a flow dependence. A few programs displayed a much more complex 

structure. The number of links followed on average in ocean is very high due to the 

combination of large numbers of subroutine calls and many global variables, as noted in 

53.1.5 and 54.7.4. 

When the dependence algorithm executes, all the links are not actually traversed 

as depicted in Table 6.2, since multiple uses of the same p-function do not require a 

recomputation of the Reaching-set. The information is effectively memoized at each 

p-function. 

We also show the total number of dependences detected for these cases over the 

benchmarks. These statistics are a superset of those shown in Table 6.1, since they 

include all dependences, not just those where the source and sink are within the same 

inner loop. 



Table 6.2 Total number of scalar flow and output dependences and the number of links traversed 

Program Ave. # Links 
Traversed 

Total # Flow 
Dependences 

PERFECT club 

Total # Output 
Dependences 

Ave. # Links 
Traversed 

11.9 
3.5 
2.7 
3.4 
7.3 
3.3 
3.0 
5.7 
4.7 
3.9 
5 .O 
3.6 
4.3 

adm 
arc2d 
bdna 
dyfesm 
fE05& 

md9 
mg3d 
ocean 

9cd 
spec 77 
spice 
track 
trfd 

9.0 
1.2 
1.4 
1.9 
3.8 
2.0 
1.7 

14.4 
3.3 
2.1 
2.4 
1.8 
2.1 

12055 
4703 
4808 
2203 
4726 
1494 
6886 
6511 
2235 
5412 

23780 
1064 
539 

RiCEPS 

8357 
1284 
2089 
885 

2323 
568 

2142 
5121 
1331 
2031 

18485 
442 
330 

boast 
ccm 

9421 
5669 

7.7 
4.0 

17534 
14345 

5.6 
1.7 



6.3 Anti- and Input Dependence 

6.3.1 Building Chains With T-Functions 

As mentioned in $6.1, FUD chains do not provide the correct information to detect scalar 

anti- and input dependence. FUD chains are a sparse solution to the reaching definitions 

problem, while anti- and input dependence require information on reaching uses: at any 

point, what is the closest downward-exposed use for a given variable? To obtain this 

information, we need links to uses, merging this information at confluence nodes. We 

therefore use GRC Algorithms 5.1 and 5.2 to construct reference chains to solve the 

reaching uses problem. This structure, which we call factored redef-use chains (FRDU 

chains) links each definition to the closest preceding downward-exposed use, and each 

use to the next downward-exposed use. We call the merge operators for this problem 

T-functions. The GRC algorithm builds FRDU chains to solve the Problem of reaching 

uses with the following parameters: 

Direction: forward 

RefI'uples: any use or definition 

BlockTuples: any killing definition 

Since T-functions are a merge of upward-exposed uses, they are themselves considered 

uses of a variable. With reaching definitions, we number each definition uniquely, since 

it logically represents a new variable instance. Multiple uses, however, can repeatedly 

reference the same definition instance. Hence, for reaching uses we depict each defini- 

tion with a superscript to the line number of the downward-exposed use that reaches 

that definition. Each use is superscripted by the line number of the next most recent 

downward-exposed use, if another use can reach without passing through a killing defi- 

nition. The superscript 0 reflects the fact that there are no reaching uses at that point. 

We illustrate this idea in Figure 6.4. The code on the left of Figure 6.4 has its CFG 

shown on the right. The definition of T at S6 is reached by the T-function at S5, which 

merges reaching uses along the control paths from nodes B and A. The path from B has 

a reaching use at S3, while the path from A has no reaching use, denoted by 8. Note 

that for FUD chain form, no +functions would be placed at node C since it is not in 

the dominance frontier of A. 



S1: T@ = ... 
Sz: i f  ( P ) then 
s3 : . . .= T@ 
S4: endif 
S5: T ( T 3 , ~ @ )  
Ss: T5 = ... 

Figure 6.4 Y-functions merge downward-exposed reaching uses 

6.3.2 Algorithms for Scalar Dependence Using T-Funct ions 

We can use the procedures in Figures 6.2 and 6.3, with several minor modifications, to 

construct the algorithms that detect scalar anti- and input dependence. We also need 

one additional data structure that identifies when an T-function is in the header node 

of a loop, analogous to renaming loop-header &functions as p-functions in GSA form: 

Zh( T ): returns true if an T-function resides in the header node of a loop. 

All references to p-functions, specifically the data structures self and Reaching-set in 

Figures 6.2 and 6.3, now refer to lh( T ). 

We also need to check if a link points to 0, in which case the routines immediately 

return. Find-Dependence() just needs to check for 0 instead of the tuple type source, 

while Find-Reaching() needs a conditional statement added. The following alterations 

are made to the procedures in Figures 6.2 and 6.3: 

a line 2 : if d = 8 then return endif 

a line 5: if d is a lh( T ) then 

a line 18 : else if d is an T -function then 

a line 24: if d is a use or nonkilling definition then 

a line 29a: if d = 8 then return endif 

a line 36: if d is a lh( T ) then 



Given: A program converted to FRDU chain form 
Auxiliary data structures initialized 

Do: V scalar definitions D - 
Find-Dependence( chain(D), D, a ) 

Result: A list of statement-based anti-dependences, and a dependence 
vector for any dependence which is not loop-independent 

Algorithm 6.3 Identifying scalar anti-dependences 

S1: T @ =  ... 
s 2 :  loop 
S3 : T(T@ ,T') 
S4 : i f  (Q) then 
S5 : T~ = ... 
s6 : ...= T@ ... 
S7 : endif 
s8 : T(T6 ,T3) 
sg : .. .= T8 ... 
Slo: endloop 

Figure 6.5 FRDU chains for example loop. 

line 40: else if d is an  T-function then 

line 46: if d is a use or nonkilling definition then 

Figure 6.5 illustrates Algorithm 6.3 using FRDU chains for a simple loop. Placement 

of T-functions occurs at the loop header and at the endif. To find anti-dependence, Al- 

gorithm 6.3 is invoked on all scalar definitions D with their FRDU chains and parameter 

a for anti-dependence. In this example, there are two definitions, at Sl and S5. In the 

first case, there are no reaching uses, signified by the 8 superscript. The definition at S5 

is reached by any uses that reach the T-function at S3. One of these links is again empty, 

since there are no uses outside the loop. The other link causes the compiler to find the 

set of uses in the loop that can reach the T-function, and a flag whether the T-function 

can reach itself. In this case, the Reaching-Set = {T9, T~), and the self flag is set. Thus 

the algorithm will find the two loop-carried anti-dependence relations S6 d:<) S5 and 



Given: A program converted to FRDU chain form 
Auxiliary data structures initialized 

Do: V scalar Uses U - 
Find-Dependence( chain(U), U, i ) 

Result: A list of statement-based input dependences, and a dependence 
vector for any dependence which is not loop-independent 

Algorithm 6.4 Identifying scalar input dependences 

S9 diL,) S5, each with nonconstant distance. 

In this example, the Y-functions were placed in the same locations that the c#+ 
functions would be placed, since there are distinct definitions and uses along each control 

path. 

Input dependence is computed in the same way as anti-dependence, except that we 

start at variable uses and chain to reaching uses. Algorithm 6.4 provides the procedure 

to detect all statement-based input dependences, which is also based upon the modifi- 

cations made to Figures 6.2 and 6.3. Detecting value-based input dependence can be 

useful for optimizing locality of reference, achieving better memory-hierarchy (i.e. cache) 

performance [Wo192a]. 

6.3.3 Experimental Results 

We ran Algorithms 6.3 and 6.4 on all the benchmark programs. Total number of anti- 

and input dependences detected and the number of links followed is displayed in Ta- 

ble 6.3. The average number of links followed to find anti-dependences is inflated due to 

the nature of ocean: it was responsible for 25% of all anti-dependences, with an extraor- 

dinarily high number of links traversed. The number of input dependences and average 

number of links traversed is very large, as expected. Again, memoization at loop-header 

Y-functions reduces the actual number of links followed by Algorithms 6.3 and 6.4 when 

they execute. 

We experimentally compared the number of Y-functions as a function of referenced 

variables (Figure 6.6) and program size (Figure 6.7). These graphs show that the growth 

in data structures is linear in both cases. 

Since the set of nodes which contain c#+ or p-functions is a subset of those containing 

Y-functions (all uses and definitions imply nonidentity transfer functions for reaching 



Program 

[ Total 225621 1 33.4 11 1496080 1 32.6 1 
Table 6.3 Total number of scalar anti- and input dependences and the number of links traversed 

Total # Anti- 
Dependences 

Ave. # Links 
Tkaversed 

Total # Input 
Dependences 

Ave. # Links 
Tkaversed 



number 18 
of 

T-functions 15 
(in 1000s) 12 

number of referenced variables 

Figure 6.6 A comparison of T-functions to referenced variables in the benchmark programs 

number 18 

(in 1000s) 12 

number of program statements (in 1000s) 

Figure 6.7 A comparison of T-functions to program statements in the benchmark programs 



uses, but only definitions imply a nonidentity transfer function for reaching definitions), 

we were interested in the percentage increase from the number of $-functions created 

with FUD chains to the number of Y-functions created when constructing FRDU chains. 

The results are shown in Table 6.4, where we note that there are about 2.3 Y-functions 

on average for every +function. 

6.4 Extensions 

There are several useful extensions to scalar dependence analysis. For example, precise 

information is available for dependences that only flow into the first iteration of a loop. 

This loop 

S1 : W = ... 
Sz : loop 1 to N 

S3 : ...= W 
S4 : w = ... 
S5 : endloop 

has a flow dependence from S1 to S3 on just the first iteration of the loop. In its current 

state this loop cannot be parallelized due to the loop-carried flow dependence from S4 to 

S3. Recognition of the dependence from Sl to S3 allows loop rotation to be performed, 

resulting in this equivalent form of the same loop: 

S1: W = . . .  
S3 : ...= W 

S2 : loop 1 to N - 1 
S4 : W = ... 
S3 : ...= W 
S5 : endloop 

s4 : W =  

By creating a prologue (the first statement of the first iteration) and epilogue (the last 

statement of the last iteration), the loop is transformed into an equivalent form in which 

all flow dependences are loop independent. This procedure allows the resultant loop 

to be completely parallelized, if desired. This situation can be recognized if there is a 

variable use whose link points to a yfunction, and the self flag of the p-function is false. 



I Program I( number of I number of I % 
11 4-functions I T-functions I increase 

PERFECT club 

I Total 76445 1 179433 1 134 1 
Table 6.4 Comparison of data structure sizes between &functions and T-functions 



(If self was true, the definition from outside the loop might reach more than the loop's . 
initial iteration.) 

Similarly, privatization analysis of variables is enhanced if a flow dependence exits a 

loop on only its last iteration, since in this case it is easy to identify which variable must 

copy its contents to a global variable. A definition inside a loop that is the last reaching 

definition for a variable within the loop may be the source of a last-iteration dependence 

if the p-function for that variable has its self flag set to false. 

The inclusion of path-sensitive analysis (if available at compile time) may also aid 

in the detection of scalar dependences. Information such as tripcounts for loops or y- 

functions in GSA form provide more precise information on the behavior of loops, and 

may result in more efficient implementation of the algorithms, since some recursive calls 

at confluence nodes may be eliminated. 

Again note that we compute value-based dependences. We can find all memory-based 

dependence relations by always tracing back to other reaching definitions (for flow or 

output dependence) or other reaching uses (for anti- and input dependence), regardless 

of the presence of a killing definition. For scalars, however, value-based dependence is 

easy to compute. 



Chapter 7 

Backward Data-Flow Problems 

In this chapter we study backward problems - those problems in which data-flow in- 

formation flows in the direction opposite control flow. We will look at two backward 

problems that may benefit from GRC, live variable analysis and expression anticipata- 

bility. For these problems, general R-functions are placed at the end of branching basic 

blocks, since they merge upward-exposed information from CFG successors. The mate- 

rial in this chapter on live variable analysis is an adaptation of work done with Michael 

P. Gerlek at Oregon Graduate Institute of Science & Technology [GWS94]. 

In the next section we present the algorithm for constructing reference chains used 

to solve the live variables problem, while Section 2 shows how to use this translation to 

compute liveness information. Section 3 explains how to use these chains to construct an 

interference graph, perform dead code elimination, and for other analysis methods. In 

Section 4 we analyze the performance based on our implementation of these algorithms, 

while Section 5 discusses how to extend analysis to anticipatability of expressions. 

7.1 Live Variables and Chaining 

7.1.1 Defining Live Variables 

Identification of which variables at any point p in the program are live is known as live 

variable analysis. Variable v is considered live at p in the program if there is an upward- 

exposed use of v at p, i.e., v is used after p with no intervening definition of v [ASU86]. 

Otherwise, v is dead at p. Since v is live at the end of a basic block if and only if it is 

live at the entry of any of its successors in the CFG, live variable analysis is a backward 

data-flow problem. 

Live variable analysis is most commonly used for register allocation. It  is also used 

for a variant of dead code elimination (if the target of a defining statement is not live 



after the point of definition, that statement can be removed). Other less common uses 

of live variables are described later. 

