
Intermediate Compiler Analysis

via Reference Chaining

Eric James Stoltz

B.S., Mathematics, Willamette University, 1976

M.S.T., Mathematics, Portland State University, 1982

A dissertation submitted to the faculty of the

Oregon Graduate Institute of Science & Technology

in partial fulfillment of the

requirements for the degree

Doctor of Philosophy

in

Computer Science and Engineering

January 1995

@ Copyright 1995 by Eric James Stoltz

All Rights Reserved

The dissertation "Intermediate Compiler Analysis via Reference Chaining" by Eric

James Stoltz has been examined and approved by the following Examination Committee:

- -,, . <

hfichael ~ o l f e /I
-

i/

Associate Professor
Thesis Research Advisor

David Maier
Professor

Steve Otto
Assistant Professor

Jonathon walpolel
Associate Professor

Paul Havlak '4

Research Associate
University of Maryland

Dedication

This dissertation is dedicated to my family, who has provided the necessary support and

encouragement to allow me to quit my job five years ago and pursue my dream of a

doctoral degree.

This exciting journey would not be possible without the unswerving encouragement

of my wife, Luanne, and my stepchildren, Neil, Kara, and Krisanna. Luanne has helped

me realize that almost anything is possible by applying oneself tenaciously, and never

losing sight of the ultimate goal.

There is a special dedication for my parents, Jack and Cathy, who have never tried

to direct my life, but have always been happy in anything I do, as long as I am happy

doing it.

Thank you, all.

Acknowledgements

First, and foremost, I must thank my advisor Dr. Michael Wolfe, who has provided

me with the opportunity to learn compiler analysis through research, experience (both

his and mine), and writing papers, many papers. Michael, you have been such an

extraordinary friend and mentor; I shall always be eternally grateful.

Second, I owe thanks to my thesis committee, who provided comments and sugges-

tions which definitely improved the readability and clarity of my dissertation, I wish to

particularly thank Dr. David Maier, without whose careful reading and many suggestions

I would still be unsure of the precise distinction between restrictive and nonrestrictive

clauses. Dr. Steve Otto deserves special acknowledgement for also providing guidance

and direction in the use of his MetaMP distributed-memory programming environment,

which I employed as a basis for my student research proficiency project during my second

year of study at OGI.

Third, research is seldom performed in a vacuum, and the members of the Sparse

research group have provided many hours of stimulating discussion (as well as many

hours of not-so-stimulating discussion), all of which combines to produce a final product.

Thanks are in order to Michael P. Gerlek, Priyadarshan Kolte, and Tito Autrey.

Finally, I must thank all the members of the class who started the same year as I at

OGI. We have a special bond, and the friendships developed during the last four-plus

years will remain with me always. Thanks and best of luck to: Dan Burnett, Brian

Hansen, David Hansen, Nanda Kambhatla, Jeff Lewis, Jenny Orr.

Contents

Dedication iv

Acknowledgements v

List of Tables x

List of Figures xii

List of Algorithms xiii

Abstract xiv

1 Introduction

1.1 Static Single Assignment Form.
1.2 Thesis..................................
1.3 Contributions of This Work. .

1.4 Experimental Methodology. .
1.5 Organization..................................

1
2
4
4
5
7

2 Foundations 9
2.1 Internal Program Representation. .. 9

2.1.1 Our Intermediate Representation. 9
2.1.2 Basic Control Flow Analysis. .. 15
2.1.3 Control Flow Adjustments. .. 21
2.1.4 Notes on Implementation. .. 26

2.2 Other Control Representations. .. 27
2.2.1 Program Dependence Graphs. 28
2.2.2 Dependence Flow Graphs. .. 29
2.2.3 The Program DependenceWeb. 29
2.2.4 Value DependenceGraphs. .. 30

2.3 Reference Chaining. .. 31
2.3.1 Data-Flow Analysis. .. 31
2.3.2 Reaching Definitionsin a CFG 34
2.3.3 Initial Specifications. .. 35
2.3.4 FollowingChains. .. 38
2.3.5 Applications 39
2.3.6 Extensions to ReferenceChaining. 40

VI

3 FUD Chains 41
3.1 SSA Construction. .. 41

3.1.1 MergingReaching DefinitionsWithin a CFG 41
3.1.2 Building the Graph. .. 46
3.1.3 Construction Algorithms. .. 47
3.1.4 Interprocedural Links and Local CFGs 48
3.1.5 Notes on Implementation. .. 53

3.2 Constructing FUD Chains. .. 61
3.2.1 Definition 61
3.2.2 Additional Analysis. .. 63
3.2.3 Notes on Implementation. .. 65
3.2.4 Related Work. .. 66

3.3 Demand-Driven Analysis. .. 67

4 Demand-DrivenConstant Propagation 71
4.1 Introduction 71
4.2 Background for Constant Propagation. 73

4.2.1 Iterative Solutions. .. 73
4.2.2 Relative Precision of Solutions. 74
4.2.3 Optimistic vs. PessimisticSolvers. 77

4.3 Using FUD Chains for Simple Constants. 79
4.3.1 Constants Within the FUD Chain Framework. 79
4.3.2 Discussionof Algorithm 4.1 .. 80

4.4 Constants Within Conditionals and Loops. 84
4.4.1 Extending the Interpretability of 4r-Functions 84
4.4.2 GSA Form. .. 85
4.4.3 Converting 4r-FunctionsInto ,-Functions. 88
4.4.4 Conditional Constant Propagation. 102
4.4.5 Loops 102
4.4.6 Notes on Implementation. 107

4.5 Experimental Results. 108
4.6 An Extension to Arrays. 111
4.7 Comparison With Other Work. 113

4.7.1 Classification of Methods """""""" ..113

4.7.2 A Closer Look at One Algorithm. 113
4.7.3 An Evaluation of Methods. 114
4.7.4 An Empirical Comparison. 116

4.8 Further Extensions of Constant Propagation. 119

5 General Reference Chaining 122
5.1 A Generalized ReferenceChaining Algorithm. 122
5.2 Applications of GRC . 127

5.2.1 Reaching Definitions.. 127
5.2.2 Live-RangeSplitting. 127
5.2.3 Other Applications. 129

VII

6 Scalar Data Dependence 130
6.1 An Introduction to Scalar Data Dependence. 130
6.2 Flow and Output Dependence. 135

6.2.1 Necessary Ingredients. 135
6.2.2 Algorithm 6.1: Precisely Detecting Scalar Flow Dependence. . . . 137
6.2.3 Discussion of Algorithm 6.1 for Flow Dependence. 138
6.2.4 Measuring Algorithm 6.1 on Scientific Benchmarks. 144
6.2.5 Algorithm 6.2: Output Dependence. 146
6.2.6 Complexity Analysis. 147

6.3 Anti- and Input Dependence. 149
6.3.1 Building Chains With Y-Functions 149
6.3.2 Algorithms for Scalar Dependence Using Y-Functions 150
6.3.3 Experimental Results. 152

6.4 Extensions 155

7 Backward Data-Flow Problems 158
7.1 Live Variables and Chaining. 158

7.1.1 DefiningLive Variables. 158
7.1.2 Background 159
7.1.3 The A-ChainingAlgorithm. 162

7.2 Computing Liveness . 164
7.2.1 LivenessAlgorithm. 164
7.2.2 Correctness 166

7.3 Applications of Liveness . 169
7.3.1 Interference Graph Construction. 169
7.3.2 UselessCode Elimination. 170
7.3.3 Other Uses of LivenessInformation. 171

7.4 Experimental Results. 172
7.4.1 Data for the Traditional Approach. 173
7.4.2 Data for the A-ChainApproach. 173
7.4.3 Comparative Performance. 176

7.5 Anticipatability of Expressions. 177

8 Extension into Parallel Constructs 181
8.1 Execution Order in a Precedence Graph. 181

8.1.1 An Abstract Representation. 182
8.1.2 The Reaches Relation for DefinitionsWithin a PG 186

8.2 Merging Reaching Definitionsin a Precedence Graph. 187
8.2.1 Interesting Nodes and MergeNodes Within a PG. 187
8.2.2 Proving Correct and MinimalPlacement. 191

8.3 Algorithms and Correctness. 194
8.3.1 An Introduction to "p-FunctionPlacement. 194
8.3.2 Contrasting "p-and 1>-Functions.. 194
8.3.3 Depth-first Renaming. 196
8.3.4 EfficientImplementation. 197

Vlll

. 8.3.5 Complete Algorithms for PGs 201
. 8.3.6 Safety and Correctness of the Algorithms 209

. 8.4 Notes on Implementation 214

9 Conclusions 216
. 9.1 Future Applications of Reference Chaining 216

. 9.2 Assessment and Conclusion 218

Bibliography

Biographical Note 230

List of Tables

Summary information on the programs in the scientific benchmark suites
used . 6

Basic tuple types used in our IR . 10
The dominator relation from Figure 2.1 16
The dominance frontier and control dependence for nodes in the CFG
from Figure 2.1 . 19

. Rules for meet (n) operator 73
Scientific codes that contain irreducible loops 108
Number of tuples for the different data-flow forms 109
Constant fetch tuples and predicates found using Algorithms 4.1 and 4.4 110

A count of the different kinds of scalar flow dependences detected in sci-
entific codes . 145
Total number of scalar flow and output dependences and the number of
links traversed . 148
Total number of scalar anti- and input dependences and the number of
links traversed . 153
Comparison of data structure sizes between &functions and Y-functions . 156

Postdominator and liveness for example program 161
Chaining states for example program . 163
Data on solving IFG using traditional bit-vector approach 174
Times (in seconds) for traditional and A-chain methods 177

List of Figures

1.1 Program in (a) standard form and (b) SSA form 3

A sample program (a). and its Control Flow Graph. (b) 12
Program fragment shown at (a) basic block level (b) data-flow graph level 14
Dominator tree for nodes in the CFG from Figure 2.1 16
CFG from Figure 2.1 after modifications: y is the loop preheader and z is
the loop postbody . There is now also a slice edge from Entry to Exit 25
Simple CFG and its dominator tree . 27
An example highlighting Definitions 2.1 - 2.4. 35
The &function merges downward-exposed definitions 36
The A-function merges upward-exposed references 37

3.1 Reaching definitions can be quadratic in general
3.2 SSA form can linearize reaching definitions
3.3 Possible paths to consider regarding the join property
3.4 Data-flow graph for simple procedure call
3.5 Data-flow graph with more precision about the procedure parameter
3.6 Comparison of standard SSA implementation employing (a) def-use links

. and (b) use-def links
3.7 Comparing the number of &functions for each referenced variable
3.8 Comparing the number of &functions to program statements
3.9 Time to build the SSA graph in terms of program statements
3.10 Comparing front-end compiler time with SSA build time
3.11 Use-def links plus def-def links make FUD chains
3.12 Following def-def links when analyzing an array

4.1 Standard constant propagation lattice L 72
4.2 Need for sparse representation with constant propagation 75
4.3 Example showing that constant propagation is not distributive 76
4.4 Constants can be missed with pessimistic solvers 78
4.5 Constant propagation with (a) simple. and (b) conditional. constants . . . 79
4.6 Example of demand-driven constant propagation 82
4.7 Program in (a) normal form. (b) SSA form. and (c) GSA form 84
4.8 The two types of &functions: (a) p. and (b) 7 85
4.9 Irreducible graph that has a cycle with multiple entry points 90
4.10 Irreducible graph does not have well-defined CD-chains 92
4.11 Conditional code that results in nested 7-functions 93
4.12 How to convert &functions to 7-functions 98

4.13 Predicates that affect constants in unstructured code 99
4.14 Example of how the Reduce() routine works 100
4.15 Where the conversion to GSA form is necessary to detect a data-flow cycle 106
4.16 Comparison of times just for constant propagation analysis 116
4.17 Comparison of times for constant propagation analysis with 7-functions . 117
4.18 Time to perform Wegman-Zadeck algorithm as a function of the the num-

ber of statements in each program . 118
4.19 Time to perform demand-driven constant propagation as a function of the

. number of statements in each program 119

5.1 Computing load-ranges with GRC graphs 128
5.2 Comparing (a) FUD chains with (b) complete Reference Chaining 129

6.1 The eight kinds of scalar flow dependence that occur within a single loop.
grouped by related pairs . 136

6.2 Procedure for identifying scalar dependences 139
6.3 Routines for Find-Reachang and Build- Vector 140
6.4 T-functions merge downward-exposed reaching uses 150
6.5 FRDU chains for example loop . 151
6.6 A comparison of T-functions to referenced variables in the benchmark

programs . 154
6.7 A comparison of T-functions to program statements in the benchmark

. programs 154

7.1 CFG and pdom tree for live variable example program 161
7.2 A-graph for running example program . 166
7.3 A comparison of A-functions to referenced variables in the benchmark

. programs 175
7.4 A comparison of A-functions to program statements in the benchmark

. programs 175
. 7.5 Expression anticipatability 178

. 8.1 Example Precedence Graph 182
. 8.2 Example parallel program 183

. 8.3 EFG for the parallel program of Figure 8.2 185
. 8.4 Understanding merge operator placement in PGs 188

8.5 Tkansitive edges do not affect reaching definitions in PGs 191
8.6 All merge points in a PG do not require $-functions 196

. 8.7 DF(S) and RF(S) are sometimes unrelated 198
. 8.8 RF+(X) 2 DF+(X) 199

. 8.9 Using DFf (S) as an approximation for M+(S) 201
. 8.10 SSA form of parallel program 208

xii

List of Algorithms

Finding dominators of nodes in the CFG 17
Computing dominance frontier sets . 19
Finding natural loops in the CFG . 22
Finding the immediate dominator of a loop's postbody node 24

. Placement of &functions 49
Chaining: linking each use to its unique definition and correctly inserting

. &function arguments 50
Basic method for solving data-flow problems on demand 69

Demand-driven propagation of simple constants 81
Constructing a topological sort of nodes and detecting reducibility 89

. Converting &functions to ?-functions 95
Demand-driven propagation with conditional constants 103

. Placement of 0-functions 125
Reference Chaining: linking each reference to the next exposed reference
and correctly inserting 0-function arguments 126

. Identifying scalar flow dependences 139
. Identifying scalar output dependences 146

. Identifying scalar anti-dependences 151
. Identifying scalar input dependences 152

. Computing Live sets on a CFG 167

. Interference graph construction 170
. Useless code elimination 172

. Computing anticipatability of expressions 180

. Placement: locations for q!+ and $-functions 203
. Chaining an EFG: correctly inserting links 204

. Correct traversal of nodes in the PG 206
. Ordering PG nodes for processing 213

Abstract

Intermediate Compiler Analysis
via Reference Chaining

Eric James Stoltz, Ph.D.
Oregon Graduate Institute of Science & Technology, 1995

Supervising Professor: Michael Wolfe

When performing data-flow analysis on a compiler's intermediate form of a program,

sparse representations have proven their value by propagating information only to those

points that affect or use such information. Static Single Assignment form (where each

variable use has exactly one reaching definition) is a translation that linearizes reaching

definitions in a sparse manner. This dissertation extends the concept of Static Single

Assignment to include information flow other than just reaching definitions, such as

reaching uses, upward-exposed references, and definition-to-definition links. Information

is coalesced at confluence points via merge operators. The general process of providing

pointers (links) between arbitrary pairs of definition and usage sites of a variable is called

reference chaining.

A general reference chaining algorithm is developed and presented that allows pa-

rameters to be set that control the types of information to be propagated throughout the

intermediate form. By providing this general algorithm, data-flow information (upward-

or downward-exposed uses or definitions) is shown to be readily accessible in a compiler's

intermediate representation. Many of the problems solved with reference chains utilize

xiv

a demand-driven technique, where classification of any node is often dependent upon its

data-flow predecessors. Calls are made to classify the predecessors in a recursive manner.

The information provided by reference chains has led to the development of effi-

cient intermediate analysis techniques, including demand-driven constant propagation,

fast scalar dependence analysis, and live variable analysis, all within a unified sparse

representation. Reference chaining has also been extended to parallel constructs, so

that many of the same methods used to analyze sequential programs can be adapted to

parallel programs.

Complete algorithms both of a general nature and specifically tailored to address

the applications mentioned above are provided. Experiments have been performed on a

wide variety of scientific benchmarks to determine the effectiveness of reference chaining,

and comparative results are given where possible. The results of these experiments have

shown that the demand-driven approach is both fast and effective, and that reference

chaining is generally applicable and useful for many data-flow analysis problems.

Chapter 1

Introduction

With the advent of powerful, high performance workstations, coupled with the contin-

uing pressure to develop parallel computing systems, powerful techniques for analyzing

programs in their intermediate form is as important as ever. In order to perform aggres-

sive and profitable (yet safe) program optimization, fast, efficient, and effective analysis

techniques are required. Once a compiler has transformed a computer program into an

intermediate form, analysis of its content can begin. At this point, many important

questions can be posed:

a What type of intermediate form lends itself to a wide variety of analysis techniques?

Is the intermediate form malleable to the extent of allowing adjustments that per-

mit specialized analysis and transformation techniques to be applied?

How can we represent information within the intermediate form that minimizes

the cost of building data structures and propagating desired properties?

Clearly, these questions have no set, absolute answers. In some cases, language models

may dictate the general structure of the intermediate form, such as lambda notation

employed for functional languages [FH88, Chapter 8][KH89]. In other cases, special-

ization may require a particular form upon which to perform transformations, such as

machine-dependent optimizations that operate on low-level forms during the end of the

code generation phase. This dissertation, however, is concerned primarily with compiling

scientific programs, which are mostly written in a procedural, imperative, programming

style.

A general intermediate form can support a great many machine-independent analyses

and optimizations, such as redundancy elimination, constant propagation, code floating,

etc. Additionally, an intermediate form can be used for a variety of programming lan-

guages and can target multiple architectures [BCD+92]. Thus, we shall focus on an

intermediate form that possesses properties of widespread acceptance, ease of portabil-

ity, and flexibility for enabling analysis and optimization techniques.

1.1 Static Single Assignment Form

When performing data-flow analysis on a program's intermediate form, dense represen-

tations maintain all available information at each point in the program. Sparse repre-

sentations, on the other hand, propagate information only to those points that affect or

use such information. In recent years, use of sparse graph intermediate representations

of programs, combined with methods to eliminate quadratic growth of data structures,

have demonstrated that intermediate program analysis can be significantly simplified

and streamlined [ABC+88, CCF91, FOW87, JP93, WCES941. Since the late 1980's

Static Single Assignment (SSA) [CFR+89] has become a popular intermediate repre-

sentation with which to analyze programs. Utilizing SSA, many types of analyses and

optimizations have already been developed, including global value numbering [RWZ88],

partial redundancy elimination [BC94], constant propagation [WZ91], induction variable

detection [Wo192b], code optimization [MJ92], and alias analysis [CG93], among others.

Partial answers as to why SSA has become popular, and why we began using SSA

in our own research effort, are provided by these points:

SSA is based upon the abstraction of basic blocks and flow graphs, the most com-

mon intermediate representation for program flow analysis [ASU86, Hec77, MJ811.

SSA is well-understood by the compiler community in general, as evidenced from

the many papers that refer to SSA structure.

SSA has been demonstrated, via numerous independent implementations, to be a

viable approach.

x = o
y = o
z = o
i f (P 1 then

y = y + 1
endif

xo = 0
YO = 0
20 = 0
i f (P) then

Y1 = yo + 1
endif
Y2 = 4J (YO, y1 1
X l = y2
z 1 = 2 * y 2 - 1

Figure 1.1 Program in (a) standard form and (b) SSA form.

Many methods have been developed that exploit the properties of SSA, as was

noted above.

SSA is a solution to the quadratic growth of data structures and imprecision of

data-flow solutions found with general reaching definitions. After a program has been

converted into SSA form, it has two key properties (additional details are provided in

Chapters 2 and 3):

1. Every use of a variable in the program has exactly one reaching definition, and

2. At confluence points in the control flow graph, pseudo-assignments are introduced

called +-functions. A &function for a variable merges the values of the variable

from distinct incoming control flow paths (in which a definition occurs along at

least one of these paths), and has one argument for each control flow predecessor.

The &function is itself considered a new definition of the variable.

As an example, examine Figure 1.1. In (a) multiple definitions of y (at S2 and S5)

reach its uses at Ss and S9, while in (b) exactly one definition reaches any use. Note that

at S7 in (b) a pseudo-definition of y is created that merges downward-exposed definitions.

This coalescing of reaching definitions is one of the reasons that gives SSA form its appeal.

One of the major tenets of this dissertation is that the concept of merging reaching

information can be extended - such as merging upward-exposed references (definitions

or uses), an idea expounded in Chapter 7.

1.2 Thesis

In this work we show that SSA form is a specific instance of a more general method,

which we call reference chaining. We demonstrate that reference chaining can improve

upon traditional techniques, can be applied to solve new problems, and can be extended

into the arena of parallel languages.

Our thesis is that reference chaining for performing intermediate program analysis:

- can be eficiently implemented

- can lead to alternative solutions that can improve upon established methods

- can be used to develop solutions to problems previously neglected

- can extend its semantics into the area of parallel languages

1.3 Contributions of This Work

The contributions of this work include:

Using FUD chains to analyze constants. Factored Use and Definition chains (FUD

chains) are our implementation and extension of SSA form. We demonstrate the effec-

tiveness of FUD chains coupled with demand-driven analysis for constant propagation,

and evaluate this technique compared to the previously published methods that em-

ploy SSA form for constant propagation. By eliminating extra expression evaluation,

our technique shows a 20% time performance improvement over existing methods that

utilize SSA form.

Presenting new techniques for detecting scalar data dependence. We pro-

vide algorithms specifically tailored for detecting dependences of scalar variables. The

methods employed are a straightforward application of reference chaining, and remove

much of the overhead associated with detecting dependences in arrays, since the need to

perform subscript analysis is eliminated.

Providing a study of the types of scalar data dependences that occur in

loops. We have performed experiments on common scientific benchmark codes, and

have classified the basic types of scalar data dependences that can occur when the source

and sink of the dependence are in the same loop.

Developing a general reference chaining algorithm. We have generalized the

SSA algorithm, originally developed for reaching definitions, for many types of monotone

data-flow problems. We show the applicability of our method to numerous problems

other than reaching definitions.

Presenting a general method for a sparse solution to live variable analysis.

Other techniques have been presented to solve the live variable problem on sparse graphs,

but the solutions are based upon a separate sparse graph per variable. We provide a

unified sparse graph that is an application of reference chaining based on upward-exposed

definitions and uses. This method also aids in a fast dead code elimination algorithm,

which dynamically updates which variables are live when eliminating useless code.

Extending reference chaining to parallel languages. The effectiveness of refer-

ence chaining on traditional, sequential code, and the current push to develop parallel

languages has led us to extend the semantics into the parallel realm. Task parallelism

(explicit parallel sections incorporating the cobegin-coend construct) is examined and

shown to offer opportunities for reference chaining.

1.4 Experimental Methodology

To gather evidence and provide statistics with which to evaluate the methods and al-

gorithms presented in this work, we have implemented all techniques in our research

compiler and collected data on numerous scientific benchmarks.

Program I Lines I Routines I Statements I Description 1
PERFECT club

L

I mdo
I

1 1239 1 16 1 836 1 Molecular water molecules

adm
arc2d
bdna
dyfesm
Po52

6106
3965
3978
7609
1987

"

mg3d
ocean

. 9cd
spec 77
spice

I boast 1 8068 1

97
39
43
78
28

2813
4344

track
trfd

2277
3886

18522

-
I linvackd I 798 1 11 I 393

3810
2137
3280
2435
1795

28
36

RiCEPS

ccm
hydro

Hydrodynamics via finite differences
2-D fluid flow solver
Finite difference solver for airfoils
Finite element structural analysis
Transonic airfoil flow solver

Projectile tracking
Electron integral transform

3785
486

Oil reservoir recovery
Atmospheric climatic model
2-D Lamanaian hydrodynamics

2280
1729

Monte Carlo lattice gauge theory
Weather simulation
Circuit simulations

35
65

128

23557
13050

simple
sphot
wanall

Linear algebra routines
Hvdrodvnamics code

Depth migration
Oceanic 2-D current flow

1665
2905

13079
32
7

"
Monte Carlo photon transport code

1484
402

145
36

1314
1145
2110 Boundarv control of wave eauation

10130
3824

8
7

11

809
650

1182
wave 1 75211 92 [5321 1 Electromagnetic particle code
Mendez

Table 1.1 Summary information on the programs in the scientific benchmark suites used

baro
euler
mhd2d
shear
vortex

Total

984
1202
928
916
71 1

123301

7
14
14
16
20

1071

553
975
511
772
515

69827

2-D shallow water model
2-D shockwave model
Hydrodynamics code using FFT
3-D turbulence code
Vortex sheet motion

Nascent, our restructuring research compiler [WGS93], accepts Fortran source code

and converts it into an intermediate form similar to the abstract model outlined in

Chapter 2. Since all the techniques given in this dissertation have been implemented in

Nascent, and our implementation provides valuable feedback on techniques and suggests

useful coding methods, we shall often report on our efforts with a "Notes on Implemen-

tation" section within a chapter.

We have collected a significant number of scientific benchmarks written in Fortran

to use for experiments in subsequent chapters. The programs come from the following

three sets of benchmarks:

Perfect Club The Perfect Club benchmark suite [CKPK9O] is a collection of programs

designed to evaluate and test modern compilers and advanced architectures.

RiCEPS The Rice Compiler Evaluation Suite (RiCEPS) is a suite of numerical pro-

grams collected to test Fortran compilers, chosen to stress compiler analysis and

transformations for advanced architectures. The RiCEPS suite is available via ftp

from cs . r i ce . edu.

Mendez This collection of programs was compiled by Dr. Raoul Mendez of the Naval

Postgraduate School in Monterey, California. Its original intent was to benchmark

various American and Japanese vector computers. We obtained our copy from the

National Institute of Standards and Technology (NIST) .

Altogether, the 26 programs above contain in excess of 123,000 lines of code, and comprise

over 1000 subroutines and 69,000 statements. Details on these codes are presented in

Table 1.1.

1.5 Organization

This dissertation describes general reference chaining algorithms, together with their

applications, extensions, and implementations. Chapter 2 presents the groundwork for

understanding how data-flow problems can be characterized and solved within this frame-

work. We also provide a detailed examination of related work in that chapter; we examine

other intermediate representations that are similar to SSA form, including an evaluation

of their strengths and weaknesses. Chapter 3 presents the details of the most useful

extension of SSA to date - Factored Use and Definition Chains (FUD chains). We have

found many applications of FUD chains that admirably fit the demand-driven style of

analysis described in that chapter.

Chapter 4 studies a particular analysis, constant propagation, within the FUD chain

framework, and contrasts this method with both traditional constant propagation and

a previously published constant propagation algorithm that also uses the SSA form.

Chapter 5 presents the development of the general reference chaining algorithm, which

can be used for forward or backward problems, chaining any combination of reference

types. Chapter 6 presents a solution to the problem of detecting scalar data dependences,

a problem that has not before been addressed explicitly. We present algorithms and data

to support the contention that reference chaining can be used to construct new solution

methods to problems.

Chapter 7 looks at utilizing reference chains to solve backward data-flow problems,

notably live variable analysis and anticipatability of expressions. These methods provide

solutions to problems that before have been considered insoluble on unified sparse data-

flow representations. The algorithms presented are based upon the general reference

chaining procedure of Chapter 5. We examine extending the analysis power of reference

chaining into parallel languages in Chapter 8. Explicitly parallel sections are examined in

detail, and we show how to provide reaching definitions within these sections in a sparse

manner. By constructing this extension, we provide a coherent and sound method by

which to reason sensibly about programs written using parallel syntax.

Finally, Chapter 9 looks at future work and extensions of the ideas and techniques

presented in this dissertation. We draw conclusions in this chapter, and give an overall

assessment of the usefulness and applicability of reference chaining as a method of choice

for intermediate compiler analysis.

Chapter 2

Foundat ions

2.1 Internal Program Representation

Most compiler analysis techniques operate on an intermediate representation (IR). When

the front end of the compiler processes a program, it must translate each statement into

a form that eventually allows for later code generation. Before emitting code, however,

transformations to increase speed and improve overall performance of the executable

program may be desired. There are many possible intermediate forms, some fairly well

known, such as postfix notation, three-address code representation, and abstract syntax

trees [ASU86, FL88, TS851. Some local optimizations (such as constant folding) can be

performed within these forms, but in order to globally optimize a program, general pro-

gram flow analysis must be employed. To accomplish this task, statements are grouped

together in basic blocks, straight-line execution sequences with one entry and one exit

point. The common way to express control flow through a program is to connect basic

blocks together by constructing a control flow graph (CFG), sometimes just referred to

as a flowgraph [Hec77]. Other methods will be examined later in this chapter.

2.1.1 Our Intermediate Representation

For the purposes of this thesis, our analysis of programs begins within an intermediate

framework consisting of the control flow graph and a data-flow graph. Precisely, the

Control Flow Graph (CFG) is a graph G = (V, E, Entry, Exit), where V is a set of nodes

representing basic blocks in the program, and E is a set of edges representing sequential

control flow in the program, where vl + v2 E E means that v2 is a successor of vl in G

I constant I arith I standard arithmetic constants I

Tuple Operation Types

Type
source

I vroc-~aram I call are: I one for each argument of a ~rocedure I

arithmetic
test
proc

Class
initialize

I fetch

Description
default definition at Entry

arith
boolean
call

merge
merge-arg

I use

standard arithmetic operations
used to compare quantities
procedure call

I standard load in IR

pseudoref
pseudoref

I inparam use (indicates a read-only for this procedure parameter 1

used to collect information at splits or joins
typically one for each predecessor or successor

I out-param (def I indicates a write-only for this procedure parameter I
write

read I def I inputs values
formal 1 def 1 defined at Entw for formal arguments

use I outputs values
store I def I standard store in IR

Table 2.1 Basic tuple types used in our IR

global
in-out-param

de f
use & def

-
defined at Entry for referenced globals
indicates procedure parameter is readlwrite

(and vl is a predecessor of v2), with v2 being the head of the edge and vl the tail. The

set of edges entering and exiting a basic block are sometimes referred to as inedges and

outedges, respectively. Entry and Exit are nodes representing the unique entry point into

the program and the unique exit point from the program, respectively. Branch nodes

have their outedges determined by a predicate. A path in G is a list of nodes in V,

(vo, vl, . . . , v,), such that vj + vj+l E E V j E [O, . . . ,7z - 11. A path is simple if vertices

vo, vl, . . . , v, are distinct. We write vl v2 to mean some, perhaps trivial, path from

vl to 212, while vl 4 v2 is a nontrivial path. We assume every node in G has a path from

Entry and a path to Exit.

Each basic block contains a list of intermediate code tuples, which are linked together

to form the data-flow graph. Tuples take the form (type,left,right,link,syrnbol), where

type is the operation code and left and right are the two operands (both are not always

required, e.g., a unary minus). The tuple types available include those given in Table 2.1.

The left, right, and link fields are pointers: they are all essentially use-def pointers but

only some types use the link field. The symbol field is optional, and refers to the symbol-

table name associated with the tuple, if applicable. The data-flow graph (which we will

conveniently represent as an abstract syntax tree) comprises tuples together with their

left, right, and link pointers.

A sample program and its CFG are given in Figure 2.1. Sometimes branch nodes

will have each outgoing edge labeled according to the predicate value that selects the

edge.

Description of Intermediate Code Tuples. Although when actually building a

compiler there are a large variety of necessary tuple types (to cover special situations,

such as FORMAT statements in Fortran or the wide variety of supported arithmetic o p

erations), we will restrict ourselves to the set contained in Table 2.1 for two reasons.

First, this allows us to describe clearly the manipulations and transformations that we

wish to perform on the IR. Second, a restricted set is easily expanded in a way that

loses no validity or precision; essentially it is easy to generalize. Most of the tuple types

in Table 2.1 are self-explanatory. The source, formal, and global types are necessary

i f (PI then
a = 2

e l s e
a = 3

endif
i f (q> then

b = a + l
endif
repeat while (R)

i f (S) then
b = 3
c = c + 1

else
b = c

endif
end repeat
output(a ,b ,c) Exit I

Figure 2.1 A sample program (a), and its Control Flow Graph, (b)

to correctly provide the link field in SSA form (and, more generally, any chaining r e p

resentation, which is covered later in this chapter) where initialization of a variable is

required. In particular, source represents the initial definition of all variables at Entry,

which will be required by the conversion into SSA form. The formal and global types

are used as initial definitions when a variable is passed in as a subroutine argument or

is a referenced global variable, respectively. The param tuples refer to arguments of a

procedure or function. As more information about those arguments becomes available,

the default of in-out-param may be changed (for example, as a result of interprocedural

mod/ref analysis). Finally, the merge tuples are used to represent pseudo references,

such as +functions (merge) and +arguments (merge-args).

The distinction between definitions (a statement that modifies, or potentially modi-

fies, a variable, and typically includes the variables occurring on the left-hand side (LHS)

of an assignment) and uses (a statement that fetches the value of a variable, typically

found as variables occurring on the right-hand side (RHS) of an assignment) is usually

clear. However, sometimes a variable occurrence is not so well-defined, such as a simple

call-by-reference procedure parameter:

c a l l foo(x)

where no other analysis has been performed on the way x interacts with the program as a

whole. In this case, we must assume that x may be modified. But x is also (potentially)

fetched when foo is called. Since x may be defined, but not certainly, we call this

an instance of a nonkilling definition. Nonkilling definitions can occur in several other

contexts, such as indexed variables (arrays), and we shall look at how they are fully

represented in Chapter 3.

Tuple Order Within Basic Blocks. The compiler front-end parses the program,

placing tuples within basic blocks. However, the order of tuples in each basic block

is not random. Some lexical order must be maintained. For example, in our IR the

statement x = x + I will be broken down into four tuples: a store (x), an arithmetic

(+), a fetch (x) , and a constant (1). Since the right hand side of the expression will

fetch the value of x before the left-hand side stores it, we rely on the lexical ordering of

the tuples to maintain this property. Thus, the tuples representing the right-hand side

of the expression (addition, fetch, and constant) will occur (lexically) before the store

within the basic block. This ordering is handled by standard parsing techniques, and we

will refer to this important property again when more complicated cases arise, such as

the order of representing procedure parameters when identifying nonkilling definitions.

Example. We show in Figure 2.2 how this small program fragment:

Sl: i f (P) then
s2 : x = 3
s3 : v = x
Sq: e l se
s5 : x = 4
Ss: endif
s7: y = 2 + x

is transformed into its CFG basic block components, (a), and its data-flow graph r e p

resentation, (b). The solid lines in (b) represent left and right pointers while the dashed

+,

 fetch‘^

3 test
/'

f
store x store x

1 I ' I

x =$ (*' 9 ' 1
fetch'x b,

/ \ store w 2 fetch'x

/
store y

Figure 2.2 Program fragment shown at (a) basic block level (b) data-flow graph level

lines represent links. Note that a fetch operation has only a single link field, so in basic

block D, to maintain the single-assignment property, the fetch points to the pseudo-

assignment for x at the confluence point, which is a +function.

In this example, the fetch, store, and &merge utilize the symbol attribute of tuples.

2.1.2 Basic Control Flow Analysis

After constructing the CFG, several initial types of analyses are necessary that are relied

upon heavily for all subsequent phases of the compiler. First, basic blocks are related

by the dominance relation. Then, using this information, loops within the CFG are

identified. As we shall see, any cycle within the CFG will not necessarily constitute a

loop, although this will be the case in structured code.

Dominance. Within the CFG, node X dominates node Y (X dom Y) if all paths

from Entry to Y must pass through X. X strictly dominates Y if X dominates Y and X

Y. X is the immediate dominator of Y if X strictly dominates Y and all other nodes

which strictly dominate Y also dominate X. If X does not dominate Y, we denote
-

this relationship as X dom Y. We show the dominator relation (which is reflexive,

antisymmetric, and transitive, thus imposing a partial order upon the nodes of a CFG)

for Figure 2.1 in Table 2.2. Here, DOM(Node) is the set of nodes dominated by Node

(where m.. . x represents all nodes, alphabetically, from m to x), while D O M - ' (N O ~ ~)

is the set of nodes that dominate Node. The immediate dominator (idom) relationship

forms a tree of all the nodes within the CFG. Dominance can be represented in tree

format (referred to as the dorn tree) since the dominators of any node form a linear

ordering [Hec77], which implies that a node's immediate dominator is unique, if it exists.

We show the dom tree for Figure 2.1 in Figure 2.3.

Computing Dominance. We present here an algorithm for finding the dominators of

a node within a CFG. This method relies on the property that A dom B if A dominates

all predecessors of B. Essentially, it iterates the following data-flow equation around the

Table 2.2 The dominator relation from Figure 2.1

Figure Dominator tree for nodes in the CFG from Figure

Given: CFG
Do: Initialize with lines 1 - 4. -
Result: The set of dominators for each node in the CFG

1 : Dom(Entry) = { Entry)
2 : for all N E V - { Entry) do
3 : Dom(N) = V
4: endfor

5 : while changes to any Dom(N) occur do
6 : for all N E V - { Entry) do
7 : n o r n (~) = {N) u n D O ~ (P)

P E P W N)
8 : end for
9: endwhile

Algorithm 2.1 Finding dominators of nodes in the CFG

CFG until a fixed point is reached (where pred represents all predecessors of a node):

D m (N) = { N) U r) Dom(p)
P E P ~ ~ ~ (N)

Algorithm 2.1 presents the details of this method. The algorithm's running time is

O(V2 E) when performed as bit vector operations, although Lengauer and Tarjan note

[LT79] that this asymptotic time bound is pessimistic since the constant term associated

with these operations is small and the number of passes is usually no more than 2 in

order to reach a fixed point.

Algorithm 2.1 does not provide the immediate dominator for each node, important for

building the dominator tree and used in numerous other analysis techniques. However,

identification of each node's immediate dominator can be accomplished by keeping track

of the depth-first numbering (or reverse postordering number) of each node in a spanning

tree of the CFG - the idom will be the element in the dominator set with highest depth-

first number.

Dominance Frontier. An property related to dominance is the dominance frontier of

a node, important for placing merge operators such as +functions. Z is in the dominance

frontier of Y if Y does not strictly dominate Z, but Y does dominate some predecessor

of Z. We show the dominance frontier for all nodes in Figure Z.l(b) in Table 2.3.

We compute the dominance frontier of all nodes by adapting a method developed

by Cytron, Ferrante, and Sarkar [CFSSO]. We demonstrate the method by referring to

the dominator tree in Figure 2.3. Informally, this algorithm works due to several obser-

vations concerning a CFG and its associated dominator tree. First, only a confluence

node in the CFG can be in the dominance frontier of any other node. If N has only one

predecessor, then any node that dominates its predecessor must dominate N. By defini-

tion of dominance frontier, a single predecessor excludes N from being in the dominance

frontier of any node.

Second, assume Z is a confluence node. Then, idom(Z) will dominate all predecessors

P of Z. This relationship is true because all paths from Entry to Z must pass through

idom(Z), and each P has a direct edge to 2. Thus, all paths from Entry to P must pass

through idom(Z).

Third, if node Z is in the dominance frontier of node Y, then Y is not an ancestor

of Z in the dominator tree. Thus, starting at each predecessor of Z and moving up the

dominator tree until reaching idom(Z) we will find nodes that have Z in their dominance

frontier. Algorithm 2.2 gives the details for computing the set of nodes in the dominator

frontier for each node in a CFG.

Postdominance. We may also need the concepts of postdominator and postdominance

frontier. Node X postdominates node Y (X pdom Y) if all paths from Y to Exit must

pass through X. Strict postdominance, immediate postdominator and postdominance

frontier are analogously defined as for dominance. In fact, postdominance properties

are exactly the corresponding dominance properties on the Reverse Control Flow Graph

(RCFG), the CFG with all edges turned around and Entry and Exit interchanged.

Given: CFG and DomTree
Do: Initialize dominance frontier of each node as empty -
Result: List of dominance frontier nodes for each basic block

1 : for all nodes N # Entry do
2 : I = idom(N)
3 : for each predecessor P of N in CFG do
4 : M = P
5 : while M # I do
6 : DF(M) = DF(M) U {N)
7 : M = idom(M)
8 : endwhile
9 : endfor

10: endfor

Algorithm 2.2 Computing dominance frontier sets

Dominance Frontier & Control Dependence Sets for sample CFG

Node 1 DF(Node) 1 CDTred(Node1 I CDSucc(Node)

I r l 0 I 0 I 0 1

1 Exit 1 8 I 8 I 8

Table 2.3 The dominance frontier and control dependence for nodes in the CFG from Figure 2.1

Control Dependence. A useful concept for representing possible execution paths

within the CFG is that of control dependence. Intuitively, node X is control dependent

upon node Y if some outedge of Y guarantees that X will be reached, while another

outedge from Y may avoid X. Clearly, if X is control dependent upon Y, then Y must

be a branch node. Formally, CFG node X is control dependent upon CFG node Y if X

postdominates every node along some path from a successor of Y to X, and X does not

strictly postdominate Y. It has been demonstrated that control dependence in a CFG

is equivalent to the dominance frontier of the RCFG [CFR+91], which also implies that

control dependence for node N is equal to the postdominance frontier of N.

The control dependence predecessors of node N, CDJ?red(N), are those nodes that N

is control dependent upon (and that above was simply referred to as control dependence

on N), while the control dependence successors of N, CD-Succ(N), are those nodes

control dependent upon N. We show the control dependence predecessor and successor

sets for our sample CFG (Figure 2.1) in Table 2.3.

We note that a node may be control dependent upon itself, such as node s. One

outedge of s (the edge s+t) guarantees that s will be visited again, while another outedge

(the edge s+x) definitely will not visit s before reaching Exit. It is also important to

note that x is not control dependent upon s, although it appears that if the edge s+t

was always taken when leaving s, x would never execute. However, we assume for

general program flow analysis that all programs terminate, thus an infinite loop is not a

consideration.

Loop Identification. For scientific, high performance codes, loops offer fertile o p

portunities for optimization. This opportunity is because much of the computationally

intensive code is within these loops, which often iterate over the kernel of the routine,

especially when there exist nested loops. Thus, correct identification of loops is critical

in a high performance compiler.

We classify loops based upon the definition of a natural loop [ASU86], which identifies

an edge in the CFG (the backedge of the loop) such that the head dominates the tail.

We visit each basic block, bb, within the CFG, checking to see if bb dominates any

predecessor, p. If so, a natural loop is found, and we can label the header of the loop as

bb and start adding p and all the predecessors of p as members of the loop until we reach

bb. For example, in Figure 2.1, s dominates predecessor w, so a natural loop is found

with header s, and loop members w,u,v, and t.

We mark each node of the CFG as belonging to the innermost loop of which it is a

member. By traversing the dominator tree bottom-up, we are able to find inner loops

first. Identifying loops inner to outer is convenient when adding members of a loop, since

if a basic block is already a member of a loop it must be in an inner loop, and we can

immediately go to its header node and continue the process of adding nodes to the outer

loop.

The technique used for finding natural loops is provided by Algorithm 2.3. The

recursive calls in lines 2 - 4 insure that the dominator tree is walked from the bottom

up. Loops not identified by this algorithm are due to irreducible flow graphs, discussed

in 54.4.3.

2.1.3 Control Flow Adjustments

There are also several modifications that we routinely make to the standard CFG. These

modifications enable analysis to proceed more easily, with a more uniform applicability

of techniques.

A n Additional Edge Within t h e CFG. For each control flow graph we insert an

extra edge from Entry to Exit, called the slice edge.+ This edge is important for several

reasons:

1. To have the control dependence tree rooted at Entry, this edge is added for tech-

nical reasons, as described by Cytron et al. [CFR+89]. It also allows the control

dependence graphs of while and repeat loops to be distinguishable.

2. The Exit node will be in the iterated dominance frontier of a CFG for variable v if

and only if there is a definition of v within the CFG (which is explained further and

 h his extra edge is also called the technical edge.

Given: CFG and its DomTree
Do: forall basic blocks bb do bb.loop = NULL enddo -

call FindLoops(Entry)
Resu1t:All natural loops with node membership

Find-Loops (basic block bb)
for all children c of bb in Domfiee do

Find-Loops(c)
end for
for all predecessors p of bb in CFG do

if bb dom p then
mark bb as header of a natural loop L
bb.loop = L
Loop- WorkList = NULL
add p to Loop- WorkList
while Loop- WorkList # NULL do

remove n from Loop- WorkList
if n.loop = NULL do

n.loop = L
for all predecessors q of n do

add q to Loop- WorkList
endfor

else if n.loop # L do /* n.loop is nested in L */
h = header of n.loop
for all predecessors r of h do

if ?-.loop # n.loop then
add r to Loop- WorkList

endif
endfor

endif
endwhile

endif
enddo

end Find-Loops

Algorithm 2.3 Finding natural loops in the CFG

is proved in Chapter 3). This property of CFGs is extremely useful for propagating

definitions outside of a local CFG in the case of nested control flow graphs, which

may occur when translating parallel syntax into intermediate form (see Chapter

8).

3. Due to item 2, we can find the last definition of a variable within a CFG by

following the correct link from the &function at the Exit node. This property

has proven invaluable for work on interprocedural analysis [Aut94], specifically for

interprocedural mod/ref analysis.

Loop Preheaders. It is convenient for analysis purposes that each loop header has

exactly two inedges. We insure this property by adding two new nodes to the CFG.

The first is a loop preheader, a node outside the loop, which collects all inedges to the

header from nodes not within the loop [ASU86]. We would like to simply adjust the

information gathered as a result of analysis performed in 52.1.2 incrementally, such as

dominator computation, without having to repeat those procedures a second time. This

procedure is accomplished by creating a new node for each natural loop and making the

following adjustments to the CFG and immediate dominator tree:

label the new node as the preheader of the loop.

all nodes not inside the loop that have the header as a successor now instead have

the preheader as their successor.

the successor of the preheader is the header.

idom(header) = preheader

It is trivial to prove the properties above regarding the idom of the header and

preheader .

Loop Postbodies. The second node we need to add to each loop is the postbody. The

postbody collects edges from any node within the loop that has the header as a successor

Given: A loop in the CFG
Do: Link postbody node to its successors and predecessors -
Result: The unique immediate dominator of postbody

1 : pb-idom = any predecessor of postbody
2 : for all predecessors P of postbody -
3 : while pb-idom d m P
4 : pb-idom = idom(pb-idom)
5 : endwhile
6 : endfor

Algorithm 2.4 Finding the immediate dominator of a loop's postbody node

(the postbody is not strictly necessary if only one node within the loop has the header as

a successor). We create a new node within the loop and make the following adjustments:

all nodes inside the loop which have the header as a successor now have the post-

body as a successor.

the successor of the postbody is the header.

use Algorithm 2.4 to find pbidom, the immediate dominator of the postbody.

idom(postbody) = pbidom

Theorem 2.1 Algorithm 2.4 correctly identifies the unique immediate dominator of the

postbody node.

Proof:

Following the chain of immediate dominators from any predecessor of node N in a CFG,

one must eventually reach idom(N). If not, then there would be a path from Entry

to N avoiding idom(N), an obvious contradiction. Thus, starting with any predecessor

of the postbody, successive application of line 4 will eventually reach idom(postbody).

Algorithm 2.4 identifies idom(postbody) by relying on the property that X dom Y if X

dominates all the predecessors of Y. 1

Figure 2.4 CFG from Figure 2.1 after modifications: y is the loop preheader and z is the loop
postbody. There is now also a slice edge from Entry to Exit.

CFG Effects. Making the preceding modifications to the CFG will affect analysis

such as the dominator relationship (now only Entry dominates Exit), and the set of

basic blocks contained within a loop (the postbody is a new member of each loop).

Although dominator information can be incrementally updated when adding preheader

and postbody nodes, simple updates are not sufficient when adding the slice edge, since

this additional edge fundamentally changes the possible paths through the CFG. Thus,

it is customary to add the slice edge before any analysis begins. Loop preheaders and

postbodies obviously cannot be inserted before the loop analysis phase commences.

The CFG from Figure 2.1 looks like Figure 2.4 after the modifications above have

been made. The inserted preheader node, y, was not strictly necessary in this case, since

loop header node s only had a single predecessor to start with (similarly with postbody

node z). However, the preheader provides a convenient location to float code out of a

loop in all cases, and adding these two nodes assures us that the loop header will always

have exactly two predecessors, a property which we shall exploit frequently.

2.1.4 Notes on Implementation

Computing Dominators. The method presented earlier for computing dominators

is nonoptimal, albeit easy to understand. In production-quality compilers, however, one

desires the most efficient method available. Thus, we actually compute the immediate

dominators of all nodes using an algorithm by Lengauer and Tarjan [LT79]. The asymp-

totic complexity of this algorithm is O(Ea(E, V)) (where a is the functional inverse of

Ackermann's function [HS78]), although it is close to linear in practice. Another advan-

tage of this algorithm is that it provides the immediate dominator (idom) for each node,

thus allowing a compact representation of the dominator tree to be stored (each node

just stores its immediate dominator). Although a linear time algorithm for computing

dominators has been published [Har85], to our knowledge it has not been implemented.

Computing Dominance Frontier. Algorithm 2.2 provides the details of building

dominance frontier sets for each node in the CFG. When implementing this algorithm,

one needs to decide how to maintain the set of dominance frontier nodes. Since the size

of the dominance frontier set for any CFG node from a structured program containing

only i f -then-else and while-do constructs is no larger than two [CFR+91, Theorem 41

(although unstructured code can result in quadratic space size), we store the dominance

frontier for each node as a list, since bit vectors in this case would be space inefficient.

Line 6 from Algorithm 2.2 requires a union operation. This operation is important,

since just appending N to the dominance frontier list of M could result in duplicate

entries. To see why, examine Figure 2.5. When considering node E, idom(E) = A, and

if we visit the predecessors of E in the order C followed by Dl we first find that E is

in the dominance frontier of C and B. When D is considered, we find that E is in

the dominance frontier of D and B. Since we do not want to add E to the dominance

frontier list of B twice, we use a constant time test for membership. Although a linear

search would usually not be slow, "ladder graphs" create dominance frontier sets that

are quadratic in size [CF93, SG931. Since each node in the CFG is analyzed and added

to the dominance frontier in turn, each node has a pointer, point, which is set to the

last node added to its dominance frontier set. Thus line 6, for implementation purposes,

CFG Dominator Tree

Figure 2.5 Simple CFG and its dominator tree

gets expanded to:

6a : if M.point # N then

6b : append DF-Iist(M) with N

6c : M.point = N

6d: endif

In this way, we never have to reset point, and in constant time we can check to see if

N has already been added to the dominance frontier list of any node.

2.2 Other Control Representations

In this section we review alternate intermediate representations. All the alternatives

start with a CFG, so while the CFG may have limitations, it clearly is recognized as a

fundamental abstraction for intermediate program analysis.

2.2.1 Program Dependence Graphs

The Program Dependence Graph (PDG) [FOW87] is a unifying framework in which

the nodes are individual statements, and the edges reflect control and data dependence.

This representation grew out of earlier work [F083] on program regions represented

by control and data dependence. One underlying principle is that the standard CFG

imposes a fixed sequencing of operations that may not be necessary. In a CFG, basic

blocks contain straight-line execution statements, based upon the structure given by

the programmer. However, if no dependence exists between statements, they may be

executed in any order. Thus, by making a graph with one statement (or predicate

expression) per node, and superimposing all constraints in the form of edges, more

optimizations may be discovered. Additionally, this form is intended to allow greater

extraction of parallelism, since control dependence equivalence is one of the key factors

in permitting code to be executed in parallel.

An interesting feature of the CFG that influences control dependence is the idea of a

hammock [Kas75], which essentially identifies single-entry, single-exit (SESE) regions in

a directed graph. One optimization used in the PDG representation to reduce the size of

the graph is to create region nodes, where multiple statements are in the same region if

they have control dependent equivalence. These regions contain a set of hammocks and

some number of exit edges. The strength of this approach is shown by the demonstration

that if two programs have PDGs that are isomorphic, then they are strongly equivalent

(for any initial state, either both programs diverge or both halt with the same final

state) [HPR88]. The PDG has also been used as an intermediate representation for

vectorization [BB89], instruction scheduling [BRSl], and as the basis for a new register

allocation routine [NP94].

Although the PDG has received much attention, proving its universal applicability

is not easy [CF89, Se1891. Essentially, it is quite a difficult task to correctly determine

the exact meaning, in all instances, to assign to a program once it is represented just

as a set of control and data dependences. Our feeling is that it is a useful construct,

but must be built from the CFG in the first place, thus incurring some extra cost for its

construction. However, the PDG can be built in worst case time of O(V2), where V is

the number of nodes in the CFG, so for some applications it may be the intermediate

form of choice.

2.2.2 Dependence Flow Graphs

The Dependence Flow Graph (DFG) [JP93] is intended to be a generalization of SSA

form. The DFG combines control information with def-use SSA chains by defining

control regions that consist of SESE areas of the CFG (similar to the hammocks referred

to above, except that the original definition of hammock [Kas75] allowed exit nodes of

the hammock to have predecessors not in the hammock). The DFG form contains both

branch and confluence edges between variables, bypassing SESE regions that contain no

assignment to the variable.

A number of analysis techniques (both forward and backward) are possible using

DFGs, which have recently been defined in terms of Quick Propagation Graphs [Joh94],

a sparse representation of the CFG. Since the construction of a DFG is O(E) per variable

V, the overall complexity is O(VE) time. It appears that the constant on this time bound

is fairly high, since for each variable a base-level DFG is built by adding V dependence

edges in parallel with each control flow edge. Then, edges are removed when they are

determined to be unnecessary, such as when bypassing SESE regions. Quite a nice result

was demonstrated in this work: that of determining control dependence regions in linear

time [JPP93, JPP941. Although this method does not determine on what nodes a region

depends, it identifies which nodes have equivalent control dependence, an important

component for extracting parallelism.

2.2.3 The Program Dependence Web

One problem with SSA form is that the inserted pseudo-assignment +function is not

interpretable. That is, when analyzing a &function within a confluence node, no in-

formation is available as to which path was taken to reach this node. In may be that,

at compile time, no information is known about the predicate that determined which

branch was taken earlier. However, if the predicate is determinable, that information is

not captured by +functions.

The Program Dependence Web (PDW) [BM090] introduces a more sophisticated

method of implementing SSA, which they term Gated Single Assignment (GSA), since

values that flow along control paths are gated by the status of predicates at branch

points. Essentially, GSA separates +functions into two classes: those at the headers of

loops, called yfunctions, and those at control confluence nodes, called y-functions. In

addition, there is an additional operator (the q-function) added at exit nodes of loops

for each variable. This function controls values of variables computed within loops.

By inserting p-, 7-, and 7-functions, a much more interpretable intermediate form

is available for analysis. In particular, using a demand-driven style of analysis, more

precise information is computed for such problems as constant propagation. We shall

look at how to use GSA form for the constant propagation problem in Chapter 4.

The initial work on PDW and GSA [BM090, OBM891 required a program to be in

PDG form before the algorithms could translate it into GSA form. It was also targeted

at pure data-flow architectures, such as the Monsoon [ADNP88] project at MIT. The

PDW attempted to bridge control-, data-, and demand-driven models within a single

framework. The result was a difficult representation. We will use a simplified GSA form

that is based upon the CFG and control dependence only; in Chapter 4 a method that

avoids the transformation into a PDG is given. The first algorithms to directly translate

a CFG into GSA form were provided by Havlak [Hav93].

2.2.4 Value Dependence Graphs

The Value Dependence Graph (VDG) [WCES94] is a functional representation that

expresses the computation of a procedure solely as value flow. Selection among control

paths is performed in a manner analogous to that of GSA, but looping is represented by

recursive function calls. A CFG is converted to a VDG by way of a Store Dependence

Graph (SDG) using SESE analysis as described above for DFGs. Optimizations that

can be performed independent of the final order of execution are then performed on the

VDG. For code generation, the VDG is converted to a demand-based PDG and back

into the CFG.

Weise et al. [WCES94] point out that the VDG is very similar to a simplified GSA,

with the major difference being that VDGs represent looping through a procedure call

and return, while a GSA uses special functions (p and q). They also concede that

the presence of 7-functions allows conditional analysis, such as constant propagation,

to performed within a GSA. Chapter 4 details just such an approach within a GSA

structure.

2.3 Reference Chaining

At this point, we are able to begin analyzing the content of the intermediate form.

SSA, which has already been described, is an intermediate program representation that

presents a solution to the quadratic nature of the reaching definitions The

reaching definitions problem can be stated as follows: at each point in the program,

what is the set of all definitions that can reach this point?

Many other kinds of information flow through programs, such as reaching uses, live

variables, links between potential aliases, links from definitions to definitions, etc. We

would like to extend the technique employed to solve the reaching definitions problems

via SSA by generalizing its method. In order to accomplish this goal, we need to define

explicitly how to link information between program points and how to merge information

at points where links which represent information from two or more different paths come

together.

We next look more closely at some of the important concepts alluded to in the last

several paragraphs regarding how information flows through a CFG.

2.3.1 Data-Flow Analysis

Data-flow analysis is a general method of collecting information about a program, such

as those problems described above [ASU86, MJ811. Some problems, such as reaching

definitions or computing dominance, are forward data-flow problems, since the flow of

t1n SSA form, each variable use has a single reaching definition, as opposed to the many reaching
definitions possible with traditional reaching definition analysis. A detailed explanation is provided in
53.1.1.

information is in the same direction as control flow. Live variable analysis is an example

of a backward data-flow problem, since the information at the end of each basic block

is dependent upon the information at the entry of control flow successors. Thus, with

backward data-flow problems information flows in the direction opposite that of control

flow.

A set F of transfer functions, with an fN E F at each node N in a flow graph, sum-

marizes the data-flow effect about the desired information at that node. F contains an

identity function a, which is used when a node has no affect on the data-flow information

that enters the node; i.e., the information that leaves the node is identical to the infor-

mation that enters that node. The elements of F are closed under function composition.

Often, the only "interesting" nodes that affect the solution to a data-flow problem are

those which have a nonidentity transfer function [CCFSl].

For each f E 3, f takes the general form of f (X) = A U (X - B). For each node

N in the CFG, X represents in(N), the information which reaches the beginning of N,

while f (X) represents out(N), the information leaving N after the effect of f has been

computed. A and B represent how information within N is combined with X. For

example, in solving the reaching definitions problem, A represents gen(N), the set of

definitions defined within N, while B is the set kill(N), those definitions killed within

N. For the problem of computing dominators in a CFG (as discussed in §2.1.2), A is N,

while B is empty.

A typical method of extracting information from the CFG is to iterate a set of data-

flow equations until the information available at each point (typically the beginning and

end of each control flow node) has converged, such as the algorithm we gave to find domi-

nators. When information comes together at confluence nodes, a meet operator combines

the information from all predecessors via operations on a semi-lattice. A semi-lattice L

is a pair (E,n), where E is a nonempty set of elements and I l is a binary operation (the

meet) on E, which is idempotent, commutative, and associative. E contains a distin-

guished zero element, I, usually called "bottom". Although "top" (T), a distinguished

one element, is not theoretically required for a semi-lattice, it often is useful for defining

data-flow problems. E is assumed to be finite, and the elements of E are related to each

other through a reflexive partial order, 5. Semi-lattice t = (E,n) (which includes T)

has the following properties for a, b E E [Mar89]:

a 5 b a f l b = a

a n a = a

a n b 5 a

 an^ = a

a n 1 = 1

In general, a data-flow framework for forward problems consists of W, the set of values

to be propagated, F, the set of transfer functions, and a binary meet, the confluence

operator. After the following initializations have been made (where, depending upon the

problem, out(Entry) may be initialized to either I or T):

for all N E {CFG - Entry) do

in(N) = T

= ~N(T)

end for

the following set of equations are iterated over the CFG until no changes occur:

For the reaching definitions problem, W is the powerset of the set of nodes of the

CFG, and the meet operator is set union. (The partial order relationship is that of

superset, so for sets T and Q, T 1: Q if T 2 Q.) These data-flow equations are then iterated

until convergence:

Most data-flow problems are solved using a monotone data-flow framework. A frame-

work is monotonic if:

It has been observed [KU77] that an equivalent definition of monotonicity is:

Iterating over a monotone data-flow problem cast on a flow graph will always converge

to a maximum fixed point (mfp) [Hec77], which is the solution to equations 2.1. The

mfp is a conservative approximation to the "true" solution, and we will return to the

precision that it provides in Chapter 4.

2.3.2 Reaching Definitions in a CFG

In terms of reaching definitions, a definition of v at node A reaches node B if there

exists a path in the CFG from A to B in which no other definition of v occurs. For

reaching definitions, the interesting nodes are those that define a particular variable. All

other nodes will have a transfer function that is the identity: the information leaving the

node is the same as the information entering the node. The meet operator for reaching

definitions is set union. Definitions along a straight-line path in a CFG can be killed by

another definition for the same variable. If nodes X and Y both lie along a straight-line

path with X preceding Y, and both define variable v , then the definition at Y kills any

definitions at X. Note that (degeneratively, in this case) every path to Y passes through

X. In more complicated cases, nonkilling definitions of a variables can exist. This occurs

when a new definition nay occur at a particular point, but we are not certain of it. An

example would be a procedure call, where a procedure parameter is passed by reference.

In this case, both the definition arriving at the node which has the procedure call and the

nonkilling definition of the procedure parameter must be passed as reaching definitions

to the next use of the variable. Nonkilling definitions can also be used for analysis of

more complicated data structures, such as arrays and records, and we will discuss this

application in more detail in the next chapter.

We introduce one new concept which is useful for analyzing how information in a

data-flow framework can be killed: that of shields. If every path from A to C must

pass through B, we say that B shields A from C, or that B E shield(A,C). We note

that B dom C is just a particular instance from the set of shields for C, where B E

shield(Entry, C) =$ B dom C .

Shielding is important when dealing with the flow of information in a CFG, since

B E shield(A, C) means that B can kill any information generated from A on all paths

to C. In particular, any definition of v within B prevents all definitions of v in A from

reaching C. It is not our intent to exhaustively investigate the properties of shielding in

this work, but it will be a useful concept when closely examining the details of linearizing

reaching definitions, and it will have a dual definition with respect to parallel graphs in

Chapter 8.

2.3.3 Initial Specifications

Figure 2.6 An example highlighting Definitions 2.1 - 2.4.

We now begin the investigation of how to represent abstractly the sequence of informa-

tion which flows from point to point in a data-flow graph. In order to maintain such

information in a sparse manner, we must understand how a particular piece of informa-

tion, such as a variable definition, is propagated through the CFG. We start with several

basic definitions:

Definition 2.1 A reference (ref) is any definition, use, or merge operator of a given

symbol.

Figure 2.7 The &function merges downward-exposed definitions.

Definition 2.2 A link is a pointer to the nest or previous reference of a symbol.

Definition 2.3 A chain is a sequence of links that connects two or more references.

Definition 2.4 A merge operator augments the data-flow graph by collecting multiple

links at branch or confluence nodes in the control flow graph.

In terms of tuples, if symbol(t) = s for some tuple t , then t references s. For example,

examine Figure 2.6. In the four basic blocks depicted, there are five references: three

definitions, one use, and one merge operator. An example chain would be from the use

of x in node D, following its link to the merge operator (+function in this case) in node

C, then following one of its links to either of the downward-exposed definitions in A or

B.

A merge operator may point to either downward-exposed (reaching) references or

upward-exposed references. We have these two cases:

Figure 2.8 The A-function merges upward-exposed references.

Downward-exposed References (DXR) - Operators are placed at the begin-

ning of a confluence basic block, and merge two or more distinct downward-exposed

references. The function has an argument for each control flow predecessor, which

points to the most recent downward-exposed reference from the corresponding con-

trol flow path.

An example operator which merges downward-exposed references is the +function

illustrated in Figure 2.7. In this case, (SSA) references are definitions or other

+functions.

Upward-exposed References (UXR) - Operators are placed at the end of

a branch basic block with an argument for each outgoing control flow edge. As

an example, we consider the A-function, which collects upward-exposed references.

Each argument of the A-function points to the first upward-exposed reference (use,

definition, or another A-function) from the corresponding control flow path. An

illustration of the A-function is given in Figure 2.8.

2.3.4 Following Chains

In order to provide clarity for discussion and examples we present convenient notation

with which to refer to a statement-based program in terms of its references.

Each variable site will be a reference (ref) for variable v in one of the following ways:

Dx - a definition of v at statement n in the program.

Nx - a nonkilling definition v at statement n in the program.

Ux - a use of v at statement n in the program.

BK - both a definition and use v at statement n in the program.

We use the following functions to extract information from a given reference:

As an example, consider this code:

Sl: TI = ...
sz: loop
s3 : T2 ' $(TlrT7)
S4 : i f TEST then
s5 : T4 = ...
s6 : endif
s7 : T6 ' #(T4,T2)
s8 : ... = T6
s9 : T7 = ...
Slo: endloop

If we start with the use of T at Ss, u:, we can follow its link by examining chain(U:),

which is equal to D?, the pseudo-definition of T (a +function) at ST. Since the chaining

function at S7 merges two other links, we may choose to follow either. Following the

first chain ends at the definition of T at S5, while following the second chain results in a

further +function at S3. Traversing its links leads to the definitions at S1 and S9.

Since we were following links created by SSA form, we essentially discovered the

definitions that could reach the use of T at S8. This result is not surprising, since SSA is

a representation of the reaching definitions that can affect information at a given point

in the program.

2.3.5 Applications

What kind of data-flow problems use reference chains? In general, DXR chains are used

for forward problems, those in which the information desired at a point is in terms of

behavior which occurs previously according to control flow or time. Thus, links will point

to the reference operation of that behavior.

On the other hand, if information at a point is dependent upon what will happen

later on ("forward in time with respect to control flow", known as backward problems),

then the chains based upon UXR will be the reference chain of choice.

Here are some of the data-flow problems for which we have applied reference chaining:

DXR functions

Induction variable detection [GSW]. Uses the SSA graph.

Constant propagation. Uses SSA graph for scalars, augmented with def-def chains

for arrays. Constant propagation is covered in detail in Chapter 4.

Reaching definitions - for variables. Uses SSA graph.

Availability - for expressions. This problem is the dual of one covered in Chapter

7: anticipatability.

Scalar data dependence. The full solution requires many kinds of DXR functions.

This topic is covered extensively in Chapter 6.

UXR functions

Chapter 7 contains details of using UXR functions to analyze backward problems. Ex-

amples of problems which take advantage of this technique are:

a Liveness - for variables. Uses UXR for uses and defs.

Anticipatability - for expressions. In this case, references are extended to include

complete expressions, rather than just arbitrary symbols.

Useless code identification (based upon liveness information)

2.3.6 Extensions to Reference Chaining

The concepts of reference chaining, while fine for sequential constructs, need to be ex-

tended to accept the semantics of parallel constructs. We feel that a sound and coherent

method needs to be provided that allows sensible reasoning about programs written us-

ing parallel constructs. We would like to use some of the same reasoning methods as

employed with sequential programs. We must be careful to define the references that

are exposed in light of these parallel constructs. In particular, is a new merge operator

needed at a parallel confluence point? How is a parallel confluence point different than a

sequential confluence point? As this issue is separate from the basic applications of refer-

ence chaining on sequential programs, we will delay the investigation of these questions

until Chapter 8.

Chapter 3

FUD Chains

3.1 SSA Construction

In this chapter we provide details on an extended SSA form, which we call Factored Use

and Definition Chains (FUD chains), and show how to construct them efficiently. We

furnish statistics on how expensive, in terms of time and space, it is to build these graphs

in practice. We also explain how to manage the semantics of FUD chains in the face of

global variables, procedure calls, and generalized nonkilling definitions.

3.1.1 Merging Reaching Definitions Within a CFG

Using a traditional bit-vector method [Ki173] to keep track of data-flow information

through the CFG is dense: it propagates information for each variable at all nodes, even

those that do not use or contribute to the solution of a given problem. Alternatively, if

def-use information is sufficient for a particular problem, the graph utilized is sparse: by

following the def-use chains, nodes are bypassed that are not part of the solution.

Sparsity will not prevent multiple chains from converging at the same node. As noted

in Chapter 1, one of the key properties of SSA form is that every use of a variable symbol

will have exactly one reaching definition. One way this property becomes important is

when we examine the general nature of reaching definitions, especially in the presence

of confluence nodes in the CFG. For example, Figure 3.1 shows 3 definitions of v that

merge at a confluence node, then split into 3 uses of v. General reaching definitions would

require 9 def-use chains to express all these possibilities. However, we may coalesce the

3 definitions at the merge (the other key definition of SSA form) into a +function. The

Figure 3.1 Reaching definitions can be quadratic in general.

&function collects multiple definitions of the same variable that reach a confluence node

along more than one path. In this way, each use has only one chain as its destination (as

depicted in Figure 3.2), and now only 6 def-use links are required to express the same

information. This phenomenon has been noted previously in the literature [CCF94,

CFR+91].

To generalize, when n definitions of a variable symbol reach a confluence point then

split into n uses of v , the result is n2 total links. However, if the code is transformed

into SSA form, the number of def-use links to express the same information is a linear

function of the number of references (we refer to this phenomenon as linearizing reaching

definitions), cutting the total number of links from n2 to 2n.

At what points in the CFG do we insert &functions? Clearly, &functions are only

needed at confluence nodes, since these are the only possible places where multiple

definitions of the same variable can reach concurrently. However, &functions are not

needed at all confluence nodes, since there may not be distinct variable definitions along

more than one incoming branch.

To answer the question of &function placement, we look at the concept of the join

of a set of nodes S. Informally, the join of S is defined to be the set of all nodes Z such

that there are two nonnull CFG paths that start at two distinct nodes in S and converge

Figure 3.2 SSA form can linearize reaching definitions.

at Z [CFR+91]. Formally, we define the join as fol1ows:t

Definition 3.1 The join of nodes X and Y, J(X, Y) =

{Z 1 3Zx, Zy with Zx + Z and Zy --+ Z,

The join of a set of nodes, S, denoted J(S), is defined to be the union of the pairwise

joins VX, Y E S, i.e., J(S) = U J(X,Y). The iterated join, J+(S), is defined as the
X,YES

limit of increasing sequences of nodes defined by:

For reaching definitions, J+(S), the iterated join of the set S of nodes with nonidentity

transfer functions for variable v (nodes with definitions of v plus Entry), is the correct

placement for merge operators since it insures the following two properties:

1. Each join point K for v captures (directly, or indirectly via another join point) all

 h he intersection of paths pl and pz, pl np2, is the set of nodes in common to pl and pz.

reaching definitions of v at K. This property was proven recently by Choi et al.

[CCF94, Theorem 3.31.

2. Each variable use of v at CFG node A will have a single reaching definition. In

the set D of nodes that contain variable definitions or join points of v, there exists

exactly one element E E D such that E dom A and E E shield(d, A), Vd E D.

Proof of 2:

Let F D be the set of elements of D that dominate A. We first show that if D

contains any node C (which can reach A) other than Entry, F will contain a node

other than Entry. Let L = J(C,Entry). If C dorn A or A E L for any such C, we

are done. Otherwise, choose any path pl : C 4 P, where P + A (see Figure 3.3).

Let Q be the last node on pl such that Q E L. Such a Q must exist since A $! L. We

first claim that all paths from C to A include Q. If not, consider path pa : C 3 A

which does not contain Q. pz n {Q 3 A) = 0 since Q is the last node on pl in L.

But in this case we have paths Entry 3 Q 3 A and p2 that only intersect at A,

which is not possible because A fZ L. We now claim that Q dom A. If not, some

path p3 from Entry to A does not pass through Q. Reasoning as above, we would

then have disjoint paths from Entry to A and from C to A (except for A), which

implies that A E L. Since we assumed otherwise, we conclude that Q dorn A.

Since the dominators of A form a linear ordering t [Hec77, Lemma 3.41, choose

E E F (E is a particular Q in terms of Figure 3.3) such that all other elements of

F dominate E. Then E E shield(f, A), Vf E F, due to the linear ordering of F.

Now consider B, any element of D that reaches A but does not dominate A. All

paths from B to A must pass through E. If not, some path p4 from Entry to A

passes through E before B (this condition cannot be true for all paths from Entry
-

to A, since B dorn A). But then we can construct a path Entry 3 B concatenated

with B 3 A, which does not pass through E. Since this conclusion contradicts the

relationship E dorn A, all paths from B to A pass through E, which is equivalent

to E E shield(B, A). 1

' ~ i v e n any nodes P,Q, and R, if P and Q dominate R, either P dominates Q or Q dominates P.

Figure 3.3 Possible paths to consider regarding the join property

Calculating the iterated join of S, J+(S), may seem expensive, but it has been shown

[CFR+91] to be equal to the iterated dominance frontier of S. We define the dominance

frontier of a set of nodes, S, as follows: DF(S) = U DF(X), and DF+ is defined
XES

similarly to J+. The iterated DF, DF+(S), is defined as the limit of increasing sequences

of nodes as follows:

DF'(S) = DF(S)

D F ~ (s) = DF(S U DF' (S))

DF'" (s) = DF(S U DF~(s))

For the relation DF+(S) = J+(S) to hold, the Entry node of the CFG must be in S.

We next show how to incorporate the ideas of this section into efficient algorithms

that transform the intermediate form provided by the front end of the compiler (the

CFG and data-flow graph) into SSA form.

3.1.2 Building the Graph

In converting intermediate code into SSA form, we generally follow the algorithm given

by Cytron et al. [CFRf 911. When performing this conversion, we follow four main steps:

1. Preliminary analysis. This step includes most of the analysis discussed in Chap-

ter 2, such as loop identification, loop augmentation, and dominator analysis.

2. Variable Modification List. We make one pass through the CFG to create a

linked list of variables modified anywhere in the procedure, and a list of modifica-

tion sites, A (V), for each variable V. This list is generated by simply examining all

data-flow tuples that belong to each node of the CFG using a depth-first search,

although any search algorithm that visits all nodes will suffice. We note that all

variables are assumed to be initialized (hence defined) at Entry, a property required

by the equivalence between J+ and DF+, as discussed in the last section.

3. 4 Placement. For each variable V, we place a +function at the iterated domi-

nance frontier of all nodes in A(V). This is accomplished by a worklist algorithm,

as shown in Algorithm 3.1, lines 11 - 25. The number of arguments of each +
function is equal to the number of predecessors of the CFG node in which it resides.

A +function is always added to the top of a basic block - in that way, any use of

the same variable within that basic block will be reached by the +function. All

details are given in Algorithm 3.1. We should point out that +function placement

as shown here is asymptotically quadratic in theory but usually linear in practice.

A new algorithm has recently been developed to place +functions in linear time

with respect to the number of variables in the procedure [SG93].

4. Chaining. A depth-first pass is made of the dominator tree, pushing definition

sites onto a stack when encountered. Each variable use has its link field filled in with

a pointer to the current definition of that variable. This step was originally called

"renaming" [CFR+91], since each variable definition was iteratively numbered, as

we have shown in examples. However, this numbering reflects the semantics of

SSA form, and we present our algorithms in terms of pointer references, which

maintains the single reaching definition property of SSA.

Flow graph successors are then checked for +functions, filling in the corresponding

&argument link field with the current reaching definition at that point. This pro-

cedure is performed recursively on the dominator tree children, logically popping

definitions off a definition stack when returning. In actuality, this task is performed

by saving the previous current definition at each tuple that defines a variable (in

which a +function counts as another definition), then restoring the saved value

when returning from the Chaining routine.

A traditional use-def chain would list all definitions of a variable that reach the

current use. The result of the preceding procedure is the factored form - each use has

exactly one reaching definition (see Figure 3.6b), thus preserving SSA semantics.

3.1.3 Construction Algorithms

In this section we give the details of SSA construction. The methods employed are

important since we will adjust this basic algorithm to accommodate extensions to SSA

as well as other reference chaining methods. Step 3 from the previous section is performed

by Algorithm 3.1, while Step 4 is performed by Algorithm 3.2. We describe here the

data structures used for the following algorithms:

A(V) - A list of all nodes with assignments to variable V.

symbol(tuple) - A function that returns the variable symbol (name) associated

with this tuple, if it exists. Returns null otherwise.

V. CurrentDef - A pointer to the current definition (tuple) of variable V. Logically

points to the top of a definition stack. Initialized to source.

t.SavedDef - A pointer to the current definition of syrnbol(t) before processing this

tuple. Used to logically pop definitions off a stack when returning from recursive

calls down the dominator tree.

DFRONT(N) - Dominance frontier for node N.

WhichPred(N, Q) - An integer indicating which predecessor of Q in the CFG is N.

a Work-List - An unordered set of CFG nodes. For each variable V, Worklist is

initialized to A(V), all assignments to V.

a HasFzmc(*) - A reference field to a variable for each CFG node. HasFunc(N) =

V means block N already has a +function added for variable V.

Work(*) - A reference field for each CFG node. Work(N) = V means that node

N has already been added to the WorkList for variable V.

3.1.4 Interprocedural Links and Local CFGs

When transforming the IR into SSA form, we encounter two types of procedures: the

main procedure of a program and any subroutines. The distinction is how variables are

initialized, specifically how we handle formal arguments. Other issues include how to

link variables correctly at call sites and how to deal with global variables. We address

these issues in this section.

Formal Arguments. For any CFG, the current definition of a variable is initialized

to source. This initialization reflects the property noted in 53.1.1 that all variables have

an assumed definition at Entry. However, a subroutine often has variables passed in as

formal arguments. Consider this case:

subroutine f oo(a, b)
integer i
i = a + b - 3

end foo

where a and b presumably have actual values passed into foo. Although it may be that

neither variable has a known value (which may be determinable through interprocedural

constant propagation) when entering the subroutine, it may be that they do. We would

like to accommodate this possibility by providing a placeholder for formal arguments,

which can be assigned values provided by interprocedural analysis.

Given: A(V) , V V.
Do: compute DFRONT(N), V N E CFG. -
Result: 4-functions inserted into CFG

1 : for all nodes N do
2 : HasFunc(N) t 0
3 : Work(N) t 0
4 : endfor

for each symbol V do
Work-List t 0
for each N in A (V)

Work(N) t V
Work-List t Work-List U { N)

endfor
while Work-List # 0 do

remove N from Work-List
for each Q E DFRONT(N) do

if HasFunc(Q) # V then
HasFunc(Q) t V
i t number of predecessors of Q
place V = 4(Vl, V2, ..., V;) at the beginning of basic

block Q, where 4 corresponds to the jth predecessor of Q
endif
if Work(Q) # V then

Work(Q) t V
Work-List t Work-List U { Q)

endif
endfor /* each Q in DFRONT */

endwhile
endfor /* each symbol V */

Algorithm 3.1 Placement of &functions

Given: Initialized data structures.
Do: Call Chain(Ent y) -
Result: SSA form

1: Chain(N)
2 : for all tuples t E N, in forward order do
3 : V t symbol(t)
4 : if t is an ordinay use of V then
5 : link(t) t V. CurrentDef
6 : endif
7 : if t defines V then
8 : t.SaveDef t V. CurrentDef
9 : V. CurrentDef t t
10 : endif
11 : endfor /* all tuples of N */
12 : for each Q E Succ(N) do /* Successors in CFG */
13 : j t WhichPred(N, Q)
14 : for each &function merge tuple f in Q do
15: V t symbol(f)
16 : link(jth argument of f) t V. CurrentDef
17 : end for
18 : endfor
19 : for each Q E Children(N) do /* children in dom tree */
20 : Chain (Q)
21 : endfor
22 : for all tuples t E N, in reverse order do
23 : if t is a definition tuple do
24 : V t symbol(t)
25 : V. CurrentDef t t.SaveDef
26 : endif
27 : endfor
28 : end Chain

Algorithm 3.2 Chaining: linking each use to its unique definition and correctly inserting
&function arguments

The solution in this case is to create tuples (formal,0,0,0,a) and (foma1,8,8,8,b),

which are inserted into Entry after source, which is always the first tuple. In this way,

lines 7 - 10 in Algorithm 3.2 sets the current definition of each variable (V. CurrentDefi

to the formal tuple. The use of a and b in our example will have their link fields set to

these formal tuples in lines 4 - 6 of Algorithm 3.2. The formal tuples thus provide a

convenient location through which to pass interprocedural information.

Procedure Parameters. Special care is needed when handling procedures in SSA

form. As noted in 52.3.1, procedure arguments represent references of variables that are

treated as nonkilling definitions. These references are also uses of that variable, since

they potentially pass values to the called procedure. In this case:

S1: X = ...
S2: call bar(x)
s3: ...= X

the use of x at S3 will have its reaching definition point to the definition (potentially

nonkilling) at S2. But the reference of x at S2 is also a use (potentially) of x defined

at S1. So it needs its link field to point to the definition at S1. The work by Cytron

et al. [CFRf 911 suggests adding another assignment statement, essentially x = x in this

case, to create the proper LHS and RHS behavior for linking into SSA form. In order to

accomplish this task, a procedure argument essentially needs to be split into two phases:

one that represents potential use of the variable, and one that represents a potential

definition of the variable. One way to accomplish this goal is described later in this

chapter under Notes on Implementation, 53.1.5.

Global Variables. Global variables present a special problem since they are visible

within all routines, even though they are defined only in a program's main procedure.

The solution we adopt is two-fold. First, for all global variables v that are referenced

within a local procedure we create the tuple (global,$,0,0,symbol v). This tuple is

inserted into the Entry node, similarly to tuples created for formal arguments. Again,

lines 7 - 10 in Algorithm 3.2 will set v. CurrentDef to this global tuple.

Second, for interprocedural analysis, a particular global variable may not be refer-

enced in some procedure (hence, it is, in some sense, invisible to that procedure), but

may be referenced by both a callee procedure and caller procedure. As an example, as-

sume we have the following call graph: A + B + C, where procedure A calls procedure

B , which in turn calls procedure C. If A and C reference v, but not B, then analysis

of global variables can be obfuscated due to the fact that there is no placeholder for v

when processing B . We handle this situation by appending an extra argument to each

parameter list at all procedure call sites. Essentially, an extra proc-param tuple is added

to the end of each argument list, with the symbol field pointing to a special generic global

symbol. We have denoted this special symbol as symbol-invisible, since it represents the

set of all global variables within the called procedure that are not referenced within that

procedure. In this way we provide a placeholder for any analysis that contains symbols

invisible to a particular procedure.