The traditional solution to live variables is to iterate data-flow equations. To account 

for the backward solution, we use the following variant of Equations 2.1: 

For live variables, the meet operator is set union, and we iterate this particular 

instance of Equations 7.1 until convergence: 

out(N) = U in(S)  
SEsucc(N) 

in(N)  = use(N) U (out(N) - def ( N ) )  

Iterating these equations requires keeping the information on all variables available 

at the beginning (in) and end (out) of each basic block in the CFG. This procedure is 

generally accomplished using bit-vectors. Bit-vectors usually work well in practice, but 

can be overly consumptive of space [CCF91]. A second problem with the traditional ap- 

proach is that it requires iteration for its solution. Though often convergence is achieved 

after several iterations, this is not always the case and the method is subject to more 

costly meet operations, such as the example we saw in $5.2.2. 

We present a new approach to identifying live variables based upon reference chain- 

ing. Our approach requires no iteration, but instead encapsulates information at branch 

points in the CFG through merge operators known as A-functions. Since live variables is 

a backward problem, A-functions merge upward-exposed references when a basic block 

contains two or more successors. The storing of liveness information at A-functions avoids 

the need for explicit in and out sets. Instead, liveness is computed at each point within 

a basic block on-the-fly. 

7.1.2 Background 

Since live variables is a backward problem, we will be using the concepts of postdominator 

and postdominance frontier as originally introduced in $2.1.2. We write X pdom Y if 

X postdominates Y and Z ipdom Y if Z is the immediate postdominator of Y. The 

postdominator tree contains the set of nodes V from the CFG, connected by edges Z Y 



in the tree if and only if Z ipdom Y. For completeness, the iterated postdominance frontier 

of Y, PDF+( Y), is the limit of the sequence: 

The running example for this chapter is the following program: 

i = O  

while (p) do 

if (q) then 

i = i + l  

endif 

endwhile 

For this example we make the basic blocks explicit and consider only references to i. 

Since we want to refer to both definitions and uses as they relate to the basic blocks, we 

uniquely identify each definition or use with a new subscript number: 

Entry : 

A :  

B : 

C: 
D: 

E: 

F: 

G: 

Exit : 

io = 

if ( . . . I  goto G 
if ( . . . I  then 
= il 

i2 = 

endif 

got0 B 

The CFG (including the slice edge Entry + Exit) and postdominator tree are shown in 

Figure 7.1, with the immediate postdominator and postdominance frontier sets given in 

Table 7.1. We also show the def, use, in, and out sets. 



Figure 7.1 CFG and pdom tree for live variable example program 

Table 7.1  Postdominator and liveness for example program 



7.1.3 The A-Chaining Algorithm 

We use GRC to augment the CFG with A-functions at branch points in the CFG. The 

GRC algorithm is used for the Problem of upward-exposed references, and invoked with 

the following parameters to create A-chains: 

Direction: backward 

RefLink: 0 

Reflhples: any use or definition 

BlockTuples: any killing definition 

Notice that for this problem RefLink is empty, which means that the only link 

fields set are the arguments of A-functions. The live variable problem maintains a set 

at point p that contains all variables live at p. This condition implies examining, for 

each basic block, all tuples within that node, and for each use or def of variable v, 

adding or deleting v from the live set, respectively. Hence, within each node no sparsity 

is possible, but some sparsity is preserved by capturing the merge of upward-exposed 

references at branch points via A-functions. In this way we avoid the iteration associated 

with traditional methods. 

Since this example is the first case of GRC with a backward data-flow problem, 

we will walk through the construction of A-chains for our running example. The only 

nodes containing instances of RefTuples for i are A and D ,  so the GRC Work-List is 

initialized to these nodes. pDFS (A) U PDF+(D)  = {Entry, B ,  C ) ,  so a A-function is 

placed at the end of each of these nodes: 



Table 7.2 Chaining states for example program 

pred X-functions 
i 3  = A( ,@) 
i 4  = A( , 0 )  

node 
Exit 
G 

E 
C 
D 

Entry 

Entry: 

A :  
B: 

E: 

F: 

G : 

Exit : 

i. CurrentRef 
0 
0 

1 4  

15 

i 1 

13 

i 3 = X (  , ) 
i o  = 

i f  (. ..) goto G 

i 4 = X (  , 1 
i f  (...) then 

i 5 = X (  , 1 
= il 

i 2  = 

endif 

got0  B 

t.SaveRef 

For the chaining phase, i.CurrentRef is initially set to 0. We traverse the CFG in 

the order {Exit, G, B, A, F, E, C, D, Entry). Following Algorithm 5.2, Table 7.2 shows 

the state a t  each visited node of i. CurrentRef (at the top of the node), t.SaveRef, and 

any X-functions in CFG predecessors of that node. Starting with Exit, the second link 

of the X-function in predecessor node Entry is set to 0. At node G, the X-function a t  

predecessor B has its second link set to 8 .  Visiting B next, i. CurrentRef is set to i 4 .  

At A, i.CurrentRef is set to 0 ( io  is a definition, thus an element of BlockTuples) 

and the old reference to i 4  is stored in io.SaveRef. The first link of the X-function in 

predecessor node Entry is now set to 8. We must return down the postdominator tree: 

i .SaveRef= i 
i2.SaveRef=i4, il.SaveRef=O 
i3 .SaveRef=@ 

i s  = X(i4, ) 
i 4  = X(i5, 0) 
i s  = X ( i 4 , i l )  



in A i .  CurrentRef is restored to i 4 .  The process continues at node B by visiting its other 

postdominator child, F. After all basic block nodes have been visited and all links have 

been set, the resulting program becomes: 

Entry: 

A :  
B : 

E:  

F:  

G :  

Exit: 

is = A(@, 0 )  

io = 

i f  (. . . > goto G 

i 4  = A(i5,0) 

i f  ( . . . I  then 

i 5  = A(i4, i l )  

= il  

i2 = 

endif 

got0 B 

7.2 Computing Liveness 

After constructing the A-graph for a program, we can calculate liveness by traversing the 

CFG, adding and deleting variables from the live set at each applicable tuple. 

7.2.1 Liveness Algorithm 

Visiting the postdominator tree in a depth-first manner will traverse the CFG bottom- 

up. The set of live variables is initially empty, and variables are added or deleted based 

upon whether each variable reference is a use or definition. Since Exit is the root of the 

postdominator tree, it is always visited first. The tuples in a node are visited in reverse 

lexical order, adding a variable at a usage site to the live set, if not currently a member, 

and deleting a variable at a definition site, if currently a member. At the beginning of 

each basic block (the state of the live set after all tuples have been examined in that 

block) the live set corresponds to the in set in the traditional method. 

We use the following simple lattice to represent liveness information at each tuple, 



where T represents "dead" and I represents L'live". Each tuple that is the use of a 

variable has its lattice value set to I and each tuple which defines a variable has its 

lattice value set to T. Other tuples, with the exception of X-functions, are ignored by 

this algorithm. The lattice value of X-functions are initially T. 

All X-functions are encountered at the end of each basic block (these are the first 

tuples examined for each block). Each X-function must be evaluated according to the 

meet of the lattice values of its argument links. Since X-functions are placeholders for 

liveness information, they constitute a use or definition of a variable as a function of their 

links. A X-argument pointing to a variable use is set to I, while an argument pointing 

to 0 (indicating a variable definition or no reference along that path) gets set to T.  

A X-argument may also point to another X-function, whose arguments may in turn 

point to still another X-function. In fact, there may be a cycle containing X-functions, 

as is the case with our example program. Because the lattice value of a X-function is 

dependent on other X-functions, we use our demand-driven technique (Algorithm 3.3) 

for classifying X-functions, and again employ Tarjan's algorithm [Tar721 for detecting 

strongly connected components (SCCs) in a directed graph. Tarjan's algorithm is applied 

to an abstraction of the data-flow graph, the X-graph, Gx = (V, E), where V is the set 

of X-functions for a particular variable in the program and E is the set of links of each 

X-function pointing to other X-functions. When a nontrivial SCC is detected, the X- 

functions within that cycle (whose members comprise a X-set) are assigned a lattice 

value based on the meet of the lattice value of all links of the X-set functions that do 

not point to elements of that X-set. The result is the meet of the lattice value of all the 

successors of the SCC. Thus, if any component in the SCC has a link which points to 

a variable use, all members of that X-set are classified as live. No iteration of the cycle 

is necessary, since liveness is an example of a uniformly monotonic [WGS94] problem, 

as described at the end of Chapter 3. After processing all X-functions at the end of 

each basic block (and before processing any other tuples within that block), the live set 

corresponds to the out set in the traditional method. 

In our running example, the X-graph contains a X-set consisting of X-functions i 4  and 

is. Figure 7.2 shows this graph, with the initial value of each X-argument shown as a 

superscript of that argument, and the final lattice value of each X-function shown on the 

right of each node. Initially, we note that both arguments to i4 are T,  corresponding to 

the fact that i is dead after the loop and its liveness before the loop depends on liveness 

within the loop body. 



Figure 7.2 A-graph for running example program 

To find the lattice value of our example A-set, we take the meet of all arguments 

that do not point to i 4  or i s :  T for the second argument of i 4  and I for the second 

argument of i5. The result is I, which indicates that i is live within the cycle, hence 

live after basic blocks B and C. 

The details of computing live sets are given in Algorithm 7.1. We use the following 

data structures: 

Live - A set of variable symbols representing those symbols that are live at any 

point in the program. 

visited - A field used by A-functions to indicate whether they have already been 

processed by Tarjan's algorithm. 

marked - A field used by tuples to indicate whether they affect the Live set. 

The set Live is initialized to 0 and Algorithm 7.1 is invoked as Liveness(Exit, Live). The 

lattice element associated with each tuple is initialized as described above. 

7.2.2 Correctness 

We show the correctness of the liveness algorithm at each basic block in the CFG by 

performing induction on the depth of each node in the postdominator tree. Since live 



Given: CFG with A-chains, Live = 0 - 
Do: Call Livenem( En't, Live ) - 
Result: Live sets 

Liveness(N, Live) 
forall tuples t E N in reverse order do 

if type( t ) = A-merge function then 
if t.visited = false then 

set lattice( t ) using Tarjan's alg on the A-graph 
t.visited t true 

endif 
endif 
if type( t ) = A-merge or t is a use or def then 

t.marked t false 
s t symbol( t ) 
case lattice( t ) 

I: if s fZ Live then 
Live t Live U { s )  
t.marked e true 

endif 
T: if s E Live then 

Live t Live - { s )  
t.marked t true 

endif 
endcase 

endif 
endfor 

24 : for M E PDomChild(N) do 
25 : Liveness(M, Live) 
26 : endfor 

27 : forall tuples t E N in forward order do 
28 : if (type( t ) = A-merge) or (t  is a use or def) then 
29 : s t symbol( t ) 
30 : case lattice( t ) 
31: I: if t.marked then Live t Live - { s )  
32 : T :  if t.marked then Live c Live U { s )  
33 : endcase 
34 : endif 
35 : endfor 
36: end Liveness 

Algorithm 7.1 Computing Live sets on a CFG 



variables is a backward problem, analysis starts at Exit, with the order of visitation of 

the nodes determined by a depth-first walk of the postdominator tree (lines 24 - 26 in 

Algorithm 7.1). Once the live out set is correctly computed for node N (after processing 

all A-merge tuples at the end of the node, lines 3 - 8 in Algorithm 7.1), inN is easily 

shown to be correct by the repeated application of lines 9 - 22 on the remaining tuples 

of the node in reverse lexical order. 

Because Live is a set consisting of all variables, we show correctness for particular 

variable v, and note that Live can be constructed at any point in the program by applying 

the union operator to the liveness state of all variables at that point. 

Base case: Since Algorithm 7.1 is invoked with Liveness( Exit, Live ), and initially 

Live = 0, the solution for v (within outEzit) is trivially correct after Exit. 

Induction step: We consider the liveness of v within outry, given that each prior node 

in the walk of the postdominator tree has correctly computed its out set. Two cases are 

presented, based upon the existence of a A-function for v at N: 

a No A-function for v exists at N.  If N has just one successor in the CFG (only Exit 

has no successors), it must be the immediate postdominator of N, and v in  out^ 
must be correct, since in this case  out^ = inipdom(N) by definition. 

If N has more that one successor in the CFG, there can be no upward-exposed 

references of v in any intermediate node on any path from N to ipdom(N), since 

otherwise a A-function would exist at N for v. Thus, the liveness of v at  out^ 
is equal to inipdom(N), and  out^ is inherited from ipdom(N) at line 25 of Algo- 

rithm 7.1. Since the liveness of v within inipdom(N) is correct by hypothesis, and 

 out^ = inipdm(N) by construction, liveness of v at  out^ must be correct. 

A A-function for v exists at N. In this case N must have multiple successors in 

the CFG. The state of v within Live just after block N is dependent upon the 

liveness of v within the in set of all CFG successors of N. If there is an upward- 

exposed use of v within any successor of N, then v is live within  out^; else v is 

dead at  out^. For each successor of N ,  the A-function for v in N will have one 

link to the subsequent reference of v along the path starting with that successor. 

If the subsequent reference is a use or 0, the lattice value corresponding to that 

link is set to live or dead, respectively. If the subsequent reference is another X- 

function, the A-graph will form a tree whose leaves are a use or 0 (once strongly 



connected components are collapsed). Thus, irrespective of the CFG, the lattice 

values inherited by the A-function at N will reflect the upward-exposed references 

of the variable; there can be no other intervening references to the variable in the 

program by the GRC construction in Section 7.1. If any of these references are 

uses, the A-function for v at N will represent a use (implying v is live at outN),  

due to the meet operator of the live variable lattice. Otherwise, the A-function for 

v at N represents 8, so v is dead at O U ~ N .  

The Live set at N is now modified by each use, 0, and A-function of v in N. At 

the top of N, the liveness for v is carried to the next block in the postdominator tree. 

When returning to N, only those tuples that affected v are undone (lines 27 - 35 of 

Algorithm 7.1), so that after N the liveness of v is precisely equal to what it started 

as. After visiting N and all its postdominator children, restoring Live to its state before 

processing N is important since the contribution by N to Live needs to be undone before 

processing other nodes. While the particular order of the postdominator tree traversal is 

immaterial, the depth-first walk allows induction to be performed on the height of that 

tree. 1 

7.3 Applications of Liveness 

7.3.1 Interference Graph Construction 

As mentioned in 57.1, the main use for live variable analysis is register allocation. This 

analysis involves the construction of an interference graph, where variable v interferes 

with variable w at a given point in the program if both are simultaneously live. When 

this condition occurs, v and w cannot share a register. Formally, the interference graph 

is GIG = (S, E), where S is the set of symbols in the program and E is a set of edges 

such that (p, q) E E if and only if p interferes with q, i. e., they are both live concurrently 

at some point in the program. The traditional approach computes the in  and out sets at 

each basic block in the CFG, then performs a separate pass to construct the interference 

graph. Before visiting all the tuples in a basic block, a Live set is initialized to the live out 

set of the block. At each definition of a variable, that variable is removed from the Live 

set and marked as  interfering with all other variables currently live. The interference 

graph is a symmetric matrix K ,  such that Kpq = 1 if variable p interferes with variable 

q and Kpq = 0 otherwise. 

We make a simple modification to Algorithm 7.1 to build the interference graph 



Given: CFG with A-chains; 
K ,  initialized to Kst t O,Vs,t E S 

Do: Determine the liveness at each block and - 
compute the interferences 

Result: Interference graph for the program 

Use Algorithm 7.1 with the following addition: 
20 .a if t is a def then Ksl t 1, Vl E Live 

Algorithm 7.2 Interference graph construction 

during the same pass as liveness is computed. Algorithm 7.2 is the same as Algorithm 7.1, 

with the addition of a line after line 20 (which uses matrix K, as described above). 

7.3.2 Useless Code Elimination 

Code that never affects the final results of a program is termed dead. Dead code can be 

classified into two categories. Unreachable code is code that will never be visited when a 

program executes. Determination of constant predicates, such as the methods discussed 

in Chapter 4, may preclude paths in the CFG from ever executing. Useless code is an 

assignment to a variable that is not subsequently used. Useless code usually occurs as a 

result of compiler optimizations; for example, code motion might effectively copy but not 

move computations. Dead code elimination is an important optimization that is always 

beneficial and may be required several times during compilation. This section looks at 

a dynamic implementation of useless code elimination. 

Typically, useless code elimination is performed by visiting the tuples in each basic 

block, updating the Live set as used by the traditional interference graph technique. 

When a definition is encountered and the defining variable is not in Live, the entire 

statement is removed. This method does not take into account the liveness information 

of the deleted right-hand side of the statement across basic blocks, however. In this case: 

A :  y = 1  

if (cond) then 

B : x = y + 2  

C: endif 



the live variable information is  out^ = {y) and  out^ = outc = 0 .  The assignment to 

x can be eliminated because it is not live after B, but the assignment to y cannot be 

eliminated: the set  out^ does not reflect the elimination. Good useless code detection 

requires the dynamic live information that our algorithm provides. 

In order to dynamically update useless code identification, links may need to be 

updated because code has been eliminated. In particular, a A-argument may point to a 

variable use that is now part of a dead expression. To accurately update the argument 

pointer, links need to be provided from each use to the next upward-exposed reference. 

If a A-argument points to 8, eliminating useless code never requires an update, since 

the next upward-exposed reference must be 8. This reference cannot be a variable use, 

since in that case the expression defining the variable would not have been identified as 

useless. 

To provide the capability for updating A-function links we need to augment A-chains 

with upward-exposed use-ref links. Thus, for dynamic useless code elimination we invoke 

GRC with the following parameters for the Problem of upward-exposed references: 

Direction: backward 

RefLink: any use 

Refl'uples: any use or definition 

BlockTuples: any killing definition 

Algorithm 7.3 is much the same as Algorithm 7.1, with line 20 changed and five lines 

added. It removes useless code, based upon a dynamically updated live set at each tuple. 

We note that this useless code algorithm does not identify all faint code [KRS94]: dead 

code plus code that is only used (perhaps transitively) by itself. 

7.3.3 Other Uses of Liveness Information 

Liveness information has several other uses; we include a list of several of them here for 

completeness. 

Uninitialized variables: The use of a variable before its definition can be an 

incorrect program in some languages, and may result in indeterminate behavior. Such 

cases are easily detected if a (local) variable is live at Entry. 

"Intent" determination: The intent of a variable may be important to such anal- 

ysis as interprocedural constant propagation, where it is useful to know if arguments 



Given: CFG with A-chains augmented with use-ref links 
Do: determine the liveness at each block and - 

eliminate dead code 
Result: Tuples identified as useless 

Use Algorithm 7.1 with the following change: 
20 else if type( t ) # A merge then  
20. a forall r on rhs of def 3 lattice( r ) = I d o  
20.b replace link( ref ) which points to r with link( r ) 
2O.c endfor 
20. d remove this def and its associated rhs 
20.e endif 

Algorithm 7.3 Useless code elimination 

passed to other procedures are modified or not. This type of information may be re- 

flected in some languages, such as the INTENT attribute in Fortran 90 [ABM+92]. If a 

passed reference parameter is used but not defined it stays live at the call site. 

Thread migration: Some methods that implement a migration of processor threads 

generate special procedures to handle the migration [HWW93]. The body of the pro- 

cedure is the continuation of the migrating procedure at the point of migration. The 

arguments to this procedure are the live variables at that point. 

7.4 Experimental Results 

In this section we report results of our experiments to compare the classical method of 

determining liveness information and our A-chain approach. We measured space and 

time of both approaches, and also measured the effect of performing dynamic useless 

code elimination during the same pass. While our A-chain algorithm for live variable 

analysis is no faster than the traditional method, it is still a competitive alternative and 

performs useless code elimination with little additional cost. 

We have implemented the algorithms for constructing A-chains, determining liveness, 

and constructing the interference graph in Nascent. The programs used to collect the 

data are the usual benchmarks described in s1.4. To model the use of interference graph 

construction more accurately, a "lowering" phase in Nascent is first performed, where 

many compiler temporary variables are created. 



7.4.1 Data for the Traditional Approach 

Table 7.3 shows the amount of space needed by the iterative, bit-vector method to 

perform interference graph construction. This traditional approach keeps four sets, the 

use, def, in and out sets at each basic block. The first column shows the number of bits 

necessary to store each of these sets. Thus, in total, a little over a lOOOK 32-bit words 

were necessary for all the benchmark programs. The use and def sets are extremely 

sparse (about 1% usage for each), while the in and out sets each use about 20% of the 

bit-vector. 

The number of iterations required for convergence of the in and out sets is also shown 

in Table 7.3, averaged over all the routines within each benchmark program. On average, 

less than four iterations are required for computing the sets. 

7.4.2 Data for the A-Chain Approach 

As we have done with other reference chain merge operators, we experimentally compared 

the number of A-functions as a function of referenced variables (Figure 7.3) and program 

size (Figure 7.4). These graphs show that the growth in data structure size is again 

fairly linear in both cases, supporting the contention that in practice programs exhibit 

this linear behavior for all types of reference chaining. 

Over all the benchmarks, a total of 309,494 A-functions were created, with an average 

of one A-function per 4.6 variable references. It is difficult to establish the precise amount 

of space required to construct a A-function, but the best implementation would be one 

word per A-function. This calculation results in the same order of magnitude (300K 

bytes) as the traditional algorithm (1000K bytes). 

To determine liveness, the method we have outlined requires processing strongly 

connected components in the A-graph. We have found that on average slightly more than 

40 percent of the A-functions in the benchmarks were part of a nontrivial component; 

the percentages ranged from a low of 7 to a high of 83, and most were clustered between 

30 and 50 percent. The nontrivial component sizes ranged from 2 to 8, with an average 

of 4.3. 

7.4.3 Comparative Performance 

We now consider the relative speed of the two implementations. Both the iterative, bit- 

vector approach and the A-chain approach were implemented on a Sun SPARC 80mhz 



I I space I % of vector used I iterations I 
I 

Program 1 lo3 bits I use I def I in I out I avg I max 

PERFECT club 

I RiCEPS I 

L 

adm 
arc2d 
bdna 
dlr fesm 

boast 
ccm 

283 
174 
317 
202 
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IPX workstation with 64MB of memory. All optimizations were left to the compiler (gcc 

version 2.5.8, -02). While the traditional method uses bit-vectors to maintain its live 

set, a linked list was used in maintaining the live set in the A-chain algorithm. 

The traditional algorithm for interference graph construction has three steps: 

init: compute the use and def sets 

live: compute the in and out sets 

ifg: compute the interference graph 

The Xchain algorithm also has three steps: 

place: insert A-functions 

chain: set the links for the A-functions 

ifg: compute liveness and the interference graph 

Both methods require overhead in our implementation to allocate storage for the data 

structures used. Overall, the traditional method performs faster since convergence gen- 

erally was achieved within a few iterations, whereas the A-chain approach spent con- 

siderable time computing the interference graph. This additional time is partly due to 

visiting all tuples within each basic block twice, once on the way down the postdominator 

tree and once on the way coming back up (another approach, that of storing the Live 

set before processing each merge node, may help ameliorate this effect). We also did 

not count the time to construct the postdominance frontier set for each node since this 

information is useful for other analyses such as control dependence. 

Table 7.4 presents the time (in seconds) for three phases of each approach. We also 

give the total time for each method and the performance ratio. The data is presented 

for three runs, one for all of the programs in each suite (granularity precludes accurate 

per-program timing). The overall time required for interference graph construction using 

A-chains is roughly 45% greater than the traditional algorithm, but performing useless 

code elimination with Algorithm 7.3 adds less than one percent to the times recorded 

using A-chains. Thus, although the traditional method performs faster, we can obtain 

dynamic useless code elimination for "free" when using the A-chain approach. 
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7.5 Anticipatability of Expressions 
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An expression e is said to be anticipatable at point p if every path from p to Exit computes 

e before any variable of e is redefined. (Anticipatable expressions were originally termed 

very busy expressions [ASU86].) In Figure 7.5 a+b is anticipatable at P, but c+d is not 

since one of its operands, c, is defined in R before c+d is computed. The expression e+f 

is also not anticipatable at P since it is not computed on the path to Q. As opposed to 

liveness, which is an "or" problem, anticipatability is an "and" problem. 

The main value of determining anticipatability for expressions lies in the ability to 

hoist the expression to an earlier point in the program. Space may be saved by computing 

the expression only once, although this benefit might be offset by the need to store the 

result for a longer period of time. 

Anticipatability is a backward problem, so an iterative solution uses Equations 7.1. 

Let gen(N) be the set of expressions computed in basic block N prior to any definition 

of the variables in those expressions, while kill(N) represents the set of expressions in 

which any right-hand side variables have upward-exposed definitions in N. If in(N) 

and out(N) represent the set of anticipatable expressions at the beginning and end of 

N, respectively, then, after appropriate initialization, anticipatability can be solved by 

iterating the following equations until convergence: 

50 
1.42 



Figure 7.5 Expression anticipatability 

Note that for this data-flow problem, the meet operator is set intersection, since an 

expression is anticipatable at the end of a branch node if and only if it is anticipatable 

at the beginning of all successor nodes. 

We can also solve this problem using GRC in the same general manner as was used 

for live variables. A simple lattice framework is again used: 

where the value T represents "anticipatable" and L represents "not-anticipatable". All 

computed expressions are assigned T, while all definitions which are operands of some 

expression (relevant definitions) are assigned I. 

Chaining needs to be augmented for expressions in general, as opposed to just tuples. 

For this case, RefExpressions replaces RefI'uples and BlockExpressions replaces 

BlockTuples. A relevant definition, however, may serve to block more than one expres- 

sion. For example, in this code fragment 



the definition of a blocks both a+b and a+c from being anticipatable. 

With these augmentations in mind, a few adjustments need to be made to Algo- 

rithm 5.2 in order to account for the semantics of relevant definitions. Line 3 is modified 

as follows: 

3a : e = expression t 

3b : if e is a relevant def then 

3c : F = set of all expressions with e as an operand 

3d: endif 

We now need to loop over lines 7 - 14 for all elements of F, since each element of F refers 

to a different expression. A similar looping construct is also necessary when restoring 

current expression references in lines 27 - 30. 

After accounting for the adjustments above, the GRC algorithm is invoked with the 

following parameters for the Problem of anticipatable expressions: 

Direction: backward 

RefLink: 8 

RefExpressions: any evaluated expression or relevant definition 

BlockExpressions: any relevant definition 

Algorithm 7.4 keeps a set of anticipatable expressions, AntExp, which is dynamically 

updated as the CFG is walked bottom-up by traversing the postdominator tree. The 

analysis of a cycle of R-functions is done similarly to that for A-functions, except that the 

meet operator works on a slightly different lattice. As with live variable computation, 

no iteration on the CFG is required. 

Anticipatability of expressions is the dual of avaiIabiIity: expression e is said to be 

available at point p if every path from Entry to p computes e and none of the operands 

of e are redefined between the last computation of e and p. Availability of expressions, 

a forward problem, is often used to perform common subexpression elimination, and 

GRC can be used to solve this problem in a manner analogous to the anticipatability 

problem. 