Local CFGs. Normally, and certainly the case for the scientific codes described in

Table 2.1, there are numerous procedures that together comprise the entire code. Since

our intermediate form is essentially intraprocedural, each procedure has its own CFG

constructed, with the methods (analysis and modifications) described in Chapter 2 ap-

plied to that CFG. Since there is a slice edge from Entry to Exit in each local CFG, a

useful property of SSA form is that a &function for variable v will be placed in the local

Exit node if and only if there is a definition of v within the body of the procedure. The

advantages of this property were listed in 52.1.3, and we now prove the correctness of

this statement.

Theorem 3.1 Within any CFG G containing a slice edge, there exists a $-function for

v at the Exit of G if and only if u is defined within G - {Entry, Exit).

Proof:

a Given that a &function for u exists at Exit, one of its arguments must point to

the last definition of v within Entry, since an edge exists from Entry to Exit and there

exists an argument within a +function for each control flow predecessor. By definition,

&functions for v are placed at DFS(S), where S is the set of nodes that define v. Entry

always has an empty dominance frontier, since it dominates all nodes within the CFG.

Thus, no definition within Entry can result in the creation of &functions. We also note

for completeness that the dominance frontier of Exit is empty, since it has no outedges

by definition. Thus, at least one other argument of a &function for v at Exit must point

to a definition of v within G - {Entry, Exit).

+ Given that v is defined within G - {Entry, Exit), and choosing node M from G -
{Entry, Exit) (M may not be unique), we must show that Exit E DF+(M). We know
-

that M dom Exit , since there exists a direct path from Entry to Exit via the slice edge.

We also know that there exists a path from M to Exit by the original definitions in $2.1.1.

Since the path from M to Exit and the slice edge converge at Exit, Exit is in the join of

M and Entry by Definition 3.1. This result also uses the assumption that every variable

used within a CFG has an initial definition at Entry. But, J({Entry , M)) C J+({Entry

, M)) = DF+({Entry , M)). Since &function are placed at DF+ of nodes that define a

variable, a &function for v will be placed at Exit . 1

3.1.5 Notes on Implementation

Initialization. In order for DF+(S) = Jf (S), Entry E S. This property is accom-

plished by setting V. CurrentDef = source, as noted in the description of the data struc-

tures for Algorithm 3.2. However, there is now no need to add Entry to the Work-List of

Algorithm 3.1 (which computes the DF+(V) for +function placement) for any V, since

the dominance frontier of Entry is always empty.

Handling Procedure Parameters. Since procedure parameters must be regarded

as nonkilling definitions and also as uses of a variable, we noted that each procedure

argument must be split into two parts. Here, we describe one method to accomplish this

task. We first illustrate the idea with the same simple example used before:

S1: X = ...
Sz: ca l l bar(x
S3: ...= X

Figure 3.4 shows the code above in its data-flow representation. We treat the

proc-param tuple as a definition of x if its right operand (an arbitrary choice) is an

in-out-param x

Y

fetch x
Figure 3.4 Data-flow graph for simple procedure call.

out-param or in-out-param; in that case we know or must assume that x gets modified

(defined) by the call to bar. Similarly, the right operand of a proc-param tuple is treated

as a variable use if it is of type in-param or in-out-param; in this case lines 4 - 6 of

Algorithm 3.2 will fill in the link field with a pointer to the current definition of x.

The compiler front-end sets all right operands of proc-params as an in-out-param.

This initialization is the default for Fortran, and is the conservative choice in the absence

of more precise information. More information may be found by performing interpro-

cedural mod/ref analysis prior to the translation into SSA form. In this way, we can

change the type of an in-outqaram when more precise information becomes available.

For example, if mod/ref analysis provides the information that bar will not modify x,

the in-out-param in Figure 3.4 is changed to in-pamm. Now, the Chaining routine will

not consider the argument to bar a definition of x, so when the use of x at S3 is processed

by lines 4-6 of Algorithm 3.2, x.CurrentDef will be equal to the store at S1. The result

of the extra precision is shown in Figure 3.5.

Multiple procedure parameters that reference the same variable create another diffi-

cult situation regarding the correct generation of the V. CurrentDef field for V and filling

in the link field on all uses of V. We illustrate the problem again with an example:

-.
in-param x ,#'

proc bar

fetch x
Figure 3.5 Data-flow graph with more precision about the procedure parameter.

S1: X = 1

S2: call subl(X + 2 , X, X + 3
S3: Y = X

Here we want all the uses of X at S2 to fetch the definition at S1 and the use of X at S3 to

fetch the definition from the second argument in sub1 (assuming that mod/ref analysis

has not determined that the second argument is unmodified). If we are not careful, the

third argument of sub could fetch the definition created from the second argument.

This problem is essentially an engineering issue. One solution (the one that we

adopted) is to rely on the tuple ordering in the abstract syntax tree as constructed by

the compiler front-end. The front-end builds a representation in which all the proc-pann

tuples occur lexically after their right operands. For the second and third arguments

from S2, the right operands will be an in-out-parm and an arith (a '+' sign will be at

the base of the abstract syntax tree representing this expression), respectively. Thus, all

uses are processed before any definitions change V. CuwentDef.

While this solution works fine in this instance, a more insidious problem can occur

in this case:

sr: X = l
S 2 : call sub2(X + 2, X, X)
S3: Y'X

Now, which definition of X in S2 should the link field of the use of X in S3 point to? We

note that in some languages, notably Fortran, the call to sub2 represents nonconforming

code, since such aliases are not allowed. Nonetheless, this situation would seem to impose

an arbitrary order upon the modifiable arguments of a procedure call. One solution is

to use lexical ordering, but this method essentially chooses a solution by fiat. Another

solution is to merge the second and third arguments into a &function before the use at

S3. We believe that to some extent this question is best left to language developers, and

can be answered for each language implementation. We will return to this problem in

a different guise when we look at other chaining methods, notably when we solve the

reaching uses problem in Chapter 6.

SSA Representation When translating a program into SSA form, it is convenient,

as was shown in Figure 1.1, to denote each definition as a new variable. This method

is useful for readability, and is the one described in the original work by Cytron et al.

[CFR+91].

Although this traditional SSA form renames variables uniquely at every definition

point, it is not really practical (and certainly not desirable) to add new names to the

symbol table for all assignments. Thus, the common implementation [JP93, WZ91]

actually provides def-use links [ASU86] for each new definition (see Figure 3.6). Since

each use is the head of exactly one link, the semantics of SSA are preserved.

This def-use chain style of SSA implementation lends itself well to iterative forward

data-flow problems (such as constant propagation [WZ91]) due to consistency of direction

between program flow and def-use links. However, a demand-driven data-flow problem

will typically request information at a program point from its data-flow predecessors.

As we shall see, use-def chains admirably match the demand-driven style of data-flow

analysis.

We maintain the semantics of SSA by providing use-def links, so that each use (fetch in

the intermediate representation) has a link to its single reaching definition. The contrast

in providing use-def versus def-use links is shown in Figure 3.6, and its advantages for

data-flow analysis are covered in Section 3.3.

I I
I if (P I then I
I
I ,

I \
I I

I
I if (P) then

Figure 3.6 Comparison of standard SSA implementation employing (a) def-use links and (b)
use-def links.

Another advantage of our approach is that it requires only constant space per node

to implement. Since each variable use has exactly one reaching definition, it has only

one link field. A traditional def-use implementation, however, must have the capability

to dynamically expand its use list at each definition site, since an unbounded number

of uses can be dependent upon that site. Contrast Figure 3.6(a) with 3.6(b): since the

arrows in (b) are stored with the node at the tail of each link, at most one link need be

stored with each tuple.

Keeping Track of +function Placement. Since +functions are constructed per

variable, Algorithm 3.1 needs a mechanism to determine whether a +function for a

particular variable has already been placed at any node (a node may be in the DF+

of numerous other nodes), since it is clearly undesirable, as well as unnecessary, to

place more than one +function at a node for the same variable. The original algorithm

number of referenced variables

10000

9000

8000

7000

number
6000

of 5000
+functions

4000

3000

2000

Figure 3.7 Comparing the number of &functions for each referenced variable

..
I I V I

- A)

- -
- -

- -
- -
- -

0 0 - -
- ." $O -

[CFR+91, Figure 111 renamed instances of variables by incrementing a counter. As

1000
0 0 0 -

0 I I I

0 1000 2000 3000 4000

we have already noted, new instances of a variable in our implementation are logically

distinguished by keeping pointers to the most recent definition of that variable. Thus,

we maintain a pointer Hasfinc for each node which is filled in with a link to the last

symbol (if any) which has had a +function placed at that node. In this way, lines 14

- 15 of Algorithm 3.1 do all the work that is necessary for insuring unique +function

placement for every node in the CFG.

Measurements On Building the SSA Graph

We would like to compare our implementation with that of the original work by Cytron

et al. We implemented Algorithms 3.1 and 3.2 in Nascent, running on a Sun IPX with

64 MB RAM, and upgraded with a Weitek 80 MHz clock-doubled chip. The code was

compiled using GNU C++ version 2.5.8, optimization level -02.

We counted the number of +functions generated in each of the benchmark programs

from 51.4. Figure 3.7 shows the number of &functions for each of these programs as a

function of the number of referenced variables, where a '0' represents a data point for

6000
number

of 5000
+functions

4000

number of program statements

Figure 3.8 Comparing the number of &functions to program statements

time (sec)
6

to build 5
SSA graph

4

number of program statements

Figure 3.9 Time to build the SSA graph in terms of program statements

13
12
11
10
9
8

time (sec)
to build

SSA graph
5

time (sec) to parse the program

Figure 3.10 Comparing front-end compiler time with SSA build time

each of the 26 programs. We note that the relationship seems to be linear, with the ratio

usually between 2 and 2.5. This result confirms earlier work that, in practice, the SSA

graph is linear in the number of variables [CFR+91, Hav941. The outlier, with a ratio

of 3.4, is the boast program from the RiCEPS suite. Most of its behavior is due to the

subroutine master with a ratio of 5.4, which includes one top-level loop with 9 exits, and

a nest-level of 4 that contains 22 inner loops. This behavior of master was also noticed

by Havlak [Hav94].

The original work by Cytron et al. built a statement-level CFG, where each basic

block node contained a single statement. In our implementation, we have tried to create

maximal basic blocks, maintaining a minimal increase in graph size. Thus, a straight

comparison of the number of basic blocks to the number of &functions would be meaning-

less: multiple variables can be used and defined within a maximal basic block. Instead,

we compared the number of program statements to the number of &functions, with our

results shown in Figure 3.8. This graph confirms the previous result, with boast again

being the outlier.

Next, we wanted to gather data on the amount of time necessary to build the SSA

graph structure. These results are given in Figure 3.9. Here, we compared the number

of program statements to the time required to build the SSA form. It again appears

linear, with the anomalous data point due to ocean in the Perfect suite. This anomaly

in ocean is due primarily to our implementation, which accommodates interprocedural

mod/ref analysis. We append to the parameter list of each procedure call a list of

all global variables that are referenced within the local routine. This addition allows

accurate determination of mod/ref usage, but may result in additional overhead when

the number of global variables and call statements is large. In the main routine of ocean

(941 lines and 640 statements) 135 of the 148 referenced variables are globals, with 204

subroutine calls being made.

Finally, since parsing the front end is somewhat constant for all compilers (they all

must examine the entire program character by character), we compared the time taken

to parse each program as compared to the time to build SSA form. The results given

in Figure 3.10 are almost identical to those of Figure 3.9, which may just indicate that

parsing time is directly proportional to the number of statements in a program.

3.2 Constructing FUD Chains

In this section we describe how to expand the principles of SSA form to allow greater

analysis of programs. While one of the two principles of SSA is that each use of a variable

has precisely one reaching definition, we extend this concept to include unique reaching

definitions for definitions as well. That is, each use or definition of a variable will point

to its last unique reaching definition. In this way we can continue an analysis phase, if

desired, when a definition is encountered.

3.2.1 Definition

This expanded form of SSA will permit following definition chains through definitions

themselves, if desired. Since these links create a sparse graph for any variable, we name

these chains Factored Use and Definition Chains, or FUD chains.

Essentially, FUD chains consist of SSA form with extra links: those from definitions to

Figure 3.11 Use-def links plus def-def links make FUD chains.

definitions. How do we incorporate the extra def-def links via the construction algorithms

already presented? The placement of +functions is unchanged, hence Algorithm 3.1 is

unaltered. The chaining algorithm, Algorithm 3.2, needs minor adjustments. Since we

already have the mechanism for linking available (each tuple contains a link field, which

so far has only been utilized for variable uses), we simply modify line 4 of Algorithm 3.2

to read:

if t is an ordinary use or ordinary def of V then

The reason we specify that the use or def must be ordinary is that we want to exclude

+functions. They are pseudo-definitions that effectively operate as both a definition

(other definitions and uses may point to a &function as the unique reaching definition)

and several uses (via the &arguments that collect those definitions that reach the node

containing the &function). We illustrate the extra def-def links in Figure 3.11. The

dotted arrows represent use-def links while the solid arrows are def-def links. The first

definition of both x and y have empty def-def links, since they logically point to the

assumed definition of each variable in Entry, the source tuple.+

' ~ o t e that we have omitted the link from P.

3.2.2 Additional Analysis

We now discuss some of the benefits of FUD chains over standard SSA form. The

most notable advantage is in the additional precision offered for analyzing nonkilling

definitions: arrays, structures, procedure parameters, aliases. They also are necessary

for detecting scalar output dependence.

Arrays. Arrays have been a difficult data structure to incorporate into SSA form. The

original work by Cytron et al. suggested creating new operators (Access and Update) for

each array definition and use, so that they could be modeled as scalar variables [CFR+91].

For example A Cjl = k could be transformed into A = Update (A , j ,k). In this way the

subscript (which is actually a use of j) and the array name, along with the original RHS

value, could be treated as uses.

Each use of an array could be transformed into a scalar access function via a scalar

temporary. For example, J = A (i) would become:

Temp = Access(A,i)

J = Temp

After separating the components, SSA renaming proceeds as before.

This approach leaves much to be desired. It requires an extra amount of manip-

ulation, and results in extraneous references that did not previously exist. A similar

strategy was suggested to handle structures or records.

We treat definitions to arrays (and similarly, structures) as nonkilling definitions

of the array name, since any definition of an array element modifies only a portion of

the entire data structure. Utilizing def-def links provided by the FUD chain framework

allows us to leave array statements unchanged. Instead, each LHS array reference points

to the downward-exposed reaching definition of that same array. Analysis can proceed

past any particular LHS array definition by following the def-def links.

As an example of following def-def links when analyzing an array, examine Fig-

ure 3.12. When processing the use of A (5) at the last statement we first follow the chain

to its unique reaching definition, the definition of A (J). Depending upon the analysis of

, A (1) = K:'
\ * - ,
\ ---.- ;
"., ENDDO - - -'

J = A (5)

Figure 3.12 Following def-def links when analyzing an array.

the subscript J, we may choose to follow def-def links to the previous reaching definition,

which in this case is a &function. We can continue to follow links, if desired, reaching

both the definition of A inside the loop and the definition of A before the loop. We will

see a direct application of this idea when we look at constant propagation in Chapter 4.

Procedure Parameters. As noted, the default assumption for variables that are for-

mal procedure parameters is that they are both potentially a definition and a use of that

variable. We discussed the methods for maintaining SSA properties in 53.1.4. When

constructing FUD chains, this approach implies that each parameter will have both a

use-def link and a def-def link. Although not obvious, both links may not point to the

same tuple. Consider an example similar to one used previously:

S1: X = 1
Sz: call sub2(X + 2, X, X)

S3: X'Z
S4: Y = X

If we follow FUD chains from the use of X in 5'4, we will first reach the definition of

X at S3. Now, where does its def-def link point to? This problem is the same one we

encountered in 53.1.4, and let us tentatively assume we choose a syntactic ordering of

the arguments to sub2. Then chain(^:) will be the third argument of sub2. As we saw

earlier for this third argument, its use-def link becomes: c h a i n m) = DT. However,

given our arbitrary ordering for the definitions of the parameters in sub2, the def-def

link for the third argument will point to the second argument of sub2, which in turn will

point to DF .
This situation can impose artificial dependencies between variables used as formal

arguments to procedures, so an awareness of the problem is critical.

Scalar Output Dependence An output dependence for a variable occurs when two

definitions of a variable must be sequentially ordered. It seems clear that following def-

def chains is necessary to detect these dependencies. We present details of a method

that detects these dependences in Chapter 6.

Alias Analysis. Due to potential aliases (may-alias sets), as opposed to known aliases

(must-alias sets), a definition of one variable may change the value of another variable.

Thus, the modification of a variable can become a nonkilling definition of another vari-

able. By following the FUD chain of these potential aliases (starting at a definition's

def-def link and the links of its alias sets), we hope to add more precision to the analysis

of may-alias sets. We examine this problem in Chapter 9.

3.2.3 Notes on Implementation

We performed experiments to determine what additional overhead, if any, is incurred by

adding additional links from every definition to the last downward-exposed definition. In

other words, is there an additional time cost for constructing FUD chains instead of just

SSA form? In fact, for all the benchmarks we found no extra overhead in constructing

FUD chains as opposed to straight SSA form.

Upon reflection, this result is unsurprising, since all tuples are examined on lines 2 -
11 of Algorithm 3.2, and the modification of line 4 for constructing FUD chains (discussed

in 53.2.1) simply replaces the link field with the current definition of a variable, which is

a constant time operation.

3.2.4 Related Work

Factored Static Single Assignment. A recent paper [CCF94] discusses concepts

similar to FUD chains, which the authors call Factored SSA (or FSSA). FSSA uses def-use

chains to link up definitions to uses, while we utilize use-def links, as noted in 53.1.5. They

also utilize def-def chains, but where each definition points to the next (upward-exposed)

definition of that symbol, as opposed to the unique reaching definition of FUD chains

(downward-exposed). However, the authors discuss a constant propagation algorithm

that seems to imply that use-def links of some sort must be available for a backward

traversal of the CFG. We explicitly describe how to perform constant propagation using

FUD chains in the next chapter.

Also, details of FSSA construction is not provided, so it is a little unclear exactly

how the semantics of their method is to be guaranteed. In particular, although they

refer to the original SSA papers [CFR+91, CFR+89] (which several of them coauthored)

that describe how to construct SSA form (similar to Algorithms 3.1 and 3.2), no mention

is made of how to provide the def-def links. Additionally, while using def-def links to

process procedure parameters and aliases is mentioned, no details are provided on how

to maintain the SSA semantics in these cases.

A very nice and useful result is provided by the authors, however. They demonstrate

that linearizing reaching definitions with &functions and def-def links (in the case of

nonkilling definitions) is equivalent to a full-blown set of reaching definitions (which may

be of quadratic size).

Sparse Evaluation Graphs. An alternate method with which to extract data-flow

information from a CFG is provided by Sparse Evaluation Graphs (SEG) [CCF91]. Given

a data-flow problem to solve on the CFG, the SEG method selects, for each variable,

the set of nodes (NSG) in the CFG that have nonidentity transfer functions. It then

computes which nodes are in the iterated dominance frontier of NsG, setting NSG =

NSG U DF+(X) . All nodes in the original flow graph are mapped to those nodes in
XESG

NSG that have the same data-flow solution.

Thus, sparsity is obtained by solving a data-flow problem on a smaller set of nodes

(either nodes that have nonidentity transfer function or nodes that may merge infor-

mation) than those in the original CFG. This procedure works for both forward and

backward problems. For backward problems, the RCFG is used.

SEGs differ from SSA form (and, more generally, Reference Chaining as described

in Chapter 5) in two ways. First, a separate SEG needs to be built for each variable,

whereas we encapsulate the information for all variables within the original CFG, but

link references together in a sparse manner using chains. Although chaining functions

are placed in the CFG on a per variable basis, the linking is done in one pass through

the CFG, as we have seen in this chapter. Second, with Reference Chaining the solution

to a problem is only computed at desired nodes, while SEGs map a solution for each

variable back to all the original nodes in the CFG.

3.3 Demand-Driven Analysis

In this section we look at one of the main methods that we have employed to solve

monotonic data-flow problems. In this case, abstraction merges with implementation

due to the manner in which FUD chain links mesh with data-flow operator-operand

links. That is, we are able to traverse the entire data-flow graph (all tuples, plus left,

right, and FUD chain links) within a single framework.

Traditional iterative data-flow analysis, such as constant propagation, require multi-

ple passes over all nodes in the CFG, recomputing information as needed for all tuples

within each node until a fixed point is reached [ASU86, FL88, Ken811. For a forward

data-flow problem, after any node in the CFG is processed its successors are next exam-

ined. This behavior is due to information flowing from predecessors to successors.

In reality, however, tuples can be connected within the data-flow graph in a manner

that spans basic block nodes. This phenomenon occurs when using FUD chains with

the link field, which creates a sparse graph with respect to all variables. Often, when

attempting to classify a tuple (such as the type of induction variable or whether a variable

is a constant), its classification depends on that of its data-flow predecessors. One way to

propagate information from data-flow predecessors to successors is the iterative approach

on the CFG, as discussed above. It certainly works, but may be slow since it propagates

information through nodes that have no effect on that information.

Our approach is to classify each tuple in terms of its predecessors in the data-flow

graph. In some sense, the CFG is of no consequence. We simply examine a tuple

at any point, and make a recursive call on its data-flow predecessors when we need

that information to classify the current tuple. For example, when classifying a binary

operator such as '+', we typically want to examine its two operands, left and right. If

one of these operands is a fetch of a variable, we follow the link of the fetch. In this

way we follow FUD chain links, and we now see a major advantage of use-def links as a

means to maintain SSA semantics. The key is that FUD chain links point in the same

direction as operator-operand links, such as we saw in Figure 2.2. Thus, they match the

demand-driven style of data-flow analysis that we would like to exploit.

We do make one pass through all basic block nodes, and look at all tuples within

each node, so that we can be sure that all tuples have been processed. However, the

blocks can be examined in any order, since the sole purpose is to classify each tuple. In

fact, any other mechanism, such as traversing the data structure that creates tuples in

the compiler front-end, would work equally well. The basic procedure, where classify()

is the method for a particular data-flow problem, is given as Algorithm 3.3.

Algorithm 3.3 will solve all monotonic data-flow problems in one pass of the tuples,

in the absence of cycles in the data-flow graph. It is naive, however, to think that

no cycles will occur. Sometimes, such as the way we handle constant propagation in

Chapter 4, a separate solver has already dealt with cycles. In the more general case,

however, a more sophisticated method is needed. We use Tarjan's well-known algorithm

[Tar721 in this case, which detects maximal strongly connected components with a linear

depth-first search. It serves both as a means of cycle identification and as a mechanism

to perform the traversal over all tuples. When a cycle is detected, separate solvers are

typically invoked to classify all its elements [GSW]. In fact, a cycle solver can classify all

its members by visiting each only once when the problem is uniformly monotonic. (A

data-flow framework is defined as uniformly monotonic when the meet operator (n) is

commutative and associative, and for each node N in the flow graph there is some value

Given: Data-flow graph initialized with lines 1 - 3
Do: Execute lines 4 - 8 -
Result: Data-flow solution at each tuple

1 : forall tuples t do
2 : t. visit = false
3: endfor

4 : forall tuples t do
5 : if t. visit = false then
6 : Demand(t)
7 : endif
8: endfor

9: Demand (t)
10 : t.visit = true

11: if link(t) # 0 €9 link(t).visit = false
12: Demand (link(t))
13 : endif

14 : if left(t) # 8 €9 left(t).visit = false
15: Demand (left(t))
16 : endif

17 : if right(t) # 0 €9 right(t).visit = false
18 : Demand (right(t))
19 : endif

20 : classify(t)
21 : end Demand

Algorithm 3.3 Basic method for solving data-flow problems on demand

in the abstract domain VN such that the transfer function is fN(x) = x fl VN.)

Examples of this demand-driven analysis style include induction variable detection

[GSW], constant propagation (covered in detail in Chapter 4), and bindings for global

references [WGS94] (which uses the call binding graph instead of the CFG).

Chapter 4

Demand-Driven Const ant Propagat ion

4.1 Introduction

Constant propagation is a static technique employed by the compiler to determine values

of variables that do not change regardless of the program path taken. In fact, it is a

generalization of constant folding [TS85], the deduction at compile time that the value

of an expression is constant. Constant propagation is frequently used preliminary to

other optimizations. The results can often be propagated to other expressions, enabling

further applications of the technique. This recursive nature of the data-flow problem

suggests using a demand-driven method instead of the more usual iterative techniques.

In the following example, the compiler substitutes the value of 5 for x in S1, which

is a canonical instance of constant folding. Since the value of x is now constant, the

compiler can propagate this value into S2, which, after applying constant folding once

again, results in the determination that y is the constant 20. It should be noted that

constant propagation for this work focuses on scalar integer values. Propagation of

real-valued expressions can be performed, but special care is required since operations

on real-valued expressions are often architecturally dependent and rounding methods

may be dynamic. The method outlined in this work also allows for arbitrary symbolic

expression propagation [G S W] .

Figure 4.1 Standard constant propagation lattice L:

Although constant propagation is an undecidable problem [KU77], it is nonetheless ex-

tremely useful and profitable for a number of optimizations. These include dead code

elimination [WZSl], array and loop-bound propagation, and procedure integration and

inlining [GT93]. Due to these benefits, constant propagation is an integral component

of modern commercial optimizing compilers [BCD+92, LFK+93, Muc881.

This chapter will first look at constant propagation within the data-flow framework.

We will show how the constant propagation problem fits into the FUD chain struc-

ture, and look at the extension of FUD chains to the more interpretable Gated Single

Assignment representation required to implement conditional constant propagation. A

comparison of our method with other recent sparse techniques is presented, with an eval-

uation of the strengths and weaknesses of each approach. We also present experimental

evidence that shows the number of constants found in scientific benchmark codes as well

as the time needed to perform the analysis.

T n any = any
I n any = I (ynstant, if i = j

constanti l l constantj =
otherwise

Table 4.1 Rules for meet (n) operator.

4.2 Background for Constant Propagation

4.2.1 Iterative Solutions

As a data-flow problem, constant propagation can be cast into the monotone data-

flow framework given in Chapter 2. Here, W, the set of information to be propagated,

represents all the possible mappings from the set of variables in a program to the values

that can be assigned to any variable. The possible values that can be assumed by any

variable are represented by the semi-lattice t (shown in Figure 4.1), introduced by Kildall

[Ki173] and standard for many constant propagation methods [CCKT86, GT93, WZ911.

This lattice is three-tiered, with distinguished 1 (T) and Q (I) elements. In the most

general terms, each element of W is a set that contains all possible sets of assignments

from L to the variables in a program. Hence, the size of W is 2IVxRI, where V is the

number of variables and R is the number of possible constants (both potentially infinite).t

When comparing two lattice element values, the meet operator (n) is applied, as given

in Table 4.1. Since 5 is a partial order, we notice that with this simple lattice a 4 b

is true only when a is I or b is T. The set T of transfer functions represent the effect

each basic block node has on the information that enters at the beginning of each node.

A complete description of these functions for solving the constant propagation problem

using Equations 2.1 would be quite complicated, and depends on the type of operations

that can be performed on W, such as assignment, copy, etc.; a "basis" for these functions

is provided elsewhere [ASU86, Section 10.111.

t1n this general case V x R is a cross-product, with 2IvXRI being the size of the powerset of this
cross-product.

The reason that we do not go into the details here is that solving constant propa-

gation using a standard iterative technique is quite inefficient. The general method of

Equations 2.1 carries around the information of all variables within a program at both

the beginning and end of each node N (in(N) and out(N)) in a CFG. Consider Figure 4.2.

If information on both x and y is retained and passed through each node, all 8 nodes

(with in and out sets for each) would need to maintain information on these two vari-

ables. However, half the nodes for each variable have identity transfer functions. We will

instead use the method given in Chapter 3, FUD chains, which provides a sparse graph

upon which to perform analysis, as well as linearization of the chains. In this example, if

we wanted to evaluate z, we could just follow a total of 6 links as opposed to propagating

information to nodes that are not involved in the data-flow solution. We conclude that

the complete iterative solution is overly consumptive of space (and is clearly no faster)

when compared to a sparse graph solution.

4.2.2 Relative Precision of Solutions

Although constant propagation is a monotonic data-flow problem, the solution obtained

may not be as precise as other data-flow problems. To understand why, we define what

is known as the meet-over-paths (mop) solution. Given a node M, let PM represent the

set of all paths from Entry to M. Then, mop(M) is defined as:

where f p is the composition of the transfer functions along each path p.t

One obvious problem with the mop solution is that when cycles are involved there

are an infinite number of paths from Entry to some of the basic blocks in the CFG. The

true data-flow solution is the meet over all fp(T) of paths that actually are taken in some

program execution. Since the set of paths in the true solution is a subset of all possible

paths, the meet operator assures us that the mop solution is lower in a lattice theoretic

sense than the true solution, i. e., mop 5 true. Thus, mop is a conservative approximation

'1n fact, according to the data-flow problem, it may be right to compute f,(l).

Figure 4.3 Example showing that constant propagation is not distributive

to the true solution, and is referred to as safe.+ How does the mfp (maximum fixed

point, discussed in 52.3.1) solution, which we know how to compute using Equations 2.1,

compare to the mop solution? If the monotone data-flow problem is distributive, then it

has been established that mfp = mop, where a distributive system obeys this property:

(It is not hard to show that distributivity implies monotonicity [Hec77].)

However, constant propagation is not distributive, which we show by counterexample.

In Figure 4.3, where the meet function obeys Table 4.1, the transfer function f R for the

assignment to c takes a and b from in(R) and computes their sum. Here, x and y in

Equation 4.1 are sets of values for nodes P and Q, respectively. Thus, x = {(a,l),(b,4))

and y = {(a,2),(b73)). (Technically, x and y contain all variables in a program, including

c, but for convenience we omit them here.) We now make the following calculations:

+ A solution in(B) is a safe solution if in(B) 3 mop(B) for all nodes B [GW76].

Since the two computations are not identical, we have shown that constant propa-

gation is not distributive. Essentially, nondistributivity for constant propagation means

that the data-flow problem cannot "remember" the resulting information after applying

the transfer function. Here, the sum is constant, even though neither of its addends is

constant. This problem shows that confluence operators (meet for constant propagation)

can lose precision, and it follows that in a data-flow framework which is not distribu-

tive mfp 5 mop. In fact, the mop solution to any nondistributive, monotone data-flow

problem is undecidable [Hec77].

4.2.3 Optimistic vs. Pessimistic Solvers

Lattice L: is shown in Figure 4.1. The constant propagation algorithms we shall con-

centrate on have the lattice value for each symbol initialized to T, which indicates that

it has an as yet undetermined value. After analysis is complete, all symbols will have

lattice value equal to I (it cannot be determined to be constant), a constant value, or

T (unexecutable code). We note that values can only move down in the lattice, due to

the meet operator.

By initializing lattice values to T , an optimistic approach is taken, which assumes

all symbols can be determined to be constant until proven otherwise. A pessimistic

approach, on the other hand, initializes all variables as I and never propagates a constant

until it can be determined to actually be constant. Thus, if analysis of an iterative

pessimistic method is halted prematurely, all variables labeled constant are provably

constant. With an optimistic approach, however, a value may be propagated as constant

but later get lowered to I. Thus, halting an iterative optimistic solver before completion

may yield incorrect results.

A pessimistic solver will not propagate an expression as being constant until each

S1: j = 9
Sz: do
s3 : k = j - 1
s4 : . . .
S5 : j = k + l
Ss: enddo
s,: i = j

Figure 4.4 Constants can be missed with pessimistic solvers

operand has been classified as constant. This requirement can result in missing constants,

as we see in the program fragment along with its CFG in Figure 4.4. In this case, the

lattice value of all variables starts off as I. First, j at Sl is determined to be the constant

9. Next, when processing k at S3 (basic block B), its classification is dependent upon

the possible values of j , which come from S1 and S5 (basic blocks A and D). Since all

lattice values are initialized to I, 9 n I = I, and the lattice value of k at S3 stays at 1.

When processing S5, the value of k comes from S3, which we have seen is I, so j at S5

stays at I . Finally, to process i at S7, the lattice value of j comes from the top of B,

which has remained at I after applying the meet function. Thus, though all program

paths result in the constant 9 for i in S7 (which means, of course, that the mop solution

for i at E is 9), we see that pessimistic solvers can reach a nonoptimal fixed point.

An iterative optimistic solver would begin the same way at S1, but each tuple is

initialized to T. Now when processing S3, j is 9 n T = 9. Thus, k at S3 has its lattice

value lowered to 8. When S5 is now processed, the lattice value of j gets set to 9. For

this example, we have reached a fixed point for the cycle B-C-D, and further iteration

will not change any of the lattice values contained within these nodes. Finally, S7 in

node E inherits the lattice value of j from B, which is 9 n 9 = 9. In this way, optimistic

s1 : 2 = 3 s7 : z = 3
s2 : i f (P) then s8 : i f (z < 5) then
S3 : y = 5 sg : y = 5
S4 : e l s e slo : e l s e
s5 : y = z + 2 $1 : y = 2
s6 : endif s 1 2 : endif

Figure 4.5 Constant propagation with (a) simple, and (b) conditional, constants

solvers find a larger class of constants than pessimistic methods.

4.3 Using FUD Chains for Simple Constants

We need to make one change to the tuple structure when performing constant propa-

gation. A new field, lattice, is added to each tuple. The lattice element of each tuple

can assume T, I, or any of the constant values of Figure 4.1. The lattice element is

initialized to T for optimistic solvers, such as the ones we shall focus upon.

4.3.1 Constants Within the FUD Chain Framework

We first show how to implement simple constant propagation within our framework. The

distinction between simple (all paths) constants and conditional constants can be seen

in Figure 4.5. The simple value of y is determined to be constant only if both branches

which merge at Sf, are constant with identical value, as is the case in (a). A conditional

constant, however, may be identified when a predicate which controls branching can be

determined to be constant, since in that case only one of the branches will be executed,

allowing not only y to be recognized as constant in (b), but also identifying the other

path to be dead code.

The first constant propagation algorithm we present detects simple constants in a

demand-driven manner. Algorithm 4.1 efficiently propagates simple constants in the SSA

data-flow graph by demanding the lattice value from the unique definition point of each

use. We essentially use Algorithm 3.3 where the classify() routine assigns constant values

to the lattice when appropriate and takes the meet of lattice values at confluence points.

We visit all CFG nodes, examining each of its tuples, calling Propagate() recursively on

any unvisited left or right tuples. Expressions are evaluated by calling Propagate() on

all references with a nonnull link field. When a +function is encountered, recursive calls

to the arguments are made, followed by taking the meet of those arguments. In the case

of data-flow cycles, characterized by +functions at loop-header nodes, I is returned.

We look at a simple example, with Figure 4.5(a) transformed into SSA form and

slightly augmented. The resulting code and its CFG is shown in Figure 4.6. If we first

call Propagate(store x) at S8, recursive calls are made to Propagate(fetch y) at S8

and Propagate(merge y) at S7. Since the merge tuple is a &function, recursive calls

are made to both its arguments, which will both eventually return 5. Applying the meet

rules of Table 4.1, x at S8 will have its lattice value assigned the constant 5.

Although we began with basic block F, we could have started with any node in the

CFG. For example, had we started with node Dl the store to y would get lattice value

5 after a recursive call is made to the assignment of x in A. If node E was processed

next, the left link would get the constant 5 from C, while the right link would return the

already computed value from D. Finally, when F is visited, only one call to Propagate()

is made, since y has already been visited and classified as the constant 5 in E. The

order of visitation of basic blocks never affects the result of the algorithm or its time

complexity, since all tuples and links are visited exactly once.

4.3.2 Discussion of Algorithm 4.1

We discuss several important issues relating to Algorithm 4.1.

Memoization of lattice values. By storing the lattice value at each tuple, we insure

that recomputation of lattice values is never needed. This property is valid since the

demand-driven approach guarantees that each tuple will be visited exactly once.

Given: Data-flow graph, initialized with lines 1 - 4
Do: Execute lines 5 - 7 -
Result: Simple constants assigned to lattice elements

forall tuples t do
lattice(t) t T
t.visited t false

endfor

Visit all basic blocks B i n the program
Visit all tuples t within B

if t.visited = false then Propagate(t)

Propagate (t)
t.visited t true
if link(t) # 0 then

if link(t).visited = false then Propagate(link(t))
lattice(t) t lattice(t) n lattice(link(t))

endif
if left(t).visited = false then Propagate(left(t))
if right(t).visited = false then Propagate(right(t))
case on type of t

constant C: lattice(t) t C
arithmetic operation:

if all operands have constant lattice value then
lattice(t) t arithmetic result of

lattice values of operands
else

lattice(t) t l
endif

store: lattice(t) t lattice(RHS)
merge ($-function):

if loop-header 4 then
lattice(t) t l

else
lattice(t) t tl of $-arguments o f t

endif
default: lattice(t) t l

end case
end Propagate

Algorithm 4.1 Demand-driven propagation of simple constants

2 = 3
i f (P) then

y1 = 5
e l se

y 2 = 2 + 2
endif
y3 = 46(~i, ~ 2)
x = Y3

Figure 4.6 Example of demand-driven constant propagation

Only scalar integral constants are found. Since at this point in our implemen-

tation we only look for scalar constants, we have been a little imprecise on how Algo-

rithm 4.1 is applied. If tuple t does not operate on a scalar integer object, we need

consider it no further for most of the algorithms in this chapter (it effectively gets set to

1).

This method is not an iterative solver. It is a recursive demand-driven technique

that will completely solve the graph in the absence of cycles. The order in which basic

blocks are visited is not important.

How multiple definitions are merged. When at a confluence node, we take the

meet of the demanded classification of the +arguments. By Table 4.1, this will result in

a constant if and only if all +arguments are constant and identical.

Class of constants found. This is an optimistic solver since all tuples are initialized

to T. We find the same class of simple constants as other nonconditional solvers, such

as Kildall [Ki173] and Reif and Lewis [RL77], in the absence of data-flow cycles. In

the presence of data-flow cycles (due to loops in the CFG), the solver will fail to classify

constant valued tuples, even if it remains constant throughout the loop. In a case such as

Figure 4.4, even though the mop solution for i at S7 is 9, lines 27 - 28 of Algorithm 4.1

return I. We can improve on this simple demand-driven constant propagation algorithm

by identifying the data-flow cycle and calling a separate solver on that component. In

fact, Algorithm 4.1 uses a simple depth-first search when traversing the data-flow graph

comprised of tuples. Instead, we could use Tarjan's algorithm [Tar72], a depth-first

search method with additional functionality, which identifies maximal strongly connected

components of a graph with the same time complexity, O(V + E), as the simple depth-

first search method presented here. A separate solver for data-flow cycles may be the

method of choice since it can also be used to classify induction variables for natural loops

in general. A technique has been outlined in detail elsewhere [GSW] using a demand-

driven SSA form. Details on how to interface between the induction variable loop solver

and constant propagation are provided in 54.4.

Expression Evaluation. When requesting the lattice value of a store operation, line

25 of Algorithm 4.1 states that the lattice value of the store inherits the lattice value of

its right hand side (RHS). To evaluate the expression, each RHS operand is classified just

once, either immediately or after recursive calls on its left, right, or link fields. Hence,

each expression is evaluated once, since the node containing the expression will only

be evaluated after all referenced variables are classified. This feature of demand-driven

classification will become important when we look at other sparse methods of performing

constant propagat ion.

Complexity. The asymptotic complexity is proportional to the size of the data-flow

graph, since it requires each link, left and right edges to be examined once. Hence its

time complexity is O(V + E) within the data-flow graph.

x = 0
y = o
z = o
i f (P) then

y = y + 1
endif

xo = 0
YO = 0
20 = 0
i f (P) then

Y l = yo + 1
endif
Y2 = 4 (YO, Y 1

X l = y2
z 1 = 2 * y 2 - 1

xo = 0
YO = 0
zo = 0
i f (P) then

Y1 = yo + 1
endif
y2 = 7 (P, true+ yl , false-, yo)

x1 = y2
21 = 2 * y 2 - 1

Figure 4.7 Program in (a) normal form, (b) SSA form, and (c) GSA form

4.4 Constants Within Conditionals and Loops

4.4.1 Extending the Interpretability of $-Functions

When demanding the classification of a variable at a confluence node, we take the meet

of the demanded classification of its &arguments, as noted in the last section. However,

if only one of the branches will, in fact, be taken, we would like to only propagate the

value along that path.

With conditional constant propagation, if a symbol demands the value from a conflu-

ence node, we want to process the predicate that determines the path to follow. Examine

Figure 4.7(b). When attempting to classify xi, the value is demanded from the use-def

SSA link of y2, which points to the &function. However, a &function is not interpretable

[BM090]. Thus, we have no information about which path may or may not be taken.

Since the predicate P in our example determines the path taken, if P is constant, we can

determine which argument of the &function to evaluate. If P is not constant, the best

we can do is to take the meet of the +arguments.

Augmentation of the +function is needed to include this additional information. We

extend the SSA form to Gated Single Assignment form (GSA), introduced by Ballance

et al. [BM090], which allows us to evaluate conditionals based upon their predicates.