Given: CFG with R-chains, AntExp t 0 - 
Do: Call Anticipate( E d ,  AntExp ) - 
Result: Anticipatable expression sets 

Anticzpate(N, AntExp) 
forall expressions and relevant definitions e E N i n  reverse order do 

if type( e ) = R merge function then 
if e.visited = false then 

set lattice( e ) using Ta jan's alg on  the 0-graph 
e.visited t true 

endif 
endif 
e.set t 0 
case lattice( e ) 

T :  if e fZ AntExp then 
AntExp t AntExp U { e )  
e.set t e 

endif 
L: F c set of all expressions with e as operand 

forall f E F do 
if lattice( f ) = T then 

AntExp t AntExp - { f )  
e.set t e.set U { f )  

endif 
endfor 

endcase 
endfor 

24 : for M E PDomChiId(N) do 
25 : Anticipate(M, AntExp) 
26 : endfor 

27 : forall expressions and relevant definitions e E N i n  forward order do 
28 : case lattice( e ) 
29 : T: if e.set # 0 then AntExp t AntExp - e.set 
30 : I: if e.set # 0 then AntExp t AntExp U e.set 
31 : endif 
32 : endcase 
33 : endfor 
34: end Anticipate 

Algorithm 7.4 Computing anticipatability of expressions 



Chapter 8 

Extension into Parallel Constructs 

How do we extend the semantics of reference chaining to parallel programming lan- 

guages? Our idea is provide a coherent and sound method by which to sensibly reason 

about programs written using parallel constructs. Application of these methods would 

enhance the ability to analyze and optimize such programs. We shall look at one parallel 

construct in detail - explicit parallel sections, and discuss how we extend the methods 

of reference chaining to it. 

The original work that develops SSA-like semantics for explicit parallel sections is due 

to Srinivasan, Hook, and Wolfe [SHW93]. Here we will describe the details of algorithms, 

methods, and techniques to successfully implement these concepts. We also identify and 

prove correct the minimum set of merge points in parallel precedence graphs, analogous to 

the join set for sequential CFGs. This new set, the iterated meet, is a correction of earlier 

work that attempted to identify such merge points. Since reference chain operators are 

based upon branch and merge nodes in the CFG, it is important to correctly understand 

the abstraction of execution flow with respect to parallel constructs. 

This chapter provides the theoretical basis for linearizing reaching definitions within 

explicit parallel sections. These foundations can be extended to other types of informa- 

tion flow in a manner analogous to the sequential case, where SSA form was generalized 

to reference chaining. 

8.1 Execution Order in a Precedence Graph 

A precedence graph is an abstraction that imposes order of execution among its nodes. 

Precedence graphs can easily be used to express DAG parallelism [CHH89] by using 

Wait clauses to enforce constraints between section nodes. A precedence graph is also 



... 
Para l l e l  Sections 
Section A 

. . . 
Section B ,  Wait(A) 

. . . 
0 0 

I 
Section C 

. . . 
End Para l l e l  Sections 

Exit El 
(a) (b) 

Figure 8.1 Example Precedence Graph 

a simplified, special case of a Parallel Program Graph [SS93] that only contains syn- 

chronization edges, with the synchronization condition that all code in a node completes 

before beginning execution of any successor. 

For the purposes of this chapter, we deal with DAG parallelism (a subset of task 

parallelism [F+93]), specifically explicit parallel sections fashioned after the P a r a l l e l  

Sections construct [Pargl], which is similar to the cobegin-coend syntax of Brinch 

Hansen [BH73]. An example is shown in Figure 8.l(a), where Section B ,  Wait (A) 

means that all code in Section A must complete before the code in Section B may begin. 

Each parallel section (A,  B, or C in this example) contains a local CFG with its own 

Entry and Exit node. 

8.1 .I An Abstract Representation 

The ordering of sections is arranged within a precedence graph (PG), an abstract repre- 

sentation that dictates what sections may execute in what order. Formally, a PG is a 

directed graph P = (Vp, Ep, Entryp, Exitp), where Vp is a set of nodes, each represent- 

ing a section in a parallel block, Ep is the set of edges that represent wait-dependence 

arcs (corresponding to the Wait syntax described above), and Entryp and Exitp are 

the cobegin and coend nodes, respectively. We will always show the Entry node in an 



a = 2  
b = 3  
c = 4  
if (Q) then 

Parallel Sections 
Section A 

if (P) then 
b = a * 5  

else 
b = a + 7  
f = b * a  

endif 
Section B 

c = c + 1 5  
f = c * 1 6  

Section C, Wait(A) 
d = b * a  

Section D, Wait(A, B) 
c = a * b + c * f  

End Parallel Sections 
d = d + f  

else 
d  = 23 

endif 
e = a + b * c * d  

Figure 8.2 Example parallel program 

example PG, but will often omit the Exit node, since for purposes of illustration only a 

partial representation of the PG is usually needed, and the Exit node is seldom a factor 

concerning the forward flow of information (which we focus on in this chapter) through 

the PG. The wait-dependence arcs impose a partial order upon the nodes of a PG. If 

there is no partial order between two sections, they may execute in any order relative to 

each other - perhaps in parallel. An example precedence graph is shown in Figure 8.l(b), 

where sections A and C (and B and C) might execute concurrently. 

We note that a PG must be acyclic, since any cycles would create a deadlock. A 

section node of a PG "uses" or "defines" a variable if any of the code within that section 

uses or defines that variable. 

A well-defined interpretation needs to be applied to the case where two sections of 



code that can execute in parallel both modify the same variable, or when one section 

uses a variable modified by another section. We assume copy-in/copy-out semantics in 

the compiler, where the values of shared variables in a parallel section are defined to 

be initialized to the values at the beginning of the parallel block. When the parallel 

block is complete, the global state is updated with any modifications made from the 

sections. While this gives a well-defined program without volatile variables, and allows 

independent optimization within each section, we note that this model does not maintain 

sequential consistency [Lam79]. Examine this code: 

v = o  

x = 0 

Parallel Sections 

Section A 

v = 1  

y = x  

Section B 

x = l  

z = v  

~ n d '  Parallel Sections 

output ( y  ,z 

A sequentially consistent model permits, for (y , z) , the values of (1,1), (1,0), or (0,l) at 

the output statement. However, our copy-in/copy-out model results in the values (0,O). 

As an example of how PGs fit into the CFG structure, examine Figure 8.2. To 

accommodate local CFGs within explicit parallel sections, we add a special type of node 

to the CFG called a supernode. A supernode essentially represents an entire Parallel 

Sections construct (sometimes referred to as a parallel block). 

For each supernode P, two additional basic block nodes, called the head and taal 

nodes for that supernode, are introduced. The head node captures all the incoming 

control flow edges to P and the control flow successors of the tail node are those of 

P in the original CFG. The tail node has exactly one control flow predecessor, namely 

P. Node P is the only control flow successor of the corresponding head node. These 

additional nodes are helpful for both proving correctness and for implementation. We 

will return to their function in later sections. 

The Extended Flow Graph (EFG) is the union of CFGs and PGs representing se- 

quential control flow and parallelism for a single program unit, as originally described 



Section A: 

Exit A (5 
Exit (5 

Section B: Section C: Section D: 

9 9 
Exit B (5 Exit C 23 Exit D (5 

Figure 8.3 EFG for the parallel program of Figure 8.2 

by Srinivasan et al. The distinguished CFG corresponding to the program unit is called 

Gmai,. We will talk about the set of nodes in an EFG, which is the union of all the 

nodes in all the CFGs (main and local) and PGs in the EFG. 

The CFG containing any basic block node X is designated Gx, the section node cor- 

responding to Gx is designated Sx, and Px corresponds to the supernode representing 

the PG containing Sx. 

The EFG for the parallel program in Figure 8.2 is shown in Figure 8.3. The parallel 

block (supernode) is represented by the node PI in Gmain, which is in turn represented 

by PGpl. Each section of the parallel construct is represented by a local CFG, as shown 

in the figure. For example, for basic block node x, Gx is the local CFG for Section C, S, 

is the node C in PGpl, and Px is PI. 



A confluence node in a PG has quite different semantics than that in a sequential 

CFG. While precisely one of the predecessors at a confluence node in a CFG will be exe- 

cuted, all predecessors of a confluence node in the PG must execute before the confluence 

node itself executes. Essentially, a confluence node is waiting upon all its predecessors, 

so they must all execute before the confluence node executes. When paths meet within 

a PG, information might also merge. It is important to note that it is possible that 

merging information could be in conflict - since all predecessors are executed, we could 

have multiple definitions of the same variable, for instance. 

We also note an important property of precedence graphs - they are insensitive to 

transitive edges. This property will become clear when we look at how information flows 

between section nodes in a precedence graph - with respect to the reaches relation for 

definitions. 

8.1.2 The Reaches Relation for Definitions Within a PG 

When does node B wait for node A? When there is path in the precedence graph from 

A to B, i. e., if A can reach B, then B waits upon A. Since any path from A to B 

is sufficient, it now becomes clear why the addition of transitive edges to a precedence 

graph adds no new information. In fact, the transitive reductiont of a precedence graph 

contains the smallest number of vertices and edges that captures all the information of 

the original graph. 

Definition 8.1 (Reaching Definitions Within a PG.) Within a PG, a definition of 

v at section node X reaches section node Y i f  no path from X to Y contains a definition 

of v, except at X or Y. 

Kill information is computed quite differently within a PG compared to a CFG 

[GS93]. In a PG, a definition of v in node A is killed before reaching node C if any path 

from A to C passes through node B, where B contains a definition of v. We note that 

the shield relation (introduced in 52.3.2) and reaches relation are duals of each other 

with respect to killing data-flow information: 

CFG Information from A can be killed by B before reaching C if all paths from A to 

C pass through B. 

 h he transitive reduction of graph G is any graph G' with the same vertices as G, but with as few 
edges as possible, such that the transitive closure of G' is equal to the transitive closure of G. 



PG Information from A can be killed by B before reaching C if any path from A to C 

passes through B. 

It is important to contrast two uses of the term "reaches". On the one hand we 

speak of path reachability; here, A reaches B in a graph if there exists a path from A 
to B. On the other hand, we will often be referring to reaching definitions, which is 

concerned with the flow of a particular type of information through a graph. In this case 

path reachability is not sufficient; definitions (or, more generally, data-flow information) 

can be killed along paths in a graph due to nonidentity transfer functions. Most of the 

time the meaning is clear from context, but when not, we will attempt to be explicit 

concerning usage. 

8.2 Merging Reaching Definitions in a Precedence Graph 

8.2.1 Interesting Nodes and Merge Nodes Within a PG 

At what points in a PG do we need to merge information, specifically reaching defi- 

nitions? We need to merge definitions at the precedence section nodes in which the 

definitions first come together. However, as opposed to sequential control flow, a vari- 

able may not be defined along every path reaching a confluence point; as long as it is 

defined along some path that reaches a use for that variable, a definition for that variable 

will be available. This important distinction suggests that identifying merge points as 

the iterated dominance frontier of a set S of nodes in the PG may not be correct. To 

see why, examine Figure 8.4(a) with respect to reaching definitions. If v is only defined 

at node X ,  then any use of v at W, 2, or A will have that definition available, since X 

will always have been executed before any of these other sections execute. But DF+(X) 

= {W, 2, A); clearly a merge node is not necessary when only a single definition of a 

variable reaches any point. Since a precedence graph guarantees execution of all prede- 

cessors, we need not be concerned about a definition of v flowing from node Y. Since 

Y does not define v, it does not contribute to the reaching definitions of v for the other 

nodes. 

To see where merge operators are needed in a PG, first examine Figure 8.4(b), in 

which v is defined in sections X and Y, and used in section A. Since both definitions 

reach A without either killing the other, a merge operator is needed at A. However, we 

need merge only two definitions, even though there are three predecessors. Thus, a merge 

function for a PG only needs arguments for predecessors with definitions reaching the 



Figure 8.4 Understanding merge operator placement in PGs 

confluence node along that path. This observation highlights another major difference 

between sequential and parallel merges; therefore we will use a new operator, the $- 

function, as the merge operator for reaching definitions within the PG [SHW93]. The 

$-function is similar to the &function in that it acts as a nonkilling definition in terms 

of data-flow analysis, but it is also a use for all definitions that reach the $-function 

via its arguments. By collecting multiple reaching definitions the $-function linearizes 

definition chains within a PG in the same manner as the &function within a CFG. 

To identify precisely where to place parallel merge operators in a PG we begin with 

an important new definition: 

Definition 8.2 In a flow graph, the meet of nodes X and Y, M(X,  Y) = 

{Z I VZx, Zy with Zx + Z and Zy -+ Z, 

and V paths p x  : X 4 Zx,py : Y A Zy,px n p y  = 0) 

We note that within arbitrary flow graphs the meet of two nodes is the dual definition to 

join, as  it uses a universal quantifier as opposed to the existential quantifier of join. For 

a set of nodes S, M(S) is defined in the usual pairwise manner: M(S) = U M(X,Y). 
X,YES 

We also define M+(S) as the limit of increasing sequences analogous to that used for 



join and dominance frontier: 

The definition of join (Definition 3.1, and the basis of work to place &functions 

[CFRS91]) is well-known. Although in a CFG JS(S) = J(S) [Wo194], the dual definition 

of join for PGs, meet, does not possess this property. Consider Figure 8.4(a). Let S= 

{X, Y). Then M(S) = { W,Z }; in fact, A $! M(S), but A E M(SUM(S)) = M(X, Y, W,Z) 

= { W,Z,A). 

The meet of two nodes possesses one of the important properties characterizing nodes 

in a PG: it is unaffected by transitive edges. To prove this claim, we first formalize the 

concept of a transitive edge as follows: 

Definition 8.3 Edge E: X -+ Y added to graph G is a transitive edge i f  3 2  E G 3 X -% 
z 4 Y. 

We now show that the central concept of PGs, path reachability, is unaltered in the 

presence of transitive edges. 

Theorem 8.1 Path reachability i n  a PG is unaflected by transitive edges. 

Proof: 

Consider PG GI, consisting of G plus transitive edge E : X + Y. Since all edges in 

G exist in GI, if A reached B in G, A reaches B in GI. Now, let A reach B in GI, 

but assume that A does not reach B in G. Then path pl: A 4 B in G1 must include 

E, otherwise no distinction is possible between paths in G and GI. Thus, pl must be 

of the form A -% X + Y 4 B. By Definition 8.3, X -% Z 4 Y in G. Thus, path p2: 

A 5 X -% Z 3 Y -% B exists in G. By contradiction, we have demonstrated equivalence 

of path reachability between G and G'. 1 

We next demonstrate that the meet of a set of nodes is also unaffected in the presence 

of transitive edges. 

Theorem 8.2 The meet relation is insensitive to transitive edges. 

Proof: 

We use G and G1 as defined in the proof of Theorem 8.1, except that E is any transitive 



edge added to G. We first show that for nodes X and Y, M(X,Y) in G is equal to 

M(X,Y) in G' by means of double inclusion. 

1. Let Z E M(X, Y) in G. We show that Z E M(X, Y) in GI. By Definition 8.2 for 

meet, the intersection of all pairs of paths in G from X and Y to predecessors of Z 

is empty. Now consider GI, which includes edge E: A + B. Assume Z E M(X, Y) 

in G, but Z 6 M(X,Y) in GI. Then, in GI there exists node V such that V 3 Z 

with X & V and Y i V. If no path from X -$ V or Y V passes through A, 

there is no such V, since the only difference between G and GI is edge E. Thus, 

without loss of generality, at least X ,  and perhaps Y, has a path to V that passes 

through A. But from A, no nodes are reachable in GI that were not reachable in 

G, as Theorem 8.1 demonstrated. Hence, if there is such a V in GI, it exists in G, 

since its existence is predicated upon reachability. We conclude that since there is 

no such V in G, there exists no such V in GI. By contradiction, Z E M(X, Y) in 

GI. 

2. Let Z E M(X, Y) in GI. By Definition 8.2 the intersection of all pairs of paths from 

X and Y to predecessors of Z is empty in GI. Since the edges in G are a subset of 

the edges in GI, any pair of paths from X and Y to predecessors of Z that exists 

in G exists in GI, and has empty intersection in G' by assumption. Thus, that pair 

of paths is empty in G, and Z E M(X, Y) in G. 

Now consider M(S), where S is a set of nodes. Since M(S) = U M(X,Y), we apply 
X,Y€S  

the property just proved to each pair X ,Y to obtain the desired result for S: M(S) in 

G equals M(S) in GI. I 

Given a set of section nodes S defining a variable, merge operators for PGs need to 

be placed at the iterated meet of S. In terms of reaching definitions, given a variable v 

and a set S, where S is the set of section nodes in a PG defining v, $-functions need to 

be placed at M+(S), where a $-function for v at section node A collects all definitions of 

v that reach A. That is, there is an argument of the $-function for each predecessor of 

A that has a definition of v reaching A. Figure 8.5 shows the case where even though an 

edge exists from a definition of v (in node A) to the confluence node N, the $-function 

placed at N will only collect the definitions from nodes B and C. That is because the 

definition at A gets killed by the definition at B in this PG. In this case, S = {A ,  B, C), 

and M(S) = M+(S) = {N), b ut we note that the edge A + N is a transitive edge and 



Figure 8.5 Transitive edges do not affect reaching definitions in PGs 

M(B, C) = { N ) .  

8.2.2 Proving Correct and Minimal Placement 

We will first prove that it is sufficient to place $-functions at M+(S). The concept 

of iterated meet is a correction of the $-function placement method suggested earlier 

[SHW93], in that the iterated meet is smaller and, in fact, the minimal set. 

How do $-functions affect reaching definitions in a PG? If node N is reached by 

$-function s and s is reached by definition d (where s collects d as a $-argument), then d 

reaches N indirectly via a $-function. In general, it may be that one or more +-functions 

lie on the path from d to N. In that case, d reaches N indirectly via a $-chain. Thus, 

a definition or $-function in a PG that reaches node N in the sense of Definition 8.1 is 

called a direct reaching definition, whereas a definition reaching node N via a $-chain is 

called an indirect reaching definition. 

We now prove that placing $-functions at the iterated meet of the set of nodes that 

define a variable maintains the following properties: 

1. A unique reaching definition exists for each variable use. 

2. A $-function will collect all definitions (directly or indirectly) that could reach a 

node before $-function placement. 

3. M+(S) identifies the minimal set at which to place $-functions. 



Theorem 8.3 In a PG, with $-functions for v placed at M+(S), all uses of v within 

node N will be reached (in the sense of Definition 8.1) by exactly one definition (including 

$-functions) of v. 

Proof: 

Let G be a PG before placing $-functions, and G+ be the same graph after $-function 

placement. Within G, let the set of nodes with definitions of v be S ,  S' S be the set 

of nodes in S having definitions that reach N,  and 7 C S be the set of nodes in S with 

paths that reach N. 

EXISTENCE. We first show that any use that had at least one reaching definition 

in G has at least one reaching definition in G+. Since St# 8, let A E S' in G. Then all 

paths p~ : A Z, with Z + N, contain no definitions of v (except at A). For all p~ in 

G+, if the definition of v in A does not directly reach N, then there must be at least one 

$-function along some PA. In this case, at least one $-function reaches N. 

UNIQUENESS. We consider cases: 

(i) Only one W E S' reaches N (IStI = 1). In this case, the definition in W kills any other 

definitions that may exist in nodes of 7. Then, Vtl, t2 E 7, 3ptl:tl 5 N, pt2: t2 5 N, 

W E ptl n pt2. Thus, N $! M(T), and more generally, no node on any pw:W 3 N 

(except, perhaps, W) is an element of M(7).  Repeating this argument, no node in any 

pw - {W) E M+(T). Thus, in G+ only the definition of v in W reaches N ,  since no 

additional definitions ($-functions) created in G+ can directly reach N. 

(ii) Multiple definitions of v reach N from St, with N E M+(S). Then a $-function will 

be placed at the beginning of node N in G+, and uses of v within N will be reached by 

that $-function. 

(iii) Multiple definitions of v reach N from S', with N @ M+(S). Assume N is reached 

by more than one definition from members of {S U M+(S)). Call this set R1. Then 

either (a) N E M(R1), which contradicts our assumption, or (b) VA, B E R1 M(A, B) is 

nonempty (since A and B reach N), and let R2 be the set of all elements of M(R1) having 

paths that reach N.  Repeating this process, we note that R must converge at a limit set 

R+, since is always composed of nodes closer to N,  along the paths from nodes in 

R1 to N ,  than the nodes in &. If the set R+ consists of exactly one node (it cannot 

be zero by the existence proof), we have a contradiction of assumption. If it contains 

more than one node (which cannot include N by assumption), R has not converged. A 

contradiction is again reached as long as G contains a finite number of nodes. 

Thus, in all cases, we have shown that in G+ precisely one reaching definition will 



exist for each use that had at least one reaching definition in G. ( 

Theorem 8.4 Within a PG, with $-functions placed at M+(S), any use of v at node N 

will be reached directly or indirectly by  all definitions of v that reached N before placing 

$-functions. 

Pro0 f: 

Let G be a PG before placing $-functions, and G+ be the same graph after $-function 

placement. We consider two cases: 

( i )  Only one definition of v reaches N in G. This case is handled similarly to case ( i )  in 

Theorem 8.3, and the single definition that reached N in G will reach N in G@. 

(i i)  Multiple definitions of v reach N in G. All definitions for v from node A that reach 

N in G reach N indirectly in G+ via a $-chain. TO show this, consider all paths p from 

A to N in G. By Definition 8.1, no paths from A to N in G contain definitions of v .  

Since, by assumption, a definition of v in G+ does not reach N from A, by Definition 8.1 

there must exist a definition along some path from A to N that did not exist in G. That 

definition can only be a $-function. If there is just one $-function along the path then 

it collects all definitions reaching it, and that $-function will now reach N,  resulting 

in the definition of v reaching N indirectly. If there is more than one $-function along 

any path from A to N ,  the argument is repeated. By induction, a definition of v in A 

will reach N via a $-chain. Thus, we have shown that reachability of all definitions is 

maintained when placing $-functions. 

We now show that M+(S) is the minimal set at which to place $-functions. 

Theorem 8.5 Within a PG, for a set of nodes S which define v, M+(S) is the smallest 

set at which to place $-functions in order to insure unique reaching definitions at all 

nodes. 

Pro0 f: 

Given S for variable v, consider any element N E M+(S). Let N E M~(s), for the 

minimum j > 1. Then 3X, Y E M~-~(s)  (where M0(s) = S) such that all pairs of paths 

from X and Y to predecessors of N are empty. Since X and Y contain definitions of v 

(either assignments to v or $-functions for v), the definitions at X and Y (or, perhaps, 

a later definition of v within some node along one of these disjoint paths) both reach N. 

Thus, by removing the $-function for v at N,  any use of v within N would be reached 

by multiple definitions. 1 



8.3 Algorithms and Correctness 

In this section, we first discuss several necessary details for implementation. Next, we 

present the complete algorithm to insert & and $-functions, and correctly create and 

generate the proper reaching definitions as arguments. We also demonstrate the cor- 

rectness and safety of these algorithms, which have been successfully implemented in 

Nascent. 

8.3.1 An Introduction to $-Function Placement 

In our implementation, the compiler finds for each variable the set of nodes in each local 

CFG or PG where the variable is assigned. A section node in the PG is considered to 

have an assignment to a variable if the code within the corresponding section assigns 

the variable. Function (4 or $) placement is done jointly, with the function type distin- 

guished by the type of node at the confluence point: a supernode or section node tells 

us that a $-function is required. 

Our method can result in a $-function being initially placed at a PG join point where 

only one reaching definition within the PG block is defined. This situation can occur in 

two ways: a variable is defined within a section node that has only one section successor, 

or a variable is defined within a supernode such that only one definition of that variable 

reaches outside the parallel block. Although such a $-function will have only a single 

argument, it is a necessary step for the chaining algorithm within parallel sections, as 

will be detailed in $8.3.3. 

8.3.2 Contrasting $J- and &Functions 

It has already been noted that placing $-functions at the DF of nodes in the PG may 

result in only a single argument to this function. Although every predecessor will have 

a reaching definition for each variable (we always add an initial definition at program 

Entry), we do not want to include reaching definitions from outside the current parallel 

block as an argument to a $-function - that definition will always be the default reaching 

definition if none exists within the current parallel block. When chaining arguments to 

&functions we know how many arguments must be filled in with appropriate definitions 

- the number of predecessors. But with $-functions, we only fill in arguments as needed. 

There will be at least one $-argument, since the presence of the function tells us that a 

definition exists from another section node in this parallel block. But, there may be just 



that one argument to a $-function. If that is the case, a singleton-$ is created, which 

serves a special purpose. 

There is a crucial distinction to be made between $- and &functions. A +function 

is a variable assignment; the choice of assignment is given by the predecessor number of 

the path taken to reach the merge. A $-function, on the other hand, reports anomalous 

or multiple updates. Hence, $-arguments are not necessary for each predecessor of a 

section node - only those in which an update occurs for a given variable. This property 

implies that the order of the arguments for $-functions is not important, since there is 

not a one-to-one relationship between arguments and predecessors. 

Confluence points in the PG do not represent different possible paths for the sections 

(as they would in a sequential CFG), since all parallel sections are executed. Rather, they 

identify those parallel sections that must be executed before the merge section (hence 

altering the copy-in status for all variable in the merge section) and these are sections 

that may redefine variables whose definitions reach beyond the merge section. Thus, even 

if there is a singleton-$, its reaching definition is critical, since it must be propagated 

to other sections waiting upon the confluence point. This situation is reflected in the 

complete algorithm, where we propagate the reaching definition of the argument in this 

case rather than the $-function. Once it has served its purpose, we can delete a singleton- 

$, since we have discovered that only one definition reaches this merge point from within 

the parallel section. 

Singleton-$'s are essentially used as a temporary holding pen for single reaching 

definitions between explicit parallel sections. Propagating the argument's reaching defi- 

nition in this case also eliminates redundant links to names, which can otherwise arise. 

Consider the example program from Figure 8.2, shown in its SSA form in Figure 8.10. 

Section D uses variables a, b, c, and f to redefine c. Variable a's reaching definition 

comes from outside the parallel block and f 's  reaching definition comes from the $- 

function at EntryD, which merges the definitions from Sections A and B. But b and c 

have their reaching definitions propagated from single wait-predecessor sections, A and 

B respectively. To correctly propagate these values to D, a $-function (call it bt = +) 

is created in EntryD for b (and likewise for c). Yet if b' = $(b5) is treated as a normal 

definition, bt would be pushed onto the stack of definitions for b. When used in the 

new generation of c a pointer to b' would be inserted, which only points to b5. Thus, b' 

would be just another link to b5, which is redundant. The $-function was necessary to 

propagate the correct reaching definition of b to section D, but after visiting all sections 



waiting upon this definition of b, b' = $ can be deleted. 