Figure 4.7 shows a simple program converted to GSA form. Briefly, &functions are

TEST P

Q v = v = R

Figure 4.8 The two types of &functions: (a) p, and (b) y

reclassified into two types: p- and 7-functions. All &functions contained within loop-

header nodes are renamed p-functions, while most other &functions are converted to

7-functions. Additionally, a new operator, the q--function, is introduced at loop exit

points for each variable defined within the loop. We now provide the details of GSA

form and its construction.

4.4.2 GSA Form

The p- and 7-functions. Although +functions represent the merging of reaching

definitions at confluence points, in truth there are two distinct types of merges in the

control flow sense. We illustrate this distinction in Figure 4.8. In (a) the merge of the

distinct definitions of v at nodes A and D occurs at node B, which is a loopheader node.

The use of v at C has its reaching definition from A on the first iteration of the loop, and

from D on all subsequent iterations. We rename +functions at loop-header basic blocks

p-functions. In (b), the definitions of v at Q and R meet at S , which is a confluence

node created by branch node P. The path taken from P is determined by some predicate

within the TEST condition. The merge operator at S needs to encapsulate the predicate

that determines the branch at P as well as the possible reaching definitions from Q and

R. We transform &functions at these confluence points into 7-functions to reflect this

additional information.

There is typically a predicate of some sort also at the loopheader that determines

whether control is passed to the loop body or not. In the original work by Ballance

et al. the p-function was of the form p = (P, vinit, viter), where P is the predicate to

determine whether the loop will trip, and vinit and vite' are the values for v entering

the loop and after at least one iteration, respectively. For the applications in this work,

we do not need the additional overhead in determining the trip condition of the loop.

Although we want a more interpretable SSA form, we do not need a complete dataflow

executable model, as was the original intent of Ballance et al. The method of loop

detection outlined in Chapter 2 (with details given by Algorithm 2.3) does not distinguish

between loops created by implicit control constructs (such as IF-GOT0 style) and those

provided explicitly as language features (such as a traditional DO loop). The method of

encapsulating the predicate condition would add complexity that we would not utilize.

Thus, we distinguish &functions that occur at loop-header nodes by renaming them

p-functions, with the form for variable v being v = p(vinit, viter). We easily accomplish

this transformation in Algorithm 3.1 by expanding lines 16 - 19 to become:

16a: if Q is the header of Q.loop then

16b : place V = p(Knit, Kt,,) at the beginning of basic block Q

17 : else

18a: i t number of predecessors of Q

18b: place V = 4(Vl , V2, ..., V,) at the beginning of basic block

18c : Q, when V, corresponds to the jth predecessor of Q

19 : endif

We know that a p-function will have precisely two predecessors due to the preheader and

postbody nodes added to the CFG in the preliminary analysis discussed in Chapter 2.

While p-functions are identified during the placement phase of FUD chain construc-

tion, we must translate the remaining &functions into y-functions separately. This is

due to the predicate that controls a ?-function (which we left out in p-functions), and

because ?-functions can become nested, essentially relying on a chain of predicates to

determine the control flow path taken to reach a confluence node. In its most basic

form, the y-function v = y(P, true + vl,false -+ v2) means if P then v=vl else v=vz.

In this simple form, the y-function represents an i f -then-else construct, but it is also

extended to include more complex branch conditions, such as case statements.

The q-function. One further operator is added to the GSA form - the q-function.

The purpose of q-functions is to capture or summarize the value of each variable at exit

points of a loop. Effectively, an q-function gates the effect of the loop from code outside

the loop. The original work by Ballance et al. included a loop predicate that indicated

under what conditions the value being gated would be used. As with the p-function, we

will not need the predicate information. Our methods use the q-function as a placeholder

to summarize the exit value for each variable when the loop terminates. We discuss in

54.4.5 how the q-function interfaces with FUD chains and is used by a separate loop

solver.

In order to provide 7-functions, we augment the CFG for each edge exiting a loop

with a postexit node placed outside the loop between the source of the exit edge (within

the loop body) and the target (outside the loop). An q-function is then inserted into

postexit nodes for each variable defined within the loop. After completing the loop

identification phase of a CFG, such as given by Algorithm 2.3, a separate pass can be

made through the loop structure to add the postexit nodes. The q-functions are easily

inserted when creating the variable modification list, A(V), as preparation for the FUD

chain construction algorithms. Each q-function has a single associated q-argument as a

placeholder for the summary information at that loop exit point.

4.4.3 Converting &Functions Into y-Functions

Flow Graph Reducibility. We start by defining a reducible flow graph. Informally,

a general flow graph is reducible if there is only one entry point for every loop. Es-

sentially, reducibility of a flow graph guarantees that control cannot "jump" into the

middle of a loop from outside the loop. There are numerous equivalent definitions of

flow graph reducibility, such as those based upon interval analysis (where the intervals

are often referred to as Allen-Cocke intervals) [AC76] or Tl-T2 analysis, in which a flow

graph graph is collapsed via two transformations. A flow graph is considered collapsible

if successive applications of T1 (removing self-cycles) and T2 (turning a node with a

unique predecessor into one node) result in a single node. Collapsibility has been proven

equivalent to reducibility [Hec77, HU721.

Since we find natural loops (using Algorithm 2.3), and since for 7-function construc-

tion we will need a topological sort of the CFG, we use a third method of determining

flow graph reducibility. Algorithm 4.2 performs a depth-first search of a CFG, pushing

nodes onto a stack during their initial visit of the search.

This algorithm, using standard depth-first techniques, visits each node in the CFG

exactly once (if it is a reducible graph), yielding an O(V + E) time bound. Since it

recursively is called on successors that have not been visited, a node is only pushed onto

stack S (line 17) when all nodes in the same maximal strongly connected component

(SCC) have been visited, a property used by Tarjan to classify all nodes in a directed

graph into SCCs [Tar72].

Using Algorithm 4.2, we identify a flow graph as reducible if all the edges of the CFG

can be divided into two classes [ASU86]:

1. Forward edges of the CFG. These are identified on line 12 in Algorithm 4.2, since

the target node of a forward edge in a topological sort will not yet have been

visited.

2. Back edges in which the head dominates the tail. These are precisely the same edges

identified in Algorithm 2.3 as determining a natural loop. Line 9 of Algorithm 4.2

detects nodes that are the target of back edges (they have already been visited),

Given: CFG and empty stack S
Do: Initialize with lines 1 - 5. -

call Topsort(Entry)
Result: Topological sort of nodes determined by forward edges if graph reducible

1 : Reducible t true
2 : forall nodes V do
3 : V.visited t false
4 : V.pushed c false
5 : endfor

6 : Topsort(basic block bb)
7 : bb. visated t true
8 : forall successors succ of bb do -
9 : if succ.visited = true €9 succ.pushed = false €d succ dom bb then
10 : Reducible t false
11: Exit TopSort
12 : else if succ.visited = false then
13 : Topsort(succ)
14 : endif
15 : end for
16 : bb.pushed t true
17 : push bb onto 5'
18: end TopSort

Algorithm 4.2 Constructing a topological sort of nodes and detecting reducibility

Figure 4.9 Irreducible graph that has a cycle with multiple entry points

are in the same SCC as the source node of that edge (their pushed field is false),

but are headers of natural loops (they dominate the source node). Thus, these

edges are ignored altogether by Algorithm 4.2.

If any edge fails to fall into one of the two categories above, the graph is classified as

irreducible on line 10, and we will not be able to transform FUD chains for that graph

into GSA form. However, if the graph is reducible, all its nodes are pushed onto stack

S. Popping S provides a topological sort of the CFG nodes ignoring backedges.

The canonical irreducible flowgraph is shown in Figure 4.9. The cycle containing

nodes B and C has two entry points from node A. If TopSort is called on this graph, it

will identify the multiple entry loop when TopSort is called on B (or C) as a successor

of C (or B).

Immediate Dominators and Control Dependence. To convert #-functions into

?-functions we rely heavily on the concept of control dependence, which was defined and

described in 82.1.2. In Figure 4.8(b), Q and R are control dependent upon P, since one

branch from P will definitely pass control to Q, while another branch from P may (in this

case, definitely will) bypass Q (and similarly for R). In translating Figure 4.8 to GSA

form, we essentially want the 7-function at S to look like: v = y(TEST, t + VQ, f + vR).

After Algorithms 3.1 and 3.2 have processed the CFG and data-flow graph, S will have a

#-function that looks like: v = ~ (v Q , vR). We start at each predecessor of S, and process

all its control dependence chains until the immediate dominator of S is reached, where a

control dependence chain (CD-chain) for node N = Nl is defined as a sequence of nodes

Nl, N2,. . . , Ni such that Nj E CDl'red(Nj-l),j E [2.. . i]. If i > 2, we say that N is

transitively control dependent on Ni .
We now prove two properties of CFGs that are important to the algorithms we

present. The first shows that for any confluence node, the immediate dominator of that

node must be a branch node, and the second demonstrates that every CD-Chain of its

predecessors includes the immediate dominator of the confluence node.

Theorem 4.1 Given any node N in a CFG that is not the header of a natural loop and

that has more than one predecessor, idom(N) must have more that one successor.

Proof:

Let I = idom(N). Then, for all paths p: I 4 Q 4 N, I dom Q (if not, then there is a

path Entry f, Q -+ N that does not pass through I). Assume I has only one successor,

S. There are two possibilities:

1. S # N. In this case, I dom S and S dorn N. Thus, some node on a path S 4 P ,

with P + N, is the immediate dominator of N (recall the definition of immediate

dominator from 52.1.2). This conclusion contradicts the assumption that I =

idom(N) .

2. S = N. Consider predecessors PI and P2 of N. Without loss of generality, let

Pl # I . Since I dom N, I dom PI. Because the only successor of I is N, N dom

P I . But in this case the edge PI + N is a backedge by definition, which makes N

the header of a natural loop, a contradiction of hypothesis.

Since the assumption that I has only successor leads to a contradiction in all cases, we

conclude that I has more than one successor. 1

Theorem 4.2 In a reducible flow graph, i f node N , which is not the header of a nut-

urn1 loop, has more than one predecessor, then given any predecessor P of N and any

CD-Chain(P), idom(N) E CD-chain(P).

(A)

Figure 4.10 Irreducible graph does not have well-defined CD-chains

Pro0 f:

Let I = idom(N). Since I dom N, we know that I dom P . If P pdom I, then all paths

from I to N pass through P, and P dom N. (None of these paths from I can pass

through N before reaching P, otherwise either (i) N would be the header of a natural

loop with backedge P + N or (ii) P and N are in a cycle of an irreducible graph. Both

possibilities are excluded by hypothesis.) In this case I = P, and the claim is trivially

true.

Now consider the case where P pdom I, and any path pl : (I = Ro, R1,. . . , R,-1,

R, = P) . If P = R1, P is control dependent on I (some path from I to Exit avoids

P , since P pdom I). Otherwise, for the largest i on pl, choose Ri such that P pdom

R,. Then P pdom and P is control dependent of Ril which means that R, E

CD-Chain(P). Consider path pz : (I = Ro, R1,. . . , Rm-l, R, = Ri)- R, will be control

dependent upon some Rj, j E [0 . . . m-11, for the largest j on pz such that Ri pdom Rjl

which adds Rj to CD-Chain(P). Continued application of this process results in I E

CD-Chain(P). If not, there will be a smallest k such that Rk E CD-Chain(P) and Rk

pdom I. Since Rk # I, Rk dom N (a . above, no cycles involving Rk and N can exist)

and I # idom(N). We have reached a contradiction of hypothesis, and thus conclude

that I E CD-Chain(P). I

x = 2
i f (P) goto 30
i f (Q goto 50
e l s e goto 40

3 0 x = 3
4 0 y = x

50 continue

(4

xo=2
i f (P) goto 30
i f (Q goto 50
e l se goto 40

30 x1=3
40 xz = y(P , t+xl, f+y(Q , t + T , f+xo))

y1 =x2
50 continue

(b)

Figure 4.11 Conditional code that results in nested 7-functions

We illustrate why reducibility is necessary for Theorem 4.2 in Figure 4.10. This

graph is irreducible due to the cycle consisting of N and C, which has multiple entry

points. N is a confluence node with idom(N) = B. We note that B is a branch node as

Theorem 4.1 asserts. But for node N , taking C as a predecessor of N , CD-Chain(C) =

{C) U CDPred(C) = {C, A) , which does not include B.

We use Theorems 4.1 and 4.2 to establish the correctness of the algorithms that fol-

low. Essentially, the y-function provides interpretability of the data-flow graph through

control dependence relations. Theorem 4.1 tells us that the starting point for calculating

the path that leads to a confluence node is its immediate dominator, while Theorem 4.2

assures us that by following CD-Chains of each predecessor of the confluence node we

will always reach that immediate dominator node.

We can only translate reducible CFGs with merge &functions into y-functions, since

cycles not identified as loops would create infinite nested referencing within a ?-function.

No unique identification of back-edges is possible within an irreducible graph, thus mak-

ing a topological sort of the nodes with respect to their forward edges impossible. In

Figure 4.9 neither edge B + C or C + B can be classified as a backedge since the head

does not dominate the tail.

The Conversion Algorithm. We now provide the complete algorithm to translate

a program from FUD form into GSA form. A topological sort of the CFG nodes with

respect to forward edges is necessary, since y-functions may refer to other 7-functions,

and in this way the references will always be in terms of functions that exist. Since this

translation is only possible with reducible flow graphs, +functions at loopheader nodes

have already been renamed p-functions. The remaining +functions at confluence nodes

are the result of conditional branches, and Theorem 4.1 tells us to start at the immediate

dominator of that confluence node to evaluate predicates that determine which path (or

paths if some predicate is not constant) are taken to reach the &function. Processing

CD-chains starting at predecessors will always include the immediate dominator, as

Theorem 4.2 showed. The details of translating &functions to ?-functions are given in

Algorithm 4.3, and we describe here the data structures used:

stack S - A list of all basic blocks in CFG, produced by TopSort

stack T - A list of 7-arguments used by the Reduce function

last-4(*) - Previous +function processed at this basic block (Initialized to NULL)

current-y(*) - The 7-function under consideration for this basic

block (Initialized to NULL)

labels - Branch values that correspond to outedges from a basic block;

if there is only one successor, the branch label is true

Discussion of Algorithm 4.3. This algorithm is an adaptation of an earlier version

by Havlak [Hav93] that converts +functions at confluence nodes to 7-functions. Prior to

Havlak's algorithm, it was necessary to convert the source program into an SSA-based

Program Dependence Graph form [BMOSO]. Our algorithm differs from Havlak's in that

we do not require a preprocessing pass over the CFG to initialize each of the branch ar-

guments to determine when all paths that reach that branch node have been processed.

Havlak's algorithm utilizes a counter, which increments during the preprocessing phase

and decrements during processing. When counter = 0 during processing, all paths to a

branch have been examined, and a recursive call to process each of its control predeces-

sors is invoked. We recursively make calls to Process() on the first visit to any node per

+function being processed, which we detect using last-4. When each call to Process()

Given: Reducible CFG
Do: compute Topsort(Entry) -

Execute lines 1 - 12
Result: &functions converted to 7-functions

while S # 0 do
B t pop S
idom t immediate dominator of B
for each &function f in B do

for each CFG predecessor pred of B do
lab t branch label of edge from pred to B
param t &argument o f f that corresponds to pred
Process(f , pred, lab, param)

end for
replace f with Reduce(current-?(idom))

endfor
enddo

Process(function f , basic block bb, labe l lab, link point)
if last-$(bb) # f

last-+(bb) t f
if bb has more than 1 successor

send t current-7(bb) t Build-Gamma(bb)
else

current-7(b b) t 0
send t point

endif
if bb # idom then

for each cp E CDSred(bb) do
cp-lab t branch label from cp that executes bb
Process(f , cp, cp-lab, send)

end for
endif

endif
if current-y(bb) # 0

for argument a of current-7(bb) 3 label a = lab do
link(a) t point

end for
endif

end Process

Algorithm 4.3 Converting +functions to 7-functions

Build-Gamma(basic block bg)
7-predicate t branch predicate i n bg
for each successor succ of bg do

e t label from bg to succ
add y-argument with label e and with link(y-argument) e Top

enddo
return 7

end Build-Gamma

Reduce(t up le r)
if r is not a y-function return r
predicate t branch operator of 7-function r
if predicate already on stack T

arg t 7-argument of r whose label matches the branch value of predicate
return reduce(link(arg))

endif
for all y-arguments a of r do

push onto T (predicate, label of a)
link(a) t Reduce(link(a))
pop 08 T(predicate)

enddo
if all ?-arguments a of r have identical link return link(a)
else return r

end Reduce

Algorithm 4.3 (cont.) Build-g.() and Reduce() routines

returns, we fill in arguments of its y-function, if it exists. If a node has multiple suc-

cessors, current-y saves the corresponding y-function for that node. Each y-argument is

initialized to T, so that if not replaced it will not affect the meet operator within the

constant propagation algorithms.

An Example of Algorithm 4.3 Examine Figure 4.12. TopSort could produce the fol-

lowing ordering of nodes for stack S : A, B, C, D, E, F, G. Lines 1 - 12 of Algorithm 4.3

will pop S and do nothing until E appears. Then, with idom = B, each predecessor of

E will call Process() on line 8:

1. Process(vg, C, t, v2)

Here, last_6(C) # f (vg), and since C has only one successor, the following single

recursive call (because CDPred(C) = {B)) is made on line 25:

Process(vg , B, t, v2)

Now, current-y(B) is created with its branch predicate set to Q, and two y-argu-

ments initially set to T:

Since B = idom, line 22 insures us that no further calls are made to Process(). At

this point, line 31 sets one of the y-arguments:

2. Process(vg, D, f, vl)

This call is analogous to the call above. Note that even though C has a definition

of v and D does not, reaching definitions have already been resolved within the

+function at E during the Chaining routine of Algorithm 3.2. When the recursive

call to Process() is made at B, however, last~#~(B) = vs, so no y-function is created,

and no further calls to Process() are needed. (In this case B = idom, so no further

calls would be invoked in any case. But if not, a previous invocation of Process()

for the same +function would have made any necessary calls.) After filling in the

second 7-argument, vg at E get replaced on line 10 by current-y(B):

V1 = ...
i f (P) then

i f (q) then
V2 = ...

else
. . .

endif
v3 = 4(v2,v1)

e lse
vq = .. .

endif
v5 = 4(v3,v4)

Figure 4.12 How to convert &functions to 7-functions.

Figure 4.13 Predicates that affect constants in unstructured code

Popping F creates no work, but popping G off S will create a y-function at A,

the idom of G. When Process() is called on predecessor E, it will have v3 as point,

which is the y-function built when processing E. After calling Process() on F, the other

predecessor of G , the completed y-function at A, which will replace v5 at G, becomes:

Unstructured Code. Multiple levels of conditionals result in nested y-functions, as

we just saw in an example of structured code. Unstructured code can also have this

effect, as seen in Figure 4.11. Figure 4.11(b) shows the program in (a) translated into

GSA form, with its CFG shown in Figure 4.13. It is quite an interesting example for

constant propagation, since if we know the value of predicate P we always know what

possible value of x can reach the merge at 40. However, if we do not know P, then the

value of predicate Q becomes crucial:

a If Q is true, only x i can reach 40.

Figure 4.14 Example of how the Reduce() routine works

If Q is false, we have no clear information on what value of x to propagate.

Reducing 7-functions. When nested y-functions occur, they can often be reduced.

We have noticed empirically that roughly half the y-functions can be reduced. This

reduction can occur in two ways:

1. The same predicate occurs more than once in a y-function. In this case, the value of

the first occurrence of the predicate can prune the nested predicate. The Reduce()

function of Algorithm 4.3 accomplishes this task. This optimization is not handled

by the methods of Havlak [Hav94].

2. If all 7-arguments have the same value, then the ?-function can be replaced by the

value of the arguments.

The routine Reduce() is linear in the size of the 7-function passed in as an argument,

which itself is linear in terms of the CD-Chain subtree. As an example of Reduce(),

examine the following code fragment (whose CFG is shown in Figure 4.14):

Before reduction, the 7-function at 10 will be:

And the 7-function at 40 will be:

After applying the first reduction rule, the ?-function at 40 (7,) becomes:

x3 = yc(P,t + %(Q,t -+ xi, f + xi) , f + xo)

Next, the second reduction rule is applied, yielding:

A Related GSA Form. A method employed by Havlak [Hav93], aimed at value-

numbering, thins the 7-function to eliminate paths that cannot reach a confluence node.

Essentially, if all arguments save one are T, then the entire argument structure is reduced

to the one non-T argument. Thinning is directed at an efficient implementation of

value-numbering, but misses identifying constants in some situations, such as shown in

Figure 4.11. If thinning were used, the 7-function at 40 would reduce to: x2 = 7(P,

t-+xi, f+ xo). If P is not constant, the meet of its arguments is I. However, if Q is

known to be true, the constant value xi will be missed using thinning, since the false

side of predicate P is prematurely reduced to xi, instead of T.

102

4.4.4 Conditional Constant Propagation

Once converted into GSA form, we can improve upon the PropagateO routine in Al-

gorithm 4.1 to take advantage of predicates that can be determined to be constant at

compile time. When encountering a ,-function, we first attempt to evaluate the predi-

cate. If constant, we follow the indicated branch, propagating constant values as found.

If not constant, we take the meet of its arguments. The revised routine, CondProp(), is

given in Algorithm 4.4.

Several comments are in order regarding Algorithm 4.4:

. Simple extensions allow us to detect constants other than integers, such as logical

or enumerated types.

. Special cases can detect additional constants, even when one of the operands is .L
These include:

- Zero times anything (including 1..)equals zero.

- With logical types, true V * = true, where * is any lattice value, including 1...

- Likewise, false 1\ * = false.

. Reaching a j.L-functionreturns 1... This result is due to the separate solver used for

loops, discussed next. We may encounter if>-functionsin a program with irreducible

loops. In this case, if>-functionscannot be converted to ,-functions, but we can still

detect simple constants.

. The number of intraprocedural constants based upon conditionals is quite small -

Section 4.5 provides experimental data.

4.4.5 Loops

Cycles in the GSA data-flow graph are the result of loops within the original program.

The variables defined within these cycles are classified with a separate solver: induction

variable analysis. Induction variables are traditionally detected as a precursor to strength

reduction, and more recently have been used for dependence analysis with regard to

subscript expressions. We have developed methods for detecting and classifying induction

variables (including nonlinear induction variables [EHLP92, HP92, Wo192b], where the

general class of all induction variables are referred to as sequence variables) based on

1:
2:
3:
4:

5:
6:
7:

8:

9:

10:

11:

12:
13:

14:

15:

16:
17:

18:

19:

20:

21:
22:

23:

24:

25:

26:

27:

28:

29:

30:

31 :
32:

33:

34:

35:

36:
37:

Given: Data-flow graph, initialize with lines 1 - 4
Do: Execute lines 5 - 7

Result: Simple and conditional constants assigned to lattice elements

foraB tuples t do
lattice(t) +- T
t.visited +- false

endfor

Visit all basic blocks B in the program
Visit all tuples t within B

if t.visited = false then CondProp(t)

CondProp (tuple t)
t.visited +- true

if link(t) =I 0 then
if link(t).visited = false then CondProp(link(t))
lattice(t) +- lattice(t) n lattice(link(t))

endif

if left(t).visited = false then CondProp(left(t))
if right(t).visited = false then CondProp(right(t))
case on type (t)

constant C: lattice(t) +- C
arithmetic operation:

if all operands have constant lattice value
then lattice(t) +- arithmetic result of

lattice values of operands
else

lattice (t) +- ..L
endif

store: lattice(t) +- lattice(RHS)
cjJ-junction: lattice(t) +- n of cjJ-argumentsof t
,-function:

if lattice(,-predicate) = constant C then
lattice(t) +- lattice value of
,-argument corresponding to C

else lattice(t) +- n of all,-arguments of t
endif

p-function: lattice(t) +- ..L
TJ-function: lattice(t) +- lattice (TJ-argument)
default: lattice(t) +- ..L

end case
end CondProp

Algorithm 4.4 Demand-driven propagation with conditional constants

103

strongly connected components in the SSA data-flow graph [GSW]. Using Tarjan's

algorithm [Tar721 for detecting maximal strongly connected components (SCCs) of an

arbitary directed graph, we employ a variant of Algorithm 3.3 to detect an SCC within

the data-flow graph. We then classify the SCC based on the number of merge operators

and the operations that are applied to the variables involved in the SCC. For example,

an SCC that involves only one variable and one p-function is classified as linear if the

only operations of the variable are addition or subtraction of integers within that cycle.

Typically, for reducible flow graphs, the number of yfunctions is indicative of the type

of induction variable which exists.

These techniques make use of an exit function, the 11-function, that holds the exit

value of a variable assigned within the loop. An exit expression is held by the q-argument,

which if constant can be used to propagate values outside the loop. The exit value may

be a function of the loop tripcount (which may itself be an expression determined to be

constant), or may be invariant with respect to the loop, as this simple example shows:

il = 3

loop

1 2 = ~ (1 1 , i3)

i 3 = 3

endloop

1 4 = 11(i2)

j = i4

Since the value of i entering the loop and the last definition within the loop are identical,

the value of i is easily determined to be constant and can be propagated to the store for

j. This case is the easiest and simplest for resolving cycles.

If the exit value does depend on the loop tripcount, which can be determined constant

at compile time, we can employ path-sensitive analysis, since the determination of the

actual path taken by the program (in this case the precise number of times a loop will

be executed) is instrumental in computing the result. In fact, path-sensitive analysis

may not depend on such strong knowledge; sometimes knowing just that the tripcount

is positive is sufficient to determine an exit value for a variable. Consider the loop above

with a different value assigned to i within the body of the loop:

i l = 3

loop

1 2 = ~ (i l , i 3)

i3 = 2

endloop

i 4 = rl(i2)
j = 1 4

If we have no information on the tripcount of the loop, the exit value for i, stored in

the 7-argument, must be I since the p-function cannot resolve its initial and iterative

values for i . But if the tripcount can be determined to be positive, the exit value for i

must be 2, and j can be classified as constant.

If the exit of a loop is not at the loopheader basic block, then it may still be possible

to determine a constant since some of the code of the cycle is always executed. Examine

this code:

i l = 1

10 loop

1 2 = p(i1, is)

i f (PI then

i 3 = 2

e l s e

i4 = 3

endif

i 5 = 4(i3i 14)

i f (Q) goto 10

endloop

1 6 = q(i5)

j = i 6

Regardless of Q, if P can be determined constant, the exit value of i is constant on

all paths, and can be propagated to j . In this case the exit value for i points to the

&function inside the loop, not the loop-header p-function. That is because the last

reaching definition of i at the exit point is i g . Multiple exit points &om a loop greatly

complicate this analysis.

il = 5
while (PI

12 = ~(11, 13)

if (i2 = 5) then
jl = 1

else
j2 = 2

endif

j3 = ~ (1 2 = 5 , t + jl,f -) jz)
i3 = j3 + 4

endwhile

14 = v(i2)
k = i4

5

store i
f

store k
Fi

Figure 4.15 Where the conversion to GSA form is necessary to detect a data-flow cycle

A separate paper describes in detail the workings of our specialized solvers that

detect and classify a large assortment of linear and nonlinear sequence variables [GSW].

Keeping in mind that these demand-driven solvers operate on the data-flow graph, we

obviously only detect general sequences when a cycle is formed in the data-flow graph.

Figure 4.15 shows conditional code inside of a while loop and its associated data-flow

graph. Inspection reveals that the store to k is constant since all paths (including or not

including the loop) maintain the value of i as 5. However, without y-functions, there is

no cycle in the data-flow graph, since the &function at the conditional merge points to

two killing definitions of j. The conversion to a GSA form correctly introduces a cycle

via the y-predicate. Our current methods have not categorized the class of sequences

based upon finding y-functions in the data-flow graph. This area is a fruitful source of

future research.

Another method would be to design a separate cycle solver specifically for constant

propagation. By symbolically executing a loop, the pattern of its variables might be

found. The number of iterations to execute the loop would vary, however. In the

following example

i = l

loop: N = 1 to M

if (N < 7) then
i = i + l

endif

endloop

i changes on the first 6 iterations, and becomes constant on the 7th and succeeding

iterations. This is a technique similar to that used in the Parafrase-2 compiler [HP92],

where the number of iterations symbolically executed to try and detect a pattern can be

arbitrarily set by the user.

4.4.6 Notes on Implementation

Irreducible Graphs. Although we have discussed some of the effects that irreducible

flow graphs have on intermediate analysis, we would like to discover how often such

graphs occur. Table 4.2 shows the programs from the benchmark suite that contain

procedures that translate into irreducible CFGs. Only a total of 8 routines out of 1071,

Program I Number of Routines I Number Irreducible

PERFECT club

RiCEPS
boast 1 58 1 1

spice
others

128
504

ccm I 145

5
0

1
wanall
others

Table 4.2 Scientific codes that contain irreducible loops

all

Total

less than 1 percent, contain irreducible CFGs. While certainly minimal, those scientific

Mendez

11
154

codes with such structure are much more difficult to analyze with techniques that rely

on a reducible flow graph structure. Node-splitting [ASU86, Hec771 is a solution that

1
0

71

1071

can transform any irreducible graph into a reducible one by cloning some of the basic

blocks and adding additional control flow.

0

8

GSA and D a t a Structure Size. How is the size of the data-flow graph affected

by conversion to GSA form? Table 4.3 shows the increase in the number of tuples for

data-flow graphs beginnning with the basic form, with no sparse representation, to FUD

chain form and GSA form. Since GSA form requires one more argument for 7-functions

as opposed to &functions (for the predicate), and nesting can occur in tracing control

flow, we expect the GSA form to be somewhat larger than the FUD form. Table 4.3

bears this out. Severely unstructured code can result in 100% or 200% increase for the

GSA data-flow graph, as was noticed in spice, boast, and sphot.

4.5 Experimental Results

To gauge the effectiveness of our routines, we measured the number of constants (both

simple and conditional) on Fortran scientific codes found in the PERFECT, RiCEPS, and

Mendez benchmark suites, as discussed in 51.4. Counting constants can be a misleading

statistic. Counting tuples with constant lattice value does not indicate a constant has

been propagated, since the statement i = 1 will result in a constant store operation.

1 Total 1163713 11 1469248 1 26 11 1813994 1 57]

Program

Table 4.3 Number of tuples for the different data-flow forms

PERFECT club

basic data-
flow graph

FUD
form

% increase
over basic

GSA
form

% increase
over basic

Program Total
Fetches

shear
vortex

Total

Simple
Constants

Table 4.4 Constant fetch tuples and predicates found using Algorithms 4.1 and 4.4

1398
521

92924

Conditional
Constants

58
34

4709

Constant
Predicates

Nonconstant
Predicates

58
34

4808

3
0

6 7

39
17

5506

Similarly, j = 2 + 3 is an example of constant folding, but not of constant propagation.

For the purposes of this work, a constant is considered propagated if there is a fetch of

a tuple whose lattice value is constant.

Results are shown in Table 4.4. The Simple Constants column shows the number of

simple constants identified by Algorithm 4.1. The Conditional Constants column reflects

constants found using Algorithm 4.4, which includes those found using Algorithm 4.1.

The vast majority of constants (97%) are simple constants. Most conditional constants

were as a result of loop analysis. The Constant Predicates and Nonconstant Predicates

columns show the number of predicates controlling branch nodes determined to be con-

stant using Algorithm 4.4. Although a few predicates are determined intraprocedural

constants, these are mainly due to guards; with interprocedural analysis and inlining

[Hal911 we expect to see many more conditional constants propagated [MS93].

It is important to note that since we have performed our experiments on benchmark

programs, there may be a number of static initializations added to the codes. This condi-

tion could skew the data slightly when compared to code not targeted for benchmarking.

4.6 An Extension to Arrays

Can demand-driven constant propagation be extended to arrays? If so, is it a useful

analysis technique? In this section we apply FUD chains to arrays in order to determine

if a significant number of constants exist for particular array values. Essentially, FUD
chains consider an array to be a monolithic data structure, even though it is composed

of many parts. We need to analyze particular index values if a constant is able to

be propagated. Thus, while a definition of any array value is treated as a nonkilling

definition with respect to the entire structure, we can follow links of the array and check

for a match of indices. By following def-def links, and testing whether each index value

is constant, we are able to follow particular array elements until either I is reached or

another definition for that element occurs.

The idea is illustrated in this example:

When we encounter the store to j, its value comes from array A. If the index value of A,

i, was not constant, I would be assigned to the lattice of j. However, i is the constant

2 in this case, so we follow the link to the store of A(4). Again, if the lattice value of

this index value was nonconstant, I would be returned. Since it is constant but not

equal to 2, the def-def link is followed. Finally, the store to A(2) is encountered, which

is constant. Thus, j is classified as the constant 7. This procedure is easily extended to

accommodate multi-dimensional arrays.

We did not expect scientific programs to be written in such a way that arrays would

have many constant values, since their most common use is within an iterative looping

structure, resulting in nonconstant indices. This expectation was borne out in our ex-

periments, where on all the benchmarks from 51.4 we only found a dozen propagated

array constants, where the average number of links followed to detect these constants

was 1.5.

It is possible to perform array constant propagation on array references where the

index value is an arbitrary expression, but this extension may require general symbolic

analysis as the indices could be quite complex.+ The idea is explained in this code

fragment:

s1 : .. .
S2 : A(n+m) = C

S3: {no writes to n , m, or A)
S4: ... = A(n+m)

S5 : . . .

If C has constant lattice value, the store to A(n+m) in S2 can be assigned a constant

value. When there are no writes to n, m, or A between S2 and S4, this constant can be

propagated to the use of A (n+m) in Sq, even though n and m are not known. However, this

analysis would unlikely be profitable since, as we saw experimentally with constant array

indices, candidates for constant propagation are usually assigned to scalar variables, not

array elements.

t ~ h e process of analyzing general array index expressions is covered in the work on recurrence vari-
ables [GSW].

4.7 Comparison With Other Work

Previous methods perform constant propagation analysis as an iterative data-flow prob-

lem [ASU86], in which iterations continue until a fixed point is reached [GT93, WZ911.

We will see that our demand-driven algorithm offers advantages over the traditional

approach.

4.7.1 Classification of Methods

As explained by Wegman and Zadeck [WZ91], constant propagation algorithms can be

grouped in two ways: (i) using the entire graph or a sparse graph representation, and

(ii) detecting simple or conditional constants. This classification naturally creates four

classes of algorithms. We have seen that propagating information about each symbol to

every node in a graph is inefficient, since not all nodes contain references or definitions of

the symbol under consideration. Sparse representations, on the other hand, such as def-

use or use-def chains [ASU86], SSA [CFR+91], Dependence Flow Graphs (DFG) [JP93],

or Program Dependence Graphs (PDG) [FOW87], have all shown the virtue of operating

on a sparse graph for analysis.

The distinction between the four types of algorithms is explained well by Wegman

and Zadeck [WZ91], and essentially shows (as one would expect) that a combination of

detecting conditional constants on a sparse graph is the most efficient method with the

largest class of constants detected. We will look at the algorithm that they present, since

it incorporates both sparse graph representation and conditional code. The sparse graph

employed in their method is based on SSA form.

4.7.2 A Closer Look at One Algorithm

The algorithm used by Wegman and Zadeck operates on CFG edges. SSA def-use edges

are added to the graph once the program has been transformed into SSA form.

Their algorithm works by keeping two worklists, a FlowWorkList and an SSAWork-

List. Flow edges are initially marked unexecutable. Edges are examined from either

worklist until empty, with those examined from the FlowWorkList being marked exe-

cutable. The destination node for these edges also have their +functions evaluated by

taking the meet of all the arguments whose corresponding CFG predecessors are marked

executable. Expressions are evaluated the first time a node is the destination of a flow

edge, and also when the expression is the target of an SSA edge and at least one incoming

flow edge is executable. This algorithm is iterative, following CFG paths and SSA edges

until both worklists are empty. More detail can be found in the original paper [WZ91].

This algorithm finds all simple constants, plus additional constants that can be dis-

covered when the predicate controlling a switch node is determined to be constant. The

time complexity is proportional to the size of the SSA graph, and each SSA edge can be

processed at most twice.

Since q5-functions are reevaluated each time an edge with that node as a destination

is examined, Wegman and Zadeck note that expressions that depend on the value of a

&function may be evaluated twice for each of its operands. For example, in this program

fragment:

if (P)

then

10 Y1 = 1

21 = 2

else

20 y2 = 1

22 = 3

endif

30 Y3 = ~ (Y I , y2)

23 = 4421, 22)

Xl = y3 + 23
if P is not constant, the expression for xl may be evaluated many times. If the flow

edge from 10 is processed first, then xi equals 3, and it may stay at 3 if the SSA edges

for y are examined next. Eventually, xi will evaluate to I, as the merge for z becomes

nonconstant. It is this multiple expression evaluation that we seek to avoid by using a

demand-driven technique.

4.7.3 An Evaluation of Methods

Both our demand-driven approach and the Wegman-Zadeck method have their advan-

tages and disadvantages. We will highlight the differences, then report on performance

studies of both methods.

Features of Wegman-Zadeck Technique

Works on all CFGs, including those that are irreducible.

Does not need additional data-structure support past the SSA graph construction.

Automatically identifies unreachable code due to constant predicates.

Given a loop in the CFG with the exit at the loop header, it requires that the

incoming value is equal to the iterative value - essentially that the meet of the

p-function arguments is constant.

Reevaluates +functions and expressions - this can lead to slower performance, es-

pecially when there are numerous, complex calculations involving constants. We

expect this effect to be exacerbated with interprocedural constant propagation,

since the number of constants certainly increases [MS93], leading to more expres-

sion evaluation.

Needs explicit management of control flow information, and manages two worklists

to achieve interpretability, one for following control flow edges, and the other to

follow data-flow edges. This approach is traditional with iterative methods.

After converting to SSA form, the Wegman-Zadeck method needs to insert both

def-use SSA edges and use-def SSA edges to correctly implement the algorithm.

Lends itself to an incremental interprocedural technique. After intraprocedural

analysis, control flow and SSA data-flow edges are only added to worklists when

interprocedural analysis produces additional information. Then it solves the in-

traprocedural problem again, but in this phase it is a pessimistic solver, since

it will only detect additional constants that had previously been classified as I

[Aut94].

Features of Demand-Driven Technique

Convert to FUD form with just use-def edges.

Need to augment FUD chains with 7-functions. While we will consider this cost

totally attributable to the demand-driven constant propagation method in our

experiments, in fact the cost may be amortized in a high performance compiler

that employs valuenumbering. Havlak [Hav94] has shown that the GSA data-flow

graph enables powerful symbolic pattern-matching and rewriting techniques.

time (sec) 8

to perform 7
constant 6

propagation 5

- 0 wz 0 -
- demand-driven + -
- -
- -
- -
- -
- 0 -
- 0 + 0 -
- -
-0 0 0 0 -
-

O 0
+ + -

-+o +
++Q+?+ Q + Q@

-
Q Q P P

26 benchmark programs

Figure 4.16 Comparison of times just for constant propagation analysis

Each &function (or its converted form as a p- or y-function) and expression are

evaluated exactly once.

Demand-driven constant propagation blends well with other important analysis

phases, such as induction variable detection.

Only need to operate on the data-flow graph, since interpretability of the CFG is

captured symbolically in the 7-functions.

4.7.4 An Empirical Comparison

We ran both algorithms on the scientific benchmarks discussed in Chapter 1. We

compiled both algorithms using the parameters discussed in 53.1.5. A straight com-

parison of times to perform constant propagation is provided in Figure 4.16. The 26

benchmark programs are linearly displayed according to the order given in 81.4. If we

add the total time needed to convert FUD chains into GSA form for the demand-driven

approach, the results are as shown in Figure 4.17.

Even when we factor in the time for 7-function conversion to GSA form, our demand-

driven method is faster than the Wegman-Zadeck approach, with 4 exceptions: spice,

track, boast, and sphot. However, if GSA form is used for other applications, such

26 benchmark programs

18

17

16

15

14

13

12

11

time (sec)
to perform

10

constant
propagation

8

7

6

5

4

3

2

' -
0

Figure 4.17 Comparison of times for constant propagation analysis with 7-functions

+ wz 0
- demand-driven plus 7s +
- -

- -

- -

- -

- -

- -

- -

- -

- -

- -

- -

- -

- 0 -

- -

- O + 0 -

- + -
O 0 +

+ 0 +
Q + $ $ + a

-
6

-

8
time (sec)
to perform

WZ algorithm 6
5

number of program statements (in thousands)

Figure 4.18 Time to perform Wegman-Zadeck algorithm as a function of the the number of
statements in each program

as value-numbering, we can amortize the cost of building the GSA graph over multiple

applications.

In an attempt to provide some normalization to these results, Figures 4.18 and 4.19

show the time to perform constant propagation for the two approaches as a function of

the number of statements in each program. These graphs show that constant propagation

processing is fairly linear in the size of the program, where the demand-driven approach

has a slope that is not as steep as the Wegman-Zadeck method. The one anomalous

program for both methods is ocean, which has complex structure due to large numbers

global variables and subroutine calls. In fact, within the basic data-flow graph of ocean,

with 82278 tuples as shown in Table 4.3, tuples involving global variables as procedure

parameters comprise 61% of its entire structure.