Notice, also, that in the $-function creation phase, the variable generations of b at 

Sections A (b5) and D (b') will create another $-function at tailpl with arguments bg 

and b5. By eliminating redundant links this duplication is detected, reducing this $- 

function to a singleton-$, hence propagating the correct reaching definition of b to the 

rest of the program before being deleted. 

8.3.3 Depth-first Renaming 

Computing the iterated meet seems somewhat impractical from its definition. After 

placing &functions the technique of chaining transforms each variable definition into a 

unique name and each use into the name of its unique reaching definition [CFR+91]. The 

method employed to perform this renaming is depth-first, in that it recursively traverses 

the dominator tree in a depth-first order, keeping a stack of current definitions for each 

variable. The key property that the chaining scheme satisfies is that at each node the 

correct "current" definition (an original definition or &function) of each variable is the 

most recent definition on the depth-first path to this node from Entry, i.e., the definition 

on top of the definition stack [CFRS91, Lemma 101. In fact, a depth-first traversal of 

any spanning tree of the CFG will also satisfy this property. Unfortunately, a depth-first 

traversal of the nodes of a PG will not satisfy this key property with merge operators at 

M+(S). For instance, in Figure 8.6, no $-function is needed at node C for either x or y, 

Figure 8.6 All merge points in a PG do not require $-functions 

since only one definition of each variable reaches node C (in the sense of Definition 8.1). 

Suppose the depth-first traversal of the PG visits node C after node A; when visiting 



node C, the current definition of variable x will be the definition in A, but the current 

definition of variable y will be wrong. 

8.3.4 Efficient Implementation 

What method can be used that is relatively efficient and yet correctly propagates infor- 

mation between section nodes of a PG? We need to look more closely at how information 

flows between nodes in a PG, keeping in mind that a precedence graph has different se- 

mantics compared to a CFG. 

Since information flowing through the PG is described in terms of reachability, we 

have found the concept of reaching frontier useful. This concept describes reachable 

nodes in a PG in a way that is analogous to the dominance frontier for nodes within a 

CFG. 

Definition 8.4 The reaching frontier of X, RF(X) = 

{Z I X reaches a predecessor of 2, but X does not reach all predecessors of Z) 

The reaching frontier of a set S, RF(S), is defined to be the union of the reaching 

frontiers of all elements of S, i.e., RF(S) = U RF(X).  The iterated reaching frontier, 
x ES 

RF+(S), is defined similarly to that for join, meet, and dominance frontier. The reaching 

frontier is used to relate important properties between the meet and dominance frontier. 

To implement the placement of operators merging information within a PG, we would 

like to show that M+(S) G RF+(S) E DF+ (S). 

How are the meet and reaching frontier related? The analogous relations in sequential 

CFGs, join and dominance frontier, are shown to be equal when iterated, with the 

provision that Entry E S. However, Entry adds no information to either the meet or the 

reaching frontier in a PG. M(Entry , X )  = 0 VX, since Entry reaches all nodes, and thus 

there is always a path from Entry to any node on any path from X. Also, RF(Entry ) 

= 0, since Entry reaches all predecessors of all nodes. 

We can also show that RF+(S) # M+(S). Simply choose the set T = {X, Entry). 

Then M(T) = 0, so M+(T) = 0, while RF(T) clearly may not be empty. We now show 

that in general M+ (S) 5 RFS (S). 

Theorem 8.6 w(S) G RFt(S) 

Proof: 

Let Z E M(S). Then there is a node X E S such that X has a path that reaches a 



predecessor of Z, but X cannot reach all predecessors of Z or else there would be no 

path from any other node that did not intersect some path from X to each predecessor 

of Z (which would imply that Z $ M(S)). So, we have Z E RF(X) and Z E RF(S). 

Finally, M(X) C RF(X) * MS(X) G RF+(X). I 

We also show that DF(S) is not in general a subset or superset of RF(S). In Fig- 

Figure 8.7 DF(S) and RF(S) are sometimes unrelated 

ure 8.7, DF(X) = {A,Z), but RF(X) = {Z), since it reaches all predecessors of A. It 

is also easy to find a graph where X reaches a predecessor of Z but does not dominate 

any predecessor of 2, so Z E RF(X), but Z $ DF(X). 

Next, we show that the iterated dominance frontier is a superset of the iterated 

reaching frontier on all graphs. 

Theorem 8.7 DF'((S) 2 RFt (S) 

Pro0 f: 

It has been shown [CFR+91, Lemma 41 that for any node Z that X reaches, some node 

Y E {X U DF+(x)) dominates Z. Now, for any node Z that X reaches, if Z is in RF(X), 

then Z is in DF+(X); this is because some node in DF+(x) must dominate Z. Choose 

a path p from X to Z. Let Y be the last node on p in {X U DF+(X)); Y must be Z. 

If Y is not Z, then Y dominates all predecessors of Z, so there is a path from Y to all 

predecessors of 2; thus there is a path from X to all predecessors of Z, and Z is not in 

RF(X). 



Thus, DF+(X) > RF(X). Hence, DF+(S) > RF(S). RF~(S) = RF(SU RF(S)) 

RF(SuDF+(S)) C DFS(SuDF+(S)) = DFS(S). By induction, DF+(S) > RF+(S). I 

In general RFS(X) # DF+(X). Although DFS(X) > RF+(X), the converse is 

not necessarily true. Consider Figure 8.8. DF(X)= {B,Z), and D F ~ ( X )  = DF+(X) 

Figure 8.8 RF+(X) 2 DF+(X) 

= {B,Z,X). However, RF(X) = {B), and R F ~ ( X )  = RFS(X) = {B,X). Thus, by 

counterexample, RFS (X) 2 DFS (X) . 
But, we note that the example above contains a cycle. We are interested in placing 

$-functions in a PG, which we know to be acyclic. We next show that in a DAG RF+(S) 

= DF+(s). 

Theorem 8.8 In a DA G, R p  (S) = D F ~  (S) 

Proof: 

Given a DAG, we demonstrate two preliminary lemmas. 

Lemma 8.1 RFf (S) > DF(S). 
- 

Let X E S and let Z be in DF(X). Then X dom A, a predecessor of Z. X d o m  
- 

B, some other predecessor of Z, since X dona Z. If X does not reach B, then Z is 

in RF(X). So assume that X reaches B. 

We now show that on some path from X to B, there exists a C such that C is in 
- 

RF(X). Since X d o m  B, consider a path from entry to B such that X is not on 



the path (there must be at least one such path). Let C be the first node on this 

path that X can reach (C may be B). Then since X can reach C,  but not the 

predecessor of C on this path, C is in RF(X). 

Next, note that C cannot reach A. Otherwise, we would have the path Entry 

+ C + A (which cannot go through X since the graph is acyclic) that does not 

pass through X, contradicting the fact that X dom A. 

But, this condition means that Z is in RF(C), since C reaches Z through B, but 

cannot reach A. We already know that C is in RF(X), so we have shown that Z 

is in RF+ (X). 1 

. Lemma 8.2 RP(S) > DF+(s). 

Given Lemma 8.1, we know that RF+(x) 1 DF(X). So, RF+(S) 2 DF(S). 

D F ~ ( S )  = DF(SU DF(S)) 2 RFS (SU RF+(S) ) = RF+(S). By induction, DF+(S) 

c_ RF+(s). 1 

Lemma 8.2 together with Theorem 8.7 gives us our result. 1 

Since M+(S) 2 RF+(S) G DFS (S) (with RF+(S) = DF+(S) in a DAG), we have 

shown that placing $-functions within a PG at the DF+(S) is a safe approximation for the 

somewhat smaller set of M+(S). However, for the common depth-first implementations 

using renaming, placing merge operators at DF+(S) may well be the method of choice. 

How conservative is the use of DF+(S) as an approximation for M+(S)? First, if there 

is only one member of S, then M+(S) will be empty, while DF+(S) will usually not be 

empty. Second, DF+(S) assumes a definition lies along all possible paths. Thus, in the 

case of Figure 8.9 where S= {A, C), M(S) = MS(S) = {E), while DF(S) includes D. 

Third, M+(S) is insensitive to transitive edges, while DF+(S) is not. Again, examine 

Figure 8.9, where DF+(S) = {D, E, F). A +-function is only needed at E, but the 

insensitivity to transitive edges of DF+(S) adds node F to its set. 

However, extra $-functions are safe, since they only pass along the information col- 

lected at those points. Thus, merging information at DF+(S) within a PG has been 

shown to be a safe method, and is relatively efficient since it can be performed with the 

same complexity as that for &function placement. 

In terms of the space requirements for placing $-functions within the PG, we can 

use the space consumed by &function placement as an upper bound, since M+(S) C 



Figure 8.9 Using DF+(S) as an approximation for M+(S) 

DF+(S). While the worst case scenario could be O ( N 2 ) ,  in practice most programs 

exhibit linear space requirements when placing &functions [CFR+91, Hav94J. 

8.3.5 Complete Algorithms for PGs 

The complete transformation of an intermediate representation into parallel SSA form 

is accomplished in two main phases: function placement and chaining. For these algo- 

rithms, successor and predecessor always refer to nodes in the local CFG, while children 

refers to the dominator tree of the associated local CFG. 

We describe here the data structures used for the following algorithms: 

A(V) - A list of all nodes with assignments to variable V. 

symbol( tuple ) - A function that returns the variable symbol (name) associated 

with this tuple, if it exists. Returns null otherwise. 

V.CurrentDef - A pointer to the current definition (tuple) of symbol V. Logically 

points to the top of a definition stack. Initialized to source. 

t.SavedDef - A pointer to the current definition of symbol(t) before processing this 



tuple. Used to logically pop definitions off a stack when returning from recursive 

calls down the dominator tree. 

a T(*) - Stack of nodes to hold section nodes of PG for popping in topological order. 

Initialized to null. 

DF(N) - Local dominance frontier for node N. 

WhichPred(N, Q) - An integer indicating which predecessor of Q in the local CFG 

is N. 

a Work-List - An unordered list of CFG nodes. For each variable V, WorkList is 

initialized to A(V), all assignments to V. 

a HasFunc(*) - A reference field to a variable in each CFG node. HasFunc(N) = V 

means block N already has a & or $-function added for variable V. 

a Work(*) - A reference field for each local CFG or PG node. Work(N) = V means 

that node N has already been added to the WorkList for variable V. 

a set-delete($) - Marks a singleton $-function for later deletion. 

The placement of $-functions is done concurrently with the placement of &functions, 

as is shown in Algorithm 8.1. Functions are placed at the iterated dominance frontier 

of each assignment per given variable, V. A(V), the list of all initial assignments to V, 

is found in one pass through the program, storing the definitions of V as a linked list, 

as was done for Algorithm 3.1. We do not have to reinitialize the fields HasFunc and 

Work as each variable is processed, since they are just pointers to each variable under 

consideration. 

At each iterated dominance frontier nodet we distinguish whether to place a q5- or 

$-function by the type of node encountered (lines 16 - 20 in Algorithm 8.1) - a basic 

block node in a local CFG always receives a &function, while PG nodes indicate that a 

$-function is required. However, note that a $-function is not actually placed within the 

PG node, but rather within the Entry node of the corresponding section, unless the PG 

node is coend, in which case it is placed within the tail node of the enclosing supernode 

in the outer local CFG. In this way we correctly propagate definitions reaching the end 

' ~ l t h o u ~ h  line 13 in Algorithm 8.1 looks at each Q in the dominance frontier of N, lines 22 - 28 
effectively iterate the dominance frontier by placing nodes back into the worklist. 



Given: A(V), V V.  
Do: compute DF( N ), V N E EFG. - 

Initialize with lines 1 - 4 
Result: Extended SSA form with $-functions for PGs 

1 : for all nodes N do 
2 : HasFunc(N) t 0 
3 : Work(N) t 0 
4 : endfor 

for each variable V do 
Work-List t 0 
for each N in A (V )  

Work(N) t V 
Work-List t Work-List U { N )  

endfor 
while Work-List # 0 do 

take N from Work-List 
for each Q in DF(N) do 

if HasFunc(Q) # V then 
HasFunc(Q) t V 
if Q is a basic block of local CFG then 

add-4 (Q, V )  
else if Q is a member of PG then 

add-llr (Q, V) 
endif 

endif 
if Work(Q) # V then 

Work(Q) t V 
Work-List t Work-List U { Q ) 
if Q is a section Exit basic block then 

Work-List e Work-List U {PQ, SQ) 
endif 

endif 
endfor /* each Q in DF */ 

endwhile 
endfor /* each variable V */ 

32 : add+(N, V )  
33 : i t number of predecessors of N 
34 : place V = 4 (  &, V2, ..., V, ) at the beginning of basic block N, 
35 : where 4 corresponds to the jth predecessor of N 

36 : add-11, (N, V )  
37 : if N is a section node, then N' t en try^ 
38 : if N is a coend node, then N' c tailpN 
39 : place V = $ at N' 

Algorithm 8.1 Placement: locations for $- and +-functions 



Given: Initialized data structures. 
Do: Call ChainEFG( Entrymai,) - 
Result: Extended SSA form with $-functions for PGs 

ChainEFG(N) 
if N is a node of a local CFG then 

for all tuples t E N, in forward order do 
V t symbol( t ) 
if t is an ordinary use of V then 

link( t ) t V. CurrentDef 
endif 
if t is an ordinary definition or 4-function of V then 

t.SaveDef t V. CurrentDef 
V. CurrentDef t t 

else if t is a $-function o f t  then 
t.SaveDef t V. CurrentDef 
eliminate duplicate arguments to $ 
num t number of $ arguments 
if num = 1 then 

set-delete($) 
V. CurrentDef t link( t ) 

else if num > 1 then 
V. CurrentDef t t 

endif 
endif 

endfor /* all tuples in N */ 
endif 

Algorithm 8.2 Chaining an EFG: correctly inserting links 



24 : if N is a supernode then traversePG( EntryN ) /* cobegin for N */ 
25 : if N is a node of a local CFG then 
26 : for each Q E Succ(N) do /* Succ(N) in CFG */ 
27 : j t WhichPred(N,Q) 
28 : for each &function merge tuple f in Q do 
29 : V t symbol(f) 
30 : link( jth argument o f f  ) t V.CurrentDef 
31 : end for 
32 : endfor 
33 : for each Q E Children(N) do /* children in dom tree */ 
34 : ChainEFG(Q) 
35 : end for 
36 : for all tuples t E N, in reverse order do 
37 : if t is a definition tuple do 
38 : V t symbol(t) 
39 : V. CurrentDef t t.SaveDef 
40 : if t is a $-function & set-delete( t ) then 
41 : remove t and ats arguments 
42 : endif 
43 : endif 
44 : endfor 
45 : endif 
46: end ChainEFG 

Algorithm 8.2 (cont.) 