The times displayed in these graphs include optimizations for intraprocedural analy-

sis of the Wegman-Zadeck approach not suggested in their original work. When applying

their technique incrementally (as discussed in the previous subsection) these optimiza-

tions are no longer valid. Without the additional optimizations, the Wegman-Zadeck

method is two to three times slower.

time (sec) 8
to perform 7

demand-driven 6
algorithm

number of program statements (in thousands)

Figure 4.19 Time to perform demand-driven constant propagation as a function of the number
of statements in each program

4.8 Further Extensions of Constant Propagation

Numerous extensions to this work are possible. One important topic is interprocedu-

ral analysis and procedure integration. Although some work has already been done in

this area [GT93, Ha191, MS931, we would like to apply our demand-driven style to the

problem. In particular, once intraprocedural constant propagation has been performed,

interprocedural mod/ref analysis may provide information on procedure arguments. A

reapplication of intraprocedural analysis using this information would be most efficient

if the analysis can be performed incrementally. Investigation [Aut94] has suggested that

a method such as the Wegman-Zadeck approach may be best suited for the second

intraprocedural pass. By managing worklists of only those control flow edges and defini-

tions affected by the interprocedural information, an efficient incremental solver may be

designed. As pointed out earlier in this chapter, such an incremental solver is necessarily

pessimistic.

Unreachable code can be identified with our demand-driven technique, but we have

not yet developed the algorithm fully. It may well be that unreachable code is best

identified using edges instead of nodes, as pointed out by Wegman and Zadeck [WZ91].

Traditional SSA form has been criticized for lacking a method to propagate constants

determined by predicate analysis [JP93]. In the following fragment:

i f (xl = 1) then

i o = x l

e l se

j o = X I
endif

it is desirable to be able to assign i o a constant value. A sophisticated compiler may

analyze the guard and determine that under the range of the true side of the conditional,

xi will always be 1. This notion of a derived assertion is not new [LFK+93], but to

our knowledge has not yet been integrated into the SSA form. Using demand-driven

FUD form, derived assertions can easily be captured by inserting dummy assignments.

We propose a new reference chaining operator, the pfunction, which serves as the new

definition of its variable. By examining the right-hand side of the predicate, the fragment

above becomes:

i f (xi = 1) then

x2 = ~ (1)
io = x2

e l se

j o = X I
endif

Now constant propagation may easily be performed via the argument of the pfunction,

which may be constructed of actual operations in the intermediate form.

In addition to constant propagation, the explicit representation of derived assertions

may be advantageous if bounds information can be expressed. In this fragment,

i f (no > 0) then

for i = l , no

...
endf or

endif

if the compiler cannot determine any value for no, then it cannot be determined if the

body of the loop will ever be executed within the range of the i f . However, analysis of

the guard condition assures the loop will be executed at least once. If limit information

can be encoded in the argument of the pfunction, the loop may be transformed:

if (no>O) then

nl = p(>O)

for i = l , nl

...
endf or

endif

Now it is clear from the expression describing the tripcount that the loop will be executed

at least once, since the lower limit of n is known. We have seen how knowing that a loop

will trip at least once can permit the detection of additional constants.

Another approach is to merge constant propagation with induction (in its most gen-

eral form, sequence) variable detection and classification. When separate, each phase

must be rerun to maximize effectiveness. Constant propagation can detect conditional

constants, which may control loop tripcounts. A general sequence solver can find loop

invariant values, which can be utilized by the constant propagation algorithms. Thus,

we feel that an integrated approach holds promise for achieving greater precision of both

analysis phases.

Other possible extensions include run-time analysis and value numbering (the process

of finding congruent expressions by assigning unique integers to each set of congruent

value graph nodes [Hav94]). It is important to obtain timing results that demonstrate

how much execution time is saved for the increased analysis done at compile time. These

are interesting tradeoffs, and remain an open question. Although not constant propa-

gation per se, the structure of GSA lends itself particularly well to implementing value

numbering, as has been shown by Havlak [Hav94]. Finally, more work can be done in

the area of noninteger and symbolic expression propagation.

Chapter 5

General Reference Chaining

5.1 A Generalized Reference Chaining Algorithm

Numerous data-flow problems require information other than reaching definitions, such

as reaching uses or, more generally, reaching references. While these problems imply

downward-exposed references, other problems may require upward-exposed references

to solve such problems as live variables. Specialized algorithms, such as those for SSA

and FUD chains, could be developed for each problem. However, the method of linking

arbitrary references is similar in all cases, so it makes sense to develop a generalized

reference chaining algorithm, and use parameters specific to the data-flow problem to be

solved as inputs to the algorithm. We will pattern the general reference chaining (GRC)

algorithm after Algorithms 3.1 and 3.2, with several modifications.

Monotonic data-flow problems that utilize GRC must merge information at conflu-

ence nodes in the CFG when paths from two or more nodes with nonidentity trans-

fer functions converge. For reaching definitions, these merge operators are called q5-

functions. Other specific operators are used depending on the problem, but for our GRC

algorithm we designate the Q-function as the generic merge operator.

The minimal placement of merge operators for GRC is at DF+(S)t, where S is the set

of nodes containing any tuples that produce a nonidentity transfer function. However,

as we have seen, DF+(S) is computationally equivalent to J+(S). For this equivalence

to hold, an initial reference is required at Entry (more generally, at the START node,

as explained below). With FUD chains this initial reference is an assumed definition

of all variables (designated as source), but with GRC the initial reference is set to 0,

indicating that there is no initial reference.

+TO be specific, merge operators are placed at DF+(S) for forward data-flaw problems. For backward
data-flow problems they will be placed at PDF+(S).

The reaching definition solution using FUD chain form has simple transfer functions

based upon each tuple type. If tuple t is a definition of variable V then V. CurrentDef =

t. If not, V. CurrentDef is unchanged. This dichotomy of tuple types does not generalize

to GRC, since for a given problem some tuples block all reaching references, effectively

setting V. CurrentDef = 0. We call this set of tuples BlockTuples, where BlockTuples

= 0 for the problem of reaching definitions. An example of a problem with a nonempty

BlockTuples set is reaching uses, where killing definitions block all previous uses from

reaching past the definition.

Since GRC can be applied to both forward and backward problems, in some ways

it is analogous to sparse evaluation graphs (SEGs) [CCFSl]. However, as noted in

53.2.4, sparse evaluation graphs are constructed per variable, whereas GRC graphs are

an augmentation of the already extant CFG and data-flow graph. Another difference is

that SEGs are constructed on a per-problem basis, which solves the data-flow problem

on a sparse graph and maps the solution back to each node in the CFG. The merge

functions and links created by the GRC algorithm encapsulate information that can be

extracted on demand when desired at just those points that need the data-flow solution.

As with the FUD chain algorithm, GRC is performed in two phases: function place-

ment and chaining. Algorithm 5.1 provides the details for placing %functions in the

correct nodes, and Algorithm 5.2 fills in the correct links for a given data-flow problem.

For a given data-flow Problem input parameters to GRC are:

Direction: Problem is either a forward or backward data-flow problem.

RefLink: which references for each variable V, from the set {use, def}, get linked

to V. CurrentRef

RefTuples: tuple types that imply a nonidentity transfer function for the basic

block node in which they reside

BlockTuples: tuple types that for Problem block all previous references for V,

setting V. CurrentRef = 8

Based upon Direction, we set the following variables:

Direction

forward I backward

I NEIGHBORS I predecessors I successors I 1 NEXT I successor I predecessor I

Exit

pdom frontier

START

FRONT

Entry

dom frontier

We use the following data structures for GRC:

LOCATION

R(V) - A list of all nodes N that reference V, where N contains any tuples in

Reflhples.

symbol(tup1e) - A function that returns the variable symbol (name) associated with

this tuple, if it exists. Returns null otherwise.

I beginning

V . CurrentRef - A pointer to the current reference (tuple) of symbol V . Logically

points to the top of a reference stack. Initialized to 8.

end

t.SavedRef - A pointer to the current reference of symbol(t) before processing this

tuple. Used to logically pop references off a stack when returning from recursive

calls down the dominator or postdominator tree.

Children(N) - A pointer to the children of N in the dominator tree if Direction =

forward, and children of N in the postdominator tree if Direction = backward.

WhichNeighbor(N,Q) - An integer indicating which predecessor of Q in the CFG

is N if Direction = forward, and which successor in the CFG is N if Direction =

backward.

Work-List - An unordered list of CFG nodes. For each variable V, Work-List is

initialized to R (V).

HasFunc(*) - A reference field to a variable for each CFG node. HasFunc(N) =

V means node N already has an a-function added for variable V.

Work(*) - A reference field for each CFG node. Work(N) = V means that node

N has already been added to WorkList for variable V .

Given: R(V) , V V
Do: compute FRONT(N), V N E CFG -
Result: R-functions inserted into CFG

1 : for all nodes N do
2 : HasFunc(N) t 0
3 : Work(N) t 0
4 : endfor

for each symbol Vdo
Work-List t 0
for each N in R(V)

Work(N) t V
Work-List t Work-List U { N)

end for
while WorkList # 0 do

take N from Work-List
for each Q E FRONT(N) do

if HasFunc(Q) # V then
HasFunc(Q) t V
i t number of NEIGHBORS of Q
place V = R(Vl, V2, ..., &) at LOCATION of basic

block Q, where 6 corresponds to the jth NEIGHBOR of Q
endif
if Work(Q) # V then

Work(Q) t V
WorkList t WorkJIist U { Q)

endif
endfor /* each Q in FRONT */

endwhile
endfor /* each symbol V */

Algorithm 5.1 Placement of R-functions

Given: Initialized data structures
Do: Call Refchain(START) -
Result: GRC form

1 : RefChain(N)
2 : for all tuples t E N, in direction order do
3 : V t symbol(t)
4 : if t E RefLink of V then
5 : link(t) t V. CurrentRef
6 : endif
7 : if t E {RefTuples U 0-functions) for V then
8 : t.SaveRef t V. CurrentRef
9 : if t E Blocklhples then

10 : V. CurrentRef t 0
11: else
12 : V. CurrentRef t t
13 : endif
14 : endif
15 : endfor /* all tuples of N */
16 : for each Q E NEXT(N) do /* Neighbors in CFG */
17 : j t WhichNeighbor(N, Q)
18: for each a-function merge tuple f in Q do
19 : V t symbol(f)
20 : link(jth argument o f f) t V.CurrentRef
21 : end for
22 : endfor
23 : for each Q E Children(N) do /* children in dom or pdom tree */
24 : Ref Chain (Q)
25 : endfor
26 : for all tuples t E N, in reverse direction order do
27 : if t E {Reflhples U 0-functions) for V do
28 : V t syrnbol(t)
29 : V. CurrentRef t t.SaveRef
30 : endif
31 : endfor
32 : end RefChain

Algorithm 5.2 Reference Chaining: linking each reference to the next exposed reference and
correctly inserting R-function arguments

5.2 Applications of GRC

5.2.1 Reaching Definitions.

One obvious example of GRC is the reaching definitions problem, solved with FUD

chains. FUD chains are built with Algorithms 5.1 and 5.2 by specifying the parame-

ters (where the merge operator is specified as +functions) for the Problem of reaching

definitions:

Direction: forward

a RefLink: {use,def}

RefI'uples: any killing or nonkilling definition

5.2.2 Live-Range Splitting

For an example of how GRC can aid in the solution of specific data-flow problems,

we examine an application of live-range splitting for register allocation. The method

advocated by Kolte and Harrold relies on detecting ranges (a set of tuples) from each

variable use V to its downward-exposed reference, if it exists [KH93]. Their technique

iterates a standard set of data-flow equations until a fixed point is reached. They compute

the set load-range[a,b] for V as follows (where a is a definition or use of V and b is a use

of V):

load-range[a,b] = {tuples t 1 t E reaching(a) A t E reachable(b)) (5.1)

In Equation 5.1, t E reaching(a) means that a is the downward-exposed reference

of V at t and t E reachable(b) means that b is the upward-exposed use of V at t. We

note that this equation contains an expensive combining operation, and Equation 5.1 is

applied to all tuples for all possible pairings of a and b. Examine Figure 5.1, which has

two distinct load-ranges, A + C + D ([A , Dl) and B + C -+ D ([B, Dl).

This situation is ideally suited for reference chaining. We invoke the GRC algorithm

on the Problem of downward-exposed references with these parameters:

Direction: forward

RefLink: {use}

Figure 5.1 Computing load-ranges with GRC graphs

Refhples: any use or definition

From each use of V, tuples are processed in reverse order within a basic block node,

adding it to the load-range until reaching link(V). Additional ranges are generated when

an R-function is encountered, creating a separate load-range for each argument. An

undefined variable use is easy to spot since its link will be 0. For Figure 5.1, we start at

the use of V in D and add all tuples to the load-range until we reach le'nk(V), which is

an R-function in this case. Now, two load-ranges are created, each extending the range

which already exists until its link(V) is reached. This results in load-ranges [A, D] and

[B, Dl.
The use of GRC should improve the efficiency of load-range identification in two

ways: (1) eliminating expensive operations, and (2) only considering range [a,b] that

may be nonempty, instead of all possible pairings, which may often result in an a and b

that have no path between them.

Figure 5.2 Comparing (a) FUD chains with (b) complete Reference Chaining

5.2.3 Other Applications.

For several of the algorithms we develop in the next chapter we need to solve the reaching

uses problem: at each point what is the downward-exposed use, if it exists? Reaching

uses is also a forward problem, with the details provided in Chapter 6. The examples

of GRC that we have seen so far are forward problems. Chapter 7 will examine a very

common backward problem, which we solve using GRC: live variable analysis.

We may inquire as to the reason for specializing reference chains. Why not, for for-

ward problems, chain every reference to its nearest upward-exposed reference? Construc-

tion would depend upon these parameters for GRC, with the Problem being downward-

exposed references in this case:

Direction: forward

RefI'uples: any use or definition

While this may be the method of choice if the chains are used for multiple purposes,

specialization creates additional sparsity. For example, in Figure 5.2(a) the use of x at

S5 is directly linked to the definition at Sl. However, if we chained every reference to

its nearest downward-exposed reference as in (b) (where the superscript represents the

line number of the next downward-exposed reference), the use of x at S5 would have to

follow four links to reach its reaching definition. Thus, each problem should be carefully

studied in order to determine what information is needed. This information will result

in Reference Chains which are as efficient as possible.

Chapter 6

Scalar Data Dependence

Precise value-based data dependence analysis for scalars is useful for advanced com-

piler optimizations. The new method presented in this chapter for flow and output

dependence uses FUD chains. It is precise with respect to conditional control flow and

dependence vectors. Our method detects dependences which are independent with re-

spect to arbitrary loop nesting, as well as loop-carried dependences. If a loop-carried

dependence is known to be from the previous iteration, we say its distance is 1 (where

the distance of a dependence is the number of iterations between the source and sink of

the dependence). If the distance cannot be determined exactly a dependence direction

may be used, where direction '<' means any previous iteration. This precision cannot be

achieved by traditional analysis, such as dominator information or reaching definitions.

To compute anti- and input dependence, we need to solve the reaching uses problem.

A variant of reference chains is employed, Factored Redef-Use chains, in which each

definition's link points to the closest downward-exposed reference. We are not aware of

any prior work that explicitly deals with scalar data dependence utilizing a sparse graph

representation.

6.1 An Introduction to Scalar Data Dependence

Data dependence analysis is usually presented in terms of array references in nested loops.

A great deal of work has also been done to find dependence due to pointer aliasing. Little

has been written about data dependence analysis for scalar references, except to refer to

standard data-flow analysis [Tse93], to treat a scalar as a degenerate array [Fea91], or

to use simple methods based on the dominator relationship or the syntactic structure of

the program.

We begin with definitions of the four types of address-based dependences. A flow

dependence (sometimes referred to as a t rue dependence) (6f) appears between a defi-

nition of a variable (scalar, array element, or other memory location) and a use of that

variable when the definition precedes the use in execution. An output dependence (6 O)

appears between two definitions of a variable when one definition precedes the other in

execution. In a loop, the two definitions might each precede the other, so there can easily

be a cycle of dependence. In fact, in a loop there may be an output dependence from

a definition to itself. An antz-dependence (6a) appears whenever a use of a variable

precedes a definition of that variable in execution. Finally, an i npu t dependence (6j)

appears between two uses of a variable. An input dependence does not represent poten-

tial memory conflicts as do the other types of dependences, but can be useful for certain

optimizations.

The compiler can only approximate the actual dependence relations in a program,

since it does not know the actual paths that will be taken in the control flow graph of the

program. Thus, the compiler must conservatively assume that a flow dependence might

exist whenever there is a path from a definition to a use, and so on for the other types of

dependence. These common address-based definitions of flow, output, anti-, and input

dependence can be found in many references [A1183, AK87, Wo182, WB87J.

Value-based dependence relations are a subset of the address-based dependence re-

lations [Mas94]. The difference is explained by a simple example:

The address-based definition of dependence includes S1 6f S4 for A and Sl Ja S4 for B.

Since A is assigned a new value in S3, statement S4 cannot use the value assigned in Sl.

Similarly, since Sz assigns a new value to B, the assignment in S4 cannot overwrite the

value that was used in S1. Thus, these two dependence relations are unnecessary. We

define value-based dependence relations as follows: A flow dependence appears between

a definition of a variable and a use of that variable when the definition precedes the

use in execution, and the use fetches the value that was stored at the definition. An

output dependence appears between two definitions of a variable when one definition

precedes the other in execution, and the second overwrites the value stored at the first.

An anti-dependence appears between a use and a definition of a variable whenever the

use precedes the definition in execution, and the definition overwrites the value that was

fetched at the use. An input dependence appears between two uses of a variable, if there

is no killing definition of that definition between the two uses. Essentially, a value-based

dependence cannot reach past a killing definition of a variable. As always, the compiler

can only compute an approximation to the actual value-based dependence relations.

In this chapter we present a new approach to finding data dependence for scalar

variables. Our approach has several features, one of which is that it computes value-

based dependence, not just address-based dependence. Value-based dependence is more

precise [Mas94]; using value-based dependence reduces the number of dependence rela-

tions and may allow more optimizations. Another feature is that our method computes

precise dependence distance, when precision is possible, or imprecise dependence vectors

otherwise. Precise dependence distance is important for many optimizations, such as

instruction scheduling, software pipelining and parallelization. For instance, knowing

that the dependence distance is precisely one may simplify communication address cal-

culation on a parallel machine, since the source and sink of the dependence are likely

nearest neighbors. In other cases, privatization of scalar variables is possible when they

are detected as being involved in only loop-independent dependences [BCFH89, Tse931.

In this example

loop

i f TEST then

X = ...
e l s e

x = ...
endif

... = X

endloop

all flow dependences for x are loop-independent, so x can be privatized for each loop

iteration. We note that privatizing x in this example also breaks the loopcarried anti-

dependence.

Our method is precise in the presence of conditional control flow, given that the anal-

ysis is currently path-insensitive: it does not attempt to evaluate predicates to determine

the paths that will be taken during execution. We show that simple analysis based on

the dominator relationship cannot take into account conditional control flow precisely.

Since our analysis is based on the CFG, it is precise even for unstructured programs. In

some sense, our technique gives the advantages of syntax-based analysis for unstructured

programs, just as interval methods do for data-flow analysis.

Using value-based dependence relations is especially important within loops. Most

dependence representations in loops use some abstraction to describe the iterations where

the source and target of the dependence occur. As usual, we assume each iteration of

a loop is identified by an integral iteration vector (often the index variable values). For

example, vector (2 , l) would refer to the iteration instance of i = 2 , j = 1 for a doubly

nested loop with i being the outer and j being the inner loop index variable.

One common dependence abstraction is a distance vector, which is the vector dif-

ference between the iteration vectors of the source and target iterations; if there is a

dependence from iteration is to iteration it, the dependence relation has distance d if

is +d = it. Sometimes an exact distance cannot be computed; in that case, a less precise

abstraction is used, called a direction vector [Wo178, Wo1891. The direction vector is

a vector of relations from the set {<, =, >, <, #, >, *); if there is dependence from

iteration is to iteration it, the dependence relation has direction O if i i Or, i;, for loop

nest level k. We allow a generalized dependence vector, where each element is either

an integer value, if the exact distance for that loop nest level is known, and a direction

relation if not. We could instead find the maximum and minimum dependence distance

for each loop nest level; exact distance would be represented when the maximum equaled

the minimum, and imprecise information would be represented with maximum distance

of -oo or +oo. However, our method suffices for the scalar analysis presented here.

The detection of scalar dependences within a loop requires careful analysis to get the

precise dependence vector. We explain using the following loop:

T = O

1 = 1

loop

I = I + 1

CCI] = V + T

i f TEST [I] then

T = B[I+11

V = T + 1

e l se

V = BCI]

endif

endloop

There is a loop-carried flow dependence relation S7 Sf S5 for variable T, and two more

loop-carried flow dependence relations S8 Sf S5 and Slo Sf S5 for variable V. However,

the dependence distance for the V dependences is exactly one; since V is assigned on every

iteration, any loop carried dependence relation must come from the previous iteration.

We call this situation loop-carried(l), to identify the dependence carried by a loop with

a distance of one, and it is denoted as S8 6;) & for this example. For the T dependence

carried by the loop, however, the distance can be any positive integer, since T might

not be assigned on every iteration. We call this case loop-carried(<), and is denoted

S7 6[,) S5. Finally, the flow dependence Sl Sf S5 for T is not carried by any loop. It is

loop-independent. A dependence within the same loop, but not carried by any loop, such

as S7 df S8 for T, is also loop-independent. We denote a loop-independent dependence

using the common terminology S,, such as S1 S& S5.

Simple dominator-based analysis will find precise dependence relations when the

assignment dominates the use in the body of the loop (to give loop-independent depen-

dence) or when the assignment dominates the back edge (to give loop-carried dependence

with distance one). In this example, however, neither S8 nor Slo dominates the loop back

edge, so such simple analysis will fail. We will show this situation occurs frequently in

our benchmark programs.

Our analysis is based on FUD chains from Chapter 3. Other intermediate representa-

tions, such as dependence flow graphs [JP93] or the program dependence web [BM090],

could also be used with similar algorithms; those representations contain enough infor-

mation to find the actual dependences, though they do not represent the dependence

relations explicitly. We note that reaching definitions are not sufficient, since they do

not take into account how definitions on conditional branches are carried by loops.

The algorithm for finding flow dependence starts at a use and follows the chain of

links to all reaching definitions. We want more information than just the reaching def-

initions; we also want the most precise dependence distance information possible. This

method is described in Section 6.2, along with experimental data from common scientific

benchmarks. We rely on the fact that each natural loop header has exactly two prede-

cessors: the preheader and postbody. Control flow merges at loop headers (p-functions)

are treated specially: analysis at this point lets us know whether the dependence is

loop-carried, loop-entering, or loop-exiting dependence.

The algorithm to find output dependence is essentially the same as that for flow

dependence. The only difference is that the initial call is from definition sites, rather

than usage sites, of a variable. This algorithm is presented in Section 6.2.5.

However, the algorithm to find anti- and input dependence cannot use FUD chains.

The information needed for these dependences is the set of uses that are overwritten

by a definition. We generalize the FUD chain construction algorithm to create the

reference chaining algorithm in Section 5.1, then use this algorithm to implement Fac-

tored Redef-Use (FRDU) chains. FRDU chains link each definition to the most recent

downward-exposed use, and that use to the next most recent downward-exposed use.

Their applications to input and anti-dependence is described in Section 6.3.

6.2 Flow and Output Dependence

6.2.1 Necessary Ingredients

At first glance, it may appear that scalar flow dependence information could be gath-

ered by applying traditional data-flow techniques, e.g., dominator analysis and reaching

definitions. When the source of the dependence dominates the sink, or the loop post-

body does not lie on any path from the definition to the use, the dependence must be in

the current loop iteration, hence it would be loop-independent. If the definition domi-

nates the postbody, the distance would be one, while remaining cases would indicate a

direction of < or unknown.

However, these observations are not sufficient to capture either precise distance nor

correct classification. Referring to the last example presented in 56.1, and represented

graphically but in simplified form for variable V as Figure 6.1(F), we notice that the flow

Figure 6.1 The eight kinds of scalar flow dependence that occur within a single loop, grouped
by related pairs. Solid lines represent loop-independent(oo) or loop-carried(1) dependences, while
a dotted line represents a loop-carried(<) dependence.

dependence distance from either definition of V to the use of V is precisely one. We also

note that in this example neither definition of V dominates the postbody, but since all

paths through the postbody contain a definition to V, the distance must be one.

Thus, to correctly classify flow dependences, we follow the chain from each use, which

will lead to either a definition, a &function, or a yfunction. (We assume that loop-header

+functions have been renamed p-functions, as per GSA form.) When encountering a

&function, we follow the chains of each argument. Intuitively, a loopindependent flow

dependence will be discovered by following use-def links in the current loop body (or to a

definition site outside the loop in which the use occurs), while loop-carried dependences

must always flow through a y function.

When a chain reaches a yfunction, we conceptually continue to follow the links

LOOP # -.
8 \

I \
ifWES-0 ; I

I
* - - - v = I

endif
I C I

1 I \ = v P / I I I I

\ /
\ I . ,

- - - _ _ _ - - *

ENDLOOP

@> m,<

LOOP
-

i f m T) v 3 t v I t \\, ; 1 1 I I

' - - * I

endif

ENDLOOP

(H) <

LOOP

v =

1
= v

ENDLOOP

(A) 00

LOOP

2 v =

ENDLOOP

CE) 1

LOOP

if (TEST)

&
= v

ENDLOOP

(B) CQ

LOOP

Ct] V =

end11

ENDLOOP

(F) 1

LOOP

if WEST)

endil C=
= v

v =

ENDLOOP

(C) CQ

LOOP

if v] mn
v =

endif

ENDLOOP

(GI 1

around the loop. To prevent infinite cycling, each p-function has a flag, self (initially

set to false), which indicates whether following chains around the loop can reach back to

the p-function. If the self flag is set, a +-function (or a nonkilling definition) must have

been encountered while following chains for that loop instance; this condition indicates

a conditional branch that may or may not be taken during any particular iteration, but

where on at least one of the branches there exists a chain reaching the p-function. Thus,

while the dependence is loop-carried, we do not know its precise distance, so we denote

its direction as (<). If the self flag is not set, then all paths must encounter a killing

definition for the variable being analyzed; this condition means that the flow dependence

must be to the subsequent iteration, and its distance is 1.

6.2.2 Algorithm 6.1: Precisely Detecting Scalar Flow Dependence

An algorithm for detection of scalar flow dependences within a single loop has been

presented previously [SGW94]. To extend this algorithm to nested loops, several issues

need to be addressed. First, we must provide a recursive routine, to allow arbitrary

nesting. Second, distance and direction of the dependence must be accurate in terms

of all loops containing the dependence. This second point implies that a dependence

relation between two references may in fact be more than one dependence: it can be a

dependence with respect to an inner loop as well as another dependence with respect to

an outer loop.

Data Structures

We use the following data structures for the algorithms in this chapter (where f [n] refers

to the nth argument of & or p-function f) :

=e- yfunctions:

self - A flag representing whether a p-function can transitively reach itself.

Initialized to false.

Reaching-set - A set of definitions which can be reached by following

chaan(p[2]). Initialized to 0.

* loops:

nest(loop) - A function that returns the nest level of loop

loop(ref) - A function that returns the innermost loop containing ref

nl(ref) - A function that returns nest(loop(ref))

common(refl,ref2) - A function that returns the most deeply nested loop

containing both ref1 and ref2

* references:

marked(ref) - A value such that marked(ref) = u indicates ref has already

processed use u in Find-Dependence(). Initialized to NULL.

Reached(ref) - A set where r E Reached(ref) indicates ref has already

processed p-function T in Find-Reaching. Initialized to 0

For each dependence (excluding loop-independent dependences) we build a depen-

dence vector to describe the most precise information available for all loops, from the

outermost loop containing the dependence to the most deeply nested loop containing

both references of the dependence. A nest level is associated with each loop, starting at

1 for outermost loops.

When building the dependence vector, we must first find the most deeply-nested loop

(corn) containing both the source and sink of the dependence, since we do not consider

loops at a nest level greater than corn. Next, the nest level of com is compared to the

nest level of the loop containing the p-function being processed (mu-loop), since all loop-

carried dependences are as a result of processing p-functions, as noted above. If the

nest levels of com and mu-loop are equal, then the mu-loop will carry the dependence. If

the nest level of corn is greater than the nest level of mu-loop, mu-loop still carries the

dependence, but loops between mu-loop and corn have unknown information, and their

entry into the dependence vector is denoted *. Finally, if the nest level of mu-loop is

greater than the nest level of con, mu-loop clearly does not carry the dependence, hence

the dependence is loop-independent (00).

6.2.3 Discussion of Algorithm 6.1 for Flow Dependence

Figures 6.2 and 6.3 provide the basis for Algorithm 6.1, which detects scalar flow de-

pendences. Algorithm 6.1 first calls Find-Dependence() on each scalar use, its link, and

type f (flow dependence). Encountering a scalar definition results in a loopindependent

dependence, while a +function results in a recursive call on the links from each argu-

ment. When a p-function is encountered, the set of references reachable within that

Given: A program converted to FUD chain form
Auxiliary data structures initialized

Do: V scalar uses U, -
Find-Dependence(chain(U), U, f)

Result: A list of statement-based flow dependences, and a dependence
vector for any dependence which is not loop independent

Algorithm 6.1 Identifying scalar flow dependences

Find-Dependence(d, u, t)
if type(d) = source then return endif
if marked(d) = u then return endif
marked(d) t u
if d is a p-function then

Find-Dependence(Chain(d[l]), u, t)
if Reaching-Set(d) # 0 then

Find-Reaching(Chain(d[2]), d)
endif
for c E Reaching-Set(d) do

if self(d) = true then
dep-vec t Build- Vector(d , c,u,<)

else
dep-vec t Build- Vector(d,c,u, 1)

endif
ht Snum(c) (dep-vec) S n U m (U)

endfor
else if d is a #-function then

for each argument j of d do
Find-Dependence(Chain(d[j]), u, t)

endfor
else

output Snurn(d) Snun(u)
if d is a nonkilling definition then

Find-Dependence(Chain(d), u, t)
endif

endif
end Find-Dependence

Figure 6.2 Procedure for identifying scalar dependences

Find-Reaching(d, f)
if d = f then

self(f) t true
return

endif
i ff E Reached(d) then return endif
Reached(d) t Reached(d) U f
if d is a p-function then

Find-Reaching(Chain(d[l]), f)
Find-Reaching(Chain(d[2]), d)
add Reaching-Set(d) to Reaching-Set(f)

else if d is a &function then
for each argument j of d do

Find-Reaching(Chain(d[j), f)
endfor

else
add d to Reaching-Set(f)
if d is a nonkilling definition then

Find-Reaching(Chain(d), f)
endif

endif
end Find-Reaching

Build- Vector(func,def,ref, entry)
com t common(def, ref)
if nest(com) = nl(func) then

dep-vec[l . . . nl(func) - I] t 0
dep-vec[nl (func)] t entry

else if nest(com) > nl(func) then
dep-vec[1 . . . nl(func) - I] t 0
dep-vec[nl(func)] t entry
dep-vec[nl(finc) + 1 . . . nest(com)] t *

else
dep-vec t oo

endif
end Build- Vector

Figure 6.3 Routines for Find-Reaching and Build- Vector

loop are calculated with an on-demand call to Find-Reachingo, which determines what

definitions of a particular variable can reach around the loop. Then, each element in this

set results in a dependence with a dependence vector computed by Build-Vector().

Since p-functions are distinguished from +functions occurring at other merge points

in the CFG, cycles in the call graph for Find-Dependence() are fairly rare. However,

redundant calls may occur in two ways. First, there may be an irreducible flow graph.

Second, a nonkilling definition along one branch of a conditional for the variable being

processed may result in repetitious calls to Find-Dependence() for the same use of that

variable. Since Find-Dependence0 processes one use of a variable at a time, we associate

a marked field with each reference point. By checking this field, we eliminate extra calls

due to nonkilling definitions and potential infinite loops as a result of irreducible flow

graphs. We illustrate how the marked field is used with this example:

S1: v1 = ...
S2: i f (P) then

S3 : cal l sub(Vz

S4: endif

s 5 : V 3 = 4 (V 2 , V 1)

s6: ...= v3

We call ~2nd-Dependence(chain(@), q , f) to find the flow dependences for this code

fragment. Since chain(@), equivalent to D:, is a &function, recursive calls are made on

both arguments. The call to ~ind-~ependence(~Y, @,f) finds the dependence S1 6f Ss,

while the call to ~ind-Dependence(D:, g,f) finds the dependence S3 6f S6. However,

D; is a nonkilling definition, so another call to ~ indl)e~endence(D~, q , f) is made from

line 25 of Find-Dependence(). Since Ur has already been marked at DY, this call will

immediately return, preventing a redundant dependence from being detected.

The situation is similar for the routine Find-Reaching(), except that the Reaching-Set

is associated with particular yfunctions, and not in terms of a processed usage site. In

this case we keep, for each definition site, a list of p-functions that have already processed

that site.

We illustrate Algorithm 6.1 with two examples. First, we show a single loop in which

the dependence distance of one cannot be ascertained by conventional analysis:

TI = . . .
loop

T2 = p(Ti,T5)

...= T2
i f TEST then

T3 ' ...
else

Tg = ...
endif

T5 = $(T3,T4)

endloop

For the use of T at S4 a call is made to Find-~e~endence(chain(rrT),~~,f), which is

equivalent to ~ind-~ependence(D~,~~,f). A further call to Find-Dependence(DT,UT,f)

is made on the first argument of DT, since it is a p-function, resulting in this flow

dependence from line 23 in Find-Dependence() (Figure 6.2):

A call to F i n d - ~ e a c h i n ~ (~ T ~ , ~ T) is made on the second argument of D:, since

this is the first time this p-function is encountered. Find-Reachango recurses on the

two arguments of DG, returning when finding the killing definitions of T at S6 and S8.

Thus, ~ e a c h i n ~ - ~ e t (~ T) = { D ~ , D ~) , and self(DT) stays at false. Lines 10 and 14 of

Find-Dependence() output these two flow dependences of distance one:

As previously noted, simple dominator analysis will not discover these dependences of

distance 1, since neither killing definition of T within the conditional construct dominates

the postbody of the loop, although jointly they do so.

We now show how Algorithm 6.1 operates for scalar flow dependences in nested loops

with this example (in which we assume the exit is at the top of each loop):

v1 = ...
loop1

v2 = p(Vl,v3)

loop2

V 3 = p(V2,V5)

i f TEST then

Vq = ...
endif

v5 = 4(V3,V4)

... = v5

endloop2

endloopl

Within the above loop, the only use of V occurs at Slo. Thus, we make the call

Find-~ependence(chain(~~),~g, f), which is equivalent to Find-~ependence(DX,v,",, f).

Since D: is a &function, recursive calls are made to ~ i n d - ~ e ~ e n d e n c e (~ r , ~ g , f) and

Find_Dependence(Dy,~~, f). From the second of these calls we get the loopindependent

dependence

from line 23 of Figure 6.2.

The other call, F ind_Dependence(Dl ,~~, f) points to a p-function, thus Find-De-

p e n d e n c e (D F , ~ ~ , f) is called on the first argument in S5, while the second argument

invokes a call to Find-Reaching(D:,Dr), setting the self flag for D: and discovering its

Reaching-Set = (0:). Lines 10 - 12 and 16 of Figure 6.2 give us the dependence

Finally, the call to ~ i n d - ~ e p e n d e n c e (~ ; , ~ & , f) from the first argument of the p-

function a t S5 is a reference to another yfunction, thus Find-~e~endence(DY,U$, f) is

called on the first argument in S3, and ~ i n d - ~ e a c h i n ~ (~ ~ , ~ ~) is called by the second

argument, setting the self flag for D r and discovering its Reaching-Set = {DY) (by

merging with the Reaching-Set of DY). We then output these last two dependences:

6.2.4 Measuring Algorithm 6.1 on Scientific Benchmarks

How often do the cases in Figure 6.1 occur? To discover the usefulness of our method, we

ran our algorithm over the scientific benchmarks contained in the Perfect Club, RiCEPS,

and Mendez suites. In order to keep the investigation at a level that is easy to analyze,

this set of data only counted flow dependences in which the source and sink of the

dependence were within the same inner loop. As shown in Figure 6.1, there are eight

categories of dependences within a single loop, although cases F and G are statistically

grouped together since they are semantically equivalent. We show F and G in Figure 6.1

separately because the eight cases form a coherent pattern of matching pairs.

Table 6.1 shows the result of our analysis. To be widely useful, cases other than

those where the source dominates the sink (case A) need to occur with some frequency.

Case F corresponds to the second example from the previous subsection, where no defi-

nition dominates the use, but all paths reaching the postbody contain a definition. This

case comprises 7% of all loop-carried(1) dependences where the source and sink of the

dependence lie within the same inner loop. In some codes, such as spice and flo52

from the PERFECT Club suite or sphot from the RiCEPS suite, the percentage ranges

from 17% to 68%. These results demonstrate that traditional data-flow techniques are

not sufficient to achieve the precision captured with our algorithms.

Case H also includes subroutine calls where we know no information about the ar-

guments, such as that available from interprocedural mod/ref analysis. Any particular

iteration of this loop

loop :

call f (x)

endloop

may modify I, hence it will be detected as a 6[,) dependence. In terms of Algorithms 6.1

and 6.2, the reference to x represents a nonkilling definition.

Note that D is the case that will result in both a loop-independent and Ioopcarried(<)

dependence. This case is correctly analyzed by our algorithm, since a &function for V

will be placed immediately after the endif statement, resulting in recursive calls to

the FindDependenceO routine; one will discover the loopindependent flow dependence,

and the other will discover the loop-carried(<) flow dependence. An examination of

Table 6.1 reveals that some codes possess structure in which this class of dependence is

quite significant.

routine I lines 11 # loop-independent 11 # loop-carried (<) 11 # loop-carried (1)

11 A I B I C I D I I D I H 11 l3 I F f 3 G
PERFECT club

I Total 1 123301 11 50802 1 4662 1 126 1 2112 11 2112 1 9647 11 7776 1 620]

Table 6.1 A count of the different kinds of scalar flow dependences detected in scientific codes,
classified according to the type of loop structure from Figure 6.1. The source and sink of the
dependence are within the same inner loop.

Given: A program converted to FUD chain form
Auxiliary data structures initialized

Do: V scalar definitions D -
Find-Dependence(chain(D), D, o)

Result: A list of statement-based output dependences, and a dependence
vector for any dependence which is not loop-independent

Algorithm 6.2 Identifying scalar output dependences

It is interesting to wonder what percentage of the case A loopindependent depen-

dences are uses within the loop of the loop index variable. We measured this relationship,

and found a low of 6% in spice from the Perfect Club suite, to a high of 87% in baro

from the Mendez suite. The mean over all benchmarks was 16%. This figure is somewhat

deflated due to the fact that 18% of all scalar flow dependences came from spice. The

median over all benchmark programs was 55%.

6.2.5 Algorithm 6.2: Output Dependence

Figures 6.2 and 6.3 also provide the method for computing scalar output dependence.

The differences are that definitions are used for input, and we pass the dependence type

o (output dependence) to Find-Dependence(). Computing output dependence for scalars

is a fairly trivial modification to Algorithm 6.1, since def-def links have been inserted as

a component of FUD chains.

To illustrate Algorithm 6.2, we present a simple example. The following loop has two

definitions of W, at S4 and S7.

loop

W2 = p(Wo,W7)

if TEST then

W4 = ...
endif

w6 ' 4(w4, w2)

W7 = ...
endloop

The first call is to Find-~e~endence(chain(D~),~~,o), which is equivalent to Find-De-

p e n d e n c e (~ ~ , ~ ~ , o) . Since DT is a p-function, a call to Find-Dependence is made on

its first argument, which we shall consider no further here, restricting our attention to

dependences contained within the loop body. The second argument invokes a call to

~ i n d - ~ e a c h i n ~ (D y , D ~) , discovering DT'S Reaching-Set = {Dy) . Since the self flag is

not set, we get the following loop-carried dependence:

The second definition generates the call to ~ i n d _ ~ e p e n d e n c e (D ~ ,DY ,o), which re-

cursively follows chains to S4 and S2, resulting in the two dependences (Find-Reaching

for S2 has already been calculated):

S4 6& S7 and S7 6;) S 7

6.2.6 Complexity Analysis

A useful measure of complexity for the scalar dependence algorithms is the number

of links followed during the analysis to find the dependence. We counted the average

number of links followed for each detected dependence on all the benchmark programs.

The information is displayed in Table 6.2 for both flow and output dependence. As

expected, most programs exhibit a structure where following several links in a chain is

sufficient to detect a flow dependence. A few programs displayed a much more complex

structure. The number of links followed on average in ocean is very high due to the

combination of large numbers of subroutine calls and many global variables, as noted in

53.1.5 and 54.7.4.

When the dependence algorithm executes, all the links are not actually traversed

as depicted in Table 6.2, since multiple uses of the same p-function do not require a

recomputation of the Reaching-set. The information is effectively memoized at each

p-function.

We also show the total number of dependences detected for these cases over the

benchmarks. These statistics are a superset of those shown in Table 6.1, since they

include all dependences, not just those where the source and sink are within the same

inner loop.

Table 6.2 Total number of scalar flow and output dependences and the number of links traversed

Program Ave. # Links
Traversed

Total # Flow
Dependences

PERFECT club

Total # Output
Dependences

Ave. # Links
Traversed

11.9
3.5
2.7
3.4
7.3
3.3
3.0
5.7
4.7
3.9
5 .O
3.6
4.3

adm
arc2d
bdna
dyfesm
fE05&

md9
mg3d
ocean

9cd
spec 77
spice
track
trfd

9.0
1.2
1.4
1.9
3.8
2.0
1.7

14.4
3.3
2.1
2.4
1.8
2.1

12055
4703
4808
2203
4726
1494
6886
6511
2235
5412

23780
1064
539

RiCEPS

8357
1284
2089
885

2323
568

2142
5121
1331
2031

18485
442
330

boast
ccm

9421
5669

7.7
4.0

17534
14345

5.6
1.7

6.3 Anti- and Input Dependence

6.3.1 Building Chains With T-Functions

As mentioned in $6.1, FUD chains do not provide the correct information to detect scalar

anti- and input dependence. FUD chains are a sparse solution to the reaching definitions

problem, while anti- and input dependence require information on reaching uses: at any

point, what is the closest downward-exposed use for a given variable? To obtain this

information, we need links to uses, merging this information at confluence nodes. We

therefore use GRC Algorithms 5.1 and 5.2 to construct reference chains to solve the

reaching uses problem. This structure, which we call factored redef-use chains (FRDU

chains) links each definition to the closest preceding downward-exposed use, and each

use to the next downward-exposed use. We call the merge operators for this problem

T-functions. The GRC algorithm builds FRDU chains to solve the Problem of reaching

uses with the following parameters:

Direction: forward

RefI'uples: any use or definition

BlockTuples: any killing definition

Since T-functions are a merge of upward-exposed uses, they are themselves considered

uses of a variable. With reaching definitions, we number each definition uniquely, since

it logically represents a new variable instance. Multiple uses, however, can repeatedly

reference the same definition instance. Hence, for reaching uses we depict each defini-

tion with a superscript to the line number of the downward-exposed use that reaches

that definition. Each use is superscripted by the line number of the next most recent

downward-exposed use, if another use can reach without passing through a killing defi-

nition. The superscript 0 reflects the fact that there are no reaching uses at that point.

We illustrate this idea in Figure 6.4. The code on the left of Figure 6.4 has its CFG

shown on the right. The definition of T at S6 is reached by the T-function at S5, which

merges reaching uses along the control paths from nodes B and A. The path from B has

a reaching use at S3, while the path from A has no reaching use, denoted by 8. Note

that for FUD chain form, no +functions would be placed at node C since it is not in

the dominance frontier of A.

S1: T@ = ...
Sz: i f (P) then
s3 : . . .= T@
S4: endif
S5: T (T 3 , ~ @)
Ss: T5 = ...

Figure 6.4 Y-functions merge downward-exposed reaching uses

6.3.2 Algorithms for Scalar Dependence Using T-Funct ions

We can use the procedures in Figures 6.2 and 6.3, with several minor modifications, to

construct the algorithms that detect scalar anti- and input dependence. We also need

one additional data structure that identifies when an T-function is in the header node

of a loop, analogous to renaming loop-header &functions as p-functions in GSA form:

Zh(T): returns true if an T-function resides in the header node of a loop.

All references to p-functions, specifically the data structures self and Reaching-set in

Figures 6.2 and 6.3, now refer to lh(T).

We also need to check if a link points to 0, in which case the routines immediately

return. Find-Dependence() just needs to check for 0 instead of the tuple type source,

while Find-Reaching() needs a conditional statement added. The following alterations

are made to the procedures in Figures 6.2 and 6.3:

a line 2 : if d = 8 then return endif

a line 5: if d is a lh(T) then

a line 18 : else if d is an T -function then

a line 24: if d is a use or nonkilling definition then

a line 29a: if d = 8 then return endif

a line 36: if d is a lh(T) then

Given: A program converted to FRDU chain form
Auxiliary data structures initialized

Do: V scalar definitions D -
Find-Dependence(chain(D), D, a)

Result: A list of statement-based anti-dependences, and a dependence
vector for any dependence which is not loop-independent

Algorithm 6.3 Identifying scalar anti-dependences

S1: T @ = ...
s 2 : loop
S3 : T(T@ ,T')
S4 : i f (Q) then
S5 : T~ = ...
s6 : ...= T@ ...
S7 : endif
s8 : T(T6 ,T3)
sg : .. .= T8 ...
Slo: endloop

Figure 6.5 FRDU chains for example loop.

line 40: else if d is an T-function then

line 46: if d is a use or nonkilling definition then

Figure 6.5 illustrates Algorithm 6.3 using FRDU chains for a simple loop. Placement

of T-functions occurs at the loop header and at the endif. To find anti-dependence, Al-

gorithm 6.3 is invoked on all scalar definitions D with their FRDU chains and parameter

a for anti-dependence. In this example, there are two definitions, at Sl and S5. In the

first case, there are no reaching uses, signified by the 8 superscript. The definition at S5

is reached by any uses that reach the T-function at S3. One of these links is again empty,

since there are no uses outside the loop. The other link causes the compiler to find the

set of uses in the loop that can reach the T-function, and a flag whether the T-function

can reach itself. In this case, the Reaching-Set = {T9, T~), and the self flag is set. Thus

the algorithm will find the two loop-carried anti-dependence relations S6 d:<) S5 and

Given: A program converted to FRDU chain form
Auxiliary data structures initialized

Do: V scalar Uses U -
Find-Dependence(chain(U), U, i)

Result: A list of statement-based input dependences, and a dependence
vector for any dependence which is not loop-independent

Algorithm 6.4 Identifying scalar input dependences

S9 diL,) S5, each with nonconstant distance.

In this example, the Y-functions were placed in the same locations that the c#+
functions would be placed, since there are distinct definitions and uses along each control

path.

Input dependence is computed in the same way as anti-dependence, except that we

start at variable uses and chain to reaching uses. Algorithm 6.4 provides the procedure

to detect all statement-based input dependences, which is also based upon the modifi-

cations made to Figures 6.2 and 6.3. Detecting value-based input dependence can be

useful for optimizing locality of reference, achieving better memory-hierarchy (i.e. cache)

performance [Wo192a].

6.3.3 Experimental Results

We ran Algorithms 6.3 and 6.4 on all the benchmark programs. Total number of anti-

and input dependences detected and the number of links followed is displayed in Ta-

ble 6.3. The average number of links followed to find anti-dependences is inflated due to

the nature of ocean: it was responsible for 25% of all anti-dependences, with an extraor-

dinarily high number of links traversed. The number of input dependences and average

number of links traversed is very large, as expected. Again, memoization at loop-header

Y-functions reduces the actual number of links followed by Algorithms 6.3 and 6.4 when

they execute.

We experimentally compared the number of Y-functions as a function of referenced

variables (Figure 6.6) and program size (Figure 6.7). These graphs show that the growth

in data structures is linear in both cases.

Since the set of nodes which contain c#+ or p-functions is a subset of those containing

Y-functions (all uses and definitions imply nonidentity transfer functions for reaching

Program

[Total 225621 1 33.4 11 1496080 1 32.6 1
Table 6.3 Total number of scalar anti- and input dependences and the number of links traversed

Total # Anti-
Dependences

Ave. # Links
Tkaversed

Total # Input
Dependences

Ave. # Links
Tkaversed

number 18
of

T-functions 15
(in 1000s) 12

number of referenced variables

Figure 6.6 A comparison of T-functions to referenced variables in the benchmark programs

number 18

(in 1000s) 12

number of program statements (in 1000s)

Figure 6.7 A comparison of T-functions to program statements in the benchmark programs

uses, but only definitions imply a nonidentity transfer function for reaching definitions),

we were interested in the percentage increase from the number of $-functions created

with FUD chains to the number of Y-functions created when constructing FRDU chains.

The results are shown in Table 6.4, where we note that there are about 2.3 Y-functions

on average for every +function.

6.4 Extensions

There are several useful extensions to scalar dependence analysis. For example, precise

information is available for dependences that only flow into the first iteration of a loop.

This loop

S1 : W = ...
Sz : loop 1 to N

S3 : ...= W
S4 : w = ...
S5 : endloop

has a flow dependence from S1 to S3 on just the first iteration of the loop. In its current

state this loop cannot be parallelized due to the loop-carried flow dependence from S4 to

S3. Recognition of the dependence from Sl to S3 allows loop rotation to be performed,

resulting in this equivalent form of the same loop:

S1: W = . . .
S3 : ...= W

S2 : loop 1 to N - 1
S4 : W = ...
S3 : ...= W
S5 : endloop

s4 : W =

By creating a prologue (the first statement of the first iteration) and epilogue (the last

statement of the last iteration), the loop is transformed into an equivalent form in which

all flow dependences are loop independent. This procedure allows the resultant loop

to be completely parallelized, if desired. This situation can be recognized if there is a

variable use whose link points to a yfunction, and the self flag of the p-function is false.

I Program I(number of I number of I %
11 4-functions I T-functions I increase

PERFECT club

I Total 76445 1 179433 1 134 1
Table 6.4 Comparison of data structure sizes between &functions and T-functions

(If self was true, the definition from outside the loop might reach more than the loop's .
initial iteration.)

Similarly, privatization analysis of variables is enhanced if a flow dependence exits a

loop on only its last iteration, since in this case it is easy to identify which variable must

copy its contents to a global variable. A definition inside a loop that is the last reaching

definition for a variable within the loop may be the source of a last-iteration dependence

if the p-function for that variable has its self flag set to false.

The inclusion of path-sensitive analysis (if available at compile time) may also aid

in the detection of scalar dependences. Information such as tripcounts for loops or y-

functions in GSA form provide more precise information on the behavior of loops, and

may result in more efficient implementation of the algorithms, since some recursive calls

at confluence nodes may be eliminated.

Again note that we compute value-based dependences. We can find all memory-based

dependence relations by always tracing back to other reaching definitions (for flow or

output dependence) or other reaching uses (for anti- and input dependence), regardless

of the presence of a killing definition. For scalars, however, value-based dependence is

easy to compute.

Chapter 7

Backward Data-Flow Problems

In this chapter we study backward problems - those problems in which data-flow in-

formation flows in the direction opposite control flow. We will look at two backward

problems that may benefit from GRC, live variable analysis and expression anticipata-

bility. For these problems, general R-functions are placed at the end of branching basic

blocks, since they merge upward-exposed information from CFG successors. The mate-

rial in this chapter on live variable analysis is an adaptation of work done with Michael

P. Gerlek at Oregon Graduate Institute of Science & Technology [GWS94].

In the next section we present the algorithm for constructing reference chains used

to solve the live variables problem, while Section 2 shows how to use this translation to

compute liveness information. Section 3 explains how to use these chains to construct an

interference graph, perform dead code elimination, and for other analysis methods. In

Section 4 we analyze the performance based on our implementation of these algorithms,

while Section 5 discusses how to extend analysis to anticipatability of expressions.

7.1 Live Variables and Chaining

7.1.1 Defining Live Variables

Identification of which variables at any point p in the program are live is known as live

variable analysis. Variable v is considered live at p in the program if there is an upward-

exposed use of v at p, i.e., v is used after p with no intervening definition of v [ASU86].

Otherwise, v is dead at p. Since v is live at the end of a basic block if and only if it is

live at the entry of any of its successors in the CFG, live variable analysis is a backward

data-flow problem.

Live variable analysis is most commonly used for register allocation. It is also used

for a variant of dead code elimination (if the target of a defining statement is not live

after the point of definition, that statement can be removed). Other less common uses

of live variables are described later.

The traditional solution to live variables is to iterate data-flow equations. To account

for the backward solution, we use the following variant of Equations 2.1:

For live variables, the meet operator is set union, and we iterate this particular

instance of Equations 7.1 until convergence:

out(N) = U in(S)
SEsucc(N)

in(N) = use(N) U (out(N) - def (N))

Iterating these equations requires keeping the information on all variables available

at the beginning (in) and end (out) of each basic block in the CFG. This procedure is

generally accomplished using bit-vectors. Bit-vectors usually work well in practice, but

can be overly consumptive of space [CCF91]. A second problem with the traditional ap-

proach is that it requires iteration for its solution. Though often convergence is achieved

after several iterations, this is not always the case and the method is subject to more

costly meet operations, such as the example we saw in $5.2.2.

We present a new approach to identifying live variables based upon reference chain-

ing. Our approach requires no iteration, but instead encapsulates information at branch

points in the CFG through merge operators known as A-functions. Since live variables is

a backward problem, A-functions merge upward-exposed references when a basic block

contains two or more successors. The storing of liveness information at A-functions avoids

the need for explicit in and out sets. Instead, liveness is computed at each point within

a basic block on-the-fly.

7.1.2 Background

Since live variables is a backward problem, we will be using the concepts of postdominator

and postdominance frontier as originally introduced in $2.1.2. We write X pdom Y if

X postdominates Y and Z ipdom Y if Z is the immediate postdominator of Y. The

postdominator tree contains the set of nodes V from the CFG, connected by edges Z Y

in the tree if and only if Z ipdom Y. For completeness, the iterated postdominance frontier

of Y, PDF+(Y), is the limit of the sequence:

The running example for this chapter is the following program:

i = O

while (p) do

if (q) then

i = i + l

endif

endwhile

For this example we make the basic blocks explicit and consider only references to i.

Since we want to refer to both definitions and uses as they relate to the basic blocks, we

uniquely identify each definition or use with a new subscript number:

Entry :

A :

B :

C:
D:

E:

F:

G:

Exit :

io =

if (. . . I goto G
if (. . . I then
= il

i2 =

endif

got0 B

The CFG (including the slice edge Entry + Exit) and postdominator tree are shown in

Figure 7.1, with the immediate postdominator and postdominance frontier sets given in

Table 7.1. We also show the def, use, in, and out sets.

Figure 7.1 CFG and pdom tree for live variable example program

Table 7.1 Postdominator and liveness for example program

7.1.3 The A-Chaining Algorithm

We use GRC to augment the CFG with A-functions at branch points in the CFG. The

GRC algorithm is used for the Problem of upward-exposed references, and invoked with

the following parameters to create A-chains:

Direction: backward

RefLink: 0

Reflhples: any use or definition

BlockTuples: any killing definition

Notice that for this problem RefLink is empty, which means that the only link

fields set are the arguments of A-functions. The live variable problem maintains a set

at point p that contains all variables live at p. This condition implies examining, for

each basic block, all tuples within that node, and for each use or def of variable v,

adding or deleting v from the live set, respectively. Hence, within each node no sparsity

is possible, but some sparsity is preserved by capturing the merge of upward-exposed

references at branch points via A-functions. In this way we avoid the iteration associated

with traditional methods.

Since this example is the first case of GRC with a backward data-flow problem,

we will walk through the construction of A-chains for our running example. The only

nodes containing instances of RefTuples for i are A and D , so the GRC Work-List is

initialized to these nodes. pDFS (A) U PDF+(D) = {Entry, B , C) , so a A-function is

placed at the end of each of these nodes:

Table 7.2 Chaining states for example program

pred X-functions
i 3 = A(,@)
i 4 = A(, 0)

node
Exit
G

E
C
D

Entry

Entry:

A :
B:

E:

F:

G :

Exit :

i. CurrentRef
0
0

1 4

15

i 1

13

i 3 = X (,)
i o =

i f (. ..) goto G

i 4 = X (, 1
i f (...) then

i 5 = X (, 1
= il

i 2 =

endif

got0 B

t.SaveRef

For the chaining phase, i.CurrentRef is initially set to 0. We traverse the CFG in

the order {Exit, G, B, A, F, E, C, D, Entry). Following Algorithm 5.2, Table 7.2 shows

the state a t each visited node of i. CurrentRef (at the top of the node), t.SaveRef, and

any X-functions in CFG predecessors of that node. Starting with Exit, the second link

of the X-function in predecessor node Entry is set to 0. At node G, the X-function a t

predecessor B has its second link set to 8 . Visiting B next, i. CurrentRef is set to i 4 .

At A, i.CurrentRef is set to 0 (io is a definition, thus an element of BlockTuples)

and the old reference to i 4 is stored in io.SaveRef. The first link of the X-function in

predecessor node Entry is now set to 8. We must return down the postdominator tree:

i .SaveRef= i
i2.SaveRef=i4, il.SaveRef=O
i3 .SaveRef=@

i s = X(i4,)
i 4 = X(i5, 0)
i s = X (i 4 , i l)

in A i . CurrentRef is restored to i 4 . The process continues at node B by visiting its other

postdominator child, F. After all basic block nodes have been visited and all links have

been set, the resulting program becomes:

Entry:

A :
B :

E:

F:

G :

Exit:

is = A(@, 0)

io =

i f (. . . > goto G

i 4 = A(i5,0)

i f (. . . I then

i 5 = A(i4, i l)

= il

i2 =

endif

got0 B

7.2 Computing Liveness

After constructing the A-graph for a program, we can calculate liveness by traversing the

CFG, adding and deleting variables from the live set at each applicable tuple.

7.2.1 Liveness Algorithm

Visiting the postdominator tree in a depth-first manner will traverse the CFG bottom-

up. The set of live variables is initially empty, and variables are added or deleted based

upon whether each variable reference is a use or definition. Since Exit is the root of the

postdominator tree, it is always visited first. The tuples in a node are visited in reverse

lexical order, adding a variable at a usage site to the live set, if not currently a member,

and deleting a variable at a definition site, if currently a member. At the beginning of

each basic block (the state of the live set after all tuples have been examined in that

block) the live set corresponds to the in set in the traditional method.

We use the following simple lattice to represent liveness information at each tuple,

where T represents "dead" and I represents L'live". Each tuple that is the use of a

variable has its lattice value set to I and each tuple which defines a variable has its

lattice value set to T. Other tuples, with the exception of X-functions, are ignored by

this algorithm. The lattice value of X-functions are initially T.

All X-functions are encountered at the end of each basic block (these are the first

tuples examined for each block). Each X-function must be evaluated according to the

meet of the lattice values of its argument links. Since X-functions are placeholders for

liveness information, they constitute a use or definition of a variable as a function of their

links. A X-argument pointing to a variable use is set to I, while an argument pointing

to 0 (indicating a variable definition or no reference along that path) gets set to T.

A X-argument may also point to another X-function, whose arguments may in turn

point to still another X-function. In fact, there may be a cycle containing X-functions,

as is the case with our example program. Because the lattice value of a X-function is

dependent on other X-functions, we use our demand-driven technique (Algorithm 3.3)

for classifying X-functions, and again employ Tarjan's algorithm [Tar721 for detecting

strongly connected components (SCCs) in a directed graph. Tarjan's algorithm is applied

to an abstraction of the data-flow graph, the X-graph, Gx = (V, E), where V is the set

of X-functions for a particular variable in the program and E is the set of links of each

X-function pointing to other X-functions. When a nontrivial SCC is detected, the X-

functions within that cycle (whose members comprise a X-set) are assigned a lattice

value based on the meet of the lattice value of all links of the X-set functions that do

not point to elements of that X-set. The result is the meet of the lattice value of all the

successors of the SCC. Thus, if any component in the SCC has a link which points to

a variable use, all members of that X-set are classified as live. No iteration of the cycle

is necessary, since liveness is an example of a uniformly monotonic [WGS94] problem,

as described at the end of Chapter 3. After processing all X-functions at the end of

each basic block (and before processing any other tuples within that block), the live set

corresponds to the out set in the traditional method.

In our running example, the X-graph contains a X-set consisting of X-functions i 4 and

is. Figure 7.2 shows this graph, with the initial value of each X-argument shown as a

superscript of that argument, and the final lattice value of each X-function shown on the

right of each node. Initially, we note that both arguments to i4 are T, corresponding to

the fact that i is dead after the loop and its liveness before the loop depends on liveness

within the loop body.

Figure 7.2 A-graph for running example program

To find the lattice value of our example A-set, we take the meet of all arguments

that do not point to i 4 or i s : T for the second argument of i 4 and I for the second

argument of i5. The result is I, which indicates that i is live within the cycle, hence

live after basic blocks B and C.

The details of computing live sets are given in Algorithm 7.1. We use the following

data structures:

Live - A set of variable symbols representing those symbols that are live at any

point in the program.

visited - A field used by A-functions to indicate whether they have already been

processed by Tarjan's algorithm.

marked - A field used by tuples to indicate whether they affect the Live set.

The set Live is initialized to 0 and Algorithm 7.1 is invoked as Liveness(Exit, Live). The

lattice element associated with each tuple is initialized as described above.

7.2.2 Correctness

We show the correctness of the liveness algorithm at each basic block in the CFG by

performing induction on the depth of each node in the postdominator tree. Since live

Given: CFG with A-chains, Live = 0 -
Do: Call Livenem(En't, Live) -
Result: Live sets

Liveness(N, Live)
forall tuples t E N in reverse order do

if type(t) = A-merge function then
if t.visited = false then

set lattice(t) using Tarjan's alg on the A-graph
t.visited t true

endif
endif
if type(t) = A-merge or t is a use or def then

t.marked t false
s t symbol(t)
case lattice(t)

I: if s fZ Live then
Live t Live U { s)
t.marked e true

endif
T: if s E Live then

Live t Live - { s)
t.marked t true

endif
endcase

endif
endfor

24 : for M E PDomChild(N) do
25 : Liveness(M, Live)
26 : endfor

27 : forall tuples t E N in forward order do
28 : if (type(t) = A-merge) or (t is a use or def) then
29 : s t symbol(t)
30 : case lattice(t)
31: I: if t.marked then Live t Live - { s)
32 : T : if t.marked then Live c Live U { s)
33 : endcase
34 : endif
35 : endfor
36: end Liveness

Algorithm 7.1 Computing Live sets on a CFG

variables is a backward problem, analysis starts at Exit, with the order of visitation of

the nodes determined by a depth-first walk of the postdominator tree (lines 24 - 26 in

Algorithm 7.1). Once the live out set is correctly computed for node N (after processing

all A-merge tuples at the end of the node, lines 3 - 8 in Algorithm 7.1), inN is easily

shown to be correct by the repeated application of lines 9 - 22 on the remaining tuples

of the node in reverse lexical order.

Because Live is a set consisting of all variables, we show correctness for particular

variable v, and note that Live can be constructed at any point in the program by applying

the union operator to the liveness state of all variables at that point.

Base case: Since Algorithm 7.1 is invoked with Liveness(Exit, Live), and initially

Live = 0, the solution for v (within outEzit) is trivially correct after Exit.

Induction step: We consider the liveness of v within outry, given that each prior node

in the walk of the postdominator tree has correctly computed its out set. Two cases are

presented, based upon the existence of a A-function for v at N:

a No A-function for v exists at N. If N has just one successor in the CFG (only Exit

has no successors), it must be the immediate postdominator of N, and v in out^
must be correct, since in this case out^ = inipdom(N) by definition.

If N has more that one successor in the CFG, there can be no upward-exposed

references of v in any intermediate node on any path from N to ipdom(N), since

otherwise a A-function would exist at N for v. Thus, the liveness of v at out^
is equal to inipdom(N), and out^ is inherited from ipdom(N) at line 25 of Algo-

rithm 7.1. Since the liveness of v within inipdom(N) is correct by hypothesis, and

 out^ = inipdm(N) by construction, liveness of v at out^ must be correct.

A A-function for v exists at N. In this case N must have multiple successors in

the CFG. The state of v within Live just after block N is dependent upon the

liveness of v within the in set of all CFG successors of N. If there is an upward-

exposed use of v within any successor of N, then v is live within out^; else v is

dead at out^. For each successor of N , the A-function for v in N will have one

link to the subsequent reference of v along the path starting with that successor.

If the subsequent reference is a use or 0, the lattice value corresponding to that

link is set to live or dead, respectively. If the subsequent reference is another X-

function, the A-graph will form a tree whose leaves are a use or 0 (once strongly

connected components are collapsed). Thus, irrespective of the CFG, the lattice

values inherited by the A-function at N will reflect the upward-exposed references

of the variable; there can be no other intervening references to the variable in the

program by the GRC construction in Section 7.1. If any of these references are

uses, the A-function for v at N will represent a use (implying v is live at outN),

due to the meet operator of the live variable lattice. Otherwise, the A-function for

v at N represents 8, so v is dead at O U ~ N .

The Live set at N is now modified by each use, 0, and A-function of v in N. At

the top of N, the liveness for v is carried to the next block in the postdominator tree.

When returning to N, only those tuples that affected v are undone (lines 27 - 35 of

Algorithm 7.1), so that after N the liveness of v is precisely equal to what it started

as. After visiting N and all its postdominator children, restoring Live to its state before

processing N is important since the contribution by N to Live needs to be undone before

processing other nodes. While the particular order of the postdominator tree traversal is

immaterial, the depth-first walk allows induction to be performed on the height of that

tree. 1

7.3 Applications of Liveness

7.3.1 Interference Graph Construction

As mentioned in 57.1, the main use for live variable analysis is register allocation. This

analysis involves the construction of an interference graph, where variable v interferes

with variable w at a given point in the program if both are simultaneously live. When

this condition occurs, v and w cannot share a register. Formally, the interference graph

is GIG = (S, E), where S is the set of symbols in the program and E is a set of edges

such that (p, q) E E if and only if p interferes with q, i. e., they are both live concurrently

at some point in the program. The traditional approach computes the in and out sets at

each basic block in the CFG, then performs a separate pass to construct the interference

graph. Before visiting all the tuples in a basic block, a Live set is initialized to the live out

set of the block. At each definition of a variable, that variable is removed from the Live

set and marked as interfering with all other variables currently live. The interference

graph is a symmetric matrix K , such that Kpq = 1 if variable p interferes with variable

q and Kpq = 0 otherwise.

We make a simple modification to Algorithm 7.1 to build the interference graph

Given: CFG with A-chains;
K , initialized to Kst t O,Vs,t E S

Do: Determine the liveness at each block and -
compute the interferences

Result: Interference graph for the program

Use Algorithm 7.1 with the following addition:
20 .a if t is a def then Ksl t 1, Vl E Live

Algorithm 7.2 Interference graph construction

during the same pass as liveness is computed. Algorithm 7.2 is the same as Algorithm 7.1,

with the addition of a line after line 20 (which uses matrix K, as described above).

7.3.2 Useless Code Elimination

Code that never affects the final results of a program is termed dead. Dead code can be

classified into two categories. Unreachable code is code that will never be visited when a

program executes. Determination of constant predicates, such as the methods discussed

in Chapter 4, may preclude paths in the CFG from ever executing. Useless code is an

assignment to a variable that is not subsequently used. Useless code usually occurs as a

result of compiler optimizations; for example, code motion might effectively copy but not

move computations. Dead code elimination is an important optimization that is always

beneficial and may be required several times during compilation. This section looks at

a dynamic implementation of useless code elimination.

Typically, useless code elimination is performed by visiting the tuples in each basic

block, updating the Live set as used by the traditional interference graph technique.

When a definition is encountered and the defining variable is not in Live, the entire

statement is removed. This method does not take into account the liveness information

of the deleted right-hand side of the statement across basic blocks, however. In this case:

A : y = 1

if (cond) then

B : x = y + 2

C: endif

the live variable information is out^ = {y) and out^ = outc = 0 . The assignment to

x can be eliminated because it is not live after B, but the assignment to y cannot be

eliminated: the set out^ does not reflect the elimination. Good useless code detection

requires the dynamic live information that our algorithm provides.

In order to dynamically update useless code identification, links may need to be

updated because code has been eliminated. In particular, a A-argument may point to a

variable use that is now part of a dead expression. To accurately update the argument

pointer, links need to be provided from each use to the next upward-exposed reference.

If a A-argument points to 8, eliminating useless code never requires an update, since

the next upward-exposed reference must be 8. This reference cannot be a variable use,

since in that case the expression defining the variable would not have been identified as

useless.

To provide the capability for updating A-function links we need to augment A-chains

with upward-exposed use-ref links. Thus, for dynamic useless code elimination we invoke

GRC with the following parameters for the Problem of upward-exposed references:

Direction: backward

RefLink: any use

Refl'uples: any use or definition

BlockTuples: any killing definition

Algorithm 7.3 is much the same as Algorithm 7.1, with line 20 changed and five lines

added. It removes useless code, based upon a dynamically updated live set at each tuple.

We note that this useless code algorithm does not identify all faint code [KRS94]: dead

code plus code that is only used (perhaps transitively) by itself.

7.3.3 Other Uses of Liveness Information

Liveness information has several other uses; we include a list of several of them here for

completeness.

Uninitialized variables: The use of a variable before its definition can be an

incorrect program in some languages, and may result in indeterminate behavior. Such

cases are easily detected if a (local) variable is live at Entry.

"Intent" determination: The intent of a variable may be important to such anal-

ysis as interprocedural constant propagation, where it is useful to know if arguments

Given: CFG with A-chains augmented with use-ref links
Do: determine the liveness at each block and -

eliminate dead code
Result: Tuples identified as useless

Use Algorithm 7.1 with the following change:
20 else if type(t) # A merge then
20. a forall r on rhs of def 3 lattice(r) = I d o
20.b replace link(ref) which points to r with link(r)
2O.c endfor
20. d remove this def and its associated rhs
20.e endif

Algorithm 7.3 Useless code elimination

passed to other procedures are modified or not. This type of information may be re-

flected in some languages, such as the INTENT attribute in Fortran 90 [ABM+92]. If a

passed reference parameter is used but not defined it stays live at the call site.

Thread migration: Some methods that implement a migration of processor threads

generate special procedures to handle the migration [HWW93]. The body of the pro-

cedure is the continuation of the migrating procedure at the point of migration. The

arguments to this procedure are the live variables at that point.

7.4 Experimental Results

In this section we report results of our experiments to compare the classical method of

determining liveness information and our A-chain approach. We measured space and

time of both approaches, and also measured the effect of performing dynamic useless

code elimination during the same pass. While our A-chain algorithm for live variable

analysis is no faster than the traditional method, it is still a competitive alternative and

performs useless code elimination with little additional cost.

We have implemented the algorithms for constructing A-chains, determining liveness,

and constructing the interference graph in Nascent. The programs used to collect the

data are the usual benchmarks described in s1.4. To model the use of interference graph

construction more accurately, a "lowering" phase in Nascent is first performed, where

many compiler temporary variables are created.

7.4.1 Data for the Traditional Approach

Table 7.3 shows the amount of space needed by the iterative, bit-vector method to

perform interference graph construction. This traditional approach keeps four sets, the

use, def, in and out sets at each basic block. The first column shows the number of bits

necessary to store each of these sets. Thus, in total, a little over a lOOOK 32-bit words

were necessary for all the benchmark programs. The use and def sets are extremely

sparse (about 1% usage for each), while the in and out sets each use about 20% of the

bit-vector.

The number of iterations required for convergence of the in and out sets is also shown

in Table 7.3, averaged over all the routines within each benchmark program. On average,

less than four iterations are required for computing the sets.

7.4.2 Data for the A-Chain Approach

As we have done with other reference chain merge operators, we experimentally compared

the number of A-functions as a function of referenced variables (Figure 7.3) and program

size (Figure 7.4). These graphs show that the growth in data structure size is again

fairly linear in both cases, supporting the contention that in practice programs exhibit

this linear behavior for all types of reference chaining.

Over all the benchmarks, a total of 309,494 A-functions were created, with an average

of one A-function per 4.6 variable references. It is difficult to establish the precise amount

of space required to construct a A-function, but the best implementation would be one

word per A-function. This calculation results in the same order of magnitude (300K

bytes) as the traditional algorithm (1000K bytes).

To determine liveness, the method we have outlined requires processing strongly

connected components in the A-graph. We have found that on average slightly more than

40 percent of the A-functions in the benchmarks were part of a nontrivial component;

the percentages ranged from a low of 7 to a high of 83, and most were clustered between

30 and 50 percent. The nontrivial component sizes ranged from 2 to 8, with an average

of 4.3.

7.4.3 Comparative Performance

We now consider the relative speed of the two implementations. Both the iterative, bit-

vector approach and the A-chain approach were implemented on a Sun SPARC 80mhz

I I space I % of vector used I iterations I
I

Program 1 lo3 bits I use I def I in I out I avg I max

PERFECT club

I RiCEPS I

L

adm
arc2d
bdna
dlr fesm

boast
ccm

283
174
317
202

hydro
linvackd

wanall

Mendez

euler

176
989

simple
sphot

2.5
2.4
1.2
1.3

177
22

I vortex I
I I I I I I

13 1 5.4 1 4.4 1 35.5 1 35.6 1 3.1 1 I

0.7
1.2

127
178

mhd2d
shear

I I I I I I I I I

1 Total 8527 1 1.1 11.0 120.9 121.0 1 3.5 1 8 1

2.3
2.0
1.2
1.3

1.4 1 1.2 1 24.6
2.5 1 2.2 1 18.7

Table 7.3 Data on solving IFG using traditional bit-vector approach

0.8
0.5

46
97

0.5
0.9

24.7
18.8

24.5
19.5
17.4
13.8

19.5
22.7

19.4
22.6

0.8
0.5

1.6
1.2

24.5
19.8
17.5
14.0

3.5
3.9
3.5
3.7

3.2
3.2

7
5
6
6

4.4
3.0

5
4

29.2
18.7

1.3
0.9

6
6

24.4
18.7

36.3
32.2

3.1
3.7

36.5
32.4

5
7

3.0
3.1

6
6

number 18
of

A-functions 15
(in 1000s) 12

number of referenced variables

Figure 7.3 A comparison of A-functions to referenced variables in the benchmark programs

number 18

(in 1000s) 12

number of program statements (in 1000s)

Figure 7.4 A comparison of A-functions to program statements in the benchmark programs

IPX workstation with 64MB of memory. All optimizations were left to the compiler (gcc

version 2.5.8, -02). While the traditional method uses bit-vectors to maintain its live

set, a linked list was used in maintaining the live set in the A-chain algorithm.

The traditional algorithm for interference graph construction has three steps:

init: compute the use and def sets

live: compute the in and out sets

ifg: compute the interference graph

The Xchain algorithm also has three steps:

place: insert A-functions

chain: set the links for the A-functions

ifg: compute liveness and the interference graph

Both methods require overhead in our implementation to allocate storage for the data

structures used. Overall, the traditional method performs faster since convergence gen-

erally was achieved within a few iterations, whereas the A-chain approach spent con-

siderable time computing the interference graph. This additional time is partly due to

visiting all tuples within each basic block twice, once on the way down the postdominator

tree and once on the way coming back up (another approach, that of storing the Live

set before processing each merge node, may help ameliorate this effect). We also did

not count the time to construct the postdominance frontier set for each node since this

information is useful for other analyses such as control dependence.

Table 7.4 presents the time (in seconds) for three phases of each approach. We also

give the total time for each method and the performance ratio. The data is presented

for three runs, one for all of the programs in each suite (granularity precludes accurate

per-program timing). The overall time required for interference graph construction using

A-chains is roughly 45% greater than the traditional algorithm, but performing useless

code elimination with Algorithm 7.3 adds less than one percent to the times recorded

using A-chains. Thus, although the traditional method performs faster, we can obtain

dynamic useless code elimination for "free" when using the A-chain approach.

Traditional
init
liveness
if9
overhead

Lambda
placement
chaining
i f g

Mendez

7
1

<1
4
2

overhead
Ratio

Table 7.4 Times (in seconds) for traditional and A-chain methods

PERFECT club

144
3
1

64
76

21 1
21

6
112

7.5 Anticipatability of Expressions

RiCEPS

123
3
2

63
55

175
30

6
89

72
1.47

An expression e is said to be anticipatable at point p if every path from p to Exit computes

e before any variable of e is redefined. (Anticipatable expressions were originally termed

very busy expressions [ASU86].) In Figure 7.5 a+b is anticipatable at P, but c+d is not

since one of its operands, c, is defined in R before c+d is computed. The expression e+f

is also not anticipatable at P since it is not computed on the path to Q. As opposed to

liveness, which is an "or" problem, anticipatability is an "and" problem.

The main value of determining anticipatability for expressions lies in the ability to

hoist the expression to an earlier point in the program. Space may be saved by computing

the expression only once, although this benefit might be offset by the need to store the

result for a longer period of time.

Anticipatability is a backward problem, so an iterative solution uses Equations 7.1.

Let gen(N) be the set of expressions computed in basic block N prior to any definition

of the variables in those expressions, while kill(N) represents the set of expressions in

which any right-hand side variables have upward-exposed definitions in N. If in(N)

and out(N) represent the set of anticipatable expressions at the beginning and end of

N, respectively, then, after appropriate initialization, anticipatability can be solved by

iterating the following equations until convergence:

50
1.42

Figure 7.5 Expression anticipatability

Note that for this data-flow problem, the meet operator is set intersection, since an

expression is anticipatable at the end of a branch node if and only if it is anticipatable

at the beginning of all successor nodes.

We can also solve this problem using GRC in the same general manner as was used

for live variables. A simple lattice framework is again used:

where the value T represents "anticipatable" and L represents "not-anticipatable". All

computed expressions are assigned T, while all definitions which are operands of some

expression (relevant definitions) are assigned I.

Chaining needs to be augmented for expressions in general, as opposed to just tuples.

For this case, RefExpressions replaces RefI'uples and BlockExpressions replaces

BlockTuples. A relevant definition, however, may serve to block more than one expres-

sion. For example, in this code fragment

the definition of a blocks both a+b and a+c from being anticipatable.

With these augmentations in mind, a few adjustments need to be made to Algo-

rithm 5.2 in order to account for the semantics of relevant definitions. Line 3 is modified

as follows:

3a : e = expression t

3b : if e is a relevant def then

3c : F = set of all expressions with e as an operand

3d: endif

We now need to loop over lines 7 - 14 for all elements of F, since each element of F refers

to a different expression. A similar looping construct is also necessary when restoring

current expression references in lines 27 - 30.

After accounting for the adjustments above, the GRC algorithm is invoked with the

following parameters for the Problem of anticipatable expressions:

Direction: backward

RefLink: 8

RefExpressions: any evaluated expression or relevant definition

BlockExpressions: any relevant definition

Algorithm 7.4 keeps a set of anticipatable expressions, AntExp, which is dynamically

updated as the CFG is walked bottom-up by traversing the postdominator tree. The

analysis of a cycle of R-functions is done similarly to that for A-functions, except that the

meet operator works on a slightly different lattice. As with live variable computation,

no iteration on the CFG is required.

Anticipatability of expressions is the dual of avaiIabiIity: expression e is said to be

available at point p if every path from Entry to p computes e and none of the operands

of e are redefined between the last computation of e and p. Availability of expressions,

a forward problem, is often used to perform common subexpression elimination, and

GRC can be used to solve this problem in a manner analogous to the anticipatability

problem.

Given: CFG with R-chains, AntExp t 0 -
Do: Call Anticipate(E d , AntExp) -
Result: Anticipatable expression sets

Anticzpate(N, AntExp)
forall expressions and relevant definitions e E N i n reverse order do

if type(e) = R merge function then
if e.visited = false then

set lattice(e) using Ta jan's alg on the 0-graph
e.visited t true

endif
endif
e.set t 0
case lattice(e)

T : if e fZ AntExp then
AntExp t AntExp U { e)
e.set t e

endif
L: F c set of all expressions with e as operand

forall f E F do
if lattice(f) = T then

AntExp t AntExp - { f)
e.set t e.set U { f)

endif
endfor

endcase
endfor

24 : for M E PDomChiId(N) do
25 : Anticipate(M, AntExp)
26 : endfor

27 : forall expressions and relevant definitions e E N i n forward order do
28 : case lattice(e)
29 : T: if e.set # 0 then AntExp t AntExp - e.set
30 : I: if e.set # 0 then AntExp t AntExp U e.set
31 : endif
32 : endcase
33 : endfor
34: end Anticipate

Algorithm 7.4 Computing anticipatability of expressions

Chapter 8

Extension into Parallel Constructs

How do we extend the semantics of reference chaining to parallel programming lan-

guages? Our idea is provide a coherent and sound method by which to sensibly reason

about programs written using parallel constructs. Application of these methods would

enhance the ability to analyze and optimize such programs. We shall look at one parallel

construct in detail - explicit parallel sections, and discuss how we extend the methods

of reference chaining to it.

The original work that develops SSA-like semantics for explicit parallel sections is due

to Srinivasan, Hook, and Wolfe [SHW93]. Here we will describe the details of algorithms,

methods, and techniques to successfully implement these concepts. We also identify and

prove correct the minimum set of merge points in parallel precedence graphs, analogous to

the join set for sequential CFGs. This new set, the iterated meet, is a correction of earlier

work that attempted to identify such merge points. Since reference chain operators are

based upon branch and merge nodes in the CFG, it is important to correctly understand

the abstraction of execution flow with respect to parallel constructs.

This chapter provides the theoretical basis for linearizing reaching definitions within

explicit parallel sections. These foundations can be extended to other types of informa-

tion flow in a manner analogous to the sequential case, where SSA form was generalized

to reference chaining.