Given: Precedence Graph E 
Do: Call tmversePG(E) - 
Result: Correct node traversal in a PG 

1 : trauersePG(E) 
2 : call dfst(E) /* Algorithm 8.4 */ 
3 : while T # 0 do 
4 : M i- P ~ P ( T )  
5 : if M is a section node do 
6 : ChainEFG( EntryM ) 
7 : for all $-function merge tuple t E EntryM do 
8 : V c symbol( t ) 
9 : t.SaveDef t V.CurrentDef 
10: V. CurrentDef e t 
11: enddo 
12 : for all +function merge tuples t E ExitM do 
13 : V c symbol( t ) 
14 : t.SaveDef c V.CurrentDef 
15: V. CurrentDef t t 
16 : enddo 
17 : for each Q E Succ(N) do /* Succ(N) in PG gmph */ 
18: if Q is a section node, then Q' t EntryQ 
19 : if Q is a coend node, then Q' t tailpQ 
20 : for all $-function merge tuples f E Q' do 
21 : V c symbol( f ) 
22 : if V.CurrentDef is contained within enclosing parallel block then 
23 : add arg = $-argument to f with link( arg ) t V.CurrentDef 
24 : endif 
25 : enddo 
26 : enddo 
27 : enddo /* of section node */ 
28 : R c M  
29 : while R # parent(Top(T)) do 
30 : for all #+function merge tuples t E  exit^ do 
31: V t symbol( t ) 
32 : V. CurrentDef e t.SaveDef 
33 : endfor 
34 : for all $-finction merge tuples t E EntryR do 
35 : V c symbol( t ) 
36 : V. CurrentDef t t.SaveDef 
37 : if set-delete( t ) then 
38 : remove t and its arguments 
39 : endif 
40 : endfor 
41 : R e parent(R) /* parent set in dfst */ 
42 : endwhile 
43 : endwhile 
44: end traversePG 

Algorithm 8.3 Correct traversal of nodes in the PG 



of a parallel section to the sequential flow which follows the supernode in the enclosing 

local CFG. The distinction made to determine which type of merge node to create also 

enables a single field, HasFunc, to be used for each node; there can never be both a & 
and $-function placed at the same node. 

The other importance difference between & and $-functions in the placement phase 

can be seen by examining the add-4 and add-$ routines in Algorithm 8.1. When a 

+function is placed at a node, its arity is fixed at i, where i is the number of CFG 

predecessors of the node. On the other hand, when a $-function is placed at a node, 

we do not know its arity, other than it will be at least one. There is not necessarily a 

correspondence between $-arguments and PG predecessors. Remember, a $-argument 

reflects a definition of that variable within the corresponding parallel section. It may be 

that no definition of the variable exists within a predecessor section for some $-function. 

It is in the next phase, renaming, that arguments are added to $-functions. 

Once & and +-function placement is accomplished, the chaining phase is invoked. 

Algorithm 8.2 fills in the correct argument pointers in the case of &functions and creates 

$-arguments when needed, filled in with the current reaching definition for each variable. 

This algorithm also links each ordinary use to its unique reaching definition. 

The chaining algorithm we present in this chapter works the same as Algorithm 3.2 

when traversing a local CFG except that $-functions as well as &functions are treated as 

variable generations and pushed logically onto a definition stack. However, when looking 

for &functions at CFG successors, we will never examine a node which could contain 

both a &function and a $-function. A $-function can only be placed at two types of 

nodes: Section entry nodes and the tail node for a supernode. In the former case, we 

have a node with no nodes in its dominance frontier, and in the latter we have a node 

with exactly one predecessor. 

Algorithm 3.2 performs a depth-first traversal of the dominator tree of the CFG. We 

modify this algorithm for parallel constructs as follows: 

1. Begin the traversal with the E n t y  node for Gmain. 

2. When visiting a basic block node or Entry node, the algorithm works the same as 

originally presented. 

3. When visiting a supernode, the procedure recurses to perform a traversal of the 

nodes in the corresponding PG. The order of traversal of these nodes is important: 

the traversal of section nodes must preserve topological order - that is, every 



( p )  a 1  = 2 
( p )  bl = 3 
( p )  Cl = 4 
(p) if (9) then 

Parallel Sections 
Section A 

(s) if (PI then 
( t )  b2 = a 1  * 5 

else 
(u) b3 = al + 7 
(u) fi = b3 * a1 

( v )  endif 
( v )  b4 = 4 ( b z ,  b 3 )  

(v )  f2 = 4 ( f o ,  f i )  

( E x i t  A) bs = 4 ( b 4 ,  b i )  

( E x i t A )  f3  = 4 ( f o Y  f 2 )  

Section B 
(w) c2 = C I  + 15 
( W) f4 = c2 * 16 
( E x i t B )  C3 = &a, c 2 )  

( E x i t B )  f s  = 4 ( f o ,  f 4 )  

Section C, Wait(A) 
(XI dl = bs * a1 

( E x i t C )  d 2  = + ( d o ,  d l )  

Section D, Wait(A, B) 
( E n t r ~ D )  f6 = ' $ ( f 3 9  f 5 )  

(Y) c4 = a 1  * b5 + c3 * f5 

( E x i t D )  Cs = 4 ( c 3 ,  c 4 )  

End Parallel Sections 
( t a i l p l )  f7 = ' $ ( f 3 ,  f 6 )  

(n) d 3  = d2 + f7 

(p) else 
(9) d 4  = 23 
( r )  endif 
( r )  b6 = 4 ( b ~ ,  b l )  

( r )  cg = $ J ( c 5 ,  c 1 )  

( r )  ds = 4 ( d 3 ,  d 4 )  

( r )  f a  = 4 ( f o ,  f 7 )  

( r )  el = a 1  + b6 * cg * d5 

Figure 8.10 SSA form of parallel program 



predecessor of a section node must be visited before visiting the section node itself. 

Since the PG is acyclic, it is fairly easy to discover a correct order. We call the rou- 

tine dfst() to build a correct traversal order (see Algorithm 8.4 and Theorems 8.12 

- 8.14). 

4. When visiting a section node, singleton $-functions can be identified for deletion 

(a separate pass is not needed to actually delete these functions, since the deletion 

occurs at lines 37 - 39 of Algorithm 8.3, the same time definitions are popped off 

the stack). First, for each $-function at this section node, remove any duplicate 

$-arguments. If there is only one remaining $-argument, then that argument can 

be marked for future deletion. If there is more than one remaining $-argument, 

the $-function is necessary. The procedure then recurses to visit the dominator 

tree of the corresponding local CFG. Insertion of $-arguments is done to the wait- 

dependence successors in a fashion similar to the chaining process for arguments 

of &functions. 

5. When visiting an Exit node for a section, the SSA name for every variable modified 

in that section must be propagated back to the section node, as though there were 

an assignment in that section node. Due to slice edges, all variables defined within 

the section will have corresponding &functions at the section Exit. 

6. Similarly, when visiting a coend node, each SSA name modified in the parallel block 

must be propagated to the corresponding supernode. We accomplish this task by 

placing $-functions for coend nodes at the parallel block tail node. If only a single 

reaching definition of a variable reaches coend, a singleton-$ will be created. 

The SSA form of the parallel program (where the EFG includes slice edges) in Fig- 

ure 8.2 is shown in Figure 8.10. 

A major revision to Algorithm 3.2 occurs when a supernode is encountered. At 

this point we must traverse the section nodes of the corresponding PG by calling tra- 

versePG(), and recursively calling ChainEFG() on each local local CFG (see Algo- 

rithm 8.3). If that local local CFG has a supernode, then traversePG() will again be 

called. Thus, ChainEFG() and traversePG() seesaw back and forth as needed. 

8.3.6 Safety and Correctness of the Algorithms 

We show in this section that the algorithms presented perform as intended. We first 

demonstrate that &functions are correctly placed, and that $-functions are placed at all 



points identified by Definition 8.2. Our algorithm may place $-functions at more points 

than required, but these functions are useful for implementation, notably as singleton-$s, 

and are deleted later. Next, we show that the correct reaching definitions are propagated 

and inserted as arguments to & and $-functions. Finally, we prove that the traversePG() 

routine visits nodes within the PG graph in the correct order, and we also provide 

complexity analysis for the algorithms. 

Within an EFG, &functions for variable v need to be placed at all points in each 

local CFG that correspond to the DFS(S), where S is the set of nodes in a local CFG 

that define v. Furthermore, if the local Exit node is in DF+(S), &functions need to 

be placed in DF+(PM), for M E S. This concept was formalized earlier [SHW93], 

and called the Parallel Precedence frontier (PPF) of a node. It was also proved in 

the work by Srinivasan et al. that &functions are needed at PPF+(S), the limit of 

increasing sequences of PPF sets. Here, we provide mechanisms to implement these 

concepts efficiently, and prove their safety and correctness. Formally, the PPF  of a node 

is recursively defined as follows: 

Definition 8.5 Given the following descriptions: 

PPFloml(X) is  the sequential dominance frontier of X ,  defined within Gx; 

PPFlWl (X) is defined between nodes and supernodes in  Gx and does not 

consider nodes within supernodes, and 

Px is the supernode containing X, as defined earlier. (If X E G,,,, then Px = 0.) 

W e  define the parallel precedence frontier of a basic block node or supernode X, denoted 

PPF(X), as follows: 

If  exit^^ 4 PPFlocar(X) then PPF(X) = P P F I ~ ~ I ( X ) .  

If ExitGx E PPF1ocal(X) then PPF(X) = PPFIoml (X) U PPF(Px). 

Theorem 8.9 The placement algorithm inserts a 4-function at all points i n  PPF+(S) 

for any variable, and a $-function at all points identajied by Definition 8.2. 

Proof: 

We first consider the proper placement of #-functions. As described above, for variable 

v, +functions belong at PPF+(A(v)). Thus, we need to show that Algorithm 8.1 places 

#-functions a t  precisely those points. For each element in A(v), lines 16 and 24 operate 



the same as the original sequential algorithm. This procedure satisfies the first half of 

Definition 8.5, while lines 25 - 27 satisfies the second half of the definition (adding SQ 

on this line to the worklist generates a $-function, as seen by lines 18 - 19). Finally, 

lines 22 - 24 insure that the PPF is iterated. 

Next, we show that the points identified by Definition 8.2 are a subset of those 

identified in Algorithm 8.1. Due to the slice edge in each section local CFG, every local 

Exit node is always in the iterated dominance frontier of all nodes (except local Entry 

and Exit) within the section (Theorem 3.1). Thus, if variable v is defined within a 

section, the local Exit node will always have a &function created for v. Lines 25 - 27 

from Algorithm 8.1 guarantees that the section in the P G  graph containing the variable 

definition is added to the worklist. Similarly, the slice edge in the PG graph insures that 

the coend node is added to the worklist via the DF+. Any section node from Definition 

8.2 is contained in the DFS of a variable definition by Theorems 8.6 and 8.7, and we 

have shown that our algorithm identifies all nodes in the DF+ for $-function placement. 

I 

Theorem 8.10 The correct reaching definitions for $-functions are propagated by Al- 

gorithms 8.2 and 8.3. 

Proof By exhaustive cases. Let g be any $-function for variable v. From Algorithm 8.1 

we know g is either ( 2 )  at a Section Entry node or (ii) at the tail node of a supernode. 

case ( 2 ) .  Let g E Section B for arbitrary Sections A and B, such that B waits upon A. 
We must show that all reaching definitions of v from Section A are correctly propagated 

to g. By Theorem 3.1, any downward-exposed definition of v in A results in a +function, 

f ,  being created for v in ExitA. Lines 12-16 of Algorithm 8.3 logically push a pointer 

to f onto a definition stack, which at this point is v .  CurrentDef. We have two subcases. 