8.1 Execution Order in a Precedence Graph

A precedence graph is an abstraction that imposes order of execution among its nodes.

Precedence graphs can easily be used to express DAG parallelism [CHH89] by using

Wait clauses to enforce constraints between section nodes. A precedence graph is also

...
Para l l e l Sections
Section A

. . .
Section B , Wait(A)

. . .
0 0

I
Section C

. . .
End Para l l e l Sections

Exit El
(a) (b)

Figure 8.1 Example Precedence Graph

a simplified, special case of a Parallel Program Graph [SS93] that only contains syn-

chronization edges, with the synchronization condition that all code in a node completes

before beginning execution of any successor.

For the purposes of this chapter, we deal with DAG parallelism (a subset of task

parallelism [F+93]), specifically explicit parallel sections fashioned after the P a r a l l e l

Sections construct [Pargl], which is similar to the cobegin-coend syntax of Brinch

Hansen [BH73]. An example is shown in Figure 8.l(a), where Section B , Wait (A)

means that all code in Section A must complete before the code in Section B may begin.

Each parallel section (A, B, or C in this example) contains a local CFG with its own

Entry and Exit node.

8.1 .I An Abstract Representation

The ordering of sections is arranged within a precedence graph (PG), an abstract repre-

sentation that dictates what sections may execute in what order. Formally, a PG is a

directed graph P = (Vp, Ep, Entryp, Exitp), where Vp is a set of nodes, each represent-

ing a section in a parallel block, Ep is the set of edges that represent wait-dependence

arcs (corresponding to the Wait syntax described above), and Entryp and Exitp are

the cobegin and coend nodes, respectively. We will always show the Entry node in an

a = 2
b = 3
c = 4
if (Q) then

Parallel Sections
Section A

if (P) then
b = a * 5

else
b = a + 7
f = b * a

endif
Section B

c = c + 1 5
f = c * 1 6

Section C, Wait(A)
d = b * a

Section D, Wait(A, B)
c = a * b + c * f

End Parallel Sections
d = d + f

else
d = 23

endif
e = a + b * c * d

Figure 8.2 Example parallel program

example PG, but will often omit the Exit node, since for purposes of illustration only a

partial representation of the PG is usually needed, and the Exit node is seldom a factor

concerning the forward flow of information (which we focus on in this chapter) through

the PG. The wait-dependence arcs impose a partial order upon the nodes of a PG. If

there is no partial order between two sections, they may execute in any order relative to

each other - perhaps in parallel. An example precedence graph is shown in Figure 8.l(b),

where sections A and C (and B and C) might execute concurrently.

We note that a PG must be acyclic, since any cycles would create a deadlock. A

section node of a PG "uses" or "defines" a variable if any of the code within that section

uses or defines that variable.

A well-defined interpretation needs to be applied to the case where two sections of

code that can execute in parallel both modify the same variable, or when one section

uses a variable modified by another section. We assume copy-in/copy-out semantics in

the compiler, where the values of shared variables in a parallel section are defined to

be initialized to the values at the beginning of the parallel block. When the parallel

block is complete, the global state is updated with any modifications made from the

sections. While this gives a well-defined program without volatile variables, and allows

independent optimization within each section, we note that this model does not maintain

sequential consistency [Lam79]. Examine this code:

v = o

x = 0

Parallel Sections

Section A

v = 1

y = x

Section B

x = l

z = v

~ n d ' Parallel Sections

output (y ,z

A sequentially consistent model permits, for (y , z) , the values of (1,1), (1,0), or (0,l) at

the output statement. However, our copy-in/copy-out model results in the values (0,O).

As an example of how PGs fit into the CFG structure, examine Figure 8.2. To

accommodate local CFGs within explicit parallel sections, we add a special type of node

to the CFG called a supernode. A supernode essentially represents an entire Parallel

Sections construct (sometimes referred to as a parallel block).

For each supernode P, two additional basic block nodes, called the head and taal

nodes for that supernode, are introduced. The head node captures all the incoming

control flow edges to P and the control flow successors of the tail node are those of

P in the original CFG. The tail node has exactly one control flow predecessor, namely

P. Node P is the only control flow successor of the corresponding head node. These

additional nodes are helpful for both proving correctness and for implementation. We

will return to their function in later sections.

The Extended Flow Graph (EFG) is the union of CFGs and PGs representing se-

quential control flow and parallelism for a single program unit, as originally described

Section A:

Exit A (5
Exit (5

Section B: Section C: Section D:

9 9
Exit B (5 Exit C 23 Exit D (5

Figure 8.3 EFG for the parallel program of Figure 8.2

by Srinivasan et al. The distinguished CFG corresponding to the program unit is called

Gmai,. We will talk about the set of nodes in an EFG, which is the union of all the

nodes in all the CFGs (main and local) and PGs in the EFG.

The CFG containing any basic block node X is designated Gx, the section node cor-

responding to Gx is designated Sx, and Px corresponds to the supernode representing

the PG containing Sx.

The EFG for the parallel program in Figure 8.2 is shown in Figure 8.3. The parallel

block (supernode) is represented by the node PI in Gmain, which is in turn represented

by PGpl. Each section of the parallel construct is represented by a local CFG, as shown

in the figure. For example, for basic block node x, Gx is the local CFG for Section C, S,

is the node C in PGpl, and Px is PI.

A confluence node in a PG has quite different semantics than that in a sequential

CFG. While precisely one of the predecessors at a confluence node in a CFG will be exe-

cuted, all predecessors of a confluence node in the PG must execute before the confluence

node itself executes. Essentially, a confluence node is waiting upon all its predecessors,

so they must all execute before the confluence node executes. When paths meet within

a PG, information might also merge. It is important to note that it is possible that

merging information could be in conflict - since all predecessors are executed, we could

have multiple definitions of the same variable, for instance.

We also note an important property of precedence graphs - they are insensitive to

transitive edges. This property will become clear when we look at how information flows

between section nodes in a precedence graph - with respect to the reaches relation for

definitions.

8.1.2 The Reaches Relation for Definitions Within a PG

When does node B wait for node A? When there is path in the precedence graph from

A to B, i. e., if A can reach B, then B waits upon A. Since any path from A to B

is sufficient, it now becomes clear why the addition of transitive edges to a precedence

graph adds no new information. In fact, the transitive reductiont of a precedence graph

contains the smallest number of vertices and edges that captures all the information of

the original graph.

Definition 8.1 (Reaching Definitions Within a PG.) Within a PG, a definition of

v at section node X reaches section node Y i f no path from X to Y contains a definition

of v, except at X or Y.

Kill information is computed quite differently within a PG compared to a CFG

[GS93]. In a PG, a definition of v in node A is killed before reaching node C if any path

from A to C passes through node B, where B contains a definition of v. We note that

the shield relation (introduced in 52.3.2) and reaches relation are duals of each other

with respect to killing data-flow information:

CFG Information from A can be killed by B before reaching C if all paths from A to

C pass through B.

 h he transitive reduction of graph G is any graph G' with the same vertices as G, but with as few
edges as possible, such that the transitive closure of G' is equal to the transitive closure of G.

PG Information from A can be killed by B before reaching C if any path from A to C

passes through B.

It is important to contrast two uses of the term "reaches". On the one hand we

speak of path reachability; here, A reaches B in a graph if there exists a path from A
to B. On the other hand, we will often be referring to reaching definitions, which is

concerned with the flow of a particular type of information through a graph. In this case

path reachability is not sufficient; definitions (or, more generally, data-flow information)

can be killed along paths in a graph due to nonidentity transfer functions. Most of the

time the meaning is clear from context, but when not, we will attempt to be explicit

concerning usage.

8.2 Merging Reaching Definitions in a Precedence Graph

8.2.1 Interesting Nodes and Merge Nodes Within a PG

At what points in a PG do we need to merge information, specifically reaching defi-

nitions? We need to merge definitions at the precedence section nodes in which the

definitions first come together. However, as opposed to sequential control flow, a vari-

able may not be defined along every path reaching a confluence point; as long as it is

defined along some path that reaches a use for that variable, a definition for that variable

will be available. This important distinction suggests that identifying merge points as

the iterated dominance frontier of a set S of nodes in the PG may not be correct. To

see why, examine Figure 8.4(a) with respect to reaching definitions. If v is only defined

at node X , then any use of v at W, 2, or A will have that definition available, since X

will always have been executed before any of these other sections execute. But DF+(X)

= {W, 2, A); clearly a merge node is not necessary when only a single definition of a

variable reaches any point. Since a precedence graph guarantees execution of all prede-

cessors, we need not be concerned about a definition of v flowing from node Y. Since

Y does not define v, it does not contribute to the reaching definitions of v for the other

nodes.

To see where merge operators are needed in a PG, first examine Figure 8.4(b), in

which v is defined in sections X and Y, and used in section A. Since both definitions

reach A without either killing the other, a merge operator is needed at A. However, we

need merge only two definitions, even though there are three predecessors. Thus, a merge

function for a PG only needs arguments for predecessors with definitions reaching the

Figure 8.4 Understanding merge operator placement in PGs

confluence node along that path. This observation highlights another major difference

between sequential and parallel merges; therefore we will use a new operator, the $-

function, as the merge operator for reaching definitions within the PG [SHW93]. The

$-function is similar to the &function in that it acts as a nonkilling definition in terms

of data-flow analysis, but it is also a use for all definitions that reach the $-function

via its arguments. By collecting multiple reaching definitions the $-function linearizes

definition chains within a PG in the same manner as the &function within a CFG.

To identify precisely where to place parallel merge operators in a PG we begin with

an important new definition:

Definition 8.2 In a flow graph, the meet of nodes X and Y, M(X, Y) =

{Z I VZx, Zy with Zx + Z and Zy -+ Z,

and V paths p x : X 4 Zx,py : Y A Zy,px n p y = 0)

We note that within arbitrary flow graphs the meet of two nodes is the dual definition to

join, as it uses a universal quantifier as opposed to the existential quantifier of join. For

a set of nodes S, M(S) is defined in the usual pairwise manner: M(S) = U M(X,Y).
X,YES

We also define M+(S) as the limit of increasing sequences analogous to that used for

join and dominance frontier:

The definition of join (Definition 3.1, and the basis of work to place &functions

[CFRS91]) is well-known. Although in a CFG JS(S) = J(S) [Wo194], the dual definition

of join for PGs, meet, does not possess this property. Consider Figure 8.4(a). Let S=

{X, Y). Then M(S) = { W,Z }; in fact, A $! M(S), but A E M(SUM(S)) = M(X, Y, W,Z)

= { W,Z,A).

The meet of two nodes possesses one of the important properties characterizing nodes

in a PG: it is unaffected by transitive edges. To prove this claim, we first formalize the

concept of a transitive edge as follows:

Definition 8.3 Edge E: X -+ Y added to graph G is a transitive edge i f 3 2 E G 3 X -%
z 4 Y.

We now show that the central concept of PGs, path reachability, is unaltered in the

presence of transitive edges.

Theorem 8.1 Path reachability i n a PG is unaflected by transitive edges.

Proof:

Consider PG GI, consisting of G plus transitive edge E : X + Y. Since all edges in

G exist in GI, if A reached B in G, A reaches B in GI. Now, let A reach B in GI,

but assume that A does not reach B in G. Then path pl: A 4 B in G1 must include

E, otherwise no distinction is possible between paths in G and GI. Thus, pl must be

of the form A -% X + Y 4 B. By Definition 8.3, X -% Z 4 Y in G. Thus, path p2:

A 5 X -% Z 3 Y -% B exists in G. By contradiction, we have demonstrated equivalence

of path reachability between G and G'. 1

We next demonstrate that the meet of a set of nodes is also unaffected in the presence

of transitive edges.

Theorem 8.2 The meet relation is insensitive to transitive edges.

Proof:

We use G and G1 as defined in the proof of Theorem 8.1, except that E is any transitive

edge added to G. We first show that for nodes X and Y, M(X,Y) in G is equal to

M(X,Y) in G' by means of double inclusion.

1. Let Z E M(X, Y) in G. We show that Z E M(X, Y) in GI. By Definition 8.2 for

meet, the intersection of all pairs of paths in G from X and Y to predecessors of Z

is empty. Now consider GI, which includes edge E: A + B. Assume Z E M(X, Y)

in G, but Z 6 M(X,Y) in GI. Then, in GI there exists node V such that V 3 Z

with X & V and Y i V. If no path from X -$ V or Y V passes through A,

there is no such V, since the only difference between G and GI is edge E. Thus,

without loss of generality, at least X , and perhaps Y, has a path to V that passes

through A. But from A, no nodes are reachable in GI that were not reachable in

G, as Theorem 8.1 demonstrated. Hence, if there is such a V in GI, it exists in G,

since its existence is predicated upon reachability. We conclude that since there is

no such V in G, there exists no such V in GI. By contradiction, Z E M(X, Y) in

GI.

2. Let Z E M(X, Y) in GI. By Definition 8.2 the intersection of all pairs of paths from

X and Y to predecessors of Z is empty in GI. Since the edges in G are a subset of

the edges in GI, any pair of paths from X and Y to predecessors of Z that exists

in G exists in GI, and has empty intersection in G' by assumption. Thus, that pair

of paths is empty in G, and Z E M(X, Y) in G.

Now consider M(S), where S is a set of nodes. Since M(S) = U M(X,Y), we apply
X,Y€S

the property just proved to each pair X ,Y to obtain the desired result for S: M(S) in

G equals M(S) in GI. I

Given a set of section nodes S defining a variable, merge operators for PGs need to

be placed at the iterated meet of S. In terms of reaching definitions, given a variable v

and a set S, where S is the set of section nodes in a PG defining v, $-functions need to

be placed at M+(S), where a $-function for v at section node A collects all definitions of

v that reach A. That is, there is an argument of the $-function for each predecessor of

A that has a definition of v reaching A. Figure 8.5 shows the case where even though an

edge exists from a definition of v (in node A) to the confluence node N, the $-function

placed at N will only collect the definitions from nodes B and C. That is because the

definition at A gets killed by the definition at B in this PG. In this case, S = {A , B, C),

and M(S) = M+(S) = {N), b ut we note that the edge A + N is a transitive edge and

Figure 8.5 Transitive edges do not affect reaching definitions in PGs

M(B, C) = { N) .

8.2.2 Proving Correct and Minimal Placement

We will first prove that it is sufficient to place $-functions at M+(S). The concept

of iterated meet is a correction of the $-function placement method suggested earlier

[SHW93], in that the iterated meet is smaller and, in fact, the minimal set.

How do $-functions affect reaching definitions in a PG? If node N is reached by

$-function s and s is reached by definition d (where s collects d as a $-argument), then d

reaches N indirectly via a $-function. In general, it may be that one or more +-functions

lie on the path from d to N. In that case, d reaches N indirectly via a $-chain. Thus,

a definition or $-function in a PG that reaches node N in the sense of Definition 8.1 is

called a direct reaching definition, whereas a definition reaching node N via a $-chain is

called an indirect reaching definition.

We now prove that placing $-functions at the iterated meet of the set of nodes that

define a variable maintains the following properties:

1. A unique reaching definition exists for each variable use.

2. A $-function will collect all definitions (directly or indirectly) that could reach a

node before $-function placement.

3. M+(S) identifies the minimal set at which to place $-functions.

Theorem 8.3 In a PG, with $-functions for v placed at M+(S), all uses of v within

node N will be reached (in the sense of Definition 8.1) by exactly one definition (including

$-functions) of v.

Proof:

Let G be a PG before placing $-functions, and G+ be the same graph after $-function

placement. Within G, let the set of nodes with definitions of v be S , S' S be the set

of nodes in S having definitions that reach N, and 7 C S be the set of nodes in S with

paths that reach N.

EXISTENCE. We first show that any use that had at least one reaching definition

in G has at least one reaching definition in G+. Since St# 8, let A E S' in G. Then all

paths p~ : A Z, with Z + N, contain no definitions of v (except at A). For all p~ in

G+, if the definition of v in A does not directly reach N, then there must be at least one

$-function along some PA. In this case, at least one $-function reaches N.

UNIQUENESS. We consider cases:

(i) Only one W E S' reaches N (IStI = 1). In this case, the definition in W kills any other

definitions that may exist in nodes of 7. Then, Vtl, t2 E 7, 3ptl:tl 5 N, pt2: t2 5 N,

W E ptl n pt2. Thus, N $! M(T), and more generally, no node on any pw:W 3 N

(except, perhaps, W) is an element of M(7). Repeating this argument, no node in any

pw - {W) E M+(T). Thus, in G+ only the definition of v in W reaches N , since no

additional definitions ($-functions) created in G+ can directly reach N.

(ii) Multiple definitions of v reach N from St, with N E M+(S). Then a $-function will

be placed at the beginning of node N in G+, and uses of v within N will be reached by

that $-function.

(iii) Multiple definitions of v reach N from S', with N @ M+(S). Assume N is reached

by more than one definition from members of {S U M+(S)). Call this set R1. Then

either (a) N E M(R1), which contradicts our assumption, or (b) VA, B E R1 M(A, B) is

nonempty (since A and B reach N), and let R2 be the set of all elements of M(R1) having

paths that reach N. Repeating this process, we note that R must converge at a limit set

R+, since is always composed of nodes closer to N, along the paths from nodes in

R1 to N , than the nodes in &. If the set R+ consists of exactly one node (it cannot

be zero by the existence proof), we have a contradiction of assumption. If it contains

more than one node (which cannot include N by assumption), R has not converged. A

contradiction is again reached as long as G contains a finite number of nodes.

Thus, in all cases, we have shown that in G+ precisely one reaching definition will

exist for each use that had at least one reaching definition in G. (

Theorem 8.4 Within a PG, with $-functions placed at M+(S), any use of v at node N

will be reached directly or indirectly by all definitions of v that reached N before placing

$-functions.

Pro0 f:

Let G be a PG before placing $-functions, and G+ be the same graph after $-function

placement. We consider two cases:

(i) Only one definition of v reaches N in G. This case is handled similarly to case (i) in

Theorem 8.3, and the single definition that reached N in G will reach N in G@.

(i i) Multiple definitions of v reach N in G. All definitions for v from node A that reach

N in G reach N indirectly in G+ via a $-chain. TO show this, consider all paths p from

A to N in G. By Definition 8.1, no paths from A to N in G contain definitions of v .

Since, by assumption, a definition of v in G+ does not reach N from A, by Definition 8.1

there must exist a definition along some path from A to N that did not exist in G. That

definition can only be a $-function. If there is just one $-function along the path then

it collects all definitions reaching it, and that $-function will now reach N, resulting

in the definition of v reaching N indirectly. If there is more than one $-function along

any path from A to N , the argument is repeated. By induction, a definition of v in A

will reach N via a $-chain. Thus, we have shown that reachability of all definitions is

maintained when placing $-functions.

We now show that M+(S) is the minimal set at which to place $-functions.

Theorem 8.5 Within a PG, for a set of nodes S which define v, M+(S) is the smallest

set at which to place $-functions in order to insure unique reaching definitions at all

nodes.

Pro0 f:

Given S for variable v, consider any element N E M+(S). Let N E M~(s), for the

minimum j > 1. Then 3X, Y E M~-~(s) (where M0(s) = S) such that all pairs of paths

from X and Y to predecessors of N are empty. Since X and Y contain definitions of v

(either assignments to v or $-functions for v), the definitions at X and Y (or, perhaps,

a later definition of v within some node along one of these disjoint paths) both reach N.

Thus, by removing the $-function for v at N, any use of v within N would be reached

by multiple definitions. 1

8.3 Algorithms and Correctness

In this section, we first discuss several necessary details for implementation. Next, we

present the complete algorithm to insert & and $-functions, and correctly create and

generate the proper reaching definitions as arguments. We also demonstrate the cor-

rectness and safety of these algorithms, which have been successfully implemented in

Nascent.

8.3.1 An Introduction to $-Function Placement

In our implementation, the compiler finds for each variable the set of nodes in each local

CFG or PG where the variable is assigned. A section node in the PG is considered to

have an assignment to a variable if the code within the corresponding section assigns

the variable. Function (4 or $) placement is done jointly, with the function type distin-

guished by the type of node at the confluence point: a supernode or section node tells

us that a $-function is required.

Our method can result in a $-function being initially placed at a PG join point where

only one reaching definition within the PG block is defined. This situation can occur in

two ways: a variable is defined within a section node that has only one section successor,

or a variable is defined within a supernode such that only one definition of that variable

reaches outside the parallel block. Although such a $-function will have only a single

argument, it is a necessary step for the chaining algorithm within parallel sections, as

will be detailed in $8.3.3.

8.3.2 Contrasting $J- and &Functions

It has already been noted that placing $-functions at the DF of nodes in the PG may

result in only a single argument to this function. Although every predecessor will have

a reaching definition for each variable (we always add an initial definition at program

Entry), we do not want to include reaching definitions from outside the current parallel

block as an argument to a $-function - that definition will always be the default reaching

definition if none exists within the current parallel block. When chaining arguments to

&functions we know how many arguments must be filled in with appropriate definitions

- the number of predecessors. But with $-functions, we only fill in arguments as needed.

There will be at least one $-argument, since the presence of the function tells us that a

definition exists from another section node in this parallel block. But, there may be just

that one argument to a $-function. If that is the case, a singleton-$ is created, which

serves a special purpose.

There is a crucial distinction to be made between $- and &functions. A +function

is a variable assignment; the choice of assignment is given by the predecessor number of

the path taken to reach the merge. A $-function, on the other hand, reports anomalous

or multiple updates. Hence, $-arguments are not necessary for each predecessor of a

section node - only those in which an update occurs for a given variable. This property

implies that the order of the arguments for $-functions is not important, since there is

not a one-to-one relationship between arguments and predecessors.

Confluence points in the PG do not represent different possible paths for the sections

(as they would in a sequential CFG), since all parallel sections are executed. Rather, they

identify those parallel sections that must be executed before the merge section (hence

altering the copy-in status for all variable in the merge section) and these are sections

that may redefine variables whose definitions reach beyond the merge section. Thus, even

if there is a singleton-$, its reaching definition is critical, since it must be propagated

to other sections waiting upon the confluence point. This situation is reflected in the

complete algorithm, where we propagate the reaching definition of the argument in this

case rather than the $-function. Once it has served its purpose, we can delete a singleton-

$, since we have discovered that only one definition reaches this merge point from within

the parallel section.

Singleton-$'s are essentially used as a temporary holding pen for single reaching

definitions between explicit parallel sections. Propagating the argument's reaching defi-

nition in this case also eliminates redundant links to names, which can otherwise arise.

Consider the example program from Figure 8.2, shown in its SSA form in Figure 8.10.

Section D uses variables a, b, c, and f to redefine c. Variable a's reaching definition

comes from outside the parallel block and f 's reaching definition comes from the $-

function at EntryD, which merges the definitions from Sections A and B. But b and c

have their reaching definitions propagated from single wait-predecessor sections, A and

B respectively. To correctly propagate these values to D, a $-function (call it bt = +)

is created in EntryD for b (and likewise for c). Yet if b' = $(b5) is treated as a normal

definition, bt would be pushed onto the stack of definitions for b. When used in the

new generation of c a pointer to b' would be inserted, which only points to b5. Thus, b'

would be just another link to b5, which is redundant. The $-function was necessary to

propagate the correct reaching definition of b to section D, but after visiting all sections

waiting upon this definition of b, b' = $ can be deleted.

Notice, also, that in the $-function creation phase, the variable generations of b at

Sections A (b5) and D (b') will create another $-function at tailpl with arguments bg

and b5. By eliminating redundant links this duplication is detected, reducing this $-

function to a singleton-$, hence propagating the correct reaching definition of b to the

rest of the program before being deleted.

8.3.3 Depth-first Renaming

Computing the iterated meet seems somewhat impractical from its definition. After

placing &functions the technique of chaining transforms each variable definition into a

unique name and each use into the name of its unique reaching definition [CFR+91]. The

method employed to perform this renaming is depth-first, in that it recursively traverses

the dominator tree in a depth-first order, keeping a stack of current definitions for each

variable. The key property that the chaining scheme satisfies is that at each node the

correct "current" definition (an original definition or &function) of each variable is the

most recent definition on the depth-first path to this node from Entry, i.e., the definition

on top of the definition stack [CFRS91, Lemma 101. In fact, a depth-first traversal of

any spanning tree of the CFG will also satisfy this property. Unfortunately, a depth-first

traversal of the nodes of a PG will not satisfy this key property with merge operators at

M+(S). For instance, in Figure 8.6, no $-function is needed at node C for either x or y,

Figure 8.6 All merge points in a PG do not require $-functions

since only one definition of each variable reaches node C (in the sense of Definition 8.1).

Suppose the depth-first traversal of the PG visits node C after node A; when visiting

node C, the current definition of variable x will be the definition in A, but the current

definition of variable y will be wrong.

8.3.4 Efficient Implementation

What method can be used that is relatively efficient and yet correctly propagates infor-

mation between section nodes of a PG? We need to look more closely at how information

flows between nodes in a PG, keeping in mind that a precedence graph has different se-

mantics compared to a CFG.

Since information flowing through the PG is described in terms of reachability, we

have found the concept of reaching frontier useful. This concept describes reachable

nodes in a PG in a way that is analogous to the dominance frontier for nodes within a

CFG.

Definition 8.4 The reaching frontier of X, RF(X) =

{Z I X reaches a predecessor of 2, but X does not reach all predecessors of Z)

The reaching frontier of a set S, RF(S), is defined to be the union of the reaching

frontiers of all elements of S, i.e., RF(S) = U RF(X). The iterated reaching frontier,
x ES

RF+(S), is defined similarly to that for join, meet, and dominance frontier. The reaching

frontier is used to relate important properties between the meet and dominance frontier.

To implement the placement of operators merging information within a PG, we would

like to show that M+(S) G RF+(S) E DF+ (S).

How are the meet and reaching frontier related? The analogous relations in sequential

CFGs, join and dominance frontier, are shown to be equal when iterated, with the

provision that Entry E S. However, Entry adds no information to either the meet or the

reaching frontier in a PG. M(Entry , X) = 0 VX, since Entry reaches all nodes, and thus

there is always a path from Entry to any node on any path from X. Also, RF(Entry)

= 0, since Entry reaches all predecessors of all nodes.

We can also show that RF+(S) # M+(S). Simply choose the set T = {X, Entry).

Then M(T) = 0, so M+(T) = 0, while RF(T) clearly may not be empty. We now show

that in general M+ (S) 5 RFS (S).

Theorem 8.6 w(S) G RFt(S)

Proof:

Let Z E M(S). Then there is a node X E S such that X has a path that reaches a

predecessor of Z, but X cannot reach all predecessors of Z or else there would be no

path from any other node that did not intersect some path from X to each predecessor

of Z (which would imply that Z $ M(S)). So, we have Z E RF(X) and Z E RF(S).

Finally, M(X) C RF(X) * MS(X) G RF+(X). I

We also show that DF(S) is not in general a subset or superset of RF(S). In Fig-

Figure 8.7 DF(S) and RF(S) are sometimes unrelated

ure 8.7, DF(X) = {A,Z), but RF(X) = {Z), since it reaches all predecessors of A. It

is also easy to find a graph where X reaches a predecessor of Z but does not dominate

any predecessor of 2, so Z E RF(X), but Z $ DF(X).

Next, we show that the iterated dominance frontier is a superset of the iterated

reaching frontier on all graphs.

Theorem 8.7 DF'((S) 2 RFt (S)

Pro0 f:

It has been shown [CFR+91, Lemma 41 that for any node Z that X reaches, some node

Y E {X U DF+(x)) dominates Z. Now, for any node Z that X reaches, if Z is in RF(X),

then Z is in DF+(X); this is because some node in DF+(x) must dominate Z. Choose

a path p from X to Z. Let Y be the last node on p in {X U DF+(X)); Y must be Z.

If Y is not Z, then Y dominates all predecessors of Z, so there is a path from Y to all

predecessors of 2; thus there is a path from X to all predecessors of Z, and Z is not in

RF(X).

Thus, DF+(X) > RF(X). Hence, DF+(S) > RF(S). RF~(S) = RF(SU RF(S))

RF(SuDF+(S)) C DFS(SuDF+(S)) = DFS(S). By induction, DF+(S) > RF+(S). I

In general RFS(X) # DF+(X). Although DFS(X) > RF+(X), the converse is

not necessarily true. Consider Figure 8.8. DF(X)= {B,Z), and D F ~ (X) = DF+(X)

Figure 8.8 RF+(X) 2 DF+(X)

= {B,Z,X). However, RF(X) = {B), and R F ~ (X) = RFS(X) = {B,X). Thus, by

counterexample, RFS (X) 2 DFS (X) .
But, we note that the example above contains a cycle. We are interested in placing

$-functions in a PG, which we know to be acyclic. We next show that in a DAG RF+(S)

= DF+(s).

Theorem 8.8 In a DA G, R p (S) = D F ~ (S)

Proof:

Given a DAG, we demonstrate two preliminary lemmas.

Lemma 8.1 RFf (S) > DF(S).
-

Let X E S and let Z be in DF(X). Then X dom A, a predecessor of Z. X d o m
-

B, some other predecessor of Z, since X dona Z. If X does not reach B, then Z is

in RF(X). So assume that X reaches B.

We now show that on some path from X to B, there exists a C such that C is in
-

RF(X). Since X d o m B, consider a path from entry to B such that X is not on

the path (there must be at least one such path). Let C be the first node on this

path that X can reach (C may be B). Then since X can reach C, but not the

predecessor of C on this path, C is in RF(X).

Next, note that C cannot reach A. Otherwise, we would have the path Entry

+ C + A (which cannot go through X since the graph is acyclic) that does not

pass through X, contradicting the fact that X dom A.

But, this condition means that Z is in RF(C), since C reaches Z through B, but

cannot reach A. We already know that C is in RF(X), so we have shown that Z

is in RF+ (X). 1

. Lemma 8.2 RP(S) > DF+(s).

Given Lemma 8.1, we know that RF+(x) 1 DF(X). So, RF+(S) 2 DF(S).

D F ~ (S) = DF(SU DF(S)) 2 RFS (SU RF+(S)) = RF+(S). By induction, DF+(S)

c_ RF+(s). 1

Lemma 8.2 together with Theorem 8.7 gives us our result. 1

Since M+(S) 2 RF+(S) G DFS (S) (with RF+(S) = DF+(S) in a DAG), we have

shown that placing $-functions within a PG at the DF+(S) is a safe approximation for the

somewhat smaller set of M+(S). However, for the common depth-first implementations

using renaming, placing merge operators at DF+(S) may well be the method of choice.

How conservative is the use of DF+(S) as an approximation for M+(S)? First, if there

is only one member of S, then M+(S) will be empty, while DF+(S) will usually not be

empty. Second, DF+(S) assumes a definition lies along all possible paths. Thus, in the

case of Figure 8.9 where S= {A, C), M(S) = MS(S) = {E), while DF(S) includes D.

Third, M+(S) is insensitive to transitive edges, while DF+(S) is not. Again, examine

Figure 8.9, where DF+(S) = {D, E, F). A +-function is only needed at E, but the

insensitivity to transitive edges of DF+(S) adds node F to its set.

However, extra $-functions are safe, since they only pass along the information col-

lected at those points. Thus, merging information at DF+(S) within a PG has been

shown to be a safe method, and is relatively efficient since it can be performed with the

same complexity as that for &function placement.

In terms of the space requirements for placing $-functions within the PG, we can

use the space consumed by &function placement as an upper bound, since M+(S) C

Figure 8.9 Using DF+(S) as an approximation for M+(S)

DF+(S). While the worst case scenario could be O (N 2) , in practice most programs

exhibit linear space requirements when placing &functions [CFR+91, Hav94J.

8.3.5 Complete Algorithms for PGs

The complete transformation of an intermediate representation into parallel SSA form

is accomplished in two main phases: function placement and chaining. For these algo-

rithms, successor and predecessor always refer to nodes in the local CFG, while children

refers to the dominator tree of the associated local CFG.

We describe here the data structures used for the following algorithms:

A(V) - A list of all nodes with assignments to variable V.

symbol(tuple) - A function that returns the variable symbol (name) associated

with this tuple, if it exists. Returns null otherwise.

V.CurrentDef - A pointer to the current definition (tuple) of symbol V. Logically

points to the top of a definition stack. Initialized to source.

t.SavedDef - A pointer to the current definition of symbol(t) before processing this

tuple. Used to logically pop definitions off a stack when returning from recursive

calls down the dominator tree.

a T(*) - Stack of nodes to hold section nodes of PG for popping in topological order.

Initialized to null.

DF(N) - Local dominance frontier for node N.

WhichPred(N, Q) - An integer indicating which predecessor of Q in the local CFG

is N.

a Work-List - An unordered list of CFG nodes. For each variable V, WorkList is

initialized to A(V), all assignments to V.

a HasFunc(*) - A reference field to a variable in each CFG node. HasFunc(N) = V

means block N already has a & or $-function added for variable V.

a Work(*) - A reference field for each local CFG or PG node. Work(N) = V means

that node N has already been added to the WorkList for variable V.

a set-delete($) - Marks a singleton $-function for later deletion.

The placement of $-functions is done concurrently with the placement of &functions,

as is shown in Algorithm 8.1. Functions are placed at the iterated dominance frontier

of each assignment per given variable, V. A(V), the list of all initial assignments to V,

is found in one pass through the program, storing the definitions of V as a linked list,

as was done for Algorithm 3.1. We do not have to reinitialize the fields HasFunc and

Work as each variable is processed, since they are just pointers to each variable under

consideration.

At each iterated dominance frontier nodet we distinguish whether to place a q5- or

$-function by the type of node encountered (lines 16 - 20 in Algorithm 8.1) - a basic

block node in a local CFG always receives a &function, while PG nodes indicate that a

$-function is required. However, note that a $-function is not actually placed within the

PG node, but rather within the Entry node of the corresponding section, unless the PG

node is coend, in which case it is placed within the tail node of the enclosing supernode

in the outer local CFG. In this way we correctly propagate definitions reaching the end

' ~ l t h o u ~ h line 13 in Algorithm 8.1 looks at each Q in the dominance frontier of N, lines 22 - 28
effectively iterate the dominance frontier by placing nodes back into the worklist.

Given: A(V), V V.
Do: compute DF(N), V N E EFG. -

Initialize with lines 1 - 4
Result: Extended SSA form with $-functions for PGs

1 : for all nodes N do
2 : HasFunc(N) t 0
3 : Work(N) t 0
4 : endfor

for each variable V do
Work-List t 0
for each N in A (V)

Work(N) t V
Work-List t Work-List U { N)

endfor
while Work-List # 0 do

take N from Work-List
for each Q in DF(N) do

if HasFunc(Q) # V then
HasFunc(Q) t V
if Q is a basic block of local CFG then

add-4 (Q, V)
else if Q is a member of PG then

add-llr (Q, V)
endif

endif
if Work(Q) # V then

Work(Q) t V
Work-List t Work-List U { Q)
if Q is a section Exit basic block then

Work-List e Work-List U {PQ, SQ)
endif

endif
endfor /* each Q in DF */

endwhile
endfor /* each variable V */

32 : add+(N, V)
33 : i t number of predecessors of N
34 : place V = 4 (&, V2, ..., V,) at the beginning of basic block N,
35 : where 4 corresponds to the jth predecessor of N

36 : add-11, (N, V)
37 : if N is a section node, then N' t en try^
38 : if N is a coend node, then N' c tailpN
39 : place V = $ at N'

Algorithm 8.1 Placement: locations for $- and +-functions

Given: Initialized data structures.
Do: Call ChainEFG(Entrymai,) -
Result: Extended SSA form with $-functions for PGs

ChainEFG(N)
if N is a node of a local CFG then

for all tuples t E N, in forward order do
V t symbol(t)
if t is an ordinary use of V then

link(t) t V. CurrentDef
endif
if t is an ordinary definition or 4-function of V then

t.SaveDef t V. CurrentDef
V. CurrentDef t t

else if t is a $-function o f t then
t.SaveDef t V. CurrentDef
eliminate duplicate arguments to $
num t number of $ arguments
if num = 1 then

set-delete($)
V. CurrentDef t link(t)

else if num > 1 then
V. CurrentDef t t

endif
endif

endfor /* all tuples in N */
endif

Algorithm 8.2 Chaining an EFG: correctly inserting links

24 : if N is a supernode then traversePG(EntryN) /* cobegin for N */
25 : if N is a node of a local CFG then
26 : for each Q E Succ(N) do /* Succ(N) in CFG */
27 : j t WhichPred(N,Q)
28 : for each &function merge tuple f in Q do
29 : V t symbol(f)
30 : link(jth argument o f f) t V.CurrentDef
31 : end for
32 : endfor
33 : for each Q E Children(N) do /* children in dom tree */
34 : ChainEFG(Q)
35 : end for
36 : for all tuples t E N, in reverse order do
37 : if t is a definition tuple do
38 : V t symbol(t)
39 : V. CurrentDef t t.SaveDef
40 : if t is a $-function & set-delete(t) then
41 : remove t and ats arguments
42 : endif
43 : endif
44 : endfor
45 : endif
46: end ChainEFG

Algorithm 8.2 (cont.)

Given: Precedence Graph E
Do: Call tmversePG(E) -
Result: Correct node traversal in a PG

1 : trauersePG(E)
2 : call dfst(E) /* Algorithm 8.4 */
3 : while T # 0 do
4 : M i- P ~ P (T)
5 : if M is a section node do
6 : ChainEFG(EntryM)
7 : for all $-function merge tuple t E EntryM do
8 : V c symbol(t)
9 : t.SaveDef t V.CurrentDef
10: V. CurrentDef e t
11: enddo
12 : for all +function merge tuples t E ExitM do
13 : V c symbol(t)
14 : t.SaveDef c V.CurrentDef
15: V. CurrentDef t t
16 : enddo
17 : for each Q E Succ(N) do /* Succ(N) in PG gmph */
18: if Q is a section node, then Q' t EntryQ
19 : if Q is a coend node, then Q' t tailpQ
20 : for all $-function merge tuples f E Q' do
21 : V c symbol(f)
22 : if V.CurrentDef is contained within enclosing parallel block then
23 : add arg = $-argument to f with link(arg) t V.CurrentDef
24 : endif
25 : enddo
26 : enddo
27 : enddo /* of section node */
28 : R c M
29 : while R # parent(Top(T)) do
30 : for all #+function merge tuples t E exit^ do
31: V t symbol(t)
32 : V. CurrentDef e t.SaveDef
33 : endfor
34 : for all $-finction merge tuples t E EntryR do
35 : V c symbol(t)
36 : V. CurrentDef t t.SaveDef
37 : if set-delete(t) then
38 : remove t and its arguments
39 : endif
40 : endfor
41 : R e parent(R) /* parent set in dfst */
42 : endwhile
43 : endwhile
44: end traversePG

Algorithm 8.3 Correct traversal of nodes in the PG

of a parallel section to the sequential flow which follows the supernode in the enclosing

local CFG. The distinction made to determine which type of merge node to create also

enables a single field, HasFunc, to be used for each node; there can never be both a &
and $-function placed at the same node.

The other importance difference between & and $-functions in the placement phase

can be seen by examining the add-4 and add-$ routines in Algorithm 8.1. When a

+function is placed at a node, its arity is fixed at i, where i is the number of CFG

predecessors of the node. On the other hand, when a $-function is placed at a node,

we do not know its arity, other than it will be at least one. There is not necessarily a

correspondence between $-arguments and PG predecessors. Remember, a $-argument

reflects a definition of that variable within the corresponding parallel section. It may be

that no definition of the variable exists within a predecessor section for some $-function.

It is in the next phase, renaming, that arguments are added to $-functions.

Once & and +-function placement is accomplished, the chaining phase is invoked.

Algorithm 8.2 fills in the correct argument pointers in the case of &functions and creates

$-arguments when needed, filled in with the current reaching definition for each variable.

This algorithm also links each ordinary use to its unique reaching definition.

The chaining algorithm we present in this chapter works the same as Algorithm 3.2

when traversing a local CFG except that $-functions as well as &functions are treated as

variable generations and pushed logically onto a definition stack. However, when looking

for &functions at CFG successors, we will never examine a node which could contain

both a &function and a $-function. A $-function can only be placed at two types of

nodes: Section entry nodes and the tail node for a supernode. In the former case, we

have a node with no nodes in its dominance frontier, and in the latter we have a node

with exactly one predecessor.

Algorithm 3.2 performs a depth-first traversal of the dominator tree of the CFG. We

modify this algorithm for parallel constructs as follows:

1. Begin the traversal with the E n t y node for Gmain.

2. When visiting a basic block node or Entry node, the algorithm works the same as

originally presented.

3. When visiting a supernode, the procedure recurses to perform a traversal of the

nodes in the corresponding PG. The order of traversal of these nodes is important:

the traversal of section nodes must preserve topological order - that is, every

(p) a 1 = 2
(p) bl = 3
(p) Cl = 4
(p) if (9) then

Parallel Sections
Section A

(s) if (PI then
(t) b2 = a 1 * 5

else
(u) b3 = al + 7
(u) fi = b3 * a1

(v) endif
(v) b4 = 4 (b z , b 3)

(v) f2 = 4 (f o , f i)

(E x i t A) bs = 4 (b 4 , b i)

(E x i t A) f3 = 4 (f o Y f 2)

Section B
(w) c2 = C I + 15
(W) f4 = c2 * 16
(E x i t B) C3 = &a, c 2)

(E x i t B) f s = 4 (f o , f 4)

Section C, Wait(A)
(XI dl = bs * a1

(E x i t C) d 2 = + (d o , d l)

Section D, Wait(A, B)
(E n t r ~ D) f6 = ' $ (f 3 9 f 5)

(Y) c4 = a 1 * b5 + c3 * f5

(E x i t D) Cs = 4 (c 3 , c 4)

End Parallel Sections
(t a i l p l) f7 = ' $ (f 3 , f 6)

(n) d 3 = d2 + f7

(p) else
(9) d 4 = 23
(r) endif
(r) b6 = 4 (b ~ , b l)

(r) cg = $ J (c 5 , c 1)

(r) ds = 4 (d 3 , d 4)

(r) f a = 4 (f o , f 7)

(r) el = a 1 + b6 * cg * d5

Figure 8.10 SSA form of parallel program

predecessor of a section node must be visited before visiting the section node itself.

Since the PG is acyclic, it is fairly easy to discover a correct order. We call the rou-

tine dfst() to build a correct traversal order (see Algorithm 8.4 and Theorems 8.12

- 8.14).

4. When visiting a section node, singleton $-functions can be identified for deletion

(a separate pass is not needed to actually delete these functions, since the deletion

occurs at lines 37 - 39 of Algorithm 8.3, the same time definitions are popped off

the stack). First, for each $-function at this section node, remove any duplicate

$-arguments. If there is only one remaining $-argument, then that argument can

be marked for future deletion. If there is more than one remaining $-argument,

the $-function is necessary. The procedure then recurses to visit the dominator

tree of the corresponding local CFG. Insertion of $-arguments is done to the wait-

dependence successors in a fashion similar to the chaining process for arguments

of &functions.

5. When visiting an Exit node for a section, the SSA name for every variable modified

in that section must be propagated back to the section node, as though there were

an assignment in that section node. Due to slice edges, all variables defined within

the section will have corresponding &functions at the section Exit.

6. Similarly, when visiting a coend node, each SSA name modified in the parallel block

must be propagated to the corresponding supernode. We accomplish this task by

placing $-functions for coend nodes at the parallel block tail node. If only a single

reaching definition of a variable reaches coend, a singleton-$ will be created.

The SSA form of the parallel program (where the EFG includes slice edges) in Fig-

ure 8.2 is shown in Figure 8.10.

A major revision to Algorithm 3.2 occurs when a supernode is encountered. At

this point we must traverse the section nodes of the corresponding PG by calling tra-

versePG(), and recursively calling ChainEFG() on each local local CFG (see Algo-

rithm 8.3). If that local local CFG has a supernode, then traversePG() will again be

called. Thus, ChainEFG() and traversePG() seesaw back and forth as needed.

8.3.6 Safety and Correctness of the Algorithms

We show in this section that the algorithms presented perform as intended. We first

demonstrate that &functions are correctly placed, and that $-functions are placed at all

points identified by Definition 8.2. Our algorithm may place $-functions at more points

than required, but these functions are useful for implementation, notably as singleton-$s,

and are deleted later. Next, we show that the correct reaching definitions are propagated

and inserted as arguments to & and $-functions. Finally, we prove that the traversePG()

routine visits nodes within the PG graph in the correct order, and we also provide

complexity analysis for the algorithms.

Within an EFG, &functions for variable v need to be placed at all points in each

local CFG that correspond to the DFS(S), where S is the set of nodes in a local CFG

that define v. Furthermore, if the local Exit node is in DF+(S), &functions need to

be placed in DF+(PM), for M E S. This concept was formalized earlier [SHW93],

and called the Parallel Precedence frontier (PPF) of a node. It was also proved in

the work by Srinivasan et al. that &functions are needed at PPF+(S), the limit of

increasing sequences of PPF sets. Here, we provide mechanisms to implement these

concepts efficiently, and prove their safety and correctness. Formally, the PPF of a node

is recursively defined as follows:

Definition 8.5 Given the following descriptions:

PPFloml(X) is the sequential dominance frontier of X , defined within Gx;

PPFlWl (X) is defined between nodes and supernodes in Gx and does not

consider nodes within supernodes, and

Px is the supernode containing X, as defined earlier. (If X E G,,,, then Px = 0.)

W e define the parallel precedence frontier of a basic block node or supernode X, denoted

PPF(X), as follows:

If exit^^ 4 PPFlocar(X) then PPF(X) = P P F I ~ ~ I (X) .

If ExitGx E PPF1ocal(X) then PPF(X) = PPFIoml (X) U PPF(Px).

Theorem 8.9 The placement algorithm inserts a 4-function at all points i n PPF+(S)

for any variable, and a $-function at all points identajied by Definition 8.2.

Proof:

We first consider the proper placement of #-functions. As described above, for variable

v, +functions belong at PPF+(A(v)). Thus, we need to show that Algorithm 8.1 places

#-functions a t precisely those points. For each element in A(v), lines 16 and 24 operate

the same as the original sequential algorithm. This procedure satisfies the first half of

Definition 8.5, while lines 25 - 27 satisfies the second half of the definition (adding SQ

on this line to the worklist generates a $-function, as seen by lines 18 - 19). Finally,

lines 22 - 24 insure that the PPF is iterated.

Next, we show that the points identified by Definition 8.2 are a subset of those

identified in Algorithm 8.1. Due to the slice edge in each section local CFG, every local

Exit node is always in the iterated dominance frontier of all nodes (except local Entry

and Exit) within the section (Theorem 3.1). Thus, if variable v is defined within a

section, the local Exit node will always have a &function created for v. Lines 25 - 27

from Algorithm 8.1 guarantees that the section in the P G graph containing the variable

definition is added to the worklist. Similarly, the slice edge in the PG graph insures that

the coend node is added to the worklist via the DF+. Any section node from Definition

8.2 is contained in the DFS of a variable definition by Theorems 8.6 and 8.7, and we

have shown that our algorithm identifies all nodes in the DF+ for $-function placement.

I

Theorem 8.10 The correct reaching definitions for $-functions are propagated by Al-

gorithms 8.2 and 8.3.

Proof By exhaustive cases. Let g be any $-function for variable v. From Algorithm 8.1

we know g is either (2) at a Section Entry node or (ii) at the tail node of a supernode.

case (2) . Let g E Section B for arbitrary Sections A and B, such that B waits upon A.
We must show that all reaching definitions of v from Section A are correctly propagated

to g. By Theorem 3.1, any downward-exposed definition of v in A results in a +function,

f , being created for v in ExitA. Lines 12-16 of Algorithm 8.3 logically push a pointer

to f onto a definition stack, which at this point is v . CurrentDef. We have two subcases.

In subcase (i.a), B waits directly upon A. Lines 17 - 18 of Algorithm 8.3 will examine

B (which we know contains v = $ by Theorem 8.9), and create a +-argument in line 23

with link($-arg) = f . In subcase (i.b), B waits transitively upon A with no intervening

definition of v. Here, since there are no intervening definitions of v, v. CurrentDefremains

unchanged until reaching B as long as it is not logically popped off the definition stack,

which could only occur if v. CurrentDef is reset. The only issue concerns whether the

section nodes are visited in the correct order. This issue is dealt with in Theorems 8.12

- 8.14 later in this section.

case (ii). Let g E tailp. This case is actually a special case of (i), where coend E

DF+. Line 19 of Algorithm 8.3 insures that the reaching definition is propagated to g

in this case. I

Theorem 8.11 The correct reaching definitions for $-functions are propagated by Al-

gorithms 8.2 and 8.3.

Proof:

Consider any +function f for variable v. I f f is within a local CFG, then Algorithm 8.2

works the same as Algorithm 3.2. We need only consider the case where the local CFG

contains a supernode, P, and (i) f is within P, or (ii) f is at a point reached by P.

case (i). Either f E DF+ of A(v), or not. If not, then v. CurrentDef is a pointer to

the current reaching definition of v, propagated from its local Exit node +function, and

logically pushed onto a stack of definitions by lines 12 - 16 of Algorithm 8.3 . If so, then

Algorithm 8.1 guarantees that a $-function was created at EntryG,, and Theorem 8.10

assures us that it possesses the proper reaching definition.

case (ii). The last definition of v from one branch of a local CFG reaching f comes

from inside P. But here v.CurrentDef will be the $-function at tailp when filling in the

correct +argument in lines 28 - 31 of Algorithm 8.2.)

Algorithm 8.3 provides the details for traversing the PG section nodes in the right

order: they must be visited in topological order, but must also be visited in a depth-first

fashion of some spanning tree of the PG graph. Algorithm 3.2 visits nodes for chaining

in a depth-first order of its dominator tree. We visit the section nodes of a supernode in

topological order. Note that a depth-first order of a graph will not, in general, visit the

nodes in topological order, and all topological orders do not visit a directed graph in a

depth-first manner of some spanning tree of that graph. The key idea of Algorithm 3.2 is

that when a depth-first search of the dominator tree visits a node all reaching definitions

of previous nodes are logically on a stack. This task is accomplished by the depth-first

search, as it will visit all a node's dominator tree children before completing its call, and

only then pop off definitions within the node. For sequential code, visiting nodes in a

depth-first order of the dominator tree effectively produces a 'must-precedes' ordering;

for a supernode, we visit section nodes in the 'must-precede' order by examining them

topologically, while we insure that the correct reaching definitions between section nodes

exists by visiting these nodes in a depth-first order of some spanning tree of the PG.

Thus, we would like to find a spanning tree of the PG such that there exists a depth-

first search of that tree that maintains topological order. We prove that Algorithm 8.4

Given: Precedence Graph with root R
Do: Initialize with lines 1 - 2 -

call dfst(R)
Result: Topological order of some spanning tree of PG

1 : set of edges E t 0
2 : stack of nodes T t 0

dfst(V)
mark visited(V)
for each child (successor in a PG) of V do

if unvisited(chi1d) then
add edge V + child to E
parent(chi1d) t V
dfst(chi1d)

endif
enddo
push V onto T

end dfst

Algorithm 8.4 Ordering PG nodes for processing

accomplishes the desired task, which is called by the routine traversePG().

Theorem 8.12 Popping T will visit the nodes of G in topological order.

This result is well-known [Sed88].)

Theorem 8.13 E is a spanning tree of G.

Proof:

Choose any node N of G. We know N is visited (Theorem 8.12), and visited only once,

since it is marked when visited the first time, and will not be revisited once so marked.

Since each node N has at most one edge in E with head N , we need only show that

N can be reached from the root, R. Simply follow the parent links repeatedly from N .

The unique parent P of N corresponds to an edge P -+ N in E. Since G is finite (a

necessary assumption), this chain will terminate at the only node without a parent, R. 1

Theorem 8.14 Popping T will visit the nodes of E in a depth-first order.

Proof:

In the context of visiting tree E , a depth-first order of E means that we want to visit all

descendants of node N before any unvisited siblings of N. Let N and M be siblings in

E, with D a descendant of N. We must show that, given N, M, and D unvisited, if N

is visited first, D will be visited before M (by Theorem 8.12 we know N will be visited

before D). Assume, to the contrary, M is visited before D. This assumption implies that

M is between N and D in stack T. Since D is reachable from N, and dfst(N) reached M

before completing, D must be a descendant of M in E. But this fact implies two paths

from R to D in E (one through N and one through M), since M and N are siblings.

However, this conclusion contradicts the fact that E is a tree. Thus, D will be visited

before M. (

In order to assess the asymptotic complexity of the algorithms given in this chapter,

let P be the number of sequential sections of code in the parallel program, and N and

E be the maximum of the total number of nodes and edges respectively in the local

CFGs corresponding to each of these sections. If is the number of variables in the

program, we calculate the running time of our algorithms as follows: the first phase,

+ and $-function placement, takes worst case 0 (N 2 + E) per section [CFR+91], thus

over all sequential sections it will take O(P x (N2 + E)) time. Then, for the second

phase, the ChainEFG() routine take maximum time of O(N x x) (per sequential section),

while traversePG() will traverse all sections (o(P)), calling dfst() (constant time with

respect to the traversePG() call), ChainEFGO, and processing + and $-functions on

each section (~ (p)) . Thus, the running time of the second phase, over all variables, is

~ (P X (N x ? + p 1).

8.4 Notes on Implementation

Here, we will examine some of the salient features observed while implementing the

algorithms presented in this chapter:

a The slice edges proved to be an invaluable tool for propagating reaching definitions.

All variables defined within a section have a &function at the local Exit node, but

$-functions (inserted at the section Entry nodes) are never propagated within that

section, since Entry nodes have an empty local dominance frontier. Thus, by

looking first for $-functions at Entry, followed by +functions at Exit, the proper

reaching definition will always be on the top of the stack when proceeding to a new

section.

Removing duplicate $-arguments. We have seen how duplicate arguments can

occur. At first glance, it may appear that in order to remove duplicates, the ar-

guments would need to be sorted, taking Nlog N time. Although we expect N to

usually be fairly small, we can, in fact, perform the duplicate elimination in linear

time, by using a variant of a bucket sort. For each $-function s, examine its argu-

ments, marking a reference flag (pointer to a symbol) at the end of each argument's

link with s. Since each +-function is unique, we can immediately identify duplicate

entries and remove them. Note that this technique is possible, since we can follow

the use of a variable (from the $-argument in this case) to its definition via our

reference chain implementation.

Chapter 9

Conclusions

9.1 Future Applications of Reference Chaining

Reference chaining can be applied in many instances. Once a problem is identified and

cast into a framework where reaching and reachable references are needed, the GRC

algorithm can be invoked to insert merge operators and capture the desired information.

We saw just such an instance with load-range analysis in 55.2.

We mentioned early in this thesis that FUD chains to date have been the most useful

application of reference chaining. That is because they extend SSA form (which already

has many applications developed around its structure) to include def-def links, which

have allowed more thorough analysis of many problems. We anticipate using FUD chains

to analyze another important compiler problem: alias sets. In general, this problem is

undecidable, and some languages, notably C, allow arbitrary pointer declaration and

pointer arithmetic, making the problem all but impossible to solve. Using a restricted

set of pointers, such as provided in Fortran 90, will enable more precision of pointer

analysis. The Fortran 90 standard [ABM+92] permits pointers in a much more restricted

sense than C: no pointer arithmetic is allowed and objects need to be identified as being

the potential target of a pointer.

We briefly examine here two techniques for following FUD chains to analyze alias

sets. The problem is somewhat similar to analysis of arrays (in which each element

could be considered an alias of all other elements), where each definition of an array is

treated as a nonkilling definition. Thus, one may follow chains until a particular array

element is reached, or until the element in question cannot be determined. We used this

method to perform array constant propagation in 54.6.

Aliases can occur in several ways. Formal arguments can become aliases to each

other, as we see with this example:

S1 : call sub(X,Y,Y 1

S2 : call sub(X , X , Y 1

When sub is called at S1, Q and R become aliases of each other, and likewise for P and Q at

S2. These are must aliases, since the compiler can statically establish their relationship.

With this C code fragment

SI: int C

S2 : i n t *A, *B

S3 : A = &C

*A and C are must aliases, but if the compiler cannot determine any information about

B, it may also point to the address of C. Thus, B and A, and *B and C are may aliases, a

less precise relationship than must alias, but a necessary conservative approximation.

We currently envision two methods for performing alias analysis with FUD chains:

1. Create alias equavalence classes. When analyzing a variable, the compiler must

follow the chains of all elements in the equivalence class. There are several questions

to answer:

a Are the data structures kept small, as we expect?

a Does this construction lead to an explosion in the number of links to traverse?

How can we take advantage of incremental information?

a How much of a problem is false aliases? For the first example above, P and

R will be put into the same equivalence class (since both at some point are

classified as aliases of Q), but in fact are never aliases of each other.

2. Treat definitions as killing definitions of themselves, but nonkilling definitions of

the alias set. When analyzing a variable, the compiler will traverse a chain that

weaves through all references of variables in an alias set. This technique is similar

to work previously done [WZ91, CG931. In this case we may have larger data

structures, but taking advantage of incremental information may be much easier.

9.2 Assessment and Conclusion

We have described a general method of chaining arbitrary references in both forward

and backward data-flow problems. At this point, how do we evaluate the strengths and

weaknesses of this approach? First, we assess how GRC stands in comparison to our

thesis as described in 81.2:

1. Efficient implementation. We have shown empirically that building reference

chain graphs is linear in the number of variables and program statements. Com-

pared to the actual analysis (performing constant propagation, building live vari-

able sets, etc.) the construction cost is fairly minimal.

2. Alternative solutions. We have shown how to use GRCs as an alternative

method for performing constant propagation and solving live variables and antici-

patable expressions.

3. Problems previously neglected. GRC has been shown to be applicable to

the problem of scalar data dependence. We present the first sparse solution to

the scalar dependence problem, important since it avoids the additional overhead

associated with general dependence analysis.

4. Extension into parallel languages. We have provided a detailed extension for

reaching definitions into explicit parallel constructs. We envision extensions for

other constructs, such as the HPF FORALL statement.

We now offer the following observations, based upon using GRC on a large assortment

of problems and scenarios:

GRC has great appeal due to its use of standard basic block and CFG representa-

tions. By augmenting the CFG, we obviate the need for separate structures (such as

that used by sparse evaluation graphs [CCFSl]), yet provide the maximum degree

of sparsity allowed by each problem.

Merge operators provided by GRC capture information that is stored until needed

and which can be extracted on demand; an example is the A-function when used

for computing live variable information.

By developing the general reference chaining algorithm (Algorithms 5.1 and 5.2)

we have provided a mechanism for collecting information on many problems, not

just those applications we have focused on in this thesis. The GRC framework can

result in efficient and fast solutions to problems that before were limited by the cost

of expensive operations in the traditional iterative style. Solving the reaching uses

problem with FRDU chains, which allowed an efficient method of detecting anti-

and input dependence, is a prime example of the usefulness of the GRC technique.

Empirical testing of solutions to problems using a demand-driven method has

shown that, in the absence of cycles, sparse links combined with the demand for

classification is quite an efficient technique. Separate solvers for cycles have also

been shown to be very effective.

The cost of constructing reference chains (all structures involve some overhead,

albeit some more than others) can often be amortized when multiple applications

use the same chains for analysis.

Array analysis remains as critical as ever. FUD chains have improved the ability to

process data structures such as arrays and records, but further research is necessary

to continue the development of techniques to analyze data structures with multiple

components.

Instead of providing links between references to achieve sparse data-flow representa-

tions, another approach is to use standard methods, as described in 52.3.1, and identify

those equations in the system that carry redundant information (DGS941. By eliminat-

ing redundancies, fixed point computation may be faster. This approach maps data-flow

equations into congruences (those equations with identical maximum fixed point solu-

tions), which is an equivalence relation that partitions all the equations into congruence

classes. Then, a reduced set of equations can be solved, with one equation from each

class. Although the authors note that SSA form is an alternate technique, Duesterwald

et al. point out that "the benefits of using SSA for data flow analysis are limited to

problems that are based on definition-use connections, such as constant propagation. A

problem like available expressions does not benefit from SSA." In this dissertation we

have seen that extending the concept of SSA to GRC allows solutions to many data-flow

problems (including available expressions) that require connecting arbitrary reference

pairs, not just definitions and uses.

In conclusion, we have presented a framework that aids in the overall analysis of the

intermediate compiler form, and have demonstrated that reference chaining is an option

for many problems where sparse representation of data-flow information is profitable.

By implementing the techniques described, we have shown that GRC is a viable and

efficient approach for analyzing real programs.

Bibliography

[ABCS87] Frances Allen, Michael Burke, Philippe Charles, Ron Cytron, and Jeanne
Ferrante. An overview of the PTRAN analysis system for multiprocessing.
In Elias N. Houstis, Theodore S. Papatheodorou, and Constantine D. Poly-
chronopoulos, editors, Supercomputing: 1st International Conference, num-
ber 297 in Lecture Notes in Computer Science, pages 194-211. Springer-
Verlag, Berlin, 1987.

[ABCS88] Frances Allen, Michael Burke, Philippe Charles, Ron Cytron, and Jeanne
Ferrante. An overview of the PTRAN analysis system for multiprocessing.
Journal of Parallel and Distributed Computing, 5(5):617-640, October 1988.
(update of [ABCS87])

[ABMS92] Jeanne C. Adams, Walter S. Brainerd, Jeanne T. Martin, Brian T. Smith,
and Jerrold L. Wagener. Fortran 90 Handbook. McGraw-Hill Book Company,
New York, NY, 1992.

[AC76] F. E. Allen and J. Cocke. A program data flow analysis procedure. Commu-
nications of the ACM, 1(3):137-147, 1976.

[ADNP88] Arvind, M. L. Dertouzos, R.S. Nikhil, and G.M. Papadopoulos. Project
Dataflow: A parallel computing system based on the Monsoon architecture
and the Id programming language. Computation Structures Group Memo
285, Massachusetts Institute of Technology Laboratory for Computer Sci-
ence, March 1988.

[AK87] John R. Allen and Ken Kennedy. Automatic translation of Fortran programs
to vector form. ACM Zhnsactions on Programming Languages and Systems,
9(4):491-542, October 1987.

[A11831 J. R. Allen. Dependence Analysis for Subscripted Variables and Its Applica-
tion to Program Tkansformations. PhD thesis, Department of Mathematical
Sciences, Rice University, 1983. (available fiom University Microfilms Inc.,
document 83-14916)

[ASU86] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques,
and Tools. Addison-Wesley, Reading, MA, 1986.

[Aut94] Tito Autrey. Interprocedural constant propagation: Implementation and
evaluation. Student research proficiency paper, Department of Computer

Science and Engineering, Oregon Graduate Institute of Science & Technology,
May 1994.

[BB89] William Baxter and Henry R. Bauer 111. The Program Dependence Graph
and vectorization. In Conference Record Sixteenth Annual ACM Symposium
on Principles of Programming Languages, pages 1-11, Austin, TX, January
1989.

[BC94] Preston Briggs and Keith D. Cooper. Effective partial redundancy elim-
ination. In Proceedings ACM SIGPLAN '94 Conference on Programming
Language Design and Implementation, pages 159-170, Orlando, FL, June
1994.

[BCD+92] David S. Blickman, Peter W. Craig, Caroline S. Davidson, R. Neil Faiman,
Jr., Kent D. Glossop, Richard B. Grove, Steven 0. Hobbs, and William B.
Noyce. The GEM optimizing compiler system. Digital Technical Journal,
4(4):121-135, 1992.

[BCFH89] Michael Burke, Ron Cytron, Jeanne Ferrante, and Wilson Hsieh. Automatic
generation of nested, fork-join parallelism. The Journal of Supercomputing,
3(2):71-88, July 1989.

[BH73] Per Brinch Hansen. Operating Systems Principles. Prentice-Hall, Englewood
Cliffs, NJ, 1973.

[BM090] Robert A. Ballance, Arthur B. Maccabe, and Karl J. Ottenstein. The Pro-
gram Dependence Web: A representation supporting control-, data-, and
demand-driven interpretation of imperative languages. In Proceedings A CM
SIGPLAN '90 Conference on Programming Language Design and Implemen-
tation, pages 257-271, White Plains, NY, June 1990.

[BR91] David Bernstein and Michael Rodeh. Global instruction scheduling for su-
perscalar machines. In Proceedings ACM SIGPLAN '91 Conference on Pro-
gramming Language Design and Implementation, pages 241-255, Toronto,
ON, June 1991.

[CCF91] Jong-Deok Choi, Ron Cytron, and Jeanne Ferrante. Automatic construc-
tion of sparse data flow evaluation graphs. In Conference Record Eighteenth
Annual ACM Symposium on Principles of Programming Languages, pages
55-66, Orlando, FL, January 1991.

[CCF94] Jong-Deok Choi, Ron Cytron, and Jeanne Ferrante. On the efficient en-
gineering of ambitious program analysis. IEEE 'D-ansactions on Software
Engineering, 20(2):105-114, February 1994.

[CCKT86] D. Callahan, K.D. Cooper, K. Kennedy, and L. M. Torczon. Interprocedural
constant propagation. In Proceedings SIGPLAN '86 Symposium on Compiler
Construction, pages 152-161, Palo Alto, CA, June 1986.

[CF89] Robert Cartwright and Matthias Felleisen. The semantics of program depen-
dence. In Proceedings ACM SIGPLAN '89 Conference on Programming Lan-
guage Design and Implementation, pages 13-27, Portland, OR, June 1989.

[CF93] Ron K. Cytron and Jeanne Ferrante. Efficiently computing +nodes on-the-
fly. In Utpal Banerjee, David Gelernter, Alexandru Nicolau, and David A.
Padua, editors, Languages and Compilers for Parallel Computing, number
768 in Lecture Notes in Computer Science, pages 461-476. Springer-Verlag,
1993.

[CFR+89] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and Ken-
neth Zadeck. An efficient method of computing Static Single Assignment
form. In Conference Record Sixteenth Annual ACM Symposium on Princi-
ples of Programming Languages, pages 25-35, Austin, TX, January 1989.

[CFR+91] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and
F. Kenneth Zadeck. Efficiently computing Static Single Assignment form
and the control dependence graph. ACM Dansactions on Programming Lan-
guages and Systems, 13(4):451-490, October 1991.

[CFS9O] Ron Cytron, Jeanne Ferrante, and Vivek Sarkar. Compact representations
for control dependence. In ACM SIGPLAN '90 Conference on Progamming
Language Design and Implementation, pages 337-351, White Plains, NY,
June 1990.

[CG93] Ron Cytron and Reid Gershbein. Efficient accommodation of may-alias infor-
mation in SSA form. In Proceedings ACM SIGPLAN '93 Conference on Pro-
gramming Language Design and Implementation, pages 36-45, Albuquerque,
NM, June 1993.

[CHH89] Ron Cytron, Michael Hind, and Wilson Hsieh. Automatic generation of
DAG parallelism. In Proceedings ACM SIGPLAN '89 Conference on Pro-
gramming Language Design and Implementation, pages 54-68, Portland, OR,
June 1989.

[CKPK9O] George Cybenko, Lyle Kipp, Lynn Pointer, and David Kuck. Supercom-
puter performance evaluation and the Perfect Benchmarks. In 4th ACM
International Conference on Supercomputing, pages 254-266, Amsterdam,
The Netherlands, June 1990.

[DGS94] Evelyn Duesterwald, Rajiv Gupta, and Mary Lou Soffa. Reducing the cost
of data flow analysis by congruence partitioning. In 5th International Con-
ference, Compiler Construction, number 786 in Lecture Notes in Computer
Science, pages 357-373. Springer-Verlag, 1994.

[EHLP92] Rudolf Eigenmann, Jay Hoeflinger, Zhiyuan Li, and David Padua. Experi-
ence in the automatic parallelization of four Perfect benchmark programs. In
Utpal Banerjee, David Gelernter, Alexandru Nicolau, and David A. Padua,

editors, Languages and Compilers for Parallel Computing, number 589 in
Lecture Notes in Computer Science, pages 65-83. Springer-Verlag, 1992.

[FS93] Geoffrey C. Fox et al. Common runtime support for high-performance parallel
languages. In Proceedings of Supercomputing 93, pages 752-757, Portland,
OR, November 1993.

[Feagl] Paul Feautrier. Dataflow analysis of array and scalar references. International
Journal of Parallel Programming, 20(1):23-54, 1991.

[FH88] Anthony J. Field and Peter G. Harrison. Functional Programming. Addison-
Wesley, Wokingham, England, 1988.

[FL88] Charles N. Fischer and Richard J. LeBlanc, Jr. Crafting a Compiler.
Benjamin-Cummings, Menlo Park, CA, 1988.

[F083] J. Ferrante and K.J. Ottenstein. A program form based on data dependency
in predicate regions. In Conference Record of the Tenth ACM Symposium on
Principles of Programming Languages, pages 217-231, Austin,TX, January
1983.

[FOW87] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The Program
Dependence Graph and its use in optimization. ACM Ransactions on Pro-
gramming Languages and Systems, 9(3):319-349, July 1987.

[GS93] Dirk Grunwald and Harini Srinivasan. Data flow equations for explicitly
parallel programs. In 4th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, pages 159-168, San Diego, CA, May 1993.

[GSW] Michael P. Gerlek, Eric Stoltz, and Michael Wolfe. Beyond induction vari-
ables: Detecting and classifying sequences using a demand-driven SSA form.
To appear in ACM Dunsactions on Programming Languages and Systems,
1995.

[GT93] Dan Grove and Linda Torczon. Interprocedural constant propagation: A
study of jump function implementation. In Proceedings ACM SIGPLAN '93
Conference on Programming Language Design and ImpEementat~on, pages
90-99, Albuquerque, NM, June 1993.

[GW76] S. Graham and M. Wegman. A fast and usually linear algorithm for global
data flow analysis. Journal of the A CM, 23:172-202, 1976.

[GWS94] Michael P. Gerlek, Michael Wolfe, and Eric Stoltz. A reference chain ap-
proach for live variables. Technical Report 94-029, Oregon Graduate Institute
of Science & Technology, 1994.

[Ha1911 Mary Hall. Managing Interproceduml Optimization. PhD thesis, Department
of Computer Science, Rice University, 1991.

Don Harel. A linear time algorithm for finding dominators in flow graphs
and related problems. In Proceedings of the 17th Annual ACM Symposium
on Theory of Computing, pages 185-194, May 1985.

Paul Havlak. Construction of Thinned Gated Single-Assignment form. In
Utpal Banerjee, David Gelernter, Alexandru Nicolau, and David A. Padua,
editors, Languages and Compilers for Parallel Computing, number 768 in
Lecture Notes in Computer Science, pages 477-499. Springer-Verlag , 1993.

Paul Havlak. Interprocedural Symbolic Analysis. PhD thesis, Department of
Computer Science, Rice University, 1994.

Matthew S. Hecht. Flow Analysis of Computer Programs. North Holland,
New York, 1977.

Mohammed R. Haghighat and Constantine D. Polychronopoulos. Symbolic
program analysis and optimization for parallelizing compilers. In Utpal
Banerjee, David Gelernter, Alexandru Nicolau, and David A. Padua, edi-
tors, Languages and Compilers for Parallel Computing, number 589 in Lec-
ture Notes in Computer Science, pages 65-83. Springer-Verlag, 1992.

Susan Horwitz, Jan Prins, and Thomas Reps. On the adequacy of Program
Dependence Graphs for representing programs. In Conference Record Fif-
teenth Annual ACM Symposium on Principles of Programming Languages,
pages 146-157, San Diego, CA, January 1988.

Ellis Horowitz and Sartaj Sahni. Fundamentals of Computer Algorithms.
Computer Science Press, Potomac, MD, 1978.

M.S. Hecht and J.D. Ullman. Flow graph reducibility. SIAM Journal of
Computing., l(2): 188-202, June 1972.

William C. Hsieh, Paul Wang, and William E. Weihl. Computation mi-
gration: Enhancing locality for distributed-memory parallel systems. In 4th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming, pages 239-248, San Diego, CA, May 1993.

Richard Craig Johnson. Eficient Program Analysis using Dependence Flow
Graphs. PhD thesis, Department of Computer Science, Cornell University,
1994.

Richard Johnson and Keshav Pingali. Dependence-based program analysis.
In Proceedings ACM SIGPLAN '93 Conference on Programming Language
Design and Implementation, pages 78-89, Albuquerque, NM, June 1993.

Richard Johnson, David Pearson, and Keshav Pingali. Finding regions fast:
Single entry single exit and control regions in linear time. Technical Report
93-1365, Department of Computer Science, Cornell University, July 1993.

Richard Johnson, David Pearson, and Keshav Pingali. The program struc-
ture tree: Computing control regions in linear time. In Proceedings ACM
SIGPLAN '94 Conference on Programming Language Design and Implemen-
tation, pages 171-185, Orlando, FL, June 1994.

V.N. Kas'janov. Distinguishing hammocks in a directed graph. Soviet Math.
Doklady, 16(5):448-450, 1975.

Ken Kennedy. A survey of data flow analysis techniques. In Steven S. Much-
nick and Neil D. Jones, editors, Program Flow Analysis: Theory and Appli-
cations, pages 5-54. Prentice-Hall, Englewood Cliffs, NJ, 1981.

Richard Kelsey and Paul Hudak. Realistic compilation by program transfor-
mation. In Conference Record 16th Annual ACM Symposium on Principles
of Programming Languages, pages 281-292, Austin, TX, January 1989.

Priyadarshan Kolte and Mary Jean Harrold. Loadjstore range analysis for
global register allocation. In Proceedings ACM SIGPLAN '93 Conference on
Programming Language Design and Implementation, pages 268-277, Albu-
querque, NM, June 1993.

Gary A. Kildall. A unified approach to program optimization. In Conference
Record First ACM Symposium on the Principles of Programming Languages,
pages 194-206, October 1973.

Jens Knoop, Oliver Riithing, and Bernhard Steffan. Partial dead code elim-
ination. In Proceedings ACM SIGPLAN '94 Conference on Programming
Language Design and Implementation, pages 147-158, Orlando, FL, June
1994.

John B. Kam and Jeffrey D. Ullman. Monotone data flow analysis frame-
works. Acta Inforrnatica, 7(3):305-317, 1977.

Leslie Lamport. How to make a multiprocessor computer that correctly
executes multiprocess programs. IEEE '13.ansactions on Computers, C-
28(9):690-691, September 1979.

P. Lowney, S. Freudenberger, T. Karzes, W. Lichtenstein, R. Nix,
J. O'Donnell, and J. Ruttenberg. The Multiflow trace scheduling compiler.
The Journal of Supercomputing, 7(1/2):51-142, 1993.

Thomas Lengauer and Robert Endre Tarjan. A fast algorithm for finding
dominators in a flow graph. ACM Tkansactions on Programming Languages
and Systems, 1(1):121-141, July 1979.

Thomas J. Marlowe. Data Flow Analysis and Incremental Itemtion. PhD
thesis, Department of Computer Science, Rutgers University, 1989.

[RW Z88]

Vadim Maslov. Lazy array data-flow dependence analysis. In Conference
Record 2lst Annual ACM Symposium on Principles of Programming Lan-
guages, pages 311-325, Portland, OR, January 1994.

Steven S. Muchnick and Neil D. Jones, editors. Program Flow Analysis:
Theory and Applications. Prentice-Hall, Englewood Cliffs, New Jersey, 1981.

Carl McConnell and Ralph E. Johnson. Using Static Single Assignment form
in a code optimizer. ACM Letters on Programming Languages and Systems,
1(2):152-160, June 1992.

R. Metzger and S. Stroud. Interprocedural constant propagation: An empir-
ical study. ACM Letters on Programming Languages and Systems, March-
December 1993.

Steve S. Muchnick. Optimizing compilers for SPARC. Sun Technology, pages
161-173, Summer 1988.

Cindy Norris and Lori L. Pollock. Register allocation over the Program
Dependence Graph. In Proceedings ACM SIGPLAN '94 Conference on Pro-
gramming Language Design and Implementation, pages 266-277, Orlando,
FL, June 1994.

Karl J. Ottenstein, Robert A. Ballance, and Arthur B. Maccabe. Gated
Single-Assignment form: Dataflow interpretation for imperative languages.
Technical Report LA-UR-89-3654, Los Alamos National Laboratory, 1989.

Parallel Computing Forum. PCF Parallel Fortran extensions. Fortran Forum,
10(3), September 1991.

J.H. Reif and H. R. Lewis. Symbolic evaluation and the global value graph.
In Conference Record Fourth ACM Symposium on the Principles of Program-
ming Languages, Los Angeles, CA, January 1977.

B.K. Rosen, M.N. Wegman, and F.K. Zadeck. Global value numbers and
redundant computations. In Conference Record Fifteenth Annual ACM Sym-
posium on Principles of Progmmming Languages, pages 12-27, San Diego,
CA, January 1988.

Robert Sedgewick. Algorithms. Addison-Wesley, Reading, MA, 1988.

Rebecca Parsons Selke. A rewriting semantics for Program Dependence
Graphs. In Conference Record Sixteenth Annual ACM Symposium on Prin-
ciples of Progmmming Languages, pages 12-24, Austin, TX, January 1989.

Vugrananm C. Sreedhar and Guang R. Gao. Computing &nodes in linear
time using DJ-graphs. Technical Report 757, McGill University School of
Computer Science, ACAPS Laboratory, Montreal, PQ, January 1993.

[SGW94] Eric Stoltz, Michael P. Gerlek, and Michael Wolfe. Extended SSA with fac-
tored use-def chains to support optimization and parallelism. In Proceedings
of 27th Annual Hawaii International Conference on System Sciences, pages
43-52, January 1994.

[SHW93] Harini Srinivasan, James Hook, and Michael Wolfe. Static Single Assignment
for explicitly parallel programs. In Conference Record Twentieth Annual
ACM Symposium on Principles of Programming Languages, pages 16-28,
Charleston, SC, January 1993.

[SS93] Vivek Sarkar and Barbara Simons. Parallel program graphs and their classifi-
cation. In Utpal Banerjee, David Gelernter, Alexandru Nicolau, and David A.
Padua, editors, Languages and Compilers for Parallel Computing, number
768 in Lecture Notes in Computer Science, pages 633-655. Springer-Verlag,
1993.

[Tar721 R. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal of
Computing, 1 (2):146-160, June 1972.

[TS85] Jean-Paul Tremblay and Paul G. Sorenson. The Theory and Practice of
Compiler Writing. McGraw-Hill, New York, NY, 1985.

[Tse93] Chau-Wen Tseng. An Optimizing Fortran D Compiler for MIMD Distributed-
Memory Machines. PhD thesis, Deptartment of Computer Science, Rice
University, January 1993. (available as Technical Report TR93-199, Rice
University)

[WB87] Michael Wolfe and Utpal Banerjee. Data dependence and its applica-
tion to parallel processing. International Journal of Parallel Programming,
16(2):137-178, April 1987.

[WCES94] Daniel Weise, Roger F. Crew, Michael E r s t , and Bjarne Steensgaard. Value
Dependence Graphs: representation without taxation. In Conference Record
2lst Annual ACM Symposium on Principles of Programming Languages,
pages 297-310, Portland, OR, January 1994.

[WGS93] Michael Wolfe, Michael P. Gerlek, and Eric Stoltz. Nascent: A next-
generation, high performance compiler. Department of Computer Science
and Engineering, Oregon Graduate Institute of Science & Technology. un-
published manuscript, 1993.

[WGS94] Michael Wolfe, Michael P. Gerlek, and Eric Stoltz. Demand-driven data
flow analysis. Department of Computer Science and Engineering, Oregon
Graduate Institute of Science & Technology. unpublished manuscript, 1994.

[Wo178] Michael Wolfe. Techniques for improving the inherent parallelism in pro-
grams. M.S. thesis UIUCDCS-R-78-929, University of Illinois, Dept . Com-
puter Science, July 1978.

[Wolf321 Michael Wolfe. Optimizing Supercompilers for Supercomputers. PhD the-
sis, Department of Computer Science, University of Illinois, October 1982.
(available from University Microfilms Inc., document 83-03027)

[Wo189] Michael Wolfe. Optimizing Supercompilers for Supercomputers. Research
Monographs in Parallel and Distributed Computing. Pitman Publishing,
London, 1989. (also available from MIT Press)

[Wo192a] Michael E. Wolf. Improving Locality and Parallelism in Nested Loops. PhD
thesis, Department of Computer Science, Stanford University, August 1992.
(available as Technical Report CSL-TR-92-538, Stanford University)

[Wo192b] Michael Wolfe. Beyond induction variables. In Proceedings ACM SIGPLAN
'92 Conference on Programming Language Design and Implementation, pages
162-174, San Francisco, CA, June 1992.

[Wo194] Michael Wolfe. J+ = J. ACM Sigplan Notices, 29(7):51-53, July 1994.

[WZ91] Mark N. Wegman and F. Kenneth Zadeck. Constant propagation with con-
ditional branches. ACM fiansactions on Programming Languages and Sys-
tems, 13(2):181-210, April 1991.

Biographical Note

Eric James Stoltz was born on September 19, 1954, in Modesto, California, the son

of Jack and Cathy Stoltz. After living in California and Washington, he attended

Willamette University in Salem, Oregon, earning a Bachelor of Science degree in Math-

ematics in 1976. There followed 14 years of teaching math in public school, where each

day entertained the possibility of joy and tears. In 1982 he received a Masters of Science

and Teaching degree in Mathematics from Portland State University.

Eric decided to pursue a second career in 1990. Thinking a further advanced degree

in mathematics would not offer a wide range of career opportunities, he entered the

computer science Ph.D. program at Oregon Graduate Institute of Science & Technology

with no formal computer science background of any sort. This decision led to an inter-

esting first year, but involvement in a compiler analysis research group led by Professor

Michael Wolfe offered work that seemed suited to his nature. Eric received his Ph.D. in

Computer Science in January, 1995.

During his tenure at OGI, Eric had considerable opportunity to improve his writ-

ing skills, via technical reports, conference papers, journal articles, and of course this

dissertation.

Living on the West Coast his entire life, Eric continued his eventful life in February,

1995, by accepting a job in Texas, a state that he visited for the first time in December,

1994.

	199501.stoltz.eric to p. 60.pdf
	199501.stoltz.eric to p. 140.pdf
	199501.stoltz.eric to p. 230.pdf