In subcase (i.a), B waits directly upon A. Lines 17 - 18 of Algorithm 8.3 will examine 

B (which we know contains v = $ by Theorem 8.9), and create a +-argument in line 23 

with link($-arg ) = f .  In subcase (i.b), B waits transitively upon A with no intervening 

definition of v. Here, since there are no intervening definitions of v, v. CurrentDefremains 

unchanged until reaching B as long as it is not logically popped off the definition stack, 

which could only occur if v. CurrentDef is reset. The only issue concerns whether the 

section nodes are visited in the correct order. This issue is dealt with in Theorems 8.12 

- 8.14 later in this section. 

case (ii). Let g E tailp. This case is actually a special case of (i), where coend E 



DF+. Line 19 of Algorithm 8.3 insures that the reaching definition is propagated to g 

in this case. I 

Theorem 8.11 The correct reaching definitions for $-functions are propagated by Al- 

gorithms 8.2 and 8.3. 

Proof: 

Consider any +function f for variable v. I f f  is within a local CFG, then Algorithm 8.2 

works the same as  Algorithm 3.2. We need only consider the case where the local CFG 

contains a supernode, P, and (i) f is within P, or (ii) f is at a point reached by P. 

case (i). Either f E DF+ of A(v), or not. If not, then v. CurrentDef is a pointer to 

the current reaching definition of v, propagated from its local Exit node +function, and 

logically pushed onto a stack of definitions by lines 12 - 16 of Algorithm 8.3 . If so, then 

Algorithm 8.1 guarantees that a $-function was created at EntryG,, and Theorem 8.10 

assures us that it possesses the proper reaching definition. 

case (ii). The last definition of v from one branch of a local CFG reaching f comes 

from inside P. But here v.CurrentDef will be the $-function at tailp when filling in the 

correct +argument in lines 28 - 31 of Algorithm 8.2. ) 

Algorithm 8.3 provides the details for traversing the PG section nodes in the right 

order: they must be visited in topological order, but must also be visited in a depth-first 

fashion of some spanning tree of the PG graph. Algorithm 3.2 visits nodes for chaining 

in a depth-first order of its dominator tree. We visit the section nodes of a supernode in 

topological order. Note that a depth-first order of a graph will not, in general, visit the 

nodes in topological order, and all topological orders do not visit a directed graph in a 

depth-first manner of some spanning tree of that graph. The key idea of Algorithm 3.2 is 

that when a depth-first search of the dominator tree visits a node all reaching definitions 

of previous nodes are logically on a stack. This task is accomplished by the depth-first 

search, as it will visit all a node's dominator tree children before completing its call, and 

only then pop off definitions within the node. For sequential code, visiting nodes in a 

depth-first order of the dominator tree effectively produces a 'must-precedes' ordering; 

for a supernode, we visit section nodes in the 'must-precede' order by examining them 

topologically, while we insure that the correct reaching definitions between section nodes 

exists by visiting these nodes in a depth-first order of some spanning tree of the PG. 

Thus, we would like to find a spanning tree of the PG such that there exists a depth- 

first search of that tree that maintains topological order. We prove that Algorithm 8.4 



Given: Precedence Graph with root R 
Do: Initialize with lines 1 - 2 - 

call dfst(R) 
Result: Topological order of some spanning tree of PG 

1 : set of edges E t 0 
2 : stack of nodes T t 0 

dfst(V) 
mark visited(V) 
for each child ( successor in a PG ) of V do 

if unvisited(chi1d) then 
add edge V + child to E 
parent(chi1d) t V 
dfst(chi1d) 

endif 
enddo 
push V onto T 

end dfst 

Algorithm 8.4 Ordering PG nodes for processing 

accomplishes the desired task, which is called by the routine traversePG(). 

Theorem 8.12 Popping T will visit the nodes of G in topological order. 

This result is well-known [Sed88]. ) 

Theorem 8.13 E is a spanning tree of G. 

Proof: 

Choose any node N of G. We know N is visited (Theorem 8.12), and visited only once, 

since it is marked when visited the first time, and will not be revisited once so marked. 

Since each node N has at  most one edge in E with head N ,  we need only show that 

N can be reached from the root, R. Simply follow the parent links repeatedly from N .  

The unique parent P of N corresponds to an edge P -+ N in E. Since G is finite (a 

necessary assumption), this chain will terminate at the only node without a parent, R. 1 

Theorem 8.14 Popping T will visit the nodes of E in a depth-first order. 



Proof: 

In the context of visiting tree E ,  a depth-first order of E means that we want to visit all 

descendants of node N before any unvisited siblings of N. Let N and M be siblings in 

E, with D a descendant of N. We must show that, given N,  M, and D unvisited, if N 

is visited first, D will be visited before M (by Theorem 8.12 we know N will be visited 

before D). Assume, to the contrary, M is visited before D. This assumption implies that 

M is between N and D in stack T. Since D is reachable from N, and dfst(N) reached M 

before completing, D must be a descendant of M in E. But this fact implies two paths 

from R to D in E (one through N and one through M),  since M and N are siblings. 

However, this conclusion contradicts the fact that E is a tree. Thus, D will be visited 

before M. ( 

In order to assess the asymptotic complexity of the algorithms given in this chapter, 

let P be the number of sequential sections of code in the parallel program, and N and 

E be the maximum of the total number of nodes and edges respectively in the local 

CFGs corresponding to each of these sections. If is the number of variables in the 

program, we calculate the running time of our algorithms as follows: the first phase, 

+ and $-function placement, takes worst case 0 ( N 2  + E) per section [CFR+91], thus 

over all sequential sections it will take O( P x (N2 + E) ) time. Then, for the second 

phase, the ChainEFG() routine take maximum time of O(N x x )  (per sequential section), 

while traversePG() will traverse all sections (o(P)),  calling dfst() (constant time with 

respect to the traversePG() call), ChainEFGO, and processing + and $-functions on 

each section ( ~ ( p ) ) .  Thus, the running time of the second phase, over all variables, is 

~ ( P X  ( N x ? + p 1). 

8.4 Notes on Implementation 

Here, we will examine some of the salient features observed while implementing the 

algorithms presented in this chapter: 

a The slice edges proved to be an invaluable tool for propagating reaching definitions. 

All variables defined within a section have a &function at the local Exit node, but 

$-functions (inserted at the section Entry nodes) are never propagated within that 

section, since Entry nodes have an empty local dominance frontier. Thus, by 

looking first for $-functions at Entry, followed by +functions at Exit, the proper 

reaching definition will always be on the top of the stack when proceeding to a new 



section. 

Removing duplicate $-arguments. We have seen how duplicate arguments can 

occur. At first glance, it may appear that in order to remove duplicates, the ar- 

guments would need to be sorted, taking Nlog N time. Although we expect N to 

usually be fairly small, we can, in fact, perform the duplicate elimination in linear 

time, by using a variant of a bucket sort. For each $-function s, examine its argu- 

ments, marking a reference flag (pointer to a symbol) at the end of each argument's 

link with s. Since each +-function is unique, we can immediately identify duplicate 

entries and remove them. Note that this technique is possible, since we can follow 

the use of a variable (from the $-argument in this case) to its definition via our 

reference chain implementation. 



Chapter 9 

Conclusions 

9.1 Future Applications of Reference Chaining 

Reference chaining can be applied in many instances. Once a problem is identified and 

cast into a framework where reaching and reachable references are needed, the GRC 

algorithm can be invoked to insert merge operators and capture the desired information. 

We saw just such an instance with load-range analysis in 55.2. 

We mentioned early in this thesis that FUD chains to date have been the most useful 

application of reference chaining. That is because they extend SSA form (which already 

has many applications developed around its structure) to include def-def links, which 

have allowed more thorough analysis of many problems. We anticipate using FUD chains 

to analyze another important compiler problem: alias sets. In general, this problem is 

undecidable, and some languages, notably C, allow arbitrary pointer declaration and 

pointer arithmetic, making the problem all but impossible to solve. Using a restricted 

set of pointers, such as provided in Fortran 90, will enable more precision of pointer 

analysis. The Fortran 90 standard [ABM+92] permits pointers in a much more restricted 

sense than C: no pointer arithmetic is allowed and objects need to be identified as being 

the potential target of a pointer. 

We briefly examine here two techniques for following FUD chains to analyze alias 

sets. The problem is somewhat similar to analysis of arrays (in which each element 

could be considered an alias of all other elements), where each definition of an array is 

treated as a nonkilling definition. Thus, one may follow chains until a particular array 

element is reached, or until the element in question cannot be determined. We used this 

method to perform array constant propagation in 54.6. 

Aliases can occur in several ways. Formal arguments can become aliases to each 

other, as we see with this example: 



S1 : call sub( X,Y,Y 1 

S2 : call sub( X , X , Y  1 

When sub is called at S1, Q and R become aliases of each other, and likewise for P and Q at 

S2. These are must aliases, since the compiler can statically establish their relationship. 

With this C code fragment 

SI: int C 

S2 : i n t  *A, *B 

S3 : A = &C 

*A and C are must aliases, but if the compiler cannot determine any information about 

B, it may also point to the address of C. Thus, B and A, and *B and C are may aliases, a 

less precise relationship than must alias, but a necessary conservative approximation. 

We currently envision two methods for performing alias analysis with FUD chains: 

1. Create alias equavalence classes. When analyzing a variable, the compiler must 

follow the chains of all elements in the equivalence class. There are several questions 

to answer: 

a Are the data structures kept small, as we expect? 

a Does this construction lead to an explosion in the number of links to traverse? 

How can we take advantage of incremental information? 

a How much of a problem is false aliases? For the first example above, P and 

R will be put into the same equivalence class (since both at some point are 

classified as aliases of Q), but in fact are never aliases of each other. 

2. Treat definitions as killing definitions of themselves, but nonkilling definitions of 

the alias set. When analyzing a variable, the compiler will traverse a chain that 

weaves through all references of variables in an alias set. This technique is similar 

to work previously done [WZ91, CG931. In this case we may have larger data 

structures, but taking advantage of incremental information may be much easier. 



9.2 Assessment and Conclusion 

We have described a general method of chaining arbitrary references in both forward 

and backward data-flow problems. At this point, how do we evaluate the strengths and 

weaknesses of this approach? First, we assess how GRC stands in comparison to our 

thesis as described in 81.2: 

1. Efficient implementation. We have shown empirically that building reference 

chain graphs is linear in the number of variables and program statements. Com- 

pared to the actual analysis (performing constant propagation, building live vari- 

able sets, etc.) the construction cost is fairly minimal. 

2. Alternative solutions. We have shown how to use GRCs as an alternative 

method for performing constant propagation and solving live variables and antici- 

patable expressions. 

3. Problems previously neglected. GRC has been shown to be applicable to 

the problem of scalar data dependence. We present the first sparse solution to 

the scalar dependence problem, important since it avoids the additional overhead 

associated with general dependence analysis. 

4. Extension into parallel languages. We have provided a detailed extension for 

reaching definitions into explicit parallel constructs. We envision extensions for 

other constructs, such as the HPF FORALL statement. 

We now offer the following observations, based upon using GRC on a large assortment 

of problems and scenarios: 

GRC has great appeal due to its use of standard basic block and CFG representa- 

tions. By augmenting the CFG, we obviate the need for separate structures (such as 

that used by sparse evaluation graphs [CCFSl]), yet provide the maximum degree 

of sparsity allowed by each problem. 

Merge operators provided by GRC capture information that is stored until needed 

and which can be extracted on demand; an example is the A-function when used 

for computing live variable information. 

By developing the general reference chaining algorithm (Algorithms 5.1 and 5.2) 

we have provided a mechanism for collecting information on many problems, not 



just those applications we have focused on in this thesis. The GRC framework can 

result in efficient and fast solutions to problems that before were limited by the cost 

of expensive operations in the traditional iterative style. Solving the reaching uses 

problem with FRDU chains, which allowed an efficient method of detecting anti- 

and input dependence, is a prime example of the usefulness of the GRC technique. 

Empirical testing of solutions to problems using a demand-driven method has 

shown that, in the absence of cycles, sparse links combined with the demand for 

classification is quite an efficient technique. Separate solvers for cycles have also 

been shown to be very effective. 

The cost of constructing reference chains (all structures involve some overhead, 

albeit some more than others) can often be amortized when multiple applications 

use the same chains for analysis. 

Array analysis remains as critical as ever. FUD chains have improved the ability to 

process data structures such as arrays and records, but further research is necessary 

to continue the development of techniques to analyze data structures with multiple 

components. 

Instead of providing links between references to achieve sparse data-flow representa- 

tions, another approach is to use standard methods, as described in 52.3.1, and identify 

those equations in the system that carry redundant information (DGS941. By eliminat- 

ing redundancies, fixed point computation may be faster. This approach maps data-flow 

equations into congruences (those equations with identical maximum fixed point solu- 

tions), which is an equivalence relation that partitions all the equations into congruence 

classes. Then, a reduced set of equations can be solved, with one equation from each 

class. Although the authors note that SSA form is an alternate technique, Duesterwald 

et al. point out that "the benefits of using SSA for data flow analysis are limited to 

problems that are based on definition-use connections, such as constant propagation. A 

problem like available expressions does not benefit from SSA." In this dissertation we 

have seen that extending the concept of SSA to GRC allows solutions to many data-flow 

problems (including available expressions) that require connecting arbitrary reference 

pairs, not just definitions and uses. 

In conclusion, we have presented a framework that aids in the overall analysis of the 

intermediate compiler form, and have demonstrated that reference chaining is an option 

for many problems where sparse representation of data-flow information is profitable. 



By implementing the techniques described, we have shown that GRC is a viable and 

efficient approach for analyzing real programs. 
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